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Abstract

In real-time monitoring systems, participant’s privacy could be easily exposed
when the time-series of sensing measurements are obtained accurately by ad-
versaries. To address privacy issues, a number of privacy-preserving schemes
have been designed for various monitoring applications. However, these schemes
either lack considerations for temporal privacy or have less resistance to filter-
ing attacks, or cause time delay with low utility. In this paper, we introduce
a lightweight temporal perturbation based scheme, where sensor readings are
buffered and disordered to obfuscate the temporal information of the original
sensor measurement stream with differential privacy. Besides, we design the
operations on the system server side to exploit the data utility in measurements
from large number of sensors. We evaluate the performance of the proposed
scheme through both rigorous theoretical analysis and extensive simulation ex-
periments in comparison with related existing schemes. Evaluation results show
that the proposed scheme manages to preserve both the temporal privacy and
measurement privacy with filter-resistance, and achieves better performance in
terms of computational overhead, data utility of real-time aggregation, and in-
dividual accumulation.

Keywords: Real-time monitoring system, privacy-preserving, temporal
privacy, temporal perturbation

1. Introduction

With the development of smart devices embedded with sensors, real-time
monitoring systems (e.g., participatory sensing [1] and smart metering sys-
tems [2]) have attracted more and more attention again[3][4][5]. A real-time
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monitoring system consists of three entities: sensor meters, the system server
and the third-party users, as shown in Fig. 1. The system server aggregates real-
time measurements from sensors in both time and user dimensions, i.e, Real-time
aggregation and off-line accumulation. Real-time aggregation of different users’
measurements at one time, can provide real-time analysis of crowded dynam-
ics; While, off-line accumulation for individuals in a period of time can provide
accurate individual awareness. For example, in the smart metering system [2],
a typical real-time monitoring system, on one hand, the utility supplier collects
consumers’ real-time consumptions from smart meters to monitor the states of
the grid and guide energy scheduling; on the other hand, the periodic consump-
tions of individual consumers will be accumulated for consumption awareness
and billing for consumers.

Once sent out, users’ measurements could be shared with system server and
third-party users in the real-time monitoring systems. Both high timeliness and
fine granularity in real-time measurements can threaten users’ privacy. Espe-
cially, user’s behavioural privacy could be compromised from the fine-grained
measurements collected from sensors [1][2][6][7]. For example, electricity us-
ages in the smart metering system can be used to infer the ON/OFF states
of users’ appliances [8] and the continuous accelerator readings can leak the
physical conditions of individuals [4]. Generally, privacy does not equal to the
confidentiality. The latter means the data isn’t being used or accessed by unau-
thorized individuals and it can be basically secured against the eavesdroppers
via encrypted channels between sensor meters and the application server. While,
privacy means the appropriate use of data and it usually needs to confront with
potential data analyst in the system, who is a legitimate receiver as well as a
snooping adversary. The reference of basic end-to-end encryption technique is
then flawed in the privacy domain [9]. Hence, it is desirable to design effective
privacy preserving mechanisms for real-time monitoring systems.

To address privacy issues in real-time monitoring systems, a number of re-
search efforts have been made in the past [10][11][12][5][13][14] [15][16][17][18]
[19][20]. For example, Fan et al. [5] proposed an adaptive approach to aggregate
real-time monitoring with differential privacy [21]. Kamat et al.[17] propose to
delay the packets delivery to obfuscate the time information of events detected.
Nonetheless, most of these privacy-preserving schemes are designed for specific
applications and not applicable for generic real-time monitoring systems. Be-
sides, existing schemes mainly focus on data privacy and barely consider the
temporal privacy, which could leak the temporal context information. Even if
the temporal privacy is considered, the scheme still lose the timeliness, which is
necessary in the real-time monitoring systems. In addition, few schemes have
considered to support multiple operations (e.g., both the real-time aggregation
and off-line accumulation) with high utility-privacy tradeoffs. Hence, this calls
for an effective privacy preserving scheme, which consider both the data privacy
and temporal privacy, and can be flexible for various applications and operations
with high utility-privacy tradeoffs.

In this paper, we present a novel temporal perturbation based privacy-
preserving scheme for real-time monitoring systems, which can protect both
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the data privacy as well as temporal privacy and achieve high utility-privacy
tradeoffs for both real-time aggregation and off-line accumulation with filter-
resistance. Particularly, our scheme focuses on the temporal privacy and ex-
ploits temporal correlations in real-time sensor measurements to leverage the
utility-privacy tradeoff. Due to the internal steadiness and continuity of the
physical world [22] [23], measured data are temporal correlated, which con-
tains much more information than our expectation. In our scheme, from a
micro-perspective, the time-series measurements are perturbed symmetrically
in terms of time to distort detailed features (i.e., privacy) of individual mea-
surements. Besides, from the macro-perspective, residual temporal correlation
can be utilized to release enough data utility (or fidelity) for aggregation and
accumulation on the system server side. Our contributions can be summarized
as follows:

• Temporal perturbation in real-time monitoring systems: We build a
generic mechanism to apply temporal perturbation to preserve both the tem-
poral and measurement privacy in the real-time monitoring systems, which
is different from the existing temporal perturbation based schemes with high
time delay and low utility. Particularly, the logically symmetric Laplace distri-
bution is used in the temporal perturbation to keep the uniform distribution
of perturbed measurements. With the Laplace noises distribution, the time
information in the real-time measurements is differentially private. Besides,
perturbed time-series measurements will cause the distortion of individual
measurements the system server received, thus protecting measurement pri-
vacy with filter-resistance. While, the system server is designed to process and
extract crowd statistics from the received measurements via comparing the
perturbed time stamps with current time. With the probability characteris-
tics of Laplace distribution, the aggregation in a time slot can be estimated in
a real-time way from the received measurements, which form a sample space
of the large numbers of measurements. Besides real-time aggregation, off-line
accumulation can be precisely computed from the temporally perturbed mea-
surements on the server side. Therefore, our scheme can also achieve enough
data utility in real-time monitoring systems.

• Twofold utility-privacy tradeoffs: Instead of purely delaying the sensor
measurements, combined with temporally symmetric perturbation approach
(i.e., delaying or shifting to an earlier time) and effective extracting processes
on the system server, our scheme can support both the real-time aggrega-
tion and off-line accumulation for individuals and achieve two different utility-
privacy tradeoffs for real-time aggregation and off-line accumulation. On one
hand, with temporal perturbation and real-time extraction from limited mea-
surements received, the real-time disclosure is significantly reduced thus our
scheme achieves better privacy; on the other hand, because the value of mea-
surements is generally kept with temporal perturbation, the off-line accumu-
lation can utilize all perturbed measurements and obtain better data utility
supporting.
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• Extensive analysis and evaluation: We conducted a combination of both
theoretical analysis and simulation experiments on a case study of the smart
metering system, to evaluate the effectiveness of our proposed scheme in com-
parison with temporal perturbation based scheme with exponential delay algo-
rithm (EDA) [17], the norm data perturbation based scheme (NDP) [10], and
the baseline Laplace data perturbation based scheme (LDP) [12], which apply
the standard Laplace perturbation at each time stamp, in terms of both tempo-
ral privacy and measurement privacy, filter-resistance as well as utility-privacy
tradeoffs. Our data shows that our scheme achieves better utility-privacy
tradeoffs than existing schemes. Especially, we can achieve superior utility-
privacy tradeoffs in off-line accumulation and better filter-resistance than the
data perturbation based schemes.

