
Epistemic Protocols for Distributed Gossiping

Krzysztof R. Apt
Centrum Wiskunde & Informatica

Amsterdam, The Netherlands
k.r.apt@cwi.nl

Davide Grossi
University of Liverpool

Liverpool, UK
d.grossi@liverpool.ac.uk

Wiebe van der Hoek
University of Liverpool

Liverpool, UK
wiebe@liv.ac.uk

ABSTRACT
Gossip protocols aim at arriving, by means of point-to-point or
group communications, at a situation in which all the agents know
each other’s secrets. We consider distributed gossip protocols which
are expressed by means of epistemic logic. We provide an opera-
tional semantics of such protocols and set up an appropriate frame-
work to argue about their correctness. Then we analyze specific
protocols for complete graphs and for directed rings.

General Terms
Theory

Keywords
Gossip protocols, epistemic logic, distributed computing, knowledge-
based programs

1. INTRODUCTION
In the gossip problem ([18, 4], see also [10] for an overview) a

number n of agents, each one knowing a piece of information (a
secret) unknown to the others, communicate by one-to-one interac-
tions (e.g., telephone calls). The result of each call is that the two
agents involved in it learn all secrets the other agent knows at the
time of the call. The problem consists in finding a sequence of calls
which disseminates all the secrets among the agents in the group.
It sparked a large literature in the 70s and 80s [18, 4, 9, 5, 17] typ-
ically focusing on establishing—in the above and other variants of
the problem—the minimum number of calls to achieve dissemina-
tion of all the secrets. This number has been proven to be 2n − 4,
where n, the number of agents, is at least 4.

The above literature assumes a centralized perspective on the
gossip problem: a planner schedules agents’ calls. In this paper
we pursue a line of research first put forth in [3] by developing a
decentralized theory of the gossip problem, where agents perform
calls not according to a centralized schedule, but following indi-
vidual epistemic protocols they run in a distributed fashion. These
protocols tell the agents which calls to execute depending on what
they know, or do not know, about the information state of the agents

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
TARK 2015
Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ...$15.00.

in the group. We call the resulting distributed programs (epistemic)
gossip protocols.

Contribution of the paper and outline.
The paper introduces a formal framework for specifying epistemic
gossip protocols and for studying their computations in terms of
correctness, termination, and fair termination (Section 2). It then
defines and studies two natural protocols in which the interactions
are unconstrained (Section 3) and four example gossip protocols in
which agents are positioned on a directed ring and calls can happen
only between neighbours (Section 4). Proofs are collected in the
appendix.

From a methodological point of view, the paper integrates con-
cepts and techniques from the distributed computing, see, e.g., [1,
Chapter 11] and the epistemic logic literature [8, 15] in the tradition
of [16, 14, 7].

2. GOSSIP PROTOCOLS
We introduce first the syntax and semantics of gossip protocols.

2.1 Syntax
We loosely use the syntax of the language CSP (Communicating

Sequential Processes) of [11] that extends the guarded command
language of [6] by disjoint parallel composition and commands for
synchronous communication. CSP was realized in the distributed
programming language OCCAM (see INMOS [12]).

The main difference is that we use as guards epistemic formulas
and as communication primitives calls that do not require synchro-
nization. Also, the syntax of our distributed programs is very lim-
ited. In order to define gossip protocols we introduce in turn calls
and epistemic guards.

Throughout the paper we assume a fixed finite set A of at least
three agents. We assume that each agent holds exactly one secret
and that there exists a bijection between the set of agents and the set
of secrets. We denote by P the set of all secrets (for propositions).
Furthermore, it is assumed that each secret carries information iden-
tifying the agent to whom that secret belongs.

2.1.1 Calls
Each call concerns two agents, the caller (a below) and the agent

called (b). We distinguish three modes of communication of a call:

push-pull, written as ab or (a, b). During this call the caller and
the called agent learn each other’s secrets,

push, written as a. b. After this call the called agent learns all the
secrets held by the caller,

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Liverpool Repository

https://core.ac.uk/display/80773566?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

pull, written as a/b. After this call the caller learns all the secrets
held by the called agent.

Variables for calls are denoted by c, d. Abusing notation we write
a ∈ c to denote that agent a is one of the two agents involved in the
call c (e.g., for c := ab we have a ∈ c and b ∈ c). Calls in which
agent a is involved are denoted by ca.

2.1.2 Epistemic guards
Epistemic guards are defined as formulas in a simple modal lan-

guage with the following grammar:

φ ::= Fap | ¬φ | φ ∧ φ | Kaφ,

where p ∈ P and a ∈ A. Each secret is viewed as a distinct symbol.
We denote the secret of agent a by A, the secret of agent b by B
and so on. We denote the set of so defined formulas by L and we
refer to its members as epistemic formulas or epistemic guards. We
read Fap as ‘agent a is familiar with the secret p’ (or ‘p belongs to
the set of secrets a knows about’) and Kaφ as ‘agent a knows that
formula φ is true’. So this language is an epistemic language where
atoms consist of ‘knowing whether’ statements about propositional
atoms, if we view secrets as Boolean variables.

Atomic expressions in L concern only who knows what secrets.
As a consequence the language cannot express formally the truth of
a secret p. This level of abstraction suffices for the purposes of the
current paper. However, expressions Fap could be given a more ex-
plicit epistemic reading in terms of ‘knowing whether’. That is, ‘a
is familiar with p’ can be interpreted (on a suitable Kripke model)
as ‘a knows whether the secret p is true or not’. This link is estab-
lished in [3].

