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Abstract  
 

Disorders of cartilage and tendon account for a high incidence of disability and are 

highly prevalent co-morbidities within the ageing population; therefore, 

musculoskeletal disorders represent a major public health policy issue.  Despite 

considerable efforts to characterise biochemical and biomechanical cues that 

promote a stable differentiated cartilage or tendon phenotype in vitro the 

benchmarks by which progress is measured are limited.   Common regenerative 

interventions, such as autologous cartilage implantation, have a required period of 

monolayer expansion that induces a loss of the functional phenotype, termed 

dedifferentiation.  Dedifferentiation has no definitive mechanism yet is widely 

described in both regenerative and degenerative contexts; in addition to stem cell 

transplantation and cell-seeding in three-dimensional scaffolds, dedifferentiation 

represents the third approach to the development of regenerative mechanisms for 

mammalian tissue repair.   

Cartilage and tendon show a number of common features in structure, develop, 

disease, and repair.  The extracellular matrix is a dynamic and complex structure 

that confers the functional mechanical properties of cartilage and tendon.  

Dysregulation of production and degradation are critical to the pathophysiology of 

musculoskeletal disorders, therefore, reparative interventions require a stable, 

functional phenotype from the outset.  Cartilage and tendon demonstrate a 

commonality in terms of function defining structure both being sparsely cellular 

with a preponderance of collagenous matrix.  Parity of functionality with the pre-

injury state after healing is rarely achieved for cartilage and tendon.  Cartilage and 



tendon also share common embryological origins.  Common mesenchymal 

progenitor cells differentiate into many musculoskeletal tissues with diverse 

functions.  Specialist sub-populations of tendon and cartilage progenitors enable 

formation of transitional zones between these developing tissues.  The 

development of musculoskeletal structures does not occur in isolation, however, 

cartilage and tendon have not previously been considered together in a systems 

context.  An integrated understanding of the differentiation of these tissues should 

inform regenerative therapies and tissue engineering strategies.  

Systems biology is paradigm shift in scientific thinking where traditional 

reductionist strategies to complex biological problems have been superseded by a 

holistic philosophy seeking to understand the emergent behavior of a system by 

the integrative and predictive modeling of all elements of that system.  Whole 

transcriptome and proteome profiling studies are used to collect quantitative data 

about a system, which may then be exploited by systems biology methodologies 

including the analysis of gene and protein networks.  Gene-gene co-expression 

relationships, which are core regulatory mechanisms in biology, are often not part 

of a comprehensive gene expression analysis. Many biological networks are sparse 

and have a scale-free topology, which generally indicates that the majority of genes 

have very few connections, whilst certain key regulators, or ‘hubs’, are highly 

interconnected.  Co-expression networks may be used to define regulatory sub-

networks and ‘hubs’ that have phenotypic associations.  This approach allows all 

quantitative data to be used and makes no a priori assumptions about relationships 

in the system and, therefore, can facilitate the exploration of emergent behavior in 

the system and the generation of novel hypotheses.     



The ultimate goal of tissue engineering is the replacement of lost or damaged cells, 

and in vitro, to develop biomimetic (organotypic) structures to serve as 

experimental models.  Tissues, and the strategies to functionally replicate them ex 

vivo, are complex and require an integrated, multi-disciplinary approach.  Systems 

biology approaches, using data arising from multiple-levels of the biological 

hierarchy, can facilitate the development of predictive models for bioengineered 

tissue.  The iterative refinement, quantification, and perturbation of these models 

may expedite the translation of well-validated organotypic systems, through legal 

regulatory frameworks, into regenerative strategies for musculoskeletal disorders in 

humans.     

In this thesis the systems under consideration are the major cell populations of 

cartilage and tendon (chondrocytes and tenocytes, respectively).  They are 

described in three environmental conditions: native tissue, monolayer (two-

dimensional), or three-dimensional models.  There has been no systematic 

investigate of the global gene and protein profiles of cartilage and tendon in their 

native state relative to monolayer or three-dimensional cultures.  There is no clear 

mechanistic description of the impact of in vitro environmental perturbations on 

the system or indeed the adequacy of these models as proxies for cartilage and 

tendon.  

A discovery approach using transcriptomic and proteomic profiling is undertaken 

to define a robust and consistent gene and protein profile for each condition.  

Differentially expressed elements are functionally annotated and pathway topology 

approaches employed to predict major signalling pathways associated with the 

observed phenotype.  This study defines dedifferentiated chondrocytes and 

tenocytes in monolayer culture as expressing markers of musculoskeletal 



development, including scleraxis (Scx) and Mohawk (Mkx).  Furthermore, there is 

reproducible synthetic profile convergence in monolayer culture between cartilage 

and tendon cells.  Standard three-dimensional culture systems for chondrocyte and 

tenocytes fail to replicate the gene expression profile of cartilage and tendon.  The 

PI-3K/Akt signaling pathway is predicted to be the predominant canonical 

pathway associated with de- and re-differentiation in vitro.   

Using novel, and publically available, transcriptomic data sets a meta-analysis of 

microarray gene expression profiles is performed using weighted gene co-

expression network analysis. This is employed for transcriptome network 

decomposition to isolate highly correlated and interconnected gene-sets (modules) 

from gene expression profiles of cartilage and tendon cells in different 

environmental conditions.  Sub-networks strongly associated with de- and re-

differentiation phenotypes are defined. Comparison of global transcriptome 

network architecture was performed to define the conservation of network 

modules between a model species (rat) and human data.  In addition to the 

annotation of an osteoarthritis-associated module in the rat a class-prediction 

analysis defined a minimal gene signature for the prediction of three-dimensional 

cultures from standard monolayer culture.  Finally, proteomic and transcriptomic 

data sets are integrated by defining common upstream regulators (TGFB and 

PDGF BB) and unified mechanistic networks are generated for de- and re-

differentiation. 

The studies collected in this thesis contribute to a wider understanding of cartilage 

and tendon tissue engineering and organotypic culture development. A clear 

mechanistic understanding of the regulatory networks controlling differentiation 

of cartilage and tendon progenitor cells is required in order to develop improved in 



vitro models and bio-engineered tissue that are physiologically relevant.  The 

findings presented here provide practical outputs and testable hypotheses to drive 

future evidence-based research in organotypic culture development for 

musculoskeletal tissues.        
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1.1: Opening statement 
In this introduction an overview is provided of cartilage and tendon anatomy and 

physiology.  The pathophysiological mechanisms of cartilage and tendon degeneration 

are summarized and the population impact is reported. Current regeneration strategies 

are presented with explanations of the growth in tissue-engineering research and use of 

musculoskeletal progenitor cells.  The motivations and project objectives are defined 

relative to this current understanding.  Firstly, the philosophy of systems biology and 

common tools are outlined with view to applying these to quantitative transcriptomic 

and proteomic data from cartilage and tendon studies.   

1.2: Philosophy of Systems Biology  
 

1.2.1: Systems Biology: a paradigm shift in science 

To understand the philosophy of systems biology its origins should be considered. 

Ambiguity and difficulties in finding an adequate definition of systems biology are in 

part due to the historical development of the discipline.  Systems biology is either 

considered a natural evolution of earlier scientific disciplines e.g. biophysics, and the 

work of pioneers such as Turing (Turing 1952), or considered a paradigm shift (Marcum 

2009, Bard 2013) in scientific thinking.  Definitions are also confounded by the 

complexity of the strategies a systems biology approach encompasses – methods as 

diverse as, and not restricted to, whole-genome sequencing and ‘omics’ studies 

(proteomics, transcriptomics, metabolomics), single-cell microfluidics (Breslauer, Lee et 

al. 2006), in silico modeling, machine learning, and other bioinformatics methods.  

1 :  Genera l  Int roduct ion  
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Advocates would present systems biology as a Kuhnian paradigm shift, or revolutionary 

step, in science.  According to Kuhn a paradigm shift in science occurs where the 

recognition of an anomaly in fundamental understanding results in a crises so profound 

that it propagates a revolution in thinking; this results in a shift in a paradigm toward a 

competitor (Kuhn 2012).  The catalyst for this shift, it has been suggested, was the wave 

of data generated by the completion of the Human Genome project (Ideker, Galitski et 

al. 2001, Marcum 2009, Conesa and Mortazavi 2014).  Proponents would suggest that 

traditional reductionist strategies in biology fail to account for the complexity of 

biological phenomena. Critics, in contrast, would suggest that systems biology 

represents an evolutionary extension of molecular biology and it certainly builds on the 

successes of a reductionist methodology (Bard 2013).        

Two comprehensive definitions of systems biology, below, give some indication as to 

the central tenets of a systems approach:  

 “Systems biology is a discipline seeking to understand the emergent 
behavior of a biological system by integrative modeling of the 
interactions of (all) the molecular elements”.  (Wang and Levchenko 
2009); 

and,  

 “The goal of systems biology is a predictive understanding of the whole.  
If the whole is more than the sum of its parts, it follows that acquiring a 
catalogue of all the parts is not necessarily the first order of business”. 
(Szallasia, Stelling et al. 2010).   

 

1.2.2: The systems biology approach 

To define the systems biology approach the ultimate objectives must be considered.  

Systems biology should be considered as having two goals, firstly to describe how 

proteins in complex networks work (as proteins drive biological networks) and 
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secondly, to integrate with the functional or organismal phenotype the molecular and 

network data (Bard 2013).   

In general terms the systems biology approach consists of an iterative series of 

comprehensive perturbations and systematic quantifications to measure, temporally, 

elements from all the distinct levels of a biological system.  In an attempt to recapitulate 

the behavior of the system under investigation all the quantitative data must be 

integrated into a network model.  This mathematical model is reconciled against the 

observed responses then a new hypothesis is formulated and tested experimentally.  The 

model is cyclically refined and perturbed with new findings being incorporated as they 

arise (Ideker, Galitski et al. 2001, Wang and Levchenko 2009).   Systems may be 

perturbed in a number of ways including high-throughput genetic manipulation, e.g. 

gene overexpression, systematic gene mutations, RNA interference, small molecule 

(drug) libraries, and growth hormones.  The concomitant response to these 

perturbations is then quantified as before.   

Individual elements of the biological system are not under consideration; rather the 

relationships between all elements within the system are investigated dynamically.  

Consequently, systems biology considers all biology as an information science.  

Discovery investigations (or global profiling studies) are common and these are not 

necessarily hypothesis-driven at the outset, however, the integration of hypothesis- and 

discovery-driven approaches is a hallmark of systems biology (Ideker, Galitski et al. 

2001).  The tools that make systems biology possible include: genomic reference 

sequences of model organisms, comprehensive gathering of information at all levels of 

the biological hierarchy, high-throughput, massively parallel and automated 

methodologies, improved computational power, curated databases, open-source 

software and multi-disciplinary teams.    
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What does not constitute a systems biology approach is as relevant as the definitions 

above.  Some researchers do not consider that global data gathering, perturbation of 

that system and integration of that data alone constitutes systems biology, rather the 

mathematical modeling of biological systems represents a true systems approach.  

Sequencing of transcripts from samples in a discovery study does not represent a 

systems biology approach, however, studies following changes in gene expression in a 

temporal manner, or in response to siRNAs, may be considered a systems biology 

methodology (Conesa and Mortazavi 2014).   

Complexity in biological systems 

Biological phenomena, e.g. development, physiological homeostasis, neoplasia, are 

complex.  The behavior of these phenomena cannot be reduced to a linear 

representation comprising the sum of the components parts.   By extension biological 

data is complex for several reasons – a) organization operates on multiple, hierarchical 

levels; b) it is derived from integrated networks; c) these networks are robust to multiple 

perturbations; d) key target nodes within the network, when perturbed, may have 

profound effects.  Causality is distributed throughout the system and operates in a 

bidirectional manner between, and within, levels.  Furthermore, systems biology 

assumes that no biological level has preferred status.  (Ideker, Galitski et al. 2001, Bard 

2013).   Complexity is also associated with the fact that data will always be missing, for 

example failure to identify peptides in mass-spectra or measuring in vivo states (rate 

constants) (Bard 2013), or redundancy in the system, or that biological processes occur 

over vastly differing time scales.  A systems biology approach does not, however, need 

to include large numbers of elements or data sets and may represent small-scale 

quantitative modeling, e.g. in yeast studies (Klipp, Liebermeister et al. 2009).   
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Kitano (2002) defined that a systems-level understanding would require analysis four 

properties of a biological system, a) the system structure (e.g. the network of gene 

interactions), b) system dynamics (behavior over time), c) the control method (define 

the mechanisms that control the state of the cell and modulate them), and d) the design 

method (principles of design and simulation to modify biological systems to having 

desired properties) (Kitano 2002) 

1.2.3: Systems biology tools 

As stated earlier a number of methodologies may be used in a system approach and two 

of these are described below.  Further discussions on quantitative data integration 

techniques are explored in Chapters 5 and 7.   

Tools of interpretation in systems biology I: Co-expression network analysis  

With the reduction in the cost of microarrays many studies have published lists of 

differentially expressed genes or gene sets.  Prioritised lists, whilst useful reference tools, 

provide only single gene-specific measurements at the expense of all the data points that 

did not meet the threshold criteria.  Furthermore, it does not consider the interactions 

of the elements of the system.  A systems approach does not make a priori assumptions 

about elements of a system, rather it is explored in a holistic manner. Covariance, a 

measure of how much two random variables change relative to each other, may be used 

to establish gene-gene co-expression relationships and may be used to infer patterns in 

the expression data and create networks of highly interconnected genes (Conesa and 

Mortazavi 2014).  Established systems approaches, such as weighted gene co-expression 

network analysis (WGCNA), can be applied to many biological contexts to define 

modules of highly co-expressed genes and derive phenotypic associations from them 

(Langfelder and Horvath 2008, Gaiteri, Ding et al. 2014).  This will be explored further 

in Chapters 4 and 5. 
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Tools of interpretation in systems biology: Pathway Analysis  

Pathways are graphical representations of models encoding the interactions between 

genes, proteins and metabolites within cells, tissues and organisms – pathway topology 

is the overall arrangement of the elements of this model.  The production of lists of 

differentially expressed genes between two conditions has now become relatively 

routine, however, predicting the phenomena that drive a phenotype is still challenging.  

It has been suggested that the ability to infer, correctly and consistently, the pathway 

perturbations promoting a phenotype from a list of genes may be what translates vast 

data gathering exercises into meaningful biological knowledge (Mitrea, Taghavi et al. 

2013).  

In order to make inferences about networks the properties of the system, mechanistic 

and structural, must be mapped.  These networks have a complex topology, which, 

although likely to be biologically relevant, may be difficult to interpret in terms of 

cellular function (Conesa and Mortazavi 2014).  Furthermore, causality in biological 

systems is bidirectional within, and between, hierarchical levels (Marcum 2009, Bard 

2013), therefore profiling only gene expression is not consistent with a systems 

approach.   

Long lists of differential abundance provides no mechanistic insight into the system 

under investigation (Khatri, Sirota et al. 2012).  Pathway analysis is a group of 

methodologies that seeks to gather cohorts, or sets, of genes that function within the 

same pathways; achieving this reduces the complexity of the data from thousands of 

genes to scores of pathways. Rather than producing a list of pathways this type of 

analysis should define the activity status of pathways thereby improving our ability to 

explain the data.   
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The term ‘pathway’ is often misappropriated, for example, gene ontology terms do not 

describe a pathway, nor do protein-protein interaction networks (Khatri, Sirota et al. 

2012).  Most pathway analysis is driven through the use of a pathway knowledge base, 

which describes a process, structure, or components.  Gene expression patterns for the 

condition under review are correlated with information within a pathway knowledge 

base.  Numerous techniques are available, though most are derivative and use 

overlapping resources.  The most widely used and accessible method is ‘over-

representation analysis’ (ORA) where the statistical evaluation of a subset of genes 

within a differential expression list matching to a particular pathway is considered. 

Over-representation analysis assumes each gene, or pathway, is an independent entity, 

contrary to the understanding of the complex interactions that exist between them, and 

so limits any insight into the pathways.   

Functional class scoring (FCS) techniques, such as Gene Set Enrichment Analysis 

(Broad Institute, http://www.broadinstitute.org/gsea), try to address some of these 

issues by not having arbitrary thresholds, using molecular measurements, and consider 

coordinated changes between genes.  However, pathways are still considered 

independently and many methods may rank and discard genes in a particular pathway.  

For both methods, described above, as only the number of genes or co-expression of 

those genes is used to define significant pathways were these pathways to be redrawn 

with entirely different links between the genes both ORA and FCS would produce the 

same results.  As lists of genes, or ‘gene-sets’ do not include any additional information 

on a pathway they cannot be considered pathway analysis (Tarca, Draghici et al. 2009, 

Mitrea, Taghavi et al. 2013).   

Pathway topology methods use many of the same steps as functional-class scoring, 

however, the gene-level statistic is calculated on pathway topology.  Pathway topology 
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makes use of the previously collected knowledge about the structure of a pathway, in 

addition to the molecular measurements. An impact factor analytic approach is a more 

recent development; this takes into account not only the changes in gene expression, 

but also the positions of genes in pathways and types of interactions.  The impact factor 

of a pathway is the sum of perturbation factors for all the genes in a pathway. In 

Chapter 2 this methodology, implemented through the SPIA algorithm (Tarca, 

Draghici et al. 2009) was employed to predict the activation status of KEGG canonical 

pathways based upon the Illumina gene expression data sets.  This method is becoming 

more widely used (Balbin, Prensner et al. 2013, Nance, Smith et al. 2014, Nouailles, 

Dorhoi et al. 2014), however, is already likely to have been superseded by a number of 

new methods using several curated databases, implementing multivariate analysis and 

incorporating multi-dimensional genomics data (Vaske, Benz et al. 2010, Mitrea, 

Taghavi et al. 2013). However, many are limited by their ease of implementation.   

Working definition of systems biology 

In the context of this thesis a systems biology approach is understood to be the 

collection of methodological steps, which together aim to generate novel and testable 

hypotheses about the system under investigation.  Initially, hypothesis-free discovery 

projects survey and quantify global transcriptome and proteome profiles for a series of 

conditions using cartilage and tendon.  This data is curated and integrated with 

functional in vivo and in vitro phenotypes at the network level to define emergent 

properties of the system.  Protein-protein interaction networks arising from these 

relationships are used to generate a hypothesis about regulatory units driving the 

phenotype of interest with the intention of perturbing these units in future and feeding 

into computational models.  
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1.3: Structure & Function of Cartilage and Tendon 
 

1.3.1: The musculoskeletal system: an introduction 

The musculoskeletal system consists of a diverse group of tissues that are 

developmentally, anatomically, and functionally inter-related.  Bone confers the 

structural rigidity required for locomotion; muscle contraction generates force, tendon 

transfers that force, whilst cartilage provides a smooth surface for unimpeded angular 

movements at joints. Contributing to this mechanical system are ligaments, synovial 

tissue that lines joints and provides lubricating fluid, and complex extracellular matrices.    

Of these tissues cartilage and tendon are the focus of the studies presented in this thesis.  

To demonstrate the common ontogeny, disease pathophysiology, and regeneration 

strategies for cartilage and tendon three sections provide an overview: i) structure and 

function; ii) disease and development; and iii) repair and regeneration.  In each of these 

the key issues highlighted and how they inform and influence the motivations for the 

series of studies presented in this thesis.  A final section clarifies the core objectives of 

the thesis and the novelty of the study design.   

It is not possible within the constraints of this thesis to fully survey the literature 

pertaining to development, anatomy, pathophysiology, regeneration and therapeutics for 

each tissue and these disciplines will be considered in general terms. Where points of 

interest are expanded upon elsewhere in the thesis these will be referenced in the text.   

1.4: The extra-cellular matrix 
As the majority of both cartilage and tendon consists of specialised extra-cellular matrix 

(ECM), and contribute to a loss of function in disease, an overview is provided.  
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Although the ECM is not the principal focus of this thesis it is fundamental to an 

understanding of the goals of musculoskeletal regeneration strategies.  The ECM in 

crude terms is often considered the filler between cells in all tissues, but in reality 

represents both a physical scaffold and a transducer of biochemical and biomechanical 

cues with roles in morphogenesis, differentiation, homeostasis and is implicated in 

variety of disorders related to age, injury, or neoplasia (Frantz, Stewart et al. 2010).  

Although the fundamental components are comparable across many tissues the 

proportional composition is functionally related and unique to each tissue; it also exists 

as the interface between tissues and between cell populations within a tissue.  

The ECM is a dynamic structure involved with sequestration and release of growth 

factors. It undergoes constant remodeling, and interacts with the resident cells through 

integrins, syndecans, and discoidin domain receptors.  Excluding water, the ECM 

components are proteins, glycoproteins or proteoglycans.  The former are, in various 

proportions: fibrous collagens, elastins, laminins, fibrillins, thrombospondins, fibulins, 

tenascins and fibronectin (Halper and Kjaer 2014).  The latter, proteoglycans, consist of 

glycosaminoglycans (GAGs) with a covalent link to a core protein; this core protein is 

not present in hyaluronan.  The composition of these structures may classify 

proteoglycans into: cell surface-associated (syndecans, glypicans), small leucine-rich 

proteoglycans or SLRPs (decorin, lumican), or modular (aggrecan, versican, perlecan).  

In general, proteoglycans are highly hydrophilic, linear molecules that confer the 

resistance to compressive forces through the formation of hydrogels (Schaefer and 

Schaefer 2010).  Furthermore, each proteoglycan group has relevance to signalling 

modulation, cell adhesion, migration and proliferation (Frantz, Stewart et al. 2010, 

Schaefer and Schaefer 2010).    
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The CCN-family of proteins is of particularly relevance to ECM function.  The six 

secreted CCN proteins (CYR61, CNN2/CTGF, CNN3/NOV and WISP 1-3) have 

specific ECM associations with roles as adaptor molecules linking the intracellular state 

and the ECM signalling through integrins and proteoglycans.  They are induced by 

growth factors and cytokines including TGF-β and are also implicated in cell 

differentiation, chondrogenesis, proliferation and migration (Leask and Abraham 2006).   

1.4.1: Collagens  

Collagens represent one third of the human proteome (Frantz, Stewart et al. 2010, 

Ricard-Blum 2011, Chang, Shefelbine et al. 2012) and collagen alpha-helical chains, 

which represent the fundamental unit of the ECM, intertwine with other collagen 

helices to form homo- or hetero-trimeric collagen helices contributing to the structural 

integrity of tissues.  Each collagen chain contains repeating glycine (Gly,G)-X-Y triplets, 

of which X and Y are usually proline (Pro,P) or hydroxyproline (Hyp,O) (van der Rest 

and Garrone 1991, Ricard-Blum 2011).   Triple-helical collagenous domains are flanked 

by non-collagenous regions; these often containing recognisable domains found in other 

matricellular proteins. Collagens may be loosely grouped into: fibrillar, fibril-associated, 

network-forming, transmembranous, endostatin-precursors, or within a miscellaneous 

group (Gordon and Hahn 2010).  For the purposes of this introduction only the fibrillar 

collagens will be considered.   

The fibrillar collagens are types I (the must abundant in tendon), II (the most abundant 

in cartilage), III, V and XI. Collagen type I principally exists as a hetero-trimer 

consisting of two alpha-1 and one alpha-2 collagen chains; homo-trimeric forms of 

collagen type I, three alpha-1 chains, exist in foetal tissue, musculoskeletal disorders 

(Dupuytren’s contracture and osteogenesis imperfecta) and neoplastic stroma with 
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altered structural and mechanical properties (Chang, Shefelbine et al. 2012).  In contrast, 

collagen type II exists only as a homo-trimeric molecule (Gordon and Hahn 2010).  

Pro-collagen biosynthesis  

Pro-collagen units are the precursors of collagen and undergo conversion, complex 

post-translational modifications and trafficking through an intra-cellular secretory 

pathway to ultimately result in the deposition of collagen fibrils into the ECM.   In the 

pro-form triple helices are flanked by N- and C-terminus pro-peptide globular 

extensions, which undergo proteolytic cleavage by N- and C-proteinases respectively 

(Kadler, Baldock et al. 2007).  The removal of the pro-peptides permits the aggregation 

of collagen triple helical molecules into fibrils.   

Pro-collagen chain biosynthesis occurs in the endoplasmic reticulum (ER) and 

nucleation of three pro-collagen monomers into the triple helix occurs at the C-pro-

peptide under the influence of various enzymes with resultant post-translational 

modifications (PTM) (Banos, Thomas et al. 2008).  For example, the conversion of 

proline residues (in the Gly-X-Y repeating triplets of the collagen chains) to 

hydroxyproline is performed by prolyly-4-hydroxylase, with ascorbic acid (Vitamin C) as 

an essential co-factor (Canty and Kadler 2005).  Trafficking covers the transition of 

collagen triple helices from the ER to the plasma membrane, via the Golgi, for secretion 

from the cell.  Vesicular transport clusters transport pro-collagen to the cis-Golgi after 

budding directly from the ER membrane (Banos, Thomas et al. 2008).  In this model 

the cleavage of the C- and N-globular domains occurs intracellularly; this is the final 

PTM and creates the highly insoluble tropocollagen rods that may spontaneously self-

assemble to form fibrils (Banos, Thomas et al. 2008).  Proteinase activity is specifically 

mediated by C- and N-propeptide tolloid and ADAMTS family enzymes respectively 

(Canty and Kadler 2005), although these have other substrates additionally.   
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1.4.2: Integrins coordinate chondrocyte communication with the ECM 

The chondrocyte is isolated within the general ECM and peri-cellular matrix (see 

Chapter 3), lacking cell-to-cell contacts and is supremely sensitive to changes in the 

microenvironment – it is connected to it by integrins and these influence chondrocyte 

responses (Demoor, Ollitrault et al. 2014), i.e. ‘integrating’ the extracellular matrix, 

cytoskeletal components and signalling pathways. Integrins are heterodimeric 

transmembrane proteins consisting of α and β subunits that have extracellular domains 

defining the matrix ligands (Loeser 2014).  Of the 24 integrin heterodimers described 

chondrocytes express seven (α1β1, α3β1, α5β1, α10β1, αVβ1, αVβ3, and αVβ5) in 

physiological circumstances, with elevated levels of α1β1 and α3β1 and novel 

heterodimer expression (α2β1, α4β1) evident in osteoarthritis (Almonte-Becerril, Costell 

et al. 2014, Loeser 2014).  Integrins can recognize distinct collagen subgroups, for 

example α10β1 is collagen, type II binding and is limited to cartilage (Heino 2014). 

Integrins function to mediate cell-adhesion to ECM proteins in a substrate-restricted 

manner, e.g. fibronectin, collagen type II.  Binding stimulates ‘outside-in’ signalling 

networks that converge on mitogen-activated protein (MAP) kinase family of proteins 

(ERK, JNK, p38) to influence down-stream transcription of genes through NF-κB and 

AP-1 (Fos-Jun dimer).  Canonical integrin signalling results in the rapid increase in levels 

of phosphatidylinositol lipid messengers (PI-3K/Akt signalling, see Chapter 3) and 

receptor tyrosine kinase-mediated phosphorylation of proteins including focal adhesion 

kinase (FAK) and Rho/Rac activation (Heino 2014, Loeser 2014).  In general, the 

activity of integrins has been shown to include: mechano-transduction, survival, 

differentiation, and proliferation.  Additionally, matrix fragments, especially fibronectin, 

influence the catabolic signalling through RGD motif binding by integrins including 

α5β1, resulting in a signalling cascade promoting increased expression of MMPs, pro-

inflammatory cytokines (PGE2/COX2), reactive oxygen species (ROS) and other 
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degradative enzymes (ADAMTS5).  The generation of further matrix protein fragments 

can perpetuate a cycle of degenerative effects on cartilage (Loeser 2014).    

Summary  

The ECM is a dynamic and complex structure that confers the functional mechanical 

properties of cartilage and tendon.  Dysregulation of its production and degradation are 

critical to the pathophysiology of musculoskeletal disorders.   

1.5 Cartilage 
 

“Where-ever the Motion of one Bone upon another is requisite, 
there we find an excellent Apparatus for rendering that Motion 
safe and free.” (Hunter 1743) 

 

1.5.1: General anatomy 

Having defined the principal structural components of cartilage and tendon each tissue 

will be considered in turn with regard to the general anatomy and function.   

Adaptations of cartilage may be found wherever, in the axial or appendicular skeleton, 

two surfaces are required to move over one another without impedance.  Cartilage may 

be described as: fibro-cartilage, elastic, fibro-elastic or hyaline (Eyre 2002). Articular 

cartilage, a smooth, load-bearing surface that allows frictionless motion of a joint, is a 

form of hyaline cartilage.  In the healthy adult articular cartilage is devoid of blood and 

lymph vessels, and is aneural.  The only cell-type is the chondrocyte, which is 

responsible for the synthesis of extracellular matrix and maintenance of the cartilage 

architecture.  These critical cells only account for 1-5% of the cartilage structure.  

Nutrition is conferred by diffusion and chondrocytes have no cell-to-cell contacts (see 

integrins, below).  The physiological environment is considered to be hypoxic as a result 
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of the low oxygen tension at the level of the chondrocyte; consequently anaerobic 

glycolysis is the main mechanism for ATP generation (Demoor, Ollitrault et al. 2014).    

As wet weight, over two-thirds of cartilage is water; this accounts for the load-

dependent deformation.  Collagens represent a further 10-20% of cartilage volume, of 

which collagen type II is the most prevalent. The principal collagens in mammalian 

cartilage (types II, IX and XI) exist as cross-linked collagen hetero-polymers to form, at 

the ultra-structural level, a random network of fibrils, in contrast to tendon (see below). 

Other collagens, type III, VI and X are also present, with type X restricted to the 

calcified cartilage interface with the sub-chondral bone (Eyre 2002, Bhosale and 

Richardson 2008, Demoor, Ollitrault et al. 2014).  Four zones are apparent in articular 

cartilage by light microscopy.  Passing deep to the articular surface these are: 

superficial/tangential, intermediate/transitional, deep/radial and calcified.  These layers 

differ in their collagen fibril orientation, which, along with the extensive collagen cross-

linking ensures the material strength of cartilage (Eyre 2002). 

Non-collagenous matrix and proteoglycans 

Protein polysaccharides, proteoglycans (mainly aggrecan), account for an additional 10-

20% of cartilage volume and contribute to the compressive strength of cartilage.  In 

addition to aggrecan other aggregating proteoglycans, such as versican, form large multi-

molecular complexes with hyaluronan, an interaction that is stabilised by hyaluronan 

link protein (HAPLN1).  Small leucine-rich proteins (biglycan, decorin, lumican, 

fibromodulin), which interact with fibrillar collagens, and miscellaneous proteoglycans 

(perlecan, lubricin/PRG4) are also components of the cartilage ECM (Roughley 2001).  

Of the non-collagenous proteins a number of structural components are present 

including: cartilage oligomeric matrix protein (COMP), matrilin-1/cartilage matrix 

protein (MATN1), thrombospondins (THBS1, 3, 4), fibronectin (FN), chondroadherin 
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(CHAD), elastin (ELN) and fibrillin (FBLN). Disruption of these matrix components, 

either through congenital mutations, for example COMP in skeletal dysplasias (Hecht, 

Hayes et al. 2005), or acquired mechanisms, e.g. proteolytic activity (Mort and Billington 

2001), can contribute to the degradation of cartilage and loss of function.     

1.6: Tendon 
 

1.6.1: General anatomy 

Tendons are the functional link between the static and dynamic parts of the 

musculoskeletal system transferring the forces generated by muscular contraction to the 

skeleton and, thus, facilitating motion.  Following injury this function is impaired.  

Parity of functionality with the pre-injury state after healing is rarely achieved; the final 

tensile strength of healed tendon has been reported as being reduced by up to thirty 

percent (Müller, Todorov et al. 2013).   

Comprising dense bundles of parallel collagen fibres in close apposition confers tendons 

with specialist mechano-transducive properties of high tensile strength.  Elasticity is a 

function of the elastin molecule tropoelastin, which aggregates and is stabilized by 

cross-links in a lysyl-oxidase-dependent manner (Scott 2003). As a caveat to the 

statements above tendons may also exist as ‘intramuscular tendons’, facilitating 

pennation of muscle bellies, or as ‘intermediate tendons’ connecting two muscle bellies 

(Benjamin, Kaiser et al. 2008).  Furthermore, although in general tendons act to transmit 

tensile forces derived from skeletal muscle in some anatomical locations forces of 

compression and shear are also applied, for example, where tendons pass over a curved 

region of bone and act as a pulley.  Other tendons, such as the highly developed equine 

superficial digital flexor tendon, have the capacity to store elastic energy for efficient 
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locomotion (Thorpe, Udeze et al. 2012).  Some anatomical features are defined by the 

presence of calcified structures or areas within the tendon including distal limb and 

pedal sesamoid bones in the horse and man, and areas of fibro-cartilaginous adaptation 

at tendon insertions (Benjamin, Kaiser et al. 2008).  

The canonical tendon structure, as described by Kastelic and co-workers (1978) 

(Kastelic, Galeski et al. 1978) consists of hierarchically organized structural units of 

insoluble collagen type I molecules aggregated to form collagen fibrils; subsequently 

these are collected to form ‘fibres’ – the basic functional unit of the tendon.  Primary, 

secondary and tertiary fibre bundles form from sequential aggregation.  Combined 

tertiary bundles form the tendon, which is surrounded by the epitenon connective 

tissue, blood vessels and nerves (Kannus 2000).   

Tenocytes, or tendon fibroblasts, are the majority cell type in an otherwise sparsely 

cellular tissue, and are responsible for the production and secretion of ECM and 

collagen turnover.  As dry weight, tendon is predominantly comprised of collagen of 

which type I collagen represents 95% with the remainder consisting of type III, V, XII 

and XIV (Müller, Todorov et al. 2013, Thorpe, Birch et al. 2013).  Within each level of 

the tendon hierarchy small amounts of non-collagenous matrix are present (Kastelic, 

Galeski et al. 1978), which has been relatively ill-defined.    The tendon non-collagenous 

matrix (NCM) comprises glycoproteins including COMP, lubricin and tenascin-C and 

other proteoglycans, mainly SLRPs, with decorin the most abundant.  The relative 

abundance of the NCM is associated with the functional requirements of the tendon 

with areas of high compressive load requiring higher concentrations of NCM, whilst 

areas with high tensile loads are sparse by comparison (Thorpe, Birch et al. 2013).  
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Summary  

These cursory reviews of tendon and cartilage anatomy and structure demonstrate a 

commonality in terms of function defining structure, sparse cellularity, and a 

preponderance of collagenous matrix and varying proportions of non-collagenous 

matrix.  This commonality extends to the morphogenesis of each tissue as outlined in in 

the following section.     

1.7: Disease & Development  
 
1.7.1: Common origins: models of musculoskeletal development  

 

Cartilage and tendon progenitors 

An understanding of cartilage and tendon morphogenesis, through the limb bud 

developmental paradigm, provides a conceptual framework within which an 

understanding of the regulatory elements and networks driving pathophysiological and 

regenerative mechanisms may be developed.  

Whereas muscle progenitors arise from the myotome, cartilage, bone, tendon and 

ligament all arise from undifferentiated cells within the sclerotome, lateral plate 

mesoderm or neural crest (Sugimoto, Takimoto et al. 2013).  For the limbs, progenitors 

are derived from the lateral plate mesoderm.  At appropriate topographical regions, 

encoded by homeobox (Hox) genes (Zakany and Duboule 2007), the progenitors 

displace from the lateral plate mesoderm and assemble beneath ectodermal pockets 

forming dome-like structures called ‘limb buds’.  As these buds rapidly grow invasion by 

the primitive muscle and vasculature cells occurs.  In the classical model proximo-distal 

outgrowth of the limb bud is promoted by the apical ectodermal ridge (AER), which is 

relevant to our understanding of musculoskeletal morphogenesis because it produces a 



 19 

number of signals relevant to specification of mesenchymal progenitors, particularly 

fibroblast growth factor (FGF) family members (Zeller, López-Ríos et al. 2009).   The 

ultimate fate of skeletal progenitors is defined by sequential, modular signals generally 

consisting of the bone morphogenetic proteins (BMP), transforming growth factor beta 

(TGF-β), fibroblast growth factor (FGF) and Wingless/Wnt and Hedgehog family of 

growth factors (Lorda-Diez, Montero et al. 2014) through the generation of dynamic 

spatial and temporal morphogen gradients (Dekanty and Milan 2011).  It is these local 

signals that drive the divergent differentiation of mesenchyme to cartilage and tendon.  

It is proposed that as the limb bud proliferates the distal most mesenchymal cells remain 

in an undifferentiated state whilst core mesenchyme, no longer under the influence of 

defined morphogen gradients, activate SRY-box containing-9 (Sox9) expression to 

initiate chondrogenic differentiation.  

Summary 

Common mesenchymal progenitor cells differentiate into many musculoskeletal tissues 

with diverse functions.  Growth factor gradients and homeodomain genes coordinate 

and spatially restrict development of nascent cartilage and tendon structures.  An 

understanding of developmental ontogeny is critical to understanding directed 

differentiation in regenerative therapies and biomimetic cultures.   

1.7.2: Chondrogenesis, articular cartilage and joint development 

The condensation of mesenchymal progenitors to form discrete, self-organising cartilage 

templates (anlagen) is the initial process in skeletogenesis.  Associated with this 

transition is a move from expression of collagen types I, III, and V to cartilage-

associated collagens II, IX, and XI.  Proliferating chondrocytes express collagen VI and 

matrilin-1 (MATN1) under the control of the PTHrP/Ihh axis (Goldring 2012).  

Cartilage determinism, and the prevention of differentiation towards an osteogenic 
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lineage, is under the control of a number of signalling pathways and transcriptional 

regulators. Activation of chondrogenic pattern formation may be under the influence of 

TGF-β signalling, possibly via a reaction-diffusion mechanism (Turing 1952, Miura and 

Shiota 2000, Christley, Alber et al. 2007).  Complex interplay between TGF-β, BMP-

(Pizette and Niswander 2000, Yoon, Ovchinnikov et al. 2005) and Wnt-(Day, Guo et al. 

2005, Hill, Später et al. 2005) signalling all contribute to the balance between osteo- and 

chondro-genesis.   The major transcriptional regulators are RUNX2 and SOX9 for 

osteogenesis and chondrogenesis respectively (Goldring 2012).  SOX9, with the 

addition of SOX5 and SOX6, are a triad of transcriptional controllers that cooperatively 

activate collagen type II expression (Lefebvre, Li et al. 1998, Lefebvre, Behringer et al. 

2001).   

More is understood about the regulatory elements involved in chondrogenic 

determinism in skeletogenesis than definition of articular cartilage formation.  The 

complex three-dimensional architecture of joints and the compound nature of the 

tissues that comprise them (cartilage, ligament, synovium, meniscus, tendon) are not 

well described in terms of the pool of progenitors from which they arise. Decker, et al 

(2014) have proposed a model for the emergence of joints, and formation of articular 

cartilage, from undifferentiated mesenchyme based upon a review of a number of 

genetic cell lineage tracing studies (Decker, Koyama et al. 2014).  The authors proposed 

that SOX9/COL2A1/doublecortin-positive cells within the cartilaginous anlagen, which 

is linear and uninterrupted in early embryogenesis, becomes segmented by unknown 

mechanisms; GDF5+ cells, which define the avascular mesenchymal ‘interzone’ that 

interrupts the adjacent cartilaginous elements, together with migrating cells give rise to 

the articular cartilage, synovial lining and intra-joint ligaments.  Matrillin 1-expressing 

chondrocytes residing within the anlagen diverge to undergo endochondral ossification, 
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whilst matrillin-1 negative cells with COL2A1-expression history go on to differentiate 

into articular chondrocytes.  Furthermore, TGF-βR2-expressing cells would emerge as 

slow-cycling, reserve progenitor cell population.       

1.7.3: Tendon development  

The development of the embryonic tendon demonstrates heterotypic induction through 

the intimate association with the developing structures of the limb, in particular the 

developing muscle (Aslan, Kimelman-Bleich et al. 2008), but also developing cartilage 

(Schweitzer, Zelzer et al. 2010).  These complex interactions are required to ensure the 

robust anchoring of tendon to muscle at the myotendinous junction and to bone at 

insertional entheses without which force transduction would not be possible.  There is 

evidence that axial tendons arise from a different embryonic lineage than the 

developmental mechanisms that promote appendicular, or limb, tenogenesis thus 

further complicating our understanding of potential regenerative processes (Brown, 

Finley et al. 2014).    

Regulators of tendon differentiation 

The development of tendon repair mechanisms is partly limited by our understanding of 

tendon development, the paucity of data on tendon differentiation cues, and evidence of 

the role of biomechanics in development.  Some lineage-restricted transcription factors 

have been implicated in tendon formation in a time-restricted manner with scleraxis and 

SOX9 associated with the emergence of progenitors, whilst Mohawk (MKX) 

(Anderson, Arredondo et al. 2006, Anderson, Beres et al. 2009) and early growth 

response proteins EGR1 and 2 (Lejard, Blais et al. 2011, Guerquin, Charvet et al. 2013) 

are associated with differentiation and maturation stages (Liu, Zhu et al. 2014).  
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The most notable of the tendon-specific mediators is scleraxis (SCX), a basic helix-loop-

helix (bHLH) transcription factor, which was detected in mouse embryos from 9.5 days 

post coitus (d.p.c.) with high levels demonstrable in cartilage, tendon and ligaments 

(Cserjesi, Brown et al. 1995, Schweitzer, Zelzer et al. 2010).  For axial tendon 

development tendon-progenitor cells are defined by the expression of SCX, in early 

developmental stages, within the syndetome compartment arising from the interaction 

of the somitic compartments of the sclerotome and the myotome (Brent, Schweitzer et 

al. 2003).  The former giving rise to the dorsal dermis and axial skeleton, whilst the latter 

to skeletal muscle.  Fibroblast growth factor signalling from the adjacent myotome 

induces and propagates development of the SCX-positive cells.     In comparison, the 

SCX+ cells in the developing limbs arise from superficial dorsal and ventral aspects of 

the limb bud mesenchyme without the compartmentalization described for axial tendon 

(Brown, Finley et al. 2014).  Here interactions between bone morphogenetic proteins, 

and the BMP antagonist Noggin, were reported to influence the domain of SCX+ cells 

(Schweitzer, Chyung et al. 2001).    

In general the molecular targets considered for neotendon formation have arisen from 

our understanding of tendon development, but largely consider the tendon in isolation 

belaying what is clear from tendon ontogeny, that tendon development relies on the 

cross-talk of muscle, bone and cartilage (Schweitzer, Zelzer et al. 2010).  Additionally, 

evidence for the tenogenic effects of these targets is limited.  Putative targets for tendon 

regeneration include SIX1 and SIX2, SMAD8, TGF-β and BMP-family members 

including GDF5, GDF6 and GDF7 (Aslan, Kimelman-Bleich et al. 2008).  

In additional to soluble factors, such as the role of TGF-β signalling in the recruitment 

and maintenance of tendon progenitors (Hasson 2011), mechanical factors are known 

to have roles in the development and homeostasis of tendon function.  Tissue 
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engineering studies have considered how best to utilize mechanical cues, such as 

substrate stiffness (elastic modulus) or to provide guides for scaffolds and bioreactors.  

Studies considering the mechano-activity of developing embryonic cells have been few 

and conflicting in their conclusions.  Using various forms of neuromuscular blockade 

several studies have demonstrated the impact of altered skeletal muscle contraction on 

the developing tendon with reduced, degenerative, or inhibited tendon structure 

formation, and reductions in the expression of tenascin-C or numbers of SCX+ cells 

(Schiele, Marturano et al. 2013).  In the absence of muscle, early tendon progenitor 

distribution and tenogenic induction is not inhibited in the developing avian limb, 

however further progress is retarded at the development and maturation stages and 

primitive tendons degenerate (Kardon 1998).    For the developing axial tendon there is 

no muscle-independent stage documented (Brown, Finley et al. 2014).  Whether this 

muscle dependence is derived from mechanical cues, soluble factors from muscle, or a 

combination of both, still requires further study (Schiele, Marturano et al. 2013).    

Summary 

The induction of tendon development does not occur in isolation and requires 

coordinated interactions including muscle and cartilage.  Key regulators of tendon 

development included SCX, MKX and SOX9.  Any consideration of the development 

of tendon regeneration strategies should also consider an integrated understanding of 

musculoskeletal development.    

1.7.4: Defining cartilage and tendon progenitors   

Cartilage and tendon progenitors in the limb have been defined principally by the 

differential expression of the key regulators SOX9 and SCX respectively. This assertion 

that scleraxis-positive cells alone form tendons in the limb bud has been based upon the 

continued expression of SCX rather than the absolute tracing of SCX-positive cells 
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from common progenitors to functional tissue. In early mouse studies the close 

temporal and spatial relationship of SCX and SOX9 was found in mesenchymal 

progenitor cells; these cells diverged at E11.5 d.p.c. into cells with restricted expression 

to form tendon and cartilage respectively (Asou, Nifuji et al. 2002).  

More recent studies, however, suggest that cell-fate determination on the basis of 

categorical expression of either SCX or SOX9 is insufficient. Takimoto, et al (2012) 

demonstrated the direct conversion of tenomodulin (TNMD)-expressing tenocytes into 

chondrocytes by the forced expression of SOX9 alone (Takimoto, Oro et al. 2012). 

Further work demonstrated that tenocytes are derived from both SCX+/SOX9+ and 

SCX+/SOX9- cells; the proportion of the former expression profile increased the closer 

the tenocytes came to the nascent cartilage (Sugimoto, Takimoto et al. 2013).  

Conditional inactivation of SOX9 in SCX+/SOX9+ resulted in the defective formation 

of the junction between tendon and cartilage.  The role of a specialist population of 

SCX+/SOX9+ in forming the enthesis, the junction between bone and tendon, has also 

been demonstrated (Blitz, Sharir et al. 2013).    In lineage tracing studies SOX9+ cells 

were indicative of precursors for articular and growth plate cartilage, in addition to 

ligament and tendon (Soeda, Deng et al. 2010).  The results from this study, suggested 

the authors, were consistent with part of the nascent tendon cells arising from a 

contribution by SOX9+ cells of the condensed mesenchymal cells of the cartilage 

primordia.   

Summary   

Recent evidence points toward specialist sub-populations of tendon and cartilage 

progenitors that enable formation of transitional zones between developing tissue, 

furthermore, it is clear that chondrogenic cells make some contribution to the 

developing tendon.  An understanding of the common origin and intimate spatial 
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development of cartilage, tendon, and muscle is valuable to the development of 

organotypic models and bioengineered tissue.     

1.7.5: Musculoskeletal disease: population impact 

Disorders of the musculoskeletal system are highly prevalent comorbidities of aging 

populations in contemporary society (Siebens 2007, van Dijk, Veenhof et al. 2008).  

Debilitating in their own right musculoskeletal disorders contribute significantly to the 

global burden of disease, the fourth most prevalent (Murray, Vos et al. 2012), have a 

wider impact on rehabilitation of parallel pathologies (obesity, strokes, cardiovascular 

disease) and so represent a major health policy issue.  Despite this population impact 

musculoskeletal research and clinical trials are not necessarily proportionately funded or 

investigated (Bourne, Whittle et al. 2014, Rankin, Sprowson et al. 2014).  Medical 

interventions aimed at management of musculoskeletal tissues vary from physiotherapy, 

arthroscopy, anti-inflammatories, immunomodulation and numerous ‘regenerative’ 

therapies, how there is no treatment for conditions such as osteoarthritis.  The basis for 

complex musculoskeletal diseases, such as osteoarthritis, is multifactorial.  Although 

heritable factors account for 50% of an individual’s risk of developing osteoarthritis 

only 16 disease risk loci have been consistently identified (Panoutsopoulou and Zeggini 

2013).  

1.7.6: Cartilage Disease Pathogenesis 

 

“If we consult the standard Chirurgical Writers from 
Hippocrates down to the present Age, we shall find that 
ulcerated Cartilage is universally allowed to be a very 
troublesome Disease…and that, when destroyed, it is never 
recovered.” (Hunter 1743) 
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This statement, above, by the 18th century surgeon William Hunter was prescient in its 

forecasting.  Over 250 years later the therapeutic strategies available to treat 

osteoarthritis (OA) range from benign neglect and anti-inflammatories to total joint 

replacement.  As discussed earlier the inherent capacity of cartilage to respond to injury 

is limited.  Globally, osteoarthritis of the hip and knee joints is one of the leading causes 

of disability and a highly prevalent comorbidity of the ageing society alongside Type II 

diabetes and neurological conditions.  Of the 291 conditions surveyed in the Global 

Burden of Disease Study (2010) hip and knee OA ranked as the 11th highest contributor 

to disability (Cross, Smith et al. 2014), accounting for 6.8% of the total disease burden 

(Murray, Vos et al. 2012).  Adjusted for age, the global prevalence of osteoarthritis was 

3.8% and 0.85% for the knee and hip respectively (Cross, Smith et al. 2014).  This places 

musculoskeletal disorders high on the ranking of major health policy issues, however, 

funding levels and research activity globally lag behind other fields (Bourne, Whittle et al. 

2014, Rankin, Sprowson et al. 2014) 

Osteoarthritis cannot be considered a single disease with a linear narrative to describe 

the pathogenesis, rather it is a heterogenous condition with multiple causation, where 

joint failure represents the common end-point (Cicuttini and Wluka 2014).  Where the 

adage ‘abnormal wear on normal cartilage; normal wear on abnormal cartilage’ is a useful 

lay description of the pathogenesis in reality there are a myriad of risk factors 

contributing to chondral damage.  It is beyond the scope of this review to cover the 

plethora of disorders arising from, and associated with, degenerative and inflammatory 

conditions of cartilage.  In Chapter 5 a review of recent studies of the genetic 

associations with osteoarthritis will be presented.  
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Cartilage degeneration: balance of anabolic and catabolic process  

The chondrocyte is solely responsible for the turnover of cartilage ECM, however, 

articular chondrocytes are post-mitotic in the adult and turn-over is very slow – 

chondrocytes therefore regulate the synthesis and degradation of ECM molecules 

through the fine balance of catabolic (matrix metalloproteinases, aggrecanases, IL-6) and 

anabolic (IGF-1, BMP, TGF-β, TIMPs, PDGF) components (Demoor, Ollitrault et al. 

2014).  Degeneration of cartilage in OA is defined by the degradation of the ECM by a 

variety of catabolic enzymes including matrix metalloproteinases (MMPs) and 

aggrecanases in response to elevated levels of interleukin-1β (IL-1β) or tumour necrosis 

factor-α (TNF-α).  These pro-inflammatory factors establish an intra-articular and intra-

cellular milieu that disrupts the narrow homeostatic range chondrocytes try to preserve 

(Demoor, Ollitrault et al. 2014).  This establishes chondrocyte dedifferentiation, the loss 

of the functional phenotypic hallmarks, through the elevated expression of type I 

collagen (Young, Smith et al. 2005).   

1.7.7: Tendon disorders  

Within the Global Burden of Disease 2010 study disorders relating to tendon were 

considered within ‘other musculoskeletal disorders’ as sequelae to injury of tendon and 

ligaments are not often part of long-term data capture (Smith, Hoy et al. 2014).  As this 

analysis also included a variety of rheumatoid and musculoskeletal conditions an 

accurate estimate of the burden of disease attributable to tendon and ligament injury is 

not possible.  If the incidence of acute trauma alone is considered 130,000 patient per 

annum are presented in the USA with injuries related to the Achilles tendon, rotator 

cuff of the shoulder, or patellar tendon (Sakabe and Sakai 2011); elsewhere a total 

incidence for tendon-associated injuries of 52.1 – 166.6/100,000 per year, for men and 

women respectively, has been reported  (Clayton and Court-Brown 2008).  It is evident 
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that a lack of contemporary epidemiological data is available to represent the true 

incidence of tendon and ligament associated disorders.     

Tendon healing 

The sub-optimal mechanical integrity of the repaired tendon is a key issue in the return 

to athletic function.  In the acute injury scenario healing of tendon may be organized 

into distinct phases, which in total may require several months before normal 

physiological loading may be introduced.  Immediately following trauma, bleeding and 

clotting in the tendon defines the ‘haemorrhagic state’.  Initial platelet degranulation, 

releasing cytokines and growth factors, is succeeded by the infiltration of the injury site 

with neutrophils and macrophages.  In the following week a ‘proliferative stage’ 

consisting of the migration and proliferation of extrinsic (peritendinous soft tissue, 

fascia, periosteum) and intrinsic (epitenon, endotenon) cells at the site of injury form a 

delicate granulation tissue comprising mainly type III collagen.  Approximately one 

month after acute injury the ‘formative phase’ consists of the active resorption and 

production of collagen by intrinsic fibroblasts mainly from the epitenon.  As this 

nascent tissue matures there is a gradual reorientation of fibres longitudinally in 

accordance with the prevailing tensional forces.  The ‘remodelling phase’ is defined by 

the return to physiological loading imparted by the maturing tissue reaching maximal 

biomechanical strength.  The collagen fibres become more organized in the longitudinal 

plane, and there is more cross-linking.  The type III collagen from the formative phase 

is slowly replaced by the more mechanically resistant type I collagen, however, this 

healed tendon callus remains hypercellular, with a greater proportion of type III 

collagen fibres relative to the uninjured state and with thinner collagen fibres (Voleti, 

Buckley et al. 2012, Connizzo, Yannascoli et al. 2013, Müller, Todorov et al. 2013).  This 
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failure to recapitulate the native state may account for the high morbidity seen with 

tendon injury.   

Conflict in pathophysiology of tendon disorders  

Tendon disorders encompasses a range of clinical presentations from acute rupture to 

chronic degenerative tendinopathy.  Strain-induced injury in energy-storing tendons (e.g. 

Achilles and patellar tendons) is the most common form of tendon injury in athletic 

humans.  Unlike positional tendons, energy-storing tendons serve to transmit forces 

generated by muscles and store elastic energy as a mechanism for the conservation of 

energy (Thorpe, Udeze et al. 2012).  Both age and level of athleticism have a strong 

association with the incidence of strain-induced tendinopathies (Smith, Birch et al. 

2002).  The underlying pathophysiological mechanism has been subject to some debate 

– the historical definition of tendon damage resulting from an inflammatory process 

alone (‘tendinitis’) gave way to the degenerative model (‘tendinopathy’) following 

evidence of a dearth of inflammatory cells in damaged tendons (Järvinen, Józsa et al. 

1997, Riley 2008) and became the prevailing paradigm for chronic tendon injury (Rees, 

Stride et al. 2014). Understanding of the model is complicated by the rise in 

inflammatory mediators (e.g. IL-6) (Andersen, Pingel et al. 2011) and promotion of 

collagen synthesis in the peritendinous region in response to physiological mechanical 

loading and evidence of very low rates of tendon remodeling (Kjaer, Bayer et al. 2013).   

Recent evidence has revisited inflammation as a contributing factor to the cumulative 

damage model or vascular insufficiency model associated with tendinopathy, however 

there is still a lack of clarity.  In paired samples from normal and painful Achilles tendon 

Pingel et al (2013) found that expression of inflammatory markers were significantly 

lower in tendinopathic regions as compared to healthy tendon after acute exercise 

(Pingel, Fredberg et al. 2013).  Evidence from rat upper-extremity overuse models, in 
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contrast, demonstrated higher expression of pro-inflammatory serum cytokines and 

greater inflammatory changes (macrophages and CCN2/CTGF+ fibroblasts) within the 

supraspinatus tendon of aged rats compared to young controls (Kietrys, Barr-Gillespie 

et al. 2012).  The same group, using a high repetition/low force model, demonstrated 

inflammatory changes within the forearm long flexor digitorum with elevated serum and 

tissue levels of TNF-alpha and IL-6, in addition to elevated serum levels of fibrogenic 

proteins, TGF-β1, CCN2/CTGF, PDGF-BB AND PDGF-AB (Gao, Fisher et al. 

2013).  Considering loss of function in the tendon may require reconsidering active 

infiltration of inflammatory cells into the tissue resembling the current understanding in 

osteoarthritis (Rees, Stride et al. 2014).   

Summary 

In summary, cartilage and tendon share a limited capacity to respond to injury with 

repair failing to reach functional equivalence with the uninjured state.  Morbidity 

associated with musculoskeletal disease is significant, but knowledge of the true 

incidence of chronic, degenerative disorders of cartilage and tendon may be 

underestimated.  Furthermore, time scales for development of clinical signs are often 

protracted complicating an understanding of the pathophysiology; in tendon 

pathophysiology of injury is not clear with degenerative and inflammatory components 

described.  Factors such as IL-6 appear to contribute to both de- and re-generative 

phenotypes.  The following section considers the current therapeutic approaches and 

organotypic culture models for both cartilage and tendon.   
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1.8: Repair & Regeneration 
 

1.8.1: Tissue engineering  

Tissue-engineering and regenerative medicine (TERM) seeks to develop and synthesise 

functional replacements for diseased and damaged tissue in a physiologically relevant 

way often by the differentiation of progenitor cells.  Tissues are complex, comprising 

multiple cells types, which may include luminal interfaces (lung), vascular and nervous 

tissue components, they are often multi-functional (liver), and have specialist 

biomechanical properties (cartilage, tendon).  Replacement is also confounded by the 

underlying pathophysiology.  Additionally, the use of synthetic biomaterials and 

biologically active factors are often also elements of bioengineered tissue (Atala, Kasper 

et al. 2012).  Tissue complexity, therefore, requires a comparable level of complexity in 

tissue-engineering strategies.  The goals and philosophies of systems biology are well-

placed to inform TERM through the modeling of cell signalling and behavioural 

phenotypes (Cosgrove, Griffith et al. 2008) especially as regenerative strategies often 

aim to recapitulate dynamic processes, e.g. tissue morphogenesis.  It is proposed that 

systems biology approaches (data integration, data mining, machine learning, network 

algorithms, pathway analysis) using multi-level data sources (transcriptomics, 

proteomics, functional annotations, and interaction networks) can facilitate the 

development of predictive models for bioengineered tissues to inform and refine these 

systems (Rajagopalan, Kasif et al. 2013).  Systems biology tools are applied in this thesis 

to explore novel approaches to inform TERM.    

Organotypic culture systems 

Tissue-specific environments are preserved contexts that confer function through 

biophysical, biochemical and biological signals.  Homeostasis and morphogenesis entail 
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dynamic dialogues between multiple cell types responding to cues coded in various 

forms on multiple hierarchical levels and within temporal and spatial scales of several 

orders of magnitude (Johnson, Leight et al. 2007). The restitution of tissue function ex 

vivo has been a common goal for biologists that has led to the development of diverse 

methods referred to as ‘three-dimensional’, ‘organotypic’, or ‘organoid’ culture (Shamir 

and Ewald 2014).  Organotypic cultures represent a sub-discipline of TERM and use 

bioengineering techniques to develop biomimetic environments for in vitro tissue models 

for research pursuits.   

Physiological relevance of in vitro culture 

Two dimensional, monolayer, in vitro culture systems have been a standard tool for 

biologists for over a century (Harrison, Greenman et al. 1907) facilitating manipulation 

of live cells ex vivo.  Contemporaries of Harrison (1902), the histologists Golgi and 

Ramon y Cajal, were awarded the Nobel Prize in Physiology and Medicine for their 

images of neural structures (De Carlos and Borrell 2007, Musumeci 2014).  Their 

drawings and histological images were considered representative of neural tissue 

organization in two-dimensions; these drawing alone were more complex renderings of 

the in vivo environment than monolayer culture. Although the simplicity of the 

monolayer system has aided reductionist biology it is self-evident that monolayer 

cultures in no way adequately recapitulate complex three-dimensional tissue architecture 

or the developmental or homeostatic conditions within which cells function (Baker and 

Chen 2012).  Yet monolayer culture is still the basis of most in vitro work in cartilage and 

tendon biology.    

Conventional in vitro studies grossly underestimate the complexity of the native 

environment by growing heterogenous cell populations on tissue culture plastics, under 

hyperoxic conditions, non-physiological concentrations of bio-active factors, and devoid 
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of mechanical stimulation.  Promotion of a proliferative profile and metabolic 

alterations compound phenotypic drift and senescence - as such, given the clear 

inadequacies of traditional methods, the question has been posed by Spanoudes, et al 

(2014), as to how much longer ‘physiologically irrelevant’ culture systems may be 

employed (Spanoudes, Gaspar et al. 2014).   

Summary 

The ultimate objective of in vitro tissue engineering, and so also organotypic cultures, is 

to comprehensively, consistently and consummately replicate the in vivo environment in 

surrogate tissue cultures, in a physiologically relevant manner.  Additionally, they serve 

as an opportunity to integrate disease models with rational therapeutic design in a 

dynamic setting. In reality, recreating the complex relationships in part, through a 

simple, cost-effective and reproducible model that does not compromise cellular 

behavior, would suffice (Johnson, Leight et al. 2007).  

1.8.2: Obstacles to development of organotypic cultures 

Progress in the development of organotypic cultures is related to difficulties in 

replicating the three-dimensional structures (e.g. highly axial structure in tendon), 

ensuring the major constituents and cell populations are in correct ratios, and harvesting 

sufficient number of cells for autologous therapies.  The general approaches to 

qualifying the progress from novel interventions in organotypic cultures and 

regenerative therapies has been histological and biomechanical properties and targeted, 

yet limited, gene and protein profiling.  

For clinically relevant cell-based therapies to be attained they require an integrated 

approach to prevent transdifferentiation of cells (towards an alternative cell phenotype) 

and commitment of the cell population to a stable, functional phenotype.  This would 
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require a concerted interaction of biophysical (topographical and mechanical contexts), 

biochemical environment cues (oxygen tension, pH, metabolic precursors) and dynamic 

biological signals (growth factors, cytokines, and co-cultures) with relevant temporal 

relationships and kinetics (Spanoudes, Gaspar et al. 2014).  As mentioned earlier in this 

section systems biology techniques are especially suited to this problem of complexity 

and integration.  

Spanoudes, et al (2014) cite a number of obstacles to the development of adequate 

organotypic culture models for tendon, although they have more general application to 

cartilage models too: a) a lack of standardised and commercially available products (e.g. 

fabricated scaffolds, bioreactor systems); b) a lack of protein and gene analysis tools of 

sufficient depth and common potential; c) little collaborative and inter-disciplinary 

analysis; d) continued use of mono-dimensional culture systems (Spanoudes, Gaspar et 

al. 2014).  Further, the authors describe that extrapolating definitive conclusions across 

studies is prohibited by an ad hoc approach to interventions (such as surface topology), a 

lack of agreement on differentiation markers and standardised read-outs (morphology, 

gene and protein expression), or uniform transparency of cell sourcing, harvesting and 

culture methods. In a review by Johnson, et al (2007), the authors note that many three-

dimensional culture systems incorporate multiple modifications simultaneously, often 

crudely defining the ECM components (Johnson, Leight et al. 2007).  This highlights 

the requirement for a clear understanding of simple organotypic systems rather than the 

development of increasingly more complex bio-engineered tissues.    

1.8.3: Repairing musculoskeletal tissues 

Intrinsically there is little scope for regeneration following injury, with insidious 

remodelling and matrix degradation prevailing (Steinert, Ghivizzani et al. 2007). 

Perturbations to matrix homeostasis are likely to be an early event in the onset of 
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osteoarthritis (Heinegard and Saxne 2011), however, pathogenesis and genetic 

predispositions are still subject to much discussion (Berenbaum 2013, Felson 2013, 

Reynard and Loughlin 2013). Tendon, for which there is a dearth of data, has similarly 

poor reparative responses for comparable reasons (Kannus 2000, Liu, Aschbacher-

Smith et al. 2011, Young 2012).   Medical interventions for the facilitation of healing 

and regeneration of cartilage and tendon, such as autologous cartilage implantation, or 

the use of bone-marrow or adipose-derived mesenchymal stem cells, to treat tendon 

injury inherently rely on the expansion of cells in monolayer culture prior to 

implantation.  These early interventions often had little or no validation in terms of the 

alterations that such a considerable change in environment has had on the global 

synthetic profile of these cells (Demoor, Maneix et al. 2012).  

Stem and progenitor cells  

Although not the focus of this thesis considerable reference is made to stem/progenitor 

cells in the context of tissue engineering and regenerative therapies and so these will be 

reviewed in brief.   

Stem cells are an autonomous population of self-renewing (clonogenic) cells with the 

capacity to differentiate into multiple tissue lineages in response to biological cues.  To 

understand the motivation of cellular regenerative strategies in musculoskeletal biology 

the most recent developments in stem cell research should be considered.  These cells 

hold particular value as they may be autologous and side-step the contentious use of 

embryonic-derived cells.   

It is widely accepted that a progenitor cell population, variably termed ‘adult-somatic 

stem cells’ or ‘tissue stem cells’, exist within variable niches in adult tissue (Fuchs and 

Horsley 2011).  Niches represent highly specialized environments that facilitate the 
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balance between self-renewal and differentiation (Moore and Lemischka 2006).  These 

cells are distinct from embryonic or induced pluripotent cells in that they have a 

reduced capacity to differentiate into different tissue lineages.  It is striking that 

progenitor cells from mesenchymal tissues (adipose, muscle, cartilage, bone) are shown 

reduced efficiency for multi-lineage differentiation as compared to their capacity to 

differentiate towards their tissue of origin (Pizzute, Lynch et al. 2015).  This suggests 

that progenitor cells derived from adult tissue have an inherently constrained plasticity, 

likely to be epigenetically regulated.  

Progenitor cells are often identified by a myriad of cell surface markers (CD90/THY1, 

CD166, SSEA-4, D146) or by gene expression (Oct4, Nanog, Ktf4), however, there is 

considerable transcriptomic and proteomic heterogeneity between studies and tissue 

sources and expression is not stable in vitro (Lv, Tuan et al. 2014).   

Musculoskeletal progenitor cells  

As presented in section 1.7.4 cartilage and tendon progenitors in the embryonic 

developing limb have been shown to express SCX and SOX9 in various combinations 

associated with anatomical location.  This does not, however, reflect the variety of 

markers in recent studies defining musculoskeletal progenitors.  Recently embryonic 

osteochondroreticular stem cells have been identified, by BMP-antagonist Grem1 

expression, that retain the capacity to differentiate into bone, cartilage and synovial cell 

phenotypes (Worthley, Churchill et al. 2015).  In cartilage research attention has also 

focused on migratory progenitor cells (Koelling, Kruegel et al. 2009).  In Schminke and 

Miosge (2014) chondrogenic progenitor cells with a migratory phenotype, under the 

influence of SOX9 and RUNX2, were shown to express stem cell surface markers 

(CD105, CD73, Stro-1) (Schminke and Miosge 2014), however this study mainly 

demonstrated cells with a fibroblastic phenotype arising from tissue explants in vitro.  
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Although transcriptome analysis by microarray has been undertaken for these cell 

populations there has been no comparison with normal tissue or other culture 

phenotypes.  Consequently, although potential sub-populations of progenitor cells have 

been defined in contemporary studies they still lead by assertion with populations 

defined by expression of a limited panel of markers and with no comparison to in vitro 

phenotypes.  In this thesis baseline gene and protein expression surveys serve to inform 

researchers of the synthetic profile of chondrocytes and tenocytes in different 

environments.          

Musculoskeletal tissue regeneration strategies  

Three principal strategies have been proposed to pursue regenerative potential in 

mammals: i) stem cell transplantation (physical implantation of cells), ii) cells seeding 

and embedding into scaffolds, iii) dedifferentiation of terminally differentiated cells 

(Odelberg 2002, Cai, Fu et al. 2007, Maden 2013).  The latter has been largely 

overlooked as a reparative approach in cartilage and tendon and is this is addressed in 

this thesis, Chapter 2.   A brief overview of alternative strategies for cartilage and 

tendon repair is provided below.   

Cartilage repair: autologous cartilage implantation 

Therapeutic interventions in OA range from arthroscopic interventions, such as micro-

fracture and autologous chondrocyte implantation (ACI), scaffold-based and scaffold-

free techniques (Makris, Gomoll et al. 2015) to total joint replacement. ACI requires the 

harvesting of normal, healthy cartilage from non-load-bearing hyaline cartilage of 

diseased joints to be implanted into early chondral lesions following expansion of 

isolated cells in monolayer culture (Brittberg, Lindahl et al. 1994).  As will be discussed 

further in Chapter 2 this deprives the resident cells of the complex three-dimensional 

environment and induces a state of dedifferentiation, in part mimicking aspects of 
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osteoarthritis (Demoor, Ollitrault et al. 2014).  Consequently, the treated chondral defect 

heals as fibrocartilage.  Three separate systematic Cochrane reviews (2002–2010) of ACI 

in the knee concluded that despite increasing and widespread use of the technique there 

was insufficient evidence to draw conclusions on the clinical impact (Wasiak and 

Villanueva 2002, Wasiak, Clar et al. 2006, Vasiliadis and Wasiak 2010). Central to this 

methodology is the assumption that the implanted chondrocytes retain functionality, are 

a homogenous population, are not senescent and will be viable when transferred from a 

hyperoxic culture environment into the hypoxic joint environment.  

1.8.4: Parallels in tendon healing and development 

The temporal expression of growth factors, cell proliferation, migration and ECM 

production in tendon healing parallels that of embryonic tendon development; as such, 

some strategies for tendon regeneration have focused on harnessing these similarities  

(Connizzo, Yannascoli et al. 2013).  Cytokine modulators of tendon healing include: 

basic FGF, TGF-β, PDGF, BMP family members, IGF and VEGF (Müller, Todorov et 

al. 2013).    

Methods for tendon repair and regeneration  

Excluding direct surgical intervention, anti-inflammatory and rehabilitative therapies 

(shock-wave therapy, therapeutic ultrasound) there are three principal, although not 

mutually exclusive, strategies being employed and researched to promote tendon healing.  

First, regenerative strategies based upon the application of soluble cues to facilitate 

tenogenic differentiation; second, tissue engineering techniques, incorporating 

mechanical cues and environmental factors into the development of replacement tissue; 

thirdly, cell-based therapies (Ho, Sawadkar et al. 2014).  
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To develop organo-typic structures the complex architecture of tendons would have to 

be recreated.  Principle amongst these would be: a) alignment of collagen fibres and 

fascicular structure; b) transitional properties, e.g. proteoglycan content, mineralization 

and collagen type that would be found at the myotendinous junction, bone insertion sites 

and areas of compression; c) the degree of collagen cross-linking, and d) the collagen 

fibre crimp pattern (Connizzo, Yannascoli et al. 2013).  In injuries such as anterior 

cruciate ligament rupture and rotator cuff injury there often little in the way of useful 

healthy tissue available for repair (Müller, Todorov et al. 2013) further complicating 

repair strategies.  

Soluble factors 

Understanding of the role of these soluble factors in development and healing have led 

to the use of autologous sources of growth factors, usually in the form of platelet-rich 

plasma (PRP); the alpha granules of platelets contain many of the growth factors and 

cytokines listed earlier.  Despite the attractive nature of an autologous source of growth 

factors, and their gaining popularity, the evidence for early intervention with PRP is not 

convincing. A recent well-controlled study (Kaniki, Willits et al. 2014) and systematic 

review (de Vos, van Veldhoven et al. 2010) have failed to demonstrate a clear benefit for 

the use of PRP in acute tendon injury or chronic tendinopathy. Another key growth 

factor undergoing active research for tendon and ligament repair is platelet-derived 

growth factor BB (PDGF-BB) (Thomopoulos, Das et al. 2009, Shah, Bendele et al. 

2013) with which there is some evidence for improved functional repair over PRP or 

corticosteroids (Solchaga, Bendele et al. 2014).  The relevance of PDGF BB to 

differentiation of tenocytes is considered further in Chapter 7.     
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Cell-therapies  

A variety of cell sources have been used for cell replacement therapy studies including, 

bone-marrow or adipose-derived MSCs and autologous fibroblasts/tenocytes (Ho, 

Sawadkar et al. 2014).  Tendon-derived stem cells (Bi, Ehirchiou et al. 2007) may be an 

alternative source of autologous cells for tendon repair (Lui and Chan 2011).  The 

definition of the differentiated status of tenocytes varies between studies.  Many studies 

considering the development of regenerative tendon models use a narrow definition of 

tendon differentiated status, for example, the expression of type-I collagen, and/or the 

expression of the differentiation marker TNMD. For example, Tan, et al (2014) recently 

reported improved repair of a window injury model of the rat patellar tendon using 

SCX-transduced tendon-derived stem cells (Tan, Lui et al. 2014).  Using a fibrin scaffold 

containing a high density of late-passage cells fibrin constructs were placed into the 

injured patellar window.  The authors report improved histological scoring and repair, 

higher expression of COL1A1 by immunohistochemistry (IHC), and higher levels of 

expression of tenogenic markers by qPCR.  Changes between the controls and 

transduced constructs, however, appeared equivocal by eight weeks post-implant.  In 

Chapters 2 and 3 the synthetic profiles of tenocytes in fibrin cultures are defined.  

Scaffolds  

Artificial scaffolds have been a focus of keen research and strong commercialization.  

Scaffolds attempt to provide a microenvironment that may support damaged tissue 

biomechanically and stimulate cell proliferation and growth.  As host tendon is often 

damaged, tendon allografts and xenografts have found popularity for the repair of large 

tendon and ligament defects.  These may be biological, decellularised extra-cellular 

matrices derived from animal or human connective tissue (e.g. porcine small intestinal 

submucosa), or synthetic, chemically-derived products (e.g. polyester, polypropylene). 
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Additionally, most studies concerning commercial products are retrospective or small 

case studies, limiting any insight into the benefits of these products (Chen, Xu et al. 

2009).   

Summary 

The plethora of regenerative interventions that have developed for cartilage and tendon 

repair suggest that few have been universally successful.  Systematic evaluation of the 

interactions between cells, biomaterials, bio-active factors and other environmental 

variables is required.  This development of standardised biomimetic culture systems 

would aid the validation of developments in tissue engineering.   

1.8.5: Musculoskeletal organotypic/three-dimensional models 

The provision of normal human tissue for musculoskeletal research is often a limiting 

factor for achieving adequately powered studies. Standardised organotypic, three-

dimensional culture systems would ideally limit the requirement of healthy tissue, or in 

vivo models, for predictive and prognostic assays, and preclinical therapeutic testing for 

genome editing and therapeutics.  The approach to three-dimensional culture 

development for musculoskeletal tissues has often followed a deconstructed approach, 

i.e. considering one tissue in isolation or using one mechanism (mechanical or biological 

cues) to optimize a system. Pertinent research relating to two common in vitro models 

for cartilage and tendon, the focus in this thesis, is outlined below.   

Alginate-Encapsulated chondrocyte cultures 

Alginate-encapsulated chondrocytes have been widely used as a three-dimensional 

culture system for the re-differentiation of monolayer-expanded chondrocytes, Figure 

1.1.  Alginic acid is a naturally occurring polysaccharide derived from seaweed and is 

especially attractive for tissue engineering as it is considered to have excellent 
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biocompatibility (it is an Food and Drug Administration (FDA)-approved polymer), 

may be processed in a number of ways, may be utilized for drug or cell delivery and may 

be modified chemically and physically to reflect the application (Sun and Tan 2013).   

Benya and Schaffer (1982) described the use of agarose, another polysaccharide 

polymer, to promote a chondrogenic synthetic profile from dedifferentiated 

chondrocytes (Benya and Shaffer 1982).  Transfer to agarose suspension cultures from 

monolayer and a reversion to the differentiated phenotype initially resulted in reduced 

rates of collagen, proteoglycan, DNA and protein synthesis, with approximately 80% of 

cells surviving the transition.  Although DNA and protein synthesis did not reach the 

levels at culture initiation proteoglycan and collagen synthesis (with α1(II)-chains 

showing elevated levels within two days of culture) increase significantly over a period 

of 14 days.  

Almqvist et al (2001) reported that chondrocytes proliferate in alginate cultures by 

showing out-growth of collagen type II-positive cells into a cell-free fibrin gel 

surrounding the alginate beads and pronounced increases in DNA and aggrecan 

synthesis (Almqvist, Wang et al. 2001). However, other reports contradict the 

proliferative capacity of chondrocytes in alginate: Müller, et al (2008) found introduction 

to alginate cultures retarded proliferative activity relative to monolayer, but also that a 

small, rapidly proliferating cell population was present after eight days in culture (Müller, 

John et al. 2008). Extended population doubling times relative to monolayer have also 

been presented elsewhere (Baghaban Eslaminejad, Taghiyar et al. 2009).  Jonitz, et al 

(2011) found that dedifferentiated chondrocytes in unstimulated alginate cultures 

showed a significant reduction in DNA synthesis over 35 days in culture relative to 

alginate cultures in pro-chondrogenic media containing TGF-β1 and IGF-1 (Jonitz, 

Lochner et al. 2011).  Notably, this study demonstrated the increased expression of 
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MSC-associated cell-surface markers (CD104, CD44, CD166 and CD29) in monolayer-

expanded chondrocytes.  A stimulation of re-differentiation by TGF-β1 was also shown 

in a study considering the effect of different sources of chondrocytes.  Relative to ear 

and nose chondrocytes, or BM-MSCs, articular chondrocytes demonstrated the highest 

chondrogenic potential in alginate cultures, but this was not reproduced in vivo 

(Pleumeekers, Nimeskern et al. 2014). Hypoxia has been demonstrated to improve the 

redifferentiation capacity of bovine articular chondrocytes in alginate cultures with a 5% 

oxygen tension showing elevated collagen type II production by Western blot (Domm, 

Schünke et al. 2002).  These studies are difficult to compare with a range of seeding 

densities used (5x105 – 5x106/mL), culture durations (7 days-2 months), varying oxygen 

tensions (5-21%), chondrocyte sources (articular, nasal septum, OA-derived) and the 

extent of dedifferentiation (period in monolayer culture) is not standardised.   

Notably, the synthetic profiles considered in the aforementioned studies have been 

limited.  In general expression of collagen type II and aggrecan are considered, in 

addition to the production of GAGs. More recent studies have included more diverse 

consideration of synthetic profiles. Caron, et al (2012) established in a study comparing 

human articular chondrocytes (HACS) in high-density monolayer culture to alginate 

bead or pellet cultures, that three-dimensional (3D) cultures resulted in higher 

expression of Col2a1 and Acan as expected, but also Sox9 (especially in alginate beads) 

(Caron, Emans et al. 2012).  Notably, protein levels of COL2A1 and SOX9 were not 

significantly different between 2D and 3D culture systems by quantitative immunoblots.  

Hypertrophic synthetic profiles, characterised by the higher expression of alkaline 

phosphatase, MMP13, COL10A1 and RUNX2, were associated with monolayer 

chondrocytes after 7 days in the same differentiation media.   Furthermore, 3D cultures 
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did not support cell proliferation to the same extent as monolayer culture, as defined by 

DNA synthesis.     

Tensional fibrin constructs associated with embryonic-like fibrillogenesis  

The presence of tension-dependent actin-rich fibripositors in embryonic chick tendon 

cells were found in an in vitro three-dimensional cell culture model (Kapacee, 

Richardson et al. 2008).  In this model embryonic tenocytes were seeded into fibrin gels 

held in culture wells, Figure 1.1.  Two anchor points, consisting of suture material 

secured in the wells by minutien pins, served to provide tension across the self-

contracting culture and allowed the formation of linear, tendon-like constructs.   Further 

work by Bayer, et al (2010) found that mature human tendon fibroblasts were able to 

recapitulate embryonic fibrillogenesis, using the same culture model, as defined by the 

presence of membrane-enclosed fibrils in fibripositors (Bayer, Yeung et al. 2010).  The 

authors concluded that mature tendon fibroblasts retained an intrinsic capacity for 

embryonic collagen fibril formation when cultured under tension, however, monolayer 

expansion of harvested cells up to passage five may have influenced the differentiation 

state of the mature cells.  Similarly, mesenchymal stromal cells in comparable fibrin-

constructs exhibited collagen fibril-containing fibripositors and the higher expression of 

phosphorylated SMAD2 under the influence of TGF-β signalling (Kapacee, Yeung et al. 

2010).  
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1.8.6: Summary statements 

For both tissue engineering and organotypic culture systems the ultimate aim is the 

development of physiologically relevant and/or functionally equivalent proxies for the 

tissue under investigation/repair.  Without validated in vitro organotypic models it is not 

possible to translate developments in regenerative medicine from the laboratory to the 

clinic in an expedient manner.  Furthermore, incremental advances in the biochemical 

and biomechanical properties of in vitro systems are not made with respect to a 

standardised baseline system or ‘worst model’, rather on an individual laboratory basis.  

In addition, the rapid development of complex combinations of progenitor cells, 

biomaterials, and bio-active compounds needs to be considered with respect to the 

Figure 1.1:  Three-dimensional culture systems are proposed to better replicate the 
native environment than two-dimensional monolayer culture.  Two standard techniques 
are represented: A) chondrocytes suspended in alginate beads; B) linear tendon 
construct (arrow) suspended between two pieces of  suture material pinned to base of  
six-well plate.   

A B 
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regulatory framework for safety and efficacy in the translation of engineered tissue into 

humans (Atala, Kasper et al. 2012).  The blind-pursuit of increasingly complex 

structures may ignore simple solutions, i.e. increasing complexity of a bio-engineered 

model does not mean that it is functionally more stable.  At present organotypic models 

have been insufficiently described in terms of their transcriptomic and proteomic 

profiles, let alone bio-engineered tissue.    

1.9: Closing statements 
 

1.9.1: Project motivation 

Cartilage and tendon repair strategies often have equivocal evidence for their 

application, with in vitro models and novel experimental interventions defined by a 

limited array of established gene expression markers or qualitative end-points.  There is 

a need for concerted community efforts to standardise methodologies, culture systems, 

interrogate global gene and protein expression, and establish common functional end-

points.   

Understanding of regulatory networks involved in cartilage and tendon morphogenesis, 

homeostasis, pathology and regeneration is largely incomplete and limits attempts to 

develop comprehensive systems models.  Deconstructed, ‘bottom-up’ approaches to 

defining these are limited in scope and potential and so integrated, holistic approaches 

are required if rational in vitro models or regenerative therapies are to be developed.  The 

common origins, structural components, integrated development, and functionality of 

cartilage and tendon should be considered when organotypic systems are developed.  

Establishing regulatory networks, through gene expression and protein abundance 
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profiling, which may influence the differentiation status of both cartilage and tendon 

would provide an evidence-based rational for developments in tissue engineering.   

A systems biology approach lends itself to this ‘top-down’ integration of multi-level data 

and this thesis employs such a methodology to define inform future tissue engineering 

strategies through the exploration of organotypic, three-dimensional culture systems. 

The genome may be considered a database of coded functions rather than a formal 

program for life.  This database of functions or subroutines (proliferation, apoptosis, 

etc) may be accessed in a cell-autonomous manner as required and used many times 

over (Bard 2013).  Whilst some of these subroutines are well-described de- and re-

differentiation in the adult mammalian cell have received little attention.    The potential 

for dedifferentiation as a regenerative mechanism has been alluded to in this 

introduction.  Using systems biology approaches it is possible to define highly co-

expressed sub-networks of genes with strong phenotypic associations that may reveal 

gene regulatory networks relevant to these processes.     

1.9.2: Project outline 

In this thesis the system under consideration are the major cell populations of cartilage 

tendon (chondrocytes and tenocytes, respectively) and they are described in three 

environmental conditions: native, monolayer (two-dimensional), or three-dimensional 

models, Figure 1.2.  There has been no systematic investigate of the global gene and 

protein profiles of cartilage and tendon in their native state relative to monolayer or 

three-dimensional cultures.  There is no clear mechanistic description of the impact that 

in vitro environmental perturbations have on the system or indeed the adequacy of these 

models as proxies for cartilage and tendon. Monolayer represents the most common in 

vitro model yet there is little evidence for validation of growth of cartilage or tendon cells 

in culture relative to their native tissues or model organotypic cultures.  
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A discovery approach using transcriptomic and proteomic profiling is undertaken in the 

first instance to define a robust and consistent gene and protein profile for each 

condition.  Differentially expressed elements are functionally annotated and pathway 

topology approaches employed to predict major signalling pathways associated with the 

observed phenotype 

Gene-gene co-expression network analysis is being increasingly used and a systems 

biology method to extract molecular networks from multi-dimensional data and 

describe multiple regulatory systems activities. They are also being used to generate 

novel hypotheses about complex disease mechanisms as they are not constrained by 

prior knowledge of molecular biology (Gaiteri, Ding et al. 2014).  This methodology is 

most commonly used to define gene ‘hubs’ with strong disease correlation, which may 

represent putative biomarkers.  However, this technique shows greater potential when 

employed to extract co-expression networks, which represent the underlying descriptors 

of the system and may be used to translate multi-scale data sets into testable predictions.   

In this thesis gene-gene co-expression network analysis is employed for transcriptome 

network decomposition to isolate highly correlated and interconnected gene-sets 

(modules) from gene expression profiles of cartilage and tendon cells in different 

environmental conditions in order to define sub-networks regulating de- and re-

differentiation.  Gene expression data from discovery studies and publically available 

transcriptomic data sets are integrated as part of a weighted gene co-expression network 

analysis (WGCNA).  Comparison of global transcriptome network architecture is 

performed to define the conservation of network modules between a model species (rat) 

and human data.  Finally, initial findings from the integration of gene and protein 

profiles are presented and mechanistic networks derived to described de- and re-

differentiation in chondrocytes and tenocytes.    
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The studies collected in this thesis contribute to a wider understanding of cartilage and 

tendon tissue engineering and organotypic culture development. A clear mechanistic 

understanding of the regulatory networks controlling differentiation of cartilage and 

tendon progenitor cells is required in order to develop improved in vitro models and bio-

engineered tissue that are physiologically relevant.   

1.9.3: Project objectives 

This project was devised and executed with the intention of tackling one aspect of the 

present limitations of tissue engineering for cartilage and tendon, i.e. the dearth of in-

depth transcriptomic and proteomic profiling and integrate data to explore emerging 

relationships that may describe these organotypic systems.  Beyond the generation of 

reference data sets the project aimed to deliver three key objectives: 

• Objective 1: To define dedifferentiation and re-differentiation in terms of 

synthetic profile and mark-out the phenotypic boundaries within which cartilage 

and tendon cells function; 

• Objective 2: Define cross-species responses to homeostatic perturbations in 

cartilage and tendon through integration of gene-expression data from multiple 

gene expression studies;   

• Objective 3:  Integrate gene expression and protein abundance data to 

rationalize validation targets and derive mechanistic networks.  

 



 50 

Cartilage and tendon structure, 
anatomy and physiolog y.  
Regeneration strategies and 
systems biology approaches. 
 
Hypothesis generation 

Cartilage C1: General 
Introduction  

Chondrocytes 
monolayer   

Tenocytes 
monolayer 

Alginate beads Fibrin constructs 

Novel discovery studies 

Transcriptomic 
profiles 

C3: Affymetrix arrays 

C2: Illumina arrays 

C6: Proteomics 

Data analysis  

C4: Co-expression network analysis 

Study objective: Define gene co-expression 
modules with strong phenotypic associations for 
three-dimensional culture systems 

Public repositories 

C8: General 
Discussion  

Tendon 

Conditions 

C5: Co-expression network analysis 

Study objective: Evaluate and compare global 
transcriptome network structures between rat and 
human cartilage and tendon gene expression profiles 

C7: Omics data integration 

Study objective: Explore ‘omics’ data integration 
studies and develop mechanistic networks for de- and 
re-differentiation derived from common upstream 
transcriptional regulators  

Data acquisition  

Study objective:  Collect and collate comprehensive 
reference gene expression profiles for all conditions 
beyond what is available in the literature 

Dedifferentiation  

Native 

Redifferentiation  

Figure 1.2: Overview of  thesis structure by chapter 
(C).  Three conditions are profiled across two tissues 
reflecting the native, monolayer and three-
dimensional models by transcriptomic and 
proteomic approaches.  Novel discovery studies and 
public repository data sets contribute to co-
expression network analysis or omics integration 
analysis.  Major study objectives are outlined with 
regard to the hypotheses outlined in the introduction 
and subsequent chapters.  A general discussion 
unifies findings from all studies.    
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Abstract 
Dedifferentiation, a loss of cellular functionality, is a term with no definitive 

mechanism yet is used to described distinct and diverse biological contexts ranging 

from the histological features of neoplasia to regenerative responses in injury 

models.  Recent evidence also implicates the loss of differentiated status as a 

factor in degenerative and chronic disease.  In chondrocyte biology 

dedifferentiation is a well-recognised sequelae to expansion in monolayer culture.  

Regenerative therapeutics, such as autologous cartilage implantation, by necessity 

require periods of monolayer culture expansion. Consequently, exploration of 

mechanisms, which may contribute to degenerative phenotypes, could help 

elucidate points for therapeutic intervention in conditions such as osteoarthritis.   

Despite considerable efforts to characterise soluble factors and environmental and 

mechanical cues that may actively promote differentiation of permissive cells 

towards a chondrogenic or tenogenic lineage the benchmarks by which progress is 

measured are inconsistent and limited.  To date there is no available reference 

dataset against which progress in organo-typic culture techniques may be 

compared at a global transcriptomic level.  

In this study there gene expression profiles native, monolayer and standard three-

dimensional culture systems using chondrocytes and tenocytes are compared using 

2 :  Convergent  t ranscr ip tomic  
prof i l es  a r i se  f rom the  
ded i f ferent ia t ion  of  car t i l age  
and tendon ce l l s  in  monolayer  
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microarrays providing the first comparative data set of its kind. Results 

demonstrate an inadequate restitution of native tissue expression profiles by 

commonly used three-dimensional culture models. In addition, convergence of 

gene expression profiles in monolayer culture, and the expression of development-

associated genes in these cells, implicates dedifferentiation as a mechanism worthy 

of further investigation or de- and re-generation of musculoskeletal tissues.  In 

particular, the expression of a hind-limb development-associated homeobox gene, 

Pitx1, in monolayer chondrocytes is validated that suggests further investigation of 

homeobox genes in dedifferentiation is warranted.     

2.1: Introduction  
 

2.1.1: Plasticity of terminally differentiated cells 

Convention presents us with the linear narrative of development and 

differentiation of cells from the pluripotent state to the terminal, functional, 

differentiated state in adult tissue.  This trajectory follows binary cell-fate decisions 

implicit in the visual metaphor of Waddington’s epigenetic landscape (Zhou and 

Huang 2011, Ferrell 2012).  It is clear, through the use of somatic cell nuclear 

transfer (Campbell, McWhir et al. 1996) and induced-pluripotent stem cells 

(Takahashi and Yamanaka 2006), that the differentiated state is not an irreversible 

one and adult somatic cells may be phenotypically plastic in certain contexts.  It is 

suggested, however, that the more specialist the cellular function the more difficult 

it is to reverse that differentiated state (Holmberg and Perlmann 2012).  This is 

complemented by the concept of cells residing within an epigenetic landscape 

consisting of kinetic barriers and ‘sinks’ of attraction that ensure differentiated 
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states prevail in the adult (Enver, Pera et al. 2009, Huang 2009, Bhattacharya, 

Zhang et al. 2011).      

Contemporary studies utilise terms such as de-, trans-, and re-differentiation to 

represent alterations in the synthetic profile of adult somatic cells in response to 

injury, ageing or disease (Poss 2010, Jopling, Boue et al. 2011).  The mechanism of 

‘dedifferentiation’, an organised loss of differentiated function, has been 

investigated in multiple novel model species from Hydra to the zebrafish (Danio 

rerio) (Grafi 2004, Sugimoto, Gordon et al. 2011).  In addition to plant, amphibian, 

and fish models, mammalian models have been recently presented (Lehoczky, 

Robert et al. 2011, Nagoshi, Shibata et al. 2011, Porrello, Mahmoud et al. 2011). 

Dedifferentiation has also been considered as a target mechanism to separate the 

biological (functional) and chronological age of a cell (Rando and Chang 2012).  

However, the concept of dedifferentiation as an exclusive regenerative mechanism 

is conflicted by evidence supporting the presence of specialised populations of 

adult tissue stem cells as the principle effectors of regeneration (Sugimoto, 

Gordon et al. 2011).  To clarify, the presence, or absence, of dedifferentiation as a 

regenerative mechanism in vertebrates relies on how dedifferentiated a cell is 

considered to be, i.e. the degree of ‘stemness’. The extent of phenotypic plasticity 

in higher vertebrates is suggested to be much more restricted than would be 

expected of an embryonic stem cell.  As such dedifferentiation is an ambiguous 

term, without mechanistic definition, and is used permissively in several contexts. 
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2.1.2: Definition of dedifferentiation varies with context 

 
De-differentiation in cartilage biology 

To cartilage matrix biologists the concept of cartilage dedifferentiation is well 

recognised (Schulze-Tanzil 2009) and is a term used with impunity for several 

decades.  The morphological alteration from rounded chondrocytes in cartilage to 

a fibroblastoid phenotype is an inevitable response to two-dimensional monolayer 

culture (Von der Mark, Gauss et al. 1977, Benya and Shaffer 1982).  Under these 

conditions chondrocytes rapidly lose their rounded morphology and functional 

phenotype, characterised by the pronounced down-regulation of collagen type II, 

and aggrecan, hallmarks of cartilage tissue, with passage four considered a 

threshold to terminal dedifferentiation (Darling and Athanasiou 2005, Schulze-

Tanzil 2009).  In their seminal study Benya and Shaffer (1982) explicitly state that 

‘dedifferentiated’, relating to chondrocytes in monolayer, referred only to a loss of 

differentiated function and not evidence of a multipotent cell (Benya and Shaffer 

1982), although no evidence was provided to support this assertion.     

De-differentiation as a regenerative mechanism 

Dedifferentiation is also used to describe a response in adult cells to injury as 

demonstrated by regeneration models such as axolotl forelimb amputation.  In 

these models it is implicit that adult cells lose their functional gene expression 

profile, up-regulate expression of genes associated with an earlier developmental 

stage, re-enter the cell cycle and proliferate, before recapitulating development in a 

tissue lineage and position-specific manner (Kragl, Knapp et al. 2009).  Recently 

contrasting results indicated that dedifferentiated myofibres proximal to a forelimb 

amputation site made no contribution to the proliferating cell population in the 

regenerating limb of the axolotl, but made a significant contribution to 
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regeneration in the newt, in a cell tracing study (Sandoval-Guzmán, Wang et al. 

2014).  Further to this, a study by Tata, et al (2013) found that luminal epithelial 

secretory cells of mouse airways dedifferentiated to, and were indistinguishable 

from, basal stem cells, following conditional ablation of the resident progenitor 

population (Tata, Mou et al. 2013).         

De-differentiation as a pathological mechanism in chronic disease  

Insulin-secreting pancreatic beta (β) cells also dedifferentiate when expanded in 

culture and have been shown to return to a functional, insulin-secreting state in 

certain culture conditions (Russ, Sintov et al. 2011).  Recently dedifferentiation has 

been demonstrated in vivo as a mechanism for beta-cell failure in a model of Type 

II diabetes (Talchai, Xuan et al. 2012).  Evidence suggests that a transient period 

of dedifferentiation is necessary prior to proliferation in response to β-cell loss 

(El-Gohary, Tulachan et al. 2014).  

Dedifferentiation has been described in cardiomyocytes where it is characterised 

by a loss of electrophysiological properties, disassembly of the sarcomeric 

structure, proliferation, and expression of progenitor gene markers.  

Cardiomyocyte dedifferentiation is now well described in vitro (Zhang, Li et al. 

2010) and in vivo (Dispersyn, Mesotten et al. 2002, Jopling, Sleep et al. 2010, 

Porrello, Mahmoud et al. 2011) and more recently as a key feature of 

cardiomyocyte remodeling (Szibor, Pöling et al. 2014). Dedifferentiation also has a 

characterised association with chronic cardiac pathologies (Ausma, Wijffels et al. 

1997, Driesen, Verheyen et al. 2009).  

Common to these regenerative models are i) loss of functional markers, ii) periods 

of proliferation, iii) evidence of tissue-restricted progenitors, and iv) and function-
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restoring redifferentiation processes.  It is not illogical to suggest that cells that 

have dedifferentiated, no longer expressing the synthetic profile of the specialist 

cell, would fail to contribute to tissue function. Whether dedifferentiation 

contributes to chronic, degenerative disease in musculoskeletal tissues, or a 

regenerative response, has yet to be elucidated.    

Dedifferentiation in neoplasia 

Dedifferentiation in neoplasia is used to describe the histopathological changes 

associated with deregulated tumour masses.  It has been demonstrated that NF-ĸB 

modulation of Wnt-signalling can lead to the dedifferentiation of intestinal 

epithelial cells not of stem cell origin into cells with a crypt-progenitor phenotype, 

and subsequently into tumour-initiating cells (Schwitalla, Fingerle et al. 2013). 

Dedifferentiation of epithelial cells towards a tumourigenic status has also been 

described from neurons during glioma formation (Friedmann-Morvinski, Bushong 

et al. 2012), but is also used to describe the development of ‘cancer stem cells’ as a 

self-renewing source distinct from cancer cells derived through a Wnt-/β-catenin 

pathway (Debeb, Lacerda et al. 2012).  Signalling pathways associated with poorly 

differentiated cells in cancers may be relevant to an understanding of the 

underlying mechanisms involved in dedifferentiation.     

Summary 

Dedifferentiation of somatic cells in physiological conditions represents some loss 

of the functional characteristics of the differentiated cell.  In the adult mammal 

this is unlikely to represent a cell with multi-lineage potential as found in the 

amphibian.  As a term dedifferentiation is applied to regeneration, degeneration, 

and neoplasia, but it is not clear whether the same regulatory mechanism is in 
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place in these contexts.  Although dedifferentiation is recognised in cartilage 

biology there has been no systematic investigation of this process.  

2.1.3: Anatomical topography in development is encoded by 
homeobox genes 

Homeobox (Hox) genes contain homeobox DNA sequences and encode 

transcription factors that specify positional identity during embryonic 

development (Wang, Helms et al. 2009); the proteins contain the ‘homeodomain’. 