The rest of the paper is organized as follows: Section 2 reviews the related
work on perturbation-based privacy preserving and temporal privacy; Section
3 introduces the system model and the problem definitions. In section 4, we
provide the overview of our proposed temporal perturbation scheme. Section 5
and 6 present the analysis on privacy and data utility respectively. Extensive
simulations are presented in Section 7. Finally, Section 8 concludes this paper.

2. Related work

To mitigate the privacy issues in various fields related to WSNs such as wired
and wireless networks, a number of privacy-preserving schemes have been ex-
tensively studied [24][10][25][26][21][27][5][28][27][20][29][18][17][30][6]. Accord-
ing to the different perspectives, these schemes can be categorized into: data-
oriented and context-oriented [20].

Data-oriented privacy: Data-oriented privacy-preserving focuses on the
transformation of sensor measurements. One typical technique is to add ad-
ditive or multiplicative random noises to achieve an intuitive tradeoff between
privacy and utility [10][24][25][26]. For example, Lin et al. [10] proposed to in-
troduce noises in order that an aggregator can only obtain accurate aggregation
information without access to individual measurements. Another technique is
to add generally Laplace noises to guarantee differential privacy [12][5][27][28],
which is a provable privacy metric proposed by Dwork [21]. For example, Fan et
al. [5] proposed an adaptive sharing algorithm with differential privacy for the
real-time aggregation system. However, data-oriented schemes are vulnerable
to noise-filtering attacks [31][32] due to temporal correlations, not generic for
various applications, lose utility in terms of single measurement, and have less
considerations for context privacy.

Context-oriented privacy: Context-oriented privacy-preserving aims at
protecting the context information of sensor data, i.e., the spatio-temporal in-
formation. Here, we mainly focus on temporal privacy, which concerns the time
and temporal correlations of the sensitive data. Time information could anal-
yse privacy from different sources and lead to the linkage attack (or reference
attack) [33][34]. For example, Zhou et al. [35] proposed that the time stamps
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in the mobile phone traffic can infer the tweeting events via linking with the
time stamps of users’ tweets. Hence, it is critical to break the temporal correla-
tions through temporal perturbation, which has following advantages than data
perturbation: 1) flexible for various time-series based applications; 2) keeping
better data utility in terms of measurements; 3)more filter-resistance to filter-
ing attacks. One application considers temporal privacy is the Location Based
Services (LBSs) [18][20][29]. For example, Assam et al. [29] made the trajectory
anonymity with the delay time of the absolute value of Gaussian noise, which
delays all the activities. Besides the study in LBSs, temporal perturbation
has also been used general WSNs [6][17][30]. To obfuscate the events detected
by the sensors, Kamat et al. [17] proposed to locally buffer the measurements
in the intermediate nodes for a exponential delay in the delay-tolerant WSNs.
However, the exponential delay would ruin the timeliness of dynamic trends.
Guerreiro et al. [6] proposed the probabilistic sampling mechanism for WSNs,
which can hide traffic patterns and user behaviors in data collection. However,
this paper mainly focused on single sensor meter and did not design the server
side to extract crowd dynamics with high data utility.

Different from the existing schemes, in this paper we developed a temporal
perturbation based privacy-preserving scheme for real-time monitoring systems,
which consider both temporal privacy and data privacy with high timeliness
and utility-privacy tradeoff. Our proposed scheme can support both the real-
time aggregation and off-line accumulation for individuals with sufficient privacy
protection.

3. System model and problem statement

3.1. System model

A real-time monitoring system consists of three entities: sensor meters, the
system server and the third-party users, as shown in Fig. 1. On the sensor
meter side, the measuring component measures raw measurement periodically
(i.e. fixed time slot). Then the raw measurement is processed to generate sensor
readings at the processing component. Last, the delivery component buffers
the measurement reports in the queue according to the processing component
and sends the measurement reports to the system server via communication
networks. On the system server side, the receiving and storage component
gathers and stores the measurements to the database. Then the third-party
users access to the database in the system server, analyse the aggregation results
of sensor measurements, and publish the analysis results to relevant users. Here,
we assume that large number of users (sensor meters) participate in the real-time
monitoring system.

3.2. Threaten model

In this paper, we mainly concentrate on the privacy threatens, especially the
behavioural privacy, which concerns that user’ behaviours could be inferred from
related features reflected in the time-series measurements [1][36]. To specific our
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Figure 1: The components of the real-time monitoring system

adversaries and threatens, we have to mention the differences between privacy
and (semantic) security. In the privacy domain, the data analyst, who receives
the query information from the data curator, is not only a legitimate receiver
but also a snooping adversary curious about the individual privacy. Hence, we
cannot directly realize privacy protection via direct end-to-end encryption like
anti-eavesdropping in security domain [9]. Because, either no information could
be learnt without decryption, or total exposure with correct decryption, which
does not satisfy with the object of a privacy-preserving query mechanism.

To focus on behavioural privacy issue, we assume that all components on the
participants’ side are trustworthy and the end to end communication is secured
via existing authentication and encryption schemes. Also, instead of traditional
adversaries in the semantic security domain (i.e., the eavesdroppers), in this
paper, we consider an honest-but-curious adversary. An honest-but-curious ad-
versary generally follows the processing correctly and does not provide false
information on purpose. However, he is curious to probe the detailed privacy of
the participants. For example, A typical honest-but-curious adversary can be
the insider operator who secretly sells out participants’ profiles. He is interested
in the individuals’ time-series measurements, and attempts to infer the detailed
information about participants’ behaviors and activities. Lastly, an honest-but-
curious adversary may know all the algorithms and public parameters(i.e., the
noise distribution) in our schemes.

3.3. Problem statement

The measurement of ith participant’s sensor meter Mi collected in the jth

time slot (one metering cycle, i.e., one minute) can be denoted as Ei
j . The

collecting time of the measurement is Tj and can be recorded by its time-stamp
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w(Tj). Then, a vector, (Ei
1,E

i
2,...,E

i
j), can be used to define the trajectory or

dynamics of the participant i. Besides the normal data privacy of sensor mea-
surements at certain time points, more information can be mined from the time
information and temporal correlations in highly ordered time-series measure-
ments. Hence, we generalize and divide privacy issues in the real-time monitor-
ing systems in two categories: Temporal privacy and Measurement privacy.

• Temporal privacy : Temporal privacy means that an adversary cannot infer
the correct time points Tj(time-stamp w(Tj)) or relative time order j of sensor
measurements from the measurement reports.

• Measurement privacy : Measurement privacy refers whether an adversary
can obtain the original sensor measurements Ei

j or its precise estimation from
the measurement reports.

Generally, data utility in the real-time monitoring systems is measured by
two aggregation functions: Real-time aggregation and Off-line accumulation of
sensor measurements for both timely estimations and individual summaries on
the system server side. As remarked before, real-time aggregation can be used to
monitor crowded dynamics, while off-line accumulation can provide individual
awareness and bills.

• Real-time aggregation : Real-time aggregation means the aggregation
∑

i

Ei
j

of real-time(i.e. the current time is Tj and the jth time slot) sensor measure-
ments Ei

j of all participants.

• Off-line accumulation : Off-line accumulation for individual refers to the

sum
T
∑

j=1

Ei
j of sensor measurements Ei

j of each participants i in a continuous

time period.