2.1.3 Gossip protocols
Before specifying what a program for agent a is, let us first define

the language La with the following grammar:

ψ ::= Kaφ | ¬ψ | ψ ∧ ψ

with φ ∈ L.1

By a component program, in short a program, for an agent a we
mean a statement of the form

∗[[]mj=1 ψj → cj],

where m > 0 and each ψj → cj is such that ψj ∈ La and a is the
caller in cj .

Given an epistemic formula ψ ∈ La and a call c, we call the
construct ψ → c a rule and refer in this context to ψ as a guard.

We denote the set of rules {ψ1 → c1, . . ., ψk → ck} as
[[]kj=1 ψj → cj] and abbreviate a set of rules {ψ1 → c, . . ., ψk →
c} with the same call to a single rule

∨k
i=1 ψi → c.

Intuitively, ∗ denotes a repeated execution of the rules, one at a
time, where each time a rule is selected whose guard is true.

Finally, by a distributed epistemic gossip protocol, in short a
gossip protocol, we mean a parallel composition of component pro-
grams, one for each agent. In order not to complicate matters we
assume that each gossip protocol uses only one mode of communi-
cation.

Of special interest for this paper are gossip protocols that are
symmetric. By this we mean that the protocol is a composition
of the component programs that are identical modulo the names
of the agents. Formally, consider a statement π(x), where x is a

1Alternatively, La could be defined as the fragment of L consisting
of the formulae of form Kaψ. In logic S5, it is easy to prove that
each ψ ∈ La is logically equivalent to a formula Kaφ ∈ L.

variable ranging over the set A of agents and such that for each
agent a ∈ A, π(a) is a component program for agent a. Then the
parallel composition of the π(a) programs, where a ∈ A, is called
a symmetric gossip protocol.

Gossip protocols are syntactically extremely simple. Therefore it
would seem that little can be expressed using them. However, this
is not the case. In Sections 3 and 4 we consider gossip protocols
that can exhibit complex behaviour.

2.2 Semantics
We now move on to provide a formal semantics of epistemic

guards, and then describe the computations of gossip protocols.

2.2.1 Gossip situations and calls
A gossip situation is a sequence s = (Qa)a∈A, where Qa ⊆ P

for each agent a. Intuitively, Qa is the set of secrets a is familiar
with in situation s. The initial gossip situation is the one in which
each Qa equals {A} and is denoted by root. The set of all gossip
situations is denoted by S. We say that an agent a is an expert in
a gossip situation s if he is familiar in s with all the secrets, i.e., if
Qa = P. The initial gossip situation reflects the fact that initially
each agent is familiar only with his own secret, although it is not
assumed this is common knowledge among the agents. In fact, in
the introduced language we have no means to express the concept
of common knowledge.

We will use the following concise notation for gossip situations.
Sets of secrets will be written down as lists. e.g., the set {A,B,C}
will be written as ABC. Gossip situations will be written down
as lists of lists of secrets separated by dots. E.g., if there are three
agents, root = A.B.C and the situation ({A,B}, {A,B}, {C})
will be written as AB.AB.C.

Each call transforms the current gossip situation by modifying
the set of secrets the agents involved in the call are familiar with.
More precisely, the application of a call to a situation is defined as
follows.

DEFINITION 2.1 (EFFECTS OF CALLS). A call is a function
c : S −→ S, so defined, for s := (Qa)a∈A:

c = ab c(s) = (Q′a)a∈A, where Q′a = Q′b = Qa∪Qb, Q′c = Qc,
for c 6= a, b;

c = a . b c(s) = (Q′a)a∈A, where Q′b = Qa ∪ Qb, Q′a = Qa,
Q′c = Qc, for c 6= a, b;

c = a / b c(s) = (Q′a)a∈A, where Q′a = Qa ∪ Qb, Q′b = Qb,
Q′c = Qc, for c 6= a, b.

The definition formalizes the modes of communications we intro-
duced earlier. Depending on the mode, secrets are either shared
between caller and callee (ab), they are pushed from the caller to
the callee (a . b), or they are retrieved by the caller from the callee
(a / b).

2.2.2 Call sequences
A call sequence is a (possibly infinite) sequence of calls, in

symbols (c1, c2, . . . , cn, . . .), all being of the same communication
mode. The empty sequence is denoted by ε. We use c to denote a
call sequence and C to denote the set of all call sequences. The
set of all finite call sequences is denoted C<ω . Given a finite call
sequence c and a call c we denote by c.c the prepending of c with
c, and by c.c the postpending of c with c.

The result of applying a call sequence to a situation s is defined
by induction using Definition 2.1, as follows:

[Base] ε(s) := s,
[Step] (c.c)(s) := c(c(s)).

EXAMPLE 2.2. Let the set of agents be {a, b, c}.

ab ca ab

A.B.C AB.AB.C ABC.AB.ABC ABC.ABC.ABC

The top row lists the call sequence (ab, ca, ab), while the bottom
row lists the successive gossip situations obtained from the initial
situation A.B.C by applying the calls in the sequence: first ab,
then ca and finally ab. 2

By applying an infinite call sequence c = (c1, c2, . . . , cn, . . .)
to a gossip situation s one obtains therefore an infinite sequence
c0(s), c1(s), . . . , cn(s), . . . of gossip situations, where each ck is
sequence c1, c2, . . . , ck. A call sequence c is said to converge if
for all input gossip situations s the generated sequence of gossip
situations reaches a limit, that is, there exists n < ω such that for
all m ≥ n cm(s) = cm+1(s). Since the set of secrets is finite and
calls never make agents forget secrets they are familiar with, it is
easy to see the following.

FACT 2.3. All infinite call sequences converge.

However, as we shall see, this does not imply that all gossip pro-
tocols terminate. In the remainder of the paper, unless stated other-
wise, we will assume the push-pull mode of communication. The
reader can easily adapt our presentation to the other modes.

