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We present a generalization of the constrained density-functional theory approach to metallic and
finite-temperature electronic systems, both in the canonical and grand-canonical ensembles. We
find that the free-energy attains a unique maximum with respect to Lagrange multipliers whenever
the applied constraints are satisfied, in each case. Analytical expressions are provided for the
free-energy curvatures with respect to the Lagrange multipliers, as required for their automated
non-linear optimization. Our extension is general to arbitrary constraints on the spin-polarized
density, or on the density-matrix in the case of orbital-dependent constrained density-functional
theory constrained non-locally. Our conclusion that the ground-state free-energy is concave with
respect to Lagrange multipliers for finite-temperature systems is corroborated by numerical tests on
a disparate pair of systems, namely a metallic hydrogen chain and a ferromagnetic metal oxide.
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Interfacial charge and spin excitation or transfer is
crucial for the functioning of biological enzymes and ef-
fectively ubiquitous among established and developmen-
tal technologies for energy generation, conversion, and
storage as well as electronics, opto-electronics, and spin-
tronics. Atomistic insight into and understanding of
these physical processes is expected to greatly acceler-
ate the development of improved solutions, which mo-
tivates growing efforts in the characterization and un-
derstanding of charge (spin) transfer at functional inter-
faces. The experimental challenges and costs in atom-
and time-resolved characterization of charge (spin) trans-
fer at functional interfaces prompts increasing interest
in the development of accurate simulation methods of
favorable computational costs applicable to realistically
extended models.

In this context, constrained Density Functional Theory
(cDFT) has emerged as a very convenient approach of
acceptable accuracy and favorable computational costs.
These advantages can in principle be maximized leverag-
ing on existing linear-scaling implementations of DFT.
Although density-constraints have been long used by
the DFT community, numerically efficient application of
cDFT was first made possible by the mathematical proof
of Wu et al. The proof establishes the general concavity
of a constrained functional with respect to a constraining
potential, expressed as a Langrange multiplier. This re-
sults allows direct, thence automatable, optimization of
the constraining potential needed to obtain the lowest-
energy cDFT-solution consistent with the enforced con-
straint. Besides insight into the fundamentals of charge
and spin transfer, cDFT has been shown to hold great
potential for the use of differently constrained solutions
as basis of more elaborate configuration interaction (CI-
cDFT) approaches to electron correlation, and in practi-

cal/effective/pragmatic approximations to electron hole
screening effects intrinsically neglected by standard DFT.

The significance of metal substrates and metal-
semiconductor (-insulator) interfaces for >0 K techno-
logical applications, has driven strong interest in the de-
velopment of numerically robust and efficient extension
of the DFT formalism to finite (>0 K) temperatures
(FT-DFT), capable of capturing the dependence of the
DFT solution on the system temperature. Recent devel-
opments have led to further numerical optimization of
FT-DFT via use of minimal, in situ optimized, atomic
basis sets and ensuing reduction of the size of the FT-
DFT Hamiltonian. These advances have made possible
to simulate metallic systems up to over two thousands
atoms on academically accessible hardware.

Towards viable simulation of biased electrochemical in-
terfaces, interest has also been growing in extending DFT
methods to open-boundary grand-canonical formalisms,
capable of modelling electrodes and their interfaces at
constant potential (variable number of electrons).

Prompted by these advances and derivation of the orig-
inal cDFT proof for close-boundary 0K DFT only, here
we explore possible extension of the cDFT-theorem to
FT-DFT in both the canonical and grand-canonical en-
sembles. In both cases, we find that the constrained
FS-DFT free-energy attains a maximum with respect to
Lagrange multipliers whenever the applied constraints
are satisfied. These results lay the basis for canonical
and grand-canonical constrained FT-DFT simulation of
(metallic) systems, which should be useful for fundamen-
tal research in charge and spin transfer and excitation at
functional interfaces.

