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ABSTRACT 30 

The objectives of present study were to assess the mucosal, cellular and humoral immune 31 

responses induced by two different infectious bronchitis virus (IBV) vaccination regimes and 32 

their efficacy against challenge by a variant IBV Q1. Day-old broiler chicks were vaccinated 33 

with live H120 alone (Group I) or in combination with CR88 (Group II).  Both groups were 34 

again vaccinated with CR88 at 14 days of age (doa). One group was kept as the control 35 

(Group III). A significant increase in lachrymal IgA levels was observed at 4 doa, which then 36 

peaked at 14 doa in the vaccinated groups. The IgA levels in group II were significantly 37 

higher than group I from 14 doa. Using immunohistochemistry to examine changes in the 38 

number of CD4+ and CD8+ cells in the trachea, it was found that overall patterns of CD8+ 39 

were dominant compared to CD4+ cells in both vaccinated groups.  CD8+ were significantly 40 

higher in group II compared to group I at 21 and 28 doa. All groups were challenged oculo-41 

nasally with a virulent Q1 strain at 28 doa, and their protection was assessed. Both vaccinated 42 

groups gave excellent ciliary protection against Q1, though group II’s histopathology lesion 43 

scores and viral RNA loads in the trachea and kidney showed greater levels of protection 44 

compared to group I. These results suggest that greater protection is achieved from the 45 

combined vaccination of H120 and CR88 of day-old chicks, followed by CR88 at 14 doa. 46 

Keywords: Infectious bronchitis virus, Chicken, Vaccination, Mucosal-humoral-cell 47 

mediated immune responses, Protection, Q1-challenge 48 

 49 

 50 

 51 

 52 
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INTRODUCTION 53 

The prevention of infectious bronchitis (IB) in chickens is achieved through the use of 54 

live and inactivated vaccines, which provide protection against virulent field IB viruses in the 55 

event of an exposure. Despite these preventative measures, outbreaks of IB frequently occur 56 

in many poultry producing countries (1-3). This is probably due to the emergence of new 57 

variants of infectious bronchitis virus (IBV) (1-5). For the successful protection of chickens 58 

against infection, it is essential to identify the prevalent genotypes in the region and to 59 

determine the cross-protective potential of available vaccines and optimise strategic 60 

vaccination programmes. 61 

IB was first described in the USA during the 1930s and was identified in the UK in 62 

1948. Thereafter, many IBV variants were isolated from Europe, significantly a variant called 63 

793B that emerged in the 1990s (6). Later, IBV QX was first identified in China (7) before 64 

spreading to Europe (8). Another IBV genotype, Q1, genetically and serologically distinct 65 

from the classical IBVs, was also reported in China (9), the Middle East (10) and Europe 66 

(11). To contain this strain, an effective vaccination programme is needed. However, very 67 

little is known about the cross protection induced by the commercially available vaccines or 68 

vaccination regimes against this variant Q1. 69 

An effective and long-lasting protection against IBV infection requires the activation 70 

of effector, memory cell-mediated and humoral immune responses against the virus (12). A 71 

number of studies have reported the systemic and local humoral immune response (HIR) to 72 

IBV vaccination (12-14). In chickens, experimentally challenged with IBV, the development 73 

of a cell mediated immune response (CMI) has been correlated with effective virus clearance, 74 

reduction of clinical signs and resolution of lesions (15, 16). The presence of cytotoxic CD8+ 75 

T lymphocytes (CTL) represents a good correlation for  decreasing infection and corresponds 76 

with a reduction in clinical signs, as CTL activity is major histocompatibility complex  77 
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restricted and these T cells mediate cytolysis (17). It has additionally been shown that the 78 

transfer of CTLs obtained from spleen of IBV-infected chickens, was protective to naïve 79 

chicks against a subsequent IBV challenge (15, 18). During the course of experimental viral 80 

infection, Kotani et al (2000) showed that the clearance of the IBV from the tracheal mucosa 81 

occurred at an early phase of the infection and CTLs at the tracheal mucosa were proposed to 82 

be involved in this clearance (19). To date, there is no information available on the tracheal 83 

mucosal leukocytes after vaccination with live IBV vaccines.  Nevertheless, Okino et al 84 

(2013) have quantified the relative expression of the CTLs genes in tracheal samples from 85 

vaccinated and further challenged birds. The up regulation of these genes, in the tracheal 86 

mucosa of the full-dose vaccinated birds, was significantly increased at 24 hours post 87 

infection (hpi), demonstrating the development of a CMI memory response (20). However, 88 

these researchers did not directly measure the activity of CMI, such as the cytotoxic 89 

mechanism of CTLs. 90 

Despite all these reports, the kinetics of, and the relationship between local and 91 

systemic HIR and CMI induced by different IBV vaccination regimes, needs to be better 92 

understood for protection against emerging IBV strains. Thus, the objective of our study was 93 

to measure the local as well as systemic HIR and CMI induced by two different IBV 94 

vaccination regimes  administered to commercial broiler chicks, and to estimate the 95 

protection achieved against a recently isolated virulent Q1 strain.   96 

 97 

MATERIALS AND METHODS 98 

Birds 99 

One hundred twenty broiler chicks, aged 1-day-old, were obtained from a commercial 100 

hatchery. Birds were allowed ad libitum access to feed and drinking water. All procedures 101 

were undertaken according to the UK legislation on the use of animals for experiments as 102 
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permitted under the project license PPL 40/3723, which was approved by the University of 103 