Positional identity has been likened to a Cartesian coordinate system or ‘genome 

GPS’ for cells, defined by the expression signatures of the ~300 homeobox genes 

(Chang 2009). Hox gene expression codes have been found to define fibroblast 

(Rinn, Bondre et al. 2006) and mesenchymal stem cell populations (Ackema and 

Charite 2008, Sagi, Maraghechi et al. 2012) based on the tissue and site of origin.  

Loss of cellular identity through alterations in Hox gene expression (Trivedi, 

Cappola et al. 2011) or cellular dedifferentiation to a progenitor-like state appears 

to result in aberrant cellular homeostasis and age-related functional deterioration. 

Hox gene-mediated transcriptional memory appears to limit stem cell-mediated 

tissue regeneration (Chang 2009). Whilst Hox gene function has been well studied 

during embryonic segmentation, there is limited information on gene expression 

patterns in adult tissues.   

Summary 

Given the relevance of Hox gene expression to differentiated status, and 

positioning during development, altered expression patterns may be evident 

between differentiated and dedifferentiated cells.    
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2.1.4: Study aims 

This study hypothesises that the gene expression profiles in de- and re-

differentiation of chondrocytes and tenocytes in monolayer and three-dimensional 

cultures are consistent with many of the criteria associated with dedifferentiation 

in the context of regeneration and disease models.   

In addition to a return to proliferation, which is a prerequisite of monolayer 

expansion, there is a) a loss of a broad range of differentiation markers, b) re-

expression of genes specifically associated with tissue development, c) evidence of 

positional identity, c) restricted potential, and d) recapitulation of development 

when dedifferentiated cells are placed in a supportive, three-dimensional 

environment.   

The study sought to develop the profile of known markers of differentiated status 

in cartilage and tendon; define a dedifferentiation profile; establish features of 

dedifferentiation that may be consistent with established markers of degeneration 

of cartilage and tendon; and compare the expression profile of three-dimensional 

culture systems relative to the native tissue they attempt to model.  Additionally, 

the expression profile of Hox genes in adult cartilage and tendon are defined to 

establish whether musculoskeletal tissue in the adult retains expression of markers 

of positional identity.   

This study sevidence of global transcriptomic changes associated with 

dedifferentiation, including expression of lineage-associated development markers 

and alteration in the expression of Hox genes, but also a failure of three-

dimensional culture systems to faithfully restore differentiated status.  These 

findings provide supportive evidence for the plasticity of dedifferentiated 
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musculoskeletal cells and the need for further exploration of dedifferentiation in 

organotypic culture systems.  
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Chapter 2 
Transcriptomic survey of  cartilage and tendon in de- and 

re-differentiation conditions 

2.2.3: Microarray analysis 
Biological samples = 40 

Native cartilage 
n=5 

Native tendon 
n=5 

Monolayer, passage 5 tenocytes|
chondrocytes|fibroblasts, n=19 

3D cultures, fibrin or 
alginate cultures, n=11 

2.2.6: Selection of   
endogenous  

controls 

2.2.6: qPCR  
validation  

2.2.7: Topography of   
HOX gene expression 

2.2.8: Immunohistochemistry  

Figure 2.1a:  Overview of  experimental design for results presented in Chapter 2.  Forty microarrays were 
used to interrogate samples derived from n=18 biological replicates.  Two tissue sources and three 
environmental conditions are shown – native, monolayer and three-dimensional cultures.  Relevant sections 
in the methods are provided.     

2.2.1: Sample Collection 
F344 male rats 
12 weeks old 

Whole tissue Isolated cells 

2.2.2: RNA extraction 

2.2.4: Differential gene 
expression lists.   

Selection of  candidate 
genes and proteins 

Data analysis workflow,  
Figure 2.1b  

Paraffin-embedded  
cartilage or tendon 
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Excluded arrays, 
n=4 

Microarray quality control 

Illumina RatRef  BeadChip v1, 
n=40 

Probe re-annotation 

Conditional comparisons and 
differential expression analysis,  

36 arrays 

Normalised matrix 

Native 
cartilage 

Native 
tendon 

Monolayer 
chondrocytes 

Monolayer 
tenocytes 

Monolayer 
fibroblasts 

Alginate 
chondrocytes 

Fibrin 
tenocytes 

beadarray 

Raw bead-level data  
imported into R 

Org.Rn.eg.db 

Background correction  
and normalisation RMA and Loess 

Limma 

Pathway  
Analysis 

Pathway topology: 
SPIA 

Ingenuity Pathway  
Analysis 

Functional 
Annotation 

Statistical filtering 

Gene  
Ontology:  

Gostats, ReviGO 

Prioritised gene lists  

Chapter 7 

Chapter 4 

Gene list ranking:  
RobustRankAggre 

Dimensionality 
Reduction 

Clustering: 
pca, huclust 

Figure 2.1b: Data analysis workflow (left column) and bioinformatics pipeline (right column) for data arising 
from Illumina microarrays.  Pairwise comparisons between conditions are shown within the pipeline with the 
direction of  the comparison indicated by the arrow.  R packages or functions used are also provided.       

Pairwise comparisons: 
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2.2:  Methods  
A graphical overview of the workflow employed in this chapter and sample 

sources is provided in Figure 2.1a and 2.1b.   

2.2.1:  Culture protocols 

 
Tissue 

Tissue was obtained from twelve week old, skeletally mature (Roach, Mehta et al. 

2003) male F344 rats (F344/IcoCR (Charles River, n=5) or F344/NCrHsd 

(Harlan Laboratories, Inc, n=13)), total n=18 (mean weight±s.d; 248 g ± 25.5). All 

rats were communally housed for seven days after transport and were humanely 

destroyed in compliance with the Animals (Scientific Procedures) Act 1986, 

Schedule I.  Tissue was harvested following a short delay post-mortem (3.5 hours ± 

1.4) (Marchuk, Sciore et al. 1998).  All cartilage and tendon tissue was harvested 

from the hind limbs. Cartilage was pooled from coxo-femoral (hip) and 

femorotibial (knee) joints; tendon was pooled from the tendon of the 

gastrocnemius (Achilles), tail and the deep flexor tendons of the hind limbs.  From 

the left flank an area of approximately 2 cm2 was obtained for isolation of dermal 

fibroblasts.  Cartilage was digested in 0.2 % collagenase type II (Worthington, 

Lakewood, NJ, USA) at 37 °C for 12-18 hours in 15 mL conical Falcon tubes 

(Falcon, BD Biosciences).  All cell culture reagents were from Gibco, (Life 

Technologies, Carlsband, CA, USA) unless otherwise stated. Tendon and dermis 

were pre-digested with 0.25 % (w/v) trypsin for 20 minutes, with further digestion 

as described for cartilage.  For primary culture, cells were seeded at 103 cells/cm2 

in 25 cm2 cell-culture flasks with low glucose Dulbecco’s Modified Eagle’s 

Medium (DMEM) with L-glutamine, with the addition of 10 % foetal calf serum 

(Sigma-Aldrich, St. Louis, MO, USA), 1 % penicillin (100 U/mL) and 
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streptomycin (100 µg/mL), and 0.2 % amphotericin B (2 µg/mL), which will be 

referred to as culture medium 1 (CM1). Cells were incubated at 37 °C in a 

humidified environment (5 % CO2: 21 % O2). Growth medium was changed every 

2-3 days to maintain active proliferation. Cells were grown to 80-90 % confluence.  

Prior to subculture the cell monolayer was washed with 10 mL of HBSS. For 

subculture cells were dissociated from flasks using a 0.05 % trypsin-EDTA 

solution (1 mL per 75 cm2), followed by a cell count using a modified Fuchs-

Rosenthal method and trypan-blue (0.4 %, Sigma-Aldrich) exclusion test on 10 µL 

samples. Over 90% of cells were viable at all passages. The first passage occurred 

once the primary cell culture reached confluence. For all subsequent subcultures 

cells were seeded at 104 cells/cm2.  Cells underwent subculture on four further 

occasions and were harvested at passage five.  Population doublings for each 

culture did not reach the limit defined by Hayflick (Hayflick 1961).    

Alginate beads cultures 

Passage five chondrocytes, or tenocytes, were released from monolayer culture, 

pelleted at 500 x g for 10 minutes and washed twice in sterile phosphate-buffered 

saline (PBS) after discarding the supernatant.  Cells were re-suspended at a density 

of 2x106 cells/mL in 1.2 % sterile-filtered alginic acid (alginate) solution (Sigma-

Aldrich, as before) adapted from de Ceunicnk, et al (2004) (De Ceuninck, Lesur et 

al. 2004).  CM1, with the addition of filter-sterilised L-ascorbic acid-2-phosphate at 

a final concentration of 200 µM (Sigma-Aldrich), is referred to as culture media 2 

(CM2).  Beads were incubated in 100 mm diameter Petri dishes in 25 mL of CM2 

for 14 days, as before, with media changed twice weekly.  A cell viability study 

defined the number of trypan-blue positive (dead) cells taken from individual 
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alginate beads on six occasions over fourteen days (n=4, triplicate counts for each 

replicate) for both chondrocytes and tenocytes.     

Fibrin constructs 

Fibrin culture systems were prepared using a previously described technique 

(Kapacee, Richardson et al. 2008).  The CM2 media for alginate beads was 

modified by the addition of aprotinin (20 µg/mL (Aprotinin from bovine lung, 

Sigma-Aldrich, A1153), after Ye, et al (2010), to inhibit fibrinolysis (Ye, Zünd et al. 

2000).  In each well, 7.5 x105 cells (using the modified cell number in (Kapacee, 

Yeung et al. 2010)) passage 5 tenocytes or chondrocytes were suspended in filter-

sterilised 20 mg/mL fibrinogen and 200 U/mL thrombin (Sigma-Aldrich) with 

modified CM2 to a final volume of 480 µL; this was added to each well and was 

rapidly agitated to ensure even coverage of the well.  Wells were left at 37 °C for 

five minutes to permit a thin fibrin layer to form before the addition of 5 mL of 

modified CM2.  The fibrin layer was scored circumferentially with sterile 10 µL 

pipette tip after 24 hours, and then scored centripetally every other day, to 

facilitate contraction of the developing construct.  Constructs were incubated, as 

before, until a robust linear construct was formed after 7-10 days.         

2.2.2: RNA extraction  

Monolayer cells were washed twice with HBSS then lysed using a choatropic agent 

(TRIzol®, Ambion, as before) and left for 10 minutes at room temperature. RNA 

isolation was then performed using an acid guanidinium thiocyanate–phenol–

chloroform extraction method (Chomczynski and Sacchi 2006).  Following co-

precipitation with glycogen and re-suspension with 75 % ethanol (v/v) RNA was 

transferred to spin-columns to undergo an on-column DNAse digest, wash and 

purification (Qiagen GmbH, Hilden, Germany) as per the manufacturer’s 
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instructions. Native tissue samples were minced in petri dishes and stored in ten 

volumes of RNAlater (Ambion, as before) and handled as per the manufacturer’s 

instructions.  For extraction, RNAlater was removed and the tissue snap-frozen in 

liquid nitrogen and pulverised using either a sterile mortar and pestle (tendon) or 

dismembrator (cartilage).  Pulverised tissue was then incubated at room 

temperature in TRIzol® before undergoing the RNA extraction protocol described 

above.  All samples were quality controlled and quantified using a 

spectrophotometer (Nanodrop, Thermo Scientific).  RNA was eluted in DEPC-

treated dH20 and stored at -80 °C until required. 

Cells were recovered from alginate beads by incubation with a depolymerising 

solution, to chelate calcium, (55 mM sodium citrate, 150 mM sodium chloride, pH 

6) in a shaking incubator at 37 °C for ten minutes.  The solution was centrifuged 

at 500 x g for ten minutes.  The supernatant was discarded and the cell pellet was 

washed twice in warmed PBS and centrifuged as before.  RNA extraction 

proceeded as described above on the isolated cell pellet.  For fibrin constructs 

media was aspirated and constructs washed twice in situ with warmed PBS.  

Constructs were sharply dissected from the two anchor points using a scalpel 

blade and transferred directly to a chaotropic agent.   

2.2.3: Microarray analysis 

Microarray samples were derived from several sources: a) native (whole tissue) 

cartilage or tendon, b) monolayer-expanded chondrocytes, tenocytes or dermal 

fibroblasts at passage five, or c) cells derived from alginate or fibrin three-

dimensional cultures. Forty microarrays were analysed, Table 2.1, using the 

Illumina RatRef-12 v1.0 BeadChip® array (Illumina, Inc., San Diego, California, 

USA) (Oliphant, Barker et al. 2002) following submission to The Genome Centre, 
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Barts and the London, Queen Mary, University of London. Twelve samples could 

be run in parallel on each array and were performed in three batches (native and 

monolayer in two batches, with three-dimensional cultures as a separate batch) on 

separate occasions. On each array there were 22,523 randomly distributed gene-

specific bead probes for the rat reference genome. RNA quality and quantity was 

assessed prior to amplification using the Agilent Bioanalyser RIN system (Agilent 

Technologies).  Samples with a RIN-value greater than 8 were considered to have 

passed quality control.  Labelling was undertaken using standard manufacturers 

protocols for RNA amplification based upon the technique by Van Gelder, et al 

(1990) (Van Gelder, von Zastrow et al. 1990).  Biotinylated cRNA was prepared 

with Illumina TotalPrep® RNA amplification kit (Ambion).  Hybridisation and 

image acquisition were performed using the manufacturer’s standard protocol for 

this array.  Raw data text files and un-normalised expression data were obtained 

from Illumina BeadStudio® software output and used at the input for data analysis, 

Figure 2.1b.   
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2.2.4: Data Analysis 

 
Quality control of microarray analysis 

General analysis of raw and normalised data was performed to assess systematic 

and individual array errors that may have arisen during the scanning protocol.  All 

analysis was performed using the R programming platform, R version 3.0.2 (2013, 

The R Foundation for Statistical Computing) through open-source packages made 

available via the Bioconductor network, (http://www.bioconductor.org 

(Gentleman, Carey et al. 2004)). Data was loess-normalised (Bolstad, Irizarry et al. 

2003) and log2-transformed after alternative techniques were investigated using the 

beadarray package, v2.6.0, (Dunning, Smith et al. 2007), implementing the 

Condition Replicates  Comments  

Cartilage 5(4) Pooled hip and knee cartilage, n=1 removed at quality 
control (QC) 

Tendon  5(5) Pooled Achilles, tail and deep flexor tendon  

Chondrocytes (monolayer 8(8) Passage 5 

Tenocytes (monolayer) 8(8) Passage 5 

Fibroblasts (monolayer 3(3) Passage 5 

Alginate (chondrocytes) 4(4) - 
 

Alginate (tenocytes) 1(0) Removed at QC 

Fibrin (tenocytes) 3(2) One array removed at QC 

Fibrin (chondrocytes) 3(2) Chondrocytes transferred to fibrin constructs.  One 
array removed at QC. 

Table 2.1: Table demonstrates source of  samples, biological replicates and the 
number of  arrays actually used for analysis in parentheses, total n=36.  For three-
dimensional cultures the component cell type is also given.  
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Figure 2.2: Plot of  proposed 
endogenous control genes 
re la t ive to the average 
expression stability value, M.  
Of  the those tested ATB5B 
and RPS20 were defined as 
the least variable across 
samples; it is not possible to 
rank the two most stable 
genes using this technique as 
it is based on the gene ratios.  
A l l n o r m a l i s a t i o n wa s 
undertaken using RPS20.     
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BASH algorithm to analyse spatial artifacts (Cairns, Dunning et al. 2008).  This 

data analysis included the removal of four arrays at quality control that were 

considered unsuitable for further analysis (remaining for analysis, n=36 arrays).  

Differential expression analysis 

Statistical analysis of differential gene expression was performed using the limma 

package (Smyth 2004).  Results for gene expression are presented as the log2 fold 

change (log2FC), false discovery rate (FDR, Benjamini-Hochberg correction) and 

log-odds ratio of expression (B statistic).  Pairwise comparisons are described such 

that the first term defines the baseline condition to which a comparison is made, 

for example, ‘native cartilage to monolayer chondrocytes’ defines native cartilage 

as the baseline. Complete differential expression lists for pairwise comparisons are 

available in supplementary data SD2.1-2.10.  Only differentially expressed genes 

passing a filtering threshold were used for bioinformatic analysis: log2 fold-change 

(log2FC��≥0.5 (absolute fold-change =1.4); FDR <0.01; B statistic >0 (equivalent 

to a 50% likelihood of differential expression).  Illumina identifiers were re-

annotated using org.Rn.eg.db. (Pages H, Carlson M, Falcon S and Li N. 

AnnotationDbi: Annotation Database Interface. R package version 1.28.1). 

2.2.5: Bioinformatics  

All web-interface bioinformatics tools were last accessed in November 2014.   

 
Dimensionality reduction  

Principal component analysis (PCA) was undertaken using a co-variance matrix 

(Husson 2010) from filtered expression data from 36 arrays based upon the top 

500 most co-variant genes establish using WGCNA (Langfelder and Horvath 2008).  
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Hierarchical clustering using the was based upon the complete linkage method 

(Murtagh 1985) using the same gene expression matrix.   

Gene ontology function annotations 

Gene ontology (GO) (Ashburner, Ball et al. 2000) functional annotation 

enrichment was assessed using a strict hypergeometric analysis with the package 

GOstats (Falcon and Gentleman 2007).  Gene ontology analysis was also 

undertaken using DAVID (http://david.abcc.ncifcrf.gov) (Huang, Sherman et al. 

2008), with appropriate species and platform backgrounds, for validation.  Output 

GO lists were rationalised using ReviGO (http://revigo.irb.hr) (Supek, Bošnjak et 

al. 2011).  The ‘SimRel’ algorithm was used to calculate the semantic similarity 

score.  The UniProt Rattus norvegicus database (2013) was used to define the search 

space.  Only terms with a FDR<0.001 were used.  

Pathway Topology:  

Canonical signalling pathways were obtained from The Kyoto Encyclopedia of 

Genes and Genomes, KEGG (http://www.genome.jp/kegg/), for Rattus norvegicus 

(58 pathways used) in XML format (Kanehisa and Goto 2000).  Total, filtered 

differential expression lists consisting of Entrez gene identifiers and log2 fold-

changes were used as the input to the SPIA pathway topology package in R, 

version 2.14.0 (Tarca, Draghici et al. 2009).  For a pairwise comparison, for 

example native cartilage versus monolayer chondrocytes, positive log2 fold-

changes represented higher expression in native cartilage.    

Prioritised gene lists using rank aggregation 

These gene lists consisted of two sets of effect sizes, log2FC, arising from either 

cartilage or tendon.  In order to integrate differential expression results from 
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different comparisons into a meaningful prioritised gene list a rank aggregation 

method (Kolde, Laur et al. 2012) was employed. Ranked gene lists for each pair-

wise comparison were ordered by ascending adjusted p-value (FDR).  

Inference of Upstream Regulators of Gene Expression 

To infer upstream master regulators of gene expression the Ingenuity® Pathway 

Analysis (IPA®, Qiagen Bioinformatics, Redwood City, USA, www.ingenuity.com) 

knowledge base and software implementing causal analysis methods (Krämer, 

Green et al. 2014) were used under license.  Briefly, regulators with network 

connections to, and the direction of regulation within, the expression dataset were 

scored on their likelihood of occurring more frequently than in a random model.  

The top upstream regulators (including: transcription factors, small molecules, 

endogenous chemicals, miRNAs) were defined in this study as those with: i) the 

smallest ‘overlap p-value’ – a measure of enrichment of regulated genes within a 

dataset using a Fisher’s Exact Test (right-tailed), and ii) the highest ‘activation z-

score’ – the activation state of a regulator inferred from a test of the match in up- 

and down-regulation patterns.  To build on the mechanistic networks predicted 

through IPA, downstream targets of transcription factors were collected from the 

existing gene expression dataset.  Only those genes that were differentially 

expressed and had a direct relationship with the master regulators were chosen.  

2.2.6: Validation techniques 

 
Reverse transcription production of cDNA   

Random hexamers were annealed to 1 µg RNA with addition of 0.2 mM of each 

dNTP in a 25 µL reaction, with M-MLV reverse transcriptase and buffer, and 
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RNAse inhibitor in volumes prescribed by the manufacturers (all Promega, 

Madison, WI, USA).   

Determination of endogenous control genes for delta-Ct method of normalisation  

A series of endogenous control genes were selected from a review publication (de 

Jonge, Fehrmann et al. 2007) and commercially available multiplex qPCR 

endogenous control arrays.  These were cross-referenced with the mean log2 

fluorescence intensity from all Illumina arrays.  Genes with a coefficient of 

variation (CV) < 1% and a mean fold change < 2 across all tissues and culture 

conditions were chosen for the next round of validation.  Quantitative PCR was 

undertaken using three biological replicates with technical triplicates for each.  

Raw Ct values were exported into the R package NormqPCR (Perkins, Dawes et al. 

2012) which implements the geNorm algorithm (Vandesompele, De Preter et al. 

2002) to define the least variable gene pairs.  The ribosomal protein Rps20 was 

used for all normalisation; there was no evidence of differential expression of this 

gene in any pairwise comparisons.     

Quantitative polymerase chain reaction (qPCR) 

Primers were designed for qPCR using the NCBI PrimerBlast tool (Ye, Coulouris 

et al. 2012) (http://www.ncbi.nlm.nih.gov/tools/primer-blast) against the most 

recent mRNA records and spanning exon-exon boundaries where possible.  

Annealing temperature of all primer pairs was 60 °C ± 0.2 °C. All primers had 

efficiencies > 98% based upon six serial ten-fold dilutions.  Quantitative PCR was 

performed using a complete mix containing SYBR intercalating dye, ROX passive 

reference, UNG and dNTPs (MESA BLUE, Eurogentec, Germany) at the 

concentrations recommended by the manufacturer.   
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The standard protocol for all qPCR reactions performed using the 7300 ABI 

platform (Roche, Switzerland) consisted of: 50 °C (2 mins), 95 °C (10 mins) 

followed by 40 cycles of 95 °C (15 s) and 60 °C (1 min).   

Specificity of PCR products on validated primers was determined by melt-curve 

analysis. The predicted molecular weight of PCR products was verified by 

electrophoresis relative to a molecular weight marker on a 1% agarose gel 

impregnated with ethidium bromide and visualised under UV light. All details for 

primers are presented in SD2.11.  ‘No template’ and ‘no reverse transcriptase’ 

negative controls were also run in parallel for each sample.     

Validation of genes differentially expressed in microarray studies 

The baseline cycle threshold (Ct) for each qPCR run on 96-well plates was 

automatically generated using ABI software to ensure Ct threshold was within the 

linear phase of the exponential curve. cDNA was diluted 1:3 and 3 µL of cDNA 

was used for each reaction well to minimise pipetting errors. The comparative 

delta Ct method, as described by Schmittgen and Livak (Livak and Schmittgen 

2001, Schmittgen and Livak 2008), was used.  Technical triplicates for each of 

three biological replicates were averaged and were normalised to the means of 

technical replicates for Rps20 for the same biological replicate.    

Statistical analysis of qPCR data 

Normalised and linear transformed qPCR data (2^-dCt) was tested for deviation 

from a Guassian distribution using the Shapiro-Wilk test within R.  Analysis of 

variance (ANOVA) of group means was undertaken for qPCR validation data; post 

hoc Tukey multiple-comparison of means was performed with a 95% family-wise 

confidence level.       
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2.2.7: Expression of homeobox genes in adult cartilage and tendon 

Six, twelve week old, male outbred (Lewis) rats (Harlan, as before) were harvested 

for cartilage and tendon from discrete anatomical sites in both the fore- and hind-

limbs.  Specifically these were: scapulo-humeral joint (shoulder), fore- and hind-

digital flexor tendons, and the coxofemoral joint (hip).  Samples were prepared as 

described for native tissue.  Homeobox genes with established topographical 

and/or tissue-specific developmental expression in the literature were selected.  A 

panel of 19 homeobox genes were considered. For each independent biological 

replicate qPCR reactions (technical triplicates) were performed over four separate 

96-well plates with a standardised plate design.  The qPCR protocol used was 

consistent with the description above.  There were 2,304 data points in total. In 

order to deal with ‘non-detects’, or missing data cells, the following strategy was 

used to impute values from the available data cells for technical triplicates: a) 

where one technical triplicate was missing the mean of the remaining two was 

substituted; b) where the mean value of the remaining technical replicates was ≥ 35 

(considered the limits of real-time qPCR sensitivity), or c) where two or more 

technical replicates were missing, the missing data point was considered to 

represent no amplified product and Ct = 40 was the imputed value. Across plates 

the median absolute deviation (MAD), used in the beadarray package, was 

employed as a measure of central tendency and was calculated for the summary 

values from each biological replicate (n = 6).  A threshold of  ± 2.5*MAD defined 

outlier values to be removed (Leys, Ley et al. 2013).    As before, Rps20 was used 

as the endogenous control and means of technical triplicates were normalised to 

sample-matched Rps20 controls.  For each gene there were six summary 

observations (2^-dCt) for each of four tissues.  To account for the technical 

variation across 24 separate qPCR studies data was log2 transformed and 
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studentised such that the mean was equal to zero and the standard deviation equal 

to ± 1.  This generated a data matrix comprising ‘z-scores’ and was further 

analysed in R.   

Departures from a Guassian distribution were assessed using the Shapiro-Wilks 

test. Where outlier values were removed an alternative implementation of the 

ANOVA, using weighted means and type I sum of squares, was employed for 

unequal group sizes and post-hoc testing performed using the Games-Howell test, 

appropriate for unequal group sizes and heteroscedastic data.    

2.2.8: Histology and Immunohistochemistry 

Tendon tissue was harvested from 12 week old, male Lewis rats (Chapter 3) from 

the tendon of the gastrocnemius muscle (Achilles) and the deep flexor tendon.  

Achilles tendons were divided into proximal and distal sections, whilst the deep 

flexor tendons were sectioned in three parts (origin, mid-portion, and insertion).  

Where possible a small portion of skeletal muscle tissue was retained to act as an 

internal positive control.  Tissue samples were placed in fresh 4% para-

formaldehyde and stored at 4 °C for 7 days.  Tendon samples were paraffin-

embedded in a longitudinal orientation and 5 micron sections obtained.  

For analysis of cartilage, whole knee samples, consisting of the distal one third of 

the femur, femorotibial joint, and proximal one third of the tibia, were fixed as 

described and decalcified in 12.5% EDTA/1.25% NaOH (w/v, pH 7.4) for six 

weeks.  Embedding, sectioning and heamatoxylin and eosin (H&E) or Masson’s 

Trichrome staining was undertaken as a service by the Pathology Department of 

the School of Veterinary Science, University of Liverpool.  Special 

acknowledgement is extended to Ms. Valerie Tilston for this work.   
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For immunohistochemistry paraffin wax was removed through sequential ten-

minute baths in xylene and graded ethanol stages, followed by rehydration in 

deionized water.  All reagents were supplied by Sigma-Aldrich (catalogue numbers 

provided), as before, unless otherwise stated.  Antigen retrieval for both cartilage 

and tendon sections was undertaken with chondroitinase ABC (5 U/g) (#C2905) 

with 5 µL/mL in a Tris (50 mM)|sodium acetate (60 mM) buffer (pH 8 at romm 

temperature (RT)) according to the manufacturer’s guidelines and (Linhardt 2001).  

Each slide was incubated with 200 µL of the enzymatic solution for twenty 

minutes at 37 °C.  Subsequently, endogenous peroxidases were quenched in a 3% 

peroxide solution (v/v) for ten minutes, except for 3,3'-diaminobenzidine (DAB)-

only controls, and then washed in de-ionised water.    Alternative techniques 

employing pre-digestion with a topical solution of 0.05% trypsin from bovine 

pancreas (w/v, #T1426) in CaCl2 at pH 7.8 for 20 minutes were also attempted.     

Samples were washed in 1xTBS (pH 7.6 at 25 °C) with 0.1% TWEEN20 (v/v, 

TBST buffer). Sections were delimited using a hydrophobic pen, and blocked 

using 5% normal serum (v/v, diluted in TBST) specific to the species in which the 

secondary antibody was raised, either goat (#G9023) or donkey (#D9663), for one 

hour at 25 °C.   

Blocking buffer was removed and replaced with 100-200 µL of primary antibody 

diluted in the blocking buffer, Table 2.2, and incubated overnight (> 12 hours) at 

4 °C. Sections were washed three further times in TBST before the application of 

either: i) an anti-sheep HRP-polymer conjugated secondary antibody (GBI Labs 

Inc., Bothwell, USA, #D85-6) incubated for ten minutes following the application 

of an enhancer; or, ii) an anti-rabbit HRP-polymer (Zytomed Systems GmbH, 
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Berlin, Germany, #ZUC032-006) and incubated in a humidified atmosphere at 25 

°C for a further sixty minutes.   

Samples were washed twice in ultrapure dH20 for five minutes before the 

application of 3,3’-diaminobenzidine (DAB) (SIGMAFAST™ tablets, #D4293) 

and colour allowed to develop over five minutes. Sections were immersed in dH20 

for five minutes to retard any further colour development.  Sections were counter-

stained with hematoxylin solution according to Delafield (#03971) for ten seconds 

before being left under running tap water for five minutes.  Sections were 

dehydrated through graded ethanol and xylene, air-dried and mounted using DPX 

mountant (#06522).  Quadriceps muscle or myotendinous junction served as a 

positive tissue control for TNNI2; bone marrow canals and blood vessels in knee 

sections served as positive tissue controls for CRAMP.  Species-specific IgG 

isotype controls were concentration matched to test primary antibodies.  No 

primary antibody (secondary only) and a DAB only, for endogenous peroxidase 

activity, were also included.  
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Condition Replicates  Comments  

Cartilage 5(4) Pooled hip and knee cartilage, n=1 removed at quality 
control (QC) 

Tendon  5(5) Pooled Achilles, tail and deep flexor tendon  

Chondrocytes (monolayer 8(8) Passage 5 

Tenocytes (monolayer) 8(8) Passage 5 

Fibroblasts (monolayer 3(3) Passage 5 

Alginate (chondrocytes) 4(4) - 
 

Alginate (tenocytes) 1(0) Removed at QC 

Fibrin (tenocytes) 3(2) One array removed at QC 

Fibrin (chondrocytes) 3(2) Chondrocytes transferred to fibrin constructs.  One 
array removed at QC. 

Table 2.1: Table demonstrates source of  samples, biological replicates and the 
number of  arrays actually used for analysis in parentheses, total n=36.  For three-
dimensional cultures the component cell type is also given.  

geNorm (Vandesomple, et al. (2002)
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Figure 2.2: Plot of  proposed 
endogenous control genes 
re la t ive to the average 
expression stability value, M.  
Of  the those tested Atb5b 
and Rps20 were defined as the 
least variable across samples; 
it is not possible to rank the 
two most stable genes using 
this technique as it is based 
on the gene ratios.  All 
normalisation was undertaken 
using Rps20.     

Target Antibody 
Description 

Source Stock (Dilution) 

TNNI2, 
troponin 

Sheep, anti-rabbit 
polyclonal IgG  

Abcam, UK 
(ab97711)  

2 mg/mL (40 ug/mL)  

CRAMP/CAMP Rabbit, anti-mouse 
polyclonal IgG 

Innovagen, Sweden 1 mg/mL (20 ug/mL) 

Sheep IgG Non-immune serum Santa Cruz 
Biotechnology 
(sc-2717) 

400 ug/mL (40 ug/mL) 

Rabbit IgG Non-immune serum Santa Cruz 
Biotechnology 
(sc-2027) 

400 ug/mL (20 ug/mL) 

Anti-sheep HRP-conjugated 
polymer (PoLink-2 
Plus) 

GBI Labs (D85-6) As per manufacturers instructions 

Anti-rabbit HRP-conjugated 
polymer 

Zytomed  Systems  As per manufacturers instructions  

Table 2.2: Antibody sources for immunohistochemistry studies 
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2.3: Results 
  

2.3.1:  Rps20 is a suitable endogenous control gene 

After global assessment of gene expression variation for all microarray Rps20 and 

Atb5b were found to be the most invariant, Figure 2.2. For normalisation of 

qPCR data across samples Rps20 was used.  Standard endogenous control genes, 

Gapdh and Actb, were differentially expressed between conditions and were not 

suitable candidates.    

2.3.2: Chondrocyte and tenocyte gene expression profiles converge in 
monolayer culture  

 
Principal Component Analysis (PCA) 

After filtering on the top 500 most covariant genes derived from a subset of highly 

variant genes (> 0.8) arrays could be clustered into four distinct groups, Figure 

2.3.  The first two components described 70.2% of the variation in the data.  

These groups consisted of: i) native cartilage; ii) native tendon; iii) monolayer 

cultured chondrocytes, tenocytes, and fibroblasts; iv) or three-dimensional culture 

systems, (alginate or fibrin cultures). It was not possible to discriminate between 

cell types for monolayer or three-dimensional culture conditions.  Native tendon 

and cartilage were strongly divergent from each other and cultured cells. 

Unsupervised PCA, without filtering of invariant genes, was poorly discriminatory 

(> 0.2, 43.9% described by the first two components); the overall relationships 

described were present with less stringent filtering, however, clustering of native 

samples was less robust.  Inclusion of a third component did not discriminate 

further between the groups.   
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The variation in the gene expression profile was suggestive of a convergence of 

expression profiles for cells in monolayer and a failure of chondrocytes or 

tenocytes in three-dimensional culture to recapitulate differentiation status to 

parity with native tissue.     

Hierarchical Clustering  

Unsupervised hierarchical clustering of the top 500 most co-variant genes 

concurred with principal component analysis and delineated the data into clades of 

cartilage, tendon, 3D culture systems and monolayer-expanded cells, Figure 2.4.  

The genes that comprise the top 500 most co-variant are listed in SD2.12. 
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Figure 2.3: Principal component analysis of  gene expression data from 36 Illumina arrays derived from three 
cell types (Cell type) and isolated from three environmental conditions (Condition) – native (cartilage or tendon 
matrix), monolayer (passage 5, dedifferentiated), or 3D (alginate or fibrin cultures). Plot presents the separation 
of  samples based upon the first two principal components (PC1, PC2), which together explain >70% of  the 
variation of  the data in the top 500 most covariant genes.  Although cartilage and tendon were highly divergent it 
was not possible to discriminate between cell types in monolayer and three-dimensional cultures, i.e. the plot 
reflects variation relating to the environmental conditions.   
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Figure 2.4: Heatmap represents a matrix of  scaled gene expression values (rows) for the 500 
most covariant genes across 36 samples (columns), see figure legends. Dashed vertical line bisects 
clades into four groups (legend) for functional annotation – clades show general grouping with 
condition specific annotations in text and SD2.  Gene ontology based upon significant terms 
(p<0.05) in each group except D, which is too small for significant annotation.  

C: Translational elongation | ribonucleoprotein complex | structural constituent of  ribosome | 
cytoplasm | extracellular matrix  

B: Extracellular space | Response to external stimulus | Response to wounding | inflammatory 
response | developmental response | cell differentiation | cell migration  

A: Contractile fibre | muscle system process | actin binding | cytoskeletal protein biding |  actin 
filament-based process | immune system process | defense response | extra-cellular region | 
organ development | system development   

D: Lysosome* | chemical homeostasis* | extra-cellular matrix*   

Group annotations based on defined clades  
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2.3.3: Differential gene expression  

 

Overview 

For each of the conditions considered in this study selected pairwise comparisons 

were undertaken to determine the number of differentially expressed genes in 

each, Table 2.3.  The greatest number of differentially expressed genes were 

found between native tissues and their monolayer expanded equivalent, for 

example, a total of 2709 genes were up- and down-regulated between native 

cartilage and dedifferentiated chondrocytes.  In comparison, 2352 genes were 

differentially expressed between native cartilage and chondrocytes in alginate, but 

only 289 between dedifferentiated tenocytes and chondrocytes after statistical 

threshold filtering.  There were fewer differentially expressed genes between native 

tendon and tenocytes in monolayer or fibrin constructs than the equivalent 

comparisons for cartilage.  The fewest statistically significant differentially 

expressed genes were found between monolayer-expanded tenocytes and 

fibroblasts; a total of 270 were either up- or down-regulated.  
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Analysis of differential gene expression by cell type 

 
CHONDROCYTES 

In dedifferentiated chondrocytes (monolayer) the most highly expressed genes 

were matrix metalloproteinase 3 (Mmp3), transforming growth-factor beta 2 (Tgf-

β2) and thrombospondin 2 (Thbs2); compared to native cartilage the greatest 

reduction in expression is found in genes encoding heamaglobin alpha and beta 

chains, Hbb and Hbb-b, Hba1, defensin Defa5 and the cathelicidin-related 

antimicrobial peptide Cramp/Camp. Monolayer chondrocytes also demonstrated 

higher expression of mesenchymal markers Thy-1 and prion protein gene, Prnp, 

epithelial-mesenchymal transition regulator Snai1 and bHLH transcription factor 

Comparison n.C n.T d.C d.T d.F Alginate Fibrin 

n.C 823 1503 1244 

n.T 1142 964 649 

d.C 1206 154 522 

d.T 734 135 113 294 

d.F 157 

Alginate 1108 900 158 

Fibrin 580 627 265 

Lower expression 
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Table 2.3: Matrix of  up- and down-regulated genes for selected pairwise comparisons involving different 
environmental conditions for chondrocytes and tenocytes.  Values indicate the number of  up- or down- regulated 
genes with a log2FC >+/- 0.5, FDR <0.01 and a log-odds ratio of  expression >0.  Duplicate Entrez gene identifiers 
are removed.  Table Code: n.C – native cartilage; n.T – native tendon; d.C – dedifferentiated chondrocytes; d.T – 
dedifferentiated tenocytes; d.F – dedifferentiated fibroblasts; Alginate – chondrocytes in alginate beads; Fibrin – 
tenocytes in fibrin constructs.  The fewest differentially expressed genes were found between cultured cells.      

Figure 2.5: Euler diagram indicating the proportion of  overlap between different pair-wise comparisons.  All 
comparisons are made with respect to the native tissue and duplicate Entrez gene entries are removed.  For 
example, in the union between genes differentially expressed in cartilage vs. monolayer chondrocytes and tendon 
vs. monolayer tenocytes, 861 genes are differentially expressed in both comparisons.  A: native cartilage vs. 
chondrocytes; B: native tendon vs. tenocytes; C, native cartilage vs. alginate beads; D, native tendon vs. fibrin 
constructs.    
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Twist1.  The TGF-β signalling inhibitor Smad7, was also higher in monolayer 

culture.    

Native chondrocytes expressed higher levels of collagen type II (Col2a1), aggrecan 

(Acan), thrombospondin 4 (Thbs4), clusterin (Clu), dentin matrix acidic 

phosphoprotein (Dmp1), integrin-binding sialoprotein (Ibsp), and proteoglycan 2 

and 3 (Prg2/3) than monolayer-expanded chondrocytes.  Expression of CCN-

family genes, connective tissue growth factor (Ccn2/Ctgf) and Wnt1-inducible 

signalling pathway proteins Wisp1 and Wisp2, and Wnt-signalling gene frizzled 

family receptors Fzd1, Fzd2 and Fzd8 were all lower in native cartilage than 

monolayer.   

There was notable differential expression of homeobox genes across native 

cartilage and monolayer.  Monolayer was associated with higher expression of 

Pitx1, a hind-limb coding gene, and Prrx2, a differentiation-associated homeobox 

gene.  In native cartilage HOP homeobox (Hopx) and SATB homeobox 2 (Satb2) 

were more highly expressed.    

Relative to native cartilage, chondrocytes in alginate culture expressed the 

chemokine ligand 1 Cxcl1 most highly, followed by prostaglandin D2 synthase 

(Ptgds) and Mmp3.  The FBJ osteosarcoma oncogene Fos, Ccn3 (formerly 

nephroblastoma-overexpressed, Nov) and chitinase-3 like-1 (Chi3l1) were also 

more highly expressed in alginate beads relative to native cartilage.  In comparison 

to monolayer chondrocytes, alginate bead cultures expressed higher levels of 

interleukin 6 (Il-6), alarmin genes (S100a4, S100b) and prostaglandin-endoperoxide 

synthase 2 (Ptgs2/Cox2).  A number of chondrogenesis-associated genes were also 
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more highly expressed, Scrg1 (stimulator of chondrogenesis 1), inhibitor of DNA 

binding 1 (Id1), Bhlhb2 (basic helix loop helix transcription factor Dec1). 

TENOCYTES  

 
The most highly expressed genes in dedifferentiated tenocytes included 

phospholipase A2 (Pla2g7), integrin-α11 (Itga11), heme oxygenase 1 (Homx1) and 

secreted phosphoprotein 1 (Spp1).  The serine protease Serpine1 and the 

transcription factor Cebpb were also more highly expressed in monolayer relative to 

native tendon.  Monolayer tenocytes, in addition to expressing genes in common 

with chondrocytes (Thy1, Prnp, Twist1) also expressed elevated levels of biglycan 

(Bgn) and the homolog of slit (Drosophila), Slit3.    

Those genes most highly expressed in native tendon included troponins and 

myosins. Specifically troponin I type 2 (Tnni2), actin α1 (Acta1) and creatine kinase 

(Ckm) had higher expression in native tendon relative to monolayer.  The 

differentiation marker tenomodulin (Tnmd) and tendon-associated gene Mustang 

(Mustn1) had significantly lower expression in monolayer cultures.  Elastin (Eln), 

keratocan (Kera), lubricin (Prg4), dermatopontin (Dpt), apolipoprotein (ApoE) and 

bone morphogenetic protein encoding genes Bmp1 and Bmp7 were more highly 

expressed in native tendon than in monolayer.   

When compared to native tendon, tenocytes in fibrin cultures expressed higher 

levels of metallothionein 1a (Mt1a), the BMP-antagonist gremlin 1 (Grem1) and 

enolase 2 (Eno2), a neuron-associated enolase isoenzyme.  The tenasin N/W 

isoform, Tnn, was highly expressed in fibrin cultures. In addition to the 

chemokines found in alginate beads (Cxcl1, Ptgs2), hypoxia-inducible factor 1 

(Hif1a), RUNT transcription factor Runx1, and Gpnmb/osteoactivin were also 
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highly expressed. Relative to alginate beads, fibrin cultures exhibited higher 

expression of microfibrillar-associated protein 5 (Mfap5/Magp2), thrombospondin 

4 (Thbs4), and the Meox2 homeobox gene.  

Consensus genes by condition  

Principal component and differential expression analysis indicated that a number 

of genes were commonly expressed in native tissue, or monolayer and three-

dimensional cultures derived from either cartilage or tendon.  To describe 

common functions the consensus genes for different conditions were identified, 

Figure 2.5.  

NATIVE TISSUE TO MONOLAYER CULTURES 

 
There were 861 genes that were differentially expressed in both cartilage and 

tendon transitions to monolayer culture.  The top differentially expressed genes 

unique to tenocytes or chondrocytes are presented in Table 2.4a. Of the 

consensus genes for cartilage and tendon only 34 of 861 differed in the direction 

of the fold change.  Genes found to be differentially expressed in both tissues 

included lubricin (Prg4), the HOP homeobox gen (Hopx), osteocalcin (Bglap) and 

the troponin I, type 2 (Tnni2). The top five highest-ranked consensus genes for 

native cartilage and tendon were: Hba1, Hbb, transferrin (Tf), Hbb-b1, complement 

factor D (Cfd) and major histocompatibility complex gene RT1-Da.  Relative to 

monolayer culture 457 genes with lower expression in both cartilage and tendon 

with the highest ranking genes including: transgelin (Tagln), Had11b1 

(hydroxysteroid 11-beta dehydrogenase 1), collagen type VIII, alpha 1 subunit 

(Col8a1), C1qtnf5 (C1q and tumor necrosis factor related protein 5), Itga11 and 

Serpine1.  
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NATIVE TISSUE TO THREE-DIMENSIONAL CULTURES 

When differentially expressed genes in three-dimensional cultures are considered, 

Table 2.4b, 283 genes were found to be down-regulated in native tissue relative to 

both alginate and fibrin cultures.  In three-dimensional cultures AP-1 components 

Fos and Jun, the transmembrane glycoprotein osteoactivin gene Gpnmb, clusterin 

(Clu) and the bone morphogenetic protein receptor, type 1a (Bmpr1a) were all 

more highly expressed relative to native tissue. Top five ranked consensus genes in 

three-dimensional cultures were Errfi1 (ERBB receptor feedback inhibitor 1), 

Rasd1 (dexamethasone-induced Ras-related protein 1) and the serine peptidase 

inhibitor Serpina3n. Consensus gene lists are provided in SD2.13-2.14.  Genes 

found to be uniquely expressed in each condition are provided in SD2.15-SD2.18.

Comparison n.C n.T d.C d.T d.F Alginate Fibrin 

n.C 823 1503 1244 

n.T 1142 964 649 

d.C 1206 154 522 

d.T 734 135 113 294 

d.F 157 

Alginate 1108 900 158 

Fibrin 580 627 265 

Lower expression 
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Table 2.3: Matrix of  up- and down-regulated genes for selected pairwise comparisons involving different 
environmental conditions for chondrocytes and tenocytes.  Values indicate the number of  up- or down- regulated 
genes with a log2FC >+/- 0.5, FDR <0.01 and a log-odds ratio of  expression >0.  Duplicate Entrez gene identifiers 
are removed.  Table Code: n.C – native cartilage; n.T – native tendon; d.C – dedifferentiated chondrocytes; d.T – 
dedifferentiated tenocytes; d.F – dedifferentiated fibroblasts; Alginate – chondrocytes in alginate beads; Fibrin – 
tenocytes in fibrin constructs.  The fewest differentially expressed genes were found between cultured cells.      

Figure 2.5: Euler diagram indicating the proportion of  overlap between different pair-wise comparisons.  All 
comparisons are made with respect to the native tissue and duplicate Entrez gene entries are removed.  For 
example, in the union between genes differentially expressed in cartilage vs. monolayer chondrocytes and tendon 
vs. monolayer tenocytes, 861 genes are differentially expressed in both comparisons.  A: native cartilage vs. 
chondrocytes; B: native tendon vs. tenocytes; C, native cartilage vs. alginate beads; D, native tendon vs. fibrin 
constructs.    
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Gene Symbol log2FC FDR 

Myl1 
Tnnt3 

7.3 
6.8 

9.8e-19 
3.8e-18 

Mb 
Ttn 

5.6 
5.4 

6.5e-21 
3.0e-12 

Hfe2 
Pygm 

5.3 
5.2 

1.8e-15 
3.5e-15 

Des 
Cox8b 

5.2 
5.2 

4.1e-14 
3.2e-20 

Myot 
Pvalb 

4.9 
4.8 

2.7e-10 
6.1e-12 

Myh7 
Tnmd 

4.8 
4.7 

1.1e-10 
1.1e-08 

Gene Symbol log2FC FDR 

Np4 
Car2 

7.3 
6.8 

9.8e-19 
3.8e-18 

Prg2 
Ifitm6 

5.6 
5.4 

6.5e-21 
3.0e-12 

RGD1565970 
Retnlg 

5.3 
5.2 

1.8e-15 
3.5e-15 

Dmp1 
RGD1561694 

5.2 
5.2 

4.1e-14 
3.2e-20 

Ca1 
Ctsg 

4.9 
4.8 

2.7e-10 
6.1e-12 

Serpinb1a 
Mpo 

4.8 
4.7 

1.1e-10 
1.1e-08 

Gene Symbol Score 

Hba1 
Hbb 

6.7e-05 
1.3e-04 

Tf  
Hbb-b1 

4.6e-04 
8.7e-03 

Cfd 
RT1-DA 

1.1e-03 
1.3e-03 

Prg4 
Aif1 

1.3e-03 
2.1e-03 

Pla2g2a 
RGD1562323 

2.1e-03 
2.3e-03 

Gene Symbol Score 

Tagln 
Hsd11b1 

3.9e-04 
4.3e-04 

Col8a1 
Itga11 

4.6e-04 
7.0e-04 

C1qtnf5 
Serpine1 

8.7e-04 
1.1e-03 

Gpr176 
Nqo1 

1.6e-03 
1.7e-03 

Insig1 
Plod1 

1.9e-03 
2.3e-03 

Gene Symbol log2FC FDR 

Mmp3 
Abi3bp 

-5.4 
-4.4 

4.5e-07 
1.5e-10 

Prss23 
Nov 

-4.1 
-3.8 

9.9e-08 
1.0e-06 

Loxl2 
Bag3 

-3.7 
-3.6 

3.1e-11 
1.2e-10 

Pmp22 
Timp2 

-3.5 
-3.5 

9.6e-16 
6.3e-05 

Smoc1 
Aox1 

-3.4 
-3.3 

1.1e-13 
3.6e-08 

Nbl1 
Lgals1 

-3.3 
-3.2 

1.8e-11 
4.6e-06 

Gene Symbol log2FC FDR 

Pla2g7 
Spp1 

-3.6 
-3.4 

1.3e-09 
5.5e-06 

Prss35 
Gadd45a 

-3.2 
-2.9 

2.2e-08 
8.4e-08 

Fam198b 
Mgst2 

-2.8 
-2.7 

1.1e-05 
3.3e-08 

Mta1a 
Clec2d 

-2.6 
-2.5 

1.3e-05 
7.4e-10 

Col5a2 
Ddit3 

-2.3 
-2.2 

1.0e-04 
2.4e-05 

Smoc2 
Plod2 

-2.2 
-2.03 

3.9e-05 
8.8e-05 

Ranked consensus monolayer, down-regulated genes 

Ranked consensus native tissue, up-regulated genes 

Unique native cartilage vs.  
dedifferentiated chondrocytes 

Unique native tendon vs.  
dedifferentiated tenocytes 

H
igher expression 

Low
er expression 
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Table 2.4a: Differentially expressed genes and consensus comparisons described in Figure 2.5 considered in more detail for the transition from the 
native to monolayer condition.  Top genes unique to each pairwise comparison are presented with genes showing higher expression presented in the 
top frames and those showing lower expression in the bottom frames.  Consensus genes are presented as a prioritised gene list based upon a rank 
aggregation method using the adjusted p-value.  Standard gene symbols are presented, but not italicised.   

A B 
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Gene Symbol log2FC FDR 

Acta1 
Tnnc2 

8.6 
8.2 

1.3e-10 
8.0e-15 

Mylpf  
Myl1 

7.3 
7.3 

1.6e-15 
4.2e-14 

Tpm1 
Tnnt3 

6.9 
6.4 

1.4e-11 
5.3e-13 

Myoc 
Mb 

6.3 
5.7 

3.3e-19 
1.4e-16 

Tnmd 
Hfe2 

5.6 
5.3 

1.1e-06 
3.1e-11 

Pygm 
Ttn 

5.2 
5.2 

6.9e-11 
4.0e-07 

Gene Symbol Score 

Tf  
Fcer1g 

1.6e-3 
2.2e-3 

Hba1 
Hbb 

2.2e-3 
25.5e-3 

Pf4 
RT1-Da 

8.7e-3 
0.015 

Hbb-b1 
Coro1a 

0.018 
0.019 

Lyl1 
C1qc 

0.026 
0.031 

Gene Symbol Score 

Errfi1 
Rasd1 

5.5e-4 
1.2e-3 

Cp 
Serpin3n 

1.7e-3 
2.8e-3 

Usmg5 
Clu 

0.0107 
0.011 

Cfb 
LOC100364062 

0.012 
0.016 

Mtx1 
Rbbp7 

0.02 
0.03 

Gene Symbol log2FC FDR 

Mt1a 
Grem1 

-4.4 
-4.3 

4.2e-07 
2.7e-09 

Tnn 
Npy 

-3.5 
-3.3 

4.3e-06 
2.2e-03 

Prdx5 
Car9 

-3.2 
-3.2 

5.4e-06 
4.9e-07 

Mgst1 
Pla2g7 

-3.2 
-2.8 

1.2e-4 
2.6e-06 

Cthrc1 
LOC687649 

-2.8 
-2.7 

8.9e-05 
2.5e-11 

Enpp3 
Mmp11 

-2.6 
-2.6 

7.7e-05 
3.9e-05 

Gene Symbol log2FC FDR 

Defa5 
RatNP-3b 

8.1 
7.3 

1.5e-22 
1.1e-23 

Bglap 
Np4 

7.2 
6.7 

1.0e-11 
1.6e-25 

Car2 
Prg2 

6.4 
6.1 

7.1e-28 
1.6e-26 

Ifitm6 
Plac8 

5.9 
5.8 

2.4e-30 
4.8e-25 

Col2a1 
Retnlg 

5.7 
5.3 

7.5e-08 
5.8e-23 

Dmp1 
Arhgdib 

5.3 
5.2 

2.3e-23 
8.6e-26 

Gene Symbol log2FC FDR 

Ptgds 
MMP3 

-5.3 
-5.2 

4.7e-22 
9.1e-07 

Hsd11b1 
Aox1 

-5.2 
-4.7 

4.6e-12 
2.7e-11 

Nov 
Mlana 

-4.4 
-4.2 

1.1e-07 
1.2e-10 

Nbl1 
Fbln5 

-4.2 
-3.8 

4.1e-14 
1.0e-10 

Ier3 
Insig1 

-3.7 
-3.7 

7.2e-17 
1.7e-09 

Atf3 
Gdf15 

-3.6 
-3.5 

1.5e-24 
1.3e-16 

Ranked consensus 3D cultures, down-regulated genes 

Ranked consensus native tissue, up-regulated genes 

Unique native cartilage vs.  
alginate cultures 

Unique native tendon vs.  
fibrin constructs 

H
igher expression 

Low
er expression 
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Table 2.4b: Differentially expressed genes and consensus comparisons described in Figure 2.5 considered in more detail for the transition from 
the native to three-dimensional culture condition.  Top genes unique to each pairwise comparison are presented with genes showing higher 
expression presented in the top frames and those showing lower expression in the bottom frames.  Consensus genes are presented as a prioritised 
gene list based upon a rank aggregation method using the adjusted p-value.  Standard gene symbols are presented, but not italicised.   
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2.3.4: Gene Ontology Functional Annotation  

 

NATIVE TISSUE 

All terms reported are significantly enriched (p<0.001) after adjustment for 

multiple testing.  The genes most highly expressed in native cartilage were 

significantly associated with the gene ontology biological process terms ‘immune 

system process’, ‘immune response’, ‘cell cycle’ and ‘defense response’ using a 

hypergeometric analysis.  

For native tendon the most highly enriched terms were those relating to ‘muscle 

system process’, ‘muscle contraction’, and ‘immune system process’.  The gene 

expression profile was also associated with ‘skeletal muscle tissue development’ 

and ‘actin filament-based process’.  A full list is available in SD2.19-SD2.24. 

MONOLAYER 

Dedifferentiated (monolayer) chondrocytes and tenocytes demonstrated some 

overlap in the biological process gene ontology terms that were significantly 

enriched.  The terms ‘single-organism metabolic process’, ‘sterol biosynthetic 

process’ and ‘small molecule metabolic process’ were associated with genes more 

highly expressed in dedifferentiated cells.  The gene expression profile in 

monolayer cells was described by development associated terms ‘anatomical 

structure development’ and ‘developmental process’; terms associated with 

‘extracellular matrix organisation’ and ‘cell substrate adhesion’ were also enriched 

for both cell types.  In tenocytes ‘cell redox homeostasis’ was the most highly 

enriched term; in chondrocytes ‘oxidation-reduction process’ was enriched.   
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THREE-DIMENSIONAL CULTURE 

In the three-dimensional culture context genes more highly expressed in alginate 

beads containing chondrocytes were associated with biological processes terms 

related to: ‘single organism metabolic process’, ‘oxidation-reduction process’, 

‘oxoacid metabolic process’, ‘response to oxidative stress’ and ‘lipid metabolic 

process’.  The gene expression profile was also described by developmental terms 

relating to ‘vasculature development’, ‘cardiovascular development’, ‘post-

embryonic development’ and ‘regulation of anatomical structure morphogenesis’.    

Fibrin constructs containing tenocytes were enriched for biological process terms 

associated with ‘translation’, ‘metabolic process’, ‘collagen catabolic process’ and 

‘single-organism metabolic process’.  The terms ‘response to oxidative stress’ and 

‘apoptotic signaling pathway’ are common to both fibrin and alginate cultures. 

METABOLIC FUNCTIONS AND CELLULAR COMPARTMENTS 

To define the common metabolic functions and cellular locations of differentially 

expressed gene in different conditions functional annotations for ‘metabolic 

function’ and ‘cellular compartments’ for consensus genes were analysed.   

For consensus genes derived from the native tissue to monolayer comparison 

‘actin filament binding’, ‘integrin binding’ and ‘cytoskeletal protein binding’ were 

enriched.  For native to three-dimensional culture comparison ‘lipid particle 

binding’, ‘glycosaminoglycan binding’ and ‘carbohydrate binding’ were enriched 

metabolic functions.  The term ‘oxidoreductase activity’ was common to both 

analyses.  The cellular compartment annotations was described by the terms: 

‘cytoplasmic part’, ‘membrane-bound organelle’ and ‘cytoplasm’ in both analyses, 

SD2.23-SD2.24.     
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Differentially expressed genes were also functionally annotated using the 

Ingenuity® Pathway Analysis knowledge base to include further disease and 

physiology annotations.  The summary annotations for the three comparisons, 

native – monolayer – 3D, for cartilage (Table 2.5a) and tendon (Table 2.5b) are 

presented.  
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Comparison  IPA descriptors  

Native cartilage to monolayer  DD: Inflammatory response | Connective Tissue Disorders | Skeletal muscle disorders. 
MCF: Cell growth and proliferation | Cell movement | Cell death and survival  
PS: Immune Cell Trafficking | Hematological system development | Tissue morphology | Tissue 
development  

Monolayer to alginate  DD: Dermatological disease and conditions | Cancer | Cardiovascular disease | Neurological disease 
| Skeletal and muscular disorders 
MCF: Cell death and survival | Cell growth and proliferation | Cellular movement  
PS: Immune cell trafficking | Hematological system development and function | Cardiovascular 
system development and function | Organismal development  

Alginate to Native cartilage DD:  Inflammatory response | Connective tissue disorders | Inflammatory disease | Skeletal muscle 
disorders | Immunological disease; 
MCF:  Cellular movement | Cellular growth and proliferation | Cell death and survival | Cell-to-cell 
signalling and interaction  
PS:  Immune cell trafficking |  Hematological system development and function | Tissue morphology 
| Tissue development | Cardiovascular system development and function  

Table 2.5a: Functional descriptors of  differentially expressed gene lists derived using Ingenuity Pathway Analysis for chondrocyte comparisons.  
Legend: DD – Diseases and Disorders; MCF: Molecular and Cellular Function; PS: Physiological System Development and Function.  These 
give another level of  analysis of  the data; within each parent term lie numerous ‘child’ terms carrying their own p-values and activation z-scores.  
The comparison of  alginate to native cartilage uses three-dimensional cultures as the baseline condition consistent with pathway topology 
analysis figures.    
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Comparison  IPA descriptors  

Native tendon to monolayer  DD:  Neurological disease | Psychological disorders | Skeletal and muscular disorders | Hereditary 
disorder | Organismal injury and abnormalities   
MCF: Cell growth and proliferation | Cell death and survival | Cell morphology | Cellular movement 
PS: Organ morphology | Skeletal and muscular system development and function | Cardiovascular 
system development and function | Tissue morphology | Embryonic development  

Monolayer to fibrin  DD: Dermatological disease and conditions | Neurological disease|  Connective tissue disorders | 
Hereditary disorder | Opthalmic disease 
MCF: Protein synthesis | Cell death and survival | Cell growth and proliferation | Cellular movement 
| Cellular development  
PS: Skeletal and muscular system development | Cardiovascular system development and function | 
Organismal development | Tissue development | Connective tissue development and function  

Fibrin to native tendon DD:  Neurological disease | Cardiovascular disease | Skeletal and muscular disorders | Psychological 
disorders | Hereditary disorder  
MCF:  Cellular movement | Cellular growth and proliferation | Cell death and survival | Cell-to-cell 
signalling and interaction  
PS:  Organ morphology | Skeletal and muscular system development and function | Cardiovascular 
system development and function | Embryonic development | Organ development  

Table 2.5b: Functional descriptors of  differentially expressed gene lists derived using Ingenuity Pathway Analysis for tenocyte comparisons.  
Legend: DD – Diseases and Disorders; MCF: Molecular and Cellular Function; PS: Physiological System Development and Function.  These 
give another level of  analysis of  the data; within each parent term lie numerous ‘child’ terms carrying their own p-values and activation z-scores.   
The comparison of  fibrin cultures to native tendon uses three-dimensional cultures as the baseline condition consistent with pathway topology 
analysis figures.  
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2.3.5: Pathway topology - prediction of perturbed pathways  

A pathway topology technique was employed (SPIA), which makes use of both 

differentially expressed gene effect size and pathway topology to predict 

perturbations of KEGG canonical signalling pathways and predicts an activation 

state.  Both positive and negative log2-fold-changes from comparisons were used 

as inputs to SPIA to provide an adequate description of each transition. Ingenuity® 

Pathway Analysis canonical pathways, derived from over-representation analysis 

methods, were also assessed.  The most perturbed pathways are provided in 

SD2.25-2.26 with annotated HTML links to KEGG pathways.       

Native to monolayer transition 

Consistently the most significantly perturbed pathways for the native to monolayer 

transition for cartilage were ‘cell cycle’, ‘systemic lupus erythematosus’ and 

‘chemokine signalling pathway’, Figure 2.6.  For both cartilage and tendon native 

to monolayer comparisons the canonical pathways ‘rheumatoid arthritis’ and 

‘systemic lupus erythematosus’ were predicted to be activated.  Specifically in 

tendon to monolayer ‘focal adhesion’ and ‘complement and coagulation cascades’ 

were predicted to be activated, Figure 2.7, whilst the canonical pathway 

‘Parkinson’s disease’ was predicted to be inhibited.    

Monolayer to three-dimensional culture transition 

In the transition from monolayer to alginate cultures chondrocytes were predicted 

to have activation of the pathways ‘focal adhesion’, ‘PI-3K/Akt signalling 

pathway’ and ‘ECM-receptor interaction; ‘chemokine signalling pathway’ was the 

most significant pathway and this was predicted to be inhibited; this was also true 
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for the monolayer tenocyte to fibrin culture transition.  In the latter comparison 

the ‘HIF1-signalling pathway’ was predicted to be activated. 
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|KEGG   
+ Focal Adhesion    
+ PI3K-Akt signalling pathway   
+ ECM-receptor interaction   
 
- Chemokine signalling pathway 
- Huntington’s disease  
- Alzheimer’s disease 

|KEGG  
+ Systemic Lupus erythematosus  
+ Chemokine signalling pathway 
+ Rheumatoid arthritis  
-  Cell cycle 
-  Transcriptional misregulation in cancer 
-  HIF-1 signalling pathway 

|IPA  
•  Acute phase response signalling; 
•  LXR/RXR activation; 
•  Complement system 
•  IL-17a signalling in fibroblasts 

|IPA 
•  Integrin signalling 
•  Atherosclerosis signalling 
•  Leukocyte extravasation signalling 
 

Native chondrocytes 

Monolayer chondrocytes 

3D culture chondrocytes 

Legend 

Pairwise comparison  

Common upstream regulators  

TP53, TGFβ1, HRAS, 
lipopolysaccharide, TNF,  
IL6,MYC 

|IPA 
•  Mismatch repair in eukaryotes 
•  Heme biosynthesis II 
•  NRF2-mediated oxidative stress  
     response 
•  Granulocyte adhesion  
     and diapedesis  

|KEGG   
+ Cell cycle;  
+ Osteoclast differentiation; 
+ TNF signalling pathway.  
- Systemic Lupus erythematosus ; 
- Rheumatoid arthritis; 
- PPAR signalling pathway. 

Figure 2.6: Schematic Diagram: Using genes found to be differentially 
expressed in three pairwise comparisons, and their associated effect size 
(log2 fold-change), canonical KEGG pathway activation was inferred 
using a pathway topology approach.  Pathways are predicted to be 
activated (+) or inhibited (-) based upon global perturbation score and 
FDR-adjusted p-value.  Arrows indicate the direction of  the pairwise 
comparison. Predicted pathways from Ingenuity Pathway Analysis (IPA) 
are also shown, but do not use the pathway topology approach.  
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Figure 2.7: Schematic Diagram: Using genes found to be differentially 
expressed in three pairwise comparisons, and their associated effect 
size (log2 fold-change), canonical KEGG pathway activation was 
inferred using a pathway topology approach.  Pathways are predicted 
to be activated (+) or inhibited (-) based upon global perturbation 
score and FDR-adjusted p-value.  Arrows indicate the direction of  the 
pairwise comparison.  Predicted pathways from Ingenuity Pathway 
Analysis (IPA) are also shown but do not use the pathway topology 
approach.     
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2.3.6: Inference of Upstream Regulators from Gene Expression Data  

Upstream regulators of genes defined as differentially expressed in comparisons 

were inferred using Ingenuity® Pathway Analysis (IPA).   

Top Scoring Upstream Regulators  

The top scoring upstream regulators were ordered by overlap p-value. In the 

cartilage to monolayer comparison the top upstream regulators were inferred to be 

Tp53, Tgf-β1, lipopolysaccharide (LPS), Hras, and Myc (p < 1.86e-18).  Of the two 

mechanistic networks generated from the top scoring regulators (z-scores) Tp53 (-

3.68, p = 9.01e-32, inhibited) contained 14 regulators with down-stream effects on 

435 dataset genes; Tgf-β1 (-2.6, p = 2.04e-26 inhibited) targeted 23 regulators with 

effects on 679 downstream genes represented in the differential gene expression 

analysis, Figure 2.8.  For the Tgf-β1 mechanistic network downstream targets of 

the root node included: Smad7, Smad3, Il-6, Jun, Fos, Cebpb, and Nf-κbia.  Of these 

Smad7 expression was down-regulated in dedifferentiated chondrocytes in culture.    

For native tendon compared to monolayer-expanded tenocytes the top scoring 

upstream regulators by overlap p-value were Tgf-β1, Hras, dexamethasone, Myc and 

Kras.  Only Kras (-2.3, p=1.2e-16, inhibited) had a predicted activation score above 

the threshold set by IPA and was predicted to be inhibited, however a Tgf-β1 

network was also predicted to be inhibited (-1.04, p=4e-23) as for chondrocytes. 

Only Myod1 was within the differential expression lists (log2FC=1.67) and 

predicted to be activated (2.45, p=1.04e-12).  This regulator was upstream of 14 

core regulators and effected 237 genes within the expression dataset, Figure 2.9.
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Figure 2.8: Ingenuity mechanistic network formed from Illumina data for native cartilage to monolayer transition.  Up-stream 
master regulator predicted as Tgf-β1 with downstream targets predicted from Ingenuity knowledge base and differentially expressed 
genes (figure legend) – genes more highly expressed in native chondrocytes are shown in graduate red, those down-regulated in 
monolayer culture are shown in graduated green.  Genes are grouped into general functional groups including extra-cellular matrix.  
Genes in the mechanistic network are annotated with function and disease terms: ‘differentiation of  chondrocytes’ (13 genes, 
p=1.5e-17); ‘development of  connective tissue cells’ (19 genes, p=2.13e-21); ‘arthritis’ (32 genes, p=5.7e-22). Smad7, Tgf-β1 -inhibitor, is 
highlighted to demonstrate a predicted mechanism for effects on Col2a1 expression.  Chondrogenesis regulator Sox9 is predicted as 
activated in the network. Protein nomenclature used consistent with IPA output.    
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Figure 2.9: Ingenuity mechanistic network formed from Illumina data for native tendon to monolayer transition. Highest scoring up-stream master 
regulator predicted was Kras with downstream targets predicted from Ingenuity knowledge base and differentially expressed genes (figure legend). Genes in 
the mechanistic network are annotated with function and disease terms: ‘differentiation of  connective tissue’ (29 genes, p=6.4e-25); ‘epithelial-mesenchyme 
transition’ (14 genes, p=2.03e-16); ‘fibrosis’ (27 genes, p=6.33e-26); ‘development of  cardiovascular tissue’ (20 genes, 6.6e-17).  Additional annotations given 
for tendon differentiation marker, tenomodulin (Tnmd) to highlight the lack of  tendon-specific annotations.  Key elements in the network include Cnn2/
connective tissue growth factor, gremlin 1 (Grem1), and inhibitor of  DNA binding 1 (Id1, a bHLH transcription factor).  Tendon morphogenesis factors 
scleraxis (Scx) and mohawk (Mkx) were added to the network provide tendon context.  Scx is predicted to be inhibited in the native tendon context (the 
converse predicted for Mkx). Protein nomenclature used consistent with IPA output.      
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2.3.7: Differential expression validation: qPCR 

Genes found to be differentially expressed in microarray analysis, or genes with 

known roles in cartilage and tendon morphogenesis were selected for qPCR 

validation.   

Seven genes were selected for cartilage and chondrocyte gene expression 

validation by qPCR.  These included: cartilage differentiation marker Col2a1, 

higher expression in native cartilage, hindlimb-patterning homeobox Pitx1, found 

to be more highly expressed in monolayer chondrocytes, and two homeobox 

genes found to be more highly expressed in native cartilage and tendon than 

monolayer, Satb2 and Hopx.  The chondrocyte development associated gene Sox9, 

predicted to be activated in cartilage by IPA, was selected, Figure 2.8.   Two 

genes with mesenchyme-associated expression, found to be more highly expressed 

in monolayer, Prnp and Thy1, were also assessed.   

For tenocytes and tendon the differentiation marker Tnmd was chosen for 

validation (more highly expressed in tendon than monolayer).  Tendon-associated 

genes Mkx (differentiation) and Scx and Mustn1 (development) were not 

differentially expressed, but were predicted by IPA to be activate and inhibited, 

respectively, in native tissue, Figure 2.9.  The Drosophila tendon development-

associated gene homolog Slit3, shown to be higher in monolayer tenocytes, was 

also selected.  

 There was general concordance in the direction and magnitude of expression 

changes between the three conditions for cartilage and tendon, although not all 

comparisons were found to be statistically significant.  In summary, the hindlimb 

development homeobox gene Pitx1 was significantly higher (p<0.01) in alginate 
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beads than either native or monolayer chondrocytes, Figure 2.10A.  The cartilage 

development-associated homeobox gene Satb2 was significantly more highly 

expressed in native cartilage than in either of the culture conditions (p<0.05).  The 

corollary was true for Prnp, which was more highly expressed in culture conditions 

than in native cartilage (p<0.05), Figure 2.10B.  Tenogenesis-associated Mustn1 

trended toward higher expression in native tendon than in monolayer cells 

(p=0.057), but the only significantly different was for tenomodulin (Tnmd) for 

native tendon compared to fibrin constructs (p<0.05), Figure 2.11.  Significant 

differences in expression were not shown for Slit3, Sox9 or Thy-1 in tendon, 

monolayer or fibrin culture samples (not shown).   

In summary, these findings suggest that two homeobox genes, Pitx1 and Satb2, 

may represent useful differentiation markers in chondrocytes.  Dedifferentiation 

was confirmed by the reduction in Col2a1 and Tnmd expression in monolayer 

chondrocytes and tenocytes respectively, although this was only significant for the 

latter.  Expression of developmental markers (Scx, Sox9) was equivocal in culture 

systems using qPCR. 
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Figure 2.10A: Validation of  expression changes in chondrocytes in three conditions 
(x-axis):  2D – monolayer culture at passage 5; 3D – alginate beads; Native – whole 
cartilage tissue.  Boxplots present the distribution of  the linear transformed Ct data 
(2^-dCt, y-axis). Sox9, a key regulator of  chondrogenesis, was considered. Sox9 
expression is reduced in monolayer culture, but expression is higher in alginate 
cultures than in monolayer, but not significantly so.  Significance code: * - p<0.05; ** 
- p<0.01; *** - p<0.001 
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2.10B: Validation of  expression changes in chondrocytes in three conditions 
(x-axis):  2D – monolayer culture at passage 5; 3D – alginate beads; Native – 
whole cartilage tissue.  Boxplots present the distribution of  the linear 
transformed Ct data (2^-dCt, y-axis). Significance code: * - p<0.05; ** - 
p<0.01; *** - p<0.001.  Mesenchymal stem cell markers Prnp, prion, and Thy-1 
show higher expression in monolayer cultures; this is significant for Prnp.  
This analysis is performed using cartilage, monolayer chondrocytes and 
alginate beads.   
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Figure 2.11: Validation of  expression changes in tenoocytes in three 
conditions (x-axis):  2D – monolayer culture at passage 5; 3D – fibrin cultures; 
Native – whole tendon tissue.  Boxplots present the distribution of  the linear 
transformed Ct data (2^-dCt, y-axis).  Tenomodulin (Tnmd) expression was 
significantly lower in fibrin than in native tendon.  Although not represented in 
the differential expression analysis scleraxis, Scx, a key regulator of  tenogenesis, 
was also considered.  Scleraxis, and Mohawk (Mkx) expression was not 
significantly different across conditions, however, expression was low in fibrin 
cultures.   
Significance code: * - p<0.05; ** - p<0.01; *** - p<0.001.  

�"



 
124 

2.3.8: Cell viability in alginate bead cultures 

A trypan-blue exclusion assay was used to define dead chondrocytes or tenocytes 

in alginate beads over a period of fourteen days, Figure 2.12, SD2.27.  There was 

a statistically significant increase in the number of chondrocytes showing positive 

staining at all time points relative to the zero time point (p<0.01).  There was no 

significant difference between chondrocyte and tenocyte values at any time point.  

Although the same trend for reduced viability with time was evident for tenocytes 

in alginate beads there was no significant reduction relative to the zero time point.   

2.3.9: Profiling of homeobox genes in adult cartilage and tendon 
shows evidence of preserved anatomical topographical expression 

The finding of differential expression of homeobox genes, including the hind-limb 

development associated Pitx1, prompted an investigation into the expression of 

homeobox genes associated with topographical anatomy in adult cartilage and 

tendon.  The expression profiles of nineteen homeodomain genes, at four 

anatomical locations, were determined for cartilage and tendon. For the majority 

of genes a significant difference in gene expression between the four tissue sources 

could not be demonstrated, however statistically significant different expression 

was found for Pitx1, Tbx4, Tbx5, Lmx1b, Tbx15, Hoxa13 and Prrx2, as presented 

in Figure 2.13-2.15.  
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Figure 2.12: Viability assay for cells in alginate beads over a period of  14 days (x-axis) using a trypan-
blue exclusion test.  Data points show mean (n=4, technical triplicates) and standard error for 
percentage of  positive/dead cells (y-axis) for chondrocytes (solid) and tenoytes (dash). Significance 
code – as before.  A significant reduction in cell viability for chondrocytes in alginate beads was found 
between day 0 and all other time-points. Significance code: * - p<0.05; ** - p<0.01; *** - p<0.001; nsd 
– no significant difference.   
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Figure 2.13: Z-scores are derived from the studentised, log2 transformed dCt values, higher z-scores are 
associated with higher expression.  Hip and shoulder cartilage, along with forelimb (FL) and hindlimb 
(HL) deep flexor tendon (DDFT) are surveyed for differential expression of  homeobox genes.  Each 
biological replicate is represented in data points.  Significance code: ‘*’ – p<0.05; “**’ – p<0.01; ‘***” – 
p<0.001. There was evidence of  a significant difference in Pitx1 expression between the fore- and hind-
limb tendons.  Hind-limb tendon demonstrated significantly higher expression of  Tbx4 relative to hip 
cartilage.  Relative to hip cartilage Tbx5 was more highly expressed in all other samples.   
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Figure 2.14: Z-scores are derived from the studentised, log2 transformed dCt values.  Hip and shoulder cartilage, 
along with forelimb (FL) and hindlimb (HL) deep flexor tendon (DDFT) are surveyed for differential 
expression of  homeobox genes.  Significance code: ‘*’ – p<0.05; “**’ – p<0.01.  Significant differences are found 
between hip cartilage expression of  Hoxa13 and tendon expression.  Shoulder cartilage exhibits higher 
expression of  Lmx1b than hip, but lower expression of  Prrx2 relative to the fore limb DDFT.    
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Figure 2.15: Z-scores are derived from the studentised, log2 transformed dCt values.  Hip and shoulder cartilage, 
along with forelimb (FL) and hindlimb (HL) deep flexor tendon (DDFT) are surveyed for differential 
expression of  homeobox genes.  Significance code: ‘*’ – p<0.05; “**’ – p<0.01.  Significant differences are found 
between hip cartilage and tendon for Mustn1 and Mkx expression – both are more highly expressed in tendon.  
Tbx15 is shown to be more highly expressed in fore limb DDFT than either cartilage source.   
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2.3.10:  Histology and Immunohistochemistry 

In order to validate findings from differential expression analysis in native tissue 

two target proteins were chosen.  For tendon the fast skeletal muscle-associated 

troponin I, type 2 (encoded by Tnni2) was selected to define the presence of 

skeletal muscle-associated transcript expression in tendon. For cartilage the 

cathelicidin-associated anti-microbial peptide, Cramp/Camp, was considered as this 

represented a gene more commonly associated with polymorphonuclear cell 

expression and so would investigate the presence of innate immune responses in 

cartilage tissue or contamination from structures deep to the hyaline cartilage.    

TENDON 

It was not possible, using the described antibody and methodology, to 

categorically demonstrate specificity of staining for troponin I, fast skeletal muscle 

in tendon tissue, Figures 2.16 to 2.18.  Strong, non-specific staining of the IgG 

isotype control (Figure 2.17) precluded further interpretation of low-level positive 

staining that was demonstrable in the myotendinous region of test studies (Figure 

2.18).  Furthermore, inconsistency of positive staining with tissue controls 

(associated skeletal muscle) did not allow for unambiguous interpretation of these 

results.  With these sections, however, the deep invaginations of skeletal muscle 

into the Achilles tendon at the myotendinous junction were noted (Figure 2.16).    
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Figure 2.16: H&E: Proximal Achilles tendon and gastrocnemius muscle. 
A:x4; B:x10; C:x40. Regions of  interest are highlighted with dashed boxes.  
Scale provided in lower right corner.  Figure legend: SM: skeletal muscle; 
AT: Achilles tendon; MTJ: myotendinous junction. Boxes and associated 
upper-case letters indicate region-of-interest magnified in subsequent image.    
 
Skeletal muscle shows deep penetration of  fibres into the Achilles tendon 
and close apposition between tendon and muscle fibres.  
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Figure 2.17: Isotype control: Proximal Achilles tendon and gastrocnemius 
muscle.  Sheep IgG isotype control (40ug/mL). A:x4; B:x10; C:x40.  Counter 
stained with Delafield’s hemeatoxylin.  Anti-sheep secondary antibody and 
enhancer applied as described by the manufacturer.  DAB exposure: 3mins. 
Boxes and associated upper-case letters indicate region-of-interest magnified in 
subsequent image.  Scale provided in lower right corner.  
 
Figure legend: SM: skeletal muscle; AT: Achilles tendon; MTJ: myotendinous 
junction.  
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Figure 2.18:  TNNI2 test: Proximal Achilles tendon and gastrocnemius 
muscle.  TNNI2 (40ug/mL). A:x4; B:x10; C:x40.  Counter stained with 
Delafield’s hemeatoxylin.  Anti-sheep secondary antibody and enhancer 
applied as described by the manufacturer.  DAB exposure: 3mins. Boxes and 
associated upper-case letters indicate region-of-interest magnified in 
subsequent image. Scale provided in lower right corner. No primary and DAB-
only (no H2O2) controls did not show staining. In comparison to IgG isotope 
control the degree of  positive staining is considerably less robust. The 
specificity of  staining is not consistent within the skeletal muscle; incursion of  
low grade staining at the myotendinous junction is evident (*).    
 
 
Figure legend: SM: skeletal muscle; AT: Achilles tendon; MT: myotendinous 
junction.   
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CARTILAGE  

Longitudinal sections of the rat femoro-tibial joint demonstrated the close association 

of sub-chondral blood vessels and the articular cartilage in the rat, Figures 2.19-2.20.  

In the proximal tibia there was evidence for the breaching of the osteochondral junction 

by blood vessels, which may infiltrate the calcified cartilage layer.    As with the tendon 

samples high background staining with the isotype control (Figure 2.21) made 

interpretation of low-grade staining of the superficial layer chondrocytes with the 

CRAMP antibody difficult, Figures 2.22.  
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Figure 2.19: Longitudinal section through rat femoro-tibial joint. 
Haematoxylin and eosin.  A:x4; B:x10; C:x40. Scale provided in lower 
right corner. Figure legends: j: joint space f: femur; t: tibia. Boxes and 
associated upper-case letters indicate region-of-interest magnified in 
subsequent image.  
 
Samples show the typical hierarchical histology of  articular hyaline 
cartilage with columns of  polyhedral chondrocytes becoming flattened 
towards the articular surface (*).  
 
Extracellular matrix of  hyaline cartilage stains pale pink.  Artefactual 
spaces around chondrocytes are evident (•).  Bone marrow caverns are 
evident within the endochondral region as are blood-filled canals 
(arrows).  The classical ‘tidemark’ defining the separation between the 
calcified cartilage and the subchondral bone is not clear in the rat.      
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Figure 2.20: Longitudinal section through rat femoro-tibial joint. Masson’s 
trichrome.  A:x4; B:x10; C:x40. Scale provided in lower right corner. Figure 
legends: j: joint space f: femur; t: tibia.  Collagen and bone stain green/blue; 
cytoplasm has a basophilic colouring. Boxes and associated upper-case letters 
indicate region-of-interest magnified in subsequent image.  
 
Bone marrow caverns are evident within the endochondral region as are blood 
filled canals (arrows). There is evidence of  blood vessels encroaching and 
possibly penetrating the calcified portion of  the articular cartilage (*).  
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Figure 2.21: IgG isotype control: Longitudinal section through rat femoro-
tibial joint. Haematoxylin and eosin.  A:x4; B:x10; C:x40. Scale provided in 
lower right corner. Rabbit IgG control (10ug/mL). Secondary antibody anti-
rabbit HRP polymer. Boxes and associated upper-case letters indicate region-
of-interest magnified in subsequent image. Figure legends: j: joint space f: 
femur; t: tibia; m: meniscus.   
 
Strong staining is evident within chondrocytes of  superficial layer of  the 
articular cartilage (arrow).  Some staining is also evident within the meniscus 
and the bone marrow chambers (*).   
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Figure 2.22: CRAMP antibody test: Longitudinal section through rat 
femoro-tibial joint. Haematoxylin and eosin.  A:x4; B:x10; C:x40. Scale 
provided in lower right corner of  each image. Rabbit anti-CRAMP (10ug/
mL).  Secondary antibody anti-rabbit HRP polymer. No primary and DAB-
only (no H2O2) controls did not show staining. Boxes and associated upper-
case letters indicate region-of-interest magnified in subsequent image. Figure 
legends: j: joint space; t: tibia; m: meniscus.  
 
Some staining is evident within chondrocytes of  superficial layer of  the 
articular cartilage (arrow).  
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2.4: Discussion 
 

This study explored the phenotypic plasticity of chondrocytes and tenocytes, 

through induction of dedifferentiation in monolayer and subsequent 

redifferentiation in standard three-dimensional cultures, by global gene expression 

analysis.  By defining a reference data set of prioritized genes, implicated signalling 

pathways and infered upstream regulators across three conditions a clearer 

understanding of the mechanisms governing dedifferentiation was sought. These 

objectives contributed to the wider goal of exploration of mechanisms that may 

contribute to degenerative phenotypes in cartilage and tendon and could inform 

the rational development of organotypic culture systems in tissue engineering.   

The gene expression profiles of native, monolayer and standard three-dimensional 

culture systems provided the first comparative data set of its kind. Novel results 

demonstrated an inadequate restitution of native tissue expression profiles by 

commonly used three-dimensional culture models and offered an alternative 

description. In addition, convergence of gene expression profiles in monolayer 

culture, and the expression of development-associated genes in these cells, 

suggested dedifferentiation could represent a permissive phenotype worthy of 

further investigation for re-generation of musculoskeletal tissues.  In particular, the 

expression of a hind-limb development-associated homeobox gene, Pitx1, in 

monolayer chondrocytes was validated indicating that further investigation of 

homeobox genes in dedifferentiation is warranted. 
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2.4.1: Monolayer cell culture gene expression profiles converge  

Dedifferentiation of chondrocytes and tenocytes in monolayer was defined by the 

lower expression of Col2a1 and Tnmd respectively, the latter confirmed by qPCR.   

A striking finding of this study was the convergence of the gene expression 

profiles for chondrocytes, tenocytes and dermal fibroblasts at passage five.  Fewer 

than three-hundred genes with a statistically significant differential expression 

were found between chondrocytes and tenocytes, and of the most highly 

differentially expressed only twenty-five had a log2 fold-change greater than two.     

Given that monolayer culture is a fundamental research tool there is little scrutiny 

or comparison of gene expression profiles across cell types. By comparing 

tenocytes and chondrocytes in parallel it was possible to demonstrate this 

convergence.  It is important to note that although chondrocytes and tenocytes 

were often harvested from the same animal, and from an isogenic line, pairing of 

tissue samples for microarray was not a feature of the initial experimental plan and 

convergence based upon replicate origin is unlikely.    

Tissues are complex as they comprise three-dimensional hierarchical structure 

often with heterogenous cell populations, a vascular and neural supply, with 

caveats related to cartilage and tendon structure.  Given the reduction in the 

complexity of the monolayer environment this finding is perhaps not surprising – 

once a proliferative phenotype is induced, genes concerned with DNA replication 

and metabolism predominate. Although this phenomenon has not been described 

before for cartilage and tendon cells others have reported comparable expression 

profile convergence (Sandberg and Ernberg 2005, Zaitseva, Vollenhoven et al. 

2006, Halfon, Abramov et al. 2011).  In a meta-analysis of human, mouse and rat 



 
140 

transcriptome profiles Prasad, et al (2013) demonstrated that, regardless of the 

tissue origin, cells in culture were convergent in their expression profiles and 

divergent from their tissues of origin in an order of magnitude comparable to the 

difference between tissue types (Prasad, Kumar et al. 2013).    

If phenotypic drift and convergence of gene expression profiles in monolayer 

culture is a consistent feature of proliferation of chondrocytes and tenocytes then 

concerns regarding the validity and veracity of findings from monolayer studies 

should be considered. Furthermore, given that periods of expansion in monolayer 

cell culture are a pre-requisite for autologous cell therapeutic interventions 

(Brittberg, Lindahl et al. 1994) in musculoskeletal disease the nature of the cells re-

implanted may be, crucially, functionally divergent from those initially harvested.   

There are few studies that explore the global gene expression profiles of 

chondrocytes or tenocytes in monolayer.  Ma, et al (2013) reported 93 genes that 

were consistently expressed at lower levels in passage 2 and passage 8 cultured 

chondrocytes compared to passage 0 (Ma, Leijten et al. 2013).  There was broad 

overlap with the findings presented here for native chondrocytes with Chi3l2, 

Col2a1, Frzb, Sox9 and Mmp3 showing reduced expression in monolayer; fewer 

were more highly expressed in monolayer and these included Twist1, Gpnmb, 

Smad3, Pparγ, and Tagln.  Long-term culture (up to three weeks) of tenocytes in 

monolayer was found to result in a significant reduction in Tnmd expression across 

all time points, but variable expression of Scx (Güngörmüş and Kolankaya 2012), 

consistent with the qPCR findings presented in this study.   

Failure to define statistically significant differences in gene expression in all gene 

chosen for qPCR validation may have arisen from only using three biological 



 
141 

replicates per gene, use of ill-defined and heterogenous cell populations, primers 

of variable efficiency, or there indeed being no difference in expression.  

Clarification with larger, independent samples from enriched sub-populations may 

be required.     

2.4.2:  Establishing a qualitative definition for dedifferentiated cells 

Given that chondroyctes and tenocytes in monolayer culture exhibit gene 

expression convergence some attempt must be made to define what this 

phenotype is; to concur with the definition of dedifferentiation as a regenerative 

mechanism this phenotype should be pre-differentiated and lineage-associated, i.e. 

represent a primitive musculoskeletal cell.    

Comparisons with mesenchymal stem/stromal cells (MSC) was not a feature of 

this study, however the increased expression of a number genes associated with 

mesenchymal condensation and MSC identification indicated that the reduction in 

the expression of markers of differentiated status was not just a consequence of 

the reduction in the complexity of the samples, rather there was a global 

divergence from the native chondrocyte/tenocyte phenotype towards a 

homogenous, dedifferentiated phenotype.   

The expression of the MSC cell-surface marker Thy-1/CD90 (Dominici, Le Blanc 

et al. 2006, Maleki, Ghanbarvand et al. 2014) and Prnp/prion gene expression, 

generally associated with embryonic stem cell differentiation studies (Lee and 

Baskakov 2010, Miranda, Pericuesta et al. 2011), in chondrocytes prompted 

consideration of dedifferentiation in monolayer as representing a proliferative ‘pre-

differentiated’ state in the chondrocyte.  For this to be the case it may be expected 

that overlap between developmental musculoskeletal gene expression profiles and 
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monolayer expanded chondrocytes and tenocytes might occur.  Although a crude 

approach, the differential expression list for cartilage versus monolayer 

chondrocytes presented in this study shared 159 genes with the study by 

(Cameron, Belluoccio et al. 2009) considering the transcriptomic profile of in vivo 

murine chondrogenesis between E11.5 and 13.5.  These genes included: Pitx1, 

Thy1, Wisp1, Six1, Scrg1, S100a, Myh10, Il16, Frzb and Ctgf, which have been 

presented in this study.   

Applying this ‘paint-by-numbers’ approach to results from the first published 

global gene expression study of tendon development by Havis, et al (2014) reveals 

a number of genes differentially expressed between E11.5 and 14.5 familiar to the 

differential analysis for tendon versus monolayer tenocytes (Havis, Bonnin et al. 

2014).  A full gene list was not available, however, Tnmd, Dpt, Clu, Mfap5, Thy1, 

and Bgn, which were associated with higher expression at E14.5, were also 

differentially expressed in this study.   Notably Scx was not a differentially 

expressed gene in the Havis study, but differential expression of cartilage-

associated Ibsp, Ogn and Postn in tendon development was found.   

These are general observations and do not attempt to equate monolayer 

chondrocytes with developing chondrocytes, or tenocytes, per se, rather suggest it 

may indicate a common gene regulatory network that facilitates a proliferative and 

permissive phenotype with potential for regenerative interventions.   

Given the relevance of the development paradigm to musculoskeletal disease and 

regeneration (Tchetina 2011, Connizzo, Yannascoli et al. 2013) further 

consideration should be given to the regulatory networks that govern them.  

Clearly, to develop this would require comparisons between culture systems, 
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mesenchymal stem cells, and developing and healing tissues at the transcriptomic 

and proteomic level.    

2.4.3 Gene expression characteristics of standard 3D cultures  

Two forms of three-dimensional culture systems, alginate beads (De Ceuninck, 

Lesur et al. 2004) for chondrocytes, and fibrin cultures (Kapacee, Richardson et al. 

2008) for tenocytes, fail to restitute an organo-typic profile in dedifferentiated cells 

from monolayer cultures.  As these cultures do not show parity with cartilage and 

tendon it is critical that their characteristics are defined to facilitate refinement in 

tissue engineering.    

Alginate bead cultures: chondrogenic and inflammatory profiles   

The iterative analysis of gene network perturbations is critical to the development 

of rationally devised organo-typic models for in vitro use (Birgersdotter, Sandberg 

et al. 2005) and for the modelling of gene regulatory networks.  To this end a 

global gene expression analysis of chondrocytes in three-dimensional alginate 

cultures was performed as an environmental perturbation. Gene expression 

profiles of passaged chondrocytes suspended in alginate beads under normoxic 

conditions reflected both chondrogenic and inflammatory profiles.  As alginate 

cultures are extensively dealt with elsewhere in this thesis they are not the focus of 

this discussion.     

Alginate expression profiles are suggestive of pro-inflammatory conditions with 

the expression of Cox2, Cxcl1, Il-6 and the alarmin family of osteoarthritis-

associated genes (S100b) all evident.  Chitinase 3-like protein 1 gene (Chi3l1) was 

the most highly expressed gene in alginate beads when compared to monolayer 

and it is a potential biomarker for osteoarthritis (Huang and Wu 2009).  Recently, 
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CXCL1 has been defined as a target of the SOX9-mediated transcription factor 

AP-2ε (Wenke, Niebler et al. 2011), which is known to have a role in late-stage 

chondrocyte differentiation.  Elsewhere, the expression of chemokines and their 

receptors has been demonstrated to be involved in the chondrogenic induction of 

MSCs (Cristino, Piacentini et al. 2008).   

The S100-family of small-molecular weight calcium binding proteins are strongly 

represented in alginate cultures (S100a1, S100a4, S100a16, S100a11, S100b), 

several of which are identified in normal articular cartilage, but also up-regulated 

and associated with osteoarthritis (Yammani 2012).  S100b and S100a4, for 

example, both are considered to have catabolic effects on matrix through the 

increased production of MMP13.   The extracellular functions of the S100 

proteins are mediated through their interaction with RAGE (receptor for 

advanced glycation end products), or Toll-like receptors, activation of which can 

influence a number of signalling cascades including, MAP kinases (p38, ERK1/2), 

PI-3K and NF-κB. In contrast to the work of Diaz-Romero, et al (2014) (Diaz-

Romero, Quintin et al. 2014), this analysis found that there was an increase in 

expression of S100 genes in monolayer and alginate cultures, except for S100a8, 

which was more highly expressed in native cartilage.  No S100 genes were 

differentially expressed in a pairwise comparison of monolayer and alginate 

cultures.  In an elegant study comparing the effects of gain- or loss-of-function 

using combinations of S100a1 and S100b, Saito, et al (2007) demonstrated that 

over-expression inhibited chondrogenic differentiation; in contrast loss-of-

function, by siRNA transfection, enhanced terminal differentiation (Saito, Ikeda et 

al. 2007).  The S100 proteins are implicated in cartilage homeostasis, associated 

with disease phenotypes, and conflicting reports exist as to the expression status 
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of these genes in chondrocytes in various culture conditions.  In isolation gene 

expression profiles alone do not appear to be sufficiently consistent to warrant 

their labelling as differentiation markers.     

Expression of Bhlhb2/Dec-1 (Shen et al., 2002), Gdf15/Mic-1 (Iliopoulos, Malizos, 

Oikonomou, & Tsezou, 2008), Srcg1 (Ochi, Derfoul et al. 2006) and Id1 (Asp, 

Thornemo, Inerot, & Lindahl, 1998) in alginate-encapsulated chondrocytes are 

also of interest as these all have implicated roles in cartilage development and/or 

disease.  Along with the implicated signalling pathways there are aspects of both 

development- and disease-associated profiles present in the expression profile of 

chondrocytes in alginate beads.  A number of homeobox genes, with 

chondrogenic associations (Prrx1, Prrx2, Pitx1 and Six1), were more highly 

expressed in alginate bead cultures suggestive of a chondrogenic phenotype.    

Global gene expression studies of alginate bead cultures have not been 

undertaken.  These indicate a profile that is both pro-chondrogenic and pro-

inflammatory and consists of known osteoarthritis-associated genes.  Further work 

is required to elucidate the mechanism underlying this phenotype.   

Fibrin cultures are associated with micro-fibril and tendon developmental gene 
expression markers  

Previously fibrin constructs have been shown to demonstrate the presence of 

embryonic fibripositor structures (Kapacee, Yeung et al. 2010).  Whilst this type of 

construct does not recapitulate the complexity of tendon it may serve as a valuable 

model of tendon development. Gene expression findings supporting this 

statement are explored below.     
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From the outset it was stipulated that dedifferentiation required evidence of a loss 

of terminal markers of differentiation; the significant reduction in the expression 

of Tnmd supports this statement.   

Tnmd is considered a late marker of tendon cell differentiation (Liu, Zhu et al. 

2014) and, as such, may explain the lack of expression in fibrin constructs.  Instead 

more subtle markers of tenogenic induction should be considered and comparison 

to chondrocytes in alginate culture aids this investigation. Relative to alginate 

cultures cells in fibrin constructs expressed higher levels of Slit3, Thbs4, 

Mfap5/Magp2, Meox2 and Tnn, which may represent tenogenesis markers for 

further validation.  Three of these novel findings in fibrin cultures are discussed 

further.     

Microfibril-associated gene expression is higher in fibrin cultures 

Microfibril-associated glycoprotein 2 (Magp2) is part of the fibrillin-based 

microfibril complexes, which have key roles in tissue integrity and elastic structure 

(Gibson, Finnis et al. 1998).  In this study higher expression of Magp2/Mfap5 is 

shown in fibrin constructs and native tendon relative to monolayer tenocytes and 

alginate cultures, but not relative to each other.  Expression is present in a number 

of tissues, but high levels of mRNA have been noted in the foetal bovine Achilles 

tendon (Gibson, Finnis et al. 1998).  Originally shown to be co-expressed in the 

foetal nuchal ligament, Magp2 and Magp1 are associated with fibrillin-containing 

microfibrils in the ECM of a number of tissues, which are variably associated with 

elastin fibres.  Ritty, et al (2002) considered the distribution of Magp2 in the deep 

flexor tendon and found that both microfibril-associated glycoproteins were 

distributed throughout the tendon, particularly at the insertional zones (Ritty, 

Ditsios et al. 2002).  Roles for Magp2 are less well described than Magp1.  The 
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availability and activity of some growth factors (TGF-β, BMP, Notch family 

members) are regulated by microfibril assemblies, which provide a specific context 

for TGF-β and BMP signaling (Ramirez and Rifkin 2009).  Fibrillins, mutations of 

which result in Marfan syndrome, have a role in the sequestration of growth 

factors in large latent complexes within the ECM.  Magp1 has been shown to have 

an inhibitory effect on the binding of latent TGF-β-binding protein 1 to fibrillin-1 

in a study of the incorporation of latent TGF-β into the large latent complex in 

the ECM (Massam-Wu, Chiu et al. 2010).  Whether MAGP2, which is 

evolutionarily related, but diverges structurally, has comparable functions is not 

well described. A recent loss-of-function study has shown that MAGP2 has wide-

ranging effects not in keeping with the effects of MAGP1 or fibrillin-1 deficiency 

(Combs, Knutsen et al. 2013).  Biochemical evidence suggests that MAGP2 

protein binds to TGF-β1, TGF-β2 and BMP2.  Unlike MAGP1 knock-out (k-o) 

mice, MAGP2 are not osteopenic, however double k-o mice do show enlarged 

aortic diameter suggesting that some combinatorial effect is in play to maintain the 

integrity of large, elastic blood vessels.  With the recent finding of increasing levels 

of Mfap5/Magp2 in E14.5 developing tendon (Havis, Bonnin et al. 2014) the 

higher expression in fibrin culture here may indicate a tenogenic profile.   