2.2.3 Gossip models
The set S of all gossip situations is the set of all possible combi-

nations of secret distributions among the agents. As calls progress
in sequence from the initial situation, agents may be uncertain about
which one of such secrets distributions is the actual one. This
uncertainty is precisely the object of the epistemic language for
guards we introduced earlier.

DEFINITION 2.4. A gossip model (for a given set A) is a tu-
pleM = (C<ω, {∼a}a∈A), where each ∼a⊆ C<ω × C<ω is the
smallest relation satisfying the following inductive conditions (as-
sume the mode of communication is push-pull):

[Base] ε ∼a ε;

[Step] Suppose c ∼a d.

(i) If a 6∈ c, then c.c ∼a d and c ∼a d.c.

(ii) If there exists b ∈ A and c, d ∈ {ab, ba} such that
c.c(root)a = d.d(root)a, then c.c ∼a d.d.

A gossip model with a designated finite call sequence is called a
pointed gossip model.

For the push, respectively pull, modes of communication clause
(ii) needs to be modified by requiring that for some b ∈ A, c = d =
a . b or c = d = a / b, respectively.

For instance, by (i) we have ab, bc ∼a ab, bd. But we do not
have bc, ab ∼a bd, ab since (bc, ab)(root)a = ABC 6= ABD =
(bd, ab)(root)a.

Let us flesh out the intuitions behind the above definition. Gos-
sip models are needed in order to interpret the epistemic guards of
gossip protocols. Since such guards are relevant only after finite
sequences of calls, the domain of a gossip model is taken to consist
only of finite sequences. Intuitively, those are the finite sequences
that can be generated by a gossip protocol. Let us turn now to the

∼a relation. This is defined with the following intuitions in mind.
First of all, no agent can distinguish the empty call sequence from
itself—this is the base of the induction. Next, if two call sequences
are indistinguishable for a, then the same is the case if (i) we ex-
tend one of these sequences by a call in which a is not involved or if
(ii) we extend each of these sequences by a call of a with the same
agent (agent a may be the caller or the callee), provided a is famil-
iar with exactly the same secrets after each of the new sequences
has taken place—this is the induction step.2

The above intuitions are based on the following assumptions on
the form of communication we presuppose: (i) At the initial sit-
uation, as communication starts, each agent knows only her own
secret but considers it possible that the others may be familiar with
all other secrets. In other words there is no such thing as common
knowledge of the fact that ‘everybody knows exactly her own se-
cret’. (ii) In general, each agent always considers it possible that
call sequences (of any length) take place that do not involve her.
These assumptions are weaker than the ones analyzed in [3].

We state without proof the following simple fact.

FACT 2.5.

(i) Each ∼a is an equivalence relation;

(ii) For all c, d ∈ C if c ∼a d, then c(root)a = d(root)a, but
not vice versa.

This prompts us to note also that according to Definition 2.4 se-
quences which make a learn the same set of secrets may well be
distinguishable for a, such as, for instance, ab, bc, ab and ab, bc, ac.
In the first one a comes to know that b knows a is familiar with all
secrets, while in the second one, she comes to know that c knows a
is familiar with all secrets. Relation ∼a is so defined as to capture
this sort of ‘higher-order’ knowledge.

2.2.4 Truth conditions for epistemic guards
Everything is now in place to define the truth of the considered

formulas.

DEFINITION 2.6. Let (M, c) be a pointed gossip model with
M = (C<ω, (∼a)a∈A) and c ∈ C<ω . We define the satisfaction
relation |= inductively as follows (clauses for Boolean connectives
are omitted):

(M, c) |= Fap iff p ∈ c(root)a,

(M, c) |= Kaφ iff ∀d s.t. c ∼a d, (M, d) |= φ.

So formula Fap is true (in a pointed gossip model) whenever se-
cret p belongs to the set of secrets agent a is familiar with in the
situation generated by the designated call sequence c applied to the
initial situation root. The knowledge operator is interpreted as cus-
tomary in epistemic logic using the equivalence relations ∼a.

2.2.5 Computations
Assume a gossip protocol P that is a parallel composition of the

component programs ∗[[]ma
j=1 ψ

a
j → caj], one for each agent a ∈ A.

Given the gossip modelM = (C<ω, {∼a}a∈A) we define the
computation tree CP ⊆ C<ω of P as the smallest set of sequences
satisfying the following inductive conditions:

[Base] ε ∈ CP ;

2Notice that the definition requires a designated initial situation,
which we assume to be root.

[Step] If c ∈ CP and (M, c) |= ψa
j then c.caj ∈ CP . In this case

we say that a transition has taken place between c and c.caj ,
in symbols, c→ c.caj .

So CP is a (possibly infinite) set of finite call sequences that is iter-
atively obtained by performing a ‘legal’ call (according to protocol
P) from a ‘legal’ (according to protocol P) call sequence.

A path in the computation tree of P is a (possibly infinite) se-
quence of elements of CP , denoted by ξ = (c0, c1, . . . , cn, . . .),
where c0 = ε and each ci+1 = ci.c for some call c and i ≥ 0. A
computation of P is a maximal rooted path in the computation tree
of P .3

The above definition implies that a call sequence c is a leaf of
the computation tree if and only if

(M, c) |=
∧
a∈A

ma∧
j=1

¬ψa
j .

We call the formula ∧
a∈A

ma∧
j=1

¬ψa
j

the exit condition of the gossip protocol P .

Obviously computation trees can be infinite, though they are al-
ways finitely branching. Further, note that this semantics for gossip
protocols abstracts away from some implementation details of the
calls. More specifically, we assume that the caller always succeeds
in his call and does not require to synchronize with the called agent.
In reality, the called agent might be busy, being engaged in another
call. To take care of this one could modify each call by replacing
it by a ‘call protocol’ that implements the actual call using some
lower level primitives. We do not elaborate further on this topic.