Liverpool ethical review committee.   104 

Challenge virus 105 

The virulent Q1 isolate used in this study was kindly provided by Merial Animal Health. 106 

PCR confirmed that the allantoic fluid, from eggs used to propagate the virus, was free of 107 

Newcastle disease, avian influenza, infectious bursal disease, infectious laryngotracheitis and 108 

avian metapneumoviruses. Q1 IBV was also free of bacterial or fungal contaminants. The 109 

virus was titrated in the chicken tracheal organ culture (TOC) as described before and 110 

expressed in 50% (median) ciliostatic doses (CD50)/ml (21). 111 

 112 

Vaccine preparation 113 

As recommended by the manufacturer (Merial Animal Health Limited, UK), the vaccines 114 

were prepared, by thoroughly mixing one vial of live IBV H120 (Bioral H 120®) vaccine with 115 

100 ml of sterile water (SW). For combined vaccinations, one vial of each Bioral H 120® and 116 

live IBV CR88 (GALLIVAC® IB88) vaccines were mixed together in 100 ml of SW. 117 

Immediately after preparation, the vaccines and SW were kept in a cold box (at 0°C). Each 118 

chick received a total of 100 μl of the appropriate vaccine ocularly (50 μl) and nasally (50 μl) 119 

or SW. To quantify the virus, titration of live IBV vaccine for H120 and CR88 was 120 

performed by using 9-11 days of age (doa) specific pathogen free (SPF) embryonated chicken 121 

eggs (ECE) inoculated via the allantoic cavity. The ECE were examined for IBV specific 122 

lesions (curling and dwarfing) of the embryos up to five days post inoculation. Viral titres 123 

were calculated according to Reed et al. (22) and expressed as the Egg infective dose 124 

(EID50/ml). The titre of the vaccine viruses used was 3.5 log10 EID50/chick and 4.25 log10 125 

EID50/chick for the H120 strain and CR88 strain, respectively. 126 

Experimental design 127 
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One hundred and twenty broiler chicks, aged 1-day-old, were divided into three groups 128 

(n=40 chicks/group) (Table 1). Chicks in Group I were inoculated oculonasally with 100 μl 129 

of live H120 vaccine alone. In group II, chicks were inoculated oculonasally with 100 μl of 130 

both live H120 and CR88 vaccines simultaneously. Chicks in both groups (I and II) were 131 

again inoculated with a live CR88 vaccine at 14 doa. Group III received only 100 μl of SW 132 

oculonasally and was kept as a control. Samples (5 birds/group) of serum, tears and 133 

heparinized blood were collected at 0, 4, 7, 14, 21 and 28 doa before sacrificing the birds. 134 

The tears and serum samples were stored at -20ºC, and blood samples were processed 135 

immediately for peripheral blood mononuclear lymphocytes isolation. Five chickens from 136 

each group per interval were humanely euthanized for the collection of approximately 1 cm 137 

of the upper trachea in OCT to be snap-frozen in liquid nitrogen for immunohistochemistry 138 

(IHC). The rest of the trachea was used for tracheal washes. At 28 doa, 10 birds from each 139 

group were challenged via ocular-nasal route with the Q1 (104.0 CD50/bird) and observed 140 

daily for clinical signs.  After 5 days post challenge (dpc), all 10 birds from each group were 141 

necropsied and tracheal samples were collected; a portion placed in the RNALater® (Qiagen, 142 

Crawley, UK) and stored at -70°C until processing for examination of viral RNA load. The 143 

remaining portions were examined by histopathology and cilliostasistests. The kidneys from 144 

all groups were also taken for histopathology and viral RNA load examination. 145 

 146 

Sample collection for antibody detection 147 

The potential of the vaccines to induce antibody production was assessed individually 148 

by using samples of sera, tears and tracheal washes.  Tears were collected using sodium 149 

chloride as described before (23), immediately centrifuged at 3000 x g for 3 min before 150 

storing the supernatant at -70°C until used. To collect the tracheal washes, the trachea was 151 

clamped with two artery forceps at both the ends, and washed with 1 ml PBS using a syringe 152 
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with 19 gauge needle (24). The collected samples were centrifuged at 3000 x g for 3 min, and 153 

the supernatant stored at -70°C until further use. 154 

ELISAs 155 

 To detect IBV antibodies, sera samples were tested with a commercial IBV ELISA kit 156 

(FlockChek®, IDEXX Laboratories, Inc, Westbrook, ME, USA), and immunoglobulin A 157 

(IgA) in tears and tracheal washes was assayed using commercial IgA chicken ELISA kit 158 

(Abcam, Cambridge, UK).  Both assays were carried out according to the respective 159 

manufacturer’s instructions. 160 

Haemagglutination inhibition (HI) test 161 

For the HI test, M41 and 793B HA antigens were obtained from GD Animal Health 162 

