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Abstract 

There is an overwhelming experimental and theoretical evidence indicating SF6 arc 

burning in a supersonic nozzle (known as the switching arc) is turbulent and in local 

thermodynamic equilibrium (LTE). Such an arcing arrangement is commonly used as 

the interrupter in gas blast circuit breakers. In order to reduce the development cost 

of gas blast circuit breakers, it is highly desirable to predict the arc behaviour under 

the operational conditions encountered in a power system. The major difficulty in 

achieving full computer aided predictive design of gas blast circuit breakers is the 

satisfactory prediction of the thermal interruption capability of an arc under turbulent 

conditions. Mathematical modelling of turbulent SF6 switching arcs, thus, forms the 

subject matter of this thesis. 

The approach for the modelling of turbulent switching arcs is similar to that for 

turbulent shear flows due to a direct resemblance between a nozzle arc and a round 

free jet both of which are dominated by shear flow. The conservation equations for 

switching arcs are, therefore, derived using Reynolds’s approach. The closure of 

these equations is based on the adoption of Boussinesq assumption to relate 

Reynolds stress to the time averaged velocity gradients through eddy viscosity. The 

turbulent heat flux is assumed to be related to Reynolds stress through a constant 

turbulent Prandtl number.  

Additional equations are introduced to determine the turbulence length scale 

and velocity scale required by eddy viscosity, which are provided by turbulence 

models. There are numerous turbulence models but none of them are specifically 

devised for switching arcs. The objective of the present investigation is, therefore, to 

choose relevant turbulence models to model turbulent SF6 switching arcs. Our choice 

of turbulence models is restricted to those which have been applied with success to 

similar flow conditions as those of a switching arc as well as their suitability for 

engineering application. We therefore choose the standard k-epsilon model and its 

two variants (the Chen-Kim model and the RNG model) for the modelling of SF6 

turbulent switching arc. Since the application of the Prandtl mixing length model to 
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SF6 switching arcs has met considerable success, this turbulence model is included in 

our investigation for comparison. In order to demonstrate the effects of turbulence, 

results based on laminar flow model are presented. Therefore, altogether five flow 

models have been used to study the nozzle arcs.  

Computational results are obtained by the five flow models under a wide range 

of discharge conditions in terms of different nozzle geometries, the rate of change of 

current (di/dt) before current zero and the stagnation pressure (P0). A detailed 

analysis of the physical mechanisms encompassed in each flow model is given to 

show the adequacy of a particular model in describing the rapidly varying arc during 

current zero period. The computed values of the critical rate of rise of recovery 

voltage (RRRV) are compared with corresponding measurements. It is found that 

RRRV predicted by laminar flow model is a few orders of magnitude lower than that 

measured, which indicates that turbulence plays a decisive role in the determination 

of thermal interruption capability of a nozzle arc. Of the four turbulence models, the 

Prandtl mixing length model gives the best prediction of RRRV when compared with 

experimental results. The drawback is that the value of the turbulence parameter of 

the Prandtl mixing length model needs to be derived from one test result for a given 

geometry. With our current understanding of the physics of turbulent arcs, the Prandtl 

mixing length model is the only turbulence model which can be used to predict the 

thermal interruption capability of a nozzle arc arrangement. 
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Chapter 1  

Introduction 

 

1.1 Background 

High voltage circuit breakers are used in electrical power transmission networks for 

protection and control of power flow. They can act as either a connection point or an 

insulating point. During normal operation, they are connection points carrying load 

current and can be called on to switch off/on a circuit when necessary. In the event of 

a fault, they are required to switch off a faulty circuit or interrupt a short-circuit 

current, and thus they become insulating points in the power network.  

    Among all these duties of high voltage circuit breakers the most arduous one is 

the interruption of fault current [1.1]. Generally, a high voltage circuit breaker is a 

device with two metallic contacts located in an interruption chamber and some 

driving mechanisms, all of which are enclosed in a tank filled with particular 

insulating materials. During the process of current interruption, the two contacts are 

separated while carrying a current, and the gap between them is dielectrically broken 

down after which an electrical arc is generated [1.2]. The arc carries the fault current 

and the faulty circuit cannot be switched off before the arc is extinguished. One of 

the main concerns as regards the development of circuit breakers is, therefore, on 

how to extinguish the arc effectively and with the total breaking time as short as 

possible to ensure system stability [1.1]. There are generally two requirements for the 

successful interruption of fault current by a circuit breaker. The first one is to 

increase the resistance of the arc and its rate of rise especially in the period around a 

natural current zero to ensure that any possible subsequent current flow is suppressed 

and finally interrupted after current zero. This phase is known as thermal interruption 

as it relies upon cooling down the arc to a temperature where thermal ionization 

cannot be sustained. The other is the dielectric recovery phase after thermal 
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extinction of the arc. During dielectric recovery, the breaker should be able to 

withstand full system voltage. To fulfill these requirements and to reduce the 

manufacturing cost, a circuit breaker should be optimized. Optimization is usually 

centered around the interrupter size and materials, contact size, geometry and 

materials, the insulation/arcing gas and the driving mechanism. Application of a good 

arc interruption medium with high dielectric strength is also essential. The latter 

reduces the size of a breaker. The development of high voltage circuit breakers has, 

therefore, been closely related to the search of insulating materials with good arc 

interruption capability as well as environmentally friendly properties. 

1.1.1 Brief History on the Development of High Voltage Circuit Breakers 

In the early years, oil circuit breakers [1.1, 1.3, 1.4] and air circuit breakers [1.1, 1.3, 

1.4] were used in the power network. The oil circuit breaker is one of the oldest types 

of circuit breakers, which employs the properties of the arc by using its energy to 

decompose the oil molecules and, subsequently, the generation of gas, principally 

hydrogen [1.1]. The high pressure hydrogen gas bubbles created by the arc energy, 

with properly designed control systems, can be advantageously used to confine, cool 

and compress the arc which will then increase the rate of deionization of ionized 

gaseous media and subsequently the extinction of the arc and finally achieving the 

necessary dielectric strength between the two contacts [1.1, 1.3]. Oil circuit breakers 

can be classified with reference to the amount of oil used as: the bulk oil circuit 

breaker (BOCB) [1.1, 1.3, 1.4] which can be used for voltage ranging from 1 kV to 

330 kV [1.3], and the minimum oil circuit breaker (MOCB) [1.1, 1.3, 1.4] which are 

available in voltage levels up to 765 kV using the multi-break technique [1.3, 1.4]. 

The bulk oil and minimum oil designs have both been proved a very successful 

circuit breaking technology for which the oil circuit breakers are still in service today 

in power networks of medium and low voltage levels. There are, however, quite a 

few disadvantages of using oil as insulating medium including flammability of 

insulating oil and high maintenance cost of oil circuit breakers [1.3, 1.5]. 

Disadvantages of oil as insulating medium in high voltage circuit breakers initiated 
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research on air as a replacement, resulting in the development of air circuit breakers.  

Air circuit breakers include the air-break circuit breaker (first developed in 1929 

by Slepian at Westinghouse [1.1]) and the air-blast circuit breaker (developed from 

1930s [1.1]). The air-break circuit breakers are designed for low voltage levels (up to 

15 kV [1.3]). For this type of circuit breakers, arc quenching is achieved by arc 

elongation as it is forced by the action of magnetic field into the narrow space 

between insulating plates (known as arc chutes) [1.3, 1.4]. The lengthening of the arc 

and the cooling of the arc by the surface of the chutes soon lead to a high arc voltage 

(i.e. high arc resistance), which gives rise to favourable conditions for arc extinction 

at natural current zero [1.2, 1.3]. The air-blast circuit breakers, on the other hand, are 

used in high voltage power networks with the voltage levels up to 765 kV [1.3]. 

These breakers are mostly the double pressure type, in which the arc is cooled and 

blown in the gap between the contacts by a blast of high pressure compressed air 

flowing through a nozzle [1.1, 1.4]. A very high pressure level (around 30 to 35 bar) 

is required to ensure good interruption capability of an air-blast circuit breaker and it 

is necessary for the condition of the air to be very dry to maintain insulation level 

and reliability of operation [1.3]. Operation of air-blast circuit breakers, therefore, 

requires compressors and dryer systems which increase the cost of the breaker [1.4]. 

Moreover, air does not have very high arc interruption capability and dielectric 

strength. Thus, for electrical network at extra high voltage level, a large number of 

interruption units are required which results in large size of the breaker (e.g. for rated 

voltages above 420 kV, 10 or even 12 interrupters in series are needed per pole [1.4]). 

These disadvantages result in the use of Sulphur hexafluoride (SF6) as the 

replacement of air in high voltage circuit breakers due to its excellent dielectric and 

arc quenching properties. Air-blast circuit breakers were predominately used in 

electrical networks at voltages higher than 100 kV before they were gradually 

replaced by SF6 gas-blast circuit breakers (hereafter referred to as SF6 circuit 

breakers) [1.1, 1.3, 1.4] from late 1950s [1.4]. Modern high voltage circuit breakers 

are mostly SF6 gas-blast circuit breakers. A brief review on the development of SF6 

circuit breakers will be given in Section 1.1.2. 
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Apart from SF6 circuit breakers which are generally preferred for high voltage 

levels, in power networks at low and medium voltage levels, vacuum circuit breakers 

[1.1, 1.3, 1.4] (developed in 1950s and 1960s [1.1, 1.4]) have been extensively used 

nowadays. A vacuum circuit breaker comprises one or more sealed vacuum 

interrupter units per pole which basically consists of only a fixed and a movable 

contacted enclosed in a vacuum bottle [1.4]. When the contacts separate, the arc is 

supported by ionized metal vapour released from the metallic contacts instead of 

ionized gas or liquid in other types of circuit breakers [1.4]. At current zero, when the 

arc is extinguished, the metal vapour is deposited on the condensing shield and the 

space inside the interrupter, therefore, becomes high vacuum since very few ions are 

available between two contacts [1.1, 1.4]. The dielectric strength between two 

contacts thus increases rapidly after arc extinction. The vacuum circuit breakers are 

advantageous over the other type of circuit breakers in that the vacuum interrupter 

units are mechanically simple and need no supply of gases or liquids which avoids 

problems of flammability and emission of hot gas, which may be harmful to 

environment, etc [1.4]. Besides, vacuum has the fastest dielectric recovery strength 

after arc interruption at current zero [1.3, 1.4]. Furthermore, the dielectric strength of 

high vacuum is approximately 8 times that of air and 4 times that of SF6 (at 1 bar) for 

a given contact gap, which makes it possible to extinguish an arc with a very small 

contact gap [1.3]. It is these advantages that make the vacuum circuit breakers 

become popular in low and medium voltage applications (up to 36 kV [1.3]). 

However, vacuum circuit breakers do have disadvantages, e.g. higher load losses of 

vacuum circuit breakers (due to loss of vacuum) as compared with SF6 breakers and 

high maintenance cost, which restrict application of vacuum breakers in high voltage 

applications [1.4]. 

1.1.2 SF6 Gas-Blast Circuit Breakers 

SF6 is a very stable, odourless, non-toxic and non-flammable gas. It is one of the 

heaviest gases known, which is approximately 5 times heavier than air [1.6]. Its 

dielectric strength is about 4 times higher than air at room temperature and is higher 
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than that of oil at an absolute pressure above 3 bar [1.1]. The exceptional dielectric 

and arc quenching properties of SF6 were discovered in 1950s [1.1, 1.4], which 

resulted in a new generation of SF6 gas-blast circuit breakers. 

    The first generation of SF6 circuit breakers are of the double pressure type 

which has the same working principle as the earlier air-blast circuit breakers except 

using a different insulating and quenching medium [1.4]. The adoption of SF6 

resulted in a considerable increase in voltage and current ratings without resorting to 

extreme gas pressures and/or using large number of interrupters in series per pole 

[1.4]. A typical example was the high voltage SF6 circuit breaker with a high 

short-circuit current capacity developed in Westinghouse in 1959 [1.4]. This dead 

tank circuit breaker could interrupt 41.5 kA/138 kV and 37.6 kA/230 kV with only 

three interrupters per pole, in comparison with requirement of at least four 

interrupters per pole using an air-blast circuit breaker to achieve similar interruption 

capability [1.4]. The performance improvement of double pressure SF6 circuit 

breakers is, therefore, significant but it requires certain amount of working gas to be 

compressed and stored permanently in a high-pressure reservoir (typically at 16 bar) 

[1.2, 1.4]. This can result in liquefaction of SF6 at low temperature environment and, 

thus, heating facilities are required to prevent liquefaction which increases the size of 

the breaker and its cost [1.2, 1.4]. In addition, additional compressor systems are 

required to maintain high pressure of SF6 [1.4]. The double pressure SF6 circuit 

breakers are, therefore, soon replaced by single pressure puffer type circuit breakers, 

the development of which dates from late 1960s and 1970s [1.4].  

    Figure 1.1 shows an example of a puffer type SF6 circuit breaker (hereafter 

referred to as puffer circuit breaker). The interrupter is included in an insulating tank 

which is initially filled with SF6 gas at a filling pressure of typically 6 bar [1.2, 1.4]. 

A common characteristic of all puffer circuit breakers is the compression of SF6 gas 

during the opening operation inside the compression volume between a cylinder 

(No.9 in Figure 1.1) and a piston (No.11 in Figure 1.1). In most of the puffer designs, 

the piston (No.11 in Figure 1.1) is fixed while the cylinder (No.9 in Figure 1.1) 

moves together with the moving contact. The increase of pressure inside the 
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compression volume forces the gas to flow through the nozzle (No.5 in Figure 1.1) 

where it is strongly accelerated, thus forming a favourable environment for arc 

cooling. The technology for puffer circuit breakers has become the most successful 

in current interruption, and the excellent properties of SF6 has greatly increased the 

interruption capability of this type of breaker: some manufacturers have developed 

SF6 puffer type circuit breakers for rated voltage of 550 kV which only requires one 

interrupter per pole [1.4].  

 

Figure 1.1. A 245 kV SF6 circuit breaker using a puffer interrupter with insulating 

nozzle and pneumatic operating mechanism, reproduced from [1.4]: (a) closed 

position; (b) process of arc-quenching and (c) open position. 
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However, the main disadvantage of puffer circuit breakers, especially those used 

for heavy duties (e.g. at current above 40 kA and rated voltage above 245 kV), is the 

need for relatively long strokes and high operating forces, which can only be 

provided by using rather complex and powerful operating mechanisms such as 

pneumatic and hydraulic mechanisms [1.4]. This negatively affects the reliability and 

the cost of this circuit breaker, which prompts the development of SF6 circuit 

breakers with more sophisticated current interruption principle; the self-blast 

(auto-expansion) circuit breaker (Figure 1.2).  

 

Figure 1.2. A 145 kV SF6 circuit breaker using combined self-blast and puffer 

principle of arc quenching with spring operating mechanism, reproduced from [1.4]: 

(a) closed position, (b) closed-in arc, (c) process of arc quenching and (d) open 

position. 
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The self-blast circuit breakers (Figure 1.2) differ from the puffer circuit breakers 

in that they use mainly the thermal energy of the arc to heat the gas, instead of 

mechanical energy provided by operating mechanisms, to increase pressure in the 

expansion volume. This results in significantly reduced operating forces which 

makes it possible to use low energy spring operating mechanisms, thus reducing the 

size and cost yet increasing the reliability of the breaker [1.4].  

    Ideally, it is expected that the arc can somehow provide all the energy required 

for pressurization with the operating mechanisms providing only energy needed for 

contact movement, which cannot, however, be achieved. Problems arise when 

interrupting small currents, in which case the arc energy will not be sufficient to 

increase pressure to be high enough for efficient gas blast. Design of self-blast circuit 

breakers, therefore, considers combination of self-blast and classical puffer principle 

of arc quenching, as shown in Figure 1.3. When interrupting small currents, the 

self-blast circuit breaker works in a similar way as the puffer circuit breaker, with 

SF6 gas compressed in the puffer volume (V1 in Figure 1.3) which is then forced to 

flow through the expansion volume (V2 in Figure 1.3) and the nozzle (No.2 in Figure 

1.3) for arc cooling. When interrupting very high currents, nozzle clogging occurs 

due to the high temperature and sizeable arc. The thermal energy released from the 

arc, together with additional mass and energy generated by nozzle ablation, 

accumulates in the expansion volume (V2 in Figure 1.3) which heats up the gas and 

increases pressure. Compression of the gas in the puffer volume (V1 in Figure 1.3) 

also helps to increase pressure. When the gas pressure in the expansion volume (V2 

in Figure 1.3) is high enough, the overpressure valve (No.7 in Figure 1.3) will be 

closed after which all gas required for interruption is trapped with any further 

increase in gas pressure entirely due to energy from the arc. With the current decay 

and the shrinking of the arc size (and thus reduction of the pressure in the nozzle 

interrupter), the pressure difference between the expansion volume (V2 in Figure 1.3) 

and the contact gap generates a high speed gas flow through the nozzle. It 

extinguishes the arc at current zero.  
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Figure 1.3. SF6 self-blast double volume interrupter with check valves designed by 

considering combined self-blast and puffer principle of arc quenching, reproduced 

from [1.4]: (a) closed position, (b) interrupting small current, (c) interrupting high 

current and (d) open position. 

1.1.3 Development of CAD Tools for Design of Gas-Blast Circuit Breakers 

It has readily been shown in Section 1.1.2 that the current interruption process in 

gas-blast circuit breakers is very complex which involves the interaction of the arc 

plasma, the gas flow, radiation transport and ablation [1.7]. The high pressure arc 

formed between two contacts is the key element in all types of gas-blast circuit 

breakers, which acts as a variable resistor and cannot be avoided during operation of 

gas blast circuit breakers [1.1, 1.2, 1.6]. It is expected that the arc can be 

extinguished in a very short time to fulfill the requirements on current interruption 

and on system stability [1.1, 1.6]. Nevertheless, it is essential to maintain the arc 

before an attempt is made to extinguish it, which allows enough time for contact 

separation and subsequently the creation of a contact gap large enough to withstand 

restriking voltage [1.6]. It should also be noted that arc extinction should occur at 

current zero in an AC circuit to avoid overvoltage problems [1.1]. The problem with 

regard to circuit breaker design is, therefore, to control the arc in such a way that the 

energy of the arc can be effectively removed during current zero period to obtain a 

rapid rate of rise of arc resistance, while the rate of energy removal from the arc 



Chapter 1 Introduction 

10 

should not be too fast which results in small currents being chopped before current 

zero causing overvoltage problems [1.1]. Design of such a complex system is, 

therefore, very difficult. The development of an SF6 breaker is up to now still heavily 

dependent on costly short circuit tests. With the rapid advancement of computing 

power at ever reducing cost computer aided development tools are now widely used 

in design offices with the objective to reduce the number of short circuit tests [1.8, 

1.9]. The major difficulty in achieving full computer aided predictive design of 

gas-blast circuit breakers is the satisfactory prediction of the thermal interruption 

capability of an arc under turbulent conditions, and thus the critical rate of rise of 

recovery voltage (RRRV) a circuit breaker can withstand. Mathematical modelling of 

turbulent arc thus forms the subject matter of the present thesis.  

In Section 1.2 of this chapter, a brief discussion will be given on the 

mathematical modelling of switching arcs based on the assumption of local 

thermodynamic equilibrium (LTE) which will be used for the modelling of turbulent 

SF6 arcs. The justification of using this approach for the work in this thesis will be 

discussed in detail in Chapter 2. The rest of this chapter describes the objective of the 

present work. Finally, the structure of this thesis will be given. 

1.2 Properties of High Pressure Arc in LTE 

The thermal interruption capability of a circuit breaker is determined by the arc 

column between two contacts. The sum of the voltage drop across the cathode and 

anode sheath regions is much smaller than that of the arc column which is of a few 

centimetres long [1.10, 1.11]. The gas pressure encountered in circuit breakers is at 

atmospheric and above. At such pressure, collisions between particles in the arc 

column are very frequent. For such collision dominated arc and for the discharge 

conditions normally met in circuit breakers the arc can be regarded as in the state of 

LTE [1.2, 1.12, 1.13]. The properties of LTE plasmas and the conditions to ensure 

LTE in the context of circuit breaker plasmas are discussed in Section A.2 of 

Appendix A.  
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The arc plasma under LTE state can be treated as a single conductive fluid. The 

conservation equations for the arc plasma are therefore similar to Navier-Stokes 

equations (referred to as N-S equations hereafter) [1.14, 1.15] but modified to take 

into account the effects of radiation transport and the effects of electromagnetic fields. 

The conservation equations for switching arcs, together with those computing 

electromagnetic fields, are given in Section A.3 of Appendix A. The effects of 

radiation transport inside the arc plasma are discussed in Section A.5 of Appendix A. 

The solution of conservation equations for switching arcs requires knowledge of 

the thermodynamic and transport properties, and the equation of state. For an arc 

plasma in LTE, the thermodynamic and transport properties can usually be related to 

pressure (p) and temperature (T). The equation of state, on the other hand, relates the 

gas density (ρ) to p and T. For SF6, the equation of state, thermodynamic and 

transport properties are given in tabulated or graphic form in [1.16], all of which are 

also given in Section A.4 of Appendix A for completeness. 

1.3 Objectives of the Present Work 

The prediction of thermal interruption capability critically depends on the correct 

description of the arc behavior during current zero period. There is now consensus 

that SF6 arc in nozzle flow is turbulent [1.17]. N-S equations and Maxwell’s 

equations correctly describe arcs in turbulent state. However, direct numerical 

solution (DNS) [1.18, 1.19] of these equations is not practical as the required grids 

size and time step are dictated by the smallest eddies [1.19]. Even with the most 

advanced computers, DNS has only been done for very simple cases, such as an 

incompressible flow passing a plate [1.20, 1.21] and a flow over a backward-facing 

step [1.22]. Turbulence models which are mainly based on the statistical treatment of 

the relevant conservation equations are exclusively adopted for engineering 

applications [1.23, 1.24]. Turbulence models are usually problem specific and the 

corresponding turbulence parameters need to be optimized by test results. There are 

numerous turbulence models in literature [1.23-1.28]. 
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No systematic experimental and theoretical investigation on truculent arc has so 

far been conducted although the Prandtl mixing length turbulence model has been 

used to predict RRRV for an SF6 nozzle arc [1.29]. There have been sporadic 

investigations on turbulent SF6 arcs using the standard k-epsilon model and a few of 

its variations [1.30-1.32], but with conflict claims as regards the success of these 

turbulence models. No general conclusions on the applicability of these turbulence 

models to SF6 switching arcs can be drawn as the verification of these models by test 

results is very limited. 

Turbulence modeling in fluid mechanics and aerodynamics has a very long 

history and has achieved much success. It is still a major research area as almost all 

flows of industrial importance are turbulent. There are numerous turbulence models 

[1.23-1.28] although none has been devised specifically for turbulent switching arcs. 

The most fruitful approach for turbulent arc modeling is to examine the applicability 

of those turbulence models, which have a track record of success in fluid mechanics 

and aerodynamics, to SF6 turbulent arcs. 

