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PROBLEMS IN STRONG UNIFORM DISTRIBUTION

Kwo Chan — Radhakrishnan Nair

ABSTRACT. In 1923 A. Khinchin asked if given any B ⊆ [0, 1) of positive

Lebesgue measure, we have 1
N
#
{
n : 1 ≤ n ≤ N : {nx} ∈ B

} → |B| for almost

all x with respect to Lebesgue measure. Here {y} denotes the fractional part
of the real number y and |A| denotes the Lebesgue measure of the set A in [0, 1).
In 1970 J. Marstrand showed the answer is no. In this paper the authors survey
contributions to this subject since then.

1. Introduction

The fact that for an irrational number α the sequence ({nα})n≥1 is dense
in [0, 1) is ascribed to L. K r o n e c k e r, though essentially the same observation
was made by N. O r e s m e in the fourteenth century.

Following H. W e y l [27] we say that a sequence (xn)n≥1 is uniformly dis-
tributed modulo 1 (u.d. mod 1) if for each interval I (closed on the left and open
on the right) of length |I|, we have

lim
N→∞

1

N

N∑
n=1

χI({xn}) = |I|.

Here χI(x) = 1 if x ∈ I and χI(x) = 0 if x /∈ I. We call χI the characteristic
function of I.

It was proved by P. B o h l [3], W. S i e r p i n s k i [24] and H. W e y l [26]
that if α is irrational and if xn = nα (n = 1, 2, . . .), then the sequence (xn)n≥1

is u.d. mod 1. In 1914 and 1916 H. W e y l [26], [27] gave the following famous
and extremely useful characterization of uniform distribution.

������� 1� The following are equivalent

(i) (xn)n≥1 is u.d. mod 1;

(ii) 1
N

∑N
n=1 f({xn}) →

∫ 1

0
f(t)dt for f ∈ C([0, 1))

(continuous functions on [0, 1));
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(iii) 1
N

∑N
n=1 f({xn}) →

∫ 1

0
f(t)dt for f ∈ R([0, 1))

(Riemann integrable functions on [0, 1));

and

(iv) 1
N

∑N
n=1 e

2πihxn → 0 for all h ∈ Z\{0}
(Weyl’s criterion).

Some applications due to H. W e y l [27]:

1) 1
N |∑N

n=1 e
2πihnα| ≤ 2 1

N |e2πihα − 1|−1, hence if α /∈ Q, and xn = nα, then

(xn)n≥1 is u.d. mod 1.

2) More generally using “differencing”, if p(x) = α0 + α1x + · · · + αkx
x and

(α1, . . . , αk) /∈ Qk, then for xn = p(n) the sequence (xn)n≥1 is u.d. mod 1.

3) If (an)n≥1 is a sequence of distinct natural numbers, then (anx)n≥1 is u.d.
mod 1 for almost all x with respect to Lebesgue measure.

In light of application 1) in 1923 A. K h i n c h i n [8] asked if given any
B ⊆ [0, 1) of positive Lebesgue measure, we have

1

N
#
{
n : 1 ≤ n ≤ N : {nx} ∈ B

} → |B| for almost all x

with respect to Lebesgue measure. This was disproved by J.M.M a r s t r a n d
[10] in the following theorem.

������� 2� There exists a Gδ set B ⊆ [0, 1) such that

lim
1

N

N∑
n=1

χB({nx}) = 1,

almost everywhere with respect to Lebesgue measure and

lim
1

N

N∑
n=1

χB({nx}) = 0,

almost everywhere with respect to Lebesgue measure.

In light of application 3) one might now wonder if there is any strictly in-
creasing sequence of integers (an)n≥1 such that given any B ⊆ [0, 1) of positive
Lebesgue measure, we have

1

N
#
{
n : 1 ≤ n ≤ N : {anx} ∈ B

} → |B|
for almost all x with respect to Lebesgue measure. To go further we need
to discuss ergodic theory [25]. Let (X, β, μ) denote a probability space and let
T : X→X denote a measurable (i.e., T−1A = {x : Tx ∈ A} for all A ∈ β)
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measure preserving transformation (i.e., μ
(
T−1(A)

)
= μ(A) for all A ∈ β)

of a measure space. We say (X, β, μ, T ) is ergodic if μ(AΔT−1A) = 0 means
μ(A) ∈ {0, 1}. Here for two sets A and B we have used AΔB to denote their
symmetric difference. We refer to the quadriple (X, β, μ, T ) as a dynamical
system. We first recall Birkhoff’s pointwise ergodic theorem [25].

