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Abstract. We prove density of hyperbolicity in spaces of (i) real transcendental en-
tire functions, bounded on the real line, whose singular set is finite and real and (ii)
transcendental functions f : C \ {0} → C \ {0} that preserve the circle and whose sin-
gular set (apart from 0,∞) is finite and contained in the circle. In particular, we prove
density of hyperbolicity in the famous Arnol’d family of circle maps and its generaliza-
tions, and solve a number of other open problems for these functions, including three
conjectures of de Melo, Salomão and Vargas [MSV].

We also prove density of (real) hyperbolicity for certain families as in (i) but without
the boundedness condition. Our results apply, in particular, when the functions in
question have only finitely many critical points and asymptotic singularities, or when
there are no asymptotic values and the degree of critical points is uniformly bounded.

1. Introduction

Among dynamical systems, those that are hyperbolic, a property also called Axiom A,
have particularly simple behaviour and are the easiest to understand (for a definition in
our context see below). For this reason, density of hyperbolicity – the question whether
any system in a given parameter space can be perturbed to a hyperbolic one – is one
of the central problems of one-dimensional dynamics. (It has been known for about 50
years that the answer is negative in higher dimensions; for references and recent results,
see for example [PS] and [Bo].)

Recently, there has been major progress on this problem in the real setting. Lyubich
[L] and, independently, Graczyk and Świ ↪atek [GŚ] solved the problem for the real qua-
dratic family x 7→ x2 + c, while it was solved by Kozlovski, Shen and the second author
for real polynomials with real critical points in [KSS1] and for general interval maps and
circle maps in [KSS2]. For a discussion of related results, see [vS2].

As an example of questions that are left open by these theorems, let us consider the
most famous family of circle maps: the Arnol’d family

Fµ1,µ2(t) = t+ µ1 + µ2 sin(2πt); µ1 ∈ R, µ2 > 0.

This family describes the behaviour of a periodically forced nonlinear oscillator, and has
been used to model a variety of physical and biological systems.
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Figure 1. Parameter space for the Arnol’d family in the region (µ1, µ2) ∈
(−1/2, 1/2)× (0, 1/2+1/(2π)). White regions correspond to points where
a numerical experiment indicates that both critical points belong to at-
tracting basins. The critical line µ2 = 1/(2π) is indicated in grey; note
that the Arnol’d tongues in the invertible region lead to hyperbolic com-
ponents above the critical line, but that other hyperbolic regions exist
also.

It is well-known that hyperbolicity is dense in the region where the map is a circle
diffeomorphism, i.e. for µ2 < 1/(2π). In the non-invertible case, µ2 > 1/(2π), [KSS2,
Theorem 2] implies that Fµ1,µ2(t) can be perturbed to a hyperbolic circle map, and
indeed to a hyperbolic trigonometric polynomial of high degree. However, we would
like the perturbation to remain within the same family; that is, we ask whether the set
of parameters (µ1, µ2) for which both critical points belong to the basins of periodic
attractors is dense in the region µ2 > 1/(2π) (Figure 1). This question, and in fact even
the density of structural stability (see below), had remained open prior to our work.

As a further example, we discuss the families of real cosine maps and degenerate
standard maps :

Ca,b(x) := a sin(x) + b cos(x), (a, b) ∈ R2 \ {(0, 0)},
Sa,b(x) := axex + b, a ∈ R \ {0}, b ∈ R.

These are natural families of transcendental entire functions. (The study of transcen-
dental dynamics, which goes back to Fatou, has received increasing attention recently,
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Figure 2. The real cosine family. As in Figure 1, white regions corre-
spond to hyperbolic maps.

partly due to the discovery of deep connections with polynomial and rational dynam-
ics. We refer e.g. to [R3S] for some examples.) Again, [KSS2] implies that each of the
functions above can be approximated by a hyperbolic polynomial of high degree, but we
should look for hyperbolic perturbations within the families; see Figure 2. (In the case
of maps such as Sa,b, which are unbounded on the real axis, we shall need to take care
to use the right notion of hyperbolicity; see Definition 1.4 below.)

We give positive answers to all of the above questions and in fact establish density
of hyperbolicity for a large general class of parameter spaces of transcendental entire
functions and circle maps. To do so, we must abandon the proof strategy of [KSS2],
which relies heavily on the use of polynomial-like mappings. Instead, we return to the
methods of [KSS1]. The difficulty here is that we require global rigidity statements, in
particular regarding the absence of invariant line fields on the complex plane, which
become more difficult to establish given that our functions are transcendental. In order
to prove our results, we shall need to combine and adapt a number of ingredients:

(a) rigidity results for maps of the interval and circle maps;
(b) rigidity results for the dynamics of transcendental entire functions near infinity;
(c) an argument to establish the absence of invariant line fields on certain subsets of

the complex plane;
(d) the function-theoretic construction of natural parameter spaces.

As far as we know, density of hyperbolicity had not previously been established in any
nontrivial family of transcendental functions.

Statement of results for real transcendental functions. If f : C → C is a tran-
scendental entire function, we denote by S(f) the set of (finite) singular values of f .
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That is, S(f) ⊂ C is the smallest closed set such that

f : f−1(C \ S(f))→ C \ S(f)

is an unbranched covering.
Let f belong to the Speiser class S of transcendental entire functions for which S(f) is

finite. We say that f is hyperbolic if every singular value belongs to a basin of attraction;
as in the rational case, this definition implies uniform expansion on the Julia set (see
[RS, Theorem C] or [R, Lemma 5.1]). When studying density of hyperbolicity, it is
reasonable to restrict to the class S. Indeed, for maps with infinite sets of singular
values, the associated natural parameter spaces will be infinite-dimensional, the number
of periodic attractors may become infinite, there might exist wandering domains, and
even density of structural stability may fail. In fact, it is not entirely clear whether
“hyperbolicity” is a notion that makes sense when the set S(f) is unbounded.

Since we are interested in real dynamics, we consider only real transcendental entire
functions; i.e. those that satisfy f(R) ⊂ R. Furthermore, we assume that all singular
values are also real; i.e. we study the class

SR := {f : C→ C real transcendental entire : S(f) is finite and contained in R}.
This is a reasonable restriction if our goal is to study hyperbolicity in the complex
sense. It seems sensible to expect that density of hyperbolicity on the real line also
holds without the assumption that S(f) ⊂ R, but our current methods will not yield
this. We note that a function f ∈ SR may have non-real critical points, but only real
critical values.

To study density of hyperbolicity we must first clarify what perturbations we allow.
It is natural to require these to preserve the global properties of the original map: for
example, if a function is bounded on the real line, the approximating map should have
the same property. It turns out that the correct notion is to seek perturbations of a map
f that are entire functions of the form ψ ◦ f ◦ ϕ−1, where ψ and ϕ belong to the class
HomeoR of orientation-preserving homeomorphisms of the complex plane that commute
with complex conjugation and restrict to order-preserving homeomorphisms of the real
line. Our first result concerns maps f ∈ SR that are bounded on the real axis.

1.1. Theorem (Perturbation of bounded functions).
Suppose that f ∈ SR is bounded on the real axis. Then there exist ϕ, ψ ∈ HomeoR
arbitrarily close to the identity such that g := ψ ◦ f ◦ ϕ−1 is entire and hyperbolic.

Another (more practical) point of view is to study perturbations that belong to natural
families of functions in SR. Using Theorem 1.1, we can deduce the following result in
this spirit. Let MöbR ⊂ HomeoR denote the set of all affine maps M(z) = az+ b, a > 0,
b ∈ R.

1.2. Theorem (Density of hyperbolicity in families of bounded functions).
Let n ≥ 1 and let N be an n-dimensional (topological) manifold. Suppose that (fλ)λ∈N
is a continuous family of functions fλ ∈ SR such that

(a) fλ|R is bounded for all λ ∈ N ;
(b) #S(fλ) ≤ n for all λ ∈ N ;
(c) no two maps fλ1 and fλ2 are conjugate by a map M ∈ MöbR.
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Then the set {λ ∈ N : fλ is hyperbolic} is open and dense in N .

Assumption (b) is needed: as in [vS1] it is not hard to construct d-parameter families
with d < n so that no map within this family is hyperbolic.

We note that it is possible to embed every f ∈ SR with #S(f) = n in an n-dimensional
family fλ satisfying (b) and (c) in a natural fashion (see Section 7). Furthermore, if f |R
is bounded, then all elements of this family will also be bounded.

As a particular case, the above theorems imply density of hyperbolicity in the real
cosine family mentioned above. It also holds for general real trigonometric polynomials
for which all critical values are real. (See also Corollary 1.12 below for a more general
statement regarding circle maps.)

1.3. Corollary (Density of hyperbolicity for trigonometric polynomials).
The set of parameters (a, b) for which the cosine map Ca,b is hyperbolic forms an open
and dense subset of R2.

More generally, let n ≥ 1. Then hyperbolicity is dense in the space of real trigonomet-
ric polynomials

(1.1) f(x) = a0 +
n∑
j=1

(
aj cos(jx) + bj sin(jx)

)
for which all critical values are real.

Proof. All functions Ca,b belong to the class SR, with exactly two critical values and no
asymptotic values. Furthermore, no two different maps Ca,b are conjugate by a Möbius
transformation z 7→ αz + β, α > 0, β ∈ R (Lemma 2.4).

We note that if f is a trigonometric polynomial and g = ψ◦f ◦ϕ−1 is entire with ψ and
ϕ close to the identity, then g is conformally conjugate to a trigonometric polynomial of
the same degree whose coefficients are close to those of f (Lemma 2.7).

Hence the corollary indeed follows from Theorems 1.2 and 1.1. �

For functions that are unbounded along the real axis, such as the family Sa,b, we
need to relax our notion of hyperbolicity somewhat. The reason is that here some
singular values may “escape to infinity” (i.e., converge to infinity under iteration). In
this case, the function is not hyperbolic in the complex sense, as ∞ is not a hyperbolic
attractor. However, such a singular value cannot be perturbed into an attracting basin
by a real perturbation. For example, consider the real exponential family, Ea(x) =
exp(x) + a, a ∈ R. For a < 1, Ea(z) is hyperbolic, but for a > 1, the singular value
a, and indeed every real starting value x, converges to ∞ under iteration. These maps
are not hyperbolic in the complex plane – indeed, the Julia set is the whole complex
plane, the maps are far from uniformly expanding, and their topological dynamics is
still not completely understood – but it seems reasonable to describe their action on R
as hyperbolic, motivating the following definition.

1.4. Definition (Real-hyperbolicity of maps in SR).
A function f ∈ SR is called real-hyperbolic if every singular value either belongs to a
basin of attraction or tends to infinity under iteration.



6 LASSE REMPE-GILLEN AND SEBASTIAN VAN STRIEN

When f |R is bounded, this corresponds to the usual definition of hyperbolicity. We
should note that, if fλ is a family of functions in SR for which the number of singular
values is constant, then any real-hyperbolic parameter λ0 for which there are no critical
relations is real-structurally stable within the family. By this we mean that any nearby
map fλ is conjugate to fλ0 on the real line. (However, they are not necessarily conjugate
in the complex plane; indeed exp(x)+a and exp(x)+b are not topologically conjugate for
a > b > −1, see [DG].) Here we say that f has no critical relations if no critical point or
asymptotic value of f is eventually mapped onto a critical point. Indeed, real-structural
stability follows from the fact that fλ0 and a nearby map will be combinatorially and
hence topologically conjugate on the real line (see Lemma 3.5).

It is reasonable to conjecture that real-hyperbolicity is dense in every full parameter
space in SR. In this paper, we establish this conjecture for functions satisfying quite
general additional “geometrical” properties, by which we mean that these properties
depend on the function-theoretic behaviour of the maps (rather than their dynamics).
There are two such conditions, each of which will allow us to establish density of real-
hyerbolicity. The first of these relates to the geometry of the finite singular values of f :
We shall say that a function f ∈ S has bounded criticality if f has no asymptotic values
and the degree of critical points of f is uniformly bounded. This class of entire functions
appears in work of Mihaljević-Brandt [M-B], which shows that these maps often have
particularly nice dynamical properties. Bishop [Bi] has recently presented methods that
allow the construction of a vast array of entire functions with bounded criticality.

When our functions do have asymptotic values, or critical points of unbounded mul-
tiplicity, we will impose some geometric conditions concerning the singular value at
∞. Essentially, the following condition says that the set of points where f is large is
sufficiently thick near the real axis.

1.5. Definition (Sector condition).
Let f be a real transcendental entire function and define

Σ := {σ ∈ {+,−} : there is some x ∈ R whose orbit accumulates on σ∞}

We say that f satisfies the sector condition if, for every M > 0 and σ ∈ Σ, there exist
ϑ > 0 and x0 > 0 such that

|f(σx+ iy)| > M

whenever x ≥ x0 and |y| ≤ ϑx.

For f ∈ SR, the sector condition is equivalent to requiring that there are constants
r,K > 0 such that

(1.2)
|f ′(σx)|
|f(σx)|

≤ K · log |f(σx)|
x

for all x ≥ r and all σ ∈ Σ [MiRe, Theorem 6.1]. It is satisfied for most explicit
transcendental entire functions that have finite order of growth, such as z 7→ zez. In
[MiRe], this condition is used to exclude the existence of wandering domains for certain
real transcendental functions.
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1.6. Theorem (Density of real-hyperbolicity).
Let n ≥ 1 and let N be an n-dimensional (topological) manifold. Suppose that (fλ)λ∈N
is a continuous family of functions fλ ∈ SR such that the following three conditions hold:

(a) #S(fλ) ≤ n for all λ ∈ N ;
(b) no two maps fλ1 and fλ2 are conjugate by a map M ∈ MöbR;
(c) fλ has bounded criticality for every λ ∈ N , or fλ satisfies the sector condition for

every λ ∈ N .

Then the set {λ ∈ N : fλ is real-hyperbolic} is open and dense in N .

Remark 1. If f is bounded along the real axis, then it trivially satisfies the sector con-
dition, so Theorem 1.6 contains Theorem 1.2 as a special case.

Remark 2. Again, there is an analogous statement to Theorem 1.1: any map f ∈ SR
that has bounded criticality or satisfies the sector condition can be perturbed to a real-
hyperbolic function g ∈ SR by pre- and post-composition with some ϕ, ψ ∈ HomeoR
close to the identity.

To describe some families to which the preceding result applies, let f ∈ SR, choose
ε > 0 smaller than one-half the minimal distance between two different singular values
of f , and set

W := {z ∈ C : dist(z, S(f)) < ε}.
Every component of f−1(W ) is mapped either as a finite-degree branched covering or
as an infinite-degree covering map by f . We say that f has k singularities if there are
exactly k components of f−1(W ) on which f is not one-to-one. (In particular, f has at
most k critical points.)

If f ∈ SR has only a finite number of singularities, then f is of the form

f(z) =

∫
P (w)eQ(w)dw,

where P and Q are real polynomials with P 6≡ 0 and degQ ≥ 1. It is well-known that
such functions satisfy the sector condition; see Lemma 2.3.

