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Abstract

Emission legislation for passenger cars has become more stringent and the in-
creasing demand for reduced fuel consumption has resulted in the introduction
of complex new engine and after-treatment technologies involving significantly
more control parameters. Vehicle manufacturers employ a time consuming en-
gine parameter calibration process to optimise vehicle performance through the
development of engine management system control maps. The traditional static
calibration methods require an exponential increase in calibration time with ad-
ditional calibration parameters and control objectives. To address this issue, this
thesis develops and investigates a novel Inverse Optimal Behaviour Based Dy-
namic Calibration methodology and its application to diesel engines.

This multi-stage methodology is based on dynamic black-box modelling and dy-
namic system optimisation. Firstly the engine behaviour is characterized by
black-box models, based on data obtained in a rapid data collection process, for
accurate dynamic representation of a subject engine. Then constrained dynamic
optimisation is employed to find the optimal input-output behaviour. Finally
the optimal input-output behaviour is used to identify feedforward dynamic con-
trollers. The current study applies the methodology to an industrial state-of-the-
art WAVERT model of a 1.5 litre Turbo EU6.1 Diesel engine acting as a vir-
tual engine. The approach directly yields a feedforward controller in a nonlinear
polynomial structure which can either be directly implemented in the engine-
management system or converted to a dynamic or static look-up table format.
The results indicate that the methodology is superior to the conventional static
calibration approach in both computing efficiency and control performance.

A low-cost Transient Testing Platform is presented in this work to carry out
transient data collection experiments on a steady-state dynamometer with ap-
plication to non-linear engine and emissions modelling using State Space Neural
Networks. This modelling technique is shown to be superior to the polynomial



models and achieves similar performance to non-linear autoregressive with exoge-
nous input neural (NARMAX) network models. Numerical Dynamic Program-
ming is investigated in a simplified engine calibration problem for a virtual engine
to potentially improve the dynamic calibration optimisation stage.

In a second study the novel dynamic calibration methodology is applied to the
airpath control of a 3.0L Jaguar Land Rover (JLR) turbocharged Diesel engine
utilizing a direct optimisation approach and State Space Neural Network mod-
els. A complete experimental application of the methodology is demonstrated
in a vehicle where the vehicle-implemented calibration is obtained in a one-shot
process solely from data obtained from the fast dynamic dynamometer testing.
The results obtained demonstrate the potential of this methodology for the rapid
development of efficient dynamic feedforward controllers based on limited data
from the engine test bed.
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Chapter 1

Introduction

1.1 Thesis statement

The work reported in this thesis was set out to investigate a novel technique for
engine calibration called concept of Inverse Optimal Behaviour based Dynamic
Calibration by application this methodology to diesel engine calibration for re-
duced fuel consumption and to meet emission constraints. In the light of coming
challenges for engine control and calibration in regard to new engine technologies
that increase the number of control actuators and required testing and validating
over more dynamic driving cycles there is a strong need for a calibration method-
ology that requires short testing time on the test bed, but without sacrificing
either engine performance or emissions. The dynamic calibration methodology
integrates the control processes with the calibration activity potentially result-
ing in saving testing time on the test bed due to the limited test data required
also with the potential to improve fuel economy, satisfy emissions constraints and
achieve smooth torque tracking.
The study sought to answer the following questions:

1. Is the Dynamic Calibration a viable methodology for producing a controller
for smooth engine torque tracking with limited testing time while not ex-
ceeding the emission limits?

2. Does dynamic calibration have any fuel consumption benefit over conven-
tional static maps?
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3. What is the most efficient way of modelling the dynamic engine and emission
behaviour in terms of a reduced number of parameters?

4. What is the best optimisation approach for optimising of the engine dy-
namics and emissions behaviour?

5. Is it possible to apply this methodology only to the Air-path control cali-
bration problem?

6. Is this technology ready to implement into production level engine control
units?

1.2 Motivation

The development of a new internal combustion engine [5] for a vehicle is driven
nowadays by multiple conflicting factors especially for passengers cars. From
the customer perspective an engine should be characterized by low fuel consump-
tion and good engine performance. Increasing consumer environmental awareness
adds low emission levels to this list, but this factor is driven mainly by emission
regulation, as every new car can not exceed very stringent emission norms. In
future one can expect that emission legislation will be more and more stringent.
To meet such requirements manufacturers equip new power units with new tech-
nologies that keeps engine performance at a satisfactory level, but at the same
time meets the emission regulations. This is the main reason why new cars have
recently been fitted with an extended package of after-treatment systems. From
one side it is beneficial as new technologies lead to engines which together with the
peripheral systems meet all the demanding legislated requirements. On the other
hand the engine becomes very complicated from a control system point of view
which make it hard to calibrate because of the increasing number of parameters
that must be calibrated. Additionally new driving cycles are to be introduced in
the near future which are more transient, randomised and cover much bigger of
operating envelope.
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Table 1.1: Emission levels for passengers’ cars with gasoline engines

Standard Date CO HC NOx NOx+HC PM PN
[g/km] [g/km] [g/km] [g/km] [g/km] -

EURO I 07/92 2.72 - - 0.97 - -
EURO II 01/96 2.20 - - 0.5 - -
EURO III 01/00 2.30 0.20 0.15 - - -
EURO IV 01/05 1 0.1 0.08 - - -
EURO V 09/09 1 0.1 0.06 - 0.005 -
EURO VI 09/14 1 0.1 0.06 - 0.005 6× 1011

1.2.1 Emissions

According to existing regulations every new car that leaves the factory must fulfil
the emission standards and those standards differ according to the country it is
sold to.
In Europe there is a European Union emission standard called the EURO stan-
dard which was introduced for the first time in 1992 for passengers’ cars. This
caused the development of new control strategies [6] and from 2001 diagnostic
systems (1996 in USA) together with new after-treatment systems. The stan-
dards were introduced for both gasoline and diesel engines and because at that
time the differences between the two engine types were large, the standards were
significantly different for those two engine technologies. As currently both engine
technologies are converging because of the use of high pressure fuel pumps and
direct injection systems, the emission norms are converging accordingly. The cur-
rent existing standard in Europe for passengers’ cars is EURO VI which become
valid from September 2014.

The EURO standard presented in Table 1.2 and 1.1 shows the trend of reducing
the emission limits every couple of years. It can be observed that recent stan-
dards additionally include particulate matter (PM) and particulate number (PN)
together with nitric oxide and nitrogen dioxide (NOx), carbon oxide (CO) and
hydro carbon (HC) emissions.
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Table 1.2: Emission levels for passengers’ cars with diesel engines. For EURO
II until 1999.09.30 there were different standards for Direct Injection (DI) and
Indirect Injection (IDI) diesel engines. After that date DI engines must meet the
IDI limits)

Standard Date CO HC NOx NOx+HC PM PN
[g/km] [g/km] [g/km] [g/km] [g/km] -

EURO I 07/92 2.72 - - 0.97 0.14 -
EURO II 01/96 1 - - 0.7 0.08 -
IDI
EURO II 01/96 1 - - 0.9 0.10 -
DI
EURO III 01/00 0.64 - 0.50 0.56 0.05 -
EURO IV 01/05 0.5 - 0.25 0.30 0.025 -
EURO Va 09/09 0.5 - 0.18 0.23 0.005 -
EURO Vb 09/09 0.5 - 0.18 0.23 0.005 6× 1011

EURO VI 08/14 0.5 - 0.08 0.23 0.005 6× 1011

1.2.2 Driving cycles

In addition to limits becoming harder to be met, a new trend of developing new
driving cycles can be seen. The reason for this is the regulation bodies want to
make the legislative driving cycles as close as possible to typical driving profiles.
The current driving cycles in Europe are based on very conservative driving be-
haviour which in practice is not very realistic. On engine speed-load grid it covers
only the low-load low-speed region, when actually more typical driving is based
across the whole operation envelope, including middle and high-load high-speed
as well. Automotive manufacturers have been using this fact for their benefit to
meet the legislated test targets by taking care of emissions in low-load low-speed
conditions and focusing less on emissions in the rest of the grid, which not visited
during the legislated test by not using EGR outside the low-load low-speed region
to save cost.
New driving cycles are now to be introduced to cut this custom by forcing man-
ufacturers to take care of emissions in the whole operating envelope. This will
lead to increasing calibration time and calibration costs however.
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New European Driving Cycle

In Europe the currently existing driving cycle is the New European Driving Cycle
(NEDC). It consists of two different sections: Urban Driving Cycles (UDC) as in
Figure 1.1 and Extra-Urban Driving Cycles (EUDC) as in Figure 1.2. The NEDC
is modal which means that it involves protracted periods at constant speeds.

Figure 1.1: Urban Driving Cycle[1]

This driving cycle was derived theoretically, so that the acceleration trajectories
is represented as a straight monotonic line and there are periods of steady state
driving. This driving cycle is in contrast to US driving cycles which were derived
from real driving measurements.

World harmonized light vehicle test procedure (WLTP)

The Worldwide harmonized Light vehicles test procedure is currently under de-
velopment by specialists from EU, India and Japan under guidelines from the
UNECE World Forum for Harmonization of Vehicle Regulations [7]. However no
country has yet confirmed a final date for introducing this test cycle. The test is
closer to real live driving profiles then NEDC.
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Figure 1.2: EUDC driving cycle[1]

FTP-75 and US06 in the United States of America

The city driving cycles known as Federal Test Procedure 75 is more close to real
life driving then the current European cycle. Despite this fact a new driving
cycle was needed because according to the US Environment Protection Agency
(EPA) the engines run cleanly during the mandatory driving cycles but in normal
use they generate more pollutants. As a result in 2007 the EPA has introduced a
supplemental Federal Test Procedure - US06 to address the shortcomings with the
FTP-75 by adding more aggressive driver behaviour with aggressive high speed
and rapid speed fluctuations.

Figure 1.3: FTP75 driving cycle [1]
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Figure 1.4: US06 driving cycle [1]

1.2.3 Real world driving

The newest European regulation that will be introduced at some point in the near
future although this is still under discussion for light-weight vehicles is the Real
Driving Emission (RDE) regulation. The concept behind it is quite simple: the
cars are going to be commissioned on the road in real world condition instead of in
a laboratory under predefined climatic conditions and specific driving cycles. This
requires new emission equipment to be fitted in vehicle measuring the emission
actually coming out of exhaust pipe in real road conditions. This equipment is
called the Portable Emission Measurement System (PEMS) and is required to be
capable of measuring all relevant engine emissions.

1.3 New engine technologies

The internal combustion engine is under constant development resulting in new
technologies being introduced such as turbocharging and Exhaust Gas Recircu-
lation to meet tightening emission limits and to improve engine performance.

1.3.1 Turbocharging

Recently turbocharging has become present in almost every new diesel engine and
new charging technology such as sequential turbocharging, parallel turbocharg-
ing, twin-scroll turbochargers and electric charging have become more popular [8].
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A turbocharger is a mechanical device combining a turbine and a compressor
connected together by a shaft. The turbocharger enlarges the power of an engine
by forcing more air going into the combustion chamber and thereby allowing
more fuel to be injected to the combustion chamber resulting in increased engine
performance. The energy for compressing the intake air by the compressor comes
from the exhaust gas which accelerates the turbine. A turbocharger influences
the dynamic behaviour of combustion engines significantly because of the inertia
of the moving parts and time required to speed up the turbocharger.

1.3.2 Exhaust Gas Recirculation

Exhaust Gas Recirculation (EGR) technology was introduced to reduce NOx
emissions in gasoline and diesel engines [9]. EGR works by redirecting an ex-
haust gas from the exhaust manifold to the intake manifold and then back to
the combustion chamber. This technique is called external EGR in contrast to
internal EGR where the exhaust gases are captured in the combustion chamber
by modulating the exhaust valve timing.
This way concentration of nitrogen in the air-charge is reduced and also the ex-
haust gases absorb combustion heat resulting in a reduction of peak temperatures
which reduces engine-out NOx emissions.

1.4 Engine controls

1.4.1 Look-up-tables

As a result of new technologies engine control systems have became very com-
plex [10]. Surprisingly very little development of the control systems has been
made by manufacturers and still the most common control structure for internal
combustion engines is the static look-up-table structure which is very much more
common than other control structures [11]. Look-up-tables are usually two di-
mensional based on an engine speed and engine torque grid. The look-up-table
is a very simple concept which is of course always a desirable feature but in mod-
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ern engines the number of look-up-tables needed has became quite significant.
This makes calibration a very time consuming process. The look-up-tables are
calibrated until the overall engine performance, emission and fuel economy meet
predefined targets. Some additional controls are implemented to keep the engine
in a safe condition but also to meet emission constraints. As an example a limiter
for smoke can typically be implemented as a look-up table. The look-up-tables
perform well in steady state conditions but in transient operation can lead to
poor performance.

1.5 Objectives

The main objectives of the work in this thesis is to develop and evaluate a dynamic
calibration methodology to produce comparable performance of the resulting dy-
namic controller compared to that from the look-up-tables broadly used in engine
management system, whilst saving testing time on the test bed due to the lim-
ited test data required and with the potential to improve fuel economy, whilst
satisfying emissions constraints and achieving smooth torque tracking.

1.6 Contributions

The contributions of this thesis are listed below:

• A novel approach to model-based dynamic engine calibration is proposed to
obtain optimal settings of fuel consumption subject to constraints on torque
and emissions and is applied experimentally on a diesel turbocharged direct
injection 1.5L virtual engine. Global dynamic Neural Networks models are
developed and utilized for model-based optimization. Dynamic polynomial
models obtained by an inverse identification of the optimal input-output
behaviour are used as feedforward dynamic calibration controllers which
produce effective and smooth control signals.

• A novel automatic Transient Testing Platform is presented for testing on
an engine test bed which originally was designed for only steady state mea-
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surements. The structure of the platform and its implementation details
are described.

• A novel application of State Space Neural Networks are applied to the ex-
perimental modelling of engine emissions and the engine performance of
a 5.0L naturally aspirated JLR engine. An heuristic algorithm for struc-
ture selection is developed to overcome over-fitting and the local minima
problem.

• Numeric Dynamic Programming was investigated as a possible alternative
to existing optimisation algorithms in the dynamic calibration methodology.

• An experimental study is presented of the novel engine dynamic control
calibration methodology applied to the air-path of a 3.0L Jaguar Land Rover
turbocharged diesel engine. Implementation is made of a direct optimisation
approach into dynamic calibration based on State Space Neural Network
models. A complete application of the methodology is demonstrated in a
vehicle where the vehicle-implemented calibration is obtained in a one-shot
process solely from data obtained from novel dynamic dynamometer testing,
without recourse to in-vehicle tuning.