������� 3� Suppose the dynamical system (X, β, μ, T ) is measurable and
measure preserving. Then if

f ∈ L1(X, β, μ),

the limit

f(x) = lim
N→∞

1

N

N−1∑
n=0

f(Tnx),

exists μ almost everywhere. Also f(Tx) = f(x) μ almost everywhere. Further if
(X, β, μ, T ) is ergodic, then f(x) =

∫
X
f(t)dμ μ almost everywhere.

If X = [0, 1), β is the Lebesgue σ-algebra, μ is Lebesgue measure and
Tx = {px}, where p ∈ N\{1}, we get the following classical special case called the
Riesz-Raikov theorem [18], [20].

������� 4� If
p ∈ N\{1} and f ∈ L1([0, 1)),

then
1

N

N−1∑
n=0

f({pnx}) →
1∫

0

f(t) dt a.e.,

w.r.t. Lebesgue measure.

If X = [0, 1), β is the Lebesgue σ-algebra, μ is Lebesgue measure and
Tx = {x+ α}, where α is irrational, then T is Lebesgue measure preserving and
we get the following theorem.

������� 5� If
α /∈ Q and f ∈ L1([0, 1)),

then
1

N

N−1∑
n=0

f({x+ nα}) →
1∫

0

f(t) dt a.e.,

w.r.t. Lebesgue measure.

A natural question addressed by J. F. K o k s m a and R. S a l e m [9]
is whether in light of application 3) of Weyl’s criteria above the term nα
in Theorem 5 can be replaced by p(n). Some progress here is discussed
in the next section.
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Using Theorem 4 J. M. M a r s t r a n d [10], proved the following.

������� 6� If (mk)k≥1 is a semi-group of integers generated multiplicatively
by a finite set of co-prime natural numbers {p1, . . . , pl} all different from one
and f ∈ L∞([0, 1)), then

1

N

N∑
k=1

f({mkx}) →
1∫

0

f(t) dt a.e.,

w.r.t. Lebesgue measure.

We call (mk)k≥1 the l-Hardy-Littlewood-Polya sequence (l-HLP sequence).
Answering a question of R. C. B a k e r [1], using the general ergodic theorem
described in Section 3, the second author [11] showed that L∞ can be replaced
by L1 in the above theorem. A much more complete resolution is the following.

������� 7� Suppose A ⊂ N and let (mk)k≥1 = π(A) denote the set of products
of elements of A ordered by absolute value.

(i) Then (mk)k≥1 is (L1)∗ if and only if π(A) ⊆ π(F ) for a finite set F.

(ii) If (mk)k≥1 is not in π(F ) for any finite F, one can find a counter example
of the form f = χB, where B is a Gδ set.

Theorem 7 (i) was proved by A. Q u a s and M. W i e r d l using the same
idea, which was used by the second author to answer Baker’s question—namely
using a general ergodic theorem. Theorem 7 (ii) appears in [6] as an applica-
tion of Marstrand’s method. A similar observation was made by G. K o zm a
in unpublished work.

2. The Koksma-Salem Problem

Using harmonic analysis, J. F. K o k sm a and R. S a l e m [9] showed the
following

������� 8� Suppose
f∼

∑
n∈Z

cne
2πinx∈ L2([0, 1)).

Also suppose ∑
|n|≥N

|cn|2 = O
(
(logN)−γ

)
for γ > 0.

Then if
p(x) = α0 + α1x+ · · ·+ αkx

k with (α1, . . . , αk) /∈ Qk,

we have

lim
N→∞

1

N

N∑
n=1

f
({

x+ p(n)
})

=

1∫
0

f(t) dt,

almost everywhere w.r.t Lebesgue measure.
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In conversation with the second author of this paper, independently, both
R. C. B a k e r and M. W e b e r asked if the decay condition on the coeffi-
cients (cn)n∈Z could be removed or weakened. The following progress is possible.
Let (X, β, μ) be a probability space and let T1, . . . , Tl denote commuting measur-
able, measure preserving transformation of (X, β, μ). J. B o u r g a i n [4] claimed
that if

f ∈ L2(X, β, μ) for l(x) = lim
N→∞

1

N

N∑
n=1

f
(
Tn1

1 . . . Tnl

l x
)

exists a.e. w.r.t. μ.