Fibrin constructs show higher expression of tendon development-associated 
tenascin 

Consistently in pairwise comparisons Tnn, encoding the tenascin-W isoform, was 

more highly expressed in fibrin constructs relative to native tendon, monolayer or 

alginate cultures.  Tenascins are high molecular weight glycoproteins within the 

ECM, comprising of variable repeats of identical subunits (Halper and Kjaer 2014) 

with roles in cell motility, proliferation and differentiation.  Their tissue 

distribution is variable but tenascin-C and –W show expression in a number of 
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developing structures and neoplastic stromal tissue (Tucker and Chiquet-

Ehrismann 2009). Expression of tenascin-C in tendon blastema is well-described 

(Schweitzer, Chyung et al. 2001), but tenascin-W less so.  In an avian study of the 

distribution of tenascin-W in development the predominant expression was 

localized in bone and perisoteum, but was also transiently expressed in smooth 

muscle, tendon and ligament, often overlapping with tenascin-C expression 

(Meloty-Kapella, Degen et al. 2006).  The adhesion modulating properties of 

tenascin-W and lack of a connective tissue phenotype for the tenascin-C knock-

out suggests that there may be some functional overlap.  Tenascins are known to 

have adhesion-modulating properties (Chiquet-Ehrismann and Tucker 2011) and 

recently this has been confirmed for tenascin-W (Brellier, Martina et al. 2012).  In 

this study, using a mouse C2C12 myoblast cell line with osteoblast differentiation 

potential, it was shown that cells cultured in the presence of tenascin-W 

maintained a stellate phenotype with pseudopodia, unlike the spreading and stress-

fibres that formed when cultured on fibronectin alone.  

Slit3, with a role in axonal guidance, shows higher expression in monolayer and 
fibrin cultures  

In monolayer cultures a higher expression of Slit3 is found relative to native 

tendon and in fibrin cultures relative to alginate beads.  By qPCR a trend towards 

higher expression in fibrin constructs was presented. The SLIT protein family 

ligands, and their receptors, ROBO proteins, are required for normal axon 

guidance during development in vertebrates (Hinck 2004) and, additionally, 

myogenesis and myotendinous junction formation in Drosophila (Kramer, Kidd et 

al. 2001, Gilsohn and Volk 2010, Krämer, Green et al. 2014).  Slit3 deficiency in 

mice has been demonstrated to result in congenital diaphragmatic hernia as a 

result of failure of the central tendon, which helps suspend the diaphragm from 
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the body wall (Liu, Zhang et al. 2003).  The pattern of Slit expression in the 

developing avian and murine limb would indicate that SLIT:ROBO have 

additional actions.  In the developing chick Slit3 was demonstrated to be strongly 

expressed in the dorsal and ventral central mesenchyme and prospective inter-

digital regions (Holmes and Niswander 2001); later this expression developed 

along the nascent digit borders (Vargesson, Luria et al. 2001).  Whilst Slit1 and 

Slit2 co-localised with the myoblast marker Pax7 the subectodermal Slit3 domains 

did not.  Attempts to co-label tenascin-positive cells, to define developing tendon 

populations, could not localise a particular Slit population.   

The relevance of vertebrate SLIT proteins to tendon development are derived 

from the role of the single gene ortholog, slit, in Drosophila, which is secreted by 

tendon progenitors to influence myotube migration through the ROBO receptor 

(Volk 1999, Gilsohn and Volk 2010, Schweitzer, Zelzer et al. 2010) under the 

influence of the EGR-like transcription factor homolog, Stripe (Volohonsky, 

Edenfeld et al. 2007).  Although early-growth response proteins have been shown 

to be associated with tendon development (Lejard, Blais et al. 2011) in this data set 

higher expression of Egr1 was found in alginate beads relative fibrin cultures.    

Whether the signaling mediators of axonal guidance and neuronal path-finding 

have a role in mammalian neo-tendon formation has yet to be elucidated, but 

there is a rational scope for further work in this area.  

With respect to the developmental associations of the selected genes in the 

literature there is a rationale to explore further the validity of fibrin constructs as a 

tendon development model.  As with alginate cultures, side-by-side gene 

expression studies with embryonic tendon and MSCs would provide valuable 

information on de- and re-differentiation mechanisms in tenocytes.      
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2.4.4: Pathway topology related to fibrin cultures 

Predicted signalling pathways have not been described for tendon fibrin 

constructs.  In this section one of the identified signalling pathways is discussed 

further with respect to its role in tendon physiology.     

HIF1 signalling  

Pathway topology predicts the activation of the HIF1-signalling pathway in the 

transition from monolayer to fibrin cultures, and in the theoretical comparison of 

fibrin cultures to native tendon.  Expression of the Hif-1α gene, encoding the 

alpha subunit of HIF1, is more highly expressed in fibrin constructs, cultured in 

normoxic conditions, relative to either monolayer or native tendon.  The response 

to changes in oxygen-tension during development and disease process is, partly, 

regulated by the DNA-binding HIF transcription factors.  The transcriptional 

activation of multiple genes is mediated by the binding of HIF heterodimers, of 

which the alpha-subunit is the oxygen-labile component (Brocato, Chervona et al. 

2014).  The role of HIF-1α in human shoulder tendinopathy has been reported by 

several groups (Benson, McDonnell et al. 2010, Lakemeier, Reichelt et al. 2010), 

but studies are not always well controlled and immunohistochemistry findings 

were equivocal. Recently, Miller, et al (2012) presented higher mRNA and protein 

expression of HIF-1α in early subscapularis tendinopathy and passaged tenocytes 

cultured in hypoxic conditions (Millar, Reilly et al. 2012).  The authors proposed 

that hypoxic cell injury was a critical element in the pathophysiology of 

tendinopathy.  Higher expression of clusterin was also demonstrated.   

Gene expression profiling of fibrin cultures demonstrates the higher expression of 

a number of pro-inflammatory cytokines (Ptgs2/Cox2, angiogenic factors (Vegf-B, 
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Angptl4, Angptl2), HIF-repressors (Cited2) and pro-apoptosis genes (Bnip3) some 

with known tendon pathology associations.    

As such, it is proposed that rather than representing an organotypic in vitro model 

of healthy tendon structure the fibrin construct does not adequately recapitulated 

the native tendon expression profile; in contrast, it represents either a 

regenerative/healing, developmental or degenerate phenotype.  This is consistent 

with the conclusions reached for the alginate bead model.  Neither culture system 

appears fit for purpose with respect to native tissue, however, they may still be 

useful as either models of disease or development.  

2.4.5: Histology and Immunohistochemistry 

As a result of the presence of high levels of haemoglobin transcripts and various 

transcripts for genes more commonly associated with white blood cell function 

further consideration of the histological structure of the rat knee was warranted.  

The presence of high levels of Hba and Hbb are not uncommon in cartilage 

studies, although little is made of the presence in gene expression profiles.   

Concerns relating to the infiltration of blood vessels into the articular cartilage are 

verified by Mapp, et al (2008) (Mapp, Avery et al. 2008) where breaching of the 

osteochondral junction by vascular channels in the tibial plateau is found to be a 

normal feature of the rat knee.  Further, they found that the degree of vascularity 

in the tibial plateau decreased with age.  Incursion of blood vessels into the non-

calcified deep zone of articular cartilage appears to be a rare event in normal 

cartilage, however, perforation of the calcified cartilage does occur.  Clark (1990) 

described the trajectory of sub-chondral vascular channels in rabbit, canine and 

human cartilage scanning electron microscopy (SEM) study (Clark 1990).  These 
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SEM studies demonstrated that vascular channels, vertical extensions of 10-30 µm 

canals within the bone plate, variably penetrated the sub-chondral bone layer.  

These vascular channels either contained single capillaries with an open leading 

edge facing the calcified cartilage, or were, instead, covered by a cap of lamellar 

bone.  Vascular channels coming into contact with the non-calcified articular 

cartilage was rare event.  Contamination of native cartilage samples with blood 

cannot be excluded given the potential for encroachment of capillaries into the 

calcified cartilage in the rat.       

Defensins and alarmins in normal cartilage 

Key in this discussion is separating what is contamination of cartilage samples with 

blood and what is part of the normal physiological expression profile of whole 

cartilage.  To this end the expression of defensins, antimicrobial peptides of the 

innate immune system, in whole cartilage must be considered. In this study the 

expression of the cathelicidin-related antimicrobial peptide (CRAMP/CAMP) was 

investigated by immunohistochemistry.  Expression of this protein in normal 

chondrocytes and synoviocytes was reported by Hoffmann, et al (2013) and shown 

to be increased following pristane-induced arthritis in rats (Hoffmann, Bruns et al. 

2013).  In this study the same antibody was used, however, it was not possible to 

confirm the specific staining presented by Hoffmann, et al (2013).  This study did 

not present control images, include isotype controls, nor define in the methods the 

antibody concentrations used.  The high expression levels of alarmins, discussed 

above, and the expression of defensin genes requires further investigation in 

normal cartilage.   
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2.4.6: Evidence of topographical preservation of Hox gene expression 
indicates the heterogeneity of cartilage and tendon sources 

Homeobox genes encode a coordinate system for limb patterning in development 

(Zakany and Duboule 2007).   In a preliminary study, the first of its kind, the 

preservation of site-specific expression of a panel of homeobox genes was 

considered in cartilage and tendon.  Aspects of the study design limited 

interpretation of the data including the confounding association between tissue 

and location - tendon (distal limb) and cartilage (proximal limb).  The variable 

tissue harvest and RNA recovery and technical factors (multiple plates, temporal 

variation in data gathering, technical expertise) may also limit reproducibility.  

Despite these limitations a number of notable findings were evident, for example, 

the significantly higher expression of the hind limb-associated Pitx1 (Marcil, 

Dumontier et al. 2003) gene in hindlimb tendon relative to the forelimb 

equivalent, or the higher expression of the forelimb associated Tbx5 (Takeuchi, 

Koshiba-Takeuchi et al. 1999, Agarwal, Wylie et al. 2003) in shoulder cartilage 

relative to hip.  Whilst these findings are encouraging further investigation would 

benefit from more targeted gene expression profiling of a variety of tissue sites 

(tail tendon, patellar tendon, axial cartilage) in a standardised manner. 
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Appendix 1 
 

R Codes for Illumina microarray analysis 

 

Pre-processing, normalisation and differential expression analysis  
 
 
#series of 40 microarrays are read individually.  Files contain 
raw Bead Level Data (BLData).   
setwd() 
library(beadarray) 
library(illuminaRatv1.db) #correct annotation package 
 

 
BLData.arrayName=readIllumina( 
useImages=FALSE,illuminaAnnotation="Ratv1") #change name 
for each file  
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 #save all loaded raw data text files  
 #check what has been read 

slotNames(BLData. BLData.arrayName) 
#first ten rows of data from all columns  

 BLData.arrayName [[1]][1:10,] 
 #boxplot data 
 boxplot(BLData.arrayName,las=2,outline=FALSE,ylim=c(4,12))  

#apply BASH algorithm – this takes a while for each array! 
BLData.arrayName.bsh 
=BASH(BLData.arrayName,array=1,useLocs=FALSE) 

 

#save a separate file of only .bsh files so that these may 
be accessed.  Remove all raw files prior to saving .bsh 
files 

rm(BLData.arrayName,…) 

#set weights derived from BASH assessment of beads.  This 
needs to be done for each array individually  

 BLData.arrayName=setWeights( 
 BLData.arrayName,wts=BLData.arrayName.bsh$wts,array=1, 
 combine=FALSE,wtName='wts') 

#add quality information from BASH to bead level data for 
each array individually 
BLData.arrayName=insertSectionData(BLData.arrayName,what="B
ASHQC",data=BLData.arrayName.bsh$QC)  
#check that extended score etc have been added 
BLData.arrayName@sectionData  
#plots positive control for housekeeping or biotin 
poscontPlot(BLData.arrayName)  
png('controlplots.png')  
#a general control plot for all data 
combinedControlPlot(BLData.arrayName)  
dev.off() 
#combine all arrays in a single expression set – this has 
to be done one-by-one in beadarray 
BLData=combine(BLData.arrayName1,BLData.arrayName2) 
BLData=combine(BLData,BLData.arrayName3) 
#continue for the other arrays adding to BLData 
#Summarise probe data  

 myMean=function(x)mean(x,na.rm=TRUE) 
mySd=function(x)sd(x,na.rm=TRUE) 
greenChannel=new("illuminaChannel",greenChannelTransform,il
luminaOutlierMethod,myMedian,myMad,"Grn") 

 BSData=summarize(BLData,list(greenChannel), 
 useSampleFac=TRUE,sampleFac=rep(1:36,each=1), 
 weightNames="wts",removeUnMappedProbes=TRUE); 
 det=calculateDetection(BSData,status=fData(BSData)$Status, 
 negativeLabel="negative") 
 Detection(BSData)=det 

#Transform and normalise across arrays.  Both quantile and 
loess strategies are shown 
#QUANTILE 
BSData.q=normaliseIllumina(BSData,method="quantile",transfo
rm="log2") 
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#LOESS 
 

library(limma) 
 

BSData=normaliseIllumina( 
BSData,method="none",transform="log2") 

 BSData.loess<-normalizeCyclicLoess(exprs(BSData),  
weights = NULL, span=0.7, iterations = 3, method = "affy") 
##no longer an eSet, just a normalised matrix 
write.csv(BSData.loess,file=”BSData_loess.csv”) 
 

 
 #filter probes  
 BSData.genes=BSData.q[ 
 which(fData(BSData)$Status=="regular"), ] 
 expressed=apply(Detection(BSData.genes)<0.05,1,any) 
 BSData.filt=BSData.genes[expressed,] 
 ###export BSData.filt to WGCNA and GOstats 
 ############filter 
 ID=as.character(featureNames(BSData.q))   
 #addFeatureData 
 qual=unlist(mget( 
 ID,illuminaRatv1PROBEQUALITY,ifnotfound=NA)) 
 table(qual) 

 rem<- qual == "No match" | qual == "Bad" | is.na(qual) 
#vector of probes to be removed  

 BSData.filt=BSData.q[!rem, ] 
 dim(BSData.filt) 
 

#Matrix design for differential expression analysis for 36 
arrays.  Assign abbreviated names to each array based on 
sample group and replicate 
design<model.matrix(~0+factor( 
c(1,1,1,1,2,2,3,3,3,3,3,3,3,3,4,4,4,5,5,6,6,6,6,6,6,6,6,7,7
,7,7,8,8,8,8,8))) 
colnames(design)<-
c("dC_ALG","dC_FIB","dC","dF","dT_FIB","dT","nC","nT") 
rownames(design)<c("dC_ALG3","dC_ALG4","dC_ALG1","dC_ALG2",
"dC_FIB1","dC_FIB2","dC1","dC2","dC3","dC4","dC5","dC6","dC
7","dC8","dF1","dF2","dF3","dT_FIB1","dT_FIB2","dT1","dT2",
"dT3","dT4","dT5","dT6","dT7","dT8","nC2","nC3","nC4","nC5"
,"nT1","nT2","nT3","nT4","nT5") 

 
###Differential expression and feature data for loess 
normalised matrix 

 ID<-rownames(BSData.loess) 
 symbol=mget(ID,illuminaRatv1SYMBOL,ifnotfound=NA) 
 genename=mget(ID,illuminaRatv1GENENAME,ifnotfound=NA) 
 entrezID=mget(ID,illuminaRatv1ENTREZID,ifnotfound=NA) 

anno=data.frame(Illumina_ID=ID,Symbol=as.character(symbol),
EntrezID=as.numeric(entrezID), 
GeneName=as.character(genename)) 

 fit<-lmFit(ajm.loess,design) 
 contrast.matrix<-makeContrasts(dC-dT,levels=design)  

#set up the matrix and then you can include or exclude the 
samples that you want  

 fit2<-contrasts.fit(fit,contrast.matrix) 
 fit2<-eBayes(fit2) 
 fit2$gene=anno 
 rankCresults=topTable( 
 fit2,coef=1,number=1500,lfc=1.4,adjust.method="fdr", 
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 sort.by="logFC",genelist=fit2$gene) 
#export results to working directory in ranked format  

 write.table(rankCresults,file="rankCresults.txt",sep="\t") 
 
 ########### 
 aw=arrayWeights(exprs(BSData.filt),design) 

#Differential expression analysis for quantile normalised 
data  

 fit<-lmFit(exprs(BSData.filt),design, weights=aw) 
 ID=featureNames(BSData.filt) 
 chr=mget(ID,illuminaRatv1CHR,ifnotfound=NA) 
 refseq=mget(ID,illuminaRatv1REFSEQ,ifnotfound=NA) 
 entrezID=mget(ID,illuminaRatv1ENTREZID,ifnotfound=NA) 
 symbol=mget(ID,illuminaRatv1SYMBOL,ifnotfound=NA) 
 genename=mget(ID,illuminaRatv1GENENAME,ifnotfound=NA) 
 probequality=mget(ID,illuminaRatv1PROBEQUALITY, 
 ifnotfound=NA) 
 GO=mget(ID,illuminaRatv1GO,ifnotfound=NA) 
 
 anno=data.frame( 
 Illumina_ID=ID,Chr=as.character(chr), 
 RefSeq=as.character(refseq), 
 EntrezID=as.numeric(entrezID), 
 Symbol=as.character(symbol), 
 GeneName=as.character(genename), 
 ProbeQuality=as.character(probequality), 
 GOterm=as.character(GO)) 

#linear model fit and contrast matrix 
 fit<-lmFit(exprs(BSData.filt),design)  
 contrast.matrix<-makeContrasts(dC_ALG-dC,levels=design)  

#set up the matrix and then you can include or exclude the 
samples that you want  

 fit2<-contrasts.fit(fit,contrast.matrix) 
 fit2<-eBayes(fit2) 
 fit2$gene=anno 
 rankCresults=topTable( 
 fit2,coef=1,number=1500,lfc=1.4,adjust.method="fdr", 
 sort.by="logFC",genelist=fit2$gene) 
 write.table(rankCresults,file="rankCresults.txt",sep="\t") 
 
 #Hierarchical clustering of quantile normalised data  
 d=dist(t(exprs(BSData.q))) 
 plot(hclust(d)) 
 
Hierarchical clustering and heatmap 
 
  setwd("/Users/XXX") 
  data<-read.csv("BSData_loess.csv",header=TRUE) 
  colnames(data)[1]<-'IlluminaID' 
 
  ArrayName=names(data.frame(data[,-1])) 
  GeneName=data$EntrezID 
  exprs=data.frame(t(data[,-1])) 
  names(exprs)=data[,1] 
  dimnames(exprs)[[1]]=names(data.frame(data[,-1])) 
  exprs.v=as.vector(apply(as.matrix(exprs),2,var,na.rm=T)) 
  keep=exprs.v>0.8 
 
library(WGCNA) 
 
  filt=exprs[,keep]   
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  GeneName=GeneName[keep] 
  ADJ1=abs(cor(filt,use="p"))^9 #create adjacency matrix  
  k=as.vector(apply(ADJ1,2,sum, na.rm=T)) 
 datExpr=filt[, rank(-k,ties.method="first" )<=500] 
  rename<-t(datExpr) 

colnames(rename)<-
c(rep("3D",6),rep("2D",11),rep("3D",2),rep("2D",8), 

 rep("Cartilage",4),rep("Tendon",5)) 
  map<-as.matrix(rename) 
 
  #Define and export the heatmap groups 
 
library(gplots) 
library(RColorBrewer) 
 
  hm <- heatmap.2(map) 
  hc <- as.hclust(hm$rowDendrogram) 

 #define the height at which the dendrogram is cut 
 groups<-cutree(hc, h=25) [hc$order] 

  names<-names(groups) 
  groups1<-unname(groups) 
  groups2<-data.frame("Symbol"=names,"Groups"=groups1) 
  write.csv(groups2,file="heatmapGroups.csv",row.names=FALSE) 
 
  ##Create heatmap with the row groups and columns colour-coded 
  groups<-cutree(hc,h=25) 
  cols <- brewer.pal(max(groups), "Set3") 
  setwd(“”) 
  pdf(file = "Illumina_heatmap2.pdf", width= 8,  
  height = 8,useDingbats=F)  
  par(oma=c(2,2,2,2)) 
 
  heatmap.2(map,scale="row",col=greenred(100), 
  colsep=c(4,9,17),sepcolor="white",sepwidth=c(0.1,0.1), 
  trace="none",density.info="none",RowSideColors=cols[groups], 
  ColSideColors=c(rep("firebrick1",6),rep("midnightblue",11), 
  rep("firebrick1",2),rep("midnightblue",8), 
  rep("lightsteelblue3",4),rep("goldenrod2",5)), 
  cexRow=0.07,cexCol=1) 
 
  dev.off()  
  ##retain ‘map’, a matrix of gene expression values, for PCA 
 
Principal Component Analysis 
 
  #PCA for 36 arrays filtered on covariance 
 
library(FactoMineR) 
library(RColorBrewer) 
 

 #re-order columns from heatmap matrix so that they lie: 2D, 
#3D, native 
 map2<-
map[,c(7,8,9,10,11,12,13,14,15,16,17,20,21,22,23,24,25,26,27,
1,2,3,4,5,6,18,19,28,29,30,31,32,33,34,35,36)]; 

 res.pca<-PCA(t(map2),graph=FALSE,axes=c(1,2)) 
 
  PC1 <- res.pca$ind$coord[,1] 
  PC2 <- res.pca$ind$coord[,2] 
 



 
173 

 #define factors 
  cell.type<-c("chondrocytes", "chondrocytes", "chondrocytes",
 "chondrocytes", "chondrocytes", "chondrocytes",
 "chondrocytes", "chondrocytes", "fibroblasts" ,"fibroblasts",
 "fibroblasts" ,"tenocytes", "tenocytes", "tenocytes",
 "tenocytes", "tenocytes", "tenocytes","tenocytes",
 "tenocytes","chondrocytes", "chondrocytes", "chondrocytes",
 "chondrocytes","chondrocytes","chondrocytes", "tenocytes",
 "tenocytes","chondrocytes", "chondrocytes", "chondrocytes",
 "chondrocytes", "tenocytes", "tenocytes", "tenocytes",
 "tenocytes", "tenocytes") 
  cell.type<-as.data.frame(cell.type) 

 condition<-
c(rep("monolayer",19),rep("model.3D",8),rep("cartilage",4),re
p("tendon",5)) 

  condition<-as.data.frame(condition) 
 
 
  PCs <- data.frame(cbind(PC1,PC2,cell.type,condition)) 
 PCA.comp1<-res.pca$eig[1,2] 
  PCA.comp2<-res.pca$eig[2,2] 
 
 #Colours for plot 
  mypalette<-c("gray0","gray88","gray64","gray40") 
  #Prepare and export PCA plot 
 
library(ggplot2) 
 
 setwd("/Users/XXX") 

 pdf(file = "Illumina_PCA_Figure.pdf", width=8, 
height=8,useDingbats=F) 

  par(mar=c(1,1,1,1)) 
  p<-ggplot(PCs) 
  p<-p+geom_point(aes(PC1,PC2,color=condition,shape=cell.type), 
  size=6,alpha=0.6)+ 
  scale_colour_manual(values=mypalette)+ 
  labs(list(x=sprintf("PC1(%.1f%%)",PCA.comp1), 
  y=sprintf("PC2(%.1f%%)",PCA.comp2)))+ 
  theme_minimal(base_size=10,base_family="Helvetica")+ 

 theme(legend.position = c(.85,.7),text = 
element_text(size=12),plot.title=element_text( 
 lineheight=.8,face="bold"))+ 

  ggtitle("Principal Component Analysis")+ 
  scale_shape_discrete(solid=T) 
  p 
 
  dev.off() 
 
 
Hypergeometric testing of gene ontology analysis  
 
#####Define the universe – all the genes on the Illumina 
microarray.  Remove duplicate entries from Entrez annotations 
##Whole chip  

setwd("/Users/… ") 
universe<-
read.csv("RatRefv1.csv",header=TRUE,sep=",",as.is=TRUE) 
rem.dups<-universe[!duplicated(universe$Entrez_Gene_ID),] 
universe.entrez<-as.vector(rem.dups$Entrez_Gene_ID) 
length(universe.entrez) 
table(is.na(universe.entrez)) 
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rem.universe<-universe.entrez=="NA"|is.na(universe.entrez) 
filt<-universe.entrez[!rem.universe] 
UNIVERSE<-as.numeric(filt) 
 
#setwd("/Users/……. ") 
#read in differential expression lists of genes by Entrez ID 
to functionally annotate  
nt.up<-read.csv("working.csv",header=TRUE) 
nt.entrez<-nt.up$Entrez 
rem.NA<-nt.entrez=="NA"|is.na(nt.entrez) 
table(rem.NA) 
#filt<-nt.entrez[!rem.NA] 
dups<-duplicated(nt.entrez) 
table(dups) 
 
no.dups=nt.entrez[!dups] 
nt.final<-as.numeric(no.dups) 

 
library(illuminaRatv1.db) 
library(GOstats) 

 
hgCutoff <- 0.001  #statistical cut-off 
 
#Perform each in turn for biological process, cellular 
compartment and metabolic function.  Change name of output 
file on each occasion.   
params <- 
new("GOHyperGParams",geneIds=nt.final,universeGeneIds=UNIVERS
E,annotation="illuminaRatv1.db",ontology="BP",pvalueCutoff=hg
Cutoff,conditional=FALSE,testDirection="over") 
 
#params <- 
new("GOHyperGParams",geneIds=nt.final,universeGeneIds=UNIVERS
E,annotation="illuminaRatv1.db",ontology="MF",pvalueCutoff=hg
Cutoff,conditional=FALSE,testDirection="over") 
 
#params <- 
new("GOHyperGParams",geneIds=nt.final,universeGeneIds=UNIVERS
E,annotation="illuminaRatv1.db",ontology="CC",pvalueCutoff=hg
Cutoff,conditional=FALSE,testDirection="over") 
 
hgOver <- hyperGTest(params) 
df=summary(hgOver,htmlLinks=FALSE) #TRUE returns links to 
AmiGO 
hgOver 
 
p.value<-df$Pvalue 
adjusted.p<-p.adjust(p.value,method="fdr") 
df$adj.Pvalue<-adjusted.p 
 
 write.csv(file='GO.csv',df,row.names=FALSE) 
 
 

SPIA pathway topology analysis 
 

 
#Requires XML files to be downloaded from KEGG and stored within 
a named folder within the same directory; 
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library(SPIA) 
 

setwd("/Volumes/XXX/SPIA") 
makeSPIAdata(kgml.path="/Volumes/XXX/kegg",organism="rno",out
.path="/Volumes/XXX/kegg") 
#read in lists of differentially expressed genes as Entrez 
IDs 
top<-read.csv("SPIA.csv",header=TRUE,sep=",") 
setwd("/Users/alanmueller/Desktop/Thesis") 
#create universe based on microarray probes  
universe<-
read.csv("RatRefv1.csv",header=TRUE,sep=",",as.is=TRUE) 
 
#ensure that everything in universe is found in top 
merged<-merge(top,universe,by.x<-
"EntrezID",by.y="Entrez_Gene_ID") 
 
dim(merged) 
#[1] 2007 37 
top<-merged[!duplicated(merged$EntrezID),] 
dim(top) 
#[1] 1842 37 
top<-top[top$adj.P.Val<0.01,] 
dim(top) 
#[1] 1658 37 
 
de<-as.vector(top$log2FC) 
names(de)<-as.vector(top$EntrezID) 
head(de) 
 
dim(universe) 
#[1] 23405 28 
rem.dups<-universe[!duplicated(universe$Entrez_Gene_ID),] 
dim(rem.dups) 
#[1] 21494 28 
 
universe.entrez<-as.vector(rem.dups$Entrez_Gene_ID) 
 
#The SPIA algorithm takes as input the two vectors above and 
produces a table of pathways ranked from the most to the 
least significant. 
res<-spia(de=de, all=universe.entrez, 
organism="rno",data.dir="/Volumes/XXX/kegg/",nB=2000, 
plots=FALSE) 
#show first 15 pathways, omit KEGG links 
res[1:20,-12] 
plotP(res,threshold=0.05) 
 
setwd("/Users/XXX/SPIA_pathways") 
pdf("SPIA_pathways_SPIA.pdf") 
plotP(res,threshold=0.05) 
dev.off() 
results<-res[1:20,] 
write.table(results,file="SPIA_pathways_SPIA.txt") 
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3 :  A pathway topology  approach 
pred ic ts  involvement  of  the  PI-
3K/Akt  s igna l l ing  pathway in  
muscu loske le ta l  ce l l  
d i f ferent ia t ion  
 

Abstract 
The systems biology approach that has been defined in this thesis demands 

iterative perturbation and quantification of network responses to rationally model 

a system.  For comparisons to be relevant inherent differences in matricellular 

components between musculoskeletal tissues require to be resolved if common 

mechanistic processes are to be revealed. Defining consistent alterations in 

common prevailing regulatory mechanisms induced by the transition from in vivo 

to in vitro culture conditions for cartilage and tendon may be obscured by 

differences in sample complexity and composition. To extract evidence-based 

targets for future intervention studies depletion of extra- and peri-cellular matrix 

of cartilage and tendon cells was employed to reduce the complexity of samples 

and act as a system perturbation.   

Matrix-depleted cells exhibited strong clustering by condition rather than cell type 

including co-clustering of native cartilage and tendon cells.  High overlap in 

expression profiles and functional annotations for different cell types in the same 

condition suggested a common regulatory mechanism underlying de- and re-

differentiation for both chondrocytes and tenocytes.  Supporting previous results 

musculoskeletal development-associated genes including Scx (scleraxis), Mkx 
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(mohawk) and Mustn1 (musculoskeletal, embryonic nuclear protein 1) were all 

more highly expressed in monolayer cells from both tissues.  Defining consensus 

genes across microarray data sets isolated tissue-associated genes from those 

arising from other components of heterogenous samples providing putative 

tendon-associated genes including Serpinf1 and Mfap5.   

The PI-3K/Akt signalling pathway is a core signal transduction mechanism with 

multiple integrated roles including cellular differentiation. Results implicate the PI-

3K/Akt signalling pathway as a key regulator of chondrocyte and tenocyte de- and 

re-differentiation using a pathway topology approach.  Expression profiles were 

supportive of active PI-3K signalling in native cells and inhibition in monolayer 

cultures for both cell types indicative of a common regulatory pathway in de- and 

re-differentiation.  

 

3.1: Introduction 
 

3.1.1: Study rationale 

Several concerns relating to the study design presented in Chapter 2 encouraged 

the development of a second transcriptomic survey of chondrocytes and tenocytes 

from different environmental contexts.   

Microarray platform  

The Illumina RatRef-12 v1.0 Gene Expression BeadChip array, unlike, the human 

or mice equivalents from the same manufacturer, had not been re-annotated since 

the first market release; the omission of key musculoskeletal developmental 

regulators from the gene manifest for this platform (Sox9 and Scx) was evident.  



 178 

Furthermore, this platform was discontinued in December 2011 negating the 

possibility of additional samples being surveyed to equalize groups sizes, for 

example for fibrin constructs.  

 Reduction of study and sample complexity     

Concerns arose with regard to the comparison of native cartilage and tendon to 

isolated cells in culture used in Chapter 2 due to the inherent difference in the 

complexity of native tissue relative to monolayer culture and the relevance of 

comparing tissues of distinct composition.  Gene expression profiles from native 

samples were also likely to be confounded by heterogenous cell populations, 

contaminants, and complex matrix components reduced in culture conditions.    

Evidence in Chapter 2 demonstrated that dedifferentiated cells developed a 

convergent gene expression profile when passaged in culture.  There was support 

for the statement that cells in monolayer and in three-dimensional culture systems 

had expression profiles that were more akin to developmental and reparative 

profiles than to their tissues of origin.  However, there was no consistent 

prediction for perturbed signalling pathways limiting rationale identification of the 

prevailing regulatory signalling mechanisms for de- and re-differentiation. This 

either suggested that the mechanisms of de- and re-differentiation were in fact 

different between cartilage and tendon or that the common regulatory 

mechanisms were obfuscated by the inherent differences in the complexity of each 

condition, differences in sample handling, and the presence of heterogenous cell 

populations.    

In proteomic studies reduction of sample complexity, for example by fractionation 

(Cox and Emili 2006) or depletion (Fonslow, Stein et al. 2013), is encouraged. 
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Abundant matrix proteins can swamp mass spectrometry analysis and greatly limit 

the depth, or coverage, of a proteomic survey (Wilson, Whitelock et al. 2009).  As 

part of a parallel proteomics study, presented in Chapter 6, a strategy to reduce 

sample complexity was devised.  To ensure comparability between studies this 

strategy was extended to samples for transcriptomic survey.  Globin (Mastrokolias, 

den Dunnen et al. 2012) and ribosomal (Sims, Sudbery et al. 2014) transcript 

depletion are shown to increase sensitivity of next-generation sequencing 

expression profiling.  It is not evident whether depletion of abundant matrix 

transcripts would have a comparable effect for microarray-based profiling.  

Furthermore, by ensuring that a small, enriched cell population was obtained 

lower RNA concentrations could be used as the reduced heterogeneity in the 

sample may also reduce the signal-to-noise ratio (Nygaard and Hovig 2008).  A 

critical limitation to use of rat native tendon and fibrin constructs was the number 

of cells harvested, therefore, matrix depletion could have additional benefit for 

samples with low cellularity.    

3.1.2: Study hypothesis 

It was hypothesized that this approach to reduction of sample complexity, by 

matrix depletion, across all conditions would standardize sample handling with 

isolated, matrix-depleted cells the resultant input for transcriptomic and proteomic 

survey.  A study consisting of parallel gene and protein surveys would facilitate 

analysis of prevailing regulatory mechanisms at two levels within the biological 

hierarchy.  A contemporary and well-annotated platform was considered to 

provide a more robust survey of the transcriptome.  By surveying only isolated 

cells from all conditions it was hypothesised that consistent network perturbations 

would emerge using pathway topology approaches.       
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3.1.3: Review: the phosphoinositide-3 kinase (PI-3K)/Akt pathway 

The PI-3K pathway is a core signal transduction mechanism for a plethora of 

physiological cellular mechanisms including differentiation, survival, apoptosis, 

metabolism and protein synthesis (Cantley 2002).  When mutated regulators 

permit unrestricted activation the PI-3K pathway is responsible for a number of 

cancers and is also implicated in inflammatory and autoimmune conditions, for 

example rheumatoid arthritis and systemic lupus erythematosus (SLE) (Foster, 

Blunt et al. 2012).  

PI-3 kinases are a conserved family of lipid kinases; they may be divided into four 

sub-families, or classes (I-IV), on the basis of their substrate specificity, primary 

structures, regulation and content of their domains.  Class I PI-3 kinases are the 

best described and consist of four isoforms, α-δ, and are receptor regulated.   

The PI-3 kinases may be activated by a number of ligands, including IGF-1, 

through various receptor tyrosine kinases. Phosphorylation of hydroxyl groups on 

membrane-bound inositol phospholipids, by PI-3 kinases, allows these to act as 

secondary messengers.  Considering only the receptor-regulated Class I PI-3 

kinases these are phosphatidylinositol-4,5,-bisphosphonate (PtdIns(4,5)P2)/PIP2 

kinases that generate PtdIns(3,4,5)P3/PIP3 following phosphorylation of the 3-

OH moiety on inositol membrane lipids.  The conversion of PIP2 to PIP3 is a key 

step in the initiation of the signalling cascade (Cantley 2002).  The broad range of 

ligands, secondary messengers, downstream targets and feedback loops makes the 

PI-3K pathway complex (Vanhaesebroeck, Stephens et al. 2012).  A cursory 

overview of the receptor-regulated Class I PI-3 kinase signal transduction pathway 

is provided in Figure 3.1.  Ligand binding to receptor tyrosine kinases results in 

the auto-phosphorylation of tyrosine residues. PI-3 kinases are recruited to the 



 181 

membrane.  The catalytic p110 subunit is constitutively bound to the p85 

regulatory subunit; the latter has an SH2 domain allowing interaction with 

phosphorylated Tyr (pTyr) and adaptor molecules.    This brings the Class I PI-3 

kinases in contact with their lipid substrates.  Activation by the appropriate 

tyrosine kinase receptors, for example IGFR1, stimulates the rapid 

phosphorylation of PIP2 to PIP3.  These lipid secondary messengers recruit a 

number of signalling proteins with the pleckstrin-homology (PH) domain to 

facilitate their activation.  Proteins with these domains include the 

serine/threonine kinase Akt, below.  The binding of PIP2 to PIP3 drives the 

translocation of Akt to the plasma membrane where it is phosphorylated at the 

Thr308 and Ser473 residues by phosphoinositide-dependent kinase (PDK1) and 

mammalian target of rapamycin complex 2 (MTORC2) respectively.   

The best-described effector of PI-3K signalling is the serine/threonine kinase AK, 

also known as protein kinase B – more commonly this signaling pathway is written 

as the PI-3K/Akt signalling pathway.  As with all effectors of Class I PI-3 kinases 

Akt has a pleckstrin homology (PH) domain, which binds directly to 

phosphorylated inositol lipids, facilitating the Thr308 phosphorylation of Akt by the 

phosphatidylinositide-dependent kinase, Pdk1. More than 100 Akt substrates have 

been identified, these include: p21, p27, BCL2, FoxOs and GSK-3 (Foster, Blunt 

et al. 2012).  Signalling is inhibited by the action of the phosphatase and tensin 

homolog (PTEN) by inducing the dephosphorylation of PIP3 back to PIP2.  The 

dysregulation of PTEN is a significant contributor to tumourigenesis.  Numerous 

small molecule inhibitors of the PI-3K signalling pathway are described, including 

non-specific, reversible inhibition by LY294002 (McNamara and Degterev 2011).  
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Akt is only one example of a number of PI-3K effectors, which, when activated, 

result in a phosphorylation cascade.  Downstream targets regulate a diverse range 

of physiological functions including: proliferation, cell growth, metabolism, 

protein synthesis, differentiation and apoptosis.   

 

 

 



 183 

v"v"v"v" v" v"v" v"v"v"v"v" v"v"v"v"v"v"v"v"v"v"v"v"v"v"v"

P P 

v"v"v"v"

v"v"

v"v"v"v"v"v"v"v"v"v"v"v"

Autophosphorylation on Tyr 

Tyrosine kinase 
receptor 

Ligand 

Extracellular space 

Lipid 
bilayer 

p110 (α,β,δ) 
p85 

SH2 domain interacts with pTyr 

PI-3K activity carried in 
heterodimeric complex 

PtdIns(4,5)P2/PIP2 

Regulatory subunit  

Catalytic subunit  

Class I phosphoinositide 3-kinases (PI3Ks) – receptor-regulated 

PtdIns(3,4,5)P3/PIP3 

PTEN * 

Akt 
PH 

P P 

PtdIns(3,4)P2 

5’-phosphatase 

Tyr308 
PDK1 mTOR2 

Ser473 

PDK1 and mTOR2 activate Akt by phosphorylation    

Phosphorylation of   
substrates by Akt 

Apoptosis Protein Synthesis Metabolism Proliferation  

FOXOs GSK3 NFκB BAD TSC2 

mTOR1 cyclinD1 

p27 

v"v"v"

P P 

v"v"v"v"
v"v"v"v"v"v"v"v"v"

LY294002 

Multiple downstream effects 

Tumorigenesis * Autoimmune Metabolic disease 

SMAD3 Crosstalk between 
pathways 

TGF-beta signaling through non-SMAD pathway  

Diverse disease 
processes 

v"v"v"v"v"v"v"v"v"v"v"v"v"v"v"v"v"v"v"v"

v"v"
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PI-3 kinases.  Full description of  the pathway is made in the main text 
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3.2: Methods 
 
3.2.1: Samples 

12 week-old, male, Lewis (n = 12, isogenic, Charles River) rats were obtained (as 

per Chapter 2), Figure 3.2.  For each biological replicate cartilage was obtained 

from the coxo-femoral and femoro-tibial joints and pooled (0.63 g ± 0.23, mean 

and s.d., wet weight); tendon was obtained from the Achilles tendon of the 

gastrocnemius muscle and the deep digital flexor tendon (0.59 g ± 0.28), these 

were also pooled.  Reagent sources are as described in Chapter 2 unless otherwise 

stated.   

Biological replicates were divided into three groups (n = 4 in each): Group I - 

primary tissue-derived cells; Group II - cells that underwent dedifferentiation in 

two-dimensional culture by serial passage on three occasions; Group III - cells that 

underwent dedifferentiation in two-dimensional culture then, at the end of the 

second passage, were transferred to three-dimensional culture systems appropriate 

for chondrocytes or tenocytes as previously described.  The extra- and peri-cellular 

matrix was depleted in all samples as described below.    

Group I: Cells derived from native tissue 

Samples were dissected and minced on sterilised, glass petri dishes.  Samples were 

washed twice in DMEM, free of phenol-red and serum, containing only antibiotic 

and anti-fungal agents.  Samples were placed in 50 mL Falcon tubes containing a 

total volume of 10 mL of 0.4 % collagenase type II prepared with complete media 

(CM1) and incubated for > 20 hours.  Following this, samples were centrifuged: 

samples from cartilage at 500 x g for 8 minutes; samples from tendon at 1000 x g 

to ensure that partially digested fascicular material, containing linear cell arrays in 
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peri-cellular matrix, would pellet (Ritty, Roth et al. 2003).  The supernatant was 

removed and replaced with 10 mL of 0.25 % trypsin from bovine pancreas (Sigma, 

#T1426) resuspended in serum-free DMEM.  Samples were incubated at 37 °C 

for four hours.  After this period samples were centrifuged as before, washed with 

complete media, re-suspended in 10 mL and passed through a 70 µm sterile cell 

strainer to produce a single-cell suspension.  A 10 µL sample was obtained and 

cells counted and evaluated for viability using the trypan-blue exclusion test. Cells 

for native cells analysis were pelleted and stored in 1 mL of TriReagent® at -80 °C.   

Group II: Cells expanded in monolayer culture  

Chondrocytes and tenocytes were expanded to passage three.  Primary cultures for 

both tissues started with 2.5x105 cells seeded at 104 /cm2. At confluence cells were 

split and seeded as for primary culture.  Cells in two- and three-dimensional 

culture were both grown in complete media as described before, but with DMEM 

with the absence of the phenol-red indicator and with the addition of 200 mM L-

glutamine (Gibco, Invitrogen).  At passage three cells were dissociated from 

monolayer, centrifuged and re-suspended in 10 mL 0.4 % (w/v) collagenase type 

II and incubated at 37 °C for one hour.  Cells were washed in PBS twice, counted 

and live/dead stained.  

Group III: Cells retained in three-dimensional cultures 

Following monolayer expansion chondrocytes were suspended in alginate 

following polymerisation in calcium chloride at 4x106 cells mL-1 of sterile-filtered 

alginate.  Cells were maintained in 25 mL of complete media 3 (CM3) as described 

previously with media changed every other day. Cells were released from alginate 

on day 7.  Cell pellets were digested in 0.4 % collagenase as above.  Monolayer 

expanded tenocytes were used to prepare constructs using fibrin gels and cultured 
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until linear tendon-like constructs were formed. Six technical replicates for each 

biological replicate (n = 4) were pooled and then digested directly in 0.4 % 

collagenase type II for 60 minutes. After this period the suspension of cells and 

fibrillar material was passed through a 70 µm cell strainer.  Cell pellets were treated 

as for Group II monolayer.   

RNA preparation and integrity 

RNA was extracted and prepared as described in Chapter 2.  Samples were 

standardised to a concentration of 20 ng/µL (total volume 25 µL) and all samples 

had a 260/280 ratio of > 1.8.  Samples were stored in Lo-Bind Eppendorf tubes, 

as before, at -80 °C. Samples were submitted to Molecular Genetic Services, 

Hologic, Manchester, for microarray analysis.  Bioanalyzer analysis provided RIN 

scores of > 8 for all samples with the majority of samples scoring a maximum of 

10 indicating minimal RNA degradation.   

3.2.2: Microarray analysis and bioinformatics 

Whole transcriptome profiling of 24 samples was undertaken using the 

GeneChip® Rat Gene 2.0 ST Arrays (Affymetrix, Inc., Santa Clara, USA) with six 

arrays per chip and all samples prepared in parallel and scanned on the same day.  

The microarrays interrogated expression of 28,407 RefSeq transcripts. Total RNA 

was amplified using the Affymetrix GeneChip® WT PLUS Reagent Kit according 

to manufacturer’s instructions. The resulting cDNA was quantified using optical 

density (NanoDrop, Thermo Scientific). The cDNA was normalised and 

hybridised onto Affymetrix Mouse Gene ST 2.0 microarrays for 16 hours at 45 °C.  

Microarrays were washed and stained using the Affymetrix GeneChip® 

Hybridization, wash, and stain kit were used according to manufacturer’s 

instructions using the Affymetrix GeneChip® Fluidics Station 450. Microarrays 
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were scanned using an Affymetrix GeneChip® 7G microarray scanner. Data 

quality control was analysed using Affymetrix® Expression Console™ Software. 

Raw .CEL files were imported into R (as before) and pre-processed, annotated 

and statistically assessed as described in the supplied code, Appendix 3.  

Specifically the oligo package (Carvalho and Irizarry 2010) was used for pre-

processing of .CEL files and the limma package for differential expression 

analysis, as before.  All arrays passed quality control thresholds and were retained 

for further analysis.  Filtering, statistical thresholds for inclusion in bioinformatic 

analysis and methodology (including pathway topology and Ingenuity Pathway 

Analysis) are consistent with methods presented in Chapter 2. Normalised 

expression data was also used an input to analysis in Chapters 4 and 7.   
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3.22: Bioinformatic analysis 

Figure 3.2: Overview of  experimental design for results presented in Chapter 3.  Source of  samples for 
microarray data is indicated (n  = 12). Two tissues, cartilage and tendon, were harvested.  For each condition 
(native, monolayer or 3D cultures) there were four biological replicates.  Extra- and peri-cellular matrix was 
depleted by enzymatic digestion as described.  Gene expression profile was surveyed using the Affymetrix 
GeneChip Rat 2.0 ST array, 24 arrays performed in parallel.  Data analysis pipeline follows that described in 
Figure 2.1b with microarray platform appropriate R packages as described in 3.2.2.  Expression data also 
used in subsequent analysis in Chapters 4 and 7.       

Matrix depletion 
0.4 % collagenase type II >20 hours + 

0.25 % trypsin for 4 hours 

Matrix depletion 
0.4 % collagenase type II for 1 hour 



 189 

3.3: Results 
 
3.3.1: Quality Control  

 
Quality controls of microarrays 

Probe-level intensity data was used to produce pseudo-images of the arrays to 

determine the presence of any systematic or random spatial artifacts across the 

array, Figure 3.3. Fitting of a probe-level model to normalised data did not 

demonstrate any arrays that significantly departed from expected standards in 

NUSE and RLE plots, Figure 3.4.  High correlation was also evident between 

replicates within a condition, Figure 3.5.  There was no evidence from quality 

control analysis that any of the arrays should be removed.   

Comparing normalisation techniques 

To define whether the cyclic LOESS normalisation strategy, described in Chapter 

2, was applicable to this dataset it was compared to the standard RMA algorithm 

(Irizarry, Hobbs et al. 2003), which employs a quantile normalisation method. 

Background correction methods were identical for both strategies.  There was no 

appreciable difference between the methodologies (slight improvement in the 

distribution of the densities, Figure 3.6, in using a quantile normalisation versus 

LOESS), however, the latter was retained for continuity of analysis between 

datasets.  An uncertainty propagating method, puma (Pearson, Liu et al. 2009), 

was also explored using R, but could not be integrated with downstream analysis 

in subsequent chapters.    
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Figure 3.3: Pseudo-coloured 
images of  24 Affymetrix arrays to 
visualise spatial artifacts (A).  The 
residual images are coloured so 
that large positive residuals are red, 
large negative residuals are blue 
and small residuals are white. 
Examples of  poor quality arrays 
below (B).  There do not appear to 
be systematic technical errors 
associated with array preparation.     

A
LG
_1
.C
E
L

A
LG
_2
.C
E
L

A
LG
_3
.C
E
L

A
LG
_4
.C
E
L

dC
_1
.C
E
L

dC
_2
.C
E
L

dC
_3
.C
E
L

dC
_4
.C
E
L

dT
_1
.C
E
L

dT
_2
.C
E
L

dT
_3
.C
E
L

dT
_4
.C
E
L

FI
B
_1
.C
E
L

FI
B
_2
.C
E
L

FI
B
_3
.C
E
L

FI
B
_4
.C
E
L

nC
_1
.C
E
L

nC
_2
.C
E
L

nC
_3
.C
E
L

nC
_4
.C
E
L

nT
_1
.C
E
L

nT
_2
.C
E
L

nT
_3
.C
E
L

nT
_4
.C
E
L

0.95

1.00

1.05

1.10

NUSE plot
Affymetrix Gene ST 2.0 Data

N
U
S
E

0.95 

1.00 

1.05 

1.10 

A
L
G
_
1
.C
E
L

A
L
G
_
2
.C
E
L

A
L
G
_
3
.C
E
L

A
L
G
_
4
.C
E
L

d
C
_
1
.C
E
L

d
C
_
2
.C
E
L

d
C
_
3
.C
E
L

d
C
_
4
.C
E
L

d
T
_
1
.C
E
L

d
T
_
2
.C
E
L

d
T
_
3
.C
E
L

d
T
_
4
.C
E
L

F
IB
_
1
.C
E
L

F
IB
_
2
.C
E
L

F
IB
_
3
.C
E
L

F
IB
_
4
.C
E
L

n
C
_
1
.C
E
L

n
C
_
2
.C
E
L

n
C
_
3
.C
E
L

n
C
_
4
.C
E
L

n
T
_
1
.C
E
L

n
T
_
2
.C
E
L

n
T
_
3
.C
E
L

n
T
_
4
.C
E
L

-0.5

0.0

0.5

RLE plot
Affymetrix Gene ST 2.0 Data

R
L
E

-0.5 

0 

0.5 

Figure 3.4: The RLE (Relative Log 
Expression) and NUSE (Normalized 
Unscaled Standard Error) plots are 
used assess array quality. Both are 
derived from a probe-level model 
(PLM) that computes an expression 
measure using M-estimator robust 
regression.  NUSE plot (top) – 
shows the normalised standard error 
(SE) estimates from the PLM such 
that the median SE=1.  Arrays with 
lower quality are centred higher and 
have a wider spread.  No arrays are 
centred above 1.1, the threshold for 
discarding arrays. The RLE plot 
(bottom) uses log-scale estimates for 
probe expression on each array.  For 
each probe set and array ratios are 
calculated between a probe set and 
the median expression value across 
the same probe set across all other 
arrays.  Relative expression values are 
presented.  Boxes are centered 
around 0 and have similar range.  
This is expected given that few genes 
are differentially expressed across 
arrays.     
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Figure 3.5: Array-array intensity correlations (correlation coefficient) for n=24 
Affymetrix arrays profiling chondrocyte and tenocyte expression across different 
conditions (Group legend).   
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Figure 3.6:  Density (y-axis) distribution of  normalised, log2-transformed, intensity 
data (x-axis) using the RMA (A) or LOESS (B) methods across 24 arrays. There is 
moderate improvement in the reproducibility of  the sample distribution of  the 
intensities using the LOESS technique for normalisation.  Given that this was used 
for the Illumina data it was elected to continue using this technique for Affymetrix 
microarray normalisation  
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3.3.2: Reduction of dimensionality 

 
Principal component analysis 

Unsupervised principal component analysis presented four distinct groups defined 

by experimental condition, Figure 3.7.  The first two principal components 

accounted for over 90 % of the variation using expression data from the 500 most 

co-variant genes (SD3.1). Concurring with findings in Chapter 2 chondrocytes 

and tenocytes in monolayer culture had convergent gene expression profiles at 

passage three. Cells derived from whole cartilage and tendon tissue, when matrix-

depleted, clustered more closely with each other, whilst cells in either alginate or 

fibrin cultures were the most divergent and did not cluster together as previously 

shown.  Of the 500 most covariant genes only 31 matched across both Affymetrix 

and Illumina data sets including, clusterin (Clu), transgelin (Tagln), Tgfβ3, paired-

related homeobox 2 (Prrx2), integrin α11 (Itga11) and glypican 4 (Gpc4).       

Hierarchical clustering 

Unsupervised, hierarchical clustering demonstrated two principal clades consisting 

of samples from monolayer cultures and fibrin cultures containing tenocytes, and a 

second consisting of cells isolated from native tissue and chondrocytes in alginate 

beads, Figure 3.8. 
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Figure 3.7: Principal Component Analysis. Top 500 most co-variant genes from normalised and filtered expression data from 24 samples (data 
points indicate individual arrays with sample type defined by the figure key). Chondrocytes and tenocytes isolated from native tissue and digested 
free of  extra-cellular matrix cluster more closely with each other than with monolayer or three-dimensional cultures.  Chondrocytes derived from 
alginate cultures cluster remote from both monolayer and fibrin constructs, but also from native chondrocytes.  Gene ontology analysis using a 
hypergeometric distribution with Entrez annotated probes from Affymetrix Gene ST 2.0 used as background.  Redundant terms filtered out 
using SimRel (ReviGO). Biological Process (BP) ontology annotations are based upon genes more highly expressed in each specific condition 
relative to the native tissue.  Gene ontology analysis was undertaken on all genes passing differential expression thresholds and not restricted to 
the 500 most covariant genes.   
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Figure 3.8: Heatmap and hierarchical clustering 
Data derived from the 500 most co-variant genes (rows) across 24 samples (columns).  
Using unsupervised clustering the data clusters into two main clades, the first defined 
by monolayer culture and fibrin constructs, the second by isolated native cells and 
alginate cultures.  Expression levels are normalised and scaled by row with red 
indicating high expression and green indicating low expression as defined by the key.  
The row groups legend indicates the group associations defined by the dashed line 
bisecting row clades.  Functional annotation, using DAVID, is not significant for some 
groups.  Row annotations and groups in SD3.1.          
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3.3.3: Differential gene expression analysis 

Differential expression analysis of arrays reflected those findings from the Illumina 

dataset, Chapter 2.  The greatest number of differentially expressed genes was 

found between cells isolated from native tissue when compared to passage three 

dedifferentiated chondrocytes or tenocytes – 3863 genes were differentially 

expressed between native chondrocytes and dedifferentiated chondrocytes.  The 

fewest differentially expressed genes were found between passage three 

chondrocytes and tenocytes.  Notably, the comparison of native chondrocytes to 

tenocytes presented fewer differentially expressed genes (n=1771) than the 

comparison between fibrin constructs and alginate beads (n=2251). Full pairwise 

comparison lists are found in supplementary data SD3.2-3.10.    

Chondrocytes: Dedifferentiation transition 

A summary of the most differentially expressed genes is provided in Figure 3.9.  

At passage three, chondrocytes in monolayer were characterized by the high 

expression of the actin-binding protein transgelin, Tagln, an inhibitor of receptor 

tyrosine kinase signaling, Grb14, and galectin, a beta-galactosidase binding lectin 

(Lgals1).  Genes associated with oxidative phosphorylation (ATPase synthase 

subunits, NADH dehydrogenase complexes) were all more highly expressed in 

monolayer cells.  Additionally, as expected, many genes were associated with cell 

cycle and microtubule processes.  Relative to native chondrocytes, collagen I, III, 

V, VIII and XVIII alpha subunits were all more highly expressed in monolayer.   
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|Highest-expression  
Hba1, Chad, Clec3A, Ccl3, Nos2, F13a1, Mmp8, 
Lyz2 
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Figure 3.9: Schematic diagram: Genes showing the most extreme differential expression in pairwise comparisons between different environmental conditions 
for chondrocytes.  In each case extra- and peri-cellular matrix has been depleted.   The direction of  the arrow indicates the direction of  the pairwise 
comparison, e.g. in * genes are expressed more highly in native chondrocytes relative to the monolayer environment. Full differential expression lists, 
including full gene annotations, are found in Supplementary Data 3.2-3.4.  Elements of  schematic are defined in figure legend. Genes are not italicised for 
this figure.    
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‘System development’ annotated genes including receptor-Smad Smad3, and 

inhibitor-Smads Smad6 and Smad7, SoxC group genes Sox12 and Sox4, and Bmp3 

(osteogenin) and Bmp4 were all also more highly expressed in monolayer 

chondrocytes.   Genes with musculoskeletal system development associations 

Mustang/Mustn1, scleraxis/Scx and mohawk/Mkx, investigated in the qPCR 

analysis in Chapter 2, were more highly expressed in monolayer chondrocytes.  

The hindlimb specific homeobox gene, Pitx1, and Pitx2 were also up-regulated in 

this comparison.  Members of the transforming growth factor superfamily Tgfβ1-3 

were all represented in this analysis. The presence of non-muscle myosins and 

tenascin was also confirmed in this study, in addition to the high expression of 

chemokines and their receptors in cells derived from native cartilage.  The CCN 

family was represented by the higher expression of Wisp1 and Wisp2; 

mesenchyme-associated Thy-1 and Snai1, presented in Chapter 2, were also more 

highly expressed in monolayer.   

In native chondrocytes there was higher expression of type II collagen alpha-1 

subunit (Col2a1), decorin (Dcn), aggrecan (Acan), lubricin (Prg4), chitinase 3-like 1 

(Chi3l1), and the matrix metalloproteinases Mmp3 and Mmp13.  The bone 

morphogenetic proteins Bmp6 and Bmp2, interleukin 1-beta (Il-1b), and 

chemokines Cxcl2 and Cxcl16 were also more highly expressed in native 

chondrocytes relative to monolayer.   

Chondrocytes: Re-differentiation transition 

In alginate beads chondrocytes were characterized by the expression of genes 

associated with the regulation of chondrogenesis including Sox4 and SoxD group 

genes Sox6 and Sox5, differentiation factors Egr1 and Egr2, and Bmpr1a and 

Bmpr1b.  Numerous chemokines, some implicated in cartilage pathology, were also 
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more highly expressed in alginate beads relative to monolayer, including: Pi15, 

Cxcl2, Cxcl12, Ccl20, and interleukins Il-6 and Il-7.  The Col2a1 expression 

regulators Sp1 and Sp3 transcription factors were up-regulated in alginate. 

Aggrecanases Adamts5 and Adamts1 were also more highly expressed. 

Chondrogenesis and matrix regulators such as Grem1, Frzb, and Dkk were more 

highly expressed in alginate beads than monolayer or native chondrocytes. 

Alginate cultures in this study were characterized by the increased expression of 

Mmp13, Hif1a, the PI-3K inhibitor Pten, and lower expression of Runx2 relative to 

monolayer, native cartilage and fibrin cultures.    

Monolayer tenocytes 

A summary of the most differentially expressed genes in tenocytes is provided in 

Figure 3.10.  In addition to Tagln, monolayer tenocytes at passage three had 

higher expression of integrin alpha-11 (Itga11), sushi-repeats containing protein 

Srpx, and coiled-coil domain containing protein Ccdc80.  As shown for monolayer 

chondrocytes CCN-family members Wisp1 and Wisp2 and tendon development-

associated genes, Scx, Mkx and Mustn1 were all more highly expressed in 

monolayer tenocytes.  Genes associated with SLIT-ROBO neuronal guidance and 

tendon development in Drosophila, Slit3 and Robo2, were both highly expressed in 

monolayer tenocytes. Concurring with monolayer chondrocyte expression profiles 

inhibitor Smads, Smad6 and Smad7, were more highly expressed in monolayer 

tenocytes than tenocytes from native tendon.    

Native tenocytes   

In comparison to monolayer tenocytes there was higher expression of 

tenomodulin (Tnmd), clusterin (Clu), chondroadherin (Chad), lubricin, and 

chemokines Cxcl2 and Cxcl13 in native tenocytes. The expression of superoxide 
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dismutase (Sod2), frizzled B (Frzb), SRY (sex determining region Y)-box 5 (Sox5), 

angiopoietin-like 4 (Angptl4), was higher in native tenocytes relative to monolayer 

concurring with the equivalent comparison in native chondrocytes.  

Fibrin constructs 

Chemokines, including, Cxcl13, Cxcl5 and Cxcl1 and the interleukins Il-6, Il-1a, Il-

11 and Il-33 were all more highly expressed in tenocytes in fibrin constructs.  

Modulators of the Wnt-signalling cascade, secreted frizzled related proteins Sfrp1, 

2 and 4, and the BMP antagonist gremlin 1, Grem1, were all more highly expressed 

in fibrin constructs.  Dedifferentiated tenocytes had significantly higher expression 

of transcripts to Bmp1, 3, 4, and 6; in contrast higher expression of Bmp2 was 

evident in fibrin constructs.  Relative to native tenocytes expression of tenascin 

N/W, Tnn, and the matricellular integrin ligand periostin, Postn, were significantly 

higher in fibrin constructs.  Tendon development-associated scleraxis (Scx) was 

also more highly expressed.  

Relative to alginate cultures the higher expression of microfibril-associated genes 

Mfap4 and Mfap5, Tnn, Thbs4, Fbln2, and development regulators Mustn1 and 

Meox2 was demonstrated – these have been presented and discussed in Chapter 2.  

Runx2 was more highly expressed in fibrin and monolayer cultures relative to 

native tendon and alginate cultures.    
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Native tenocytes 

Monolayer tenocytes 

3D culture tenocytes 

Legend 

Pairwise comparison  

*"

Figure 3.10: Schematic diagram: Genes showing the most extreme differential expression in pairwise comparisons between different environmental 
conditions for tenocytes.  In each case extra- and peri-cellular matrix has been depleted.   The direction of  the arrow indicates the direction of  the 
pairwise comparison, e.g. in * genes are expressed more highly in native tenoocytes relative to the monolayer environment. Full differential expression 
lists, including full gene annotations, are found in Supplementary Data 3.5-3.7.  Elements of  schematic are defined in figure legend. Genes are not 
italicised for this figure.    

|Highest-expression  
Tnn, Postn, Ccbe1, Mme, Itga11, Rrm2, 
Col8a1, Lum, Lgals, Mki67 
 
|Lowest-expression  
Chad, Ccl3, Clec3A, Htra4, Emcn, Cdh5, 
Mmp12, Eltd1, Cd34, Gpr116 

|Highest-expression  
Chad, Clec3A, Pla2g2a, Ccl3, Htra4, Emnc, 
Mmp12, Cdh5, Mmp3 
 
|Lowest-expression 
Itga11, Tagln, Srpx, Ncam1, Ccdc80, Sgcg, 
Wisp1, Tgfb3, Wisp2 

|Highest-expression  
Pln, Olr1, Tnfsf18, Actg2, Casq2, 

Slco2a1, Trib3, Cryab, Cmklr1 
 

|Lowest-expression  
Cxcl13, Lcn2, Tnn, Slpi, Angptl4, Cxcl5, 

Lum, C1s, Egln3, Cxcl1 
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3.3.4 Functional annotations 

For gene ontology analysis complete, filtered, differential expression lists were 

used.  A summary of significant terms is presented in Figure 3.7. 

Chondrocytes 

Cells isolated from cartilage were annotated with biological process functions: 

‘immune system process’, ‘developmental process’, ‘cellular component 

organisation’, ‘response to stress’ and ‘negative regulation of biological process’.   

In comparison, chondrocytes from monolayer expression profiles were described 

by biological process terms including: ‘cytoskeletal organisation’, ‘biological 

adhesion’, ‘developmental process’, and ‘ossification’.  Notably terms such as 

‘regulation of ossification’, ‘fibril organisation’, ‘skeletal system development’ and 

‘tendon development’ were all gene ontology terms significantly enriched in this 

expression profile.  Notably, the latter term was only found in monolayer 

chondrocyte expression data.     

Functional annotation of gene transcripts found to be more highly expressed in 

chondrocytes within alginate beads, relative to their native counterparts, was 

significantly enriched with terms relating to: ‘metabolic process’, ‘skeletal system 

development’, ‘anatomical structure morphogenesis’, ‘embryonic limb 

morphogenesis’ and ‘regulation of cell differentiation’.   

Full gene ontology lists are found in SD3.15.  Using Ingenuity Pathway Analysis 

general disease, metabolic and physiological functional annotations for 

chondrocytes are provided in Table 3.1.  
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Comparison  IPA descriptors  

Native cartilage to monolayer  DD: Cancer| Cardiovascular disease| Gastrointestinal disease; 
MCF: Cell growth and proliferation | Cell movement | Cell death and survival  
PS: Cardiovascular system development and function | Organismal development | 
Immune cell trafficking | Tissue development  

Monolayer to alginate  DD: Cancer | Organismal injuries and Abnormalities |Reproductive system disease  
MCF: Cell growth and proliferation | Cell death and survival | Cellular movement  
PS: Cardiovascular system development and function | Organismal development | 
Tissue development | Skeletal and muscular system development and function  

Alginate to native cartilage DD:  Inflammatory response | Cardiovascular disease | Connective tissue disease | 
Skeletal and muscular disorders 
MCF:  Cellular movement | Cellular growth and proliferation | Cell death and 
survival 
PS:  Immune cell trafficking |  Hematological system development and function | 
Cardiovascular system development and function | Organismal development  

Table 3.1: Functional descriptors of  differentially expressed gene lists derived using Ingenuity Pathway Analysis.  Legend: DD – 
Diseases and Disorders; MCF: Molecular and Cellular Function; PS: Physiological System Development and Function. Within each 
parent summary term lie numerous ‘child’ terms carrying their own p-values and activation z-scores. In the comparison ‘alginate to native 
cartilage’ the term ‘Skeletal and muscular disorders’ defines ‘Rheumatic Disease’ as the top child term (p=4.31e-24) with a predicted 
decreased activation (z=-2.99).    
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Comparison  IPA descriptors  

Native tendon to monolayer  DD:  Cancer | Cardiovascular disease | Inflammatory response 
MCF: Cell growth and proliferation | Cell death and survival | Cellular 
movement 
PS: Cardiovascular system development and function | Tissue 
morphology | 

Monolayer to fibrin  DD: Inflammatory response | Cancer | Organismal injury and 
abnormalities | Cardiovascular disease  
MCF: Cellular movement | Cellular growth and proliferation | Cellular 
development  
PS: Cardiovascular system development and function | Organismal 
development | Embryonic development | Immune cell trafficking 

Fibrin to Native tendon DD:  Cancer| Cardiovascular disease | Organismal injury and 
abnormalities  
MCF:  Cellular movement | Cellular growth and proliferation | Cell 
death and survival  
PS:  Cardiovascular system development and function | Organismal 
development | Organismal survival | Tissue development  

Table 3.2: Functional descriptors of  differentially expressed gene lists derived using Ingenuity Pathway Analysis.  Legend: DD – Diseases and 
Disorders; MCF: Molecular and Cellular Function; PS: Physiological System Development and Function. Terms for tenocyte comparisons show 
consensus with the same comparisons between chondrocyte conditions.    
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Tenocytes  

In tenocytes isolated from native tissue gene ontology biological process 

annotations included: ‘immune system process’, ‘regulation of metabolic process’, 

‘muscle cell proliferation, ‘vasculature development’, and ‘macromolecule 

catabolism’, SD3.16.   

In comparison, monolayer tenocytes at passage three were annotated with 

biological process terms including: ‘developmental process’, ‘muscle structure 

development’, ‘ossification’, ‘extracellular matrix organisation’, ‘skeletal system 

development’ and ‘Wnt-receptor signaling pathway’.   

Those isolated from fibrin constructs were represented by gene ontology terms 

including: ‘carbohydrate metabolic process’, ‘cell cycle’, ‘developmental process’, 

‘regulation of ossification’, ‘tissue morphogenesis’, ‘regulation of cell 

differentiation’ and ‘tube development’.   

IPA descriptors for tenocytes are presented in Table 3.2.  Functional terms 

associated with cardiovascular disease and cardiovascular system development and 

function were common to both chondrocyte and tenocyte analyses.    

In comparisons of three-dimensional culture systems alginate beads were 

significantly enriched for general terms associated with, ‘metabolic process’, 

‘organic substance metabolic process’ and ‘nitrogen compound metabolic process’, 

but additionally with more specific terms, including – ‘stem cell differentiation’ 

and ‘anatomical structure formation involved in morphogenesis’.  In contrast, cells 

isolated from fibrin cultures had a gene expression profile that was reflected in the 

terms: ‘cytoskeletal organisation’, ‘cardiovascular system development’, ‘cell 

adhesion’, ‘regulation of anatomical structure morphogenesis’, SD3.17.  
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3.3.5: Consensus of differentially expressed genes across cell types 

As shown in Figure 3.3 the depletion of peri-cellular matrix resulted in a co-

clustering of native tenocytes and chondrocytes relative to other conditions. A 

pairwise comparison between native tenocytes and chondrocytes and monolayer 

equivalents was prepared with the intention of defining a consensus gene 

expression profile for dedifferentiation, SD3.11. There were 2538 genes that were 

common to the dedifferentiation transition for chondrocytes and tenocytes.  In 

Figure 3.11 an overview of consensus gene expression and tissue-specific findings 

are presented.   

Functional annotation of native to monolayer dedifferentiation genes 

Gene ontology biological process functional annotations (DAVID) were used to 

present consensus genes in a functional context; the number of genes and false 

discovery rate (FDR) for each term are provided.  Genes listed were contained 

within each gene ontology term and were common to both chondrocytes and 

tenocytes.    

Native chondrocytes and tenocytes shared genes with functional annotations 

relating to ‘regulation of cellular process’ (FDR=1.6e-26; 444 genes; Sp1, Sp3, Sp4, 

Timp3, Atf3, Igf2), ‘regulation of gene expression’ (FDR=3.6e-13, 197 genes; Klf4, 

Klf6 and Klf9, Pou2f1, ApoE, Foxo1, Foxo3), ‘response to oxygen levels’ 

(FDR=8.7e-4; 30 genes; Hif1a, Tlr2, Tgfb1, Angptl4), ‘immune response’ 

(FDR=5.7e-5; 53 genes; Ccl3, Il-1a, Il-1b), ‘regulation of cell differentiation’ 

(FDR=2.3e-4; 59 genes; Sox5, Klf4, Bmp2, Clu, Fgf9, Tgif1, Jun).      

Dedifferentiated chondrocytes and tenocytes in monolayer shared functional 

annotations related to: ‘cell cycle’ (FDR=2.1e-6; 68 genes; Ilk, Ccnb2, Aurkb); 
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‘cytoskeleton organisation’ (FDR=3.2e-6; 52 genes; Dbn1, Eln, Itgb1, Myh10, Thy-

1); ‘extracellular matrix organisation’ (FDR=1.3e-3; 20 genes; Adamts2, Ccdc80, 

Col1a1, Col3a1, Tgfb2) and ‘developmental process’ (FDR=3.4e-5; 237 genes; 

Meis1, Smad3, Smad6, Smad7, Fgf10, Fzd1, Fzd2, Meox2, Mkx, Pitx1, Snai1).   

Genes unique to a tissue comparison were extracted from the expression profiles 

and are available in SD3.12-3.13. 



 207 

 

nC.dCnT.dT

Native chondrocytes to monolayer
Native tenocytes to monolayer

Euler Diagram of Differentially Expressed Genes
PREX2"
MYCT1"
ANGPT2"
EREG"

SERPINB2"
S100A5"

ADAM4"
ADAM9"
MMP10"
TNMD"
BMP5"
"

ADAM23"
ADAM19"
ADAMTSL1"

ITGA4"
EGR1&2"

"
"

RUNX2"
SIX1&2"
SHOX2"
CTGF"
DLX5"

Slit2&3"

CXCL1"
CXCL13"
CXCL5"
DES"
DPT"

Functional annotation native 
tenocytes 
BP: Regulation of  cell 
proliferation | Developmental 
Process |  Immune Response | 
Tube formation | Morphogenesis 
of  a branching structure 
CC: Extracellular region part  
MF: Cytokine activity | Growth 
factor binding 

Functional annotation monolayer 
tenocytes 
BP: Anatomical structure 
morphogenesis | cell 
differentiation | Tube 
development | Skeletal system 
morphogenesis  
CC: Membrane-bound organelle 
MF: Lipid binding  

SLIT2&3"
POSTN"
ROBO2"
PAX1"
NOG"
"

nC.dCnT.dT

Native chondrocytes to monolayer
Native tenocytes to monolayer

Euler Diagram of Differentially Expressed Genes

MMP8"
COL10A1"
SERPINB1A"
TREM1"
Mir223"
IBSP"

ADAM8"
BMP6"
GDF6"
IL11"
IL1R2"

ACAN"
COL2A1"
DMP1"
MGP"
SATB1"Higher expression  

in native tenocytes  

Lower expression in  
native tenocytes  

RET"
THBS2"
SLC16a7"
SERPINF1"
ANXA3"

ASPN"
THBS4"
ITGBL1"
S100A4"ADAMTS5"

GREM1"
MUSTN1"
MYOD1"
SOX4"

PITX1"
SCX"
MKX"

BMP1,"3,"4"
DKK3"
FRZB"
"
"

APOE"
AQP3"

ATF2,3,4"
BMP2"
CHAD"
CLU"
"

Higher expression in  
native chondrocytes  

Lower expression  
in native chondrocytes  

Functional annotation native 
chondrocytes 

BP: Ossification |Cellular 
process 

CC: Intracellular 
MF: Phosphoinositide binding 

| Ubiquitin-protein ligase 
activity 

Functional annotation 
monolayer chondrocytes 

BP:  Cellular process | 
Biosynthetic process 

CC: Intracellular organelle | 
Mitochondrion 

MF: No significant terms  

2538  
consensus  

genes 

1055 
unique to  
tenocytes 

1325 
unique to  

chondrocytes 

Legend 

Figure 3.11: Euler diagram: Overlap between differentially expressed gene lists was evident in Affymetrix data in the native cell to monolayer 
transition.  There were 2538 genes that were differentially expressed in common.  Genes that were unique to a tissue-specific comparison were 
considered in terms of  their log2-fold change and annotated with gene ontology terms. Selected genes are provided based upon the fold-change 
and relevance in the literature.  Gene ontology terms were all significant at p<0.05 after Benjamini-Hochberg (FDR) correction.   
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3.3.6: Comparison of independent data sets identifies tissue-associated 
genes targets for expression validation 

In order to explore gene expression profiles that may be unique to native cartilage 

or native tendon, and so isolate tissue-associated gene profiles within 

heterogenous samples, differentially expressed genes were considered from both 

Illumina and Affymetrix data sets.  Only those genes differentially expressed in 

both studies were considered.  Across the two datasets there were 311 genes 

common to both differential expression lists, of which 71 did not match in the 

direction of the fold-change, Figure 3.12, SD3.14.  There was a moderately high 

correlation between the fold changes of these common genes (non-matches 

included), cor = 0.66, p < 2.2e-16).  

For tendon-derived cells several genes were identified which showed higher 

expression relative to cartilage, with log2 fold change > 1.5 in both data sets, 

including: Tnmd, Serpinf1, Igfbp6, Cxcl13, Cpxm2, Mfap5, and Aspn. Within the gene 

lists Meox2, Mustn1, Thbs4 and Thbs2, and Prrx1 were also represented, but had 

more divergent fold changes between data sets.  When these ‘tendon-associated’ 

genes were functionally annotated using gene ontology terms the following 

biological process and cellular compartment terms were significant (p<0.05): 

‘blood vessel development’, ‘developmental process’, ‘extracellular matrix’.  

Tendon or muscle-associated gene ontology terms were not present.     

For cartilage-derived cells considered relative to tendon high consensus expression 

was noted for Col2a1, Mmp8, Serpinb1a, Sell and Ibsp.  Cartilage-associated genes 

were annotated with the following functional terms: ‘defense response’, 

‘extracellular region’, ‘bio-mineral formation’. 
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Figure 3.12: Correlation scatterplot:  
Genes found to be differentially expressed between native cartilage (top right 
quadrant) and tendon (bottom left quadrant) in both Illumina (x-axis) and Affymetrix 
(y-axis) dat sets plotted by log2 fold change.  For clarity only some data points are 
annotated.  Full lists are available in SD3.14.  Data points are defined in figure legend.  
Where genes have the same directional change the data point is defined as a dark dot, 
whereas genes with conflicting (anti-correlated) expression changes are defined as grey 
points (see relationship legend).  For tendon Tnmd, Igfbp6, Serpinf1, Mfap5 and Ecm1 
are all highly expressed in two independent datasets.  For cartilage Col2a1, Serpinb1a, 
Mmp8, Defa5 and Ibsp are confirmed to be highly expressed.   
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3.3.7: Pathway topology analysis defines PI-3K signalling as 
differentially activated between monolayer and three-dimensional 
cultures 

The activity status of canonical KEGG pathways was inferred by SPIA using all 

filtered genes within a pairwise comparison and their log2 fold change as the effect 

size.  Pathways significant after FDR adjustment are presented. The conditions are 

represented in Figures 3.13-3.14.   

Chondrocytes   

The transition from native chondrocytes (baseline condition) to the 

dedifferentiated state was defined by activation of the canonical KEGG pathways: 

‘osteoclast differentiation’, ‘chemokine signalling pathway’ and ‘PI-3K/Akt 

pathway’.  With monolayer chondrocytes as the baseline the re-differentiation 

transition was defined by activated pathways: ‘focal adhesion’, ‘cell cycle’ and 

‘extra-cellular matrix-receptor interaction’; the ‘PI-3K/Akt pathway’ was predicted 

as inhibited, along with the associated ‘HIF-signalling’ and ‘FOXO-signalling’ 

pathways.  Comparing alginate beads to native chondrocytes the most significant, 

activated pathways were: ‘PI-3K/Akt pathway’, ‘cytokine-cytokine receptor 

interaction’ and ‘Ras signalling pathway’.  Full lists are available in SD3.18. 
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|KEGG   
+ Osteoclast differentiation    
+ Chemokine signalling pathway   
+ PI3K-AKT signalling   
 
- Focal adhesion 
- Cell cycle 
- FoxO signalling pathway 

|KEGG  
+ PI3K-AKT signalling 
+ Cytokine-cytokine receptor interaction 
+ Ras-signalling 
 
- ECM-receptor interaction 
- Focal adhesion  
- Osteoclast differentiation 

|IPA  
•  Hepatic stellate cell activation; 
•  Atherosclerosis  signaling  
•  Aryl hydrocarbon receptor signalling;  
•  p53 signalling; 
•  Integrin signalling.   

|IPA 
•  Granulocyte adhesion & diapedesis; 
•  Atherosclerosis signaling 
•  LXR/RXR activation; 
•  Hepatic stellate cell activation. 

|KEGG   
+ Focal adhesion;  
+ Cell Cycle; 
+ ECM-receptor interaction.  
 
- HIF-1 signalling pathway; 
- FoxO signalling pathway; 
- PI3K-AKT signalling pathway. 

|IPA 
•  Hepatic stellate cell activation; 
•  Acute phase response signalling 
•  Axonal guidance signalling. 
•  Role of  osteoblasts, osteoclasts and  

chondrocytes in rheumatoid 
arthritis 

TP53, TGFβ1, HRAS, HGF, 
PDGF BB, TNF, IL6, IL1B 

Native chondrocytes 

Monolayer chondrocytes 

3D culture chondrocytes 

Legend 

Pairwise comparison  

Common upstream regulators  

Canonical signalling pathways inferred 
using SPIA Pathway Topology and 

Ingenuity Pathway Analysis 

Figure 3.13: Schematic diagram.  Differentially 
expressed genes from chondrocyte comparisons used for 
pathway topology analysis and pathway prediction.  
Pathways are predicted as activated (+) or inhibited (-).  
Arrows indicated the direction of  the comparison.  Most 
significantly perturbed KEGG pathways are shown; 
Ingenuity (IPA) canonical pathways enriched with the 
same data sets are shown.  Common upstream regulators 
are predicted by IPA (box).   
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Native tenocytes 

Monolayer tenocytes 

3D culture tenocytes 

Legend 

Pairwise comparison  

Common upstream regulators  

Canonical signalling pathways inferred 
using SPIA Pathway Topology and 

Ingenuity Pathway Analysis 

Figure 3.14: Schematic diagram.  Differentially 
expressed genes from tenocyte comparisons used for 
pathway topology analysis and pathway prediction.  
Pathways are predicted as activated (+) or inhibited (-).  
Arrows indicated the direction of  the comparison.  Most 
significantly perturbed KEGG pathways are shown; 
Ingenuity (IPA) canonical pathways enriched with the 
same data sets are shown.  Common upstream regulators 
are predicted by IPA (box).   

|KEGG   
+ PI3K-AKT signalling; 
+ Chemokine signalling pathway; 
+ Cytokine-cytokine receptor interaction. 
 
- Cell cycle; 
- Transcriptional mis-regulation in cancer; 
- Focal adhesion. 

|KEGG   
+ Cell cycle; 
+ p53 signalling pathway; 
+ Focal adhesion. 
 
- Transcriptional mis-regulation in cancer; 
- PI3K-Akt signalling pathway; 
- Axon guidance/ 

|KEGG   
+ MAPK signalling pathway  
+ Transcriptional mis-regulation in cancer 
+ ECM-receptor interaction 
 
- Cytokine-cytokine receptor interaction 
- HIF-1 signalling pathway 
- PI3K-Akt signalling pathway |IPA 

•  Hepatic stellate cell activation; 
•  NRF2-mediated oxidative stress response; 
•  Role of  macrophages, fibroblasts and 

endothelial cells in rheumatoid arthritis. 

|IPA 
•  Role of  osteoblasts, osteoclasts, and  

chondrocytes in rheumatoid arthritis, 
•  Hepatic stellate cell activation, 
•  Granulocyte adhesion and diapedesis 
•  Role of  macrophages, fibroblasts and 

endothelial cells in rheumatoid arthritis 

|IPA  
•  Granulocyte adhesion & diapedesis, 
•  NRF-2 mediated oxidative stress response; 
•  Hepatic stellate cell activation 
•  Inhibition of  matrix metalloproteinases; 

TP53, TGFβ1, PDGF BB, 
TNF, IL1B, LPS, ERBB2 
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Tenocytes 

In tenocytes derived from native tendon tissue there was remarkable overlap with 

chondrocytes in the predicted activated canonical pathways, Figure 3.14.  The ‘PI-

3K/Akt pathway’ was predicted as activated in the dedifferentiation transition, 

plus ‘cytokine-cytokine receptor interaction’.  For the re-differentiation transition 

there was predicted activation of: ‘MAPK signalling pathway’, ‘transcriptional mis-

regulation in cancer’, ‘ECM receptor signalling pathway’, but inhibition of the ‘PI-

3K/Akt pathway’.   In fibrin cultures the expression profile relative to native tissue 

predicted activation of the canonical pathways ‘cell cycle’, ‘p53 signalling pathway’, 

‘focal adhesion’ and ‘FOXO signalling pathway’.  In contrast to the same 

comparison in chondrocytes there was predicted inhibition of the ‘PI-3K/Akt 

pathway’.  Full lists in SD3.19.      

3.3.8: Ingenuity® Pathway Analysis confirms PI-3K activation in 
mechanistic networks  

As previously described, Ingenuity® Pathway Analysis (IPA) was used to further 

infer key regulators and mechanistic networks for the Affymetrix dataset. 

Ingenuity® analysis defined several master regulators, the activation status of which 

was consistent with the differential expression analysis provided from different 

pairwise comparisons, Figure 3.15-3.16.  To explore the PI-3K signalling pathway 

predictions made using pathway topology in 3.3.7 two highly significant upstream 

regulators were chosen from IPA analysis, the PI-3K activator PDGF BB and the 

small-molecule inhibitor of PI-3K signalling, LY294002. The PI-3K signalling 

pathway was predicted to be active in the native to monolayer comparison, whilst 

inhibited in the monolayer to three-dimensional culture comparison for both 

chondrocytes and tenocytes.   
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For the dedifferentiation transition, Figure 3.15, the differential gene expression 

profiles were consistent with PEDF BB activation in chondrocytes (z-score = 3.64, 

p = 2.4e-22) and tenocytes (z-score = 3.86, p = 4.7e-39).  The expression profiles 

of chondrocytes (z-score = -1.68, p = 1.8e-18) and tenocytes (z-score = -3.14, p = 

1.7e-23) from native to monolayer were inconsistent with the suppression of the 

PI-3K pathway by inhibitor LY294002, i.e. consistent with PI-3K pathway 

activation in native cells.  The activation of the PI-3K pathway in native 

chondrocytes and tenocytes concur with the findings from pathway topology 

analysis.    

In the re-differentiation transition, Figure 3.16, monolayer to three-dimensional 

cultures, for both cell types, pathway inhibition by LY294002 was predicted, 

indicated by positive z-scores:  chondrocytes (z-score = 3.5, p = 6.8e-17), 

tenocytes (z-score = 5.19, p = 5.98e-26).  The converse was true for PEDF BB 

with inhibition predicted in chondrocytes (z-score = -4.78, p = 4.56e-30) and 

tenocytes (z-score = -6.85, p = 1.04e-48).  These findings supported PI-3K 

pathway inhibition in monolayer cells and the converse in cells in three-

dimensional cultures.   
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Figure 3.15: IPA Mechanistic Network: 
Using the PI-3K small molecule inhibitor LY294002 (see 
Figure 3.1) as the core upstream regulator the mechanistic 
network presented is coded with differential expression 
values for the dedifferentiation transition from native 
chondrocytes to monolayer chondrocytes.  Here up-
regulated genes (red) represent higher expression in native 
chondrocytes.  The figure legend describes the predicted 
activation status for other genes in the network.  Ingenuity 
Pathway Analysis predicts that the gene expression profile 
is consistent with PI-3K signalling activation, i.e. LY294002 
not applied. The PI-3K activator PDGF BB is predicted to 
be active.  In this mechanistic network native chondrocytes 
have higher expression of  IL-1B, JUN, ATF3, and NFkB.  
Components of  the PI-3K complex show lower express 
and the PI-3K inhibitor PTEN is predicted to be inhibited. 
The most significant functional annotation ‘differentiation 
of  connective tissue cells’ (p=2.4e-26, 24 genes) shows 
‘activation’ where genes native chondrocytes are more 
highly expressed consistent with the differentiated state.   
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Figure 3.16: IPA Mechanistic Network: 
Using the PI-3K small molecule inhibitor LY294002 as the 
core upstream regulator the mechanistic network presented 
is coded with differential expression values for the re-
differentiation transition from monolayer chondrocytes to 
alginate beads.  Here up-regulated genes (red) represent 
higher expression in monolayer chondrocytes.  The figure 
legend describes the predicted activation status for other 
genes in the network.  Ingenuity Pathway Analysis predicts 
that the gene expression profile is consistent with PI-3K 
signalling inhibition through the application of  LY294002.  
The PI-3K activator PDGF BB is predicted to be inactive.  
In this mechanistic network chondrocytes in alginate beads 
have higher expression of  IL-6, JUN, ATF3, components 
of  the PI-3K complex and the PI-3K inhibitor PTEN.  
The functional annotation ‘differentiation of  connective 
tissue cells’ (p=2.4e-26, 24 genes) shows ‘inhibition’ where 
genes in monolayer are more highly expressed.   
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3.4: Discussion  
 
3.4.1: Study design and rationale  

The experimental design in Chapter 2 compared three three cellular environments 

– native tissue, passage five monolayer and three-dimensional culture systems – 

for chondrocytes and tenocytes.  Useful comparisons that would elucidate core 

regulatory pathways in de- and re-differentiation were confounded by the 

complexity of tissue-specific matricellular components and heterogenous cell 

populations, e.g. blood cells.  To resolve this complexity extra- and peri-cellular 

matrix was depleted by enzymatic digestion in all conditions.  This intervention 

also acted as a relevant system perturbation as loss of matrix components is 

common to degenerative disease in cartilage and tendon.  Furthermore, 

underpowered group sizes for some conditions in Chapter 2 (fibrin cultures, n=2) 

could not be resolved as production of the Illumina microarray platform ceased.  

Consequently a novel microarray platform was employed. 

Key findings 

Gene expression analysis demonstrated considerable overlap in differentially 

expressed genes between chondrocytes and tenocytes during de- and re-

differentiation transitions suggesting a common regulatory pathway could be 

present.  The well-annotated Affymetrix array defined extensive development-

associated gene expression in monolayer and three-dimensional cultures for 

chondrocytes and tenocytes.  There were fewer differentially expressed genes 

found between native cells than between three-dimensional culture-derived cells.  

By comparing differentially expressed genes common to cartilage or tendon in 

both Affymetrix and Illumina data sets it was possible to refine a list of tissue-

associated genes beyond those found in the published literature.  Pathway 
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topology analysis of matrix-depleted chondrocytes and tenocytes from three 

conditions defined PI-3K/Akt signalling as the common regulatory pathway, 

active in native cells and three-dimensional cultures, and inhibited in monolayer 

culture.    

3.4.2: Development-associated genes show higher expression in 
monolayer 

Evidence was presented in Chapter 2 indicating a trend toward the higher 

expression of musculoskeletal development-associated genes during 

dedifferentiation, but this was not consistent and several key genes were not found 

in the microarray gene lists.  In this independent dataset there is further support 

for the statement that dedifferentiated cells shows a gene expression profile 

associated with musculoskeletal developmental stages.      

At passage three differential expression analysis demonstrated higher expression 

of scleraxis (Scx), Mustang (Mustn1) and mohawk (Mkx) gene transcripts in both 

chondrocytes and tenocytes.  The author alludes to the common origin of limb 

tendon and cartilage progenitor cells presented in the Chapter 1 and the relevance 

of scleraxis and mohawk to tenogenesis.  The role of Mustang is now well-

described in chondrogenesis (Lombardo, Komatsu et al. 2004, Gersch and 

Hadjiargyrou 2009) and has recently been demonstrated to have a role in the 

regulation of differentiation of myoblasts (Liu, Gersch et al. 2010, Krause, Moradi 

et al. 2013) likely to be under AP-1 (Fos-Jun dimer) transcriptional activation (Liu 

and Hadjiargyrou 2006).  Given the co-expression of Mustang in areas of 

chondro- and myo-genesis the expression profile should be further investigated in 

tendon.  In Chapter 2 significantly higher expression of Mustn1 was shown in 

fore- and hind-limb tendons relative to hip cartilage from adult rats.  In this 
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Affymetrix dataset higher expression is also noted in native tendon relative to 

native cartilage.  This is consistent with previously published findings of high 

expression of Mustang in adult skeletal muscle and tendon (Lombardo, Komatsu 

et al. 2004).  Whilst further studies have begun to elucidate the relevance of 

Mustang to cartilage and muscle differentiation further work, including confirming 

marker status in adult tissue, is required for tendon.   

3.4.3: Identification of genes expression profiles unique to native 
tenocytes and chondrocytes 

Other than markers of tendon progenitors such as scleraxis, or mature tendon, 

tenomodulin (Tnmd), few tissue-specific markers exist for tendon.  Using a 

consensus differential expression list from the Illumina and Affymetrix data genes 

with comparable fold changes were considered.  Using this approach it was 

possible to begin to deconstruct the expression profiles defined in Chapter 2, 

which were confounded by heterogenous cell populations.  Of the most 

consistently highly expressed genes, Tnmd, Igfbp6, Prrx1, Ker, and Aspn, many have 

been described elsewhere as being strongly representative of tendon relative to 

other tissues (Jelinsky, Archambault et al. 2010).  This analysis contributes several 

novel candidates for tissue-associated genes, exhibiting consistently higher 

expression in tendon, for further validation including Serpinf1/Pedf, Cxcl13, Ecm1 

and Cpxm2.  

Mutations in Serpinf1, which encodes pigment epithelium-derived factor (PEDF), 

are responsible for the phenotype of osteogenesis imperfect (OI) type VI (Homan, 

Rauch et al. 2011).  The spectrum of genetic disorders resulting in the phenotype 

of bone fragility in OI is derived from mutations affecting the structure and/or 

synthesis of Type I pro-collagen. However, OI type VI arises from defects in 
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normal bone mineralization and a recent study suggested that type I collagen 

formation is normal in these patients. PEDF is collagen binding and has 

interactions with multiple extracellular matrix components including heparin 

sulphate proteoglycans (HSPG) and hyaluron.  The PEDF-binding motif in the 

collagen triple helix is overlapping with that of heparin/HSPG and is competed by 

it; these motifs also localize to the covalent cross-linking sites between the 

collagen molecules (Sekiya, Okano-Kosugi et al. 2011). It is likely that these genes 

have key physiological actions in these cells and may not represent tissue-specific 

markers, e.g. Serpinf1 shows higher expression in cultured chondrocytes that in 

native chondrocytes.  This study supports the higher expression of Serpinf1 in 

isolated native tenocytes (Affymetrix) and whole tendon (Illumina), however, the 

physiological role of PEDF in mature tendon has yet to be elucidated.   

For cartilage, given the greater availability of data defining novel, or candidate, 

tissue markers is less likely, however, adding to the reference of healthy cartilage 

expression profiles is relevant.  For example, the high expression of Mmp8 

(neutrophil collagenase) is found; together with Mmp13, Mmp8 forms the 

collagenase superfamily.  Mmp13 is well described as a mediator of cartilage 

degradation, however, Mmp8 is expressed in chondrocyte development and in 

mature articular cartilage (Sasano, Zhu et al. 2002), and may have a protective role 

in arthritis (García, Forteza et al. 2010). 

3.4.4: The PI-3 kinase/Akt pathway in de- and re-differentiation is a 
common to chondrocytes and tenocytes 

In Chapter 2 there was no clear prevailing signaling pathway defined for de- and 

re-differentiation transitions using a pathway topology approach.  This may have 
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arisen due to the inherent matricellular differences and complexity of the samples 

from native tissue.   

As described in Chapter 1 common approaches to defining the signalling 

pathways resulting in a particular phenotype have relied on two standard statistical 

techniques, over-representation analysis and functional class scoring.  Both of 

these techniques are limited by the fact that they fail to account for dependencies 

and interactions at a systems level; by considering each element of a pathway 

independently these techniques do not provide a unified understanding of the 

system (Khatri, Draghici et al. 2007).  For both the Illumina and Affymetrix data 

sets an impact analysis method was employed to determine the most perturbed 

signalling pathways in a given context.  This methodology combines the 

magnitude of gene expression changes, statistical analysis of a set of pathway genes 

and incorporates knowledge of the pathway topology, signalling interactions and 

position of differentially expressed genes within a pathway.  Against traditional 

techniques impact factor analysis has been shown to be more sensitive and specific 

(Tarca, Draghici et al. 2009).      

In this study the PI-3K/Akt signalling pathway was shown to be active in native 

cells and inhibited in monolayer cultures. The activation status was conflicted 

when alginate or fibrin cultures were compared to their respective native cells 

using SPIA.  However, the pathway was considered to be active in both three-

dimensional cultures when a restricted expression profile was analysed using 

Ingenuity® Pathway Analysis.  It is possible that within three-dimensional cultures 

a re-activation of PI-3K signaling may occur, associated with a redifferentiation 

phenotype, that may result in conflicted categorical predictions of pathway status 
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when expression profiles are compared to native cells where the pathway is also 

active.     

The PI-3K/Akt signalling pathway has been implicated in a range of physiological 

activities including dedifferentiation, proliferation, matrix synthesis and cell 

survival (Beier and Loeser 2010). Cellular effects are regulated through a broad 

range of downstream targets including mTOR, NF-κB, GSK-3B and p53 (Chen, 

Crawford et al. 2013).  

The promotion of matrix synthesis and survival by PI-3K signalling in 

chondrocytes has been demonstrated in a number of studies. Enhanced 

proteoglycan synthesis by IGF1-mediated stimulation of chondrocytes, either in 

monolayer or alginate beads, is PI-3K/Akt/mTOR-mediated, possibly by 

promotion of translational activity (Starkman, Cravero et al. 2005). Constitutive 

expression of Akt in human articular chondrocytes resulted in the significant 

increase of proteoglycan synthesis and elevated Sox9 and Col2a1 expression (Yin, 

Park et al. 2009); in contrast, oxidative stress is shown to inhibit these IGF1-

induced effects (Oh and Chun 2003, Yin, Park et al. 2009). Recently, the negative 

regulator of PI-3K signaling Pten, when down-regulated by siRNA, was shown to 

result in an increase in the expression of hallmarks of differentiated cartilage and 

promoted proteoglycan synthesis under oxidative stress conditions (Iwasa, 

Hayashi et al. 2014), thereby confirming the pro-matrix effects of PI-3K signalling.   

Much of our understanding of PI-3K effects on chondrocyte differentiation arises 

from the study of endochondral ossification. PI-3K signalling is critical for long 

bone formation, as demonstrated by Akt knockout mice (Ulici, Hoenselaar et al. 

2009) and in the terminal differentiation of chondrocytes in the growth plate 
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(Ulici, Hoenselaar et al. 2008).  A number of studies implicate the wider PI-3K 

pathway as being of relevance in the differentiation status of chondrocytes or 

MSCs (Chen, Crawford et al. 2013).  

The manner by which PI-3K signalling is involved in the balance of chondrocyte 

survival and terminal differentiation is not clear.  Kita, et al (2008), reported that 

conditional Akt activation in organ cultures suppressed the expression of markers 

of chondrocyte hypertrophy whilst increasing proliferation. Furthermore, 

inhibition of PI-3K signalling increased chondrocyte terminal differentiation and 

resulted in reduced bone length in a an embryonic fore-limb culture (Kita, Kimura 

et al. 2008).  Reduced bone length, proliferative and hypertrophic growth plate 

zones were also reported by Ulici, et al (2008) in response to pharmacological 

inhibition of PI-3K by LY294002 (Ulici, Hoenselaar et al. 2008); this study 

reported that PI-3K inhibition suppressed early and late markers of chondrocyte 

differentiation, rather than enhancing hypertrophic differentiation.  