We begin by summarizing the main result of Ref[?],
valid for zero-temperature systems of integer occupancy,
to the effect that if a constraint on a fermionic density
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can be satisfied, it will be so only at a unique maximum of
the total-energy of the constrained system with respect to
the Lagrange multiplier of the constraint. Without loss
of generality, however, we will extend this result to allow
for the possibility of non-local potentials, such as those
introduced by the widely-used pseudopotential approxi-
mation in DFT, subject to a non-local constraint, albeit
limited to two spatial indices. While a number of existing
implementations of cDFT already make use of non-local
constraints, such as those constructed from projections
onto subspaces spanned by atomic orbitals, this exten-
sion to true constrained density-functional theory has not
yet been shown, to our knowledge. As such, the single-
particle density-matrix describing a non-interacting ref-
erence (i.e., Kohn-Sham) system, from which the en-
ergy is computed, is promoted as the central variable.
Here, we may restrict ourselves to the diagonal density-
matrices of the form ρ̂σ =

∑
i|ψσi 〉fσi 〈ψσi |, where σ is the

spin index, and the index i runs over sufficiently many
orbitals to converge any properties of interest.

treat the case of constrained density functional theory
to allow for finite-temperature fermionic systems subject
to non-local potentials,

The occupancy of the single-particle orbital |ψσi 〉
is described by the Fermi-Dirac distribution fσi =

(1 + exp (β (εσi − µ)))
−1

, where εσi is the corresponding
eigenvalue of the non-interacting Hamiltonian, µ is the
chemical potential, and β = (kBT )

−1
. The density is

then given by the local part of the density-matrix, that
is ρσ (r) = 〈r|ρ̂σ|r〉 =

∑
i f

σ
i |ψσi (r)|2. In the canonical

ensemble, the chemical potential is defined such that the
electron number is kept fixed, i.e., such that

∑
iσ f

σ
i = N ,

whereas otherwise, in the grand canonical ensemble, the
electron number may vary and the chemical potential is
treated as a free parameter.

The electronic free-energy functional, allowing for fi-
nite temperatures or metallic densities of states, and
including a number of spin-density constraints with
pre-factors U Iσ, may be written as A

[
ρ̂,
{
U Iσ

}
;β
]

=

W
[
ρ̂,
{
U Iσ

}
;β
]
− S [ρ̂] /β, where the electronic en-

thalpy is written in dimensionless form as S [ρ̂] =
−
∑
σ Tr

[
ρ̂σ ln ρ̂σ +

(
1̂− ρ̂σ

)
ln
(
1̂− ρ̂σ

)]
, and the quan-

tity to be made stationary in the grand canoni-
cal ensemble is instead Ω = A − µN . The to-
tal energy, W

[
ρ̂,
{
U Iσ

}]
= E [ρ̂] +

∑
Iσ U

IσCIσ [ρ̂σ],
comprises the unconstrained total-energy E [ρ̂] =∑
σ Tr

[(
v̂σext − ∇̂2/2

)
ρ̂σ
]

+ EHxc

[
ρ↑, ρ↓

]
(where v̂σext

is a possibly non-local external potential, Hxc denotes
Hartree plus exchange-correlation, and we neglect the
temperature-dependence of the latter) together with a
number of spin-density constraints in which the U Iσ ap-
pear as pre-factors. Here, we consider constraints of the

form CIσ [ρ̂σ] = Tr
[
ρ̂σP̂ Iσ

]
−N Iσ, where P̂ Iσ is an pro-

jection operator (i.e., idempotent, Hermitian) onto some
subspace, and N Iσ is a real-valued constant target. The

special case of pure spin-density functional constraints,
for which constrained DFT was originally derived, may
be recovered by setting P̂ Iσ = |r〉wIσc (r) 〈r|, for some
weighting function wIσc (r). Another appropriate choice

are operators of the form P̂ Iσ =
∑MI

m |ϕIσm 〉〈ϕIσm |, where
the M Iσ projecting orbitals |ϕIσm 〉 for each subspace I are
considered to be fixed and orthonormal, in which case the
constraint term may be re-written in powers of the occu-
pancy matrix nIσmm′ = 〈ϕIσm |ρ̂σ|ϕIσm′〉. We refer the reader
to Ref. ? for the invariance-preserving generalization to
nonorthogonal projecting orbitals.

The ground state density-matrix ρ̂0, for a given tem-
perature and set of parameters U Iσ is defined as that
which minimizes the free-energy, subject to Fermi-Dirac
statistics, i.e., A0

[{
U Iσ

}
;β
]

= minρ̂A
[
ρ̂,
{
U Iσ

}
;β
]
.