Let us fix some more terminology. For c ∈ CP , an agent a is
enabled in c if (M, c) |=

∨ma
j=1 ψ

a
j and is disabled otherwise. So

an agent is enabled if it can perform a call. An agent a is selected
in c if it is the caller in the call that for some c′ determines the
transition c → c′ in ξ. Finally, a computation ξ is called a fair
computation if it is finite or each agent that is enabled in infinitely
many sequences in ξ is selected in infinitely many sequences in ξ.

We note in passing that various alternative definitions of fairness
are possible; we just focus on one of them. An interested reader
may consult [2], where several fairness definitions (for instance one
focusing on actions and not on agents) for distributed programs
were considered and compared.

We conclude this section by observing the following. Our defi-
nition of computation tree for protocol P presupposes that guards
ψa

j are interpreted over the gossip modelM = (C<ω, {∼a}a∈A).
This means that when evaluating guards, agents consider as possi-
ble call sequences that cannot be generated by P . In other words,
agents do not know the protocol. To model common knowledge of
the considered protocol in the gossip model one should take as the
domain of the gossip model M the underlying computation tree.
However, the computation tree is defined by means of the under-
lying gossip model. To handle such a circularity an appropriate
fixpoint definition is needed. We leave this topic for future work.

2.3 Correctness
3Note that while the sequences that are elements of the computa-
tion tree of a protocol are always finite (although possibly infinite
in number), computations can be infinite sequences (of finite call
sequences).

We are interested in proving the correctness of gossip protocols.
Assume a gossip protocol P that is a parallel composition of the
component programs ∗[[]ma

j=1 ψ
a
j → caj].

We say that P is partially correct, in short correct, if in all situ-
ations sequences c that are leaves of the computation tree of P , for
each agent a

(M, c) |=
∧
b∈A

FaB,

i.e., if for all situations sequences c that are leaves of the com-
putation tree of P , each agent is an expert in the gossip situation
c(root).

We say furthermore that P terminates if all its computations are
finite and that P fairly terminates if all its fair computations are
finite.

In the next section we provide examples showing that partial cor-
rectness and termination of the considered protocols can depend on
the assumed mode of communication and on the number of agents.
In what follows we study various gossip protocols and their cor-
rectness. We begin with the following obvious observation.

FACT 2.7. For each protocol P the following implications (⇒)
hold, where TP (x) stands for its termination and FTP (x) for its
fair termination in a communication mode x:

TP (x)⇒ FTP (x).

Protocol R3 given in Section 4 shows that none of these impli-
cations can be reversed. Moreover, it is not the case either that for
each protocol P :

TP (.)⇒ TP (push-pull),
TP (/)⇒ TP (push-pull).

EXAMPLE 2.8. Let A = {a, b, c} and define the following ex-
pression:

A ⊂ C :=
∧

I∈{A,B,C}

(FaI → FcI) ∧
∨

I∈{A,B,C}

(FcI ∧ ¬FaI)

Expression B ⊂ C can be defined analogously. Note that we denote
by I the secret of agent i. Intuitively, A ⊂ C means that agent c
is familiar with all the secrets that agent a is familiar with, but not
vice versa. So c is familiar with a superset of the secrets a is aware
of. Further, let Expj stand for

∧
I∈{A,B,C} FjI .

Consider now the following component programs:

• for agent a: ∗[Ka(¬(A ⊂ C) ∧ ¬Expa)→ a . c],

• for agent b: ∗[Kb(¬(B ⊂ C) ∧ ¬Expb)→ b . c],

• for agent c: ∗[[]i∈{a,b}KcExpc ∧ ¬KcExpi → c . i].

First note that in our logic,Ki(φ1∧φ2) is equivalent toKiφ1∧
Kiφ2.

This protocol is correct. Indeed, initially, it is not the case that
c knows to be an expert, hence the guard of c is false. Likewise,
the guards of a and b are true; a for instance knows that c is not
familiar with more secrets than a, and that a is not familiar with
all secrets. So initially both a or b are enabled. If the first call is
granted to a, this agent will call c, yielding the situation A.B.AC.
Note that now, the guard of a is false (from a’s perspective, c may
now well be familiar with all secrets), the guard of b is true, and
the guard of c is still false. So now only b is enabled, which yields
the situation A.B.ABC. At this stage, only agent c is enabled and
after he calls both a and b all guards become false.

Moreover, this protocol terminates. Indeed, the only computa-
tions are the ones in which first the calls a . c and b . c take place,
in any order, followed by the calls c .a and c . b, also performed in
any order. However, if we use the push-pull mode instead of push,
the call ac can be indefinitely repeated, so the protocol does not
terminate. 2

3. TWO SYMMETRIC PROTOCOLS
In this section we consider protocols for the case when the agents

form a complete graph. We study two protocols. We present them
first for the communication mode push-pull. (Partial) correctness
of the considered protocols does not depend on the assumed mode
of communication.

Learn new secrets protocol (LNS).
Consider the following program for agent i:

∗[[]j∈A¬FiJ → (i, j)].

Informally, agent i calls agent j if i is not familiar with j’s secret.
Note that the guards of this protocol do not use the epistemic op-
erator Ki, but they are equivalent to the ones that do, as ¬FiJ is
equivalent to Ki¬FiJ .

This protocol was introduced in [3] and studied with respect to
the push-pull mode, assuming asynchronous communication. As
noted there this protocol is clearly correct. Also, it always termi-
nates since after each call (i, j) the size of {(i, j) ∈ A× A | ¬FiJ}
decreases. The same argument shows termination if the communi-
cation mode is pull.