1.7. Corollary (Density of real-hyperbolicity). (a) For each k, real-hyperbolicity is
dense in the space of functions f ∈ SR that have k singularities.

(b) Real-hyperbolicity is dense in the family

Sa,b : x 7→ axex + b, a ∈ R \ {0}, b ∈ R.

QC-rigidity for maps in SR. As is usual, our proof of the above results proceeds
along three steps:

(a) QC rigidity: Two functions that are topologically (or combinatorially) conjugate
are in fact quasiconformally conjugate;

(b) Absence of line fields : The functions under consideration support no nontrivial
quasiconformal deformations on the Julia set;

(c) Parameter space arguments : Density of hyperbolicity is deduced from the first
two statements by performing suitable perturbations in parameter space.
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Traditionally, the first step of this program has been the hardest to achieve. In our
context, we are able to solve it completely, i.e. without assuming the sector condition
or bounded criticality. This is accomplished by combining the solution of the rigidity
problem by the second author in joint work with Trevor Clark, see [CvS], with recent
results by the first author on the dynamics of entire functions near infinity [R].

1.8. Theorem (QC Rigidity for maps in SR).
Suppose that f, g ∈ SR are topologically conjugate on the complex plane, and that the
conjugacy takes the real axis to itself. Then f and g are quasiconformally conjugate.

An immediate corollary is:

1.9. Corollary (Connected conjugacy classes).
Take f ∈ SR. Then the conjugacy class of f (i.e. the set of maps that are topologically
conjugate to f on the complex plane) is connected with respect to the topology of locally
uniform convergence.

Remark. This statement is true even if one takes the topology coming from the natural
parameter space MR

f . (For the definition of this space see Section 7.)

Step (b) contains an additional complication in the case of transcendental maps: it is
necessary to rule out the existence of invariant line fields on the set of escaping points
as well as the set of points that tend to escaping singular orbits under iteration. (Both
sets are contained in the Julia set.) While the first issue was resolved in [R], we can deal
with the second only by assuming either the sector condition or bounded criticality.

Statement of corresponding results for circle maps and trigonometric poly-
nomials. As usual in one-dimensional real dynamics, our results for real functions have
analogues for circle maps. Here it is natural to consider transcendental (non-rational)
analytic self-maps of the punctured plane C∗ := C \ {0} that preserve the unit circle.
For such a function f , we can define the set of singular values S(f) ⊂ C∗ analogously to
the case of entire functions. The natural class to consider for our purposes is

SS1 := {f : C∗ → C∗ transcendental: f(S1) ⊂ S1, S(f) ⊂ S1,#S(f) <∞}.

We note that every map f ∈ SS1 has at least one critical point on the circle; see
Lemma 9.1. Again, f ∈ SS1 is called hyperbolic if every singular value belongs to a
basin of attraction of a periodic point in S1.

1.10. Theorem (Density of hyperbolicity for circle maps).
Let n ≥ 1 and let N be an n-dimensional (topological) manifold. Suppose that (fλ)λ∈N
is a continuous family of functions fλ ∈ SS1 such that

(a) #S(fλ) ≤ n for all λ ∈ N (recall that S(fλ) ⊂ C∗ by definition; i.e. this count
does not include 0 or ∞);

(b) no two maps fλ1 and fλ2 are conjugate by a rotation.

Then the set {λ ∈ N : fλ is hyperbolic} is open and dense in N .

As before, there is an associated rigidity statement:
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1.11. Theorem (QC rigidity for maps in SS1).
Suppose that f, g ∈ SS1 are topologically conjugate on C∗, and that the conjugacy pre-
serves the unit circle. Then f and g are quasiconformally conjugate. Furthermore, the
dilatation of the map is supported on the Fatou set.

A natural family of degree D circle maps that are 2m-multimodal can be described
as follows. For µ ∈ R2m, consider the generalized trigonometric polynomial

(1.3) Fµ(t) = D · t+ µ1 + µ2m sin(2πmt) +
m−1∑
j=1

(µ2j sin(2πjt) + µ2j+1 cos(2πjt)).

Fµ induces a circle map fµ : S1 → S1 (via the covering map P(t) = e2πit). Note that if
µ, µ′ ∈ R2m with µ1 − µ′1 ∈ Z and µj = µ′j for j 6= 1, then fµ = fµ′ . So it is natural to
consider fµ as parametrized by µ = (µ1, . . . , µ2m) ∈ ∆, where

(1.4) ∆ := {µ ∈ R/Z× R2m−1 : µ2m > 0 and fµ is 2m−multimodal }.

More generally we could require that fµ has precisely 2m critical points on the circle
(counting multiplicities). Under these assumptions, the map fµ belongs to the class SS1 ;
see Lemma 2.5.

1.12. Corollary (Density of hyperbolicity and rigidity in the trigonometric family).
The set of parameters in ∆ for which fµ is hyperbolic is dense. Furthermore, let µ0 ∈ ∆.

(a) Consider the set [µ0] of parameters µ for which fµ is topologically conjugate to
fµ0 by an order-preserving homeomorphism of the circle. Then [µ0] has at most
m components.

(b) If fµ0 has no periodic attractors on the circle, then each component of [µ0] is equal
to a point.

This answers Conjectures 1, 2 and 3 posed by de Melo, Salomão and Vargas in [MSV];
in particular, it establishes density of hyperbolicity in the Arnol’d family mentioned at
the beginning of this introduction (for D = 1 and m = 1). In [BR] the family Fa,b(x) =
2x + a + b sin(2πx), a ∈ R, b = 1/π, was discussed. In this case, the corresponding
circle map fa,1/π has a single cubic critical point and belongs to SS1 ; see Lemma 2.6.
Thus Theorem 1.10 implies that the set of values for which fa,1/π is hyperbolic is dense;
this fact also follows already from [LvS, Theorem C]. When b < 1/π, the critical points
do not belong to the circle and fa,b /∈ SS1 is a covering map of degree 2. In this case,
by Mañé’s theorem there is a dense set of parameters for which fa,b is hyperbolic as a
map of the circle (i.e., expanding on the complement of the—potentially empty—union
of attracting basins on the circle). For b > 1/π, the map fa,b has two critical points on
the circle, and our results imply density of hyperbolicity as well as various conjectures
stated in [MaT] and [ELT], as we will discuss in [RvS2].

We remark that the proofs can also be applied to obtain the corresponding results for
families of finite Blaschke products

B(z) = e2πia0zk0
n∏
j=1

(
z − aj
1− ājz

)kj
, |a1|, . . . , |an| < 1, a0 ∈ R, k0 6= 0, kj ∈ Z
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for which all critical values, apart from 0 and∞ (which have period≤ 2), lie on the circle.
Similarly, although we stated the results for entire functions only in the transcendental
case for simplicity, they can also be applied verbatim to polynomial families – e.g. for
two-dimensional families of quartic polynomials having two distinct critical values, both
of which are real. Of course, here there is no need to use tools from transcendental
dynamics – the only new ingredients compared to [KSS1] are our discussion of parameter
spaces and the rigidity theorem from [CvS].

Further directions. The rigidity results in this paper can also be used, similarly as in
[BvS], to prove monotonicity of entropy in families of real transcendental functions. For
example, it can be deduced that the topological entropy of maps within the family

R 3 x 7→ a sin(2πx) ∈ R
increases with a ≥ 0. Similar results hold for families of trigonometric polynomials;
these questions will be discussed in a sequel to this paper, [RvS2].

Similarly, Theorem 1.11 implies Conjecture B in [ELT] for the family fa,b(x) = x +
a + b sin(2πx), a ∈ [0, 1). This conjecture states that the set of parameters (a, b) ∈
(0, 1)×R so that the rotation interval of fa,b is equal to a given interval with irrational
boundary points, is equal to a single point. (It was already shown in [ELT] that this
set is contractible.) We will discuss how this follows in [RvS2]. A similar kind of
question was raised in [MiRo, Section 5] for the family of double standard maps: x 7→
2x+ a+ b sin(2πx), a ∈ (0, 1) and will also be discussed in [RvS2].

Acknowledgment. We thank the referees for their careful reading of our paper, and
a large number of helpful comments. We are also grateful to all of those with whom
we had interesting conversations related to this work, particularly Adam Epstein and
Alexandre Eremenko for a discussion connected to the material in Appendix A.

2. Preparatory definitions and remarks

Organisation of the paper. In the remainder of this section we will collect notation
and some simple facts. In Sections 3–5 we prove Theorem 1.8, that topologically con-
jugate entire functions in SR are quasiconformally conjugate. This relies on two deep
results. The first ingredient (Theorem 3.8) is a theorem on real analytic interval maps
f : [0, 1] → [0, 1]. Assume that two such maps are topologically conjugate and that the
conjugacy maps hyperbolic periodic points to hyperbolic points, and critical points to
critical points of the same order. Then these maps are quasisymmetrically conjugate.
This follows from results of Trevor Clark and the second author of the current paper
[CvS] that apply in fact to much more general functions (even C3 mappings). This work
builds on earlier results of Kozlovski, Shen and van Strien [KSS1]. The second ingredient
(Theorem 4.6) uses rigidity of escaping dynamics for transcendental entire functions, a
result which was proved by the first author in [R]. In order to prove Theorem 1.8, we
will show how to apply and combine these two ingredients in our setting.

We then show in Section 6 that two maps that are quasiconformally conjugate, via
a conjugacy that is conformal on the Fatou set, are in fact affinely conjugate. To do
this, we show that the maps we consider cannot carry measurable invariant line fields
on their Julia sets.
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In Section 7, we introduce a natural parameter space MR
f , and discuss kneading se-

quences and analytic invariants. Using our rigidity results, these can be used to charac-
terize conformal conjugacy classes within the family. In Section 8 we then derive density
of hyperbolicity for the families in SR. In Section 9 we discuss how to adapt our results
to circle maps. In an appendix, we further clarify the structure of the parameter space
MR

f .

Definitions. Throughout this article, with the exception of Section 9, f : C → C will
be a transcendental entire function that maps the real line to itself. We recall that S(f)
denotes the set of singular values of f .

Let CritR(f) denote the set of real critical points of f , and CVR(f) := f(CritR(f)).
We say that α is a real-asymptotic value if f(x) → α as x → ∞ or as x → −∞.
Let SR(f) be the set of real-singular values of f |R, i.e. the union of CVR(f) and the
real-asymptotic values. For any X ⊂ C, we define the orbit

O+
f (X) :=

⋃
n≥0

fn(X).

The postsingular set of f is defined as

P(f) := O+
f (S(f)).

We also denote the escaping set of f by I(f) = {z : |fn(z)| → ∞ as n → ∞} and set
IR(f) = I(f) ∩ R.

Recall that SR denotes the class of real transcendental entire functions for which
S(f) is a finite subset of the real axis. Also recall that HomeoR denotes the set of all
homeomorphisms ψ : C→ C that commute with complex conjugation and are increasing
on the real axis, and that MöbR ⊂ HomeoR consists of the affine maps z 7→ az + b,
a > 0, b ∈ R. If ψ ∈ HomeoR is quasiconformal, we call ψ a real-quasiconformal
homeomorphism.

We denote Euclidean distance by dist and spherical distance by dist#. If z0 ∈ C and
ε > 0, then we denote by

Bε(z0) := {z ∈ C : |z − z0| < ε}

the Euclidean ball of radius ε around z0. We also denote the unit disk by D := B1(0).

Quasiconformal maps and invariant line fields. Throughout the article, we assume
familiarity with the theory of quasiconformal mappings of the plane; compare e.g. [A2].

We also use the notion of invariant line fields. This is a standard concept in holo-
morphic dynamics, but notation sometimes varies, so we give a concise summary here.
A measurable line field on a measurable set A ⊂ C is a measurable function ` from A
to the projective plane. (More precisely, ` takes each point z ∈ A to a point in the
projective tangent bundle at z; i.e. it represents a measurable choice of a real line in the
tangent bundle.)

A line field is invariant under f if, for almost every z, the pushforward of the tangent
line `(z) is given by `(f(z)). In other words, for almost every z,

`(f(z)) = f ′(z) · `(z)
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(note that the derivative acts on tangent lines by multiplication as long as z is not a
critical point).

Invariant line fields are related to invariant Beltrami differentials (ellipse fields): if µ
is an invariant Beltrami differential with µ(z) 6= 0 almost everywhere on A, then e.g.
the direction of the major axes of the ellipses described by µ will provide an invariant
line field. Similarly, if ` is an invariant line field, we can find a corresponding non-zero
invariant Beltrami differential on A. (See also [McM, Section 3.5].)

In particular, we have the following fact: If f and g are quasiconformally but not
conformally conjugate, then there is an f -invariant line field supported on some set of
positive measure.

The Koebe Distortion Theorem. We frequently use the following classical theorem
in our proofs.

2.1. Theorem (Koebe Distortion Theorem).
For any univalent map f : D→ C and any z ∈ D,

|f ′(0)| |z|
(1 + |z|)2

≤ |f(z)− f(0)| ≤ |f ′(0)| |z|
(1− |z|)2

and

|f ′(0)| 1− |z|
(1 + |z|)3

≤ |f ′(z)| ≤ |f ′(0)| 1 + |z|
(1− |z|)3

.

In particular, f(D) ⊃ B|f ′(0)|/4(f(0)).

For a proof, see for example [P, Theorem 1.3].

Functions with finitely many singularities and the sector condition. We note
two standard facts regarding entire functions with finitely many singularities (compare
[E]), which show that Corollary 1.7 indeed follows from Theorem 1.6.

2.2. Lemma (Functions with finitely many singularities).
Suppose that f is a real transcendental entire function. Then f has only finitely many
singularities if and only if there are real polynomials P and Q with P 6≡ 0 and degQ ≥ 1
such that

f ′(z) = P (z)eQ(z).

Sketch of proof. First suppose that f has only finitely many singularities. Then f ′ has
only finitely many zeroes. So if we let P be a real polynomial having the same zeroes as
f ′ (counting multiplicities), we can write

f ′(z) = P (z)eg(z)

for some nonconstant real entire function g. The function g cannot be transcendental,
as otherwise one could show that the function f has infinitely many singularities. So g
must be a real polynomial.

The converse is trivial, as one can check by hand that any function of the stated form
has only finitely many singularities; compare (2.1). �
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2.3. Lemma (Sector condition).
Let f ∈ SR be a function of the form

f(z) =

∫
P (w)eQ(w)dw,

where P and Q are real polynomials with P 6≡ 0 and degQ ≥ 1.
Then f satisfies the sector condition (Definition 1.5).