The objective of the present investigation is, therefore, to choose relevant 

turbulence models to model the turbulent SF6 arc. We choose those turbulence 

models which are devised for flows having direct similarities with the flow features 

of a turbulent switching arc. This results in selection of the standard k-epsilon model 

[1.26] and its two variants (the Chen-Kim model [1.28] and the RNG model [1.27]) 

for the modelling of SF6 turbulent switching arc. Since the application of the Prandtl 

mixing length model to SF6 switching arcs has met considerable success, this 

turbulence model is included in our investigation for comparison. Altogether four 

turbulence models have been chosen to study SF6 switching arcs. In order to 

demonstrate the effects of turbulence, results based on laminar flow model are 

presented. The computed RRRV obtained by the aforementioned turbulence models, 

together with that obtained by the laminar flow model, will be subjected to 

verification by experimental results covering a wide range of discharge conditions in 

terms of different nozzle geometries, rate of change of current before current zero 

and stagnation pressure. In order to avoid the pressure transients normally 
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encountered in a circuit breaker, a two-pressure system will be adopted and thus the 

test results of Benneson et al. [1.33], Frind et al. [1.34] and Frind and Rich [1.35] 

will be used to judge the relative merits of various turbulence models used for the 

present investigation. 

1.4 Structure of the Thesis 

The structure of the thesis is given below: 

    This chapter gives an introduction of this thesis, which includes the background 

of the work presented in this thesis and objectives of this work. 

Chapter 2 gives a detailed discussion as regards the importance of turbulence on 

the behaviour of SF6 switching arcs. The justification of the assumption that a 

turbulent arc is in LTE is also discussed. 

Chapter 3 gives a detailed discussion on the approach for the modelling of 

turbulent SF6 switching arcs, which include the application of statistical approach for 

analysis of turbulent switching arcs and the derivation of time averaged arc 

conservation equations. The governing equations for the turbulence models chosen 

for the modelling of turbulent SF6 switching arc are also given this chapter. These 

models will be subjected to verification by relevant test results, the details of which 

are descirbed. Finally, a brief description is given on the implementation of the arc 

conservation equations and the turbulence models in a general purpose 

computational fluid dynamics (CFD) software package, PHOENICS, which is used 

for computer simulations of the present work. 

Chapter 4 reports the first part (Part I) of the systematical investigation into the 

behaviour of a SF6 nozzle arc, which is concerned with the studies of the flow 

features in the absence of the arc (cold flow) as well as with a detailed study of the 

arc behavior under different direct currents for the nozzle used in the experiments of 

Benenson et al. [1.33]. Computational results are obtained using the laminar flow 

model and the four turbulence models, i.e. the Prandtl mixing length model, the 

standard k-epsilon model and its two variants, the Chen-Kim model and the RNG 
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model. Detailed discussion is given as regards the cold flow features and the 

behaviour of DC arcs at different currents predicted by different models employed. 

Chapter 5 reports the second part (Part II) of the systematical investigation into 

the behaviour of a SF6 nozzle arc, which is exclusively concerned with the arc 

behavior under a current ramp (i.e. a linearly decaying current specified by di/dt) 

before current zero and a voltage ramp i.e. a linearly increasing recovery voltage 

specified by dV/dt) after current zero. The four turbulence models, together with the 

laminar flow model, used in Chapter 4 are again applied in this investigation. A 

detailed analysis of the physical mechanisms encompassed in each model is given to 

show the adequacy of a particular model in describing the rapidly varying arc during 

current zero period. The computed RRRV are compared with the measured RRRV 

reported in [1.33]. Relative merits of turbulence models employed are discussed. 

Chapter 6 reports the third part (Part III) of the systematical investigation into 

the behaviour of a SF6 nozzle arc, which studies the effects of the nozzle geometry 

on the turbulence level during the current zero period that affects the arc 

characteristics and RRRV. The Prandtl mixing length model and the standard 

k-epsilon model are used to obtain results. Three nozzles [1.33, 1.34, 1.35] are 

considered in this investigation. The measured RRRV for these nozzles together with 

the computational results are used to evaluate the level of turbulence and the 

influence of the geometrical factors of a nozzle on thermal interruption. 

Chapter 7 reports the investigation on the effects of arc-shock interaction on the 

behaviour of an SF6 nozzle arc during current zero period. The Prandtl mixing length 

model is used to simulate the turbulent arc. Detailed discussion is given on the 

aerodynamic and electrical behaviour of the arc in the presence of the shock and the 

influence of the shock on SF6 arc thermal interruption. The computed RRRV are 

compared with the measured RRRV reported by Frind and Rich [1.35]. 

In Chapter 8, appropriate conclusions are drawn from the all investigations 

presented in thesis. Suggestions are also given for the future work. 
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Chapter 2  

The Effects of Turbulence on SF6 Switching 

Arcs 

 

2.1 Introduction 

Almost all circuit breakers at transmission voltage level use SF6 as an arcing gas. 

Immediately after the separation of two contacts, an arc is formed inside the 

interrupter of a breaker. The arc is usually burnt in an axially dominated supersonic 

flow inside a convergent- divergent nozzle (commonly known as supersonic nozzle). 

For such an arcing environment (hereafter referred to as the switching arc), there is a 

wealth of experimental evidence showing that the arc is in turbulent state, especially 

at the vicinity of current zero [2.1-2.6]. An SF6 switching arc resembles a thin 

incompressible shear layer (a high speed rounded free jet), which is in turbulent state 

when the critical Reynolds number is exceeded. Under the context of a switching arc, 

in addition to the instability generated by the inertia term of the momentum equation, 

there are additional driving mechanisms for instability. A detailed discussion will be 

given to these destabilizing forces. Even in the presence of turbulence, it is not 

certain if the turbulent eddies generated in the shear layer can penetrate the high 

temperature arc core, thus affecting the electrical behavior of the arc.  

In the context of theoretical investigation of switching arcs, the computed 

values of RRRV of a switching arc based on LTE and laminar flow for SF6 switching 

arc is a few orders of magnitude lower than that measured [2.7]. In addition to the 

likely influence of turbulence on the electrical behaviour of the arc, there are other 

processes which can affect arc voltage. These processes are mainly related to the 

rapid decay of current before a natural current zero and the fast rise of the recovery 

voltage imposed upon two contacts after current zero. Such rapid variations in 

discharge conditions make the assumption of arc in LTE doubtful [2.8, 2.9, 2.10]. 
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The causes of departure from LTE (referred to as non-LTE processes for convenience) 

and their effects on RRRV will be reviewed. The importance of non-LTE processes 

will be judged by examining whether or not the likely RRRV predicted by an arc 

model including non-LTE processes is greater or less than that predicted by an LTE 

arc model with laminar flow (referred to as the laminar RRRV for convenience). 

Finally, the RRRV reported in the literature for an LTE arc in turbulent flow will be 

compared with experimentally measured RRRV and with the laminar RRRV. Such a 

comparison will show the role of turbulence in the determination of the electrical 

behaviour of an SF6 switching arc. 

2.2 Review of Relevant Experimental Investigation on Arc 

Turbulence 

There is a wealth of experimental evidences showing that the switching arc is 

turbulent, especially at the vicinity of current zero. The most important experiments 

related to arc turbulence were conducted in early 1970s by Hermann et al of Brown 

Boveri Research Centre (hereafter referred to as BBC Group) on a nitrogen arc 

burning in a supersonic nozzle under well defined experimental conditions [2.1, 2.2]. 

Experimental study together with the relevant theoretical investigation on the 

behaviour of a stationary arc (an arc in its steady state) at a constant current of 2 kA 

(by convention, we refer to constant current as DC and a steady state arc at a given 

constant current as a DC arc hereafter) has been reported in [2.2], in which the 

detailed experimental results are given for the measurements of temperature, pressure, 

arc radius and electrical field. The transient behaviour of this arc is investigated by 

linearly ramping down the current to zero from 2 kA DC at the rate of current decay, 

di/dt = 39Aμs
-1

 [2.1]. High speed streak records of both the 2kA DC arc and the 

transient arc are shown in Figure 2.1 at a number of different axial positions. At 2 kA 

DC, the arc section up to the nozzle throat reveals a laminar flow feature, while 

downstream of the nozzle throat, it can be seen that the edge of the arc becomes 

turbulent, which is however weak and does not appear to affect the arc core region 
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(Figure 2.1(a)). The measured electrical field shows that the upstream arc section has 

higher electrical field than the downstream arc section (Figure 2.2(a)). When the 

current is ramping down towards zero, in the region downstream of the nozzle throat, 

turbulence appears to become very strong which is not restricted around the arc edge 

but is shown to affect the whole arc in the vicinity of current zero (Figure 2.1(b)). 

The arc section upstream of the nozzle throat, on the other hand, remains more or 

less laminar even after current zero (Figure 2.1(b)). Furthermore, the downstream arc 

section which shows turbulent features has been found to have much faster rate of 

rise of arc resistance (Figure 2.3) as well as higher electrical field (Figure 2.2(b) and 

2.2(c)) in comparison with the upstream arc section at the vicinity of current zero. 

The experimental results of the BBC group indicates that turbulence does affect the 

electrical behaviour of switching arcs and the turbulent effects appear to be 

significant at the vicinity of current zero. 

 

 (a)      (b) 

Figure 2.1. Streak records of the nitrogen nozzle arc investigated by BBC group. (a) 

Reproduced from [2.2]: self-luminosity streak records of the arc cross section for a 2 

kA DC arc at different axial positions. (P0=23 bar and Time resolution=0.3 μs) and (b) 

Reproduced from [2.1]: fast streak record of the arc in the vicinity of current zero 

(P0=23 bar and di/dt=39Aμs
-1

). 
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Figure 2.2. Schematic of the arc shape and the measured electrical field at different 

time instants for the nitrogen arc investigated by BBC group (P0=23 bar and 

di/dt=39Aμs
-1

). Reproduced from [2.1]. 

 

 

Figure 2.3. Resistance per unit length of different arc sections in the vicinity of 

current zero. Reproduced from [2.1]. The letters a, b and c correspond to the arc 

sections as indicated in Figure 2.1. 
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In addition to the investigation by the BBC group on nitrogen arcs, Leseberg 

and Pietsch [2.4, 2.5] of Aachen University (hereafter referred to as the Aachen 

Group) performed experimental study on an SF6 nozzle arc under both DC and 

transient conditions. They measured radial temperature profiles at different axial 

positions of the nozzle for DC arcs at different currents and also a transient arc 

initially at 1.8 kA DC which is ramped down towards current zero with di/dt=-16 

Aμs
-1

. Their high speed photo of the SF6 nozzle arc demonstrates that the arc 

becomes turbulent downstream of the nozzle throat while upstream of the nozzle 

throat the arc is more or less laminar (Figure 2.4). These qualitative features are 

almost the same as those of the nitrogen arc investigated by BBC group.  

 

Figure 2.4. A high speed photo of the SF6 nozzle arc at an instant current of 700A 

with an exposure of 1 μs. Reproduced from [2.5]. 

 

Almost at the same time as the BBC Group, Frind and Rich of GE in the US 

(hereafter referred to as the GE Group) reported the measurements of the critical rate 

of rise of recovery voltage (RRRV) for a supersonic nozzle arc with both air and SF6 

as arcing media [2.11]. In two subsequent publications [2.12, 2.13], extensive 

experimental results are given for nozzle arcs with SF6, air, nitrogen and their 

mixtures as the arcing media.  
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2.3 Mechanisms of Generating Instabilities for Switching Arcs 

2.3.1 Similarity between a Switching Arc and a Free Jet 

Figure 2.5 shows a typical example of a high speed free jet with a diameter 2b0 

emerging from an orifice with a uniform velocity U0 into a standstill environment. 

The development of such a free jet into a fully developed turbulent jet is depicted in 

Figure 2.5(b), where a laminar core near the orifice, the development and the merge 

of the shear layer and the fully developed region are shown. In the fully developed 

flow region, the flow velocity decreases continuously from the maximum value on 

the axis to zero at the jet boundary (Figure 2.5(b)). Such a free jet is, therefore, 

within the category of shear layer flow due to the steep radial gradient of the axial 

flow velocity at a given axial position which is the typical characteristic of the flow 

behaviour in a shear layer.  

For the switching arc burning in a supersonic nozzle with axially dominant flow 

Ohmic heating gives rise to very high temperature within the arc core. For moderate 

currents, the axis temperature of the arc is about two orders of magnitude higher than 

that of the surrounding gas flow. This results in a very steep radial temperature and 

velocity gradients especially in the region between the arc core boundary and the 

thermal boundary where the radiation energy emitted from the arc core is reabsorbed 

(Figure 2.6). This layer is commonly known as the radiation re-absorption layer. 

Inside this layer, the velocity drops from its core value to that of the external flow, 

which is similar to that indicated in Figure 2.5(b). We refer to this region as the 

velocity shear layer (Figure 2.6). Figures 2.1 and 2.5 show direct resemblance 

between a round fluid jet and a switching nozzle arc.  
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  (a) 

  (b) 

Figure 2.5. A typical example of a turbulent free jet. (a) Reproduced from [2.14]: a 

jet emerging from a nozzle orifice which discharges into the standstill environment 

and (b) Reproduced from [2.15]: schematic diagram showing the development of a 

free jet into a fully developed turbulent jet. 
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Figure 2.6. Schematic diagram showing the switching arc and its external flow 

inside a supersonic nozzle. Reproduced from [2.16]. 

 

2.3.2 The Mechanisms of Generating Instabilities for Switching Arcs 

Although much emphasis has been given to the resemblance between a free 

incompressible jet and a switching arc, there are differences between the two. The 

differences are summarized below: 

A high velocity free jet is a flow discharging in to standstill surroundings at 

constant pressure and temperature, and thus there is no force to accelerate the jet. The 

free jet is also incompressible and has constant material properties (due to constant 

pressure and temperature).  

A switching arc, on the other hand, is far more complex in comparison with a 

free jet in that it has a temperature range of approximately from 300 K to 25,000 K 

and a pressure range from 5 bar to 40 bar. In addition, the high temperature is 

maintained by an electrical power input and the arc is highly transient due to change 

of arc current. All these aspects result in the following main difference of a switching 

arc in comparison with a free jet: 

(a) For an arc burning in a nozzle, the imposed axial pressure gradient (resulting 

from large pressure difference inside a nozzle) exerts strong acceleration along 

the arc which results in high rate of strain. 



Chapter 2 The Effects of Turbulence on SF6 Switching Arcs 

26 

(b) There is a large density variation caused by pressure differences and temperature 

gradients, i.e. the arc is highly compressible.  

(c) Transport properties, such as electrical conductivity, thermal conductivity etc 

change by a wide range within the arc for the temperature variation encountered. 

(d) At high currents (above 10 kA) Lorentz force also becomes important. 

The mechanisms that generate instabilities in the velocity shear layer of the arc 

are, therefore, different from those generating the shear layer instability in a free jet 

which is almost entirely due to the inertia term of the momentum equation. For a 

switching arc, there are a number of other causes which can excite instabilities in 

addition to hydrodynamic instability. However, there is no systematic experimental 

investigation on the cause of nozzle arc instability nor are there any quantitative 

stability analyses. It is not expected in the foreseeable future that the mechanisms for 

generating instabilities can be proven by linear stability analysis of arc governing 

equations. This is because the highly non-linear nature of arc conservation equations 

prevents normal mode analysis as these modes are coupled. There appears, to date, 

only one quantitative linear stability analysis for a self-similar arc [2.17] which 

indicates that the steep radial density gradient in the velocity shear layer is the main 

driving force for instability. Due to lack of rigorous arc stability analysis, we have to 

look at the mechanisms which generate vortices within the arc. It appears that 

vorticity generation is often associated with instability. The study of Niemeyer and 

Ragaller [2.18] shows that the effects due to a combination of radial density gradient 

and axial pressure gradient and the effects of Lorentz force are responsible for the 

generation of arc instability, which is now discussed in detail.  

For a switching arc, the effects of laminar viscous stress on momentum balance 

are negligible [2.19], and thus the momentum equation is that for inviscid fluid 

which is modified to take into account Lorentz force 

   BJVV
V





p

t 

1
                 (2.1) 

where V is the velocity vector, p the pressure, J the current density and B the 

magnetic flux density. The second term on the left hand side of Equation (2.1) (the 
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inertia term) can be rearranged as 

        ωVVVVVVVVV 
2

1

2

1
        (2.2) 

where ω stands for vorticity which is given by 

Vω                              (2.3) 

By substituting Equation (2.2) into Equation (2.1) and then taking curl on both two 

sides, we can derive the vorticity equation for the nozzle arc which is given by 

          BJBJJBωV
ω










 22

111
p

t
 

(2.4) 

where use has been made of Equation (2.3), 0 J  (charge conservation) and 

0 B . 

For an axisymmetrical switching arc burning in a supersonic nozzle, the radial 

density gradient is dominant, which is perpendicular to the axial pressure gradient 

and to the axial component of Lorentz force. For a slender arc, for example, Lorentz 

force and density gradient are parallel, hence the last term on the right hand side of 

Equation (2.4) is zero.  

Therefore, in addition to the effects of inertia force that causes hydrodynamic 

instability (mathematically given by the second term on left hand side of Equation 

(2.4)), there are additional mechanisms for the generation of vortices which may 

cause instability in the switching arc. These mechanisms are given below:  

(a) The effects due to a combination of steep radial density gradient and strong axial 

pressure gradient (mathematically given by the first term on the right hand side of 

Equation 2.4); 

(b) The effects due to Lorentz force: Lorentz force is not curl free, hence producing 

vortices. This can be seen by using Ampere’s law: 

Ampere’s law: JB                                         (2.5) 

Lorentz force:    BB
B

BBBJ 











1

2

1 2

           (2.6) 

where μ is the Permeability. The component of Lorentz force which is a tensile 
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stress along the magnetic field line is not a conservative force. 

In addition to the instabilities related to the momentum balance, ionization 

instability, similar to that occurring in MHD plasmas (magnetohydrodynamic 

generation of electricity), can also take place within the arc core [2.20]. Random 

movement of arc root especially at low currents at the upstream electrode can also 

cause instability [2.21]. These instability mechanisms have not so far been 

investigated for switching arcs. 

2.4 Review of Theoretical Modelling of Switching Arcs 

2.4.1 Nozzle Arc Theory Based on LTE in Laminar Flow 

In the first half of nineteen seventies, algorithms for the solution of arc conservation 

equations were not sufficiently robust and the computation cost with the then 

available computer power in terms of storage and speed was very high. Ad hoc 

assumptions were, therefore, introduced by the BBC group to simplify the governing 

equations for the analysis of the nitrogen arc shown in Figure 2.1. These assumptions 

include artificially dividing the arc into two zones radially with top hat temperature 

distribution in the radial direction for each zone as used in [2.2] or dividing the arc 

axially with assumed effective lengths, one section being laminar and the other 

turbulent and assuming three radial zones with a fixed radial temperature profile for 

each zone for the current zero period as done in [2.1]. Thus, the introduction of 

turbulence [2.1, 2.2] cannot be fully justified. 

The investigation by Zhang et al. [2.19] based on LTE and laminar flow and the 

solution of the full arc conservation equations with a proper account for radiation 

transport especially the radiation absorption shows that the calculated electrical field 

(Figure 2.7), temperature (Figure 2.8), arc radius, velocity and pressure are in 

excellent agreement with those measured for a nitrogen arc at 2 kA DC. The RRRV 

of the BBC nitrogen arc predicted by the arc model with laminar flow [2.22] is in 

agreement with that measured [2.1] within the error expected for the shot to shot 

variation (Figure 2.9). It appears that, with the limited experimental results, 
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especially the reproducible RRRV test data, the LTE arc model with laminar flow can 

describe nitrogen arc behaviour adequately in the high current phases as well as in 

the current zero period.  

 

Figure 2.7. Computed [2.19] and measured [2.2] electrical field intensity as a 

function of axial distance. Curves: A, Computed using measured axial pressure 

distribution. Thermodynamic and transport properties are dependent on pressure; B, 

Computed using measured pressure distribution; C, Pressure is iteratively computed 

assuming isothermal external flow; D, Pressure is iteratively computed assuming 

adiabatic external flow, E, Pressure is computed from nozzle area. For curves B, C, D 

and E the thermodynamic (except density) and transport properties at 10atm are used. 

The open circles are the experimental results after [2.2]. 

 

 

Figure 2.8. The axis temperature as a function of z. The differences between A, B, C, 

D and E are very small, hence only a single curve is shown. The open circles are the 

experimental results after [2.2] and the solid curve is computational results from 

[2.19]. 
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Figure 2.9. Relationship between RRRV and di/dt at P0 = 23atm. The arc consists of 

two sections: a self-similar arc section of 1 cm long [2.1] and the nozzle section of 4 

cm. Key to the curves: (a) Results of [2.22] with p(z) corresponding to a direct 

current of 1 kA, (b) p(z) calculated from nozzle geometry [2.22], (c) air [2.1], (d) 

nitrogen [2.23], (e) Lowke and Lee [2.24]; (x) experimental points [2.1]. 

 

When the LTE laminar flow arc model is used to predict the radial temperature 

profile of an SF6 nozzle arc, there is a large discrepancy between the predicted and 

those measured by the Aachen Group (Figure 2.10) [2.7]. As a consequence, the 

predicted RRRV for SF6 nozzle arcs in laminar flow is two orders of magnitudes 

lower than that measured (Figure 2.11) [2.7]. 

 

Figure 2.10. Comparison of computed temperature profiles [2.7] (solid lines) and 

measured results after [2.4, 2.5] (triangles) at Z = 3 cm, P0 = 9 atm, di/dt = 16 Aμs
-1

, 

I0 = 1000A. Curve 1: I=600A and Curve 2: I=100A. 



Chapter 2 The Effects of Turbulence on SF6 Switching Arcs 

31 

 

Figure 2.11. (a) Logarithmic relationship between RRRV and di/dt at stagnation 

pressure 37.5atm. (b) Logarithmic relationship between RRRV and stagnation 

pressure at a di/dt=27 Aμs
-1

. Full lines: experiments (after [2.11]) and broken lines: 

predictions [2.7]. 

 

2.4.2 The Effects of Non-LTE on the Switching Arc Behaviour 

From the previous discussions, it is apparent that an LTE arc model in laminar flow 

cannot give a satisfactory account of the experimentally measured RRRV for an SF6 

arc. It is natural to query if the assumption of LTE is correct. It is known that the 

rapid variation of discharge conditions during current zero period can make an arc 

depart from LTE [2.8, 2.9, 2.10]. Those processes which are unlikely to attain LTE 

are summarized below: 

(a) The characteristic time of temperature variation during current zero period is 

about 1 μs. There are many chemical reactions in SF6 which are not fast enough 

to reach chemical equilibrium 

(b) High electrical field within the arc during current zero period especially after 

current zero results in higher electron temperature than that of heavy particles, 

due to inefficient energy transfer between electrons and heavy particles [2.8, 

2.10]. 

(c) Electrical conductivity depends on electrical field because of the departure of 

electron velocity distribution function from Maxwellian in the direction of 

electrical field. This becomes appreciable after current zero when recovery 

voltage is imposed on the breaker. 
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(d) When current decays towards current zero, the axis temperature can be below 

9000 K, and the electron number density is too low to maintain LTE. 

Gleizes and his colleagues [2.8, 2.9, 2.10] investigated the combined effects of 

the aforementioned factors on arc conductance decay during current zero and on 

RRRV. It has been found that, in the region where electron temperature departs from 

that of heavy particles, electron temperature is maintained at a higher value due to 

inefficient exchange of energy with heavy particles for temperature below 8000 K 

[2.10]. Electrical field usually increases electrical conductivity due to increased 

ionisation rate and higher electron number density compared with the case where the 

influence of electric field is not considered [2.8]. These combined effects result in a 

slower conductance decay (Figure 2.12) and orders of magnitude lower values of 

RRRV in comparison with those measured and even with those predicted by LTE 

theory assuming laminar flow [2.10]. 