However, if the communication mode is push, the protocol may
fail to terminate, even fairly. To see it fix an agent a and consider
a sequence of calls in which each agent calls a. At the end of
this sequence a becomes an expert but nobody is familiar with his
secret. So any extension of this sequence is an infinite computation.

Let us consider now the possible call sequences generated by
the computations of this protocol. Assume that there are n ≥ 4
agents. By the result mentioned in the introduction in each termi-
nating computation at least 2n− 4 calls are made.

The LNS protocol can generate such shortest sequences (among
others). Indeed, let A = {a, b, c, d, i1, . . ., in−4} be the set of
agents. Then the following sequence of 2n− 4 calls

(a, i1), (a, i2), . . ., (a, in−4),
(a, b), (c, d), (a, c), (b, d),
(i1, b), (i2, b), . . ., (in−4, b)

(1)

corresponds to a terminating computation.
The guards used in this protocol entail that after a call (i, j) nei-

ther the call (j, i) nor another call (i, j) can take place, that is be-
tween each pair of agents at most one call can take place. Con-
sequently, the longest possible sequence contains at most n(n−1)

2
calls. Such a worst case can be generated by means of the following
sequence of calls:

[2], [3], [4], . . ., [n],

where for a natural number k, [k] stands for the sequence (1, k),
(2, k), . . ., (k − 1, k).4

Hear my secret protocol (HMS).
Next, we consider a protocol with the following program for agent
i:

∗[[]j∈A¬KiFjI → (i, j)].
4Other longest sequences are obviously possible, for instance:
12, 13, ..., 1n, 23, 24, ..., 2n, 34, 35, .., 3n, ..., (n− 1)n.

Informally, agent i calls agent j if he (agent i) does not know
whether j is familiar with his secret. To prove correctness of this
protocol it suffices to note that its exit condition∧

i,j∈A

KiFjI

implies
∧

i,j∈A FjI . To prove termination it suffices to note that
after each call (i, j) the size of the set {(i, j) | ¬KiFjI} decreases.

If the communication mode is push, then the termination argu-
ment remains valid, since after the call i . j agent j still learns all
the secrets agent i is familiar with.

However, if the communication mode is pull, then the protocol
may fail to terminate, even fairly. To see it fix an agent j and con-
sider the calls i/j, where i ranges over A\{j}, arbitrarily ordered.
Denote this sequence by c. Consider now an infinite sequence of
calls resulting from repeating c indefinitely. It is straightforward to
check that such a sequence corresponds to a possible computation.
Indeed, in this sequence agent j never calls and hence never learns
any new secret. So for each i 6= j the formula ¬KiFjI remains
true and hence each agent i 6= j remains enabled. Moreover, after
the calls from c took place agent j is not anymore enabled. Hence
the resulting infinite computation is fair.

When there are n ≥ 4 agents, the extreme cases in terms of the
lengths of possible call sequences are the same as in the case of the
LNS protocol. Indeed, let A = {a, b, c, d, i1, . . ., in−4} be the set
of agents. Then the sequence of (1) corresponds to a terminating
computation. Further, this protocol can generate computations in
which n(n−1)

2
calls are made. The argument is the same as for the

LNS protocol.

4. PROTOCOLS OVER DIRECTED RINGS
In this section we consider the case when the agents are arranged

in a directed ring, where n ≥ 3. For convenience we take the set
of agents to be {1, 2, . . ., n}. For i ∈ {1, . . ., n}, let i ⊕ 1 and
i	 1 denote respectively the successor and predecessor of agent i.
That is, for i ∈ {1, . . ., n− 1}, i ⊕ 1 = i + 1, n ⊕ 1 = 1, for
i ∈ {2, . . ., n}, i 	 1 = i − 1, and 1 	 1 = n. For k > 1 we
define i ⊕ k and i 	 k by induction in the expected way. Again,
when reasoning about the protocols we denote the secret of agent
i ∈ {1, . . ., n} by I . We consider four different protocols and study
them with respect to their correctness and (fair) termination.

In this set up, a call sequence over a directed ring is a (possibly
infinite) sequence of calls, all being of the same communication
mode, and all involving an agent i and i ⊕ 1. As before, we use c
to denote such a call sequence and CDR to denote the set of all call
sequences over a directed ring. In this section, unless stated other-
wise, by a call sequence we mean a sequence over a directed ring.
The set of all such finite call sequences is denoted C<ω

DR. A gossip
model for a directed ring is a tuple MDR = (C<ω

DR, {∼a}a∈A),
where each ∼a⊆ C<ω

DR × C<ω
DR is as in Definition 2.4. The truth

definition is as before, and the notion of a computation tree for
directed rings CP

DR ⊆ C<ω
DR of a ring protocol P is analogous to

the notion defined before. Note that by restricting the domain in
MDR to C<ω

DR, the ring network—and hence who is the successor
of whom—becomes common knowledge.

When presenting the protocols we use the fact that FiJ is equiv-
alent to KiFiJ .

Ring protocol R1.

Consider first a gossip protocol with the following program for i:

∗[
n∨

j=1

(FiJ ∧Ki¬Fi⊕1J)→ i3i⊕ 1],

where 3 denotes the mode of communication, so ., / or push-pull.
Informally, agent i calls his successor, agent i⊕1, if i is familiar

with some secret and he knows that his successor is not familiar
with it.

PROPOSITION 4.1. Let 3 = .. Protocol R1 terminates and is
correct.