1.7 Outline of the thesis

This thesis is structured as follows: Chap. 2 describes literature review related
to engine control, engine calibration and modelling. In Chap. 3 a preliminary
study is introduced that investigates experimental application of the dynamic
calibration to a virtual engine. The calibration problem includes fuel consumption
and emissions constraints. An application of Numerical Dynamic Programming
for simplified calibration task is presented in Chap. 4. The Transient Testing
platform is described in detail in Chap. 5 with a novel application of State Space
Neural Network for the engine and emissions modelling. An experimental study is
presented in Chap. 7 of the novel engine dynamic control calibration methodology
applied to the air-path of a 3.0L Jaguar Land Rover turbocharged diesel engine
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and in-vehicle validation of the resulting feedforward dynamic controllers. Chap.
8 is dedicated to the conclusions.
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Chapter 2

Literature Survey

2.1 Introduction

The subject of engine calibration has been widely researched in recent years. This
has became an important subject because modern internal combustion engines
require accurate and multidimensional calibration in order to meet increasingly
stricter emission regulation and CO2 limits. Increasing requirements for engine
performance, fuel economy and emissions lead to more and more subsystems and
control functions being implemented in modern internal combustion engines. This
has lead to a rapid increase in the number of control parameters and consequently
a dramatic increase in the time and cost of engine calibration. Figure 2.1 shows
an overview of typical calibration tasks that has to be carried out for the petrol
engine. The only difference for diesel engine is that there is no lambda control.
The fundamental task in the process is the base engine calibration and emission
calibration, where optimal engine settings to run the engine smoothly, minimising
the fuel consumption and meeting the emission requirements are determined.
As current engine strategies are largely torque-based, there is special calibration
needed for the internal torque model. The rest of the static calibrations provide
safe and clean engine operation.
The vehicle and transmission calibrations take place after all engine related cal-
ibrations are finished. Those calibrations cover various comfort and dynamic
functions for the transient states of the vehicle and the transmission.
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Figure 2.1: Numbers of different calibration tasks [2]

General practice within the automotive industry is to perform the engine cali-
bration for steady state behaviour. This may be thought surprising as an engine
operates very rarely on steady state conditions with constant speed and constant
torque. Having said that, in an electric control unit (ECU) many functions are
still realized in the form of static functions represented as 2D maps and the on-line
optimisation of transients is not possible. Nevertheless, using dynamic measure-
ments would still save a significant amount of time spent on a test bed compared
to using steady state measurements. A second potential benefit of dynamic mod-
elling is that the transient behaviour of the engine can be captured which could
have applications to engine emissions which also show dynamic behaviour [12]
[13] and so a calibration methodology which accounted for this sort of behaviour
should lead to more realistic calibrations.
A wide scope of techniques for engine modelling has been investigated in research
because the power-train system is a complex system which includes non-linear
and linear elements [14].
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2.2 Engine calibration

2.2.1 Steady state calibration

A calibration is called steady state when data collection on the test bed is carried
out in a steady state manner. This means that discrete tests remain on a spec-
ified operating point generally of engine speed and torque. The simplified static
calibration task is presented in Figure 2.2.

Figure 2.2: Example of simplified calibration task [2]

Here firstly set of operating points is designed to cover the operating range Xop.
At each operating point xop optimisation is carried out to find the optimal setting
for the XP parameter minimizing certain cost function Φ as follows:

minXP
Φ(xop, XP )

(2.1)

And finally when for each operating point xop minimization is completed, a 2D
map is created to store the calibration in the ECU.
To reduce the test time static calibration procedures which choose a reduced num-
bers of test points based on Design of Experiments (DoE) optimisation methods
have been extensively developed and exploited in recent years.
In one such method [15] a statistical machine learning tool was presented for
diesel engine air path calibration. The methodology consists of a quasi-random
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Sobol space-filling technique for test design, in which a radial basis function net-
work was employed for engine modelling and numerical optimisation used to find
optimized calibration maps.
In an alternative method an efficient automated steady-state DoE approach for
GDI engines was developed for highly non-linear systems with irregularly shaped
operating regions. This was achieved by combining new DoE techniques with
automatic and adaptive identification of the region of interest in the high dimen-
sional parameter space [16].
An improved static calibration process was presented in [17] which combines DoE
optimisation with a fuzzy rule-based calibration. The calibration rules were de-
scribed in accordance with operating parameters and physical engine phenomena,
and developed a fuzzy logic enabling automatic calibration using a search based
on these rules.

2.2.2 Transient calibration

Transient calibration is currently a manual process depending on the experience
of the calibration engineer who is conducting the calibration process. The process
is performed to meet regulation rather than optimise the system. Novel method-
ologies for transient calibration have been investigated over the last few years to
integrate control and calibration processes and to obtain good control in transient
conditions. In [18] neural network models were utilized for model-based control
for fuel consumption and emission online optimisation.
In [19] a quasi-static engine model with a static emission model were used for
actuator trajectory optimisation. Although this work does not result in a final
engine calibration, the methodology shows a potential for transient calibration.
In [20] a dynamic calibration approach was applied for a virtual engine without
emissions outputs with promising results.

2.3 Steady state data collection

Historically before electronic control units were introduced, the engine calibra-
tion was conducted manually on the test bench led by an experienced calibrator
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adjusting mechanical parts to find optimal settings. In recent years, after the
introduction of the ECU and more actuators, because of the fact that an inter-
nal combustion engine is an under-sensed system, where key controlled variables
are not measured (such as torque and emissions) once the engine is placed into
vehicle, some form of modelling process is usually part of any calibration method-
ology.
There are two basic approaches for engine modelling for calibration: static and
dynamic. Measurements are generally performed in steady state conditions be-
cause many calibration tasks are conducted in steady state conditions. Figure 2.3

Figure 2.3: Steady state measurements phases: Control (CT), Stabilisation (ST)
and Averaging time (AT) [2]

presents the steady state measurement procedure. Firstly the specified parameter
is set to the desired value via some form of automatic control in the control time
(CT). The adjustment always has an influence on measured variables, especially
for variables with long time constants such as temperatures. Therefore there is
a period of time called the stabilization time (ST) when all measured values are
stabilized. And then finally during averaging time the mean values are captured.
This is the reason why the overall measurement time take so long and depends
on the time constants of several minutes, typically something from 2 to 5 minutes.
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2.4 Engine modelling

For reasons mentioned above any calibration methodology employs some form
of the system modelling. Modelling techniques can be divided into three main
groups depending on the prior knowledge of the system:

• white-box modelling

• grey-box modelling

• black-box modelling

2.4.1 White-box modelling

The white-box model is sometimes called a physical or phenomenological model.
This model is obtained by analysing the system or the process using some basic
physical principles or laws such Newton’s laws of motion or thermodynamic laws.
The dynamics of such system should be understand clearly and physical param-
eters should be known with a degree of certainty, eg. resistances, diameters and
mass. Although there are some advantages to this type of modelling [21], for
power-train systems it is difficult to obtain an accurate physical model suitable
for control. This is due to the fact that in internal combustion engines there are
a large number of kinematic, thermodynamic and fluid dynamic processes that
occur simultaneously.
For control systems design applications there two modelling approaches which
are most popular in establishing engine models. Although both belong to this
same family of modelling the two approaches are significantly different.

The first one is discrete event modelling (DEM). The DEM is based on discrete
engine cycle events and is used for models which work on crank-based periods,
so it represents the engine in a very detailed manner. The DEM is used for com-
bustion modelling, air flow fluctuations, generating pressure traces across engine
strokes etc. This type of model has been implemented in commercial available
tools to support engine control development. Such models provide insights into
the system which help researchers to decide on the most appropriate approach
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to design control laws. Another advantage is that once a satisfactory model has
been developed it can be applied to similar systems by means of changing basic
parameters of the model. Two of the most popular commercial tools utilizing
DEM which are available on the market for engine modelling are Wave by Ri-
cardo [22] and GT-Power by Gamma Technologies Inc [23]. Typically because of
the high computational cost of this type of model it is not feasible to run transient
simulations in the real-time, however WAVE has on option to trim the model to
obtained the real time capability. A detailed DEM for a spark ignited (SI) engine
was developed in [24].

The second approach to physic based modelling is mean value modelling (MVM)
which obtains not so detailed model as DEM. The typical output of such model
is mean torque without consideration of the discrete characteristics of torque
generation. This type of model has a limited capability for representing engine
behaviour but on the other hand has a significantly reduced computational de-
mand. In [25] [26] complete MVM models for SI engines have been presented. In
[27] [28] MVM models have been presented with particular application to power-
train.

2.4.2 Grey-box modelling

Grey box modelling is an approach combing white-box modelling and black-box
modelling. The white box approach is applied for those processes or phenomenons
for which the physics behind them are better understood and are easier to model
using physical laws. On the other hand for parts of the system for which there
is no deep knowledge about the system an empirical modelling technique is used
instead. In [29] [30] grey box modelling has been presented for homogeneous
charge compression ignition engines and for application in control design.
A combination of equation-based and NN data-driven models was used to ob-
tain dynamic models and verified the results from model-based calibration over
transient tests and regulatory drive cycles in [31].
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2.4.3 Black-box modelling

Black-box models are often referred to as empirical models as in general they are
obtained during data-driven system identification experiments. The black-box
modelling approach is to build a mathematical model of a subject system from
only observed behaviour of the physical system. This type of modelling does not
require a deep physical prior knowledge from researchers about the subject sys-
tem, and the information about the physical process of the system is completely
contained in the input-output data. The system identification is developed by
collecting appropriate input signals and the observation of the responses often re-
ferred to as outputs. The empirical model describes the relationship between the
input signals and the output signals of the system. The system identification is
then a process of determining parameters of the model of the subject system and
has been described in detail in [32] [33] and with special attention to non-linear
identification in [34].
The engine modelling community has recently taken much interest in black-box
modelling. In [35] LOLIMOT structured models were used to describe the dynam-
ics of engine torque generation. Comparative study on engine torque modelling
using different neural networks was presented in [36]. In [37] dynamic models as
Volterra series were identified and then a base calibration was carried out with
satisfactory results based on those models. The work presented in [38] has investi-
gated input-output modelling, where linear ARX (autoregressive with exogenous
input) models were employed to characterise air-fuel ratio dynamics.

2.5 System identification

The system identification process is an iterative process with multiple iterative
loops. After the first run of the process the researcher has to make the decision
whether the obtained model meets the requirements by verifying the model output
against the real model output. If it does not meet requirements, the researcher
has to make the decision about what needs to be changed to improve the results.
The general procedure of the system identification process is shown in Figure 2.4.
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Figure 2.4: A general procedure of system identification
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Typically the system identification experiment is carried out in open loop condi-
tions. This gives the benefit of the input signals being not correlated to the output
signals which helps with finding the input-output relationship. However in some
situations the experiment may have to be carried out in closed loop conditions.
Usually this is due to safety considerations to prevent the subjected system going
into unsafe conditions. This introduces the issue of input signal being related
with output signal though the controller. In [39] [40] the problem is described
in detail and a number of possible solutions of closed loop identification are pre-
sented. One of them is the indirect method where firstly the transfer function of
closed loop system is obtained and later the open loop transfer function of the
plant is calculated using the controller equations.

2.5.1 Test signal design

The subject system has to be effectively excited by the test signal to capture
the dynamical behaviour of the system in the operating region of interest. The
choice of test input signal is critical to the final results of the system identifica-
tion experiments. The test signal has to be chosen carefully because for black-box
modelling pre-knowledge about the system is usually limited. Therefore a rich
test signal should have the right frequency spectrum and amplitude to excite the
desired frequency range and sensitivity to the magnitude of the system.
Optimal test signals are frequently close to white noise which is not practically
possible to generate because it is an unconstrained signal and also could required
too fast actuator switching.

For linear system identification, a popular test signal is the pseudo-random binary
sequence (PRBS) which is a signal built with only two values: low and high. This
type of signal has good properties as it can excite a wide range of frequencies.
This signal approximates white noise [41].
For non-linear system identification, the chirp signal is broadly used which is a
sinusoidal-like signal with time variant frequency. In [42] the chirp signals were
applied to engine emission modelling with a novel scaling safety feature. This
signal has the advantage of avoiding rapid changes if the very high frequency
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Figure 2.5: Example of PRBS signal

range is outside of interest.

Figure 2.6: Example of chirp signal

Another signal used for non-linear identification is the Amplitude Modulated
Pseudo-Random Binary Sequence which is a periodic deterministic signal with
properties similar to the white noise [43]. The APRBS is often used in system
identification on the test bed because it covers a wide amplitude range to capture
the non-linearities [44].

Figure 2.7: Example of APRBS signal

Special care must be taken for multiple input single output (MISO) and multiple
input multiple output (MIMO) systems to consider different power density for
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different channels. If for example stronger input occurs at this same time as a
weak one, the way to identify the weak relationship would be challenging [45].
Some iterative methodologies of designing optimal input design using optimiza-
tion can be found in [20].

2.5.2 Data Collection

Once the system is efficiently excited then the data collection process takes place.
In this process output values containing the system dynamics are captured. Spe-
cial care must be taken as the sampling frequency is very important. When a slow
sampling rate is chosen then high frequency behaviour will be impossible to iden-
tify. According to the Nyquist-Shannon sampling theorem [46], a signal can be
correctly identified only if the maximum frequency is less then half the sampling
rate. Generally the sampling frequency is chosen at around 10 times the system
bandwidth. However, a higher sampling rate can be selected without a risk of
not capturing the important range of frequencies, as later in the post-processing
activities the data can be down sampled.

2.5.3 Selection of model

Depending on the properties of the subject system either a linear or a non-linear
model can be applied to describe the behaviour of the system. There are many
different types of dynamic black-box models that researchers have been applying
over last 50 years. In the past due to lack of computational capability only an-
alytical tools were available for control system synthesis, therefore linear models
were more preferable. The limitation of the linear model is that it is not ca-
pable of representing non-linear behaviour of the many significantly non-linear
real systems such as power-train systems where non-linear models are best used.
However the discrete-time linear model has been popular in research in last few
decades due to its simple polynomial form and its well established way of esti-
mating parameters.
The most popular linear models are models belonging to the autoregressive mod-
els family which means that the output depends on previous inputs and outputs.
The family of autoregressive models consist of Auto Regressive Moving Average
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(ARMA) models, Auto Regressive eXogenous (ARX) models, Auto Regressive
Moving Average with eXogenous input (ARMAX) models, Output Error (OE)
models and Box Jenkins models.
A general equation of discrete-time linear polynomial models is as follows:

y(t) = G(q−1)u(t− nk) +H(q−1)ε(t) (2.2)

where q−1 is the time shift operator, y(t) is the discrete output, u(t) is the
discrete input, G(q−1) represents the discrete transfer function of the system,
H(q−1) represents the discrete transfer function of the noise affecting the system,
ε (t) represents the system noise (which is commonly assumed to be white noise)
and nk is the discrete number of sample times of the delay between input of the
system and output.
Different transfer functions can lead up to 32 different classes of models [32] and
so only those commonly regarded as the most important classes are described in
this chapter.

ARMA

A basic deterministic model is the Auto-Regressive Moving-Average (ARMA)
model that has following structure:

y(t) = B(q−1)
A(q−1)u(t− nk) (2.3)

where

A(q−1) = 1 + a1q
−1 + a2q

−2 + ...+ anaq
−na (2.4)

B(q−1) = b1q
−1 + b2q

−2 + ...+ bnbq
−nb+1 (2.5)

where A(q−1) is the polynomial denominator of the system transfer function of
order na and B(q−1) is the numerator of the system transfer function of order nb.
The ARMA model does not contain any noise input to the system. This means
that the output value can be determined in an entirely deterministic manner.
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Sometimes it is more convenient to represent this system in regressive form:

y(t) = x(t)θ (2.6)

where θ = [a1, a2, ..., am, b1, b2, ..., bn] is the vector of parameters and x(t) =
[−y(t − 1),−y(t − 2), ...,−y(t − na), u(t − 1), u(t − 2), ..., u(t − na − nk)] is the
vector of regressors.