Service (Deventer, Netherlands). The Q1 HA antigen was prepared in our laboratory as 163 

described earlier (25). The HI test was conducted according to standard procedures (OIE), 164 

using 4 HA units of antigen per well. The HI titres were read as the reciprocal of the highest 165 

dilution showing complete inhibition and the HI geometric mean titres were expressed as 166 

reciprocal log2. 167 

Cellular immune responses 168 

Analysis of T lymphocyte subsets (CD4+:CD8+) ratio in peripheral blood 169 

To determine the percentage of T-lymphocyte subpopulations, blood was collected 170 

from the cephalic vein in heparin tubes (Sigma Aldrich Co., St. Louis, MO, USA) at final 171 

concentrations of 10 USP/ml of blood, and further diluted (1:1) with RPMI 1640 medium 172 

(Sigma Aldrich Co., St. Louis, MO, USA). The prepared blood samples (1 ml each) were 173 

then over layered onto 0.5 ml of Histopaque –1.077 gradient (Sigma Aldrich Co., St. Louis, 174 

MO, USA) and centrifuged in 1.5 ml Eppendorf vial at 8000 x g for 90 sec.  After 175 

centrifugation, the buffy coat formed of mononuclear cells was gently collected, washed 176 

twice with a RPMI 1640 medium and adjusted to 1×107 cells/ml. The cells were resuspended 177 
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in 0.5% BSA (Sigma Aldrich Co., St. Louis, MO, USA) in PBS (blocking solution) and 178 

incubated at room temperature for 15 min. The sample (100 μl) was incubated with 179 

antibodies against surface domains of CD4 (mouse anti-chicken CD4-FITC clone CT-4; 180 

0.5mg/ml; Southern Biotech, Birmingham, AL, USA) and CD8 (mouse anti-chicken CD8a-181 

FITC clone CT-8; 0.5mg/ml; Southern Biotech) receptors of T-lymphocytes (antibody final 182 

concentrations as 0.2 μl/100 μl of sample) for 30 min in the dark. The stained cells were 183 

detected by flow cytometry (BD Accuri® C6, BD Bioscience San Jose, CA, USA) to count 184 

the T lymphocytes. The unstained cell sample was used as a negative control to adjust the 185 

threshold. 186 

Immunohistochemical detection of CD4+, CD8+ and IgA-bearing B-cells in tracheal 187 

sections 188 

The OCT-embedded tracheal samples were cut into 5 μm sections, fixed in ice-cold 189 

acetone for 10 min, air dried at room temperature and stored at -80ºC until staining.  Just 190 

prior to staining, slides were removed from -80ºC and air dried at room temperature for 10 191 

min.  After endogenous peroxidase inhibition using 0.03% hydrogen peroxide in PBS for 20 192 

min, the endogenous biotin or biotin-binding proteins in tissue sections were blocked with 193 

blocking serum using VECTASTAIN® Elite ABC kit (Vector Laboratories, Burlingame, 194 

USA).  Following blocking, tissue sections were stained overnight at 4ºC in the dark to detect 195 

CD4+, CD8+  and IgA+ cells by using mouse monoclonal antibodies to chicken CD4 (clone 196 

CT-4; 0.5 mg/ml) and CD8a (clone CT-8; 0.5 mg/ml) at 1:1000, and to chicken IgA (clone A-197 

1; 0.5 mg/ml)  at 1:2000. All monoclonal antibodies were procured from Southern Biotech, 198 

Birmingham, AL, USA.  The staining procedure was performed as described earlier (26). For 199 

each sample, the average number of positive cells/400× microscopic field was calculated for 200 

each cell type (26). 201 

 202 
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Ciliary protection 203 

At 5 dpc, trachea samples were evaluated according to standard procedure for ciliary 204 

movement, and the ciliary protection for each group was calculated (27).  205 

Histopathological evaluation 206 

 At 5 dpc, kidneys and tracheas from humanely euthanized birds were collected and 207 

fixed in 10% formalin. The tissues were embedded in paraffin wax (50-60ºC) and sections 208 

were cut to 7μm thickness. Tissue sections were stained by haematoxylin and eosin (H&E) 209 

for microscopic evaluation, the scores attributed according to histopathological severity and 210 

determined by recommendations described previously (28, 29). 211 

Real time RT-PCR (RT-qPCR) 212 

Total RNA extractions from the tracheas and kidneys, collected from the challenged 213 

birds, were performed immediately using RNeasy® Mini Kit (Qiagen, Crawley, UK) 214 

according to the manufacturer’s instructions. Quantification of the viral RNA was done by 215 

quantitative real-time RT-PCR (RT-qPCR) using IBV 3’untranslated region (UTR) gene-216 

specific primers and probes as described previously (30). The RT-qPCR was performed 217 

according to the manufacturer’s instructions using the One-Step RT-PCR kit (Qiagen, 218 

Crawley, UK) and 40 ng of total RNA per reaction. Amplification plots were recorded and 219 

analyzed, the threshold cycle (Ct) determined with Rotor-Gene® Q thermocycler software 220 

(Qiagen, Crawley, UK). The Ct values were converted to log relative equivalent units (REU) 221 

of viral RNA, done through generation of  a standard curve of five 10-fold dilutions of 222 

extracted RNA from infective allantoic fluid of a 106 EID50 dose of M41 as described earlier 223 

(31).  224 

 225 

Statistical analysis 226 
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The comparisons of the means of anti-IBV antibody levels; CD4+:CD8+ ratio in peripheral 227 

blood; immunohistochemical detection of CD4+, CD8+ and IgA-bearing B-cells in tracheal 228 

sections were performed using one-way analysis of variance (ANOVA), followed by the 229 

post-hoc LSD multiple comparison test using GraphPad™ Prism version 6.00 software. 230 