Intuitively, there is always contradiction between the individual privacy and
data utility: high data utility will sacrifice the individual privacy and high
privacy means little data fidelity. Thus, our problem is: 1) to find a general
mechanism to balance the tradeoff between the privacy and data utility in the
real-time monitoring systems; 2)quantify and verify the level of the privacy, data
utility, and their tradeoff.

All notations used in this paper are summarized in Table 1.

4. Temporal perturbation based privacy-preserving scheme

4.1. Basic idea

The basic idea of our scheme is described below. In each time slot, once
the measurements are collected, the time information of sensor measurements
are logically perturbed to achieve differential privacy according to the Laplace
distribution. Therefore, compared with its current time slot, the time slot of the
sensor measurement after perturbation can be kept, delayed, or shifted to an
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Table 1: Notation

Mi : Meter ID of participant i.

Tj : Reading time of the jth time slot.

bTj : bTj the time stamp of the beginning time of the jth time slot, [bTj , bTj+1]

refers to the whole jth time slot.

Ei
j : Meter reading of participant i in the time slot j.

E′i
j : Temporally perturbed meter readings of participant i in the time slot j.

Rj : The random delay time.

X
i

t : System server’s temporal measurement of participant i in the current time

slot.

X̂i
t : System server’s estimation measurement of participant i in the time slot t.

Xi
t : System server’s recorded measurement of participant i in the time slot t.

Ki : Private key of participant i.

H(·) : Hash function stored in each sensor meter.

w(·) : Time stamp generating function for any time.

J(w(Tj)) : Mapping the time stamp w(Tj) to the corresponding time slot j.
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Figure 2: Architecture of the temporal perturbation based scheme1

earlier time, as shown in Fig. 2. 1)If its time slot is kept in the current time slot

1The time of measurement is identified as their left bound in the figure, e.g., E′1
1 belongs

to the t1 slot.
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logically, then the sensor measurement report should be sent out immediately
with modified time stamp, i.e., E′1

4. It contributes to the most of the data
fidelity. 2)If its time slot is delayed logically, then the sensor measurement
report should be sent out at the perturbed time with modified time stamp,
i.e., E′1

3. And the random delay can effectively protect the temporal privacy.
3)If its time slot is shifted to an earlier time logically (e.g., the dotted box),
then the sensor measurements should be modified with new time stamp and also
randomly delayed to obfuscate its original time, i.e., E′

2

1. Thus, it is difficult for
any receiver to infer the correct original time of the measurement report from its
receiving time. Temporal privacy of sensor measurements are then protected.
And distorted time-series measurements could also preserve the measurement
privacy.

For the system server, we consider both the off-line and real-time cases. In
the off-line case, because the perturbation is mainly on time information, the
measurement readings keep the same. With sufficient long accumulation period,
the off-line accumulation can be computed purely based on the sum of measure-
ment readings, i.e., the green frame in Fig 2. In addition, the overall received
measurements (off-line) in each time slot may consist of the original measure-
ments collected in different time slots from a large number of sensors. Due to
the temporal correlation of continuous time slots, all the perturbed measure-
ments keep an approximation of original measurements. Besides, the number
of received measurements also keeps nearly the same as it should be, due to the
symmetry of temporal perturbation and the Central Limit Theorem [37] with
large number of users. Hence, their off-line aggregation in each time slot also
approximates to the original aggregation. However, in the real-time aggregation
case, due to the nature that time does not go back, only the kept measurements
in current slot and the delayed measurements received in current slot should be
logically aggregated in real-time. Consequently, the real-time aggregation can-
not be directly obtained as the off-line accumulation. For example, only E′2

2 can

be real-time aggregated in the t2 slot, both E′1
2 and E′i

2 will not be aggregated
because they are logically shifted ahead. According to the characteristic of the
Laplace distribution [38], we can know the distribution probability and estimate
the original aggregation from the received measurements, which forms a sample
space of the population. Therefore, the real-time aggregation (e.g., the coffee
frame in the figure) can also be approximately estimated based on the Law of
large numbers [39].

4.2. Sensor meter processing

The sensor meter processing mainly consists of the following three steps:
(1) Step 1: Raw data measuring: In our scheme, the measuring compo-

nent of each sensor measures the raw data at each time slot to record participant-
related readings. Therefore, at the jth time slot, the sensor measures the raw
data Ei

j , records the measuring time Tj , and generates measuring time stamp
w(Tj).

(2) Step 2: Time perturbation: For each measurement, the processing
component first secretly generates a random seed seedij = H((Mi, Tj)Ki

) and
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generates a random numberRj according to the Laplace distribution Laplace(0, b)
with zero mean and the variance of 2b2. Then, the processing component mod-
ifies the measuring time and corresponding time-stamp as T ′

j = Tj + Rj and
w(T ′

j) = w(Tj + Rj), respectively. Next, map the new time-stamp to the new
time slot j′ = J(w(T ′

j)). Last, the measurement report rj can be constructed

by rj = (Mi, w(T
′
j), j

′, Ei
j). We have to mention that we omit other auxiliary

information(i.e. the MAC authentication code) here in the measurement report
rj .

(3) Step 3: Delay reporting: To perturb the time when the adversary
observes the measurement report, the delivery component queues and delays
the report packets as follows:

(i) If w(Rj) ≥ bTj, then buffer the measurement report in the queue, and
send until the time of Sj = T ′

j = Tj +Rj , and the sending time-stamp is w(Sj).
(ii) If w(Rj) < bTj, then the measurement report should be shifted to an ear-

lier time logically, which breaches the nature that time doesn’t go back. Hence,
the sensor generates another random number Dj , which follows a exponential
distribution Exp(λ) with the variance of 1/λ2. And buffer the measurement re-
port in the queue and send until time Sj = Tj+Dj , and the sending time-stamp
is w(Sj).

Repeat the above steps for each time slot and transmit all the measurements
to the system server. We also mention that the whole end to end communication
between the sensor meters and the system server should be kept secure with
existing authentication and encryption techniques. Hence, the system server
could normally receive and decode the proper measurement report rj , which is
supposed to be free from eavesdropping and tampering. Later, we will prove
that the report rj is privacy-preserving for the participants.

4.3. System server processing

At first, system server overall initializes the recorded measurement of each
user at each time slot as 0, i.e., ∀i, j,X i

j = 0. Then it repeats the following steps
for each time slot:

(1) Step 1: Initialization: Initialize the real-time (current time slot t)
aggregation Aggt as 0. For each user i, initialize the temporal measurement of

sensor reading as 0, i.e., ∀i,Xi

t = 0.
(2) Step 2: Time extraction: Once the sensor measurement report rj is

received, system server first extracts the time slot j′ in the measurement report
rj .

(3) Step 3: Real-time measurement update: If j′ = t, then the mea-
surement report rj is regarded as the measurement at the current time slot t. So,

the system server first updates the temporal measurement X
i

t as X
i

t = X
i

t+Ei
j ,

then updates the real-time aggregation Aggt = Aggt + Ei
j . If j′ 6= t, then skip

to step (4). Clearly, t 6= T ′
j actually means t ≥ T ′

j . That is to say this report is
delayed and not reported timely for real-time aggregation. Therefore, the report
is only need to be recorded in the database for later off-line accumulation for
individuals.
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(4) Step 4: Recorded measurement update: Every time measurement
report rj received will be recorded in the database, and add the measurement
value Ei

j to user’s recorded measurement of sensor reading at the time slot j′,

i.e., X i
j′ = X i

j′ + Ei
j .