ARX

The ARX model is a stochastic model derived from the equation 2.2 when the
transfer function of noise is represented as H(q−1) = 1

A(q−1) . The Autoregressive
part is represented by A(q−1)y(t) and the exogenous input by B(q−1)u(t). Then
the ARX structure is as follows:

Figure 2.8: Structure of ARX model

y(t) = B(q−1)
A(q−1)u(t− nk) + 1

A(q−1)ε(t) (2.7)

where

A(q−1) = 1 + a1q
−1 + a2q

−2 + ...+ anaq
−na (2.8)

B(q−1) = b1q
−1 + b2q

−2 + ...+ bnbq
−nb+1 (2.9)
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ARMAX

The Autoregressive moving-average with exogenous input (ARMAX) model can
be seen as an extended version of the ARX model. It includes independent the
polynomial C(q−1) to describe the more complex noise behaviour. The noise
can then represent the plant uncertainty or input disturbances. The ARMAX
structure is as follows :

Figure 2.9: Structure of ARMAX model

y(t) = B(q−1)
A(q−1)u(t− nk) + C(q−1)

A(q−1) ε(t) (2.10)

where

A(q−1) = 1 + a1q
−1 + a2q

−2 + ...+ anaq
−na (2.11)

B(q−1) = b1q
−1 + b2q

−2 + ...+ bnbq
−nb+1 (2.12)

C(q−1) = c1q
−1 + c2q

−2 + ...+ cncq
−nc+1 (2.13)

Box-Jenkins

The Box-Jenkins model has the most complicated structure which gives a lot of
flexibility for plant and noise modeling. In contrast to the ARX and ARMAX
structures where the transfer function of the plant and noise share the same
denominator, in the Box-Jenkins structure they are independent. The structure
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of the Box-Jenkins model is as follows:

Figure 2.10: Structure of Box-Jenkins model

y(t) = B(q−1)
A(q−1)u(t− nk) + C(q−1)

D(q−1)ε(t) (2.14)

where

B(q−1) = b1q
−1 + b2q

−2 + ...+ bnbq
−nb+1 (2.15)

C(q−1) = c1q
−1 + c2q

−2 + ...+ cncq
−nc+1 (2.16)

D(q−1) = d1q
−1 + d2q

−2 + ...+ dndq
−nd+1 (2.17)

F (q−1) = f1q
−1 + f2q

−2 + ...+ fnfq
−nf+1 (2.18)

Output Error model

The Output Error model is a simplified version of the Box-Jenkins model, where
the transfer function of the noise is equal to 1. This means that the noise is
directly added to the output without going through the dynamics of the plant
and often refers to a pure error in the measurement of output.
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Figure 2.11: Structure of Output Error model

The structure of Output Error is as follows:

y(t) = B(q−1)
A(q−1)u(t− nk) + ε(t) (2.19)

where

B(q−1) = b1q
−1 + b2q

−2 + ...+ bnbq
−nb+1 (2.20)

F (q−1) = f1q
−1 + f2q

−2 + ...+ fnfq
−nf+1 (2.21)

2.5.4 Parameter Estimation

Let us consider a typical linear dynamic model with ARX structure as follows:

y(t) = B(q−1)
A(q−1)u(t− nk) + 1

A(q−1)ε(t) (2.22)

Then let us multiply the equation 2.22 by A(q−1) obtaining :

A(q−1)y(t) = B(q−1)u(t− nk) + ε(t) (2.23)

This can be represented by the linear difference equations:

y(t) = −a1y(t− 1)− a2y(t− 2)− ...− anay(t− na) (2.24)

+b1u(t− 1) + b2u(t− 2) + ...+ bnau(t− nb− nk) + ε(t) (2.25)
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This can also be represented in simplified form as follows:

y(t) = x(t)θ + ε(t) (2.26)

where θ = [a1, a2, ..., am, b1, b2, ..., bn] is the vector of parameters and x(t) =
[−y(t − 1),−y(t − 2), ...,−y(t − na), u(t − 1), u(t − 2), ..., u(t − na − nk)] is the
vector of regressors.

The equation 2.26 describes the linear system as it was obtained from the linear
difference equation 2.24. Both the parameters and regressors are linear. However
for systems with non-linear regressors this approach can also be used, as long as
the parameters have a linear relationship to the output.
For such system many parametric methods have been developed. The Ordinary
Least Square (OLS) method and the maximum likelihood (ML) method are one
of the most popular[32] of these.

Ordinary Least Square Method

The objective of this method is to minimize the sum of squared errors between
the measured output and the predicted output [47]. The error is then as follows :

e(t) = y(t)− ŷ(t) (2.27)

where e is the error, y(t) is the measured output and ŷ(t) is the predicted output.

Let us consider the equation 2.26 and assume that N number of samples have
been captured. Now this equation can be rewritten in the matrix form:

Y = Xθ + ε(t) (2.28)

where Y denotes aN×1 measurement vector of outputs, Y = [y(1), y(2), ..., y(N)]
, θ as before denotes an (na+ nb)× 1 true system parameter vector.

29



The estimated output can be then described as follows:

Ŷ = Xθ̂ (2.29)

where Ŷ denotes a N×1 estimated vector of the output Ŷ = [ŷ(1), ŷ(2), ..., ŷ(N)]
, and θ̂ as denotes a na+ nb× 1 estimated system parameters vector.

The Ordinary Least Square method is then the method of solving the optimi-
sation problem:

min
θ̂

1
2(Y − Ŷ )(Y − Ŷ ) = (2.30)

min
θ̂

1
2(Y −Xθ̂)(Y −Xθ̂) = (2.31)

min
θ̂

1
2(Y TY − θ̂TXTY − Y TXθ̂ + θ̂TXTXθ̂) (2.32)

To find the solution for such a problem the first derivative of the cost function
must first be obtained and equated to 0 as follows:

1
2
∂(Y TY − θ̂TXTY − Y TXθ̂ + θ̂TXTXθ̂)

∂θ̂
= −XTY +XTXθ̂ = 0 (2.33)

XTXθ̂ = XTY (2.34)

θ̂ = (XTX)−1XTY (2.35)

The resulting OLS estimator is an unbiased estimator for the ARX model when
the system noise is uncorrelated. An unbiased estimator has the property that
E[θ̂] = θ. For other types of models where the system noise is correlated, vari-
ants of the least square method have been developed. Amongst these, there are
the bias correction method [48], the prediction error (PE) method [49] and the
instrumental variable (IV) method [33].

So far only offline identification method have been mentioned, but there are
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also recursive versions of the least square methods [50]. Recursive least square
methods are online identification methods which mean that the parameters are
identified whilst the plant is running. Such recursive methods are often com-
bined with some adaptive control, where the control law can adapt to changes
in the model parameters. In [51] details of recursive methods can be found with
applications to online estimation of vehicle mass and gradient.

2.5.5 Validation

The validation in system identification is a process of checking or measuring the
quality of the modelling. Once the parameters of the model have been obtained,
the simulated output has to be compared to the measured data. It is important
to prepare separate data set for validation, which is different to the data set which
is used for identification. This data is often referred to as unseen data.

One way (and usually it is the first way) of assessing the quality of the mod-
elling is a visual inspection where simply the predicted output is plotted against
the measured output. The quantitative way of assessing the quality of any mod-
elling can be achieved by the introduction of some statistical assessment of fit
obtained by mathematical calculation. A multiple correlation coefficient R2 is
one such of measure and it is defined as follows:

R2(Y, Ŷ ) = 1−

∥∥∥Ŷ − Y ∥∥∥2

∥∥∥Y − Y ∥∥∥2 (2.36)

where Y is the mean of the output Y.
The most common measure used is obtained by normalizing the root mean square
error (NRMSE) which is often called ’the best fit’ :

NRMSE(Y, Ŷ ) = 1−

√√√√√√
∥∥∥Ŷ − Y ∥∥∥2

∥∥∥Y − Y ∥∥∥2 (2.37)
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The best fit values vary between -INF (bad fit) to 100% ( ie perfect fit which
then means the model can recover 100% of the real system).

2.6 State-of-art engine control

Control-oriented engine models were presented in [19] where quasi-static emissions
models were integrated with mean value engine models. Two possible applications
of such model were presented: in first case the models is used as a virtual sensor
of engine out emissions to estimate Particulate Matter (PM) and Nitrogen Oxides
(NOx) including validation results for steady-state and transient conditions. In
the second application the model was used for optimal control of various actuators
during transient manoeuvres and this showed potential in the reduction of the
pollutant emissions from the diesel engine.A multi-variable emissions-feedback
controller was designed in [52] for the NOx and PM emissions, where the air/fuel
ratio (AFR) was used as an indicator for the PM emissions, and where control
inputs were exhaust gas recirculation (EGR) and start of injection (SOI). Firstly
the control synthesis was tested on only the AFR control. The multi-variable
controller manipulating two inputs thus consisted of two independent Internal
Model Control (IMC) control-loops based on linear approximation of the engine.

Many researchers have investigated novel methods for dynamic calibration. A
novel local linear radial basic function network (LOLIMOT) applied to engine
modelling was presented in [53] including integration with an online optimisation
algorithm to find optimal engine inputs. In [54] a mean value model was used
to run offline optimisation over dynamic manoeuvres and the trajectories were
then used to train neural network controllers. A good introduction to dynamic
model-based calibration for diesel engine can be found [55].

New sensing technologies introduce new opportunities for development of new
controls system that were not available in past. One of such technology is the
close-loop control of ignition timing presented in [56] using the Ionization Current
Feedback for gasoline engines. From the ionization current number of combustion
parameters can be calculated such as Mass Burn Fraction 50% and Peak Pressure
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Position. The feedback algorithm regulates ignition timing to keep engine running
at its Minimal spark advance for Best Torque (MBT) timing, avoiding knock
limits and reducing the cycle-by-cycle variation. A proportional-integral (PI)
controller was used to correct the MBT spark timing.
The close-loop combustion control is another approaching control algorithm for
diesel engines [57]. A pressure sensing glow plug was the enabling technology
for this control algorithm. A pressure sensing glow plug is a glow plug that
integrates with pressure sensor enabling capability of measurig in-cylinder pres-
sure measurement. Utilising the in-cylinder pressures signal from this sensor it
is possible to keep engine running in optimal combustion point of MFB50 and
correct the engine torque for climatic conditions, engine-to-engine variation and
engine wear. In [58] in-cylinder pressure signal was used for the cylinder balanc-
ing and multi-pulse fuelling control system. The in-cylinder pressure signal was
also investigated to estimate the NOx emissions [59]. In [60] [61] are presented
presented algorithms based on Neural Networks modelling for reconstructing the
in-cylinder pressure.

New actuating technologies also also initiate development of control strategies.
A laser ignition (LI) engine presented in [62] is shown to be an alternative to tra-
ditional spark coil-based ignition replacing spark plug with set of optical lenses
focusing the beam into one or multiple points to ignition the combustion process.
This technology results in additional potential benefits of using such optical win-
dow to monitor the combustion event in the real-time.

Following the trend of downsizing of the engine to reduce the fuel consumption,
a new trend can be observed in the automotive industry focusing more on the
electrification of the vehicle fleet. One form of electrification is an electrically
assisted turbo-charger (TC) for a modern diesel engine. In [63] control system
based on sliding modes was developed to assess the befits of using the electri-
cally assisted turbo-charger for a diesel engine equipped with Variable Geometry
Turbocharging (VGT) and Exhaust Gas Recirculation (EGR) achieving precise
regulation of the fresh air fraction in the intake charge during transient conditions
on the FTP-75 driving cycle. A typical hybrid powertrain combines an internal
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combustion engine and an electric motor which allows for significant reduction
in fuel consumption. Dynamic programming is one of popular algorithm to find
optimal usage of the electric mode sometimes refereed to as power management
to improve the fuel economy [64] [65].

Not only new technologies are developed in the automotive industry and the
academia but also new combustion modes. Recently very popular subject in
the research is a Homogeneous Charge Compression Ignition (HCCI) engine as
efficient and low-pollutant engine technology which results in much colder com-
bustion which then can lead to misfires. The HCCI engine is a combination of
a spark ignition (SI) engine and a compression ignition (CI) engine. It utilizes
a premixed charge of air and fuel similarly to the SI engine but similarly to
CI engine fuel-air mixture is very dilute and ignited by compression The work
presented in [66] is focused on the analysis of combustion stability of the HCCI
engine under various conditions and on the comparison of the static and dynamic
feedforward controllers for rapid and large changes in fuelling level. In practice
the in-cylinder pressure sensors mentioned before can be used for the engine cal-
ibration for optimal fuel consumption using online method such as Extremum
seeking [67]. This method was also applied for tuning the PID and feedforward
combustion-timing controllers for MBF50 is a manipulated input.

Nowadays more engines use the number of so-called operating modes such as
normal mode, regeneration modes, starting mode and purge mode etc. From
the calibration and controls perspective the problem with multiple modes is with
switching between those modes that needs to take place without losing the engine
performance and driveablility. The work [68] presents a systematic approaches for
the control of switched systems with application to a diesel engine where optimal
inputs are found for the torque and lambda tracking during switching between
two operating modes.

The model-predictive control (MPC) has been widely implemented in the pro-
cess industry over last decades. In one such application of MPC control system
are proposed in [69] for air-fuel ratio control for a SI engine with Kalman filter
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used to estimate current engine states. Another approach for the enhancement
of the air-fuel control for SI engines can be achieved by active catalyst control
strategy based on the use of two linear exhaust gas oxygen (UEGO) sensors both
upstream and downstream of the catalyst. It is shown that using two sensor the
bias present in upstream sensor measurement can be estimated. It turned out
that actually the best location of the second sensor is not after the catalyst but
in the middle of it.

The MPC can also be applied to the control of EGR and VGT control but it
was shown in [70] that choice of outputs in this problem has a significant impact
on overall results. It was stated that MPC controllers has superior control capa-
bility compared to PID controllers resulting in reducing EGR-error and lowering
pumping losses. Another study focused on the minimization of pumping losses
is presented in [71]. In [72] a black box model of an engine air-path was used
for predictive control showing improvements in dynamic responses of the mass
air flow and the intake manifold pressure but interestingly without any improve-
ments on the emissions.

The introduction of new after-treatment systems has driven development of new
control strategies to optimise the tailpipe emissions. One of the most popular
in heavy-duty and light-duty vehicles after-treatment technology for reduction of
NOx emissions is the Selective catalytic reduction (SCR) technology which uses
injections of urea to the exhaust pipe. The urea then converts into ammonia and
then reacts in the SCR converter with the engine-out NOx reducing the overall
tilepipe emissions.
The associated problem with the SCR converter is the slippage of NH3 as a
result of the overdose of the urea. Comparision of NOx-based control using a
NOx sensor and the NH3 based-control using NH3 sensor is presented in [73].
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Figure 2.12: Automotive urea SCR system layout [3]
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Chapter 3

Inverse Optimal Behaviour based
Dynamic Calibration for Fueling
in the Diesel Engine

3.1 Introduction

This chapter introduces a novel dynamic calibration methodology for multivari-
able control and its application to the diesel engine. Although the methodology
can be applied to both spark-ignition and compression-ignition engine this work
is conducted on a turbocharged compression-ignition unit only. This methodol-
ogy is based on multi-stage black box modelling and offline optimization of con-
trol inputs. The objective of this methodology is to design an optimal dynamic
feedforward engine controller which improves the fuel economy whilst delivering
smooth torque and maintaining specified emissions limits such as on Nitrogen
Oxides (NOx) and Particulate Matter (PM). The proposed dynamic calibration
is a process that employs system identification techniques with dynamic Design
of Experiments (DoE) and can exploit global constrained numerical optimisation
codes. This calibration methodology in contrast to conventional steady-state cal-
ibration takes into account transient responses of an engine and emissions.
For purposes of this work an industrial state-of-art Wave RT model of 1.5 litre
Turbo EU6.1 turbocharged DI engine integrated with emission models obtained
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from data from a real test-bed is employed. Finally the performance of the dy-
namic controller are compared to current steady-state model-based calibration
methods.

3.2 Experimental set-up

3.2.1 Virtual model

The dynamic calibration and control method development and validation is con-
ducted on a WAVE 1.5 litre Turbo EU6.1 engine model which has been developed
and experimentally validated by the Ford Motor Company to act as a virtual
engine. The determinism and repeatability of such a virtual model is advanta-
geous in assessing the effectiveness of the new control systems and calibration
methodologies. The Ricardo Wave software is a state-of-art platform for 1D gas
dynamics simulations and is equipped with a Wiebe combustion model. Because
of their high accuracy capability such models are broadly used in academia and
industry. The Wave-RT extension provides the capability of speeding up the
Wave model to real-time speed capability. In this work the provided Wave model
was converted into an an RT-WAVE model to gain fast running computation in
Matlab/Simulink to act as a virtual engine during the investigation.

