
Symbiot: Congestion-driven Multi-resource Fairness
for Multi-User Sensor Networks

Yad Tahir∗, Shusen Yang†, Usman Adeel∗, Julie McCann∗
∗Imperial College London, †University of Liverpool

{yst11, u.adeel09, j.mccann}@imperial.ac.uk, shusen.yang@liverpool.ac.uk

Abstract—In this paper, we study the problem of multi-
resource fairness in multi-user sensor networks with hetero-
geneous and time-varying resources. Particularly we focus on
data gathering applications run on Wireless Sensor Networks
(WSNs) or Internet of Things (IoT) in which users require
to run a serious of sensing operations with various resource
requirements. We consider both the resource demands of sensing
tasks, and data forwarding tasks needed to establish multi-hop
relay communications. By exploiting graph theory, queueing
theory and the notion of dominant resource shares, we develop
Symbiot, a light-weight, distributed algorithm that ensures multi-
resource fairness between these users. With Symbiot, nodes can
independently schedule its resources while maintaining network-
level resource fairness through observing traffic congestion levels.
Large-scale simulations based Contiki OS and Cooja network
emulator show the effectiveness of Symbiot in adaptively utilizing
available resources and reducing average completion times.

I. INTRODUCTION

Wireless Sensor Networks (WSNs) and Internet of Things
(IoT) [1] are evolving towards interconnected, sensing and
processing infrastructures that are expected to provide services
for multiple concurrent users. One of the main reasons of
having such shared enterprise deployments is to maximize the
return on investment while minimizing operating costs.
Such multi-user networks are almost invariably heteroge-

neous in terms of their hardware components, offered resource
capacities as well as user demands. Various types of sensors
can be attached to nodes. The assorted capacities of some
resource types, such as bandwidth, can be highly dynamic and
time-varying [2], [3]. In addition, diversity is found when users
demand specific resources. For instance, a user may require the
execution of a memory-heavy task on nodes with temperature
sensors, while another user may need to compute a bandwidth-
hungry task on nodes having humidity and light sensors.
Resource sharing in any multi-user sensor network is a

key issue for one primary reason. The rapid growth of traffic
and computation requirements are often not matching the
growth and expansion of overall network capacity. Hence, the
limited network resources should be distributed fairly between
users [4], [5]. Accounting for diversity across node resources
and user requirements presents an increased challenge to
schedulers for fair provisioning of resources. Getting this right
is fundamental to next-generation WSN and IoT systems.
This paper concerns how the available network resources,

including those that are time-varying, should be allocated be-
tween competing users. In particular, we consider the problem

!"#$%"&'

SELECT light 

FROM sensor 


u2SELECT temperature

FROM sensor 


u1

!"#$%"&'

SELECT MAX(humidity), 
AVG(humidity)

FROM sensor


PER 10000 SAMPLES


u3

humidity  sensor'
temperature sensor'
light sensor'

sensing requirements'
other node type'('

)'

Fig. 1. A WSN with two gateways and three users. u1 and u2 are interested
in nodes with temperature and light sensors, respectively. u3 needs to execute
a query with higher computation complexity on nodes with humidity sensors.

of fair resource allocation for data gathering applications in
WSNs and IoT.

A. Motivation
Both resource and demand heterogeneity have an impact on

the efficient and fair allocation of resources to users. Current
max-min-based resource allocation schemes such as [6] do
not deal well with both heterogeneous resources and user
demands in multi-resource systems. Utilizing multi-resource
fairness schemes [4], [5] such as Dominant Resource Fairness
(DRF) [4] have become a hot topic in both computation
economics communities and cloud computing. Given users
with heterogeneous demands, these approaches achieve more
efficient allocation than single-resource fairness schemes.
However, these approaches are limited when it comes to

providing distributed scheduling that can adapt to time-varying
resources. They assume that the system has a single, cen-
tralized scheduler that is aware about the resource capacities
of all the system components. This means in a network
with dynamic resources, nodes have to repeatedly report their
available resource capacities to the scheduler. This is neither
scalable nor resilient, thus impractical for large-scale networks.
Furthermore, these approaches do not address multi-hop nature
on which the network relies. When a user executes a task on
a particular node, the output has to be forwarded to a gateway
device using multi-hop communications. This creates indirect
resource consumptions from the user. To ensure having fair
multi-resource scheduling, it is crucial to consider both direct
and indirect resource demands in multi-hop networks.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Liverpool Repository

https://core.ac.uk/display/80773623?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