Sketch of proof. This can be checked by direct calculation. Indeed, the function f satis-
fies

(2.1) f(z) =

(
P (z)

Q′(z)
+O

(
|z|deg(P )−deg(Q)

))
eQ(z) +O(1)

as z →∞. (See [He, Lemma 4.1]) The claim follows easily from this estimate. �

Explicit families. To conclude this section, we collect some simple facts that are
needed to deduce Corollaries 1.3 and 1.12, concerning explicit families of trigonometric
polynomials and circle maps, from the more general Theorems 1.2, 1.10 and 1.11. These
results are all well-known and easy to prove, but we include the short arguments for
completeness.

2.4. Lemma (Cosine maps and standard maps).
Let (a, b), (c, d) ∈ R2 \ {(0, 0)} with (a, b) 6= (c, d). Then the cosine maps Ca,b and Cc,d
are not conjugate by an affine map M ∈ MöbR.

The analogous statement holds for the family Sa,b.

Proof. We prove the contrapositive, so suppose that Cc,d = M ◦Ca,b◦M−1 for some affine
map M(x) = αx + β, α > 0. Since both maps have period 2π, we must have α = 1.
Furthermore, we note that the image of the real axis under a map Ca,b is an interval
that is symmetric around the origin. This implies that β = 0, and hence M = id and
(a, b) = (c, d).

We note that Sa,b = axex + b has a critical point at −1 and an asymptotic value at b,
and no other critical or asymptotic values. Furthermore, z = 0 is the unique preimage
of the asymptotic value b. If we have a conjugacy M ∈ MöbR between Sa,b and Sc,d, it
follows that M fixes 0, −1 and ∞. Hence M = id and (a, b) = (c, d). �

2.5. Lemma (Number of critical points of Arnol’d-type maps).
Let Fµ be a (generalized) trigonometric polynomial as in (1.3). Then the corresponding
circle map fµ has exactly 2m critical points in C∗, counted with multiplicities. Moreover,
fµ has no asymptotic values in C∗.

Proof. This is a classical fact. Indeed, note that F ′µ is a trigonometric polynomial of
degree m, and hence

F ′µ(z) = R(e2πiz),

where R is a rational function of degree 2m. Thus Fµ has exactly 2m critical points in
every vertical strip of width 1 (counting multiplicities). The claim follows.

It is also elementary to see that Fµ has no finite asymptotic values (and hence fµ has
no asymptotic values in C∗). Let us sketch the argument. Suppose by contradiction
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that γ : [0,∞) → C was a curve to infinity with Fµ(γ(t)) → a ∈ C. We must have
| Im γ(t)| → ∞. If D = 0, this follows from periodicity and otherwise from the fact that
Fµ(z) = Dz + O(1) when restricted to any horizontal strip. Similarly, we must have
|Re γ(t)| → ∞, as |Fµ(z)| grows like |µ2m| · e2πm| Im z|/2 in any vertical strip.

For ζ ∈ γ, we can write

Fµ(ζ) = Dζ + µ2me
±2πimζ/2i+ o(e2πimζ).

For sufficiently large ζ, the argument of ζ will be contained in a fixed interval of length
π/2, while the second term keeps “spiralling” to infinity. It follows that we must have
lim sup |Fµ(γ(t))| =∞, a contradiction.

(The claim can also be deduced directly from the celebrated Denjoy-Carleman-Ahlfors
theorem.) �

2.6. Lemma (Conformal conjugacy classes).
Let D ≥ 0, m ≥ 1 be integers. Consider trigonometric polynomials as in (1.3) and let
fµ be the corresponding map of the circle S1. Suppose that M(z) = e2πiβz is a rotation.
Then M conjugates the map fµ to some map fµ′ in the same family if and only if
β = p/m where p ∈ Z. In particular, each affine conjugacy class (via rotations) consists
of at most m maps.

Proof. Assume that fµ, fµ′ are conjugate by a rotation M(z) = e2πiβz. Note that the lift
of M ◦ fµ ◦M−1(t) is equal to

Fµ(t− β) + β = Dt− (D − 1)β + µ1 + µ2m sin(2πm(t− β))

+
m−1∑
j=1

(µ2j sin(2πj(t− β)) + µ2j+1 cos(2πj(t− β))) .

Using the addition theorems for sine and cosine, we see that this map is in the form
(1.3) if and only if mβ = 0 mod 1. The lemma follows. �

Remark 1. Consider t 7→ 3t+sin(4πt)+ε sin(2πt). Conjugating this with t 7→ t+1/2 gives
the map t 7→ 3t+1+sin(4πt)−ε sin(2πt). These maps are both close to t 7→ 3t+sin(4πt)
as circle maps, so taking the quotient of the set ∆ defined in (1.4) by conjugacy classes
results in a space with an orbifold structure, not a manifold structure.

Remark 2. If D 6= 1, then for each map Fµ as in (1.3), one can find M ∈ MöbR so that
M ◦ Fµ ◦M−1 is equal to

(2.2) t 7→ Dt+
m∑
j=1

(µ′2j sin(2πjt) + µ′2j−1 cos(2πjt))

by taking M(t) = t+ µ1/(D− 1). (And, vice versa, each map as in (2.2) can be affinely
conjugated to one with as in (1.3) by a translation M(t) = t+ β with β chosen so that
µ2m−1 cos(2πβ) + µ2m sin(2πβ) = 0.)

2.7. Lemma (Trigonometric polynomials).
Suppose f is a trigonometric polynomial of degree n as in (1.1), and let ϕn, ψn ∈ HomeoR
with ϕn, ψn → id such that gn := ψn ◦ f ◦ ϕ−1

n are entire functions for all n.



DENSITY OF HYPERBOLICITY FOR TRANSCENDENTAL MAPS 15

Then there is a sequence αn > 0 with αn → 1 such that fn = gn(αnz)/αn is a trigono-
metric polynomial for every n. (Furthermore, since fn → f , the Fourier coefficients of
fn converge to those of f .)

Proof. Let n ∈ N and define ϑn(z) = ϕn(ϕ−1
n (z) + 2π). Then ϑn is a homeomorphism.

For purposes of legibility we suppress the subscript n in the following. Note that

g(ϑ(z)) = g(ϕ(ϕ−1(z) + 2π)) = ψ(f(ϕ−1(z) + 2π)) = ψ(f(ϕ−1(z))) = g(z).

It follows that ϑ is holomorphic, and hence an affine map ϑ(z) = z+β, where β = βn =
ϑn(0)→ 2π.

So each gn is periodic with period βn, and we are done if we set αn := βn/2π. �

3. Quasisymmetric rigidity on the bounded part of the real dynamics

In this section we consider the following class of functions, which is more general than
those considered in the introduction.

3.1. Definition (The class Breal).
We denote by Breal the set of all real transcendental entire functions with bounded singular
sets. (Note that we do not require that all singular values are real.)

If f ∈ Breal, then either limx→+∞ |f(x)| → ∞ or supx≥0 |f(x)| < ∞ (and similarly
either limx→−∞ |f(x)| = ∞ or supx≤0 |f(x)| < ∞). For this class of functions one has
the following:

3.2. Lemma.
Let f ∈ Breal, and let σ ∈ {+,−}. Suppose that limx→σ∞ |f(x)| =∞. Then

lim inf
x→σ∞

log log |f(x)|
log |x|

≥ 1

2
.

Proof. This is a standard consequence of the Ahlfors distortion theorem as stated in
[A1, Corollary to Theorem 4.8]. Indeed, let M > 0 be chosen sufficiently large to ensure
that S(f) ∪ {f(0)} ⊂ BM(0), and let V ⊂ C \ {0} be the component of the preimage of

E(M) := C \ BM(0) that contains σx for sufficiently large x. Then f : V → E(M) is a
universal covering map, and by the Ahlfors distortion theorem, we have

log | log f(z)| ≥ 1

2
log |z|+O(1)

for z ∈ V , where log f is a branch of the logarithm of f |V . The claim follows, since
| log f(x)| = log |f(x)| + O(1) as x → σ∞. (Compare [AB, Formula (1.2)] for further
discussion.) �

Hence we see that, if f(σx) is unbounded as x → +∞, then |f(σx)| > 2x for suffi-
ciently large x. In particular, either

• |f 2(σx)| is bounded as x → +∞ (which can occur either if |f(σx)| remains
bounded, or if f(σx)→ −σ∞ and f(−σx) remains bounded); or
• |fn(σx)| ≥ 2n|x|, and hence σx ∈ I(f), for sufficiently large x.
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Combinatorial conjugacy.

3.3. Definition (The partition Part(f)).
Let f ∈ Breal. We denote by Part(f) ⊂ R the set consisting of

(a) the real critical points CritR(f) of f ,
(b) the real hyperbolic attracting periodic points of f and
(c) the real parabolic periodic points of f .

3.4. Definition (Combinatorial conjugacy on the real line).
Two functions f, g ∈ Breal are called combinatorially conjugate on the real line if there
is an order-preserving bijection

h : Part(f) ∪O+
f (SR(f))→ Part(g) ∪O+

g (SR(g))

that satisfies h ◦ f = g ◦ h, maps points as in (a)-(c) above to corresponding points
and preserves the degree of critical points. Furthermore, asymptotic values in SR(f) and
SR(g) should correspond to each other, in the following sense: for σ ∈ {+,−}, we have
limx→σ∞ f(x) = a ∈ R if and only if limx→σ∞ g(x) = h(a) ∈ R.

3.5. Lemma (Combinatorial conjugacy and topological conjugacy on the real line).
If f, g ∈ Breal are combinatorially conjugate on the real line then they are topologically
conjugate on the real line. Moreover, the topological conjugacy h extends the combina-
torial conjugacy and hencesatisfies the following properties:

(a) for each n ≥ 1 and each x ∈ R, x is a critical point of f of order n iff h(x) is a
critical point of g of order n and

(b) x ∈ R is a parabolic periodic point of f iff h(x) is a parabolic periodic point of g.

Furthermore, the extension h is uniquely determined outside of the union of real attract-
ing and parabolic basins.

Proof. Since f ∈ Breal, Lemma 3.2 implies that if limx→∞ f(x) =∞ then f : R→ R can

be extended to a continuous map f̂ : (−∞,∞] → (−∞,∞] having ∞ as an attracting
fixed point. More generally, if f 2|R is unbounded, then either limx→∞ f

2(x) = ∞,
limx→−∞ f

2(x) = −∞ or both. So in the latter case, we can extend f to a continuous map

f̂ : (−∞,∞] → (−∞,∞], to f̂ : [−∞,∞) → [−∞,∞) or to f̂ : [−∞,∞] → [−∞,∞]
having respectively, ∞, −∞ or −∞,∞ as attracting fixed points or attracting periodic
two points. It follows that the only difference between a map f ∈ Breal and a multimodal
map on a compact interval is that f can have infinitely many turning points. Recall that
a point c is called a turning point of an interval map f : I → I if the map has a local
extremum at c and c is in the interior of I. The assumption in Definition 3.4 about the
way asymptotic values are mapped by h ensures, furthermore, that two combinatorially
conjugate maps extend in the same manner.

So assume that f, g ∈ Breal are combinatorially conjugate on the real line. Since f
and g are real analytic,

(i) f and g have no wandering intervals (see [dMvS, Theorem IV.A]);
(ii) f and g have at most finitely many real periodic points that are not hyperbolic and

repelling (see [dMvS, Theorem IV.B’]); in particular, f and g have no intervals
consisting entirely of periodic points;
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(iii) each periodic turning point is attracting.

(Note that point (i) implies that any extension of h as in the statement of the lemma is
uniquely determined outside of attracting and parabolic basins.)

Let us denote the union of the immediate basins of the finitely many real periodic
attractors of f and g by B0(f) and B0(g), respectively. Since the combinatorial conju-
gacy h sends periodic (parabolic) attractors to periodic (parabolic) attractors, we can
extend h to a conjugacy between f : B0(f)→ B0(f) and g : B0(g)→ B0(g) (mapping it-
erates of singular values to corresponding iterates of singular values). This implies that
assumption (iv) of [dMvS, Theorem II.3.1] is also satisfied, and one can easily check
that the proof of that theorem goes through verbatim in our context. (Alternatively, we
could apply the latter theorem directly to a restriction of f or a modification of such a
restriction as in the proof of Theorem 3.6 below.) �

Quasisymmetric rigidity. One of the main technical ingredients in this paper is the
following:

3.6. Theorem (Quasisymmetric rigidity on the bounded part of the real dynamics).
Let f ∈ Breal. Then there exists a compact interval J ⊂ R (possibly empty or consisting
of only one point) with the following properties.

(a) If x ∈ J and f(x) /∈ J , then x ∈ IR(f).
(b) For every x ∈ R, either x ∈ IR(f) or f j(x) ∈ J for all j ≥ 2.
(c) The set of points z ∈ C whose ω-limit set is contained in J and which do not

belong to an attracting or parabolic basin has empty interior and does not support
any invariant line fields.

(d) If g ∈ Breal is combinatorially conjugate on the real line to f , then there is an
interval J̃ , which has the corresponding properties for g, and a quasisymmetric
conjugacy between f |J and g|J̃ that agrees with the combinatorial conjugacy.

This theorem is essentially proved in [CvS], but the setting there is slightly different
from ours (in [CvS], the functions have compact domains). Hence the remainder of this
section is devoted to showing how to obtain the required intervals J and J̃ under the
assumptions of Theorem 3.6, using the results of [CvS].

Anchored interval maps.

3.7. Definition (The class ARAIM of anchored maps).
Let a, b ∈ R, a < b, and let f : [a, b] → R be real-analytic (by which we mean that f is
real-analytic on an open interval containing [a, b]). If f({a, b}) ⊂ {a, b}, then (following
[MiT]) we say that f : [a, b]→ R is an anchored real-analytic interval map (ARAIM).

An ARAIM f : [a, b] → R and an ARAIM g : [ã, b̃] → R are said to be topologically

conjugate if there exists an order-preserving homeomorphism h : [a, b] → [ã, b̃] so that

h ◦ f(x) = g ◦ h(x) for each x ∈ [a, b] for which f(x) ∈ [a, b] or g(h(x)) ∈ [ã, b̃]. In [CvS],
the following rigidity result is established.
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3.8. Theorem (Quasisymmetric rigidity).
Suppose that f and g are ARAIM, and that f and g are topologically conjugate via a
conjugacy h. Assume moreover that

(a) for each n ≥ 1 and each x ∈ R, x is a critical point of f of order n iff h(x) is a
critical point of g of order n and

(b) x ∈ R is a parabolic periodic point of f iff h(x) is a parabolic periodic point of g.

Then the topological conjugacy between f and g extends to a quasisymmetric homeomor-
phism on the real line.

This theorem was announced by the second author in 2009. Since then, a significantly
stronger result than Theorem 3.8 was established in joint work with Trevor Clark, and
partly with Sofia Trejo, and hence the original manuscript remains unpublished. In
particular, one of the key ingredients in the argument, the proof of complex bounds
(even for C3 maps), has been substantially unified and simplified and appears in [CST].
The work on rigidity has also been extended to the setting of C3 mappings, and only
this more general result [CvS] will be submitted for publication (in the near future).