3.2.2 Conventional loop-up-tables

For validation of this method against a conventional calibration methodology
look-up-tables were provided by Ford that are capable of tracking the desired
torque with optimised fuel consumption whilst satisfying the limits on feed gas
Nitrogen Oxides (NOx) emissions and Particulate Matter (PM) emissions.
These maps are compatible with the production standard used in automotive
industry in EMS software, which have the dependent variables of engine speed
and inner torque. It is worth mentioning here that recently the most popular
control strategy for modern engines is the so-called torque based method where
everything in the strategy is related to inner torque. The maps then require
then accurate information about actual generated torque inside a cylinder. This

38



0 500 1000 1500 2000 2500 3000
−40

−20

0

20

40

60

80

100

120

140

160

Time(0.1s)

T
o
rq

u
e
(N

m
)

 

 

Torque demand

Torque by Ford look−up table

Figure 3.1: Control performance of look-up-tables

is done by online torque estimation that is implemented in the ECU. The big
disadvantage of this approach is additional testing time on the engine test bed to
calibrate it.
The control performance of the look-up-tables are evaluated over the EUDC drive
cycle is presented in Figure 3.1. The resulting mean values of NOx and PM in feed
gas are 126.73 ppm and 2.15 g/h. Those values are used later in the methodology
as limits NOx and PM emissions.

3.2.3 Emission models

The virtual engine was equipped with emissions models to represent engine-out
emissions in contrast to tailpipe emissions. Tailpipe emissions are very different
from engine-out emissions and are strongly influenced by the after-treatment sys-
tem and this is not a subject of this work. The emissions production is modelled
as a static mapping of the dynamically produced in-cylinder states. This data-
driven mapping is developed based on experimental data from emission analysers
from the subject engine.
The data for developing this model were collected in 29 speed-load operating
points. Polynomial sub-models of order two have been fitted using the Model
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Based Calibration (MBC) toolbox with point-to-point models. A DOE method-
ology has been employed to generate calibration space for each of the 29 points
for the different calibration inputs. The calibration inputs for those points are:
Exhaust Gas Recirculation (EGR) rate, intake manifold pressure, pilot injection
mass, pilot timing, main injection timing (SOI) and fuel rail pressure. For the
sake of simplicity, the fuel rail pressure during the whole process of dynamic cal-
ibration was controlled by the map which was empirically tuned by Ford Motor
Company and all pilot inputs were set as constant. Additionally engine speed
and torque were not direct inputs, but were only used to interpolate sub-models
between operating points.
The interpolation between sub-models is obtained by employing a 3 nearest neigh-
bours algorithm and barycentric norm.
The 3 nearest neighbours algorithm selects the 3 most adjacent points, between
which the interpolated point is located, from the 29 available as shown in Fig-
ure 3.2. It is developed by employing an L1 distance function known also as a
Manhattan distance as follows:

d1 = |x1 − x2|+ |y1 − y2| (3.1)

where d1 is a Manhattan distance, x1 and y1 are X-Y coordinates of a first point,
x2 and y2 are X-Y coordinates of a second point.
The d1 distances between the 29 points and the interpolated point are calculated
and the 3 with the shortest distance are then taken as the 3 adjacent points.
When the interpolated point is outside the operating envelope the two closest
points are selected and interpolation is made between those points.

After the 3 most adjacent points are selected the barycentric norm is applied
to calculate 3 weights that are proportional to the distance from the interpola-
tion point to the adjacent points. The final interpolated output is computed as
the sum of three outputs from the 3 sub-models associated with the 3 nearest
neighbour points, each multiplied by barycentric weight as illustrated on Figure
3.3, where example of weights for couple of points are presented in brackets. The
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Figure 3.2: The Three Nearest Neighbours algorithm

barycentric weights are calculated as in equations 3.2.

W1 = (y2 − y3)(x− x3) + (x3 − x2)(y − y3)
(y2 − y3)(x1 − x3) + (x3 − x2)(y1 − y3) (3.2)

W2 = (y3 − y1)(x− x3) + (x1 − x3)(y − y3)
(y2 − y3)(x1 − x3) + (x3 − x2)(y1 − y3)

W3 = 1−W1 −W2

where xn,yn are X-Y coordinates of the n-th adjacent sub-model; x,y are X-Y
coordinates of the interpolated point and Wn is the barycentric weight for the
n-th sub-model. The emission model was coded in MATLAB as a S-function
for implementation for the virtual model. The S-function was then imported
into SIMULINK and the emission model was combined with the virtual model.
Because for each sub-model was developed based on a individual set of calibration
values, each sub-model has a individual input range space. Accordingly a dynamic
saturation had to be applied to the sub-model inputs to ensure that the values
fed into individual sub-model are within range for each sub-model.
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Figure 3.3: Illustration of barycentric weights for 3 points. For example at the
point A the weights are as follows: w1 = 0 w2 = 0 and w3 = 1

.

3.3 Dynamic calibration

The objective of the dynamic calibration methodology presented in this chapter
is to obtain a feedforward controller that minimizes the fuel consumption of the
subject engine with torque tracking of driver torque demand Td and meeting NOx
and PM limits. The Figure 3.4 shows the feedforward controller F together with
identified mean value engine model G1 of engine torque and engine emissions.

3.4 Identification

The first stage of dynamic calibration is a system identification process of ob-
taining behavioural data-driven description of the subject engine and engine-out
emissions. For this work a black box modelling technique was used to minimise
prior knowledge required about the system and to keep this method as general
as possible for wide range of possible applications. This work presents only one
application of this method but this method can by extended to more complicated
calibration tasks using more inputs.
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Figure 3.4: Feedforward controller and mean value engine model

The mathematical model employed to describe the engine behaviour needs to be
able to represent the dynamics and non-linearities of the engine. To achieve that
a rich data set must be obtained from the data collection process. The choice
of rich excitation signals has a strong influence on the final results of the system
identification. The input sequence should be sufficiently rich not only to excite
the key frequencies of the system but also the non-linearities.
For this work APRBS signal was used to excite the following inputs:

• Start of Injection (later referred to as SOI)

• Exhaust Gas Recirculation position valve (later referred to as EGR)

• Variable Geometry Turbocharger position valve (later referred to as VGT)

Furthermore in an experimental application with a new engine, the safe upper
and lower limits of the input channels would have to be determined by iterative
experimental process or any sort of boundary search algorithm. However the
limits for each input in this work were determined from prior experience with the
subject engine with the existing calibration operated over the EUDC drive cycle,
and were determined as:
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• -0.7 rad <= SOI <= 0 rad

• 0 m <= EGR<= 0.02m

• 40% <= VGT <= 100%

It was found that the above constraints were more strict than the boundaries
found applicable in the final control maps so the results of the final constrained
optimisation was to some extent conservative. Improved results in future work
might be expected with more relaxed constraints.
Because fuel injection mass (INJ) has the major influence on the torque output,
a PI controller was used to track the EUDC profile of engine torque and to keep
the experiment in safe conditions. The engine speed input was chosen also as the
speed profile of the EUDC drive cycle.
Identification signals employed in this work can be seen in Figure 3.5. The sam-
pling time was selected 0.1s and a 3000-point data sequence was recorded for
identification.

3.4.1 Model Structure

In this work a type of dynamic recurrent Neural Network (NN), that realises
as a Non-linear AutorRegressive with eXogenous inputs (NARX) structure, was
employed to model the dynamic behaviour of the engine with emissions as both
have a dynamic and non-linear nature [74]. As all three neural networks models
are used for simulation of the system during each iteration of the optimisation
stage, the NN structure is selected to have parallel structure which obtains the
current output from previous inputs and previously simulated outputs. With
such structuring of the obtained black box models there is no need for further
experimental testing in the model-based optimisation and controller design pro-
cess, which additionally reduces test-bed time.
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Figure 3.5: Identification signals

45



The model structure can be described as follows:
Tb(n) = f(INJ(n− 1), ..., INJ(n− 5), SOI(n− 1), ..., SOI(n− 5),
EGR(n−1), ..., EGR(n−5), V GT (n−1), ..., V GT (n−5), RPM(n−1), ..., RPM(n−
5), T b(n− 1))

NOx(n) = f(INJ(n− 1), ..., INJ(n− 5), SOI(n− 1), ..., SOI(n− 5),
EGR(n−1), ..., EGR(n−5), V GT (n−1), ..., V GT (n−5), RPM(n−1), ..., RPM(n−
5), NOx(n− 1))

PM(n) = f(INJ(n− 1), ..., INJ(n− 5), SOI(n− 1), ..., SOI(n− 5),
EGR(n−1), ..., EGR(n−5), V GT (n−1), ..., V GT (n−5), RPM(n−1), ..., RPM(n−
5), PM(n− 1))

The neural networks is structured as:

• one hidden layer

• one output layer

The number of neurons at hidden and output layer is 10 and 1 respectively. The
input is a vector containing 5 inputs, the output is a scalar.The default structure
was used but it was found effective. The model contains 5 time delays for the
input channel and one time delay for the output channel so the relation in general
can be represented as follow:

y(t) = f(u(t− 1), ..., u(t− 5), y(t− 1)) (3.3)

Figure 3.6 presents the architecture of NARX model in the standard format of
the Matlab NN toolbox. The hidden layer has 10 neurons with a tansigmoid
activation function and the output layer has 1 neuron with a linear activation
function. The Levenberg-Marquardt backpropagation method is employed as the
training algorithm.
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Figure 3.6: Structure of dynamic Neural Network model

Table 3.1: System identification results

Model R2

Tb 98.41%
NOx 97.44%
PM 87.75%

3.4.2 Identification results

A multiple correction coefficient R2 is employed to measure output fitness as
given

R2(Y, Ŷ ) = 1−

∥∥∥Ŷ − Y ∥∥∥2

∥∥∥Y − Y ∥∥∥2 (3.4)

where Y is the mean of the output Y .
The results of system identification are presented in Table 3.1. The results show
that the identified models of torque and NOx are very accurate and can represent
the subject engine and emissions accurately during the optimisation. The PM
model gives less accuracy when compared to the torque and NOx models, however
using this model acceptable optimisation results are obtained. Figures 3.7, 3.8
and 3.9 show the comparison between measured and simulated data using the
NARX structure model for all three identification experiments .
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3.5 Model-based optimisation

The second stage of the dynamic calibration is a numerical optimisation. In this
stage the torque and emission models from the previous system identification
stage are utilized to find an open-loop optimal trajectory to minimise the fuel
consumption while satisfying the constrains on torque and emissions. In this
work the Interior Point algorithm from the Matlab Optimisation Toolbox 2010b
[75] is used as the constrained non-linear optimisation routine. The optimisation
generates optimal input-output trajectories that satisfy the constraints.

3.5.1 Optimisation implementation

The objective of minimal fuel consumption while satisfying emission limits can
by reflected in the numerical optimized behaviour by employing various designs
of objective function and constraints. The optimised inputs for the optimisation
are INJ, EGR, VGT and SOI at each time instance.
In this work two approaches to objective function design are presented.
In the first case the objective function is determined as the sum of INJ over the
EUDC driving cycle and to obtain minimum fuel consumption and is given by:

min
INJ,EGR,V GT,SOI

N∑
t=1

INJ(t) (3.5)

subject to:
Equality constraints:

Tb(t) = Tdesired(t) (3.6)

t = 1, 2, 3..., n (3.7)

Inequality constraints:

NOx ≤ 126.73ppm (3.8)

PM ≤ 2.15g/h (3.9)
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The equality constraint is determined by the torque profile from the EUDC drive
cycle for the subject engine as in Figure 3.1 in order to track a representative de-
manded torque and to realize the required engine speed.
The inequality constrains on NOx and PM are selected according to the mean
values of the emissions over the data sequence because of the legislative regulation
on the total amount of emissions.
At each time instance the inputs of INJ, EGR , VGT and SOI are changed to
obtain a minimized fuel consumption while satisfying emission limits. So at each
time instance there are 4 manipulated variables and so for 3000 data points which
gives a total of 4× 3000 = 12000 variables.
The second approach is based on a different objective function design which is
configured to maximize the mean torque over EUDC which decreases computa-
tional burden significantly. The objective function is thus given as:

max
EGR,V GT,SOI

N∑
t=1

Tb(t) (3.10)

subject to:
Inequality constraints:

NOx ≤ 126.73ppm (3.11)

PM ≤ 2.15g/h (3.12)

At each time instance the inputs of EGR, VGT and SOI are changed to find the
maximum of the objective function, while torque tracking is guaranteed by fixed
INJ because of very strong relationship between torque and INJ. In this case now
number of variables is reduced to 3× 3000 = 9000.
The resulting optimisation obtains optimal input-output data, that for the given
fuel trajectory maximizes mean torque, instead of focusing on fuel optimisation
directly.
The variables of the entire data sequence are ideally manipulated in a one stage
optimisation to achieve full global optimality for given optimisation problem.
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However this leads to very high demand in memory resources and leads to a long
computational time which makes this process computationally inefficient.
To solve this problem to further reduce the computational work in each iteration,
a novel segment approach is proposed. For this approach the whole optimisation
problem of 3000 data points is split into 15 sub-problems called segments, each
of 200 data points. Optimisation is performed sequentially on each separate
segment. This way each segment contains much fewer variables and constraints
and so it results in a significantly reduced computational burden at the expense
of true global optimisation.

3.5.2 Optimisation results

Optimisation was run in the Matlab environment using the Interior Point algo-
rithm with 40000 numerical iterations. The results from the optimisation are
presented in Figure 3.10. It took 5188s (= 1 hour 27 minutes) to compute the
results on standard 1.6 GHz PC. The obtained optimal inputs are non-smooth
and noisy as on some part of the data set the input values change rapidly due to
the setting of the optimisation. The reason is that each time instance is treated
as an individual set of variables and the algorithm adjust those variables in order
to meet all the constraints while maximising the objective function. Since all
variables are considered independently this is why the final optimal inputs are
not smooth. However the next step of the dynamic calibration process is where a
feedforward controller is developed and its structure is predetermined to produce
smoothed output signals.
To verify the performance of the optimal solution found by the optimisation, op-
timal inputs were applied back to the virtual engine as open-looped trajectories.
The optimized mean torque with this same fuel consumption has Top = 51.43Nm
and it is compared to the original mean values of torque T0 = 50.07Nm. The
results show improvements in the ratio:

Top/T0 = 1.012 (3.13)

The resulting optimal emission are NOxop = 117.98ppm and PMop = 1.19g/h
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Figure 3.10: Optimal input signals

which satisfy the emission constraints set for the optimisation. The effectiveness
of the optimal inputs in the virtual engine system test is thus proved.

3.6 Inverse identified dynamic controller design

In this stage the optimal inputs derived from the optimisation stage are used
to obtain an optimal feedforward controller by identification from the inverted
optimal data set. The inverse data set was determined as follows:

• torque output to act as an input

• INJ, EGR VGT and SOI inputs to act as outputs

• engine speed input to act as an input

In experimental applications of the method the input-output data would have
to be time-shifted as in [76] to remove time delays from the optimal data set
before the inputs and outputs can be swapped. In this application where signal
measurement delays were not modelled in both the dynamic and the conventional
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Table 3.2: Inverse identification parameters

EGR SOI VGT INJ
θ1 -0.023 -0.26 -0.10 2.96
θ2 -2.24x10−5 2.42x10−4 -0.0025 0.098
θ3 3.81x10−5 2.64x10−4 3.77x10−4 -0.0028
θ4 0.30 -3.01 0.89 0.51
θ5 -7.26x10−7 -6.62x10−6 2.20x10−5 -6.79x10−6

θ6 8.91x10−8 3.42x10−7 -2.25x10−6 -2.90x10−5

θ7 -0.0065 -0.0099 0.0027 2.75x10−4

θ8 -1.39x10−8 -7.47x10−8 -6.53x10−9 -2.25x10−4

θ9 3.77x10−4 0.0025 2.25x10−4 1.07x10−4

calibration applications such time-shifting was not found necessary.
Four inverse MISO models are thus obtained to reproduce the optimal inputs
trajectories for: INJ, EGR, VGT and SOI with desired torque and engine speed
RPM as inputs so as to obtain the feedforward controller F of Figure 3.4.