There seems, however, to the authors to be a non-trivial gap in the proof of this
theorem. This gap has been filled in [17]. Further B o u r g a i n [5] claims that
L2 can be replaced by Lp for p > 1. A detailed proof of this has never been
published however. Using this assumption however, one can prove the result
below [12].

Let

X = [0, 1), T1(x) = {x+ α1}, . . . , Tl(x) = {x+ αl}.
Then if

p(x) = α0 + α1x+ · · ·+ αlx
l with (α1, . . . , αl) /∈ (

Qk
)c
,

note

1

N

N∑
n=1

f
({

x+ p(n)
})

=
1

N

N∑
n=1

f
(
Tn1

1 . . . Tnl

l (x+ α0)
)
.

Applying the above theorem and noting that
(
p(n)

)
n≥1

is u.d. mod 1, we must

have l(x) =
∫ 1

0
f(t)dt, i.e., if f ∈ Lp([0, 1)) for p > 1 we have

lim
N→∞

1

N

N∑
n=1

f
({

x+ p(n)
})

=

1∫
0

f(t) dt,

almost everywhere w.r.t. Lebesgue measure.

3. Remarks about the proof of Theorem 7 (i)

We begin by describing a general framework. Let S be a countable abelian
semigroup acting in a measure preserving fashion on a measure space (Ω,A, μ).
That is, to each g ∈ S there exists a measurable map Tg of Ω such that
Tg1+g2 =Tg1(Tg2) and for each A in the σ-algebra A we have

T−1
g A={x∈Ω:Tgx∈A}∈A for all g ∈ S with μ

(
T−1
g A

)
= μ(A).
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Also let (Ak)
∞
k=1 be a collection of subsets of S such that the following conditions

are true:

(B1) 0 < #Ak < ∞;

(B2) Ak ⊂ Ak+1 for each k ∈ N;

(B3) there exists a constant M2 > 0 such that

#{Ak −Ak} ≤ M2#Ak, for all k ∈ N;

(B4) (amenability)

lim
k→∞

#{(g +Ak)	Ak}
#Ak

= 0, for all g ∈ S,

where we have used A	B to denote the symmetric difference of the sets
A and B.

Here for a finite set A we have used #A to denote its cardinality, and A − A
to denote {x ∈ S : y + x ∈ A for some y ∈ A}.

From the above data we construct, the averages

πk(f)(x) =
1

#Ak

∑
s∈Ak

Tsf(x) for k ∈ N,

where f ∈ L1(Ω,A, μ). We have a special case of T. B e w l e y’ s theorem [2].

������� 9� Suppose (B1), (B2), (B3) and (B4) are true. Then

π(f)(x) = lim
k→∞

πk(f)(x)

exists μ almost everywhere, with∫
Ω

π(f) dμ =

∫
Ω

f dμ and Ts

(
π(f)

)
(x) = π(f)(x)

for almost all x, for each s ∈ S.

We further specialize this theorem as follows. Let S =
∏

n≥1 N, i.e., the direct
product of the natural numbers with themselves countably many times. The set S
may also be described as the space of sequences of elements of N, all but finitely
many of whose elements are non zero. To this semi-group S we can associate
an action of S as follows. For a given sequence of integers {n1, n2, . . .} via the
map s → Ts (s ∈ S) for Ts : [0, 1) → [0, 1), where if s = (s1, s2, . . .) we have
Ts(x) = {ns1

1 ns2
2 . . . x}. Notice that each non-identity element Ts is ergodic and

so π(f) =
∫ 1

0
f(t)dt almost everywhere with respect to Lebesgue measure [25].

We set
Ak =

{
ns1
1 . . . nsl

l . . . ≤ k : s = (si)i≥1 ∈ S
}
.

Clearly all the indefinite products ns1
1 . . . nsl

l . . . are actually finite and corre-
spond to the individual natural numbers in the sequence (ml)l≥1.

6
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It is immediate that (B1), (B2) and (B3) are satisfied by (Ak)k≥1. To prove (B4)
we have to show for each fixed g ∈ S, that

#
{
(g + Ak)\Ak

}
, #

{
Ak\(g + Ak)

}
= o(#Ak),

as k tends to infinity. Clearly this involves getting estimates for the numbers

#
{
(g + Ak)\Ak

}
, #

{
Ak\(g + Ak)

}
and #Ak.