To understand the complexity of acheiving multi-resource
fairness in multi-user sensor networks, consider a typical sens-
ing application shown in Fig. 1. The network has three users
u1, u2, and u3 with different sensing requirements expressed
as SQL-like queries for convenience. Two cases need to be
analyzed here: first, based on the sensing requirements, u1

and u2 do not compete on resources. Each of them requires
a different set of nodes. However the employed multi-hop
communications make u1 and u2 indirectly related to each
other. They now compete for the shared resources of rely nodes
(nodes A and B). The second case is that if u1 changed its
requirements and asked for all the resources available in all
nodes with temperature or light sensors, surely this would be
considered unfair according to the max-min fairness model as
u1 would consume considerably more resources than u2.
From these two cases there are two key questions that have

to be carefully addressed: first, how can we formally define
the relationship between users? u1 and u2 are dependent in
terms of resource requirements, but u3 certainly is not. Second,
given each user submit sensing tasks to the network, what is
the maximum number of tasks that each user can execute while
the resource consumptions between related users remain fair?

B. Contributions

We present the study of the fair resource allocation problem
in network with multiple, time-varying resource types. We
summarize the contributions of this paper as follows:
1. Section II establishes a set of system models to formally

describe multi-user WSNs and IoT. By exploiting graph theory,
we rigorously define the relationship between users in terms
of their direct and indirect resource requirements.
2. Section III proposes a new extension to max-min fairness

that exploits graph theory and dominant resource sharing
to ensure multi-resource fairness between users running a
series of sensing tasks. We develop a new algorithm, named
Symbiot, that uses iterative linear programming and queueing
theory to compute the proposed extension. Symbiot is not only
lightweight, but also it is fully distributed eliminating the need
for centralized scheduling. Through observing local resource
capacities and current traffic congestion levels, nodes can in-
dependently allocate resources for its users while maintaining
multi-resource fairness between related users in the whole
network. To the best of our knowledge, this work is not only
the first work to address the indirect requirement problem and
utilize queueing theory in multi-resource scheduling, but also
there has been no prior work that has proposed a distributed
solution to achieve multi-resource fairness.
3. In Section IV, we implemented Symbiot on Contiki

OS [7], an open source operating system for wireless sensor
networks and IoT. We integrated Symbiot with the IPv6 stack
provided by Contiki. Through large-scale simulations with
the Cooja network emulator [7], we demonstrate the practical
performance of Symbiot algorithm. Our experiments show that
Symbiot outperforms the naive version of distributed DRF in
terms of reducing the average of job completion times.

II. SYSTEM MODELS

We consider a WSN or IoT that consists of a set of wireless
nodes N = S ∪ H communicating in a multi-hop fashion,
where S represents the set of all nodes that can sense, generate
and relay data packets; while H is the set of all gateways that
collect the data traffic produced by the network. Let the set
Nx holds all one-hop neighbors that node x ∈ N that can
communicate with. The network has a set of users U and we
assume that the network operates in discrete time with a unit
time slot (e.g. a second) t ∈ {1, 2, ...}.