Termination and correctness do not both hold for the other com-
munication modes. Consider first the pull communication mode,
i.e., 3 = /. Then the protocol does not always terminate. Indeed,
each call i / i ⊕ 1 can be repeated. Next, consider the push-pull
communication mode. We show that then the protocol is not cor-
rect. Indeed, take

c = (1, 2), (2, 3), . . ., (n− 1, n).

We claim that after the sequence of calls c the exit condition of the
protocol is true. To this end we consider each agent in turn.

After c each agent i, where i 6= n is familiar the secrets of the
agents 1, 2, . . ., i+1. Moreover, because of the call (i, i+1) agent
i knows that agent i + 1 is familiar with these secrets. So the exit
condition of agent i is true.

To deal with agent n note that c ∼n c.(n − 2, n − 1).(n −
3, n − 2).. . .(2, 3).(1, 2). After the latter call sequence agent 1
becomes an expert. So after c agent n cannot know that agent 1
is not familiar with some secret. Consequently, after c the exit
condition of agent n is true, as well. However, after c agent 1 is not
an expert, so the protocol is indeed not correct.

In what follows we initially present the protocols assuming the
push-pull mode of communication.

Ring protocol R2.
Consider now a gossip protocol with the following program for
agent i:

∗[¬KiFi⊕1I 	 1→ (i, i⊕ 1)],

where (recall) I 	 1 denotes the secret of agent i 	 1. Informally,
agent i calls his successor, agent i ⊕ 1, if i does not know that his
successor is familiar with the secret of i’s predecessor, i.e., agent
i	 1.

PROPOSITION 4.2. If |A| ∈ {3, 4} then protocol R2 is correct.

However, this protocol is not correct for five or more agents. To
see it consider the sequence of calls

(1, 2), (2, 3), . . ., (n− 1, n), (n, 1), (1, 2)

where n ≥ 5. After it the exit condition of the protocol is true.
However, agent 3 is not familiar with the secret of agent 5.

Note that the same argument shows that the protocol in which
we use ¬KiFi⊕1I ∨ ¬KiFi⊕1I 	 1 instead of ¬KiFi⊕1I 	 1 is
incorrect, as well.

Moreover, this protocol does not always terminate. Indeed, one
possible computation consists of an agent i repeatedly calling his
successor i⊕ 1.

Protocol T FT T for . FT for . T for / FT for /
LNS yes yes no no yes yes
HMS yes yes yes yes no no

R3 no yes no yes no yes
R4 yes yes yes yes no yes

Table 1: Summary of termination results.

Ring protocol R3.
Next, consider the following modification of protocol R2 in which
we use the following program for agent i:

∗[(¬
n∧

j=1

FiJ) ∨ ¬KiFi⊕1I 	 1→ (i, i⊕ 1)].

Informally, agent i calls his successor, agent i⊕1, if i is not familiar
with all the secrets or i does not know that his successor is familiar
with the secret of his predecessor, agent i	 1.

This gossip protocol is obviously correct thanks to the fact that∧n
i=1

∧n
j=1 FiJ is part of the exit condition. However, it does not

always terminate for the same reason as the previous one.
On the other hand, the following holds.

PROPOSITION 4.3. Protocol R3 fairly terminates.

The same conclusions concerning non termination and fair ter-
mination can be drawn for the push and the pull modes of commu-
nication. Indeed, for push it suffices to consider the sequence of
calls i . i⊕ 1, i⊕ 1 . i⊕ 2, . . ., i	 1 . i after which agent i	 1
becomes disabled, and for pull the sequence of calls i / i⊕ 1, i	
1 / i, . . ., i⊕ 2 / i⊕ 3 after which agent i⊕ 2 becomes disabled.

Ring protocol R4.
Finally, we consider a protocol that is both correct and terminates
for the push-pull mode. Consider the following program for i:

∗[
n∨

j=1

(FiJ ∧ ¬KiFi⊕1J)→ (i, i⊕ 1)].

Informally, agent i calls his successor, agent i ⊕ 1, if i is familiar
with some secret and he does not know whether his successor is
familiar with it. Note the similarity with protocol R1.

PROPOSITION 4.4. Protocol R4 terminates and is correct.

If the communication mode is push, then the termination argu-
ment remains valid, since after the call i.i⊕1 agent i⊕1 still learns
all the secrets that agent i is familiar with and hence the above set
{(i, j) | ¬KiFi⊕1J} decreases.

If the communication mode is pull, then the protocol may fail to
terminate, because after the first call i / i⊕ 1 agent i⊕ 1 does not
learn the secret of agent i and consequently the call can be repeated.
However, the situation changes when fairness is assumed.

PROPOSITION 4.5. For the pull communication mode protocol
R4 fairly terminates.

Table 1 summarizes the termination properties of the protocols
considered in the paper.

5. CONCLUSIONS
The aim of this paper was to introduce distributed gossip pro-

tocols, to set up a formal framework to reason about them, and to
illustrate it by means of an analysis of selected protocols.

Our results open up several avenues for further research. First,
our correctness arguments were given in plain English with occa-
sional references to epistemic tautologies, such as Kiφ → φ, but
it should be possible to formalize them in a customized epistemic
logic. Such a logic should have a protocol independent component
that would consist of the customary S5 axioms and a protocol de-
pendent component that would provide axioms that depend on the
mode of communication and the protocol in question. An example
of such an axiom is the formula KiFi⊕1I 	 1 → FiI ⊕ 1 that
we used when reasoning about protocol R2. To prove the validity
of the latter axioms one would need to develop a proof system that
allows us to compute the effect of the calls, much like the compu-
tation of the strongest postconditions in Hoare logics. Once such
a logic is provided the next step will be to study formally its prop-
erties, including decidability. Then we could clarify whether the
provided correctness proofs could be carried out automatically.