Since the latter manuscript is not yet available, let us comment briefly on the proof
of Theorem 3.8. We emphasize that, under the additional assumption that f and g are
polynomials without parabolic periodic points whose critical points all have even order
and are all real, this theorem already appears in [KSS1] (see the Rigidity Theorem and
Rigidity Theorem’ on page 751 of that paper). The proof there uses the following steps:

(a) associate to both f and g an induced first return map, called a complex box
mapping, near iterates of the critical points;

(b) the main step in the proof is then to show that for a certain subsequence (the
enhanced nest) these complex box mappings satisfy some a priori complex bounds
(these are uniform estimates on the moduli of certain annuli);

(c) use the qc-criterion from [KSS1, Appendix] to show that these a priori bounds
imply that these first return maps are quasiconformally conjugate;

(d) spread this quasiconformal conjugacy to the entire complex plane.

In [CST] it is shown that such complex bounds hold for arbitrary real analytic maps (and
even more generally), a fact which was known previously in a large class of special cases,
see [KSS1] and [She]. Exactly as in [KSS1], we can then use the qc-criterion which states
that bounded geometry implies quasiconformal rigidity to deduce that the complex box
mappings are quasiconformally conjugate. (The proof of this criterion in [KSS1] exploits
recent results on quasiconformal maps due to Heinonen and Koskela [HK]. We note that,
prior to [KSS1], their theorem and its variations were used to prove rigidity results in
[PR], [Ha], [GSm], [LvS] and [Sm], where in the last work, the author explicitly stated
that a bounded shape property of puzzle pieces implies rigidity for non-renormalizable
unicritical maps.)

Once this is done, we can extend the conjugacy to the real line in a quasisymmetric
manner. Here the fact that the map is non-polynomial means that one no longer can
use Böttcher coordinates, and so one needs to paste together (essentially by hand) the
conjugacies which are constructed near different critical points. (This final step is carried
out in detail in [CvS], where additional arguments are required to deal also with the C3

setting.)
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We shall also require a result on the absence of invariant line fields. As mentioned
above, the existence for complex box mappings for real-analytic maps is proved in [CST]
(and in many cases in previous papers). The fact that such a complex box mapping does
not support invariant line fields is by now well-known, see for example [KSS1, KvS, CST]
and also [CvS]. Thus we immediately obtain the following theorem.

3.9. Theorem (Absence of invariant line fields).
Let f : [a, b] → R be an ARAIM, and let U ⊃ [a, b] be an open subset of C on which f
is analytic. Then the set of points z ∈ U for which dist(fn(z), [a, b]) → 0 as n → ∞
and that do not belong to attracting or parabolic basins has empty interior and does not
support any invariant line fields.

A function f ∈ Breal which is unbounded both for x → +∞ and x → −∞ has a
restriction that is an ARAIM, and hence in this situation Theorem 3.6 follows from the
statements above. In the case where f is bounded to the left or to the right, this is not
necessarily the case, so we will need to be slightly more careful in showing how to deduce
Theorem 3.6. However, there are no new dynamical phenomena in this setting, and we
will show that we can modify f outside an interval that contains all relevant dynamics
to obtain an ARAIM. (Instead, we could also observe that the proof from [CvS] goes
through in this slightly modified setting.)

Proof of Theorem 3.6 from Theorems 3.8 and 3.9. By Lemma 3.5, the maps f and g
from assumption (c) in the statement of the theorem are in fact topologically conjugate.
Let us distinguish a few cases.

Case 1. R \ IR(f) contains at most one point.

In this case the set J = R \ IR(f) satisfies all the requirements of the theorem. So
from now on we assume in the proof that R \ IR(f) contains several points.

Case 2. f is unbounded in both directions on the real line.

In this case, let a and b be the smallest resp. largest non-escaping points under f .
Then clearly f({a, b}) ⊂ {a, b}, so if we set J := [a, b], then the restriction f |J is a an
ARAIM. So the theorem follows from Theorems 3.8 and 3.9.

It remains to deal with the cases where at least one of f |(−∞,0] and f |[0,+∞) is bounded.

Case 3. f |R is bounded.

In this case, there may not exist suitable points a, b ∈ R so that f |[a,b] becomes an
ARAIM. Therefore we will modify f as follows. Set

α := inf
x∈R

f(x) and β := sup
x∈R

f(x)

and choose numbers A < α− 1 and B > β + 1 that are not critical points of f .
Choose ε > 0 such that

A+ 1 < Re f(z) < B − 1

whenever

z ∈ U := {x+ iy : x ∈ [A,B], |y| < ε}.
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We may also assume that ε > 0 is chosen sufficiently small that f is injective on the
boundary segments [A− iε, A+ iε] and [B − iε, B + iε].

Set C := A− 1 and D := B + 1. We now define a quasiregular extension f̃ : V → C
of the restriction f |U , where

V := {x+ iy : x ∈ [C − ε,D + ε], |y| < ε}.
This extension will be chosen to have the following properties:

(a) f̃ commutes with complex conjugation;

(b) f̃({C,D}) ⊂ {C,D};
(c) f̃ is monotone (without critical points) on [C − ε, A] and [B,D + ε];

(d) If f̃ is not holomorphic at z ∈ V , then Re f(z) ∈ [A,B].

Such an extension is simple to construct. Indeed, we first determine f̃(C) and f̃(D)

according to (b) and (c). Then we choose f̃ to be a linear map on [C− ε, C+ ε]× [−ε, ε]
whose image is [f̃(C) − 1, f̃(C) + 1] × [−1, 1], and similarly for D. Finally, we use a
diffeomorphism to interpolate between this map and f |U .

Note that f([A,B]) ⊂ [A,B] so that the orbit of any z ∈ V enters the region where f̃

is not holomorphic at most once under iteration of f̃ : V → C. This means that f̃ has
an invariant Beltrami field on V . Extend this Beltrami field µ to C by setting it to zero
outside V . Now use the Measurable Riemann Mapping Theorem to straighten f̃ to an
analytic map F ; i.e. let F = h−1

µ ◦ f̃ ◦ hµ where hµ is so that ∂̄h/∂h = µ. Then F is
holomorphic and an ARAIM, when restricted to a suitable interval [a, b]. Furthermore,

the conjugacy hµ between F and f̃ (and hence f) is conformal on U , so it follows from
Theorem 3.9 that f supports no invariant line fields on the set of points whose ω-limit
set is contained in [α, β].

It is also clear that we can apply the same procedure to a function that is topologically
conjugate on the real line to f to obtain an ARAIM that is topologically conjugate on
the real line to F . Hence we can apply Theorem 3.8. This completes the proof of the
theorem in the case where f is bounded.

Case 4. f is unbounded in one direction, and bounded in the other.

Let us assume without loss of generality that |f(x)| → ∞ as x → +∞ and that
lim supx→−∞ |f(x)| < ∞. If f(x) → −∞ as x → +∞, then f 2 is bounded, and we can
apply the previous argument to this iterate. Hence we may suppose that f(x)→ +∞ as
x→ +∞, in which case we see as above by Lemma 3.2 that f(x) ∈ I(f) for sufficiently
large x. Let b ∈ R be the largest real nonescaping point of f ; then b is a (repelling or
parabolic) fixed point. We now distinguish three further subcases.

(i) If lim infx→−∞ f(x) > b, we can choose a as the smallest preimage of b. Then
f |[a,b] is an ARAIM, and J := [a, b] has the desired properties.

(ii) If f has infinitely many preimages of b on the real axis, we can pick a as such
a preimage chosen small enough that a < α := infx∈R f(x). Again, we can set
J := [a, b] and f |J is an ARAIM.

(iii) In the remaining case, f(x) < b whenever x is sufficiently negative. We can
choose A < α − 1 in such a way that A is not a critical point and modify the
function f to the left of A, exactly as above, to obtain a quasiregular map that
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straightens to a holomorphic map whose restriction to a suitable interval is an
ARAIM. So we are done also in this case, setting J := [A, b]. �

4. Gluing and extending quasiconformal homeomorphisms dynamically

Topological equivalence. To ensure that not only the order relation of the critical
points and critical values of f and g on the real line are the same, but that they are also
compatible in the complex plane we use the notion of topological equivalence from [EL].

4.1. Definition (Real-topological equivalence).
Two maps f, g ∈ SR are called real-topologically equivalent if there are functions ϕ, ψ ∈
HomeoR such that

ψ(f(z)) = g(ϕ(z))

for all z ∈ C.
The set of all functions g that are real-topologically equivalent to f is denoted by MR

f .

Remark 1. If f and g are real-topologically equivalent, then they are in fact real-quasicon-
formally equivalent ; i.e. the maps ψ and ϕ can be chosen to be quasiconformal. Indeed,
suppose that maps ϕ, ψ ∈ HomeoR as in the definition are given. Because S(f) is finite,

we can find a quasiconformal homeomorphism ψ̃ ∈ HomeoR such that ψ and ψ̃ are
isotopic relative S(f) ∪∞. We can lift the homotopy to a homotopy between ϕ and a

map ϕ̃ such that ψ̃ ◦ f = g ◦ ϕ̃. Because f and g are holomorphic, it follows that ϕ̃ is
also quasiconformal.

Remark 2. The set MR
f can naturally be given the structure of a q+ 2-dimensional real-

analytic manifold, where q = #S(f), as we discuss in Section 7. For now, we only
consider MR

f as a set of entire functions.

Note that the maps ϕ and ψ might not be uniquely determined. When we speak of
two real-topologically equivalent functions, we always implicitly assume that a specific
choice of ϕ and ψ is given. Another way of saying this is that we mark the singular
values and the critical points.

One important consequence of f, g being real-topologically equivalent is that if c is a
critical point of f then ϕ(c) is a critical point of g of the same order.

Several notions of conjugacy. Let f, g ∈ SR be real-topologically equivalent, with a
suitable choice of ϕ and ψ as above. We will now discuss a number of different important
notions of conjugacies: combinatorial, topological, quasiconformal and conformal.

First we modify the definition of combinatorial conjugacy on the real line (recall
Definition 3.4). The point of this modification is that, when we look at functions in the
complex plane, we should restrict to those that are real-topologically equivalent. Given
such a real-topological equivalence, represented by maps ϕ and ψ, we have a natural
correspondence between the critical points of f and g (via ϕ) and the singular values of
f and g (via ψ). Our combinatorial conjugacy should respect this information; i.e. map
corresponding critical points and singular values to each other. Furthermore, if we wish
to relate our maps f and g also in the complex plane, then we must consider not only
the behaviour of points in SR(f), but include all singular values in the definition.
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4.2. Definition (Combinatorial conjugacy for maps in SR).
Two functions f, g ∈ SR are called combinatorially conjugate (in C) if they are real-
topologically equivalent, say ψ ◦ f = g ◦ ϕ, and there exists an order-preserving bijection

h : Part(f) ∪O+
f (S(f))→ Part(g) ∪O+

f (S(g))

such that

(a) h ◦ f = g ◦ h,
(b) h|CritR(f) = ϕ|CritR(f),
(c) h|S(f) = ψ|S(f) and
(d) h maps each nonrepelling periodic point to a nonrepelling periodic point of the

same type (i.e. hyperbolic to hyperbolic, and parabolic to parabolic).

The reason we say that f and g are combinatorially conjugate in C (rather than
combinatorially conjugate on the real line) is that the assumption that f, g ∈ SR are
real-topologically equivalent implies that f, g are topologically conjugate on the com-
plex plane whenever the combinatorial conjugacy h : R → R is quasisymmetric, see
Theorem 4.7.

4.3. Proposition (Combinatorial conjugacy in C implies topological conjugacy in R).
If f, g ∈ SR are combinatorially conjugate in C, then these maps are combinatorially
conjugate on the real line (in the sense of Definition 3.4) and therefore topologically
conjugate on the real line. Furthermore, the topological conjugacy can be chosen to agree
with the combinatorial conjugacy from Definition 4.2.

Proof. Property (b) and the fact that f, g are real-topologically equivalent imply that h
sends critical points of f to critical points of g of the same order. Also, the condition
on asymptotic values is automatically satisfied: if limx→σ∞ f(x) = a, then

lim
x→σ∞

g(x) = lim
x→σ∞

g(ϕ(x)) = ψ
(

lim
x→σ∞

f(x)
)

= ψ(a).

The proposition therefore follows from Lemma 3.5. We note that, a priori, the topological
conjugacy provided by this lemma is an extension of the real combinatorial conjugacy,
which in general is a restriction of our original map h. However, the extension will
automatically agree with our original map on points that do not belong to attracting or
parabolic basins (due to absence of wandering intervals), and can easily be arranged to
respect the finitely many remaining orbits. �

Combinatorial conjugacy can also be expressed alternatively in terms of kneading
sequences, which is an idea that we use later.

4.4. Definition (Topological and QC conjugacy).
Two maps f, g ∈ SR are called real-topologically conjugate if there is a homeomorphism
ϑ ∈ HomeoR such that ϑ ◦ f = g ◦ ϑ on C. (The prefix “real” in this notation is to
express that ϑ preserves the real line.)

If this homeomorphism ϑ is quasiconformal, we say that f and g are real-quasicon-
formally conjugate.

Finally, let us turn to a notion of conjugacy on escaping sets. Recall that IR(f) =
{x ∈ R : |fn(x)| → ∞}.
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4.5. Definition (Escaping conjugacy).
Let f, g ∈ SR be real-topologically equivalent. We say that f and g are escaping conjugate
if there is an order-preserving homeomorphism j : IR(f)→ IR(g) such that:

(a) j ◦ f = g ◦ j on IR(f);
(b) j agrees with ϕ on CritR(f) ∩ IR(f) and with ψ on S(f) ∩ IR(f), and
(c) for every closed and forward-invariant set K ⊂ IR(f), j|K extends to a quasisym-

metric homeomorphism of the real line.

The article [R] provides a simple way of encoding when two maps are escaping conju-
gate. We discuss this below. For now, we only need the following fact.

4.6. Theorem (Escaping rigidity).
If f, g ∈ SR are real-topologically conjugate, then they are escaping conjugate.

Proof. Let h be the real-topological conjugacy between f and g; we set j = h. The first
two conditions in the definition of escaping conjugacy are trivially satisfied (recall that
we can take ϕ = ψ = h in the definition of topological equivalence). So let K ⊂ IR(f) be
a closed and forward-invariant set; we must show that h|K extends to a quasisymmetric
homeomorphism of the real line. This is stated explicitly in [R, Theorem 1.3] for the case
where the set K is the union of finitely many escaping orbits (which is in fact sufficient
for the purposes of this paper).

In general, we can deduce this claim from the results of [R] as follows. First observe
that, for every R > 0 there is n0 ∈ N such that fn(K) ∩ [−R,R] = ∅ for all n ≥ n0.
Indeed, by the disussion following Lemma 3.2, we may assume that R is sufficiently large
to ensure that |fn(x)| ≥ R whenever |f 2(x)| ≥ R. Hence we need to prove the claim
only for the set K ∩ [−R,R], where it is trivial by compactness.