A. Node Operations and Data Queues

Node n ∈ S can execute two types of tasks: sensing and
data forwarding. Each user u ∈ U can run sensing tasks
periodically on nodes. We assume that a sensing task requires
no more than one time slot to finish. We also assume that
the sensing tasks are delay-tolerant, which is realistic as many
monitoring applications are reasonably delay tolerant.
Performing sensing tasks will generate data packets to be

collected by a gateway h ∈ H. To achieve this, nodes execute
data forwarding tasks. The data can be transmitted directly
if h ∈ Nn, or indirectly in a multi-hop fashion if h ̸∈N n.
The underlying routing layer determines the forwarding policy.
In this paper, we only consider networks running in a fixed
routing scenario, i.e., the route of each data flow is pre-
determined and fixed during the time of interest. We also
assume both sensing and forwarding tasks are indivisible.
In the network, each node maintains data packets through

queues (data buffers). Let Qu
n denote the queue existing in

node n to hold the data packets generated by user u. Let Qu
n(t)

be the queue backlog (or queue length) of the queue Qu
n at

time slot t. The queue dynamics of Qu
n are defined as follows:

0 ≤ Qu
n(t) ≤ MaxQu

n

Qu
n(t+ 1) = |Qu

n(t)− fout
u,n (t)|+ + ru,n(t) + f in

u,n(t) (1)

Where the operator | . |+ representsmax(0, .) andMaxQu
n >

0 is the maximum queue length (i.e. allocated data buffer
size) of Qu

n. ru,n(t) is the output of performing sensing tasks
in node n for user u at time slot t. f in

u,n(t) and fout
u,n(t)

are the incoming and outgoing traffic of node n for user u,
respectively. It is worth noting that the queue length of any
gateway always equals to zero.

B. Node Resources

Each node n ∈ N offers K types of resources for
users such as computing (i.e. MCU), memory, bandwidth,
and light sensors. Let a K-dimensional vector cn(t) =
(cn,1(t), ..., cn,K(t)) represents node’s resource capacities at
time slot t, where each entry cn,k(t) 1 ≤ k ≤ K represents
the resource capacity of kth resource of n at t. Let C(t) be a
|N |×K-dimensional matrix representing the resource capacity
for the whole network at t.
In the rest of this paper, we will use a tuple (n, k), n ∈

N , 1 ≤ k ≤ K to refer to a specific resource.



C. User Resource Requirements
Let R̂u be a |N |× K-dimensional matrix in which the

entry R̂u
n,k represents the requirement from (n, k) to perform

a sensing task by user u. Let R̃u be a |N |× K-dimensional
matrix in which the entry R̃u

n,k is the amount of resource
needs from (n, k) to perform a data forwarding task on Qu

n.
The gross resource requirements of user u is represented as

a |N |× K matrix Ru, where:

R
u
n,k = R̂

u
n,k + R̃

u
n,k (2)

Consider Du to represent the set of strictly positive resource
demands of user u:

Du := {(n, k) : Ru
n,k > 0, n ∈ N , 1 ≤ k ≤ K} (3)

D. Topological User Dependency
This section presents a graph model to characterize the

dependency of all users in U , with respect to resource re-
quirements.
Definition 1. [User Dependency Graph]. We can use an
undirected graph G(U ,V) to represent the dependency of all
users, where

V := {(u, v) : u, v ∈ U , Du ∩Dv ̸= ∅}

is the set of the links in the graph. Each link (u, v) ∈ V
indicates that two users u and v share some resources.
Definition 2. [User Dependent Cluster (UDC)]. For a given
user dependence graph G(U ,V), a User Dependent Cluster
(UDC) C ⊆ U is defined as the set of users in a connected
component1 of G(U ,V).
Define Un,k as the set of users that have a strictly positive

demand of resource (n, k), n ∈ N , 1 ≤ k ≤ K , i.e.

Un,k := {u : Ru
n,k > 0, u ∈ U} (4)

It can be seen that two users u1 and u2 in a UDC C may not
share common resources, meaning that they are not directly
dependent on each other. However the resource requirements
of u1 would affect that of all neighbors v ∈ Un,k, (n, k) ∈
Du1

. By repeating the above process, the requirement of u1

would affect all users in C, including u2. This implies that all
users in a UDC are directly or indirectly dependent in terms
of resource requirements.