 

 

Figure 2.12. Evolution of the conductance during the decay, turbulent case. 

Reproduced from [2.10]. 
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2.5 Why SF6 Switching Arc is in LTE and Turbulent? 

As previously discussed, the investigation by Gonzalez et al. [2.10] indicates that an 

arc model based on non-chemical equilibrium, two-temperature and laminar flow 

cannot account for the RRRV usually achieved by SF6 circuit breakers. There is 

overwhelming experimental evidence that SF6 nozzle arcs are turbulent. In order to 

achieve agreement with experiments, turbulence enhanced energy transport for 

electrons and heavy particles are introduced in the respective conservation energy 

equations for electrons and heavy particles using Prandtl mixing length for a 

two-temperature chemically non-equilibrium arc model with the same mixing length 

used for both electrons and heavy particles and an adjustable turbulence parameter 

which is set to 0.09 [2.10]. Such an approach (i.e. using the same length scales for 

electrons and heavy particles) is not fully justified. There is little understanding about 

turbulence in a two-temperature plasma. Also, no consideration has been given to the 

enhanced diffusion of particle species and chemical reaction rates and, more 

importantly, the energy exchange between electrons and heavy particles in turbulent 

flow conditions, all of which are expected to be enhanced by orders of magnitudes as 

evidenced by turbulent combustion [2.25]. These effects of turbulence make an arc in 

turbulent state more likely to be in LTE than an arc in laminar flow.  

The SF6 arc model based on LTE and the Prandtl mixing length model for 

turbulence has achieved good agreement with the measured temperature profile of 

the Aachen Group (Figure 2.13) and with the measured RRRV of Frind and Rich 

(Figure 2.14) [2.16]. The direction of future switching arc modeling is to devise an 

LTE arc model with turbulence which can be applied to a wide range of test 

conditions commonly met by modern SF6 circuit breakers. 
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Figure 2.13. Comparison between calculated [2.16] and measured temperature 

profiles at z=5cm for Aachen nozzle with different values of the turbulence 

parameter c: (△) experimental results after [2.4, 2.5]. Stagnation pressure 9 atm, I0 = 

1000A , di/dt = 16 Aμs
-1

. Instantaneous current: (1) 600A; (2) 100A. (a) c = 0.04, (b) 

c = 0.075. 

 

 

Figure 2.14. Logarithmic relationship between critical rate of rise of recovery 

voltage and stagnation pressure at di/dt = 27 Aμs
-1

. Full line is prediction by [2.16] 

and experimental points are (x) (arc re-ignition) and (●) (arc extinction), after [2.11]. 
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2.6 Concluding Remarks 

There is overwhelming experimental evidence showing that the switching arc is 

turbulent. However, there are no direct experimental measurements on turbulence 

strength such as the velocity and temperature variance. The importance of turbulence 

on the behavior of switching arc is indirectly proven by the exclusion of the effects 

of non-LTE processes and by the good agreement so far achieved between the 

experimental results and the prediction of turbulence arc model based on the Prandtl 

mixing length model. Enhanced rates of chemical and ionization reactions and 

efficient energy exchanges between electrons and heavy particles under turbulent 

conditions justify the assumption of a turbulent arc in LTE. The focus of the rest of 

this thesis is the modeling of an LTE turbulent arc. 
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Chapter 3  

Modelling of Turbulent SF6 Switching Arcs 

 

3.1 Introduction 

It has been shown in Chapter 2 that the RRRV predicted by a laminar flow arc model 

taking into account non-LTE processes results in the RRRV lower than that predicted 

by an LTE laminar flow arc model. However, good agreement between the 

experimentally measured RRRV and that predicted by a turbulent LTE arc model 

based on the Prandtl mixing length shows that further improvement in arc modeling 

should be based on a LTE arc in turbulent flow. The drawback of the Prandtl mixing 

length turbulence model is that the range of applicability of the chosen value of the 

turbulence parameter is very limited. In the context of a circuit breaker, the value of 

the turbulence parameter appears to be sensitive to the nozzle geometry, which needs 

to be readjusted with test results when the nozzle geometry is changed. Further work 

is, therefore, necessary to improve the modeling of turbulent SF6 switching arc so 

that the turbulence parameters have a wide range of applicability. 

Turbulence is the non-linear development phase of a linearly unstable flow. In 

the non-linear regime, the turbulent state is often characterized by the unstable modes 

with large growth rates as given by linear stability analysis. The usual method for 

linear stability analysis is not applicable to switching arcs. Due to highly non-linear 

nature of the conservation equations for arcs in gas flow and the radial and axial 

gradients of temperature and velocity within an arc, linear stability analysis based on 

normal modes is not feasible as the modes are coupled. Therefore, in the arc context, 

linear stability analysis has only been carried out for an arc burning in a flow, the 

pressure distribution of which ensures that the acceleration of the flow per unit length 

is constant [3.1]. For such an arc (commonly known as the self-similar arc), its 

thermodynamic state is axially uniform although velocity increases linearly with 
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axial distance [3.2]. Using coordinate transformation, Blundell et al. [3.1] have 

managed to perform a linear stability analysis based on normal modes on an SF6 

self-similar arc assuming that the imposed pressure on the arc is fixed. Disturbances 

of any frequency within the arc’s thermal influence region have been found to be 

unstable. The unstable waves are amplified when propagating downstream. The most 

prominent destabilizing mechanisms are due to density gradient and the coupling 

between the density and velocity fluctuations which are the strongest in the region 

where the temperature and velocity drop rapidly to those of the external flow (i.e. the 

velocity shear layer of Figure 2.6 in Chapter 2). Thus, the stability analysis although 

limited to self-similar arc [3.1] gives additional mechanisms unique to arcs for the 

generation of shear layer instability. Since a nozzle arc shows a direct resemblance to 

a round jet (Chapter 2), instability due to inertia force also operates in the velocity 

shear layer. It is, therefore, of utmost importance that the turbulence in the velocity 

shear layer needs to be modelled properly. 

Turbulence has been an active research area since its discovery by Osborne 

Reynolds in 1883 in his experiments related to the flow in circular pipe [3.3]. It is 

commonly accepted that the governing equations for turbulent flow are the same as 

N-S equations. In principle, these equations can be solved numerically with 

appropriate initial and boundary conditions. However, as indicated in Chapter 1, such 

an approach to turbulence (i.e. direct numerical solution to N-S equations (DNS)) has 

been found not possible even with the present day computer power because of the 

required spatial and time resolutions for an adequate description of the smallest 

eddies and the required computation time. 

As it is not practical to solve directly N-S equations for turbulent flow, 

approximate methods for the solution of N-S equations must be devised. Since 

turbulent flow exhibits randomness, statistical methods have been employed to solve 

N-S equations. Such an approach reveals the statistical features of the turbulence 

flow [3.4]. Such an approach also meets the requirements of most engineering 

applications concerning turbulent flow. For example, a circuit breaker design 

engineer would only be interested in the time averaged arc voltage but not the small 
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(in comparison with the mean voltage) high frequency (much higher than 50 Hz) 

voltage oscillations around the mean. 

The equations derived from the statistically treated N-S equations are not closed. 

Turbulence models are, therefore, used to introduce additional equations to make the 

number of equations equal to the number of unknowns. These additional equations 

are usually based on ad hoc assumptions which cannot be justified by a consideration 

of basic physics. Turbulence models are usually devised for specific applications. 

There are numerous turbulence models [3.5], but there is no general guidance 

regarding the choice of turbulence model for the flow problem in hand. It appears 

that the choice of turbulence model is mainly guided by the experience of the user 

and the similarities between the problem in hand and those turbulent flow problems 

already solved successfully. 

The modelling of turbulent shear layer flow has the longest history, which was 

initiated by Prandtl in 1925 [3.6]. Because of its wide range of engineering 

applications, extensive work has been done on the modeling of turbulent shear layer. 

Various turbulent shear flow models have been successfully applied to predict the 

flow behavior. However, the modeling of turbulent arc is still at its infancy. Although 

the turbulence models for shear layer flow [3.5] are not devised for turbulent 

switching arc, the resemblance between a round fluid jet (a free shear layer flow) and 

the switching arc and the importance of shear velocity layer to both round jet and 

switching arc suggest that we follow, at least as a first attempt for the modelling of 

turbulent arc, the same approach for the shear layer flow to account for turbulence 

enhanced momentum and energy transfer. This approach generally utilizes time 

average (known as the Reynolds’s approach) [3.6] to derive the time averaged 

conservation equations for a turbulent flow assuming constant density and material 

properties. The additional unknowns, which are known as the Reynolds stresses, are 

related to the mean motion (i.e. the closure assumption) using Boussinesq 

assumption and eddy viscosity [3.6]. A brief description of this approach will be 

given, which includes the derivation of the time averaged conservation equations and 

the closure of these equations using Boussinesq assumption and eddy viscosity.  
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The application of Boussinesq assumption and eddy viscosity is not the best 

way to relate Reynolds stresses to the mean motion due to the introduction of ad hoc 

assumptions which limit the range of applicability of these turbulence models. An 

alternative way is to derive the equations describing the Reynolds stresses by taking 

higher moments of the N-S equations. The resulting Reynolds stress equations are 

given, which show that the adoption of this approach will not result in a closed set of 

time averaged equations. 

The conservation equations for the turbulent switching arcs, which are derived 

based on the time averaged conservation equations for turbulent shear flow, are given. 

These conservation equations are incorporated into the relevant turbulence models 

for use in subsequent sections to predict the behaviour of SF6 switching arcs in 

turbulent state.  

The turbulence models employed are subject to verification by the experimental 

results of [3.7, 3.8, 3.9]. A brief review of these experiments is given, which include 

the experimental conditions and the experimental results obtained in the form of 

RRRV. 

Finally, a brief description is given with regard to the implementation of the arc 

conservation equations and turbulence models in a general purpose CFD [3.10, 3.11] 

software package, PHOENICS [3.12], which are used to obtain results for the work 

of this thesis. 

3.2 Time Averaged Conservation Equations for Turbulent Shear 

Layer Flow 

For a large number of turbulent flows of industrial importance, two experiments 

performed under identical conditions will yield different results (Figure 3.1). 

However, when the results are averaged over time, characteristic features of time 

averaged flow (commonly known as the mean flow) emerge. As stated in Chapter 2, 

for a number of engineering applications, including circuit breakers, only the mean 

flow properties are of interests. We therefore derive time averaged equations from the 
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N-S equations following the same procedure proposed by Reynolds over 150 years 

ago [3.6, 3.13]. For ease of discussion, the derivation of the time averaged 

conservation equations is based on the Cartesian coordinate system. 

 

Figure 3.1. Two measurements showing velocity Ux(x0) as a function of time t 

obtained with the same experimental conditions. It is shown that two measurements 

give different variations of Ux(x0) with t, but with the same time averaged velocity. 

 

With the Reynolds approach, quantities of various properties characterizing the 

turbulent flow are conventionally decomposed into their time averaged values and 

the corresponding fluctuations, which is given by 

                             (3.1) 

The time averaged flow property is defined as 







tt

t
dt

t

0

0

 
1

                         (3.2) 

The time averaged properties governs the behaviour of the mean flow. In theory 

we should take the limit of Equation (3.2) with t  approaching infinity. However, 

for practical experiments, t  must be a finite value, which is therefore required to 

be larger than the time characterizing the fluctuation but smaller than that 

characterizing the variation of the mean flow field. The time average of the 

fluctuation is, by definition, always equal to zero: 
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1 0

0




 
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dt

t
                       (3.3) 

According to Equation (3.1), the instantaneous velocity component at a given 

point (for the Cartesian coordinate system) can be written as 

iii uuu       (i = 1, 2, 3)                (3.4) 

where i = 1, 2, 3 stands for the three components of the position vector, 1x , 2x , 3x . 

The other time dependent flow properties can be expressed as 

  , ppp  , TTT  , hhh  ,   , kkk   

(3.5) 

where ρ is the density, p the pressure, T the temperature, h the enthalpy, μ the 

molecular viscosity and k the thermal conductivity. 

Substituting each quantity of the instantaneous N-S equations [3.13] by its mean 

and fluctuation by Equations (3.4) and (3.5), taking the time average of the resulting 

equation and with considerable rearrangement, we obtain the time averaged 

conservation equations for turbulent shear flow: 

(a) Time averaged continuity equation 
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(b) Time averaged momentum equation 
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(c) Time averaged energy equation 
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In Equation (3.7), tau is the averaged viscous stress tensor given by 
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In Equation (3.8), the time average of the dissipation function is given by 
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where ijτ  is given by Equation (3.9) and ijτ  is given by 
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It should be noted that, in order to derive Equations (3.6), (3.7) and (3.8), the 

effects of density fluctuation and fluctuations of material properties on turbulent 

eddies are assumed to be negligible, which means 1  , 1   and 

1 kk . Turbulence theory for incompressible and constant property fluid is the 

most mature. Our discussions on turbulence shall assume that this is the case.  

The time averaged conservation equations (Equations (3.6), (3.7) and (3.8)) 

describe the behaviour of the mean flow. The term jiuu    in Equation (3.7) is 

analogous to viscous stress which is commonly referred to as the Reynolds stress 

tensor denoted as 

ji

R

ij uu  τ        (i, j = 1, 2, 3)       (3.12) 

Equation (3.12) includes six individual Reynolds stress components all of which 

are additional unknowns produced from the procedure of time averaging of 

momentum conservation equation as previously demonstrated. Additional relations 

are therefore required to relate these unknowns to the mean flow before the time 

averaged conservation equations can be solved, since the number of unknowns must 

be equal to the number of equations. The absence of such relations is known as the 

closure problem of the time averaged conservation equations. 

The simplest way of doing this is to relate the Reynolds stress to the mean rate 

of strain tensor based on Boussinesq hypothesis [3.6, 3.13] which assumes that 

turbulence is isotropic. The Reynolds stress is therefore given by 
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                                                               (3.13) 
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where μt is a scalar quantity and is commonly known as the turbulence viscosity or 

eddy viscosity. The last term in Equation (3.13) ensures that the sum of the normal 

stresses is added up to iiuu    in common with pressure tensor for incompressible 

fluid. ij  is the Kronecker delta function ( 1ij  if ji   and 0ij  if ji  ). 

k is the average fluctuating kinetic energy per unit mass given by 

2iiuuk              (i = 1, 2, 3)       (3.14) 

As the eddies in a turbulent flow move randomly in a manner similar to molecular 

random motion, in direct analogy to the diffusion coefficient of a gas, eddy viscosity 

is assumed to be related to a length and a velocity scale characterizing the random 

motion of the large scale eddies which interact actively with the mean flow 

cct VC                              (3.15) 

where Cμ is a constant and λc and Vc are, respectively, the length and velocity scale of 

the turbulent motion. Calculation of the eddy viscosity requires extra equations to 

determine the length and velocity scales characterizing the turbulent flow, which are 

provided by turbulence models. In order to close the equations describing turbulent 

flow, turbulence models inevitably introduce ad hoc assumptions which cannot be 

justified on physical principles and inevitably introduce unknown constants. These 

constants need to be determined from experimental results. Turbulence models are 

numerous and are devised to solve specific problems. Some models based on simple, 

often dimensional arguments, have proven successful and popular in solving 

engineering problems. Turbulence models based on eddy viscosity belong to this 

category. Eddy viscosity turbulence models appear to be the simplest. However, 

these models commonly assume fluid with constant properties and incompressible. 

The eddy motion in a turbulent flow also gives rise to enhanced energy 

exchange which is expressed by the term hu j
   in the energy equation. This term 

is known as the Reynolds heat flux tensor, which is related to the mean flow field 

through the following expression 
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          (j = 1, 2, 3)       (3.16) 

Since the turbulence enhanced momentum and energy transport result from the 

same mechanism, i.e. the convective transport of turbulent eddies, the turbulent 

Prandtl number is introduced to relate the diffusivity of the turbulence enhanced 

transport of heat (or any other scale quantities) to the eddy viscosity, which is usually 

assumed to be a constant: 

constantPr 
pt

t
t

ck


                     (3.17) 

3.3 Reynolds Stress Equation 

In principle, one can avoid using Boussinesq assumption to link the Reynolds 

stresses to the strain tensor of the main flow by taking the first moment of 

momentum conservation equation, which results in six Reynolds stress equations. 

The detailed derivation of Reynolds stress equations has been given by George [3.14]. 

The resulting Reynolds stress equations are given by 
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(i, j, k = 1, 2, 3)     (3.18) 

This equation is known as Reynolds stress equation. The physical meaning of each of 

the term in this equation is as follows: 

(a) Left hand side: the rate of change of Reynolds stress following the mean motion. 

(b) Right hand side: the means of different terms are given below: 

 First term:  the pressure- strain rate term, 

 Second Term: the turbulence transport (or divergence) term, 

 Third term: the “production” term and, 
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 Fourth term: the “dissipation” term. 

It has been found that the Reynolds stress equation not only involves the mean 

velocity and Reynolds stresses, but also depends on many more new unknowns 

which are summarized in Table 3.1. 

 

Table 3.1. Addition terms in Reynolds stress equations. 

Additional terms (i, j, k = 1, 2, 3) Number of unknowns 

j

i

x

u
p



  9 

iup   3 

jki uuu   27 

kijus  27 

j

k
ij

x

u
s




  9 

 Total number of unknowns: 75 

 

It has now been shown that derivation of the equations for Reynolds stresses has 

not given a single equation relating the Reynolds stress to the mean motion. The 

resulting Reynolds stress equations are extremely complex and include many more 

unknowns than the time averaged conservation equations given by Equations (3.6), 

(3.7) and (3.8). The aim of reducing the number of unknowns has clearly not been 

met. Such statistical approach can never lead to the closure of time averaged 

conservations unless some ad hoc assumptions are introduced, and thus it does not 

show any advantage over the simple method based on Bousssinesq assumption and 

eddy viscosity as previously discussed. Therefore, the modelling of turbulent SF6 

switching arcs will be based on the derivation of time averaged conservation 

equations and the adoption of Bousssinesq assumption. The governing equations for 

turbulent switching arcs and those of turbulence models will be given in Sections 3.4 

and 3.5, respectively. 
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3.4 The Governing Equations for Switching Arcs in Turbulent State 

As previously mentioned, the direct resemblance between shear layer flows and 

switching arcs prompts one to model turbulent switch arcs using the same approach 

for thin shear layers. Based on the assumption of LTE of the arc state, the turbulent 

switching arc together with its surrounding cold gas flow can be described by the 

time averaged conservation equations given by Equations (3.6), (3.7) and (3.8) which 

are modified to take into account the effects of radiation transfer and electromagnetic 

field. By assuming axisymmetry of the switching arc, the conservation equations are 

given below in cylindrical coordinates: 
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where   is the dependent variable and   the gas density. v and w are respectively 

the radial and axial velocity components. The source terms ( S ) and the diffusion 

coefficients (  ) are listed in Table 3.2 for different conservation equations, in which 

all notations have their conventional meaning. The subscript l denotes the laminar 

part of the transport coefficient and t the turbulent part. Viscous stresses are taken 

into account by the diffusion terms on the left hand side of the two momentum 

equations in Table 3.2. The part of viscous stresses in the radial momentum equation 

which cannot be written as part of a diffusion term is included in the source term 

(Table 3.2). It has been found that molecular viscous effects are negligible in 

momentum balance for arcs in a supersonic nozzle [3.15]. Viscous heating due to 

molecular and turbulent stresses is given in the source term for the enthalpy equation 

(Table 3.2).  
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Table 3.2. Terms of governing equations. 

Equation   
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The arcing gas is SF6. The equation of state and the transport coefficients 

including electrical conductivity are determined by temperature and pressure. For 

SF6, relevant data has been tabulated by Frost and Liebermann [3.16].  

For all the investigations presented in this thesis, the arcing current does not 

exceed 1 kA. There are two reasons why we only use currents up to 1 kA. Firstly, the 

experimental conditions of [3.7, .3.8, 3.9] are designed to investigate the current zero 

period of a two-pressure breaker using a current ramp consisting of a current plateau 

(a constant current, hereafter referred to as DC by convention) and a linearly 

decaying current (specified by di/dt) before current zero, and a voltage ramp 

(specified by dV/dt) after current zero. Such an approach assumes that the peak 

current does not have effects on the arc behaviour during the current zero period, and 

before current zero period the arc is in quasi-steady state. A more detailed discussion 

on the justification of using such a current waveform will be given in Section 3.6 of 

this chapter. Numerical experiments have been conducted to find suitable value of 

the plateau current for the values of di/dt investigated in [3.7, 3.8, 3.9] such that, at 

this current, quasi-steady state is still maintained. We have found that 1 kA is suitable. 

Secondly, for the DC nozzle arcs investigated in Chapter 4, we have found that the 

features of the DC arcs with a current greater than 1 kA are the same as those of 1 kA 
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DC. Thus, there is no need to push up the currents. Under this circumstance (current 

does not exceed 1 kA), the radial component of electrical field is negligible in 

comparison with the axial component, and the radial variation of axial component is 

much smaller than its magnitude [3.17, 3.18]. Therefore, the axial electrical field is 

considered to be constant over the arc cross-section, which can be calculated by the 

simplified Ohmic law 

                             



0

2 rdrEi                        (3.20) 

where i is the instantaneous current and   the electrical conductivity.  

The effects of Lorentz force generated by the interaction of the arc current with 

its own magnetic field, which is included in the momentum source term, can be 

neglected for low current arcs (below 2 kA) in a supersonic nozzle [3.15, 3.18]. 

For an axisymmetric arc with monotonically decreasing radial temperature 

profile, radiation transport is calculated with the approximate model of Zhang et al. 

[3.15]. In the high temperature core the boundary of which is defined as the radial 

position where the temperature reaches 83% of the axis temperature, the net radiation 

loss, q, in the energy equation is calculated by the net radiation emission coefficient 

(NEC). The NEC for SF6 is a function of pressure, temperature and arc radius, the 

relation of which has been tabulated in [3.19]. The arc radius for the purpose of 

calculating the NEC is defined as the radial position of 4000 K isotherm. 80% of the 

radiation flux at the high temperature boundary is assumed to be absorbed in the 

region from the core boundary to the 4000 K isotherm [3.15]. It has been found 

necessary that the NEC given in [3.19] to be raised by a factor of 2.5 in order to get 

agreement between the calculated and measured arc temperature [3.20, 3.21]. Details 

on the procedure of calculating net radiation loss with this approximate model has 

been given by [3.15], which are also described in Section A.5 of Appendix A for 

reference. 

The conservation equations of switching arcs (Equation (3.19)) together with 

the supplementary equations (Equation (3.20) and those of calculating net radiation 

loss) given in this section, and the governing equations for turbulence models (to be 
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given in Section 3.5) for calculation of turbulent diffusion coefficients given in Table 

3.2, give a complete description of a turbulent switching arc in LTE. All these 

equations, together with the required data for thermodynamic and transport 

properties, the equation of state, and NEC for an arc plasma, form the arc model. 