V̂ Iσ [ρ̂] =
δAIσ

δρ̂σ
= Ĥσ +

∑
I

U Iσ
δCIσ

δρ̂σ
(1)

+ Tr
[
ln ρ̂σ − ln

(
1̂− ρ̂σ

)]
/β

Tr
[
ln ρ̂σ − ln

(
1̂− ρ̂σ

)]
/β =

∑
i (µ− εσi )

The DFT+U method acts, via the addition of an idem-
potency constraint of the form

CI [ρ̂] =
∑
σ

1

2

MI∑
m

nIσmm − MI∑
m′

nIσmm′nIσm′m

 (2)

=
∑
σ

1

2
Tr
[
ρ̂σP̂ I − ρ̂σP̂ I ρ̂σP̂ I

]
,

for each subspace, to partially enforce the idempotency
of the each subspace density matrix up to a pre-factor
U I , so that the grand energy functional reads

W
[
ρ̂,
{
U I
}]

= E [ρ̂] +
∑
I

U ICI [ρ̂] . (3)

This functional adds a corrective potential to each sub-
space given by v̂IσU = U IŵIσU , where

ŵIσU [ρ̂] =
∂CI [ρ̂]

∂ρ̂σ
=

(
1

2
− P̂ I ρ̂σ

)
P̂ I , (4)

so that the most direct effect of subspace idempotency
penalization is to suppress (enhance) diagonal subspace
occupancies less (greater) than one-half.

Extremization of the grand functional W with respect
to idempotent density-matrices,

δρ̂=ρ̂2
[
W
[
ρ̂,
{
U I
}]]

= 0, (5)

yields the density-matrix expression of the Kohn-Sham
equations, modified by the corrective potential, so that

EσIP ρ̂
σ =


−∇̂2

2 + vext (r)

+
∫
dr′

ρ(r′)
|r−r′| + v̂σxc

[
ρ↑, ρ↓

]
+
∑
I v̂

Iσ
U [ρ̂]

 ρ̂σ, (6)
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where EσIP =
∑
i f

σ
i ε
σ
i is the occupancy-weighted sum of

Kohn-Sham eigenvalues. We seek the solution of Eq. 6
for the set of pre-factors {U I} at which the constraint
defined by Eq. 2 vanishes. There is a unique solution
ρ̂σ0 of the former for any set of Hubbard U parameters,
however, so that we may write

ρ̂σ0 = ρ̂σ0
[{
U I
}]

⇒ W0 = W0

[{
U I
}]
, (7)

where W0 is defined as the lowest-energy extremum of W
for a given set of U parameters.

Following the prescription of Refs. ? ? , we now
show that W0 is strictly concave. Beginning with its first
derivative,

dW0

dU I
= TrσTr


�
�
��

0
δW0

δρ̂σ
dρ̂σ

dU I

+
∂W0

∂U I
(8)

we find that extrema with respect to the U I occur when
the corresponding constraint vanishes, more explicitly

dW0

dU I
= 0 ↔ CI [ρ̂0] = 0 (9)

↔
MI∑
m

nIσ0mm =

MI∑
mm′

nIσ0mm′nIσ0m′m.

The nature of such extrema is determined by the sec-
ond derivative of the constraint, so that

d2W0

dU I2
=
dCI [ρ̂0]

dU I
(10)

= Trσ
1

2

MI∑
mm′

[(
δmm′ − 2nIσ0mm′

) dnIσ0m′m

dU I

]
= Trσ

1

2
Tr

[(
P̂ I − 2P̂ I ρ̂σ0 P̂

I
) dρ̂σ0
dU I

]
= TrσTr

[
ŵIσU

dρ̂σ0
dU I

]
,

and the density-matrix depends on the U parameters
only via perturbation of the Hamiltonian, were we find
simply that

dρ̂σ

dU I
= Tr

[
δρ̂σ

δĤσ

∂Ĥσ

∂U I

]
(11)

= Tr

[
δρ̂σ

δ
[
v̂IσU
] ŵIσU

]
.

The variation of the density-matrix may be performed
using conventional perturbation theory, since the idem-
potency of the density-matrix for any choice of parame-
ters allows us to order states such that

fσi =

{
1 if 1 ≤ i ≤ Nσ;
0 otherwise,

(12)

and the generalization to wave-vector dependent occu-
pancies is straightforward. The variation thus proceeds
via the orbitals only, such that

δρ̂σ

δ
[
v̂IσU
] =

Nσ∑
i

 |ψσi 〉
δ〈ψσi |

δ[UI ŵIσU ]

+
δ|ψσi 〉

δ[UI ŵIσU ]
〈ψσi |

 , (13)

where we may then make use of the familiar expression

δ|ψσi 〉
δ
[
U IŵIσU

] =
∑
a>Nσ

|ψσa 〉
(
|ψσi 〉〈ψσa |
εσi − εσa

)
. (14)