E. Objective
The objective of this paper is to develop a distributed, fair

scheduling algorithm to allocate resources for sensing and data
forwarding tasks for the users of the network. In particular for
every time slot t, it is required to distributedly compute two
|N | × |U|–dimensional matrices: X̂(t) and X̃(t), where the
entries X̂u,n(t) and X̃u,n(t) are the number of sensing and
forwarding tasks performed by user u in node n, respectively.

1In graph theory, a connected component is subgraph in which any two
vertices are connected to each other by paths, and which is connected to no
additional vertices in the supergraph.

The network resources allocated to user u at time slot t
is defined as a |N |× K–dimensional matrix Au(X̂(t), X̃(t))
where each entry Au

n,k(t) represents the amount of resource
(n, k) allocated to user u at time slot t:

Au
n,k(t) = X̂u,n(t)R̂

u
n,k + X̃u,n(t)R̃

u
n,k (5)

Definition 3. [Feasible Resource Allocation]. A resource
allocation matrix Au(X̂(t), X̃(t)) is feasible if the following
condition is satisfied:

∑

u∈U

Au(X̂(t), X̃(t)) ≼ C(t) (6)

where ≼ means entry-wise smaller than or equal to.

III. SYMBIOT
Let du,n,k(t) = Ru

n,k/cn,k(t) be the resource demand share
of user u for resource (n, k) at slot t. Let dmax

u,n (t) denote the
node-wise dominant demand share of user u in node n.

dmax
u,n (t) = max

1≤k≤K
du,n,k(t) (7)

In Symbiot we normalize the resource demand shares of
users in respect to their node-wise dominant demand share as
follow:

du,k(t) = du,n,k(t)/d
max
u,n (t) (8)

For each user u in a UDC C, define UDC-wise dominant
demand share as

dmax
u (t) = max

(n,k)∈D(C)
dmax
u,n (t), u ∈ C (9)

where
D(C) :=

⋃

u∈C

Du

denotes the set of all resources used by all users in C. For a
given dmax

u (t), we denote the node n∗ = argmaxn dmax
u,n (t) as

the bottleneck node for user u in C. We define the UDC-wise
dominant share for user u in C as:

dmax
u (t)(X̂u,n∗(t) + X̃u,n∗(t)) (10)

A. Algorithm
The basic idea of Symbiot is to implement a distributed,

light-weight algorithm to approximate the max-min fairness
for the UDC-wise dominant shares for each UDC.
Because the algorithm is distributed, every node n ∈ N

computes resource scheduling locally. However, we utilize
network traffic congestion to collect feedback from the bot-
tleneck nodes existing in UDCs. The pseudo code of Symbiot
is summarized in Fig. 2 and Fig. 3.
In node n at the beginning of time slot t, all users that

use n are considered to be unsaturated (line 01 in Fig. 2)
and stored in the unsaturated user set Úus. Symbiot allocates
resources for the unsaturated users through multiple iterations



Variables:
t: current time slot for the node
n: the current node
Úus: the set of unsaturated users.
Úpt: the set of users that performed a task in an iteration.
B: a |U|× K matrix holding resource budgets for an iteration
Á: a |U|× K matrix holding allocated resources for an iteration.
Input:
R̂n := {R̂u

n,k, ∀u ∈ U , 1 ≤ k ≤ K}

R̃n := {R̃u
n,k, ∀u ∈ U , 1 ≤ k ≤ K}

Output:
X̂u,n(t), X̃u,n(t) ∀u ∈ U

Main Algorithm:
01: Úus ← {u : Un,k, ∀k}; // Un,k defined in Eq. 4
02: while Úus(t) ̸= ∅ do
03: Á← 0,Upt ← ∅; //reset the paramaters for this iteration
04: compute du,k(t),∀k, u ∈ Uus; //based on Eq. 8
05: b← 1/max