3.5 Turbulence Models used for SF6 Switching Arcs 

There are a large number of turbulence models [3.5, 3.14, 3.22-3.27]. However, there 

is no general theoretical guidance regarding the choice of turbulence models for 

turbulent arcs in supersonic flows. Our choice of turbulence models is restricted to 

those which have been applied with success to similar flow conditions as those of an 

arc burning in a supersonic flow as well as their suitability for engineering 

application (low computational cost). Thus, we choose those turbulence models 

which belong to the category of effective eddy viscosity. Reynolds stresses are 

linearly linked to the mean strain via eddy viscosity by means of Boussinesq 

hypothesis. Of the turbulence models based on eddy viscosity the Prandtl mixing 

length model has achieved considerable success in predicting turbulent arc behavior 

[3.28]. The standard k-epsilon model with the default values of the five turbulence 

parameters [3.24] and two of its variants (the renormalization group, commonly 

known as the RNG model [3.25] and Chen-Kim model [3.26]) have been used for the 

modelling of the turbulent flow in circuit breakers with contradictory claims 

regarding their successes [3.20, 3.29-3.32]. The test conditions in terms of current, 

pressure and system geometry covered by the aforementioned investigations are 

however very limited. Hence, no general conclusions on the relative merits of the 

turbulence models so far employed can be drawn. The verification of turbulence 

models suitable for switching applications requires extensive reproducible 

experimental results covering a wide range of test conditions. Such experimental data 

is extremely scarce.  

We therefore choose the aforementioned four turbulence models for the 

modelling of turbulent SF6 switching arcs as they have achieved considerable success 
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in the prediction of the behavior of turbulent thin shear layers, which have also been 

used for predicting of switching arc behaviour although there are contradictory 

claims regarding their successes. As previously mentioned, all these turbulence 

models are based on eddy viscosity, which compute the turbulence length scale and 

velocity scale. The eddy viscosity, μt, is then obtained by Equation (3.15). Turbulent 

thermal conductivity, kt, is related to μt through turbulent Prandtl number defined by 

Equation (3.17), which is assumed to be unity in the present investigation. Details of 

these four turbulence models are given in Sections 3.5.1 to 3.5.4. In order to 

demonstrate the effects of turbulence, the laminar flow model is also included, which 

is obtained by simply setting μt and kt to zero. For simplicity, arc models based on 

laminar flow and turbulent flow will be referred to collectively as the flow models 

for future reference. Therefore, altogether five flow models will be used to study the 

behaviour of SF6 switching arcs. The computed RRRV will be subjected to 

verification by experimental results of [3.7, 3.8, 3.9] covering a wide range of 

discharge conditions in terms of different nozzle geometries, rate of change of 

current before current zero (di/dt) and stagnation pressure (P0). Detailed information 

of these experiments and the measured RRRV will be given in Section 3.6. 

3.5.1 The Prandtl Mixing Length Model 

This is the simplest and also the oldest turbulence model which relates the turbulence 

length scale to the width of the jet. For turbulent nozzle arc this length scale marks 

the boundary of the high velocity core which is measured by the thermal radius of the 

arc defined by 

  21
 r                         (3.21) 

where θδ is the thermal area of the arc given by 

rdr
T
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where T∞ is the temperature near the nozzle wall where the radial temperature 

gradient is negligible. Turbulence length scale is related to the thermal radius by 
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 crc                             (3.23) 

where c is a turbulence parameter the value of which is found by the best fit between 

model prediction and experimental results. The velocity scale is related to the 

turbulence length scale and the mean velocity gradient by 
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Eddy viscosity is given by the following expression according to Equation (3.15): 
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3.5.2 The Standard K-Epsilon Model 

This model with the recommended default values for the five turbulence parameters 

[3.24] is the most widely used turbulence model for engineering applications. It gives 

a general description of the conversion of the energy from the mean flow to chaotic 

turbulence for the maintenance of turbulent flow, and the dissipation of turbulence 

energy extracted from the mean flow. The standard k-epsilon model has two transport 

equations (known as the two-equation model), i.e. one for turbulent kinetic energy 

per unit mass, k, which is defined as 
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and the other for the dissipation rate, ε, which is defined as 

ijijss   2                           (3.27) 
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The mechanisms for conversion of the energy from the mean flow to turbulence 

are described from the equation of k. The equation of ε, on the other hand, describes 

the dissipation of turbulence energy by viscous effects, where e represents the heat at 

the expense of turbulent kinetic energy which is due to the work done against the 
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fluctuating viscous stress in order to deform a fluid element. Detailed discussions on 

how turbulence energy extracted from the mean flow is dissipated by viscous effects 

are given in [3.22]. This model has been applied to DC nozzle arcs [3.20] and to DC 

plasma jets [3.30, 3.31]. 

The governing equations of the standard k-epsilon model are those for k and ε, 

which are given below: 
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where Pk represents the generation of turbulence kinetic energy due to the mean 

velocity gradients, which is given by 
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The length and velocity scale of turbulence are respectively defined as 


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kVc                             (3.33) 

Eddy viscosity is thus given by the following expression according to Equation 

(3.15): 


 

2k
Ct                           (3.34) 

There are altogether five model constants in the k-epsilon model equations, the 

value of which have been adjusted according to test results for a range of fluid flows. 

The recommended values of these constants are [3.24]: 0.1k , 3.1 , 

44.11 eC , 92.12 eC  and 09.0C . 

3.5.3 The Chen-Kim K-Epsilon Model 

It has been recognized that the poor prediction of the spread rate of a turbulent round 
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free jet by the standard k-epsilon model is due to the inadequacy of the equation for 

dissipation rate [3.26]. For the standard k-epsilon model a single time scale, k/ε, is 

used which is an over simplification of various time scales associated with energy 

transfer between eddies of different sizes [3.26]. A second time scale related to 

production of turbulent kinetic energy is thus introduced to reflect the energy transfer 

rate from large scale eddies to small scales eddies controlled by the production range 

time scale to the dissipation range time scale, kP  [3.26]. The additional source 

term 

k

PC
S ke

2

3
                          (3.35) 

is added to Equation 3.66, which allows the dissipation rate equation to respond to 

the mean strain rate more efficiently especially in the region where the main strain 

rate changes rapidly. Such a situation exists inside a supersonic nozzle. Because of 

the success of the Chen-Kim k-epsilon model in the prediction of the spread rate of a 

turbulent round jet which has similarities to an arc burning in a supersonic flow, we 

apply this model to the DC nozzle arc. 

The constant, C3e, and the other constants in the standard k-epsilon model are 

readjusted to achieve best agreement between prediction and experimental results 

covering a wide range of flow conditions [3.26]. The recommended values for these 

constants are [3.26]: 75.0k , 15.1 , 15.11 eC , 90.12 eC  

25.03 eC , and 09.0C . 

3.5.4 The RNG K-Epsilon Model 

The RNG k-epsilon model is derived from the instantaneous Navier-Stokes equation 

using a mathematical approach called the renormalization group [3.25]. The effects 

of the small scale turbulence are represented by means of a random forcing function 

in the Navier-Stokes equation. The RNG procedure systemically removes the small 

scale eddies from the governing equations by expressing their effects in terms of 
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large scale eddies through the modified viscosity (i.e. t  in Equations (3.29) and 

(3.30) is replaced by the effective viscosity tleff    where l  is the 

molecular viscosity). In addition, the epsilon equation contains a strain-dependent 

correction term which is given by 

 

k

C
S

2

3

0

3

1

1 



 





                   (3.36) 

where    tkPk   , 38.40   and 012.0 . The other model constants 

are [3.25]: 7194.0  k , 42.11 eC , 68.12 eC  and 0845.0C . In 

contrast to the standard k-epsilon model only the constant β is adjustable to ensure 

the best fit with experimental results. The recommended value for β is 0.012. All 

other constants are explicitly computed as part of RNG process.  

The RNG k-epsilon model has been successful in the prediction of plasma jet 

for arc cutting processes [3.30] and that for a spray system [3.31]. It is also claimed 

successful in predicting the gas mixing in the expansion volume of a circuit breaker 

[3.32]. We therefore include this model in our current investigation. 

3.6 Experimental Results Used for Verification of Turbulence Models 

Of the very limited experimental results available for direct comparison with 

theoretical predictions, Frind et al. [3.7], Benenson et al. [3.8] and Frind and Rich 

[3.9] have reported extensive test results in the form of RRRV for a supersonic 

nozzle interrupter with fixed upstream (meaning stagnation pressure P0) and 

downstream (meaning static pressure at the nozzle exit Pe) pressures. 

The experimental conditions of [3.7, 3.8, 3.9] are designed to simulate the 

current zero period of a two-pressure circuit breaker using a current ramp consisting 

of a current plateau (DC level) and a linearly decaying current (specified by di/dt) 

before current zero and a voltage ramp (specified by dV/dt) after current zero. In the 

experiments, nozzle ablation is avoided by using current levels always below an 

upper limit of the current with which the arc’s thermal radius is equal to the nozzle 
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radius (known as the thermal blocking current) [3.7]. The experiments are based on a 

two-pressure nozzle-electrode configuration as shown in Figure 3.2. Such a 

two-pressure system eliminates pressure transients caused by wave reflections within 

a circuit breaker which inevitably affects the arc in the nozzle interrupter. For such a 

two-pressure system without nozzle ablation we can divide the whole arcing process 

into a quasi-steady period and a current zero period. The arc behaviour and its 

thermal interruption capability are investigated by using a current ramp before 

current zero and a voltage ramp after current zero. Such an approach assumes that 

peak current does not have effects on arc behaviour during current zero period. This 

is to assume that the arc at the start of current zero period does not have memory of 

its previous arcing history. Before current zero period, the arc is in quasi-steady 

period. Mathematically, an arc will remember its past if the time dependent terms in 

conservation equations can no long be neglected. When this happens it is considered 

that the arc is no longer in quasi-steady state. The choice of the plateau of the current 

ramp is to ensure that the arc at this current does not have memory.  

 

Figure 3.2. Schematic diagram of GE test system used in the experiments of [3.7, 3.8, 

3.9]. Stagnation pressure and exit pressures are fixed during arcing.  

 

The assumption of the current zero period being independent of peak arcing 

current and the absence of pressure transients from other part of a breaker are no 

longer valid in modern high voltage circuit breakers, e.g. self-blast circuit breakers. 
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For such breakers, the flow conditions at current zero depend on the whole arcing 

history. However, the physical processes responsible for arc quenching during 

current zero period in such breakers are the same as those studied in the experiments 

of [3.7, 3.8, 3.9]. More importantly, the objective of our investigation is to test the 

relative merits and applicability of commonly used turbulence models when they are 

applied to switching arcs. Such tests must be based on the verification of turbulence 

models by experimental results. It should be noted that all these turbulence models 

were originally devised for simple flows having a dominant direction of fluid (or gas) 

motion. Verification on the suitability of turbulence models for switching 

applications therefore must be based on experimental results obtained under simple 

flow conditions. To date, the experiments reported in [3.7, 3.8, 3.9] provide the most 

reliable test data under well defined test conditions. This is the reason why we have 

chosen to simulate these experimental conditions. 

Altogether, arcs in three nozzles, i.e. the nozzle of Frind et al. [3.7], the nozzle 

of Benneson et al [3.8] and the nozzle of Frind of Rich [3.9], respectively referred to 

as Nozzle 1, Nozzle 2 and Nozzle 3 hereafter, will be computationally studied in the 

present investigation. These three nozzles are shown in Figure 3.3, which have 

different shapes and dimensions as well as electrode configurations. In Figure 3.3, 

Z=0 indicates the axial position of the nozzle throat. These nozzles have the same 

expansion half angle (15°) but differ in upstream and throat regions. The throat 

diameter of Nozzle 2 (12.7 mm) is twice that of Nozzle 1 (6.35 mm). Nozzle 3 is 

almost the same as Nozzle 2 except that the area variation of Nozzle 3 is continuous. 
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  (a) 

  (b) 

  (c) 

Figure 3.3. Three nozzle geometries used in the experiments of [3.7, 3.8, 3.9]. Unit 

of dimensions: mm. (a) Nozzle of Frind et al. [3.7] (Nozzle 1), (b) Nozzle of 

Benenson et al. [3.8] (Nozzle 2) and (c) Nozzle of Frind and Rich [3.9] (Nozzle 3). 

 

The measured RRRV as a function of stagnation pressure (with P0 ranging from 

7.8 atm to 37.5 atm) for the three nozzles are plotted in Figures 3.4(a) and 3.4(b), 

respectively, for two rates of current decay, di/dt=13 Aμs
−1 

(13.5 Aμs
−1 

for Nozzle 3) 

and 25 Aμs
−1

 (27 Aμs
−1 

for Nozzle 3). For Nozzles 1 and 2, the static pressure at the 

nozzle exit (Pe) is near vacuum in the experiments of [3.7, 3.8] to ensure shock free 

inside the nozzle. However, for Nozzle 3, Pe is P0/4 in the experiments of [3.9], for 

which the ratio of the nozzle exit pressure to the nozzle upstream stagnation pressure 

(Pe/P0) is consistent with that normally encountered in a real circuit breaker [3.9]. A 

shock can occur inside the nozzle interrupter with such pressure ratio [3.33], which 

will be shown later by the computational results in Chapters 6 and 7. 
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  (a) 

  (b) 

Figure 3.4. Measured RRRV of an SF6 switching arc for three nozzles given in 

Figure 3.3. (a) di/dt=13 Aμs
-1

 for Nozzles 1 and 2, and di/dt=13.5 Aμs
-1

 for Nozzle 3 

and (b) di/dt=25 Aμs
-1

 for Nozzles 1 and 2, and di/dt=27 Aμs
-1

 for Nozzle 3. 
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The scatters of the measurements are not mentioned in [3.7, .3.8, 3.9]. We 

therefore evaluate the experimental scatter for the measured RRRV (in terms of 

percentage difference) at a particular set of discharge conditions by using the 

following relation: 

  2RRRVRRRV

RRRVRRRV
scatter alExperiment

igniteclear

clearignite




           (3.37) 

where RRRVclear is the measured RRRV for thermal clearance as shown in Figure 3.4, 

and RRRVreignite is the that for thermal reignition in Figure 3.4. After obtaining the 

experimental scatters for individual measurements using the above relation, we can 

then evaluate the average experimental scatter of the measured RRRV for the range 

of discharge conditions as shown in Figure 3.4, which is found to be around 40% 

The computational results in subsequent four chapters, unless otherwise 

specified, are obtained under discharge conditions identical with the experiments of 

[3.7, 3.8, 3.9]. The applicability of turbulence models for prediction of switching arc 

behaviour will be verified by comparing the computed RRRV with corresponding 

experimental results given in Figure 3.4. 

3.7 Implementation of the Arc Model in PHOENICS 

This section is concerned with the implementation of the arc model in PHOENICS, a 

general purpose CFD software package supplied by CHAM [3.12]. In PHOENICS, 

the flow governing equations are discretized based on finite volume method [3.10, 

3.11] which results in a set of algebraic equations, and solved by SIMPLE algorithm, 

a solution methodology first developed by Patankar and Spalding [3.10]. PHOENICS 

has been used in Liverpool for nearly 20 years and its capability and accuracy of 

solution have been rigorously verified [3.34]. Although it is not very user friendly, it 

does have user interfaces which allow relatively much easier implementation of the 

arc model as compared with other general purpose CFD packages. We therefore 

choose PHOENICS Version 3.6.1 (hereafter referred to as PHOENICS for 

convenience) to implement the arc model. 
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3.7.1 Structure of PHOENICS 

The application of PHOENICS to simulate the behaviour of switching arcs requires 

the users to implement the arc model through commands and data files and a 

PHOENICS provided user-interface subroutine written in FORTRAN. Figure 3.5 

shows a flow chart describing the procedure of performing computer simulations 

using PHOENICS. The role of each component as shown in Figure 3.5 and how they 

interact with each other to execute the simulation have been described in detail in 

[3.34, 3.35], which are not repeated here. The user-interfaces of PHOENICS are 

provided mainly through three files, i.e. the Q1 and Ground files and any other user 

date files (those marked as blue rectangles in Figure 3.5), which allows the user to set 

up a problem, to insert necessary user defined subroutines and to input other 

necessary data for a computer simulation task. Implementation of the arc model into 

PHOENICS is done mainly through these three files, the details of which are given 

below. 

 

Figure 3.5. Diagram showing information flow in computer simulation of switching 

arcs based on PHOENICS. Blue rectangles -- files to be prepared by user; Red circles 

-- Executables to be run during the simulation. 
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3.7.2 Setting up a Problem in PHOENICS: the Q1 File 

The specification of a problem to be computationally investigated using PHOENICS 

can be written into the Q1 file, which includes all the necessary information required 

to simulate a flow. The language used to write the Q1 file is known as PHOENICS 

Input Language (PIL) [3.35] which is similar in some respects to FORTRAN. The 

information required in the Q1 file to simulate a switching arc is given below: 

 

A Transience and Time Step Specification 

In this part, the user needs to define first the nature of the computational problem, i.e. 

time dependent (transient) or steady state. This is flagged by setting the logical 

parameter STEADY [3.35]. When performing a transient simulation (STEADY=F), 

the total time of the simulation and the number of time steps need to be specified 

which determine the time intervals (time step sizes). This is done by using the PIL 

command, GRDPWR [3.35]. Otherwise (STEADY=T, meaning a steady state 

simulation), the time steps need not be specified. In the present investigation, for 

different stages of the simulation, detailed information on the total computational 

time and the time step sizes is given in Section 3.7.7. 

 

B The Computational Domain and Grid System 

In this part, the user needs to specify 

(a) What type of grid system will be used in the simulation, i.e. Cartesian or 

Cylindrical Polar or Body Fitted Coordinate (BFC) [3.35]? For the present 

investigation, due to the complexity of the geometry of the computational domain, 

the grid type of BFC is chosen (by setting BFC = T). BFC is a structured grid 

system and it is advantageous than the Cartesian and/or Cylindrical Polar grid 

system in that the curved shape of some components, such as the nozzle and 

electrodes, can be accurately represented in the grid system.  

(b) Definition of the coordinates of important points in the domain and the lines 

through these coordinates which form the shapes of the computational domain 
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and the solid parts, and patterns of grid distribution. The coordinates and lines 

can be specified using the PIL command, GSET, the details of which are given in 

[3.35]. 

(c) Definition of frames and how these frames are matched to form the complete grid 

system in one plane. Frames are also specified using GSET [3.35]. 

 

C The Governing Equations to be Solved by PHOENICS Solver 

In this part, the user needs to specify the governing equations to be solved by 

PHOENICS solver, i.e. the EARTH as shown in Figure 3.5. Details are given below: 

(a) What governing equations need to be solved by the EARTH? In the present 

investigation, the equations need to be specified here are the conservation 

equations for switching arcs given by Equation (3.19). The variables obtained by 

solving the corresponding governing equations are known as the solved-for 

variables [3.35] in PHOENICS. The PIL command, SOLVE [3.35], is used to 

specify equations required. In the present work, the solved-for variables are 

pressure (P1), radial velocity (V1), axial velocity (W1) and enthalpy (H1). The 

variables required in a computer simulation task other than the solved-for 

variables are referred to as stored variables [3.35]. Both the solved-for and stored 

variables can be stored and written into result files produced by PHOENICS (e.g. 

a PHI file [3.35]) after one simulation. 

(b) What terms will be included in each governing equation to be solved? All the 

conservation equations given in Section 3.4 are in the form of the Partial 

Differential Equation (PDE) including the time dependent term, the convection 

term, the diffusion term and the source term (Equation (3.19)). It should be noted 

that, in certain cases, not all these terms are necessary. For example, for solution 

of heat conduction problems, the corresponding governing equation (energy 

equation) does not have convection term, which can then excluded using the PIL 

command, TERM [3.35]. For solution of switching arcs involving gas flow fields, 

on the other hand, convection term is always required which can be included 

using the same command. 
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(c) Which solution method will be used for each PDE? There are mainly two 

solution methods in PHOENICS, i.e. the point-by-point method and the whole 

field method [3.35]. Appropriate selection of solution methods for a particular 

governing equation can promote convergence. The solution method can be set up 

using the PIL command, SOLUTN [3.35].  

(d) What method will be used to interpolate the material properties (i.e. diffusion 

coefficients   in Table 3.2) at the faces of each grid (i.e. cell face [3.35])? 

There are mainly two methods provided by PHOENICS, i.e. arithmetic averaging 

and harmonic averaging [3.35]. In the present investigation, harmonic averaging 

is always selected to calculate material properties at the solid-gas interfaces due 

to vast difference in the values of relevant material properties for solids and gas. 

This can also be done using SOLUTN [3.35]. 

(e) How are the thermodynamic and transport properties and the equation of state 

provided to the EARTH? In the present investigation, the tabulated data for all 

these properties given in [3.16] are provided through user defined subroutines in 

Ground file, and thus relevant PIL commands are required in the Q1 file (the 

details are given in Section 3.7.3) which allow access of those subroutines for 

material properties. 

 

D Implementation of Turbulence Models 

For the turbulence models used in the present investigation which belong to the 

category of effective eddy viscosity, the user needs to give definition on the 

turbulence length scale (denoted as EL1 [3.35] in PHOENICS) and the kinematic 

eddy viscosity defined as  tt   (denoted as ENUT [3.35] in PHOENICS). 

These two variables can either be assigned constant values or given expression to 

calculate. The latter can be done by using the PHOENICS supplied subroutines (refer 

to the explanation of ENUT in [3.35]). Otherwise, user defined subroutines inserted 

in Ground file can be used to calculate EL1 and ENUT, by inserting the PIL 

commands, EL1=GRND and ENUT=GRND, which flag the EARTH to find relevant 
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subroutines in Ground file. 

In the present investigation, for the Prandtl mixing length model, EL1 and 

ENUT are calculated using our own subroutines the implementation of which is 

described in Section 3.7.3. For the standard k-epsilon model and its two variants, 

PHOENICS supplied subroutines are used to calculate EL1 and ENUT, using the 

following PIL commands: 

Standard k-epsilon model: TURMOD(KEMODL) [3.35] 

Chen-Kim model:       TURMOD(KECHEN) [3.35] 

RNG model:            TURMOD(KERNG) [3.35] 

The above commands activate the PIL command, SOLVE, to solve the relevant 

governing equations for k-epsilon model (Equations (3.29) and (3.30)). The values of 

two more solved-for variables, i.e. turbulent kinetic energy (KE) and dissipation rate 

(EP) [3.35], are obtained and stored. EL1 and ENUT are then calculated by relevant 

PHOENICS supplied subroutines defining relations given by Equations (3.32) and 

(3.34). 

 

E Initial Values of Solved-for and Stored Variables 

Numerical solution of the PDEs (the arc conservation equations and governing 

equations for turbulence models in the present investigation) requires the initial 

conditions. A detailed discussion on the initial conditions, i.e. what they are and what 

initial conditions are used in the present investigation, is given in Section 3.7.6. In 

Q1 file, the initial values of a variable can be specified using the PIL command, 

FIINIT (variable) [3.35], which can give a uniform initial value to a particular 

variable for the whole computational domain.  

However, if different initial values are required for a particular variable in 

different regions of the computational domain, the user can then initialize the whole 

domain grid by grid using special data file which are read by relevant subroutines in 

Ground file. In order to instruct the EARTH to do this, relevant PIL commands are 

required in Q1 file, with the command, PATCH [3.35], to define the region to be 

initialized and the command, INIT [3.35], to do initialization using subroutines in 
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Ground file. 

 

F User Used for Arcing Conditions and Control Parameters 

Parameters to be used either by the turbulence model or passed into the Earth for use 

in the solution procedure are specified in this part. In the present investigation, for 

SF6, the parameters required are given in Table 3.3. 

 

Table 3.3. User used for arcing conditions and control parameters for SF6 gas used in 

the present investigation. 