4.3.1. Real-time aggregation

Clearly, real-time aggregation Aggt will be produced in each time slot. From
the above process, we know that those early shifted measurement reports will
not be used for aggregation Aggt. Apparently, those early shifted measurement
reports have a proportion of about 50% in the total measurement reports. Ac-
tually, all reports rj with w(Rj) < bTj belong to the early shifted reports in our
scheme. We normalize one time slot as 1 in the curve of Laplace distribution
Laplace(0, b). Then, according to the CDF(cumulative distribution function),
F (x, b) = 1

2
(1 + sgn(x)(1− e−

x
b )) of the Laplace distribution Laplace(0, b), the

proportion of the early shifted reports rates F (−0.5, b) = 1

2
e−

1
2b . So, the pro-

portion of the timely reports collected in aggregation Aggt is (1− 1

2
e−

1
2b ). These

timely reports form a sample space of the total real-time measurements. Hence,
their sum Aggt also has a proportion of 1− 1

2
e−

1
2b in the total aggregation Aggt.

Consequently, the real aggregation value Aggt could be estimated as

Aggt =
2

2− e−
1
2b

· Aggt. (1)

4.3.2. Off-line accumulation for individuals

When system server needs to compute the accumulation for participants,
according to the accumulation period, the corresponding reported measurements
stored in the database at the system server can be retrieved to compute the
individual accumulation by Acci =

∑

t

X i
t in each accumulation cycle, which is

composed of many continuous time slots. Because the perturbation is on time
information of measurement reports, the total accumulation is less changed in a
long period and could be computed more or less accurately as its original value
∑

t

Ei
t .

In addition, because all the measurements value Ei
j are kept still, then

other aggregation functions independent of the time order, such as Min/Max,
Median, V ariance, and Histogram could also be computed directly.

4.4. Discussion

4.4.1. Remark 1

Our scheme is easy to have event-level privacy for time-series data, but
hard to achieve user-level privacy [40]. Especially in the scenarios with steady
measurements, the measurements have less changes in a period of time. Hence,
the minor temporal perturbation could still disclose the user-level privacy in
the measurement stream, because measurements in a continuous time period
is difficult to be masked. Therefore, we propose an enhanced scheme with
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considering the data dividing strategy. The basic idea is to randomly divide the
sensor readings into multiple samples and then perturb the time information on
each sample. That is to add one more step of data dividing between the step 1
and step 2 of sensor meter processing. Data dividing: The processing component
divides the raw measurement Ei

j into several samples randomly. For simplicity,

we divide the raw measurement into two random samplesE1ij and E2ij according

to the uniform distribution and Ei
j=E1ij+E2ij . Time perturbation on these

samples will cause the random combination in different time slots. Hence, the
measurement privacy in each time slot is protected. This step is optional and
tailored by the participants. To make it adaptive to any scenarios, we can set
up with a deviation recorder that calculates the deviation of sensor readings
in real-time. Once the deviation of current measurement series is lower than a
configured threshold, the data dividing process should be triggered on.

4.4.2. Remark 2

In off-line accumulation, all measurements, including the logically early-
shifted measurements, may need to be accumulated. However, time pertur-
bation may cause some measurement“crosses the bounda” and lose utility in
off-line accumulation, especially at the beginning time slot and the ending time
slot of accumulation period. We propose two different strategies to overcome
this issue: a)Head-cutting: the system server accumulates the recorded mea-
surements according to the accumulation period and neglects the measurements
“out of the boundary”. This strategy will lose accumulation accuracy with short
accumulation period. With longer accumulation period, the accumulation re-
sults could be more accurate. b)Ring-moving: imagine that the accumulation
period is a ring, then with the MOD operation, the “out” measurements can
be distributed along the ring of accumulation period. In this strategy, indi-
vidual accumulation is lossless. However, with long accumulation period, the
differences between the recorded measurements and the original measurements
become large and lose utility. Hence, it is applicable to the short accumulation
period.

4.4.3. Remark 3

Our scheme focuses on perturbation and would lose somewhat data fidelity
on both the real-time aggregation and off-line accumulation. Due to our tem-
poral perturbation, the time-series of aggregation results will have noises and
fluctuate around the true value. Hence, we expect to reduce these noises and
enhance the accuracy of these aggregation results. As a double-edged sword,
filtering techniques can also effectively remove the white noises in time-series
aggregations [5]. Hence, we can take the filtering algorithm to remove the noises
in the aggregation results and enhance the accuracy and fidelity. Due to the
large scale, aggregation results of participants’ measurements are quite steady,
which satisfies the premise for applying filtering techniques.
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5. Privacy analysis

In this part, we will analyse both the temporal privacy and measurement pri-
vacy. Before the analysis, we first introduce the definition of Expected Time
Delay (ETD). ETD means the absolute expectation of the time delay in our
perturbation scheme. According to the characteristics of Laplace distribution
Laplace(0, b), ETD equals to the parameter b, and shows the absolute time
offset of the time perturbation.

5.1. Temporal privacy

We will analyse the temporal privacy achievement from three aspects. Firstly,
we show the differential privacy in the temporal perturbation with Laplace
noises. Secondly, we represent the temporal privacy in single measurement.
Thirdly, we will show that the time orders in the measurement stream are bro-
ken by deriding the relationship of the mutual information in the perturbation
processes.

5.1.1. Differential privacy

Based on our scheme design and definition of differential privacy [21], the
time state of the measurement in our scheme is 1/b-differentially private. Ac-
cording to the parallel composition property of differential privacy [41], the
whole time series is 1/b-differentially private. The detailed analysis can be re-
ferred in Appendix A.

5.1.2. Temporal privacy in single packet

After the intuitive analysis on indistinguishability, we need to specify the
metrics of temporal privacy in the single measurement report. So, we define
the perturbation probability to measure the probability that the time slot
of the measurement report is distorted.

Definition 1. Perturbation probability (PP): Denote r1j ,r
2
j ,...,r

n
j as n di-

viding measurement samples of the original measurement Ei
j at the time slot

j. And their corresponding time slots is denoted as j1
′,j2

′,...,jn
′, respectively.

Then the perturbation probability PPj of the time slot j can be denoted as,

PPj = p ((j1
′ 6= j) ∪ (j2

′ 6= j) ∪ ... ∪ (jn
′ 6= j)) . (2)

So, according to the characteristic of the distribution Laplace(0, b), the per-
turbation probability PP can be denoted as,

PPj = 1− p ((j1
′ = j) ∩ (j2

′ = j) ∩ ... ∩ (jn
′ = j)) (3)

= 1− p

(

(−1

2
≤ R1

j ≤ 1

2
) ∩ (−1

2
≤ R2

j ≤ 1

2
) ∩ ... ∩ (−1

2
≤ Rn

j ≤ 1

2
)

)

= 1− (1− e−
1
2b )n, (n = 1, 2, ...)

where R1
j , R

2
j ,... are the random time delay in the report r1j , r

2
j ,...,r

n
j , respec-

tively.
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From the above equation, we can see the perturbation probability increases
with the ETD (b) and number of samples (n). When b increases, the random
time delay fluctuates dramatically. Besides, when n increases, there are more
chances the reports in one slots are perturbed.

5.1.3. Temporal privacy in multi-packet stream

In this part, we will analyse the temporal information adversaries can obtain
from measurement stream.