Phosphorylated Akt was found, however, throughout the late proliferative and 

early hypertrophic chondrocytes in the growth plate.    Ikegami, et al (2011) found 

that constitutive expression of Sox9 in the developing mouse growth plate was 

essential for chondrocyte survival and subsequent hypertrophy by promotion of 

Akt phosphorylation (Ikegami, Akiyama et al. 2011) supporting a pro-hypertrophy 

role for PI-3K signalling.  This study also stated that PI-3K/Akt signalling 

retarded the transition to hypertrophic differentiation from the proliferative state 

during endochondral ossification; temporal expression of Runx2 would, however, 

drive terminal differentiation in concert with PI-3K signalling.    

Comparison of in silico predictions in this study with previous in vitro work is 

problematic.  The studies above consider the findings of their investigations in 
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isolated terms and so also the status of the pathway under investigation is defined 

by binary expression of individual elements.  Pathway topology techniques define, 

on the basis of global perturbations, the activation status across multiple pathways.    

Novel findings in this study, employing pathway topology analysis using canonical 

KEGG pathways and inference of upstream regulators by Ingenuity® Pathway 

Analysis, supported activation of PI-3K signalling in native chondrocytes and 

tenocytes.  This is consistent with a pro-differentiation, pro-matrix role for PI-3K 

signalling.  In contrast, monolayer culture was associated with a predicted 

inhibition of PI-3K activity.  In both native chondrocytes and tenocytes this 

analysis shows the increased expression of PI-3K inhibitor Pten phosphatase 

relative to monolayer culture, but also higher expression of Pten in monolayer 

chondrocytes relative to alginate cultures.  If the activation status of the PI-3K 

pathway were considered prima facie this would imply that the pathway was 

inhibited in both transitions by Pten expression.  However, because of the 

inclusion thresholds set by IPA the expression levels of Pten in native 

chondrocytes and tenocytes were considered too low and this exclusion may 

influence the activation status predicted.  Clearly validation of the mRNA and 

protein levels of PI-3K pathway components is required.       

The interplay between PI-3K and other pathways requires further discussion.  In 

the mechanistic networks generated by IPA the top upstream regulators were 

TGF-β, IL-6 and IL-1β.  It is possible to rationalize these predicted regulators 

with known PI-3K signalling interactions. 

In human articular chondrocytes phosphorylation of Akt has been found 

following exposure to IL-6 (plus soluble IL-6R) or oncostatin M (OSM) 
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(Litherland, Dixon et al. 2008).  In contrast IL-1 exposure alone did not result in 

Akt activation.  The PI-3K inhibitor LY294002 inhibited cartilage degradation in 

the presence of IL-1+OSM with a concentration dependent reduction in the 

induction of MMP1 and MMP13.  Given the strong evidence for the role of 

mediators such as IL-6 and OSM in cartilage ECM degradation the role of PI-

3K/Akt in cartilage destruction is relevant.  Shakibaei, et al (2007) presented 

evidence to support inhibition of phosphorylation of Akt by curcumin as a 

mechanism to suppress Il-1β -mediated up-regulation of COX2 and MMP9 

(Shakibaei, John et al. 2007).    

The balance of anabolic or catabolic processes in cartilage in response to PI-3K 

signaling may be ligand specific (Beier and Loeser 2010). TGF-β, by binding to cell 

surface receptor serine/threonine kinases, initiates signal transduction via SMAD 

and non-SMAD signaling pathways; transduction through the PI-3K/Akt/mTOR 

pathway has been described for chondrocytes. Qureshi, et al (2007) found that 

TGF-β stimulation of human chondrocytes activated Akt in a delayed manner; this 

induction was suppressed by PI-3K and Akt inhibitors (Qureshi, Ahmad et al. 

2007).  Rapamycin, an inhibitor of mTOR, suppressed transcription of the tissue 

inhibitor of metalloproteinases-3, TIMP3, in response to TGF-β stimulation.  This 

suggested that, in part, TGF-β signaling occurred through pro-matrix PI-

3K/Akt/mTOR signalling. Recently signaling through Akt/mTOR, following 

TGF-β activation, was required for the expression of chondrogenesis-associated 

genes in mouse pre-cartilaginous stem cells (Li, Wang et al. 2014). 

Whilst it must be recognised that the prevailing signals resulting in these gene 

expression profiles arise from the interplay and convergence of multiple signalling 
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pathways the dominance of PI-3K/Akt signalling in this study provides a strong 

rational for further investigation.  

In conclusion, the PI-3K/Akt signaling pathway has established effects on the 

differentiation, matrix synthesis, survival, and homeostasis of chondrocytes; 

additionally key roles in the regulation of inflammatory mediators and downstream 

effector pathways, such as NF-κB, implicates PI-3K/Akt signaling further in 

chondrocyte dysregulation. Some intervention studies have suggested modulation 

of this pathway as a mechanism for the treatment of osteoarthritis (Chen, 

Crawford et al. 2013).  In a study of tendon-derived stem cells PI-3K signaling was 

associated with a promotion of osteogenic differentiation implicating this signaling 

cascade in tendon calcification (Liu, Chen et al. 2013). In this chapter evidence 

suggests involvement of PI-3K/Akt signalling in the mediation of de- and re-

differentiation for both chondrocytes and tenocytes.  Clearly the complexity of the 

pathway is lost in categorical descriptions of pathway activation – the ratio of PI-

3K isoforms, the Akt subunit targeted, the downstream effector signaling cascade, 

and activation state/phosphorylation, cannot be interpreted from this data.  

Further work with immunoblotting, qPCR, small-molecule inhibition and further 

genome-wide transcriptome analysis would be required to validate these findings. 

3.4.4: Data and study limitations 

In line with the majority of microarray studies investigations the study presented 

here is likely to be underpowered, with four biological replicates in each group.  

The use of isogenic rats and paired tissue samples should mitigate this to some 

extent by reducing the signal-to-noise ratio.  Although considerable overlap is 

demonstrated in differential gene expression between the Illumina and Affymetrix 

studies the greatest correlation is evident only for highly differentially expressed 



 227 

genes.  That comparable expression profiles are evident across two microarray 

platforms increases the confidence of these findings.  This comparability also goes 

some way to explain that the close association in expression profiles between 

matrix-depleted native chondrocytes and tenocytes in this study is not a response 

to extended enzymatic digestion protocols alone.  

It is not unexpected that a strong comparison in pathway prediction between the 

Illumina and Affymetrix datasets is not found.  In the former monolayer cells were 

considered at passage five, the latter at passage three.  Chondrocytes in alginate 

beads were only retained in situ for seven days to match the total culture period for 

fibrin constructs; in the Illumina study alginate beads spent two weeks in culture.  

Furthermore, by depleting the matrix in this study the sample complexity was 

reduced relative to the Illumina study.     

Methodological and conceptual evolution of systems biology is still required. 

Issues associated with pathway analysis include the lack of consistent appraisal, no 

consensus on the representation of pathways in knowledge-bases, varied 

definitions of a pathway, failure to reproduce pathway analysis results, and the lack 

of integration with biochemical models, lack of condition or tissue-specificity, or 

inclusion of time-dependent models, for example, developmental stages (Mitrea, 

Taghavi et al. 2013, Conesa and Mortazavi 2014). Most functional annotation 

databases are not dynamic, rather they are biased by the weight of publications 

toward high impact research topics such as cancer and neurodegenerative disease.  

The boundaries of pathway definitions and gene annotations are often arbitrary, 

incomplete, and the functional assignment of genes is often redundant or 

nebulous.  However, methodology presented here goes some way to 

deconstructing the gene expression profile associated with in vivo complexity and 
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isolating the regulatory pathways involved in chondrocyte and tenocyte responses 

to changes in the three-dimensional environment.   
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Appendix 3 
 

R Codes  

 

Processing and analysis of raw Affymetrix microarray data  
setwd("/Users/XXX") 
 
library(oligo) 
library(pd.ragene.2.0.st) 
library(ragene20sttranscriptcluster.db)  
#library(ragene20stprobeset.db) 
 
 cels<-list.celfiles(full.names=TRUE) 
 affymetrix.data<-read.celfiles(cels) 
 

affy.corrected<-
rma(affymetrix.data,normalize=FALSE,target="core") 

  
######################################################## 
####NON-SPECIFIC FILTERING############################## 
######################################################## 
  
library(genefilter) 
  

filter<-
nsFilter(affy.corrected,require.entrez=FALSE,var.func=IQR,v
ar.cutoff=0.5,var.filter=TRUE,filterByQuantile=TRUE, 
feature.exclude="^AFFX",remove.dupEntrez=FALSE) 

  
 affy.filtered<-filter$eset  
 dim(exprs(affy.filtered)) 
 
######################################################## 
####LOESS NORMALISATION################################# 
######################################################## 
##tidy-up and release memory 
#rm(cels, affy.corrected,affymetrix.data,filter,affy.filtered) 
library(WGCNA) 
collectGarbage() 
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detach("package:WGCNA") 
 
 
 
library(limma) 

affy.loess<-normalizeCyclicLoess(exprs(affy.filtered), 
weights = NULL, span=0.7, iterations = 3, method = "affy") 

  
 save(affy.loess,file="AFFY2014_loess_filtered.RData") 
######################################################## 
####CONTRAST MATRIX FOR MODEL########################### 
######################################################## 
 design<-model.matrix(~0+factor( 
 c(1,1,1,1,2,2,2,2,3,3,3,3,4,4,4,4,5,5,5,5,6,6,6,6))) 
 colnames(design)<-c("ALG","dC","dT","FIB","nC","nT") 
 rownames(design)<-c("ALG_1.CEL", "ALG_2.CEL", "ALG_3.CEL" , 
 "ALG_4.CEL" ,"dC_1.CEL" , "dC_2.CEL"  ,"dC_3.CEL", 
 "dC_4.CEL" , "dT_1.CEL" , "dT_2.CEL" , "dT_3.CEL",  
 "dT_4.CEL" , "FIB_1.CEL" ,"FIB_2.CEL" ,"FIB_3.CEL", 

"FIB_4.CEL", "nC_1.CEL" , "nC_2.CEL"  ,"nC_3.CEL",  
"nC_4.CEL" , "nT_1.CEL" , "nT_2.CEL" , 

 "nT_3.CEL" , "nT_4.CEL") 
 
######################################################## 
####ANNOTATION FILE##################################### 
######################################################## 
 ID<-rownames(affy.loess) 

symbol<-
mget(ID,ragene20sttranscriptclusterSYMBOL,ifnotfound=NA) 

 genename=mget(ID,ragene20sttranscriptclusterGENENAME, 
 ifnotfound=NA) 
 entrezID=mget(ID,ragene20sttranscriptclusterENTREZID, 
 ifnotfound=NA) 
 

anno=data.frame(Illumina_ID=ID, 
Symbol=as.character(symbol), 
EntrezID=as.numeric(entrezID), 
GeneName=as.character(genename)) 

 
######################################################## 
####DIFFERENTIAL EXPRESSION############################# 
######################################################## 
library(limma) 
 
 fit<-lmFit(affy.loess,design) 
 contrast.matrix<-makeContrasts(nC-dC,levels=design)  
#set up the matrix and then you can include or exclude the 
samples that you want  
 fit2<-contrasts.fit(fit,contrast.matrix) 
 fit2<-eBayes(fit2) 
 fit2$gene=anno 
 
 DEgenes=topTable(fit2,coef=1,number=5000,lfc=0.5, 
 adjust.method="fdr",sort.by="logFC",genelist=fit2$gene) 
 
 DEgenes$Probe.ID<-rownames(DEgenes) 
 
 write.csv(DEgenes, 
 file="Differential_expression_Affy_June2014.csv") 
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######################################################## 
####COEXPRESSION AND PLOTS############################## 
######################################################## 
 data<-affy.loess 
 write.csv(data,file="data.csv") 
 data<-read.csv(file="data.csv",sep=",",header=TRUE) 
 colnames(data)[1] <- c("ProbeID") 
 
 ArrayName=names(data.frame(data[,-1])) 

GeneName=data$EntrezID 
 exprs=data.frame(t(data[,-1])) 
 names(exprs)=data[,1] 
 dimnames(exprs)[[1]]=names(data.frame(data[,-1])) 
 exprs.v=as.vector(apply(as.matrix(exprs),2,var,na.rm=T)) 
#calculate variance across the expression data - default Chapter 
2 is v>0.2 
 
 present=as.vector(apply(!is.na(as.matrix(exprs)),2,sum)) 
 keep=exprs.v>0.3 & present>=4 
 table(keep) 
 

filt=exprs[,keep]  
 
library(WGCNA) 
 
 powers = c(c(1:10), seq(from = 12, to=20, by=2)) 
 # Call the network topology analysis function 
 sft = pickSoftThreshold(filt,  
 powerVector = powers, verbose = 5) 
# Plot the results: 
#setwd("/Users/alanmueller/Desktop/Thesis/Chapter_2/Chapter2_ima
ges") 
#pdf("Soft_Threshold_Choice.pdf",height=8,width=12) 
#sizeGrWindow(9, 5) 
#par(mfrow = c(1,2)) 
cex1 = 0.9 
 
 
#Scale-free topology fit index as a function of the soft-
thresholding power 

plot(sft$fitIndices[,1], -
sign(sft$fitIndices[,3])*sft$fitIndices[,2],xlab="Soft 
Threshold (power)",ylab="Scale Free Topology Model 
Fit,signed R^2",type="n",main = paste("Scale 
independence")) 
text(sft$fitIndices[,1], -
sign(sft$fitIndices[,3])*sft$fitIndices[,2],labels=powers,c
ex=cex1,col="steelblue2") 

# this line corresponds to using an Rˆ2 cut-off of h 
 abline(h=0.90,col="grey66") 
 
 
#####create adjacency matrix  
 ADJ1=abs(cor(filt,use="p"))^4 
 k=as.vector(apply(ADJ1,2,sum, na.rm=T))  
##define connectivities  

sizeGrWindow(10,5)  
par(mfrow=c(1,2))  
hist(k)  
scaleFreePlot(k, main="Check scale free topology\n") 
datExpr=filt[, rank(-k,ties.method="first" )<=500] 
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setwd("/Users/XXX") 
save(datExpr,file="matrix_for_affy2014_PCA_heatmap.RData") 

 
######################################################## 
####PCA PLOT############################################ 
######################################################## 
library(FactoMineR) 
library(RColorBrewer) 
 

scaled<-scale(t(datExpr)) 
colnames(scaled) 
 
res.pca<-PCA(t(scaled),graph=FALSE,axes=c(1,2))##or 'map'  
 
PC1 <- res.pca$ind$coord[,1] 
PC2 <- res.pca$ind$coord[,2] 
 
 
condition<-
c(rep("3D.Model",4),rep("Monolayer",8),rep("3D.Model",4),re
p("Native",8)) 
condition<-as.data.frame(condition) 
cell.type<-
c(rep("chondrocyte",8),rep("tenocyte",8),rep("chondrocyte",
4),rep("tenocyte",4)) 
cell.type<-as.data.frame(cell.type) 
 
PCs <- data.frame(cbind(PC1,PC2,cell.type,condition)) 
 
PCA.comp1<-res.pca$eig[1,2] 
PCA.comp2<-res.pca$eig[2,2] 
 
#mypalette<-brewer.pal(3,"Greys") 
#or 
mypalette<-c("gray0","gray88","gray64") 
 

library(ggplot2) 
 

setwd("/Users/XXX") 
pdf(file = "Affymetrix_PCA.pdf", width= 8,  
height = 8,useDingbats=F) 
par(mar=c(1,1,1,1)) 
p<-ggplot(PCs) 
p<-
p+geom_point(aes(PC1,PC2,color=condition,shape=cell.type), 
size=6,alpha=0.6)+ 
scale_colour_manual(values=mypalette)+ 
labs(list(x=sprintf("PC1(%.1f%%)",PCA.comp1), 
y=sprintf("PC2(%.1f%%)",PCA.comp2)))+ 
theme_minimal(base_size=10,base_family="Helvetica")+ 
theme(legend.position = "bottom",text = 
element_text(size=12), 
plot.title=element_text(lineheight=.8,face="bold"))+ 
ggtitle("Principal Component Analysis\nn=24 Affymetrix Rat 
Gene ST 2.0")+ 
scale_shape_discrete(solid=T) 
p 
dev.off() 
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######################################################## 
####HEATMAP PLOT######################################## 
######################################################## 
library(gplots) 
 

matrix<-as.matrix(t(datExpr))ß 
h<-heatmap.2(matrix) 
labels(h$rowDendrogram[[1]]) 
labels(h$rowDendrogram[[2]][[2]]) 

 
##Prepare row groupings 

setwd("/Users/XXX") 
load(file="matrix_for_affy2014_PCA_heatmap.RData") 
 
hc.rows<- hclust(dist(matrix)) 
plot(hc.rows) 
ct<-cutree(hc.rows,h=15) 
plot(hc.rows) 
rect.hclust(hc.rows,h=15) 
##have prepared as four groups - this looks the most 
sensible split 
##number of genes in each group 
table(ct) 
 
hm <- heatmap.2(matrix) 
hc <- as.hclust(hm$rowDendrogram ) 
groups<-cutree(hc, h=25.5) [hc$order] 
names<-names(groups) 
groups1<-unname(groups) 
groups2<-data.frame("Symbol"=names,"Groups"=groups1) 
 
##load annotation of the top 500 genes 
data<-
read.csv(file="500_covariant_genes_PCA_heatmap.csv",header=
TRUE) 
merged<-merge(data,groups2,by.x="Probe_ID",by.y="Symbol") 
write.csv(merged,file="heatmapGroups_sept2014.csv",row.name
s=FALSE) 

 
library(gplots) 
 

matrix<-as.matrix(t(datExpr)) 
 
colnames(matrix)<-
c("ALGINATE.1","ALGINATE.2","ALGINATE.3","ALGINATE.4","MONO
LAYER_C.1","MONOLAYER_C.2","MONOLAYER_C.3","MONOLAYER_C.4",
"MONOLAYER_T.1","MONOLAYER_T.2","MONOLAYER_T.3","MONOLAYER_
T.4","FIBRIN.1","FIBRIN.2","FIBRIN.3","FIBRIN.4","NATIVE_C.
1","NATIVE_C.2","NATIVE_C.3","NATIVE_C.4","NATIVE_T.1","NAT
IVE_T.2","NATIVE_T.3","NATIVE_T.4") 
 
##Create heatmap with the row groups coloured too 
library(RColorBrewer) 
groups<-cutree(hc,h=25.5) 
cols <- brewer.pal(max(groups), "Set3") 
#pdf(file = "Affymetrix_PCA.pdf", width= 8, height = 
8,useDingbats=F) 
#library(WGCNA) 
pdf("affy2014_heatmap_Sept.pdf",height=12,width=12) 
#sizeGrWindow(9,9) 
#par(mar=c(10,2,10,2)) 
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heatmap.2(matrix,col=greenred(100),symkey=TRUE,trace='none'
,density.info='none',RowSideColors=cols[groups],ColSideColo
rs=c(rep("lightsteelblue1",4),rep("goldenrod3",8),rep("ligh
tsteelblue3",4),rep("midnightblue",4),rep("firebrick1",4)) 
,cexRow=0.09,cexCol=0.8,scale='row',mar=c(4,4),dendrogram='
both',colsep=c(4,8,12,16,20),sepcolor="white",sepwidth=c(0.
05,0.05)) 
dev.off() 
 

 
################################################################
##Finding overlaps between DE genes in Illumina and Affymetrix## 
################################################################
##Need lists of Entrez IDs from each data set 

setwd("/Users/XXX") 
illumina<-read.csv(file="illumina.csv",header=TRUE,sep=",") 
affymetrix<-
read.csv(file="affymetrix.csv",header=TRUE,sep=",") 
 
consensus<-merge( 
affymetrix,illumina,by.x="EntrezID",by.y="EntrezID",all.x=T
RUE)  
 
##ensure those unique to affymetrix data are clear 
setwd("/Users/XXX")  
write.csv(consensus,file="Illumina_Affymetrix_consensus.csv
") 
 
 
####Plot common log fold changes and correlations 
setwd("/Users/XXX") 
cor<-read.csv(file="test_data.csv",header=TRUE) 
x<-cor$logFC.Affy 
y<-cor$log2FC.Illumina 
cor.test(x,y,method="pearson") 
 

library(ggplots2) 
 

#mypalette<- see above 
condition<-
c(rep("Upregulated",168),rep("Downregulated",226)) 
setwd("/Users/XXX") 
pdf("nT_dT_Illumina_Affy_correlation.pdf",height=8,width=8) 
g<-ggplot(cor, aes(x=logFC.Affy, y=log2FC.Illumina, 
color=condition, shape=condition),alpha=0.5,size=10) + 
geom_point()+geom_smooth(method=lm,se=FALSE) 
g<-
g+scale_color_manual(values=mypalette)+scale_shape_discrete
(solid=T) 
g<-
g+theme_minimal(base_size=10,base_family="Helvetica")+theme
(plot.title=element_text(lineheight=.9,face="bold")) 
g<-g+ggtitle("Differentially Expressed Genes Common to 
Illumina and Affymetrix Studies\n Native Chondrocytes vs. 
Dedifferentiated Chondrocytes") 
g<-g+labs(list(x=sprintf("log2 fold change 
Affymetrix"),y=sprintf("log2 fold change Illumina"))) 
g<-g+annotate("text",label="r=0.81, p<2.2e-16",x=3,y=-
2.5,size=4,colour="black") 
g 
dev.off() 
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################################################################
######Venn Euler Diagrams####################################### 
################################################################ 
library(venneuler) 
 

v<-venneuler(c(A=3863,B=2709,"A&B"=782)) 
 
##covert the colours to R readable colour-strings 
col.fn <- function(col, alpha=0.3) { 
    col<- hcl(col * 360, 130, 60) 
    col <- col2rgb(col)/255 
    col <- rgb(col[1, ], col[2, ], col[3, ], alpha) 
    col 
} 
COL <- col.fn(v$colors) 
LABS <- v$labels 
id <- match(names(v$colors), LABS) 
 
leg.txt<-c("Affymetrix","Illumina") 
 
par(font.main=1,font.lab=1,family="Helvetica",mai=c(1,1,1,1
),col.main="Gray66") 
 plot(v) 
#legend(.05, .9, legend = LABS[id], fill = COL[id], 
x="topleft",bty="n",) 
legend(.9, .9, legend = leg.txt, fill = 
COL[id],x="topleft",bty="n",text.col="Gray66",horiz=FALSE,b
order=COL[id],cex=0.85) 
title(main="Native chondrocytes to monolayer chondrocytes") 

 
 
########################################## 
###Prioritised gene lists################# 
########################################## 
 
library(RobustRankAggreg) 
 

illumina_rank<-
as.list(read.csv("illumina.csv",sep=",",header=TRUE)) 
affymetrix_rank<-
as.list(read.csv("affymetrix.csv",sep=",",header=TRUE)) 
 
ill<-as.list(illumina_rank$Symbol.x) 
affy<-as.list(affymetrix_rank$Symbol.x) 
 
ill<-unlist(ill) 
affy<-unlist(affy) 
ill_rank<-as.character(ill) 
affy_rank<-as.character(affy) 
 
glist<-list(ill_rank,affy_rank) 
r = rankMatrix(glist) 
AGGREGATE<-aggregateRanks(glist,full=TRUE) 
head(AGGREGATE) 
write.csv(AGGREGATE,file="ranked_illumina_affymetrix.csv") 
 

################################################################ 
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4 :  Weighted gene  co-express ion 
network ana lys i s  of  car t i l age  and 
tendon gene  express ion data  
 

Abstract 
The construction, and comparison, of gene-gene co-expression networks is a 

fundamental tool in systems biology and has the potential to extract biologically 

relevant gene regulatory sub-networks (modules) with strong phenotypic 

associations.  Application of this methodology can facilitate the rational 

identification of central regulators, ‘hubs’, against which gain- or loss- of function 

studies can be designed.    

This study outlines and applies a conceptual and methodological framework, 

weighted gene network co-expression analysis (WGCNA), to elucidate the 

regulatory sub-networks and hub genes that control differentiation status in 

chondrocytes and tenocytes in three-dimensional cultures.  This approach was 

applied to two independent gene expression data sets from different microarray 

platforms and the global transcriptome network structures were compared.  

Defining modules with a strong phenotypic association with three-dimensional 

cultures may describe emergent behavior of organotypic systems with view to 

improving in vitro biomimetic cultures.      

Consensus network analysis defined a preserved module of genes containing 

chondrocyte-associated genes Pi15, Gpnmb and Serpina3n identified as potential 

regulators of the alginate bead culture phenotype.  The leucine zipper tumour 

suppressor (Lstz2) was identified as a potential modulator of dedifferentiation in a 
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monolayer-associated gene module.  A siRNA study considering the effects of 

Lzts2 knock-down on the expression of markers of differentiated status in 

chondrocytes produced equivocal results.   

Additionally, this study demonstrated that small gene expression studies failed to 

robustly meet the criteria of scale-free topology required for this methodology, 

however, it represented a useful methodology for dealing with expression data 

from diverse sources and defined candidate regulators of the alginate bead culture 

phenotype.        
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4.1: Introduction  
 

4.1.1: Dimensionality in gene expression data 

A problem inherent to many microarray-based studies is the generation of highly 

dimensional data arising from tens of thousands of genes and relatively few 

biological samples (Wang, Miller et al. 2008).  In the main the objective of these 

studies is to identify differentially expressed genes, which requires arbitrary 

thresholds to be set, often with the purpose of classifying groups. This ‘hard-

thresholding’ results in prioritized gene lists representing the most extreme 

responses between two systems with no reference to the relationship between the 

genes (Conesa and Mortazavi 2014, Gaiteri, Ding et al. 2014). The dimensionality 

of these expression profiles may be reduced through the use of principal 

component analysis, supervised and unsupervised clustering techniques (Slonim 

2002), as employed in the initial analysis of chondrocyte and tenocytes described 

in Chapters 2 and 3.   

These methods, however, do not systematically study the interconnectivity of the 

individual genes identified, consequently they ignore the cumulative behavior of 

the regulatory pathways that contribute to perturb the gene expression patterns 

observed in differential gene expression analysis (Zhao, Langfelder et al. 2010). 

Methods that attempt to infer gene regulatory networks include Bayesian 

techniques and weighted gene co-expression network analysis (WGCNA) 

(Langfelder and Horvath 2008).  These methods seek to describe the functions of 

the system rather than deconstructing and itemizing the component parts.   
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4.1.2: Conceptual understanding of gene co-expression networks and 
WGCNA methodology 

Weighted gene co-expression network analysis (WGCNA) is a systems biology 

methodology that facilitates investigation of the global network properties of a 

transcriptome and provides functional insights into the organization of the 

network.  The practical output of this type of analysis is the elucidation of higher-

order relationships between groups of highly co-expressed genes (modules) and 

their associations with phenotypic traits.  These modules represent the core units 

of the transcriptome network.  It is possible, therefore, to also compare these 

functional units and the global network structure between gene expression studies 

or even across species (Miller, Horvath et al. 2010).  Identification of the 

preservation of highly connected hubs within functional units across conditions 

can direct researchers to regulatory elements with potential phenotype-modulating 

properties.  

Conceptually a co-expression network is relatively straightforward, although 

mathematically complex.  Useful analogies are often made to social networks, 

which follow comparable network structures. Nodes, some connection point, 

represent genes that are expressed in a sample. Edges, or vertices, connect nodes 

based upon their co-expression across samples.  WGCNA assumes that all nodes 

are connected and the connectivity has different strengths.  The strength of the 

connections between nodes, in this case, indicates the importance of the genes in 

the networks and the measures are derived from the correlation of gene 

expression (Zhao, Langfelder et al. 2010).   

These gene co-expression networks allow the exploration of the system level 

features and functionality of genes.  As the co-expression of genes encodes the 
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downstream protein interactions the study of transcriptional co-expression 

patterns can reveal emergent properties of a cellular system.  This application is a 

valid systems biology approach (Conesa and Mortazavi 2014) using comparisons 

of global transcriptomic network changes to define changes in the system.  

Network-associated methods are not limited to gene co-expression, but are widely 

applicable to biological networks (protein-protein interactions), as well as 

technological (e.g. world-wide web) and social interaction networks (Barabási and 

Oltvai 2004, Zhang and Horvath 2005).   Global co-expression networks arise 

from a multitude of regulatory systems and information from every gene profiled 

may be used.   

The network topology, the spatial relationships of the genes within the network, 

may have functional relevance.  Networks may be reduced and binned into 

modules of highly correlated gene sets, which have been demonstrated to have 

functional commonality; these modules are not isolated and autonomous, but 

highly interconnected (Gaiteri, Ding et al. 2014).   

The goals and philosophies of systems biology are well-placed to inform tissue 

engineering and regenerative medicine through the modeling of cell signalling and 

behavioural phenotypes (Cosgrove, Griffith et al. 2008) especially as regenerative 

strategies often aim to recapitulate dynamic processes, e.g. tissue morphogenesis.  

It is proposed that systems biology approaches (including co-expression network 

analysis) using multi-level data sources can facilitate the development of predictive 

models for bioengineered tissues to inform and refine these systems (Rajagopalan, 

Kasif et al. 2013).  Systems biology tools are applied in this thesis to explore novel 

approaches to inform the future development of organotypic cultures.   
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Scale-free networks 

Most biological networks are ‘scale-free’ (Barabási and Oltvai 2004, Albert 2005, 

Zhu, Gerstein et al. 2007), as opposed to random or hierarchical networks.  

Characteristically these scale-free networks follow a ‘power-law’ distribution, see 

below for clarification.  In a scale-free network the probability that a node is 

connected to another node is statistically higher than in a random network; the 

properties of a scale free network are often defined by a small number of nodes 

that are highly connected  - these may be referred to as ‘hubs’.   

Weighted gene co-expression network analysis (WGCNA) is based on the concept 

of ‘scale-free topology’ (Zhao, Langfelder et al. 2010), an overview of the 

methodology is presented in Figure 4.1.  In a network that is considered to be 

‘scale-free’ the connectivity, or degree, (k) of its components (nodes) follows a 

power-law distribution, such that: 

! ! ~!!!   Equation 1. 

, where γ is the degree exponent.  In other terms, the frequency distribution of 

degree, p(k), is the probability of a node having k links to other nodes of a 

network decays as a power-law (Barabási and Oltvai 2004).  This confers a number 

of properties to scale-free networks: 

i) The degree distribution decays as a function of the scaling parameter, the 

degree exponent, γ (above), such that the frequency distribution of node 

connectivity has a heavy tail; 

ii) Scale-free networks are not homogenous with the network topology being 

defined by a few nodes of high degree or connectivity, which are linked to 
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most other nodes in the network; by analogy, the Google search page or an 

international airport; 

iii) There is considerable redundancy in a scale-free network and, therefore, a high 

tolerance of errors.  The potential to communicate is not diminished by high 

failure rates;     

iv) Scale-free networks are vulnerable to targeted attacks, i.e. the selection and 

removal of a hub node could negate communication throughout a system; 

v) Growth and preferential attachment occur to already highly connected nodes, 

i.e. ‘the rich get richer’.   
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An n × n similarity matrix (b), 
S=[sij], describes the pairwise co-
expression relationships between 
the genes i and j, such that:  
sij = |cor(i,j)|.    
 

Using an adjacency function the 
similarity matrix is converted to a 
symmetrical adjacency matrix (c), 
A=[a i j ] wh ich encodes the 
connection strength between pairs 
of  nodes, such that  aij � [0,1]. 
Diagonal elements of  A are 1, i.e 
aii.  This matrix is used to define 
node connectivity.   

Input is gene expression data.  Nodes, balls (a), represent genes.  
The edges connecting them are associated with the absolute 
Pearson correlation coefficients as a measure of  co-expression.   
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In order to construct a co-expression network complete gene expression data 

from microarray analysis is the input and the co-expression measure between 

genes is often defined by the absolute Pearson correlation coefficient, Figure 4.1a 

and b.  Critically, to define that a connection, or co-expression edge, exists 

between two genes the Pearson correlation coefficient has to have a threshold; a 

‘hard’ threshold would represent an absolute value of statistical significance 

(analogous to the arbitrary definitions of differential gene expression), however, 

defining connectivity in a dichomtomised manner (1, connected; 0, unconnected), 

is unlikely to be biologically relevant and would result in a considerable loss of 

information.  In the general framework for the methodology ‘soft’-thresholding is 

used to ‘weight’ each pairwise gene connection (Zhang and Horvath 2005) thereby 

encoding the relative importance of each gene.  

An adjacency function is used to convert the matrix of co-expression similarity, 

the level of concordance in expression profiles across samples, into an adjacency 

matrix, which defines the connection ‘strength’ between each node/gene pair, i 

and j (Horvath 2011), Figure 4.1c.  In other terms, an adjacency function allows 

the conversion of the original network into an alternative form. This adjacency 

matrix may be weighted through the application of a ‘power adjacency function’, 

β, (Equation 2) (Zhang and Horvath 2005).   

!!"! !"# !!,!! !  Equation 2 

The application of the power adjacency function changes the topological 

properties of a weighted network (Horvath 2011). A primary objective of co-

expression network analysis is the detection of aggregates of nodes, termed 

‘modules’, that are highly connected to each other.  Methodologies used to define 
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these modules differ between techniques so only the approach used in this study is 

described.    

Topological overlap and dissimilarity  

A topological overlap matrix (TOM) is a similarity measure of relative connectivity 

formed from the adjacency matrix; 1-TOM defines the dissimilarity measure, 

which is the fundamental input to the clustering methods used to detect modules.  

An adjacency matrix represents each pair of genes aij in isolation, whilst a 

topological overlap matrix considers each pair of genes relative to all other genes 

within the network.  Sets of genes have high topological overlap if they connect to 

approximately the same groups, or neighbourhood, of genes in the network, 

Figure 4.1d.  Topological overlap is calculated on the comparative connectivity of 

a pair of genes to all other genes in a network (Yip and Horvath 2007).  Two 

elements that have high topological overlap are more likely to have the same 

functionality than elements with lower topological overlap.  Extended to genes it 

can be intimated that genes with high topological overlap are likely to be 

functionally comparable.  In summary, this measure not only considers the 

expression correlation between two genes, but also, using a social networking 

analogy, how many ‘friends’ they share.    

Identification of gene modules 

Cell biology is inherently modular (Hartwell, Hopfield et al. 1999).  Reductionist 

approaches attempted to reduce the understanding of biological phenomena to 

linear relationships.  The ability, however, to apply discrete biological functions to 

individual molecules is rare; biological functions arise from molecular interactions 

organized into functional modules.  Supervised and unsupervised clustering 

methods are widely used in genomic studies (e.g. hierarchical and k-means 
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clustering), each with their own limitations.   The methodology applied here uses a 

dynamic hybrid approach where, first, hierarchical clustering is used to define a 

cluster dendrogram/tree, Figure 4.1e and 4.1f, with clusters defined as ‘branches’, 

then secondly uses a PAM-like (partition-around medioids) algorithm to define the 

clusters (Horvath 2011).  Here, modules (used in place of the term ‘clusters’) are 

defined as genes that are highly connected to one another, and specifically within 

this methodology, genes with high topological overlap.  These modules represent 

the fundamental functional unit of the transcriptional network (Miller, Horvath et 

al. 2010).  As clustering techniques are non-robust (dendrograms can appear very 

differently depending on the form of hierarchical clustering used) the 

reproducibility of clusters/modules must be validated against other data sets.  In 

this chapter modules defined in two independent data sets are used and validation 

techniques applied to assess their reproducibility.  This approach is extended in 

Chapter 5 to a meta-analysis across species.   

Consensus networks and differential eigengene network analysis 

In the context of systems biology functional modules span the knowledge gap 

between individual genes and the global properties emerging from the system 

(Zhao, Langfelder et al. 2010).  As described above these co-expression modules 

represent the basic components of the system.  When considered together co-

expression modules may form a meta-network from which higher order 

organization of the transcriptome may be apparent.  Module representatives, 

eigengenes, can be used to describe these meta-networks and are called eiegengene 

networks, Figure 4.1k and 4.1l.  Single eigengene network analysis may be used to 

describe the module relationships in a single data set, or differential eigengene 

network analysis, when used to compare the network relationships between data 
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sets.  To achieve the latter WGCNA employs methods to define consensus 

modules from consensus dissimilarity measures derived from comparisons of the 

topological overlap matrices from the different data sets, Figure 4.1j.  Whole 

network preservation between a reference and test data set may then be assessed 

using permutation tests.  This study utilizes these methods to define co-expression 

modules conserved across two gene expression data sets profiling chondrocyte 

and tenocyte transcriptomes in different environmental conditions.      

4.1.3: WGCNA:  Recent applications 

Weighted gene co-expression network analysis is now a well-established 

methodology that has been applied to diverse contexts.  Recent work has 

demonstrated genes are highly connected in modules conserved across different 

types of cancer revealing robust prognostic signatures (Yang, Han et al. 2014). 

Horvath’s group, in a seminal paper, demonstrated divergent co-expression 

modules in human and mouse brain transcriptomes with application to a better 

understanding of the relevance of murine models of human brain disorders 

(Miller, Horvath et al. 2010).  Later work, contributing to an atlas of the brain 

transcriptome, showed that the topographical anatomy of the brain was reflected 

in the molecular topography (Hawrylycz, Lein et al. 2012).  To date the author is 

only aware of two studies that apply this methodology to musculoskeletal tissues.  

In a study of chondrocyte differentiation Suwanwela and colleagues (2011) 

integrated co-expression network analysis of gene expression data from 27 mouse 

strains with quantitative data on bone geometry and bone mineral density 

(Suwanwela, Farber et al. 2011).  In another study associating mouse gene 

expression data with bone mineral density Calabrese, et al (2012) identified a 

module with strong osteoblast-association; siRNA knock-down of an intra-
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modular hub supported a role in osteoblasts proliferation and differentiation 

(Calabrese, Bennett et al. 2012).  There are no publications considering cartilage 

and tendon gene expression responses to culture systems.   

The rationale for the use of this type of technique is that it should permit the 

discovery of biologically interesting modules of genes with shared functionality in 

a phenotype-specific manner.  Module preservation can be studied across different 

data sets to identify how conserved modules and their hubs are; it is suggested that 

this type of methodology may be more useful and robust than traditional meta-

analysis techniques (Langfelder, Mischel et al. 2013). 

Study hypothesis 

It was hypothesized that emergent properties of three-dimensional culture systems 

would become apparent through the integration of co-expression network data 

from two gene expression data sets.  By associating intra-modular hubs with cell-

specific culture phenotypes gene targets may be identified that could inform 

improvements in organo-typic systems.  It is proposed that the knock-down of 

gene transcripts for hubs with strong phenotypic associations for dedifferentiation 

could result in improved expression of markers of differentiated status.  More 

broadly, the comparison of whole tissue and matrix-depleted chondrocyte and 

tenocyte transcriptome networks could define regulatory sub-networks relevant to 

the understanding of musculoskeletal degenerative disease.      
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4.2: Methods  
 

4.2.1: Weighted Gene Co-expression Network Analysis 

 

Data pre-processing, network construction and module detection 

All analysis was undertaken in R using a comprehensive suite of functions 

implemented in the WGCNA (v1.41.1) package (Langfelder and Horvath 2008, 

Langfelder and Horvath 2012), Figure 4.2a.  Equivalent codes for this 

methodology are provided in Appendix 5.  The complete normalised expression 

data sets from Illumina (Chapter 2, n=36) and Affymetrix (Chapter 3, n=24) 

were filtered initially on variance and invariant genes were removed.  In the 

preliminary analysis each data set was studied autonomously, Figure 4.2b.  The 

expression preservation, the Pearson correlation of the ranked average gene 

expression, was calculated across these two data sets to assess the comparability of 

analysis across platforms.   

The general co-expression network analysis methodology described by Zhang and 

Horvath (2005) (Zhang and Horvath 2005) was applied to these data sets. The soft 

threshold value, β, was chosen such that the lowest power that maintained an 

approximate scale-free topology was used.  

The filtered genes were ranked on their connectivity and the top 3600 genes from 

each data set were retained for further analysis. A measure of node similarity, 

topological overlap, was calculated (Ravasz, Somera et al. 2002, Zhang and 

Horvath 2005).  The dissimilarity measure, 1-TOM, was used as the input for 

average linkage hierarchical clustering to define gene modules.  Modules were 
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merged at a dendrogram cut-height of 0.2 using a dynamic tree-cutting algorithm 

(Langfelder, Zhang et al. 2008), corresponding to a correlation of 1-0.2 = 0.80.  All 

genes associated with a module were used as an input for gene ontology functional 

annotation using the R package GOstats, as before, and ensuring that the 

background for hypergeometric testing was restricted to the appropriate data 

source; ontology terms were statistically significant after FDR adjustments at 

p<0.001.     

Module eigengenes were calculate to provide single representative expression 

pattern for a module (Langfelder and Horvath 2007).  Correlations of eigengenes 

were used to form networks; these were plotted and manually assessed for 

correlation and the dendrogram cut height amended where necessary to merge 

highly correlated modules.  The minimum entry to a module was retained at 

default settings to allow greater flexibility in later filtering for module hubs.  

Consensus network and module preservation across data sets 

To determine whether the set of modules identified in one data set were present in 

another a standard marginal model analysis was undertaken.  A consensus network 

was derived from the Illumina and Affymetrix data sets and is defined as a single 

network created from the weighted average of correlation matrices from the 

separate data sets (Langfelder and Horvath 2007, Miller, Horvath et al. 2010).  The 

consensus network was based upon the intersection of common Entrez identifiers 

across the two data sets after filtering of invariant data; this left 2795 genes, 

Figure 4.2c.   

Module overlap, the number of genes common to two separate modules was used 

to defined how well modules identified in autonomous data set analysis were 
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conserved in consensus modules.  This was further characterised by calculating the 

module preservation summary z-score from a series of permutation tests 

(Langfelder and Horvath 2007, Langfelder and Horvath 2008).  Differential 

analysis of the eigengene networks were undertaken to define preservation of the 

network structures across data sets.   

Consensus hub genes  

Module Membership (kME) is the Pearson correlation between the expression 

level of each gene in a dataset and each module eigengene in a network.  It 

quantifies the ‘belonging’ of a gene to a module.  To define consensus module hub 

genes kME was calculated for all genes with module assignments and values 

ranked for each module; the genes with the highest kME in both networks were 

defined as consensus hubs.   

Correlating modules to cellular conditions/traits  

To determine whether modules were associated with the sample phenotypes the 

module eigengenes were correlated with a binary matrix defining phenotypic 

group membership.  These phenotype, or trait, groups were inclusive of all 

samples with a common origin or condition, for example, “cartilage”, “tendon”, or 

“native”.  

Glossary  

The unique terminology used within the WGCNA methodology is defined for 

reference, with respect to (Miller, Horvath et al. 2010).  Terms associated with 

module analysis: a) Module eigengene – the first principal component of a module 

(Figure 4.1g); this represents a summary of the expression pattern characteristics 

of a module; b) module overlap – the number of common genes between two 
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modules arising from different data sets; c) module preservation – a collection of 

statistical tests that quantify how well module characteristics in one network are 

replicated in a second network.   

Terms associated with correlation analysis are defined here: a) Gene Significance 

(GS), the absolute correlation between a module eigengene and a trait; b) the 

connections of a node within a module is the ‘intramodular connectivity’ defined 

as the summed connections of a node with all other nodes within a module; c) a 

global module eigengene-based connectivity measure, Module Membership 

(kME), defined above.  

4.2.2: Data visualization and network representation  

Modules were represented graphically using Cytoscape (v3.1.1, October 2014), 

(Cline, Smoot et al. 2007, Killcoyne, Carter et al. 2009). The network structure, 

consisting of nodes (genes filtered for high module membership) and edges 

(weighted intra-modular connections based upon the topological overlap matrix) 

were exported to Cytoscape. The web-application STRING, version 9.1 

(Franceschini, Szklarczyk et al. 2013), (http://string-db.org) was used to define 

protein-protein interactions between genes identified to be consensus hub genes.   

Circos plots were rendered using the Circos web application (http://circos.ca) 

(Krzywinski, Schein et al. 2009) to summarise module overlaps between data sets.     

4.2.3: Silencing of Lzts2 expression using siRNA 

Chondrocytes were obtained from 12-week old male Wistar rats (n=3, Chapter 2 

stock), Figure 4.2a. Passage three chondrocytes cells were plated in 24-well 

culture plates at a density of 2.5 x104 cells/well and allowed to adhere overnight 

(~12 h) in complete media, free of phenol red. For each biological replicate 
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siRNA experiments were performed in triplicate and these were pooled prior to 

RNA extraction.  

Prior to transfection all instrumentation, Eppendorfs, micro-pipettes and reagent 

containers were treated with RNAzap® (Ambion, Life Technologies) according to 

the manufacturers instructions. Optimal concentrations of siRNA and 

Lipofectamine® 2000 were derived from comparisons of maximal transfection 

efficiency based upon varying concentration of siRNA (15 or 30 ρmols), 

Lipofectamine® 2000 (0.5-4 mL), and cell number (2.5 x104 – x104) per well in a 

preliminary study.   

Small interfering RNAs (siRNAs) directed against the leucine zipper, putative 

tumour suppressor 2, Lzts2, transcripts (Rat Silencer Select siRNA (s1722155, 

#4390771) (Ambion, Life Technologies)) were used at 30 ρmols per well.  

Equimolar concentrations of negative control (Silencer Select Negative Control 

No. 1 siRNA (AM4611).  Transfection efficiency was assessed using a Cy3-labeled 

control (Silencer Cy3-Labelled Negative Control siRNA).  Cells were transfected 

with siRNA incubated with 2.5 µl Lipofectamine® 2000 Transfection Reagent 

(Ambion, as before) according to the manufacturer’s guidelines in a final volume 

of 0.5 mL of CM1, as before.  Adherent cells were washed with warmed PBS twice 

to remove media and FBS.  To each well 100 µl of the siRNA/lipofectamine 

solution was added; additionally 400 µl of Optim-MEM (with 3 % FBS, no 

antibiotics/anti-fungal) was added. Cells were incubated at 37 °C for 6 hours; after 

this time media was removed, cells washed with PBS and 500 µl of complete 

media added. Cells were left overnight (>12 hrs).  Cells transfected with Cy3-

labelled negative control siRNA were inspected under green fluorescent light (547-

563 nm) for evidence of transfection. Cultures were harvested and stored in Trizol 
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at -80 °C for RNA extraction as previously described. Following RNA quality 

control RNA some samples were re-precipitated and further concentration steps 

performed.  Briefly, sterile filtered 5M ammonium acetate (Ambion, Applied 

Biosystems) was added to the RNA suspension to bring the final concentration of 

ammonium acetate to 2.5M; 2 µl of glycogen/20 µl RNA solution was 

subsequently added.  To this 2.5 volumes of 100 % molecular grade ethanol 

(EtOH) (Sigma-Aldrich) was added and the solution was frozen at -80 °C 

overnight.  Following this samples were allowed to defrost on ice, were 

centrifuged at 20,000 * g for 15 minutes at 4 °C.  The supernatant was discarded 

and the RNA pellet washed with 1 mL glacial 75 % EtOH to remove residual salt.  

RNA pellets were centrifuged as before, supernatant discarded once more and the 

residual EtOH allowed to evaporate.  Pellets were re-suspended with 10 µl of 

RNAse-free water.        

4.2.4: Quantitative PCR    

The design and validation of primer pairs targeting Lzts2 was undertaken as 

described in Chapter 2.  The primer pairs were designed to target exon two of the 

Lzts2 transcript as this was the siRNA target: 5’-GATCCCCGAGAACATCAGGC 

(60.25 °C, forward), and 5’-TCTCCATATTCTTCTCCAGCCTTC (59.65 °C, reverse), 

producing a 94 base product.  Previously described qPCR protocols were applied 

to this study.  In a serial ten-fold dilution study the primer pair had a 90 % 

amplification efficiency.  Expression analysis was undertaken using the ΔCt 

method, as before.  Statistical analysis was undertaken on the 2^-ΔCt values by 

ANOVA (Tukey post-hoc analysis) after a Shapiro-Wilks test to assess deviations 

from a Gaussian distribution. 
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Figure 4.2a: Overview of  experimental design for results presented in Chapter 4.  Input data is derived from 
Chapters 2 and 3 using Illumina and Affymetrix microarray gene expression data respectively.  Each data set 
follows, i) a round of  independent network generation and module detection and, ii) consensus network 
generation and comparative module analysis.  Only hub gene detected in Illumina data is used for siRNA study.  
Specific data analysis pipeline follows that described in Figure 4.2b (single data set) and c (comparative 
analysis).  Expression data also used in subsequent analysis in Chapter 5.  Statistical analysis of  qPCR data was 
undertaken in R.         
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Figure 4.2b: Data analysis pipeline within R using a suite of  functions within the WGCNA package.  Pipeline 
represents the individual analysis undertaken for each data set.  Specific functions are defined in Appendix 4 R 
codes.  Third-party web applications are indicated.     
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e.g. conditions, species.  Preserved (consensus) and unique modules were defined and annotated.   Specific 
functions are defined in Appendix 4 R codes.  Third-party web applications are indicated.     
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4.3: Results 
 

4.3.1: Data preparation, module formation and functional annotation  

 
Network topology and module detection  

Initially the data was considered against the general scale-free topology criterion to 

define the adjacency function parameters.  The soft-thresholding powers which 

resulted in an approximate scale-free topology for both Illumina (β = 9) and 

Affymetrix (β = 12) data was determined.  The datasets differed in their network 

topology with the Affymetrix data only having approximate scale-free topology at 

higher soft-threshold values (R^2 < 0.72 at β = 12), Figure 4.2 and 4.3. This would 

normally not satisfy the scale-free topology criterion (R^2 > 0.8), however, in a 

plot of the regression line between log10(p(k)) and log10(p(k)) the slope was -1.13, 

comparable to that of the Illumina data, which did meet scale-free topology 

criterion. 

Module detection using hierarchical clustering of the dissimilarity matrix defined 

seven module eigengenes for the Illumina data (Figure 4.5) and six for the 

Affymetrix (Figure 4.6) dataset. Genes included within a module were 

functionally annotated using gene ontology terms (p<0.001), Tables 4.1 and 4.2.   

Modules were allocated arbitrary colours for each dataset - these are not 

comparable between data sets.  For clarity an alphanumeric code is employed as 

defined in the previous tables.  Broadly, there were modules that shared functional 

annotations across data sets, in particular those relating to metabolic and cell cycle 

processes, but also immune and defense response annotations and anatomical 

structure development. 
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Figure 4.3:  Upper panel - Assessment of  Illumina data for weighted gene co-expression 
network analysis.  i) Scale-free topology index (y-axis) as a function of  the soft-thresholding 
power, β  (x-axis), left panel.  Intersection line at R^2=0.9.  Right Panel ii) shows the mean 
connectivity, or degree, (y-axis) as a function of  the soft-thresholding power (x-axis).  Degree 
decreases with increasing soft-threshold value.  Lower panel – (iii) histogram of  connectivity 
values (k), (iv) log-log plot of  the connectivities fitted to a linear model. The R^2 value, the 
square of  the correlation between log10(p(k)) and log10(k), can be read as an index of  the  
scale-freedom of  the network topology.  The Illumina data is shown to have approximate scale-
free topology.  Beta, β=8 is chosen as it is an effective trade-off  between maximising scale-free 
topology and retaining a high mean number of  connections.   

iii. Histogram of  connectivities, k iv. Assessment of  scale-free topology 
     Scale, R^2=0.92, slope=-1.19 
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Figure 4.4:  Upper panel - Assessment of  Affymetrix data for weighted gene co-
expression network analysis.  i) Scale-free topology index (y-axis) as a function of  the soft-
thresholding power, β  (x-axis), left panel.  Intersection line at R^2=0.8.  Right panel ii) 
shows the mean connectivity, or degree, (y-axis) as a function of  the soft-thresholding 
power (x-axis). Lower panel – (iii) histogram of  connectivity values (k), (iv) log-log plot of  
the connectivities fitted to a linear model. The Affymetrix data is shown to have only 
moderate scale-free topology.  Beta, β=12 is chosen as it is an effective trade-off  between 
maximising scale-free topology and retaining a high mean number of  connections.  
Although R^2=0.8 is the recommended threshold value for approximate scale-free 
topology the slope of  the linear regression between log10(p(k)) and log10(k) is <-1 and 
comparable to the Illumina data.  On this basis the data was retained for further analysis.   
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Figure 4.5: Gene co-expression dendrogram (top) and modules with phenotypic trait 
correlations (below) for Illumina data.  Hierarchical clustering of  genes in dendrogram is 
based upon 1-TOM (dissimilarity matrix) with modules (top row, coloured blocks) determined 
using a dynamic tree-cutting algorithm at 0.2.  The five linear heatmap plots define the gene 
significance (GS) values – the absolute correlation between the gene and trait, heatmap legend.  
The heatmap plots demonstrate that the genes with the highest association for a trait (defined 
in Table 4.1) are located in the distal extremities of  the dendrogram branches, for example the 
cartilage associated module for the Illumina data is the turquoise module; the genes with the 
highest gene significance are in the far right of  the turquoise block and associated with the tips 
of  the dendrogram branch.   
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Figure 4.6: Gene co-expression dendrogram (top) and modules with phenotypic trait 
correlations (below) for Affymetrix data (n=24).  Six modules were defined for the Affymetrix 
data on the top 3600 most connected genes.  In contrast to the Illumina data modules are not 
as defined and module eigengenes more strongly correlated to each other as demonstrated by 
the height legend (y-axis).  This dendrogram is based on a dissimilarity adjacency matrix and so 
the longer the branch the more dissimilar it is to other modules.  This is also reflected in the 
gene significance distribution for different traits (linear heatmaps).  Although some clear 
associations are present, e.g. native chondrocytes with the brown module, association is much 
more variable across phenotypes 
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Biological Process Metabolic Function  Cell Compartment  

Response to organo-nitrogen compound (3.1e-9) 
Inflammatory response (1.3e-07) 
Response to cytokine stimulus (2.5e-5) 
NIK/NF-kappaB cascade (2.2e-4) 

Methyl indole-3-acetate esterase activity (1.1e-5) 
Protein binding (2.1e-4) 
MRF binding (2.6e-4) 
Protein heterodimerisation activity (4.1e-4) 

Extracellular space (1.6e-5) 
 

Cellular protein metabolic process (2.4e-11) 
Gene expression (2.4e-6) 
Cellular response to stress (3.8e-5) 
Apoptotic signalling pathway (4.9e-4) 

Protein binding (5.1e-15) 
RNA binding (2.9e-5) 
Peptidase activator activity (3.03e-4) 

Intracellular part (4.9e-30) 
Ribonucleoprotein complex  
(6.02e-9) 
 

Translation (5.3e-14) 
Metabolic process (7.7e-11) 
Organic substance metabolic process (4.6e-8) 
Nitrogen compound metabolic process (5.5e-4) 

Structural constituent of  ribosome (1.6e-15) 
RNA binding (3.2e-8) 
Translation factor activity, nucleic acid binding (3.2e-4) 

Intracellular part (1.4e-35) 
Mitochondrion (6.8e-15) 

Muscle system process (2.9e-14) 
Skeletal muscle tissue development (1.6e-6) 
Actin filmament-based process (1.02e-5) 
Tissue regeneration (4.8e-5) 

Structural constituent of  muscle (9.1e-12) 
Cytoskeletal protein binding (9.8e-11) 
Actin binding (3.2e-7) 

Myofibril (1.03e-27) 
Actin cytoskeleton (5.9e-11) 
Cytoskeleton (6.3e-6) 

Response to external stimulus (2.7e-4) 
Bone mineralisation (6.8e-4) 
Response to stress (6.8e-4) 
Biomineral tissue development (8.2e-4) 

Proton-transporting ATPase activity (3.1e-4) Cytoplasm (4.7e-6) 
Mitochondrion (5.9-6) 
Extracellular matrix (7.8e-4) 

Cell cycle (1.7e-10) 
Immune system process (6.3e-10) 
Response to biotic stimulus (6.5e-9) 
Co-factor biosynthetic process (5.7e-6) 

Binding (1.9e-16) 
Catalytic activity (1.2e-11) 
Oxidoreductase activity (5.3e-5) 

Intracellular part (3.2e-21) 
Nucleus (2.8e-13) 
Cytoplasm (4.8e-11) 

Cellular response to organic substance (8.7e-5) 
Cell adhesion (8.7e-5) 
Response to cytokine stimulus (8.8e-5)  
Anatomical structure development (1.7e-4) 

Oligosaccharyl transferase activity (8.2e-4) Cytoplasmic part (2.2e-12) 
Intracellular (9.5e-9) 
Lysosome (5.5e-8) 
 

Illumina module-trait relationships
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-0.6
(1e-04)

-0.31
(0.06)

-0.69
(4e-06)

0.91
(2e-14)

-0.24
(0.2)

-0.15
(0.4)

-0.38
(0.02)

-0.71
(1e-06)

-0.59
(2e-04)

-0.99
(9e-28)

0.62
(5e-05)

0.17
(0.3)

0.15
(0.4)

0.28
(0.1)

-0.045
(0.8)

-0.019
(0.9)

-0.048
(0.8)

-0.56
(4e-04)

0.97
(2e-21)

-0.078
(0.7)

0.72
(7e-07)

0.026
(0.9)

0.23
(0.2)

0.2
(0.2)

-0.83
(3e-10)

0.49
(0.002)

0.37
(0.03)

0.79
(1e-08)

-0.35
(0.04)

-0.32
(0.06)

-0.51
(0.002)

-0.35
(0.03)

0.62
(6e-05)

0.43
(0.009)

0.95
(2e-19)

-0.063
(0.7)

0.99
(2e-29)

0.74
(2e-07)

-0.46
(0.005)

-0.12
(0.5)

-0.11
(0.5)

-0.22
(0.2)

0.99
(6e-30)

-0.056
(0.7)

0.67
(7e-06)

-0.41
(0.01)

-0.16
(0.4)

-0.098
(0.6)

-0.21
(0.2)

Table 4.1: Gene ontology annotation for modules defined from Illumina data set.  Each module has an arbitrary colour allocated, which is 
comparable only between other modules from the same data set. Gene ontology terms for biological process, metabolic function and cell 
compartment are significant at p<0.001 after hypergeometric testing and FDR adjustment of  p-values; values are shown in parentheses. Universe 
for hypergeometric testing was genes from the Illumina RatRefv1 microarray with valid Entrez gene identifiers.  Duplicates were removed.  Terms 
provided are representative, but not exhaustive. Alphanumeric codes are used to unambiguously define modules between analysis and are used in 
the text.   
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Biological Process Metabolic Function  Cell Compartment  

Cellular macromolecule metabolic process (4.9e-20) 
Gene expression (2.2e-18) 
Biosynthetic process (2.4e-15) 

Binding (2.6e-22) 
Organic cyclic compound binding (2.7e-15) 
DNA binding (3.1e-9) 

Intracellular part (6.9e-41) 
Organelle (2.5e-30) 
Nucleus (3.9e-27) 

Immune system process (3.5e-13) 
Response to stress (6.7e-11) 
Cell activation (2e-8) 

Protein binding (2.2e-10) 
PI3-kinase regulator activity (6.8e-4) 
Chemokine receptor binding (6.8e-4) 

Cytoplasm (9.02e-9) 
Actin filament (8.9e-5) 
Intracellular (7.3e-4) 

Blood vessel morphogenesis (1.2e-7) 
Cardiovascular system development (2.8e-6) 
Anatomical structure formation involved in 
morphogenesis (1.1e-5) 

Cyclase activity (5.5e-4) 
Guanylate cyclase activity (6.1e-4) 
Ion binding (8.5e-4) 

Plasma membrane (1.2e-4) 
Cell periphery (1.4e-4) 
Membrane (1.7e-4) 

Mitotic cell cycle (2.2e-12) 
Developmental process (9.7e-9) 
Anatomical structure development (2.02e-7) 

Protein binding (1.2e-17) 
Cytoskeletal protein binding (1.01e-11) 
ECM structural constituent (4.7e-5) 

Cytoskeleton (1.5e-10) 
Extracellular matrix (4.6e-10) 
Stress fibre (5.8e-7) 

Response to external stimulus (2.9e-4) 
Regulation of  signalling (2.9e-4) 
Negative regulation of  MAPK cascade (6.9e-4) 

Receptor binding (2.3e-4) Extracellular region part (2.3e-4) 

Anatomical structure morphogenesis (5.5e-7) 
Developmental process (3.2e-6) 
Tissue morphogenesis (4.2e-5) 

Carbohydrate binding (3.1e-4) 
Coreceptor activity (8.7e-4) 
Receptor tyrosine kinase binding (8.7e-4) 

Membrane raft (5.3e-4) 
Plasma membrane part (6.7e-4) 
Vesicle (7.8e-4) 

Affymetrix module-trait relationships
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0.56
(0.005)

-0.89
(5e-09)

0.48
(0.02)

-0.064
(0.8)

0.33
(0.1)

0.8
(3e-06)

0.41
(0.05)

0.96
(3e-13)

-0.56
(0.005)

-0.19
(0.4)

-0.32
(0.1)

-0.4
(0.05)

0.11
(0.6)

0.95
(3e-12)

0.84
(3e-07)

-0.38
(0.06)

-0.32
(0.1)

-0.26
(0.2)

-0.45
(0.03)

-0.52
(0.01)

-0.48
(0.02)

-0.79
(4e-06)

0.69
(2e-04)

-0.3
(0.1)

0.43
(0.04)

0.1
(0.6)

-0.19
(0.4)

-0.32
(0.1)

-0.4
(0.05)

-0.46
(0.02)

0.92
(2e-10)

0.17
(0.4)

0.86
(5e-08)

-0.5
(0.01)

-0.6
(0.002)

-0.87
(4e-08)

0.065
(0.8)

0.68
(3e-04)

0.34
(0.1)

0.8
(3e-06)

AFF1 

AFF2 

AFF3 

AFF4 

AFF5 

AFF6 

Table 4.2: Gene ontology annotation for modules defined from Affymetrix data set. Each module has an arbitrary colour allocated, which 
is comparable only between other modules from the same data set. Gene ontology terms for biological process, metabolic function and cell 
compartment are significant at p<0.001 after hypergeometric testing and FDR adjustment of  p-values; values are shown in parentheses. 
Universe for hypergeometric testing was genes from the Affymetrix Gene ST 2.0 microarray with valid Entrez gene identifiers.  Duplicates 
were removed. Alphanumeric codes are used to unambiguously define modules between analysis and are used in the text.   
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Relating modules to phenotypic traits  

In order to evaluate whether any of the data set-specific modules had associations 

with the sample phenotypes a binary matrix was prepared to define membership 

of a phenotype, e.g. alginate cultures.  These phenotypes, or traits, were correlated 

with the module eigengenes for each network. Illumina gene expression data 

showed divergent module eigengenes for cartilage and tendon, Figure 4.7.  In line 

with the findings in Chapter 3 co-expression module AFF2 for Affymetrix data 

was more highly correlated with both native matrix-depleted chondrocytes and 

tenocytes than either group alone, suggesting a closer phenotype, Figure 4.8.  

Alginate cultures in both datasets were found to have strong module eigengene 

associations (ILL1 and AFF5), but associations were equivocal for fibrin cultures 

alone.  

Relating the module-trait associations back to the biological process functional 

annotations (Table 4.1 and 4.2) confirmed the annotations associated with the 

differential expression analysis in Chapter 2 and 3.  For example, the alginate trait 

was association with the Illumina ILL1-module eigengene (cor = 0.97, p = 2e-21) 

and the terms ‘inflammatory response’ and ‘response to cytokine stimulus’, Figure 

4.7. In the matrix-depleted chondrocytes from alginate beads in the Affymetrix 

data these samples were associated with the AFF5 module, Figure 4.8, (cor = 

0.92, p = 2e-10) and the terms ‘response to external stimulus’ and ‘negative 

regulation of MAPK cascade’.   
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Figure 4.7:  Associations between Illumina module eigengenes (rows) and 
sample traits (columns). Within each cell is the corresponding correlation 
(coded by colour – heatmap) and p-value (parenthesis). Samples may be 
members of  more than one trait, for example, ‘Native’ comprises both cartilage 
and tendon samples, whilst ‘Models’ are an aggregation of  both alginate and 
fibrin culture samples.  Strong associations are found between the ILL6 and 
ILL4 modules with the native cartilage and tendon samples respectively.  
Monolayer (ILL2 module eigengene) and alginate (ILL1 module eigengene) 
traits also show strong associations.  Weaker associations are found for the 
ILL5 and ILL3 module eigengenes and various traits.   
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Figure 4.8:  Associations between Affymetrix module eigengenes (rows) and 
sample traits (columns) as described above. Here matrix depleted cells were the 
input, native chondrocytes and tenocytes are cells isolated directly from tissue; 
monolayer is passage three.  Strong associations are found between native 
samples and the AFF2 and AFF3 modules, whilst three-dimensional culture 
systems are more highly associated with the AFF5 and AFF6 modules.  The 
monolayer trait appears associated with the AFF4 module, but this is not a 
strong statistical association.       
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4.3.2: Gene significance and module membership 
 

In order to identify genes that are central elements to functional modules, i.e. 

module hubs, and also strongly associated with a phenotypic trait, three 

quantitative measures were calculated – Gene Significance (GS), intramodular 

connectivity, and Module Membership (kME). Gene significance for every gene 

against each module is shown in Figures 4.5 and 4.6. As Module Membership is 

the more practical value for network comparisons this was used over intramodular 

connectivity, however, there was high correlation between the two values (data not 

shown).   

For the Illumina data there was evidence to support the statement that genes with 

strong trait association were also the most highly connected within a module and 

had high Module Membership (correlation > 0.9), Figure 4.9.  The cartilage- and 

tendon-associated modules (ILL6 and ILL4) had high correlation between GS and 

kME (cartilage - 0.99, p<1e-200; tendon – 0.98, p<1e-200).  This would indicate 

that genes that are highly associated with these phenotypes are also likely to be 

highly connected genes in these modules and could be considered hub elements.  

In contrast the ILL3 module, which had moderate association with three-

dimensional culture models, demonstrated poor correlation between GS and kME 

(cor = 0.34) indicating that the assumption that high trait association was related 

to high gene connectivity did not hold true in this module.   In comparison, for 

the Affymetrix data similar confidence could not be extended to native cells, 

monolayer and alginate culture models and their associated modules, with 

correlations below 0.9 evident. Divergent relationships were evident for the 

combined native cell phenotype; this was consistent with two cell populations 

contributing to this analysis, Figure 4.10.                            
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Figure 4.9: Scatterplots – the Gene 
Significance (y-axis) for a trait (the 
absolute correlation between the module 
eigengene and the trait) vs. Module 
Membership (kME), the correlation 
between the module eigengene and the 
whole gene expression profile (x-axis).  
 
Plots for all traits versus all modules was 
undertaken, but only the most significant 
are shown here.  Plots with strong 
positive correlation indicate that genes 
that are highly associated with a trait are 
also the central elements within a module, 
the definition of  a module hub.  These 
genes are represented in the top right 
corner of  each plot.  This relationship is 
true for modules ILL1, ILL4 and ILL6, 
however, for low correlations (ILL5) hub 
genes cannot be confidently identified.    

ILL6 | Cartilage ILL4 | Tendon 
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4.3.3: Defining putative module hubs 
  

For modules with high trait significance, and for which there was a strong 

association between Gene Significance and Module Membership (kME), the 

predicted hubs were chosen as the top twenty genes with a kME >0.9, consistent 

with standard methodology.  Gene ontology annotation was performed on the top 

50 genes where kME >0.9 and GS >0.5.  Results for both network analysis are 

shown in Table 4.3 and 4.4. 
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Figure 4.10: Scatterplot of  Gene Significance (GS) (y-axis) versus Module 
Membership (kME) (x-axis) relating to Affymetrix data.  Associated modules and 
phenotypic traits are provided.  Moderate correlations between GS for a trait and kME 
were only found for the A: ‘native’ cell phenotype (matrix-depleted cells isolated from 
cartilage and tendon ); B: monolayer cultures, and alginate beads (not shown).  
Although the AFF2 module eigengene had a high correlation with the matrix-depleted 
phenotype from native cells (cor = 0.96) the relationship between GS and kME was 
only highly correlated at high values of  GS and kME with divergent relationships 
evident with genes that had lower associations with the phenotypic trait indicative of  
the presence of  two phenotypes.  The monolayer associated module demonstrated 
poor associations between GS and kME indicating that hub genes for this module 
could not be confidently identified.   

A. B. 

AFF2 | Native AFF4| Monolayer 
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Native chondrocyte-associated modules 

The ILL6 module (1007 genes) had the highest association with the trait ‘cartilage’.  

The genes with the highest kME for ‘cartilage’ included the cathepsins Ctse and 

Ctsg, and genes identified as highly expressed in both cartilage datasets, Sell 

(selectin L) and Dmp1 (dentin matrix acidic phosphoprotein 1). In the Affymetrix 

data set the module associated with native cells, AFF2 (948 genes), was 

represented by Srgn (serglycin) and Vamp1 (vesicle-associated membrane protein 

1).  In both accounts the biological process annotation ‘response to stress’ was 

significantly enriched.  

Native tenocyte-associated modules 

The modules with the strongest associations for native tenocytes, ILL4 and AFF3, 

demonstrated divergence in their hubs and annotation.  ILL4 was found to 

contain troponins Tnnt3 and Tnni1, Kera (keratocan) and Gap43 (growth associated 

protein 43) as the most highly connected.  The AFF3 module was represented by 

Angpt2 (angiopoetin 2), Robo4 (roundabout homolog 4), and the EMILIN-family 

member Mmrn2 (multimerin 2).  The module hubs differed in their annotations 

with the Illumina data defined by muscle contraction and muscle tissue 

development, whereas the Affymetrix module was described by blood vessel 

development and cardiovascular system development.  

Monolayer-associated modules   

Sample origins for monolayer differed in passage number with passage 5 for 

Illumina data and passage 3 for Affymetrix.  The Illumina monolayer-associated 

module ILL2 had as hubs the beta-catanin inhibitor Lzts2, and regulators of 

growth plate differentiation Igfr1 and Sirt6.  The AFF4 module was found to 

contain Fzd2 and Bmp1 as central regulators.  The Affymetrix module was 
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annotated with the terms ‘regulation of cell-substrate adhesion’ and ‘extra-cellular 

matrix organisation’, whilst the Illumina module was described by ‘polysaccharide 

catabolic process’.   

Alginate-associated modules 

The Illumina alginate-associated module ILL1 contained the serine peptidase 

inhibitors Serpina1 and Serpina3n, peptidase inhibitor Pi15 and the transcription 

factor Atf3.   The inhibitor of nuclear factor kappa-B kinase Ikbke was a hub in 

both the ILL1 and AFF5 alginate culture-associated modules.  Additionally the 

AFF5 module contained Ier2 (immediate early response 2) and Sfrp2 (secreted 

frizzled-related protein 2). The ILL1 module was described by the term 

‘inflammatory response’, whilst AFF5 was significantly enriched for the term 

‘positive regulation of cell differentiation’.   

In summary, there was evidence for common functional annotations between 

modules from the two data sets using standalone analysis of these expression 

profiles, however, the qualitative preservation of hub gene candidates across 

phenotypic traits was equivocal nor consistently meet assumptions for confidently 

calling hub genes in some conditions.     
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Phenotypic 
Trait 

Module 
association   
[cor, p-value] 

Gene significance vs. 
Module Membership 

[cor, p-value] 
Top 20 kME – Hub genes 

Biological Process (Top 50) 
annotation (adj.p-value) 

Cartilage ILL6/Turquoise 
[0.99,  p=6e-30] 

0.99, p<1e-200 Prg2, Nkg7, Add2, Napsa, Ppbp, Dnase1l3, Ctse, 
Plac8, Cfp, Fcnb, Loc24906, Ptprcap, Ifitm6, Ctsg, 
Camp, Sell, Retnlg, Ngp, Dmp1, Ms4a2 

Immune system process (1.08e-7) 
Response to stress (1.3e-4) 

Tendon ILL4/Green 
[0.99,  p=2e-29] 

0.98, p<1e-200 Mb, Cox8b, Dhrs7c, Tnnt3, Myl1, Ryr1, Ckm, Myoz1, 
Tmod4, Itih3, Kera, Ccdc3, Art3, Tnni2, Rbfox1, 
Gap43, Eno3, Pgam2, Lyve1, Myoc 

Muscle contraction (2.4e-16) 
Muscle tissue development (6.9e-6) 

Monolayer ILL2/Blue 
[0.91,  p=2e-14] 

0.83, p<1e-200 Scamp4, Srsf9, Apba3, Mrrf, Wsb2, RGD1559909, 
Dolk, Pcgf3, Leprel2, Prelid1, Igf1r, Ipo4, Lzts2, 
Clip2, Pygb, Prmt2, Slc30a5, Tm2d2, Sirt6, Eef1g 

Polysaccharide catabolic process 
(9.6e-4) 

Alginate ILL1/Black 
[0.97,  p=2e-21] 

0.9, p=1.4e-30 Ptgds, Serpina1, Abcc9, Cesl1, Atf3, Gem, Ces1c, 
Gpr88, Pcsk1, Serpina3n, Ikbke, Map3k8, Rilp, 
Adipoq, Sectm1b, Maob, Ces1d, Akr1cl, Ppp1r1b, 
Pi15 

Response to organonitrogen 
compound (3.6e-7) 
Inflammatory response (1.1e-4) 

Models ILL5/Red [0.95, 
p=2e-19] 

0.88, p=1.1e-50 Armcx3, Ak3, Sat2, Eci2, P2rx4, Maoa, Pgrmc1, 
Commd10, Atp11a, LOC290595, Acsl4, Plin2, Psma1, 
Errfi1, Dnajc14, Sod2, Ctsd, Rbbp7, Tomm20, Mcfd2 

Protein targeting to mitochondria 
(2.2e-4) 
Oxygen homeostasis (2.2e-4) 

Table 4.3: Summary table highlights the phenotypic trait association with modules from Illumina data.  Correlation of  gene significance and 
module membership indicate confidence in modular hubs associated with traits.  The top 20 genes with highest module membership (kME>.9) as 
shown; the biological process annotation for these genes is also provided where significant annotations are present (GS>.5). The combined 
phenotype of  ‘Models’ (both alginate and fibrin cultures) had a more robust association than fibrin alone and is presented.  The gene Lzts2 is 
highlighted as a monolayer hub – this is investigated further in 4.3.7.   
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Phenotypic 
Trait 

Module 
association   
[cor, p-value] 

Gene significance vs. 
Module Membership Top 20 kME – Hub genes 

Biological Process (Top 50) 
annotation (adj.p-value) 

Native 
chondrocytes 

AFF2/Brown  
[0.8, p=3e-6] 

0.99, p<1e-200 Dnajb1, Mir29b2, F13a1, Hsph1, Pdk4, Pf4 ,Arid1b, 
Hsp90ab1, Isg20, Clec4d, Vamp1, Srgn, LOC363060, 
Fcer1g, Depdc7, Tcp11, Igsf6, Hspbap1, Cd53, Uspl1 

Chaperone mediated protein folding 
(8.2e-6) 
Response to stress (8.7e-4) 

Native 
tenocytes 

AFF3/Green 
[0.95, p=3e-12] 

0.59, p=9.1e-20 Gpr116, Cd93, Cdh5, Emcn, Tie1, Cd34, Myct1, 
Podxl, Eltd1, Prex2, Mfng, Angpt2, Npr1, Kit, Gpr4, 
Prkch, Tek, Robo4, Mmrn2, Plxnd1 

Blood vessel development (4.6e-8) 
Cardiovascular system development 
(1.6e-6) 

Native cells AFF2/Brown 
[0.96, p=3e-13] 

0.82, p<1e-200 Hubs based on module membership as per native 
chondrocytes above – gene significance value is higher 
for each gene for ‘native’ phenotype 

NA 

Monolayer AFF4/Blue 
[0.69, p=2e-4] 

0.5, p=8.4e-63 Loxl1, Adamtsl4, Flnc, Scrn1, Col8a1, Fzd2, Large, 
Lgals1, St5, Nkain1, Nuak1, Pcolce, Fam198b, St3gal2, 
Lhfp, Bmp1, Nxn, Ebpl, Ccbe1, Fbn1 

Regulation of  cell-substrate adhesion 
(8.4e-5) 
Extracellular matrix organisation (3.6e-4) 

Alginate AFF5/Red 
[0.92, p=2e-10] 

0.42, p=3.6e-6 Ptprz1, Atp11a, Robo1, Etv1, Sfrp2, Tmem200a, 
Cyp7b1, RGD1310819, Nceh1, Ikbke, Itgb8, 
Fam168a, Tnfsf15, Acvr1b, Entpd4, Ptn, Ier2, 
Ppargc1a, Acadsb, Plekha5 

JAK-STAT cascade involved in growth 
hormone signaling (6.1e-4) 
Positive regulation of  cell differentiation 
(8.4e-4) 

Model AFF6/Yellow  
[0.8, p=3e-6] 

0.3, p=1.8e-5 Galnt2, Junb, Efna4, Traf3ip2, Prickle2, Nudt4, Bst1, 
Naprt1, Lrp6, Pecr, Gnb5, Flrt2, P2rx4, Gpr153, 
Zmynd8, Shc1, Stxbp4, RGD1309534, Slc41a2, Sox4 

Neurogenesis (8.7e-4) 
Cellular response to insulin stimulus 
(8.7e-4) 

Table 4.4: Summary table highlights the phenotypic trait association with modules for Affymetrix data.  Correlation of  gene significance and 
module membership indicate confidence in modular hubs associated with traits.  The top 20 genes with highest module membership (>0.9) are 
shown; genes are ordered (L-R) from highest module membership.  The biological process annotation for these genes is also provided where 
significant annotations are present and are based on the top 50 genes. The relationship between the trait ‘Model’ and the yellow module was greater 
than that with ‘Fibrin’ and so the former is presented.   
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4.3.4:  Consensus network generation for 3D culture systems 

It is not possible to directly compare the networks features derived from 

individual data analysis, other that by functional annotation of the modules, as 

described above.  In order to define the emergent properties in the three-

dimensional culture systems it was necessary to undertake a differential eigengene 

network analysis to determine, and quantify, whether a set of modules found in 

one network was preserved in another.  By pursuing this method a comprehensive 

analysis of network structures across two data sets would allow conserved and 

divergent functional modules to be defined to reveal biologically relevant pathway 

dependencies for a phenotype.    

Expression data and eigengene network structure 

To establish if the Illumina and Affymetrix studies were comparable the average 

expression rank for each gene in a data set was calculated and correlated between 

the two studies. The high expression correlation (cor = 0.7, p < 1e-200), Figure 

4.11, suggested that the gene expression profile was significantly preserved 

between data sets.  For module identification genes common to both data sets, 

after non-specific filtering, were identified (n=2795) and only these were used in 

further analysis. Soft-thresholding powers were tested across both data sets and β 

= 7 was chosen.  

Consensus modules are identified from both data sets 

Consensus modules are modules that are common to two gene co-expression 

networks and may represent biological mechanisms that are shared between the 

two data sources.  Comparing the relationships between the consensus eigengene 

networks can reveal important differences between the systems.  A consensus 

network was established by hierarchical clustering of a consensus dissimilarity 
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matrix.  The consensus network analysis defined 15 modules, including one 

module (‘grey’ for unassigned genes). Additionally, new data set-specific single 

networks were prepared that were derived only from the 2795 common genes 

used for consensus network analysis, Figures 4.12 and 4.13 (upper panels).  As 

such, module identifiers used in sections 4.3.1-4.3.2 are not applicable to this 

section.      

Module overlap with consensus modules is variable between data sets 

Revised Illlumina and Affymetrix module eigengenes (derived from 2795 common 

genes) were considered against the 15 consensus modules to assess the gene 

overlap, i.e. whether genes comprising modules in the individual network analyses 

were wholly replicated in the consensus network.  In general, there was overlap 

between module eigengenes from the individual networks and the consensus 

network, however, these overlaps were often not associated with a single 

consensus module eigengene, Figures 4.12 and 4.13 (lower panels) and Table 4.5. 

Module overlaps are summarized in Figure 4.14.   
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Figure 4.11:  Upper panel -  
scatterplot of  mean ranked 
expression values for every gene 
common to both Illumina (x-axis) 
and Affymetrix (y-axis) data sets 
(n=2975).  
  
Lower panel: Soft-thresholding 
powers (x-axis) are plotted against 
scale-free topology criterion or 
connectivity values for either 
Illumina or Affymetrix data (boxed 
legends), y-axis.   
 
Using the reduced gene numbers 
the scale-free topology issues 
arising in the earlier Affymetrix 
analysis are still evident.  A power 
of  beta=7 was chosen based upon 
the reduction in connectivity 
associated with increasing power 
in the Illumina data.   
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Figure 4.12: Upper panel - Clustering dendrogram for Illumina data using genes 
common to both data sets (top) with associated modules.  General network structure 
is approximately comparable to that of  the larger gene set. Nine modules were 
identified using the smaller data set (ILL8-ILL16) including the grey module, which 
contains unassigned genes. 2795 genes with deepSplit=1, beta=7, cut-height=0.2.   
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Figure 4.12: Lower panel - Gene overlaps between the revised Illumina modules 
(rows) and those defined by the consensus network for Illumina and Affymetrix 
(columns).  Broadly, all Illumina network modules have representation in the 
consensus network, however, this may be over several consensus modules.  Coloured 
cells define the number of  genes from the consensus module that are overlapping 
with the Illumina-specific modules (linear heatmap).   The number of  genes in each 
module are indicated beside the colour blocks allocated to each module.     
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Figure 4.13: Upper panel - Clustering dendrogram for Affymetrix data using genes 
common to both data sets (top) with associated modules.  General network structure 
is approximately comparable to that of  the larger gene set. Eleven modules were 
identified (AFF7-AFF17) using the smaller data set. 2795 genes with deepSplit=1, 
beta=7, cut-height=0.2.   
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Figure 4.13: Lower panel - Gene overlaps between the revised Affymetrix modules 
(rows) and those defined by the consensus network for Illumina and Affymetrix 
(columns).  Broadly, all Affymetrix network modules (AFF7-17) have representation 
in the consensus network, however, this may be over several consensus modules.  
Coloured cells define the number of  genes from the consensus module that are 
overlapping with the Affymetrix-specific modules (linear heatmap).   The number of  
genes in each module are indicated beside the colour blocks allocated to each module.     
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Figure 4.14: Circos plot to present Affymetrix (‘AFF’ prefix) and Illumina (‘ILL’ prefix) module 
overlaps with consensus modules (C prefix).  Figure derived from tabular data where rows 
(Affymetrix or Illumina modules) and columns (consensus modules) are represented by coloured 
segments (inner circle) the size of  which defines the total number of  genes that overlap with the 
Affymetrix and Illumina modules.  Ribbons connect rows and columns and are coloured by 
consensus module to show the overlap with each Affymetrix or Illumina module.  The outer two 
rings define the relative contribution of  each cell in a table to the row and column totals (stacked bar 
plots).  The figure summarises the  tabular data shown in Figures 4.12, 4.13  and Table 4.5.  N.B. 
The colours rendered have no association with the assigned module colours.  The consensus modules 
with the highest trait associations for native and monolayer chondrocytes and alginate cultures are 
defined. The most highly preserved Illumina module in Table 4.7 was ILL9, which together with 
AFF7, contribute the greatest number of  overlapping genes with the C8, monolayer-associated, 
module.   
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Consensus Module 
(size) 

Illumina Modules 
(overlap/illumina 
module size) 

Affymetrix Modules 
(overlap/affymetrix module 
size) 

C1: Tan (103) ILL8/Red           (25/179) AFF13/Red (48/116) 

C2: Cyan (66) ILL11/Turquoise (58/832) AFF7/Blue (40/369) 

C3: Pink (158) Turquoise (129/832) AFF10/Yellow (120/178) 

C4: Red (184) Turquoise (149/832) AFF16/Turquoise (156/1505) 

C5: Salmon  (82) Turquoise   (46/832) Turquoise (43/1505) 

C6: Purple  (127) ILL9/Blue           (49/536) AFF14/Purple (22/43) 

C7: Turquoise  (360) Blue           (185/536) Turquoise (290/1505) 

C8: Yellow  (304) Blue           (154/536) Blue (103/369) 

C9: Blue (358) ILL14/Brown   (89/391) AFF8/Brown (152/201) 

C10: Black (160) Brown (109/391) Turquoise (112/1505) 

C11: Magenta (142) ILL12/Yellow (123/291) Turquoise (100/1505) 

C12: Greenyellow (104) Yellow (41/291) Turquoise (61/1505) 

C13: Brown (305) Turquoise (261/8320 Turquoise (261/1505) 

C14:  Green (286) ILL15/Green (149/283) Turquoise (103/369) 

Table 4.5: Module overlap – A summary of  the 
module overlap between Illumina or Affymetrix single 
network modules and the consensus modules.  
Consensus modules (C) are grouped into the meta-
modules defined in Figure 4.15, with the exclusion of  
C13 and C14.  For consensus modules the total number 
of  genes in given in parentheses.  For Illumina and 
Affymetrix modules the number of  overlapping genes 
with consensus modules, relative to the total number of  
genes in the module, is provided in parentheses.  
 
Only the greatest module overlaps are shown, complete 
overlap values are found in Figures 4.12 and 4.13.  For 
data set-specific modules the reader is reminded that 
the allocation of  colours to modules is arbitrary and so, 
for example, the ‘brown’ Illumina module is not 
necessarily equivalent to the ‘brown’ Affymetrix 
module.   
 
Module equivalence is defined by the consensus module 
overlaps and statistical definitions in Table 4.7.  To aid 
discussion alternative alphanumeric names are given to 
the consensus modules (C1…Cn).   
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4.3.5: Differential eigengene network analysis and meta-modules  

The analysis proceeded by summarizing consensus modules for each data set by 

the first principal component, the module eigengene.  As eigenegenes from 

different modules show correlations eigengene networks can be defined.  This may 

show whether the identified consensus modules that are highly related in one data 

set (Illumina) are also highly related in another data set (Affymetrix).  

An eigengene network was constructed for each data set such that highly 

correlated eigengenes for different modules were grouped together, Figure 4.15:i-

ii.  For each module eigenegene the scaled connectivity (degree) was defined as the 

mean connection strength with other eigengenes (Figure 4.15:iv). The average 

scaled connectivity across the whole eigengene network was defined as the density, 

D.  If most eigengenes within a network have high, positive correlations with each 

other the value of D approaches 1, i.e. the eigengene network relationships are 

highly comparable between the data sets.    

Between the eigengene networks of consensus modules for Illumina and 

Affymetrix data sets there was moderate preservation as defined by the density 

value, D= 0.68. The relationship of each individual eigengene with all others in the 

network was variable, reflected by the differences in individual module scaled 

connectivity values in the preservation network (Figure 14.5:iv.).  The C9 (blue) 

module eigengene was found to have the highest scaled connectivity in the 

preservation network.   

As eigengenes form networks analogous to the earlier analysis modules comprised 

of eigengenes, ‘meta-modules’ can be identified, Figure 14.5: iii and vi, which 

show high, positive correlations with each other.  Meta-modules can demonstrate 
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higher order relationships in the gene co-expression organization that are not 

evident in standard module detection.  In the Illumina data the module eigengene 

network was clustered in four meta-modules: meta-module C1:C4 - tan, cyan, pink 

and red; C5:C8 - purple, salmon, turquoise and yellow; C9:C10 - black and blue; 

and C11:C12 - greenyellow and magenta.  Whilst there was some evidence of the 

conservation of meta-modules in the Affymetrix data, especially C1:C4 and C5:C8, 

preservation values were often poor. The meta-modules were functionally 

annotated and are summarized in Table 4.6.       

Module preservation analysis  

Module overlap, and the definition of module equivalence between data sets, was 

not clear. To define the preservation of Illumina modules (considered the 

reference data set) in Affymetrix modules (test data set) statistically a permutation 

test was employed.  Module preservation was generally low, however, the ILL9, 

ILL15, ILL13 and ILL10 Illumina modules were the most significantly preserved 

in the Affymetrix network, Table 4.7.   
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Figure 4.15: Differential eigengene analysis in Illumina and Affymetrix data sets -  i, ii. - 
dendrograms of  consensus module eigengenes for Illumina and Affymetrix networks; iii. - 
heatmap of  eigengene adjacencies for the consensus eigengene network relative to the Illumina 
data. Four meta-modules are evident in i. and iii.  Rows and columns relate to one consensus 
eigengene (labelled by the consensus module colours) – positive correlation/high adjacency is 
shown by red intensity; blue represents negative correlation as defined by the vertical colour 
bar; vi. – represents the equivalent plot for the Affymetrix data; v. – histogram of  the 
preservation values for each consensus eigengene (bar colour) – height (y-axis) represents the 
eigengene preservation measure.  D, density, represents the overall eigenegene network 
preservation; v. – heatmap of  preservation network adjacencies with figure structure as per iii.  
Generally, the consensus module eigenegene network preservation is moderate between the 
data sets with limited replication of  meta-modules in Affymetrix data.     
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Consensus  
Meta-module 

Phenotypic 
Trait Biological Process 

Metabolic 
Function 

Cellular  
Compartment KEGG pathway 

C1-C4 
Tan 
Cyan 
Red 
Pink 
 

Native cells Transmembrane receptor protein 
serine/threonine kinase signaling 
pathway (1.9e-3) 
Anatomical structure formation 
involved in morphogenesis (2.4e-4) 
Developmental process (1.8e-6) 
Extracellular matrix organisation 
(9.8e-3) 

Actin binding (4.8e-3) Extracellular matrix (1.9e-3) 
Vesicle (4.9e-3) 

TGF-beta signalling 
pathway (9.8e-3) 

C5-C8 
Purple 
Salmon 
Turquoise 
Yellow 

Monolayer Response to stress (1.6e-8) 
Defense response (6.7e-5) 
Biological adhesion (1.8e-3) 
Response to organic substance 
(1.6e-4) 

Catalytic activity (1.7e-9) 
Oxidoreductase activity 
(1.9e-5) 
 
 

Cytoplasm (4.9e-4) 
Extracellular region (1.3e-2) 

NA 

C9-C10 
Black 
Blue 

Model cultures Developmental process (2.5e-7) 
Cell differentiation (6.1e-5) 
Response to stress (1.9e-8) 
Response to inorganic substance 
(3.2e-7) 

Catalytic activity (5e-6)  
 
 
 

Extracellular region part 
(4.3e-12)  
Extracellular matrix (8e-6) 
Lytic vacuole (3.9e-3) 
 
 

Lysosome (3.9e-2) 

C11-C12  
Magenta 
Greenyellow 

No consensus 
association 

Cholesterol biosynthetic process 
(1.1e-3) 
Cellular process (1.9e-3) 

Ion binding (4.1e-3) 
Insulin-like growth factor 
binding (2.1e-2) 

Cytoplasm (4e-13) 
Proteinaceous extracellular 
matrix (5.2e-3) 

Steroid biosynthesis 
(4.5e-2) 

C13:  
Brown 

No consensus 
association 

Cell cycle phase (8.9e-10) 
Microtubule-based process (2.6e-5) 

Microtubule motor 
activity (ns) 

Intracellular organelle part 
(3.1e-12) 

DNA replication 
(4.7e-9) 

C14:  
Green 

No consensus 
association 

Cellular metabolic process (2e-3) 
Response to organic substance 
(1.4e-2) 

NA Cytoplasm (2.4e-12) 
Mitochondrion (9.8e-5) 

NA 

Table 4.6: Consensus modules are gathered into meta-modules (Figure 4.15) and the overall trait association is presented.  Using all the genes 
within the meta-modules the gene ontology analysis is shown for biological process, metabolic function and cellular compartment using DAVID 
with a general Rattus norvegicus background.  Modules below the black line show no consensus associations with phenotypic traits. 
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Illumina 
Module 

Module 
size 

Z-score,  
Preservation 

summary 
Log10 p-value,  

Bonferoni 
ILL9/blue 400 13.29 -42.81 
ILL15/green 283 7.51 -16.22 
IL13/pink 111 7.24 -17.02 
ILL10/black 155 5.17 -6.66 
ILL11/turquoise 400 4.73 -5.94 
ILL8/red 179 4.51 -6.89 
ILL14/brown 391 4.49 -6.09 
gold 100 2.82 -2.71 
ILL12/yellow 291 -0.39 0 
grey 17 -0.85 0 

Table 4.7: Module preservation  - To quantify how well the modules in the 
Illumina (reference) network were preserved in the Affymetrix (test) network a 
permutation test was employed.  The maximum module size used for calculations 
was 400 genes; modules larger than this consisted of  random samples of  genes 
within the specified module.   
 
In general terms, the higher the Z-score summary preservation value the more 
preserved the module is between data sets.  Values 5>Z<10 represent moderate 
preservation, whilst Z>10 indicates high preservation.  Uncharacterised genes are 
within the ‘grey’ module, whilst the ‘gold’ module is generated as part of  the test 
and contains randomly assigned genes from any module; ‘grey’ and ‘gold’ 
modules should score consistently lower than preserved modules. The ILL9 
module (Figure 4.12) shows the strongest preservation   

Phenotypic 
Trait 

Module 
association   
[cor, p-value] 

kME correlations Top 20 kME 

Monolayer ILL9/blue  
[0.88,  p=1e-12] 

0.59,  p=1.4e-51 Rgd1566262, Prelid1, Chpf, Lmf2, Wsb2, 
Lass5, Geft, Itga11, Gpc4, Ccs, Pofut2, 
Pygb, Mrpl55, Lman1, C1qtnf5, Stub1, 
Rab30, Ipo4, Rgd1559909, Smyd2, Tagln 

Alginate ILL13/pink 
[0.97, p=3e-22] 

0.64,  p=4e-14 Gpnmb, Cp, Orm1, Sectm1b, Chi3l1, 
Obfc2a, Serpina3n, Crispld2, Enpp2, 
Atf3, Map3k8, Zfp347, Coro6, Pi15, Btg2, 
Cd302, Maoa, C3, Phlda1, Cfh 

Table 4.8: Top consensus hubs based on high 
kME values across networks – only the ILL9 and 
ILL13 modules shared significant kME 
preservation (Figure 4.17) with the Affymetrix 
network.  These modules were associated with 
the ‘monolayer’ and ‘alginate’ traits for Illumina 
modules.  For monolayer the consensus hubs 
included glypican 4 and integrin alpha 11; for 
alginate peptidase inhibitors Serpina3n and Pi15, 
and glycoprotein Gpnmb were called as consensus 
hubs.     
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Figure 4.16:  Summary relationship between the consensus module eigengenes (rows) and 
common conditional traits (columns) for Illumina and Affymetrix data sets. Within each 
matrix cell the correlations between the the corresponding module eigengene and the trait is 
reported.  The p-values are provided in parentheses below.  The cell colour represents the 
correlation value (red - positive, blue - negative) and is coded in the vertical colour bar on the 
right of  the figure.  Some traits combine terms, for example, ‘Native’ contains both native 
chondrocyte and tenocyte data, whilst ‘Model cultures’ contains both alginate and fibrin 
samples.  Missing (NA) cells indicate that correlations in the module-trait pairs in the Illumina 
and Affymetrix data sets had opposite signs and no summary relationship can be defined.  
Native chondrocytes were generally associated with modules in the pink|red|cyan meta-
module with the pink module showing the greatest association with the trait.  Strong 
consensus relationships were not found for tenocytes, but their inclusion in the ‘Native’ 
phenotype improved association with the tan and cyan modules.  The ‘monolayer’ trait was 
associated with the purple|salmon|turquoise|yellow meta-module with the yellow module 
having the strongest association with this trait.  There was no strong association with any 
module for the trait ‘fibrin’, but when aggregated with the alginate samples the trait ‘model 
cultures’ was strongly associated with the blue consensus module eigengene.      
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Functional annotation of meta-modules and assigning consensus hub genes 

Considering the module-trait associations with the functional annotations of the 

meta-modules validated the annotations found in the two data sets.  Monolayer, 

for example, was associated with the C5:C8 meta-module and the functional terms 

‘developmental process’ and ‘anatomical structure formation involved in 

morphogenesis’; model cultures, alginate and fibrin, were defined by the C9 and 

C10 meta-module and the terms ‘developmental process’ and ‘cell differentiation’.  

These functional annotations have been consistent in the analysis across both the 

Illumina and Affymetrix data sets.   

To determine common hub genes across studies, which may act as central 

regulators, Module Memberships were calculated for all genes using the module 

eigengenes for the Illumina data. The Module Membership value, kME, is useful 

in comparing networks as it is a global measure of the correlation between every 

gene and each module eigengene.  This allows genes not initially found to be 

assigned to a module to be considered as central regulators between networks.  In 

essence this method superimposes the modular structure (colour assignments) of 

one network onto another.  

Module Membership values for every gene in the Illumina data set were 

considered against the equivalent gene kME in the Affymetrix data.  Only the 

Illumina ILL13/pink (0.64, p = 4e-14) and Illumina ILL9/blue (0.59, p = 1.4e-51) 

modules demonstrated high correlation between the kME values indicated 

preserved module connectivity, Figure 4.17.    On this basis only these two 

modules will be considered further.   