Parameter Value 

Reference pressure (Pa) 0.0 

Specific heat ratio γ  1.085 

Gas constant R (Jkg
-1

K
-1

) 56.0 

Specific heat at constant pressure cp (Jkg
-1

K
-1

) 575.0 

Stagnation pressure P0 (Pa) Variable 

Exit static pressure Pe (Pa) Variable 

Stagnation temperature T0 (K) 300 

Stagnation density (kgm
-3

) P0/R/T0 

Stagnation enthalpy (Jkg
-1

) cp*T0 

Multiplication factor for NEC 2.50 

Percentage of radioactive energy from the arc 

core to be absorbed in the radiation 

reabsorption layer [3.15] 

0.80 

Turbulence parameter for the Prandtl mixing 

length model c 

Variable 

 

G Definition of Solid Objects in the Domain 

In the computational domain, the user needs to specify the solid objects, e.g. the 

nozzle and the electrodes, as well as the area in the domain which allows the gas to 

flow. This is done by assigning a variable for the material property index, PRPS 
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[3.35], a value corresponding to particular types of material, i.e. solid conductor, 

solid insulator or gas. In the present work, the nozzle is made of PTFE material 

which is non-conductive, while the electrodes are made of copper which is 

conductive, then relevant material property indices are assigned [3.34, 3.35, 3.36]. 

 

H Special Source Terms  

In this part, the user needs to specify source terms other than the PHOENICS default 

source terms for each governing equation. In the present investigation, for switching 

arcs, these special source terms include Ohmic heating and radiation for the energy 

equation (Table. 3.2). These user defined source terms are specified by inserting 

relevant subroutines in Group 13 of the Ground file. In the Q1 file, relevant PIL 

command, COVAL [3.35], are required to allow the EARTH to access of these 

subroutines. 

 

I Boundary Conditions 

Numerical solution of the descretized governing equations requires boundary 

conditions. Boundary conditions indicate how a system confined in a computational 

domain interacts with the environment. In the present investigation, for each of the 

governing equations to be solved, relevant boundary conditions need to be specified 

at the nozzle inlet, the nozzle exit, the symmetrical axis and the solid surfaces. A 

detailed discussion will be given in Section 3.7.5 as regards what boundary 

conditions are used for the present investigation. 

 

J Parameters for Solution Control 

In PHOENICS, the solution algorithm proceeds slab by slab, where a slab means a 

layer of grids perpendicular to the axial position as shown in Figure 3.6. At each of 

these slabs, and for each grid, the algebraic equation for each solved for variable 

which is obtained by the discretization of the corresponding PDE, is iteratively 

solved until convergence [3.35] is attained. Therefore, the user needs to specify the 

number of iterations (known as sweep number in PHOENICS the details of which 
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are given in the explanation of sweeps in [3.35]) which is sufficient to ensure 

convergence: for steady state simulation, one only needs to specify a sweep number 

for the simulation, while for transient simulations, each time step of the simulation 

requires a number of sweeps and the required sweep numbers may be different for 

different time steps. Details on the sweep numbers used in computer simulations of 

the present investigation are given in Section 3.7.7. 

Convergence control is an important issue in computer simulation to ensure the 

results are true solutions of the computational problem. One of the mechanisms to 

avoid divergence of the iterative processes is to specify maximum and minimum 

values for each solved for variable, using the PIL commands, VARMIN [3.35] and 

VARMAX [3.35]. They are used to prevent overshooting of variables during the 

iteration. However, this method does not automatically lead to convergence. In the 

present investigation, the maximum and minimum values specified for each solved 

for variable are given below: 

VARMIN(P1) =1000.0; VARMAX(P1) =100.0E5 

VARMIN(W1) =-2.0E4; VARMAX(W1) =2.0E4 

VARMIN(V1) =-2.0E4; VARMAX(V1) =2.0E4 

VARMIN(KE) =1.0E-7; VARMAX(KE) =1.0E10 

VARMIN(EP) =1.0E-5; VARMAX(EP) =1.0E12 

Relaxation is another mechanism to maintain the smoothness of the iterative 

process and to achieve convergence. It slows down the changes made to the values of 

the variables during the solution procedure. There are two types of relaxation method. 

The first method is linear relaxation [3.35], by which the intermediated value of a 

solved for variable from the value of the previous iteration is determined by a 

relaxation coefficient, α. Following recommendations from PHOENICS, linear 

relaxation is used for pressure equation. This variable is solved by whole field solver 

because a local change will affect the whole field of the variable. Linear relaxation is 

activated using the PIL command, RELAX [3.35], e.g. for P1 it gives RELAX (P1, 

LINRLX, α), where LINRLX [3.35] flags the activation of linear relaxation mode. 

The other relaxation method is the false-time step relaxation [3.35]. The concept 
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of false-time-step is based on the fact that during a round of iteration the value of a 

variable changes from its starting value to its finishing value through a series of 

intermediate values. The false time step, ft , is implemented by adding to the 

algebraic equation a source term, which assimilates an imaginary transient case 

where each time step (known as false-time-step) corresponds to an intermediate 

value during the iteration process [3.34, 3.35, 3.36]. False-time-step relaxation is 

activated also using RELAX, e.g. for W1 it gives RELAX (W1, FALSDT, ft ), 

where FALSDT [3.35] flags the activation of false-time-step relaxation mode. For 

simulation of switching arcs in the present investigation, choices of false-time-step 

for corresponding governing equations are discussed in Section 3.7.8. 

 

K Restart Options 

In some cases, it is necessary to continue the simulation from the states in a previous 

time step. It can be done by using the PIL command, RESTRT [3.35], which instructs 

the EARTH to read the results of the specified variables from the PHOENICS solved 

result file (e.g. PHI file [3.35]) of a previous time step and use them as initial 

conditions to continue the computer simulation. 

3.7.3 The Implementation of User Defined Subroutines: the Ground File 

The Ground file provides interfaces for users to insert their own subroutines 

necessary for their computer simulations using PHOENICS. EARTH will make calls 

to specific sections in Ground file when corresponding instructions are given in Q1 

file. For implementation of the arc model used in the present investigation, a brief 

description of the subroutines required is given in this section. The description is 

based on the main structure of the Ground file given below: 

Group 1: 

(a) Declaration of user defined variables or arrays to be used in Ground file. 

(b) Subroutines used to read user data files (described in Section 3.7.4) immediately 

after the start of the execution of the EARTH programme “earexe.exe”. The data 



Chapter 3 Modelling of Turbulent SF6 Switching Arc 

72 

files include that for basic radiation data (NEC) and those providing initial 

conditions of the solved for variables for both the cold flow simulation and 

simulation with and arc. 

Group 9: 

(a) A subroutine used to calculate the gas temperature based on tabulated data of 

enthalpy-temperature relation given in [3.16]. This subroutine must be inserted in 

Section 10 of Group 9. It is used when the equation of enthalpy is solved for 

energy conservation and the PIL command, TMP1=GRND [3.35], is given in Q1 

file to instruct the EARTH to look for user defined code for temperature 

calculation.  

(b) When the Prandtl mixing length model is used in the computer simulation, the 

model is implemented by user defined subroutines which calculate the turbulence 

length scale and the eddy viscosity. Therefore, two subroutines are required 

which are given below 

 A subroutine used to calculate turbulence length scale, which must be 

inserted in Section 12 of Group 9. The PIL command, EL1=GRND, is given 

in Q1 file to instruct Earth to look for this subroutine. 

 A subroutine used to calculate eddy viscosity, which must be inserted in 

Section 12 of Group 9. The PIL command, ENUT=GRND, is given in Q1 file 

to instruct Earth to look for this subroutine. 

(c) A subroutine which gives the equation of state based on the tabulated data in 

[3.16], which calculates the gas density from gas temperature and pressure. For 

SF6, the equation of state for ideal gas is valid for temperature below 1000 K. 

Therefore, ideal gas law is used to calculate gas density when T <1000 K. The 

subroutine must be inserted in Section 10 of Group 9. In Q1 file, the PIL 

command, RHO1=GRND [3.35], is inserted to instruct the EARTH to look for 

user defined code for density calculation. 

(d) Calculation of laminar Prandtl number, PRNDTL [3.35], for equations other than 

velocity (W1, V1) and mass conservation equation, i.e. Prandtl number for 

equation of enthalpy (H1). The code must be inserted in Section 7 of Group 9. In 
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Q1 file, the PIL command, PRNDTL (H1)=GRND [3.35], is inserted to instruct 

the EARTH to look for user defined code. 

(e) A subroutine calculating the molecular kinematic viscosity based in the tabulated 

data given in [3.16]. The subroutine must be inserted in Section 12 of Group 

9.The PIL command, ENUL=GRND [3.35], is given in Q1 file to instruct Earth 

to look for this subroutine. 

Group 11: 

This part is for initialization of the field values of PHOENICS solved-for variables. 

This provides a user interface to set initial values grid by grid which otherwise 

cannot be done in Q1 file. A subroutine is inserted here which uses data read in 

Group 1 of Ground file to do grid by grid initialization of solve-for variables. 

Relevant PIL commands are required in Q1 file to instruct the EARTH to find this 

subroutine, as previously in Point E of Section 3.7.2. 

Group 13: 

Subroutines used for implementation of the boundary conditions and special source 

terms (i.e. Ohmic heating and radiation). The subroutines here will be used when 

relevant COVAL [3.35] commands are given in the Q1 file to instruct the EARTH to 

access them for user defined boundary conditions and source terms [3.35]. 

Group 19: 

(a) SECTION 1 ---- Start of time step. This is a user interface to make specific 

settings before the solution of the next time step is started. For the present 

investigation, a subroutine, which is used to calculate instantaneous current, is 

inserted in this section. A user data file is required by this subroutine which gives 

the current waveform, i.e. the instantaneous current as a function of time (Point c 

of Section 3.7.4). 

(b) SECTION 2 ---- Start of sweep. Iteration of the solution consists of sweeps in the 

z-direction which is normally the axial direction of gas flow. Users can update 

certain settings before starting the next sweep. For example,  

 The width and corner coordinates of all cells are needed in the simulation and 

these parameters can only be obtained in this section after the simulation 
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starts. They cannot be calculated in Section 1 of this group. 

 There are other quantities that need to be updated on a sweep basis. For 

example, the electric conductivity of the arcing gas (ζ) needs to be updated 

based on the temperature and pressure results from the sweep that is just 

finished, in preparation for the next sweep. The same applies to the value of 

the molecular diffusion coefficient of enthalpy equation ( pl ck ) which is 

used in the enthalpy equation. The reason that both ζ and pl ck  need to be 

updated in this section is that the statements in Group 9 only pass the existing 

values of these two variables to the solver without performing any updating. 

(c) SECTION 3 ---- Start of IZ slab. Sometimes a user may wish to update the values 

of a variable in a single slab before solution on that slab is performed. For 

example the velocity in a slab may have experienced substantial change during a 

sweep when iteration is performed from Slab 1 to this slab. To improve the 

convergence of the iteration, the Mach number of the flow may need to be 

updated. This can be done here. 

(d) SECTION 7 ---- Finish of sweep. This section provides a user with an access 

point to check or record the results from a sweep by writing to relevant data files. 

Subroutines for calculation of the energy balance, which are always assessed in 

Chapters 4 to 7, are also inserted in this section. The energy balance calculations 

are performed using equations given in Table 4.1 of Chapter 4, Table 5.1 of 

Chapter 5 and the caption of Figure 7.9 of Chapter 7. 

(e) SECTION 8 ---- Finish of time step. In a transient case some parameters, such as 

the arc voltage, need to be written into a data file at the end of each time step or 

every N steps. This is normally done in this section.  

3.7.4 Other User Data Files 

For the present investigation, the user data files which need to be prepared include 

the following: 

(a) A data file providing the data of NEC as a function of temperature and radiation 
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radius which are given in [3.19]: this is read by the corresponding subroutine in 

Group 1 of Ground file. 

(b) A data file used for gird by grid initialization of solve-for variables for the cold 

flow simulation (details to be given in Section 3.7.6): this is read by the 

corresponding subroutine in Group 1 of Ground file, and the initialization is done 

by the corresponding subroutine in Group 11 of Ground file. 

(c) A data file providing the current waveform: this is read by the corresponding 

subroutine in Section 1 of Group 19 in Ground file. 

3.7.5 Boundary Conditions 

The governing equations for the arc model need to be supplemented by necessary 

boundary conditions before they can be solved. In the present investigation, for the 

nozzles shown in Figure 3.3, the required boundary conditions are given below: 

(a) On the nozzle axis, axisymmetric boundary conditions are applied. Thus, all 

radial derivatives of the dependent variables are set to zero except for the radial 

velocity which is zero on the axis. 

(b) At the nozzle inlet, the axial velocity and density are iteratively computed 

according to the calculated inlet static pressure by assuming that the gas 

entering the nozzle undergoes an isentropic process [3.20, 3.37] from a 

reservoir with stagnation pressure P0 and stagnation temperature T0 (300 K). 

(c) At the nozzle exit, the static pressure Pe is given. For Nozzles 1 and 2, Pe is set 

to a very low value to guarantee shock free inside the nozzle in the absence of 

downstream electrode. This is consistent with the test conditions of [3.7, 3.8]. 

The axial gradients of enthalpy and velocity are set to zero [3.20]. Diffusion of 

momentum and energy at the exit is considered to be very small in comparison 

with convection and is thus neglected [3.20]. Such boundary conditions are 

suitable when no flow is sucked into the nozzle at the nozzle exit (this is always 

the case for Nozzles 1 and 2), since the thermodynamic state of the gas flowing 

out of the nozzle exit is always determined by the gas from inside the nozzle the 

thermodynamic state of which is obtained during computations. However, if 
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there is flow sucked into the nozzle from outside of the nozzle exit (e.g. in case 

of Nozzle 3 with a high Pe applied at the nozzle exit [3.9] which results in a 

shock inside the nozzle), the thermodynamic state of the gas sucked in is 

usually not known, which should be correctly specified. A detailed discussion 

on this will be given in Chapter 7 which reports the investigation of the SF6 

nozzle arc behaviour under shock conditions for Nozzle 3. 

(d) At solid surfaces, non-slip boundary condition for velocity is applied through a 

built-in wall function of PHOENICS [3.37]. These surfaces are assumed to be 

adiabatic, for which the heat flux is set to zero.  

(e) When applying the standard k-epsilon model and its two variants, relevant 

boundary conditions need to be specified. The turbulent kinetic energy and 

dissipation rate at the nozzle inlet are given by [10, 11] 

 2

2

3
Iwk inin                         (3.38) 



2/3

4/3 in

in

k
C                        (3,39) 

where win is the nozzle inlet velocity, I the turbulent intensity set at 5% as 

recommended by [3.38] and L07.0 . L is the characteristic length of the 

equipment [3.11, 3.38] given by ( electrodeinlet dd  ) where inletd  is the diameter of the 

nozzle inlet and electroded  the electrode diameter. At the nozzle exit, the axial 

gradients of k and ε are set to zero.  

The arc rooting mechanisms at the upstream and downstream electrodes are not 

considered. The heat flux into the two electrodes is assumed zero. This ensures that 

the temperature in front of the upstream electrode is sufficiently high to conduct 

current. The use of simplified Ohm’s law in front of the hollow electrode is 

equivalent to locating a transparent electrode to collect the current as first suggested 

by Yan et al. [3.39]. Arc voltage is dominated by arc column and is not sensitive to 

the boundary conditions assumed at the upstream electrode [3.15]. 

Detailed descriptions as regards relevant algorisms used by PHOENICS to 

implement these boundary conditions are given in [3.34, 3.37].  
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3.7.6 Initial Conditions 

For numerical solutions of the governing equations for switching arcs, it is necessary 

to specify the initial conditions. Initial conditions define the state of the system at the 

beginning of the process. For a problem which is steady state in nature, the initial 

conditions are just a first guess of the final solution which should always be 

independent of the initial guess. However, a good initial guess can accelerate 

convergence and reduce the computational time, while a bad initial guess may result 

in divergence of the solutions or converged but physically unrealistic solutions. For a 

problem which is transient in nature, the initial conditions usually describe the states 

of the system at the beginning of the process when the time t = 0. 

Computational results presented in this thesis include those from computer 

simulation of the gas flow behviour in the nozzle without an arc (referred to as cold 

flow hereafter) and that with an arc in the nozzle. The cold flow simulation is steady 

state in nature. For the purpose of promoting convergence, we aim to find a very 

good initial condition. It is well known that the one-dimensional isentropic flow 

theory (referred to as 1D theory hereafter) can accurately predict the behaviour of a 

gas flow in steady state within a sufficiently gentle supersonic nozzle [3.33]. In the 

present investigation, for each of the nozzles given in Figure 3.3, the solution of the 

nozzle flow obtained by 1D theory is used as initial conditions to start cold flow 

simulations, which results in very quick convergence of the numerical solution. The 

1D theory gives variations of pressure (P1) and axial velocity (W1) with axial 

position inside the nozzle (an example is given in Figure 3.6), while assuming P1 and 

W1 are uniform in the radial direction at a given axial position. For the other 

solved-for variables, we let the radial velocity V1 = 0 and the enthalpy H1 = 

1.73×10
5
 J kg

-1
 (corresponding to the room temperature, 300 K) in the whole 

computational domain before the simulation. 
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Figure 3.6. Variations of pressure (P1) and axial velocity (W1) with axial position 

inside Nozzle 2 (Figure 3.3) derived from 1D theory. P0=21.4 atm. These are used as 

initial conditions for P1 and W1 in cold flow simulations. 

 

The simulation with an arc in the nozzle generally forms two parts. The first 

part is for the solution of the nozzle arc at a DC level, e.g. 1 kA DC, which is steady 

state in nature. For such steady state simulation, we use the numerical solutions from 

the cold flow simulation as initial conditions for gas pressure (P1) and velocities (V1 

and W1) inside the nozzle, and enthalpy (H1) for regions outside the arc. To initiate 

an arc between two electrodes, we arbitrarily define an initial high temperature arc 

column between two contacts (Figure 3.7). The arc column is assumed to have the 

same arc radius (2 mm) and a uniform radial enthalpy (H1) distribution (Figure 

3.7(b)) along the axial direction between two contacts. 

 

 

Figure 3.7. Diagram showing the initial arc column between two contacts. (a) 

Enthalpy (H1) contour inside Nozzle 2 showing the initial arc column which are used 

as initial conditions for H1 in simulations with DC arcs, and (b) radial enthalpy 

distribution for the initial arc column, where H1=9.3×10
7 

and ×2.310
5 

J kg
-1

 

correspond to temperatures of 20000 K and 400 K, respectively. 
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 The second part of the arc simulation, on the other hand, is for the solution of 

the nozzle arc under linearly decaying current conditions, which is transient in nature. 

In the computations of all discharge conditions, the current is ramped down from 1 

kA DC plateau which is consistent with relevant experimental conditions, and thus 

we use the numerical solutions obtained by simulation of the 1 kA DC arc as initial 

conditions for this part of simulation. This requires a restart of computer simulation 

from an existing PHI file for the 1 kA DC arc (Point K of Section 3.7.2). 

3.7.7 Simulation Procedures 

In the present investigation, the computer simulation is initiated by letting the gas 

flow into the nozzle towards the nozzle exit with specified boundary conditions. 

Immediately after the flow reaches steady state, the flow is exposed to an arc at 1 kA 

DC. The current is then ramped down towards zero with a specified di/dt after the 

DC arc reaches steady state. After current zero, a linearly rising recovery voltage 

with a specified dV/dt is imposed to find RRRV. Thus, the procedure of computer 

simulation for the arcing process includes four stages given below: 

 

A Computation of the Cold Flow 

With specified P0 and Pe, the simulation is run without considering an arc until the 

solution reaches steady state. Although the simulation is steady state in nature, we 

still include the time-dependent term for Equation (3.19). Such method of solving 

steady state problems is known as the time marching method. The principle of time 

marching is to start with a guessed flow distribution (initial conditions) and integrate 

the time dependent equations of motion and energy forward with time until a steady 

state solution is obtained [3.40]. We have chosen this method, since it has been 

widely used for simulating high speed compressible flows (e.g. flow in a supersonic 

nozzle, similar to flow conditions for switching arcs), due to its advantages over 

directly solving the steady flow governing equations for such flow conditions as 

discussed in [3.11, 3.40].  

In order to accelerate convergence of the solution and save time, we have used 
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the gas pressure and axial velocity derived from 1D theory as initial conditions 

(Figure 3.6). It should be noted that, for different nozzle geometries and discharge 

conditions (e.g. different values of P0 and Pe and current level), and the application of 

different flow models, the time period required for the numerical solution to reach 

steady state can be different. It is found that, for the flow inside Nozzles 1 or 2 which 

is shock free, with adoptions of different discharge conditions and different models, 

the maximum time period required for the cold flow solution to reach steady state is 

approximately 2 ms. After 2 ms, solutions of flow behaviour inside the nozzle are 

almost not changing with time. For Nozzle 3, on the other hand, there is always a 

shock inside the nozzle, resulting in flow separation and generation of vortices in the 

shock region. Due to stagnant nature of the vortices, a longer time period 

(approximately 4 ms) is required for the solutions to reach steady state. To ensure the 

solutions to reach steady state effectively, for the investigations in this thesis, the 

total computational time for the cold flow simulations is specified to be 2 ms for 

Nozzles 1 and 2, and 4 ms for Nozzle 3, despite the discharge conditions and the 

flow models applied. 

For the cold flow simulations, the size of the time step is 5 μs. The number of 

sweeps for each time step is 500 to ensure solution convergence in each time step. 

The linear relaxation factor, α, for P1 equation is 0.2. The false-time-steps, ft , for 

V1, W1, H1, KE and EP equations are all set to 1 μs. 

 

B Computation of the DC Nozzle Arcs 

As soon as the cold flow solutions reach steady state, we initiate the simulation 

with an arc at 1 kA DC. For the investigation of Chapter 4, the currents used range 

from 50 A DC to 1 kA DC. The time marching approach is again used to obtain 

steady state solutions for these DC arcs. For the investigations of this thesis, from the 

initial conditions for DC arc simulations given in Section 3.7.6, for Nozzles 1 and 2, 

the total computational time for DC arc simulations is specified to be 1.5 ms to 

ensure the solutions of the DC arcs inside the nozzle reach steady state. For Nozzle 3, 
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this total computational time is specified to be 4 ms. 

For all the computations of DC nozzle arcs, the size of each time step is 1 μs 

and the number of sweeps for each time is 500. The linear relaxation factor, α, for P1 

equation is 0.1. The false-time-steps, ft , for V1, W1, H1, KE and EP equations are 

all set to 0.05 μs. 

 

C Computation of the Transient Nozzle Arc before Current Zero 

As soon as the solutions of the 1 kA DC arc reach steady state, we restart the 

simulation from the results of 1 kA DC arc and, in the mean time, ramp down the 

current with a specified di/dt until the current reaches its zero point. The total 

computational time required for this state of simulation is uniquely determined by the 

value of di/dt, e.g. for di/dt=25 Aμs
-1

, the total time = 1000 A/25 Aμs
-1 

= 40 μs.  

It should be noted that, for turbulent SF6 switching arcs, the states of arc (e.g. 

temperature and arc radius) and, subsequently, the arc resistance, change very rapidly 

shortly before final current zero. Therefore, a very small time step size should be 

used to catch these features and to ensure the accuracy of the computation. We, 

therefore, use 0.05 μs as the size of the time step from the instant when the current is 

below 300 A to that of the current zero. For instants when the current is above 300 A, 

a relative larger time step size (0.1 μs) is used to save computational time. The 

number of sweeps for each time step is 500. The linear relaxation factor, α, for P1 

equation is 0.1. The false-time-steps, ft , for V1, W1, H1, KE and EP equations are 

all set to 0.005 μs. A sensitivity study for time step sizes was performed and the 

results showed that, by further reducing time step size, the difference of the results 

was less than 5%. This means the selection of time step size here is reasonable.  