1) The sensor generates a stream of measurement packets r1, r2, ..., rj , ... with
the corresponding time(T1, T2, ..., Tj , ...). 2) The original time will be perturbed
by a delay vector (R1, R2, ..., Rj , ...), where each Rn is independently drawn
from Laplace(0, b). So, the time order after perturbation is (T1 + R1, T2 +
R2, ..., Tj +Rj , ...). We denote the perturbed time as (Q1, Q2, ..., Qj, ...), where
Qj = Tj+Rj . 3) Recall thatRn may be negative and there will be a second delay
to propagate the measurements as in the step (3) of the sensor meter processing.
The second delay Dj is non-negative and randomly chosen from the exponential
distribution Exp(λ) to replace the negative Rj . Hence, the new time is (T1 +

R̂1, T2 + R̂2, ..., Tj + R̂j , ...), where R̂j = Rj when Rj ≥ 0, or R̂j = Dj when
Rj < 0. It can be denoted as (S1, S2, ..., Sj , ...). 4) After sorting, the system

server will observe a new stream with the time (Ŝ1, Ŝ2, ..., Ŝj, ...), where Ŝj is

the sorted series of Sj and w(Ŝ1) ≤ w(Ŝ2) ≤ ...w(Ŝj) ≤ .... Consequently, the
adversary’s object is to infer the original time-series Tj from the final time-series

Ŝj . Denote I(T, Ŝ) as the amount of information obtained by the adversary

after observing the process {Ŝj}. Then our privacy-preserving object is to make

I(T, Ŝ) as small as possible.
We briefly conclude here that we need to tune λ small or b large to make

I(T, Ŝ), the adversary’s information gain, small and refer readers to Appendix
B for the detailed analysis. Actually, tuning λ small or b large can reduce the
information the adversary learns about the original measurement stream.

5.2. Measurement privacy

Besides the temporal information is privately kept, temporal perturbation
can also lead to the perturbation on measurements. Then, we will represent the
measurement privacy in terms of both the real-time data and recorded data.

To evaluate the measurement privacy, we apply following metrics to quan-
tify the distortion of measurements: 1) Distortion Standard Deviation
(DSD) [26], which is defined as the standard deviation between the orig-
inal measurements and the distorted measurements; 2) Cosine Similarity
(Cosim2) [42], which is defined as the cosine distance of two vectors; 3) In-
formation Entropy. According to the definition, higher distortion standard

2Distortion standard deviation can quantify the overall distance of two measurements
stream, while cosine similarity is more effective to measure the distance in high-dimensional
space. Here, the measurement stream can be regarded as a vector.
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deviation means better privacy, while smaller cosine similarity leads to better
privacy. Besides, less entropy also means less information revealing and better
privacy.

5.2.1. Real-time data

Due to the characteristics of the Laplace distribution Laplace(0, b), the
cumulative distribution function of the random time delay Rj is F (x, b) =
1

2
(1 + sgn(x)(1 − e−

x
b )). So, from the view of the system server, the temporal

measurement X
i

t of user i at the current time slot t should be

X
i

t = (1− e−
1
2b )Ei

t +
1

2

∑

k

(e−
2k−1

2b − e−
2k+1

2b )Ei
t−k, (4)

where, Ei
t denotes the sensor reading at tth time slot. Readers can refer to

Appendix C for the detailed analysis. Hence, the temporal measurement X
i

t is
the exponential smoothing of the original measurement series Ei

t . It aggregates

(1− e−
1
2b ) percent current measurements Ei

t and predicts the rest with the his-
tory measurements Ei

t−k. The EWMA(exponentially weighted moving average)
measurement not only preserves the measurement privacy but also keeps a good
estimation on time-series measurement.

The real-time reported measurements have a proportion of 1− 1

2
e−

1
2b , then

we can estimate the real-time measurement X̂ i
t at the tth by

X̂ i
t = X

i

t/(1−
1

2
e−

1
2b ) =

2− 2e−
1
2b

2− e−
1
2b

Ei
t +

∑

k

e−
2k−1

2b − e−
2k+1

2b

2− e−
1
2b

Ei
t−k. (5)

For simplicity, we denote q−k as the fraction of each measurement Ei
t−k in the

Equation (5), that is to say,

q0 =
2− 2e−

1
2b

2− e−
1
2b

, (6)

q−k =
e−

2k−1

2b − e−
2k+1

2b

2− e−
1
2b

. (7)

clearly,
∞
∑

k=0

q−k = 1 and q−k decreases with b.

According to the Equation (5), the raw measurement Ei
t weights q0 in the

estimated measurement X̂ i
t . Hence, when b increases, then q0 decreases, and

the difference between X̂ i
t and Ei

t becomes large, which also means better mea-
surement privacy. About the information entropy, we can conclude that the
information entropy in our perturbed measurements is smaller than that in the
original measurements, and decrease with the increase of b. This means the
perturbed measurements reveal less information in the original measurements.
The detailed analysis can be referred in Appendix D.
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5.2.2. Recorded data

Besides the real-time estimated measurement X̂ i
t , the system server will also

maintain a series of recorded data X i
t , which is constantly updated with both

the early shifted and delayed measurements. With time goes on and the update
of received measurements, recorded measurement X i

t becomes stable though it
is not real-time. Usually, the real-time data is used to capture the trends or
dynamics of participants immediately when they are received, while the recorded
measurement can be used for more reliable statistics and analysis later. From
the symmetric characteristics of the Laplace distribution Laplace(0, b) and the
Equation (4), we can deduce that the recorded measurement X i

t should be

X i
t = (1− e−

1
2b )Ei

t +
∑

k

1

2
(e−

2k−1

2b − e−
2k+1

2b )(Ei
t−k + Ei

t+k). (8)

Similarly, X i
t is also the exponential smoothing of all measurements in all time

slots. Hence, there are similar conclusions for the recorded measurements.

5.3. Filter-resistance

Many filtering techniques like the Kalman Filter [43] or PCA (Principal
component analysis) [44] can produce relatively precise estimations via noised
observations of time-series and lead to the exposure of individual privacy [32].
The data based perturbation schemes, which add the random noises, may suffer
a lot from the noise filtering algorithms due to temporal correlations. Differ-
ently, temporally perturbed measurements could break the time correlations
with shuffled time orders, thus forming a more filter-resistance input for filter-
ing algorithms. Obviously, greater temporal distortion of measurement orders,
means stronger filter-resistance.

Then, to quantify the distortion level of the whole measurement stream as
well as the filter-resistance, we define the shuffling probability to measure
the ratio that the relative time order of measurements are exchanged. Different
form perturbation probability, shuffling probability measures the ratio that the
time order of measurements are mutually exchanged and shuffled.

Definition 2. Shuffling probability (SP): Denote jk and jk+1 as the neigh-
bouring time slots mapping to the time order of two continuous original mea-
surements Ei

jk
and Ei

jk+1
. j′

1

k,j
′2
k,...,j

′n
k and j′

1

k+1,j
′2
k+1,...,j

′n
k+1 denote the

corresponding time slots after the time perturbation of n dividing measurement
shares, respectively. Then the shuffle probability SP can be denoted as,

SP = p
(

∃j′xk, j′
y

k+1, j
′x

k ≥ j′
y

k+1

)

, x, y = 1, 2, ..., n. (9)

= p
(

max(j′
1

k, j
′2

k, ..., j
′n

k ) ≥ min(j′
1

k+1, j
′2

k+1, ..., j
′n

k+1)
)

.