 
296 

 

-1.0 -0.5 0.0 0.5 1.0

-0
.5

0
.5

black cor=0.15, p=0.062

kME in Illumina

k
M

E
 i
n

 A
ff
y
m

e
tr

ix

-1.0 -0.5 0.0 0.5 1.0

-1
.0

0
.0

1
.0

blue cor=0.59, p=1.4e-51

kME in Illumina

k
M

E
 i
n

 A
ff
y
m

e
tr

ix

-1.0 -0.5 0.0 0.5 1.0-1
.0

0
.0

1
.0

brown cor=0.24, p=1.6e-06

kME in Illumina

k
M

E
 i
n

 A
ff
y
m

e
tr

ix

-1.0 -0.5 0.0 0.5 1.0-1
.0

0
.0

1
.0

green cor=-0.37, p=1.3e-10

kME in Illumina

k
M

E
 i
n

 A
ff
y
m

e
tr

ix

-1.0 -0.5 0.0 0.5 1.0

-0
.5

0
.5

grey cor=-0.058, p=0.83

kME in Illumina

k
M

E
 i
n

 A
ff
y
m

e
tr

ix

-0.5 0.0 0.5 1.0

-0
.5

0
.5

pink cor=0.64, p=4e-14

kME in Illumina
k
M

E
 i
n

 A
ff
y
m

e
tr

ix

-1.0 -0.5 0.0 0.5 1.0

-1
.0

0
.0

1
.0

red cor=-0.36, p=7.4e-07

kME in Illumina

k
M

E
 i
n

 A
ff
y
m

e
tr

ix

-1.0 -0.5 0.0 0.5 1.0

-0
.5

0
.5

turquoise cor=-0.32, p=2.9e-21

kME in Illumina

k
M

E
 i
n

 A
ff
y
m

e
tr

ix

-1.0 -0.5 0.0 0.5 1.0

-0
.5

0
.5

yellow cor=-0.075, p=0.2

kME in Illumina

k
M

E
 i
n

 A
ff
y
m

e
tr

ix

Figure 4.17: Scatterplots of  kME Illumina (x-axis) against kME Affymetrix (y-axis).  
Using only in-module genes is a visual way of  assessing hub gene conservation: if  
these genes show between-set correlation, then the genes in the upper right of  the 
plot are likely to be common hub genes between data sets. Hub genes are genes that 
show significant correlation with module eigengenes and high within-module 
connectivity.  Module membership values (kME) were calculated for all genes in both 
data sets using the Illumina module classifiers as the reference network.  Only 
conserved hubs should have high kME value correlations when the test network 
(Affymetrix) is compared to the reference.  Only the Illumina ILL13 (pink) and ILL9 
(blue) modules (highlighted with grey boxes) were found to have this association.  In 
other terms, confidence in calling consensus hub genes could only be extended to 
genes from these two modules.  



 
297 

To define which genes were hubs in both datasets gene lists were ranked on their 

module membership and the top twenty selected, Table 4.8.  The common 

central regulators found with the ILL13 alginate-associated module, included Atf3, 

the peptidase inhibitor Pi15, chitinase Chi3l1 and the regulator of osteoblast-

osteoclast differentiation and function osteoactivin/Gpnmb and the serine protease 

inhibitor Serpina3n. The ILL9 module, monolayer-associated, contained the 

common hubs Itgna11 (integrin α11), Gpc4 (glypican 4) and Tagln (transgelin).   

To qualify these findings for alginate cultures the modular network for 

ILL13/pink was visualized using Cytoscape with either the Illumina or Affymetrix 

gene expression data from Chapter 2 and 3.  The topological overlap matrix of 

either data set was used as the basis for the network and the gene members of the 

ILL13 module were the nodes around which the network was built.  In Figure 

4.18 the consensus network hubs that show the strongest intramodular 

connectivity are Pi15 and Serpina3n; few of these consensus hubs show evidence of 

protein-protein interactions, Figure 4.19. In Figure 4.20 the topological overlap 

of the Affymetrix data on the ILL13 module also placed Serpina3n, Pi15, along 

with Chi3l1, as modular hubs, which were more highly expressed in alginate 

cultures relative to either monolayer or native chondrocytes.   
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Figure 4.18 Graphical representation of  topological overlap of  the Illumina 
ILL13/pink module.  Nodes represent genes within the module and Chapter 2 log2 
fold-changes for the native cartilage to alginate differential expression analysis are 
overlain such that genes more highly expressed in cartilage are red (figure legend).  
Genes identified as consensus hub genes are highlighted by a yellow corona.  From 
the Illumina data the topological overlap would indicate that of  the consensus hubs 
PI15 and Serpina3n have the highest intramodular connectivity  The network 
structure may be compared against the putative hub genes defined in the single 
network analysis for Illumina data in Table 4.3.   

Figure 4.19: Output from STRING to show the protein-protein 
interaction (PPI) evidence view for the top 20 consensus hub genes 
identified as having strong association with chondrocytes in alginate 
beads.  Using this database there is no evidence for PPI between 
Serpin3an, Pi15 and Gpnmb.   
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Figure 4.20:  
Graphical representation of  
topological overlap of  nodes 
arising from Affymetrix data.  
Nodes, representing genes, are 
those within the Illumina ILL9/
pink module with strong 
association with alginate-encased 
chondrocytes.   
 
Node size varies with degree, or 
total connectivity; edges are 
defined by weight of  interaction 
( c o l o u r ,  t h i c k n e s s a n d 
transparency) figure legend.  
W h i t e  n o d e s  a r e  n o t 
differential ly expressed in 
supplied data.    Some network 
elements have been cropped to 
focus on highly connected 
nodes. 
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4.3.7: Lzts2 silencing does not influence chondrocyte differentiation 
status  

In the independent analysis of the Illumina data the leuzine-zipper, putative 

tumour suppressor 2, Lzts2, was identified as a potential hub or central regulator 

within a module showing strong correlation with the monolayer trait for 

chondrocytes and tenocytes.  Expression was found to be lower in both 

monolayer chondrocytes (log2 fold change = -1.56; false discovery rate = 1.14e-08, 

log odds ratio = 12.01) and in tenocytes at passage five (log2 fold change = -0.86, 

false discovery rate = 1.4e-4, log odds ratio = 2.9) relative to native tissue 

(Chapter 2).  To determine whether Lzts2 was a central regulator in the 

dedifferentiation of chondrocytes a siRNA approach was employed to silence 

Lzts2 expression and evaluate the impact on differentiation markers by qPCR.  

Based upon differential expression analysis Col2a1 and Acan were selected as 

markers of differentiated status; genes more highly expressed in dedifferentiation 

Pitx1 and Thy1, and the chondrogenesis regulator Sox9, were also considered.     

Robust reduction (~77% knockdown) of expression of Lzts2 was consistently 

shown in chondrocytes at passage three, Figure 4.21.  Trending differences in 

expression between Lzts2 siRNA treated and negative control samples, for 

aggrecan (Acan), were confounded, however, by higher expression of target genes 

in some samples only treated with the transfection agent, Lipofectamine 2000.  

Two independent studies could not demonstrate clear evidence of an impact of 

Lzts2 knock-down on marker of chondrocyte differentiated status (data not 

shown).   
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Figure 4.21 – Plots of  quantitative 
PCR data (2^-dCt, y-axis) for three 
treatment conditions (x-axis) for 
passage 2 chondrocytes – i) treated 
with Lzts2 siRNA, ii) treated with 
negative control siRNA, iii) treated 
with comparable volume of  
Lipofectamine 2000. Significance 
code: (*) – p<0.05; (**) – p<0.01  
 
Expression of  the leucine zipper 
Lzts2 was significantly reduced in 
cultures following application of  
siRNA targeted to this transcript 
(p<0.01).  

There was also a significant 
difference in expression between 
the negative control siRNA-
treated chondrocytes and the 
lipofectamine controls for Thy1.  
 
D i f f e r e n t i a t i o n (Co l 2 a1 ) ,          
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and development markers (Sox9) 
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4.4: Discussion 
Weighted gene co-expression network analysis (WGCNA) is a systems biology 

methodology that facilitates investigation of the global network properties of a 

transcriptome and provides functional insights into the organization of the 

network.  The practical output of this type of analysis is the elucidation of higher-

order relationships between groups of highly co-expressed genes (modules) and 

their associations with phenotypic traits.  Comparative analysis of network 

structures allows the definition of conserved and divergent functional modules 

between data sets providing a global network perspective of changes in the system 

under investigation.   

Differential expression analysis in Chapters 2 and 3 focused on the selection of 

individual genes as candidates for modulation of differentiation status in 

chondrocytes and tenocytes.  The gene expression profiles defined in these earlier 

studies arose from the collective responses of multiple regulatory networks and 

this information is lost in single gene analysis (Zhao, Langfelder et al. 2010).  In 

order to determine regulatory units that may modulate differentiation status in 

chondrocytes and tenocytes the WGCNA approach was employed to consider the 

connectivity of all genes analysed and derive co-expression networks that describe 

the strength of relationships between genes and their topological overlap with 

other genes in the network.   

As outlined in Chapter 3 the transition to an alternative microarray platform 

negates the direct comparisons between the gene expression profiles derived from 

Affymetrix and Illumina studies.  Comparison of the global network properties 

using WGCNA overcomes this limitation and can facilitate the definition of 
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regulatory sub-networks driving phenotypic changes that was not otherwise 

possible using data arising from two different platforms.  The hurdle of integrating 

gene expression profiles across platforms is explored further in Chapter 5.   

4.4.1 Application of methodology 

The practicalities of this type of methodology should be considered and whether it 

readily improves interpretation of gene expression data beyond what is possible by 

standard differential gene expression analysis alone.   

To identify consistent and unambiguous behavior of putative hub genes is likely to 

be difficult.  Langfelder, et al (2013) stated that in the majority of cases global hub 

genes are not important and the focus should be on trait-associated intra-modular 

(sub-network) hubs, those highly interconnected within a functional gene 

aggregate (module).  Furthermore, gene selection strategies based on networks are 

not necessarily any more reproducible in terms of their trait associations that 

standard approaches such as differential gene expression when it comes to 

validation (Langfelder, Mischel et al. 2013).  The question arises as to whether 

candidates selected from hub gene lists any more likely to be predictive biomarkers 

than those derived from standard differential expression or meta-analysis 

techniques.  In a recent example Yang, et al (2014) found cancer genes with 

prognostic potential lay within modules, i.e., they were not global hubs (Yang, Han 

et al. 2014).   

Co-expression analysis may be influenced by a number of extraneous systematic 

differences between data sets that may result in the discovery of erroneous 

correlations (Gaiteri, Ding et al. 2014).  Therefore, feting intra-modular hubs from 

single data sets analysis may be dangerous.  The definitive performance criterion 
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would be the evidence of preservation of trait associations and hub genes from 

modules in independent datasets.  Langfelder, et al (2013), as before, showed that 

use of putative biomarkers derived from marginal meta-analysis often outperforms 

selection of intra-modular hub genes in prediction testing; however, in noisy, 

heterogenous data with weak signals, but strong module membership preservation 

(as is the case in the data sets presented here) the inverse is true.  In practical 

terms, the wider significance of predicted regulatory hubs in isolated data sets still 

requires substantial validation, as discussed further below.   

4.4.2: Genes identified as hubs in single network analysis are not 
reproduced in consensus network analysis 

As part of the WGCNA analysis global gene expression profiles from two data 

sets were initially analysed independently.  Hub genes in single data sets were 

selected on the basis of high module membership (kME), which was strongly 

related to intra-modular connectivity.  The decision to investigate the relevance of 

one hub gene (Lzts2) over others was defined by the findings in the literature, 

discussed below, and financial restrictions on investigating each identified hub.     

Hub genes from single network analysis were not reproducible in the consensus 

analysis, i.e. trait-associated modules did not show overlap in the predicted hubs 

across Affymetrix and Illumina studies.  Common hubs with high kME were 

identified between the two networks as part of the consensus network analysis, 

but the veracity of these findings is questionable given the poor preservation of 

module eigengenes across the two networks.   

It is not clear why the network structures, and therefore also the hubs, were so 

poorly preserved across the data sets. There were multiple modules associated 
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with each trait, which can complicate the selection of hubs.  Further to this, robust 

definition of intra-modular hubs is critically related to their identification across 

very different datasets and, as such, the definition of module membership is only 

relevant and successful where the module is actually present across data sets 

(Gaiteri, Ding et al. 2014) and a reproducible relationship exists with a trait.  

Although there was high correlation of mean rank expression across these two 

datasets the fact that they arose from different platforms and differing 

experimental designs may have had a critical bearing on the ability to find 

consensus modules related to the various phenotypes.  On this basis, it is not 

possible to confidently state that the hubs identified using this methodology on 

these data sets has identified more reproducible markers of de- and re-

differentiation than those already highlighted in the standard differential analysis in 

Chapter 2 and 3 without further validation.   

Beyond the hub: are module hubs relevant? 

There are multiple approaches to defining co-expression networks, functional 

modules and selecting hub genes.  There appears to be no systematic analysis of 

these techniques, or indeed of publications that have used them, to determine how 

robust they are across datasets.  In many cases, and this cannot be considered an 

exception, the complexity of the approaches relegates each technique to a ‘black-

box’  - the emergent hubs may have little relevance beyond the context of the 

study. Whether similar hubs are found across divergent studies would be of 

interest. 

Co-expression links between two or more genes are made without reference to the 

molecular mechanisms through which the mRNA (or protein) came to be 

expressed.  As such, this approach, together with the clustering of functional 
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modules, can overcome limitations of knowledge.  The biological relevance of 

these functional modules and hub genes cannot be surmised on the basis of 

associations with phenotypic traits and without credence to the molecular 

mechanisms that drove them.  Co-expression links may arise from any source, 

from unresolved batch-effects to mRNA degradation patterns, and all sources of 

correlation are indistinguishable (Gaiteri, Ding et al. 2014).  In the Illumina data 

set spurious module:trait associations may arise from the use of divergent tissue 

types (cartilage and tendon), or from batch-effects. 

4.4.3: Consensus hubs associated with alginate culture systems 

In spite of the caveats outlined above the most significant findings from 

consensus network analysis should be considered.  This study was concerned with 

determining central regulators of the gene expression profiles found with three-

dimensional cultures.  No significant associations were found for tenocytes in 

fibrin cultures alone.  For alginate cultures a consensus module was identified 

across the two data sets, which a) had a strong association with the alginate culture 

phenotype, and b) defined Pi15, Chi3l, Serpina3n and Gpnmb as potential core 

regulators.  Of these Pi15 and Gpnmb were both found to be more highly 

expressed in alginate cultures in both data sets by differential expression analysis.  

This does not preclude, however, involvement of the remaining. Notably, the 

model culture associated meta-module had a strong functional annotation relating 

to cell differentiation and development.    It would be expected that genes with 

high intra-modular connectivity also have strong evidence of protein-protein 

interactions, however from STRING analysis there is little support for this 

statement for these limited data sets.  It is, however, worth considering the 

relevance of these genes to cartilage function and differentiation.   



 
307 

Osteoactivin/transmembrane glycoprotein NMB in the protein encoded by Gpnmb 

and, as the name intimates, it has well-established relevance to osteoblast and 

osteoclast differentiation as shown by the work of Abdelmagid and colleagues 

(Selim, Abdelmagid et al. 2003, Abdelmagid, Barbe et al. 2008, Belcher, Rico et al. 

2010) with evidence that this is BMP2 mediated (Abdelmagid, Barbe et al. 2007).  

It may be in secreted or transmembrane form (Abdelmagid, Barbe et al. 2008).  

Mutations in Gpnmb result in a loss of trabecular mass, reduced osteoid and 

mineralized regions and increased number of osteoblasts; there was enhanced 

levels of TGF-β receptors and phosphorylation of Smad-2/3 in mice with a 

Gpnmb loss-of-function mutation indicating a role for TGF-β signaling associated 

with osteoactivin (Abdelmagid, Belcher et al. 2014).  Temporal localization of 

mRNA and protein expression in fracture repair coincided with chondrogenesis; 

staining was found in hypertrophic chondrocytes in the epiphyseal growth plates 

in normal bone, but also was increased in the fracture-healing callus (Abdelmagid, 

Barbe et al. 2010).  In work by Karlsson, et al (2010) Gpnmb was found to be more 

highly expressed in OA-derived cartilage (approximately 9-fold change) than in 

cartilage from normal donors (Karlsson, Dehne et al. 2010).  In micromass 

cultures derived from murine limb buds (E11.5) James, et al (2005) found higher 

expression of Gpnmb with Affymetrix microarrays between day 3 and day 15 of 

culture (James, Thomas et al. 2005).   There is clear evidence to support a role for 

Gpnmb in the differentiation of cartilage and bone cells; whether it is a core 

regulator of chondrogenesis has not demonstrated and requires further validation 

of expression in alginate bead cultures.   

Both Pi15 and Serpina3 code peptidase inhibitors and have been found to be 

differentially expressed in differentiating chondrocytes and diseased cartilage. 
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Serine peptidase inhibitor (Clade, A, member 3)/alpha-1-antichymotrypsin is 

encoded by Serpina3; the rat homolog is Serpina3n.  Expression of Serpina3 in 

differentiating MSCs and dedifferentiating chondrocytes has been documented 

(Boeuf, Steck et al. 2008). Peptidase inhibitor 15, Pi15, a trypsin inhibitor, was 

shown to be markedly suppressed in Grade I (Pritzker)-damaged cartilage in an 

monoiodoacetate-induced arthritis model, in addition to Serpina3 (Nam, Perera et 

al. 2011).  

These genes seem, ostensibly, rational targets for further investigation given their 

associations with cartilage phenotypes.  Further investigation of the impact of 

gain- and loss- of function of these genes and their protein products on 

differentiation markers is warranted.  

4.4.5: Data and study limitations 

One of the key advantages of using the WGCNA approach over Bayesian network 

modeling of gene expression networks is that the latter requires very large sample 

sizes that are usually not available for microarray studies (Zhao, Langfelder et al. 

2010).  In this study it is apparent that even moderately sized microarray studies, 

such as the Affymetrix study (n=24), may not adequately meet the scale-free 

topology criterion required for this methodology.  This is borne out in the 

indistinct gene cluster dendrogram for this dataset and the failure to adequately 

meet the approximate scale-free criterion.  The Illumina data set (n=36), however, 

does approximate scale-free topology and had much more distinct module 

definitions. 

In a study of murine chondrocyte differentiation Suwanwela, et al (2011) applied 

the WGCNA methodology to gene expression data from 27 microarrays, each 
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arising from the rib cartilage of a different recombinant inbred strain of mouse 

(Suwanwela, Farber et al. 2011).  This study defined 14 modules, however, evident 

in the cluster dendrogram was the high similarity between all modules, modules 

were unusually small and comparable gene ontology annotations were evident 

between the modules.  Quantitative findings associated with bone growth were 

correlated to module eigengenes, comparable to this study, and had significant 

associations at p<0.05.  In the results presented in this analysis multiple narrowly 

significant associations are found between traits and modules, however, there is 

often poor correlation between the gene significance for a trait and module 

membership, which undermines any definition of a hub gene.  It could be 

suggested that a higher level of significance is required in these studies than that 

often used as a standard threshold of significance.  In this analysis for example, 

module-trait correlations less than 0.9 were considered to be tenuous associations.            

The analysis presents strong associations between phenotypes and module 

eigengenes, however, the definition of these modules is derived from the co-

expression of genes from disparate data sources.  In the Illumina data set native 

cartilage and tendon are very distinct phenotypes and the strong association of 

module eigengenes with these phenotypes is not unexpected.  It is probable, 

therefore, that the identification of modular hub genes arise uniquely within this 

dataset.  For example, the identification of robust cartilage-associated genes as 

hubs for the ‘cartilage’ trait is not serendipitous, but likely to arise from the 

analysis of a small, divergent sample group.  Furthermore, it only reinforces our 

differential expression analysis and fails to describe any emergent properties of the 

system.  Consequently, results of hub gene analysis in single data sets are included 

here to demonstrate the outcomes and limitations of the methodology in small 
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data sets, rather than as an assertion that these genes are elusive core regulators.  

Those genes identified as core regulators of chondrocytes in alginate beads are 

relevant to chondrocyte differentiation status, but Gpnmb, for example, is highly 

expressed in both datasets and so may result in spurious correlations.     

The co-expression analysis used here circumvents many of the issues associated 

with cross-platform microarray meta-analysis (see Chapter 5) by comparing 

network structures rather than absolute gene expression changes.  The average 

rank gene expression was highly correlated between the data sets, which suggested 

that these sources were sufficiently comparable.      

Whilst the benefits of comprehensively and inclusively defining the modular 

organization of a biological system are clear it is evident from this analysis that 

caution in extrapolating results from co-expression network analysis should be 

taken.  The fallacy of correlation and causation can be readily exploited in under-

powered studies with discrete phenotypes and as such findings would need to be 

challenged in a wider data context and mechanistic processes explored further.  

4.4.5: Leucine zipper Lzts2 silencing does not influence markers of 
chondrocyte differentiation in monolayer culture 

As defined in Chapter 1 the systems biology philosophy expects cyclical data 

gathering and analysis in response to targeted perturbations of the system under 

investigation.  In exploration of the Illumina data using weighted gene network co-

expression analysis the leucine zipper, putative tumour suppressor 2, Lzts2, was 

defined as a member of a module with strong association with the gene expression 

profiles in monolayer culture.  Furthermore, it had high module membership and 

intra-modular connectivity.  This would suggest that it had potential to be a central 
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regulator of this functional module.  Higher expression of Lzts2 in monolayer 

culture in both tenocytes and chondrocytes advocated further investigation.   

Expression of Lzts2 inhibits the nuclear translocation of beta-catenin (Thyssen, Li 

et al. 2006); in turn the transactivation of Lzts2 is mediated by NF-κB activity.  

Reduction in the expression of Lzts2 by RNA interference has been shown to 

promote the nuclear translocation of beta-catenin and NF-κB activity in adipose-

derived human MSCs (Hyun Hwa, Hye Joon et al. 2008).  These findings 

supported the complex interactions between Wnt- and NF-κB signaling.  Both 

NF-κB and Wnt-signalling (through GSK3) are downstream effectors of the PI-

3K/Akt-signalling cascade; GSK3, which phosphorylates β-catanin and targets it 

for degradation, has been shown to interact with Lzts2 (Pilot-Storck, Chopin et al. 

2010). Therefore, perturbation of a cross-pathway regulator, such as Lzts2, was 

considered to be a rational target.     

Critical roles for Wnt-/beta-catenin signalling in chondrocyte development and 

differentiation is well recognised.  Constitutive knock-out of beta-catenin is lethal 

to embryos at E7.5 prior to the formation of skeletal units (Haegel, Larue et al. 

1995); enhanced chondrogenesis is observed in the conditional deletion of beta-

catenin in mesenchymal condensations (Day, Guo et al. 2005, Hill, Später et al. 

2005) and the inverse is true where beta-catenin fails to be degraded by GSK3 

(Ryu, Kim et al. 2002); whilst delayed maturation is evident in growth-plate 

chondrocytes in a COL2A1-ICAT model that functionally inhibits beta-catenin 

(Chen, Zhu et al. 2008).  Consequently, the implicated role of beta-catenin in the 

development of osteoarthritis is through the promotion of terminal differentiation 

in articular hyaline cartilage (Zhu, Tang et al. 2009, Wu, Zhu et al. 2010).   
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In a quantitative PCR study there was no evidence to support an effect of Lzts2 

inhibition on markers of differentiation status in dedifferentiated chondrocytes.  

Reasons for this may be technical or relate to redundancy within the system, i.e. 

knock-down does not sufficiently disturb the functional network.  The genes that 

were defined as markers of differentiated, or de-differentiated status, may be only 

weakly discriminatory outside the context of the Illumina study in which they were 

defined.  

Although the efficiency of transfection was high (>80%) the percentage 

knockdown was only 77% with a single siRNA to Lzts2.  Additionally, in response 

to apparently cytotoxic effects on chondrocytes from extended incubation with 

the transfection reagent an exposure period of 6 hours was used.  Although this in 

line with evidence from the manufacturer, this study could have benefitted from 

more robust inhibition, either through the use of two siRNA or a longer exposure 

period.   

Finally, although isogenic tissue sources were used three biological replicates, and 

pooled technical replicates, are likely to be insufficient to resolve subtle changes in 

gene expression related to differentiation status.  Primer efficiency was also 

variable, Lzts2 was 90%, which could be considered poor for these profiling 

studies.  Analysis using PCR arrays to a battery of differentiation and signalling 

pathway markers may reduce technical errors.   

4.4.6: Closing statements 

This study implemented WGCNA, a systems biology approach to objectively 

assess global transcriptome network properties between data sets arising from two 

different microarray platforms.  This methodology supported findings from earlier 
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analysis by defining genes within modules that were strongly expressed in 

chondrocytes in alginate cultures and identified Gpnmb and Pi15 as consensus 

network hubs.  Knockdown of a NF-κB and Wnt-signalling cross-pathway 

regulator, Lzts2, failed to have an impact on the expression levels of markers of 

differentiation or dedifferentiation.  The expression profiles arose from small data 

sets and related to highly divergent phenotypes and as such spurious correlations 

in the data may arise with no wider biological significance to functional modules 

and hub gene identification.  In order to make more general statements about 

discrete chondrocyte and tenocyte responses to different conditions would require 

larger data sets or microarray meta-analysis and further validation of expression 

profiles of candidate hubs.    
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5 :  In tegra t ion of  Car t i l age  and 
Tendon Microarray  Express ion 
Prof i l es  Revea l s  Cross-spec ies  
Preservat ion of  Gene Modules   
 

“A big computer, a complex algorithm and a long time does not equal science.” 

Robert Gentleman 

 

Abstract 
Integration and comparison of gene expression profiles across multiple studies 

and microarray platforms is fraught with difficulties, which can limit the biological 

relevance of findings.  Microarray studies are often underpowered and in 

musculoskeletal biology limited biological replicates arising from rare samples 

compound this problem.  The integration of data from multiple small studies can 

improve the statistical power of an analysis.  The use of rodent in vivo models of 

musculoskeletal disease, or as part of in vitro studies, is frequent, however, the 

translational relevance to complex and diverse human disease is not always clear.  

Furthermore, three-dimensional culture systems are used to mimic spatial 

conditions for chondrocytes and tenocytes, but these methods have not been 

systematically considered relative to normal or diseased tissue.    

The relative merits of data-merging approaches, including cross-platform 

normalisation, and sequence- and target-matching of oligo probes across 

platforms, were investigated to integrate expression data into single species-

specific meta-matrices.    
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This study presents the first cross-species systematic integration of cartilage and 

tendon gene expression data utilising a data-merging approach in the rat and 

human.  A global transcriptomic network comparison approach was employed 

applying gene co-expression analysis, WGCNA, to define functional modules 

associated with disease and three-dimensional culture phenotypes.  By comparing 

the networks structures across species the suitability of rodent models to inform 

human disease is considered.   

An IL-6 containing module was found to be significantly associated with a 

perturbed chondrocyte phenotype and, more specifically, with alginate bead 

cultures.  From this module thirteen, mostly pro-inflammatory, genes were found, 

by a nearest shrunken centroids approach, to adequately discriminate between 

three-dimensional culture systems and all other samples.  This was consistent 

across rat and human studies and when compared to an independent data set   
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5.1: Introduction  
 

Increasingly gene expression profiling data is submitted to public-access 

repositories, including Gene Expression Omnibus (Barrett, Troup et al. 2011) and 

ArrayExpress (Rustici, Kolesnikov et al. 2013), and is available for re-use by 

researchers in large-scale integrative analyses.  Relative to other areas of research 

there are few transcriptomic profiles of normal musculoskeletal tissues available in 

these repositories; the small number of biological replicates in each experiment 

can represent an important bottleneck in the exploration of biological problems.  

To improve the statistical power and return more reliable conclusions from 

transcriptome profiling some form of integrative analysis is required to increase 

the number of samples (Taminau, Lazar et al. 2014).  

5.1.1: Systematic analysis of microarrays 

The terminology associated with the re-use of gene expression data is inconsistent 

and requires some explanation.  Commonly the term ‘meta-analysis’ has referred 

to the systematic and standardised study of a focused issue in research literature. 

In the main a meta-analysis considers a particular intervention, usually medical, 

across all the published literature allowing both quantitative and qualitative 

assessment of the relative strength of each of the individual studies (Russo 2007).  

Combining the marginal findings in small, underpowered studies may facilitate the 

detection of statistically significant responses to an intervention; equally, a meta-

analysis may repudiate weak findings in individual studies.  

Integral to the development of a meta-analysis, as described by Russo (2007) are 

the inclusion of: i) an explicit study question; ii) an exhaustive literature search; iii) 
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defined criteria for inclusion of a study, or data abstraction, which may include 

sourcing raw data, quality scoring studies and the presentation of excluded data; iv) 

and the description of statistical tests, in particular, tests for sample homogeneity, 

and the use of fixed or random effects models (Russo 2007).   

Recently, the term ‘meta-analysis’ has been applied to any systematic study of 

multiple smaller studies including genome-wide association studies (GWAS) 

(Evangelou and Ioannidis 2013) and the analysis of microarray data sets (Rudy and 

Valafar 2011). The availability of microarray data from public-access repositories 

has encouraged researchers to integrate multiple microarray studies, although these 

investigations may lack the stringency with which clinical meta-analysis have been 

performed.  An explicit study question may not be apparent at the data collection 

stage, for example GWAS meta-analysis considers the presence of any genetic risk 

loci for a population.  The general structure of phenotype specification, data 

collection, data inclusion/exclusion, and reduction of data heterogeneity still 

apply, however, to these other forms of meta-analyses.  

Whilst some have used ‘meta-analysis’ for any large-scale analysis of microarray 

expression data in this study the term will be restricted to discussions relating to 

the integration at the interpretive level, and ‘data-merging’ to describe the 

agglomeration of raw expression data from multiple data sets, consistent other 

investigators (Sarmah and Samarasinghe 2010, Taminau, Lazar et al. 2014).  These 

definitions are explored further below.     

Motivations for microarray data integration 

There are several principal drivers for the integration of microarray expression 

data.  Integration, a) increases sample sizes, thereby improving statistical power; b) 
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facilitates a broader understanding of a biological problem, c) compensates for 

data errors and missing data in individual studies, d) provides more accurate and 

consistent data mining, e) explores the variance and noise in the data, and f) can 

define biological markers and prognostic signatures not evident in small analyses 

(Sarmah and Samarasinghe 2010).  Furthermore, consistent with the tenets of 

reduction, refinement and replacement, in silico analysis allows the re-use of 

existing data to derive novel results and inform future experimental design.     

Issues of statistical power, for example, often arise in microarray studies as too few 

biological replicates are used, these are often not independent samples (i.e. 

biological replicates are re-used within a study), and they measure the expression 

levels of large number of genes simultaneously (Ramasamy, Mondry et al. 2008). 

Through gathering data from multiple sources there is potential to discover of 

emergent properties of the data, explores new biological insights and improve the 

statistical power of gene expression analysis (Taminau, Meganck et al. 2012).  

Approaches to expression data integration 

There is no definitive methodology for tackling microarray data integration with 

studies employing a number of strategies.  Data is rarely considered at the probe-

level, with strategies considering higher order analysis, for example, published 

differentially expressed gene lists, combining p-values, combining ranks or effect 

sizes (Tseng, Ghosh et al. 2012). An essential step in approaching an over-arching 

analysis of microarray data is to ensure that there is a consistent and standardized 

data handling.  This can mean the application of the same pre-processing and 

normalization techniques, incorporating an adjustment for batch effects and 

platform, and maximising consensus gene identifiers across platforms (Taminau, 
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Meganck et al. 2012).  Whilst all this is done the true biological variance that exists 

in the individual datasets has to be retained.   

Rung and Brazma (2012) present sage advice on the pitfalls of tackling such 

microarray meta-analysis, in particular that ‘summary level meta-analysis is often a 

better option’ (Rung and Brazma 2012).  Whether the analysis is based upon the 

summary results from individual experiments or based upon the merging of raw 

data is a choice made based upon what will be most informative to the researcher.  

The intended question may be unavoidably and strongly biased by the differences 

that are found in diverse experimental conditions.  

These methods usually lead to four main types of microarray meta-analysis, as 

described by Tseng, et al (2012): i) differential gene expression; ii) pathway analysis; 

iii) co-expression analysis; iv) prediction analysis.  Each resolves the data in a 

different way and produces results with varied potential of generalization or 

clinical utility.  The integration and meta-analysis of microarray studies by gene co-

expression network analysis has facilitated and yielded outputs that provide a 

functional appreciation of the tissues under investigation (Miller, Horvath et al. 

2010, Hawrylycz, Lein et al. 2012).  Methods already explored in Chapter 4 are re-

visited in this study to facilitate integration of multiple gene expression studies.   

In essence the re-use of expression data is a form of integrative analysis that may 

involve either, a) integration at the interpretive level, or b) integration at the level 

of expression values (Sarmah and Samarasinghe 2010).  

Integration at the interpretative level – ‘meta-analysis’ 

The approach, which may be termed ‘meta-analysis’, requires the comprehensive 

and consistent re-analysis of each data set followed by the combination of 
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summary statistics (P-values, ranks) at an interpretative level.  Consistency and 

comparability in the raw data collection technique, whether that is patient-level 

data, microarray expression studies or RNA-sequencing data, is critical.  In the 

case of microarrays, where the raw data arises from different technology platforms 

and platform generations, neither consistency nor comparability can be assumed 

and, as such, these types of studies are more correctly termed ‘cross-platform’ 

studies (Rudy and Valafar 2011).   

Data-merging – integration at the level of expression values 

Microarray data-merging utilises raw expression data from multiple sources then 

transforms and normalises the data to make it numerically comparable.  Many of 

the key issues relating to meta-analysis of microarrays are applicable to data-

merging (Sarmah and Samarasinghe 2010, Taminau, Lazar et al. 2014).  The output 

is a new, larger data set upon which further analysis is performed, for example, 

evaluation of prognostic gene signatures indicating suitability of therapeutic 

interventions (Xu, Tan et al. 2008).  Data handling approaches are defined further 

below.  Which approach is more consistent in terms of defining prognostic 

markers or differentially expressed genes is not clear in the literature, however, 

recent investigation suggests that significantly more differentially expressed genes 

may be found through a data-merging approach (Taminau, Lazar et al. 2014).   

Obstacles to integration of expression studies  

Whilst the motivation to integrate gene expression data is attractive a number of 

data-handling challenges retard easy implementation. Direct combination of gene 

expression studies is not possible without further normalisation, neither are 

independent studies from different microarray platforms directly comparable.  

Furthermore, in terms of experimental design, integration needs to be biologically 
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meaningful, rather than exhaustive harvesting and collation of incompatible 

samples (Sarmah and Samarasinghe 2010).    

Concerns with regard to microarray data integration have been evident for over a 

decade and despite the implementation of minimal expected standards (MIAME) 

(Brazma, Hingamp et al. 2001, Moreau, Aerts et al. 2003) for microarray data 

deposited in public databases one study found little over a third of data submitted 

met the format required and quality standards (Larsson and Sandberg 2006).  The 

absence of raw data (permitting future re-annotation and application of novel 

computational methods) and low quality noisy data, were highlighted as particular 

hurdles to integration.   

Microarray data integration is obstructed by relevant studies having been 

undertaken on microarray platforms from numerous vendors, some of which may 

be archaic and poorly annotated.  In addition to the biological variation inherent in 

each study sample microarray platforms each have unique chemistries, 

hybridization protocols, probe identifiers and probe lengths.  Furthermore, the 

well-described issues associated with systematic bias, relating to ‘batch effects’ 

associated with temporal and technical variations (Leek, Scharpf et al. 2010, Chen, 

Grennan et al. 2011), are unlikely to be considered in a microarray meta-analysis or 

cross-platform data-merging as information relating to the time and location of 

microarray processing are often not available.  Noise is an inescapable problem in 

any microarray study, but this is propagated further with the addition of data from 

diversified sources (Sarmah and Samarasinghe 2010).   

Ramasamy, et al (2008) provided a practical framework by which to tackle 

microarray meta-analysis with the greatest emphasis being on the data collection 
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and curation methods (Ramasamy, Mondry et al. 2008). In choosing which data to 

work with feature-level/probe-level data was recommended, thereby allowing the 

researcher flexibility in which pre-processing and normalisation techniques were 

employed, and ensuring that the same method was used across all studies.   

Dealing with obstacles to data-merging 

 

Probe-matching  

Two microarrays from two platforms can, in reality, never be fundamentally 

comparable.  Platforms differ not only in their chemistries but also their probe 

designs and lengths.  The design of the probes reflects a trade-off between 

sensitivity and specificity, the probe sequences defining the hybridization 

characteristics of the probes; as two platforms may not share probe sequences the 

data cannot be directly comparable (Rudy and Valafar 2011).  Direct probe-level 

data integration would only be possible between datasets using the same or 

technically similar platforms, e.g. platform generations from the same 

manufacturer (Tseng, Ghosh et al. 2012); there is evidence that sequence matching 

of oligonucleotide probes across platforms would improve the reproducibility and 

concordance of a cross-platform analysis (Mecham, Klus et al. 2004, Carter, 

Eklund et al. 2005, Kuo, Liu et al. 2006, Ramasamy, Mondry et al. 2008, Allen, 

Wang et al. 2012).  However, two of the studies above considered only 

comparisons between two platforms at a time (Allen (2012), Carter (2006)), 

whereas Kuo, et al (2006) considered ten platforms.  The latter presented good 

correlation of expression measurements for exon-matched probes even where the 

probe sequences did not overlap, however, they could only find four genes for 

which probes from all ten platforms mapped to the same exon.   
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Normalisation strategies 

Integration across microarray data sets often requires recursive data normalisation, 

for example, between samples in a data set and then across data sets; this can 

occur at the expense of the true biological variation in the data resulting in an 

‘over-smoothing’ making any analysis largely redundant or introduces spurious 

correlations (Sîrbu, Ruskin et al. 2010).  Subsequently correlations between 

interacting genes may be lost making the use of inferential algorithms downstream 

problematic; alternatively, as discussed in the previous chapter, such interventions 

may introduce spurious correlations between the data sets (Gaiteri, Ding et al. 

2014).  The complexity of rescaling approaches to gene expression data varies 

from z-score standardization (Cheadle, Cho-Chung et al. 2003a) to Bayesian batch-

correction methods (Johnson, Li et al. 2007).     

Sîrbu, et al (2010) collected arrays from three different platforms and, following 

three types of preprocessing on the raw data, performed cross-platform 

normalisation undertaken by i) z-score standardization (scaling such that 

expression values lay in [0,1], ii) a Bayesian approach to batch-effect removal 

(ComBat), and iii) an iterative k-means clustering technique (XPN).  In this study 

it was found that for normalisation of time-series data for quantitative model 

inference a combination of loess normalisation during pre-processing and 

subsequent use of the XPN algorithm resulted in acceptably low variation.   

Rudy and Valafar (2011) also found the XPN algorithm generated the highest 

inter-platform concordance, but only when treatment groups were of equal size 

(Rudy and Valafar 2011).  In analysis of four methods for cross-platform 

normalisation they found that the DWD (Distance Weighted Discrimination) 

algorithm (Benito, Parker et al. 2004) was more robust to these inequalities.  From 



 331 

these observations there is clearly discordance between the capabilities of 

normalisation algorithms, their complexity, and the practicalities of sourcing 

groups of equal size, on the same platform, or establishing comparable co-variants 

and samples derived from the same experimental methodology.  

5.1.2: Meta-analysis of cartilage and tendon pathologies   

As highlighted in Chapter 2, the scope of gene expression studies of cartilage and 

tendon have been limited with little evaluation of the baseline expression profiles 

of the constituent cells nor further evaluation of their expression profiles in 

perturbed environments.  Consequently there is, to the author’s knowledge, no 

systematic integration of microarray data sets interrogating cartilage or tendon 

gene expression. Furthermore, there is no coherent or comprehensive 

understanding of the chondrocyte or tenocyte response profiles to perturbations 

on a global transcriptomic scale.     

Of the meta-analyses that have been performed for cartilage and tendon 

pathologies the majority are clinical, intervention-based, investigations.  Of the 

others genome-wide association studies (GWAS) of arthritic and rheumatic 

conditions are most prevalent.  Microarray meta-analysis of osteoarthritis and 

rheumatoid arthritis invariably study either synovial tissue or use grossly normal 

and abnormal articular cartilage samples from the same patient.  Given the 

numerous hurdles described it is not unexpected that systematic analysis of gene 

expression profiles is not common.  For tendinopathies the lack of systematic 

analyses is more acute – in this review there were no non-clinical publications 

exploring gene expression of tenocytes across publications.   
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A number of GWAS studies have implicated various genetic risk loci in the 

development of osteoarthritis, including GDF5 and SMAD3 (Valdes, Spector et al. 

2010, Reynard and Loughlin 2013), or found conflicting associations with other 

candidates, such as IL-6 (Valdes, Arden et al. 2010, Cai, Sun et al. 2014).  

However, a recent meta-analysis of GWAS studies, considering 199 candidate 

genes, found that SNPs associated with only two genes (COL11A1 and VEGF) 

had a statistical association with the development of osteoarthritis (Rodriguez-

Fontenla, Calaza et al. 2014). 

Animal models of musculoskeletal disease 

For animals models to inform human musculoskeletal disease those proxies must 

be appropriate and relevant, the former referring to the comparability of a disease 

process in the model to that in the human, the latter considering the relevance of a 

complex whole animal model where simpler experimental set-ups would suffice 

(Pritzker 1994).  This is problematic in the study of musculoskeletal disease where 

small studies, diverse models, and animal differing strains have been used for gene 

expression profiling.  Interrogation of expression profiling studies is required to 

define whether regulatory mechanisms are present or absent in models of 

osteoarthritis relative to the complex and diverse human disease (Goldring 2012).   

5.1.3: Summary and study rationale 

This study is driven by three main concerns arising from the literature.  First, there 

is no evidence of a systematic analysis of global transcriptomic networks having 

been undertaken to explore common regulatory mechanisms between rodent and 

human musculoskeletal disease or to validate these models.  Second, in-vivo culture 

models have not been defined relative to diseased tissue, the assumption being 

made that their gene expression profiles are sufficiently comparable to normal 
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samples.  Third, by reviewing the available studies gaps in community knowledge 

may be highlighted; this may facilitate development of future targeted research 

projects.  It is prescient, therefore, that these concerns are challenged.  

This study utilizes a data-merging approach to integrate comprehensive expression 

data from multiple small cartilage and tendon transcriptome profiling studies from 

the rat and human.  A global transcriptome network comparison approach, 

WGCNA, is applied to define functional modules associated with disease and 

three-dimensional culture phenotypes.  By comparing the networks structures 

across species the suitability of rodent models for informing human disease is 

considered.   

To accommodate diverse data sources from relatively few studies a number of 

data integration methods are explored.  An IL-6 containing module is found to be 

significantly associated with a perturbed chondrocyte phenotype and, more 

specifically, with alginate bead cultures.  From this module thirteen, mostly pro-

inflammatory, genes were found, by a nearest shrunken centroids approach, to 

adequately discriminate between three-dimensional culture systems and all other 

samples.  This was consistent across rat and human studies and when compared to 

an independent data set.   
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5.2: Methods 
 

5.2.1: Identification of datasets and inclusion criteria 

Curated, open-access microarray repositories ArrayExpress 

(http://www.ebi.ac.uk/arrayexpress/) (Rustici, Kolesnikov et al. 2013) and Gene 

Expression Omnibus (http://www.ncbi.nlm.nih.gov/geo/) (Barrett, Troup et al. 

2011) were trawled for data sets profiling tissues of musculoskeletal origin derived 

from Rattus norvegicus, namely: ‘cartilage’, ‘tendon’, and ‘ligament’, Figure 5.1a.  

Additionally, disease-orientated searches of data were undertaken using the terms: 

‘osteoarthritis’, ‘rheumatoid arthritis’, ‘tendinopathy’, and ‘tendinitis’.  Further to 

this data sets were collected if they contained musculoskeletal developmental 

stages or directed differentiation studies, e.g. mesenchymal stem cells.  All 

recorded studies available prior to June 2014 were considered. A literature search 

of PubMed (http://www.ncbi.nlm.nih.gov) was undertaken using the 

aforementioned terms to collect studies where expression data was not publically 

available and corresponding authors were contacted.  All collected data sets were 

tested against the inclusion criteria described in Table 5.1.  The signalment of the 

animal specimens (age, sex, breed) was recorded, but this did not influence 

inclusion of data in the study.    

5.2.2 Data preparation  

The microarray pre-processing and merging pipeline is provided in Figure 5.1b.  

Briefly, raw data was imported into R and arrays were visually assessed for 

systematic technical issues and underwent the same quality control appraisal as 

applied to microarray data in Chapter 2 and 3.  Expression data was background 

corrected using the RMA algorithm (Irizarry, Hobbs et al. 2003) and a cyclic loess 
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normalisation method applied across each study data set, as described before.  

Probe sets were re-annotated with the appropriate Entrez gene identifier.  

Expression data for each gene was aggregated and collapsed into a single gene 

measurement consisting of the maximum mean expression value using the 

‘collapseRows’ function in the WGCNA package (Miller, Cai et al. 2011).  The 

output of this workflow was a normalised matrix of expression values consisting 

of one summarized gene per row.  Each platform expression matrix had a 

differing number of genes at this stage.  Data sets were intersected by Entrez gene 

identifiers for cross-study normalisation such that all studies contained the same 

gene identifiers.   The matrix of aggregated data sets was termed a ‘meta-matrix’.  

The final rat meta-matrix contained 170 microarray samples and profiled 11,152 

genes derived from four Affymetrix platforms and was the input for weighted 

gene co-expression network analysis.          

Inclusion criteria Exclusion Criteria 

Raw, probe-level data files were available 
and studies achieved >3 of  the 
requirements of  the MIAME conditions.  

Some level of  pre-processing had been 
undertaken, e.g. quantile normalisation.    

Data sets were derived exclusively from 
Rattus norvegicus 

Individual arrays within a dataset failed 
to meet quality control thresholds 

Probe annotation files were available Platforms with small transcript coverage, 
e.g. Affymetrix Rat U34A array 

Datasets could be manipulated using the 
R programming platform  

Data sets were re-used across multiple 
studies  

Study design and sample phenotypes and 
descriptors were available.   

Single biological replicate used over 
multiple arrays in a study.   

Studies investigated cartilage, tendon or 
ligament in their native state or their 
cellular components in vitro.   

Studies with fewer than three arrays in a 
study group.   

Table 5.1: Definition of  inclusion and exclusion criteria for microarray meta-analysis.    
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Data collection 

Public gene expression 
data repositories 

Literature Search  

Inclusion criteria  

Quality control and pre-
processing 

In silico analysis 

Probe matching 

Data-merging 
methodology 

 studies 

Data normalisation 
strategies 

WGCNA 

Class prediction 

Independent data test 

Chapter 2 (Illumina data) 

Chapter 3 (Affymetrix data) 

Author contacted 

R 

Excluded  
data 

Prognostic signature 

Expression data 
merging 

Figure 5.1a: Overview of  experimental workflow for results presented in Chapter 5.  Input data is derived 
from Chapters 2 and 3, public repositories and personal requests.  Inclusion and exclusion criteria are defined 
in Table 5.1.  Parallel studies informing and refining data analysis pipelines are defined in Figure 5.1b – d and 
WGCNA pipeline in Figure 4.2c.   

Figure 5.1b 

Figure 5.1c 

Figure 4.2c 

Figure 5.1d 
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Data sets = 2 
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GeneST 1.1 

 
Data sets = 1 
Arrays, n = 8 

Affymetrix Rat 
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Data sets = 1 
Arrays, n = 24 
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Study sample descriptors 

Array annotation files  

Comparison to 
published 

study 

RLE and 
NUSE plots 

Principal 
Component 

Analysis  
Hierarchical 
clustering  

A: Microarray pre-
processing 

RMA background 
correction 

Cyclic loess  
normalisation 

Universal Entrez annotation of  probe identifiers 

Aggregation of  expression data –  
collapse rows into single gene maximum mean measurement 

B: Study level  
Quality Control 

Affymetrix Rat 
Genome 230 2.0 
Genes, n=13,915 

Affymetrix Rat 
GeneST 1.0 

Genes, n=15,798 

Affymetrix Rat 
GeneST 1.1 

Genes, n=15,798 

Affymetrix Rat 
GeneST 2.0 

Genes, n=18,686 

Intersect all data sets on common Entrez gene identifiers, n=11152 genes 

     Z-score normalisation applied across all 170 studies 

C: Re-annotation and 
aggregation 

Oligo 

WGCNA 

Limma 

inSilicoMerging 

D: Data 
merging and 
normalisation 

Single meta-matrix:  
Rows/Genes = 11152,  
Samples/Columns = 170 

Meta-level quality control:  
PCA; reference to original study 
results 

Figure 5.1b: Data merging pipeline for rat studies profiling chondrocyte and tenocyte transcriptomes from four 
Affymetrix microarray platforms.  All analysis was undertaken in the R environment with critical work packages 
indicated, e.g. limma.  All study data sets underwent separate analysis through tasks A to D before final merging 
and global normalisation.  This process was repeated for human microarray data sets (n = 166).     

Task summary 
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Figure 5.1c: Data manipulation and analysis pipelines for cross-platform normalisation (upper panel) and  probe 
sequence- and target-matching across platforms (lower panel).  Outcomes of  studies informed Figure 5.1b.  
Critical work-packages within the R environment are provided, e.g. Gviz.   
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WGCNA 
pipeline 

Figure 4.2c  
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+

Feature selection: consensus module genes with highest kME. 
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Figure 5.1d: Data manipulation and analysis pipelines for class-prediction using pamr.  Genes were filtered for 
‘feature-selection’ by restricting available genes to those found within a highly phenotype-associated consensus 
module in WGCNA.  This was common to both human and rat analysis.  Gene signatures identified for each 
species were used to classify test data from the same species and vice versa.  Misclassification error rates and areas 
under receiver-operator curves defined the predictive success of  each signature.  Illumina expression data 
(Chapter 2) was used as an independent data data set against which to assess the rat signature.    
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5.2.3: Analysis of cross-platform normalisation techniques 

Rat expression data was derived from four platforms from three manufacturers: 

Affymetrix Rat Genome 230 2.0, Illumina RatRef.v1, Affymetrix Gene ST 1.0, and 

Agilent 4x44k.  In order to explore the impact of cross-platform normalisation 

strategies on data a series of test datasets were prepared, Figure 5.1c upper 

panel: i) simulated or ‘toy’ data set was prepared consisting of a set of four 

randomly generated arrays using the madsim R package (Dembélé 2013); ii) ‘Seed’ 

data sets were simulated arrays prepared as for (i), but used real data sets as the 

kernel around which the distribution of expression values was built.  Both ‘case’ 

and ‘control’ data sets were produced; iii) real data sets from public repositories 

were chosen to represent each of the four platforms collected in this study.  As 

many real data sets are underpowered and have few biological replicates three case 

and three controls were taken from each platform. Data sets used: Illumina 

(Chapter 2); Affymetrix 1.0 (Nam, Perera et al. 2011); Affymetrix 230 (Appleton, 

Pitelka et al. 2007); Agilent 44k (Zhang, Fang et al. 2012).   

Several normalisation strategies available within the inSilicoMerging R 

package (Taminau, Meganck et al. 2012) were applied to all data sets: ‘DWD’ 

(Benito, Parker et al. 2004), ‘XPN’ (Shabalin, Tjelmeland et al. 2008), ‘BMC’ (Sims, 

Smethurst et al. 2008), ‘Genenorm’ (z-score normalisation (Cheadle, Cho-Chung 

et al. 2003a, Cheadle, Vawter et al. 2003b)) or ‘NONE’ (merging with no 

normalisation). Empirical-Bayes batch-correction method, ‘COMBAT’ (Johnson, 

Li et al. 2007), was not used as this method assumes covariates to be consistent 

across samples.  Data for simulated and real data analysis were pre-processed and 

normalised in the same manner.  
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Single manufacturer data sets 

The use of data sets arising from one platform provider only, Affymetrix, was 

considered.  These are the most numerous for rat studies in the public repositories 

and all use 25-mer oligo ‘probe-sets’. Three Affymetrix platform generations were 

represented in the cartilage and tendon data collected: Genome 230 2.0, 

GeneST1.0 and GeneST2.0.  Data was pre-processed as described previously.  

One data set for each platform was considered initially (n=37). 

5.2.4:  Sequence- and target-matching of probes from three platforms 

In order to maximize the number of available cartilage and tendon studies the 

most commonly used rat microarray platforms were assessed for probe sequence- 

and target-matching: i) Illumina RatRef.v1 BeadChip; ii) Affymetrix GeneST 1.0; 

iii) Affymetrix 230 Expression Array; iii) Agilent 4x44K version G4131F, Figure 

5.1c lower panel. Unique probe and probe-set identifiers and their associated 

sequences were collected from Bioconductor annotation packages or from 

manifest files from the manufacturer or GEO.   

Probes were re-annotated using functions within the biomaRt package, an 

interface with the Biomart database (www.biomart.org), implemented in R 

(Durinck, Moreau et al. 2005, Durinck, Spellman et al. 2009, Kasprzyk 2011). 

Probes were annotated with Ensembl and Entrez identifiers, common gene 

symbols, chromosome number and location (band/strand) for orientation 

purposes.  Annotated probe sequence files were binned by chromosome number, 

to create 20 somatic chromosome and one X chromosome file for each platform. 

Per chromosome files were converted to .fasta format.   
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Probe sequences from each platform were treated as analogous to short-reads 

from RNASeq data and aligned to each chromosome of the rat genome (Ensembl 

Rat genome assembly, 'Rnor_5.0', release 75, March 2012) (Consortium 2004) 

using a short-read, un-spliced alignment algorithm ‘Bowtie’ (Langmead, Trapnell 

et al. 2009) as implemented in the Quasr R package  (Lerch, et al 2012).  General 

methodology was adapted from Kim, et al (2011) (Kim, Patel et al. 2011).  The 

unmasked genomic DNA sequences from Ensembl were used, where interspersed 

repeats and low complexity regions are retained, as this improved probe hits.   

Aligned reads, .bam files, were handled using the GenomicRanges package 

(Lawrence, Huber et al. 2013) and visualised using the Gviz package (Hahn, et al, 

2014).  Probe overlaps were defined as probes sequences from Affymetrix (25-

mer) or Illumina (50-mer) that were: a) contained entirely within or, b) had any 

sequence overlap with Agilent (60-mer) probes.  Probes were only used if the same 

gene was mapped uniquely for each platform.  

5.2.5: Human Affymetrix data set collection 

The collection of Affymetrix microarray expression datasets profiling human 

cartilage and tendon samples followed the same protocol as outline above (5.2.1-

5.2.2).  The datasets retained for cross-species analysis are presented in Appendix 

Table SD5.2.  Following pre-processing, re-annotation and cross-platform 

normalisation a human meta-set of 166 samples and 12,215 genes was prepared.  

Samples were obtained from the following platforms: Affymetrix Human Genome 

U133 Plus 2.0, U133A, Gene 1.0 ST and Gene 1.1 ST.  A non-musculoskeletal 

tissue meta-matrix was also prepared from human liver microarray studies 

performed on the Affymetrix Human Genome U133 Plus 2 platform (n=150) 
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from 5 studies, Appendix Table SD5.3, profiling 19,851 transcripts.  Samples 

were handled as described above.           

5.2.6: Network comparisons of Affymetrix microarrays across species 
through the application of weighted gene co-expression network 
analysis (WGCNA) 

Using a weighted gene co-expression network analysis it is possible to collate 

multiple data-sets into a single correlation matrix to define consensus network 

structures and modules which are strongly conserved or divergent across 

conditions, or species, and functionally annotate these modules. The protocol 

employed follows those defined in Chapter 4.  The reader is referred to Figure 

4.2c for a schematic overview of the methodology.    

To establish universal gene identifiers and facilitate comparison across species rat 

gene identifiers were re-annotated with human Ensembl gene orthologs; the 

human meta-matrix was also re-annotated with Ensembl identifiers – only a single 

probe set per gene was permitted.  After re-annotation this left rat and human 

meta-matrices of 10,221 and 11,904 genes respectively. Only identifiers that were 

common to both meta-matrices were retained and genes with a global variance less 

than 0.4 were removed to reduce noise and computational demands.  This left 

5278 genes for co-expression analysis. The general approach employed to develop 

cross-species co-expression modules is described by Miller, et al (2010) (Miller, 

Horvath et al. 2010).  Consensus network and module generation was performed 

in WGCNA with the following changes to the default settings for consensus network 

generation: β=7, deepSplit=1, cutHeight =0.25 and a minimum module size of 30 

genes. All other settings were left at default.  
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Sub-setting data sets to challenge network structures 

To assess whether network structures would be robust to changes in data set each 

species meta-matrix was split into two groups consisting of a randomly selected 

sub-set of samples.  For each group the average expression rank for each gene in 

the network was calculated.  Within each species these ranks were correlated 

between the two random groups; ten iterations of random sample selection were 

performed.  This was performed both using the 5,278 genes prepared for co-

expression analysis.  Two of the randomized sub-sets for each species were then 

used as inputs for full co-expression analysis to assess how robust the analysis was 

to sub-setting and changes in the input data sets.  

Correlation of phenotypic traits to module eigengenes 

Defining the relationship between phenotypic traits from the constituent samples 

within the individual data sets was undertaken as described in Chapter 4, 4.2.1.  

Binary classification tables were prepared for either the rat or human datasets as 

before.  For the human data multi-dimensional scaling plots were prepared to 

define groups that were then used as phenotypic classifiers.  For consensus 

module-trait relationships the lowest absolute value was defined as the correlation 

for a consensus module-trait pair if the two correlations had the same sign.   

5.2.7: Class prediction analysis  

Class prediction for culture subsets within the meta-sets was performed using the 

pamr package implemented in R and as described by Tibshirani, et al (2002), 

(Tibshirani, Hastie et al. 2002), Figure 5.1d. Briefly, this method employs a 

‘nearest shrunken centroids’ approach to determine cohorts of genes that best 

characterise the defined classes.  Modules defined by co-expression network 

analysis were used to filter the features (genes) for selection.  Expression data 
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from rat or human were split into a randomized test group (10% of all samples for 

a meta-set) and a training set; the latter was used to develop the minimal gene 

signature.  The gene signature for each species was cross-validated by testing 

against both species test groups.  Principal component analysis was used to 

present separation of samples using the minimal gene signature.      

All graphics, network visualization, functional annotation tools, and 

methodologies are consistent with previous descriptions.    
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5.3: Results 
 
5.3.1: Cross-platform normalisation techniques 

Multiple cross-platform normalisation strategies are available within R packages.  

To explore the impact on diverse samples alternative cross-platform normalisation 

strategies were applied to simulated data (not shown), ‘seed’ data (derived from 

real expression profiles) or real data to provide an objective analysis.  Data sets 

derived from ‘seed’ expression values from the real data sets presented similar 

findings using either DWD or XPN normalisation methods with global increases 

in the average Pearson correlation between all samples and platforms, Figure 5.2.   

For real data sets BMC and Genenorm (z-score normalisation) presented with 

identical distributions where the majority of correlations between samples were 

centered on zero, i.e. not correlated.  In contrast, the DWD method again 

produced a high correlation, >0.98, across all samples and platforms, but with 

Affymetrix Genome 230 and GeneST 1.0 arrays showing the greatest overlap of 

correlation distributions, Figure 5.3. Using the real data sets (n = 12) it was not 

possible to apply the XPN method.  Principal component analysis of real data, 

Figure 5.4, found that BMC and DWD methods resulted in a strong clustering of 

two platforms, Affymetrix 230 and Agilent, regardless of whether the samples 

were considered ‘case’ or ‘control’.  This was not replicated for z-score normalised 

data where ‘case’ and ‘control’ samples were still separated between Affymetrix 

and Agilent platforms.    
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Figure 5.2 – Correlation density plots:  Five cross-platform normalisation strategies 
were considered using artificial data sets created using real data-sets as a ‘seed’ around 
which the distribution of  expression values was created.  Normalisation algorithms of  
differing complexity were used: BMC; DWD; Genenorm; None; or XPN.  Data from 
four platforms were considered, representative of  those available in public 
repositories – see figure legend (platform).   Normalisation algorithms such as XPN 
and DWD have assumptions that the data to be normalised arises from the same 
sample type, but analysis undertaken on different platforms.  As such, these 
algorithms result in global correlations of  >0.8 across samples known to come from 
different conditions. Genenorm and BMC use a standardisation method where the 
expression data is ‘studentised’, i.e. mean=0, SD+/- 1.   
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Figure 5.3 – Correlation density plots:  Four cross-platform normalisation strategies 
were considered using real data sets creating consisting of  three case and three 
control studies.  Normalisation algorithms of  differing complexity were used: BMC; 
DWD; Genenorm; None.  Data from four platforms were considered, representative 
of  those available in public repositories – see figure legend (platform).    
 
Application of  the DWD algorithm to all platforms resulted in high cross-platform 
correlations, >0.98, with the two Affymetrix platforms (230 and GeneST) showing 
the highest correlation.  Applying no normalisation technique resulted in variable 
correlations including some very high correlations approaching cor=1.    
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Figure 5.4 – Principal Component Analysis – Data arising from real microarray expression data sets 
derived from cartilage samples applied across four platforms.  Four cross-platform normalisation 
techniques were considered as per Figure 5.3.  PCA explained the greatest variance in the first two 
components for BMC and DWD strategies. These methods strongly clustered data from Affymetrix 
Genome 230 and Agilent 4x44k arrays, including both real case and control data.  Genenorm 
normalised data clustered in the same manner as for BMC and DWD, but with a smaller total PCA 
percentage, but retained less stringent clustering of  the case and control arrays across the two arrays.  
Combining the expression data without applying a cross-platform normalisation strategy resulted in 
strong clustering of  arrays by platform only.     
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Affymetrix cross-platform normalisation  

To investigate whether cross-platform normalisation was required between 

platform generations from a single manufacturer the steps outlined above were 

applied to three generations of Affymetrix platform: a) GeneChip Rat 1.0 ST; b) 

GeneChip Rat 2.0 ST; c) Rat Genome 230 2.0 arrays. As before, BMC and 

Genenorm resulted in a similar distribution of correlation values across the 

expression data; DWD resulted in a global cross-platform increase in correlation, 

Figure 5.5.  Notably, not employing a cross-platform normalisation technique for 

Affymetrix platforms resulted in a higher cross-platform correlation than 

compared to the previous multi-platform analysis.   

By principal component analysis DWD and BMC normalisation clustered all 

samples from the Affymetrix 230 and Affymetrix ST 1.0 arrays, Figure 5.6.  This 

was considered over-smoothing of the data and resulted in groups that were not 

biologically plausible with respect to the sample descriptors from the original 

studies.  Z-score normalisation resulted in less-stringent clustering of the replicates 

and, although less of the data variation was described by the first two components, 

this was considered to be more biological plausible clustering of samples, Figure 

5.7.   
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Figure 5.5 – Correlation Density Plots– Application of  normalisation strategies presented in 
Figure 5.3 to arrays derived only from Affymetrix platforms – a) GeneChip Rat 1.0 ST; b) 
GeneChip Rat 2.0 ST; c) Rat Genome 230 2.0 arrays – see figure legend (platform).  In general the 
findings were comparable with findings across multiple platforms.  DWD resulted in high inter-array 
correlations.  No normalisation resulted in moderate to high correlations between platforms, but 
these values were more widely distributed.  BMC and Genenorm strategies resulted in distributions 
comparable with previous findings.   
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Figure 5.6 – Principal Component Analysis  - as demonstrated in Figure 5.3 the DWD and BMC 
strategies resulted in strong clustering of  all data from Affymetrix 1.0 ST and Genome 230.  In 
contrast, data derived from Chapter 3 Affymetrix 2.0 ST arrays were divergent from this central 
cluster.  No normalisation strategy resulted in clustering by Affymetrix platform generation.  
Genenorm normlisation resulted in a broadly similar distribution of  samples, but more relaxed 
clustering was evident with separation of  case and control samples – see figure legend (groups, 
condition).   
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Figure 5.7: Annotated principal 
component analysis plot –  
 
Genenorm normalised data from 
Affymetrix microarrays (Figure 
5.6) annotated for sample origin – 
figure legend (groups, condition). 
   
 
U n l i k e  D W D a n d  B M C 
normalisation strategies Genenorm 
normalisation resulted in separation 
of  samples in a biologically relevant 
manner, i.e. consistent with sample 
descriptors from the source data 
sets.   
   
Perturbed chondrocytes, either 
from inflammatory or in vitro 
conditions, clustered separate from 
sham inter vent ions, control 
cartilage and matrix-depleted native 
chondrocytes.     
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5.3.2 Sequence- and target-matching of probes across platforms 
curtails numbers of available probes for data integration 

Given the dearth of publically available expression profiles for cartilage and 

tendon including data from multiple platforms would be useful.  To investigate 

whether sequence- and target-matching probes from different platform 

manufacturers would be a valid methodology for improving reproducibility of the 

analysis oligo probe sequences from two Affymetrix arrays (1.0 GeneST and 

Genome 230), one Illumina, and one Agilent platform were aligned to the Rattus 

norvegicus genome and probes were considered sequence- and target-matched 

across platforms if the shorter probes from the Affymetrix (25-mer) or Illumina 

(50-mer) platforms could be unambiguously matched within the larger Agilent 

probes (60-mer) uniquely aligned to the genome.  The number of sequence 

matches, or ‘hits’, within Agilent probes was highest across all chromosomes with 

the shorter 25-mer Genome 230 probes.  Comparatively, GeneST 1.0 probes, of 

the same length, had few hits within Agilent probes in most chromosomes; in 

some cases there were no hits in a chromosome, Figure 5.8  

Given this very stringent definition of sequence matching severely limited the 

number of matching probes a more relaxed definition was considered, which 

allowed any overlap with an Agilent probe to be considered a hit.  Generally, the 

number of matched probes increased considerably for Affymetrix 230 and 

Illumina probes, but had little impact on the GeneST 1.0 probes, Figure 5.9. 

Multiple Affymetrix probes (probe-sets) are annotated to the same gene; mapped 

hits for all probes were re-annotated to define uniquely represented genes that 

were matched across all platforms.  Given the poor number of hits for the 

GeneST 1.0 array the consensus genes for only Affymetrix 230, Illumina and 
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Agilent were considered with duplicates removed.  After annotating with Entrez 

gene identifiers the number of unique identifiers across platforms was associated 

with 620 (Agilent), 615 (Illumina) and 616 (Affymetrix 230) unique genes matched.   

Sequence matching of probes across three platforms resulted in considerable loss 

of gene expression profiling capability; given that just over six-hundred probes 

could be uniquely identified as confidently hybridizing to the same region of a 

transcript this methodology was considered as an unacceptable way of tackling a 

cross-platform meta-analysis using multiple platforms.   

The simplest normalisation strategy, z-score normlisation, did not over-smooth 

the data, resulted in clustering that was less stringent and described less of the 

variability in the data, but was more relevant to the biological understanding of the 

samples. Consequently, data merging was undertaken entirely with microarrays 

developed by Affymetrix using 25-mer oligo probes.  
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Figure 5.8 – Histogram of  probes hits within Agilent probes per chromosome -  Affymetrix platforms use 
25-mer oligo probes, but have multiple probes for each gene or exon depending on the platform.  There is a 
notable difference between the number of  Affymetrix 230 probes that lie within a 60-mer Aglient probe (and 
so verified as sequence-matched) and the Affymetrix GeneST 1.0 array where, in some chromosomes, there are 
no probes that lie within an Agilent probe.  Illumina arrays, like Agilent, have only one probe per gene and are 
50-mer oligos – few of  these probes lie completely within an Agilent probe on the same chromosome.  The 
number of  overlapping probes do not necessarily following the approximate size of  each chromosome (inset).     
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Figure 5.9 – Histogram of  probes overlapping Agilent probes per chromosome – relaxing the qualification for sequence 
matching to include ANY overlap between Agilent probes and those from other platforms increased the number of  probe hits 
(y-axis) across sequences chromosomes (x-axis).  It was still the case in some chromosomes that there was no overlap called 
between Agilent probes and Affymetrix Gene ST 1.0 arrays 
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5.3.3: Analysis of co-expression networks across rat and human data 
identifies cross-species preservation of functional gene modules 

 

Constructing networks for rat and human meta-sets 

To develop an insight into musculoskeletal disorders co-expression networks were 

developed to survey the general responses of chondrocytes and tenocytes to 

system perturbations.  After filtering by defined inclusion qualifiers the analysis 

included 336 microarray samples consisting of cartilage and tendon studies from 

166 human and 170 rat investigations. A single gene expression meta-matrix was 

prepared for rat or human data. Each meta-matrix was assessed to determine 

whether it met an approximately scale-free topology, Figure 5.10.  Strong scale-

free topology was evident.  Initially species-specific single networks were prepared 

and, using the topological overlap measurement described in Chapter 4, 

hierarchical clustering was used to group genes with high co-expression 

relationships into modules.  After conversion of rat gene identifiers to converted 

to human orthologs, intersection of common genes and non-specific filtering to 

facilitate computational analysis a set of 5278 genes common to both species 

meta-matrices remained for co-expression analysis. All further analysis uses this 

gene set.  
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Figure 5.10:  Visual assessment of  scale free topology after non-specific 
filtering  for rat (A) and human (B)– Histograms: Frequency (y-axis) of  
gene connectivities (x-axis).  The majority of  genes have few connections;  
Log-log plot of  the connectivity values shown in the associated histogram 
with fitted linear model.  The R^2 value is considered an index of  the 
scale-free network topology.  For the rat (7616 genes) and human (7759 
genes) meta-sets there was good evidence of  scale-free network topology.   

A. 

B. 

Rat data 

Human data 
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5.3.4 Assessment of general network properties  

 
Networks and module definitions are robust to the choice of data-set 

As the constituent data sets for each species meta-matrix came from disparate 

sources it was necessary to demonstrate that networks would be robust to changes 

in the data sets. The single species meta-matrices were randomly split to contain 

half the number of total samples (rat, 85; human, 83) and were processed using the 

same protocol as described previously.  Ten iterations of random data sets were 

prepared and analysed.     

Correlation of the mean expression rank between random data sets in the rat were, 

in 9/10 iterations, positively correlated (range: R=0.04 - 0.36; p=1.3e-05 to 2.6e-

191) and for all iterations using human data (range: R=0.1 – 0.43; p=3.7e-02 to 1e-

200).  In the majority of random permutations of the gene expression data in 

either rat meta-matrix the data was internally comparable with reference to 

published guidelines for WGCNA.     

Gene expression rank was also correlated between species.  Correlation was 

positive for rat versus human expression data (R=0.13, p=2.5e-21), but negative 

for the human cartilage/tendon meta-matrix versus the human liver meta-matrix 

(R= -0.091, p=3.5e-11) indicating cartilage/tendon meta-matrices across species 

were more comparable than between tissues within the same species.  

Two random data-set pairs from each species were chosen, consensus networks 

prepared on these sub-sets and module preservation considered.  Module 

eigengene differential analysis, module functional annotation and consensus hub 

gene definitions were consistent with the findings defined in the succeeding 

sections (data not shown).  
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These findings demonstrate that within each species meta-matrix there was no 

significant data bias; networks derived from randomized sub-sets of the meta-

matrices resulted in highly comparable module structures and definitions, 

functional annotation and hub gene prediction.  It was concluded that the findings 

did not arise as a function of the meta-matrix construction alone.   

Functional annotation of rat network modules 

The rat network consisted of eleven modules, and one additional module 

containing unassigned genes (grey).  These modules are described in terms of their 

functional annotation in Table 5.2.  Module colours are not interchangeable 

between rat and human. In general terms these functional annotations were very 

similar to those previously identified for cartilage and tendon samples, Chapter 4. 

Human modules share rat functional annotation 

Network generation for the human meta-matrix defined six distinct modules, plus 

one module containing unassigned genes. Functional annotation of modules, 

Table 5.3, demonstrated significant enrichment for terms also found in rat 

modules.  For example, the H3 module was described by terms relating to: 

‘immune system process’ and ‘defense response’.  The H2 module was described 

by terms relating to ‘muscle process’, ‘skeletal muscle contraction’ – terms 

previously highly correlated with native tendon. The H5 module was strongly 

associated with terms relating to ‘cytokine activity’ and ‘chemokine signalling’ 

pathways.  
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Biological Process Metabolic Function  Cell Compartment  KEGG Pathway 

Cell cycle  
(8.2e-44) 

DNA binding  
(3.4e-6) 

Nuclear part  
(1.3e-34) 

DNA replication  
(8.4e-27) 

Anatomical structure 
development (1.0e-6) 

Actin binding  
(1.7e-5) 

Extracellular matrix  
(5.7e-9) 

NA 

Cellular protein 
metabolic process (ns)  

Transferase activity, glycosyl 
groups (2.0e-3) 

Endoplasmic reticulum  
(9.7e-9) 

NA 

Ossification  
(ns) 

Growth factor activity  
(ns) 

Organelle  
(ns) 

Hedgehog signaling pathway (7.2e-3) 

Heme biosynthetic 
process  
(1.3e-2) 

Lyase activity  
(ns) 

Cortical cytoskeleton  
(ns) 

Porphyrin and chlorophyll metabolism 
(6.7e-3) 

Response to external 
stimulus (7.2e-17) 

Cytokine activity  
(2.9e-11) 

Extracellular space  
(5.8e-16) 

Cytokine-cytokine receptor interaction 
(1.2e-9) 

Immune response  
(1.8e-9) 

Peptidase activity (ns) TAP complex  
(4.1e-3) 

Toll-like receptor signalling pathway (ns) 

Immune system process  
(3.3e-23) 

Molecular transducer activity 
(5.4e-6) 

Plasma membrane  
(1.2e-16) 

Lysosome (4.9e-3) 

Signal transduction 
(3.7e-9) 

Molecular transducer activity 
(4.7e-8) 

Plasma membrane  
(3.9e-5) 

Cytokine-cytokine receptor interaction 
(3.1e-2) 

Generation of  
precursor metabolites 
and energy (2.5e-51) 

NADH dehydrogenase 
activity (1.1e-16) 

Mitochondrial part  
(5.6e-54) 

Parkinson’s Disease (2.4e-24) 

Skeletal system 
development (5.4e-7) 

Extracellular matrix 
structural component 
(3.3e-3) 

Extracellular region part  
(5.9e-8) 

NA 
 

Table 5.2: Rat meta-matrix specific modules.  Genes assigned to modules in Figure 5.13 were assessed for functional annotations 
using an over-representation analysis in DAVID.  Terms that are not significant are indicated (ns) and are provided for completeness.  
The most significant term (Bonferroni-corrected) for each of  the GO families is provided alongside over-represented KEGG 
pathways.  NA – not available 
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Biological Process Metabolic Function  
Cell 
Compartment  

KEGG Pathway 

Cell cycle (4.6e-48) 
DNA binding  
(2.3e-3) 

Nuclear part  
(1.5e-28) 

DNA replication  
(1.5e-22) 

Muscle contraction  
(2.0e-23) 

Cytoskeletal protein 
binding (5.9e-5) 

Actin cytoskeleton   
(8.6e-10) 

Insulin signaling pathway  
(4e-2) 

Immune system process (4.7e-19) 
Molecular transducer 
activity (4.4e-4) 

Lysosome  
(1.9e-6) 

Antigen processing and 
presentation (2.7e-2) 

Blood vessel development (1e-9) 
Calcium ion binding  
(ns) 

Plasma membrane  
(8.4e-8) 

Notch signaling pathway  
(ns) 

Response to external stimulus (6.6e-12) 
Cytokine activity 
(7.3e-12) 

Extracellular space  
(5.1e-8) 

Cytokine-cytokine receptor 
interaction (7.3e-12) 

Interphase of  mitotic cell cycle (ns) 
Oxidoreductase 
activity  
(ns) 

Cell fraction  
(ns)  

Cell Cycle  
(ns) 

Table 5.3: Gene ontology descriptors of  the human meta-set modules defined in Figure 5.14.  For each of  the eigengene 
modules for the human cartilage and tendon meta-set the most significant biological process, metabolic function and 
cellular compartment gene ontology annotations are provided.  The Bonferroni-corrected p-value is provided in 
parentheses; ns indicates p > 0.05 and annotations are provided for completeness.  The ‘red’ module is the only human set-
specific module, but shows no enrichment for gene ontology terms.     
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Generating consensus networks between rat and human meta-sets  

In order to consider the preservation of network structure across species, beyond 

functional annotation, a consensus network was prepared.  Across a range of soft-

threshold values β=7 was considered suitable for both data set, Figure 5.11.  Five 

consensus modules were defined, Figure 5.12.   

Significant module overlap exists between rat and human network modules 

The modules defined in single networks for the rat (Figure 5.13) and human 

(Figure 5.14) meta-matrices were assessed for overlap with the new consensus 

network modules.  In general, modules from each species-specific network had a 

corresponding module in the consensus network and had significant enrichment 

for genes found in those modules using a permutation test to define a module 

preservation summary z-score, Table 5.4.  In Figure 5.15 the relative overlap 

between species-specific modules and consensus modules is summarized.   
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Figure 5.12 (lower panel): Hierarchical clustering gene dendrogram and consensus module 
definition: Rat and human meta-set analysis.  Five consensus modules were defined, genes in 
each module are assigned the same colour (colour band below dendrogram).  Grey areas 
represent unassigned genes.    

Figure 5.11 (upper panel): Determination of  soft-thresholding powers for rat and human 
meta-sets– Plots show the summary network indices (y-axes) as a function of  the soft-
thresholding power (x-axis) for 5278 common genes.  An approximate scale-free topology is 
reached at beta=7 for both sets (A).  This was also chosen as it was the lowest power that still 
approximated the criterion for scale-free topology without losing the summary connectivity 
(B-D), which declines rapidly with increasing soft-thresholding power.   

A. B. 

C. D. 
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Figure 5.13:  Rat meta-set modules (top) show multiple module eigengenes in the 
network.  Relative to the rat–human consensus network several modules are not 
represented within the consensus network (below). Alternative alphanumeric annotations 
for rat and consensus modules are shown and these are used in the text.  The total size of  
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Human 
Module 

Rat  
Module 

Consensus 
Module 

Module Preservation Z-score  
(genes in rat modules,  

Bonferroni log10 p-value) 

Consensus Gene Ontology  
BP | MF | CC | KEGG pathway  

(Bonferroni p-value <0.05) 

Yellow (H2) Yellow  
(R10) 

Blue 
(C1) 

29.6 (268, -271.2) Muscle contraction | cytoskeletal protein binding | contractile fibre 
part | cardiac muscle contraction  

Blue  
(H1) 

Turquoise 
(R1) 

Turquoise 
(C2) 

36.7 (331, -422.9) Cell cycle | chromosome | DNA binding | DNA replication  

Green  
(H5) 

Green  
(R6) 

Yellow 
 (C3) 

15.5 (240, -52.8) Response to wounding | cytokine activity | extracellular space 
| NOD-like receptor signaling pathway  

Turquoise 
(H3) 

Brown  
(R8) 

Brown  
(C4) 

24.1 (285,  -163.9) Immune system process | molecular transducer activity | plasma 
membrane | antigen presentation and processing 

Brown (H4) Magenta 
(R9) 

Green  
(C5) 

13.4 (70, -54.6) Signal transduction | plasma membrane | signal transduction activity 
| neuroactive ligand-receptor interaction  

- Green-
yellow 
(R7) 

- 14.1 (44, -64.4) Immune response | Peptidase activity ns | TLR complex |Toll-like 
receptor signalling pathway ns 

- Black 
(R3) 

-  10.8 (172, -25.7) Anatomical structure development | Actin binding | Extracellular 
matrix | NA 

- Purple 
(R11) 

- 7.32 (68, -13.4) Skeletal system development |Extracellular matrix structural 
component  | Extracellular region part | NA 

- Red 
(R4) 

- 5.44 (173, -9.7) Ossificationns | Growth factor activityns| Organellens | Hedgehog 
signaling pathway  

Red 
(H6) 

- - - Interphase of  mitotic cell cyclens | oxidoreductase activity ns    | Cell 
fractionns | Cell Cyclens 

Table 5.4: Module preservation table – Using the defined module overlaps in Figure 5.13 and 5.14 the table indicates the module equivalents 
for both rat and human modules and the consensus modules.  The module preservation score is based upon the rat module eigengenes.  Where 
a module is species-specific this is indicated by the absence of  an equivalent in the other module columns.  The consensus gene ontology is 
provided to demonstrate the module equivalence across meta-sets.  Where an annotation is not significant this is indicated (ns), otherwise 
annotations indicate the most significant terms for the consensus module genes.   
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Figure 5.15: Circos plot to present rat (‘R’ prefix) and human (‘H’ prefix) module overlaps with 
consensus modules (‘C’ prefix). Figure derived from tabular data where rows (rat or human 
modules) and columns (consensus modules) are represented by coloured segments (inner circle) 
the size of  which defines the total number of  genes that overlap with the rat or human modules.  
Ribbons connect rows and columns and are coloured by consensus module to show the overlap 
with each rat or human module.  The outer two rings define the relative contribution of  each cell 
in a table to the row and column totals (stacked bar plots).  The figure summarises the tabular 
data shown in Figures 5.13, 5.14  and Table 5.4.   

The C3 module is the rat (R6, *) and human (H5, •) consensus module (z-score=15.5, log10 p-
value=-52.8) with a strong association with the alginate culture trait (cor=0.44, p=8e-10) and an 
functional annotation relating to cytokine activity.   

*

•
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5.3.5: Differential eigengene network analysis shows greater 
preservation of network structure across species than between rat 
Affymetrix and Illumina data 

Differential eigengene network analysis was used to define the strength of the 

correlation preservation for all eigengene pairs across the two networks, Figure 

5.16.  There was strong evidence for eigengene network preservation across rat 

and human networks (D = 0.9), which was greater than in preliminary analysis 

greater undertaken between the rat Affymetrix and Illumina data sets (4.3.5).     

Two consensus modules (C4 and C5) were highly correlated between the two data 

sources and formed a ‘meta-module’.  Meta-modules can represent biologically 

relevant gene ‘super-sets’.  The meta-module contained 134 genes, which was 

functionally annotated by the terms: ‘immune system process’ (biological process, 

p=2.6e-15), ‘plasma membrane’ (cellular compartment, p=2.3e-13) and ‘signal 

transducer activity’ (metabolic function, p=4.7e-11).   

Species-specific modules were defined by considering the overlap with consensus 

network modules.  Only one module from the human meta-set was not 

represented in the consensus network (H6), but this had no functionally enriched 

annotation, Figure 5.14 and Table 5.4, and demonstrated the most overlap with 

the grey module of unassigned genes.  As such this was not considered to be 

biologically meaningful.    

There were a number of rat meta-matrix specific modules for which there was no 

eigengene representation in the consensus network, Figure 5.13 and Table 5.4. 

As a consensus module can only be created if a module exists in both data sets this 

may represent modules that are specific to the rat meta-matrix rather than species-

specific per se. Figure 5.15 highlights orphan modules.   
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Figure 5.16: Differential eigengene network analysis across rat and human networks 
using Affymetrix array data.  A.-B. Clustering dendrograms of  consensus module 
eigengenes demonstrates the presence of  a meta-module consisting of  the green and 
brown consensus modules (black bar).  C.-F. Heat-map plots of  eigengene 
adjacencies for each of  the eigengene networks (C- Rat; F – Human).  Each of  the 
rows and columns indicate an eigengene labelled by the consensus module colour.  
Red indicates high-adjacency (positive correlation), whilst blue indicates the inverse, as 
depicted by the colour legend.  D. Barplot of  the preservation of  the consensus 
eigengene relationships between the two meta-sets.  Additionally, the overall network 
preservation measure D for this differential analysis is also provided.  E. Adjacency 
heatmaps for the pair-wise preservation networks of  the two meta-sets.  Each 
consensus module is represented by the rows and columns with the level of  red 
saturation indicating adjacency according to the colour legend.   
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5.3.6: Relating phenotypic traits to modules 

The categorical membership of samples to phenotypic traits was assessed for 

correlation with eigengene modules for each species-specific network. In order to 

reduce the number of phenotypic terms, and to explore emerging trends in the 

data, samples descriptors were iteratively merged into larger trait groups consisting 

of broader, more inclusive terms. Binary classification tables were produced to 

categorise the arrays based upon disease status, tissue source, location, or 

experimental condition.   

Rat module-trait relationships 

The strongest module-trait relationship was found for the R4 module, Figure 5.17 

– the combined traits of ‘hypertrophic’ and ‘transitional’ for chondrocytes derived 

from growth-plate studies were positively correlated with this module eigengene 

(cor = 0.71, p = 4e-27), which was enriched for the KEGG canonical ‘Hedgehog-

signalling’ pathway; this module was negatively correlated with the physiological 

trait for ‘epiphyseal’, ‘proliferative’ and ‘resting’ growth plate zones.  The R6 

module eigengene was positively correlated with the term ‘perturbed’, an 

aggregated group consisting of surgical and inflammatory models of osteoarthritis 

in the rat, in addition to three-dimensional culture models (alginate and fibrin) and 

healing ligament samples.  In contrast, the ‘monolayer’ trait was negatively 

correlated with R6 (cor = -0.55, p = 6e-15)  
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Figure 5.17:  Heat-map of  rat module-trait relationships -  Rows represented rat-specific module 
eigengenes, columns are descriptive terms based upon the data sample descriptions.  Samples 
may appear in more than one descriptor.  Cells are coloured on the strength of  the correlation 
between the module and the trait (side bar).  The absolute correlation is provided in the cell with 
the associated p-value in parentheses below.  Strong positive correlations are seen between the R4 
module and chondrocytes in transitional/hypertrophic zones of  growth plates, also between the 
R3 module and cells in monolayer.  Strong negative correlations are seen between the R4 module 
and the remaining growth plates zones, suggesting a biologically relevant difference in the 
expression of  these module genes.  Normal cartilage (‘normal’) is negatively correlated with the 
R3 and R2 modules, found to be associated with monolayer culture.   
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Human module-trait relationships 

Initially twelve phenotypic categories for the human meta-set samples were chosen 

based upon the declared sample phenotypes in the microarray repositories.  On 

this basis, however, there was no phenotypic trait that demonstrated a strong 

positive association with any of the module eigengenes. To aid definition of 

sample traits in the human data a multi-dimensional scaling plot was used to 

define divergent sample clusters (data not shown).  This allowed samples to be 

grouped for module-trait correlation in a manner that was not intuitive from an 

understanding of the published sample phenotypes alone, for example, by disease 

status.  

The strongest module-trait correlation was seen with the human module H5 and 

‘Group 2’ (cor = 0.57, p = 1e-15), Figure 5.18, which consisted of: foetal cartilage, 

chondrocytes in alginate beads treated with conditioned media from fibroblasts 

from patients with rheumatoid arthritis (RA), whole joint tissue at 17 weeks and 

differentiating mesenchymal stem cells at week 1 and 2.  This module was 

negatively correlated with samples assigned to ‘Group 1’, which consisted of 

chondrocyte condensations, and other alginate cultures treated with 

pharmaceutical small-molecules that inhibit inflammatory process, e.g. 

corticosteroids and non-steroidal drugs.  

Across the two species networks the R6 and H5 modules correlated with 

chondrocytes within inflammatory environments, but also differentiating 

chondrocytes and mesenchymal stem cells and chondrocytes in three-dimensional 

alginate constructs.  When these samples (‘perturbed’ (rat) and ‘Group 2’ (human)) 

were associated with the consensus network C3 module there was also a moderate 

correlation, C3 (cor = 0.44, p=8e-10), Figure 5.19, indicating that the consensus 
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module, representative of the R6 and H5 modules, was also positively correlated 

with an inflammatory or differentiating phenotype in chondrocytes.   

Hub genes are conserved between rat and human module 

As a measure of the validity of defining hub genes from the consensus module for 

each gene associated with the R6 or H5 modules, the Gene Significance (GS) for 

the trait ‘perturbed’ was plotted against intra-modular connectivity.  For both 

species-specific networks there was a moderate, but significant, correlation 

between these two measures, range: cor = 0.36 – 0.38, p=2.2e-05 - 9.4e-09, Figure 

5.20, comparable in both the rat and human data.  Using the Module Membership 

measure kME in the rat was plotted against kME in the human.  This presented 

strong evidence that module-hub genes were conserved in the R6 and H5 

modules, cor = 0.49, p = 6.7e-16, Figure 5.21. 
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Figure 5.18:  Heat-map of  human module-trait relationships -  Rows represented meta-set 
module eigengenes, columns are descriptive terms based upon the data sample descriptions.  
Samples may appear in more than one descriptor.  Cells are coloured on the strength of  the 
correlation between the module and the trait (linear heatmap).  The absolute correlation is 
provided in the cell with the associated p-value in parentheses below.  
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Figure 5.19: Module:trait associations - Using the consensus eigengene modules the yellow module (C3), rows, was the only 
module that shared a positive correlation with a trait (columns) across the rat and human meta-sets (defined by coloured vertical 
bar).  Use a conservative method to define a union statistic the lowest correlation, where directionality was shared, leaves the C3 
module with a consensus correlation= 0.44 (p=8e-10) for the trait ‘perturbed’.  This trait consisted of  all the samples from the 
human ‘Group 2’ and the rat ‘perturbed’ definitions.   
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Figure 5.20: Gene significance for the consensus trait ‘perturbed’ shows moderate 
correlation with intra-modular connectivity in the rat (A) and human (B).  Although 
the correlation is not strong there results are comparable across the two networks 
indicating that hub genes are also likely to have strong phenotypic associations   
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Figure 5.22: Consensus module hubs for rat and human R6 and H5 modules 
presented with protein-protein interactions using STRING.  The top 20 genes with 
the highest ranking kME were chosen from each of  R6 and H5.  Legend colours 
define protein-protein interactions.    
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Figure 5.21: Only genes with a positive 
association for module membership (kME 
values ) were plotted, per module, for the rat 
(y-axis) and human (x-axis) networks using the 
rat modules as the reference data set.  This 
provided a visual assessment of  hub gene 
conservation.  The rat R6 module kME is 
correlated with the human kME indicating 
that genes with high module membership in 
the rat module are are likely to have high 
module membership in the human module 
(box).   
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5.3.7: Differences in human and rat network modules define 
osteoarthritis-associated module 

There were several rat modules for which there was no equivalent module in the 

consensus network or any evidence of overlap with consensus modules, 

suggesting that these modules were not present in the human network. The R11 

module was defined by the gene ontology terms ‘skeletal system development’ and 

‘extracellular matrix structural component’ and was moderately associated with 

normal cartilage samples, Figure 5.17.  The R11 module had low module 

preservation statistics when compared to the human network, Table 5.4. Using 

genes within the R11 module with a kME >0.6 (46 genes) this module was 

significantly associated with the terms ‘skeletal system development’ (p = 4.4e-6), 

‘extracellular region part’ (p = 3.9e-4) and ‘osteoarthritis’ (p = 9.4e-3) using the 

Genetic Association database annotations in DAVID. A number of genes with 

robust associations with osteoarthritis were present in this module: Col2a1, Frzb, 

Tnfrsf11b, along with key regulators of chondrogenesis and cartilage turnover, 

Wif1, Dlk1 and Scrg1.   The genes with the highest correlation with the skeletal 

development module were: Mfge8, Chst3, Eps8l2, Mif2 and Col9a2.   

5.3.8: Defining conserved hub genes between rat and human modules 

 
H5 and R6 consensus hub genes are key pro-inflammatory mediators  

In order to assess the conservation of modules the gene Module Membership, as 

described previously, was the qualifier of module hubs. Those genes in paired-

modules that had the highest kME represented hubs in both rat and human 

networks.  The top 20 genes for each module, for which there was a consensus 

match, are presented in Table 5.5.  These module hubs had highly significant gene 

ontology annotations given the small input number and also had known protein-



 380 

protein interactions, Figure 5.22. When the network topography of the R6 and 

H5 modules was considered the most highly inter-connected genes differed 

between the two modules, Figure 5.23, which may reflect biologically relevant 

differences between the two data sets.    
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Figure 5.20: Gene significance for the consensus trait ‘perturbed’ shows moderate 
correlation with intra-modular connectivity in the rat (A) and human (B).  Although 
the correlation is not strong there results are comparable across the two meta-sets.     
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Figure 5.22: Consensus module hubs for rat and human R6 and H5 modules 
presented with protein-protein interactions using STRING.  The top 20 genes with 
the highest ranking kME were chosen from each of  R6 and H5.  Legend colours 
define protein-protein interactions.    
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Figure 5.23: 
Cytoscape generated connectivity 
networks for the R6 and H5 
modules using the genes with the 
highest module membership across 
both species.   

Figure Legend 

Intra-modular connectivity (figure 
legend) of  the consensus hub genes 
differs between the rat and human 
networks.  In the rat module  (top) 
the chemokines Ptges and Cxcl5, and 
Upp1 were the most highly connected 
(figure legend, Node degree).  
 
In the human module the network 
topography was such that IL6, IL11, 
and MMP10 were the most highly 
connected.  CCL20 and CXCL1 were 
moderately connected in both 
networks.    
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Human 
Module 

Rat  
Module 

Consensus 
Module 

Top 20 consensus hubs Gene Ontology  
BP | MF | CC | KEGG pathway  

(Bonferroni p-value <0.05) 

Yellow (H2) Yellow  
(R10) 

Blue 
(C1) 

ACTN2, APOBEC2, COX6A2, CSRP3, HSPB3, 
ITGB1BP2, MYF6, MYH7, MYOZ2, NRAP, 
PITX2, PKIA, PPP1R3A, SLC25A4, SMPX, 
TNNC1, TNNI1, TNNT1, TRDN, KLHL41 

Muscle contraction| Cytoskeletal protein binding | 
Sarcomere | NA 

Blue  
(H1) 

Turquoise 
(R1) 

Turquoise 
(C2) 

MCM2, KIF18B, FOXM1, PBK, BUB1, 
C12ORF48, ASPM, TTK, CCNB1, KIF2C, 
CDK1, GINS1, CDCA8, KIF11, MCM5, 
MELK, KIF23, SPAG5, AURKB, CCNA2 

Nuclear division | ATP binding | Microtubule 
cytoskeleton | Cell cycle  

Green  
(H5) 

Green  
(R6) 

Yellow 
 (C3) 

NFKBIA, CCL20, IL11, PTGES, TFPI2, 
FOSL1, CXCL1, BIRC3, TNIP1, CXCL6, 
DUSP5 , TLR2 , CXCL3 , ADORA2A, 
TNFRSF1B, NFKB2, IL6, CXCL2, GCH1, IL8 

Defense response | Chemokine activity | Extracellular 
region part | Cytokine-cytokine receptor interaction  

Turquoise 
(H3) 

Brown  
(R8) 

Brown  
(C4) 

GPR116, EMCN, GPR4, TIE1, PLVAP, 
PODXL, CD93, APLNR, MYCT1, RASIP1, 
CALCRL, TRPC6, PDE2A, PRKCH, F11R, 
C1ORF115, MMRN2, MFNG, NPY1R, LPAR6 

Immune system process | Receptor activityns | Integral 
to plasma membrane | Leukocyte transendothelial 
migration  

Brown (H4) Magenta 
(R9) 

Green  
(C5) 

IGSF6, IL10RA, PTPRC, LCP1, NCKAP1L, 
HCK, CD53, TBXAS1, VAV1, LAPTM5, CCR1, 
PLEK, CYBB, ITGB2, CSF1R, ITGAM, 
FCER1G, NCF4, LCP2, HLA-DMB 

Signal transductionns| Receptor activity | Plasma 
membrane | Neuroactive ligand-receptor interaction  

Table 5.5:  Top 20 consensus hubs between human and rat modules – consensus modules are shown for reference, Table 5.4.  Gene ontology 
functional annotations based upon only the top 20 hub genes.  The H5 and R6 modules are both associated with the perturbed chondrocyte 
trait.  Gene ontology annotations: BP – biological process; CC: cellular compartment; MF: metabolic function; KEGG: canonical signalling 
pathway.   
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5.3.9: Hierarchical clustering discriminates samples by consensus hub 
genes 

To explore species-associated similarities in the module hubs the gene expression 

profile of the twenty consensus hub genes defined for the H5 and R6 module 

were considered for all rat and human samples. Samples from human data 

contained within the trait collection ‘Group 2’, in general, demonstrated higher 

expression of the twenty consensus hub genes, Figure 5.24. In particular 

chondrocytes in alginate beads, treated with synovial fibroblast conditioned media 

derived from rheumatoid arthritis patients, were the most extreme.   

Similarly, in the rat, hierarchical clustering defined alginate bead cultures and 

‘perturbed’ sample as showing higher expression of the top twenty consensus hub 

genes, Figure 5.25.  Using unsupervised hierarchical clustering alone it was 

suggestive that this gene profile could discriminate alginate three-dimensional 

cultures and the ‘perturbed’ chondrocyte phenotype from other samples.  

Monolayer samples, in the rat study, had the lowest expression of the consensus 

hubs, whilst native chondrocytes and tenocytes had an expression profile that lay 

between these extremes.  Notably, expression profiles from surgical and 

inflammatory models of osteoarthritis in the rat were not as extreme as those from 

three-dimensional cultures.   
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Figure 5.24: Heatmap – Genes expression values for the top 20 consensus hubs defined for the 
H5 and R6 modules are plotted for all 166 human meta-set samples. The samples defined 
within this group are coded as described in the column legend.  High expression is defined by 
red cells and low expression by green cells.  Rows represent genes (row annotation). Hierarchical 
clustering does not completely discriminate between groups, however, the majority of  Group 2 
samples were defined within clades showing higher expression of  these hub genes.     
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Figure 5.25: Heatmap – Genes expression values for the top 20 consensus hubs defined for the 
H5 and R6 modules are plotted for all 170 rat meta-set samples.  Legends as for Figure 5.24.  
Alginate and fibrin three-dimensional cultures represent the most extreme expression profile in 
the dataset and show the highest expression of  the consensus hub genes.   
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5.3.10:  IL-6 containing inflammatory profile is predictive of 
three-dimensional cultures  

A key objective in this analysis was to establish a gene cohort that would 

accurately and consistently predict class membership for three-dimensional culture 

conditions based on a limited gene expression profile.  Feature selection for class 

prediction was based on the C3 module (n = 46 genes) that was shown to have a 

strong association with the gene expression profile of chondrocytes in alginate 

beads.   