In this study a polynomial structure was employed to implement the controller.
The polynomial structure only has a limited capability to model non-linear be-
haviour but is easier to implement then neural networks. A second order Volttera
structure including output regressors together with input regressors and their
products was predetermined as follows:

y(t) = θ1 + θ2u1(t− 1) + θ3u2(t− 1) + θ4y(t− 1) + θ5u1(t− 1)2

+θ6u1(t− 1)u2(t− 1) + θ7u1(t− 1) + θ8u2(t− 1)2 + θ9u2(t− 1)y(t− 1)

(3.14)

where u1 denotes the desired torque and u2 denotes the engine speed. The
parameters obtained in this stage are presented in Table 3.2.
Comparison of simulated and optimal inputs are shown in Figure 3.11. The
corresponding R2 that was obtained to measure quality of control input repro-
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Figure 3.11: Optimal and simulated input signals

ductions for the model described above are given in Table 3.3. The better that
the R2 parameter is the better the inputs match the optimal inputs from model-
based optimisation. Ideally R2=100% would lead to perfect reproduction of the
optimal inputs. For the EGR and SOI inputs the figures shows that the resulting
representation is worse than for the INJ and VGT signals.
On the other hand this leads to a smoother input sequence which is also desirable
as a fast changing input sequence has a significant impact on faster actuator wear.
The final controller can never perfectly match the optimal signals although some
improvements could be achieved by applying some form of model structure selec-
tion algorithm or a using different model type.

3.7 Controller performance validation

Experimental validation was carried out by applying the inverse identified con-
troller to the virtual engine. During the experiment torque and emission were
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Table 3.3: Identified controller results

R2
INJ 97.95%

R2
V GT 75.22%

R2
EGR 40.82%

R2
SOI 32.81%
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Figure 3.12: Validation results for random torque steps

captured and compared to the results of the conventional look-up table controller.

3.7.1 Random torque demand

The first test used a random torque demand with a 35 sec interval to validate the
performance of tracking the torque. The Figure 3.12 presents a comparison of
outputs obtained for the conventional look-up table controller and the dynamic
controller.

The dynamic controller is very quick in response to torque changes, but also the
controller tracks the torque closely to the demanded value.
One way of measuring the fuel economy is to measure how much torque was
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Table 3.4: Fuel economy and emissions on random validation data

e(Nm/mg) NOx(ppm) PM(g/h)
Look-up table 3.89 73.83 1.13
Dynamic controller 3.93 63.12 1.04

generated relative to the amount of fuel used to generate this torque. The corre-
sponding mathematical formula for this measure is :

e = Tb
INJ

(3.15)

The fuel economy obtained using this measure and emission from the random
torque demand validation are given in Table 3.4. The results show that the dy-
namic controller improves fuel economy by 1% in comparison to the conventional
look-up table controller but also reduces NOx and PM emissions.

3.7.2 EUDC validation

A second test was carried out to validate the dynamic controller performance in
practical application. The test was carried out on the EUDC drive cycle. Figure
3.13 presents a comparison of outputs obtained from the conventional look-up
table controller and the dynamic controller.
The results are given in Table 3.5 and it can be observed that both controllers
give quick and accurate control.
It can be seen that there is a 2% improvement in fuel economy for the dynamic
control compared to the conventional controller. The emissions for the dynamic
controller do not exceed those generated by the static look-up table controller.
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Figure 3.13: Validation results for EUDC driving cycle

Table 3.5: Fuel economy and emissions on EUDC validation data

e(Nm/mg) NOx(ppm) PM(g/h)
Look-up table 4.17 126.73 2.15
Dynamic controller 4.25 121.11 1.18
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3.8 Conclusion

The novel dynamic calibration methodology presented in this chapter consists of
a dynamic global modelling approach employing a system identification process,
constrained numerical model-based optimization to produce optimal input-output
trajectories and inverse behaviour identification to identify a dynamic controller
to reproduce this optimal behaviour. The dynamic calibration methodology was
evaluated on a virtual 1.5L Diesel engine and it was shown that this methodology
is effective, resulting in improved fuel economy over a static calibration, satisfying
emissions constraints, and giving smooth torque tracking with significant saving
in testing time on the engine test bed due to limited test data required.
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Chapter 4

Optimisation of engine states and
inputs trajectory for engine
calibration using Dynamic
Programming

4.1 Introduction

In this chapter a dynamic programming method is evaluated as a possible op-
timisation approach to find optimal trajectories of inputs for the optimisation
stage of a dynamic calibration. The main advantage of dynamic programming
over other optimisation methods is that global optimality of the found solution
is guaranteed, regardless of the type of problem.
The investigation in this chapter was carried out on this same virtual WAVE RT
engine model as in chapter 3. The work included identification of a Volterra model
of the engine torque and the implementation of numerical dynamic programming
for torque tracking and fuel consumption minimization.
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4.2 Optimal control

One subject of optimal control is to determine the input of a dynamic system
that minimizes or maximizes a predefined cost function sometimes called a per-
formance function or performance index, while satisfying any constraints on the
behaviour of the system with fixed time and partially constrained final state.
A lot of interest in the literature is focused on optimisation of continuous time
problems and such problems can be described as follows:

min
x

J(u(t))

s.t. ẋ(t) = f(x(t)), u(t), t)

x(0) = x0

x(tf ) ∈ [xf,min, xf,max]

(4.1)

where

J(u(t)) = G(x(tf )) +
∫ tf

t0
H(x(t)), u(t), t)dt (4.2)

is the cost functional.

The objective of the optimal control solution as defined is to find the input uopt
that minimizes the cost function during the time internal t0 to tf .

Only some simple problems for linear dynamic systems with quadratic cost func-
tion can be solved analytically and even then simplicity of the problem solution
is not that easy to obtain [77]. Such solution includes many matrix operations
(inversions of matrix, etc.) and also it includes solving Riccati-equations which
present difficult mathematical problems.
Because of the complexity of most applications and the non-linear, time-variant
character of the dynamic system and constrained problem such as in engine cali-
bration, optimal control problems must usually be solved numerically.
The work of Bellman [78] from the 1950s initiated many research activities in op-
timal control and nowadays the range of available methods and the corresponding
variety of published applications has increased tremendously making optimal con-
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trol a discipline that is relevant to many branches of engineering [79]. The need
for solving optimal control problems numerically has given rise to a wide range
of numerical methods that have been developed specifically for optimal control
problems. These methods can be divided into three major groups[80]:

• indirect methods - converting the original control problem to a boundary-
value problem

• direct methods - converting the original control problem into a non-linear
programming problem

• dynamic programming

4.2.1 Indirect methods

The optimisation is a minimization of cost function J, subject to constraints on
the system dynamics and the initial and final conditions. In the indirect approach
to the optimisation problem time-varying Lagrange multipliers λ(t) for continuous
time systems or λi for discrete time systems are introduced. The solution to the
boundary value problem must be solved numerically but firstly the differential
equations involving the Lagrange multipliers must be obtained and these are often
strongly non-linear.
The algebraic expressions linking cost to the system states are rather complex.
Since the scope of this project included the utilization of strongly non-linear
equations for description of the system dynamics for the engine and emissions
including the use of complex Neural Network models with multiple time delays,
analytically differentiating these terms with respect to state and control variables
was not feasible.
However, such differentiations are required to express the differential equations
involving the Lagrange multipliers so consequently this approach was beyond the
scope of this thesis which focuses on the other two.
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4.2.2 Direct methods

In contrast to indirect methods direct methods are applicable to the complex
non-linear dynamics required in the engine calibration process. New solution for
discrete optimal control problem using discretization of the Lagrange-d’Alembert
principle and advantages of such approach are presented in [81].
In general direct methods can be divided into two groups:

• Sequential methods

• Simultaneous methods

The most intuitive direct method is the single shooting approach which belongs to
the class of sequential methods. For this approach u(t) is discretized in time using
an appropriate discretization method to obtain the vector of control parameters
for time discretized on Nt intervals as follows:

t0 < t1 < t2... < tN = tf (4.3)

For each individual interval there is a respective control parameter as follows:

U=[u0, u1, ..., uN ] (4.4)

The optimisation algorithm uses explicit numerical integration to satisfy the
differential equations. Then the cost function J is calculated for each iteration
and for the next iteration control parameter vector is upgraded according to the
optimisation algorithm [82]. A block diagram of this method is presented in
Figure 4.1 and example of one iteration of the algorithm is shown in Figure 4.2.
A similar approach is used in chapter 3, but necessary changes were introduced
for discrete time system.
Arguably the most powerful methods for solving general optimal control prob-
lems are direct collocation methods which fall into the simultaneous methods
group. For continuous time the optimal control problem is transformed into a
finite dimensional problem by an appropriate discretization of controls and states
which then can be solved by a standard SQP-method [83]. For the sake of sim-
plicity the number of discretization points of inputs and state are taken same.
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Figure 4.1: Single shooting approach

Figure 4.2: Illustration of single shooting [4]

The main difference between single shooting and direct collocation is in the prob-
lem formulation of the optimisation parameters. Instead of using only control
parameters U the optimisation parameter vector also includes state parameters
as follows:

Yu = [u0, u1, .., uf , x0, x1...xN ] (4.5)

In addition some form of discretization of the system takes place. In equation 4.6
piecewise approximation of continuous is presented but there exists more advance
collocation method [84]. The original optimal control problem now is formulated
as follows:
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min
Yu

J

s.t. x1 − [f(x0, u0) ∗ dt+ x0] = 0

x2 − [f(x1, u1) ∗ dt+ x1] = 0

.

.

.

xN − [f(xN−1, uN−1) ∗ dt+ xN−1] = 0

(4.6)

Using direct local collocation is now possible with large sparse non-linear pro-
gramming with thousands to tens of thousands of variables and a similar number
of constraints. This means that direct local collocation makes it feasible to solve
optimal control problem efficiently using appropriate NLP solvers such SPRNLP,
SNOPT and KINTRO [85].
The direct multiple shooting method combines elements of both single shooting
and direct collocation. It is simultaneous approach similar to direct collocation
where controls and system states are discretized in time. It differs from the di-
rect collocation method since some ODE solver is used to simulate the system
dynamics between discretization points instead of using piecewise approximation
as shown in Figure 4.3.

Figure 4.3: Illustration of multiple shooting [4]
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Discrete direct methods

Although direct methods were developed for solving optimisation control prob-
lems for continuous systems similar approaches can be applied to discrete time
systems.
In chapter 3 the optimisation problem was formulated in a way similar to that
of the single shooting method described above. The optimisation parameters
include only the control parameters. Also system dynamics are represented in
input-output representation which does not allow the creation of a suitable set of
constrains for NLP solvers.
In chapter 5 the optimisation problem was formulated in a way similar to that
used in direct collocation or multiple shooting. The optimisation parameters in-
cludes control and state parameters, and due to a state-space representation used
it was possible to employ an NLP solver to find optimal solution.

4.2.3 Dynamic programming

Dynamic programming is a very powerful numerical method for solving optimal
control problems [78] [86] [87]. Dynamic programming was derived from Bell-
man’s Principle of Optimality based on the idea that the optimal solution of
sub-problems can be used to build the optimal solution of a larger problem. This
algorithm is often used in solving shortest path problems. In case of optimal
control problems to find the optimal solution firstly requires that the whole time
interval [t0, tf ] is divided into shorter time intervals which are solved over consec-
utively in a backward direction. From the Principal of Optimality if an optimal
control solution for the short time interval is found, it must be part of the optimal
solution for the whole interval. The resulting optimal trajectory built with the
shorter optimal trajectories is the global solution within the search space. The
equation of Bellman’s Principle of Optimality is as follows [88]:

V (x(k), k) = min
u(k)

[J(u(k), x(k) + V (k + 1, f(x(k), u(k), k)] (4.7)

for each k = 1, 2, ..., N .
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4.2.4 Numerical Dynamic programming

Dynamic programming can be applied to either continuous-time or discrete-time
systems with continuous or discrete time inputs. Since the focus of this project
is data-driven models obtained from sampled data, only the implementation of
dynamic programming for discrete-time systems is included in this work.
For discrete-time systems with n states and m inputs the general optimal control
problem is summarized us follows: find an admissible control sequence u(k) , for
k = 0, 1, ..., N such that the cost functional J is minimized and the all constraints
are satisfied. That is

min
u(k)∈Uk

J(u(k))

s.t. x(k + 1) = f(x(k), u(k), k)

x(0) = x0

x(N) ∈ T ⊆ Rn

u(k) ∈ Uk ⊆ Rm

(4.8)

where

J(uk)) = gN(x(N)) +
N−1∑
k=0

gk(x(k)), u(k)) (4.9)

is the cost functional. The cost functional contains a final cost term gN(xN) as-
sociated with the final state and the state cost gk(x(k), u(k)) which is the cost of
applying the control signal uk at discrete time k to the dynamic system given in
equation 4.8. Note that the functions gk and f are allowed to be time-variant,
hence there is the index k. The state variables are constrained to the time variant
set Xk and the input signals are constrained by the time-variant set Uk. The final
value is partially constrained to be the target set T and the initial condition is
given by x0.

Since dynamic programming is discrete in nature the time, state space and con-
trol space need to be discretized.
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Therefore the state space is discretized at time k to the finite set:

Xk = {x1(k), x2(k), ...xq(k)} (4.10)

where xj(k) denotes the state in the discretized state-time space at the time k
and j-th state index of the state grid q. Similarly, the control space is represented
by the finite set as follows:

Uk = {u1(k), u2(k), ...up(k)} (4.11)

where uj(k) denotes the state in the discretized control-time space at the time
k and j-th state index of the state grid p. Based on the principle of optimal-
ity, dynamic programming evaluates the optimal cost-to-go function Vk(xi(k)) at
every node in the discretized time-space by proceeding backwards in time. The
algorithm works as follows:

1) Initialisation of cost-to-go function

VN(xi(k)) =
{
gN (xi(N)), forxi(N)∈T
infinity, else. (4.12)

2) Backward iteration for k = N − 1 to 0, ∀xi(k) ∈ Xk

Vk(xi(k)) = min
u(k)∈uk

gk(xi(k), u(k)) + Vk+1(fk(xi(k), u(k))) (4.13)

The optimal control is given by the argument that minimizes the right-hand side
of equation 4.13.
In order to evaluate the cost-to-go at point xi(k), the algorithm simulates the
system by applying all possible controls from the control candidates as in Figure
4.4. Thereby, the system is driven into fk(xi(k), u(k)) where u(k) ∈ Uk. Since
these points do not generally coincide with the state grid, in this work linear
interpolation is used when points do not coincide with the grid [89].
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Figure 4.4: Evaluation of optimal cost-to-go

From the results of the dynamic programming optimal inputs on every node at
each time step is known, resulting in on optimal control policy

π = {µ(0), µ(1), ..., µ(N − 1)} (4.14)

Therefore, after the dynamic programming which runs backwards in time to
obtain optimal inputs trajectories, the forward simulation of the dynamic system
starting from x0 using the model of the system needs to take place.