Let Rx
jk

and Ry
jk+1

denote the random time delay generated for the xth

dividing reports of rjk and the yth dividing reports for rjk+1
. Then, j′

x
k ≥ j′

y
k+1

actually means Rx
jk

− Ry
jk+1

≥ 1. We define the event Axy as Rx
jk

− Ry
jk+1

≥
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1, where Rjk and Rjk are independent with each other. Then, according to
the characteristic of the linear combination of Laplace random variables [45],

p(Axy) = 1− 1

2
e−

1
b . Hence, we can further obtain that

SP =

n
∑

x=1

n
∑

y=1

p(Axy) = 1−
n
∏

x=1

n
∏

y=1

p(Axy) = 1−
(

1− 1

2
e−

1
b

)n2

, (10)

where, n represents number of divided measurement shares. Also, the shuffling
probability increases with n and b. The greater ETD (b) means strong pertur-
bation, also the greater the n is, the more chances the reports are shuffled and
the perturbed time-series measurement will be more filter-resistance.

6. Utility analysis

In this part ,we mainly analyse the data utility in terms of real-time aggre-
gation and off-line accumulation on the system server side.

6.1. Real-time aggregation

As we noted before, according to the Equation (4), the system server should
obtain the real-time aggregation Aggt at the current tth time slot as

Aggt =
∑

i

X
i

t = (1 − e−
1
2b )
∑

i

Ei
t +

∑

k

1

2
(e−

2k−1

2b − e−
2k+1

2b )
∑

i

Ei
t−k, (11)

and the real-time aggregation Aggt could be estimated as follows,

Aggt =
2

2− e−
1
2b

Aggt (12)

=
2− 2e−

1
2b

2− e−
1
2b

∑

i

Ei
t +

+∞
∑

k=0

∑

i

e−
2k−1

2b − e−
2k+1

2b

2− e−
1
2b

Ei
t−k

= q0
∑

i

Ei
t +

+∞
∑

k=0

∑

i

q−kE
i
t−k.

Similarly, the both Equation (11) and (12) form a exponential smoothing
predicting model which combines both the current aggregation

∑

i

Ei
t and history

aggregations
∑

i

Ei
t−k to smoothly estimate the current aggregation. Intuitively,

Table 2 lists the weights of different time slots in the Equation (12) vs. ETD(b).
We can see, the fractions of neighboring 5 slots weight more than 91% in the
whole estimated aggregation Aggt. Based on the correlations of measurements,
we can conclude an assumption that aggregation in neighbouring slots are steady
and similar. Hence, the estimated aggregation in Equation (12), which consists
of several aggregations in continuous time slots, could effectively draw a reliable
estimation of real-time aggregation.
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Table 2: Weights of different time slots versus ETD

Expected time delay (b) 0.5 1.0 1.5 2.0

Current time slot(q0) 0.7746 0.5647 0.4417 0.3623

Last 1 time slot(q−1) 0.1949 0.2751 0.2716 0.2509

Last 2 time slot(q−2) 0.0264 0.1013 0.1395 0.1522

Last 3 time slot(q−3) 0.0036 0.0372 0.0716 0.0923

Last 4 time slot(q−4) 0.0005 0.0137 0.0368 0.0560

6.2. Off-line accumulation for individuals

Individual accumulation Acci is computed off-line. For example, the sys-
tem server could calculate the participants’ daily accumulation at the next day.
Therefore, different from the above analysis of the real-time aggregation in the
Equation (12), we should also consider the early shifted measurements in the
off-line accumulation. Hence, the accumulation of ith user before the time slot
t is as follows.

Acci = (1− e−
1
2b )

t
∑

n=1

X i
n +

∑

k

t
∑

k≤n

1

2
(e−

2k−1

2b − e−
2k+1

2b )(X i
n−k +X i

n+k). (13)

Because the recorded measurement is only a combination of original mea-
surements in perturbed time slots. So, when many recorded measurements of
a single user in continuous time slots are accumulated together, the perturba-
tions can be cancelled and compensated with each other in the whole period.
Therefore, the individual accumulation can be highly accurate for a predefined
time period consists of many time slots.

7. Performance evaluation

In this section, we validate the effectiveness of our proposed scheme, by using
the simulator developed by Richardson et al [46] and the MATLAB simulation
tool. The organization of this section is as follows: First, we will illustrate our
evaluation methodology including the scenario, dataset and metrics. Next, we
present an illustrative case study to visualize the performance of our schemes.
Then, we demonstrate the performance on both privacy and data utility of
our scheme, by comparing it with other existing schemes. Finally, we discuss
the filter-resistance performance, utility-privacy tradeoffs, and overheads of our
scheme.

7.1. Simulation setup

7.1.1. Methodology

We take a case study on the real-monitoring scenario of the smart metering
system (or AMI, advanced metering infrastructure) in the smart gird [2]. In
the smart metering system, system server (or MDMS, Meter Data Management
System) periodically collects the measurements from the smart meters via dif-
ferent communication technologies, as shown in Fig. 3 [47]. The fine-grained
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measurements can be aggregated to monitor the real-time grid states and accu-
mulated for customer billing. Particularly, we considered a scenario consists of
1000 users and their electricity usages last for 1440 minutes (i.e., one day). For
realistic simulations, the energy consumptions of 1000 randomized users with
different family sizes, dwelling appliances and occupancy models were simulated
and collected based on the simulator developed by Richardson et al. [46].

Based on the simulation data produced by the simulator [46], we imple-
mented our scheme in Matlab and simulated the basic operations of real-time
system aggregations and off-line accumulations for individual between the smart
meters and the system server. Particularly, the smart meter reports to the sys-
tem server in each time slot, and we perturb the time information in the mea-
surements, which were retrieved according to the simulation data set. Then the
system server collects the reported measurements at each time slot and compute
the real-time aggregations and off-line accumulations according to our scheme.

7.1.2. Comparison

To show the effectiveness of our scheme, we also summarized, simulated and
compared with the coral algorithms of relevant and typical schemes existed:

1. Exponential Delay Algorithm (EDA): The delivery of measurement is
randomly delayed by an exponentially random number sampled fromExp(λ) [17].

2. Norm Data Perturbation (NDP): Random noises with 0 mean and vari-
ance of σ2 of normal distribution are added to the measurements. Due to the
central limit theorem, noises in the aggregation results will be cancelled and a
relatively accurate aggregation will be obtained [10].

3. Laplace Data Perturbation (LDP3): Random noise sampled from the
Laplace distribution Laplace(0, b) was added to the measurements in each
time slot to achieve the differential privacy [12].

7.1.3. Metrics and parameters

We evaluate the performance on the following perspectives with different
metrics in our simulations:

• Privacy: Temporal privacy is evaluated with perturbation probability(PP)
defined in Section 5.1.2, shuffling probability(SP) defined in Section 5.3, and
approximate entropy(Apen)4 [48]; Measurement privacy is evaluated with dis-
tortion standard deviation(DSD) [26], cosine similarity(Cosim) [42], and infor-
mation entropy introduced in Section 5.2. Entropy is measured by the distri-
bution of time-series as in [36]. In addition, differential privacy metric [21] is
also considered.

3To gain an intuitive knowledge, the Laplace noises here was calibrated with the local
sensitivity instead of global sensitivity, which requires the global knowledge and is hard to be
captured in the real-time monitoring. With the Local sensitivity, the LDP here has the best
utility accuracy but inadequate differential privacy. That is to say, the LDP here achieves the
impossibly best utility-privacy tradeoff.