Class prediction, by a least-shrunken centroids approach, was considered for 

membership of either model cultures (alginate and fibrin) or any other sample 

(tissue, monolayer).  For rat samples, using a 13 gene signature, low classification 

error rates were achieved using the training data set (0.026 – 0.046 on five 

iterations), Figure 5.26.  The top predictors were Cxcl6, Lif, Ccl20, Il11 and Il6. 

On test data the model gene signature correctly classified all other samples as ‘not 

model’ (posterior probability (PP) = 0.61-0.99), however, for two alginate cultures 

in the test set the posterior probability was less confident (PP=0.42-0.59).   

The same process applied to the human data was able to discriminate alginate bead 

cultures, with or without conditioned media, from other samples (total error rate: 

0.013-0.027 on five iterations), Figure 5.27.  Between 13 and 16 genes achieved 

low error rates, 

 however, 13 genes performed better.  The prediction model differed to the rat 

with TFPI2, IL6 and PTGS2 the best predictors; LIF and NR4A3 were not 

present in the human signature, whereas MMP10 was included.  When considered 

against the network topology, Figure 5.23, the human class predictors were 
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consistent with the most highly connected nodes in the C3 module; this did not 

appear as consistent for the rat data.  On test data the human signature performed 

well with all models correctly identified (PP = 0.56-0.79) and all other samples 

classified as non-model cultures (PP = 0.75-0.99).   

To assess how well each gene signature would perform across species each 

signature was used to define the test data set from the other species. The human 

signature versus the rat test data was poorly predictive with both alginate cultures in 

the test data set misclassified (PP = 0.713).   In contrast, the rat signature versus the 

human test set correctly classified all three alginate samples as model cultures (PP 

= 0.6-0.89). Using the rat gene signature did reduce from 77.3% to 70% the 

proportion of the data variation described in principal component analysis (data 

not shown).   

A fundamental test for any prediction model is how well it deals with unseen data, 

especially where small class sizes can result in all members of class being within 

the training set and so biasing the data. The Illlumina data set (Chapter 2) was not 

used in training and served as an independent data set. Of the thirteen genes 

identified as the rat gene signature interleukin 11 (IL-11) probes could not be 

identified from the Illumina RatRef.v1 probe manifest file or from re-annotation 

of probes by Ensembl (November 2014), therefore, only twelve gene were used to 

discriminate between the Illumina samples. A low classification error rate was 

evident for the binary classification of ‘models’ versus all other sample (0.033), 

indicating that this gene cohort was a sufficient model of three-dimensional 

culture models in two independent data sets, Figure 5.28.   
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At Delta=1.796 (vertical line), 13 genes (B), the smallest number of  
errors are made( 4) 

A. 

B. 

Prediction on genes from consensus module C. 

C: 2x2 confusion matrix to define the number of  samples in each class 
that were correctly identified.  No model cultures were misclassified in 
the training set as ‘other’, whilst five samples known not to be model 
cultures were classified as such.  Overall error rate =  0.033 
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D: Receiver-operator curve: False 
positive rate (x-axis), True positive 
rate (y-axis) – area under the curve 
(AUC) = 1.   

E: Principal component analysis 
(n=170) rat expression data on 13 
genes from B .  First two 
components explain 73.9% of  the 
variation in the data.   

D. E. 

Figure 5.26: Class prediction for alginate cultures from rat gene expression data 
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B: Plot of  shrunken centroids for each class for genes surviving the 
threshold for at least one class.   

A: Plot of  error rate (y-axis) against threshold value, Delta (lower x-
axis).  As the mumber of  remaining genes (upper x-axis) from C3 
module decreases the misclassification error for model cultures is low.  
At Delta=2.394 (vertical line), 13 genes (B), the smallest number of  
errors are made(2) 

A. 

B. 

Prediction on genes from consensus module C. 

C: 2x2 confusion matrix to define the number of  samples in each class 
that were correctly identified.  Three model cultures were misclassified 
as ‘other’ in the training set, whilst one sample known not to be model 
cultures were classified as such. Overall error rate = 0.027   
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D: Receiver-operator curve: False 
positive rate (x-axis), True positive 
rate (y-axis) – area under the curve 
(AUC) = 1.   

E: Principal component analysis 
(n=166) human expression data on 
13 genes from B.  First two 
components explain 77.3% of  the 
variation in the data.   

D. E. 
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Figure 5.27: Class prediction for alginate cultures from human gene expression data 
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Figure 5.28: Principal component analysis – 
Loess normalised expression data from Illumina 
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(excluding IL11) from the rat class predictor 
model.  Data points represent individual arrays 
and are coded as per the figure legend.  Although 
alginate and fibrin cultures do not cluster 
together they are distinct from both native and 
monolayer samples on the basis of  expression of  
twelve genes.  Two samples, marked as triangles, 
do not follow this trend completely and 
represent samples from dermal fibroblasts at 
passage five.   

Overall error rate: 0.033 

Prediction on 12 genes from consensus module 

In the majority of  cases three-dimensional model 
cultures are correctly identified using a 12 gene 
signature.   
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5.4.11:   Alginate culture-associated module is not preserved in human 
liver transcriptome network  

 

Rationale   

To challenge the methodology, and condition or cell specificity of module 

definitions a gene expression meta-matrix from human liver microarray studies 

(n=150) was prepared and the co-expression network compared to those of rat 

and human cartilage/tendon data. These microarrays were included in the meta-

matrix without a priori understanding of liver studies. Specifically only data derived 

from the Affymetrix Human Genome U133 Plus 2 array was chosen.  The same 

gene-set applied to the rat and human comparison (n=5278) was used so that the 

modules would be comparable.  Liver data was selected because there was a 

number of large data sets available using a single platform.   

Rat and human IL-6-containing module is poorly preserved in a liver co-
expression network     

A consensus network was prepared from the human cartilage/tendon and liver 

networks, Figure 5.29. High overall preservation of consensus eigengene 

networks (D = 0.93) between human cartilage/tendon and liver networks was 

demonstrable, Figure 5.30.  High preservation of tissue networks within a species 

is not unexpected.  Specifically the eigengene network contained a meta-module, 

an aggregation of highly correlated eigengenes, which was strongly preserved in 

both the cartilage/tendon and liver networks. Considering whether the human 

cartilage/tendon network structure was well described in the consensus network 

the gene overlap in modules was investigated.  Only four genes from the H5 

module were found any consensus module, other than the unassigned module, 

Figure 5.29.   
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A consensus network was produced using the rat cartilage/tendon and human 

liver networks to considered whether the R6 module would also be excluded from 

a consensus network structure with human liver data.  Analysis of the eigengene 

network structure, found the lowest network eigengene preservation, D=0.86, of 

these analyses (data not shown).  Comparing the rat set-specific network structure 

against the consensus network the R5 had 46 genes that overlapped with a 

consensus module, Figure 5.31, i.e the total number of genes in the R5 module. 

Finally, for both the human and rat cartilage/tendon networks a permutation test 

was prepared to quantify how preserved set-specific modules were in the 

consensus network prepared with the human liver data.  In both cases the R6 and 

H5, IL-6-containing modules, were the lowest scoring modules for preservation in 

each consensus network, Figure 5.29 and 5.31.  This is supportive of the earlier 

findings of the specific association of the R6 and H5 modules with a perturbed or 

differentiating chondrocyte phenotype.    

 



 392 

 

Cartilage|
Tendon 
Module 

Module 
size 

Z-score 
(summary) 

Log10-p  
(Bonferroni 
summary) 

blue 263 30.34 -264.17 
turquoise 306 25.15 -165.94 
yellow 140 13.19 -39.39 
grey 400 9.97 -27.65 
red 80 9.34 -20.82 
brown 152 6.46 -9.65 
green 118 3.17 -2.41 
gold 100 2.85 -1.83 

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Cluster Dendrogram

hclust (*, "average")
d

H
e
ig
h
t

Module Colors

Correspondence of Human Cartilage|Tendon set-specific and Human:Human consensus modules

0

50

100

150

C
on
s 
bl
ue
: 1
78

C
on
s 
tu
rq
uo
is
e:
 2
18

C
on
s 
gr
ee
n:
 4
1

C
on
s 
br
ow
n:
 1
29

C
on
s 
ye
llo
w
: 5
0

C
on
s 
gr
ey
: 4
66
2

Cartilage|Tendon blue: 263

Cartilage|Tendon yellow: 140

Cartilage|Tendon turquoise: 306

Cartilage|Tendon brown: 152

Cartilage|Tendon green: 118

Cartilage|Tendon red: 80

Cartilage|Tendon grey: 4219

146 0 0 3 0 114

1 0 0 1 48 90

1 175 1 0 0 129

0 4 33 0 0 115

0 4 0 0 0 114

0 1 0 24 0 55

30 34 7 101 2 4045

Consensus network modules 

H
u

m
a
n

 c
a
rt

il
a
g

e
|

te
n

d
o

n
 m

o
d

u
le

s 

Figure 5.29:  
Gene dendrogram for human liver 
and cartilage|tendon meta-sets 
with consensus module definition. 
Five modules are defined by the 
consensus network (A).   
 
 
 
 
 
 
 
 
 
The overlap of  genes within 
modules der ived f rom the 
cartilage|tendon meta-set (rows) 
were compared to those from the 
consensus network (columns) (B).  
All human modules overlapped 
with the consensus modules 
except for the human H5 module 
(dashed lines).  Cells contain the 
number of  genes common to both 
modules.  Colour intensity (vertical 
colour chart) represents the 
number of  overlapping genes 
 
      

Consensus network modules 

C.  Module preservation table for 
human cartilage|tendon modules 
compared to the consensus 
network module definitions.  The 
human H5 module (green) has a z-
score comparable to that of  the 
‘gold’ module, which consists of  a 
random allocation of  genes.  Z-
scores lower than 5 are unlikely to 
be preserved.   

A. 

B. 

C. 
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Figure 5.30: Differential eigengene network analysis across human liver and 
cartilage/tendon networks using Affymetrix array data.  A.-B. Clustering 
dendrograms of  consensus module eigengenes demonstrates the presence of  
a meta-module consisting of  the green and turquoise consensus modules.  
C.-F. Heat-map plots of  eigengene adjacencies for each of  the eigengene 
networks (C- Liver; F – Human cartilage/tendon).  Meta-module is defined 
by black bar in each plot..  Each of  the rows and columns indicate an 
eigengene labeled by the consensus module colour.  Red indicates high-
adjacency (positive correlation), whilst blue indicates the inverse, as depicted 
by the colour legend.  D. Barplot of  the preservation of  the consensus 
eigengene relationships between the two meta-sets.  Additionally, the overall 
network preservation measure D for this differential analysis is also provided.  
E. Adjacency heatmaps for the pair-wise preservation networks of  the two 
meta-sets.  Each consensus module is represented by the rows and columns 
with the level of  red saturation indicating adjacency according to the colour 
legend.  High preservation is often evident between tissues from the same 
species.   
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Figure 5.31 : Gene dendrogram 
for human liver and rat cartilage|
tendon networks with consensus 
module definition. Five modules 
are defined by the consensus 
network (A).   
 
 
 
 
 
 
 
 
 
The overlap of  genes within 
modules derived from the rat 
cartilage/tendon network (rows) 
were compared to those from the 
consensus network (columns) (B).   
Only four consensus modules 
(plus the unassigned grey module) 
overlapped strongly with those 
modules specified in the rat 
n e t w o r k ( F i g u r e 5 . 1 3 ) . 
Specifically the green, R5, module 
had 46 genes that overlapped with 
the turquoise module. Matrix cells 
contain the number of  genes 
common to both modules.  
Colour intensity (vertical colour 
chart) represents the degree of  
overlap.    
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C: Module preservation table for 
rat cartilage/tendon modules 
compared to the consensus 
network module definitions.  The 
rat R5 module (green) has a z-
score comparable to that of  the 
‘gold’ module, which consists of  a 
random allocation of  genes.  Z-
scores lower than 5 are unlikely to 
be preserved, i.e. the R5 module 
is not preserved in the human 
liver network.     
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5.4: Discussion  
As demonstrated in Chapter 4 weighted co-expression network analysis may be 

used to compare modular units of transcriptome networks to extract highly co-

expressed aggregates of genes that may confer deeper understanding of the 

regulatory mechanisms underlying a particular phenotype.  Global network 

comparisons may be made between conditions, or, as is the case in this study, 

between species.  This approach, where multiple small gene expression data sets 

are merged and compared between species, has been well-described for the mouse 

and human brain transcriptome (Miller, Horvath et al. 2010).     

The remit of this study was to employ this methodology to define divergent and 

conserved gene co-expression modules in rat and human transcriptomic networks 

derived from cartilage or tendon, and their derivative cells.  At the outset the goals 

of this study w 

ere four-fold: i) to integrate microarray gene expression profiles in cartilage and 

tendon and compare this across species; ii) highlight data gaps to facilitate 

development within the musculoskeletal research community for future targeted 

research projects; iii) define in-vitro culture models relative to normal and disease-

associated gene expression profiles; iv) to consider whether rat studies represent 

adequate proxies for complex musculoskeletal disease in the human.   Each point 

shall be addressed in turn in four sections. 

5.4.1 Implementation of data integration methods for gene 
expression profiles 

In trying to compare the results of differential expression analysis in Chapters 2 

and 3 it became evident that placing the findings in a wider context simply by 
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matching genes or functional annotations across publications would not be 

sufficient.  For example, findings of functional annotations associated with muscle 

in tendon expression profiles could not be validated by analysis of published gene 

lists.  Meta-analysis and data integration methods were explored to identify the 

most effective methods to compare gene expression studies and utilize complete 

sample transcriptome profiles.  

Sequence- and target-matching probes across unique platforms 

As described in the introduction, reports in the literature indicate that sequence-

matching of probes from multiple platforms can result in more robust and 

repeatable estimates of gene expression.  The exercise in this study was driven by 

the poor availability of microarray studies profiling cartilage and tendon in public 

repositories both for rat and humans and the desire to maximize the number of 

studies that could be included.  The low number of probes that could be 

confidently sequence-matched and also represented unique targets would have 

prohibited the application of the co-expression network analysis.  Although the 

final analysis was restricted to platforms from the same manufacturer (Affymetrix) 

several platform generations were used in both the rat and human studies.  

Evidence suggests that reproducibility of analysis and improved correlation 

between samples may be achieved through sequence- and/or target-matching of 

probes between Affymetrix generations (Nimgaonkar, Sanoudou et al. 2003, 

Hwang, Kong et al. 2004, Elo, Lahti et al. 2005). It may be recommended that 

sequence- and target-matching of probe-sets across Affymetrix generations is 

undertaken in further rounds of analysis or where data is added.  
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Cross-platform normalisation 

It is clear from this analysis that noise in the individual studies cannot be resolved 

by global normalisation techniques.  Furthermore, addition of data did not 

facilitate the creation of discrete phenotypic groups, rather adding data 

contributed to noise in the analysis effectively ‘filling in’ the expression space.  Of 

the studies included information on temporal batching of expression profiles 

would have facilitated batch-correction of each data set prior to integration; this is 

not currently a requirement of the MIAME recommendations.  The most popular 

cross-platform normalisation strategies require equivalent covariates to be present 

in samples across multiple platforms, consequently, they cannot be relied upon to 

be able to consistently separate data arising from diverse sources or experiemental 

techniques in a biologically relevant way.  Hence, the simplest z-score 

normalisation strategy was applied as it was the least disruptive to the underlying 

biological information.  

Whether z-score normalisation was the most appropriate is worth discussion.  In a 

study normalizing across five Affymetrix platform generations and 6,926 

experiments Autio, et al (2009) reported that their Array Generation based gene 

Centering (ABC) normalisation technique outperformed standardization, equalized 

quantile, and Weibull distribution based methods (Autio, Kilpinen et al. 2009).  

This methodology is not implemented in R and there is little evidence for its 

widespread use elsewhere; furthermore, z-score standardization retained clustering 

of biological replicates, whilst overcoming within-platform clustering.  The 

decision to employ z-score normalisation was supported by data from Andreas, et 

al (2009), from which the human alginate bead data arose, where the distinct 
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separation of samples treated with different pharmaceutical compounds shown in 

the publication was retained (Andreas, Häupl et al. 2009). This implies that simple 

z-score normalisation across Affymetrix generations did not adversely impact the 

data distribution or sample relationships.   

Limitations in available musculoskeletal gene expression profiles governs study 
inclusion criteria 

Data integration, whether using quantitative clinical data or, in this study, 

microarray expression data, is bounded by the availability of good quality data sets.  

The dearth of microarray studies, relative to other tissue sources, for both cartilage 

and tendon is a primary limitation of this study.  Comparable cross-species analysis 

(Miller, Horvath et al. 2010) using the WGCNA methodology used much larger 

datasets (>1000 microarrays from approximately 20 individual studies) with very 

much higher gene expression correlations across the tissue samples.    

As a consequence of this it may be argued that the inclusion criteria of this study 

was too broad, including as it did both cartilage and tendon, monolayer, novel cell 

culture techniques and interventional studies.  Important associations between co-

expression modules and sample phenotypes may have been obscured by the 

diverse conditions and would have benefitted from a more restricted inclusion 

criteria, for example, only whole cartilage.  In response, the results outlined in 

Chapter 2 and 3 highlighted the importance of tissue comparisons in 

musculoskeletal studies especially where the aim of the investigation is the 

derivation of novel tissue biomarkers or an understanding of common regulatory 

mechanisms.  The number of available datasets is critical to the use of methods 

using co-expression data (Ostlund and Sonnhammer 2014).  As demonstrated in 
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Chapter 3 small datasets do not have a stable network structure and so attempts 

were made to meet the recommended numbers for this type of analysis.  

The diversity of studies, use of alternative breeds and genders, lack of tissue 

controls within many studies and the use of multiple microarray platforms make 

data integration especially problematic, if not incomparable.  Strategies were used 

to best deal with these qualitative issues.  By using only raw expression data it was 

possible to apply pre-processing and normalisation strategies consistently and 

universally.  Stringent quality control of each study data set ensured that outlier 

arrays were removed, despite these having been included in the original 

publications.  Using a co-expression analysis method avoided integration of 

differential expression statistics across studies, which are often not reproducible 

(Ostlund and Sonnhammer 2014), by considering only the global network 

structures. 

In summary, the strategies applied here were driven by the data availability and the 

methodology could be refined where more specific data sets become available.  

Despite these limitations a systematic data integration approach was developed 

with results derived from careful quality control of studies and consistent 

manipulation of raw expression data, approaches that should lend credence to the 

results presented.      

5.4.2 Global comparison of the rat and human transcriptome 
networks should inform future musculoskeletal research 

This analysis has highlighted some of the key limitations to developing good 

models for musculoskeletal disorders and obstacles to the extrapolation of results 

from model species to humans.  Firstly, there is a lack of publically available data, 



 400 

especially for tendon from either species.  Secondly, the quality of these data sets 

was often poor, with retention of outlier arrays, small group sizes and re-use of 

single biological replicates across multiple arrays.  Thirdly, when placed in a wider 

context most gene expression profiles for cartilage and tendon clustered together 

indicative of the noisy nature of the data.  For some studies it was not possible to 

replicate the published clustering of experimental groups even where comparable 

bioinformatic techniques were used.  Together these points suggest that concerted 

community efforts are required to standardize approaches to gene expression 

profiling of cartilage and tendon.  Whilst collecting sufficient disparate data sets to 

perform co-expression analysis may be a promiscuous approach this analysis 

represents a first step in developing a systems understanding of cartilage and 

tendon responses to perturbations and is a novel resource for musculoskeletal 

researchers to exploit for future experimental design.   

 

Validity of cross-species comparisons of expression data 

Low, but positive, correlation between the expression profiles of the rat and 

human cartilage and tendon meta-sets was shown, which still permitted 

comparison of these data sets as defined by documentation associated with this 

method. The cross-species expression correlations defined by Miller, et al (Miller, 

Horvath et al. 2010) between mouse and human brain transcriptomes were highly 

positive, however, in that study all data sets were derived from whole tissue 

transcriptome analysis.  In contrast this study datasets were derived from diverse 

sources and multiple Affymetrix platforms.  Confidence in this analysis of these 

data sets is derived from the very high module preservation across the species 

networks and strong consensus eigengene network structure.  
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 Studies considering the comparative structure of the rodent and human 

transcriptomes have found that tissue-specific transcriptome architecture is highly 

conserved across mouse, rat and human with tissue-specific variance accountable 

for the greatest alterations in expression profile, more so than either perturbations 

or disease (Prasad, Kumar et al. 2013).  It would perhaps be expected that the 

expression correlation would have been higher between the two meta-matrices.  

The compound nature of the meta-matrices, containing two tissues, and multiple 

array platforms may have influenced this correlation.  Furthermore, the inclusion 

of heterogenous cell populations from tissue, as compared to the monoculture in 

vitro, can influence the generation of co-expression modules (Gaiteri, Ding et al. 

2014).  Random resampling of these data sets, however, did not greatly alter the 

intra-species expression correlation, nor the network structures, and so the 

consensus network architecture generated is likely to be robust to the inclusion of 

other data sets.  It is critical that these findings are validated against new gene 

expression profiles.    

‘Normal’ cartilage module is not represented in the human network 

Through differential analysis of the network architecture the presence of a rat-

specific module, associated with unperturbed cartilage samples, was found.  Within 

this module a number of genes with strong osteoarthritis associations, and novel 

candidates, were presented.  This module, annotated with terms relating to 

cartilage and skeletal development, was strongly correlated with the normal 

cartilage phenotype in the rat network, specifically with samples derived from 

controls; it was strongly negatively correlated with the ‘perturbed’ phenotype, i.e. 

those from surgical interventions.   Given the role of these genes in cartilage 

health it is not initially intuitive as to why this module is so poorly preserved in the 
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human network.  The rat meta-matrix contains a number of normal cartilage 

control samples and sham interventions that comprise the ‘normal’ phenotype; 

there is no equivalent for this in the human meta-matrix. This highlights the 

dearth of control data available in human studies against which to compare the 

rodent models.    

This module contained genes recently found to be highly differentially expressed 

between paired normal and OA-affected samples (Ramos, den Hollander et al. 

2014) including Frzb, Tnfrsf11b (which encodes the protein osteoprotegerin) and 

Col9a1.  Furthermore, key modulators of cartilage turnover, Wif1 (Witte, Dokas et 

al. 2009, Stock, Böhm et al. 2013) and regulators of differentiation, Dlk1 (Chen, 

Qanie et al. 2011) and Scrg1 (Ochi, Derfoul et al. 2006).  The most highly 

correlated genes were those with relative sparse associations with cartilage – 

Mfge8/lactadherin has previously been shown to be expressed in cartilage 

(Yoshimi, Miyaishi et al. 2005), but only recently reconsidered.  In ColIX-/- 21 days 

post-natal mouse cartilage increased MFGE8 protein expression was 

demonstrated (Brachvogel, Zaucke et al. 2013).  It is not clear from this analysis 

whether these findings are a consequence of a rat-specific functional module or 

reflect bias in the data as a consequence of few normal cartilage samples in the 

human meta-set.   

Relevance of animal models of musculoskeletal disease 

Ultimately it is expected that rodent model studies are translatable and inform 

human disease pathogenesis in some way.  The gene expression studies presented 

in Chapters 2 and 3 may, as with many other rodent model expression studies, 

have restricted translational potential to human musculoskeletal disorders and 

there is little evidence in the literature to suggest that the validity of assumptions 
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have been investigated.  A literature search of rat studies found that these studies 

are difficult to compare in isolation as they are derived from different disease 

models, tissue sources, in vitro interventions, breeds and sexes, and are often 

underpowered.   

In general the transcriptome networks for both species were comparable, however 

a number of rat modules were not present in the human network.  Furthermore, 

the connectivity of genes within a preserved module was not equivalent across the 

species and the components of the alginate bead culture gene signature also 

differed between rat and human networks.   Human gene expression studies of 

whole cartilage or tendon were scant; only three microarray samples in the human 

data set were defined as coming from ostensibly normal cartilage (Minogue, 

Richardson et al. 2010).  There were no normal tendon gene expression profiles 

available in the public repositories.   

Given the dearth of data, and differences in network structure, no assumptions 

can be made about the relevance of rodent gene expression profiles from 

musculoskeletal disease models for informing the complex human condition.   

5.4.3: Conflicting roles of IL-6 

In this study a co-expression module consisting of multiple chemokines was 

demonstrated, most notably represented by members of the IL-6 family of 

chemokines: Il-6, Il-11 and Lif.  A pleiotrophic battery of functions are associated 

with classical and trans-signalling by IL-6 including the transition from innate to 

acquired immunity in inflammation, and roles in regeneration, metabolic control 

and bone metabolism/osteoclast differentiation (Scheller, Chalaris et al. 2011).  

This indicates both physiological and pathological roles for IL-6 signalling.   This 
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is evident in the samples from the rat and human data sets showing the greatest 

correlation with this module.  In the rat, expression profiles arising from 

osteoarthritis models and three-dimensional culture models were associated with 

the same consensus module as human data arising from foetal cartilage, 

differentiating MSCs and alginate cultures.   

There is conflicting evidence for the association between IL-6 and osteoarthritis.  

IL-6 and its receptor are found in the synovial fluid of symptomatic and 

osteoarthritic joints (Doss, Menard et al. 2007, Tsuchida, Beekhuizen et al. 2012), 

yet both anabolic and catabolic effects of Il-6 have been found.  In the work of de 

Hooge, et al (2005) male Il-6 -/- mice developed evidence of osteoarthritis more 

rapidly that age-matched wild-type controls; this was characterized by complete 

cartilage erosion, subchondral bone sclerosis and ossification of the collateral 

ligaments of the femoro-tibial joint (de Hooge, van de Loo et al. 2005).  This 

conflict is further highlighted by evidence both catabolic effects of Il-6, through 

induction of MMP3 and MMP13 production, and anabolic roles through the 

induction of alpha1-anti-trypsin and TIMP1.  Ryu, et al (2011) demonstrated that 

IL-6 was a potent effector of Epas1/HIF2α-induced cartilage destruction (Ryu, 

Yang et al. 2011).  Hypoxia-inducible factor 2-alpha (HIF2α) has been previously 

demonstrated to be a regulator of cartilage catabolism (Yang, Kim et al. 2010); 

inhibition of IL-6 resulted in reduced MMP3 and MMP13 production in response 

to intra-articular HIF2α adenovirus.  Referring to the discussion in Chapter 3, 

Litherland, et al (2008) reported cartilage collagenolysis dependent on PI-

3Ksignalling by the activation of Akt by IL-6 stimulation (Litherland, Dixon et al. 

2008).  These findings are relevant with respect to the evidence presented in this 

thesis of high Il-6, Mmp13 and Hif1α expression in rat chondrocytes in alginate 
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beads (3.3.3) and the associated prediction of active PI-3K signalling by pathway 

topology analysis (3.3.7).   

These findings in rat chondrocytes would suggest a catabolic process in action in 

alginate cultures.  However, in a study comparing IL-6 production by 

chondrocytes from symptomatic cartilage defects, osteoarthritic or normal 

cartilage Tsuchida, et al (2012) found that chondrocytes retained in a regeneration 

culture system of collagen type II-coated filters produced higher levels of IL-6, by 

ELISA, than the synovial fluid from each associated donor category (Tsuchida, 

Beekhuizen et al. 2012).  Levels of IL-6 were highest in chondrocytes from OA 

cartilage.  Although antibody-mediated inhibition of IL-6 in regeneration cultures 

had no effect on cartilage matrix production the addition of recombinant IL-6 and 

IL-6R resulted in significant increases in GAG production in chondrocytes 

derived from healthy donors and reduced production, but not content, of GAGs 

in OA-derived chondrocytes. Other co-culture studies have indicated a negative 

modulation of matrix by IL-6 (Leyh, Seitz et al. 2014a, Leyh, Seitz et al. 2014b).      

Studies are also conflicted with regard to genetic susceptibility associated with IL-6 

polymorphisms. Susceptibility to hip and knee OA associated with IL-6 promoter 

polymorphisms could not be demonstrated (Valdes, Arden et al. 2010), however, a 

more recent study observed a high frequency of IL-6 polymorphisms associated 

with knee and hand OA, but not hip OA (Cai, Sun et al. 2014).   

5.4.4: Alginate culture associated with inflammatory profiles  

This thesis has not sought to develop novel organotypic culture systems rather 

interrogate the gene expression profile of common in vitro models and question the 

rational for their use with the view that this will inform future developments.  The 
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analysis here confirmed the findings of enhanced expression of genes associated 

with inflammatory profiles in these models.  This was preserved in studies using 

human chondrocytes in a comparable three-dimensional culture model.  

Furthermore, when restricted to twenty genes these models had an expression 

profile more extreme than diseased cartilage or tendon in the human study.  To 

interpret these findings alternative solutions should be considered.      

Alginate, or alginic acid, is a seaweed-derived linear polysaccharide consisting of 

alpha-L-guluronic acid (G) and beta-D-mannuronic acid (M). It is considered to 

contain impurities including lipopolysaccharide (LPS, endotoxin). Alginate alone 

has also been shown to induce the production of pro-inflammatory cytokines, 

including IL-6, in macrophages through NF-κB activation (Yang and Jones 2009).  

Basal expression and secretion of IL-6 has been found in OA chondrocytes 

retained in alginate beads, as a function of culture duration, with an increase in 

expression following IL-1β application and variable reductions in expression in 

response to the application of common NSAIDs (Sanchez, Mateus et al. 2002).   

Given the critical role of pro-inflammatory mediators in our understanding of 

cartilage and tendon pathology stringency in cell culture preparation cannot be 

overlooked.  Screening for endogenous endotoxin is not routine outside of GMP 

labs and those familiar with biomaterial research. Also, as the role of IL-6 is 

conflicted this needs to be separated from any inherent pro-inflammatory and 

endotoxin sequestration effects of biomaterials (Breger, Lyle et al. 2009). 

Anecdotal reports of reduced viability of chondrocytes in alginate beads and the 

evidence of this in Chapter 2 indicate another argument for investigating pro-

inflammatory effects more closely (2.3.8).  Further work should include batch-
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testing of alginate for endotoxin prior to use, in addition to a time-course study of 

IL-6 production in both alginate and fibrin three-dimensional culture models.         

The findings from the rat Affymetrix and Illumina class prediction were most 

comparable with a study by Andreas, et al (2009) (Andreas, Häupl et al. 2009).  It 

was found that a subset of samples consisting of chondrocytes suspended in 

alginate beads and exposed to RA serum had a profile very like that of the rat 

alginate culture studies.  In the study by Andreas, et al, healthy adult chondrocytes, 

initially expanded in monolayer, were encapsulated in alginate beads in 

methodology comparable to the study presented here.  Alginate beads were 

exposed to conditioned media from cultured synovial fibroblasts from RA patients 

or normal controls, and further small molecule interventions were also performed.  

There is remarkable overlap between the differential gene expression profile of 

chondrocytes in RA fibroblast conditioned media in this publication and the class 

prediction gene cohort presented in this study. Additionally, the clustering of 

samples, including therapeutic interventions, is comparable to the original 

publication supporting the assertion made in this study that biologically relevant 

data distribution is preserved after z-score normalisation.   

5.4.5: Biological relevance of study 

Whilst functional and histo-morphological equivalence with native tissue may 

represent the ultimate goal for biological tissue engineering many studies often rely 

on a limited panel of established genes to define success.  This approach can 

neglect the complex gene interaction mechanisms diminishing the significance of 

the analysis (Haynes, Higdon et al. 2013). Whilst large transcriptome surveys and 

co-expression analysis are not practical in most cases the profiling of a validated 

gene signature for class prediction could be a systematic screening procedure to 
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demonstrate progression of a novel organo-typic culture method.  In other terms, 

the expression space within which these culture systems reside needs to be 

delimited.  Using a linear analogy differentiated tissue and dedifferentiated 

monolayer cells represented either extreme of a gene expression spectrum in this 

study; defining where along that line a novel culture system ‘sits’ by way of 

screening of modules of highly co-expressed genes may allow higher throughput 

testing of novel systems and provide rational regulatory targets for perturbation or 

therapeutic interventions.  

In this chapter a cohort of genes is defined that may represent a class prediction 

signature capable of discriminating between standard three-dimensional culture 

systems and monolayer and native tissue sample in the rat and human.  This 

signature contains a number of IL-6 family members and other chemokines with 

known musculoskeletal disease and development associations.  Reluctance to 

make more confident statements about the significance of this finding stems from 

the small number of samples relative to the whole study and, therefore, statistical 

concerns regarding bias.  This signature would require validation, either by qPCR 

or microarray, using the same three conditions across multiple culture time-points.  

Concomitant protein validation would also be required.    

The tissue-specific architecture of transcriptomes is highly conserved across 

mouse, rat and human studies (Prasad, Kumar et al. 2013), however, this was not 

unambiguously demonstrated for cartilage and tendon alone in this study.  The 

authors of this study noted that comparative studies of mouse, rat, and human 

transcriptomes in response to perturbations, were still missing.  This type of 

investigation would require the use of comparable tissue sources and identical 

experimental conditions.  The work presented in this chapter, to the author’s 
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knowledge, is the first to consider transcriptomic responses to perturbations 

arising both in cartilage and tendon.     

This study makes reference to the small number of relevant cartilage and tendon 

studies made available to researchers both for rats and humans.  Only through the 

permissive inclusion policy of this study was it possible to gather a sufficient 

number of data sets required for network co-expression analysis.  Clearly the use 

of matched tissue and experimental conditions for rat and human would be ideal, 

but this type of data is not currently available in public repositories. 

Little is understood of the comparability of rat gene regulatory networks relative to 

humans in complex disease models.  It is imperative, therefore, that there is 

community consensus on the nature of animal models for osteoarthritis or 

tendinopathy rather than small ‘first-in-field’ studies that are difficult to translate 

into complex human musculoskeletal disease.   

 



 410 

References 
Allen, J., S. Wang, M. Chen, L. Girard, J. Minna, Y. Xie and G. Xiao (2012). 

"Probe mapping across multiple microarray platforms." Briefings in 

Bioinformatics 13(5): 547-554. 

Andreas, K., T. Häupl, C. Lübke, J. Ringe, L. Morawietz, A. Wachtel, M. Sittinger 

and C. Kaps (2009). "Antirheumatic drug response signatures in human 

chondrocytes: potential molecular targets to stimulate cartilage regeneration." 

Arthritis Research & Therapy 11(1): R15. 

Andreas, K., C. Lübke, T. Häupl, T. Dehne, L. Morawietz, J. Ringe, C. Kaps and 

M. Sittinger (2008). "Key regulatory molecules of cartilage destruction in 

rheumatoid arthritis: an in vitro study." Arthritis Research & Therapy 10(1): R9. 

Appleton, C. T., V. Pitelka, J. Henry and F. Beier (2007). "Global analyses of gene 

expression in early experimental osteoarthritis." Arthritis and Rheumatism 56(6): 

1854-1868. 

Autio, R., S. Kilpinen, M. Saarela, O. Kallioniemi, S. Hautaniemi and J. Astola 

(2009). "Comparison of Affymetrix data normalization methods using 6,926 

experiments across five array generations." BMC Bioinformatics 10 (Suppl 1): S24. 

Barrett, T., D. Troup, S. Wilhite, P. Ledoux, C. Evangelista, I. Kim, M. 

Tomashevsky, K. Marshall, K. Phillippy, P. Sherman, R. Muertter, M. Holko, O. 

Ayanbule, A. Yefanov and A. Soboleva (2011). "NCBI GEO: archive for 

functional genomics data sets--10 years on." Nucleic Acids Research 39(Database 

issue): D1005-D1010. 

Benito, M., J. Parker, Q. Du, J. Wu, D. Xiang, C. Perou and J. S. Marron (2004). 

"Adjustment of systematic microarray data biases." Bioinformatics (Oxford, 

England) 20(1): 105-114. 

Brachvogel, B., F. Zaucke, K. Dave, E. Norris, J. Stermann, M. Dayakli, M. Koch, 

J. Gorman, J. Bateman and R. Wilson (2013). "Comparative Proteomic Analysis of 

Normal and Collagen IX Null Mouse Cartilage Reveals Altered Extracellular 



 411 

Matrix Composition and Novel Components of the Collagen IX Interactome." 

Journal of Biological Chemistry 288(19): 13481-13492. 

Brazma, A., P. Hingamp, J. Quackenbush, G. Sherlock, P. Spellman, C. Stoeckert, 

J. Aach, W. Ansorge, C. A. Ball, H. C. Causton, T. Gaasterland, P. Glenisson, F. C. 

Holstege, I. F. Kim, V. Markowitz, J. C. Matese, H. Parkinson, A. Robinson, U. 

Sarkans, S. Schulze-Kremer, J. Stewart, R. Taylor, J. Vilo and M. Vingron (2001). 

"Minimum information about a microarray experiment (MIAME)-toward 

standards for microarray data." Nature Genetics 29(4): 365-371. 

Breger, J., D. Lyle, J. Shallcross, J. Langone and N. S. Wang (2009). "Defining 

critical inflammatory parameters for endotoxin impurity in manufactured alginate 

microcapsules." Journal of Biomedical Materials Research. Part B: Applied 

Biomaterials 91(2): 755-765. 

Cai, H., H.-J. Sun, Y.-H. Wang and Z. Zhang (2014). "Relationships of common 

polymorphisms in IL-6, IL-1A, and IL-1B genes with susceptibility to 

osteoarthritis: a meta-analysis." Clinical Rheumatology(Epub ahead of publication 

). 

Carter, S., A. Eklund, B. Mecham, I. Kohane and Z. Szallasi (2005). "Redefinition 

of Affymetrix probe sets by sequence overlap with cDNA microarray probes 

reduces cross-platform inconsistencies in cancer-associated gene expression 

measurements." BMC Bioinformatics 6(1): 107. 

Chamberlain, C. S., S. H. Brounts, D. G. Sterken, K. I. Rolnick, G. S. Baer and R. 

Vanderby (2011). "Gene profiling of the rat medial collateral ligament during early 

healing using microarray analysis." Journal of Applied Physiology 111(2): 552-565. 

Chau, M., P. Forcinito, A. C. Andrade, A. Hegde, S. Ahn, J. C. Lui, J. Baron and 

O. Nilsson (2011). "Organization of the Indian hedgehog – parathyroid hormone-

related protein system in the postnatal growth plate." Journal of Molecular 

Endocrinology 47(1): 99-107. 

Cheadle, C., Y. Cho-Chung, K. Becker and M. Vawter (2003a). "Application of z-

score transformation to Affymetrix data." Applied Bioinformatics 2(4): 209-217. 



 412 

Cheadle, C., M. Vawter, W. Freed and K. Becker (2003b). "Analysis of microarray 

data using Z score transformation." The Journal of Molecular Diagnostics 5(2): 

73-81. 

Chen, C., K. Grennan, J. Badner, D. Zhang, E. Gershon, L. Jin and C. Liu (2011). 

"Removing batch effects in analysis of expression microarray data: an evaluation 

of six batch adjustment methods." PloS ONE 6(2): e17238. 

Chen, L., D. Qanie, A. Jafari, H. Taipaleenmaki, C. Jensen, A.-M. Säämänen, M. L. 

N. Sanz, J. Laborda, B. Abdallah and M. Kassem (2011). "Delta-like 1/fetal 

antigen-1 (Dlk1/FA1) is a novel regulator of chondrogenic cell differentiation via 

inhibition of the Akt kinase-dependent pathway." The Journal of Biological 

Chemistry 286(37): 32140-32149. 

Consortium, R. G. S. P. (2004). "Genome sequence of the Brown Norway rat 

yields insights into mammalian evolution." Nature 428(6982): 493-521. 

de Hooge, A., F. van de Loo, M. Bennink, O. Arntz, P. de Hooge and W. van den 

Berg (2005). "Male IL-6 gene knock out mice developed more advanced 

osteoarthritis upon aging." Osteoarthritis and Cartilage 13(1): 66-73. 

Dembélé, D. (2013). "A Flexible Microarray Data Simulation Model." Microarrays 

2(2): 115-130. 

Doss, F., J. Menard, M. Hauschild, H. J. Kreutzer, T. Mittlmeier, M. Müller-

Steinhardt and B. Müller (2007). "Elevated IL-6 levels in the synovial fluid of 

osteoarthritis patients stem from plasma cells." Scandinavian Journal of 

Rheumatology 36(2): 136-139. 

Durinck, S., Y. Moreau, A. Kasprzyk, S. Davis, B. De Moor, A. Brazma and W. 

Huber (2005). "BioMart and Bioconductor: a powerful link between biological 

databases and microarray data analysis." Bioinformatics (Oxford, England) 21(16): 

3439-3440. 

Durinck, S., P. Spellman, E. Birney and W. Huber (2009). "Mapping identifiers for 

the integration of genomic datasets with the R/Bioconductor package biomaRt." 

Nature Protocols 4(8): 1184-1191. 



 413 

Eliasson, P., T. Andersson and P. Aspenberg (2012). "Influence of a single loading 

episode on gene expression in healing rat Achilles tendons." Journal of Applied 

Physiology 112(2): 279-288. 

Eliasson, P., T. Andersson, M. Hammerman and P. Aspenberg (2013). "Primary 

gene response to mechanical loading in healing rat Achilles tendons." Journal of 

Applied Physiology 114(11): 1519-1526. 

Elo, L., L. Lahti, H. Skottman, M. Kyläniemi, R. Lahesmaa and T. Aittokallio 

(2005). "Integrating probe-level expression changes across generations of 

Affymetrix arrays." Nucleic Acids Research 33(22): e193-e193. 

Evangelou, E. and J. P. A. Ioannidis (2013). "Meta-analysis methods for genome-

wide association studies and beyond." Nature Reviews: Genetics 14(6): 379-389. 

Fernández-Tajes, J., A. Soto-Hermida, M. E. Vázquez-Mosquera, E. Cortés-

Pereira, A. Mosquera, M. Fernández-Moreno, N. Oreiro, C. Fernández-López, J. 

L. Fernández, I. Rego-Pérez and F. J. Blanco (2014). "Genome-wide DNA 

methylation analysis of articular chondrocytes reveals a cluster of osteoarthritic 

patients." Annals of the Rheumatic Diseases 73(4): 668-677. 

Funari, V., A. Day, D. Krakow, Z. Cohn, Z. Chen, S. Nelson and D. Cohn (2007). 

"Cartilage-selective genes identified in genome-scale analysis of non-cartilage and 

cartilage gene expression." BMC Genomics 8: 165. 

Gaiteri, C., Y. Ding, B. French, G. C. Tseng and E. Sibille (2014). "Beyond 

modules and hubs: the potential of gene coexpression networks for investigating 

molecular mechanisms of complex brain disorders." Genes, Brain and Behavior 

13(1): 13-24. 

Goldring, M. (2012). "Do mouse models reflect the diversity of osteoarthritis in 

humans?" Arthritis and rheumatism 64(10): 3072-3075. 

Gouze, J. N., E. Gouze, M. P. Popp, M. L. Bush, E. A. Dacanay, J. D. Kay, P. P. 

Levings, K. R. Patel, J. P. Saran, R. S. Watson and S. C. Ghivizzani (2006). 

"Exogenous glucosamine globally protects chondrocytes from the arthritogenic 

effects of IL-1beta." Arthritis Research & Therapy 8(6): R173. 



 414 

Grogan, S., S. Duffy, C. Pauli, J. Koziol, A. Su, D. D'Lima and M. Lotz (2013). 

"Zone-specific gene expression patterns in articular cartilage." Arthritis and 

Rheumatism 65(2): 418-428. 

Hawrylycz, M., E. Lein, A. Guillozet-Bongaarts, E. Shen, L. Ng, J. Miller, L. van 

de Lagemaat, K. Smith, A. Ebbert, Z. Riley, C. Abajian, C. Beckmann, A. Bernard, 

D. Bertagnolli, A. Boe, P. Cartagena, M. Chakravarty, M. Chapin, J. Chong, R. 

Dalley, B. Daly, C. Dang, S. Datta, N. Dee, T. Dolbeare, V. Faber, D. Feng, D. 

Fowler, J. Goldy, B. Gregor, Z. Haradon, D. Haynor, J. Hohmann, S. Horvath, R. 

Howard, A. Jeromin, J. Jochim, M. Kinnunen, C. Lau, E. Lazarz, C. Lee, T. 

Lemon, L. Li, Y. Li, J. Morris, C. Overly, P. Parker, S. Parry, M. Reding, J. Royall, 

J. Schulkin, P. Sequeira, C. Slaughterbeck, S. Smith, A. Sodt, S. Sunkin, B. 

Swanson, M. Vawter, D. Williams, P. Wohnoutka, R. Zielke, D. Geschwind, P. 

Hof, S. Smith, C. Koch, S. Grant and A. Jones (2012). "An anatomically 

comprehensive atlas of the adult human brain transcriptome." Nature 489(7416): 

391-399. 

Haynes, W., R. Higdon, L. Stanberry, D. Collins and E. Kolker (2013). 

"Differential Expression Analysis for Pathways." PLoS Comput Biol 9(3): 

e1002967. 

Hwang, K., S. Kong, S. Greenberg and P. Park (2004). "Combining gene 

expression data from different generations of oligonucleotide arrays." BMC 

Bioinformatics 5(1): 159. 

Irizarry, R., B. Hobbs, F. Collin, Y. Beazer�Barclay, K. Antonellis, U. Scherf and 

T. Speed (2003). "Exploration, normalization, and summaries of high density 

oligonucleotide array probe level data." Biostatistics 4(2): 249-264. 

Jelinsky, S., S. Rodeo, J. Li, L. Gulotta, J. Archambault and H. Seeherman (2011). 

"Regulation of gene expression in human tendinopathy." BMC Musculoskeletal 

Disorders 12: 86. 

Johnson, E., C. Li and A. Rabinovic (2007). "Adjusting batch effects in microarray 

expression data using empirical Bayes methods." Biostatistics 8(1): 118-127. 



 415 

Kasprzyk, A. (2011). "BioMart: driving a paradigm change in biological data 

management." Database 2011(0): bar049. 

Kim, J., K. Patel, H. Jung, W. Kuo and L. Machado (2011). "AnyExpress: 

Integrated toolkit for analysis of cross-platform gene expression data using a fast 

interval matching algorithm." BMC Bioinformatics 12(1): 75. 

Klinger, P., C. Beyer, A. Ekici, H.-D. Carl, G. Schett, B. Swoboda, F. Hennig and 

K. Gelse (2013). "The Transient Chondrocyte Phenotype in Human Osteophytic 

Cartilage: A Role of Pigment Epithelium-Derived Factor?" Cartilage 4(3): 249-255. 

Kuo, W., F. Liu, J. Trimarchi, C. Punzo, M. Lombardi, J. Sarang, M. Whipple, M. 

Maysuria, K. Serikawa, S. Lee, D. McCrann, J. Kang, J. Shearstone, J. Burke, D. 

Park, X. Wang, T. Rector, P. Ricciardi-Castagnoli, S. Perrin, S. Choi, R. 

Bumgarner, J. Kim, G. Short, M. Freeman, B. Seed, R. Jensen, G. Church, E. 

Hovig, C. Cepko, P. Park, L. Ohno-Machado and T.-K. Jenssen (2006). "A 

sequence-oriented comparison of gene expression measurements across different 

hybridization-based technologies." Nature Biotechnology 24(7): 832-840. 

Langmead, B., C. Trapnell, M. Pop and S. Salzberg (2009). "Ultrafast and memory-

efficient alignment of short DNA sequences to the human genome." Genome 

Biology 10(3): R25-10. 

Larsson, O. and R. Sandberg (2006). "Lack of correct data format and 

comparability limits future integrative microarray research." Nature Biotechnology 

24(11): 1322-1323. 

Lawrence, M., W. Huber, H. Pagès, P. Aboyoun, M. Carlson, R. Gentleman, M. 

Morgan and V. Carey (2013). "Software for Computing and Annotating Genomic 

Ranges." PLoS Comput Biol 9(8): e1003118. 

Leek, J., R. Scharpf, H. c. Bravo, D. Simcha, B. Langmead, E. Johnson, D. 

Geman, K. Baggerly and R. Irizarry (2010). "Tackling the widespread and critical 

impact of batch effects in high-throughput data." Nature Reviews: Genetics 

11(10): 733-739. 

Leyh, M., A. Seitz, L. Dürselen, J. Schaumburger, A. Ignatius, J. Grifka and S. 

Grässel (2014a). "Subchondral bone influences chondrogenic differentiation and 



 416 

collagen production of human bone marrow-derived mesenchymal stem cells and 

articular chondrocytes." Arthritis Research & Therapy 16(5): 453. 

Leyh, M., A. Seitz, L. Dürselen, H.-R. Springorum, P. Angele, A. Ignatius, J. 

Grifka and S. Grässel (2014b). "Osteoarthritic cartilage explants affect extracellular 

matrix production and composition in cocultured bone marrow-derived 

mesenchymal stem cells and articular chondrocytes." Stem Cell Research & 

Therapy 5(3): 77. 

Litherland, G., C. Dixon, R. Lakey, T. Robson, D. Jones, D. Young, T. Cawston 

and A. Rowan (2008). "Synergistic Collagenase Expression and Cartilage 

Collagenolysis Are Phosphatidylinositol 3-Kinase/Akt Signaling-dependent." 

Journal of Biological Chemistry 283(21): 14221-14229. 

Mecham, B., G. Klus, J. Strovel, M. Augustus, D. Byrne, P. Bozso, D. Wetmore, 

T. Mariani, I. Kohane and Z. Szallasi (2004). "Sequence-matched probes produce 

increased cross-platform consistency and more reproducible biological results in 

microarray-based gene expression measurements." Nucleic Acids Research 32(9): 

e74-e74. 

Miller, J., C. Cai, P. Langfelder, D. Geschwind, S. Kurian, D. Salomon and S. 

Horvath (2011). "Strategies for aggregating gene expression data: The 

collapseRows R function." BMC Bioinformatics 12(1): 322. 

Miller, J., S. Horvath and D. Geschwind (2010). "Divergence of human and mouse 

brain transcriptome highlights Alzheimer disease pathways." Proceedings of the 

National Academy of Sciences of the United States of America 107(28): 12698-

12703. 

Minogue, B., S. Richardson, L. Zeef, A. Freemont and J. Hoyland (2010). 

"Characterization of the human nucleus pulposus cell phenotype and evaluation of 

novel marker gene expression to define adult stem cell differentiation." Arthritis 

and Rheumatism 62(12): 3695-3705. 

Moreau, Y., S. Aerts, B. De Moor, B. De Strooper and M. Dabrowski (2003). 

"Comparison and meta-analysis of microarray data: from the bench to the 

computer desk." Trends in Genetics : TIG 19(10): 570-577. 



 417 

Nam, J., P. Perera, J. Liu, B. Rath, J. Deschner, R. Gassner, T. A. Butterfield and 

S. Agarwal (2011). "Sequential Alterations in Catabolic and Anabolic Gene 

Expression Parallel Pathological Changes during Progression of Monoiodoacetate-

Induced Arthritis." PLoS ONE 6(9): e24320. 

Nimgaonkar, A., D. Sanoudou, A. Butte, J. Haslett, L. Kunkel, A. Beggs and I. 

Kohane (2003). "Reproducibility of gene expression across generations of 

Affymetrix microarrays." BMC Bioinformatics 4(1): 27. 

Ochi, K., A. Derfoul and R. Tuan (2006). "A predominantly articular cartilage-

associated gene, SCRG1, is induced by glucocorticoid and stimulates 

chondrogenesis in vitro." Osteoarthritis and Cartilage 14(1): 30-38. 

Ostlund, G. and E. Sonnhammer (2014). "Avoiding pitfalls in gene (co)expression 

meta-analysis." Genomics 103(1): 21-30. 

Prasad, A., S. Kumar, C. Dessimoz, S. Bleuler, O. Laule, T. Hruz, W. Gruissem 

and P. Zimmermann (2013). "Global regulatory architecture of human, mouse and 

rat tissue transcriptomes." BMC Genomics 14(1): 716. 

Pritzker, K. P. (1994). "Animal models for osteoarthritis: processes, problems and 

prospects." Annals of the Rheumatic Diseases 53(6): 406-420. 

Ramasamy, A., A. Mondry, C. Holmes and D. Altman (2008). "Key Issues in 

Conducting a Meta-Analysis of Gene Expression Microarray Datasets." PLoS Med 

5(9): e184. 

Ramos, Y., W. den Hollander, J. Bovée, N. Bomer, R. van der Breggen, N. 

Lakenberg, C. Keurentjes, J. Goeman, E. Slagboom, R. Nelissen, S. Bos and I. 

Meulenbelt (2014). "Genes Involved in the Osteoarthritis Process Identified 

through Genome Wide Expression Analysis in Articular Cartilage; the RAAK 

Study." PloS ONE 9(7). 

Reynard, L. and J. Loughlin (2013). "The genetics and functional analysis of 

primary osteoarthritis susceptibility." Expert Reviews in Molecular Medicine 15: 

e2. 



 418 

Rockel, J., S. Bernier and A. Leask (2009). "Egr-1 inhibits the expression of 

extracellular matrix genes in chondrocytes by TNFalpha-induced MEK/ERK 

signalling." Arthritis Research & Therapy 11(1): R8. 

Rodriguez-Fontenla, C., M. Calaza, E. Evangelou, A. Valdes, N. Arden, F. Blanco, 

A. Carr, K. Chapman, P. Deloukas, M. Doherty, T. Esko, C. Garcés Aletá, J. 

Gomez-Reino Carnota, H. Helgadottir, A. Hofman, I. Jonsdottir, H. Kerkhof, M. 

Kloppenburg, A. McCaskie, E. Ntzani, W. Ollier, N. Oreiro, K. Panoutsopoulou, 

S. Ralston, Y. Ramos, J. Riancho, F. Rivadeneira, E. Slagboom, U. Styrkarsdottir, 

U. Thorsteinsdottir, G. Thorleifsson, A. Tsezou, A. Uitterlinden, G. Wallis, M. 

Wilkinson, G. Zhai, Y. Zhu, D. Felson, J. Ioannidis, J. Loughlin, A. Metspalu, I. 

Meulenbelt, K. Stefansson, J. van Meurs, E. Zeggini, T. Spector and A. Gonzalez 

(2014). "Assessment of osteoarthritis candidate genes in a meta-analysis of nine 

genome-wide association studies." Arthritis & Rheumatology 66(4): 940-949. 

Rudy, J. and F. Valafar (2011). "Empirical comparison of cross-platform 

normalization methods for gene expression data." BMC Bioinformatics 12(1): 467. 

Rung, J. and A. Brazma (2012). "Reuse of public genome-wide gene expression 

data." Nature Reviews: Genetics 14(2): 89-99. 

Russo, M. (2007). "How to Review a Meta-analysis." Gastroenterology & 

Hepatology 3(8): 637-642. 

Rustici, G., N. Kolesnikov, M. Brandizi, T. Burdett, M. Dylag, I. Emam, A. Farne, 

E. Hastings, J. Ison, M. Keays, N. Kurbatova, J. Malone, R. Mani, A. Mupo, R. 

Pedro Pereira, E. Pilicheva, J. Rung, A. Sharma, A. Tang, T. Ternent, A. 

Tikhonov, D. Welter, E. Williams, A. Brazma, H. Parkinson and U. Sarkans 

(2013). "ArrayExpress update--trends in database growth and links to data analysis 

tools." Nucleic Acids Research 41(Database issue): D987-D990. 

Ryu, J.-H., S. Yang, Y. Shin, J. Rhee, C.-H. Chun and J.-S. Chun (2011). 

"Interleukin-6 plays an essential role in hypoxia-inducible factor 2�-induced 

experimental osteoarthritic cartilage destruction in mice." Arthritis and 

Rheumatism 63(9): 2732-2743. 



 419 

Sanchez, C., M. Mateus, M.-P. Defresne, J.-M. Crielaard, J.-Y. Reginster and Y. 

Henrotin (2002). "Metabolism of human articular chondrocytes cultured in 

alginate beads. Longterm effects of interleukin 1beta and nonsteroidal 

antiinflammatory drugs." The Journal of Rheumatology 29(4): 772-782. 

Sarmah, C. K. and S. Samarasinghe (2010). "Microarray data integration: 

frameworks and a list of underlying issues." Current Bioinformatics 5(4): 280-289. 

Scheller, J., A. Chalaris, D. Schmidt-Arras and S. Rose-John (2011). "The pro- and 

anti-inflammatory properties of the cytokine interleukin-6." Biochimica et 

Biophysica Acta 1813(5): 878-888. 

Schibler, L., L. Gibbs, C. Benoist-Lasselin, C. Decraene, J. Martinovic, P. Loget, 

A.-L. Delezoide, M. Gonzales, A. Munnich, J.-P. Jais and L. Legeai-Mallet (2009). 

"New insight on FGFR3-related chondrodysplasias molecular physiopathology 

revealed by human chondrocyte gene expression profiling." PLoS ONE 4(10). 

Shabalin, A., H. Tjelmeland, C. Fan, C. Perou and A. Nobel (2008). "Merging two 

gene-expression studies via cross-platform normalization." Bioinformatics 

(Oxford, England) 24(9): 1154-1160. 

Sims, A., G. Smethurst, Y. Hey, M. Okoniewski, S. Pepper, A. Howell, C. Miller 

and R. Clarke (2008). "The removal of multiplicative, systematic bias allows 

integration of breast cancer gene expression datasets - improving meta-analysis 

and prediction of prognosis." BMC Medical Genomics 1(1): 42. 

Sîrbu, A., H. Ruskin and M. Crane (2010). "Cross-platform microarray data 

normalisation for regulatory network inference." PloS ONE 5(11). 

Stock, M., C. Böhm, C. Scholtysek, M. Englbrecht, B. Fürnrohr, P. Klinger, K. 

Gelse, S. Gayetskyy, K. Engelke, U. Billmeier, S. Wirtz, W. van den Berg and G. 

Schett (2013). "Wnt inhibitory factor 1 deficiency uncouples cartilage and bone 

destruction in tumor necrosis factor �-mediated experimental arthritis." Arthritis 

and Rheumatism 65(9): 2310-2322. 



 420 

Taminau, J., C. Lazar, S. Meganck, Now, xe and Ann (2014). "Comparison of 

Merging and Meta-Analysis as Alternative Approaches for Integrative Gene 

Expression Analysis." ISRN Bioinformatics 2014: Article ID 345106. 

Taminau, J., S. Meganck, C. Lazar, D. Steenhoff, A. Coletta, C. Molter, R. Duque, 

V. de Schaetzen, D. Solis, H. Bersini and A. Nowe (2012). "Unlocking the 

potential of publicly available microarray data using inSilicoDb and 

inSilicoMerging R/Bioconductor packages." BMC Bioinformatics 13(1): 335. 

Tibshirani, R., T. Hastie, B. Narasimhan and G. Chu (2002). "Diagnosis of 

multiple cancer types by shrunken centroids of gene expression." Proceedings of 

the National Academy of Sciences of the United States of America 99(10): 6567-

6572. 

Tseng, G., D. Ghosh and E. Feingold (2012). "Comprehensive literature review 

and statistical considerations for microarray meta-analysis." Nucleic Acids 

Research 40(9): 3785-3799. 

Tsuchida, A., M. Beekhuizen, M. Rutgers, G. van Osch, J. Bekkers, A. Bot, B. 

Geurts, W. Dhert, D. Saris and L. Creemers (2012). "Interleukin-6 is elevated in 

synovial fluid of patients with focal cartilage defects and stimulates cartilage matrix 

production in an in vitro regeneration model." Arthritis Research & Therapy 14(6): 

R262. 

Valdes, A., T. Spector, A. Tamm, K. Kisand, S. Doherty, E. Dennison, M. 

Mangino, A. Tamm, I. Kerna, D. Hart, M. Wheeler, C. Cooper, R. Lories, N. 

Arden and M. Doherty (2010). "Genetic variation in the SMAD3 gene is 

associated with hip and knee osteoarthritis." Arthritis and Rheumatism 62(8): 

2347-2352. 

Valdes, A. M., N. K. Arden, A. Tamm, K. Kisand, S. Doherty, E. Pola, C. Cooper, 

A. Tamm, K. R. Muir, I. Kerna, D. Hart, F. O'Neil, W. Zhang, T. D. Spector, R. 

A. Maciewicz and M. Doherty (2010). "A meta-analysis of interleukin-6 promoter 

polymorphisms on risk of hip and knee osteoarthritis." Osteoarthritis and 

Cartilage 18(5): 699-704. 



 421 

van Gool, S., J. Emons, J. Leijten, E. Decker, C. Sticht, J. van Houwelingen, J. 

Goeman, C. Kleijburg, S. Scherjon, N. Gretz, J. Wit, G. Rappold, J. Post and M. 

Karperien (2012). "Fetal Mesenchymal Stromal Cells Differentiating towards 

Chondrocytes Acquire a Gene Expression Profile Resembling Human Growth 

Plate Cartilage." PLoS ONE 7(11): e44561. 

Witte, F., J. Dokas, F. Neuendorf, S. Mundlos and S. Stricker (2009). 

"Comprehensive expression analysis of all Wnt genes and their major secreted 

antagonists during mouse limb development and cartilage differentiation." Gene 

Expression Patterns 9(4): 215-223. 

Wu, L., C. Bluguermann, L. Kyupelyan, B. Latour, S. Gonzalez, S. Shah, Z. Galic, 

S. Ge, Y. Zhu, F. Petrigliano, A. Nsair, S. Miriuka, X. Li, K. Lyons, G. Crooks, D. 

McAllister, B. Van Handel, J. Adams and D. Evseenko (2013). "Human 

developmental chondrogenesis as a basis for engineering chondrocytes from 

pluripotent stem cells." Stem Cell Reports 1(6): 575-589. 

Xu, L., A. Tan, R. Winslow and D. Geman (2008). "Merging microarray data from 

separate breast cancer studies provides a robust prognostic test." BMC 

Bioinformatics 9(1): 125. 

Yang, D. and K. Jones (2009). "Effect of alginate on innate immune activation of 

macrophages." J. Biomed. Mater. Res. 90A(2): 411-418. 

Yang, S., J. Kim, J.-H. Ryu, H. Oh, C.-H. Chun, B. J. Kim, B. H. Min and J.-S. 

Chun (2010). "Hypoxia-inducible factor-2alpha is a catabolic regulator of 

osteoarthritic cartilage destruction." Nature Medicine 16(6): 687-693. 

Yoshimi, M., O. Miyaishi, S. Nakamura, S.-I. Shirasawa, H. Kamochi, S. Miyatani, 

Y. Ikawa and T. Shinomura (2005). "Identification of genes preferentially 

expressed in articular cartilage by suppression subtractive hybridization." Journal 

of Medical and Dental Sciences 52(4): 203-211. 

Zhang, M., M. R. Pritchard, F. A. Middleton, J. A. Horton and T. A. Damron 

(2008). "Microarray analysis of perichondral and reserve growth plate zones 

identifies differential gene expressions and signal pathways." Bone 43(3): 511-520. 



 422 

Zhang, R., H. Fang, Y. Chen, J. Shen, H. Lu, C. Zeng, J. Ren, H. Zeng, Z. Li, S. 

Chen, D. Cai and Q. Zhao (2012). "Gene expression analyses of subchondral bone 

in early experimental osteoarthritis by microarray." PloS ONE 7(2). 

 

 

No peer-reviewed publications 

Anita Lerch, Dimos Gaidatzis and Michael Stadler 

(2012). QuasR:Quantify and Annotate Short Reads in R. 

Version 1.2.2(unpublished). Accessed update 4 April 

2014.   

P. Aboyoun, H. Pages and M. Lawrence (). 

GenomicRanges: Representation and manipulation of 

genomic intervals. R package version 1.14.4.  

Accessed update 4 April 2014.   

Florian Hahne, Steffen Durinck, Robert Ivanek, Arne 

Mueller, Steve Lianoglou and Ge Tan (). Gviz: 

Plotting data and annotation information along 

genomic coordinates. R package version 1.6.0. 

Accessed update 4 April 2014.  

Jonatan Taminau (2013). inSilicoMerging: Collection 

of Merging Techniques for Gene Expression Data. R 

package version 1.6.0.    

 

 

R packages 



 423 

Appendix 5.1  
 

 

Table SD5.1  Datasets used for rat cartilage and tendon meta-analysis.  Description of headings (L to R): i) Accession – code for access of array 

data from either ‘ArrayExpress’ or ‘Gene Expression Omnibus’.  Hyperlinks are provided for direct access; ii) Tissue – source tissue for samples.  

This includes sub-compartments of tissues which may have been isolated in each study, for example, cells, fascicles, layers by laser-capture micro-

dissection; iii) Source – body region from which tissue was derived.  For musculoskeletal tissues this can be quite variable; Donor details – sex, 

breed and age (or weight) for animal sources where provided; iv) Platform – Manufacturer | Platform | Version; v) Citation – chapter references.  

Where citations are not given these were not available from data source and were not found following database searches.  Not all datasets have been 

published; vi) Number of Arrays – the total number of arrays available from the study.  The number used after quality control is provided in 

parentheses if this differs.  This may not always equate to biological replicates.  Description– synopsis of study and associated caveats.  
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Accession 

 

Tissue (Source) Donor details 

 

Platform Citation 
(number) 

Number of 
arrays 
(arrays 
used) 

Description  

Dataset I 
(Chapter 2) 

Cartilage, tendon & fibroblasts.  
(Hip, Knee, Achilles, Tail and DFT 
and dermis.).  F344, ♂, 12 wks 

Illumina, RatRef-
12 v1.0 
Expression 
BeadChip 

NA 40 (36) Analysis of chondrocytes 
and tenocytes in three 
conditions – whole cartilage 
and tendon, monolayer and 
three-dimensional model 
cultures. Array no longer in 
production.  Four arrays 
removed at quality control.    

Dataset II 
(Chapter 3) 

Cartilage and tendon.  (Hip, Knee, 
Achilles and DFT).  Wistar, ♂, 
12wks 

Affymetrix, 
Genechip Gene 
ST 2.0  

NA 24 Analysis of matrix-free cells 
in three conditions – native, 
monolayer and three-
dimensional model cultures.   

E-MEXP-2672 Tendon (Tail).   Sprague Dawley 
(SD), E21 – 6wks 

 

Affymetrix 
GeneChip Rat 
Genome 230 2.0 

NA 9 Transcription profile of rat 
tail tendon at three 
developmental stages -  
embryonic day 21, 
week 3 and week 6 
post-natal.   
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E-GEOD-
42295 

Cartilage (Femoro-tibial joint) NA 

 

Affymetrix 
GeneChip Rat 
Genome 230 2.0 

(Appleton, 
Pitelka et al. 
2007) 

12 (11) Transcription profile of rat 
experimental model of 
osteo-arthritis.  Four 
conditions consisting of 
either surgical intervention 
or sham-operated and 
harvested at 2 or 8 weeks.   
n=12.  One sample did not 
pass quality control.   

E-GEOD-8077 

 

Cartilage (Femoro-tibial joint).  SD, 
♂, 300-325 g 

 

 

Affymetrix 
GeneChip Rat 
Genome 230 2.0 

(Appleton, 
Pitelka et al. 
2007) 

15 (14) Transcription profile of a 
rat experimental model of 
osteoarthritis.  Groups 
consist of surgical 
intervention (medial 
meniscotomy), contralateral 
limb cartilage, and sham-
operate cartilage.  Five 
samples from each group.   
n=10 

Linköping 
University, 
Sweden 

Tendon (Fascicle) Affymetrix Gene 
1.0 ST Array 

Eliasson, 
Andersson et 
al. (2012) 

18 Acknowledgment 
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Linköping 
University, 
Sweden 

Tendon (Fascicle) Rat Gene ST 1.1 
Affymetrix  

(Eliasson, 
Andersson et 
al. 2013) 

8  

E-GEOD-9537 Cartilage.  (Growth plate zones).   
SD, ♂, 42-46 days   

Affymetrix 
GeneChip Rat 
Genome 230 2.0 

(Zhang, 
Pritchard et 
al. 2008) 

8  Transcription profile of rat 
perichondral and reserve 
growth plates obtained by 
laser-capture micro-
dissection.  Four zones 
considered: perichondral, 
reserve, proliferative and 
hypertrophic.   

n=2 per zone using pooled 
RNA from three rats at 
either 42 or 46 days of age. 

E-GEOD-
47676 

Ligament (Medial collateral).  Wistar, 
♂, NA   

Affymetrix 
GeneChip Rat 
Genome 230 2.0 

(Chamberlain, 
Brounts et al. 
2011) 

9 
(3/condition
) 

Transcript profiling of early 
rat healing medial collateral 
ligament.  Three time 
points – intact and day 3 or 
day 7 post injury.   

E-GEOD-6119 Cartilage (Monolayer).   Wistar, ♂, Affymetrix 
GeneChip Rat 

(Gouze, 
Gouze et al. 

13 (11) Gene expression profiling 
of chondrocytes in 
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8weeks Genome 230 2.0 2006) monolayer under one of 
four conditions: passage 3 
control, plus IL-1beta, plus 
glucosamine, or 
combination of IL-1beta 
and glucosamine.   NA.  
Two arrays removed at 
quality control 

E-GEOD-
28958 

Cartilage.   SD, ♀, 12-14 weeks Affymetrix 
GeneChip Rat 
Gene 1.0 ST Array  

(Nam, Perera 
et al. 2011) 

12 (11) Gene expression analysis 
from arthritis model 
induced by mono-
iodoacetate injection.  
Three groups consisting of 
saline sham, and 5, 9 or 21 
days post-injection.   n=12.  
One sample removed at 
quality control.  

E-GEOD-
23432 

Cartilage.   SD, ♂, 1 week Affymetrix 
GeneChip Rat 
Genome 230 2.0 

(Chau, 
Forcinito et 
al. 2011) 

24  Micro-dissection of post-
natal rat growth plates.   
n=5.   

E-GEOD-
14402 

Cartilage.   Neonatal, 1day.   Affymetrix 
GeneChip Rat 

(Rockel, 
Bernier et al. 

8 Transcription profile of 
primary chondrocytes 
treated with TNF-alpha, 
DMSO, MEK1/2 inhibitor 
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Genome 230 2.0 2009) or TNF-alpha + MEK1/2 
inhbitor.   n=2 per 
condition 

E-GEOD-
30322 

Subchondral bone.  Femoro-tibial 
joint.  SD, 10 week old, ♂.   

Agilent Whole Rat 
Genome 
Microarray 4x44k 
G4131F 

(Zhang, Fang 
et al. 2012) 

30 (4) Medial meniscotomy and 
medial collateral ligament 
transection plus sham 
controls in time course 
study.  Normal cartilage 
controls used as part of 
preparatory study in this 
chapter. 
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Table SD5.2  Data sets used in meta-analysis of human microarrays from cartilage and tendon 

Accession 

 

Tissue 
(Source) 
Donor 
details 

Platform Citation Number of arrays 
(arrays used) 

Description 

E-GEOD-43923 Cartilage.   
Femoro-tibial 
joint.   
Human, NA 

Affymetrix 
GeneChip 
Human 
Genome U133 
Plus 2.0 

(Klinger, Beyer 
et al. 2013) 

6 (6) Articular and osteophytic cartilage obtained 
from knee joints following total knee 
arthroplasty.   Total of 15 donors was used   

E-GEOD-17368 Cartilage,  
Epiphyseal – 
extra digits.   
Human, NA 

Affymetrix 
GeneChip 
Human 
Genome U133 
Plus 2.0 

NA 9 (9) Passage post-natal epiphyseal cartilage up 
to passage 8.   No indication of number of 
donors or replicates.   

E-GEOD-6565 Cartilage.   
Distal femur.   
Human, 18-

Affymetrix 
GeneChip 
Human 
Genome U133 

(Funari, Day et 
al. 2007) 

5 (on this array) Transcription profile of femoral cartilage 
from 18-22 week foetal cartilage.   Other 
replicates performed on other arrays 
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22wks Plus 2.0 

E-GEOD-51812 Cartilage.   
Limb 
condensation
s.   Human, 
6-17 weeks 

Affymetrix 
GeneChip 
Human 
Genome U133 
Plus 2.0 

(Wu, 
Bluguermann et 
al. 2013) 

15 Identification of chondrocyte subsets 
during development.  Six replicates relate to 
foetal limb chondrogenic condensations, 
six to total limb cells, and three to 
chondrocytes from the articular region at 
17weeks.   n=7 

E-GEOD-40942 hfBMSCs, 
proximal 
tibial growth 
plate.   
Human, 22 
week 

Affymetrix 
GeneChip 
Human 
Genome U133 
Plus 2.0 

(van Gool, 
Emons et al. 
2012) 

10 Transcription profiling of human foetal 
mesenchymal stromal cells undergoing 
chondrogenic differentiation.   n=1 – cells 
for differentiation study came from one 
foetus; there are six  weekly time-points.  
Four further arrays reflect normal hyaline 
growth plate cartilage from adults. 

E-MEXP-2488 Cartilage.   
Articular.  
Human 

Affymetrix 
GeneChip 
Human 
Genome U133 
Plus 2.0 

(Minogue, 
Richardson et 
al. 2010) 

3 Comparison of articular cartilage to nucleus 
pulposus.    Three samples in this study 
refer to articular cartilage.  Samples relating 
to vertebral nuclear pulposus cartilage have 
been deliberately excluded.    

E-MEXP-2276 Cartilage.   
Growth plate.   

Affymetrix 
GeneChip 

(Schibler, 
Gibbs et al. 

11 Transcription profiling of primary 
chondrocytes from normal foetal cartilage 
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Human, 
foetal (18-
25.5 wks) 
♀/♂ 

Human 
Genome U133 
Plus 2.0 

2009) or from individuals with thanatophoric 
dysplasia.   n=11 

E-GEOD-12860 Cartilage.   
Femoral 
condyles.   
Human, 37-
74 years 

Affymetrix 
GeneChip 
Human 
Genome HG-
U133A 

(Andreas, 
Häupl et al. 
2009) 

20 Transcription profiling of chondrocyte 
response to anti-rheumatic drugs.  Passage 
two cells maintained in alginate bead 
culture.   n=6 – same donors as E-GEOD-
10024   

E-GEOD-10024 Cartilage.   
Femoral 
condyles.   
Human, 37-
74 years 

Affymetrix 
GeneChip 
Human 
Genome HG-
U133A 

(Andreas, 
Lübke et al. 
2008) 

6 Gene expression profile of human alginate 
cultured chondrocytes treated with 
supernatant from synovial fibroblasts from 
RA patients.   n=6.  Three stimulated 
donor chondrocytes were pooled for each 
array.   

E-GEOD-39795 Cartilage.   
Femoral 
condyles.   
Human, 23-
46yo, ♀/♂ 

Affymetrix 
GeneChip 
Human Gene 
1.0 ST  

(Grogan, Duffy 
et al. 2013) 

12 Expression profile analysis from cartilage 
zones.  Superficial, middle, deep are 
considered.  n=4 
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E-GEOD-43191 Cartilage.   
Femoral 
condyles.   
Human, 45-
82yo, ♀/♂ 

Affymetrix 
GeneChip 
Human Gene 
1.1 ST 

(Fernández-
Tajes, Soto-
Hermida et al. 
2014) 

23 Transcription profile of articular 
chondrocytes from individuals with 
osteoarthritis.  n=23  

E-GEOD-26051 Tendon.   
Various.   
Human, 32-
65yo, ♀/♂ 

Affymetrix 
GeneChip 
Human 
Genome U133 
Plus 2.0 

(Jelinsky, 
Rodeo et al. 
2011) 

46 Gene expression profiling of normal and 
lesional tendons from a variety of sites.   
n=46.  Various tendon sites harvested from 
spectrum of donors.  Reader is referred to 
sample descriptors in ArrayExpress.    
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Table SD5.3  Data sets used for consensus study using liver data sets 

Accession 

 

Tissue 

 

Platform Citation Number of arrays 
(arrays used) 

Description  

E-GEOD-15238 Liver.   
Human, 9-
12 weeks 
and 1.5-81 
years 

Affymetrix 
GeneChip 
Human 
Genome 
U133 Plus 2.0 

NA 13 (13) Embryonic and post-natal/adult livers.  
Total of 13 donors was used.     

E-GEOD-17548 Liver.   
Human, 
NA 

Affymetrix 
GeneChip 
Human 
Genome 
U133 Plus 2.0 

NA 30 (30) Tissue from cirrhosis and hepatocellular 
carcinoma.  30 donors.    

E-GEOD-47972 Liver.   
Human, 
NA 

Affymetrix 
GeneChip 
Human 
Genome 

NA 18 (18) Primary hepatocytes  
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U133 Plus 2.0 

E-GEOD-23343 Liver.   
Human, 
NA 

Affymetrix 
GeneChip 
Human 
Genome 
U133 Plus 2.0 

NA 17(17) Livers biopsies from control and type-II 
diabetes patients.  N=17 

E-GEOD-49541 Liver.   
Human, 
NA 

Affymetrix 
GeneChip 
Human 
Genome 
U133 Plus 2.0 

NA 72 (72) Tissue from patients with non-alcoholic fatty 
liver disease 
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Appendix 5.2 

 

R Codes 
 
Code assumes investigator has R Expression Sets for each 
gene expression profile, up-to-date R version and correct 
packages in R library 
 
Code applies weighted gene co-expression network analysis 
to Ensembl annotated meta-matrices from rat and human and 
outputs gene modules, network preservation statistics and 
module:trait associations.   
 
###################################################### 
#Create annotation file to annotate probes across 
species## 
###################################################### 
###Let's get the human orthologs of rat genes using 
biomaRt 
 
library(rat2302probe) 
 
    probes<-rat2302ENTREZID 
    mapped_probes<-mappedkeys(probes) 
    xx<-as.list(probes[mapped_probes]) 
    affy.ID<-names(xx) 
 
library(biomaRt) 
 
#Define your database 
##Ensembl does an independent mapping of array probe sequences 
to genomes.  If there is no clear match then the probe is not 
assigned to a gene. 
 

ensembl<-
useMart("ensembl",dataset="rnorvegicus_gene_ensembl") 

 listAttributes(ensembl) 
###cannot call attributes from multiple databases 
#get rat 

one<-
getBM(attributes=c("affy_rat230_2","ensembl_gene_id","entre
zgene","external_gene_id","description"),filters="affy_rat2
30_2",values=affy.ID,mart=ensembl) 

#get human 
two<-
getBM(attributes=c("ensembl_gene_id","hsapiens_homolog_ense
mbl_gene"),filters="affy_rat230_2",values=affy.ID,mart=ense
mbl) 

 annotation<-merge(one,two, by="ensembl_gene_id") 
 table(duplicated(annotation$hsapiens_homolog_ensembl_gene)) 
 
#FALSE  TRUE 
#12296  5472 
 

annotation2<-
annotation[!duplicated(annotation$hsapiens_homolog_ensembl_
gene),] 
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####Re-annotate human Entrez gene identifiers by Ensembl gene 
identifiers 
 
 ensembl<-useMart("ensembl",dataset="hsapiens_gene_ensembl") 
# use U133 plus 2 identifiers 
 
library(hgU133plus2.db) 
 
    probes<-hgu133plus2ENTREZID 
    mapped_probes<-mappedkeys(probes) 
    xx<-as.list(probes[mapped_probes]) 
    U133.ID<-names(xx) 
 

hsap<-
getBM(attributes=c("affy_hg_u133_plus_2","ensembl_gene_id","entr
ezgene","external_gene_id"),filters="affy_hg_u133_plus_2",values
=U133.ID,mart=ensembl) 

 table(duplicated(hsap$ensembl_gene_id)) 
 hsap2<-hsap[!duplicated(hsap$ensembl_gene_id),] 
 
 setwd("/Users/xxx/working_directory") 
 save("annotation2","hsap2", 
 file="Rat_to_Human_annotations.RData") 
 
#load function to move columns in large matrices 
########################## 
###Move columns around#### 
########################### 
 
moveMe <- function(data, tomove, where = "last", ba = NULL)  
 { 
    temp <- setdiff(names(data), tomove) 
    x <- switch( 
    where, 
    first = data[c(tomove, temp)], 
    last = data[c(temp, tomove)], 
    before =  
 { 
    if (is.null(ba)) stop("must specify ba column") 

if (length(ba) > 1) stop("ba must be a single character string") 
data[append(temp, values = tomove, after = (match(ba, temp)-1))] 

  } 
 ,after =  
 { 
    if (is.null(ba)) stop("must specify ba column") 

if (length(ba) > 1) stop("ba must be a single character 
string")data[append(temp, values = tomove, after = (match(ba, 
temp)))] 

 }) 
    x 
 } 
 
####################################################### 
#Merging R expression sets from multiple data sets##### 
####################################################### 
#load Loess normalised Esets 
#Esets prefixed with accession codes  
#setwd() 
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library(inSilicoMerging) 
 esets<-list(eset1,eset2,eset3….esetN) 
 merged<-merge(esets,method="GENENORM") 
detach("package:inSilicoMerging") 
#rm(esets) 
#plot PCA to visualize data  
library(limma) 
 plotMDS(exprs(merged),cex=0.5) 
 boxplot(exprs(merged),las=2) 
 
##Genenorm normalised data 
 data2<-exprs(merged) 
 write.csv(data2,"exprs_merged.csv") 
 data2<-read.csv("exprs_merged.csv") 
 colnames(data2)[1] <- c("EntrezID") 
 
################################# 
##Reannotate rat with human orthologs 
################################# 
setwd("/Users/xxx/working_directory") 
load("Rat_to_Human_annotations.RData") 
 

data<-merge(data2,annotation2,by.x="EntrezID",by.y="entrezgene") 
 data<-data[,-c(172:176)] 
 data3<-moveMe(data,c("EntrezID")) 
 data3<-moveMe(data3,c("hsapiens_homolog_ensembl_gene"),"first") 
 data3<-data3[,-172] 
 colnames(data3)[1]<-c("Ensembl") 
 rat.data<-data3 
 rm(data,data2,data3) 
 
########################################## 
##Human data############################## 
########################################### 
library(inSilicoMerging) 
 esets<-list(esetHuman1, esetHuman2, esetHumanN) 
 merged<-merge(esets,method="GENENORM") 
detach("package:inSilicoMerging") 
 
library(limma) 
 plotMDS(exprs(merged),cex=0.5) 
 data2<-exprs(merged) 
 write.csv(data2,"exprs_merged.csv") 
 data2<-read.csv("exprs_merged.csv") 
 colnames(data2)[1] <- c("EntrezID") 
 
########################################## 
##re-annotate human with Ensembl gene ids 
########################################### 
setwd("/Users/xxx/working_directory") 
load("Rat_to_Human_annotations.RData") 
 data<-merge(data2,hsap2,by.x="EntrezID",by.y="entrezgene") 
 data3<-moveMe(data,c("ensembl_gene_id"),"first") 
 data3<-data3[,-c(123:124)] 
 data3<-data3[,-2] 
 colnames(data3)[1]<-c("Ensembl") 
 human.data<-data3 
 
 
 save(rat.data,human.data, 
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 file="Gnorm_cross_spp_annotated_data.RData") 
 
################################################################# 
######Rat to human cartilage|tendon network consensus analysis### 
################################################################# 
library(WGCNA) 
setwd("/Users/xxx/working_directory") 
load("Gnorm_cross_spp_annotated_data.RData") 
#contains - rat.data – meta-matrix 
#contains - human.data – meta-matrix 
 
####Prepare Rat data 
 ArrayName=names(data.frame(rat.data[,-1])) 
 GeneName=rat.data$Ensembl 
 exprs.rat=data.frame(t(rat.data[,-1])) 
 names(exprs.rat)=rat.data[,1] 
 dimnames(exprs.rat)[[1]]=names(data.frame(rat.data[,-1])) 
##Prepare Human data 
 ArrayName=names(data.frame(human.data[,-1])) 
 GeneName=human.data$Ensembl 
 exprs.human=data.frame(t(human.data[,-1])) 
 names(exprs.human)=human.data[,1] 
 dimnames(exprs.human)[[1]]=names(data.frame(human.data[,-1])) 
####Intersect Rat data after filtering with Human data after 
filtering by Ensembl ID 

commonProbesA=intersect(colnames(exprs.rat), 
colnames(exprs.human)) 
length(commonProbesA) 

###Remove genes not found in both datasets 
 datExprRat = exprs.rat[,commonProbesA]   
###intersect data on Ensembl genes 
 datExprHuman = exprs.human[,commonProbesA] 
 
##Filter each data set 
###RAT#### 
 exprs.v=as.vector(apply(as.matrix(datExprRat),2,var,na.rm=T)) 
#calculate variance across the expression data  
 present=as.vector(apply(!is.na(as.matrix(datExprRat)),2,sum)) 
 keep=exprs.v>0.4 & present>=4 
 table(keep) 
 filt.rat=datExprRat[,keep] 
 
#####HUMAN 

exprs.v=as.vector(apply( 
as.matrix(datExprHuman),2,var,na.rm=T)) 
present=as.vector(apply(!is.na(as.matrix(datExprHuman)),2,sum)) 

 keep=exprs.v>0.4 & present>=4 
 table(keep) 
 filt.human<-datExprHuman[,keep] 
 
####Intersect Rat data after filtering with human data after 
filtering by Ensembl ID 
 commonProbesB=intersect(colnames(filt.rat), 
 colnames(filt.human)) 
 length(commonProbesB) 
#[1] 5278 
##Prepare another adjacency matrix with the new data 
 datExprRat=filt.rat[,commonProbesB];   
##note location of comma - we are dealing with columns not rows as 
the data is transposed 
 datExprHuman = filt.human[,commonProbesB] 
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####Prepare Liver Data and annotate as per rat and human meta 
matrices 
load("Gnorm_LIVER_annotated_data.RData") 
#humanLiver.data file created as for other human data 
 ArrayName=names(data.frame(humanLIVER.data[,-1])) 
 GeneName=humanLIVER.data$Ensembl 
 exprs.liver=data.frame(t(humanLIVER.data[,-1])) 
 names(exprs.liver)=humanLIVER.data[,1] 

dimnames(exprs.liver)[[1]]=names(data.frame(humanLIVER.data[,-
1])) 

###restrict liver data to the same genes being used for cartilage 
and tendon analysis 
 datExprLiver = exprs.liver[,commonProbesB] 
 save(datExprHuman,datExprRat,datExprLiver, 
 file="datExprRat_Human_Liver.RData") 
 
######################## 
#####PICK-UP POINT 1#### 
######################## 
library(WGCNA) 
setwd("/Users/xxx/working_directory") 
load("datExprRat_Human_Liver.RData") 
 
###Consensus modules ## 
##transpose data again; 
 t.rat<-t(datExprRat); 
 t.human<-t(datExprHuman); 
 options(stringsAsFactors=FALSE); 
 nSets=2; 
 setLabels=c("Rat","Human"); 
 shortLabels=c("RN","HS"); 
 
 multiExprA=vector(mode="list",length=nSets); 
 multiExprA[[1]]=list(data=as.data.frame(t(t.rat))); 
 names(multiExprA[[1]]$data)=colnames(datExprRat); 
 colnames(multiExprA[[1]]$data)=names(datExprRat); 
 
 multiExprA[[2]]=list(data=as.data.frame(t(t.human))); 
 names(multiExprA[[2]]$data)=colnames(datExprHuman); 
 colnames(multiExprA[[2]]$data)=names(datExprHuman); 
 
 
 
##Define the Eset dimensions 
 exprSize=checkSets(multiExprA) 
 nGenes=exprSize$nGenes 
 nSamples=exprSize$nSamples 
 
###NAMES#### 
#net_A <- human and rat consensus 
#multiExprA <- human and rat consensus 
#consMEsA <- human and rat consensus 
 
#net_B <- human only data 
#net_C <- rat only data 
 
#NETWORK CONSTRUCTION###### 
 net_A=blockwiseConsensusModules(
 multiExprA,power=7,minModuleSize=30,deepSplit=1, 
 pamRespectsDendro=FALSE,mergeCutHeight=0.25,numericLabels=TRUE,
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 minKMEtoStay=0,saveTOMs=FALSE,verbose=5 
 ) 
#names(net) 
 consME_A=net_A$multiMEs; 
 moduleLabels=net_A$colors; 
 moduleColors=labels2colors(moduleLabels) 
 consTree=net_A$dendrograms[[1]]; 

plotDendroAndColors( 
net_A$dendrograms[[1]],moduleColors[net_A$blockGenes[[1]]],"Cons
ensus\nModule 
Colors",dendroLabels=FALSE,hang=0.03,addGuide=TRUE,guideHang=0.0
5 
) 

 
save(net_A,consMEs_A,moduleColors,consTree,file="rat_human_consensus
.RData") 
rm(filt.rat,filt.human,commonProbesA,commonProbesB,t.human,t.rat,pre
sent,net,exprs.human,exprs.rat,exprs.v) 
collectGarbage() 
 
########################## 
#####PICK UP POINT 2###### 
########################## 
load("rat_to_human_consensus_net.RData") 
#re-calulate the consMEs to give them colour names 
 consMEsA<-multiSetMEs(multiExprA,universalColors=moduleColors); 
#Add the tendon trait to the eigengenes and order them by consensus 
hierarchical clustering; 
 MET<-consensusOrderMEs(consMEsA); 
#MET<-consensusOrderMEs(addTraitToMEs(consMEsC,tendon)); 
##Now call the function 'plotEigengeneNetworks' to perform the 
differential analysis 
 sizeGrWindow(8,10) 
 par(cex=0.9) 
 plotEigengeneNetworks( 
 MET,setLabels,marDendro=c(0,2,2,1), 
 marHeatmap=c(3,3,2,1),zlimPreservation=c(0.5,1),xLabelsAngle=90) 
 
 
###LOOK AT THE PROBES IN A MODULE 
#unique(colors) 
 modules =c("brown"); 
# Select module probes 
 setwd("/Users/xxx/working_directory") 
 probes = names(datExprHuman) 
 inModule = is.finite(match(moduleColors, modules)) 
 modProbes = probes[inModule] 
 head(modProbes) 
 module.x<-data.frame(Module=modProbes) 
#module<-merge(module.x,anno,by.x="Module",by.y="EntrezID") 
 write.csv(module.x,"Brown_module.csv",row.names=FALSE) 
 
########################## 
##Species-Specific Modules 
########################## 
 
########################## 
#Human Specific Modules ## 
########################## 
 
##require datExprHuman - has to have consensus-matched probes 
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##also repeat for datExprRat 
 net_B<-blockwiseModules( 
 datExprHuman,power=7,minModuleSize=30,deepSplit=1, 
 pamRespectsDendro = FALSE, mergeCutHeight = 0.2,  
 numericLabels = TRUE, minKMEtoStay = 0, saveTOMs = FALSE, 
 verbose = 5 
 ) 
 
 humanMEs=net_B$MEs; 
 humanLabels=net_B$colors; 
 humanColors=labels2colors(humanLabels) 
 humanTree=net_B$dendrograms[[1]] 
 plotDendroAndColors( 

humanTree,humanColors[net_B$blockGenes[[1]]],"Module 
Colors",dendroLabels=FALSE,hang=0.03,addGuide=TRUE,guideHang=0.0
5 
) 

 
save(net_B,humanMEs,humanLabels,humanColors,humanTree,file="human_se
t_specific.RData") 
 
########################## 
#####PICK UP POINT 3###### 
########################## 
load("human_set_specific.RData") 
###The consensus network analysis results are represented by the 
variables consMEs, moduleLabels, moduleColors, and consTree. We are 
now ready to relate the human cartilage|tendon modules to the 
consensus modules. We calculate the overlaps of each pair of 
cartilage|tendon-consensus modules, and use the Fisher’s exact test 
(also known as hypergeometric test) to assign a p-value to each of 
the pairwise overlaps. 
 
#Isoloate the module labels in the order they appear in the ordered 
module eigengenes 
 humanModuleLabels=substring(names(humanMEs),3); 
 consModuleLabels=substring(names(consME_A[[1]]$data),3) 
#Convert the numeric module labels to color labels 
 humanModules<-labels2colors(as.numeric(humanModuleLabels)); 
 consModules<-labels2colors(as.numeric(consModuleLabels)); 
#Numbers of affy and consensus modules 
 nHumanMods=length(humanModuleLabels); 
 nConsMods=length(consModuleLabels); 
##initialise tables of p-values and of the corresponding counts 
 pTable<-matrix(0,nrow=nHumanMods,ncol=nConsMods); 
 CountTbl<-matrix(0,nrow=nHumanMods,ncol=nConsMods); 
##Execute all pairwise comparisons 
 for(fmod in 1:nHumanMods) 
 for(cmod in 1:nConsMods) 
 { 
 humanMembers=(humanColors==humanModules[fmod]); 
 consMembers=(moduleColors==consModules[cmod]); 

pTable[fmod,cmod]=-log10(fisher.test(humanMembers,consMembers, 
alternative="greater")$p.value); 

 CountTbl[fmod,cmod]=sum( 
humanColors==humanModules[fmod]&moduleColors==consModules[cmod]) 

 } 
#To display the p-value and count tables in an informative way we 
create a color-coded table of the intersection counts.  The colours 
will indicate the p-value significance: 
#truncate the p values smaller than 10^{-50} to 10^{-50} 
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#marginal counts (really module sizes) 
 humanModTotals = apply(CountTbl,1,sum); 
 consModTotals = apply(CountTbl,2,sum); 
#Actual plotting 
 sizeGrWindow(12,7) 
 par(mfrow=c(1,1)) 
 par(cex=1.0) 
 par(mar=c(10,14,2.7,1)+0.3) 
#use the function labeledheatmap to produce the color-coded table 
 labeledHeatmap(Matrix=pTable, 
 xLabels=paste(" ",consModules), 
 yLabels=paste(" ",humanModules), 
 colorLabels=TRUE, 
 xSymbols=paste("Cons ",consModules,": ",consModTotals,sep=""), 
 ySymbols=paste("Cartilage|Tendon",humanModules,":", 
 humanModTotals,sep=""), 
 textMatrix=CountTbl, 
 colors=blueWhiteRed(100)[50:100], 

main="Correspondence of Human Cartilage|Tendon set-specific and 
Human:Rat consensus modules", 

 cex.text=1.0,cex.lab=1.0,setStdMargins=FALSE); 
 
###LOOK AT THE PROBES IN A MODULE 
#unique(colors) 
 modules =c("red"); 
# Select module probes 
 setwd("/Users/xxx/working_directory") 
 probes = names(datExprHuman) 
 inModule = is.finite(match(humanColors, modules)) 
 modProbes = probes[inModule] 
 head(modProbes) 
 module.x<-data.frame(Module=modProbes) 
#module<-merge(module.x,anno,by.x="Module",by.y="EntrezID") 
 write.csv(module.x,"module.csv",row.names=FALSE) 
 
########################## 
#Rat-Specific Modules##### 
########################## 
#Requires datExprRat 
 net_C<-blockwiseModules( 
 datExprRat,power=7,minModuleSize=30, 
 deepSplit=1,pamRespectsDendro=FALSE,  
 mergeCutHeight=0.2,numericLabels=TRUE,  
 minKMEtoStay=0,saveTOMs=FALSE,verbose=5 
 ) 
 
 RatMEs=net_C$MEs; 
 ratLabels=net_C$colors; 
 ratColors=labels2colors(ratLabels) 
 ratTree=net_C$dendrograms[[1]] 
 plotDendroAndColors( 
 ratTree,ratColors[net_C$blockGenes[[1]]], 
 "ModuleColors",dendroLabels=FALSE, 
 hang=0.03,addGuide=TRUE,guideHang=0.05 
 ) 
 
save(net_C,RatMEs,ratLabels,ratColors,ratTree,file="rat_set_specific
.RData") 
 
 
########################## 
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#####PICK UP POINT 4###### 
########################## 
load(file="rat_set_specific.RData") 
 
#Isoloate the module labels in the order they appear in the ordered 
module eigengenes 
 ratModuleLabels=substring(names(RatMEs),3); 
 consModuleLabels=substring(names(consME_A[[1]]$data),3) 
#Convert the numeric module labels to color labels 
 ratModules<-labels2colors(as.numeric(ratModuleLabels)); 
 consModules<-labels2colors(as.numeric(consModuleLabels)); 
#Numbers of affy and consensus modules 
 nRatMods=length(ratModuleLabels); 
 nConsMods=length(consModuleLabels); 
 
##initialise tables of p-values and of the corresponding counts 
 pTable<-matrix(0,nrow=nRatMods,ncol=nConsMods); 
 CountTbl<-matrix(0,nrow=nRatMods,ncol=nConsMods); 
 
##Execute all pairwise comparisons 
 for(fmod in 1:nRatMods) 
 for(cmod in 1:nConsMods) 
 { 
 ratMembers=(ratColors==ratModules[fmod]); 
 consMembers=(moduleColors==consModules[cmod]); 

pTable[fmod,cmod]=-
log10(fisher.test(ratMembers,consMembers,alternative="greater")$
p.value); 
CountTbl[fmod,cmod]=sum(ratColors==ratModules[fmod]& 
moduleColors==consModules[cmod]) 

 } 
 
 ratModTotals = apply(CountTbl,1,sum); 
 consModTotals = apply(CountTbl,2,sum); 
#Actual plotting 
 sizeGrWindow(12,7) 
 par(mfrow=c(1,1)) 
 par(cex=1.0) 
 par(mar=c(12,16,2.7,1)+0.3) 
#use the function labeledheatmap to produce the color-coded table 
 labeledHeatmap( 
 Matrix=pTable, 
 xLabels=paste(" ",consModules), 
 yLabels=paste(" ",ratModules), 
 colorLabels=TRUE, 
 xSymbols=paste("Cons ",consModules,": ",consModTotals,sep=""), 
 ySymbols=paste("Cartilage|Tendon", 
 ratModules,":",ratModTotals,sep=""), 
 textMatrix=CountTbl, 
 colors=blueWhiteRed(100)[50:100], 

main="Correspondence of Rat Cartilage|Tendon set-specific and 
Human:Rat consensus modules", 

 cex.text=1.0,cex.lab=1.0,setStdMargins=FALSE 
 ); 
 
###LOOK AT THE PROBES IN A MODULE 
#unique(colors) 
 modules =c("green"); 
# Select module probes 
 setwd("/Users/xxx/working_directory") 
 probes = names(datExprRat) 
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 inModule = is.finite(match(ratColors, modules)) 
 modProbes = probes[inModule] 
 head(modProbes) 
 module.x<-data.frame(Module=modProbes) 
#module<-merge(module.x,anno,by.x="Module",by.y="EntrezID") 
 write.csv(module.x,"Rat_green_module.csv",row.names=FALSE) 
 
 
##multiExpr set already created: 1=Rat; 2=Human - create a new one 
 

multiExpr2=list(A1=list(data=datExprRat), 
A2=list(data=datExprHuman)); 

 multiColor=list(A1=ratColors); 
 
######################################### 
####MODULE PRESERVATION################## 
######################################### 
 
#This function assesses how well a module in one study is preserved 
in another study 
 mp=modulePreservation( 
 multiExpr2,multiColor,referenceNetworks=1, 
 verbose=3,networkType="unsigned",nPermutations=30, 
 maxGoldModuleSize=100,maxModuleSize=400 
 ); 
 stats = mp$preservation$Z$ref.A1$inColumnsAlsoPresentIn.A2; 

stats2=mp$preservation$log.pBonf$ref.A1$inColumnsAlsoPresentIn.A
2; 

 
  
 modulesPreserved<data.frame( 
 stats$moduleSize, 
 stats$Zsummary.pres,stats2$log.p.Bonfsummary.pres 
 ); 
 rownames(modulesPreserved)<-rownames(stats); 
 
setwd("/Users/xxx/working_directory"); 
write.csv(stats,"Module_Preservation_Z_scores.csv"); 
rm(mp,stats,stats2,multiExpr2,multiColor,modulesPreserved) 
 
 
 
########################################################### 
## Module membership (kME) and its use in comparing networks 
########################################################### 
 
 MEList = moduleEigengenes(datExprRat,colors=ratColors) 
 MEs = MEList$eigengenes 
 colorsRat=names(table(ratColors)) 
 
 geneModuleMembership1 = signedKME(datExprRat, MEs) 
 colnames(geneModuleMembership1)= 
 paste("PC",colorsRat,".cor",sep="" 
 ); 
 MMPvalue1=corPvalueStudent( 
 as.matrix(geneModuleMembership1),dim(datExprRat)[[2]] 
 ); 
 colnames(MMPvalue1)=paste("PC",colorsRat,".pval",sep=""); 
 
 Gene = rownames(t(datExprRat)) 
 kMEtable1=cbind(Gene,Gene,ratColors) 
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 for (i in 1:length(colorsRat)) 
 kMEtable1=cbind( 
 kMEtable1,geneModuleMembership1[,i],MMPvalue1[,i] 
 ) 
 colnames(kMEtable1)= 
 c("PSID","Gene","Module",sort( 
 c(colnames(geneModuleMembership1),colnames(MMPvalue1)))) 
 
setwd("/Users/alanmueller/Desktop/Thesis/Chapter_4_MetaAnalysis/DATA
") 
write.csv(kMEtable1,"kMEtable1.csv",row.names=FALSE) 
#or 
#write.csv(kMEtable1,"Rat_modules_kME.csv",row.names=FALSE) 
 
#Now repeat for HUMAN, using the module assignments from A2 to 
determine kME values. 
# First calculate MEs for A2, since we haven't done that yet 
 
 PCs2A = moduleEigengenes( 
 datExprHuman, colors=ratColors 
 );  
 ME_2A = PCs2A$eigengenes; 

geneModuleMembership2=signedKME(datExprHuman,ME_2A); 
colnames(geneModuleMembership1) 
=paste("PC",colorsRat,".cor",sep=""); 

 MMPvalue2=corPvalueStudent( 
 as.matrix(geneModuleMembership2),dim(datExprHuman)[[2]] 
 );  
 colnames(MMPvalue2)=paste("PC",colorsRat,".pval",sep=""); 
 
 kMEtable2 = cbind(Gene,Gene,ratColors);  
 for (i in 1:length(colorsRat)) 
 kMEtable2=cbind( 
 kMEtable2,geneModuleMembership2[,i],MMPvalue2[,i] 
 )  
 colnames(kMEtable2)=colnames(kMEtable1) 
 write.csv(kMEtable2,"kMEtable_rat_human.csv",row.names=FALSE) 
 
##Now that we have kME values for both networks, there are a few 
additional ways in which we can compare the resulting networks.  The 
first thing we can do is plot the kME values of each gene in A1 
against the corresponding kME values of each gene in A2. Modules 
with points showing a high correlation are highly preserved. 
 