We finally combine the resulting expression for the
derivative of the density matrix with respect to the Hub-
bard U parameters, momentarily suppressing σ,

dρ̂

dU I
=
∑
i≤N
a>N

 |ψi〉
(
〈ψi | ŵIσU |ψa〉

εi−εa

)
〈ψa|

+|ψa〉
(
〈ψa | ŵIσU |ψi〉

εi−εa

)
〈ψi|

 (15)

with Eq. 10, to find that the functional W0 is strictly
concave, since

d2W0

dU I2
= 2Trσ

∑
i≤Nσ
a>Nσ

(∣∣〈ψσi ∣∣ ŵIσU ∣∣ψσa〉∣∣2
εσi − εσa

)

≤ 0, (16)

and that, moreover, there exists a unique extremum with
respect to each U parameter.

Thus, the task of minimizing the total energy subject
to the constraint that the idempotency penalty functional
of Eq. 2 vanishes, for each subspace, is re-cast as an it-
erative maximization of the grand functional W0

[{
U I
}]

with respect to the set of Hubbard U parameters. On
every such iteration, in practice, the total energy must
be re-minimized self-consistently, so that the algorithm
takes the form of two nested loops – albeit with no re-
sort to numerical finite differences or perturbation theory.
The corrective term in the total-energy vanishes at the
self-consistent solution, however the corrective potential
generally does not.

d2W0

dU I2
=

(
∂

∂U I
+ Tr

[
δρ̂σ0
δU I

δ

δρ̂σ0

])2

W0 (17)

=
∂2W0

∂U I2
+ Tr

[
δρ̂σ0
δU I

∂δW0

∂U Iδρ̂σ0
+

∂δρ̂σ0
∂U IδU I

δW0

δρ̂σ0

]
+ Tr

[
δρ̂σ0
δU I

(
δ∂W0

δρ̂σ0∂U
I

+
δ2ρ̂

′σ
0

δρ̂σ0 δU
I

δW0

δρ̂
′σ
0

)]

+ Tr

[
δρ̂σ0
δU I

δ2W0

δρ̂σ0 δρ̂
′σ
0

δρ̂
′σ
0

δU I

]

=
∂2W0

∂U I2
+ Tr

[
δρ̂σ0
δU I

(
∂δW0

∂U Iδρ̂σ0
+

δ∂W0

δρ̂σ0∂U
I

)]
,
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since, by definition of W0 we have δW0/δρ̂
σ
0 = 0 and we

may neglect the final term of order (δρ̂σ0 )
2
.

0 =
d

dεσi

∑
j,σ′

fσ
′

j =
∑
j,σ′

d

dεσi

(
1 + exp

(
β
(
εσ

′

j − µ
)))−1

=
∑
j,σ′

fσ
′2

j exp
(
β
(
εσ

′

j − µ
))

β

(
dµ

dεσi
− δijδσ

′

σ

)

=
∑
j,σ′

(
fσ

′

j − fσ
′2

j

)
β

(
dµ

dεσi
− δijδσ

′

σ

)

⇒ dµ

dεσi
=
(
fσi − fσ2i

)∑
j,σ′

(
fσ

′

j − fσ
′2

j

)−1
∂fσi
∂εσi

= − ∂fσi
∂µ

= −β
(
fσi − fσ2i

)
(18)

dfσi
dεσi

=
∂fσi
∂εσi

+
∂fσi
∂µ

dµ

dεσi
=
∂fσi
∂εσi

(
1− dµ

dεσi

)
(19)

= − β
(
fσi − fσ2i

)
(20)

×

1−
(
fσi − fσ2i

)∑
j,σ′

(
fσ

′

j − fσ
′2

j

)−1


(21)

fσi − fσ2i > 0∑
j,σ′ fσ

′

j ≥ fσi∑
j,σ′

(
fσ

′

j − fσ
′2

j

)
≥ fσi − fσ2i

1 ≥
(
fσi − fσ2i

) (∑
j,σ′

(
fσ

′

j − fσ
′2

j

))−1
0 ≤ 1−

(
fσi − fσ2i

) (∑
j,σ′

(
fσ

′

j − fσ
′2

j

))−1
dfσi
dεσi
≤ 0

=
dfσi

d
(
UP̂
) =

∑
k,σ′′

dfσi
dεσ

′′
k

dεσ
′′

k

d
(
UP̂
) (22)