Kruskal-Wallis test followed by Dunn’s test was used for statistical analysis of the non-231 

parametric RT-qPCR and histopathological evaluation data. Differences were considered 232 

significant at P<0.05. 233 

 234 

RESULTS 235 

Systemic humoral immune response 236 

ELISA 237 

On the day of vaccination, the mean of maternally derived anti-IBV antibody titre was 238 

1750±203. Subsequently, the antibody levels in all three groups declined to below cut-off 239 

point (396) by 14 doa. After the booster vaccination with the CR88 at 14 doa, a significant 240 

increase in the antibody titres till 28 doa was observed in groups I and II, as shown in Fig. 1. 241 

On these time points, the levels of antibodies were not significantly different between the 242 

vaccinated groups (P<0.05).  After 14 doa though, the antibody titres in group III was always 243 

less than the cut-off value of 396 in this assay. 244 

HI test 245 

The level of serotype specific antibodies against homologous and heterologous 246 

antigens was evaluated by a HI test (Table 2).  The HI antibody response against all the 247 

antigens used showed no significant difference (P<0.05) between the groups from 0 to7 doa. 248 

However, a lower antibody response was obtained in all groups when the antigen used in the 249 

HI test was heterologous (Q1) to the viruses used in the vaccination. On 14 doa, the mean HI 250 

antibody titre to the M41 was significantly higher (P<0.05) in group II than group I and III. 251 
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Thereafter, at 28 doa, the levels of antibodies to M41 in group I and II were very similar and 252 

significantly higher than group III (P<0.05). At 21 doa, group II showed significant increase 253 

of HI antibody response against CR88, following revaccination with a homologous antigen.  254 

A similar increase was observed in group I on the same sample day. Thereafter, at 28 doa, the 255 

HI antibody titre to CR88 antigen was overall significantly higher in group II (log2 8.2) 256 

followed by group I (log2 4.4) then group III (log2 1.8). At 21 doa, the titres to Q1 in groups I 257 

and II were higher compared to group III (P<0.05).  At 28 doa, the mean HI titre to Q1 was 258 

significantly higher (P<0.05) in group II than group I with a mean difference of 1.2 log2. 259 

Mucosal humoral immune responses 260 

In both, groups I and II, the level of IgA in tears increased significantly (P<0.05) 261 

compared to control group III from 4 doa, continuing to rise until and initially peaking on 14 262 

doa. In the vaccinated groups, after the second vaccination at day 14, IgA values fell, then 263 

increased slightly again through to 28 doa, the day of challenge. The IgA levels in group II 264 

were significantly higher (P<0.05) than group I from 14 doa until 28 doa, the end of the 265 

observation period (Fig. 2a). The level of IgA in tracheal washes in both vaccinated groups 266 

was detected from 4 doa, peaking at 7 doa before declining till 28 doa. No significant 267 

(P<0.05) difference in the level of IgA in tracheal washes induced by the two vaccine groups 268 

was observed at any doa (Fig. 2b). IgA levels in tears and tracheal washes of both vaccinated 269 

groups were significantly higher than the levels from the unvaccinated control group. 270 

Systemic cell-mediated immune response 271 

CD4+:CD8+ ratio in peripheral blood 272 

Flow cytometry results showed that at 7 doa, the CD4+:CD8+ ratios were slightly 273 

higher in both vaccinated groups compared to that of the non-vaccinated group, though there 274 

was no significant difference (P<0.05) between the CD4+:CD8+ ratios of the vaccinated and 275 

non-vaccinated groups observed up to 14 doa (Fig. 3).  After the booster vaccination with the 276 
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CR88 at 14 doa, the ratio of CD4+:CD8+ on 21 doa showed slight increase in both vaccinated 277 

groups, being significantly higher (P<0.05) in group I compared to that of group II and III.  278 

At 28 doa, the ratio was significantly higher (P<0.05) in group II compared to groups I and 279 

III. 280 

Mucosal cell-mediated immune responses in the trachea 281 

The kinetics of CD4+, CD8+ and IgA-bearing B lymphocytes in the trachea were 282 

studied by IHC (Fig. 4).  The number of CD4+ lymphocytes in the trachea increased 283 

significantly (P<0.05) from 4 doa in both vaccinated groups compared to the control (Fig. 284 

5a). The number of CD4+ cells reached its peak at 4 doa in group I and at 7 doa in group II, 285 

before gradually decreasing until 14 doa. After the second immunization, CD4+ cells 286 

strongly increased in number by 21 doa in comparison to the non-vaccinated controls before 287 

declining again. The difference between the vaccinated groups I and II was not statistically 288 

significant (P<0.05). The CD8+ cells subpopulation in groups I and II started to increase 289 

significantly (P<0.05) at 4 doa, reaching peak at 7 doa and then declining (Fig. 5b).  After 290 

revaccination with CR88 at 14 doa, both vaccinated groups showed a strong increase in the 291 

number of CD8+ cells. The number of CD8+ cells were significantly higher in group II than 292 

group I at 21 and 28 doa (P<0.05).  Overall, the dynamics of the CD8+ cell subpopulations in 293 

both vaccinated groups were more dominant than CD4+ cells.  At 7 doa, the IgA-bearing B 294 

cells increased in vaccinated groups I and II, peaking at 14 doa and showing significant 295 

difference compared with the unvaccinated group (P<0.05). The number of IgA-bearing B 296 

cells was significantly higher in group II than group I at 21 doa, whereas, no significant 297 