∀k

∑

u∈Úus

du,k(t);

//node-wise dominant demand share maximization
06: for all u ∈ Úus(t)

07: Bu,k ← du,n(t)cn,k(t)b,∀k; //assign resource budgets
08: if containLocalPacket(Qu

n(t)) = FALSE
09: [ r Á Upt ]← sensing(u, Á,Upt, R̂n,B);
10: X̂u,n(t)← X̂u,n(t) + r;
12: end if
13: r ← 1;
14: while r = 1

15: [ r Á Upt ]← dataForwarding(u, Á,Upt, R̃n,B);
16: X̃u,n(t)← X̃u,n(t) + r;
17: end while
18: end for
19: cn,k(t)← cn,k(t)−

∑

u∈Úus

Áu,k,∀k;

//update available resources based on actual consumptions
20: Úus ← Úus ∩ Úpt; // update unsaturated users
21: end while

Fig. 2. Symbiot - Main Algorithm

(lines 02-21 in Fig. 2). In each iteration Symbiot finds a budget
b that maximizes the equalized node-wise dominant demand
shares of these users (lines 04-05 in Fig. 2) This computation
also ensures that Symbiot adheres to the capacity constraint
introduced in the Definition 3.
Then Symbiot assigns each unsaturated user a resource

budget for every resource type k (line 07 in Fig. 2). The
given resource budgets can be utilized for sensing tasks, data
forwarding tasks or both. For sensing tasks, Symbiot first
checks whether the data queue of the user contains a local
packet (i.e. generated by n). If no local packet found, Symbiot
executes the sensing function. It is worth noting that in the
pseudo code of Symbiot, we assume the data queues of the
users follow the First-In-First-Out (FIFO) scheduling. Symbiot
utilizes the remaining budget for data forwarding tasks by
calling the dataForwarding function. As shown in Fig.
3, both sensing and dataForwarding update the resource

sensing(u, Á,Upt, R̂n,B)

01: if Qu
n(t) ̸= MaxQu

n ∧ ∃k R̂
u
n,k ̸= 0 ∧

∀k Áu,k + R̂
u
n,k ≤ Bu,k

//if Qu
n is not full, user requires sensing, and sufficient budget

02: Áu,k ← Áu,k + R̂
u
n,k,∀k; //allocate the resources

03: executeSensingTask(u); //sensing and storing data in Qu
n

04: Úpt(t)← Úpt(t) ∪ {u};
05: return [ 1 Á Upt ];
06: end if
07: return [ 0 Á Upt ];
dataForwarding(u, Á,Upt, R̃n,B)

08: p← getNextHop(); //node to where packets should be sent
09: if Qu

n(t) ̸= 0∧Qu
p(t) ̸= MaxQu

p ∧∀k Áu,k + R̃
u
n,k ≤ Bu,k

//check Qu
n is not empty, Qp

n is not full, and sufficient budget
10: Áu,k ← Áu,k + R̃

u
n,k,∀k; //allocate the resources

11: sendDataPacket(u, p); //sends a packet from Qu
n to p

12: Úpt ← Úpt ∪ {u};
13: return [ 1 Á Upt ];
14: end if
15: return [ 0 Á Upt ];

Fig. 3. Symbiot - Sensing and Data Forwarding functions

consumptions and active users set Úpt for the current iteration.
These functions returns 1 if the sensing or data forwarding
tasks is actually executed, otherwise 0. Based on the feedback
given in the lines 09-10 and 15-16 in Fig. 2, Symbiot updates
the X̂u,n(t) and X̃u,n(t) outputs for all unsaturated users.
Then the remaining resource capacities are adjusted according
to the resource consumptions of this iteration. In line 20
in Fig. 2, Symbiot removes saturated users from Úus. We
define a saturated user as a user who did not perform any
task, whether sensing or data forwarding, in an iteration. This
process continues until all users become saturated.
Remark 1. Both sensing and data forwarding operations