The authors know two methods for doing this. The first is the geometric approach
of comparing the number of lattice points we are counting to the volumes of the
regions they are in and estimating these volumes. The second is an inductive
counting argument based on the number of generators at issue. In the case of
Nr for finite r ≥ 1 instead of S, these estimates are carried out using the first
method in [11] and the second, in the second author’s 1986 University Warwick
PhD. Extending these arguments to S, in the case, where (mk)k≥1 is contained
in a finitely generated semigroup, is a very routine exercise using the fundamental
theorem of arithmetic and so we forgo the details. The property (B4) follows.
This proves Theorem 7 (i) once we observe that because π(f).

4. Remarks on the proof of Theorem 7 (ii)

Our main tool is the following [10].

����	 10� Let (mk)k≥1 denote a strictly increasing sequence of integers.
Suppose for each pair of integers q, v > 1 that there exist pairs of sets of in-
tegers G, H such that (A) #G > v#H, and (B) for every g ∈ G there exists
η ≥ 1 such that gm−1

k ∈ H for all k ∈ [η, ηq]. Then there exists a Gδ set B such
that if f = χB, the limit

lim
N→∞

1

N

N∑
k=1

f({mkθ}),

fails to exist almost everywhere with respect to Lebesgue measure.

Using this lemma it is possible to prove that any sequence of natural num-
bers that is multiplicatively generated but not contained in a set of integers
multiplicatively generated by any finite set must have the properties claimed for
(mk)k≥1 by Lemma 10. This is now a well understood classical topic. See [10] for
similar computations. Because of this rather than provide a detailed verification
of this, we content ourselves with the following brief remark.

7
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Suppose R is a large positive integer to be chosen at our convenience. Let

M =

qR∏
k=1

mk, and D = D(R, q) = pmax
k≤R

mqk

mk
,

where p is one of the primes dividing an element of (mk)
R
k≥1 and let Pl denote the

semigroup of integers generated by the the first l primes. Here l is the smallest
possible chosen so Pl contains all the products in the set (mk)

R
k=1. Now let x be

large and set

H = [x,Dx ] ∩ Pl with G = [mqx,DmR ] ∩MPl,

where MPl denotes the set of elements of Pl multiplied by M . Following [10]
we observe that

#H ∼ K logD (log x)
l−1

and #G ∼ DmR

mq

(
log

x

M

)s−1

.

These two observations readily imply condition (A) of Lemma 10. To demon-
strate (B) of Lemma 10 set Gη =

{
g ∈ MPl :

g
mk

∈ H for all r ∈ [η, qη]
}
and

note that Gη = [mqηx,mηDx] ∩ MPl. We can check that [mqηx,mηDx] and
[mq(η+1)x,m(η+1)Dx] intersect. Thus G = ∪R

η=1Gη as required. We summarise

this in the following lemma.

5. Marstrand’s Lemma and its refinements

To prove Theorem 6 M a r s t r a n d proved the following important lemma.

������� 11� Suppose strictly increasing sequences of natural numbers
a=(ar)

∞
r=1 and b = (bs)

∞
s=1, are both (L∞)∗ sequences. Then the sequence gen-

erated multiplicatively by a and b once ordered by size is also an (L∞)∗ sequence.
That is, for f in L∞([0, 1)) if

G(u) =
{
(r, s) : arbs ≤ u

}
we have

lim
u→∞

1

|G(u)|
∑

(r,s)∈G(u)

f({arbsx}) =
1∫

0

f(t) dt

almost everywhere with respect to Lebesgue measure.

Application: By the Riesz-Raikov theorem, a 1-HLP sequence is in (L∞)∗.
Assume for the sake of induction that a is an (l− 1)-HLP sequences is in (L∞)∗.
Also let b be a 1-HLP sequence. Then a ◦ b = (arbs)r,s≥1 ordered by absolute
value is an l-HLP sequence and by Marstrand’s lemma an (L∞)∗ sequence.
This of course implies Theorem 6.

8
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Now we state an analogue of this Lemma for Lp with finite p > 1 due to the
second author [13].