Now [R, Theorem 1.1. and Corollary 4.2] imply that h|fn(K) extends to a real-quasi-
conformal homeomorphism ψ. We may choose ψ in such a way that it agrees with h on
the set of singular values of fn. Hence ψ and h are isotopic relative to S(fn), and we
may lift the homotopy to obtain a map ϕ such that ψ ◦ fn = gn ◦ ϕ. By construction,
the real-quasiconformal map ϕ extends h|K , as desired. �

Promoting conjugacies: the pullback argument. The following is a version of a
well-known argument of promoting combinatorial conjugacies to quasiconformal ones,
provided that one has control on the postsingular set.

4.7. Theorem (The pullback argument).
Suppose that f, g ∈ SR are combinatorially conjugate (in C) and that the combinatorial
conjugacy h extends to a quasisymmetric homeomorphism h : R→ R.

Then f and g are real-quasiconformally conjugate, where the conjugacy ϑ can be chosen
to agree with h on Part(f) ∪O+

f (S(f)).

Proof. Since the map h is quasisymmetric, it extends to a real-quasiconformal map
ϑ0 : C→ C. Let ϕ and ψ be the maps from the definition of real-topological equivalence.
By the definition of a combinatorial conjugacy, the map ϑ0 is isotopic to ψ relative S(f).

Furthermore, it follows from the assumption that f and g are combinatorially con-
jugate, or alternatively from the quasisymmetry of h, that every attracting cycle of f
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maps to an attracting cycle of g, and every parabolic cycle of f maps to a parabolic
cycle of g under h.

Also note that, in the class SR, every attracting direction of a parabolic point must
be aligned with the real axis, so there are only three possibilities for parabolic points:
a parabolic point with one fixed attracting petal (corresponding to a saddle-node z 7→
z + z2) a parabolic point with two fixed attracting petals (as for z 7→ z − z3), or one
with a 2-cycle of attracting petals (corresponding to a fixed point with eigenvalue −1
as in the period-doubling bifurcation). Since each attracting petal must contain some
critical point, the combinatorial conjugacy must map each parabolic point to one of the
same type.

It is then easy to see that we can choose the map ϑ0 in such a way that ϑ0 is a
conjugacy between f and g in some linearizing neighbourhood or attracting petal for
every attracting periodic point or parabolic attracting direction. This can be done as in
Section 5 of [CvS].

By the covering homotopy theorem, we can find a map ϑ1, isotopic to ϕ relative
f−1(S(f)), such that ϑ0 ◦f = g ◦ϑ1. Here we use that ϕ agrees with h on P(f) and that
h maps critical points of f to critical points of g of the same order. Since ϕ preserves
the real line, and f and g are real, we also get that ϑ1(R) = R.

We claim that ϑ1 agrees with the original map h on the postsingular set. Indeed, let
v ∈ P(f). By construction,

g(ϑ1(v)) = ϑ0(f(v)) = h(f(v)) = g(h(v)),

so ϑ1(v) and h(v) both have the same image. Since ϑ1 = ϕ1 = h on the set of critical
points of f , we see that ϑ1(v) and h(v) belong to the same interval of R \ Crit(g), and
since g is injective on each of these intervals, we have ϑ1(v) = h(v) as desired.

In particular, ϑ1 is also isotopic to ψ, and we can repeat the above procedure to obtain
maps ϑj with

ϑj ◦ f = g ◦ ϑj+1,

and such that ϑj is isotopic to ψ relative to the postsingular set and isotopic to ϕ relative
CritR(f).

Note that the maps ϑj and ϑj+1 agree on the j-th preimages of the union of the
postsingular set with the originally chosen linearizing neighbourhoods and parabolic
petals. Also note that their maximal dilatation does not increase with j. Hence ϑj
converges to a suitable quasiconformal function h, which is the desired conjugacy. �

5. Rigidity

In this section, we establish our main rigidity theorem.

5.1. Theorem (From combinatorial to quasiconformal conjugacy).
Let f, g ∈ SR be combinatorially conjugate (in C) and escaping conjugate. Then f and g
are real-quasiconformally conjugate (and the conjugacy can be chosen to be an extension
of the original combinatorial conjugacy).

Remark. For functions that are bounded on the real line, that have no asymptotic values
and for which all critical points are real, the statement simplifies as follows: If f and g
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are real-topologically combinatorially equivalent and topologically conjugate on the real
line, then they are real-quasiconformally conjugate in the complex plane.

Proof. Let
h : Part(f) ∪O+

f (S(f))→ Part(g) ∪O+
f (S(g))

be the combinatorial conjugacy between f and g. We write dom(h) := Part(f) ∪
O+
f (S(f)) for the domain of h.

Claim. There exists a quasisymmetric extension of h to h : R→ R.

Proof. Theorem 3.6 asserts that there exists a compact interval J ⊂ R (possibly empty
or consisting of only one point) with the following properties.

(a) For every x ∈ R, either x ∈ IR(f) or f j(x) ∈ J for all j ≥ 2.
(b) The set of points z ∈ C whose ω-limit set is contained in J and which do not

belong to an attracting or parabolic basin does not support any invariant line
fields.

(c) If g ∈ Breal is combinatorially conjugate on the real line to f , then there exists an
interval J̃ with corresponding properties and an order-preserving quasisymmetric
homeomorphism h1 : R→ R which maps J onto J̃ and so that h1 ◦ f = g ◦ h1 on
J and such that h1 = h on dom(h) ∩ J .

Let I+ and I− denote the two components of R\J , and let Ĩ+ and Ĩ− be the corresponding
components of R \ J̃ , i.e. Ĩσ = h1(Iσ). Fix σ ∈ {+,−}.

Subclaim. The restriction of h to dom(h) ∩ Iσ can be extended to an order-preserving
quasisymmetric homeomorphism hσ : R→ R.

To see this, note that dom(h) ∩ Iσ is a closed and discrete subset of the real line. We
distinguish three cases:

• If dom(h) ∩ Iσ is finite, then the subclaim is trivial.
• If Iσ contains infinitely many postsingular points, then |f | is unbounded as x→
σ∞, and in particular dom(h) ∩ Iσ consists of finitely many escaping singular
orbits (possibly together with finitely many additional points). The subclaim
follows from the assumption that f and g are escaping conjugate.
• If dom(h) ∩ Iσ is infinite but contains only finitely many postsingular points, it

must contain infinitely many critical points. The subclaim follows from the fact,
remarked after Definition 4.1, that the restriction of ϕ to the set of critical points
of f extends to a quasisymmetric homeomorphism. This completes the proof of
the subclaim.

Because dom(h) ∩ Iσ is a closed set, we can construct the desired extension h : R → R
by interpolating between h−, h1 and h+. (E.g., h agrees with h1 on J and with each hσ
on a closed subinterval of Iσ which contains dom(h)∩Iσ and is linear on the complement
of these intervals.) This completes the proof of the claim. 4

The assertion in the theorem now follows from the pullback argument (Theorem 4.7).
�

Proof of Theorem 1.8. Suppose that f, g ∈ SR are topologically conjugate by a conju-
gacy h that preserves the real axis. We may assume that h commutes with complex
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conjugation (otherwise, replace h on the lower half-plane by the map h(z) := h(z̄)).
Hence either f and g are real-topologically conjugate (if h|R is order-preserving) or f
and g̃(z) := −g(−z) are real-topologically conjugate (otherwise). So the claim follows
from the previous theorem and Theorem 4.6. �

6. Absence of Invariant Line Fields

Absence of invariant line fields in SR. In this section, we are concerned with showing
that the functions f ∈ SR we consider do not support any invariant line fields on their
Julia sets. (Recall the definitions from Section 2.) As mentioned in the introduction,
we will do so by decomposing the Julia set in a number of dynamically distinct sets and
treat each separately.

So let f ∈ SR and define

PB(f) := {z ∈ P(f) : O+(z) is bounded} and

PI(f) := P(f) ∩ IR(f) = P(f) \ PB(f).

We consider the following subsets of the complex plane:

(a) The radial Julia set Jr(f) (by definition this is the set of all points z ∈ J(f) with
the following property: there is some δ > 0 such that, for infinitely many n ∈ N,
the disk D#

δ (fn(z)) can be pulled back univalently along the orbit of z).
(b) The escaping set I(f) = {z ∈ C : |fn(z)| → ∞ as n→∞}.
(c) The set LB(f) of points z ∈ J(f) \ Jr(f) with dist(fn(z),PB(f))→ 0.
(d) The set LI(f) of points z ∈ J(f) \ (Jr(f) ∪ I(f)) with dist#(fn(z),PI(f))→ 0.

6.1. Lemma (Partition of the Julia set).
For any f ∈ SR, we have J(f) = Jr(f) ∪ I(f) ∪ LB(f) ∪ LI(f).

Proof. Any point with lim sup dist#(fn(z),P(f)) > 0 belongs to Jr(f). So it remains to
show that an orbit cannot accumulate both on bounded and on escaping singular orbits.

This follows from continuity of f . Indeed, consider the spherical distance δ :=
dist#(PB(f),PI(f) ∪ {∞}). Since the set of singular values is finite, the sets PB(f)
and PI(f) ∪ {∞} are both compact subsets of C̄, hence we have δ > 0.

Then there exists ε ∈ (0, δ/2) such that dist#(PB(f), f(z)) < δ/2 for any point
z ∈ C with dist(PB(f), z) < ε. If z ∈ C \ Jr(f), then dist#(fn(z),P(f)) < ε for
sufficiently large n. We then have either dist#(fn(z),PB(f)) ≥ ε for all such n, or
dist#(fn(z),PB(f)) < ε for all sufficiently large n. In the former case, we must have
z ∈ I(f) ∪ LI(f), while in the latter, z ∈ LB(f). �

6.2. Theorem (No invariant line fields on radial, escaping and bounded orbits).
Suppose that f ∈ SR. Then the sets Jr(f), I(f) and LB(f) support no invariant line
fields. Furthermore, if f has bounded criticality, then the set LI(f) has zero Lebesgue
measure, and hence also does not support invariant line fields.

Proof. The set Jr(f) (of any transcendental meromorphic function) does not support
any invariant line field by [RvS1, Corollary 7.1]. (Compare also [MaR].) The set I(f)
does not support any invariant line fields; in fact, this is true for all transcendental entire
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functions for which S(f) is bounded [R]. The set LB(f) supports no invariant line fields
by Theorem 3.6 above.

Finally, let z ∈ LI(f), and let v ∈ PI(f) be a limit point of the orbit of z; say
fni(z)→ v. If D is a small disk around v, and Di is the component of f−ni(D) containing
z, then the assumption of bounded criticality implies that the restrictions fni : Di → D
are proper maps of bounded degree (independent of i). By Lemma [RvS1, Lemma 3.6],
the set of such points has Lebesgue measure zero, as claimed. (Compare also the proof
of Claim 1 in the proof of Theorem 6.3 below.) �

Absence of invariant line fields on points asymptotic to singular orbits. We
now come to the main new result of this section.

6.3. Theorem (Absence of invariant line fields on LI(f)).
Suppose that f ∈ SR satisfies the sector condition (Definition 1.5). Then LI(f) supports
no invariant line fields.

Proof. Suppose by contradiction that LI(f) supports a measurable invariant line field
µ. As mentioned, this means that there exists a set A ⊂ LI(f) of positive Lebesgue
measure so that A 3 z 7→ µ(z) is a measurable choice of a (real) line through z (i.e. it
is a measurable map from A into the projective plane).

The rough idea of the proof is as follows. First of all, we let z be a point of continuity
of the line field µ, and will observe that (unless z belongs to a set of measure zero) its
orbit must accumulate at some point v ∈ PI(f), passing either through transcendental
singularities or through neighbourhoods of critical points of high degree. This will allow
us to conclude that v has circular neighbourhoods in which the line field µ looks almost
like a radial line field ϑ(z) = ρz/|z|, where ρ ∈ C with |ρ| = 1. (See Figure 1.) More
precisely, we show:

Claim 1. For almost every z ∈ A, the following holds. Let v ∈ PI(f) be an accumulation
point of the orbit of z. Then there exists a sequence δi → 0 of radii such that the
rescalings

µ̃i(z) := µ(δiz + v), z ∈ D = B1(0),

converge to a radial line field ϑ(z) = ρz/|z| on D. (Here, convergence means that for
any ε > 0 there exists a set Xε ⊂ D so that the Lebesgue measure of D \Xε is less than
ε and so that µ̃i is defined on Xε and converges uniformly to ϑ on Xε.)
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Figure 3. Near the value v the line field µ is almost radial.
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Once this claim is established, we take forward iterates of the disk Bδi(v), until it
stretches many times over some large annulus. Given what we know about the line field
on Ai, we can derive a contradiction.

To make this idea more precise, we use the logarithmic change of variable [EL, Section
2]. If v is a limit point as in Claim 1, then |fn(v)| → ∞ as n→∞. Because the set of
singular values of f is finite (and hence bounded), there is σ ∈ {+,−} so that fn(v)→
σ∞ or so that (−1)nfn(v)→ σ∞. In the first situation limx→σ∞ f(x) = σ∞ and in the
second case limx→σ∞ f(x) = −σ∞. To fix our ideas, let us suppose that we are in the
former case; the arguments in the latter are analogous. (Note, however, that the sector
condition is not preserved under iteration, so we cannot simply reduce the second case
to the first by considering f 2 instead of f .) Thus we assume that limx→+∞ f(x) = +∞
and that there exists a point v as in Claim 1 such that fn(v)→ +∞. (In particular, we
have + ∈ Σ, where Σ is the set from the sector condition.)

Choose M > 0 large enough such that M > |f(0)|, such that f(x) > x for x ≥ M
and such that

E(M) := {z ∈ C; |z| > M}
contains no singular values of f . Let V be the component of f−1(E(M)) that contains
[M,∞).

Since E(M) contains no singular values, f : V → E(M) is a covering map. Since
f is transcendental, V is simply-connected and f : V → E(M) is a universal covering.
Set r := logM , Hr := {z ∈ C : Re z > r} and let W be the component of exp−1(V )
that contains [r,∞). Because exp : Hr → E(M) is also a universal covering map, and
exp : W → V is univalent, there is a conformal isomorphism F : W → Hr such that
exp ◦F = f ◦ exp and F (W ∩ R) ⊂ R.

W
F

//

exp

��

Hr

exp

��

V
f

// E(M)

It is well-known that the map F is strongly expanding, see equation (6.3) below, and
we will use this, together with the sector condition, to blow up the almost radial line
field from Claim 1 to a large scale (in logarithmic coordinates). More precisely, we use
the following.

Claim 2. There exist constants r1 > r and c < 1 such that, for every K ≥ c > 0, there
is δ0 = δ0(K) with the following property.

Let w ≥ r1 and δ ≤ δ0. Then there exist δ̃ ≤ δ with δ̃ ≥ c · δ/K and a number n ≥ 0
such that F n is defined and univalent on Bδ̃(w) and

F n(Bδ̃(w)) ⊃ BK(F n(w)).