are traffic-aware. Even if a user has the required budget to
perform a task, Symbiot will not allocate resources if traffic
congestion is observed for that user. In line 01 in Fig. 3,
sensing tasks check whether the queue of the current node
is not full. Line 09 in Fig. 3 ensures data forwarding tasks are
not performed if the queue of the next-hop node is not full.
Remark 2. In a bottleneck node, the data queues of some

users will be full. A bottleneck node n∗ in a UDC will limit
the budget of one or more users as they are seen to be locally
unfair with respect to other users. This means in the node
n∗, the fout

u,n∗ < f in
u,n∗ for some users. Based on the queue

dynamics defined in Eq. 1, the queue levels of some Qu
n∗ will

gradually increase until it reaches the correspondingMaxQu
n∗ .

Remark 3. Bottleneck nodes in a UDC cause traffic conges-
tion for nodes sending data packets in. According to Remark
2, when Qu

n∗ = MaxQu
n∗ , n∗ also limits data forwarding

operations for nodes that send data directly to n∗ as described
in Remark 1. Eventually when their data queues become full,
this results in affecting the sensing operations performed on
these nodes. This process repeats itself throughout the UDC
and will affect all nodes that generating and sending data
packet for user u through the n∗.



Fig. 4. The network topology of the experiments.

IV. EVALUATION
The performance of Symbiot was evaluated through con-

ducting a set of simulation on Cooja. We implemented Sym-
biot on top of Contiki OS [7] and its IPv6 stack. The
implementation provides a set of public APIs to allow users
to express their sensing and data forwarding requirements.
Internally it uses UDP messages and IPv6 to transfer data
packets from nodes to gateways. We use ICMPv6 to periodi-
cally broadcast the queue lengths of the users between nodes.
We established a 100-node network with 5 gateways and

95 nodes in a 600m×600m area. The network topology
of our experiments is shown in Fig. 4. The network uses
CSMA and RPL with the default parameter settings for the
MAC and routing layers, respectively. We set RPL to use the
ETX Objective Function. The nodes employ IEEE 802.15.4
transceiver, CC2420 with transmission range of 50m. Based
on the experimental studies in [8], the bandwidth capacity
of the nodes is set to be 160 40-bytes packets per second.
The nodes in our network uses MSP430F1611 microcontroller
with 10KB RAM. The network offers two types of sensors:
temperature and humidity with the resource capacities of 1000
and 2000 readings per second, respectively. We randomly
chose 40 nodes to offer temperature sensing and another 40
nodes for humidity sensing. In all simulations the duration of
a time slot was set as one second and MaxQu

n for all users
in all nodes were equal to 70.
In the reset of the paper, we will use the vector ⟨r1 packets,

r2 bytes of RAM, r3 temperature readings, r4 humidity
readings⟩ to represent the resource requirements of offered
resource types in the experiments.
A. Dynamic Resource Allocation
In our first experiment, we show how Symbiot dynamically

allocates resources between users in a system with time-
varying resource requirements and capacities. Fig. 5 shows
the average allocated network resources and UDC-wise shares
for each users as a function of time.
In the beginning, the network has two users u1 and u2.

u1 has the resource requirements of ⟨0, 1, 2, 0⟩ for sensing

Time
300 600 900 1200 1500 1800

A
ve

ra
ge

 U
D

C
-w

is
e 

D
om

ai
nt

 S
ha

re

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
u1
u2
u3

u2 changed demands

u2 left
u3 entered

bandwidth capacity
reduced

Time
300 600 900 1200 1500 1800

A
ve

ra
ge

 B
an

dw
id

th
 U

sa
ge

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

u1
u2
u3

Time
300 600 900 1200 1500 1800

A
ve

ra
ge

 R
A

M
 U

sa
ge

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35
u1
u2
u3

Time (second)
300 600 900 1200 1500 1800

A
ve

ra
ge

 T
em

pe
ra

tu
re

 S
en

so
r U

sa
ge

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08
u1
u2
u3

Time (second)
0 300 600 900 1200 1500 1800

A
ve

ra
ge

 H
um

id
ity

 S
en

so
r U

sa
ge

0

0.02

0.04

0.06

0.08

0.1

0.12
u1
u2
u3

Fig. 5. Symbiot resource allocation in a dynamic system.