(P<0.05) difference was observed between both vaccinated groups at 28 doa (Fig. 4c).  298 

Protection 299 

After challenge, no clinical signs were observed in either vaccinated groups.  In the 300 

unvaccinated group, respiratory signs such as coughing, sneezing, head shaking, tracheal 301 
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rales and nasal discharge were observed until 5 dpc. The highest percentage of ciliary 302 

protection (97%) was observed in group II, followed by group I (89.75%). The unvaccinated 303 

challenged group (group III) showed little protection (12%) compared to the vaccinated 304 

challenged groups. 305 

Viral RNA loads, in all tracheal samples collected, were significantly higher (P<0.05) 306 

(4.416 log REU RNA) in the unvaccinated challenged group (III) compared to the vaccinated 307 

groups (I and II)as measured by real time RT-qPCR, at 5 dpc. The vaccinated groups, I and II 308 

showed mean log REU of viral RNA of 1.016 and 0.555, respectively, with no significant 309 

difference between these groups (Fig. 6).  Overall viral RNA in the kidney samples of all the 310 

groups were low compared to tracheal samples. The viral RNA load in kidneys in group III 311 

was significantly higher (P<0.05) than in group II, whereas, group I showed no significant 312 

difference (P<0.05) in log REU of viral RNA with either of group II and III. 313 

Histopathological lesions in tracheas and kidneys were induced by challenge virus in 314 

all the groups at 5 dpc. Marked histopathological changes occurred in group III (non-315 

vaccinated group) with mean scores of 10.2 and showed significant difference with group II 316 

(P<0.05), but not with group I (Fig. 7). The mean lesion scores for kidneys in group III was 317 

significantly higher (P<0.05) than group II, whereas, group I showed no significant 318 

difference (P<0.05) in mean lesion scores with either group II and III. However, overall 319 

mean lesion scores in kidneys were low compared to mean tracheal lesion scores. 320 

 321 

DISCUSSION 322 

 The vaccination regime, chosen in this study for group I, is based on the research 323 

demonstrating that improved protection was seen when two vaccines used were of different 324 

serotypes (27, 32). They also emphasized that the vaccination programme used in their 325 

experiments may not protect the respiratory tract against challenge with every new IBV 326 
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serotype to emerge. It is also evident that despite the use of Mass type vaccine at day 0, 327 

followed by 793B type vaccine at 14 doa (same as in group 1 in this study), significant 328 

number of new IBVs are still emerging under field conditions e.g. QX, IS/885/00, IS/1494/06 329 

and most recently Q1. Therefore, in order to optimize the use of currently available vaccines, 330 

to achieve better immunity and to assess protection against newly emerged Q1 strain, the 331 

vaccination regime for group II was also included in this work. 332 

At 1-day-old, chicks had high ELISA anti-IBV antibody titres in all groups, which 333 

declined and dropped to below the cut-off point by 14 doa.  In the groups that received the 334 

vaccine at one day old, these low antibody levels could result from the partial neutralization 335 

of the vaccine virus in the target tissues by the maternal antibodies present in the broilers at 336 

that age, with a consequently low replication of the vaccine virus and poor stimulation of the 337 

humoral response (16, 33, 34). Later, after the second vaccination at 14 doa, an increase in 338 

the antibody titres was observed until 28 doa (day of challenge) in groups I and II with no 339 

significant difference in antibody levels between these vaccinated groups (P<0.05).  HI 340 

antibody levels declined by 14 doa against the homologous and heterologous virus antigens, 341 

showing similar patterns to declining ELISA titres. Interestingly, by 28 doa, there was no 342 

significant difference between vaccinated groups I and II in terms of the level of antibodies to 343 

M41, whereas, the HI titres to 793B and Q1 were significantly higher in group II than group I 344 

(P<0.05). The role of antibody in the control of IBV infection remains controversial as 345 

workers have shown that circulating antibody titres did not correlate with protection from 346 

IBV infection (35-37). However, other studies demonstrated the importance of humoral 347 

immunity in disease recovery and virus clearance (38, 39). In our study, as expected, the 348 

higher HI titres were obtained using antigen homologous to vaccine strains. However, the 349 

chicks also appeared to be protected against heterologous challenge. This could be due to the 350 
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presence of local immunity of the upper respiratory tract, induced by vaccination thus 351 

reducing the replication of challenge virus.  352 

The role of IgA antibodies is important for mucosal immunity to IBV and its presence 353 

in tears following IBV antigen inoculation has been reported earlier (38, 40). In this study, a 354 

gradual increase in IgA levels were observed in tears for both vaccinated groups during the 355 

first two weeks after vaccination. These results are in agreement with previous research 356 

reporting similar kinetics of lachrymal fluid IgA production to H120 vaccination (20, 41). In 357 

addition, after the second vaccination, lachrymal IgA levels decreased in both vaccinated 358 

groups, though, the levels in group II remained significantly higher (P<0.05 ) than group I.  359 