 

D Computation of the Nozzle Arc after Current Zero 

As soon as the computation before current zero is completed, we restart the 

simulation from the results at current zero and, in the mean time, apply a linearly 

increasing recovery voltage with a specified dV/dt. This stage is simulation aims to 
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find the RRRV of the nozzle arc. It is known that, for gas blast circuit breakers, the 

characteristic time for thermal extinction and/or reiginition is always within 10 μs 

[3.28, 3.41]. Thus, for the present investigation, the total computational time for this 

stage is specified as 10 μs. Due to rapid variation of arc characteristics during current 

zero period as previously indicated, the size of each time step is set to 0.01 μs. The 

number of sweeps for each time step is 300. The linear relaxation factor, α, for P1 

equation is 0.1. The false-time-steps, ft , for V1, W1, H1, KE and EP equations are 

all set to 0.01 μs. 

3.8 Concluding Remarks 

This chapter gives a detailed discussion on the approach for the modelling of 

turbulent SF6 switching arcs, which have similarities to that for turbulent shear layer 

flows due to the resemblance between a switching arc and shear layer flows. 

A brief description is given to the approach for the modelling of turbulent shear 

layer flows. This includes the derivation of time averaged conservation equations for 

turbulent flows using Reynolds’s approach and the closure of the time averaged 

conservation equations using Boussinesq assumption and eddy viscosity to link the 

unknown Reynolds stresses to the stain tensor of the main flow. One can avoid using 

such a closure method by taking the first moment of momentum conservation 

equation to derive the Reynolds stress equations. However, this approach introduces 

far more unknowns than the time averaged momentum equation. For engineering 

problems, it is more beneficial to devise ways to close the time averaged 

conservation equations. This is the method which will be adopted in the modeling of 

turbulent SF6 switching arcs. 

The turbulence models chosen for turbulent SF6 switching arcs, in addition to 

the Prandtl mixing length model which has achieved considerable success in 

predicting turbulent arc behavior, are basically the two-equation models (i.e. the 

standard k-epsilon model) and their variants (i.e. the Chen-Kim model and the RNG 

model) which are relevant in the nozzle arc context. These models will be subjected 
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to verification by relevant test results, the details of which are described in this 

chapter. 

The conservation equations for SF6 switching arcs and the governing equations 

for turbulence models, which form the arc model, will be solved by using a general 

purpose CFD software package, PHOENICS. A brief description has been given as 

regards the implementation of the arc model in PHOENICS. 
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Chapter 4  

The Modelling of a Turbulent SF6 Arc in a 

Supersonic Nozzle: I. Cold Flow Features and 

DC Arc Characteristics 

 

4.1 Introduction 

In this chapter and the subsequent two chapters (Chapters 5 and 6), a systematic 

investigation is carried out, which studies the behaviour of an SF6 switching arc 

burning in a supersonic nozzle by using the five flow models given in Chapter 3. The 

suitability of these models for switching applications is verified by comparison 

between computed RRRV and the corresponding measurements of [4.1, 4.2, 4.3]. 

Preliminary investigation [4.4] of an SF6 nozzle arc indicates that the 

differences in arc voltages predicted by the aforementioned four turbulence models at 

the plateau of a current ramp, 1 kA DC, are less than 15% of each other, which is 

well within the experimental scatter normally encountered during the tests of circuit 

breakers. This result seems to indicate that turbulence at high currents is not a 

decisive factor for the determination of arc voltage. This appears to be in agreement 

with a DC nitrogen nozzle arc at 2 kA for which laminar theory can give a 

satisfactory account of the arc behaviour [4.5]. This prompts the present investigation 

into the role of turbulence in DC SF6 nozzle arcs and its implications towards the 

prediction of arc’s current zero behaviour (this chapter).  

The investigation presented in this chapter forms the first part of the systematic 

investigation into the behaviour of an SF6 nozzle arc (hereafter referred to as Part I). 

Part I is concerned with the studies of the cold flow features as well as with a 

detailed study of the arc behavior under different DC currents for Nozzle 2 (Figure 

3.3) used in the experiments of Benenson et al. [4.1]. The second part (hereafter 
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referred to as Part II, which will be presented in Chapter 5) is exclusively concerned 

with the arc behavior under a current ramp before current zero and a voltage ramp 

after current zero. The computed RRRV for Nozzle 2 will be compared with 

corresponding measurements reported in [4.1]. Relative merits of turbulence models 

employed will be discussed in detail in Part II. It is well known that nozzle geometry 

determines the flow conditions, hence the turbulence level inside a nozzle during the 

current zero period, which affects the arc characteristics and, subsequently, RRRV 

characterizing the thermal interruption capability of a nozzle. Therefore, the effects 

of the nozzle geometry on SF6 arc thermal interruption will also be investigated by 

applying different turbulence models, which forms the third part (hereafter referred 

to as Part III, to be presented in Chapter 6) of the systematic investigation. The 

computational results together with the measured RRRV for three nozzles [4.1, 4.2, 

4.3] will be used to evaluate the influence of the geometrical factors of a nozzle on 

the arc characteristics and on thermal interruption. 

No experimentally measured DC arc voltages for Nozzle 2 are available for 

direct comparison with the computational results reported in Part I. However, the 

importance of the cold flow on the voltage withstanding capability of a nozzle 

interrupter, especially in the presence of upstream and downstream electrodes and the 

influence of the arc behaviour under different direct currents (corresponding to the 

plateau of the current ramp) on the current zero period of a breaker, warrants a 

detailed report of the relevant computational results at two stagnation pressures (11.2 

atm and 21.4 atm) investigated by Benenson et al. [4.1]. 

This chapter is organized as follows. Section 4.2 gives details of the 

computational domain and grid distribution. The cold flow features and the effects of 

upstream and downstream electrodes on the flow are discussed in Section 4.3. This is 

followed by a discussion of DC arc-flow interaction, the arc features and the DC arc 

voltage-current (V-I) characteristics as predicted by the four turbulence models and 

the laminar flow model. Finally, appropriate conclusions are drawn. 
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4.2 Computational Domain and Grid Distribution 

Computation has been performed on Nozzle 2 used in experiments of Benenson et al. 

[4.1]. The detailed dimensions of the nozzle and the grid system are shown in Figure 

4.1. The distance between two electrodes is 21.5mm. The diameter of the nozzle inlet 

is 25.4 mm and that of the outlet is 38.1 mm. The flat nozzle throat is 4.6 mm long 

with a diameter of 12.7 mm. The upstream electrode has a round tip and the outer 

diameter is identical with the nozzle throat diameter. The downstream electrode is 

hollow, which has an outer diameter of 6.35 mm and an inner diameter of 3.6 mm. 

The grid system adopted in the computation is BFC (Point B in Section 3.7.2 of 

Chapter 3). The grid distribution is indicated in Figure 4.1, with fine radial grids 

being employed in the arc region, i.e. the region with R from 0 to 2.5 mm (Figure 

4.1), where the average radial grid density is approximately 0.03 mm. In the outer 

regions, i.e. R > 2.5 mm, the total radial grid number is 80 (Figure 4.1). The average 

axial grid density between two electrodes is approximately 0.1 mm. Altogether 

162×408 grids are used to obtain results. 

 

 

Figure 4.1. Nozzle geometry and grid system. The computation domain is divided 

into eleven intervals in the axial direction and four in radial direction, respectively. 

The axial and radial coordinates defining the intervals and the number of grids in 

each interval are indicated above. Z=0 indicates the axial position of the inlet of flat 

nozzle throat. 
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4.3 Results and Discussion 

Computations have been carried out for two stagnation pressures (P0 = 11.2 atm and 

21.4 atm) and for DC currents ranging from 50 A to 1 kA for the nozzle of Figure 4.1. 

Results are given for the cold flow features and the behviour of DC nozzle arcs 

predicted using the five flow models given in Chapter 3. As there are no DC arc 

voltage measurements available for the optimization of the turbulence parameter, c, 

of the Prandtl mixing length model, c is adjusted to give the closest agreement with 

the measured RRRV in [4.1] for P0 = 21.4 atm and di/dt= 25 Aμs
-1

. The value of c is 

0.048 for the nozzle of Figure 4.1. Based on the computational results obtained, we 

can predict the behaviour of the cold flow and DC nozzle arcs inside the nozzle. 

Detailed interpretations of these results are given below. 

4.3.1 Features of the Cold Flow and the Influence of Upstream and Downstream 

Electrodes 

4.3.1.1 General Features of the Cold Flow 

Computations of the cold flow have been performed using the flow models 

previously mentioned. The Prandtl mixing length model is not used for the 

computation of cold flow as the internal nozzle flow is not of thin shear layer type, 

thus the turbulence length scale is difficult to define. It has been found that the 

computational results obtained by all flow models are almost identical except in the 

region close to the upstream electrode tip and to the shock region due to the presence 

of downstream electrode in the supersonic flow region. The qualitative trends of 

pressure and velocity variations in these two regions are similar although their 

magnitudes differ greatly depending on the flow models. The results obtained by the 

standard k-epsilon model are, therefore, used to illustrate the features of the cold 

flow. 

Figure 4.2 shows the pressure distribution together with isobars and the Mach 

number distribution inside the whole nozzle. In the region adjacent to the inlet of the 
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flat nozzle throat, the pressure variation in the radial direction is very large. The 

discontinuous nozzle area variation at Points B and C acts as an expansion corner 

[4.6] where isobars are bunched. Through the expansion wave zone at Point B, the 

flow direction is gradually turned to align with the surface of the flat nozzle throat 

region, and, at Point C, to the surface of divergent nozzle section. The presence of a 

hollow electrode in the supersonic region of the nozzle (the downstream electrode) 

generates a shock in front of it as shown in Figure 4.2, which propagates towards the 

nozzle wall and the nozzle axis. The presence of the upstream solid electrode causes 

flow to separate, thus creating a wake of almost constant pressure within which the 

flow circulates [4.7].   

 

(a) 

(b) 

Figure 4.2. Pressure and Mach number distributions for the cold flow at P0=11.2 atm. 

(a) Pressure distribution together with isobars and (b) Mach number distribution 

together with isobars. 
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4.3.1.2 Effects of the Downstream Electrode 

The pressure distribution and the isobars near the downstream electrode are shown in 

Figure 4.3(a) and the Mach number together with the streamlines in Figure 4.3(b). 

The isobars in front of the flat Surface 2-3 (Figure 4.3(a)) of the downstream 

electrode are very dense showing the existence of the shock. The variations of 

pressure and Mach number along the horizontal line passing the centre of Surface 2-3 

(Line AA’ in Figures 4.3 and 4.5) exhibit the features of a normal shock (Figure 4.4) 

[4.6]. A bow shock can, therefore, be identified in front of the hollow electrode tip, 

the compression region of which extends to the nozzle axis (Figures 4.3 and 4.5). 

The flow behind the bow shock but adjacent to Line AA’ is similar to that near a 

stagnation point. Pressure decreases in the radial direction from the centre of Surface 

2-3, thus ensuring the turning of the flow from that parallel to the axis to that nearly 

vertical along Surface 2-3. Pressure between the bow shock and Surface 3-4-5 

increases in the direction normal to the bow shock but decreases along the bow shock 

surface to ensure the direction of the flow as required by the nozzle wall and Surface 

4-5 (Figure 4.3(b)). 

Pressure and Mach number along Line AA’ (Figure 4.4) and on the axis (Figure 

4.5) before the shock are almost identical for all flow models. However, the detailed 

shock structure in front of the downstream electrode tip (such as the isobar 

distribution shown in Figure 4.3(a)) and the flow behind the shock within the hollow 

region of the downstream electrode are dependent on the flow model (Figure 4.5). 

The results for laminar flow and those computed by the Chen-Kim model and RNG 

model are almost the same. This indicates that the effects of turbulence on the cold 

flow are negligible in the region not affected by the shock. The shock structure and 

the flow immediately behind the shock are known to be dependent on the turbulence 

models [4.8]. As no experimental results are reported in [4.1] for the cold nozzle flow, 

no conclusions regarding the accuracy of the flow models employed can be drawn. 

However, since the results of all turbulent models in the region away from the shock 

are almost identical with those of laminar flow, the shock structure predicted by the 
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laminar flow model is perhaps closer to the reality. 

 

 

  (a) 

  (b) 

Figure 4.3. Flow pattern near the downstream electrode computed at P0=11.2 atm. (a) 

Pressure distribution together with isobars and (b) Mach number distribution with 

constant Mach contours and flow streamlines. 

 

 

 

 

 



Chapter 4 The Modelling of a Turbulent SF6 Arc in a Supersonic Nozzle: I. Cold Flow Features 

and DC Arc Characteristics 

95 

 

 

 

  (a) 

  (b) 

Figure 4.4. Variations of pressure and Mach number along Line AA’ for the cold 

flow computed by four flow models. P0=11.2 atm. (a) Pressure distribution and (b) 

Mach number distribution. 
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  (a) 

  (b) 

Figure 4.5. Variations of pressure and Mach number along the nozzle axis for the 

cold flow computed by four flow models. P0=11.2 atm. (a) Pressure distribution and 

(b) Mach number distribution. 

 

4.3.1.3 Effects of the Upstream Electrode 

Figure 4.6 shows the pressure distribution and streamlines near the upstream 

electrode and those in the transonic region of the nozzle. Close to Point D on the 

electrode surface the flow starts to separate, thus creating a wake region of 

approximately constant pressure (Figure 4.7(a)) [4.7]. The flow circulates in the 

wake region. The flow separation point and the velocity and pressure inside the wake 

are known to be dependent on the flow model (Figure 4.7). However, the pressure 
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differences in the wake predicted by different models are less than 2% of the absolute 

pressure within the wake (Figure 4.7(a)). No experimental results are available at 

present to judge the relative merits of the flow models used. For the reason 

mentioned above, results of the laminar flow model are expected to be closer to 

reality. 

 

 

 

Figure 4.6. Pressure isobars and streamlines near the upstream electrode computed 

by the standard k-epsilon model at P0=11.2 atm. 
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  (a) 

  (b) 

Figure 4.7. Radial distributions of pressure and axial velocity near the upstream 

electrode for the cold flow computed by four flow models. P0=11.2 atm. (a) Pressure 

distribution and (b) Distribution of axial velocity. 

 

The wake near the upstream electrode and the shock region close to the 

downstream electrode are not expected to influence the thermal interruption 

capability of the nozzle interrupter (Figure 4.1) as the voltage drop in these two 

regions is expected to be much smaller than that of the arc column. However, these 

two regions can affect the dielectric strength of a breaker, the details of which will be 

given in Section 4.3.1.5. 
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4.3.1.4 The Influence of Stagnation Pressure 

For SF6, the equation of state for ideal gas is valid for temperature up to 1000 K. The 

density of SF6 is, therefore, proportional to pressure for a given temperature. Cold 

flow results indicate that the flow is mainly driven by pressure gradient and viscous 

stresses are negligible in comparison with pressure gradient. For turbulent flow, 

Reynolds stress is proportional to density. Under these conditions, it can easily be 

shown that the solutions of the conservation equations for laminar or turbulent flow 

are uniquely determined by normalized pressure P/P0. Thus, velocity and Mach 

number are independent of stagnation pressure, and the computed pressure expressed 

in normalized pressure is the same for any stagnation pressure. Computation results 

for stagnation pressures of 11.2 atm and 21.4 atm given in Figure 4.8 are in 

agreement with the above conclusions. 

  (a) of Figure 4.8 

  (b) of Figure 4.8 
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  (c) of Figure 4.8 

Figure 4.8. Comparison of (a) normalized pressure, (b) axial velocity and (c) Mach 

number along the nozzle axis for the cold flow at two stagnation pressures (P0=11.2 

and 21.4 atm). Standard k-epsilon model is used to obtain these results. 

 

4.3.1.5 Electrode effects on the dielectric strength 

The dielectric strength of a nozzle interrupter immediately after the thermal 

extinction of the arc depends on the distribution of E/P between the two electrodes. 

The presence of the bow shock makes E/P highly non-uniform near the downstream 

electrode. The gas temperature of the circulating flow in the wake region near the 

upstream electrode immediately after arc interruption can be around 2000 K to 3000 

K [4.9]. In such a hot gas, there are still a large number of residue charged particles. 

The dielectric strength is, therefore, greatly reduced. It is important, therefore, to 

optimize the electrode configuration from cold flow point of view to ensure a smaller 

flow circulation region.  

4.3.2 Characteristics of DC nozzle arcs 

4.3.2.1 General features 

Ohmic heating inside the arc creates a high temperature and low gas density region 

within the nozzle. The presence of the arc reduces the effective area for the flow, thus 

modifying the pressure distribution within the nozzle, which in turn affects the arc 
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[4.10]. The interaction between the arc and its surrounding cold flow determines the 

arc characteristics.  

The present investigation covers a current range from 50 A to 1 kA. At 1 kA DC, 

computational results show that the arc cross section defined as the boundary of the 

4000 K isotherm (hereafter referred to as the electrical boundary) at the stagnation 

pressure of 11.2 atm does not exceed 8% of the nozzle area (Figure 4.9). The 

disturbance to the cold flow due to the presence of the arc is quite small, which 

results in the pressure distribution within the nozzle to be nearly the same as that of 

cold flow except in the regions close to the two electrodes. The qualitative features of 

the nozzle arc predicted by various flow models are similar. Unless otherwise 

specified, the results given in this section are those obtained by the standard 

k-epsilon model.  

On the arc axis, Ohmic input is balanced by net radiation loss (emission minus 

absorption). This is a common feature for axially flow dominated high pressure arcs 

when current is 1 kA and above. The axis temperature for the arc in Figure 4.9 

reaches 22,000K at which such a balance occurs. It is well known that arc axis 

temperature does not exceed 27,000K even for current up to 80 kA [4.11]. Such 

small range of variation of axis temperature with currents is due to that arc voltage 

only slightly increases with current (hence small increase in electrical field). This 

results in a small increase in Ohmic input. Thus, when current is increased, net 

radiation loss should be increased to balance the Ohmic input by raising the axis 

temperature. However, the required increase in temperature is small because the net 

radiation loss increases rapidly with temperature [4.12]. 
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Figure 4.9. Temperature contour together with pressure isobars in the nozzle at 1 kA 

DC and at P0=11.2 atm. 

 

 

Figure 4.10. Temperature contour together with pressure isobars near the upstream 

electrode at 1 kA DC showing the formation of a compression region close to the tip 

of the downstream electrode. P0=11.2 atm. 

 

The 1 kA DC arc greatly disturbs the flow near the downstream electrode tip 

(Figure 4.10). In contrast with the cold flow, the hot gas covers the downstream 

electrode tip, which renders the local flow subsonic for the Prandtl mixing length 

model and the standard k-epsilon model and slightly above sonic for the laminar flow 

model, the Chen-Kim model and the RNG model (Figures 4.10 and 4.11(a)). Since 

the flow needs to be decelerated towards the surface of the electrode in order to 

satisfy non-slip boundary condition for velocity, this creates a compression zone 

(Figures 4.10 and 4.11(b)) in front of the electrode tip. It should, however, be noted 
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that the pressure distribution near the flat tip shows a compression wave rather than a 

shock (Figures 4.10 and 4.11(b)), since the local flow field is generally subsonic 

(Figure 4.11(a)). The pressure waves emanating from Surface 2-3-4 are bunched on 

the arc axis, thus creating a pressure distribution similar to a shock (Figures 4.10 and 

4.12). The bunching of the pressure waves is a direct consequence of the wave 

travelling towards the axis encountering a rising temperature, thus a region of 

increasing sound speed. The qualitative features of the shapes of the pressure isobars 

near the axis but originated from Surface 2-3-4 agree with the Snell’s law of sound 

wave refraction [4.13]. 

 

  (a) 

  (b) 

Figure 4.11. Variations of Mach number and pressure along Line AA’ computed by 

five flow models at 1 kA DC. P0=11.2 atm. (a) Mach number distribution and (b) 

pressure distribution. 
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  (a) 

  (b) 

Figure 4.12. Variations of Mach number and pressure along the nozzle axis 

computed by five flow models at 1 kA DC. P0=11.2 atm. (a) Mach number 

distribution and (b) pressure distribution. 
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Figure 4.13. Temperature contour together with pressure isobars near the upstream 

electrode at 50 A DC showing the reappearance of the bow shock. P0=11.2 atm. 

When current is decreased, the thermal influence region of the arc is reduced. At 

a current below 100 A, the bow shock as observed in the cold flow reappears 

(Figures 4.13 and 4.14), which extends to the nozzle axis (figures 4.13 and 4.15). This 

will be the likely case when the current is reduced to zero during the interruption of a 

fault current by a circuit breaker. The pressure distributions predicted by the five 

flow models along the line AA’ and on the axis (Figs 4.14(a) and 4.15(a)) are close to 

each other before the shock. However, the turbulence levels associated with the 

standard k-epsilon model and the Prandtl mixing length model are much higher than 

those predicted by Chen-Kim and RNG models, which results in lower axis 

velocities (Figure 4.16). Within the arc, the flow is entirely subsonic for the standard 

k-epsilon model and the Prandtl mixing length model (Figure 4.15(b)). Although all 

five flow models predict the shock in front of the hollow electrode, this shock needs 

to penetrate into the arc. It is well known that the shock is broadened and the strength 

reduced by viscous and thermal conduction effects. The concentration of isobars 

becomes less dense (Figures 4.13, 4.17(a) and 4.18(a)) when the shock propagates 

into the region with increased eddy viscosity and turbulent thermal conductivity. 

Since the oncoming flow is subsonic for the standard k-epsilon model and the Prandtl 

mixing length model, this pressure rise region near the arc axis can no longer be 

regarded as a part of the bow shock originated from the tip of the downstream 
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electrode. Upon entering the pressure rise region, the flow decelerates by the adverse 

pressure gradient and the greatly enhanced viscosity due to turbulence. For the 

standard k-epsilon model and the Prandtl mixing length model, the flow on the axis 

is arrested, thus creating a reverse flow region (Figures 4.16 and 4.17(b)) between 

two flow stagnation points. A vertex is also clearly formed, which increases the arc 

size (Figure 4.17(b)). For the Chen-Kim and the RNG k-epsilon models, 

computational results indicate that the supersonic flow in front of the downstream 

electrode decelerates into the shock but its direction has not been reversed (Figures 

4.16 and 4.18(b)) due to weaker turbulence level. The arc size is, however, still 

broadened due to deceleration of the gas flow (Figure 4.18(b)). 

  (a) 

  (b) 

Figure 4.14. Variations of Mach number and pressure along Line AA’ computed by 

five flow models at 50 A DC. P0=11.2 atm. (a) Mach number distribution and (b) 

pressure distribution. 
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  (a) 

  (b) 

Figure 4.15. Variations of Mach number and pressure along the nozzle axis 

computed by five flow models at 50 A DC. P0=11.2 atm. (a) Mach number 

distribution and (b) pressure distribution. 

 

Figure 4.16. Axial velocity distributions along the nozzle axis computed by various 

turbulence models at 50 A DC and P0=11.2 atm. 
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  (a) 

 

  (b) 

Figure 4.17. Flow field near the downstream electrode obtained by the standard 

k-epsilon model at 50 A DC. P0=11.2 atm. (a) Temperature contour together with 

pressure isobars and (b) plot of velocity vector. 
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  (a) 

  (b) 

Figure 4.18. Flow field near the downstream electrode obtained by the Chen-Kim 

k-epsilon model at 50 A DC. P0=11.2 atm. (a) Temperature contour together with 

pressure isobars and (b) plot of velocity vector. 