Second, generalizing further the ideas we introduced by consid-
ering directed rings, gossip protocols could be studied in interface
with network theory (see [13] for a textbook presentation). Calls
can be assumed to be constrained by a network, much like in the lit-
erature on ‘centralized’ gossip (cf. [10]) or even have probabilistic
results (i.e., secrets are passed with given probabilities). More com-
plex properties of gossip protocols could then be studied involv-
ing higher-order knowledge or forms of group knowledge among
neighbors (e.g., “it is common knowledge among a and her neigh-
bors that they are all experts”), or their stochastic behavior (e.g., “at
some point in the future all agents are experts with probability p”).

Third, it will be interesting to analyze the protocols for the types
of calls considered in [3]. They presuppose some form of knowl-
edge that a call took place (for instance that given a call between a
and b each agent c 6= a, b noted the call but did not learn its con-
tent). Another option is to consider multicasting (calling several
agents at the same time).

Finally, many assumptions of the current setup could be lifted.
Different initial and final situations could be considered, for in-
stance common knowledge of protocols could be assumed, or com-
mon knowledge of the familiarity of all agents with all the secrets
upon termination could be required. Finally, to make the protocols
more efficient passing of tokens could be allowed instead of just
the transmission of secrets by means of calls.

Acknowledgments
We would like to thank Hans van Ditmarsch and the referees for
helpful comments and Rahim Ramezanian for useful comments
about Example 2.8. This work resulted from a research visit by
Krzysztof Apt to Davide Grossi and Wiebe van der Hoek, spon-
sored by the 2014 Visiting Fellowship Scheme of the Department of
Computer Science of the University of Liverpool. The first author
is also a Visiting Professor at the University of Warsaw. He was
partially supported by the NCN grant nr 2014/13/B/ST6/01807.

6. REFERENCES
[1] K. R. Apt, F. R. de Boer, and E. R. Olderog. Verification of

Sequential and Concurrent Programs. Springer, 2009.
[2] K. R. Apt, N. Francez, and S. Katz. Appraising fairness in

distributed languages. Distributed Computing, 2(4):226–241,
1988.

[3] M. Attamah, H. van Ditmarsch, D. Grossi, and W. Van der
Hoek. Knowledge and gossip. In Proceedings of ECAI’14,
pages 21–26. IOS Press, 2014.

[4] B. Baker and R. Shostak. Gossips and telephones. Discrete
Mathematics, 2:197–193, 1972.

[5] R. Bumby. A problem with telephones. SIAM Journal of
Algorithms and Discrete Methods, 2:13–18, 1981.

[6] E. W. Dijkstra. Guarded commands, nondeterminacy and
formal derivation of programs. Communications of the ACM,
18:453–457, 1975.

[7] R. Fagin, J. Halpern, Y. Moses, and M. Vardi.
Knowledge-based programs. Distributed Computing,
10:199–225, 1997.

[8] R. Fagin, J. Y. Halpern, Y. Moses, and M. Y. Vardi.
Reasoning about knowledge. The MIT Press, Cambridge,
1995.

[9] A. Hajnal, E. C. Milner, and E. Szemeredi. A cure for the
telephone disease. Canadian Mathematical Bulletin,
15:447–450, 1972.

[10] S. M. Hedetniemi, S. T. Hedetniemi, and A. L. Liestman. A
survey of gossiping and broadcasting in communication
networks. Networks, 18(4):319–349, 1988.

[11] C. A. R. Hoare. Communicating sequential processes.
Communications of the ACM, 21:666–677, 1978.

[12] INMOS Limited. Occam Programming Manual.
Prentice-Hall International, 1984.

[13] M. O. Jackson. Social and Economic Networks. Princeton
University Press, 2008.

[14] R. Kurki-Suonio. Towards programming with knowledge
expressions. In Proceedings of POPL’86, pages 140–149,
1986.

[15] J. Meyer and W. van der Hoek. Epistemic Logic for AI and
Computer Science, volume 41 of Cambridge Tracts in
Theoretical Computer Science. Cambridge University Press,
1995.

[16] R. Parikh and R. Ramanujam. Distributed processing and the
logic of knowledge. In Logic of Programs, LNCS 193, pages
256–268. Springer, 1985. Similar to JoLLI 12: 453–467,
2003.

[17] A. Seress. Quick gossiping without duplicate transmissions.
Graphs and Combinatorics, 2:363–383, 1986.

[18] R. Tijdeman. On a telephone problem. Nieuw Archief voor
Wiskunde, 3(XIX):188–192, 1971.

APPENDIX

PROOF OF PROPOSITION 4.1.
Termination Given a call sequence c define the set

Inf (c) := {(i, j) | i, j ∈ {1, . . ., n} and (MDR, c) |= FiJ}.

After each enabled call i.i⊕1 in c, the set Inf (c) increases, which
ensures termination since each set Inf (·) has at most n2 elements.
Correctness Consider a leaf of the computation tree. Then the

exit condition
n∧

i=1

n∧
j=1

(¬FiJ ∨ ¬Ki¬Fi⊕1J)

is true. We proceed by induction to show that then each FiJ is true,
where i, j ∈ {1, . . ., n}, and where the pairs (i, j) are ordered as
follows:

(1, 1), (2, 1), . . ., (n, 1),

(2, 2), (3, 2), . . ., (1, 2),

. . .,

(n, n), (1, n), . . ., (n− 1, n).

So the ith row lists the pairs (j, i) with j ∈ {1, . . ., n} ranging
clockwise, starting at i.

Take a pair (i, j). If i = j, then FiJ is true by assumption. If
i 6= j, then consider the pair that precedes it in the above ordering.
It is then of the form (i1, j), where i = i1 ⊕ 1. By the induction
hypothesis Fi1J is true, so by the exit condition ¬Ki1¬FiJ is true.