This observation may indicate a decrease of lachrymal IgA levels after the second 360 

vaccination is most likely due to partial neutralization of the anti-IBV IgA. A sharp decrease 361 

of IgA-IBV in vaccinated chicks was also observed after challenge (42). In addition, no 362 

significant rise in specific lachrymal IgA of vaccinated chickens was detected after 363 

subsequent challenge with Ark-IBV isolate, explaining the probable role of neutralizing 364 

antibodies in the lachrymal fluid at the time of challenge (43). 365 

IBV-specific IgA can also be found in tracheal washes after an infection with strain of 366 

IBV M41 (39, 40). In this study, the pattern of IgA in tracheal washes in both vaccinated 367 

groups I and II was closely parallel, reaching peak at 7 doa and thereafter, declining till 28 368 

doa, suggesting a short duration of the local humoral immunity in the trachea.  Although 369 

there have been conflicting reports on the relative concentrations of IgA in the avian 370 

respiratory tract (44-46), our results are consistent with Hawkes et al (1983), which showed 371 

IgA antibodies in tracheal washes only at day 7 after vaccination (47).  Interestingly, in both 372 

vaccinated groups, the second vaccination did not cause any rise in tracheal IgA level.  373 

Similar findings have also been reported, revealing that the revaccination with homologous 374 



16 
 

IBV (M41 or H strains) (45), and secondary M41 IBV exposure (39),  did not induce the 375 

secondary secretary antibody response in tracheobronchial washings. 376 

Consistent with the notion that CMI is protective against IBV (18, 48), we next sought 377 

to study the level of systemic and local cellular immune responses.  CD4+ cells may directly 378 

produce antiviral cytokines, which increases B cell activity and promotes the proliferation, 379 

maturation, and functional activity of CD8+ CTLs, which plays a critical role in controlling 380 

IBV infection (49, 50). The ratio of CD4+:CD8+ has been widely shown to be indicative of 381 

the general immune system status (51, 52). In this study, the CD4+:CD8+ ratio showed no 382 

significant (P<0.05) variation among the groups till 14 doa. Nevertheless, the ratio at 28 doa 383 

was found significantly higher (P<0.05) in group II than in groups I and III indicating that 384 

second vaccination at 14 day-old in group II has probably enhanced the cellular immunity by 385 

promoting the differentiation and proliferation of CD4+ cells in peripheral blood. There is no 386 

specific data regarding the effects of different IBV vaccination on CD4+:CD8+ ratio in 387 

peripheral blood so as to compare the present findings, however, Yohannes et al. (2012) have  388 

reported significantly (P<0.05) higher CD4+:CD8+ ratio in IBV infected chicks than in the 389 

controls (53). In addition, the high CD4+:CD8+ ratio has also been associated with increased 390 

humoral incompetence in chickens, as a low CD4+:CD8+ ratio and a reduced response 391 

against sheep red blood cells have been reported earlier (54). In this study, significantly 392 

(P<0.05) higher HI titres at 28 doa to 793B and Q1 in group II than group I could be 393 

attributed to the high CD4+:CD8+ ratio in that group at that time point. However, the 394 

significance of this in relation to protection remains to be determined. 395 

The results of IHC in tracheal tissue showed that the number of CD4+ lymphocytes 396 

started increasing from 4 doa in both vaccinated groups, as compared to the control. At 28 397 

doa, no significant difference was reported between the vaccinated groups. The  CD8+ cells 398 

subpopulation in both vaccinated groups started to increase significantly (P<0.05) at 4 doa, 399 
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reaching peak at 7 doa and then declining in number until 14 doa, suggesting that infiltration 400 

and recruitment of these cells occurs in the first two week of initial IBV vaccination. Similar 401 

to the findings of the present study, in the trachea, CD8+ cells recruitment in response to 402 

infection were at a maximum by 7 days post infection (dpi) and CD4+ cells were not 403 

recruited until 5 dpi. This was reported by Dhinakar et al (1996) (55). This work also showed 404 

an overall higher infiltration of CD8+ cells in numbers compared to CD4+ cells in both 405 

vaccinated groups. This observation is consistent with a previous study (55), where CD8+ 406 

cells were also found to predominate compared to CD4+ cells in trachea after IBV infection. 407 

Moreover, the current study also documents significantly higher number of CD8+ cells in 408 

vaccinated chicks of group II compared to group I on 21 and 28 doa, respectively. The IgA-409 

bearing B cells in vaccinated groups reached peak at 14 doa, however, the number of these 410 

cells were significantly higher in group II in comparison to group I at 21 and 28 doa 411 