 

The presence of the arc also affects the wake region near the upstream electrode 

tip. At 1 kA DC, the wake no longer exists due to the presence of the arc. When the 

current is reduced, the wake and flow circulating regions reappear as shown in 

Figure 4.19. Caution should be exercised regarding the accuracy of the prediction by 
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various flow models used in the present investigation. As previously indicated, the 

flow in the regions close to the electrodes is dependent on the flow models. In the 

absence of experimental results for the verification of the flow models our discussion 

can only be regarded as qualitative in nature. However, the influence of the two 

electrode regions on the arc and the flow in the rest of the nozzle is small. They 

hardly affect the arc voltage as the voltage taken up by these two regions is 

negligible in comparison with the total arc voltage. 

 

 

Figure 4.19. Temperature distribution together with the streamlines near the 

upstream electrode at 50 A DC and at P0=11.2 atm. 

 

4.3.2.2 DC Arc V-I Characteristics 

The DC voltage-current (V-I) characteristics of the nozzle arc computed by various 

flow models (Figure 4.20) are typical of high pressure arcs. When the current is large 

(600 A and above), the arc voltage is almost independent of current (the flat part of 

V-I characteristics). For small currents, it exhibits negative V-I characteristics. The 

spread in arc voltages of the flat part of the V-I characteristics predicted by all five 

flow models differ by less than 15% of the mean voltage. The mean voltage at a 

given current is the average of the voltages computed by the five flow models. This 

implies that turbulence does not play a dominant role in the determination of the arc 

voltage. At low currents, the arc voltage strongly depends on the flow models and the 
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aforementioned spread increases to 35% of the mean at 50 A (Figure 4.20). The 

physical processes responsible for these features of the V-I characteristics and the 

voltage spread by various flow models are discussed in the following two 

subsections. 

 

 
Figure 4.20. The voltage-current (V-I) characteristics for the DC arcs computed by 

the five flow models at two stagnation pressures. 

 

4.3.2.3 Characteristics of the Nozzle Arc with Radiation Dominated High 

Temperature Core 

Examination of the computational results for the flat part of the V-I characteristics 

given by various flow models shows that the axis temperature for currents 600 A and 

above is not sensitive to current. Typical axial variation of axis temperature for this 

current range is shown in Figure 4.21(a) although the results are for 1 kA. Excluding 

the regions close to the two electrodes, the axis temperature difference calculated by 

the different flow models is less than 5% of the mean temperature. The arc radius as 

defined by the radial position of the 4000 K isotherm is found to be proportional to 

the square root of the current (Figure 4.21(b)) for a given stagnation pressure. 
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  (a) 

  (b) 

Figure 4.21. Variations of axis temperature and arc radius computed by five flow 

models for currents 600 A and above at P0=11.2 atm. (a) Axis temperature at 1 k A 

DC and (b) arc radius at 1 kA DC and 600 A DC.  

 

The electrical field at an axial position not only depends on the axis temperature 

and arc radius but also on the radial temperature profile. Typical radial temperature 

profiles are given in Figure 4.22 which shows the temperature profiles at 1 kA DC 

for two typical axial positions corresponding to the nozzle throat region (Z=2.3 mm) 

and the region downstream of the nozzle throat (Z=7.9 mm). The temperature profile 

inside the arc core is rather flat. The boundary of the arc core is defined as the radial 

position corresponding to a temperature of 83.3% of the axis temperature [4.5] 

(henceforth known as the core boundary). Such flat temperature profile indicates that, 

within the core, radiation transport is dominant. On the axis, Ohmic input is balanced 

by net radiation loss, which determines the axis temperature for known Ohmic input. 
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The energy balance at the core boundary for the whole arc is given in Table 4.1 for 

all flow models used. 

 

  (a) 

  (b) 

Figure 4.22. Radial temperature profiles at two axial positions computed by five 

flow models at 1 kA DC and at P0=11.2 atm. (a) Z=2.3 mm and (b) Z= 7.9mm. 

 

Table 4.1 shows that for all flow models the dominant energy loss process is due 

to radiation. For the Prandtl mixing length model and the standard k-epsilon model, 

radial thermal conduction (nearly all due to turbulent heat conduction) accounts 

respectively for 24.3% and 13.8% of Ohmic input. Thus, the radial temperature 

gradients of the profiles predicted by these two models are greater than those 

predicted by other flow models as shown in Figure 4.22. The results of Chen-Kim 

model and those of RNG model are almost identical which are in turn very close to 

the results given by the laminar flow model. Although there is a large difference 

between the relative importances of various energy loss processes predicted by the 
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five flow models (Table 4.1), the differences in electrical power input predicted by 

different flow models are very small. This is due to the very small differences in axis 

temperatures and in the core sizes (Figure 4.22) computed by various flow models. 

This results in nearly equal arc conductance. Since 80% of the current is carried by 

this core, the arc voltages predicted by various flow models are, therefore, very close 

to each other. 

 

Table 4.1. Percentage of electrical power input associated with various energy 

transport processes for the whole arc length at the core boundary calculated by five 

flow models at 1 kA DC and P0=11.2 atm. The power associated with the pressure 

work is not shown as it only accounts for 5 to 7% of the power input. This applies to 

all tables. Positive means power input and negative power loss. 

Model Power 

input 

(10
5
 W) 

Radial 

thermal 

conduction 

Radiation 

loss 

Axial 

enthalpy 

convection 

Radial 

enthalpy 

convection 

(1) 1.89 -4.1% -67.7% -19.1% -1.7% 

(2) 1.88 -24.3% -62.8% -4.5% -4.3% 

(3) 1.90 -13.8% -66.8% -10.9% -4.0% 

(4) 1.87 -4.8% -70.1% -15.3% -4.8% 

(5) 1.87 -4.6% -70.1% -15.1% -5.0% 

Method of calculation: dzrdrE
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
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  

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






   

where R refers to the radial position of the core boundary or electrical boundary 

(table 4.2) and (Z2-Z1) the arc length. 

Key to the models: (1) Laminar flow model, (2) Prandtl mixing length model, (3) 

Standard k-epsilon model, (4) Chen-Kim k-epsilon model and (5) RNG k-epsilon 

model. 
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To assess the influence of turbulence, we need to know the arc energy balance at 

the electrical boundary. This is because between the arc core boundary and the 

electrical boundary, nearly 80% of the radiation flux coming out of the arc core is 

absorbed in this region, thus altering the energy balance. Table 4.2 shows how 

electrical power input into the electrically conducting core is balanced by various 

energy transport processes.  

 

Table 4.2. Percentage of electrical power input associated with various energy 

transport processes for the whole arc length at the electrical boundary calculated by 

five flow models at 1 kA DC and P0=11.2 atm. Mathematical expressions for power 

input and power loss and the key to the models are the same as those in Table 4.1. 

Model Power 

input 

(10
5
 W) 

Radial 

thermal 

conduction 

Radiation 

loss 

Axial 

enthalpy 

convection 

Radial 

enthalpy 

convection 

(1) 2.29 -1.2% -25.1% -91.9% 24.7% 

(2) 2.65 -50.6% -12.2% -48.7% 17.9% 

(3) 2.41 -30.6% -18.3% -66.4% 23.2% 

(4) 2.30 -8.8% -23.5% -82.6% 22.8% 

(5) 2.29 -8.2% -23.6% -83.1% 22.4% 

 

Due to the radiation absorption, the energy balance at the electrical boundary 

has been greatly altered in comparison with that at the core boundary. For laminar 

flow, Chen-Kim and RNG models, electrical power input is balanced by radiation 

and axial and radial convections while thermal conduction has the least influence on 

energy balance. For the Prandtl mixing length model and the standard k-epsilon 

model, radial thermal conduction and axial convection are the most important energy 

loss processes although the turbulence effect as predicted by the Prandtl mixing 

length model is much stronger than that of the standard k-epsilon model. 

The modifications to the dissipation rate equation of the standard k-epsilon 

model by Chen-Kim and RNG models are intended to increase the dissipation rate, 

thus reducing the turbulence. The complex non-linear interactions between average 

turbulent kinetic energy, the mean flow, and the dissipation rate result in a much 

reduced average kinetic energy (Figure 4.23) and dissipation rate (Figure 4.24) for 
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Chen-Kim and RNG models as compared with those of the standard k-epsilon model. 

It should be noted that turbulence intensity increases towards the downstream 

electrode due to the axial development of turbulence (Figure 4.23(b)).  

 

  (a) 

  (b) 

Figure 4.23. Radial profiles of turbulence kinetic energy at two axial positions 

computed by three flow models at 1 kA DC and at P0=11.2 atm. (a) Z=2.3 mm and (b) 

Z= 7.9mm.  
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  (a) 

  (b) 

Figure 4.24. Radial profiles of turbulence dissipation rate at two axial positions 

computed by three flow models at 1 kA DC and at P0=11.2 atm. (a) Z=2.3 mm and (b) 

Z= 7.9mm. 

 

The radial distributions of the average turbulent kinetic energy and the 

dissipation rate have two peaks, one of which is on the nozzle axis and the other in 

the region where velocity reduces rapidly (Figure 4.25). Careful examination of the 

results show that the first peak on the nozzle axis is attributed to the axial gradient of 

axial velocity (dw/dz) and the other peak is due to the large radial gradient of axial 

velocity (Figure 4.25). Both velocity gradients affect the distributions of the average 

turbulent kinetic energy and the dissipation rate through the rate of generation of 

turbulent kinetic energy given by Equation (3.31). 
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  (a) 

  (b) 

Figure 4.25. Radial profiles of axial velocity at two axial positions computed by four 

flow models at 1 kA DC and at P0=11.2 atm. (a) Mid nozzle throat (Z=2.3 mm) and 

(b) Z= 7.9mm. 

 

Turbulence enhanced momentum and energy transports are determined 

respectively by eddy viscosity μt and kt /cp in momentum and energy conservation 

equations. Since kt /cp is directly related to μt through turbulent Prandtl number, it is 

sufficient to examine μt (Figure 4.26) in order to see why the four turbulences models 

give widely different turbulence levels. Chen-Kim and RNG models give the 

smallest values of μt,, hence the lowest level of turbulence. The Prandtl mixing 

length model has the largest μt because of the adoption of the thermal radius of the 

arc as the turbulence length scale, which is larger than the length scales computed by 

the other three turbulence models (Figure 4.27). μt inside the arc core computed by 

the four turbulence models are all very low. This means that the large eddies 
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generated in the region where radial velocity gradient is high cannot easily penetrate 

the arc core region, thus rendering radiation transport being dominant.  

 

  (a) 

  (b) 

Figure 4.26. Radial profiles of the eddy viscosity (μt) at two axial positions 

computed by four flow models at 1 kA DC and at P0=11.2 atm. (a) Z=2.3 mm and (b) 

Z= 7.9mm. 
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  (a) 

  (b) 

Figure 4.27. Radial profiles of turbulence length scale at two axial positions 

computed by four flow models at 1 kA DC and at P0=11.2 atm. (a) Z=2.3 mm and (b) 

Z= 7.9mm. 

 

Arcs in the current range corresponding to the flat part of V-I characteristics 

exhibit similar features to those of the 1 kA DC arc. For the flat part of the V-I 

characteristic, Ohmic input on the axis is entirely balanced by radiation. When 

current is reduced, the required adjustment in axis temperature in order for the net 

radiation loss to balance the reduced Ohmic input is very small. This is because for a 

small change in temperature, net radiation loss of SF6 changes by a large amount for 

temperatures above 20000 K [4.12]. This explains why the axis temperature of a 600 

A arc is almost the same as that of 1 kA. Since the arc cross section is proportional to 

the current and the arc temperature within the core is not sensitive to the current, the 

arc voltage is, therefore, almost independent of the current. 
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4.3.2.4 Characteristics of the Nozzle Arc with Radiation and Thermal 

Conduction Dominated High Temperature Core 

The arc voltage increases with decreasing current for currents below 600 A. The axis 

temperature at 300 A is reduced to 17000 K (Figure 4.28) due to reduced Ohmic 

input. When the arc size is reduced, radial thermal conduction in the high 

temperature core is expected to become more important for two reasons: firstly, the 

relative importance of thermal conduction (energy taken out from a surface) to 

radiation loss (energy loss related to the volumetric effect) is inversely proportional 

to the arc radius, and, secondly, net radiation loss decreases rapidly with temperature 

for temperature below 18000 K [4.12]. In the core region, thermal conduction is 

appreciable (Table 4.3). The radial temperature profile in the high temperature core is 

no longer flat especially near the core boundary (Figure 4.29). There is considerable 

radial temperature gradient inside the arc core (figure 4.29). It has also been found 

that the dependence of arc cross section on current is stronger than the linear 

relationship found for the flat part of the V-I characteristics. Thus, the rate of 

reduction in arc conductance due to decreases in arc temperature and in arc radius is 

faster than the rate of current reduction. Therefore, arc voltage increases with 

decreasing current giving rise to negative V-I characteristics. 

 

 

Figure 4.28. Variations of axis temperature at 300 A DC and P0=11.2 atm. 
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Table 4.3. Percentage of electrical power input associated with various energy 

transport processes for the whole arc length at the core boundary calculated by five 

flow models at 50 A DC and P0=11.2 atm. Mathematical expressions for power input 

and power loss and the key to the models are the same as those in Table 4.1. 

Model Power 

input 

(10
4
 W) 

Radial 

thermal 

conduction 

Radiation 

loss 

Axial 

enthalpy 

convection 

Radial 

enthalpy 

convection 

(1) 1.72 -24.9% -66.7% -3.5% -0.82% 

(2) 2.08 -54.9% -46.0% 2.5% 1.1% 

(3) 2.13 -47.1% -51.4% -0.7% 1.3% 

(4) 1.91 -34.0% -61.8% -1.2% 0.05% 

(5) 1.89 -34.7% -61.3% -1.0% 0.15% 

 

Detailed energy balance calculations at the high temperature core boundary by 

various flow models (Table 4.3) at 50 A DC confirm the dominance of thermal 

conduction and radiation. For the laminar flow model and turbulent flow models 

other than the Prandtl mixing length model, radiation at the core boundary is still the 

most important energy loss mechanism. Energy balance at the electrical boundary 

(Table 4.4) reveals that for the Prandtl mixing length model and the standard 

k-epsilion model, turbulent thermal conduction is the dominant energy loss process, 

while for laminar flow and the Chen-Kim and RNG models, radiation loss is the 

most important. The reason for such a difference in dominant energy loss 

mechanisms between different flow models is the intensity of turbulence. Turbulence 

intensity is determined by the eddy viscosity. Radial profiles of eddy viscosity at two 

axial positions are given in Figure 4.30 with μt predicted by the Prandtl mixing 

length model the largest. It should also be noted that at the electrical boundary axial 

convection is nearly balanced by radial convection (Table 4.4). 
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  (a) 

  (b) 

Figure 4.29. Radial temperature profiles computed by the four turbulence models at 

two axial positions at 50 A DC. P0=11.2 atm. (a) Z=2.3 mm and (b) Z=7.9mm. 

 

Table 4.4. Percentage of electrical power input associated with various energy 

transport processes for the whole arc length at the electrical boundary calculated by 

five flow models at 50 A DC and P0=11.2 atm. Mathematical expressions for power 

input and power loss and the key to the models are the same as those in Table 4.1. 

Model Power 

input 

(10
5
 W) 

Radial 

thermal 

conduction 

Radiation 

loss 

Axial 

enthalpy 

convection 

Radial 

enthalpy 

convection 

(1) 1.87 -4.3% -56.6% -67.7% 32.7% 

(2) 2.62 -62.6% -31.1% -17.2% 13.6% 

(3) 2.51 -55.8% -38.7% -15.9% 14.2% 

(4) 2.13 -33.8% -50.0% -31.0% 18.8% 

(5) 2.12 -35.5% -48.9% -30.0% 18.3% 
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  (a) 

  (b) 

Figure 4.30. Radial profiles of the eddy viscosity at two axial positions computed by 

five flow models at 50 A DC and at P0=11.2 atm. (a) Z=2.3 mm and (b) Z= 7.9mm. 

 

4.3.2.5 The Effects of the Stagnation Pressure 

For higher stagnation pressures (e.g. P0=21.4 atm), the qualitative features of the arc 

and its surrounding flow are similar to those of 11.2 atm for all flow models used. 

Within the range of current investigated (50 A to 1 kA), the arc voltage is found to be 

approximately proportional to the square root of the stagnation pressure irrespective 

of the flow models (figure 4.21). This is in agreement with the voltage-stagnation 

pressure scaling law derived from the arc integral analysis [4.10]. The axis 

temperature does not appear to be sensitive to the stagnation pressure for a given 

current, while the arc radius is found to be inversely proportional to (P0 )
0.25

. 
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Relative importance of various energy transport processes at the core boundary 

and at the electrical boundary remain the same as those given in Tables 4.1 to 4.4 

although the percentage of electrical power taken out by radiation loss is slightly 

increased due to increased radiation with pressure and reduction in arc size.  

4.4 Concluding Remarks 

The cold flow and the arc under direct currents burning in Nozzle 2 with fixed 

stagnation pressure have been investigated computationally using five flow models 

given in Chapter 3.  

For the cold flow, the computational results for different flow models are nearly 

the same except in the region close to the two electrodes. There is a bow shock in 

front of the downstream hollow electrode and a wake near the tip of the upstream 

electrode. However, the size of the wake and the strength and the structure of the 

shock differ widely between flow models. The implications of the wake and shock on 

dielectric breakdown have been discussed.  

The V-I characteristic of the nozzle arc consists of a flat part (current not less 

than 600A) where the arc voltage is independent of current and a part with negative 

V-I characteristic where the arc voltage rises when current is reduced. The reasons 

for the shape of the V-I characteristic are explained for the first time. On the flat part 

of the V-I characteristic, radiation is the dominant energy transport process within the 

arc core where 80% of the current is conducted. Turbulence has little influence on the 

arc voltage. Thus, arc voltage at high current is not an effective means for the 

verification of flow models. When current is reduced below 600A, thermal 

conduction and radiation inside the arc core are dominant energy transport 

mechanisms. Arc voltage depends on the flow model and there is a large difference 

between the voltage predicted by the Prandtl mixing length model and that by 

laminar flow model. A detailed examination is conducted to find the causes why the 

turbulence intensities predicted by different turbulence models vary a great deal.  
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Chapter 5  

The Modelling of a Turbulent SF6 arc in a 

Supersonic Nozzle: Part II. Current Zero 

Behaviour of the Nozzle Arc 

 

5.1 Introduction 

The investigation presented in this chapter forms the second part of a systematic 

investigation into the behaviour of SF6 nozzle arc (hereafter referred to as Part II). 

Part II is exclusively concerned with the arc behaviour during current zero period 

under a current ramp specified by a rate of current decay (di/dt) before current zero 

and a voltage ramp (dV/dt) after current zero. 

The features of the cold flow (in the absence of the arc) and the DC 

voltage-current characteristics of the SF6 arc burning in Nozzle 2 used in the 

experiments of Benenson et al. [5.1] are the subject matter in Part I of the 

investigation (Chapter 4). Altogether five flow models, which are the laminar flow 

model, the Prandtl mixing length model, the standard k-epsilon model and its two 

variants, the Chen-Kim model and the RNG model, have been used in Part I. It has 

been shown in Part I that for current higher than 600 A, radiation transport is the 

dominant energy transport mechanism. Arc voltages predicted by different flow 

models differ within 15% of the mean arc voltage, which is well within the 

experimental scatter. For currents below 600 A, turbulence enhanced thermal 

conduction within the electrically conducting core gradually becomes the dominant 

energy transport process. Arc voltages predicted by different flow models are found 

to be strongly dependent on the flow models. 

The five flow models will again be used in Part II to study the arc behaviour 

during current zero period and to compute the thermal interruption capability of 
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Nozzle 2 in terms of the RRRV. The experimental conditions of [5.1] which are 

studied in this chapter, and the measured RRRV, are reviewed in Section 3.6 of 

Chapter 3. Comparison between the computed and measured RRRV at three 

stagnation pressures (P0=11.2 atm, 21.4 atm and 35 atm) and two rates of current 

decay (di/dt=13 Aμs
−1 

and 25Aμs
−1

) will be used to judge the relative merits of the 

flow models. 

This chapter is organized as follows. Discussions of the computational results 

are given in Section 5.2, where an analysis of the physical mechanisms encompassed 

in each turbulence model is also given to show the adequacy of a particular 

turbulence model in describing the rapidly varying arc during current zero period. 

Section 5.3 presents the comparison between the computed and measured RRRV. 

Relative merits of turbulence models used are discussed in Section 5.4. Finally, 

appropriate conclusions are drawn. 

5.2 Results and Discussion 

Computation has been performed on Nozzle 2 used by Benenson et al. [5.1], the 

geometry and the grid system of which have been given in Figure 4.1. At the nozzle 

inlet three stagnation pressures, P0=11.2 atm, 21.4 atm and 35 atm, have been applied. 

At the nozzle exit, the static pressure Pe is set to a very low value to guarantee shock 

free inside the nozzle in the absence of the downstream electrode. The current is 

ramped down to zero with a fixed rate of decay, di/dt, from a DC plateau (I0) of 1 kA. 

Two rates of current decay, di/dt=13 Aμs
−1

 and 25 Aμs
−1

, have been investigated. 

After current zero, a linearly increasing voltage ramp, dV/dt, is applied to investigate 

the thermal interruption capability of the nozzle arc. Before the current is reduced, 

the arc is assumed to be in a steady state. With the choice of 1 kA as the current 

plateau (I0), the arc is still in quasi-steady state immediately after the current is 

ramped down. Therefore, the choice of 1 kA ensures that the arc at current zero is 

independent of I0. 

For the Prandtl mixing length model, the turbulence length scale (λc) is related 
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to the thermal radius of the arc (rδ) through an adjustable parameter c (Section 3.5.1 

of Chapter 3). The value of c is adjusted to give the closest agreement with the 

measured RRRV for P0 = 21.4 atm and di/dt= 25 Aμs
−1

. This value of c was 0.048 as 

mentioned in Chapter 4. At this point, it is necessary to introduce a modification 

made to the calculation of arc’s thermal radius which determines the turbulence 

length scale and the choice of c, and, the reason for such a modification. Previously, 

to determine the value of T∞ in Equation (3.22) (given in Section 3.6.1 of Chapter 3) 

and the boundary for integration (“∞” the upper boundary for integration of Equation 

(3.22)), we search in the positive r-direction from the arc axis to the nozzle wall for 

the radial position where the minimum temperature is located. The value of T∞ is 

then this minimum temperature and “∞” standards for the radial position 

corresponding to this minimum temperature which is normally near the nozzle wall. 

However, it has been found that the computed temperature distribution close to the 

nozzle wall is not very reasonable due to application of large grid size in this region. 

Such computational problem can be solved using very fine grid size near the nozzle 

wall, which is however not necessary for two reasons: firstly, for currents not 

exceeding 1 kA (always the case in all the investigations for this thesis), the predicted 

arc characteristics is not sensitive to the solution near the nozzle wall due to the fact 

that the area of the arc cross section is very small in comparison with the area of the 

nozzle cross section as mentioned in Section 4.3.2.1 of Chapter 4 (thus the arc 

boundary is far away from the nozzle wall), and, secondly, it is computationally 

expensive to use fine grid size.  