##all genes  
 par(mfrow=c(4,3)) 
 for (c in 1:length(colorsRat)) 
 { 
 verboseScatterplot( 
 geneModuleMembership2[,c],geneModuleMembership1[,c], 
 main=colorsRat[c], xlab="kME in Human",ylab="kME in Rat") 
 }  
 
##Using all genes allows one to include all positively and 
negatively correlated genes, but often also includes a lot of noise 
 
#subset of genes originally assigned to a given module 
 par(mfrow=c(4,3)) 
 for (c in 1:length(colorsRat)) 
 { 
 inMod = ratColors== colorsRat[c]  
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 verboseScatterplot(geneModuleMembership2[inMod,c], 
 geneModuleMembership1[inMod,c],main=colorsRat[c], 
 xlab="kME in Human",ylab="kME in Rat") 
 } 
 
##Using only in-module genes is a visual way of assessing hub gene 
conservation: if these genes show between-set correlation, then the 
genes in the upper right of the plot are likely to be common hub 
genes between data sets. (Hub genes are genes that show significant 
correlation with MEs and high within-module connectivity and will be 
discussed below.) 
#The second thing we can do is determine which genes are hubs in 
both networks by determine which genes have extremely high kME 
values in both networks. 
 topGenesKME=NULL; 
 for(c in 1:length(colorsRat)) 
 { 
 kMErank1=rank(-geneModuleMembership1[,c]) 
 kMErank2=rank(-geneModuleMembership2[,c]) 
 maxKMErank=rank(apply(cbind(kMErank1,kMErank2+.00001),1,max)) 
 topGenesKME=cbind(topGenesKME,Gene[maxKMErank<=20]) 
 } 
 colnames(topGenesKME)=colorsRat; 
 topGenesKME; 
 consensus.hubs<-as.data.frame(topGenesKME); 
write.csv(consensus.hubs,file="CONSENSUS_HUBS_rat_human.csv",row.nam
es=FALSE) 
 
##These genes represent the top 20 genes per module based on kME in 
both networks. 
 
 
############################################# 
##PHENOTYPIC DATA ASSOCIATIONS WITH SPECIES NETWORK MODULES 
############################################# 
###LOAD IN THE PHENOTYPIC DATA############### 
############################################# 
##Prepared binary matrix of sample membership of defined phenotypic 
groups – pData.csv for the species 
 
 setwd("/Users/xxx/working_directory") 
 traitData<-read.csv("pData.csv") 
 Traits=vector(mode="list",length=nSets) 
 for(set in 1:nSets) 
 { 
 setSamples=rownames(multiExprA[[set]]$data); 
 traitRows=match(setSamples,traitData$Sample); 
 Traits[[set]]=list(data=traitData[traitRows,-1]); 
 rownames(Traits[[set]]$data)=setSamples; 
 } 
 collectGarbage() 
 
################################################################ 
##Let's look at the phenotypic data for the rat modules######### 
################################################################ 
##require: datExprRat, pData 
 dim(datExprRat) 
#[1]  170 5278 
 traitData = read.csv("pData.csv") 
 allTraits = traitData 
 ratSamples<-rownames(datExprRat) 
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 traitRows<-match(ratSamples,allTraits$Sample) 
 datTraits<-allTraits[traitRows,-1] 
 rownames(datTraits)<-ratSamples 
 head(datTraits) 
 
#Recalculate MEs with color labels 
 nGenes = ncol(datExprRat) 
 nSamples = nrow(datExprRat) 
 MEs0 = moduleEigengenes(datExprRat,ratColors)$eigengenes 
 MEs = orderMEs(MEs0) 
 moduleTraitCor = cor(MEs, datTraits, use = "p"); 
 moduleTraitPvalue = corPvalueStudent(moduleTraitCor, nSamples) 
 textMatrix=paste(signif(moduleTraitCor,2), 
 "\n(",signif(moduleTraitPvalue,1),")", 
 sep = "")  
 dim(textMatrix) = dim(moduleTraitCor) 
 dev.new() 
 par(mar = c(6, 8.5, 3, 3)) 
 
 labeledHeatmap(Matrix = moduleTraitCor, 
             xLabels = names(datTraits), 
             yLabels = names(MEs), 
             ySymbols = names(MEs), 
             colorLabels = FALSE, 
             setStdMargins=FALSE, 
             cex.lab=0.8, 
             colors = blueWhiteRed(50), 
             textMatrix = textMatrix, 
             cex.text = 0.8, 
             zlim = c(-1,1), 
             main = paste("Module-trait relationships")) 
 
  
################################################################ 
##Let's look at the phenotypic data for the human modules######### 
################################################################ 
##require: datExprHuman, pData 
 dim(datExprHuman) 
#[1]  166 5278 
 traitData = read.csv("pData.csv") 
 allTraits = traitData 
 humanSamples<-rownames(datExprHuman) 
 traitRows<-match(humanSamples,allTraits$Sample) 
 datTraits<-allTraits[traitRows,-1]   
 rownames(datTraits)<-humanSamples  
 head(datTraits) 
 
#Recalculate MEs with color labels 
 nGenes = ncol(datExprHuman) 
 nSamples = nrow(datExprHuman) 
 
 MEs0 = moduleEigengenes(datExprHuman,humanColors)$eigengenes 
 MEs = orderMEs(MEs0) 
 
 moduleTraitCor = cor(MEs, datTraits, use = "p"); 
 moduleTraitPvalue = corPvalueStudent(moduleTraitCor, nSamples) 
 
 textMatrix=paste( 
 signif(moduleTraitCor, 2), 
 "\n(", signif(moduleTraitPvalue, 1), 
  ")", sep = "")  
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 dim(textMatrix) = dim(moduleTraitCor) 
 dev.new() 
 par(mar = c(6, 8.5, 3, 3)) 
 
 labeledHeatmap(Matrix = moduleTraitCor, 
             xLabels = names(datTraits), 
             yLabels = names(MEs), 
             ySymbols = names(MEs), 
             colorLabels = FALSE, 
             setStdMargins=FALSE, 
             cex.lab=0.6, 
             colors = blueWhiteRed(50), 
             textMatrix = textMatrix, 
             cex.text = 0.6, 
             zlim = c(-1,1), 
             main = paste("Module-trait relationships")) 
 
##plotting the MDS might help define the groups 
 
###Correlations with the phenotypic data are only moderate at best 
r=0.5 and this may reflect the very diverse data that we see.  As 
such we should consider the consensus data.   
 
 
###MODULE/TRAITS FOR CONSENSUS NETWORKS 
 
##CONSENSUS MODULES 
######Relating consensus modules to external microarray sample 
information  
 
##set up variables to contain the module_trait correlations – choose 
correct multiExpr for rat or human 
 exprSize=checkSets(multiExprA); 
 moduleTraitCor=list() 
 moduleTraitPvalue=list() 
 #caluculate the correlations 
 for(set in 1:nSets) 
 { 
 moduleTraitCor[[set]]=cor(
 consME_A[[set]]$data,Traits[[set]]$data,use="p"); 

moduleTraitPvalue[[set]]=corPvalueFisher(moduleTraitCor[[set]],e
xprSize$nSamples[set]); 

 } 
 
#We now display the module-trait relationships using a color-coded 
#table.  Print the correlations and the corresponding p-values, abd 
#colour-code the entries by the p-value significance. 
 
##convert the numerical labels to colors for labelling of modules in 
the plot 

MEColors<-labels2colors( 
as.numeric(substring(names(consME_A[[set]]$data),3))); 

 MEColorNames<-paste("ME",MEColors,sep=""); 
 sizeGrWindow(10,7) 
 
####################################################################
#Plot the module-trait relationship table for set number 1 (Rat) 
####################################################################
## 
 set=1 
 textMatrix=paste(signif( 
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 moduleTraitCor[[set]],2), 
 "\n(",signif(moduleTraitPvalue[[set]],1), 
 ")",sep=""); 
 dim(textMatrix)=dim(moduleTraitCor[[set]]) 
 par(mar=c(6,8.8,3,2.2)) 
 labeledHeatmap(Matrix=moduleTraitCor[[set]], 
    xLabels=names(Traits[[set]]$data), 
    yLabels=MEColorNames, 
    ySymbols=MEColorNames, 
    colorLabels=FALSE, 
    colors=blueWhiteRed(50), 
    textMatrix=textMatrix, 
    setStdMargins=FALSE, 
    cex.text=0.5, 
    zlim=c(-1,1), 
    main=paste( 
    "Module—traitrelation ships in", 
    setLabels[set])); 
       
####################################################################
#Plot the module-trait relationship table for set number 2 (Human) 
####################################################################
## 
 set=2 
 textMatrix=paste(signif(moduleTraitCor[[set]],2), 
 "\n(",signif(moduleTraitPvalue[[set]],1), 
 ")",sep=""); 
 dim(textMatrix)=dim(moduleTraitCor[[set]]) 
 par(mar=c(6,8.8,3,2.2)) 
 labeledHeatmap(Matrix=moduleTraitCor[[set]], 
    xLabels=names(Traits[[set]]$data), 
    yLabels=MEColorNames, 
    ySymbols=MEColorNames, 
    colorLabels=FALSE, 
    colors=blueWhiteRed(50), 
    textMatrix=textMatrix, 
    setStdMargins=FALSE, 
    cex.text=0.5, 
    zlim=c(-1,1), 
    main=paste( 
    "Module--trait relationships in", 
    setLabels[set])); 
     
 
###There are several ways of forming a measure of module-trait 
relationships that summarize the two sets into one measure.  We will 
form a very conservative one: for each module -trait pair we take 
the correlation that has the lower absolute value in the two sets if 
the two correlations have the same sign, and zero relationship if 
the two correlations have opposite signs: 
 
# Initialize matrices to hold the consensus correlation and p-value 

consensusCor=matrix(NA,nrow(moduleTraitCor[[1]]), 
ncol(moduleTraitCor[[1]])); 
consensusPvalue=matrix(NA,nrow(moduleTraitCor[[1]]), 
ncol(moduleTraitCor[[1]])); 

# Find consensus negative correlations 
 negative = moduleTraitCor[[1]] < 0 & moduleTraitCor[[2]] < 0; 

consensusCor[negative]=pmax(moduleTraitCor[[1]][negative], 
moduleTraitCor[[2]][negative]); 
consensusPvalue[negative]=pmax( 
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moduleTraitPvalue[[1]][negative], 
moduleTraitPvalue[[2]][negative]); 

# Find consensus positive correlations 
 positive = moduleTraitCor[[1]] > 0 & moduleTraitCor[[2]] > 0; 

consensusCor[positive]=pmin(moduleTraitCor[[1]][positive], 
moduleTraitCor[[2]][positive]); 

 consensusPvalue[positive]=pmax( 
moduleTraitPvalue[[1]][positive], 
moduleTraitPvalue[[2]][positive]); 

 
##we display the consensus module-trait relationships again using a 
color-coded table: 
 textMatrix=paste( 
 signif(consensusCor,2),"\n(", 
 signif(consensusPvalue,1),")",sep=""); 
 dim(textMatrix)=dim(moduleTraitCor[[set]]) 
 par(mar=c(6,8.8,3,2.2)); 
 labeledHeatmap(Matrix=consensusCor, 
    xLabels=names(Traits[[set]]$data), 
    yLabels=MEColorNames, 
    ySymbols=MEColorNames, 
    colorLabels=FALSE, 
    colors=blueWhiteRed(50), 
    textMatrix=textMatrix, 
    setStdMargins=FALSE, 
    cex.text=0.5, 
    zlim=c(-1,1), 

   main=paste( 
   "consensus module-trait relationships across\n", 

    paste(setLabels,collapse="and")) 
    ) 
 
############################################################# 
#REPEAT ANALYSIS USING LIVER META-MATRIX AGAINST HUMAN OR RAT 
#DATA######################################################## 
 
######Principal Component Analysis of complete merged data sets 
#used datExprHuman or datExprRat 
library(FactoMineR) 
 
 res.pca<-PCA(datExprHuman,graph=FALSE,axes=c(1,2)) 
 PC1 <- res.pca$ind$coord[,1] 
 PC2 <- res.pca$ind$coord[,2] 
##Select appropriate species groupings 
##Human  

condition<-c( 
rep("alginate",26), 
rep("Monolayer",9), 
rep("Foetal Normal",3), 
rep("FoetalDysplastic",8), 
rep("Tendon Non-lesional",23), 
rep("Tendon Lesional",23), 
rep("Cartilage",16), 
rep("Differentiating",6), 
rep("OA",23),rep("Cartilage",3), 
rep("OA",3), 
rep("Differentiating",15), 
rep("Foetal Normal",5), 
rep("Cartilage",3)) 
 

##Rat 
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 #condition<-c( 
 #rep("alginate",26), 
 #rep("Monolayer",9), 
 #rep("Foetal Normal",3), 
 #rep("Foetal Dysplastic",8), 
 #rep("Normal",23), 
 #rep("Perturbed",23), 
 #rep("Normal",16), 
 #rep("Differentiating",6), 
 #rep("Perturbed",23), 
 #rep("Normal",3), 
 #rep("Perturbed",3), 
 #rep("Differentiating",15), 
 #rep("Foetal Normal",5), 
 #rep("Normal",3)) 
 
 tissue<c( 
 rep("chondrocytes",46), 
 rep("tenocytes",46), 
 rep("chondrocytes",74)) 
 
 
 condition<-as.data.frame(condition) 
 tissue<-as.data.frame(tissue) 
 PCs <- data.frame(cbind(PC1,PC2,condition,tissue)) 
 PCA.comp1<-res.pca$eig[1,2] 
 PCA.comp2<-res.pca$eig[2,2] 
  
library(ggplot2) 
library(RColorBrewer) 
  
 mypalette<-brewer.pal(7,"Accent") 

mypalette<c("lightsteelblue1","goldenrod3","grey27","orange1","g
rey0","midnightblue","firebrick1") 

  
p2<-ggplot(PCs) 
 p2<p2+geom_point( 
 aes(PC1,PC2,color=condition,shape=tissue), 
 size=6,alpha=0.4)  
 +scale_colour_manual(values=mypalette) 
 +labs(list(x=sprintf("PC1(%.1f%%)",PCA.comp1), 
 y=sprintf("PC2(%.1f%%)",PCA.comp2))) 
 +theme_minimal(base_size=10,base_family="Helvetica") 
 +theme(legend.position="bottom",text=element_text(size=12), 
 plot.title=element_text(lineheight=.8)) 

+ggtitle("Human Cartilage|Tendon Meta-Set\nPrincipal Component 
Analysis") 

 +scale_shape_discrete(solid=T) 
p2 
 
####################################################################
#Export network topology to Cytoscape for visualization#############  
#################################################################### 
##Choose topological overlap matrix (TOM) for rat or human and 
replace as appropriate 
 
 TOM.human= TOMsimilarityFromExpr(datExprHuman, power = 7); 
 TOM.rat= TOMsimilarityFromExpr(datExprRat, power = 7); 
# Read in the annotation file 
 load("Rat_to_Human_annotations.RData") 
#Select modules 
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 modules =c("green");  ##create vector of modules 
c("green","yellow") 
#Select module probes 
 probes = names(datExprHuman) 
 inModule = is.finite(match(humanColors, modules)); 
 modProbes = probes[inModule]; 

modGenes=annotation2$external_gene_id[match(modProbes, 
annotation2$hsapiens_homolog_ensembl_gene)] 

# Select the corresponding Topological Overlap 
 modTOM = TOM.human[inModule, inModule] 
 dimnames(modTOM) = list(modProbes, modProbes) 
 
 cyt = exportNetworkToCytoscape( 
 modTOM, 
   edgeFile=paste("CytoscapeInput-edges", 
 paste(modules,collapse="-"),".txt", sep=""), 
   nodeFile = paste("CytoscapeInput-nodes-",  
 paste(modules, collapse="-"), ".txt", sep=""), 
   weighted = TRUE, 
   threshold = 0.02, 
   nodeNames = modProbes, 
   altNodeNames = modGenes, 
 nodeAttr = humanColors[inModule]) ##or NULL 
 
save(TOM.rat,TOM.human,file="TOM_for_CYTOSCAPE.RData") 
 
 
 
 
 
 
 
 
 
 

 

[END] 
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!

6 :  De-novo  sequenc ing  and labe l -
f ree  quant i f i ca t ion of  prote ins  
f rom car t i l age  and tendon ce l l s   
 

Abstract 
The complex anionic matrix surrounding chondrocytes and tenocytes in vivo poses 

considerable technical problems in mass spectrometry proteomic surveys of 

cartilage and tendon.  Highly abundant proteins dominate profiles, limit the depth 

of coverage and, therefore, can result in critical loss of data necessary for 

integration with transcriptomic data.  In parallel with a transcriptome profiling 

study a proteomic survey of matrix-depleted chondrocytes and tenocytes was 

undertaken using a tandem mass-spectrometry label-free quantification approach. 

The study returned a depth of coverage for proteins exceeding those found in 

contemporary publications considering cartilage and tendon. Moderate expression 

correlation was found with Affymetrix transcriptomic data, including functional 

annotations and pathway topology analysis.  Anti-correlated elements were also 

defined including the ROCK-inhibitor CHORDC1 revealing regulatory aspects 

the systems profiled.    

Three-dimensional culture systems were found to express high levels of proteins 

associated with oxidative phosphorylation and mitochondrial function.  Fibrin and 

alginate cultures presented 1390 overlapping proteins including chondrogenesis-

associated protein osteoactivin (GPNMB).  Signalling through the PI-3K/Akt and 
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PPAR peroxisome pathways were also predicted in alginate bead cultures from 

protein abundance.   

Given the role of oxidative stress in cartilage pathology and oxidative 

phosphorylation in stem cell differentiation and self-renewal this study contributes 

to a wider understanding of the response to three-dimensional model culture 

systems of cartilage and tendon cells.  Furthermore, peri-cellular matrix depletion 

aids the depth of coverage in both tendon and cartilage proteomic discovery 

studies.      
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6.1: Introduction 
 

6.1.1: General approaches in mass spectrometry  

Investigators face a trade-off in proteomics studies between achieving maximum 

depth, or coverage, of sample analysis and retaining the in situ complexity of the 

sample.  This complexity may relate to the large numbers of proteins present 

and/or the structural components, e.g. extra-cellular matrix, that introduces 

additional obstacles related to sample handling.  There is a loss of connectivity, or 

‘chain of evidence’, between the original sample and the final peptide profile 

wherever there is more than one protein present due to sample losses and 

sensitivity of detection. The ability to robustly define large numbers of proteins 

from peptide mass fingerprints derived from sample proteolysis has been a key 

break-through in high-throughput proteomics (Thiede, Höhenwarter et al. 2005).    

Once solubilized, protein fractions are complex mixtures within which the 

dynamic range of protein abundance is manifold (Bantscheff, Lemeer et al. 2012), 

from moles to attamoles. Complex protein mixtures cannot be analysed efficiently 

and some form of resolving process, or separation methodology, is required.  

Traditionally gel-electrophoresis was used to separate proteins by charge and/or 

mass; resolved protein bands could be cut out of the gel, digested and the resultant 

peptides analysed by mass spectrometry (MS).  

In the contemporary mass spectrometry work-flow MS instruments are coupled 

directly to high-performance liquid chromatography (LC) columns. The input to 

these columns is a peptide mixture derived from digestion of the original sample 

by an enzyme(s), for example trypsin.  Flow through the column(s) is retarded by 
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various fractionation methods (ion exchange, isoelectric focusing) thereby 

reducing the complexity of the peptide mixture before it elutes into the MS 

instrument.  The elution of peptides over time is a key feature in ensuring 

comparability between samples on the same run (Deutsch, Lam et al. 2008). Once 

eluted into the instrument the peptides are ionized in an instrument-dependent 

manner: either electrospray ionisation (ESI) or matrix-assisted laser desorption 

ionisation (MALDI).    

Tandem mass spectrometry, often referred to as MS/MS, now allows the high-

throughput analysis and identification of peptides.  Discovery surveys of the 

proteome are crudely referred to as ‘shot-gun’ proteomics indicating the often 

hypothesis-free nature of these profiling studies.  Intact ionised peptides that are 

injected into the instrument have an initial precursor ion scan, which results in a 

peak in the MS reading.  Dynamically, the instrument selects precursor peptides, 

these are isolated and then subjected to collision fragmentation; the numerous 

resultant fragment ions for each precursor peptide produce the tandem MS spectra 

raw data files.  This output leads on to the bioinformatics techniques, such as de 

novo sequencing, used to assimilate and infer the composition of the original 

protein mixture.    

6.1.2: Discovery projects: comprehensive proteome coverage and 
quantification in mass spectrometry 

Comprehensive proteome coverage is essential where different experimental 

variables are being considered to ensure adequate overlap in the profiles, however, 

a judgement on the completeness of coverage is not straightforward and may 

require preliminary studies to define optimal conditions for maximal protein 

discovery, i.e. coverage saturation.  This may require multiple technical, as well as 
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biological, replicates.  In reality comprehensive projects are likely to define 50-70% 

of the proteome predicted from gene models (Beck, Claassen et al. 2011).  Given 

the advances in liquid chromatography and improved sensitivity of MS 

instruments and data acquisition modern LC-MS systems have the capability to 

identify and quantify in the region of 5,000-10,000 proteins from a given sample 

(Bantscheff, Lemeer et al. 2012).  

Whether a protein is detectable is related to a number of technical and biological 

variables including: sample handling in a manner compatible with MS; solubility 

and digestion protocols; searches of databases with accurate annotation, and any 

additional post-translational modifications (PTMs) that can result in mismatches 

or false negatives if unidentified; finally, proteins may not be transcribed or 

translated within a particular condition.  It is pertinent to point out that in MS 

studies the absence of evidence for a protein’s presence is not evidence for its 

absence (Beck, Claassen et al. 2011).  Correlation between protein abundance and 

gene expression data is only moderate (Thiede, Höhenwarter et al. 2005) and this 

uncoupling between the transcriptome and proteome reflects the different 

processing rates of degradation and stability between the different levels of the 

biological hierarchy (Beck, Claassen et al. 2011, Payne 2015).  Additionally, the 

accurate and reproducible measurement of both mRNA and protein (de Sousa 

Abreu, Penalva et al. 2009), mRNA sequence signatures (Vogel, Abreu et al. 2010) 

and time-delay components (Wang, Wang et al. 2010) all contribute to the 

explanation for the variation between transcriptome and proteome profiles. 

There are a number of options for defining differential abundance between 

samples with each having critical advantages limitations. Those most commonly 

used involve either metabolic (e.g. SILAC) or chemical labeling (e.g. iTRAQ), 
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spiked standards (QconCAT) or label-free methods (e.g. spectral counts, relative 

intensity) (Bantscheff, Schirle et al. 2007, Bantscheff, Lemeer et al. 2012).  In this 

study only label-free relative intensity quantification is used where the direct mass 

spectrometric signal of a peptide precursor ion derived from a particular protein is 

compared to the equivalent in other samples and conditions.     

6.1.3: Key issues in cartilage and tendon proteomics 

Although not explicitly stated many of the issues arising in cartilage proteomics 

may be extrapolated to tendon samples. In general, all studies suffer from under-

representation of low abundance proteins due to the massive dynamic range in 

mixtures; high abundance proteins overwhelm the analysis and obscure other 

relevant, but less abundant components.  Pre-fractionation of samples, for 

example dialysis with molecular weight cut-off filters, differential extraction of 

cellular compartments (Rockstroh, Müller et al.) and/or the depletion of highly 

abundant proteins, e.g. serum albumin, hyaluron, globins etc., is critical to 

improving the depth, or coverage, of analysis (Wilson, Whitelock et al. 2009).  

Enrichment of low-abundance proteins can be achieved by equalization of protein 

abundance in a sample with diverse hexapeptides bound to silica beads; unbound 

abundant proteins, which have saturated binding sites on beads, are washed away, 

whilst low abundance proteins are concentrated, thereby reducing the dynamic 

range of the samples (Boschetti and Righetti 2008, Millioni, Tolin et al. 2011).   

6.1.4: Peri-cellular matrix  

As defined above proteomic surveys benefit from a reduction in the complexity of 

the samples.  In terms of reducing the complexity of samples from cartilage and 

tendon the peri-cellular matrix (PCM) (defined in Chapter 1) needs to be 

considered in addition to the general extra-cellular matrix.  Furthermore, the peri- 
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and extra-cellular matrix of monolayer and model culture systems needs to be 

considered if matrix-reduction strategies targeted at native tissues are used. 

Depletion of the PCM, beyond reducing the sample complexity, would reduce the 

highly anionic network surrounding the cell that can impede LC resolution, ensure 

changes in abundance are more comparable across samples, improve sensitivity of 

detection for low abundance proteins and remove the requirement for choatropic 

agents used to improve the solubility of collagenous samples.   

The peri-cellular matrix of the chondrocyte must be considered as an autonomous 

transducer of biochemical and biomechanical signals from out with the 

chondrocyte and is considered distinct from the extra-cellular or territorial matrix 

(Wilusz, Sanchez-Adams et al. 2014).  The PCM is a narrow cloak that aggregates a 

number of chondrocytes into a structure termed a ‘chondron’, first described by 

Bennighoff almost a century ago (Benninghoff 1925). Unlike the ECM the PCM is 

directly anchored to the plasma membrane (McLane, Chang et al. 2013) and 

extends variably, up to 20µm, from the cell surface.  The peri-cellular matrix of 

tenocytes has been previously discussed in this thesis (Ritty, Roth et al. 2003).  

The composition of the PCM is predominantly type VI collagen, but additionally 

aggrecan, hyaluron, perlecan, biglycan and type IX collagen are present; these 

create a capsular mesh within which the chondrocytes reside. In a proteomic 

analysis of the PCM Zhang, et al (2011) defined the presence of three type VI 

collagen chains, transforming growth factor-beta induced protein (TGF-βI), 

ADAM28 and latent-transforming growth factor beta-binding protein 2 (LTBP2) 

(Zhang, Jin et al. 2011).  As such, the PCM represents an enriched corona of large, 

negatively charged proteoglycans and collagen that would require to be depleted to 

further reduce the complexity of chondrocyte samples.   
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Using particle exclusion assays McLane, et al (2013) found that the PCM 

meshwork was variable in size. The high water content means that the PCM is not 

visible using phase-contrast microscopy, and is easily damaged by histochemical 

techniques (McLane, Chang et al. 2013).  

The various enzymes used to digest extra- and peri-cellular matrix have different 

specificities; dispase, for example, does not cleave type VI collagen (Kielty, Lees et 

al. 1993, Lee, Poole et al. 1997) and was used by Zhang, et al (2011) to 

differentially digest cartilage and retrieve chondrons (Zhang, Jin et al. 2011).  

Pronase effects, in contrast, are directed at proteoglycans in the extracellular 

matrix exposing the collagen fibrils rendering them more susceptible to 

subsequent collagenase digestion (Kuettner, Pauli et al. 1982).  In Kuettner, et al 

(1982) a final single-cell suspension is obtained by the inclusion of a 0.25% trypsin 

digest subsequent to pronase (0.1%) and collagenase (0.4%).  Others have used 

hyaluronidase to deplete peri-cellular hyaluron (Nishida, Knudson et al. 2003),  a 

major component of the PCM (McLane, Chang et al. 2013).   

6.1.5: Study Aims 

Although representing a critical interface between the cell and the extra-cellular 

matrix the PCM coats the cell surface in an anionic mesh, which was hypothesized 

to influence the complexity of the cartilage and tendon samples. 

In order to establish a coherent and comprehensive understanding of the changes 

in cellular protein abundance during environmental transitions to monolayer and 

three-dimensional model cultures a discovery survey of the chondrocyte and 

tenocyte proteome was undertaken using primary isolated cells, passage three cells 
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from monolayer and cells from three-dimensional cultures.  This was undertaken 

in parallel to a transcriptomic survey of the same conditions (Chapter 3).   

It was proposed that by depleting extra- and peri-cellular matrix components a 

greater coverage of the proteome would be possible and low abundance proteins 

would be identified, thereby extending the current understanding of protein 

expression in these tissues.  Furthermore, by performing the analysis in parallel 

with a gene expression study validation of differentially expressed elements would 

be possible across two high-throughput platforms and rational targets and markers 

could be identified using bioinformatics techniques.   

This study sought to establish an optimal peri-cellular depletion method, maximize 

cell yield from small tissue volumes, enrich low-abundance proteins and 

demonstrate consistent differential protein abundance across replicated samples.   
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6.2: Methods 
 

6.2.1: Preparatory studies to define optimal matrix-depletion protocol 

 

Sample origins 

Cartilage and tendon from eight week old, male Lewis rats (n=3, 289 ± 4 g) were 

obtained under the previously described conditions (section 2.2.1). Cartilage 

samples were derived from either pooled hip and knee cartilage or pooled 

shoulder cartilage.  Tendon samples were derived from tail tendon or pooled 

Achilles and deep flexor tendon samples from the fore- and hind-limb.  For 

preparatory studies isolated cells were defined as either native, monolayer or 

model culture as described in section 3.2.1 and Figure 3.2.  Monolayer, alginate 

and fibrin samples were prepared as before, with the exception of the addition of 

20.4 mM CaCl2 to reagents used to re-suspend lyophilized thrombin according to 

Wang, et al (1995) (Wang, Pins et al. 1995).   

Sample handling 

The preparation, handling and storage of samples was made with respect to 

minimizing loss of peptides, with glass and low-adsorption plastic tubes used in 

preference to standard plastics where possible (Kraut, Marcellin et al. 2009, 

Goebel-Stengel, Stengel et al. 2011) 

Peri-cellular matrix digestion protocols 

Tissue dissection was undertaken on sterilized glass Petri dishes.  Tissue was 

washed in warmed PBS; cartilage was ground using glass mortar and pestle; 
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tendon samples were minced as before. Tissue underwent one of two digestion 

protocols:  

a) Shoulder cartilage or tail tendon - standard 0.4% collagenase type II 

(Worthington, as before) for > 12 hours at 37 °C in media free of serum and 

phenol-red;  

b) Pooled hip and knee or Achilles and DDFT - ‘triple digest’ protocol, consisting 

of 60 minute sequential digests of: 0.1% (w/v) pronase E (protease from 

Streptomyces, > 3.5 U/mg, Sigma, #P8811), 0.4% collagenase type II, 5 U/mL 

hyaluronidase (400-1000U/mg Type I-S, from bovine testes, Sigma, #H3506). 

A third method consisting of 0.4% collagenase type II (> 12hrs) followed by 

0.25% trypsin (trypsin from bovine pancreas, >10,000 BAEE units/mg, Sigma, 

#T1426) (90mins) was also used as a development of the first protocol.  All 

enzymatic solutions were filter sterilized.  The triple digest protocol was also 

applied to cell pellets from monolayer and model cultures.  Each step was 

performed at 37 °C in a shaking incubator. Between each digest step samples were 

centrifuged at ~500 x g for eight minutes and the resultant supernatant was 

discarded.  After the final digest samples were washed and centrifuged in warmed, 

sterile PBS. Cell count, particle exclusion assay (below) and trypan-blue viability 

assays were performed on all samples. All protocols were otherwise performed in 

a cell-culture flow hood to maintain sterility and reduce keratin contamination.   

Protein extraction and resolution  

Isolated cells were washed twice in warmed PBS, passed through a 70 µm strainer 

to produce a single-cell suspension, pelleted, then re-suspended in 0.5 mL PBS and 



 464 

EDTA-free protease inhibitor cocktail (cOmplete ULTRA Mini, Roche) and 

transferred to LoBind tubes (Eppendorf AG., Germany).  Protein samples were 

snap-frozen in liquid nitrogen and stored at -80 °C until required.  For each 

tenocytes and chondrocyte sample 103 and 104 cells were stored respectively.  

Samples were stored in Eppendorf LoBind tubes and snap frozen and stored at -

80 °C until required.  Samples were defrosted and sonicated on ice (10 Hz, 50% 

power), three times for each sample with > 1 minute intervals between sonication 

events.  Sonicated samples were passed through 0.22 µm cellulose acetate spin 

columns (Spin-X, CoStar, Corning) to removed cellular debris as per the 

manufacturer’s recommendations.  Total protein concentration was estimated by 

photometric analysis at 650nm (Multiskan™ Microplate Spectrophotometer, 

Thermo Scientific) using the Pierce™ 660 nm Protein Assay (Pierce, Thermo 

Scientific), following the manufacturer’s guidelines, against a bovine serum 

albumin standard curve (range 2000-25 mg/mL) based on a polynomial equation 

raised to the third order.    To concentrate low protein yields from native and 

model culture samples 10 µg were concentrated using an hydroxylated silica slurry 

(StrataClean Resin, Agilent Technologies Inc.) according to the manufacturer’s 

guidelines and re-suspended in standardize volumes of loading buffer for gel 

electrophoresis.   

Gel electrophoresis and staining  

Concentrated samples, including silica beads, were re-suspended in 20 µL Laemmli 

(2% SDS) buffer with dithiothreitol (DTT).  Samples were denatured by heating to 

95 °C for ten minutes then loaded onto 4-12% polyacrylamide gels (NuPAGE® 

Novex® 4-12% Bis-Tris Protein Gels, Life Technologies) and electrophoresed 

under 200 V for thirty minutes in Tris/SDS buffer (pH 8.3).  Molecular weight 
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standards were run in parallel (Novex® Sharp Pre-stained Protein Standard, as 

before).   Gels were washed three times in ultra-pure water and fixed in a 30% 

ethanol|10% acetic acid solution for thirty minutes.  Silver staining was 

undertaken using the Pierce™ Silver Staining Kit (as before). 

Particle exclusion assay    

To demonstrate the absence of PCM around digested cells a particle exclusion 

assay (McLane, Chang et al. 2013) was performed on samples from the preliminary 

analysis using 7 µm microspheres (Carboxyl Latex Beads, 4% w/v, Life 

Technologies) instead of sheep erythrocytes.  Briefly, following digestion protocol 

cells were washed, pelleted and re-suspended in PBS.  Equal volumes (10 µL) of a 

cell suspension and microspheres were mixed and vizualised on a haemocytometer 

under a light microscope.  As the presence of the PCM excludes particles from 

abutting the cell, following digestion particles were anticipated to be in close 

apposition with the cell.   

6.2.2: LC-MS/MS and label-free quantification  

 

Study design and sample preparation  

Study design was comparable to that described in section 3.2.1.  Native, monolayer 

and three-dimensional cultures (n = 24, four biological replicates per condition, 

two tissues) were prepared in parallel with the microarray samples; proteomic 

samples were derived from independent biological replicates.  All samples, tissue, 

monolayer or model cultures all underwent digestion protocols to deplete extra- 

and peri-cellular matrix as described in 3.2.1 and Figure 3.2.  After digestion cells 

were washed once more in PBS, counted, pelleted and re-suspended in 1 mL 
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sterile PBS aliquots with the addition of protease inhibitors. Samples were stored 

at -80 °C in Protein LoBind tubes.  

Samples were thawed and held on ice for sonication. Chondrocyte cell suspensions 

were sonicated first in aliquots required to obtain 2.5 x105 cells (equivalent to 50 

µg protein at 200 pg/cell). Each aliquot was mixed on a vortex mixer and 

sonicated 3 x 10 s at 30% amplitude (delivered from a 3 mm probe of a Sonics 

Vibra Cell™, Jencons Scientific Ltd, UK) with 50 s rest time between pulses.  The 

probe was not washed between aliquots of the same sample but between samples. 

Sonicated samples were held on ice.   

Tryptic digestion 

For chondrocytes, a volume of sample equivalent to ~50 µg protein was added to 

10 µL of Strataclean Resin beads (as before) and the beads mixed for 1 min using 

a vortex mixer. The samples were centrifuged at 2,000 rpm for 2 min and 

supernatant removed and retained. For the native chondrocytes 1.25 mL of sample 

was added in the first round of mixing, followed by consecutive binding with a 

further 1.25 mL of sample. The beads were washed with 1 mL of 25 mM 

ammonium bicarbonate (AmBic) and re-suspended in 80 mL of 25 mM AmBic. 

Five millilitres of 1% (w/v) Rapigest (Waters, UK) was added to the samples 

which were heated for 10 min at 80 °C on a heating block with intermittent mixing 

(400 rpm/15 s on/off). Five millilitres of 9.2 mg/mL DTT was added and after 

brief mixing the samples were heated at 60 °C for 10 min. For the alkylation step 

5 mL of 33 mg/mL iodoacetamide was added and the samples held at room 

temperature in the dark for 30 min. Five millilitres of trypsin (0.2 mg/ mL in 50 

mM acetic acid; Promega Gold) was added and the sample tubes placed in a rotary 
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mixer at 37 °C. After 2 hrs the same amount of trypsin was added to the sample 

tubes, which were incubated overnight. 

The samples were pulse centrifuged and 1 mL of trifluoroacetic acid (TFA) added. 

Of the mixed digest 0.5 mL was spotted onto pH paper to confirm acidity. The 

samples were incubated in a heating block at 37 °C with intermittent mixing 

followed by centrifugation for 30 min at 7 °C. The supernatant digests were 

transferred to 0.5 mL low-bind tubes (as before) and centrifuged for a further 30 

min. 10 mL of each sample was transferred to total recovery vials for MS analysis. 

An SDS-PAGE gel of the digest was run and was clear of bands.  

For tenocytes, the maximum number of cells used for all samples was standardised 

to the native tenocyte sample with the smallest number of cells (130,000, ~26 µg 

protein).  Samples were processed as described above for chondrocytes.   

High resolution LC-MS/MS analysis 

One millilitre of digest (chondrocytes – 500 ng protein equivalent, ~ 250 ng for 

the tenocytes) was injected on-column and chromatographed over a 2 hr gradient 

using a method whereby following a survey scan at 70,000 resolution the top ten 

most abundant peptide ions are fragmented and measured at high resolution 

(35,000) in the Orbitrap analyser to a mass accuracy of 0.01 Da. Each replicate, 

n=12 per cell type, was eluted with 30 minutes wash stages/blank runs between 

conditions (native, monolayer, model cultures).  Chondrocyte and tenocyte 

samples were run on separate days.    

All peptide separations were carried out using an UltiMate® 3000 Nano LC system 

(Dionex, Thermo Fisher Scientific). For each analysis the sample was loaded onto 
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a trap column (Acclaim PepMap 100 Dionex, 2 cm x 75 µm inner diameter, C18, 3 

µm, 100 Å pore size) at 5 µL/min with an aqueous solution containing 0.1% (v/v) 

TFA and 2% (v/v) acetonitrile. After 3 min, the trap column was set in-line with 

an analytical column (Easy-Spray PepMap® RSLC 15cm x 75µm inner diameter, 

C18, 2µm, 100Å) (Dionex). Peptide elution was performed by applying a mixture of 

solvents A and B. Solvent A was high performance LC (HPLC) grade water with 

0.1% (v/v) formic acid, and solvent B was HPLC grade acetonitrile 80% (v/v) 

with 0.1% (v/v) formic acid. Separations were performed by applying a linear 

gradient of 3.8% to 50% solvent B over 95 min at 300 nL/min followed by a 

washing step (5 min at 99% solvent B) and an equilibration step (15 min at 3.8% 

solvent B).  

Mass spectroscopy 

Mass spectrometry was undertaken using a hybrid quadripole-Orbitrap mass 

spectrometer (Q Exactive™, Thermo Scientific) (Michalski, Damoc et al. 2011) 

operated in data dependent positive (ESI+) mode to automatically switch between 

full scan MS and MS/MS acquisition. Survey full scan MS spectra (m/z 300-2000) 

were acquired in the Orbitrap with 70,000 resolution (m/z 200) after accumulation 

of ions to 1x106 target value based on predictive automatic gain control (AGC) 

values from the previous full scan. Dynamic exclusion was set to 20 s. The ten 

most intense multiply charged ions (z ≥ 2) were sequentially isolated and 

fragmented in the octopole collision cell by higher energy collisional dissociation 

(HCD) with a fixed injection time of 120 ms and 35,000 resolution. Typical mass 

spectrometric conditions were as follows: spray voltage, 1.9 kV, no sheath or 

auxillary gas flow; heated capillary temperature, 250 °C; normalised HCD collision 
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energy 30%. The MS/MS ion selection threshold was set to 1 x 104 counts and a 2 

m/z isolation width was set. 

6.2.3: Bioinformatics  

All bioinformatics analysis was undertaken using raw data files (.XML).  Analysis 

of raw data, including de novo sequencing alignment, normalisation, peptide and 

protein identification, and label-free relative quantification was undertaken using 

the PEAKS software, under license (PEAKS®, version 7, Bioinformatics Solutions 

Inc., Waterloo, Canada).     

Tandem mass spectra were used for peptide identification using database 

dependent and independent methods.  Database dependent methods used query 

matching of experimental mass spectra against theoretical peptides generated from 

the Rattus norvegicus (UniProtKB, http://www.uniprot.org/taxonomy/10116) 

reference proteome sequence database (accessed June, 2014) containing 27,344 

entries (Magrane and Consortium 2011).   Both canonical and isoform sequence 

data was queried.   

The following search parameters were used: a) peptide mass tolerance, 10 ppm; b) 

fragment ion mass tolerance, 0.01 Da; c) peptide charge 1+,2+ and 3+; d) trypsin 

was selected as the specific cleavage agent; e) one missed cleavage was permitted.  

Permissible amino modifications were defined as, carbamidomethylation (fixed) 

and oxidation of methionine (variable).  Peptide sequences were also defined 

directly from MS/MS spectra by de novo sequencing. A database decoy-fusion 

method was used in PEAKS® and FDR was set at < 1%.  
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Protein identification, homology searching, PTM and mutations 

For all protein identifications using software modules within PEAKS® – de novo 

sequence, homology searching and post-translational modification/mutation 

analysis – the same filtering parameters were in place.  The false discovery rate was 

set at 0.1%, peptide score ≥ 25, protein score ≥ 20, ≥ 2 unique peptides and an 

average local confidence of ≥ 80% for de novo-only peptides.   

Label-free relative quantification and differential abundance 

Label-free relative quantification was undertaken using the PEAKS Q® 

quantification software based upon the peptide ratios derived from mass spectra 

peak areas.  The concomitant protein ratios were calculated from the top three 

unique peptide peak areas for a particular protein confidently detected in multiple 

samples from the same group.  Peptide features across multiple samples were 

aligned using a combinatorial model for feature matching including a high 

performance retention time alignment algorithm (Lin, He et al. 2013).   

Label-free quantification was undertaken within tissue groups and across all 

conditions or pairwise combinations of conditions as for the microarray studies. 

For all conditions the same parameters were used.  As chondrocyte and tenocyte 

studies were not performed in series these studies were not comparable.  Feature 

detection was performed separately on each sample, but relative intensities of 

peptide features were only calculated where features were detected in multiple 

samples.  To ensure stringency peptide features had to be present in four out of 

twelve samples (i.e. one condition).  For a protein to be called as significantly 

different between native, monolayer or model cultures a -10logP-score of 20 (the 

weighted sum of the –log10 P-scores of the supporting peptides and equivalent to 

a p-value of 0.01) and a fold change > 1 was set.  All other values were left as 
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defaults.  Monolayer culture samples were used as the reference samples to centre 

the retention time alignment.  The total ion current (TIC) of the samples was used 

to calculate the normalisation factors; this was multiplied with the area of each 

feature for the calculation of a sample or group ratio.   

PEAKS Q® does not provide a confidence value for each log2 ratio for 

differentially abundant proteins.  To evaluate whether there was statistical evidence 

for differential abundance of identified proteins between groups the log2 ratios 

were exported to R and analysed using Limma (Smyth 2005), as before, section 

2.2.4.  The false discovery rate was determined by the Benjamini-Hochberg 

method (as before) and adjusted p-values were set at p < 0.05, log2 fold-change > 

1.4, and B statistic (log odds ratio) > 0 set as filtering thresholds for differential 

abundance as used previously (see Chapters 2 and 3).  Only proteins that passed 

this two-step filtering were considered to be differentially abundant between 

samples.    

Correlation of gene expression and protein abundance 

For the native to monolayer comparison Uniprot accession codes from proteins 

with differential expression were converted to Entrez identifiers and common 

gene symbols so that they were comparable with the Affymetrix gene expression 

data (Chapter 3).  These protein lists were then matched to the filtered, 

differentially expressed genes.  Duplicate entries were removed. The log2 fold-

change values were plotted and the Pearson’s product-moment correlation and 

95% confidence interval (CI) calculated for all elements and also for those which 

were only positively correlated.   
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General bioinformatics 

The use of bioinformatics tools for gene ontology functional annotation 

(DAVID), re-annotation (R packages), pathway topology analysis (SPIA), and 

graphical tools has all been described in Chapters 2 and 3.  Ingenuity® Pathway 

Analysis predictions of upstream regulators were based upon pairwise 

comparisons of filtered proteins with significant differential abundance.   
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6.3: Results 
 

6.3.1: Preparatory studies 

Preliminary studies sought to optimise protocols maximising cell harvests and 

protein yield for proteomics and to reduce the complexity of the samples by 

matrix depletion. In initial investigations total cell numbers harvested from 

cartilage were higher using the triple digest protocol of sequential pronase, 

collagenase and hyaluronidase (2.1 x106 ± 6.93 x105) compared to the extended 

collagenase digest alone (9.7 x105 ± 4.7x104), p = 0.02, but samples for each 

technique arose from different tissue locations.  The mean cell harvest from 

collagenase-digested tendon was 5.93 x105 ± 4.2x104 cells; comparison with the 

triple digest protocol was not possible due to the consistent finding of large 

cellular aggregates or ‘rafts’ associated with undigested fibrillar material that did 

not dissociate with gentle agitation.   

Total protein extracts were highly variable between replicates and were not 

significantly different between digest protocols. The protein profiles of native cells 

after each digestion protocol were compared to total protein extracts for 

monolayer and model cultures, Figure 6.1 and 6.2.  

To reduce the inter-sample variability in cell counts and total protein extracted the 

methodology was repeated and standardised for tissue source, tissue volume and 

cell numbers for protein extraction with respect to different matrix depletion 

protocols.  Additionally, to reduce the presence of undigested fibrillar material and 

cell aggregation a 90 minute 0.25% trypsin digest was performed after 20 hour 

0.4% collagenase type II digestion. Cartilage from the hip and knee from two rats 
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(249 ±35 g) were harvested and pooled (0.23 ± 7x10-3 g); tendon was pooled from 

DDFT and Achilles (0.14 ± 2.4 x10-2 g) and tissue digested using one of the two 

described protocols. 

Total protein was extracted from cell pellets of tenocytes (104) and chondrocytes 

(105) derived from each digestion protocol. Silver-stained PAGE is shown in 

Figure 6.3.  In general total protein yields were higher for extended collagenase 

and trypsin digested tissue (range: 64-69 µg/mL) compared to the shorter triple 

digest protocol (range: 47-55 µg/mL) on two replicates.  Total cell numbers were 

also greater in the longer digest period.     

In particle exclusion assays micro-beads were found in close apposition with cells 

liberated from tissue by either digestion protocol (Figure 6.4) indicating that in 

isolated cells the peri-cellular matrix was depleted rapidly.  Cell viability testing 

with trypan blue found that < 10% of cells stained positive in either methodology.   

Given that an extended digestion protocol consisting of sequential collagenase 

type II (0.4%) and trypsin (0.25%) resulted in improved cell harvests and was 

more practical for handling large numbers of samples this was elected as the most 

appropriate method for matrix depletion.   
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Triple digest 

Collagenase digest 

Molecular weight marker 

Figure legend 

Native chondrocytes 

Monolayer chondrocytes 

Alginate chondrocytes 

Figure 6.1:  
CHONDROCYTES: Trans-illuminated, silver-stained, 4-12% polyacrylamide gel loaded with 10μg total protein resolved by electrophoresis.  Images show 
resolved proteins from either i) native chondrocytes ii) chondrocytes from monolayer at passage three, or iii) chondrocytes from alginate following either a 
standard collagenase digest (native chondrocytes) or an extended serial digest protocol, all samples (figure legend).  Native samples do not show the same 
complexity as samples from monolayer and alginate cultures.  Differential banding is evident between conditions, however, between the two digestion 
protocols shown for native samples there are few differential bands except at ~30kDa where a lower MW band is found in collagenase digested 
chondrocytes.  Within each condition there was reasonable reproducibility between biological replicates (n=3).  Monolayer and alginate culture samples were 
run on the same gel and efficiency of  the development of  silver-staining accounts for the over-exposure of  the monolayer samples.   
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Figure 6.2:  
TENOCYTES: Trans-illuminated, silver-stained, 4-12% polyacrylamide gel loaded with 10μg total protein resolved by electrophoresis.  Images 
show resolved proteins from either i) native tenocytes ii) tenocytes from monolayer at passage three, or iii) tenocytes from fibrin following either 
a standard collagenase digest (native tenocytes) or an extended serial digest protocol, all samples (figure legend).  Native samples do not show 
the same complexity as samples from monolayer and fibrin cultures.  Differential banding is evident between conditions, however, between the 
two digestion protocols shown for native samples there are few differential bands other than at ~30kDa as found in Figure 6.1.  Within each 
condition there was reasonable reproducibility between biological replicates (n=3).   

Triple digest 

Collagenase digest 

Molecular weight marker 

Figure legend 

Native tenocytes 

Monolayer tenocytes 

Fibrin tenocytes 
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Figure 6.3:  
Trans-illuminated, silver-stained, 4-12% polyacrylamide gel loaded with 10μg total protein resolved by electrophoresis. Samples represent two 
biological replicates.  Images show resolved proteins from either native chondrocytes (105 cells) or tenocytes (104 cells) following either a 0.4% 
collagenase type II/0.25% trypsin sequential digest (12 hours, plus 90 minutes) or a serial digest protocol (4x90 minutes, see Methods), figure 
legend.  Following extended digestion with collagenase and trypsin native chondrocytes and tenocytes show comparable protein bands.  In 
contrast chondrocytes following a shorter digestion protocol using multiple enzymes displayed differential banding patterns, for example at 
~15kDa.  Tenocytes derived from digestion using a shorter, serial digest protocol resulted in poor total protein yields. Using standardised cell 
numbers rather than relying on estimated protein concentration resulted in improved reproducibility between biological samples.     

Serial multi-enzyme digest 

Collagenase/Trypsin digest 

Molecular weight marker 

Native chondrocytes  

Native tenocytes  

Figure legend 
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A:  Chrondrocyte (x40) 
following:  
a) 0.1% pronase;  
b)0.4% collagenase;   
c) 50 U/mL hyaluronidase;  
d)0.25% trypsin, in 90mins 
sequential digests 

B:  Chondrocyte (x40) 
following  
a)  0.4% collagenase, 20hrs  
b) 0.25% trypsin, 90 min 
digest  

Figure 6.4: Particle exclusion assays permit the visualisation of  the translucent peri-cellular 
matrix (PCM) which surrounds both chondrocytes and tenocytes.  Where the PCM is present 
small particles are unable to abut the cells creating the impression of  a translucent corona.  
Using 7 µm (scale bars) latex micro-beads the presence of  the PCM after either a multi-
enzyme serial digest (A) or a two-stage (B) digestion technique could not be inferred as beads 
(arrows) were all closely associated with isolated cells, even following the first 90 minute 
digest.      
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6.3.2: Shot-gun proteomics study with label-free quantification 

 
Proteomics sample statistics 

The wet weight of cartilage and tendon harvested from samples (n = 12) was not 

significantly different (p = 0.06), however, significantly greater numbers of cells 

were isolated from cartilage (6.3x105 ± 1.5x105) relative to tendon (3.1x105 ± 

1.7x105), p = 3.5x10-5.  There was no statistical difference between the wet-weight 

of the cartilage or tendon tissue harvested for the microarray (Chapter 3) or 

proteomic samples.  

Base-peak ion chromatograms 

Representative base-peak ion chromatograms are presented in Figure 6.5 

(chondrocytes) and Figure 6.6 (tenocytes) derived from separate LC runs.  These 

demonstrated good qualitative comparisons between samples within an 

experimental group in terms of relative signal intensity and retention time. The 

chromatograms are scaled to the most abundant ions and demonstrate a large 

number of peaks across all samples over the whole period of analysis (two hours).  

A contaminant peak, possibly associated with protease inhibitors, was sharply 

defined at the end of each run (data not shown) and was most evident in samples 

where greater sample volumes were required for equivalent protein concentrations, 

i.e. native and model culture systems (data not shown).   
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 Figure 6.6:  Tenocytes 
Representative base-peak LC-MS ion 
chromatograms plotting the relative 
abundance/intensity of  the base 
peak in each spectrum (y-axis) over 
retention time (x-axis).   Peak 
annotations indicate the time (top 
value) and mass-to-charge ratio (m/z) 
(bottom value). The chromatogram is 
scaled to the most abundant ion.   
 
Vertical grid lines are provided to 
highlight common peaks and their 
differences across conditions.   
 
From top-bottom (Figure legend): A 
– Native tenocytes; B – fibrin 
tenocytes; C – monolayer tenocytes; 
D – native tenocytes (alternative 
replicate).    

Native tenocytes 

Monolayer tenocytes 

3D culture tenocytes 

Legend 
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Figure 6.6:  Tenocytes 
Representative base-peak LC-MS ion 
chromatograms plotting the relative 
abundance/intensity of  the base 
peak in each spectrum (y-axis) over 
retention time (x-axis).   Peak 
annotations indicate the time (top 
value) and mass-to-charge ratio (m/z) 
(bottom value). The chromatogram is 
scaled to the most abundant ion.   
 
Vertical grid lines are provided to 
highlight common peaks and their 
differences across conditions.   
 
From top-bottom (Figure legend): A 
– Native tenocytes; B – fibrin 
tenocytes; C – monolayer tenocytes; 
D – native tenocytes (alternative 
replicate).    

Native tenocytes 

Monolayer tenocytes 

3D culture tenocytes 

Legend 
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MS/MS qualitative analysis and protein identification  

The total number of MS/MS spectra and peptide spectral matches to the rat 

Uniprot database are presented in Table 6.1.  In general there was considerable 

qualitative overlap between cells from the same condition, i.e. comparable proteins 

were identified.  Protein groups represent collections of ambiguous (shared) 

peptides assigned to multiple proteins as a result of sequence similarities in the 

Emsembl protein database.    

NATIVE CELLS     

For native cells 2206 (1591 protein groups) and 1872 (1302 protein groups) were 

defined for chondrocytes and tenocytes respectively.  This related to the 

identification of 540 (chondrocytes) and 237 (tenocytes) unique proteins between 

the native cells.  

MONOLAYER 

From passage three cells there were 2419 (chondrocytes) and 2154 (tenocytes) 

identified from 1762 and 1581 protein groups respectively.  As expected there 

were fewer proteins unique to either chondrocytes (386) or tenocytes (191) in the 

monolayer condition as compared to either native cells or three-dimensional 

culture conditions.   

MODEL CULTURES 

For model cultures 2597 (1875 protein groups) and 2441 (1762 protein groups) 

were defined for alginate and fibrin cultures respectively.  This related to 1959 

(alginate) and 1839 (fibrin) unique proteins of which 1390 were confidently 

identified in both alginate and fibrin model cultures.  Relative to fibrin cultures 

there were 569 unique elements found in alginate cultures; conversely 449 unique 
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elements were found in fibrin cultures. Complete protein identification lists are 

found in SD6.    
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 Condition MS 
Scans 

MS/MS 
Scans 

Identified Peptide 
Spectrum Matches 

Groups 
(SPIDER) 

Proteins 
(SPIDER) 
 

De novo only Without 
duplicate 
proteins 

Unique to 
condition  

Native chondrocytes  
 

44147 93267 53453 1591 (1632) 2206 (2258) 4743 1695 540 

Native tenocytes 49389 82174 43751 1302 (1326) 1872 (1904) 2973 1392 237 

Monolayer chondrocytes 41212 100689 66593 1762 2419 5302 1827 386 

Monolayer tenocytes  41967 98476 61254 1581 2154 5818 1632 191 

Alginate model cultures  46200    89925 58430 1875 2597 3537 1959 569 

Fibrin model cultures  40775 100605 62067 1762 1441 7737 1839 449 

Table 6.1: Qualitative assessment of  mass spectrometry data – database search parameters were the same for all analyses.  Filtering settings 
common to all conditions:  peptide FDR<0.1%; peptide -10logP score ≥25, protein -10logP score ≥20; proteins unique peptides≥2, de novo 
average local confidence ≥80%.  Homology search results from SPIDER algorithm in PEAKS shown in parentheses.  Unique to condition 
refers to a comparison of  identifiers between chondrocytes and tenocytes from native, monolayer or model culture groups.     
 
Table 6.2: Differential abundance statistics across a) chondrocyte study, b) tenocyte study.  Available study proteins – total number identified 
across all analysis at thresholds set in Methods.  Total differential abundance – remaining after statistical threshold filtering.  Only unique 
identifiers are retained for further functional analysis.  Higher/Lower – relative abundance in stated pairwise comparison.   

Comparison Available study proteins Total differential abundance Filtered (Unique) Higher Lower  

Native > Monolayer 1421   1031 937 158 780 

Monolayer > Alginate - 756 630 428 203 

Alginate > Native - 838 718 553 165 

a. 

Native > Monolayer 1402  926 835 72 763 

Monolayer > Fibrin - 884 806 384 422 

Fibrin > Native - 988 895 819 76 

b. 
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6.3.3: Label-free relative quantification  

 
Dimensionality reduction  

Principal component analysis of log2 ratios from either chondrocyte or tenocyte 

studies demonstrated strong clustering into three conditional groups: native cells, 

monolayer at passage three, and model cultures, Figure 6.7.  There was strong 

intra-condition correlation in relative protein abundance (>0.9) for each sample.   

Following filtering for differential abundance, samples were assessed by 

unsupervised hierarchical clustering, Figure 6.8 and 6.9.  Both chondrocyte and 

tenocyte studies clustered by condition.  For chondrocytes there was co-clustering 

between native chondrocytes and alginate cultures; native tenocytes co-clustered 

with monolayer tenocytes with fibrin constructs within a separate clade.  

Gene Ontology functional annotations 

Uniprot accession codes were re-annotated with unique Entrez gene identifiers 

and used to functionally annotate those proteins with significant differential 

abundance, Figure 6.8 and 6.9.   

Proteins more abundant in native chondrocytes were associated with biological 

process terms relating to ‘carbohydrate metabolic process’, ‘regulation of biological 

quality’ and ‘positive regulation of bone resorption’. 

Monolayer cells were abundant in proteins associated with ‘actin filament-based 

process’ and ‘cellular metabolic process’.  Three-dimensional model cultures were 

found to be enriched for terms associated with ‘oxidation reduction’ and 

‘generation of precursor metabolites and energy’.   
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Figure 6.8 : Heatmap – chondrocyte proteins defined as having significant differential 
abundance by PEAKS Q software (log2 ratios).  Conditions (columns) show distinct 
changes in protein abundance (rows).  Five groups are defined by a vertical line 
bisecting clades (row dendrogram) and proteins within these groups are functionally 
annotated using DAVID (FDR<0.01) – CC: Cellular component; BP: Biological 
process; MF: Metabolic function; KEGG – canonical pathway annotations.  Higher 
abundance is show red, lower by green (colour key) – heatmap is scaled by row.   
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Figure 6.9 : Heatmap – tenocyte proteins defined as having significant 
differential abundance by PEAKS Q software (log2 ratios).  Conditions 
(columns) show distinct changes in protein abundance (rows).  Three 
groups are defined by a line bisecting clades (row dendrogram) and 
proteins within these groups are functionally annotated using DAVID 
(FDR<0.01) – CC: Cellular component; BP: Biological process; MF: 
Metabolic function; KEGG – canonical pathway annotations. Higher 
abundance is show red, lower by green (colour key) – heatmap is scaled 
by row.    
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Differential abundance 
 
CHONDROCYTES: 

After filtering and the removal of duplicate entries there were 937 proteins 

considered to be differentially abundant between native and monolayer 

chondrocytes, Table 6.2a.  For native cells the most highly abundant proteins 

were dominated by erythrocyte-associated proteins: HBA, HBB, NOS2, LGALS5. 

Proteins related to extracellular matrix interactions including cartilage oligomeric 

matrix protein (COMP), chondroadherin (CHAD), integrin-binding sialoprotein 

(IBSP) and the collagens type II, alpha 1, and type XI, alpha 2, were more 

abundant in native chondrocytes.  Proteins with known osteoarthritis associations 

were also more abundant: 14-3-3 epsilon (YWHAE), inositol triphosphate 

receptor, type 2 (ITPR2) and tartrate-resistant acid phosphatase type 5 (ACP5).   

Monolayer chondrocytes at passage three were more abundant in proteins 

associated with actin filament-based processes, ACTN1, ITGB1 and debrin, and 

collagen fibril organization– annexin 2, collagen type III and V, and TGF-β2.  The 

proteins thrombospondin 2 and 4, the mesoderm development candidate 2 

(MESDC2), follistatin-like 2 (FSTL2) and CCN-family protein CCN2/connective 

tissue growth factor were also more abundant in monolayer culture than in native 

chondrocytes.  Full differential abundance lists for all pairwise comparisons are 

provided in SD6.  

Chondrocytes in alginate demonstrated higher relative abundance of 

chondrogenesis-associated proteins including the DCC (deleted in colorectal 

cancer) ligand netrin 1 (NTN1), transmembrane glycoprotein NMB/osteoactivin 

(GPNMB), and ADP-ribosyl cyclase 2 (encoded by bone marrow stromal cell 

antigen, BST1).  Other notable proteins were associated with oxidation-reduction 
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(COX2, MAOA, TRAP1, SOD2) and nitrogen compound metabolic processes 

(CHI3L1, STAT3).  

TENOCYTES: 

There were 835 proteins that were found to be differentially abundant between 

native tenocytes and monolayer, Table 6.2b.  Native tenocytes were represented 

by higher abundance of proteins associated with biological adhesion, cartilage 

oligomeric matrix protein, and the lysosomal integral membrane protein/LIMP2, 

encoded by SCARB2.  Other lysosome-associated proteins, LAMP1 and LAMP2, 

were also more abundant.  Proteins associated with lipid biosynthetic process, 

prostacyclin synthase (PTGIS) and the regulator of phosphatidylinositol levels 

phosphatidate cytidylyltransferase 2, encoded by CDS2, were found at higher 

levels in native tenocytes. 

In monolayer tenocytes proteins involved with the regulation of cytoskeletal 

organization and microtubule dynamics were more abundant including the 

integrin-linked kinase (ILK) and stathmin 1 (STMN1).  Actin filament-based 

processes were defined by the high abundance of debrin 1 (DBN1), integrin beta 1 

(fibronectin receptor beta) and myosin, light chain 6 in passage three tenocytes.   

As found with chondrocytes MAPK1 and MAPK3 mitogen activated protein 

kinases, associated with regulation of gene expression, were more abundant in this 

monolayer condition.   

Associated with tenocytes in fibrin culture was the higher expression the Bmp-

antagonist gremlin 1 (GREM1) and osteoactivin (GPNMB) relative to native 

tenocytes.  As with alginate cultures ‘oxidative phosphorylation’ was a significantly 

enriched functional annotation and was related to the higher abundance of PTGS1 
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and 2, MAOA and LEPREL1. The MSC marker THY-1/CD90, the fibronectin 

receptor integrin beta 1 and transforming growth factor, beta induced (TGF-βI), 

and catenin, beta 1 (CTNNB1) were all found at higher levels in fibrin constructs.  

The overlap of differentially abundant proteins between the chondrocyte and 

tenocyte studies is presented in Figure 6.10.  Tenocytes and chondrocytes shared 

differential abundance of 501 proteins in the comparison between native cells and 

monolayer.  Fewer proteins were common to both cell types when the comparison 

between native cells and those in model cultures was made, 304 proteins.  This is 

consistent with the divergence of alginate and fibrin cultures shown in the 

Affymetrix gene expression profiles in Chapter 3.     

Pathway topology analysis  

Over-representation analysis of KEGG pathways is provided in Figure 6.8 and 

6.9.  Using Entrez gene identifiers pathway topology analysis was used to define 

significantly perturbed pathways, Figure 6.11 and 6.12.  For native to monolayer 

transitions the ‘focal adhesion’ and ‘regulation of actin cytoskeleton’ pathways 

were predicted to be activated for both chondrocytes and tenocytes, SD6.16 - 

6.17.  For chondrocytes the PI-3K-signalling pathway was shown to be perturbed 

in all comparisons with activation predicted in both native and monolayer cells.   

In the monolayer to model culture transition for both cell types the ‘Parkinson’s 

disease’ and ‘Alzheimer’s disease’ pathways were predicted to be inhibited, 

however, there was conflicting evidence for the activation status of other pathways 

with ‘focal adhesion’ predicted to be activated in chondrocytes, whilst inhibited for 

tenocytes.  For alginate cultures the ‘HIF1 signaling’ pathway was activated and 
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‘PI-3K signaling’ inhibited; in comparison for fibrin cultures the ‘Jak-STAT’ 

pathway was predicted to be activated along with ‘regulation of actin cytoskeleton’.   
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A B

C D

Native Chondrocytes to Monolayer
Native Tenocytes to Monolayer
Native Chondrocytes to Alginate
Native Tenocytes to Fibrin

Euler Diagram of Differentially Abundant Proteins

A:C - Common to monolayer and 
alginate comparisons from native 
chondrocytes (n=516): 
•  Gene Ontology annotation  
BP: mRNA processing | Cellular 
metabolic process | Carboxylic acid 
metabolic process | Translational 
elongation  

B:D - Common to monolayer 
and fibrin comparisons from 
native tenocytes (n=505): 
•  Gene Ontology annotation  
BP: Translational elongation | 
O x i d a t i o n r e d u c t i o n | 
Gene r a t i on o f  p r ecu r so r 
metabolites and energy | Protein 
fo ld ing |Ca rboxy l i c a c i d 
metabolic process 

A:B - Common to monolayer from 
native cells (n=501): 
•  Gene Ontology annotation  
BP: Translation elongation | Cellular 
protein metabolic process | Amino 
acid activation | Actin filament-based 
process  

C:D - Common to model cultures 
from native cells (n=304): 
•  Gene Ontology annotation  
B P : O x i d a t i o n r e d u c t i o n | 
Generation of  precursor metabolites 
and energy | Oxoacid metabolic 
process | Lipid catabolic process  

Figure 6.10 – Euler diagram showing shared proteins for each comparison across chondrocyte and 
tenocyte studies (figure legend).  Common proteins are annotated by biological process terms using 
DAVID.  A:C represents proteins common to both comparisons in chondrocytes; likewise, B:D shows 
proteins common to tenocyte comparisons.  Across chondrocyte and tenocyte studies gene ontology 
studies show enrichment for biological process annotations found when studies are considered 
independently. There is greater overlap in proteins between native to monolayer comparisons (A:B) 
than between native to model culture comparisons (C:D); this concurs with the  greater overlap of  
differentially expressed genes from monolayer and a divergence in profile for model conditions shown 
by the Affymetrix data in Chapter 3.       

718 

933 829 

895 

Native chondrocytes to monolayer  

Native tenoocytes to monolayer  

Native chondrocytes to alginate  

Native tenoocytes to fibrin  

Figure legend 
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•  ECM-receptor interaction:  
     Comp, Chad, Col2a1, Col11a2, Ibsp, Spp1  
•  Multicellular organismal homeostasis: 
     Gpx1, Acp5, Coro1a; 
•  Macromolecule localization:  
     Hgs, Adfp, Myo6, Ywhae   
•  Notable:  
     Alpl, Ptgs2, Itpr2, S100a1 

Figure 6.11: Functional annotation of  key proteins with significant differential abundance - chondrocytes.  Associated terms relate to gene 
ontology groups from which representative proteins were collected.  Terms are not always significant due to small numbers of  proteins but 
provide summary functional annotations for proteins with strong evidence for differential abundance.  Central schematic (figure legend) 
indicates the different pairwise comparisons; associated with each are the KEGG canonical signalling pathways are the most significantly 
perturbed pathways and their predicted status: (+) activated, (-) inhibited.   

•  Nitrogen compound metabolic process: Chi3l1, Sept9, Stat3 
•  Oxidation reduction: Cox2, Ogdh, Maoa 
•  Fatty acid beta-oxidation: Crat, Decr1, Hsd17b4 
•  Cartilage development: Ctgf, Mapk3, Tgfb2 
•  Bone resorption: Tpp1, Xdh, Ctnnb1 
•  Notable: Ntn1, Gpnmb, Stat1,4 and 6, Icam1, Bst1  

| KEGG 
+ Focal Adhesion  
+ ECM-receptor interaction 
+ PI3K signalling pathway 
  
- Parkinson’s disease 
- Alzheimer’s disease  
- Huntingdon’s disease 

| KEGG 
+ Parkinson’s disease  
+ HIF1 signalling pathway 
  
- Alzheimer’s disease  
- Huntingdon’s disease 
- PI3K signalling pathway  

•  Actin filament-based process:  
    Actn1, Itgb1, Dbn1 
•  Gene expression:  
    Ctnnb1, Edf1, Ccar1 
•  Regulation of  translation:  
    Mapk1, Mapk3, Eif4e 
•  Collagen fibril organisation: 
    Anxa2, Col3a1, Col5a1, Col5a2, Tgfb2 
•  Notable: Thbs2, Thbs4, Gsk3b, Fstl2, Mesdc2 

| KEGG 
+ Focal Adhesion  
+ Regulation of  actin cytoskeleton 
+ PI3K signalling pathway 
  
- Prion diseases 
- HIF1 signalling pathway  

• •

Native chondrocytes 

Monolayer chondrocytes 

3D culture chondrocytes 

Figure legend 

•• •
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•  Transport:  
     Adfp, Kdelr1, Sdhd 
•  Generation of  precursor metabolites and energy: 

Atp5f1, Nd2, Sod2 
•  Lipid biosynthetic process:   
     Cyb5r3, Ptgis, Ccds2   
•  Biological adhesion:  
     Comp, Mfge8, Scarb2 

•  Translation elongation:   Cnn1, Myl6, Dbn1 
•  Oxidation reduction:   Ptgs1, Ptgs2, Maoa, Leprel1 
•  Carbohydrate metabolic process:  Bgn, Slc3a2, Hk2 
•  Response to oxidative stress:  ApoE, Mmp14, Map2K1 
•  Cell differentiation:    Thy1, Itgb1, Tgfbi, Ctnnb1, Stat3 

•  Actin filament-based process:  
     Cnn1, Myl6, Dbn1 
•  Regulation of  cytoskeletal organisation: 
     Cfl1, Stmn1,  Lima1 
•  Oxidation reduction: Plod1-3, Sod1, Txn1  
•  Monosaccharide metabolic process:   
     Cryab, Mdh1, Fabp5  
•  Extracellular matrix:  
     Col3a1, Col5a1, Fn1, Mmp3, Ctgf, Ccdc80, Spp1 

| KEGG 
+ Focal Adhesion  
+ Regulation of  actin cytoskeleton 
+ Parkinson’s disease  

| KEGG 
+ Huntingdon’s disease 
+ Prion diseases 
  
- Parkinson’s disease 
- Alzheimer’s disease  
- Focal adhesion 

| KEGG 
+ Regulation of  actin cytoskeleton 
+ Jak-STAT signalling pathway 
  
- Parkinson’s disease  
- Alzheimer’s disease  
- Huntingdon’s disease 

- Prion diseases 
- ErbB signalling pathway 

•

Native tenocytes 

Monolayer tenocytes 

3D culture tenocytes 

Legend 

•

•• •

Figure 6.12: Functional annotation of  key proteins with significant differential abundance - tenocytes.  Associated terms relate to gene 
ontology groups from which representative proteins were collected.  Terms are not always significant due to small numbers of  proteins but 
provide summary functional annotations for proteins with strong evidence for differential abundance.  Central schematic (figure legend) 
indicates the different pairwise comparisons; associated with each are the KEGG canonical signalling pathways are the most significantly 
perturbed pathways and their predicted status: (+) activated, (-) inhibited.   
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6.3.4: Moderate correlation between gene and proteomic expression 
data  

For the native chondrocyte to dedifferentiated chondrocyte transition there were 

320 elements matched across the two datasets.  Overall these elements were 

moderately correlated, r = 0.56 (tdf = 318, p < 2.2e-16, 95% CI: 0.48-0.63), Figure 

6.13; when only those elements with matched fold-change direction were 

considered this was improved, r = 0.88 (tdf = 240, p < 2.2e-16, 95% CI: 0.79-0.87).  

There were 42 elements more highly expressed in native chondrocytes that shared 

directional change in both gene expression and protein abundance surveys.  These 

included known chondrogenic markers including collagen type 2 (COL2A1) and 

collagen type IX, chondroadherin (CHAD), integrin-binding sialoprotein (IBSP), 

matrix metalloproteinase MMP3, HAPLN1 (link protein), PRG4 (lubricin), in 

addition to more novel cartilage-associated proteins: calcium channel ITPR2 

(inositol 1,4,5-trisphosphate receptor, type 2), and products associated with matrix 

mineralization, SPP1/osteopontin. Others had no known association with 

cartilage: dynamin (DNM1), serine protease inhibitor SERPINB1A, and 

glutathione-S-transferase.   

For elements with higher expression in monolayer chondrocytes there were 200 

that shared directional change.  The following were noted: carbonic anhydrase 

CAR9, COL5A2, transgelin (TAGLN), the lectin LGALS1, thrombospondin 2 

(THBS2), stathmin (STMN1). The only element with high anti-correlated 

expression was CHORDC1/morgana protein (Cysteine And Histidine-Rich 

Domain (CHORD) Containing 1).  
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For the equivalent transition for tenocytes there were 231 elements with were 

found in both datasets with moderate correlation in effect size, r = 0.41, (tdf = 329, p 

< 1.2e-10, 95% CI: 0.29-0.51), Figure 6.14.  There were 13 elements found to be 

more highly expressed in native tenocytes relative to monolayer including, 

superoxide dismutase 2 (SOD2), serine (or cysteine) peptidase inhibitor, clade E, 

member 2 (SERPINE2), perilipin 2 (PLIN2) and prostaglandin I2 (prostacyclin) 

synthase (PTGIS).  In monolayer, there were 175 elements found to be common 

to both analyses and shared directional change.  Those with the highest correlation 

included: integrin, alpha 11 (ITGA11), neural cell adhesion molecule 1 (NCAM1), 

coiled-coil domain containing 80 (CCDC80) and Thy-1 cell surface antigen 

(THY1/CD90).  For tenocytes CHORDC1 was also highly anti-correlated.    
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Differentially Expressed Elements Common to Microarray and Proteomic Studies
 Native Chondrocytes vs. Monolayer Chondrocytes

HBA1 
CHAD 
CLEC3A 
NOS2 
F13A1 
LOC287167  

LCP1 
HBB-B1 
SERPINB1A 
ACE 
IBSP 

LGALS 
TAGLN 
GRB14 

CHORDC1 

Figure 6.13: Correlation scatterplot – chondrocytes.  Relative abundance (log2 fold 
change) of  proteins (x-axis) in native to monolayer transition for chondrocytes is plotted 
against differential expression (log2 fold-change) for genes (y-axis) from the Affymetrix 
data.  Dark data points indicate correlated elements (shared direction of  fold change); 
light points indicate anti-correlated (no match) elements.  Only the most highly 
correlated are labeled.  CHORDC1 is found as an anti-correlated protein in both 
chondrocytes and tenocytes.  Annotated lists are found in SD6.   
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SLC2A1 
 

CHORDC1 

Figure 6.14: Correlation scatterplot –tenocytes.  Relative abundance (log2 fold 
change) of  proteins (x-axis) in native to monolayer transition for tenocytes is plotted 
against differential expression (log2 fold-change) for genes (y-axis) from the 
Affymetrix data.  Dark data points indicate correlated elements (shared direction of  
fold change); light points indicate anti-correlated (no match) elements.  Only the most 
highly correlated are labeled.  Few gene and proteins from native tenocytes are found 
in both data sets; the majority of  elements arise from monolayer data.  Annotated lists 
are found in SD6.   
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6.3.5: Oxidative phosphorylation associated proteins are robustly 
expressed in three-dimensional cultures 

Transcriptome profiling had found elevated levels of pro-inflammatory 

chemokines in three-dimensional cultures.  Considering the protein abundance of 

these cultures found proteins strongly associated with the KEGG canonical 

signalling pathway ‘oxidative phosphorylation’ (Figure 6.8) in the alginate to 

native chondrocyte comparison, Figure 6.15.  Proteins associated with 

mitochondrial dynamics, optic atrophy 1 (OPA1, C-M-T disease 1A) and 

cytochrome C subunits were more abundant in alginate cultures than either native 

or monolayer chondrocytes.  Fibrin cultures shared comparable annotation for 

oxidative phosphorylation.   

6.3.6: Common upstream regulators predicted to relate to PPAR and 
PI-3K signaling in alginate cultures  

Analysis of alginate and native chondrocyte protein profiles using Ingenuity® 

Pathway Analysis defined the most significant canonical pathways as 

‘mitochondrial dysfunction’, ‘oxidative phosphorylation’ and ‘EIF2 signalling’.  

Upstream regulators were predicted for the protein profile and these including 

small molecule agonist of PPARα signalling, pirinixic acid (z-score = 2.19, p = 

4.1e-14, 258 proteins were downstream targets of 17 regulators) Table 6.3, and 

transcription factors associated with PPARα and PI-3K signalling, Figure 6.16. 

The signal transducer and activator of transcription 3 protein (STAT3) was 

consistently associated with predicted mechanistic networks. In this analysis 

STAT3 is more highly abundant in alginate beads than in native cells; this was 

consistent with Illumina and Affymetrix gene expression analysis.   
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Figure 6.15 – Heatmap of  log2 ratios for chondrocyte 
conditions using proteins enriched for the KEGG 
canonical signalling pathway ‘oxidative phosphorylation’.  
Consistent with an understanding of  glycolytic pathways 
being the main ATP source in chondrocytes from 
cartilage oxidative phosphorylation associated proteins are 
highly abundant in chondrocytes from alginate cultures.     

Native chondrocytes 

Monolayer chondrocytes 

Alginate chondrocytes 

Condition  

P
ro

tein
s 
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Figure 6.16 – Predicted upstream regulators 
and mechanistic network defined by IPA for 
alginate relative to native chondrocytes.  
 
A: In the predicted mechanistic network the 
agonist of  PPAR� signalling, pirinixic acid, is 
predicted to be associated with the following 
downstream targets 
 

B:  Mechanistic network overlaid with proteins 
found to be differentially abundant between 
chondrocytes in alginate culture and native 
chondrocytes (see figure legend for colour 
key).  Of  the predicted upstream regulators 
STAT3 was more abundant in alginate beads.  
Using IPA it was predicted that the profile of  
protein abundance was consistent with 
inhibition of  PPAR� signalling in native 
chondrocytes and TNF-mediated signalling in 
alginate cultures.  Proteins with known 
associations with upstream regulators found to 
be more abundant in alginate beads included 
CNN2/CTGF, SERPINE2 and CTNNB1.  
Functional annotations associated with all 
proteins in the network included ‘development 
of  cardiovascular system’ (activated, 
p=2.1e-19) and ‘differentiation of  connective 
tissue’ (inhibited, p=3.73e-20).   

B. 

A. 
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Comparison Pirinixic acid D3T 

Native to monolayer -4.43 (p=1.23e-11) -6.04 (p=2.23e-37) 

Monolayer to alginate 3.37  (p=1.23e-23) 4.69 (p=3.4e-27) 

Alginate to native 2.19 (p=4.8e-14) Not represented 

Native to monolayer -5.05 (p=2.02e-12) -7.3 (p=6.52e-40) 

Monolayer to fibrin 1.4 (p=2.81e-16) 1.9 (p=5.9e-20) 

Fibrin to native 3.06 (p=4.5e-14) 6.01 (p=2.24e-29) 

C
ho

nd
ro

cy
te

s 
T

en
oc

yt
es

 

Table 6.3: Chemical reagents (columns) used by Ingenuity Pathway Analysis as 
proxy regulators of  signalling pathways based upon differentially abundant proteins 
in A) chondrocytes and B) tenocyte comparisons (rows).  Cells represent activation 
z-score and overlap p-value.  The actions of  the PPAR-alpha agonist pirinixic acid 
and the anti-oxidant 1,2 dithiol-3-thione (D3T) are both shown to be consistent 
with the protein abundance profiles in monolayer and three-dimensional cultures 
(excluding alginate to native chondrocyte comparison).   

A. 

B. 
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6.4: Discussion 
 

6.4.1: Study design and limitations 

In a review of cartilage proteomic surveys Hsueh, et al (2014) found that between 

14 and 814 proteins could be identified, depending on the methods used and 

whether whole tissue or in vitro chondrocytes were profiled (Hsueh, Önnerfjord et 

al. 2014).  Relative to these studies the profiling of matrix-depleted native cells in 

this study resulted in higher numbers of differentially abundant proteins, greater 

than 1800 across both chondrocytes and tenocytes.  This exemplifies the trade-off 

between the depth of coverage achieved with mass spectrometry and the accurate 

representation of the native state.  Additional levels of statistical analysis and post-

hoc filtering were employed to ensure that only the most robust changes were 

retained for differential abundance analysis.  The large number of confidently 

identified and differentially abundant proteins permitted the use of over-

representation analysis for functional annotation and pathway topology analysis 

methods and facilitated significant descriptors to be derived from them.   

This study was unusual in that it surveyed both gene expression and protein 

abundance in parallel with sample collection and culture periods temporally 

matched.  Consistent sample handling, awareness of cell culture media 

contaminants (phenol red), application of multiple wash phases, use of glass and 

low-affinity plastic storage tubes, the depletion of abundant, anionic matrix and 

local technical expertise were all practices that may have contributed to the 

identification of large numbers of proteins and the high intra-sample correlation in 

proteomic profiles.   
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The principal limitation was the number of cells available for analysis, especially 

for native tenocytes and three-dimensional culture samples.  Although 

methodologies exist for the co-extraction of RNA and protein the low cell yield 

from samples in the preliminary study indicated that paired biological replicates 

would not be possible.  Furthermore, for the same wet weight, tendon consistently 

yielded fewer cells than cartilage and required special attention to ensure optimal 

digestion of fibrillar material (Ritty, Roth et al. 2003).  Sample handling in this 

study was not optimal with cells frozen as suspensions in PBS with protease 

inhibitors rather than as cell pellets.  This did influence the concentration of 

protein that was loaded on the LC for tenocytes, but did not ultimately appear to 

have adversely influenced the number of proteins identified with comparable 

numbers identified in both native cell groups.   

The depletion of extra- and peri-cellular matrix (PCM) results in a loss of 

information relating to proteins with key roles in cartilage and tendon 

homeostasis, for example integrins and other plasma membrane proteins 

(Iliopoulos, Gkretsi et al. 2010), though some were represented in this analysis.  

An assumption of PCM depletion was based upon a particle-exclusion test, which 

although cheap and quick to perform limited assessment to individual cells tested 

from aliquots in preliminary studies, i.e. it gave no indication as to the overall 

sample reduction in PCM components for the final analysis.  Validation of type VI 

collagen depletion by Western blotting or loss of Alcian blue staining for 

polysulphated proteoglycans would have provided more robust qualitative 

indicators of PCM depletion.  The low fold-changes associated with extra-cellular 

matrix proteins and the lack of ECM-associated annotations from differentially 
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abundant proteins would suggest that depletion approach was effective, however 

all three collagen type VI alpha chains were found to be differentially abundant.        

This study utilized the linear Bayes moderated t-test within Limma (Smyth 2005) 

applied to the gene expression data to provide a comparable way of filtering the 

data and providing a confidence value to the identification of differentially 

abundant proteins.  This approach is now relatively commonly used in the 

proteomics literature (Katayama, Paczesny et al. 2009, Ting, Cowley et al. 2009, 

Schwämmle, León et al. 2013, Wanner, Subbaiah et al. 2013) and, as such, is a 

valid methodology within this context.  Absolute or labeled-relative quantification 

would be an obvious step to validate differential abundance in proteins of interest.    

6.4.2: Oxidative phosphorylation in three dimensional culture systems 

Given the considerable overlap in protein surveys from different cells sources and 

conditions there is confidence in the significantly enriched functional annotations 

presented. ‘Oxidative phosphorylation’ and ‘oxidation-reduction’ were the 

consistent descriptors for three-dimensional model cultures as compared to ‘actin 

filament-based processes’ for monolayer cultures.  In tandem with these findings 

across all comparisons canonical signalling pathways associated with 

neurodegenerative conditions were strongly enriched and shown to have 

differential, although conflicted, activation status. Furthermore, proteins associated 

with metabolic processes – carbohydrate and fatty acid metabolism  - abounded.   

How these findings are interpreted is conditional upon the view taken of the 

nature of cells in three-dimensional cultures, i.e. whether they represent a 

regenerative, re-differentiating population, or the representation of a degenerative 

state.  These findings also have relevance to the use of mesenchymal stem cells for 
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cartilage directed-differentiation studies or defining populations of adult tissue 

stem-cells.  On this basis the relevance of oxidative phosphorylation (OXPHOS) 

to musculoskeletal biology should be considered.   

OXPHOS is the metabolic process of ATP synthesis in mitochondria at the 

expense of respired oxygen.  Redox reactions, where electrons are transferred 

from donors (NADH from the citric acid cycle) to acceptors, for example oxygen 

(terminal acceptor), along the electron transport chain release energy used to 

reform ATP from ADP.  The addition of a phosphate group to ADP is driven by 

proton gradients created by the harnessing of energy released in the electron 

transport chain to drive proton pumps (Alberts, Bray et al. 1998).  The terminal 

electron acceptor in the respiratory chain is oxygen, which with the addition of 

four electron and two protons forms water.  Although this is efficient a small 

number of electrons will partially reduce oxygen, with the addition of only one or 

two electrons, to produce harmful reactive oxygen species superoxide and 

peroxide.  

In both the gene and protein surveys of native, monolayer and model culture 

conditions over-representation and pathway topology analysis have implicated the 

KEGG canonical pathways for the neurodegenerative diseases: Parkinson’s, 

Huntington’s and Alzheimer’s.  Initially this does not seem intuitive to the 

understanding of musculoskeletal cell biology, however, given the considerable 

evidence supporting mitochondrial dysfunction in these three conditions (Correia, 

Santos et al. 2012, Johri and Beal 2012) the annotation of these proteomics data 

set with neurodegenerative pathways is a consequence of the component proteins 

having associations with mitochondrial homeostasis and/or dysfunction.  This 

would indicate the importance of OXPHOS and redox balance for homeostatic 
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mechanisms in chondrocytes and tenocytes.  For example, this study presents 

evidence for high abundance of proteins associated with mitochondrial dynamics 

and fission/fusion, OPA1 (optic atrophy 1) in model cultures and MFN2, 

mitofusin-2, (associated with Charcot-Marie-Tooth type 2A) in fibrin cultures.   

OXPHOS in chondrogenesis and regeneration       

The process of OXPHOS has relevance to the condensation and differentiation of 

chondrocytes.  Using a bioluminescent monitoring system Kwon, et al (2012) 

found that ATP oscillations were dependent on glycolysis, oxidative 

phosphorylation and Ca2+ levels, and were synchronized by gap junctions across 

chondrocytes during condensation (Kwon, Ohmiya et al. 2012).  This 

condensation was retarded by blockade of the ATP oscillations. The authors 

concluded that this type of synchronized oscillatory activity during condensation 

would be relevant to the periodic secretion of adhesion molecules and ECM 

during condensation.   

Chondrocytes are known to reside in hypoxic conditions (Pfander and Gelse 

2007), have few mitochondria, and generate the majority of their ATP (> 90%) by 

anaerobic glycolysis rather than OXPHOS (Otte 1991, Martin, Martini et al. 2012) 

yet hypoxia is also known to promote maintenance of stem cells, including MSCs, 

and these are more reliant on glycolysis than OXPHOS.  This may be a 

mechanism for the prevention of oxidative stress-induced senescence occurring by 

OXPHOS under normoxia (Ito and Suda 2014).  It is not clear from the data 

arising in this study whether OXPHOS activity is a response to culture conditions 

alone and/or represents changes in the differentiation status of cells in three-

dimensional cultures.  Under normoxic conditions mesenchymal stem cells have 

been shown to significantly reduce oxygen consumption when differentiating 
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towards a chondrocytic phenotype in pellet cultures, in contrast to osteoblastic 

differentiation (Pattappa, Heywood et al. 2011).  The dedifferentiated 

chondrocyte, in contrast, shows an increased reliance on OXPHOS with 

increasing periods of time in culture (Heywood and Lee 2008), with expansion 

under hypoxic and low-glucose conditions enhancing the subsequent 

differentiation capacity of monolayer-expanded cells in pellet culture (Heywood, 

Nalesso et al. 2014).   

Additionally, PI-3K/Akt/mTOR has a ‘nutrient sensing’ activity in response to 

glucose and amino acids.  In the maintenance of stem cell pools equilibrium in 

metabolic pathways is required where mitochondria in stem cells are relatively 

quiescent and the reliance is on glycolytic pathways.  A change to oxidative 

phosphorylation is associated with impaired stem cell function and differentiation 

(Ito and Suda 2014).  Where the redox rheostat is finely balanced to maintain self-

renewal and inhibit differentiation comparable mechanisms may be relevant in 

dedifferentiation/re-differentiation mechanisms for musculoskeletal cells.   

PI-3K/Akt signalling and OXPHOS 

In Chapter 3 pathway topology analysis of the gene expression profiles of the 

same conditions implicated PI-3K/Akt signalling pathway as the over-arching 

regulatory mechanism.  In the proteomic profiles this remained a significantly 

perturbed pathway for chondrocytes, but the predicted activation statuses were 

contradictory.  The role of PI-3K/Akt signalling is not at odds with findings of 

oxidative phosphorylation pathways in the proteomic survey.  The production of 

ROS is enhanced by PI-3K/Akt signalling through the repression of FOXO-

mediated responses (Ito and Suda 2014). As discussed in Chapter 3 oxidative 

stress appears to inhibit IGF1 induction of matrix synthesis by failing to activate 
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Akt by phosphorylation (Yin, Park et al. 2009) via PTEN (Iwasa, Hayashi et al. 

2014).   

OXPHOS, oxidative stress and OA 

In Chapter 3 and 5 the high expression of chemokines in model cultures was 

presented.  In this proteomic survey few are represented in the differential 

abundance analysis – this is perhaps unsurprising given that IL-6, for example, is 

largely secreted and found at high levels in culture media (Tsuchida, Beekhuizen et 

al. 2012).  The question arises as to whether oxidative stress induced by OXPHOS 

promotes a pro-inflammatory cytokine signature or whether cytokine release is 

within the re-differentiation mechanism of cells in model culture.  Recently Cao 

and colleagues (2013) found that mitochondria in cultured murine chondrocytes, 

and in situ within transgenic mice, responded to IL-1β or TNFα with ‘super-oxide 

flashes’ 2-5 fold more frequently than in quiescent chondrocytes (Cao, Zhang et al. 

2013) 

There is evidence associating mitochondrial dysfunction and oxidative stress with 

chondropathies and age-related degeneration in general.  The density of 

mitochondria decreases with increasing depth from the surface of articular 

cartilage in line with an understanding of decreasing oxygen tension from ~5% to 

< 1% from the superficial to deep layers (Blanco, Rego et al. 2011, Cao, Zhang et 

al. 2013).  Osteoarthritis is associated with the elevated production of ROS by 

chondrocytes and inhibition of respiratory chain complexes III or V reduces ROS 

levels, but inhibition results in the induction of pro-inflammatory cytokine 

production (Blanco, Rego et al. 2011).   
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Expression of superoxide dismutase 2 (mitochondrial), SOD2, is significantly 

decreased in OA chondrocytes and cartilage (Blanco, Rego et al. 2011).  Using an 

MS time-of-flight approach to 2D DIGE resolved proteins from human articular 

chondrocytes (HACS) Ruiz-Romero, et al (2009) defined a significant decrease in 

the levels of SOD2 in osteoarthritis HACS, with a concomitant higher expression 

of ROS and TRAP1, a heat-shock protein 90 family-member with ROS 

antagonistic activity (Ruiz-Romero, Calamia et al. 2009); further work found 

TRAP1 protein to be more highly expressed under hypoxic conditions (Ruiz-

Romero, Calamia et al. 2010) and may act as a molecular switch between 

OXPHOS and glycolysis (Yoshida, Tsutsumi et al. 2013).  In this study SOD2 is 

highly abundant in alginate and fibrin cultures relative to native cells and TRAP1 is 

expressed at higher levels in alginate cultures in normoxic conditions relative to 

native cells, but not in fibrin cultures.   This would imply an anti-oxidant response 

is present in alginate-encapsulated chondrocytes and does not necessarily indicate 

that there is a redox imbalance.   

Summary  

On the basis of protein abundance, results presented in this study indicate that 

oxidative phosphorylation contributes to ATP synthesis in model cultures.  The 

considerable qualitative overlap in confidently identified proteins in both fibrin 

and alginate cultures suggest that this is common to both systems.  

Given the evidence for mitochondrial dysfunction in cartilage pathology and a 

potential role in cellular differentiation and self-renewal of stem cells the metabolic 

profile of cells in organo-typic cultures should be validated and standardised.  

Recent studies indicate dynamic activity in chondrocytes in terms of ATP 

production and super-oxide concentrations.  This temporal dynamic should also 



 512 

be considered in model culture systems.  If alginate cultures represent a superoxide 

and pro-inflammatory soup they may represent a better model of osteoarthritis 

than of the physiological state. 

6.4.3: Proteomic and gene expression correlations  

As outlined in the introduction the correlation between mRNA and protein levels 

is poorly correlated representing as it does early and late stages of an observed 

regulatory event with no appreciation of the complex modulation occurring 

concurrently (Payne 2015).  Tian, et al (2004) reported that differential expression 

analysis of mRNA would account for no more than 40% of the variation in 

protein expression; this uncoupling of the two expression profiles highlighting the 

importance of post-translational regulatory mechanisms (Tian, Stepaniants et al. 