4.3 Application of Numerical Dynamic Program-
ming for Dynamic Calibration

4.3.1 Identification

As work in this chapter was to investigate the potential of numerical dynamic pro-
gramming as an optimisation tool for dynamic calibration, a simple non-linear
polynomial model of Volterra series structure was employed to model the output
y as engine torque with 5 inputs: u1 is fuel injection mass (INJ), u2 is variable
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geometry turbocharger valve position (VGT), u3 is exhaust gas recirculation po-
sition valve (EGR), u4 is start of injection (SOI) and u5 is engine speed. The
structure of polynomial model was that in equation 4.15.

y(k + 1) = θ0 + θ1u1(k) + θ2u2(k) + θ3u3(k) + θ4u4(k) + θ5u5(k) + θ6u1(k)2

+θ7u2(k)2 + θ8u3(k)2 + θ9u
2
4(k) + θ10u5(k)2(k)

+θ11u1(k)u2(k) + θ12u1(k)u3(k) + θ13u1(k)u4(k)

+θ14u1(k)u5(k) + θ15u2(k)u3(k) + θ16u2(k)u4(k)

+θ17u2(k)u5(k) + θ18u3(k)u4(k) + θ19u3(k)u4(k)

+θ20u4(k)u5(k) + θ21y(k) (4.15)

This structure of this model is similar to the deterministic ARMA structure
but with only non-linear regressors terms and so the least-squares method was
employed to determine the parameters.
An APRBS signal was used to excite the system and the signals as in Figure 4.5
and the data was captured with a 10Hz sampling rate. The data was normalized
for convenience of the input and state discretization but in applications when a
neural network model is used, the normalisation speeds up the training process
and also helps to avoid local minimum [90]. The normalization was done as
follows:

• Torque: Min -29.11Nm - Max 169.15Nm

• INJ: Min 0 mg/stroke - Max 32.74 mg/stroke

• SOI: Min -0.7 Max 0 rad

• EGR: Min 0 m Max 0.02m

• VGT: Min 40% Max 100%

• engine speed : Min 825 RPM Max 2068 RPM

The normalization converted minimum values from the above list to -1 and max-
imum values to 1.

71



Figure 4.5: Identification signals

The least-squares method was used to obtain the parameters of the engine torque
model and because the structure was predetermined no further structure selection
was carried out.
The results obtained for the torque modelling are presented in Figure 4.6 which
compares the simulated torque and the modelled torque. The quality of the
modelling was verified based on the best fit norm described in equation 2.37 and
achieved 77.97% which is quite low value. However the focus in this chapter was
not on developing accurate models with high simulation capability but on the
evaluation of numerical dynamic programming for dynamic calibration.

4.3.2 Converting input-output models into state space mod-
els

For Numerical Dynamic Programming not every mathematical representation can
be used because the model has to be expressed in terms of states because this
algorithm runs over each grid point for each individual state and so only mod-
els that can be represented in state space are appropriate. For this reason only
steady state models or models that can be converted into state space format are
appropriate for this algorithm. In the next chapter special State Space Neural
Networks are developed that can model the engine accurately and are realizable
in state space.
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Figure 4.6: Comparison of torque measured and simulated data

Because dynamic programming requires a state space representation of the sys-
tem dynamics, in this work the input-output model developed in the system
identification stage was converted into a state space model. There are system-
atic approaches for such conversion [91] [92], however this conversion is straight-
forward due to the very simple model structure containing only one time delay
for inputs and output. An input-output model can not be converted to a steady
state representation when it includes products of regressors with different time
delays, but in this model this is not a case.
The resulting state space model with this model with one state is as follows:

x(k + 1) = θ0 + θ1u1(k) + θ2u2(k) + θ3u3(k) + θ4u4(k) + θ5u5(k) + θ6u1(k)2

+θ7u2(k)2 + θ8u3(t)2 + θ9u
2
4(t) + θ10u5(k)2(k)

+θ11u1(k)u2(k) + θ12u1(k)u3(k) + θ13u1(k)u4(k)

+θ14u1(k)u5(k) + θ15u2(k)u3(k) + θ16u2(k)u4(k)

+θ17u2(k)u5(k) + θ18u3(k)u4(k) + θ19u3(k)u4(k)

+θ20u4(k)u5(k) + θ21x(k) (4.16)
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4.3.3 Numerical Dynamic Programming implementation
for input optimisation

The optimisation problem is to find optimal inputs over given driving cycle while
tracking demanded torque and minimizing fuel consumption. The length of this
numerical experiment is N = 3000 stages.
The discretization was predetermined as follows:

• 101 points grid for state x

• 41 grid points for input u1

• 11 grid points for input u2

• 11 grid points for input u3

• 11 grid points for input u4

• no grid for u5, because engine speed needs to follow the EUDC engine speed
profile.

The higher number of points in the state’s and u1 grid were determined to obtain
good torque tracking close to the demanded torque, and to overcome the draw-
backs of interpolation. For the other inputs a high resolution was also required
but this was limited to make this experiment feasible in terms of computational
time.
The cost function was determined to achieve good torque tracking and to min-
imize fuel consumption. For this reason an LQ (linear quadratic) type of cost
function was predetermined, however for this algorithm any non-linear cost func-
tion could be employed. The cost function was thus:

gk(x(k), u(k)) =
N−1∑
k=1

(Td(k)− x(k))P (Td(k)− x(k))T + u(k)Qu(k)T (4.17)

where Td is the desired torque for torque tracking, with P = 1 and
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Q = [

0.02 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

The cost for the final stage gN in equation 4.14 was determined as follows:

• if the final state equals the final target the cost is set to 0

• the cost is set to 1000 otherwise.

4.3.4 Results

The time elapsed to complete the numerical dynamic programming implemented
as above on a standard 1.6 GHz PC was 88695s ( 21 hours 38min 15s) . Forward
simulation of the dynamic system was run using the optimal control policy π to
obtain the optimal inputs trajectories .

Figure 4.7 shows the optimal inputs trajectories obtained from forward simu-
lation and shows that although the global optimum could have been found, it
is hard to justify this fact, because the modelling capability of the polynomial
model is quite low and so some behaviour of the system might not have been
captured.

Verification

The verification of the open-loop trajectories was run for the identified engine and
the results are presented on Figure 4.8. It can be seen that the measured torque
does not follow exactly the desired output but follows it approximately. More runs
of the algorithms would have take place to determine better P and Q parameters
for the cost function, but due to the very long computational time, the simplistic
engine model and the exponential growth of computational time,the approach was
considered too costly and was diverted to direct optimisation approach showing
very promising results.
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4.4 Conclusion

The implementation of a numerical dynamic programming approach to finding
optimal input trajectories was presented in this chapter including the development
of a simple polynomial model to describe the engine torque. The cost function
was designed to achieve good torque tracking and minimize the fuel consumption.
The results presented show that although optimal trajectories could be found us-
ing numerical dynamic programming and could be used for simplified calibration
tasks this could only be achieved with very simple models, which are not suit-
able for describing the engine behaviour. To solve that problem more advanced
model techniques would have to be used with the numerical dynamic program-
ming but with the exponential growth of computational time such applications
are not actually feasible.
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Chapter 5

Behavioural data-driven engine
and emission modelling using
non-linear models

5.1 Introduction

This chapter presents the results of a novel application of State Space Neural Net-
works (SSNN) applied to the experimental modelling of engine particulate matter
emissions (PM) and engine performance expressed as in-cylinder mean effective-
pressure (IMEP) of a 5.0L naturally aspirated Jaguar Land Rover engine. The
on-line data collection took place at the University of Bradford Powertrain lab-
oratory on transient dynamometer facilities using a Labview data-logging and
control environment which is described in this work. The novel SSNN model
described in the chapter consists of three smooth differentiable functions: tan-
sig, purlin and logsig, which are shown to make the model structure suitable for
prediction of the non-linear engine behaviour. The simulating capabilities are
compared to NARX polynomial models that have been used in the past for dy-
namic calibration methodologies where models with good simulating capabilities
are required. An heuristic algorithm for structure selection was applied to find
the best model structure that minimises mean squared error of prediction error.
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According to detailed analysis of state-space neural networks described in [93]
such models need fewer arguments than input-output models and can perform at
least as well as Extended Kalman-Predictors without requiring the knowledge of
a model of the process dynamics.
The motivation is to use such models for dynamic calibration with an improved
optimisation stage using a direct optimisation algorithm to significantly speed
up the dynamic calibration process. As such an optimisation requires models in
state-space form, so the SSNN is a natural choice for such an implementation and
potentially the methodology could be extended in future to state-estimation to
improve control performance.
Traditionally engine testing is undertaken whilst running steady-state. For dy-
namic calibration transient testing to obtain data for the identification of dynamic
data-driven models of engine performance and emissions, the engine operating
point must be changed dynamically according to prepared test sequences. These
test sequences are typically generated as random signals in order to excite the
transient engine characteristics. Other important features required for dynamic
testing include fast data sampling and sensors with small time constants and small
time delays. Usually the biggest problem when using steady state equipment for
transient testing is that the emissions measurement equipment is designed for
steady-state measurement where slow sensors are sufficient to capture required
data. As a result direct identification using such slow sensors results in their slow
responses being added to the engine dynamics. Nevertheless post-processing can
be performed to compensate to some extent for such unwanted sensor dynamics
using time-shifting, inverse models and non-causal filtering.

5.2 Experimental setup

5.2.1 Existing equipment at the University of Bradford

Testing was undertaken in the Powertrain Laboratory at the University of Brad-
ford using an Elin Transient AC dynamometer controlled using AVL PUMA.
To provide the excitation signal to PUMA, National Instruments hardware and
software (LabView) were used. ETAS INCA software was used to control the
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engine control unit (ECU). This system allows full access to all calibration and
measurement variables.

The test bed was equipped with Horiba MEXA 9000 and AVL Condensation
Particle Counter to measure gaseous emissions: NOx, CO2, CO, THC and lambda
(air-fuel equivalence ratio) and particulate count. For in-cylinder measurements
an AVL INDICOM system is used. Six in-cylinder pressure sensors are installed
and are connected to AVL INDISMART Gigabit hardware to process the data
output. The output data is sent to INDICOM software installed on a PC. Several
variables are measured and calculated by the INDICOM including, 50 deg burn-
rate, IMEP, knock levels, Peak Pressure Position etc.
The engine is presented in Figure 5.1.

Figure 5.1: Engine in the test cell

One of the limitations on the test equipment that had a significant influence on
the range of the investigation was the power of the dynamometer. This was rated
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at a much lower power than the engine, peaking at 120 kW compared with 287
kW on the engine.

5.2.2 Synchronisation and data logging

Data was captured and saved in four different locations: INCA, Labview, Indi-
com, and PUMA. Data from both emissions analysers were collected in Labview
software. The data communication was based on exchanging AT Commands
from Labview to and from the emission equipment through serial communication
RS232. Some of the temperature measurements were also recorded in Labview.
The data from in-cylinder pressure sensors was collected and logged through the
Indicom software that runs on the same PC. All measurements from the ECU were
saved using the INCA software. All data from PUMA was saved on a separate
PC. Apart from the manual trigger that gave information that a steady state con-
dition was achieved, to distinguish between steady-state test points there was no
other synchronisation signal in the original steady-state test bed set-up. Although
this could entail very time-consuming post-processing this was still acceptable for
steady state measurement applications. For the reported transient measurement
application all signals were required to be synchronized, so the original test bed
required modification to produce a new transient testing platform.

5.2.3 New Transient Testing Platform

For the current work the original test platform was modified in the form of a
Transient Test Platform (TTP) to gain control of all of the components of the
test equipment from one location and most importantly to synchronise and log the
data in one location as in Figure 5.2. By controlling experimental processes from
one location, not only every input signal is set at this same time instance, but most
importantly, every output signal can be captured and recorded at this same time
instance, which fulfils the requirements of synchronized data collection during the
experimental transient testing. An additional benefit of this centralised control
is that the control of the whole testing process can then become fully automatic.
The operator needs only to define the calibration variables in the ECU that will
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be altered and measured by the ECU and to specify the sequences of the control
signals for the test before the experimental work is begun.

Figure 5.2: Block diagram of Transient Testing Platform (TTP)

The core of the revised experimental management system is custom software
programmed in the National Instrument Labview graphical environment. The
control platform was linked with the Puma system by using the additional hard-
ware of the small sized low-cost NI6018 National Instrument module connected
to the USB port to use analogue signals for setting the speed and torque oper-
ating points in PUMA and a digital signal trigger. The values of the demanded
torque and speed inputs are scaled into a 0-5V range. The analogue outputs
of the NI6018 module are connected with the analogue inputs from the PUMA
cabinet. The PUMA software is configured to carry out the reading of the addi-
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tional analogue signals and to scale the 0-5V analogue signal back to the range
from 1000-2000RPM and 0 − 30%, for speed and load respectively. The PUMA
was preconfigured to set the demanded values for operating points to post-scaled
variables. Additionally to start the experiments the digital output from Labview
was used to work as a trigger, which was set high when the start button was
pressed and low when the experiment was terminated. This ensured that the
synchronisation was maintained and is a safety feature in case of physical discon-
nection of the cable, since then the experiment will then be shut down.
The emissions equipment is controlled as in the original set-up from a separate
Labview software system, however in the modified set-up measurement data from
both emission analysers was redirected in the form of global software variables.
The data in global variables is then available to other Labview software modules
running on the same PC.
The most challenging modification to the original test-bed was the creation of an
interface between INCA and the TTP. As both software systems are running on
the same PC with a Microsoft Windows operating system, the communication
between them was created based on an ActiveX - sometimes called Component
Object Model (COM). This enables software components to communicate with
each other utilizing Windows services. The communication between them was
one-directional in terms of sending commands; the TTP works here as a master
to INCA working as a slave. On the other hand, the working data flows in both
directions, where the values of calibration variables are going from TTP to INCA,
and the measurement data is going in the opposite direction together with the
calibration parameters to be logged at this same time event.
The in-cylinder measured data is first processed in the INDICOM software to cal-
culate numbers of combustion parameters and afterwards, the data is sent to the
INCA software and then the data is sent to TTP using the ActiveX services. The
knock information is used within the control strategy of the TTP, to decrease the
chances of damaging the engine by detonation combination. The knock control
strategy is simply a matter of halting the experiment whenever knock is detected,
and then this test-point is removed from the time sequence and the experiment
is run again.
The operator interface with TTP through front panel presented on Figure 5.3
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Figure 5.3: Front panel of Transient Testing Platform
1. Define location of excel sheet containing test plan
2. Configuration parameters of the test
3. Indicators of communication with INCA
4. Status LEDs
5. Start test button
6.Optional switch for testing with or without communication with ECU
7. Stop button to terminate testing - system going to the safe operation mode
8. LED to indicate status of trigger signal going to PUMA system
9. Current engine speed and torque demand
10. First 10 values from the test plan

5.3 Engine identification using State Space Neu-
ral Network

Since the current study to evaluate the capability of the State-Space Neural Net-
works for engine and emission modelling was preliminary, the model which was
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investigated was restricted to the four inputs: u1 is engine speed, u2 is throttle
position, u3 is fuel mass per injection and u4 is spark advance; and two outputs:
IMEP and PN. The output y1 of IMEP is chosen as a representative of an engine
performance variable and y2 is Particulate Number as representative of an emis-
sion variable. The results of SSNN are compared to those from both polynomial
and neural NARX models.

5.3.1 Identification signals

APRBS signals were used as identification signals since both fast and slow dynam-
ics are present in the engine and APRBS can excite a full range of frequencies and
in contrast to a chrip signal, a range of amplitudes. The min-max values must
be determined to design the identification signals. As stated before, for speed
and load the range of 1000-2000RPM and 0 − 30% is determined by the overall
capability of the dynamometer. For spark advance the empirical limits from -5
deg BTDC to 40 deg BTDC are chosen. APRBS test sequences conforming to
these limits were implemented for application in the TTP.

5.3.2 Polynomial model identification

The polynomial model structure for the comparative study was chosen as in [6]
where dynamic calibration is developed on a virtual engine. The current work
actually verifies the quality of this structure by using it to identify models based
on data from the real engine. The second order polynomial model equation is
thus taken as:

y(t+ 1) = θ1 + θ2u2(t) + θ3u3(t) + θ4u4(t) + θ5u1(t)2 + θ6u2(t)2

+θ7u3(t)2 + θ8u4(t)2 + θ9u1(t)u2(t) + θ10u1(t)u3(t)

+θ11u1(t)u4(t) + θ12u2(t)u3(t) + θ13u2(t)u4(t)

+θ14u3(t)u4(t) + θ15y(t) + θ16

(5.1)
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where un is n-th input and θi is a linear parameter for the i-th term.
A minimised Least Squares fit method was used to obtain the parameters of the
model from the engine experimental data. As the structure was predetermined
no further structure selection was carried out. For simplicity the same structure
was used for both IMEP Particulate Number.