To show how these two claims, together, yield the theorem, let v ∈ PI(f) be a point
as in Claim 1 such that fn(v)→ +∞. By passing to a forward iterate, if necessary, we
can assume that fn(v) > er1 for all n ≥ 0, where r1 is as in Claim 2. So fn(v) ∈ E(M)
for all n ≥ 0. Set w := log v ∈ R.
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Let µ′ be the line field on Hr defined by pulling back µ under exp: Hr → E(M). Then
µ′ is 2πi-periodic by definition. It follows from Claim 1 that there is a sequence δi → 0
of radii such that the rescalings of µ′ on the disks Bδi(w) converge to a radial line field.

If we let Ki be a sequence that tends to infinity sufficiently slowly, then for any choice
of εi between 4π · c · δi/K2

i and δi, the rescalings of µ′ on the disks Bεi(w) will also
converge to a radial line field. (Here c is the constant from Claim 2.) We may also
assume that Ki > 4π and δ0(Ki) > δi for all i.

Now we apply Claim 2 to obtain numbers δ̃i with c ·δi/Ki ≤ δ̃i ≤ δi as well as numbers
ni such that F ni is defined and univalent on Bδ̃i

(w) and covers BKi
(F ni(w)). If we set

εi := 4π ·δ̃i/Ki, then F ni(Bεi(w)) ⊃ B4π(F ni(w)). To see this, apply the Schwarz Lemma
to the branch of F−ni |BKi

(F ni(w)) mapping into Bδ̃i
(w).

Since F ni(Bεi(w)) can be much larger than B4π(F ni(w)), we define κi > 0 to be the
largest integer so that ϕi(D) ⊃ B4π(0) where

ϕi : D→ C; ζ 7→ F ni(w + εi · ζ)− F ni(w)

κi
.

Passing to a subsequence again if necessary, we can assume that the ϕi converge uni-
formly to a non-constant linear map. (Recall that each ϕi extends to a conformal map on
a disk whose radius tends to ∞ as i→∞.) Now consider the sequence of line fields on
the disk D = B4π(0) obtained by first rescaling the line field µ′ on the disk D := Bεi(w)
as above, and then pushing forward under the map ϕi. By construction, these push-
forwards converge to the radial line field on D. On the other hand, by invariance of
µ′, these push-forwards are each obtained from µ′ by a translation and a rescaling by a
factor of 1/κi, and hence are all 2πi-periodic. (Here we use that κi is an integer, and
consequently µ′ is 2πκi-periodic). But then we obtain that the radial line field on the
disk D is also 2πi-periodic, which is absurd.

It remains to establish Claims 1 and 2. To prove the former, let z be a Lebesgue
density point of A which is also a point of continuity of µ. This means that for each
ε > 0 there exists δ > 0 and a fixed line µ0 so that dens(A,Bδ(z)) ≥ 1 − ε and so that
|{z ∈ Bδ(z) ∩ A; |µ(z)− µ0| ≤ ε}|/|Bδ(z)| ≥ 1− ε. Here ,

dens(A,B) :=
meas(A ∩B)

meas(B)

denotes the density of A in B and |µ(z)− µ0| denotes the angle between the lines µ(z)
and µ0.

Let v ∈ PI(f) be a limit point of the orbit of z; say fni(z) → v. Since the set of
singular values of f is finite, we can take r > 0 so small that the set U := Br(v) does not
intersect P(f)\{v}. We may assume that fni(z) ∈ U for all i. Let Ui be the component
of f−ni(U) that contains z. Let us also denote by U∗i the component of f−ni(U \ {v})
contained in Ui.

Then Ui is simply connected, and since z ∈ J(f), we have

(6.1) dist(z, ∂Ui)→ 0.

Furthermore, fni : Ui → U is either a finite-to-one covering map of some degree di <∞
(branched only over v) or fni : Ui → U \ {v} is a universal covering (of degree di =∞).
Note that U∗i = Ui when di =∞, whereas otherwise Ui \U∗i consists of a single iterated
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preimage vi of v. The set of points z ∈ LI(f) for which the sequence di does not tend
to infinity has Lebesgue measure zero by [RvS1, Lemma 3.6]. So we may assume that z
was chosen such that di →∞.

Let H = {z ∈ C; Re(z) > 0} denote the right half plane, and define

E : H→ U \ {v}; z 7→ v + r · e−z.
Since E is a universal covering, there exists a covering map ψi : H→ U∗i with fni◦ψi = E.
Since fni : U∗i → U \ {v} has degree di, ψi will be injective when restricted to any
horizontal strip of height 2πdi.

U∗i
fni

((

H
ψi

oo

E
��

U \ {v}
Let ζi be a preimage of fni(z) under E, and define

Ri := Re ζi.

Since fni(z)→ v, we have Ri →∞.

Proof of Claim 1. Let ∆i < 2πdi be a sequence that tends to infinity sufficiently slowly
(to be fixed below). For simplicity let us also require that ∆i is a multiple of 2π. Consider
the squares

Qi := ζi +

[
−∆i

2
,
∆i

2

]
×
[
−i−∆i

2
, i

∆i

2

]
with sides of length ∆i and centre ζi. Note that ψi is injective on Qi. Indeed, if

Si := {a+ ib : a > 0, |b− Im ζi| < πdi}
is the horizontal strip of height 2πdi centered at ζi, then ψi is injective on Si, as mentioned
above. Furthermore, if ∆i grows sufficiently slowly, then mod (Si \Qi)→∞, and hence

(6.2) mod (ψi(Si) \ ψi(Qi))→∞.
Let ν be the line field on Qi that is obtained by pulling back µ under ψi. Using (6.2),
the Koebe Distortion Theorem and that z is a point of continuity of the line field µ,
we see that ν is an almost constant line field on Qi. More precisely, there is a sequence
ηi → 0 such that, for each i, there are a subset Q̂i of Qi and a constant line field ν0 so
that dens(Q̂i, Qi) ≥ 1− ηi and |ν(z)− ν0| ≤ ηi for each z ∈ Q̂i. Moreover, if we decrease
∆i, then the bound for ηi from the Koebe Theorem improves. This means that we may
assume that ∆i tends to infinity sufficiently slowly to ensure that

∆i · ηi → 0.

Let us determine µ on Ai = E(Qi) = fni(ψi(Qi)), using the fact that µ|Ai
= E∗(ν|Qi

).
Note that Ai is a round annulus centered around v with mod (Ai) → ∞; let ri denote
its outer radius. Also note that ϑ = E∗(ν0|Qi) is the radial line field z 7→ ρz/|z| where
ρ ∈ C with |ρ| = 1 is constant; see Figure 3. Furthermore,

dens(E(Qi \ Q̂i), Ai) ≤
1

1− e−∆i
∆i · ηi → 0.
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Indeed, considering the map E : Qi → E(Qi) on a horizontal segment L, and writing

Ti := (Qi \ Q̂i) ∩ L, we have

length(E(Ti))

lengthE(Qi ∩ L)
≤ length(Ti)

1− e−∆i
= dens(Ti, Qi ∩ L) · ∆i

1− e−∆i
.

This completes the proof of Claim 1. 4

Now let us turn to the proof of Claim 2. We begin by reformulating the sector
condition in logarithmic coordinates.

Claim 3. There exists ε0 ∈ (0, 1) and r2 > r + 1 so that W ⊃ H(ε0, r2) where

H(ε0, r2) := {z ∈ C; z = x+ iy, x, y ∈ R with x > r2 and |y| < ε0}.

Proof. Note that f satisfies the sector condition, and therefore V contains a sector of
the form

S(ϑ,M2) := {z ∈ C; z = x+ iy, x, y ∈ R with |y| < ϑ|x|, x ≥M2}
where ϑ > 0 and M2 > 0 is some large number. There exist ε0 ∈ (0, 1) and r2 > 0 so
that S(ϑ, r2) ⊃ exp(H(ε0,M2)) concluding the proof of the claim. 4

Proof of Claim 2. By [EL, Lemma 1] (which is an application of Koebe’s theorem), the
map F is expanding:

(6.3) |F ′(z)| ≥ 1

4π
(ReF (z)− r)

for all z ∈ W . (Recall that r = logM .) In particular, if r1 > r2 + ε0 is sufficiently large,
then for every x ≥ r2 and all j ≥ 0, there exists a branch of F−j that takes F j(x) to x
and is defined on the disk of radius 3ε0 around F j(x).

Now let w ≥ r1, K > 0 and δ > 0. We set wj := F j(w), D := Bδ(w) and Dj := F j(D).
Let m ≥ 0 be minimal such that Dm is not contained in the strip H(ε0/4, r2). Then
Fm : D → Dm is a conformal isomorphism.

We claim that there is a universal constant C such that

(6.4)
maxζ∈∂Dm |ζ − wm|
minζ∈∂Dm |ζ − wm|

≤ C.

This is trivial if m = 0. Otherwise, let ϕ be the branch of F−(m−1) that takes wm−1

to w and is defined on the disk of radius 3ε0. By definition of m, there is some point
ζ ∈ ∂Dm−1 with |ζ−wm−1| ≤ ε0/4. If ω ∈ ∂Bε0/2(wm−1), we see by the Koebe distortion
Theorem 2.1 that

|ϕ(ω)− w| ≥
1
6

(1 + 1
6
)2
·

(1− 1
12

)2

1
12

· |ϕ(ζ)− w| > |ϕ(ζ)− w| = δ.

Thus it follows that Dm−1 ⊂ Bε0/2(wm−1), and (6.4) follows from the Koebe Distortion
Theorem (using the fact that F is univalent on the disk Bε0(wm−1)).

If BK(wm) ⊂ Dm, then we set n := m and are done. Otherwise, define R1 :=
maxζ∈∂Dm |ζ − wm| and R2 := minζ∈∂Dm |ζ − wm|, so that R1/R2 ≤ C and R2 < K. We
set

δ̃ :=
δ · ε0

R1

,
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D̃ := Dδ̃(w) and D̃m := Fm(D̃). Note that

δ̃ >
ε0

C
· δ
K
.

To prove Claim 2, we define c := ε0/C and need to check that Fm+1(D̃) ⊃ BK(Fm+1(w)).
To see this, notice that Fm(Bδ(w)) ⊃ BR1(F

m(w)). Hence by Schwarz and by the choice

of δ̃, D̃m = Fm(Bδ̃(w)) ⊂ H(ε0, r2). It follows that Fm+1 is defined and univalent on

D̃. Furthermore, by Koebe’s theorem, D̃m contains the disk BC1·ε0(wm) for a universal
constant C1. It follows, again using Koebe’s theorem and the estimate (6.3) that

F (D̃m) ⊃ BK′(wm+1),

where

K ′ = C1 · ε0 · |F ′(wm)|/4 ≥ C1 · ε0

16π
· (Rewm+1 − r).

Note that, as δ → 0, we have m→∞ and hence Rewm+1 →∞. Thus we can choose δ0

sufficiently small that δ < δ0 implies K ′ ≥ K, which completes the proof. 4

�

7. Parameter spaces

Recall that, given f ∈ SR, we denote by MR
f the set of functions real-topologically

equivalent to f (Definition 4.1). As we have already mentioned, this space can naturally
be given the structure of a real-analytic manifold; this follows from work of Eremenko
and Lyubich [EL] (who treated the complex-analytic case). More precisely:

7.1. Proposition (Manifold structure).
Let f ∈ SR and set q := #S(f). Then the set MR

f can be given the structure of a
real-analytic manifold of dimension q + 2 in such a way that:

• A sequence fn ∈ MR
f converges to f in the manifold topology of MR

f if and only
if there are sequences of homeomorphisms ψn, ϕn ∈ HomeoR converging to the
identity as n→∞ such that fn = ψn ◦ f ◦ ϕ−1

n .
• The inclusion from MR

f (as a real-analytic manifold) to the space of entire func-
tions is real-analytic.

In the following, we will always assume MR
f to be equipped with this topology and

real-analytic structure. If we wish to make the distinction, we will refer to this as the
“manifold topology”, and the induced topology from the space of entire functions as the
“locally uniform topology”.

The fact that the dimension of MR
f is q + 2 (rather than q) reflects the fact that the

group MöbR of order-preserving real affine maps acts on MR
f by conjugacy. We can

quotient MR
f by the action of this group:

7.2. Proposition (The quotient M̃R
f ).

Let M̃R
f be the quotient of MR

f by MöbR. Then M̃R
f is a real-analytic manifold of dimen-

sion q = #S(f), and the projection π : MR
f → M̃R

f is real-analytic.
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To prove our main results, we shall first establish density of hyperbolicity in M̃R
f

(provided f satisfies the sector condition). The following fact then implies that the
same is true under the (a priori) more general hypotheses given in the introduction.

7.3. Proposition (Continuous families and the manifold topology).
Let n, k ∈ N and suppose that (ft)t∈[−1,1]k is a continuous family of functions ft ∈ SR
such that #S(ft) = n for all t. Then there exist continuous families ϕt, ψt ∈ HomeoR
such that

ft = ψt ◦ f0 ◦ ϕ−1
t

for all t ∈ [−1, 1]k.
In other words, ft ∈ MR

f0
for all t ∈ [−1, 1]k and ft depends continuously on t in the

topology of MR
f0

.

For completeness and future reference, we provide a proof of the preceding propositions
in Appendix A. In fact, we will give a very explicit topological description of the spaces

MR
f and M̃R

f .

7.4. Corollary (Connected conjugacy classes).
Let f ∈ SR. Then the set of functions g ∈ SR that are real-topologically conjugate to f
is a connected subset of MR

f with the manifold topology.

Proof. This follows from Theorem 1.8, by considering the Beltrami coefficient µ of the
quasiconformal conjugacy h. Taking ht to be the quasiconformal map associated to tµ
(normalized appropriately), we obtain a family of maps ft = h−1

t ◦ f ◦ ht in SR that
connects f and g. �

Remark. This implies Corollary 1.9.

Finally, we require the fact that, within any given parameter space MR
f , any parabolic

point can be perturbed to an attracting one.

7.5. Proposition (Perturbations of parabolic points).
Let f ∈ SR, and suppose that f has a parabolic periodic point z0. Then there exists a
function f ∈ MR

f , arbitrarily close to f in the manifold topology, such that g has an
attracting periodic point close to z0.

Sketch of proof. We could prove this using Epstein’s transversality results for finite-type
maps. Since these are currently unpublished, we shall instead sketch how to prove the
proposition along the lines of Shishikura’s argument in [Shi], see also [EL, Theorem 5].