Suppose now towards a contradiction that¬Fi1⊕1J is true. Then
i1⊕1 6= j. Hence by virtue of the considered communication mode
and Definition 2.4 it follows that agent ii knows that ¬Fi1⊕1J is
true since the only way for i1 ⊕ 1 to become familiar with J is
by means of a call from i1. So Ki1¬FiJ is true. This yields a
contradiction. Hence FiJ is true.

So we showed, as desired, that
∧n

i=1

∧n
j=1 FiJ is true in the

considered leaf.

PROOF OF PROPOSITION 4.2. To start with,
∧n

i=1 FiI is true
in every node of the computation tree. Suppose the exit condi-
tion

∧n
i=1KiFi⊕1I 	 1 is true at a node of the computation tree

(in short, true). It implies that
∧n

i=1 Fi⊕1I 	 1 is true. Fix i ∈
{1, . . ., n}. By the above FiI 	 2 is true. Further, the implication
KiFi⊕1I 	 1→ FiI 	 1 is true in every node of the computation
tree (remember, the agents are positioned on a directed ring). If
n = 3, this proves that

∧n
j=1 FiJ is true.

If n = 4, we note that KiFi⊕1I 	 1 implies that agent i ⊕ 1
learned I 	 1 through a call of agent i and hence the implication
KiFi⊕1I 	 1→ FiI ⊕ 1 is true in every node of the computation
tree, as well (remember that the mode is push-pull). We conclude
that

∧n
j=1 FiJ is true.

PROOF OF PROPOSITION 4.3. First, note that the following three
statements are equivalent for each node c of an arbitrary computa-
tion ξ and each agent i:

• i is disabled at c,

• (MDR, c) |= (
∧n

j=1 FiJ) ∧KiFi⊕1I 	 1,

• a sequence of calls (i⊕2, i⊕3), (i⊕3, i⊕4), . . ., (i, i⊕1)
(possibly interspersed with other calls) has taken place in ξ
before c.

Suppose now towards a contradiction that an infinite fair computa-
tion ξ exists. We proceed by case distinction.
Case 1 Some agent becomes disabled in ξ.

We claim that if an agent i becomes disabled in ξ, then also agent
i⊕ 1 becomes disabled in ξ. Indeed, otherwise by fairness at some
point in ξ after which i becomes disabled, agent i ⊕ 1 calls his
successor, i⊕ 2, and by the above sequence of equivalences in turn
becomes disabled.

We conclude by induction that at some point in ξ all agents be-
come disabled and hence ξ terminates, which yields a contradic-
tion.
Case 2 No agent becomes disabled in ξ.

By fairness each agent calls in ξ infinitely often his successor. So
for every agent i there exists in ξ the sequence of calls (i ⊕ 2, i ⊕
3), (i ⊕ 3, i ⊕ 4), . . ., (i, i ⊕ 1) (possibly interspersed with other
calls). By the above sequence of equivalences after this sequence of
calls agent i becomes disabled, which yields a contradiction.

PROOF OF PROPOSITION 4.4.
Termination It suffices to note that after each call (i, i ⊕ 1) the

size of the set

{(i, j) ∈ A× A | ¬KiFi⊕1J}

decreases.
Correctness Consider a leaf of the computation tree. Then the

exit condition
n∧

i=1

n∧
j=1

(¬FiJ ∨KiFi⊕1J)

is true. As in the case of protocol R1 we prove that it implies each
FiJ is true by induction on the pairs (i, j), where i, j ∈ {1, . . ., n},
ordered as follows:

(1, 1), (2, 1), . . ., (n, 1),

(2, 2), (3, 2), . . ., (1, 2),

. . .,

(n, n), (1, n), . . ., (n− 1, n).

Take a pair (i, j). If i = j, then FiJ is true by assumption. If
i 6= j, then consider the pair that precedes it in the above ordering,
so (i1, j), where i = i1 ⊕ 1. By the induction hypothesis Fi1J
is true, so by the exit condition Ki1FiJ is true and hence FiJ is
true.

PROOF OF PROPOSITION 4.5. Consider the following sequence
of statements:

(i) i is disabled at c,

(ii) (MDR, c) |=
∧n

j=1(FiJ → KiFi⊕1J),

(iii) (MDR, c) |= KiFi⊕1,

(iv) a sequence of calls i	1/i, i	2/i	1, . . ., i/i⊕1 (possibly
interspersed with other calls) has taken place in ξ before c.

It is easy to verify that these statements are logically related in the
following way:

(i)⇔ (ii)⇒ (iii)⇒ (iv)⇒ (ii)

for each node c of an arbitrary computation ξ and each agent i.
They are therefore equivalent. Suppose now towards a contradic-
tion that an infinite fair computation ξ exists. As in the proof of
Proposition 4.3 we proceed by case distinction.
Case 1 Some agent becomes disabled in ξ.

We claim that if an agent i becomes disabled in ξ, then also i 	
1 becomes disabled in ξ. Indeed, otherwise by fairness at some
point in ξ after which j becomes disabled, agent i 	 1 calls his
successor, i, and by the above sequence of equivalences in turn
becomes disabled.

We conclude by induction that at some point in ξ all agents be-
come disabled and hence ξ terminates, which yields a contradic-
tion.
Case 2 No agent becomes disabled in ξ.

By fairness each agent calls in ξ infinitely often his successor. So
for every agent i there exists in ξ a sequence of calls i	1/i, i	2/
i	 1, . . ., i / i⊕ 1 (possibly interspersed with other calls). By the
above sequence of equivalences, after this sequence of calls agent i
becomes disabled, which yields a contradiction.