5.3.3 Heuristic structure selection algorithm for neural
networks

A neural network NARX model for the comparative study was chosen in the
form:

y(t+ n) =
l∑

i=1
ciφ(wi1y(t) + ...+ winy(t+ n− 1)

+win+1u(t) + ...+ wi2n+1u(t+ n− 1)) (5.2)

where u(t) is a vector of inputs at time t, and y(t) is a scalar output at time
t , φ(.) is a smooth nonlinear function, l is the number of layers and ci and
wi are synaptic weights. Such a general NARX structure does not guarantee
a state space realisation because the non-linear function has every time step in
its argument. Fig. 2 shows how a NN-NARX is represented in the MATLAB
graphical NN format.

Figure 5.4: Example of NARX with 4 inputs 1 output neural network with 10
time steps for Inputs and outputs, two hidden layers 15 and 6

SSNNs are a subclass of generic NARX structure, but have the singular advantage

86



that their form guarantees realisation in state space form [4]. The general SSNN
model is given by

y(t) =
n∑
i=1

Ciφ(Wiz(t− i)) (5.3)

where z(t) = [y(t),u(t)], Ci and Wi are 1× l and l× 2 are dimensional matrices.
Such a structure guarantees that the model is always realisable because it has all
the different time instances separated. In this work, three smooth functions as
on Figure 5.5 have been chosen: tansig, purlin and logsig.

Figure 5.5: Smooth functions: tansig(left), purlin(center) and logsig(right)

The state space representation is then given by

x1(t+ 1) = x2 + C1φ(W1[x1(t),u(t)]T ) (5.4)

x2(t+ 1) = x3 + C2φ(W2[x1(t),u(t)]T )

.

.

.

xn−1(t+ 1) = xn + Cn−1φ(Wn[x1(t),u(t)]T )

xn(t+ 1) = Cnφ(Wn−1[x1(t),u(t)]T )

y(t) = x1(t)

Based on such a representation state-space oriented optimisation algorithms can
be run such as: numerical dynamic programming, or general direct optimisation
approaches.
The structure selection algorithm for both neural networks was achieved using
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Figure 5.6: SSNN model in Matlab with 4 inputs, 1 output, two time steps, 3
smooth functions
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an heuristic approach similar to that often used to solve typical issues with the
training neural networks. The problems with such neural network modelling are
overfitting and the sensitivity of the process to the initial starting point in the
training algorithm [94]. To overcome those issues a number of different networks
with a different number of neurons were trained for random numbers of epochs.
For the NARX models the random parameters were:

• number of input time steps from 1 to 20

• number of output time steps from 1 to 20

• number of hidden layers 1 or 2

• number of neurons in hidden layer. If one hidden layer then 1 to 15, if two
hidden layers then two random values were taken for the first and second
hidden layer in the range 1 to 20 and 1 to 15 respectively, but the second
not greater than the first hidden layer.

• number of training epochs from 1 to 300

The more runs of the algorithm then the higher the probability there is of finding
a structure closer to optimal. Five-hundred different runs of the algorithm for
each of the PN model and the IMEP model were accordingly taken where the
Levenberg-Marquart [95] training algorithm was employed and the run with the
best results chosen to represent the NARX neural network.

For the SSNN models a similar heuristic approach was adopted. As the gen-
eral structure of the SSNN is less complicated (because all time instances are
gathered), randomisation was restricted to only the following parameters:

• number of time steps from 2 to 5

• number of training epochs from 20 to 200

Again 500 runs of each model were investigated. It is important to remember
that any two runs with these parameters with the same values are very likely to
have different performance due to different random initial weights.
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5.4 Results

The modelling task was taken to be that of obtaining a model with the best
prediction capability for later use in the dynamic calibration application. Ac-
cordingly the performance of all models was tested based on criteria to measure
prediction capability for unseen data. The simplest way of measuring prediction
accuracy is to use Normalised Root Mean Square Error (NRMSE) typically called
best fit and given by

NRMSE = [1−

√√√√ ‖x− xref‖2

‖xref −mean(xref )‖2 ]100% (5.5)

where x is the predicted output from a model and xref is the measured output.
The NRMSE fit costs vary between -INF (bad fit) to 100% (perfect fit).
A total of 12000 samples were collected with a 10Hz sampling rate. The data was
then divided into two parts of length 9000 and 3000. The first part was used for
training purposes, the second part for verification.

The results obtained for the IMEP modelling are presented in Table 5.1 and
show the capability of the models for unseen data. The Number of Parameters
column gives how many parameters must be given to define such model. A higher
number of parameters leads to a high computational effort to compute model
output, so that a model with a lower number is preferred for offline optimisation
computation.
The results show that for IMEP prediction the best results from out of the three
model types are for the NN-NARX structure. Nevertheless the performance of
SSNN is close to it. The polynomial model results are the worst but are still
above 70% fit which is a very good result and this could be seen in Figure 5.7
The SSNN model shows best prediction capabilities for Particulate Number.
The difference in the number of parameters between NN-NARX and SSNN is
significant; more than 1000 parameters are needed for the NN-NARX to achieve
comparable results. From the graph on Figure 5.8 and Table 5.2 it can be noticed
that the polynomial model with simple structure is better for IMEP modelling
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Table 5.1: Prediction comparison for IMEP modelling

Model type NRMSE Number of Model structure
parameters

Polynomial 70,96% 16 two time delays
NN-NARX 88,03% 647 9 inputs time delays;

17 outputs time delays;
two hidden layer with
11 and 4 neurons and
trained over 23 epochs

SSNN 85,97% 90 5 time delays
trained over 113 epochs

Table 5.2: Prediction comparison for PN modelling

Model type NRMSE Number of Model structure
parameters

Polynomial -7,29% 16 2 time delays
NN-NARX 22,41% 1298 11 inputs time delays;

19 outputs time delays;
two hidden layer with
17 and 11 neurons and
trained over 41 epochs;

SSNN 25,25% 90 5 time delays and
trained over 147 epochs;
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Figure 5.7: IMEP modelling verification

than for emission modelling.

Figure 5.8: PN modelling verification results
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5.5 Conclusion

The main contributions of this work are the presentation of the successful im-
plementation of a low-cost Transient Testing Platform and the subsequent use of
this platform for data transient data collection used in a comparative study of dif-
ferent model types for transient engine performance and emissions. Novel SSNN
models for engine and emission modelling are found to have similar predictive
capabilities to NN-NARX despite a significantly simplified structure requiring
significantly fewer parameters. Both SSNN and NN-ARX models are shown to
have superior simulation capability to polynomial models. The SSNN structure
may be sufficiently simple to allow on-line implementation in forthcoming ECU
modules.
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Chapter 6

Experiment Based Dynamic
Calibration of the Diesel Air-path

6.1 Introduction

This chapter presents the results of an experimental study on the application of
a novel engine dynamic calibration methodology applied to control of the air-
path of a Jaguar Land Rover (JLR) turbocharged diesel engine. A complete
application of the methodology is demonstrated where final feedforward dynamic
controller is implemented in a test vehicle after being obtained in a one-shot
process using data solely obtained from a novel dynamic dynamometer testing
process, without recourse to in-vehicle tuning. Although the dynamic calibration
methodology can potentially be implemented for complete engine calibration in-
cluding for emission constrained optimising of fuel consumption, the work of this
thesis focused on control of only boost pressure and Exhaust Gas Recirculation
(EGR) rate, with constraints on only NOx emissions and opacity without fuel
consumption optimisation.
The approach combines State Space Neural Network (SSNN) modelling and
causal dynamic optimisation to determine a feedforward Hammerstein-Wiener
control map by an inverse identification from the synthesised optimal control be-
haviour. In the study, data collection for dynamic engine modelling took place on
a state-of-the-art transient engine dynamometer facility equipped with emissions
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analysers. The SSNN for the air-path dynamics was then established. A dynam-
ically rich, optimal control behaviour for this model was thereby synthesised and
the feedforward map accordingly identified. Verification of the controller perfor-
mance by vehicle testing was then carried out at the Jaguar Land Rover Test
Track, Gaydon UK, by implementing the controller map in-vehicle. The out-
come showed that a well performing control calibration could be systematically
obtained from limited dynamometer testing time.

6.2 Experimental setup

Data collection for system identification took place at the University of Birming-
ham where special reconfiguration of existing equipment was necessary to carry
out the unique transient testing sequences. The equipment set-up included:

• AVL transient dynamometer with PUMA for test - cell control

• INCA for engine calibration and communication with ECU

• AVL emission analysers (AVL439 opacity meter and AVL i60)

• AVL INDICOM for in-cylinder measurements

To facilitate communication between PUMA and INCA an ASAM3 protocol was
used for reading measurement variables and only software modification was re-
quired. The concept was to let PUMA change calibration variables in the ECU by
sending commands to INCA over the ASAM3 protocol. This approach eliminates
a need for any external hardware to obtain transient changes of calibration vari-
ables in ECU. Control over those parameters was by change of speed/load based
set point maps to maintain consistency between measurement points. So at each
point of a transient test the whole content of such a map is set to a single value
according to the test schedule. PUMA was also programmed to collect all data
from all emission analysers, in-cylinder sensors and ECU measurement variables
with 10 Hz rate. This ensured that all the data collection was synchronised.
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6.3 Dynamic calibration

6.3.1 System identification stage

System identification was carried out to obtain a mathematical description of
engine emissions behaviour. Emission generation is a multi-input process that
is dynamical [13], so models that have capabilities to describe system dynamics
were chosen for the study. State Space Neural Networks (SSNNs) were employed
to describe non-linear and dynamic behaviour of engine emissions, and also this
model structure enables the use of state-of-art optimisation routines to speed up
the optimisation process and has the potential for future exploitation of state-
estimation methodologies in controller implementation.

Figure 6.1: Torque response on the test bed when testing with EGR valve position
and VGT valve position

Initially the experimental testing was set out to investigate development of low-
level dynamic control of EGR valve position and VGT valve position as in chapter
3. Therefore the following set of inputs with corresponding ranges was utilized
in the input signal design for identification experiments:

• Engine Speed: 850-2500 RPM

• Torque : 0-400 Nm
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• VGT valve position: 0-100 %

• EGR valve position: 0-100 %

It turns out that this leads to a situation when demanded torque during the
experiment could not be generated as shown in Figure 6.1. To overcome this
problem better input signal design was required to be investigated including some
form of boundary search. Therefore the scope of this work was focused on the
development of a dynamic controller for higher-level inputs for Boost Pressure and
EGR rate. With such inputs set the demanded torque during the data collection
process met the demand as in Figure 6.2.

Figure 6.2: Torque response on the test bed when testing with Boost pressure
setpoint and EGR rate setpoint as inputs

The input-output model structure of the identified system is shown as map G
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in Figure 6.3. The inputs are u1 injected fuel mass, u2 engine speed, u3 boost
pressure set-point and u4 EGR rate set-point. The outputs were y1 NOx, and
y2 opacity. The engine speed was regarded as independent of injected fuel mass
(and hence of brake torque Tb), because the engine speed torque relation was set
by control of the engine dynamometer loading L as shown in Figure 6.3.

Figure 6.3: Feedforward controller F and identified system G

The measured boost pressure from pressure sensor and EGR rate output esti-
mate from the ECU were available in the experimental system. APRBS signals
were used as the input test signals for system identification to achieve rich excita-
tion of the engine dynamics. A signal with a period of 4s was empirically chosen
however optimisation of the choice of this value gives scope for future improve-
ment. Physical limits were used in the design of the multi-input identification
to make sure that the experiment was safe and a rich description of the model’s
behaviour for all channels is obtained. Ranges for each individual channel were
set for both safe operation and to ensure that boost pressure and EGR set points
were achievable and were accordingly chosen as:

• engine speed 800-2500RPM

• torque 0-400 Nm

• boost pressure limits based on value Pcal from a standard calibration map
as follows:
- min=max(1.050bar, Pcal-0.5 bar)
- max=min(3bar, Pcal+0.5bar)

• EGR rate limits based on the EGRcal value from a standard calibration
map as follows:
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- min=0
- max=min(55, EGRcal+10%)

Input signal synthesis used four random signals generators, one for each input.
Because the Min and Max maps mentioned above are engine speed-load depen-
dent, random values of speed and torque are first generated. Later the two values
from the range 0-1 from the other two random generators are produced and are
then pre-scaled into min-max maps according to:

output = (max−min) · (randomvalue) +min (6.1)

As reported in [45] system identification is difficult when the system has different
input sensitivities and time-scales for each input. For engine identification engine
speed and torque are the inputs with the most dominant correlation with the
outputs. Accordingly the input test sequence was constructed as:

• the first test point contains 4 random values

• the next test point holds speed, torque and boost pressure at the same level
and changes only EGR rate

• the next test point sets all 4 values again

• the test point after this holds engine speed, torque and EGR rate at the
same level as for the previous test point, but changes only boost pressure

The signal generation algorithm was implemented in Simulink and is shown
in Figure 6.4.

6.3.2 Time lags removal

As observed in [96] sensor dynamics become part of the system dynamics of
the identified system. In our case the dynamics of the opacity meter are too
fast to be an issue. On the other hand the NOx analyser has a significant
transport lag due to its location which is 10 m away from the engine. A time
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Figure 6.4: Generator of input signals for identification

lag of 3.8s was observed from step changes so this was accordingly removed
from the data record of the NOx signal by shifting the signal backwards 38
samples (10 Hz sampling rate). A possible future approach would be to use
exhaust mounted NOx and PM (particulate matter) sensors as required for
EU6 and OBD application to allow improved removal of analyser delay.

6.3.3 State Space Neural Network models

The recurrent State Space Neural Network is a subclass of generic NARX
structure, but it has the significant advantage that it guarantees state space
realisability [97]. The input-output versions the SSNN models for each
output channel are of the SISO NN form:

y(t) =
n∑
i=1

Ciφ(Wiz(t− 1)) (6.2)
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where z(t) = [y(t),u(t)T ]T ,u(t) = [u1(t), u2(t), u3(t), u4(t)]T is the vector
of inputs and y(t) is one of the two scalar outputs y1(t) or y2(t), each at
time t , l is the number of hidden neurons, φj is an l× 1 vector function of
j = 1, ...l smooth non-linear scalar functions φj, n is the model order, and
there are i = 1, .., n − 1 matrices Ci and Wi of dimension 1 × l and l × 5
containing synaptic weights. Such a structure guarantees that the model
is always realizable in the classical state space form because it has all the
different time instances separated. In this work three smooth functions
(l = 1, 2, 3) have been chosen: tansig, purelin and logsig. The state space
representation for each y channel is then of the form:

x1(t+ 1) = x2 +
3∑
j=1

C1,jφj(Wj,1[x1(t),u(t)]T ) (6.3)

x2(t+ 1) = x3 +
3∑
j=1

C1,jφj(Wj,1[x1(t),u(t)]T )

.

.

.

xn−1(t+ 1) = xn +
3∑
j=1

C1,jφj(Wj,1[x1(t),u(t)]T )

xn(t+ 1) = Cnφ(Wn−1[x1(t),u(t)]T )

y(t) = x1(t)

6.3.4 Structure selection

The structure selection algorithm used for the SSNN models was based
on an heuristic approach used in similar training applications of neural
networks. The problems in the training here are overfitting and the high
sensitivity of the final results to the initial starting point. To overcome
these issues a number of different networks with different numbers of neu-
rons were trained for different random numbers of epochs. As the general
structure of SSNN is not very complicated because the same time instances
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Table 6.1: Validation results of emissions models

Model Number of Number of NRMSE
states epoches (best fit)

Opacity 5 115 50,2%
NOx 5 125 81,4%

are grouped, only the following parameters needed to be chosen randomly
in each iteration of the algorithm:

– number of time steps from 2 to 5

– number of training epochs from 20 to 200

6.3.5 Results of the identification

Data collected from the test bed was divided into two lengths: 70% of the
data was used for training of neural networks and 30% for validation. The
simulation capability was measured by the normalised root mean square
error (NRMSE), ie best fit parameter as in equation 2.37. The results of
the identification are presented in Table 6.1.