4Larger approximate entropy means less repeated measurements. And less repeated mea-
surements in our scheme means correlation destruction and better privacy.
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• Utility: Mean square error(MSE) of both real-time aggregation and off-line
accumulation are used to evaluate the data utility.

• Filter-resistance: The filter-resistance is evaluated with the mean square
error(MSE) of filtering error.

• Overhead: The overhead is evaluated by the number of buffered measurement
packets.

In our simulation, we considered both the dividing and non-dividing cases
as discussed in Section 4.4.1. Specifically, in the non-dividing case, n = 1 and
in the dividing case, n = 2, which divides the measurement into two samples
following the uniform distribution. In addition, in the off-line accumulation,
we used the Head-cutting strategy discussed in Section 4.4.2 to accumulate the
recorded measurements dropped in the accumulation period of 1440 time slots
for simplicity. The Apen is measured according the algorithm shown in [48],
the main parameters compared length, and filtering level is set as m = 2 and
r = 50, respectively. Besides, the information entropy is analysed as [36], where
the parameter of bin size is set as bin = 50. We note that the mean and standard
deviation of simulation data set generated via [46] is 273.15 and 581.32.

7.2. An illustrative case study

To present the performance of our scheme in an intuitive way, we show illus-
trative examples of the time perturbation, measurement perturbation and data
aggregation (ETD is 1.0) in Fig. 4, 5, and 6, respectively. As we can see in
Fig. 4, perturbed time of measurements is randomly distributed nearby its orig-
inal time. Hence, the real-time estimated measurements of the randomly chosen
user are largely distorted due to temporal perturbation, as shown in Fig. 5. In
addition, as represented in Fig. 6, the real-time estimated aggregation on the
system server fits well with the original aggregation and shows the similar dy-
namics, which shows the sufficient data utility in terms of real-time aggregation
after temporal perturbation.

7.3. Privacy

7.3.1. Temporal privacy

Fig. 7 and Fig. 8 show both the analytical and experimental results of the per-
turbation probability and shuffling probability versus the ETD (b), respectively.
Both the perturbation probability and shuffling probability increase with ETD
gradually. Around b = 1.0, perturbation probability is more than 50%. That
means at least half of measurements are time perturbed. When ETD = 1.0,
the shuffling probability is about 20%, which means at least 20% measurements
are shuffled in the measurement stream. All these shows that our scheme keeps
the temporal privacy well. In Fig. 9, we mainly show the approximate entropy
versus the ETD. The approximate entropy in perturbed measurements is gen-
erally larger than that in original measurements. This means our scheme has
less repeated measurement pairs and breaks correlations in the measurement
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stream. Besides, the dividing case (n=2) has less approximate entropy than the
non dividing case (n=1), this is because the over perturbation cause the uni-
formly scattering of measurements and large repeated measurement pairs. In
addition, with the increase of ETD, approximate entropy keeps stable or even
drops, the reason is similar.

7.3.2. Measurement privacy

Fig. 10 shows the distortion standard deviation of the measurements ver-
sus the ETD. As shown, the distortion standard deviation increases gradually
with ETD, which shows the measurement distortion and privacy. Generally,
recorded data has larger distortion due to more data (including early shifted
data) perturbed. Compared with the EDA scheme, our scheme has larger dis-
tortion standard deviation and better privacy because of the symmetric pertur-
bation. Fig. 11 shows the results of the cosine similarity between the perturbed
measurements and original measurements. As shown, our data shows less co-
sine similarity, which also means greater differences and higher privacy level. In
Fig. 12, we present the information entropy in the perturbed measurements ver-
sus the ETD. The information entropy clearly decreases and is less than that in
the original measurements. This means the perturbed measurements reveal less
information and keep privacy well, which corresponds to our analysis. The EDA
algorithm has nearly the same entropy as the original measurements, which is
because the measurements are only temporally delayed have less distortion. For
brevity and fairness, otherwise specified, the simulation measurements in the
following comparison is the non-dividing case (n=1).

7.4. Data utility

Fig. 13 presents the mean± standard deviation of the real-time aggregation
error versus ETD. The mean value fluctuates around 0%, which shows the ag-
gregation error converges to zero. Though the standard deviation increases with
the ETD, its value is still limited and much small and the accuracy is enough
to acquire the dynamic changes for system server. Furthermore, as shown in
the figure, Kalman filtering technique can effectively enhance the accuracy of
time-series aggregation without individual privacy concern. Fig. 14 shows the
mean± standard deviation of the off-line accumulation error versus ETD. The
mean value still fluctuates around 0% and is much smaller than in Fig 13. The
standard deviation value is much smaller. The mean values are negative because
some measurements near the beginning and ending time slots of the accumu-
lation period are perturbed out. Nevertheless, these ”out” reports could be
accumulated and compensated at other accumulation period, which could keep
the total accumulation lossless. It has to mention that, off-line accumulations
are computed on individual users instead of time, so filtering techniques are not
applied.

7.5. Filter-resistance

Fig. 15, shows the relative filtering error of Kalman filtering algorithm on
both the our scheme and the data-oriented perturbation (with Laplace noises).
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For simplicity of comparison, we also normalize the series of data to the do-
main of time series (0 ∼ 1440), and use normal distribution to approximate
the Laplace distribution. As shown, the filtering error in our scheme is much
larger than that in the data-oriented perturbation, which means our scheme
is more filter-resistant. This is because filtering algorithm performs better on
the sequential data series and produces precise estimation with observations
over time and predictive noises. In our temporal perturbation, the observations
are distorted in terms of time orders. Consequently, it is difficult for filtering
algorithms to predict the accurate time-series measurements.

7.6. Twofold utility-privacy tradeoffs

Fig. 16 and 17 show the twofold utility-privacy tradeoffs for both real-time
aggregation and off-line accumulation in terms of differential privacy. As we
can see, errors in both our scheme and the LDP scheme decrease with the in-
crease of privacy budget (the decrease of privacy protection), which reflects
the essence of the tradeoffs between privacy and data utility. As shown, the
errors in LDP with large privacy budget (≥ 0.4) are nearly the same as our
scheme, because the difference is not obvious when temporal perturbation is
small. However, with both greater perturbation, temporal perturbation causes
less errors because the shuffled measurements become stable gradually. While,
the noises in LDP still increase exponentially. We also show the enhanced per-
formance with the Kalman filtering technique on the real-time aggregation. In
Fig. 17, our off-line accumulation has overwhelmingly higher accuracy because
temporal perturbation is nearly lossless on accumulation, as discussed before.
In Fig. 18, 19, 20, and 21, we also show the twofold utility-privacy tradeoffs
in terms of distortion standard deviation and cosine similarity. Particulary, we
fix the same privacy level(i.e., DSD and Cosim ) and compare the data utility
level(i.e., MSE). With the same privacy level, both our real-time aggregation
and off-line accumulation have lower errors. Especially, the accumulation error
is much smaller because the perturbation is only on the time dimension. Over-
all, our scheme has twofold better tradeoffs between data utility and privacy
than the existing perturbation schemes.
7.7. Buffer size