Let w ∈ R be a point which belongs to the parabolic basin of f . Let ε > 0 and let ϕ
be a real-quasiconformal map such that:

(a) |ϕ(z)− z| ≤ ε for all z;
(b) the complex dilatation of ϕ is bounded by ε;
(c) ϕ fixes the orbit of z0, as well as the points ∞ and w;
(d) ϕ is conformal on {z ∈ C : |z − w| > ε};
(e) ϕ′(z0) ∈ (0, 1), and ϕ′ = 1 on other points of the orbit of z0.
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To define this map, note that outside a small neighbourhood of w, we can let ϕ(z) =
z + δ · R(z), where R is a real rational function with a single pole at w, having zeros
along the orbit of z0 and at ∞, and such that R′(z0) < 0 and R′(z) = 0 at other points
of the orbit of z0. Provided δ > 0 is sufficiently small, ϕ is a conformal diffeomorphism
from {z ∈ C : |z −w| > ε} onto its image, and one can extend ϕ to a neighbourhood of
w as a quasiconformal homeomorphism of the Riemann sphere C with small dilatation.
(Compare [Shi, Lemma 2].)

Next consider the quasiregular map F := ϕ◦f . Then z0 is a periodic point of period n
for F , and (F n)′(z0) = (fn)′(z0) ·ϕ′(z0), so z0 is an attracting periodic point. Moreover,
let U be a small attracting petal for z0 as a periodic point of f , with w /∈ U . Provided
that δ > 0 is sufficiently small, and that R is chosen to have zeros of sufficiently high
order along the forward iterates of z0 (except z0), the set U will be contained in the
basin of attraction of z0 for F .

If ε > 0 is sufficiently small, then fn(Bε(w)) ⊂ U for some suitable n. Decreasing
ε > 0 further, if necessary, the same will be true for F . Hence no orbit of F passes
through Bε(w) more than once, and we can apply quasiconformal surgery to obtain the
desired function g, compare [Shi, Lemma 1]. �

Combinatorial and analytic data. We now introduce data that will allow us to
encode when two real-topologically equivalent maps in SR are conformally conjugate
(using Theorem 1.8). The notions of kneading sequences, which essentially determine
combinatorial equivalence classes and of coordinates to ensure conformal conjugacy on
attracting and parabolic basins are standard tools from the polynomial setting; we define
and review them here briefly for completeness. To deal with escaping singular orbits,
we will also require a new tool: escaping coordinates, which are provided by the results
of [R].

7.6. Definition (Itineraries and kneading sequences).
Let f ∈ SR, and let I denote the set of connected components of R \ Crit(f). The
itinerary of a point x ∈ R is the sequence s = s0s1s2 . . . , where sm = Ij if Ij ∈ I with
fm(x) ∈ Ij, or sm = fm(x) if fm(x) is a critical point of f .

Let v1 < v2 < · · · < vk be the singular values of f ; the kneading sequence of f is the
collection (s1, s2, . . . , sk) of the itineraries of the vj, together with the information which
vj converge to an attracting cycle or to infinity.

If two maps f and g are real-topologically equivalent, the map ϕ allows us to relate
the itineraries of f and g. Hence it makes sense to speak of two such maps having ‘the
same kneading sequence’. More formally:

7.7. Definition (The notion of having the same kneading sequences).
Let f ∈ SR, let v1, . . . , vk be the singular values of f and let s1, . . . , sk be their itineraries.

Let g = ψ ◦ f ◦ ϕ−1 be real-topologically equivalent to f . Then we say that f and g
have the same kneading sequence if

gm(ψ(vj)) ∈ ϕ(sjm)

for all m ≥ 0 and 1 ≤ j ≤ k.
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Remark. Note that the definition depends on the maps ψ and ϕ, not only on the function
g. We suppress this in the notation, which should not cause any confusion.

As stated above, our goal is to use kneading sequences to identify maps that are
conformally conjugate; however, to do so we need to augment these with some analytic
data. Indeed, for example the conformal conjugacy class of a map with attracting
periodic orbits is not determined by the kneading sequence, since there will be invariant
line fields on the basins of attraction. Similar issues are associated with parabolic orbits
and escaping singular orbits. This can be dealt with in a straightforward manner by
introducing attracting, parabolic and escaping coordinates.

More precisely, let f ∈ SR, and suppose that f has an attracting periodic point p ∈ R.
Let Ψ denote the linearizing coordinates for p (defined on the entire basin of the periodic
attractor by the obvious functional relation), normalized such that Ψ′(p) = 1. Then the
attracting coordinates for f at p consist of the multiplier µ of p together with the point

[Ψ(s1) : Ψ(s2) : · · · : Ψ(sk)] ∈ CPk−1,

where s1 < s2 < · · · < sk are the singular values of f that are attracted by the cycle of p.
The attracting coordinates for f consists of the attracting coordinates at all attracting
cycles of f , together with the information of which singular values are attracted to which
attracting orbit.

If f belongs to a real-analytic family fλ, say f = fλ0 , then for every λ near λ0 there will
be an attracting periodic point p(λ) of fλ with p(λ0) = p, depending real-analytically on
λ. The linearizing coordinates for p(λ) also depend analytically on λ, which implies that
the corresponding attracting coordinates depend analytically on λ (provided we ignore
any additional singular values of fλ that may be attracted to p(λ)).

Similarly, one can define parabolic coordinates at parabolic points, which consist of
the attracting Fatou coordinates of singular values, up to a translation. These will
actually not be used in our proof of density of hyperbolicity, but we include them for
completeness, to state the theorem below in full generality.

Finally, we also need to introduce analytic coordinates for singular values that are
contained in the real part IR(f) of the escaping set. Such coordinates are given by [R]:

7.8. Theorem (Escaping coordinates).
Let M be a real-analytic manifold with base point λ0 ∈ M . Also let (fλ)λ∈M be a
continuous family of functions in SR, all of which are real-topologically equivalent, i.e.
ψλ ◦ fλ = f ◦ ϕλ with ψλ and ϕλ depending continuously on λ.

Let K ⊂M and let R be sufficiently large (depending on K). Then for every λ ∈ K,
there exists a quasisymmetric map hλ : R→ R such that

hλ(fλ0(x)) = fλ(hλ(x))

whenever x ∈ IR(fλ0) has the property that fkλ0(x) ≥ R for all k ≥ 0.
Furthermore, hλ(x) depends real-analytically on λ for fixed x.

Using this map hλ, we can now also define what it means that two functions f and g ∈
MR

f have the same escaping coordinates : sufficiently large iterates of escaping singular
values of f should be carried to the corresponding iterates for g using this conjugacy on
the escaping set.
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Using these concepts, we can state the following result.

7.9. Theorem (QC rigidity and conformal rigidity on the Fatou set).
Suppose that f, g ∈ SR are real-topologically equivalent.

Suppose also that f and g have the same kneading sequence and the same attracting,
parabolic and escaping coordinates.

Then f and g are quasiconformally conjugate via a real-quasiconformal map ϕ : C→ C
which is conformal on the Fatou set of f .

Proof. The assumption implies that f and g are combinatorially conjugate and escaping
conjugate, and that the combinatorial conjugacy can be chosen to be analytic in a
neighbourhood of the part of the postsingular set that belongs to the Fatou set. Now it
follows as in Theorem 5.1 that this conjugacy promotes to a quasiconformal conjugacy,
and this conjugacy is conformal on the Fatou set. �

8. Density of Hyperbolicity

The basic idea in our proof of density of hyperbolicity is to create more and more
critical relations of a suitable type near a starting parameter, and restrict to a subman-
ifold where this critical relation is persistent. To make this work, we need to know that
we can carry out this process in such a way that the dimension of the manifold is not
reduced by more than one would expect. We could do so by applying deep transversality
results due to Adam Epstein (though it is not entirely clear how to apply these e.g. to
work with escaping coordinates). Instead, we use the following, much softer statement.

8.1. Theorem (Finding submanifolds).
Let U ⊂ Rn be an open ball, and let

ρ : U → R
be real-analytic. Suppose that x1, x2 ∈ U satisfy ρ(x1) 6= ρ(x2), and let ν ∈ R be a value
between ρ(x1) and ρ(x2).

Then there exists w ∈ U with ρ(w) = ν such that ρ−1(ν) is a real-analytic (n − 1)-
dimensional manifold near w.

Proof. By continuity of ρ, the set A := ρ−1(ν) separates U . This means that A has
topological dimension at least n− 1 [HW].

Now the zero set of a real analytic function is a subanalytic, and indeed semianalytic,
set. Subanalytic sets can be written as a locally finite union of real-analytic submanifolds,
see [BM]. So A contains a real-analytic manifold of the same dimension as its topological
dimension. Compare also Lojasiewicz’s structure theorem for real-analytic sets [KP,
Theorem 6.3.3]. �

8.2. Proposition (Abundance of critical relations).
Let f ∈ SR and let M be a real-analytic submanifold of MR

f of dimension n. Suppose
that no two maps f, g ∈M have the same kneading sequence. Then, given any f0 ∈M ,
there exists some f ∈ M , arbitrarily close to f0, such that f satisfies n non-persistent
critical relations of the form f(v) = c, where v is a singular value and c is a real critical
point.
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Remark. Strictly speaking, our statement is ambiguous, since “having the same kneading
sequence” depends on the choice of ϕ and ψ from the definition of real-topological
equivalence. Since our conclusion is local, the assumption should also be understood
locally: for f0 ∈ M we can find a neighbourhood U ⊂ M on which the maps ϕ and
ψ can be chosen to depend continuously, and no two maps in U should have the same
kneading sequence with respect to this choice.

Proof. We will prove the theorem by induction on n. If n = 0, then there is nothing to
prove. So suppose the theorem holds when the dimension of M is n − 1. Now assume
M has dimension n. Let f0 ∈M ; by a small perturbation, we may assume that f0 does
not satisfy any non-persistent critical relation of the form f(v) = c. Let U be a small
neighbourhood of f0 as in the above remark; in particular, the critical and asymptotic
values of f ∈ U depend continuously and real-analytically (with the respect to the
manifold structure). We can choose U to be real-analytically diffeomorphic to an open
ball in Rn.

Since no two maps in U have the same kneading sequence, there must be maps f1, f2 ∈
U , as well as a critical point c = c(f) and a critical value v(f) such that fn1 (v(f1))−c(f1)
and fn2 (v(f2))− c(f2) have opposite signs for some n ∈ N.

Set

ρ(f) := fn(v(f))− c(f);

then ρ is real-analytic, and we can apply Theorem 8.1 to U , ρ, x1 := f1, x2 := f2 and
ν = 0. We obtain an (n − 1)-dimensional analytic submanifold N of M , contained in
U , such that all maps f ∈ N satisfy ρ(f) = 0; i.e., they satisfy a critical relation of the
desired form which is non-persistent in M , but persistent in N .

Applying the induction hypothesis, we find a map f ∈ N that satisfies n− 1 critical
relations which are non-persistent in N , and hence n critical relations which are non-
persistent in M , as desired. �

Recall that LI(f) is the set of points z ∈ J(f)\(Jr(f)∪I(f)) whose orbits accumulate
on escaping singular orbits under iteration. The following theorem shows density of
hyperbolicity provided this set does not support invariant line fields.

8.3. Theorem (Density of hyperbolicity when LI has no invariant line fields).

Let f ∈ SR. Let U ⊂ M̃R
f be open with the property that no g ∈ U has an invariant line

field on the set LI(g).
Then U contains a real-hyperbolic function.

Proof. Let f1 ∈ U be such that the number of singular values that belong to attracting
basins is locally maximal near f1. Then there is an open neighbourhood U ′ ⊂ U of
f1 such that all g ∈ U ′ have the same number, say k1, of such singular values. By
Proposition 7.5, this implies that no function in U ′ has any parabolic periodic points.

Now, similarly, pick f2 ∈ U ′ such that the number k2 of singular values that tend to
infinity under iteration is locally maximal, and let U ′′ be an open neighbourhood of f2

such that all maps in U ′′ have k2 such singular values.

Set q := #S(f); recall that M̃R
f , and hence U ′′ has dimension q. We may assume that

U ′′ is chosen sufficiently small that there is a real-analytic section U ′′ → MR
f . (In fact,
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if f is not periodic, then there is even a global section M̃R
f →MR

f , see Appendix A.) So

we can identify U ′′ with a q-dimensional submanifold of MR
f in which no two maps are

conformally conjugate.
Applying Theorem 8.1 repeatedly, we can find a manifold M ⊂ U ′′ of dimension

q′ := q − k1 − k2 on which the attracting and escaping coordinates are constant.
By Theorem 7.9, any two maps in M that have the same kneading sequence would

be quasiconformally conjugate, and the dilatation would be supported on the Julia set.
However, by the assumption, Lemma 6.1 and Theorems 6.2 and 6.3, this means that
the maps would be conformally conjugate, and hence equal. Thus no two maps in M
have the same kneading sequence. Note that within M the k1 + k2 singular values in
attracting basins or tending to infinity do not satisfy any non-persistent relations. (Two
singular values are said to have a relation if they have the same grand orbit.)

Now we apply Proposition 8.2, to obtain a function g ∈ M that satisfies q′ non-
persistent critical relations of the form g(v) = c, where v is a singular value and c is a
real critical point. This means that every singular value is eventually either mapped to
a superattracting cycle or to one of the k1 + k2 singular values that belong to attracting
basins or to IR(g) (and which, by assumption, do not satisfy any singular relations). Thus
all singular values of g belong to attracting basins or converge to infinity, as claimed. �

8.4. Corollary (Density of hyperbolicity for bounded functions).
Let f ∈ SR and suppose that one of the following holds:

(a) f |R is bounded;
(b) f satisfies the sector condition; or
(c) f has bounded criticality.

Then if (a) holds then hyperbolicity is dense in M̃R
f . If (b) or (c) hold then real-

hyperbolicity is dense in M̃R
f .

Proof. This is an immediate consequence of the previous result. (Note that each of the
conditions (a), (b) and (c) is invariant under real-quasiconformal equivalence, and hence
no function g ∈ MR

f supports an invariant line field on LI(g) by Theorems 6.2 and
6.3.) �

This proves Theorem 1.1 (and the corresponding statement for maps satisfying the
sector condition). We now deduce Theorem 1.6 (of which Theorem 1.2 is a special case).

Proof of Theorem 1.6. Real-hyperbolicity is an open property, so we need only prove
that real-hyperbolicity is dense. Let λ0 ∈ N and set f := fλ0 . We may assume (perturb-
ing λ0 if necessary) that the number m := #S(f) is locally maximal. For λ sufficiently
close to λ0, fλ must have at least m singular values (see Lemma A.2). So we may assume,
by shrinking N if necessary, that #S(fλ) = m for all λ ∈ N .

By Proposition 7.3, all fλ belong to MR
f , and fλ is a continuous family with respect

to the topology of MR
f . Via the natural projection MR

f → M̃R
f , we obtain a continuous

map

Φ : N → M̃R
f
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such that fλ and (any representative of) Φ(fλ) are conformally conjugate. In particular,
the map Φ is injective. Since m ≤ n, we must in fact have m = n and Φ is locally
surjective (by the Invariance of Domain Theorem). The claim now follows from the
preceding theorem. �

Proof of Corollary 1.7. This follows from Corollary 8.4 and the fact that the number of
singularities is preserved under topological equivalence. �

9. Circle maps

The adaptation of our results to circle maps is straightforward, and essentially in
complete analogy with the case of bounded functions f ∈ SR. To formulate results for
transcendental maps and Blaschke products at the same time, let us denote by X the
union of SS1 with the set of all Blaschke products of degree at least two which preserve
{0,∞} and for which all critical values are contained in S1 ∪ {0,∞}.