(P<0.05). This pattern of recruitment of B cells later than either class of T cells is in 412 

accordance with earlier studies (56, 57) who contended that local immunity against IBV is 413 

mediated mainly by T-cells. 414 

In this study, following the Q1 challenge, ciliary protection was higher in group II, 415 

vaccinated with mixed H120 and CR88 vaccines at day-old, than in group I, vaccinated at 416 

day old with H120 alone. Furthermore, the results of RT-qPCR showed that the viral RNA 417 

load at 5 dpc in the trachea, was higher in group I than group II although the difference was 418 

not statistically significant (P<0.05). In agreement with this, the scores of histopathology in 419 

the trachea showed that the damage caused by the Q1 was higher in group I than II and 420 

showed no significant difference in mean lesion scores with either of group II and III. On the 421 

basis of these tracheal histopathological assessment, chickens in group II were better 422 

protected compared with those in group I and this better protection might be attributed by 423 

various factors including those discussed below. 424 
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Although the anti-IBV ELISA antibody titre results indicated that there was no 425 

significant difference between the two vaccinated groups at the day of challenge, group II 426 

showed higher ciliary protection than group I. This observation is consistent with previous 427 

studies which have shown that circulating antibody levels were of minor importance in the 428 

protection of the respiratory mucosa against IBV challenge (14, 44).  429 

From our results, it appears that such overall higher protection could be due to 430 

significantly higher levels of CD8+ cells in the tracheal tissues in group II than group I at day 431 

of challenge. Previous study have shown that CD8+ cells are important contributors to viral 432 

clearance in respiratory virus infections, utilizing contact-dependent effector functions, IFN-γ 433 

and tumour necrosis factor-α (58). Therefore, we may speculate that the group II’s higher 434 

CD8+ cell reaction than the group I could have contributed to the faster viral clearance after 435 

challenge with Q1, explaining the differences between the vaccinated groups  in their tracheal 436 

protection. This possible explanation agrees with other studies that emphasized the 437 

involvement of local CD8+ cells in the infection of chickens with respiratory pathogens, such 438 

as Newcastle disease virus (59) and Mycoplasma gallisepticum (60). Additionally, group II’s 439 

higher levels of IgA in lachrymal fluid, compared to group I, could reduce the tracheal 440 

histopathological damage which also corroborates the hypothesis that the traditional role of 441 

IgA is to prevent pathogen entry at mucosal surfaces and neutralize virus in infected 442 

epithelial cells (61). IBV-specific IgA antibodies in lachrymal fluid were correlated with 443 

resistance to IBV reinfection (38, 40, 42). Our results are in agreement with a recent study by 444 

Okino et al (2013), in which the authors concluded that IBV IgA antibodies in lachrymal 445 

secretions and the expression of granzyme-A and CD8 genes in tracheal tissues after H120 446 

vaccination, provides a reliable approach to monitor immune protection status  in the trachea, 447 

as shown by examination for cilliostasis, histopathology and viral replication (20). For our 448 

study, we aimed to stain for a variety of cell-surface markers and thereby identify the T cell 449 



19 
 

populations infiltrating the trachea. This provides further information about the role of cell-450 

mediated immunity in protection given by different live IBV vaccination regimes against a 451 

novel IBV Q1 challenge. 452 

The results of RT-qPCR and scores of histopathology in the kidneys showed that the 453 

damage caused by the Q1 was higher in group I than II, and showed no significant difference 454 

in the mean lesion scores with either of group II and III. Specific cytotoxic T lymphocytes 455 

have been shown to be important for the systemic clearance of nephropathogenic IBV and 456 

reduction of kidney lesions (15). A plausible explanation is that a higher CD8+ cells response 457 

in the tracheal tissues (the portal of entry of challenge virus) in group II compared to group I 458 

could have prevented the challenge virus becoming viraemic thus failing to reach the kidneys. 459 

This provided an efficient prevention of kidney infection, as measured by viral RNA load and 460 

histopathological lesion scores in renal tissue.  461 

 462 

CONCLUSIONS 463 

Chicks vaccinated with H120 and CR88 at day-old, followed by CR88 at 14 doa, showed 464 

significantly higher CD8+ responses in the trachea and higher lachrymal IgA levels compared 465 

to those vaccinated with H120 alone. In terms of ciliary protection against Q1, though both 466 

vaccinated groups were protected, the combined vaccination of H120 and CR88 of day-old 467 

chicks, followed by CR88 at 14 doa, showed higher ciliary protection and less RNA load in 468 

trachea and kidneys, wherein histopathological lesions are reduced. This study highlighted 469 

the potential modulation of chick immune response with the use of currently available live 470 