������� 12� Suppose strictly increasing sequences of natural numbers

a = (ar)
∞
r=1 and b = (bs)

∞
s=1,

are both (Lp)∗ sequences for all p > 1. Suppose also that there exists C such that
for each u = 1, 2, . . . we have

|{r : ar ≤ u}||{s : bs ≤ u}| ≤ C
∣∣{(r, s) : arbs ≤ u

}∣∣. (1)

Then the sequence generated multiplicatively by a and b once ordered by size is
also an (Lp)∗ sequence for every p > 1. That is, for f in Lp([0, 1)) for all p > 1 if

G(u) =
{
(r, s) : arbs ≤ u

}
,

we have

lim
u→∞

1

|G(u)|
∑

(r,s)∈G(u)

f({arbsx}) =
1∫

0

f(t) dt

almost everywhere with respect to Lebesgue measure.

Let

Mf(x) = sup
N≥1

∣∣∣∣∣
1

N

N∑
n=1

f({anx})
∣∣∣∣∣ .

The idea is to use a theorem of S. S a w y e r [23]. This implies that a being

an (Lp)∗ sequence for all p > 1 is equivalent to the fact that for each p there
exists Cp > 0 such that∣∣{x ∈ [0, 1) : Mf(x) ≥ λ

}∣∣ ≤ Cq

λp

1∫
0

|f | dt.

Inequalities like this are called maximal equalities. The Lp version of Marstrand’s
Lemma follows from iterating maximal inequalities. The following is a special
case of the multi-parameter ergodic theorem used to prove Theorem 9, though
it can be proved directly.

Suppose (X, β, μ, T ) is a measurable, measure preserving dynamical system,
φ : N → N is a polynomial and f ∈ Lp(X, β, μ), then

lim
N→∞

1

N

N∑
N=1

f
(
Tφ(n)x

)
, a.e. w.r.t. μ.

The following is a special case.

Take Tx = {px} (p > 1) on [0, 1). Then
(
pφ(n)

)
n≥1

is (Lp)∗. Using the Lp-

Marstrand lemma, for p1, . . . , pl ∈ N\{1} and φ1, . . . , φl all mapping N to itself,

then (mk)k≥1 =
(
p
φi(n1)
1 . . . p

φl(nl)
l

)
(n1,...,nl)∈Nl ordered by absolute value is

in (Lp)∗ for p ≥ 1. We have a further refinement [15].

9
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������� 13� Suppose a1 = (a1,i)
∞
i=1, . . . , (ak,i)

∞
i=1 are (L1)∗ sequences. Then

if (1) holds with a = a1 and b = a2 ◦ . . . ◦ ak and f belongs to L(log+ L)k−1,

lim
u→∞

1

|G(u)|
∑

c∈G(u)

f({cx}) =
1∫

0

f(t) dt,

almost everwhere with respect to Lebesgue measure.

6. Another problem of R. C. Baker

Another question of R. C. B a k e r’ s [1] is whether there exists a sequence
(an)n≥1 which is not (L∞)∗ but for which it is true that

lim
N→∞

1

aN

aN−1∑
j=0

f

({
x+

j

aN

})
=

1∫
0

f(t) dt,

almost everywhere with respect to Lebesgue measure holds.

In 1929 B. J e s s e n proved the following theorem [7].

������� 14� For a strictly increasing sequence (an)n≥1 if an divides an+1 and
if f ∈ L1([0, 1)) we have

lim
N→∞

1

aN

aN−1∑
j=0

f

({
x+

j

aN

})
=

1∫
0

f(t) dt, (2)

almost everywhere with respect to Lebesgue measure.

E.g., an = 22
n

.

In 1989 J. R o s e n b l a t t proved the following theorem.

������� 15� If infn≥1
bn+1

bn
> 1, then given δ, ε > 0, and a dynamical system

(X, β, μ, T ) with μ non-atomic, there exist E ∈ β with 0 < μ(E) < ε such that

lim
N→∞

1

N

N∑
n=1

χE(T
bnx) ≥ δ.

Take T (x) = {2x} mod 1 on [0, 1) with μ equal to Lebesgue measure and
bn = 2n and we see that (an)n≥1 with an = 22

n

is not in (L∞)∗ but satisfies (2)
answering Baker’s theorem.

10
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In this context we also have the following obsevation.