9.1. Lemma (Circle maps without critical points).
If f ∈ X has no critical points in S1, then f(z) = zd with d 6= 0.

Proof. Let Z = f−1(S1 ∪ {0,∞}). Since the critical values of f are on the circle but S1

contains no critical points, S1 is one of the connected components of Z. We claim that
it is the only nontrivial component (i.e. consisting of more than one point) of Z. Indeed,
otherwise there is at least one multiply-connected component V of C \ Z that is not a
punctured disk. But f |V is a covering whose image is either D \ {0} or C \D, which is
impossible. It follows that f has no singular values in C∗, and hence f(z) = zd for some
d ∈ Z \ {0}. �

9.2. Theorem (QC rigidity for circle maps).
Suppose that two maps f, g ∈ X are S1-topologically equivalent and combinatorially
conjugate. Then the two maps are S1-quasiconformally conjugate via a conjugacy that
agrees with the combinatorial conjugacy on the postsingular set.

(Here the notions of S1-topological equivalence as well as combinatorial and S1-qc
conjugacy are defined in analogy to the real case. Note that by definition a combinatorial
conjugacy sends parabolic to parabolic points.)

Proof. Note that from the previous lemma f and g have at least one critical point
(unless f, g are of the form z 7→ zd). It follows from [CvS] that the two maps are
quasisymmetrically conjugate on the circle. Applying a pullback argument yields a
quasiconformal conjugacy on the entire complex plane. �

The second ingredient is the absence of invariant line fields theorem:

9.3. Theorem (No invariant line fields).
A map f ∈ X does not support any invariant line fields on its Julia set.

Here, once again, the absence of invariant line fields on the set of points with bounded
orbits follows from [CvS]. The absence of invariant line fields on the radial Julia set does
not follow directly from [RvS1], since the function f is not necessarily meromorphic in
the plane but can be proved in the same manner. Alternatively, the result of [RvS1] is
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generalized in [MaR] to arbitrary Ahlfors islands maps, and this result can be applied
directly to f .

Finally, for f ∈ SS1 , absence of invariant line fields on the “escaping set”

I(f) := {z ∈ C : ω(z) ⊂ {0,∞}}

follows from the following theorem, which is proved completely analogously to the cor-
responding result from [R].

9.4. Theorem (No invariant line fields on the escaping set).
Let f : C∗ → C∗ be a transcendental self-map of the punctured plane, with essential
singularities at 0 and ∞. Suppose that the set S(f) \ {0,∞} is compactly contained in
C∗.

Then the set I(f) does not support invariant line fields.

Again, analogously to the case of SR, the set MS1

f of functions S1-topologically equiv-
alent to f has the structure of a real-analytic manifold of dimension q + 1, where

q = #S(f). As we saw in Remark 1 below Lemma 2.6, its quotient M̃S1

f by conju-
gation by rotations is not a manifold. However, it is a q-dimensional orbifold. We then
obtain by the same proof as for functions in SR:

9.5. Theorem (Density of hyperbolicity for circle maps).

Let f ∈ X. Then hyperbolicity is dense in M̃S1

f .

The theorems on circle maps stated in the introduction follow from the preceding
result in the same manner as for real entire functions:

Proof of Theorem 1.10. This follows from the preceding theorem in the same manner as
for real entire function in SR. �

Proof of Theorem 1.11. This is a special case of Theorems 9.2 and 9.3. �

Proof of Corollary 1.12. The first statement of this corollary follows Theorem 9.4. Part
(a) follows from Theorems 9.2 and Lemma 2.6 using the same argument as in the proof
of Corollary 7.4. Part (b) follows from Theorems 9.3 and 9.4. �

Appendix A. More on parameter spaces

A.1. Proposition (Real-analytic structure of parameter spaces).
Let f ∈ SR and set q := #S(f). If f is not periodic (i.e., there is no κ ∈ R \ {0} with
f(x+ κ) = f(x) for all x), then

MR
f ' Rq+2 and M̃R

f ' Rq

(where ' denotes real-analytic isomorphism). Otherwise,

MR
f ' Rq × S1 × S1 and M̃R

f ' Rq−1 × S1.

More precisely, let us set

Λ := {(a1, . . . , aq) ∈ Rq : a1 < a2 < · · · < aq}.
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Then there exists a real-analytic covering map

Θ : Λ× (0,∞)× R→MR
f

with the following properties.

(a) If λ = (a1, . . . , aq) ∈ Λ, a > 0 and b ∈ R, then the singular values of g :=
Θ(λ, a, b) are exactly a1, . . . , aq. Furthermore, if f is periodic, then g is also
periodic of minimal period a · κ, where κ is the minimal period of f .

(b) Let λ0 = (s1, . . . , sq) be the singular values of f . Then f = Θ(λ0, 1, 0).
(c) If f is not periodic, Θ is a diffeomorphism. Otherwise, Θ(λ, a, b) = Θ(λ′, a′, b′) if

and only if λ = λ′, a = a′ and b and b′ differ by a multiple of a · κ.
(d) Fix a > 0 and b ∈ R. If f is not periodic, then Θ(λ, a, b) is not conformally

conjugate (via a map from MöbR) to Θ(λ′, a, b) for λ 6= λ′. Otherwise, these
maps are conjugate if and only if there is m ∈ Z such that λ′ is obtained from λ
by adding m · a · κ to all entries.

Remark. A somewhat related theorem appears in [dMvS, Theorem 4.1] where it is shown
that one can parametrise the space of real polynomials (as in Theorem 3.8 anchored at
0 and 1) with d distinct critical points c1, . . . , cd – all of which are assumed to be real –
by its critical values v1, . . . , vd. The difference is that in that theorem we allow critical
values to coincide.

Proof. The idea is to start with a family of quasiconformal functions ψλ ∈ HomeoR,
λ ∈ Λ, where ψλ takes λ0 to λ, and then solve the Beltrami equation to obtain ϕλ such
that ψλ ◦ f ◦ ϕ−1

λ is an entire function. There is a choice of normalization of ϕλ, which
gives rise to the additional two real parameters come from.

If there are at least two real preimages of singular values, then it is easy to obtain a
natural normalization of ϕλ. In order to obtain a construction that works in all cases,
we will proceed in a slightly more ad-hoc manner.

If f is not periodic, let us set κ := 1, otherwise κ is the minimal period of f as defined
above.

We define a real-analytic family ψλ : C→ C with ψλ(sj) = aj, where λ = (a1, . . . , aq) ∈
Λ. If a1 = s1 and aq = sq, let h : R → R be the unique map with h(sj) = aj that is
linear on every component of R \ S(f) and asymptotic to the identity at ∞. We define
ψλ(x+ iy) := h(x) + iy. In particular, ψλ0 = id.

Otherwise, set

A(z) := (z − s1) · aq − a1

sq − s1

+ a1

and λ̃ := (A−1(a1), . . . , A−1(aq)). We define ψλ(z) := A(ψλ̃(z)).
By construction, the family ψλ has the following property:

Let λ1 = (a1, . . . , aq) ∈ Λ and A(z) = az + b be a real-affine map. If we set
λ2 := (A(a1), . . . , A(aq)), then ψλ2 ◦ ψ−1

λ1
= A.

Let µλ be the complex dilatation of ψλ. We can pull back under f to obtain a
complex structure νλ := f ∗(µλ). By the Measurable Riemann Mapping theorem, see
for example [A2], we can find a quasiconformal homeomorphism ϕλ,a,b : C → C whose
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complex dilatation is given by νλ. This map is uniquely determined if we require that
ϕλ,a,b(0) = a · b and ϕλ,a,b(κ) = a · (b+ κ).

The functions ϕλ,a,b depend real-analytically on νλ, and hence on λ, as well as on a
and b. By a well-known argument, see for example [BC, Page 21], the family

Φ(λ, a, b) := fλ,a,b := ψ−1
λ ◦ f ◦ ϕλ,a,b

also depends analytically on (λ, a, b). Clearly we have fλ0,1,0 = f and S(f(a1,...,aq),a,b) =
{a1, . . . , aq}.

Since f is real, the Beltrami differential νλ is symmetric with respect to the real
axis (i.e. νλ(z̄) = νλ(z), and hence the normalization ensures that ϕλ,a,b restricts to an
orientation-preserving homeomorphism of the real line. Thus fλ,a,b ∈MR

f for all λ.
Similarly, if f is periodic, then νλ is periodic with period κ, and the normalization

ensures that ϕλ,a,b(z + κ) = ϕλ,a,b(z) + aκ for all z. Thus each fλ,a,b is periodic with
period bκ. We can apply the same argument to see that bκ is the minimal period of
fλ,a,b. Indeed, we write f = ψλ ◦ fλ,a,b ◦ ϕ−1

λ,a,b. If bκ′ ≤ bκ is a period of fλ,a,b, then we

see as above that ϕ−1
λ,a,b(z + bκ′) = ϕ−1

λ,a,b(z) + c for some c > 0. Clearly c ≤ κ, and by
construction c is a period of f . Thus c = κ = κ′, as claimed.

The remaining claims follow from the construction. Indeed, suppose that fλ,a,b =
fλ′,a′,b′ . Then λ = λ′ (because these are the singular values) and a = a′ (because this is
the period). By construction, we have fλ,a,b′(z) = fλ,a,b(z+ab−ab′). Hence a(b− b′) is a
period of fλ,a,b, and hence b− b′ is a multiple of κ (if f is periodic) or b = b′ (otherwise).

Now fix a and b and suppose now that fλ := fλ,a,b and fλ′ := fλ′,a,b are conformally
conjugate by some real-affine map A(z) = αz + β, α > 0, β ∈ R. Then it follows from
the property stated above that ψλ′ ◦ ψ−1

λ = A, and hence A ◦ fλ ◦ A−1 = fλ′ = A ◦ fλ′ .
In particular, we must have α = 1 and β is a period of fλ; i.e., f is periodic and β is an
integer multiple of a · κ. �

A.2. Lemma (Dependence of singular values).
Let f : C → C be an entire function, and let fn be entire functions with fn → f locally
uniformly. If a ∈ S(f), then for sufficiently large n, there is an ∈ S(fn) such that
an → a.

Proof. See e.g. [KK]. �

A.3. Proposition (All continuous families arise from QC equivalence).
Let n, k ∈ N and suppose that (ft)t∈[−1,1]k is a continuous family of functions ft ∈ SR
such that #S(ft) = n for all t. Then there exist continuous families ϕt, ψt ∈ HomeoR
such that

ft = ψt ◦ f0 ◦ ϕ−1
t

for all t ∈ [−1, 1].

Sketch of proof. We first note that the assumption implies that the singular values of ft
move continuously by Lemma A.2. That is, there are continuous functions s1, . . . , sn :
[−1, 1]k → R with s1(t) < s2(t) < · · · < sn(t) for all t and S(ft) = {s1(t), . . . , sn(t)}.
We set sj := sj(0) (where 0 denotes the origin in [−1, 1]k).
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Choose a continuous family ψt of real-quasiconformal homeomorphisms such that
ψt(sj) = sj(t) for all t ∈ [−1, 1] and j ∈ {1, . . . , n}, such that ψ0 = id, and such that
ψt(z) = z whenever | Im z| ≥ 1. (For example, we can define ψt in a piecewise linear
manner.)

By solving the Beltrami equation (similarly as above), we can also find a continuous
family ϕt of real-quasiconformal homeomorphisms such that

(A.1) gt := ψ−1
t ◦ ft ◦ ϕt

is an entire function for every t. The function ϕt is uniquely determined up to pre-
composition by an element of MöbR.

The idea is to normalize ϕt in such a way as to ensure that gt agrees with f0 at a
chosen base point, and conclude that gt = f0 for all t. It is not a priori clear that
such a normalization can always be carried out globally (that this is true shall follow a
posteriori from the proof), but locally this follows from the argument principle. Hence
the following claim (which requires a specific normalisation for the quasiconformal maps
ϕt) provides a local version of our proposition:

Claim. Let D ⊂ [−1, 1]k be a connected subset with 0 ∈ D, and suppose that there is a
continuous function t 7→ ζt ∈ C, defined on D, such that ft(ζt) = i for all t ∈ D (where
i, as usual, denotes the imaginary unit). Define (gt)t∈D by (A.1), where ϕt is normalized
such that ϕt(ζ0) = ζt. Then gt = f0 for all t ∈ D.

Proof. We use the concept of line complexes from classical function theory. Fix n + 1
pairwise disjoint arcs γ0, . . . , γn connecting i and −i and each intersecting the real axis
in precisely one point, in such a way that different arcs intersect at ±i, and such that the
arcs intersect the real axis in different intervals of R \ {s1, . . . , sn}. We can assume that
the arcs are ordered such that their intersection points with R are listed in increasing
order; then γj ∪ γj−1 is a Jordan curve separating sj from ∞ and all other sj′ . The line
complex LC(gt) is the preimage of

⋃
γj under gt.

More precisely, we can think of LC(gt) as an abstract graph with a base point and
colored edges. The vertices are the elements of the set g−1

t ({i,−i}), and the base point
is the vertex represented by ζ0. Two vertices z1 and z2 are connected by an edge of color
j ∈ {0, . . . , n} if and only if there is a component of g−1

t (γj) that connects z1 and z2.
The following two facts are classical:

• The line complex LC(gt) depends continuously on t as a graph. (By this we
mean that, for any fixed N , the part of LC(gt) within distance at most N of
ζ0 is locally constant.) Hence, since [−1, 1] is connected, it follows that all the
abstract graphs LC(gt) are isomorphic.
• With the above normalization, the function gt is uniquely determined by its line

complex LC(gt).

The first of these is elementary: It follows from the fact that the analytic continuation
of f−1

t along a fixed composition of the curves γj will depend continuously on t. To
reconstruct the function gt from its line complex, we need only build the Riemann surface
of g−1

t by pasting together copies of the upper and lower half plane as specified by the
line complex. The resulting entire function is determined uniquely up to precomposition
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by a map in MöbR; in other words, the function is fixed once we require that the base
point of its line-complex be placed at ζ0. For details, compare [GO]. 4

We observe that, in this article, we only ever use a local version of Proposition A.3
that asserts the existence of the maps ψt and ϕt in a neighbourhood of the origin; this
version follows immediately from the Claim.

To also deduce the global statement, note that we can apply our claim near any
given base point t0 ∈ [−1, 1]k. This implies that the full set of preimages f−1

t (i) moves
continuously near every point t0. Since [−1, 1]k is simply-connected, it follows that
this set moves continuously thorughout the entire family. In particular, we can take
D = [−1, 1]k in the Claim, and are done. �
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