2004).  

Moderate correlation is shown between differentially expressed elements from 

proteomics and transcriptomic studies from the same experimental groups using 

the same study design and methods.  It is worth considering this objectively – 

firstly, the veracity of these findings could be accepted and the conclusion made 

that the identification and correlation of the same proteins in chondrocytes and 

tenocytes indicated some equivalence in processes.  The alternative view is that 

there is bias in the lists of identified proteins, as a consequence of the nature of 

tryptic digestion and peptide behavior in the MS, and so, also bias in the 

differential abundance findings.  Further validation of correlations between gene 

and protein levels of the serine protease inhibitors SERPINE1 and SERPINB1A, 

IBSP and SOD2 in native chondrocytes or tenocytes by qPCR and Western 

blotting would be required.  Consideration of parallel miRNA studies, 

metabolomics, protein phosphorylation status and the definition of dynamic 
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cellular localization in association with gene and protein expression profiling 

would assist interpretation of future experiments i.e. whole cell modeling (Karr, 

Sanghvi et al. 2012), however, integration of multiple data sources and not 

defining correlation ‘correctness’ should be the focus of future research (Payne 

2015).  

Utility of anti-correlated mRNA and protein expression  

Even given the appreciation of the discordant relationship between gene and 

protein expression there is still utility in this type of correlation analysis.  Anti-

correlated elements (where the fold-change direction is not shared in mRNA and 

protein expression profiling) are of interest as they may disclose additional 

information representing post-translational regulatory mechanisms (Tian, 

Stepaniants et al. 2004), e.g. miRNA.  Payne (2014) notes that these differences are 

fundamentally related to regulatory mechanisms rather than measurement errors 

(Payne 2015).  Here the highly anti-correlated expression of morgana 

protein/CHORDC1/Chp-1, a ROCK inhibitor (Ferretti, Palumbo et al. 2010) and 

HSP90 interacting protein (Wu, Luo et al. 2005), is reported between mRNA and 

protein expression in chondrocytes and tenocytes in the native to monolayer 

comparison.  In both scenarios high mRNA expression in native cells is associated 

with low protein abundance.  There are no publications investigating the role of 

CHORDC1 in cartilage or tendon physiology and so it should be considered in a 

wider context.   Recently the proto-oncogene activity of morgana protein has been 

associated with PTEN destabilization, through the inhibition of ROCK (Rho 

family of GTPases), promoting PI-3K/Akt signalling (Fusella, Ferretti et al. 2014). 

Modulation of ROCK is well described as being relevant to the differentiation 

status of chondrocytes and to cartilage function.  Inhibition of ROCK has effects 
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on SOX9 activation and the suppresses dedifferentiation in chondrocytes (Woods 

and Beier 2006, Matsumoto, Furumatsu et al. 2012).  Mechnotransduction through 

RhoA/ROCK is also a key modulator of CNN2/CTGF and TGFβ-Smad 

signaling with inhibitors of ROCK inhibiting CNN2/CTGF expression (Chaqour 

and Goppelt-Struebe 2006). Therefore, although the correlation of expression 

changes between mRNA and protein may provide some level of validation of 

findings the anti-correlated elements are also sources of further complexity in our 

wider understanding of cartilage physiology.  In this case there is rationale for the 

further investigation of CHORDC1 mRNA and protein expression in relation to a 

mechanistic network involving PI-3K/Akt, RhoA/ROCK, CCN-family and 

TGFβ-Smad signaling in chondrocyte differentiation status.        

6.4.4:  PPAR signalling  

A predicted role for peroxisome proliferator-activated receptor (PPAR) signalling 

in native chondrocytes is introduced for the first time in this thesis.  Using the 

PPARα agonist pirinxic acid as a proxy for activation of this pathway Ingenuity® 

Pathway Analysis predicted inhibition where the protein profile was associated 

with high abundance in native cells compared to monolayer; there was predicted 

activation in both monolayer and three-dimensional cultures for both 

chondrocytes and tenocytes. With Ingenuity® analysis the activation of PPAR 

signalling follows the prediction of D3T-mediated effects.  D3T is an anti-oxidant, 

which stabilizes the NRF2 transcription factor involved in responses to oxidative 

stress (Kwak, Itoh et al. 2001).   

Peroxisomes are membrane-bound vesicles for the storage and degradation of 

reactive chemicals and hydrogen peroxide.  They contain oxidative enzymes and a 

major function is the breakdown of long chain fatty acids by beta-oxidation 
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(Alberts, Bray et al. 1998).  Peroxisome proliferator-activated receptors were 

identified as ligand-inducible transcription factors that induced peroxisome 

proliferation (Dreyer, Krey et al. 1992).  PPAR isotypes (α, β/δ, or γ isotypes) 

have different gene targets and distinct tissue distributions (Gorniak 2014) with 

roles in lipid metabolism, inflammation, insulin sensitivity, metabolism (Ahmadian, 

Suh et al. 2013) and mitochondrial biogenesis, acting in heterodimer partnership 

with retinoid X receptor-α (RXRα) 

With respect to cartilage research the focus has been on the PPARγ transcription 

factor; most recently PPARγ knock-out mice have been shown to develop 

spontaneous osteoarthritis (Vasheghani, Monemdjou et al. 2013) and impaired 

endochondral ossification (Monemdjou, Vasheghani et al. 2012)  suggesting that 

PPARγ is a critical regulator of cartilage health and development.  A PPARγ 

agonist, given orally to mice, was demonstrated to diminish the severity of 

collagen-induced arthritis (Tomita, Kakiuchi et al. 2006).  In an in vivo study of rat 

chondrocytes encapsulated in alginate beads, however, the application of various 

PPAR agonists was shown to inhibit the TGF-β1 stimulating effects on 

prostaglandin synthesis suggesting deleterious effects of some PPAR agonists 

(Poleni, Bianchi et al. 2007).   

Although separately oxidative stress, mitochondrial dysfunction and PPAR 

signalling have all been investigated in cartilage, as described above, an integrated 

understanding of these mechanisms in cartilage physiology is not apparent in the 

literature.  Given the supporting evidence there is a rationale for further research 

relating to the contribution of PPAR-signalling in cartilage homeostasis and 

disease.  
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6.4.5: Summary  

A proteomic discovery profiling study of chondrocytes and tenocytes, employing a 

label-free relative quantification approach, demonstrated moderate associations 

with a gene expression study performed in parallel.  This was in line with current 

understanding of the expected correlation between mRNA and protein in 

expression studies.  Functional annotation, pathway topology analysis and 

prediction of upstream regulators was comparable across chondrocyte and 

tenocyte studies implicating oxidative phosphorylation, oxidative stress and PPAR 

signalling as mechanisms involved within in vitro culture systems.  These findings 

were broadly in line with those found within the Affymetrix gene expression 

studies.  Further validation focused on validating the metabolic activity of cells in 

three-dimensional cultures is required.   
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7 :  Explora t ion of  in tegra t ion  
s t ra teg ies  for  proteomic  and 
t ranscr ip tomic  data  se ts   
 

 

Abstract 
Omics data integration poses considerable technical and conceptual challenges.  

The principle motivation is a deeper understanding of the mechanistic 

relationships between the components comprising a living system and describing 

that through mathematical or relational models.   

Conflicting pathway analysis and upstream regulators across transcriptomic and 

proteomic data sets prompted exploration of tools for omics integration to define 

consensus pathways and regulators.  It was proposed that rationalization of the 

key regulators in de- and re-differentiation would yield a targetable mechanistic 

network.  Data from two transcriptomic and one proteomic study were integrated 

on three levels: i) union of discrete elements, ii) by functional annotations and, iii) 

by mechanistic networks derived from common upstream regulators.  

Integration of mechanistic networks defined a protein-protein interaction network 

centred on the predicted reciprocal mediation by TGFβ and PDGF-BB.  

Common downstream targets and intermediate regulators were identified for both 

cartilage and tendon from mechanistic networks including CCN2/connective 

tissue growth factor and SMAD7 in TGF-β1-regulated networks.   
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To fully utilize the multi-level omics data available in this thesis data imputation 

and quantitative integration methods should be explored.  Simple statistical 

strategies for imputation of missing data may be appropriate, whilst multivariate 

projection-based approaches could be employed to integrate quantitative data 

from gene and protein profiling studies.          
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7.1: Introduction  
 

7.1.1: Motivations for multi-omics data integration 

Data discovery and data exploitation are the two challenges that comprise data 

integration and are central to the principal goals of systems biology research, i) 

defining the components of the living systems, and ii) understanding the 

dysfunction of the system arising from the interaction of these components 

(Gomez-Cabrero, Abugessaisa et al. 2014).  The hallmark responses to changes in 

conditions are captured within the gene response and this response may then be 

subsequently profiled at multiple levels in the biological hierarchy (proteome, 

metabolome, methylome).  Data integration assumes that each of the functional 

levels of the biological hierarchy are inter-related and that consideration of all 

elements of these levels as a whole system will decipher the complexity of living 

organisms. By integrating these levels profiling becomes more comprehensive and 

a more robust understanding of the active processes may become reliably 

described (Sass, Buettner et al. 2013).     

As presented in Chapter 6 the correlation of effect sizes between transcriptomic 

and proteomic studies is only moderate as a consequence of a number of 

intermediary events for which information is unavailable, e.g. half-life and kinetic 

data, post-transcriptional modifications influencing activation status, and temporal 

information.  Furthermore, conflicting pathway prediction and inconsistencies in 

functional annotation of data sets prompts further exploration of the data sets to 

determine a consensus systems account of the responses of chondrocytes and 

tenocytes to culture conditions.  Integration of transcriptomic and proteomic data 
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can provide another level of data analysis and identify changes in the samples not 

apparent from independent analysis alone (Haider and Pal 2013).   

Being able to integrate data from these different levels would encourage a more 

robust understanding of the key regulatory mechanisms at play in the de- and re-

differentiation transitions associated with organotypic cultures for culture and 

tendon.  It was hypothesised that use of omics integration strategies would 

facilitate the development of unified protein-protein network for de- and re-

differentiation establishing a testable model for future analysis.  It was proposed 

that these techniques would generate a consensus understanding of the novel data 

sets generated in this thesis and rationalise conflicts in predicted pathways and 

core regulators.    

7.1.2: Challenges of integration 

 

“Know less, faster”.  Prof. Harvey Blanch 

 

As the cost of per unit of measurement using omics technologies has decreases the 

data generated has increased.  This has led to numerous challenges not least of 

which is the outpacing of resource allocation for processing and integration by the 

data generated (Palsson and Zengler 2010). Although the hurdles to omics 

integration are significant, a number of web-based (e.g. 3Omics, (Kuo, Tian et al. 

2013))  and open-source software tools (R packages, Cytoscape) have recently 

become available to support this type of investigation, in addition to public 

repositories and consortia-based projects (Cabrero, Abugessaisa et al. 2014). There 
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are a number of general approaches that may be used for integration, each varying 

in complexity.   

Union of the data elements represents the most straightforward approach and 

creates a reference data set, however this considers only absolute matches of 

elements (or features) and does not represent overlapping functional descriptors 

of the data or deal with missing data.  The second approach deals with extracting 

common functional annotations for both data sets, for example, enrichment 

analysis for gene ontology biological process terms or signaling pathways.  

Topological network approaches (see Chapters 4 and 5), meta-analysis merging of 

individual domain datasets and correlations, estimation of missing data, multiple 

regression analysis, clustering approaches and dynamic modeling represent more 

complex techniques to omics integration (Haider and Pal 2013).    

The methods employed to integrate the data depend on several factors, including: 

a) an understanding of the source of the data and its limitations; b) an awareness 

of the differences in expression between the two domains and why they may not 

correlate; c) a clear objective for the analysis; d) and whether the combined model 

may be extrapolated or represents a collective behaviour of a group of cells within 

a tissue and not the system in general (Haider and Pal 2013).   

Core to the consideration of high-throughput, multi-dimensional data is the 

question of whether the data arising is derived from direct measurement of the 

biological features or as a consequence of the experimental condition, and/or bias 

and artefacts.  Unsupervised analysis, such as clustering, model-based and 

projection-based methods, are exploratory statistical approaches that allow 
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reduction of dimensionality, and noise, and allows data to be visualized in a 

smaller subspace by graphical representations (Yao, Coquery et al. 2012).    

7.1.3: Multivariate data analysis methods 

Researchers have used a number of multi-variate analysis approaches to integrate 

highly dimensional data from diverse data sources.  These ‘projection-based’ 

methods, principal component analysis (PCA) being the classical example, 

integrate the data through the projection of each data set into smaller subspace to 

maximize the covariance between data sets (Günther, Shin et al. 2014).  This 

allows the key players to be identified.  In addition to PCA projection-based 

methods include independent PCA (Yao, Coquery et al. 2012), partial least squares 

regression (PLS) (Lê Cao, Boitard et al. 2011), canonical correlation analysis (CCA) 

(González, Déjean et al. 2008).  Unlike PCA these methods have the capacity to 

integrate two types of data sets.  They are also widely implemented in R packages, 

e.g. mixOmics (Lê Cao, González et al. 2009).   

Using a modification of co-inertia analysis Meng, et al (2014) integrated 

transcriptomic and proteomic data from multiple cancerous cell lines from a 

variety of tissues (omicade4 R package) (Meng, Kuster et al. 2014).  This 

strategy had the advantage of not requiring mapping or filtering the different data 

sets to intersect on common features across more than two data sets.  The 

methodology provides graphical representation of the relationships between the 

data sets, but requires the multiple data sets to arise from the same individuals.   

7.1.4: Project Aims   

Using the transcriptomic and proteomic data sets arising from Chapters 2, 3 and 

6 several integration strategies were explored, i) union of data set elements, ii) 
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extraction of common feature annotations, iii) derivation of common upstream 

regulators and development of mechanistic networks.  Here the intention is to 

define common regulatory mechanisms for de- and re-differentiation and consider 

how these are associated with current understanding of disease mechanisms.  

Furthermore, by defining the common regulatory mechanisms this may focus 

efforts in the research and development of organo-typic culture systems.   
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7.2: Methods 
 
7.2.1 Extraction of common features and functional annotations 

 
Union of discrete elements 

All differential expressed genes and proteins were converted to unique Entrez gene 

identifiers and common elements were extracted for each pairwise comparison.  

Overlaps between each data set are presented as Euler plots.   

RAMONA 
 

To integrate multi-level data in terms of gene ontology functional annotation the 

RAMONA web application was used (http://icb.helmholtz-muenchen.de/ramona) 

(Sass, Buettner et al. 2014) an implementation of the multi-level ontology analysis 

(MONA) method (Sass, Buettner et al. 2013).  Briefly, Entrez identifiers for the rat 

arising from differential expression analysis for either transcriptomic or proteomic 

data was used as the input to a model-based Bayesian approach to infer term 

probabilities (P).  Different pair-wise comparisons were considered in turn.  The 

output from RAMONA contained some redundant annotations.  In order to limit 

descriptors to unique terms REVIGO was employed (as before, Chapter 2) to filter 

on semantic similarity.  Gene ontology terms with a term probability of P > 0.5 

were used as the input to REVIGO.  Presented terms had a probability of > 0.5 

(RAMONA) and threshold dispensability score < 0.3 (REVIGO).  All results are 

available in SD7.  
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7.2.2: Defining common upstream regulators and developing 
mechanistic networks 

 

Topological network approaches implemented within Ingenuity® Pathway Analysis 

were used as previously described (2.2.5) on individual data sets to ascertain the 

common upstream regulators, create mechanistic networks and annotate canonical 

pathways.  Analysis for common regulators was run on the Ingenuity® knowledge 

base issued November 2014. Mechanistic networks were derived by connecting sets 

of upstream regulators within the IPA knowledge base that could elicit the gene or 

protein expression profiles provided from the data sets.  Known downstream 

targets of the regulators within the differential expression data set could be added to 

the network.  Nodes (genes) were added to mechanistic networks to provide a cell-

specific context as defined in the text, for example TNMD and COL2A1 for tendon 

and cartilage respectively. 
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7.3: Results 
 
7.3.1: Union of discrete elements 

 

Using only universal Entrez annotations and removing duplicate entries there were 

few data set elements that were found to be common to all three data sets, Figure 

7.1 – 7.4.  The greatest overlap between transcriptomic and proteomic data sets was 

for the cartilage to monolayer chondrocyte comparison (130 features) and the 

fewest were found for the comparison between monolayer tenocytes and fibrin 

constructs (41 features).  Despite the Illumina transcriptomic data arising from a 

different experimental protocol the number of features overlapping with the 

proteomic data was comparable between the Affymetrix and Illumina 

transcriptomic data sets.  Given the low numbers of features that were consistently 

identified across all data sets union of unique elements was not considered an 

adequate method for integrating multi-omics data sets.      

 
7.3.2: Integrated gene ontology functional annotations using RAMONA 

 
CHONDROCYTES 

Dedifferentiation in chondrocytes, following integration of biological process gene 

ontology terms across data sets, was associated with the terms: ‘protein transport’, 

‘ossification’, ‘I-kappaB kinase/NF-kappaB signaling’, ‘Wnt-signaling pathway’, 

‘oxidation-reduction process’ and included development-associated terms 

‘regulation of cell morphogenesis’, ‘cardiovascular system development’ and 

‘anatomical structure morphogenesis’, Figure 7.1.  Enriched KEGG pathways 

using gene ontology across all datasets were: ‘RNA transport’, ‘Wnt-signaling 

pathway’ and ‘osteoclast differentiation’.   
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For the re-differentiation transition (monolayer to alginate beads), Figure 7.2, 

functional annotation across all studies was associated with mitochondrial 

associated terms - ‘response to oxidative stress’, ‘oxidation-reduction process’, 

‘proton transport’, ‘electron transport chain’.  Other terms included: ‘muscle 

structure development’, ‘collagen fibril organisation’ and ‘integrin-mediated 

signaling pathway’.  Enriched KEGG pathways related to the canonical pathways 

‘proteosome’, ‘RNA transport’, and ‘oxidative phosphorylation’.  

TENOCYTES 

In the dedifferentiation transition from native tenocytes to monolayer functional 

annotation across data sets was associated with: ‘oxidation-reduction process’, 

‘ossification’, ‘muscle structure development’, ‘actin filament-based process’ and 

‘connective tissue development’, Figure 7.3.  KEGG canonical pathways enriched 

in this analysis related to ‘RNA transport’, ‘ribosome’, ‘Wnt-signaling pathway’ and 

‘axon guidance’.   

The transition to tenogenic fibrin constructs from monolayer was annotated with 

‘response to wounding’, ‘ECM organization’, ‘oxidation-reduction process’ and 

‘cellular response to glucose starvation’, Figure 7.4.  Additionally, ‘phospholipid 

biosynthetic process’ and ‘cellular response to cytokine stimulus’ were notable.  

Enriched KEGG pathways were comparable to those found for chondrocyte 

redifferentiation – ‘aminoacyl-tRNA biosynthesis’, ‘proteosome’, ‘Parkinson’s 

disease’ and ‘oxidative phosphorylation’.   

These unified annotations were consistent with findings presented for each data set 

independently.   Data contributing to cross data set functional annotation analysis is 

found in SD7.   
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Commonly enriched KEGG pathways using RAMONA: RNA transport; Wnt-signaling pathway, 
osteoclast differentiation 
 
 
Figure 7.1: Union of  Entrez identifiers from transcriptomic and proteomic analysis for the transition 
from native chondrocytes to monolayer chondrocytes.  Euler plot shows the number of  Entrez 
gene identifiers shared between data sets once duplicates have been removed. Term probabilities (P) as 
defined by RAMONA are divided into those >0.5 and those >0.9.   
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•

Commonly enriched KEGG pathways using RAMONA:  Proteosome, Protein processing in the 
endoplasmic reticulum; lysosome, RNA transport, oxidative phosphorylation and valine, leucine, and 
isoleucine degradation. No significant enrichment of  KEGG pathways was found for cross-
transcriptome analysis using RAMONA.   
  
Figure 7.2: Union of  Entrez identifiers from transcriptomic and proteomic analysis for the transition 
from monolayer chondrocytes to alginate cultures.  Euler plot shows the number of  Entrez gene 
identifiers shared between data sets once duplicates have been removed. Term probabilities (P) as 
defined by RAMONA are divided into those >0.5 and those >0.9.   
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Figure 7.3: Union of  Entrez identifiers from transcriptomic and proteomic analysis for the 
transition from native tenocytes to monolayer cultures.  Euler plot shows the number of  Entrez 
gene identifiers shared between data sets once duplicates have been removed. Term probabilities (P) 
as defined by RAMONA are divided into those >0.5 and those >0.9.   
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Commonly enriched KEGG pathways using RAMONA: Protein processing in endoplasmic reticulum; 
Aminoacyl-tRNA biosynthesis; proteosome; Parkinson’s disease; oxidative phosphorylation; insulin 
signaling pathway.  No significant enrichment of  KEGG pathways was found for cross-transcriptome 
analysis using RAMONA.   
 
Figure 7.4: Union of  Entrez identifiers from transcriptomic and proteomic analysis for the transition 
from monolayer tenocytes to fibrin cultures.  Euler plot shows the number of  Entrez gene identifiers 
shared between data sets once duplicates have been removed. Term probabilities (P) as defined by 
RAMONA are divided into those >0.5 and those >0.9.   
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7.3.3 Common upstream regulators define de- and re-differentiation 
mechanistic networks  

Integration by intersection of discrete elements or functional ontologies fails to 

provide a mechanistic understanding of the data or make use of quantitative data.  

By defining upstream regulators common to de- or re-differentiation conditions for 

chondrocytes or tenocytes it may be possible to define a targetable mechanistic 

network. Using Ingenuity® Pathway Analysis the upstream master regulators, 

consistent with differential expression profiles, were predicted. Regulators that were 

consistently changed across a transition and cell-type were considered.  Mechanistic 

networks were created for common regulators.  These networks were derived from 

known protein-protein interactions and evidence from the curated IPA knowledge 

base.     

Dedifferentiation is associated with a TGF-β1 network  

In general, for the transition to monolayer from native cells TGF-β1 was predicted 

to be a common upstream regulator (Table 7.1).  Mechanistic networks derived 

from differential expression lists predicted TGF-β1 to be inhibited in the native 

context i.e. genes or proteins found to have higher expression in native cartilage or 

tendon were consistent with a predicted inhibition of TGF-β1 regulated networks.  

Activation status was variable across data sets with low z-score in the Affymetrix 

chondrocyte data set, however, TGF-β1 had significantly lower expression in native 

chondrocytes and tenocytes compared to monolayer consistent with IPA prediction.    

SMAD7 and CCN2 are common downstream targets 

For both chondrocyte and tenocyte dedifferentiation TGF-β1 mechanistic networks 

SMAD7 was predicted as an intermediate regulator and down-stream target of 

TGF-β1.  SMAD7 was down-regulated in native cartilage and chondrocytes in both 
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Illumina and Affymetrix gene expression data sets and in native tenocytes in the 

Affymetrix data set.  Across transcriptomic and proteome profiling studies the CCN 

family member CCN2/connective tissue growth factor (CTGF) also showed lower 

expression in native cells relative to monolayer and was a down-stream target of 

TGF-β1 and SMAD7, which was predicted to inhibit CCN2 expression.   

A dedifferentiation mechanistic network was developed comprising the predicted 

upstream regulators, consistent with the provided expression profiles, and their 

downstream targets.   Quantitative expression profiles were overlain for each data 

set and comparison, Figures 7.5-7.7.  A unified dedifferentiation model was 

prepared based upon the common intermediate regulators and down-stream 

effectors frequently found in the differential expression analysis, including CCN2 

and THY-1, Figures 7.8-7.9.  A global protein-protein interaction network 

(STRING) of this proposed dedifferentiation mechanistic network was found to be 

highly enriched for interaction and functional annotations related to cartilage 

development and condensation, Figure 7.10, consistent with predictions from the 

IPA knowledge base.        
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Cell type Data source Upstream 
regulator 

Activation  
z-score 

Overlap  
p-value 

DE genes  
available 

Chondrocytes Illumina TP53 
TGFB1 
MYC 

-3.68 
-2.59 
4.08 

9e-32 
2.04e-26 
1.9e-18 

435 (14) 
679 (23) 
515 (19) 

Chondrocytes Affymetrix TGFB1 
TNF 
PDGFBB 

-0.52 
5.48 
3.64 

3.2e-25 
1.14e-24 
2.4e-23 

726 (19) 
663 (17) 
477 (18) 

Chondrocytes Proteomics MYC 
NFE2L2 
TGFB1 

-4.71 
-6.56 
-4.2 

7.2e-61 
1.1e-30 
1.5e-23 

393 (18) 
198 (8) 
384 (18) 

Tenocytes Illumina TGFB1 
HRAS 
KRAS 

-1.04 
-0.285 
-2.27 

1e-23 
1.2e-20 
1.3e-16 

319 (18) 
325 (19) 
306 (17) 

Tenocytes 
 

Affymetrix TNF 
PDGFBB 
TGFB1 

6.63 
3.86 
-2.2 

3.7e-50 
4.7e-39 
3.9e-38 

692 (17) 
549 (23) 
685 (20) 

Tenocytes 
 

Proteomics MYC 
NFE2L2 
TGFB1 

-4.35 
-6.8 
-6.8 

6.7e-62 
1.04e-25 
2.1e-19 

399 (13) 
392 (17) 
437 (19) 

Table 7.1: Top upstream regulators predicted using Ingenuity Pathway Analysis knowledge base from 
differential expression/abundance for the native to monolayer comparison across three data sources 
and two cell types.  Small molecules and other chemicals predicted by IPA are not included.  The 
activation z-score indicates the predicted activation status of  the mechanistic network (negative values 
indicating inhibition).  Only genes with available mechanistic networks are shown.  DE genes available 
indicates those genes in the differential lists that are known down-stream targets of  a number of  master 
regulators (defined in parentheses).  TGFB1 is consistently predicted to to be inhibited for gene profiles 
more highly expressed in native tendon or cartilage, i.e. dedifferentiation is associated with active TGFB1 
regulation.   
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Figure 7.5: Ingenuity mechanistic network formed from Affymetrix (A) or Illumina (B) gene expression data 
for native chondrocyte to monolayer transition derived from TGF-β1 network.  SMAD7 was found to be a 
common downstream regulator within the TGF-β1  mechanistic network – expression was significantly lower 
in native chondrocytes relative to monolayer (figure legend). Only those genes with direct up- or down-
stream associations with SMAD7 are shown and annotated with gene symbols.  Added nodes: SOX9.   

A. Affymetrix 

B.  Illumina 
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Figure 7.6: Ingenuity mechanistic network formed from Affymetrix (A) or Illumina (B) data for native 
tenocyte to monolayer transition derived from TGF-β1  network.  In native tenocytes IL-1B was more highly 
expressed than in monolayer – it was predicted to have an inhibitor effect (figure legend) on SMAD7, SCX 
and RUNX2, which all had lower expression in native tenocytes than in monolayer.  SMAD7 was not 
differentially expressed in Illumina data – Ingenuity predicted activation which contradicted the findings in 
the other data sets where SMAD7 was down-regulated in native tissue.  Added node: TNMD (B.).   

A. Affymetrix 

B. Illumina 
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Figure 7.7A: Detail of  mechanistic network for proteomics data for native chondrocytes to monolayer 
comparisons.  Inhibitor of  TGF beta and BMP signalling, SMAD7, was a common intermediate regulator 
in the TGFB1 mechanistic network and is shown to have inhibitory effects on CNN2/CTGF, SERPINE1 
and COL3A1 when active (figure legend).  Nodes in green indicate proteins with lower abundance in native 
chondrocytes. Gene symbols are used for node annotation.   

Figure 7.7B: Detail of  mechanistic network for proteomics data for native tenocytes to monolayer 
cultures comparisons.  JUN was a common intermediate regulator for differentially abundant proteins. 
Added nodes: TNMD and SCX.  In both proteomics analysis SMAD7 is predicted as activated (figure 
legend).  Nodes in green represent proteins with lower expression in native tenocytes relative to monolayer.  
Gene symbols are used for node annotation.   
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Figure 7.8A: Model network to unify findings from Figures 7.5-7.7. Network derived from prediction of  Tgf-
β1 as a core upstream regulator associated with native cartilage transition to monolayer.  Predicted intermediate 
regulators and tendon markers are overlain with differential expression values from A) Affymetrix.  Reduction in 
expression of  Smad7  and Thy-1 in native cells is consistent feature of  dedifferentiation in transcriptomic data 
(figure legend). CP – canonical pathways; Functional annotation p<0.001.  

A. Low High Log2 fold-change 

B. 

Figure 7.8B: Model network to unify findings from Figures 7.5-7.7. Network derived from prediction of  Tgf-
β1 as a core upstream regulator associated with native cartilage transition to monolayer.  Predicted intermediate 
regulators and tendon markers are overlain with differential expression values from B) Illumina.  Reduction in 
expression of  Smad7  and Thy-1 in native cells is consistent feature of  dedifferentiation in transcriptomic data 
(figure legend). CP – canonical pathways; Functional annotation p<0.001.  

Low High Log2 fold-change 
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C. 
Low High Log2 fold-change 

Figure 7.8C: Model network to unify findings from Figures 7.5-7.7. Network derived from prediction of  Tgf-
β1 as a core upstream regulator associated with native cartilage transition to monolayer.  Predicted intermediate 
regulators and tendon markers are overlain with differential abundance values from C) proteomic relative 
quantification study.  Reduction in abundance of  Ctgf, Tgfβ2, Stat3 and Thy-1 in native cells is a feature of  
dedifferentiation in proteomic data (figure legend). CP – canonical pathways; Functional annotation p<0.001.  

Figure 7.9A: Model network to unify findings from Figures 7.5-7.7.  Network derived from prediction of  
Tgf-β1 as a core upstream regulator of  expression changes associated with native tenocyte transition to 
monolayer.  Predicted intermediate regulators and tendon markers are overlain with differential expression 
values from A) Affymetrix.  Reduction in expression of  Ctgf, Scx, Smad7, and Thy-1 in native cells is 
feature of   dedifferentiation in Affymetrix data.      

A. 
Low High Log2 fold-change 
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B. Low High Log2 fold-change 

Figure 7.9B: Model network to unify findings from Figures 7.5-7.7.  Network derived from prediction of  
Tgf-β1 as a core upstream regulator of  expression changes associated with native tenocyte transition to 
monolayer.  Predicted intermediate regulators and tendon markers are overlain with differential expression 
values from B) Illumina.  Reduction in expression of  Ctgf, Tgf-β2, Cepbp and Thy-1 in native cells is 
feature of   dedifferentiation in this model.      

C. Low High Log2 fold-change 

Figure 7.9C: Model network to unify findings from Figures 7.5-7.7.  Network derived from prediction of  
Tgf-β1 as a core upstream regulator of  expression changes associated with native tenocyte transition to 
monolayer.  Predicted intermediate regulators and tendon markers are overlain with differential abundance 
values from C) proteomic relative quantification study.  Reduction in abundance of  Ctgf, Stat3 and Thy-1 in 
native cells is feature of   dedifferentiation in proteomic studies – see also Figure 7.8C.      
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Figure 7.10: Protein-protein 
interaction network derived 
f r o m  S T R I N G  f o r 
dedifferentiation mechanistic 
network.  Network considers 
both cartilage and tendon 
m a r k e r s ( C O L 2 A 1 a n d 
TNMD).  Modes of  actions for 
proteins are indicated in the 
network and are defined in the 
figure legend.  Interaction 
network was found to be 
enriched (p = 3.4 e-12) with 45 
interactions observed on 15 
proteins.    

Activation 
Inhibition 
Binding 
Phenotype 

Catalysis 
PTM 
Reaction 
Expression 

Figure legend  

KEGG Pathways # of  Proteins FDR 

Rheumatoid arthritis 5 9.2e-7 

TNF signaling pathway 5 2.8e-6 

Osteoclast differentiation 5 5.6e-6 

Table A: KEGG pathways 
associated with proposed 
dedifferentiation network with 
associated false discovery rate 
(FDR) and the number (#) of  
proteins associated with the 
term 

Table A: 

Biological Process Terms # of  Proteins FDR 

Regulation of  cartilage 
development 

5 3.1e-6 

Response to TGFbeta 6 1.2e-5 

Cartilage condensation 4 5.6e-6 

Table B: 

Table B: Biological process 
ontology terms associated with 
proposed dedifferentiation 
network with associated false 
discovery rate (FDR) and the 
number (#) of  proteins 
associated with the term 
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7.3.4: Re-differentiation transition from monolayer is associated with 
PDGF BB mediated network 

The monolayer to three-dimensional construct transitions were predicted to be 

associated with the inhibition of PDGF BB, TNF and IL-1B in gene expression 

studies, and with TGF-β1 activation in proteomics studies for both chondrocytes 

and tenocytes (Table 7.2).  Mechanistic networks were prepared for the highest 

scoring regulators for chondrocytes (PDGF BB) and tenocytes (TNF) and with 

focused components of the networks shown for IL-6 (chondrocytes) and IL-1B 

(tenocytes) in Figures 7.11-7.12. In proteomics studies JUN was a common 

intermediate regulator in the TGF-β1 network for both chondrocytes and tenocytes 

and the down-stream differentially abundant targets are presented in Figure 7.13.     

Transcriptomic- and proteomic-derived mechanistic networks regulated by PDGF 

BB and TNF overlapped with a number of intermediate regulators previously 

described for dedifferentiation including FOS, ApoE, IL-6, JUN, and EGR1.   

To define whether these de- and re-differentiation transitions could be unified in a 

single mechanistic network a model was prepared as before using PDGF BB as the 

common upstream regulator and including downstream targets present in both de- 

and re-differentiation networks and differentially expressed genes or proteins 

frequently identified as targets across the data sets, Figures 7.14– 7.19.  Protein-

protein interactions, Figure 7.20, were not significantly enriched, however KEGG 

pathways were comparable to the dedifferentiation network.  Functional 

annotations were associated with ECM organization and anatomical structure 

morphogenesis.   
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SERPINE1 and SERPINE2 show reciprocal expression across data sets 

The serine protease inhibitors and chaperones SERPINE1 and SERPINE2 were 

found to be common downstream targets of predicted regulators across data sets.  

In the model networks presented in Figures 7.14 and 7.15-7.19 reciprocal 

expression patterns were noted with SERPINE2 showing higher gene and protein 

expression in native and three-dimensional conditions for both chondrocytes and 

tenocytes, whilst SERPINE1 expression was higher in monolayer for both cell 

types.  

 

Cell type Data source Upstream 
regulator 

Activation  
z-score 

Overlap  
p-value 

DE genes  
available 

Chondrocytes Illumina PDGF BB 
TNF 
IL1B 

-6.13 
-4.85 
-5.88 

1.2e-28 
5.3e-26 
3.4e-17 

220 (23) 
276 (16) 
222 (12) 

Chondrocytes Affymetrix TP53 
PDGF BB 
IL1B 

-0.11 
-4.78 
-6.2 

1.1e-32 
4.6e-30 
5.3e-22 

512 (24) 
335 (20) 
352 (13) 

Chondrocytes Proteomics MYC 
TP53 
TGFB1 

2.5 
1.23 
5.5 

3.9e-40 
2.5e-33 
5.8e-17 

279 (17) 
272 (18) 
254 (16) 

Tenocytes Illumina MYC 
TNF 
PDGF BB 

-0.58 
-2.3 
-2.5 

1.6e-13 
1.5e-07 
3.9e-07 

165 (16) 
211 (16) 
172 (13) 

Tenocytes 
 

Affymetrix TNF 
IL1B 
PDGF BB 

-6.9 
-6.84 
-6.85 

1.94e-56 
1.95e-56 
1.04e-48 

266 (15) 
250 (11) 
211 (16) 

Tenocytes 
 

Proteomics MYC 
APP 
TGFB1 

-0.56 
-2.29 
2.6 

5.8e-42 
9.1e-30 
7.13e-19 

380 (16) 
340 (18) 
401 (18) 

Table 7.2: Top upstream regulators predicted using Ingenuity Pathway Analysis knowledge base from 
differential expression/abundance for the monolayer to three-dimensional construct comparison 
across three data sources and two cell types.  Small molecules and other chemicals predicted by IPA are 
not included.  The activation z-score indicates the predicted activation status of  the mechanistic 
network.  Only genes with available mechanistic networks are shown.  DE genes available indicates 
those genes in the differential lists that are known down-stream targets of  a number of  mechanistic 
regulators (defined in parentheses).  For the transcriptomic data PDGF BB is commonly inhibited; for 
tenocytes TNF scored higher in both data sets.  For the proteomics data results were more variable, 
however, in both cases TGFB1 mechanistic network was predicted to be activated, the inverse of  the 
native to monolayer comparison.   
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Figure 7.11: Mechanistic network derived from downstream targets of  Pdgf  bb to show genes with direct 
interactions with IL-6. Nodes overlaid with differential expression data from A: Affymetrix, B: Illumina 
monolayer to alginate comparison. In both gene expression studies lower expression of  Il-6, TLR2 and CXCL2 
is found in monolayer culture relative to alginate beads under the predicted influence of  regulators shown in blue 
(figure legend). PI3K antagonist LY294002 is shown as activated.     

A. Affymetrix 

B. Illumina 
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Figure 7.12: Mechanistic network derived from downstream targets of  TNF to show genes with direct 
interactions with IL-1B. Nodes overlaid with differential expression data from A: Affymetrix, B: Illumina 
monolayer tenocytes to fibrin comparison. In both gene expression studies lower expression of  CXCL2 and 
ApoE is found in monolayer culture relative to fibrin cultures under the predicted influence of  regulators shown 
in blue (figure legend).   Added nodes: TNMD, SOX9 

A. Affymetrix  

B.  Illumina 
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Figure 7.13: Mechanistic network derived from downstream targets of  TGF-β1 to show proteins with 
direct interactions with Jun. Nodes overlaid with differential expression data from A: monolayer 
chondrocytes to alginate, B: monolayer tenocytes to fibrin cultures. In both protein abundance studies 
lower levels of  ICAM1 and IGF2R are found in monolayer cultures relative to the three-dimensional 
culture condition (figure legend).   

A.  Chondrocytes 

B. Tenocytes 
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A: Affymetrix: native chondrocytes to monolayer  

B. Affymetrix: monolayer chondrocytes to alginate 

Figure 7.14: Model developed from upstream regulators IL-6, PDGF-bb and IL-1b and genes/proteins with 
common differential expression across both cartilage and tendon studies. A: Higher expression of  IL-1b and 
COL2A1 in native chondrocytes with GREM1, SERPINE1 and COL3A1 more robustly expressed in monolayer 
cultures (figure legend); B: The re-differentiation transition finds a reciprocal relationship in the expression of  
SERPINE1 and SERPINE2; further alginate cultures show higher expression of  GPNMB, CHI3L1 and ApoE 
relative to monolayer.   

Low High 

Log2 fold-change 
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A: Illumina: native chondrocytes to monolayer  

B. Illumina: monolayer chondrocytes to alginate 

Figure 7.15: Model developed from upstream regulators IL-6, PDGF-bb and IL-1b and genes/proteins with 
common differential expression across both cartilage and tendon studies. A: Higher expression of  ApoE and 
COL2A1 in native chondrocytes with SERPINE1, GPNMB and TGFB2 more robustly expressed in monolayer 
cultures (figure legend); B: The re-differentiation transition finds a pro-inflammatory response with higher 
expression of  IL-6, CXCL2 and PTGS2 in alginate cultures.  Monolayer shows lower expression of  CHI3L1 and 
ApoE relative to alginate indicating some restitution of  the native expression profile.   

Low High 

Log2 fold-change 
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A: Proteomics: native chondrocytes to monolayer  

B. Proteomics: monolayer chondrocytes to alginate 

Figure 7.16: Model developed from upstream regulators IL-6, PDGF-bb and IL-1b and genes/proteins with 
common differential expression across both cartilage and tendon studies. A: Higher expression of  Col2a1, 
Serpine2 and Ptgs2 in native chondrocytes with Serpine1, Ctgf  and Tgfb2 more robustly expressed in monolayer 
cultures (figure legend); B: The re-differentiation transition finds the reciprocal relationship between Serpine1 
and Serpine2 demonstrable in the protein profile of  chondrocytes.   

Low High 

Log2 fold-change 
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A: Affymetrix: native tenocytes to monolayer  

B. Affymetrix: monolayer tenocytes to fibrin constructs 

Figure 7.17: Model developed from upstream regulators IL-6, PDGF-BB and IL-1b and genes/proteins with 
common differential expression across both cartilage and tendon studies. A: Higher expression of  key regulators 
PDGF BB, IL-6 and IL-1b in native tenocytes (figure legend); B: The re-differentiation transition finds lower 
expression of  IL-6, SERPINE2, BMP2 and ATF3 in monolayer relative to fibrin constructs suggestive of  an 
expression profile consistent with some restitution of  a differentiated state.   

Low High 

Log2 fold-change 
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A: Illumina: native tenocytes to monolayer  

B. Illumina: monolayer tenocytes to fibrin constructs 

Figure 7.18: Model developed from upstream regulators IL-6, PDGF-BB and IL-1b and genes/proteins with 
common differential expression across both cartilage and tendon studies. A: Higher expression of  ApoE and 
FOS in native tenocytes is associated with reduced expression of  CTGF and GREM1 relative to monolayer 
(figure legend); B: The re-differentiation transition finds lower expression SERPINE2 and GREM1 in 
monolayer relative to alginate.   

Low High 

Log2 fold-change 
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A: Proteomics: native tenocytes to monolayer  

B. Proteomics: monolayer tenocytes to fibrin constructs 

Figure 7.19: Model developed from upstream regulators IL-6, PDGF-bb and IL-1b and genes/proteins with 
common differential expression across both cartilage and tendon studies. A: Reciprocal expression of  SERPIN 
proteins was evident in dedifferentiation with higher abundance of  SERPINE2 in native tenocytes (figure 
legend); B: The higher expression of  FSTL1, CTGF and COL3A1 was evident in monolayer with lower 
expression of  SERPINE2 relative to fibrin.   

Low High 

Log2 fold-change 
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F i g u r e 7 . 2 0 : P r o p o s e d 
universal mechanistic network 
for de- and re-differentiation. 
Protein-protein interaction 
n e t w o r k d e r i v e d f r o m 
STRING. Modes of  actions for 
proteins are indicated in the 
network and are defined in the 
figure legend.  Interaction 
network was not found to be 
enriched with 74 interactions 
observed on 21 proteins.    

Activation 
Inhibition 
Binding 
Phenotype 

Catalysis 
PTM 
Reaction 
Expression 

Figure legend  

KEGG Pathways # of  Proteins FDR 

TNF signaling pathway 6 2.5e-7 

Rheumatoid arthritis 5 6.1e-6 

Osteoclast differentiation 4 1.9e-3 

Table A: KEGG pathways 
associated with proposed 
dedifferentiation network with 
associated false discovery rate 
(FDR) and the number (#) of  
proteins associated with the 
term 

Table A: 

Biological Process Terms # of  Proteins FDR 

Response to mechanical 
stimulus 

9 1.1e-9 

Extracellular matrix 
organisation 

8 8.04e-7 

Anatomical structure 
morphogenesis 

12 1.2e-5 

Table B: 

Table B: Biological process 
ontology terms associated with 
proposed dedifferentiation 
network with associated false 
discovery rate (FDR) and the 
number (#) of  proteins 
associated with the term 
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7.4: Discussion  
 

7.4.1: Union of data sets and functional annotations 

There was variable overlap between data sets in terms of commonly differentially 

represented genes and proteins.  Only a fraction of genes expressed in either the 

Illumina or Affymetrix studies were represented in the proteomics studies.  

Additionally, across all studies there were consistently very few common elements.  

For transcriptomic data this not unexpected (Manoli, Gretz et al. 2006).  Using only 

these common elements to integrate functional annotations would encourage 

erroneous and biased descriptors of the data. The integrated annotations presented 

here represent a consensus across two data sets using the MONA algorithm (Sass, 

Buettner et al. 2013, Sass, Buettner et al. 2014), which uses a Bayesian approach to 

determine marginal posteriors for the gene ontology terms.  This allowed the 

simultaneous assessment of data sets arising from both mRNA and protein studies.  

Integrated biological process functional annotations across transcriptomic and 

proteomic data sets demonstrated general concordance with findings previously 

presented.  In particular the relevance of metabolic changes associated with 

oxidation-reduction, carbohydrate and phospholipid biosynthetic processes were 

prominent.  A number of development-associated terms relating to muscle 

structure, vasculature, and cardiovascular development and cell morphogenesis were 

found across data sets.  Muscle-associated functional annotations were not 

restricted to tendon-derived data sets.  The application of this omics integration 

technique also highlighted Wnt- and NF-κB signalling, which although evident in 

the differential expression analysis in individual data sets, have not been consistently 

identified as significant gene ontology annotations.   
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The actions of Il-6-mediated signaling have been discussed in Chapter 5.  

Discussion here focuses on TGF-β-mediated mechanisms related to 

dedifferentiation. 

7.4.2: Shared upstream regulators guide mechanistic networks 

Union of elements or ontology-based approaches do not provide a mechanistic 

insight into the system under investigation; neither do they directly make use of the 

quantitative data.  In order to explore whether common mechanisms were 

regulating the dedifferentiation or redifferentiation phenotypes Ingenuity Pathway 

Analysis was used to define upstream regulators shared between chondrocytes and 

tenocytes.  Using known protein-protein interaction databases it was possible to 

demonstrate a highly enriched TGF-β centric network associated with 

dedifferentiation.  Further Ingenuity analysis of the redifferentiation transition 

predicted a reciprocal relationship between TGF-beta activation in monolayer and 

PDGF activation in three-dimensional cultures.  

SMAD7 as a mediator of differentiation status 

In musculoskeletal tissues TGF-βs are diverse regulators of differentiation steering 

developmental programs such as cell-fate decisions between cartilage and tendon 

(Lorda-Diez, Montero et al. 2009), chondrogenic condensation and proliferation 

(Finnson, Chi et al. 2012) and are key regulators of disease.  In a mechanical 

disruption osteoarthritis model high concentrations of TGF-β1 were found in 

subchondral bone (Zhen, Wen et al. 2013).  In this study transgenic activation of 

TGF-β1 expression induced osteoarthritis, whilst knock-out of the TGF–β type II 

receptor in subchondral MSCs mitigated these effects.  As such the TGF-β-family 
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includes rational targets for regenerative interventions e.g. gene-based therapy 

(Madry and Cucchiarini 2013, Zhen and Cao 2014).  

That TGF-β-mediated signalling is predicted as a master upstream regulator of the 

gene and protein responses seen in de- and re-differentiation is unsurprising given 

the considerable complexity of ligand-receptor interactions and plasticity of TGF-β-

signalling processes (Schmierer and Hill 2007, Cellière, Fengos et al. 2011).  These 

data sets provide no indication of the temporal nature of the signal (whether 

transient, sustained or oscillatory) that would define more accurately the differences 

in cellular response observed across the different culture conditions.  Furthermore, 

a number of contextual determinants, for example factors regulating signal 

transduction (ligand isoforms), transcription factors that bind to SMAD proteins, 

and the epigenetic status of the cell, all modulate the TGF-β signaling effects 

(Massagué 2012).  Consequently, analysis of isolated and static gene expression 

profiles alone cannot provide a consistent understanding of the underlying 

mechanism when trying to establish the differentiation status of a cell.  In brief, the 

binary nature of pathway predictions in this study (activated versus inactivated) 

resulted in conflicted reports of pathway involvement.  This calls into question the 

reproducibility of pathway predictions and the relevance of predicted intermediate 

regulators.   

Although conflict exists there is still likely to be strong concordance in the 

biological process involved.  With this in mind integration in this chapter considered 

only common regulators identified across multiple data sets and focused only on 

downstream effectors that appeared in two or more data sets from the same cell 

type.   Whilst a cautious approach it is qualified by evidence in the literature 
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indicating the poor reproducibility of ‘biosignature’ approaches to defining 

phenotypes arising from small data sets (Azuaje, Zheng et al. 2011).       

This analysis sought to focus on the TGF-β-antagonist SMAD7 for which there was 

evidence of differential expression in dedifferentiation in both chondrocyte and 

tenocyte analysis across two platforms.  Additionally, it was associated with a 

number of common downstream targets, including CCN2/CTGF and SERPINE1.    

SMAD7 can inhibit both BMP (R-SMADS 1/5/8) and TGF-β (R-SMAD 2/3) 

signaling by competitively binding receptor R-SMADS (Nakao, Afrakhte et al. 1997, 

Massagué, Seoane et al. 2005), and through ubiquitin-mediated degradation of 

activated TGF-β receptor complex in association with SMURF2 (Kavsak, 

Rasmussen et al. 2000).  It is implicated in multiple physiological and 

pathophysiological contexts including embryonic development, fibrosis, 

tumourigenesis and inflammation (Zhu, Chen et al. 2011) consistent with TGF-β-

signaling pathways.  Two adenoviral over-expression studies of SMAD7 (from the 

same group) have been shown to be chondroprotective in osteoarthritis models 

(Scharstuhl, Vitters et al. 2003, Blaney Davidson, Vitters et al. 2006).   

SMAD7 influences differentiation and proliferation in chondrocytes 

Effects of SMAD7 on chondrocyte phenotype have been previously established.  

SMAD7 is expressed in developing growth plates (Sakou, Onishi et al. 1999).  In 

SMAD7 knock-out mice defects in terminal chondrocyte maturation are found with 

reduced shortened hypertrophic zones in a study of endochondral ossification 

(Estrada, Wang et al. 2013). Elevated levels of HIF1α were also found in the 

proliferative zones of SMAD7-/- mice suggesting an impact on the hypoxic stress 

response in developing cartilage. Further evidence for the effects of SMAD7 on the 
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differentiation status of chondrocytes comes from adenoviral over-expression of 

SMAD7 severely inhibited Mekel’s cartilage development in mice (Ito, Bringas et al. 

2002) whilst SMAD7-associated inhibition of differentiation and proliferation of 

osteoblasts has also been reported (Yano, Inoue et al. 2012).   

Recent work in β-islet cell differentiation in the pancreas (see Chapter 1) has 

demonstrated that reversal of dedifferentiation may be achieved through TGF-β 

inhibition; Blum, et al (2014) presented evidence indicating that an ALK5/TGF-βR1 

inhibitor was able to rescue dedifferentiated β-cells and inhibit cytokine-induced β-

cell stress (Blum, Roose et al. 2014).  Furthermore, enhanced expression of SMAD7 

promotes β-cell proliferation in vivo (Xiao, Gaffar et al. 2014), and this proliferation 

in response to β-cell loss may require an initial transition through a dedifferentiation 

state (El-Gohary, Tulachan et al. 2014).    

In summary, SMAD7 modulation of TGF-β signalling in dedifferentiation of 

chondroyctes, and tenocytes, is predicted in bioinformatics analysis and 

demonstrated in differential expression studies.  TGF-β signalling is implicated both 

in cartilage disease and development.  Evidence indicates that the developmental 

paradigm is recapitulated in osteoarthritis (Tchetina 2011).  It is, therefore, exigent 

that a better understanding of the dedifferentiation mechanism it developed. In 

particular defining whether the resulting loss of functional phenotype is firstly, 

associated with cartilage degeneration, secondly, a regenerative mechanism that may 

be harnessed.    
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7.4.3: SERPINE1, an ALK5 target, shows reciprocal expression with 
SERPINE2 between native, monolayer and three-dimensional 
cultures 

The model networks for de- and re-differentiation data from mRNA and protein 

studies show the reciprocal expression of two SERPIN family E-clade members, 

SERPINE1/PAI-1 (plasminogen activator inhibitor 1) and SERPINE2/PN-1 (glial-

derived nexin).  The latter shows higher expression in the native and three-

dimensional conditions, whilst the former shows up-regulation in monolayer.  

Although previously defined exclusively as serine protease inhibitors most SERPIN-

family members are often chaperones with diverse roles (Heit, Jackson et al. 2013). 

TGF-β signaling induces SERPINE1 expression through the co-operative binding 

of R-SMADs and AP-1 (Fos/Jun heterodimer) to the promoter (Zhang, Feng et al. 

1998, Guo, Inoki et al. 2005). The concomitant protein PAI-1, a secreted 

glycoprotein, is the inhibitor of urokinase plasminogen activator (uPA) and tissue 

plasminogen (tPA), which are required for the conversion of plasminogen to 

plasmin, a potent proteolytic enzyme (Małgorzewicz, Skrzypczak-Jankun et al. 2013) 

that activates a number of MMP family members with roles in ECM remodeling.  

As such PAI-1 titrates ECM degradation permitting the accumulation of ECM 

components at injury sites.  Although primarily an inhibitor of fibrinolysis it is also 

associated with a number of pathological processes especially fibro-proliferative 

disorders, renal fibrosis, atherosclerosis, vascular thrombosis and rheumatoid 

arthritis under the influence of TGFβ1; these activated genes SERPINE1 and 

CCN2 (see below) are also ROS-dependent (Samarakoon, Overstreet et al. 2013).   

SERPINE2/PN-1 functions are less well understood, however, it has been shown 

to inhibit a number of serine proteases including thrombin and urokinase; 



 569 

expression in astrocytes, endothelial cells and fibroblasts is reported and is 

associated with the ECM.  It is also defined as a substrate for MMP9.  It is the only 

SERPIN found at physiological levels in the brain (Sappino, Madani et al. 1993). 

Recent evidence associated SERPINE2 expression with pro-neoplastic properties 

(Bergeron, Lemieux et al. 2010, Wang, Wang et al. 2014) including increased ECM 

deposition (Buchholz, Biebl et al. 2003).  SERPINE2 risk alleles associated with 

chronic obstructive pulmonary disorder (COPD) are widely reported (Demeo, 

Mariani et al. 2006, Zhu, Warren et al. 2007). Additionally, SERPINE2 has also 

been shown to have antagonistic effects on Hedgehog signaling (Vaillant, Michos et 

al. 2007, McKee, Xu et al. 2012). Whether modulation of SERPIN E protease 

inhibitors is relevant to the differentiation status of model cultures has not been 

determined, however it may be related to modulation of the forming ECM in these 

model cultures.     

7.4.4: CCN2/CTGF, a differentiation regulator and pro-fibrosis 
mediator, is associated with dedifferentiation 

Evidence is presented for the higher expression of the CCN family member 

CCN2/CTGF, connective tissues growth factor, in dedifferentiated chondrocytes 

and tenocytes at the gene and protein level. In Chapter 1 the relevance of CCN-

family members to the ECM is highlighted.  

CCN family members are immediate-early growth-responsive genes (with the 

exception of CCN3/NOV) with roles in cell proliferation, differentiation, 

embryogenesis and wound healing.  Dysregulated expression is extensively 

associated with a number of fibro-degenerative and fibro-proliferative conditions 

including ECM deposition in atherosclerosis, lung and kidney fibrosis, scleroderma 

and muscular dystrophies (Oemar and Lüscher 1997, Leask, Parapuram et al. 2009, 
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Morales, Gutierrez et al. 2013).  CCN2 also shows osteoarthritis-associated pro-

inflammatory effects (Wang, Qiu et al. 2013); intense CCN2 staining by IHC and 

ISH is evident in proliferative chondrocytes in moderate to severe osteoarthritis 

(Omoto, Nishida et al. 2004).  The presence of CCN2 proteolytic fragments in the 

media of femoral head explants of normal cartilage is reported (Wilson, Whitelock 

et al. 2009)  and this increases in the presence of IL-1 (Wilson, Belluoccio et al. 

2008).   

CCN2 is a cysteine-rich secreted protein with a high amino-acid homology with 

other CCN family members.  CCN proteins have a modular structure consisting of 

four-conserved modules: insulin-like growth factor binding protein-like (IGFBP) 

module, b) Williebrand factor type C (VWC) module; c) thrombospondin (TSP) 

type I repeat, and d) C-terminal module with ECM protein, growth factor and 

integrin binding potentials (Takigawa 2013).  The C-terminal module is homologous 

to slit (Oemar and Lüscher 1997) (see Chapter 1 and 2) associated with axonal 

guidance and tendon development in Drosophila (Schweitzer, Zelzer et al. 2010).  

Notably, CCN2 mRNA is induced by TGF-β, but not by PDGF, EDGF, or bFGF  

(Igarashi, Okochi et al. 1993); a TGF-β responsive consensus sequence has been 

identified in the CCN2 promoter region (Grotendorst, Okochi et al. 1996).  

CCN2 in endochondral ossification 

Early research considered CCN2 exclusively in the context of TGF-β1 mediated 

fibrotic conditions; further work demonstrated the pro-hypertrophic effects of 

CCN2 on growth-plate chondrocytes (Nakanishi, Nishida et al. 2000). Comparable 

promotion of differentiated status was subsequently found on osteoclasts and 

vascular endothelial cells defining CCN2 as ‘ecogenin’ or endochondral ossification 

genetic factor for its manifold effects on the proliferation and differentiation of 
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growth-plate chondrocytes, osteoblasts and endothelial cells (Ivkovic, Yoon et al. 

2003, Takigawa 2013).  

Transgenic mice generated to over-express CCN2/lacZ fusion gene under the 

control of the COL2A1 promoter were found to be, relative to the wild-type, larger, 

with longer tibia, there was evidence of enhance chondrocyte proliferation and 

increased proteoglycan and collagen type II accumulation in the proliferative and 

resting zones (Tomita, Hattori et al. 2013).  

CCN2 in differentiation status 

There is normally restricted expression of CCN2 in the adult (usually hepatic stellate 

cells and kidney mesangial cells) and the induction of CCN2 expression by TGF-β 

is generally restricted to cells of mesenchymal origin (Leask, Parapuram et al. 2009).  

CCN2 may be self-regulating in mesenchymal cells by the sustaining particular 

actions of TGF-β (Grotendorst 1997) probably through mediating levels of SMAD7 

(Qi, Chen et al. 2007, Sobral, Montan et al. 2011, van Rooyen, Schäfer et al. 2013). 

These reports are consistent with findings in this study of chondrocytes and 

tenocytes in monolayer demonstrating a TGFβ-CCN2 mediated regulatory network 

with elevated SMAD7 likely to represent a modulatory influence.     

It is not clear how the higher expression of CCN2 should be interpreted in the 

context of dedifferentiation as evidence relates both to musculoskeletal 

developmental stages and fibroblast proliferation mechanisms.  In gain of function 

studies investigating signaling mechanisms regulating cartilage and tendon 

differentiation, local application of TGF-β loaded micro-beads to the 

undifferentiated inter-digital mesenchyme in avian limb buds promotes the 

expression of CCN2, followed by SOX9 and BMPR1b genes; this is contrasted in 
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the digit tip, where chondrogenesis is inhibited and TGF-β application results in 

over-expression of scleraxis (SSCX) driving a tendon phenotype (Lorda-Diez, 

Montero et al. 2014).   

CCN2 has also been demonstrated to differentiate mesenchymal stem cells into 

fibroblasts (Lee, Shah et al. 2010) with enhanced expression of collagen type I and 

tenascin-C; treated cells had an attenuated capacity for tri-lineage differentiation 

potential into osteogenic, chondrogenic or adipogenic cells.   

The reported evidence gives conflicting accounts of the differentiation effects of 

CCN2 and these effects may be cell-restricted.  A definitive understanding of the 

actions of CCN2 on the differentiation status of chondrocytes and tenocytes in 

monolayer culture is not possible from these data sets alone.     

CCN2 in energy production  

Proliferation and differentiation may appear as mutually exclusive mechanisms but 

CCN2 promotes both in chondrocyte development. The findings presented in this 

chapter, of enhanced CCN2 mRNA and protein expression in monolayer and 

subsequent reductions in re-differentiation, are not at odds with the apparently 

“contradictory” (Kubota and Takigawa 2015) actions of CCN2 on chondrocyte 

proliferation and dedifferentiation. In work considering the regulatory effects of 

CCN2 on energy metabolism in chondrocytes Maeda-Uematsu, and co-workers, 

(2014) found that CCN2-null mice had an generalised reduction in the level of 

glycolytic metabolites and intracellular ATP relative to wild-type (WT) controls 

(Maeda-Uematsu, Kubota et al. 2014).  Recovery of intracellular ATP levels in 

chondrocytes from CCN2-null cells was achieved through the addition of 

exogenous CCN2.  Conversely ATP levels were reduced in wild-type cells using an 
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siRNA directed at CCN2 transcripts. The authors concluded that CCN2-mediated 

ATP regulation was likely to be mediated via the anaerobic pathway.  These findings 

may explain the alterations in CCN2 expression in monolayer and model culture 

systems parallel to metabolic changes; elevation of CCN2 expression in rapidly 

proliferating chondrocytes and tenocytes in monolayer culture may be associated 

with the increased energy demands consistent with findings in the work of Maeda-

Uematsu, et al (2014).   

CCN2 and integrin-signaling  

A consideration of CCN2 and integrin-mediated signaling concludes this discussion.  

As define in Chapter 1 the CCN-family have core roles in the transduction of extra-

cellular signals into the cell via integrin-mediated signaling (Leask and Abraham 

2006).  The roles of integrins in cartilage homeostasis and disease have also been 

described (Loeser 2014).  The C-terminal domain of CCN2 is known to interact 

directly with fibronectin through integrin alpha5-beta1 (Hoshijima, Hattori et al. 

2006).  Concentration-dependent increases in the expression of IL-6 in 

chondrocytes induced by CCN2 is attenuated by an alpha5-beta1 integrin 

neutralising antibody in a study of synovial fibroblasts from osteoarthritic joints 

(Liu, Hsu et al. 2012).  Given the relevance of CCN2 to interactions with integrins 

and the modulatory effect on chondrocytes further exploration of the relationship 

of this mechanism to de- and re-differentiation, and the development of organo-

typic cultures is required.    

 

  



 574 

7.4.5: Future work  

 

Quantitative integration of data 

To fully realize the potential of multiomics analysis a systematic integration 

methodology is required that also allows exploration and comparison of the 

different strata of quantitative omics data.  Time constraints prevented exploration 

and implementation of these methods.   As previously outlined a number of multi-

variate statistical integration methods have been utilised by researchers to integrate 

quantitative multi-omics data. Of these approaches projection-based methods have 

been widely used and are also available as open-source software packages in the R 

language.  The omnicade4 package implements a multiple co-inertia analysis 

(MCIA) approach to integrate greater than two omics data sets, a previous limitation 

of other methods (Meng, Kuster et al. 2014).  This type of analysis was initially 

applied to ecology data to couple two (DolÉDec and Chessel 1994) or more (Bady, 

Dolédec et al. 2004) tables for the simultaneous ordination of data from a large 

number of environmental sites and populations.  The MCIA method allows the 

projection of several data sets into the same dimensional space and on the same 

scale.  This allows the exploration of diverse data features and the definition of co-

relationships between usually highly dimensional omics data sets.   

These methods still assume a common biological origin for the multi-omics data 

sets, i.e. the same tissue source or cell lines are assayed multiple times, and 

consequently this serves to limit analysis that may be undertaken with data available 

in this thesis.  Given the narrow genetic background of the inbred rat strain used for 

the Affymetrix and proteomic data sets application of co-inertia analysis should be a 

valid quantitative integration strategy.  Specifically this exploration would be used to 
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define co-relationships between the transcriptomic and proteomic data and assess 

the concordance between them.  This is especially useful given than the proteomic 

analysis of cartilage and tendon data is not directly comparable.  Given that this 

approach also doesn’t require intersection of common feature annotations depth of 

coverage is retained potentially enhancing the power of pathway analysis.  The 

potential for feature selection using MCIA also confers the possibility of an 

alternative in silico strategy for validation three-dimensional culture gene signatures.    

Dealing with missing data    

It is evident from the poor overlap of features across all three data sets that there is 

considerable loss of data points, which may bias and limit the understanding of the 

system.  This is particularly an issue for proteomics data due to issues of sensitivity 

and range discussed in Chapter 6.  Data points may be missing at random, 

however, many are missing as a result of non-random effects, e.g. qualitative 

changes between groups or annotation problems.  Often in proteomics studies 

undetected proteins in surveys are assigned ‘zero’ values.  Methods are required to 

impute or model this missing data (Aittokallio 2010, Li, Nie et al. 2011).   

Basic statistical imputation was performed for missing qPCR data (section 2.2.7), 

however, further exploration of missing data points for transcriptomic and 

proteomic profiling studies has not been undertaken.  Exploration of the degree of 

loss with technical replicates would be useful, but the use of imputation methods 

may be considered as cost-efficient as additional replicates (Aittokallio 2010).  

Several approaches have been used for microarray data: K-nearest neighbours, 

Bayesian PCA, and least squares regression.  Notably relatively simple imputation 

methods, such as using mean values, may work as well as more complex approaches 

(de Souto, Jaskowiak et al. 2015).  At present these strategies require 
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implementation prior to downstream analysis in independent data sets.  A pipeline 

for the imputation of missing data and subsequent omics integration should be 

developed to fully exploit the data arising from these studies. 

7.4.6: Summary statements 

The aim of this chapter was to integrate data from two transcriptomic and one 

proteomic data set with view to proposing a regulatory network to model three-

dimensional organotypic culture systems and validate in future work.  Clearly the 

postulated mechanistic networks do not include all elements of the system, but the 

objective was to deconstruct the mRNA and protein data represented in the 

different experiments, not to the point of abstraction, rather into a pragmatic 

mechanism that could be reasonably validated in the laboratory.  

Two key themes emerge from an understanding of the components of the model 

networks presented in this chapter relating to the TGF-β signaling pathway and its 

involvement at the beginning and the end – in development and disease.  This is 

derived from, firstly, the association with musculoskeletal developmental 

phenotypes (Havis, Bonnin et al. 2014, Lorda-Diez, Montero et al. 2014), the 

second with pro-fibrotic pathological mechanisms related to dysregulation of matrix 

turnover.  For example TGF-β1, CCN2 and SERPINE1 are all co-expressed in a 

ureter-obstruction model of kidney fibrosis (Samarakoon, Dobberfuhl et al. 2013).   

The contributory studies in this chapter consider whole tissue and matrix-depleted 

chondrocytes and tenocytes – these models do not consider the matrix roles in the 

sequestration and activation of TGF-β signaling. There is no supporting evidence 

regarding the temporal nature of this TGF-β signal (Cellière, Fengos et al. 2011).   It 

is proposed that to define the prevailing nature of dedifferentiated musculoskeletal 
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cells, or their re-differentiation, requires further research aimed at collecting 

dynamic quantitative and systematic data with levels of down-stream targets such as 

CTGF, SMAD7 and SERPINE1 defined in parallel.  In particular, development of 

cell-specific (Zi, Chapnick et al. 2012), and culture-specific, mathematical models 

for TGF-β signaling are required  as the unified mechanism proposed assumes a 

common trajectory for both chondrocytes and tenocytes in culture.    

To fully utilize the multi-level omics data available in this thesis data imputation and 

integration methods should be explored.  Simple statistical strategies for imputation 

of missing data may be appropriate, whilst multivariate projection-based approaches 

should be employed to integrate quantitative data from gene and protein profiling 

studies.          
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8 :  Genera l  Discuss ion 
 

8.1: Project objectives revisited 
 

Statements of intent 

In this thesis a systems biology approach was employed to explore the three-

dimensional culture phenotype and relate this to whole tissue and standard monolayer 

culture.  As defined at the outset monolayer culture has existed as the pre-eminent 

approach for in vitro modeling for cartilage and tendon.  The limitations of this strategy 

have been clear for many years and novel organotypic culture systems have been 

devised to overcome these limitations.  Despite this, a paradigm shift from two- to 

three-dimensional culture systems has not occurred.  At the time of writing no 

systematic investigation of three-dimensional models of cartilage or tendon has been 

undertaken.  Furthermore, these model culture methods are commonplace within the 

field of musculoskeletal research in spite of the fact that the gene and protein profiles of 

these models have not been fully characterized.   

It was asserted in the introduction that without validated and standardised organotypic 

models expedient translation of bioengineered tissue from the laboratory to the clinics 

would not be possible within the current regulatory frameworks.  It was also stated that 

the majority of studies utilized narrow definitions of differentiated status when 

qualifying progress in cartilage and tendon tissue engineering.  To fully realize the 

potential of in vitro systems, maximize the use of rare clinical specimens, and reduce the 

use of animal models there is a need for global characterization of organo-typic models 

and systematic comparisons with the in vivo environment.  Systems biology methods, 
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such as those presented in this thesis, are well-suited to complex integration of data and 

may be used to generate predictive models for functional validation.         

Associated with each chapter specific observations have been presented and specific 

discussion statements built upon these; associated recommendations for further 

validation and development of the results were also defined.  In this final discussion the 

principal themes of the study as a whole are considered; additionally the contribution to 

musculoskeletal research is outlined and a road map for further work is provided.   

The key project objectives were defined in Chapter 1 and these are revisited here in 

three sections.  Novels findings and their impact are reflected upon relative to these 

objectives; general concerns arising across all studies are considered, and future research 

and methodologies are presented.   

8.2: The de- and re-differentiated phenotypes.   
 

Objective 1: To define dedifferentiation and re-differentiation to mark-out 
the phenotypic boundaries within which cartilage and tendon cells function 

The terms de- and re-differentiation are used in cartilage and tendon research with no 

mechanistic definition.  Additionally there is no standard phenotype against which to 

benchmark novel findings and progress in bioengineering.  Progress is defined through 

the analysis of a limited spectrum of well-described differentially expressed genes and 

proteins, but inter-experimental comparisons are difficult and rarely are findings 

interrogated against other studies in the field.  By creating a reference gene expression 

profile for native cartilage and tendon, dedifferentiated chondrocytes and tenocytes, and 

three-dimensional culture systems a baseline catalogue is created against which further 

developments may be referred.       
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Regenerative medicine has the goal of replacing lost or damaged cells.  Approaches to 

achieve this include reprogramming, dedifferentiation or transdifferentiation; of these 

dedifferentiation represents a proliferative, less differentiated phenotype (Jopling, Boue 

et al. 2011).  In the mammal, recent work has found dedifferentiation occurs in 

regenerative (Porrello, Mahmoud et al. 2011) and degenerative contexts (Szibor, Pöling 

et al. 2014).  It may be a prerequisite to the replacement of lost cells (El-Gohary, 

Tulachan et al. 2014).  Dedifferentiation is recognised in chondrocytes (Schulze-Tanzil 

2009) and tenocytes (Yao, Bestwick et al. 2006) as a ‘side-effect’ of monolayer culture.  

Dedifferentiation as a mechanism in osteoarthritis is inconsistently referred to (Young, 

Smith et al. 2005) and its contribution to tendinopathy is unknown.  In order to 

investigate dedifferentiation as a contributory process to a loss of function or 

degenerative phenotype, or even a regenerative mechanism, in adult cartilage and 

tendon there must be adequate reference points.   

8.2.1: Dedifferentiation in monolayer represents a proliferative ‘pre-differentiated’ 
phenotype 

To initially explore a sematic association with dedifferentiation in regenerative contexts 

(Kragl, Knapp et al. 2009) qualitative definitions of dedifferentiation in monolayer were 

made: i) quiescent cells proliferate, ii) there is loss or reduced expression of the 

functional synthetic profile, iii) increased expression of markers of a pre-differentiated 

phenotype, iv) and markers are lineage restricted and not indicative of reversion to a 

pluripotent state, i.e. embryonic stem cell.   

Across two gene expression profiling studies there was evidence that chondrocytes and 

tenocytes were proliferative and expression of functional hallmarks were reduced (Tnmd, 

Col2a1) (2.3.3 and 3.3.3) in line with current understanding.  This study contributes to 

this by demonstrating increases in the expression of mesenchymal markers and markers 
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of cartilage and tendon development (including Scx and Mkx) in monolayer-expanded 

cells. There was no evidence for a reversion to a pluripotent state as defined by the 

expression of markers associated with embryonic or induced pluripotent stem cells.  

Furthermore, the higher expression of homeobox genes, associated with developmental 

positioning (Pitx1), was robustly expressed in monolayer.  Finally, evidence of preserved 

expression of homeobox genes associated with topographical anatomy was described 

for adult cartilage and tendon (section 2.3.9).      

In purely sematic terms there is reasonable concordance with the qualitative definitions.  

This thesis proposes that chondrocytes and tenocytes in monolayer culture have a 

phenotype consistent with a proliferative ‘pre-differentiated’ musculoskeletal cell that 

may have position- and lineage-restricted potential.  In other words, the simple act of 

placing cells in monolayer culture induces phenotypic changes reminiscent of pre-

differentiated state.  This notion challenges studies defining the presence of adult tissue 

progenitor cells based exclusively on the expression of marker genes in monolayer.     

Recent evidence suggests that cartilage and tendon precursor cells are not defined by the 

isolated expression of Sox9 or Scx alone, rather combinations of expression patterns are 

evident in precursor tenocytes depending on the developmental proximity to nascent 

cartilage (Sugimoto, Takimoto et al. 2013) (section 1.5).  Evidence of the expression of 

Scx in both chondrocytes and tenocytes at passage three (section 3.3.3) lends credence 

to the hypothesis that they show common heritage and respond in a comparable way in 

vitro.  This has implications for our understanding of chondrocyte and tenocyte cell 

biology and how we exploit these cells in tissue engineering.  Firstly, these adult-derived, 

terminally differentiated cells are plastic and have potential to express developmental 

markers.  Secondly, by expressing developmental markers dedifferentiated cells may be 

in a permissive state that may be manipulated for regenerative purposes through the 
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correct biochemical and biomechanical cues.  Thirdly, this study provides reference 

markers against which gene expression profiles from disease states may be compared to 

in order to make inferences about underlying pathophysiological mechanisms, i.e. is loss 

of function by dedifferentiation a mechanism in chronic cartilage degeneration?  

8.2.2: Tissue-derived stem cells in monolayer cultures: dedifferentiated cells 
by any other name? 

Evidence of the multi-potentiality of tissue-derived stem cells has long relied on 

qualitative colourimetric assays (Alcian blue and Oil Red O staining for chondrogenic 

and adipogenic differentiation potential respectively) and limited panels of genes are 

assessed by qPCR.  There is no published comparison between the transcriptome and 

proteome of putative tissue-derived stem cells that have undergone directed 

differentiation studies and mature tissue.  Methods for isolating tissue progenitor 

populations from tendon (Bi, Ehirchiou et al. 2007), for example, are not dissimilar to 

those used in this thesis to derive tenocytes for monolayer culture.  In both scenarios  

cultures start with very low seeding densities.   Furthermore, there is no standardization 

in these techniques or comparison of putative tissue-progenitor cells between 

laboratories (Prockop 2009).   

The markers for musculoskeletal progenitors were frequently evident in the gene 

expression surveys in this thesis.  For example, Worthley, et al (2015) recently defined a 

novel nestin-negative (BMSC marker) skeletal stem cell population, 

osteochondroreticular (OCR) cells, in a cell-tracking experiment based upon the 

expression of the BMP antagonist Grem1 (Gremlin 1) (Worthley, Churchill et al. 2015).  

Consistently Grem1 has been identified as significantly differentially expressed in three-

dimensional culture systems from both chondrocytes and tenocytes (sections 2.3.2, 

3.3.2, 6.3.3, and SD2/3).  This may indicate that common regulatory mechanisms that 
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are in play in the de- to re-differentiation transition are common to differentiation 

pathways for resident adult progenitor cells.      

Markers for musculoskeletal progenitor cells are diverse and inconsistent in the 

literature and are over-represented in differential gene expression analysis of 

proliferating chondrocytes and tenocytes in this thesis.  A critical area for development 

of the findings in this study would be global gene and protein profiling of mesenchymal 

stem cells relative to cartilage stem/progenitor cells (Jiang and Tuan 2015), cells 

undergoing directed differentiation towards a chondrocytic phenotype, three-

dimensional culture systems and monolayer (dedifferentiated) cells.  Without more 

subtle descriptors the phenotypes of musculoskeletal cells in diverse environmental 

conditions cannot be adequately resolved and concerns should be raised where adult 

stem cell markers are reported to be present in cells that have undergone periods of 

monolayer expansion.   

 
8.2.3: Gene expression convergence challenges continued use of 

monolayer to model chondrocyte and tenocyte phenotypes 

Convergence of gene expression profiles in monolayer culture has been shown in cells 

from multiple tissue sources (Prasad, Kumar et al. 2013).  In two independent 

comparative studies convergence of chondrocytes and tenocyte gene expression profiles 

were found (sections 2.3.2 and 3.3.2). The fundamental question arising from this 

finding is whether the use of monolayer culture is defensible for the study of 

chondrocytes or tenocytes given that monolayer culture is physiologically uninformative 

(Haycock 2011).  Clearly there are limitations to the use of whole tissue, but universal 

acceptance of three-dimensional culture systems, and a move away from monolayer 

culture studies, is restrained by a lack of commercially available ‘bio-inspired’ materials 

that could be used in a flexible, reproducible and affordable manner to facilitate 
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seamless in vitro to in vivo translation of research (Prestwich 2007). Despite the 

importance of monolayer culture this study identifies that a critical obstacle to 

development of rational organotypic models is a dearth of integrated mRNA expression 

and protein abundance studies and a reliance on underpowered studies defining changes 

in a limited number of established markers as the sole deliverable output of a study.  A 

deeper understanding of the nature of organotypic cultures and the protein regulatory 

networks that govern the phenotype would facilitate translational research.  The 

contributions to this end are detailed further in the succeeding sections.        

8.2.4: Three-dimensional cultures do not restitute native expression 
profiles 

For three-dimensional cultures to represent adequate models of tissue a stable 

phenotype is required with gene and protein profiles consistent with (or comparable to) 

the tissue under investigation.  To achieve this would entail integration of biophysical 

and biochemical signals dynamically (Spanoudes, Gaspar et al. 2014).  In contribution to 

this goal mRNA and protein profiling evidence in this thesis demonstrates that 

established three-dimensional culture models for chondrocytes (De Ceuninck, Lesur et 

al. 2004) and tenocytes (Kapacee, Richardson et al. 2008) fail to restitute 

dedifferentiated cells to a cartilage or tendon phenotype respectively.  

For alginate culture, in particular, there is evidence of elevated expression of cytokines 

(sections 2.3.2 and 3.3.2), a shift to oxidative phosphorylation (section 6.3.5) and 

evidence of reduced cell viability with time (section 2.3.8).  Alginate cultures in both rat 

and human gene expression studies had more extreme expression of markers of 

inflammation than cartilage samples derived from human osteoarthritis or rat surgical 

models of osteoarthritis (section 5.3.9).    
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8.2.5: Gene signature classifies three-dimensional cultures 

Implicit in the title of this study was the requirement that the analysis of large 

expression profiling studies would have a practical output in relation to tissue 

engineering rather than creation of reference gene and protein lists alone.  A thirteen 

gene signature with enriched protein-protein interactions confidently identified alginate 

cultures separate from native or monolayer samples (section 5.3.10).  The results of the 

microarray meta-analysis may facilitate a systems approach to organotypic model 

development by defining whether gene expression changes associated with a novel 

intervention, e.g. novel cell scaffold, are more comparable to a standardised model 

systems or a native phenotype.  The validation of a standard phenotype in these culture 

systems would establish a control condition against which these interventions could be 

compared.  It could also encourage the reduction of animal tissue harvesting for these 

studies. This study also established that the gene signature differed between human and 

rodent studies with possible implications related to the translation of findings in rodent 

musculoskeletal studies to human disease.  

8.2.6: Matrix-depletion facilitates deeper exploration of cartilage and 
tendon proteome 

Improving the depth of proteome coverage usually requires additional fractionation or 

depletion steps to deal with the vast dynamic range in protein abundance.  High 

resolution LC-MS has improved this in recent years, however, this is still challenging for 

cartilage and tendon due to the highly anionic extra-cellular matrix.  In this thesis a 

simple protocol is outlined to deplete chondrocytes and tenocytes of extra- and peri-

cellular matrix resulting in a greater depth of coverage than found previous discovery 

publications (Hsueh, Önnerfjord et al. 2014), (section 6.3.2).  This opens the potential 

of detecting low abundance, regulatory proteins – for example, gremlin 1, catenin beta 1 

and MAP kinases were all identified in tenocytes in monolayer or fibrin cultures.  
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Beyond validation of individual targets the natural progression for this analysis would be 

to systematically build-up the proteome from component studies.  In Deshmuhk, et al 

(2015) comparable problems associated with skeletal muscle discovery analysis were 

overcome by combining uniquely identified proteins from C2C12 cultured myotubes 

and whole muscle to define 10, 218 proteins (Deshmukh, Murgia et al. 2015).  Stepwise 

discovery analysis of fractionated and cultured samples, in addition to whole tissue, 

would aid a more comprehensive understanding of the cartilage and tendon proteome.      

8.3:  Dealing with complex and heterogeneous data 
sets   

 

Objective 2: Define cross-species responses to homeostatic perturbations 
by cartilage and tendon through integration of gene-expression data 

 

8.3.1: Cross-species comparison of transcriptome networks yields novel 
insights  

In order to challenge the conclusions drawn from gene expression surveys of de- and 

re-differentiated cell profiles were considered with respect to other published data sets.  

The dearth of quality microarray data sets profiling cartilage or tendon in the rat 

required a permissive study inclusion policy in order to apply co-expression analysis 

methods to explore the global transcriptome network.  Using a data merging approach 

resulted in a complex and heterogenous matrix of samples and expression data.  The 

same methods were applied to human cartilage and tendon data and a comparison of 

the global transcriptome network architecture was undertaken to define common 

functional sub-networks that had a strong statistical association with particular 

phenotypes. 



 597 

Modules within the rat transcriptome network corroborated the gene ontology 

functional annotations described in Chapter 2 and 3 with gene modules from 170 

arrays describing immune system processes, cell cycle and metabolic activity, and 

skeletal system development.  From the rat network a highly interconnected sub-

network of genes with known osteoarthritis associations were found (section 5.3.7).  

These were strongly associated with a normal cartilage phenotype and strongly 

negatively correlated with perturbed samples from rat models of osteoarthritis.  Within 

this sub-network genes with no known osteoarthritis association were found – it is 

proposed that these genes may have relevance to a further understanding of the 

pathophysiology of osteoarthritis in model species.  The impact on our understanding 

of human disease is discussed below.      

8.3.2: Informing complex human disease from rodent models – thesis 
findings have practical relevance to researchers  

The ultimate deliverable output of this study should be findings that allow some 

inference to be made with regard to human musculoskeletal disease – either to explore 

further regulatory networks that may be perturbed in the disease state, to refine disease 

models, and encourage development of regenerative strategies.  As has been asserted in 

earlier statements rat in vitro models of cartilage and tendon homeostasis are 

physiologically imperfect and so it becomes difficult to untangle what may be usefully 

extrapolated to human research, what is species-specific, and what is artefact.  In this 

thesis it is demonstrated that, using the available gene expression data sets for rat and 

human, there are co-expression network modules associated with normal cartilage gene 

expression profiles in the rat that are not replicated in human studies (section 5.3.7).  

The reasons for this have been described elsewhere, but it highlights a core issue of a 

network approach using data from rodent in vivo and in vitro models.  The lack of normal 

expression profiles for human cartilage and tendon make it difficult to compare 
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transcriptome networks; the absence of evidence for a given gene module in a co-

expression network from human data is not evidence for its absence.   

There is considerable controversy centred on the relevance of rodent models to human 

disease, most notably in inflammation (Seok, Warren et al. 2013, Takao and Miyakawa 

2015).  Primarily these studies have focused on the correlation of gene expression 

profiles between mice and human expression studies.  In this thesis low, but positive, 

correlations of gene expression rank were found between species (section 5.3.4) for 

cartilage and tendon derived studies.  It is also demonstrated that the overall 

transcriptomic structure is highly conserved between rat and human networks (section 

5.3.5).  This is consistent with a recent re-evaluation of mouse ENCODE data 

demonstrating that gene expression across species (mouse and human) clusters by tissue 

and not by species (Gilad and Mizrahi-Man 2015).  The converse had been published by 

the ENCODE consortium (Lin, Lin et al. 2014), but supporting earlier statements in 

this thesis calling for disclosure of microarray sample batching in public repositories, 

batch effects in the ENCODE data had not been resolved.      

Findings presented in this thesis have a practical impact for musculoskeletal researchers 

interested in developing bioengineered cartilage and tendon. For future studies to make 

further headway efforts should be made to at a community level to rationalize models, 

optimise laboratory methods/parameters, and curate gene orthologs across rodent and 

human studies not least because of the wider impact on the veracity of translational 

research in science policy and knock-on effects on funding.  Further development of the 

co-expression analysis study presented in this thesis should bear the controversies, 

discussed above, in mind.  For example, rodent and human expression profiles both 

consider inflammatory osteoarthritis, but activation of such pathways occur on vastly 

different time-scales.  More careful matching of expression studies across species, and 
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dealing with batch effects where possible, is more likely to yield informative results than 

loose amalgams of tissue, cell and disease profiles (Shay, Lederer et al. 2015).    

8.3.3: Ontologies fail to provide depth of functional annotation 

The use of gene ontology functional annotations was a core data-mining tool in the 

collection of studies presented within this thesis.  The presence of highly enriched 

annotations for immune functions in native cartilage, and muscle transcripts in tendon, 

from differentially expressed genes prompted exploration of methods to determine how 

these profiles compared to those from other studies.  The possible methodological and 

anatomical reasons for this have been discussed in Chapter 2.  Further consideration of 

the relevance of gene ontology annotations to a systems understanding is warranted.  

Throughout this thesis annotations using developmental terminology are evident: 

‘anatomical structure morphogenesis’, ‘tissue morphogenesis’, ‘regulation of cell 

differentiation’ (sections 2.3.4, 3.3.4, and 7.3.1) are found to be associated with 

dedifferentiation in monolayer and re-differentiation in three-dimensional culture 

systems.  Enriched terms such as these contribute positively to a hypothesis of 

constrained plasticity of isolated chondrocytes and tenocytes.  However, alongside these 

numerous incongruous annotations are evident; the most obvious example of this was 

the significant number of annotations associated with neurodegenerative disorders used 

to annotate enriched KEGG pathways in the proteomic profiles of monolayer and 

three-dimensional cultures (section 6.3.3).  A further example was the annotation of 

dedifferentiated chondrocytes with ‘tendon development’ annotation (section 3.3.4), but 

this was not apparent for the equivalent tenocyte analysis.  Disparity across knowledge 

bases was also evident with PI-3K signalling pathway shown to be the predominant 

pathway in de- and re-differentiation (section 3.3.7) yet described as hepatic stellate cell 

activation by Ingenuity Pathway Analysis.  With respect to the cross-species analysis 
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presented in this thesis assumptions are also made with regard to the equivalence of 

annotations.   

These concerns with ontologies in musculoskeletal research may be considered as 

arising from several broad issues: i) heterogenous cell populations (especially for native 

tissues) obfuscate accurate annotation of the cell population of interest, ii) functional 

annotations are inconsistent across knowledge bases, iii) annotations are biased and are 

not stage-, condition-, or tissue-specific, iv) and annotations are subject to researcher 

bias.   

Nehrt, et al (2011) used gene ontology annotations to refute the ortholog conjecture, 

that orthologous genes share greater functional similarity that paralogous genes (Nehrt, 

Clark et al. 2011).  Although this has now been challenged within the context of 

comparative genomics it revealed issues within the gene ontological annotations, in 

particular the ‘open world assumption’ that the absence of a GO functional annotation 

for a gene does not indicate absence of that function, rather it reflects artifacts created 

by the methods of collection of molecular biology data.  This has been described as a 

‘global ascertainment bias’ in that certain types of experiments tend to be performed in 

certain model species resulting in very unequal representation of certain biological and 

molecular functions between rodent and human annotations.  In particular biological 

process terms for development and cell differentiation are over-represented in the 

mouse relative to human annotations (Thomas, Wood et al. 2012).  These issues are 

compounded in tissues for which there are few gene ontology annotations, i.e. tendon.  

Consequently, an understanding of how GO annotations are derived should inform the 

corroborative process for the data presented in this thesis, in particular comparative 

profiling of development stages of cartilage and tendon with de- and re-differentiated 

cells should be considered.      
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8.3.4: Deconvolution of data from heterogenous samples may yield further 
insights into cartilage and tendon 

Gene expression profiles derived from cartilage and tendon represent the average signal 

for a heterogenous tissue.  The relative proportions of each cell type can vary 

considerably, especially when derived from small tissue samples collected by manual 

dissection.  This can confound downstream analysis, not only through functional 

annotations (described above), but also through the misidentification of candidate 

biomarkers.   

To disentangle the expression signals requires the use of deconvolution algorithms; 

these can serve as cost-effective tools to rationalise the component cell profiles, which 

would otherwise require specialist resources, e.g., micro-dissection, cell sorting.  Flexible 

frameworks, such as the CellMix R package (Gaujoux and Seoighe 2013) facilitate the 

implementation of these methods, but require auxiliary data sets to define cell 

proportions.  Only recently a novel implementation of latent variable analysis in R, 

CellCODE, has been shown to be able to assign differentially expressed genes to cell-

types based upon data structure alone and without specific knowledge of the data set 

(Chikina, Zaslavsky et al. 2015).  Further analysis of expression data from whole 

cartilage and tendon would benefit from the application of deconvolution strategies to 

retrieve cell-specific profiles.      
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8.4: Challenges of data integration 
 

Objective 3:  Integrate gene expression and protein abundance data to 
rationalize validation targets and derive mechanistic networks.  

 

8.4.1: Summary of integration approaches employed  

The data accumulated in this collection of studies represents a rich resource to be 

exploited further.  However, discussion of each study in isolation has limited relevance 

to a wider systems understanding of the response of chondrocytes and tenocytes to 

environmental perturbations.  Through integration of data from snapshot profiles at 

different levels of the biological hierarchy a consistent and comprehensive narrative may 

emerge.   

A number of data integration strategies were employed in this thesis.  To aggregate data 

from multiple diverse microarray gene expression profiles data was merged by 

intersecting on common gene identifiers and applying a global normalization method to 

create a single matrix.  The structure of the transcriptome network could then be 

determined through the use of a weighted gene co-expression network analysis (sections 

4.3.1 and 5.3.3).  The utility of this approach was clear, however, small data sets 

demonstrated unstable network structures and in this context the confidence with which 

regulatory hub genes could be identified was marginal; this was exemplified by the 

equivocal impact of siRNA knock-down of the Lzts2 gene on expression of markers of 

differentiation status in chondrocytes (section 4.3.7).  Despite the strong statistical 

associations supporting the choice of module and hub gene in an individual data set this 

study highlighted the necessity for interrogation of multiple data sets to define 

consensus modules.   
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To determine a comprehensive functional annotation of the biological processes likely 

to be involved in de- and re-differentiation a novel model-based Bayesian method was 

used (Sass, Buettner et al. 2014).  This approach considers each data set as a noisy 

representation of a common underlying gene response.  This permitted the integration 

of functional annotations from a number of biological levels, simultaneously dealing 

with redundant terms and issues of multiple testing.  This application did summarise 

dedifferentiation by the terms ‘ossification’, ‘oxidation-reduction process’ and the 

KEGG Wnt-signalling pathway.  The limitation of this approach, in addition to 

ontology concerns discussed above, is that only two different levels may be considered 

and makes no use of quantitative data.   

The third method used to integrate data from transcriptomic and proteomic data sets 

aimed to infer the common upstream transcriptional regulators that resulted in the 

observed expression profiles from each data set.  This analysis made use of causal 

analytic algorithms included within Ingenuity Pathway Analysis.  Upstream regulators 

are predicted that are consistent with regulation of the observed gene expression profile 

through direct or indirect relationships.  Mechanistic networks are hypothesis networks 

built upon identified upstream regulators by connecting the regulators considered to be 

acting through the same signalling mechanism (Krämer, Green et al. 2014).    

This technique demonstrated the reciprocal activation and inhibition predicted for the 

master regulators TGF-β1 and PDGF BB in de- and re-differentiation.  Furthermore, a 

highly enriched protein-protein interaction network was evident for dedifferentiation 

derived from Ingenuity mechanistic hypothesis networks.  Through this SMAD7 and 

CTGF were identified as common downstream targets in the dedifferentiated 

phenotype (section 7.3.2).  For redifferentiation, mechanistic networks were centred on 

JUN. FOS, BMP2, GREM1 and IL-1B and IL-6.  By performing this analysis over 
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several studies and two tissue sources it was possible to define a consensus network.  

This meets the goal of devising a mechanistic network for de- and re-differentiation and 

sub-setting a target group for further wet-lab validation and input to models.   

Although this method allowed qualitative comparisons to be made across independent 

data sets, e.g. TGF-β1 activation is predicted in monolayer in all data sets (section 

7.3.2), this approach again does not utilize the quantitative data.  Missing nodes in a 

regulatory cascade are given statistical predictions for their activation or inhibition.  This 

allowed the inclusion of targets not shown to be differentially expressed, but were 

relevant to the tissue under investigation.   

Clearly the observed gene expression profile may be modulated by a number of 

different regulators and it cannot be known a priori which of these predominates.  

Although each of these hypothesis networks has a statistical score associated with it they 

are a function of the observed gene expression profile.  The absence of nodes and the 

strict cut-off defined in Ingenuity could have implications on the reproducibility of 

these networks.  

8.4.2: Pathways and mechanistic networks 

This study reports the contribution of a number of signalling pathways as being 

involved monolayer and three-dimensional culture phenotypes including Wnt-, NF-kB, 

PI-3K/Akt (section 3.3.7), PPAR (section 6.3.6), IL-6 (section 5.3.8) and TGF-β 

(section 7.3.2)-signalling.  These have all been implicated in development and/or disease 

mechanisms in chondrocyte and tenocyte or defined by in vitro studies.  The finding of 

multiple signalling pathways in this study is not contradictory rather it demonstrates the 

requirement of integration across multiple data sets and the levels of the biological 

hierarchy.   
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By defining the consensus upstream regulators associated with mRNA and protein 

profiles in this study it was possible to propose a unified mechanistic network for the 

observed chondrocyte and tenocyte phenotypes. Crucially the proposed network is 

static and incomplete; it requires both an assessment of sufficiency (whether it describes 

the behavior of the system within a specified range of tolerance) and a test of realism 

(whether this is the correct mechanism) (Boogerd, Bruggeman et al. 2013).  In line with 

current opinion development of this TGF-β mediated model would require a more 

quantitative and systematic approach, not least mathematical modeling of temporal 

signals (Zi, Chapnick et al. 2012).  Time course analysis would be an integral component 

of further expression profiling.     

The future challenge from these, and other, expression data sets is the reverse 

engineering of gene regulatory networks (GRN) from gene expression data.  In using 

co-expression network analysis functional sub-networks were isolated and these are 

useful for exploring emerging functional properties of groups of genes in the system, 

but they do not represent or infer causal relationships (Emmert-Streib, Glazko et al. 

2012).  Likewise, Ingenuity Mechanistic Networks are useful exploratory tools, but are 

hypothesis networks defined by the knowledge base and number of input genes from a 

data set.  They also have a tendency to ‘over-fit’ networks, for example TGF-β1 was 

defined as the upstream regulator of over 700 genes in one analysis of Affymetrix 

expression data (section 7.3.3).  In addition to being ‘scale-free’ (Barabási and Oltvai 

2004) gene regulatory networks are parsimonious in design, i.e. sparse (Leclerc 2008).  

This was an emerging issue in Chapter 5 where a complex and heterogenous network 

was developed and was insufficiently sparse.  There are a number of available strategies 

for inferring regulatory networks from gene expression surveys.  These include 

correlation-based methods (WGCNA), mutual information (ARACNE) and Boolean 
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and Bayesian network methods (Liu 2015). Future work would focus on inferring 

regulatory networks from gene expression data arising from these studies.   

Data, data everywhere 

Data constraints were a core issue in this thesis.  Issues of cost, platform obsolescence, 

quality control and missing data all arose with microarray gene expression profiling 

studies in this thesis.  To overcome limitations in the data arising from novel 

experimental work, and to place gene expression profiles in a wider context, methods of 

gene expression data integration were considered by data merging approaches.  Many 

practical concerns were evident including the poor quality of many expression profiles 

submitted to public repositories, difficulty in handling data from multiple microarray 

platforms, the dearth of available cartilage and tendon profiles, the minimal sequence 

and target overlap between probes from different platform technologies and the 

problems associated with handling noisy and heterogenous data.   

Although some guidelines for microarray meta-analysis and data integration have been 

suggested (Ramasamy, Mondry et al. 2008) there is no standard procedure for dealing 

with diverse expression data.  Diversity of the data is a function of the plethora of 

commercial products and lack of standardization across the musculoskeletal research 

community with respect to disease models and laboratory methods.  Although the 

methodologies used in this thesis require refinement, in terms of inclusion criteria and 

the focusing of research questions, they represent the first attempt to describe 

regulatory sub-networks associated with native cartilage and tendon as well as three-

dimensional culture systems.  
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8.5: Project objectives redefined 
An understanding of dedifferentiation as a regenerative mechanism must develop with 

respect to other regenerative models, i.e. stem cells (Maden 2013).  A body of evidence 

defines the presence of tissue-resident stem cells in the tendon (Bi, Ehirchiou et al. 

2007, Lui and Chan 2011) and chondro-progenitors in the superficial zone of articular 

cartilage (Candela, Yasuhara et al. 2014).  Numerous studies have considered the 

directed differentiation of MSCs (often from bone-marrow or adipose tissue) towards a 

chondrocytic phenotype (Boeuf and Richter 2010) with view to autologous sources of 

stem cells for cartilage repair.  The findings of developmental marker expression in 

monolayer cells in this study would have benefitted from analysis in a wider context, for 

example, transcriptomic profiling alongside differentiating MSCs or comparisons 

relative to the monolayer culture methodologies used for deriving tendon-derived stem 

cells.  This would facilitate a narrower definition of dedifferentiation by delineating the 

extent of any developmental phenotype.  Elucidation of a restricted de-/re-

differentiation regulatory network would be a valuable contribution to the modeling of 

novel organotypic culture systems and informing regenerative musculoskeletal 

interventions.    
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