Given p in [1,∞) it is possible to give strictly increasing sequences of integers
(ck)

∞
k=1 such that ak = 2ck (k = 1, 2, . . .) is in (Lp)∗ but not in (Lq)∗ for any

q < p. Here Lp denotes the space of Lebesgue measurable functions on [0, 1)
whose pth powers are Lebesgue integrable. This observation relies on a result
of K. R e i n h o l d--- L a r s s o n [19].

������� 16� Given p in [1,∞) there exists a strictly increasing sequence of na-
tural numbers (ck)

∞
k=1 such that for every dynamical system (X, β, μ, T ) and

every function in Lp(X, β, μ) there exists Cp > 0 such that if

Mf(x) = sup
N≥1

∣∣∣∣∣
1

N

N∑
k=1

f(T ckx)

∣∣∣∣∣ ,
then

μ
({

x ∈ X : Mf(x) > α
})≤ Cp

αp
||f ||p,

where

||f ||p =

⎛
⎝∫

X

|f |p(x) dμ
⎞
⎠

1
p

.

Also if 1 < p, then there exists f in Lq(X, β, μ) such that

lim
N→∞

1

N

N∑
k=1

f(T ckx)

does not have a finite limit for almost all x, with respect to μ.

Choosing X = [0, 1), β to be the Lebesgue σ-algebra, μ to be Lebesgue
measure and Tx = {2x} and using Theorem 16 as before shows that ak = 2ck

(k = 1, 2, . . .) does not belong to (Lq)∗. To show that (2ck)∞k=1 is in (Lp)∗ we need
to show that

lim
N→∞

1

N

N∑
k=1

f({2ckx}) =
1∫

0

f(t) dt,

almost everywhere with respect to Lebesgue measure. By a classical theorem
of H. W e y l [27] this is known for continuous functions on [0, 1). Suppose that
(fn)

∞
n=1 is a sequence of continuous functions on [0, 1) converging to f in Lp

norm. This means that there exists a subsequence (nk)
∞
k=1 such that

∞∑
k=1

1∫
0

|f − fnk
|p(x) dx < ∞.

11
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This implies that ∞∑
k=1

|f − fnk
|p(x) < ∞,

almost everywhere with respect to Lebesgue measure on [0, 1). Thus for every
ε > 0, there exists a sequence of functions (fε,k)

∞
k=1 such that

||f − fε,k||pp ≤ ε2k

and fε,k tends to f as k tends to infinity almost everywhere with respect to
Lebesgue measure on [0, 1). Notice that

M (f + g) ≤ M (f) +M (g).

Let
Eε,k :=

{
x ∈ [0, 1) : M (f − fε,k)(x) > ε

k
p

}
and note from Theorem 16 that

μ(Eε,k) ≤ Cp

(
1

ε

)k∫
Eε,k

|f − fε,k|p(x ) dx

≤ Cp

(
1

ε

)k
ε2k = Cpε

k.

Let aN (f, x) denote 1
N

∑N
l=1 f({2clx}). Now

aN (f, x) = aN (f − fε,kx) + aN (fε,k, x).
This means that∣∣∣∣∣∣aN (f, x)−

1∫
0

f(t) dt

∣∣∣∣∣∣ ≤ | aN (f − fε,k, x)|+
∣∣∣∣∣∣ aN (fε,k, x)−

1∫
0

f(t) dt

∣∣∣∣∣∣
leftlinealmost everywhere with respect to Lebesgue measure on [0, 1). Thus

lim sup
N→∞

∣∣∣∣∣∣aN (f, x)−
1∫

0

f(t) dt

∣∣∣∣∣∣ ≤ lim sup
N→∞

|aN (f − fε,k, x)|+
∣∣∣∣∣∣

1∫
0

(f − fε,k)(t) dt

∣∣∣∣∣∣ ,
which is

≤ M (f − fε,k)(x) +

1∫
0

|f − fε,k|(t) dt.

Therefore as N tends to infinity we know that aN (f, x) tends to
∫ 1

0
f(t)dt, for

all x in Eε = ∪∞
n=1Eε,n. Let Bε be the null set off which fε,k tends to f as k

tends to infinity. This means, that

λ(Eε ∪ Bε) ≤
∞∑
n=1

λ(Eε,k) ≤ Cp

∞∑
k=1

εk =
Cpε

1− ε
.

Letting ε tend to zero shows that (2ck)∞k=1 is (Lp)∗ for finite p.
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