vaccines so that better protection against variant IBVs can be afforded.  471 
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Fig. 1. Anti-infectious bronchitis virus (IBV) antibody titres of the different groups 646 
vaccinated with a live H120 alone (group I) or in combination with CR88 (group II) at day-647 
one.  Both groups were again vaccinated with CR88 at 14 days of age. One group (group III) 648 
was kept as control. Where values were significantly (P<0.05) different these are shown with 649 
different letters and all other values were not significantly (P<0.05) different between the 650 
groups on those sampling points. 651 
 652 
 653 
Fig. 2. Detection of IgA production using ELISA in (a) tears (b) tracheal wash of chickens 654 
(n=5 per group) vaccinated with a live H120 alone (group I) or in combination with CR88 655 
(group II) at day-one.  Both groups were again vaccinated with CR88 at 14 days of age. One 656 
group (group III) was kept as control. The IgA antibody levels in tears and tracheal wash 657 
from control chickens (group III) remained below the detectable level. Asterisks indicate 658 
values between the two vaccine groups were significantly different (P<0.05) on those time 659 
point. Error bars indicate standard error of the mean. 660 
 661 
 662 
Fig. 3. The ratio of CD4+:CD8+analyzed by flow cytometry in peripheral blood of chickens 663 
vaccinated with a live H120 alone (group I) or in combination with CR88 (group II) at day-664 
one.  Both groups were again vaccinated with CR88 at 14 days of age. One group (group III) 665 
was kept as control. Depicted are the mean values (n=5 per group) and one standard error. 666 
Where values were significantly (P<0.05) different these are shown with different letters and 667 
all other values were not significantly (P<0.05) different between the groups on those time 668 
point.  669 
 670 
 671 
Fig. 4. Immunohistochemical detection of CD4+ cells in group II at 28 days of age (B), 672 
CD8+  cells  in group II at 28 days of age (C), IgA-bearing B-cells group II at 28 days of age 673 
(D), in tracheas of chickens vaccinated with live H120 alone (group I) or in combination with 674 
CR88 (group II) at day-one.  Both groups were again vaccinated with CR88 at 14 days of 675 
age. One group (group III) was kept as control (A). Magnification (400x). Arrows indicate 676 
positive cells. 677 
 678 
 679 
Fig. 5. Summary of CD4+ cells (a), CD8+ cells (b), and IgA-secreting cells (c) determined by 680 
immunohistochemical staining in the trachea  of chickens vaccinated with a live H120 alone 681 
(group I) or in combination with CR88 (group II) at day-one.  Both groups were again 682 
vaccinated with CR88 at 14 days of age. One group (group III) was kept as control. Depicted 683 
are the mean values (n=5 per group) and one standard error. Where values were significantly 684 
(P<0.05) different these are shown with different letters and all other values were not 685 
significantly (P<0.05) different between the groups at those time points.  686 
 687 
 688 
 689 
 690 
 691 
 692 
 693 
 694 
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Fig. 6. Quantification of infectious bronchitis virus (IBV) expressed as log REU of RNA, in 695 
trachea and kidney measured by real time RT-PCR after 5 dpc from chickens experimentally 696 
challenged at 28 days of age with Q1 strain of IBV (n=10 per group). The chickens were 697 
previously vaccinated with a live H120 alone (group I) or in combination with CR88 (group 698 
II) at day-one.  Both groups were again vaccinated with CR88 at 14 days of age. One group 699 
(group III) kept as control received sterile water. Significant differences between the groups 700 
were detected by Kruskal-Walis test followed by Dunn’s mean test indicated with different 701 
letters (P<0.05). 702 
 703 
Fig. 7. Means of histopathological scores of lesions in trachea and kidney samples after 5 dpc 704 
from chickens experimentally challenged at 28 days of age with Q1 strain of infectious 705 
bronchitis virus (n=10 per group). The chickens were previously vaccinated with a live H120 706 
alone (group I) or in combination with CR88 (group II) at day-one.  Both groups were again 707 
vaccinated with CR88 at 14 days of age. One group (group III) kept as control was inoculated 708 
with sterile water. Significant differences between the groups were detected by Kruskal-709 
Wallis test followed by Dunn’s mean test indicated with different letters (P<0.05) 710 
 711 
 712 
 713 
 714 

Table 1:  Study design showing groups, vaccine and vaccination regimes.  At 28 day of age, 715 
10 chicks from each group were challenged with a virulent IBV Q1.  716 

 717 

 718 

IBV vaccine 
(dosage/chick in 100 μl) 

 
Group/days of age 

 
I II III 

0 14 0 14 0 14 
H120 

(3.5 log10 EID50) 
√  √ √   

CR88 
(4.25 log10 EID50) 

  
√  √   

Sterile water  
(SW)     

 
√ 
 

 
√ 
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Table 2. Geometric mean anti-IBV HI antibody titre (log2) in serum of chickens vaccinated with live H120 alone (group I) or in combination 719 
with CR88 (group II) at day-one.  Both groups were again vaccinated with CR88 at 14 days of age. One group (group III) was kept as control. 720 
Significant differences between the groups (n=5 per group) for each homologous as well as heterologous antigen for each interval are 721 
represented by different letters (P<0.05) 722 

 723 

 724 

 725 

 726 

 727 

 728 

 729 

 730 

 731 

 732 

 733 

 734 

HI antigen Groups  Days of age 
0 4 7 14 21 28 

M41 
Group I 9.2±0.374A 8.2±0.970A 7.4±0.400A 5±0.000B 5±0.548A 4±0.447A 
Group II 9.2±0.374A 8.8±0.374A 7.4±0.400A 6.4±0.510A 5.4±0.400A 4.4±0.400A 
Group III 9.2±0.374A 7.2±0.374A 6.4±0.748A 4.8±0.200B 4±0.632A 2±0.632B 

CR88 
Group I 8.4±0.400A 7.8±0.374A 6.8±0.490A 5±0.316A 6.8±0.583 A 4.4±0.678B 
Group II 8.4±0.400A 8.4±0.245A 6.8±0.374A 5.8±0.200A 7±0.548 A 8.2±0.583A 
Group III 8.4±0.400A 7.6±0.400A 7.4±0.245A 4.6±0.600A 3.4±0.245 B 1.8±0.490C 

Q1 
Group I 7±0.316A 3±0.316A 2.4±0.245A 2.2±0.200B 4.4±0.510 A 4.4±0.510B 
Group II 7±0.316A 3±0.678A 3.4±0.400A 3.8±0.374A 5±0.548A 5.6±0.245A 
Group III 7±0.316A 3.4±0.316A 2.2±0.200A 2±0.000B 2±0.000B 2±0.000C 
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