and ⟨1, 20, 0, 0⟩ for data forwarding. Similarly, u2 needs
⟨0, 10, 0, 20⟩ for sensing and ⟨2, 50, 0, 0⟩ for data forwarding
operations. As seen in Fig. 5, the UDC-wise dominant shares
for both users are equal to 50% as bandwidth is the most
demanded resource for both users in bottleneck nodes. At
slot 300, u2 changes his/her resource requirements making it
more memory demanding. u2 now demands ⟨0, 2048, 200, 0⟩
for sensing and ⟨9, 512, 0, 0⟩ for data forwarding. Symbiot
dynamically adjusts the resource allocation for both users.
The UDC-wise dominant shares increased to around 60% as
the most required resource for u1 is bandwidth while for
u2 now it becomes RAM. At time slot 600, u3 enters the



network with the resource requirements of ⟨0, 200, 20, 20⟩ for
sensing and ⟨4, 200, 0, 0⟩ for data forwarding. Symbiot lowers
the resource allocation for both u1 and u2 to accommodate the
resource demands for the new users. As u3 enters the network,
the nodes in beginning tries to perform as much sensing
as possible until bottleneck nodes are found causing traffic
congestion. This will result in gradually lowering the sensing
rate as shown between slot 600 and 700. At slot 900 when u2

leaves the network, Symbiot allocates the released resources
from u2 to u1 and u3. At time slot 1900, we intentionally
reduce the bandwidth capacities of all nodes by 50%. Symbiot
automatically adjusts the allocations for both u1 and u3.
B. Symbiot vs Alternative Multi-Resource Allocation
To compare the performance of Symbiot with another multi-

resource allocation algorithm, we implemented a naive version
of distributed DRF. Here, each node runs the progressive
filling of DRF [4]. However, the sensing and data forwarding
tasks are not traffic-aware. If any node receives data packets
more than MaxQu

n, the node will drop the packets. In these
experiments, we measured the completion times needed to
perform sensing tasks on all the nodes required by the users.
Fig. 6 presents the reductions of average completion times

in networks with different numbers of gateways. Here, the
network has two users with sensing requirements of ⟨0, 1, 2, 0⟩
and ⟨0, 10, 0, 20⟩ and forwarding requirements of ⟨1, 20, 0, 0⟩
and ⟨2, 50, 0, 0⟩. Fig. 7 shows Symbiot outperforms the imple-
mented distributed DRF in networks with different numbers of
users. The used topology had 5 gateways and the sensing and
forwarding requirements were randomly generated.

Number of Gateways
1 2 3 4 5

C
om

pl
et

io
n 

Ti
m

e 
R

ed
uc

tio
n 

(%
)

0

5

10

15

20

25

30

35

40

45

50

%31
%36

%33

%41%40

Fig. 6. Average job completion time saving that Symbiot achieved against
naive, distributed DRF in networks with different numbers of gateways.

Number of Users
2 5 10 15 20

C
om

pl
et

io
n 

Ti
m

e 
R

ed
uc

tio
n 

(%
)

0

5

10

15

20

25

30

35

40

45

50

%28

%16

%22
%27

%33

Fig. 7. Average job completion time saving that Symbiot achieved against
the implemented version of distributed DRF in networks with different users.