It can be noticed that the NOx model has better simulation capability than
the opacity model. It is believed to be due to the existence of a high number
of spikes in the opacity measured signal that can not be entirely described
by such small set of inputs. Consideration of a larger or different set of
inputs could potentially improve it. Currently it is necessary to manual
tune out those spikes once installed in the vehicle which is an issue that
must be addressed in future to fully exploit the potential of the approach.

6.4 Optimisation stage

The second stage of the dynamic calibration is an optimisation where op-
timal trajectories of inputs are determined with regard to a quadratic plus
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Figure 6.5: Comparison of NOx measured and simulated data

Figure 6.6: Comparison of Opacity measured and simulated data
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linear cost function while satisfying all constraints. By modelling both
the engine and emissions by SSNN models the state-space structure means
that the corresponding optimisation is equivalent to a large scale but highly
sparse non-linear (quadratic) programming problem (as formulated in the
direct collocation method optimal continuous system control [80]). The
resulting cost function is then of the form:

min
[u,x]

T (xN) +
N−1∑
i=1

x(i)TQ(i)x(i) + u(i)TR(i)u(i) + x(i)TS(i)u(i)

+L(i)x(i) + M(i)u(i) (6.4)

subject to

x(i+ 1)− f(x(i),u(i)) = 0; i = 1, ..., N − 1

x(1)− x1 = 0

c(x(i),u(i)) >= 0; i = 1, ..., N − 1

(6.5)

where N is the simulation time and Q,R,S,L and M are corresponding
weighting matrices.

In this scheme the optimisation is able to use knowledge of the state tra-
jectory in the initializations which are required at each iteration, so as to
show fast local convergence and can also treat unstable and non-minimum-
phase systems [4]. As with Direct Collocation optimisation this optimisa-
tion can thus efficiently use Sequential Quadratic Nonlinear Programming
solvers such SPRNLP, SNOPT and KINTRO. For this study the SNOPT
algorithm was used which is based on a sequential quadratic programming
routine run in the Matlab environment.

6.4.1 Equality constrains

A SSNN model with 5 states obtained in the previous stage was used to
describe the system dynamics. An additional state was added to the opacity
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model to decrease slightly the speed of response of this model because in
initial optimisation runs, a set of too fast changing trajectories had been
obtained. The optimisation was run for N=6000 sample points (10 min),
The overall number of equality constraints was thus 6000x11 plus additional
11 for starting point.

6.4.2 Non-equality constrains

Since inputs and outputs of neural network have been normalized the in-
equality constraints were set to keep all inputs in the range [-1,1] which
helps the optimisation speed up. Additional constraints were added for fuel
injection mass and engine speed inputs so they followed a fixed trajectory
during optimisation. To keep this calibration process independent from any
driving cycle, randomised profiles of fuel injection and engine speed from
real engine were used. Of course if needed driving cycle profiles from any
given driving cycles could be used here. It may seem that it would be more
natural to use equality constraints for fuel injection and engine speed tra-
jectories constraints, but the SNOPT solver was found to be more efficient
with these as inequality constraints.

6.4.3 Cost function

The objective of the present optimal control problem is to minimize outputs
of NOx and particulate emissions as measured by opacity. In the work of
Benz [19] the weights of NOx and PM in the cost function in the optimal
control problem were chosen in proportion to their ratio in the EURO VI
regulation. In this work, however because measured opacity is used as
a substitute for PM this approach is not possible, so the weights of the
cost function were obtained by an iterative process involving incrementing
one weight and observing changes in the optimal outputs trajectories until
satisfactory trajectories were obtained. The cost function additionally has
weighted contributions from deviations in input to reduce sudden changes
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of control inputs to give good driveability and to extend the life of the
actuators. The cost function used was accordingly:

I =
3000∑
i=1

(wNOxy1(i) + wopacityy2(i) +

wu3(u3(i)− u3(i− 1)) + wu4(u4(i)− u4(i− 1))) (6.6)

where y1 is the output from the NOx emissions model, wNOx is the weight
for NOx, y2 is the output from the emission opacity model, wopacity is the
weight for the opacity, u3 is the Boost Pressure input, wu3 is the weight for
the rate change of input u3, u4 is EGR input change rate, wu4 is the weight
for the rate change of input u4. The optimisation was run 5 times with
different sets of weights as follows:

1. wNOx = 2, wopacity = 1, wu3 = 0.25 , wu4 = 0.25.

2. wNOx = 1.5, wopacity = 1, wu3 = 0.25 , wu4 = 0.25.

3. wNOx = 1, wopacity = 1, wu3 = 0.2 , wu4 = 0.2.

4. wNOx = 0.75, wopacity = 1, wu3 = 0.25 , wu4 = 0.25.

5. wNOx = 0.5, wopacity = 1, wu3 = 0.1 , wu4 = 0.1.

Since in each engine for each operating point there is a minimum air flow
mass to generate any given torque, such a relation can be used to implement
a torque tracking component as well in an extended cost function in the
future work.

6.4.4 Optimisation results

Each optimisation took about 4000s (1h 10min). Figure 6.7 shows the
resulting NOx output from the emission model and Figure 6.8 shows the
resulting output from the Opacity model. It is clear that with decreasing
wNOx more NOx is generated and simultaneously less opacity, which effect
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Figure 6.7: Comparison of NOx simulated for different optimisations

is presented in Figure 6.9 in terms of average values of NOx and Opacity.
For the next stage the data resulting in the lowest opacity was chosen.

6.5 Inverse identification stage

The final stage of the dynamic calibration methodology is an inverse iden-
tification where final feedforward dynamic controllers are obtained. Inverse
identification is the process of swapping some input sequences with some
output sequences prior to identification to obtain either a partial or full in-
verse of the system so that the resulting identified model can then act as a
feedforward control map [76]. The inverse identified approach was originally
developed for non-optimal Neural Networks controls [98] [99], then subse-
quently extended to general non-optimal NARMAX controls [100] [101] and
more recently to optimal feedforward controls [102].
In the present study, to obtain the dynamic optimal feedforward controllers
for the inverse identification, the engine speed and fuel injection mass signals
were retained as inputs while the corresponding optimal input trajectories
for boost pressure and EGR rate determined in the previous stage were
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Figure 6.8: Comparison of NOx simulated for different optimisations
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Figure 6.9: Average NOx and average Opacity
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Table 6.2: Structure of Hamerstein-Wiener controllers

Hamerstein-Wiener structure Parameter
Non-linearity of input 1 10 sigmoid
Non-linearity of input 1 10 sigmoid
Linear block 1 zero, 2 poles, 1 delay
Output non-linearity 10 piecewise

Table 6.3: Results from inverse identification

Model NRSE
Boost pressure 74,4%
EGR rate 57,1%

treated as outputs. The input-output structure of the inverse identified
controller is shown as the map F in Figure 6.3. A Hammerstein-Wiener
structure was used for the two feedforward dynamic controllers because its
special construction ensures good non-linearity estimation and it contains
linear dynamics part which make it easy to implement on hardware as it
can be converted to a few lines of code. For both controllers this same
structure was used as in table 6.2.

The inverse identification results are justified using the best fit measure as
used in the conventional identification of stage one. Results of the fit are
presented in Table 6.3 and in Figure 6.10 and Figure 6.11.

The results shows that the Hammerstain-Wiener gives better simulation
capability for Boost Pressure prediction than for EGR rate.
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Figure 6.10: Fit of boost pressure by inverse identified controller

Figure 6.11: Fit of EGR rate by inverse identified controller
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6.6 Validation

The dynamic controllers were validated on the Jaguar Land Rover Gaydon
Test Track in a vehicle equipped with a Jaguar Land Rover turbocharged
diesel engine. The controllers were implemented in the ECU target using
ETAS EHOOKS [103] bypassing software. The technique allows for the
implementation of controllers represented as Simulink models. Since no
emission measuring equipment was available at the time of the test, no
quantitative direct experimental validation of the emissions regulation was
possible. Figures 6.12 and 6.13 show the output from both the optimised
controller and from the standard ECU. The optimised controller output
favoured higher EGR rates with lower boost pressure.
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Figure 6.12: Comparison of Dynamic and ECU controllers for boost pressure

Figure 6.14 shows boost pressure set-points output from both dynamic opti-
mised controller and from standard ECU and the measured boost pressure
resulting from the dynamic controller. Figure 6.15 shows EGR rate set-
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Figure 6.13: Comparison of Dynamic and ECU controllers for EGR rate

points output from both the dynamic optimised controller and from the
standard ECU and the EGR resulting from the dynamic controller esti-
mated by the ECU. Figure 6.16 shows comparison of simulated NOx for
the dynamic controller and the standard ECU controller using the model
developed in the identification stage. During the whole of the validation
experiments the dynamic controller results in less NOx during steady state
and dynamic events. Similarly in Figure 6.17 comparison of opacity is
presented for the dynamic controller and the standard ECU. The dynamic
controller results in removing some Opacity(smoke) spikes that appear with
the standard ECU controller.
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Figure 6.14: Dynamic and original ECU boost pressure setpoints and measured
boost pressure

Figure 6.15: Dynamic control and standard calibration EGR setpoints and ECU
estimated EGR
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Figure 6.16: Comparison of simulated NOx for dynamic control and standard
ECU calibration

0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

x 10
4

0

2

4

6

8

10

12

Time[0.1s]

O
p

a
c
it
y
[%

]

 

 

Dynamic controller

ECU controller 

Figure 6.17: Comparison of simulated Opacity for dynamic control and standard
ECU calibration
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6.7 Results

A dynamic calibration SSNN methodology and an associated optimisation
routine using the core NLP elements of the Quadratic Sequential Program-
ming method was applied to obtaining control of the basic air-path of a
Jaguar Land Rover turbocharged diesel engine. Validation results was
demonstrated that the optimal controllers produced by the dynamic calibra-
tion approach can be developed with limited time on a test bed and applied
in-vehicle without in-vehicle tuning, resulting in reducing NOx emissions
and opacity.
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Chapter 7

Conclusions and
recommendation

This chapter presents conclusions from the work performed in this thesis
and discuss potential future research areas in Inverse Optimal Behaviour
based Dynamic Calibration.

7.1 Conclusions

The research reported in this thesis revealed the advantages of Inverse Op-
timal Behaviour based Dynamic Calibration over standard static calibra-
tions by application of this methodology to two different types of calibration
problems.

Firstly, a new dynamic calibration methodology was evaluated on a WAVE-
RT virtual automotive Diesel engine to show its effectiveness for calibration
including fuelling. The study answers the following research questions:Is
the Dynamic Calibration a viable methodology for producing a controller
for smooth engine torque tracking with limited testing time while not ex-
ceeding the emission limits? Does dynamic calibration have any fuel con-
sumption benefit over a conventional static maps? The proposed method-
ology is based on system modelling using dynamic Neural Networks, a con-
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strained numerical model-based optimization process to produce optimal
input-output behaviour and finally inverse identification where the optimal
controller is identified based the optimal input-output behaviour.

The study shows resulting 2% fuel economy improvements over a static
calibration with smooth torque tracking whilst not exceeding emission limits
for NOx and PM. In addition, only a limited amount of transient test data
was required due to associated rapid data collection process which would
result in a significant saving in testing time required for an experimental
application compared with a steady state calibration.

Secondly, a comparative study of different model types for transient engine
performance and emissions was evaluated the modelling capabilities of three
model types:

– Polynomial model

– State Space Neural network model (SSNN)

– Neural Network based Non-linear Autoregressive with eXogenous in-
put (NN-NARX)

to answer the research question: What is the most efficient way of mod-
elling the dynamic engine and emission behaviour in terms of number of
parameters?

SSNN models for engine and emission modelling were found to have similar
simulation capabilities to NN-NARX despite a significantly simplified struc-
ture requiring significantly fewer parameters. A SSNN structured model
that contains only five times as many parameters as a corresponding second
order polynomial model is significantly better than the polynomial model
in modelling unseen data and achieves comparable simulation capability
to regular neural network NARX models which have a significantly higher
number of parameters. For IMEP modelling the SSNN model with 90 pa-
rameters achieved 85,97% of best fit in a comparison to the NN-ARX model
with 647 parameters achieving 88,97% and for Particular Number mod-
elling the SSNN with 90 parameters achieved 25.25% and the NN-ARX
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model with 1298 achieved only 22.14%. Both SSNN and NN-ARX models
are shown to have superior simulation capability compared to polynomial
models, but investigated NN models had more parameters than polyno-
mial models so the comparison is only true for the chosen structures. The
SSNN structure may be sufficiently simple to allow on-line implementa-
tion in forthcoming ECU modules. The SSNN is expected to inherit the
usual advantages of state-space models in allowing the future exploitation
of state-estimation methodologies or feedback linearisation in controller im-
plementation.

Three different optimisation approaches were evaluated for use in the dy-
namic calibration to answer the question: What is the best optimisation
approach for optimising dynamic engine and emissions behaviour? It was
shown that numerical dynamic programming leads to very long computa-
tion for very simple calibration problems with simplified engine model and
a very simple grid of possible states and controls. It would be necessary to
extend it to more realistic models with more states, adding emission con-
straints or increasing grid density to achieve more realistic results but this
would not be feasible in term of computational time.
Two direct optimisation approaches were implemented although for two
different calibration problems, but the approach using the state space rep-
resentation of the system dynamics was proven to be more efficient then the
one using input-output models without splitting the optimisation problem
into segments.

Thirdly, it was shown that the dynamic feed-forward maps are capable of
replacing multiple 2-D maps resulting in a significant reduction in parame-
ter number. The validation presented in this study constitutes answers for
following questions: Is it possible to apply this methodology only to Air-path
only calibration problem? Is this technology ready to implement into pro-
duction type of engine control units? A systematic optimisation and iden-
tification method was presented to determine dynamic feed-forward maps
for the Air-path calibration problem. The responses from the optimised
controllers give a solution which although significantly different from the
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original calibration gives a technologically valid alternative for the set of
constraints used. The results presented in this thesis show the great po-
tential of the methodology in the application of optimal control for an Air-
path calibration problem. The combination of State Space Neural Network
modelling techniques with direct optimisation was proven to be effective.
The results from in-vehicle testing show that during transient engine oper-
ation this methodology can lead to elimination of some opacity peaks while
reducing NOx at this same time. Reduction of opacity can lower the re-
quired frequency of regeneration of the Diesel Particulate Filter which can
directly reduce fuel consumption. Additionally either more stringent emis-
sion standards can be reached or requirements for after-treatment system
can potentially be lowered. Moreover this study shows that the dynamic
feed-forward maps do not have excessive demands on the ECU and they
can be implemented on a production type ECU.

7.2 Future work

There are several areas where the dynamic calibration methodology can be
pursued further. First of all application of State Space Neural Network for
torque modelling should be evaluated. Secondly torque constraints can be
included in the new optimisation approach to evaluate the torque track-
ing capabilities of the new approach. Measurements of PM should be also
taken into account instead of opacity as PM is the standard measurement
variable which is present in the legislative standards. The in-vehicle valida-
tion should be extended with emission measurements to validate the true
emission improvements.

Further investigation can be conducted into the application of dynamic
calibration for actuators control of EGR valve position and VGT position
by employing some boundary search algorithms to overcome issues reported
in this thesis.

As State Space Neural Network models were used in this work with multiple
input single output structure, extensions to multiple input multiple output
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structure could be investigated for engine and emission modelling. This way
the model would also contain relationship between the outputs resulting in
improved simulation capability of the models.
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