In our scheme, measurements are buffered to perturb delivering sequence.
Hence, enough buffer space is needed for the sensor meters. For simplicity, we
focus on the number of buffered measurements. Because the cycle of the time
slot is fixed, longer ETD means more measurements are buffered to delay de-
livering. It is easy to know that the expected number of buffered measurements
is the ratio of the ETD and the cycle of time slot. We simply statistic the
max and average number of buffer measurements which increase with ETD.
And the max number of buffered measurements is 6 when ETD is maximized
as 2 in our simulation. Considered that early shifted packets are also buffered,
the max buffered reports number will be no more than 12 because the ratio of
early-shifted reports is nearly 50%.
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8. Conclusion

In this paper, we propose a novel temporal perturbation based privacy-
preserving scheme for real-time monitoring system, which can effectively protect
participants’ privacy. Through adopting the symmetric Laplace random noises
to perturb the delivery time of measurement reports, the proposed scheme pre-
serves both the temporal privacy and measurement privacy of the whole mea-
surement stream, while releasing reliable aggregation dynamics and off-line ac-
cumulation for individuals. Our scheme achieves a high data utility for both
real-time aggregation and off-line accumulation with a low overhead. Both the-
oretical analysis and simulation experiments validate that our scheme achieves
much better performance in both the privacy and utility, as well as resilience
to the filtering attacks on perturbation schemes. Our work demonstrate that
temporal perturbation is an effective way for preserving privacy in real-time
monitoring systems. Our future work will focus on using spatio-temporal corre-
lation perturbation of multiple data measurement streams for privacy preserving
in real-time networked sensing systems.

Appendix A. The analysis of differential privacy

Though the sensor readings can be decoded by adversaries, the right collect-
ing time of sensor readings still can not be determined in our scheme. Suppose
that the measurement report time slot is t, and p(j|t) and p(j +1|t) denote the
probability that the original time slot is j or j + 1 when report time slot is t.
Then,

p(j|t)
p(j + 1|t) =

noise(j − t)

noise(j + 1− t)
=

e−
|j−t|

b

e−
|j+1−t|

b

≤ e
1
b , (A.1)

where noise(j − t) is the random time delay Rj generated with the Laplace
distribution Laplace(0, b). Hence, when 1/b is small, the ratio of p(k|t) and

p(k+1|t) is close to 1 (e
1
b ≈ 1+1/b, when 1/b is small). That means, when the

reported time slot is t, the probability that its original time slot belongs to j is
quite close to the probability that its original time slot belongs to j+1. Hence,
they are 1/b-differentially private according the definition in [21]. Intuitively,
adversaries can not distinguish at which time slot the measurement is reported.
The smaller 1/b is, the more difficult for the adversary to distinguish and in-
fer the correct time of measurement report, and the better temporal privacy
is. In addition, according to the parallel composition property of differential
privacy [41], the whole time series is 1/b-differentially private.
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Appendix B. The analysis of adversary’s information

Due to the data processing Tj → Qj → Sj → Ŝj, we can know the relation-

ship I(T, Ŝ) ≤ I(T, S) ≤ I(T,Q). Then,

I(T, Ŝ) ≤ I(T, S) (B.1)

= h(S)− h(R̂)

≤
j
∑

t=1

(h(St)− h(R̂t) =

j
∑

t=1

I(Tt, St).

As mentioned before, the perturbation noise R̂j is a random variable mixed
the Laplacian distribution and the exponential distribution as follows,

R̂j =

{

Rj , Rj ∼ Laplace(0, b) (Rj ≥ 0)

Dj, Dj ∼ Exp(λ) (Rj < 0),
(B.2)

where, we can see R̂j is either drawn from the positive side of the Laplacian

distribution Laplace(0, b) or the exponential distribution Exp(λ). So, R̂j is
basically an exponential random variable with the rate parameter of either λ or
1/b . And according the analysis in [17], we have that

I(Tt;St) = I(Tt;Tt + R̂t) (B.3)

≤ max(ln(1 + jλ), ln(1 + t/b)).

Using the above result, we can obtain that

I(T, S) ≤
j
∑

t=1

(max(ln(1 + tλ), ln(1 + t/b))). (B.4)

So, to make

I(T, Ŝ) ≤ I(T, S) ≤
j
∑

t=1

(max(ln(1 + tλ), ln(1 + t/b))) (B.5)

as small as possible, we need to tune λ small or b large.

Appendix C. The analysis of temporal measurement

Due to the characteristics of the Laplace distribution Laplace(0, b), the
CDF(cumulative distribution function) of the random time delay Rj is F (x, b) =
1

2
(1+sgn(x)(1−e−

x
b )). So, when a measurement report is received at the current

time slot, the probability it belongs to the current time slot is

p0 = F (0.5, b)− F (−0.5, b) = 1− e−
0.5
b = 1− e−

1
2b , (C.1)
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and the probability it originally belongs to the last 1 time slot is

p−1 = F (1.5, b)− F (0.5, b) =
1

2
(e−

1
2b − e−

3
2b ), (C.2)

and the probability it originally belongs to the last 2 time slot is

p−2 = F (2.5, b)− F (1.5, b) =
1

2
(e−

3
2b − e−

5
2b ), (C.3)

and so on, the probability it originally belongs to the last k time slot is

p−k = F (k + 0.5, b)− F (k − 0.5, b) =
1

2
(e−

2k−1

2b − e−
2k+1

2b ). (C.4)

So, from the view of the system server, the temporal measurement X
i

t of user i
at the current time slot t should be

X
i

t = (1− e−
1
2b )Ei

t +
∑

k

1

2
(e−

2k−1

2b − e−
2k+1

2b )Ei
t−k, (C.5)

where, Ei
t denotes the sensor reading at tth time slot.

Appendix D. The entropy analysis

Usually, the measurements Ei
j approximately follow a normal distribution

N(µ, ω). However, the different Ei
j of one participant i at different time slots

are believed not totally independent with each other. Since the physical event
information is modeled to have an exponential autocorrelation function [49],
and the covariance function ranges between 0 and 1 [23], we can know the
sensor measurements have correlations 0 ≤ ρij < 1. Suppose that the variance

V ar(Ei
j) = ω2, then X̂ i

t follows an approximate normal distribution N(µ, ω′)
and its variance should be

ω′2 = q20V ar(Ei
t) +

∑

k

q−k
2V ar(Et−k) (D.1)

+ 2
∑

1≤i<j

∑

i<j≤n

ρijq−iq−jV ar(Et−i)V ar(Et−j)

=



q20 +
∑

k

q−k
2 + 2

∑

0≤i<j

∑

i<j≤n

ρijq−iq−j



ω2

<

(

+∞
∑

k=0

q−k

)2

ω2

= ω2.

Besides, with the increase of b, the distribution becomes more flat, the pk
becomes more close with each other and V ar(X̂ i

j) decreases. In a word, ω′2 =

25



V ar(X̂ i
j) decreases with b. According to the relationship between the entropy

Ent(Ei
j) and the variance ω2 of the normal distribution [50] N(µ, ω), Ent(Ei

j) =

ln(ω
√
2πe), the entropy of the perturbed measurements Ent(X̂ i

j) < Ent(Ei
j) =

ln(ω
√
2πe) and also decreases with the increase of b. That means the perturbed

measurements reveal less information on the original measurements.
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Figure 3: Smart metering system [47]
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Figure 18: Aggregation Error vs. DSD
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Figure 19: Aggregation Error vs. Cosim
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Figure 20: Accumulation Error vs. DSD
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Figure 21: Accumulation Error vs. Cosim
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