V. RELATED WORK

One way to ensure fairness in multi-resource systems is
to employ single-resource abstraction models where system
resources are divided into fixed partitions, often referred as
slots. As pointed out in [4], employing such simple abstraction
models are considered to be inefficient when users have het-
erogeneous demands for resources. Ghodsi et al. [4] propose

Dominant Resource Fairness (DRF) as an alternative approach
to ensure fairness in multi-resource systems. DRF satisfies
several highly desirable fairness properties, and it quickly
received significant attention from the research community.
Parkes et al. [9] extend the DRF paradigm to provide a
compelling solution for weighted and zero demands users. In
fact, the node-wise dominant share computations in SymbIoT
is greatly inspired by [9] work. Wang et al. [10] suggest to
the use of the notion of global dominant shares to address
the heterogeneity of server capabilities in cloud computing.
All the approaches above focus on systems with centralized
schedulers. As discussed in Section I, deploying centralized
schedulers can be very expensive and not feasible for net-
works with time-varying resources. We purpose a solution to
distributedly allocating resources for users. We also show how
indirect resource requirements coming from multi-hop com-
munications should be handled in multi-resource scheduling.
This is crucial for ensuring multi-resource fairness across the
whole network.

VI. CONCLUSION
This paper addresses the problem of multi-resource fair-

ness between users in data gathering applications in WSNs
and IoT. Here, nodes can offer multiple types of resources
with heterogeneous, time-varying capacities. Users can have
different requirements on various resource types. We explain
why the current state-of-the-art falls short when it comes to
achieve multi-resource fairness in such networks. By utilizing
graph theory, queueing theory and dominant resource sharing,
we propose Symbiot, a lightweight, distributed algorithm as
a solution to this problem. Our simulations based on Cooja
network emulator shows the practical performance of Symbiot.

REFERENCES
[1] Z. Sheng, S. Yang, Y. Yu, A. Vasilakos, J. Mccann, and K. Leung, “A

survey on the ietf protocol suite for the internet of things: Standards,
challenges, and opportunities,” IEEE Wireless Commun., vol. 20, no. 6,
pp. 91–98, 2013.

[2] S. Yang, U. Adeel, and J. McCann, “Selfish mules: Social profit
maximization in sparse sensornets using rationally-selfish human relays,”
IEEE JSAC, vol. 31, no. 6, pp. 1124–1134, 2013.

[3] S. Yang, X. Yang, J. A. McCann, T. Zhang, G. Liu, and Z. Liu,
“Distributed networking in autonomic solar powered wireless sensor
networks,” IEEE J. Sel. Areas Commun., vol. 31, no. 12, pp. 750–761,
2013.

[4] A. Ghodsi, M. Zaharia, B. Hindman, A. Konwinski, S. Shenker, and
I. Stoica, “Dominant Resource Fairness: Fair allocation of multiple
resource types,” in Proc. USENIX NSDI, 2011.

[5] L. Popa, G. Kumar, M. Chowdhury, A. Krishnamurthy, S. Ratnasamy,
and I. Stoica, “Faircloud: Sharing the network in cloud computing,” in
Proc. ACM SIGCOMM, 2012.

[6] S. Yang and J. A. McCann, “Distributed optimal lexicographic max-min
rate allocation in solar-powered wireless sensor networks,” ACM Trans.
Sensor Networks, vol. 11, no. 1, p. 9, 2014.

[7] “Contiki: The Open Source OS for the Internet of Things.” [Online].
Available: http://www.contiki-os.org

[8] A. Sridharan and B. Krishnamachari, “Explicit and precise rate control
for wireless sensor networks,” in Proc. ACM SenSys, 2009, pp. 29–42.

[9] D. Parkes, A. Procaccia, and N. Shah, “Beyond Dominant Resource
Fairness: Extensions, limitations, and indivisibilities,” in Proc. ACM EC,
2012.

[10] W. Wang, B. Li, and B. Liang, “Dominant Resource Fairness in
cloud computing systems with heterogeneous servers,” in Proc. IEEE
INFOCOM, 2014.