Nevertheless, since the values of temperature near the nozzle wall, which are to 

be assigned to T∞, are not very reasonable, we believe this can affect the calculation 

of the arc’s thermal radius. In addition, when calculating the thermal area of the arc 

(θδ, given by Equation (3.22)), we only need to do integration until the arc’s thermal 

boundary, outside which the radial temperature gradient is negligible, i.e. T∞/T (T is 

the local temperature at a given radial position) becomes effectively unity. A 

modification is, therefore, made to the current approach of calculating the thermal 

area, which changes the definition of T∞ and the upper boundary for integration “∞” 
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for Equation (3.22). In the modified approach, we find the value of T∞ by searching 

in the positive r-direction from the arc axis until the following relation is satisfied. 

01.0
1


 

j

jj

T

TT
     (j=1, 2, 3… n)             (5.1) 

where Tj-1 is the temperature at radial position of rj-1 (the radial grid j-1) and Tj the 

temperature at radial position of rj (the radial grid j). This means that the relative 

difference for the temperature of the adjacent two radial grids should not exceed 1%, 

i.e. the radial temperature gradient is negligible. The value of T∞ is then the value of 

Tj and “∞” the radial position of rj, which is actually the thermal boundary of the arc. 

When calculating the thermal area of the arc, the integration is done from the nozzle 

axis to the thermal boundary of the arc, which is reasonable. However, it should be 

noted that, for arcs at high currents, the radial temperature profile has a very flat high 

temperature arc core. This means that the criterion given by Equation (5.1) may be 

satisfied well within the arc core, which is not expected. We, therefore, arbitrarily 

start searching when the temperature is below 500 K, since the temperature at the 

thermal boundary of the arc (typically around 300 K) is always below this value.  

By using this modified approach, the turbulence parameter c is readjusted to 

0.057 for the nozzle of Figure 4.1 to achieve agreement with relevant experimental 

results for P0 = 21.4 atm and di/dt= 25 Aμs
−1

. The same value of c will be used for all 

the other discharge conditions (with different values of P0 and di/dt).  

Turbulence parameters for the standard k-epsilon model, the Chen-Kim model 

and the RNG model are kept as their default values (given in Section 3.5 of Chapter 

3). 

Based on the computational results obtained, we can predict the behaviour of the 

nozzle arc before current zero and, subsequently, the thermal interruption capability 

of the nozzle arc. A detailed analysis of the physical mechanisms encompassed in 

each model is given below to show the adequacy of a particular model in describing 

the rapidly varying arc during current zero period. 
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5.2.1 Arc Behaviour before Current Zero 

Immediately after the current is ramped down from the 1 kA plateau, the arc and its 

surrounding flow maintains quasi-steady state. When the current is further ramped 

down towards current zero, the effects of thermal and momentum inertia become 

significant. Temperature and velocity fields cannot adjust quickly to those 

corresponding to the DC arc at the same current. The arc is, therefore, no longer in 

quasi-steady state. The period from the instant when the arc deviates from 

quasi-steady state is commonly known as the start of the current zero period 

(hereafter referred to as the current zero period). From this instant onwards, the arc 

depends on the rate of current decay and the state of the arc at current zero is 

determined by the accumulated effects of arcing from the start of current zero period 

to current zero. A comparative study of different flow models will be conducted and 

the physical mechanisms responsible for the differences in the predicted results 

between various flow models will be given. The qualitative features of the arc 

behaviour during current zero predicted by the five flow models are similar for 

different P0 and di/dt. The predicted results at P0=21.4 atm and di/dt=13Aμs
-1

 will, 

therefore, be used to illustrate the typical arc behaviour and the differences between 

flow models. 

5.2.1.1 Overall Features 

For the transient arc with the current ramped down from the 1 kA plateau towards 

zero, the general features of the arc and the surrounding gas flow inside the nozzle 

and the variation of these features with current is very similar to those of the DC arcs 

investigated in Chapter 4, e.g. the flow features in front of the upstream electrode and 

those in front of the downstream electrode. In front of the upstream electrode, the 

wake does not exist at high currents, which reappears shortly before current zero 

(similar to that shown in Figure 4.19). Near the downstream electrode, the variation 

of the flow feature with the current ramp is consistent with that discussed in Section 

4.3.2.1 of Chapter 4, i.e. at currents above 600 A, the pressure distribution shows a 
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compression wave rather than a shock (similar to that shown in Figure 4.10), while 

for currents below 100 A, the bow shock reappears in front of the downstream 

electrode (similar to that shown in Figure 4.13). 

The variations of axis temperature, arc radius defined as the 4000 K isotherm 

and electrical field with axial position at different current levels on the ramp before 

current zero are respectively given in Figures 5.1, 5.2 and 5.3 for those obtained by 

the standard k-epsilon model and the Chen-Kim model. Results obtained by the 

Prandtl mixing length model, the RNG model and the laminar flow model are not 

given, since the qualitative features of the results obtained by the Prandtl mixing 

length model are the same as those for the standard k-epsilon model, and the results 

for the RNG model and the laminar flow model are similar to those for the 

Chen-Kim model.  

  (a) 

  (b) 

Figure 5.1. Variation of axis temperature with axial position at different current 

levels on the ramp computed by two flow models. P0=21.4 atm and di/dt=13 Aμs
−1

. 

(a) Standard k-epsilon model and (b) Chen-Kim k-epsilon model. 
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  (a) 

  (b) 

Figure 5.2. Variation of arc radius with axial position at different current levels on 

the ramp computed by two flow models. P0=21.4 atm and di/dt=13 Aμs
−1

. (a) 

Standard k-epsilon model and (b) Chen-Kim k-epsilon model. 
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  (a) 

  (b) 

Figure 5.3. Variation of electrical field with axial position at differemt current levels 

on the ramp computed by two flow models. P0=21.4 atm and di/dt=13 Aμs
−1

. (a) 

Standard k-epsilon model and (b) Chen-Kim k-epsilon model. 

 

When the current is large (600 A and above), the axis temperature (Figure 5.1) 

and arc radius (Figure 5.2) computed by the five flow models show little differences 

between each other, and thus the electrical field distributions computed by different 

flow models are similar (Figure 5.3). The spread in arc voltages computed by the five 

flow models are, therefore, less than 15% of the mean voltage of those predicted by 

the five flow models (Figure 5.4). In addition, for all the flow models, the axis 

temperature is not sensitive to the current (Figure 5.1), and the arc radius is roughly 

proportional to the square root of current (Figure 5.2). The arc voltage is, thus, 
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almost independent of the current (Figure 5.4). All these features are similar to those 

of DC arc V-I characteristics reported in Chapter 4. 

 

Figure 5.4. The voltage-current (V-I) characteristics for the nozzle arcs computed by 

five flow models corresponding to the current ramp. P0=21.4 atm and di/dt=13 Aμs
−1

. 

 

When the current is further ramped down towards current zero (below 600 A), 

the axis temperature is reduced with current decay due to reduced Ohmic input 

(Figure 5.1). The dependence of the arc radius on current is found to be stronger than 

that for currents above 600 A (Figure 5.2). The arc voltage, therefore, starts to rise 

with decreasing current (Figure 5.4). Furthermore, the overall features of the 

transient arc predicted by different flow models become quite different for currents 

below 600 A, which results in the arc voltage to be strongly dependent on the flow 

models before current zero (Figure 5.4). It has been found that the axis temperature 

and arc radius predicted by the standard k-epsilon model and/or the Prandtl mixing 

length model decrease rapidly shortly before current zero when the current is below 

50 A (i.e. in the last 4 μs before current zero), especially in the region downstream of 

the nozzle throat (Figures 5.1(a) and 5.2(a)). This is responsible for a rapid increase 

of electrical field (Figure 5.3(a)), and thus a high voltage extinction peak shortly 

before current zero (Figure 5.4). For the Chen-Kim model, the RNG model and the 

laminar flow model, the axis temperature and the arc radius show a monotonic 

decrease when the current is ramped down towards zero (Figures 5.1(b) and 5.2(b)), 

and the rates of decrease of the axis temperature and arc radius are much lower than 
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those predicted by the Prandtl mixing length model and the standard k-epsilon model. 

The electrical field distribution predicted by these three models decreases rapidly at 

the last 4 μs before current zero (Figure 5.3(b)). As a result, the arc voltages 

predicted by the Chen-Kim model, the RNG model and the laminar flow model show 

no extinction peak before current zero (Figure 5.4). 

The axis temperature (Figure 5.1) and arc radius (Figure 5.2) shortly before 

current zero computed by different flow models all indicate that there is a local high 

temperature region in front of the hollow downstream electrode with broadened arc 

size. This is due to the presence of the bow shock which results in the stagnant nature 

of the local flow field. However, when applying the Prandtl mixing length model and 

the standard k-epsilon model, it is found that the axis temperature and arc radius are 

both reduced immediately in front of the downstream electrode (Figure 5.1(a) and 

5.2(a)), which results in a sudden increase of electrical field in this region as shown 

in Figure 5.3(a). Careful examination of the results shows that the deceleration of the 

flow into the shock and the resulting flow reversal predicted by these two models 

(axial velocity similar to that shown in Figure 4.16, and, flow pattern similar to that 

shown in Figure 4.17, in Section 4.3.2.1 of Chapter 4) gives rise to large values of 

the local velocity gradients (i.e. dw/dz and dw/dr) right in front of the downstream 

electrode, which has the effects of increasing the eddy viscosity (μt) and thus the 

turbulence level. The resulting strong turbulence cooling effect is responsible for the 

low temperature and small arc radius in front of the downstream electrode. For the 

Chen-Kim model and the RNG model as well as the laminar flow model, the results 

indicate that the flow in front of the downstream electrode decelerates into the shock 

but its direction is not reversed (axial velocity similar to that shown in Figure 4.16, 

and, flow pattern similar to that shown in Figure 4.18, in Section 4.3.2.1 of Chapter 

4). The temperature rise in front of the downstream electrode is due to deceleration 

of the gas flow. Reduction of axis temperature and arc radius right in front of the 

downstream electrode does not happen when applying these three models (Figures 

5.1(b) and 5.2(b)). No experimental results are available to judge the accuracy of 

different flow models in predicting the flow behaviour near the two electrodes. 
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Nevertheless, as previously discussed in Chapter 4, the influence of the two electrode 

regions on the electrical behaviour of the arc, and thus the thermal interruption 

capability of the nozzle interrupter, is negligible. Since the present investigation 

concerns the thermal interruption of the nozzle arc, we only consider the accuracy of 

the five flow models in predicting the behaviour of the arc and the flow in the nozzle 

excluding the two electrode regions. 

The large differences in the overall features of the transient arc predicted by 

different flow model, and the resulting differences in the V-I characteristics, indicate 

that the energy transport processes predicted by these models are very different. The 

physical processes responsible for these features and the differences in predicted arc 

voltages between various flow models are discussed in the following subsections. 

5.2.1.2 The Behaviour of the Arc in Quasi-Steady State 

The features of the computational results for the flat part of the V-I characteristics 

given by various flow models (Figure 5.4) are very similar to those of the 

corresponding DC arcs with radiation dominated high temperature core reported in 

Section 4.3.2.3 of Chapter 4. These features are, therefore, not repeated.  

For all flow models applied, the energy balance calculation is conducted for the 

whole arc length and at both the arc core boundary (defined as the radial position 

corresponding to a temperature of 83.3% of the axis temperature) and the electrical 

boundary (defined by the radial position corresponding to a temperature of 4000 K) 

of the arc at 600 A (Tables 5.1 and 5.2). Results show that at high currents radiation 

is the dominant energy transport mechanism within the arc core (Table 5.1), which 

results in a rather flat radial temperature profile inside the core (Figure 5.5). Radial 

thermal conduction (nearly all due to turbulent heat conduction when a turbulence 

model is applied) is found to be significant at the electrical boundary (Table 5.2) 

which results in the radial temperature profile between the arc core boundary and the 

electrical boundary to be sensitive to flow models (Figure 5.5). Nevertheless, 

turbulence has little influence on the arc voltage since more than 80% of the current 

is conducted within the arc core where radiation is dominant. 
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Table 5.1. Electrical power input together with various energy transport processes for 

the whole arc length at the core boundary calculated by five turbulence models at 

600 A instant. P0=21.4 atm and di/dt=13 Aμs
−1

. The power associated with the 

pressure work is not shown as it only accounts for 5 to 7% of the power input. This 

applies to all tables. Positive means power input and negative power loss. 

Model Power 

input 

(W) 

Radiation 

loss 

(W) 

Radial 

thermal 

conduction 

(W) 

Axial 

enthalpy 

convection 

(W) 

Radial 

enthalpy 

convection 

(W) 

Rate of 

change of 

energy 

storage 

(W) 

(1) 1.49×10
5
 -1.04×10

5
 -6.62×10

3
 -2.39×10

4
 -1.13×10

4
 -9.06×10

3
 

(2) 1.60×10
5
 -9.07×10

4
 -6.00×10

4
 -9.33×10

2
 -6.79×10

3
 -6.85×10

3
 

(3) 1.61×10
5
 -9.98×10

4
 -4.13×10

4
 -1.04×10

4
 -8.23×10

3
 -8.12×10

3
 

(4) 1.59×10
5
 -1.08×10

5
 -1.21×10

4
 -2.65×10

4
 -9.69×10

3
 -8.63×10

3
 

(5) 1.57×10
5
 -1.07×10

5
 -1.04×10

4
 -2.69×10

4
 -9.66×10

3
 -8.65×10

3
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where R refers to the radial position of the core boundary or electrical boundary and 

(Z2-Z1) the arc length. 

Key to the models: (1) Laminar flow model, (2) Prandtl mixing length model, (3) 

Standard k-epsilon model, (4) Chen-Kim k-epsilon model and (5) RNG k-epsilon 

model. 
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Table 5.2. Percentage of electrical power input associated with various energy 

transport processes for the whole arc length at the electrical boundary calculated by 

five turbulence models at 600 A instant. P0=21.4 atm and di/dt=13 Aμs
−1

. 

Mathematical expressions for power input and power loss and the key to the models 

are the same as those in Table 5.1. 

Model Power 

input 

(10
5
 W) 

Radiation 

loss 

(W) 

Radial 

thermal 

conduction 

(W) 

Axial 

enthalpy 

conduction 

(W) 

Radial 

enthalpy 

convection 

(W) 

Rate of 

change of 

energy 

storage 

(W) 

(1) 1.84×10
5
 -5.82×10

4
 -1.85×10

3
 -1.80×10

5
 4.46×10

4
 -2.75×10

4
 

(2) 2.34×10
5
 -3.50×10

4
 -1.51×10

5
 -8.33×10

4
 2.47×10

4
 -2.46×10

4
 

(3) 2.11×10
5
 -4.89×10

4
 -9.71×10

4
 -1.11×10

5
 3.24×10

4
 -2.77×10

4
 

(4) 1.96×10
5
 -6.11×10

4
 -2.87×10

4
 -1.51×10

5
 3.24×10

4
 -2.78×10

4
 

(5) 1.94×10
5
 -6.07×10

4
 -2.49×10

4
 -1.55×10

5
 3.38×10

4
 -2.86×10

4
 

 

  (a) 

  (b) 

Figure 5.5. Radial temperature profiles at two axial positions computed by five flow 

models at at three instants before current zero (600 A, 200 A and current zero). 

P0=21.4 atm and di/dt=13 Aμs
−1

. (a) Z=2.3 mm and (b) Z= 7.9mm. 
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It is found that, for all the flow models applied, at the core boundary, the rate of 

change of energy storage accounts for less than 7% of the Ohmic input (Table 5.1). 

Since the high temperature core is mainly responsible in conducting the current, the 

arc at the current of 600 A and above can be considered in quasi-steady state 

although, at the electrical boundary, the rate of energy storage accounts for more than 

10% of the Ohmic input (Table 5.2). 

5.2.1.3 The Behaviour of the Arc in Current Zero Period 

When the current is below 600 A, the arc voltage start to rise with the current decay 

and gradually becomes strongly dependent on the flow models (Figure 5.4). The 

energy balance calculation at the arc core boundary and electrical boundary at 200 A 

(Tables 5.3 and 5.4) indicates that the rate of change of energy storage cannot be 

neglected in comparison with the Ohmic input and the other energy transport 

mechanisms, which means the arc deviates from quasi-steady state. Thus, from the 

instant of 200 A, the arc starts to deviate from quasi-steady state, after which the arc 

is commonly known to be in current zero period. During current zero period, the arc 

depends on the rate of current decay, and the state of arc at current zero is determined 

by the accumulated effects of arcing from the start of current zero period to current 

zero. It should be noted that the definition of current zero period is not precise. 
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Table 5.3. Electrical power input together with various energy transport processes for 

the whole arc length at the core boundary calculated by five flow models at 200 A 

instant. P0=21.4 atm and di/dt=13 Aμs
−1

. Mathematical expressions for power input 

and power loss and the key to the models are the same as those in Table 5.1. 

Model Power 

input 

(W) 

Radiation 

loss (W) 

Radial 

thermal 

conduction 

(W) 

Axial 

enthalpy 

convection 

Radial 

enthalpy 

convection 

Rate of 

change of 

energy 

storage 

(W) 

(1) 6.47×10
4
 -4.81×10

4
 -6.00×10

3
 -1.00×10

4
 -2.05×10

3
  -7.21×10

3
 

(2) 7.31×10
4
 -4.38×10

4
 -2.88×10

4
 -1.04×10

3
 -9.39×10

2
 -4.22×10

3
 

(3) 7.27×10
4
 -4.58×10

4
 -2.53×10

4
 -2.54×10

3
 -1.21×10

3
 -5.48×10

3
 

(4) 6.71×10
4
 -4.86×10

4
 -9.16×10

3
 -8.88×10

3
 -2.49×10

3
 -6.87×10

3
 

(5) 6.59×10
4
 -4.78×10

4
 -8.19×10

3
 -9.31×10

3
 -2.61×10

3
 -7.09×10

3
 

 

Table 5.4. Electrical power input together with various energy transport processes for 

the whole arc length at the electrical boundary calculated by five flow models at 200 

A instant. P0=21.4 atm and di/dt=13 Aμs
−1

. Mathematical expressions for power 

input and power loss and the key to the models are the same as those in Table 5.1. 

Model Power 

input 

(W) 

Radiation 

loss (W) 

Radial 

thermal 

conduction 

(W) 

Axial 

enthalpy 

convection 

Radial 

enthalpy 

convection 

Energy 

storage 

(W) 

(1) 7.30×10
4
 -3.85×10

4
 -9.21×10

2
 -6.35×10

4
 1.33×10

4
 -2.44×10

4
 

(2) 9.82×10
4
 -2.64×10

4
 -6.85×10

4
 -1.82×10

4
 2.98×10

3
 -1.77×10

4
 

(3) 8.97×10
4
 -3.16×10

4
 -5.37×10

4
 -2.08×10

4
 1.11×10

3
 -2.09×10

4
 

(4) 7.54×10
4
 -3.90×10

4
 -1.49×10

4
 -3.92×10

4
 2.33×10

3
 -2.20×10

4
 

(5) 7.38×10
4
 -3.85×10

4
 -1.25×10

4
 -4.12×10

4
 3.05×10

3
 -2.22×10

4
 

 

For the arc in current zero period, turbulence enhanced thermal conduction 

gradually becomes the most dominant energy loss mechanism. This has been 

confirmed by detailed energy balance calculations. Energy balance at the arc core 

boundary at 200 A (Table 5.3) indicates that for the Prandtl mixing length model and 

the standard k-epsilon model the predicted radial thermal conduction becomes 

appreciable although radiation loss is still the most important energy loss mechanism. 

The radial temperature profiles computed by these two models are, therefore, no 

longer flat in the arc core, which have considerable radial temperature gradient 

(Figure 5.5). For the Chen-Kim model and the RNG model as well as the laminar 
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flow model, radiation loss is till the dominant energy loss mechanism while radial 

thermal conduction has little influence (Table 5.3), for which the corresponding 

radial temperature profiles still have a flat arc core (Figure 5.5). Energy balance at 

the electrical boundary at 200 A (Table 5.4) reveals that for the Prandtl mixing length 

model and the standard k-epsilon model radial thermal conduction is the dominant 

energy loss mechanism, while for the laminar flow model, the Chen-Kim and the 

RNG models radiation loss is still the most important. 

The reason for such a difference in dominant energy loss mechanisms between 

different flow models is due to the intensity of turbulence, which is determined by 

the eddy viscosity (μt). Radial profiles of μt at two axial positions (Z=2.3 mm, the 

middle of the nozzle throat, and, Z=7.9 mm downstream of the nozzle throat in the 

diverging section of the nozzle) are given in Figure 5.6 which indicates that μt 

predicted by the Prandtl mixing length model and the standard k-epsilon model being 

significantly higher than that predicted by the Chen-Kim model and the RNG model. 

It is also noted that μt computed by the standard k-epsilon model is nearly 

comparable to that obtained by the Prandtl mixing length model at 200 A inside the 

electrical boundary. This is different from the case at high currents (600 A and above) 

when the Prandtl mixing length model predicts the largest value of μt in comparison 

with all the other models (Figure 5.7), which means the rate of rise of μt computed by 

the standard k-epsilon model is larger than that computed by the Prandtl mixing 

model. The arc voltage predicted by the standard k-epsilon model, therefore, 

becomes the highest shortly before current zero in comparison with the other flow 

models, although it is lower than that predicted by the Prandtl mixing length model at 

early instants when the current is high (Figure 5.4). 
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  (a) 

  (b) 

Figure 5.6. Radial profiles of the eddy viscosity at two axial positions computed by 

four flow models at 200 A instant. P0=21.4 atm and di/dt=13 Aμs
−1

. (a) Z=2.3 mm 

and (b) Z= 7.9mm. 
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  (a) 

  (b) 

Figure 5.7. Radial profiles of the eddy viscosity at two axial positions computed by 

four flow models at 600 A instant. P0=21.4 atm and di/dt=13 Aμs
−1

. (a) Z=2.3 mm 

and (b) Z= 7.9mm. 

 

The reason for a fast rate of rise of eddy viscosity predicted by the standard 

k-epsilon model than that computed by the Prandtl mixing length model is attributed 

to the differences in definitions of the length scale (λc) and velocity scale (Vc) of 

turbulence for these two models. This results in different trends in the variations of 

both λc and Vc with the current decay predicted by the Prandtl mixing length model 

and the standard k-epsilon model, which is discussed in Section 5.2.1.4. 
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5.2.1.4 Comparative Studies of Different Flow Models 

A. The Prandtl Mixing Length Model 

For the Prandtl mixing length model, the turbulence length scale (λc) is defined with 

the adoption of the thermal radius of the arc (Equation (3.21)), which is a constant 

for a given axial position. As the arc size shrinks with the current decay, λc is also 

reduced (Figure 5.8). The turbulence velocity scale (Vc), on the other hand, is related 

to the local velocity gradients as well as the turbulence length scale (Equation (3.24)). 

Due to reduction of λc, Vc inside the arc core does not appear to increase rapidly 

when the current is ramped down (Figure 5.9), although the radial gradient of axial 

velocity ( rw  ) may increasing with current decay due to contraction of the arc size. 

When the current is below 100 A, the velocity scale also starts to reduce with 

decreasing current (Figure 5.9). The maximum turbulence velocity scale for a given 

current corresponds to the inflexion point of the radial velocity profile. The results 

(Figures 5.8 and 5.9) also indicate that the turbulence level is increased towards the 

downstream electrode.  

 

 
Figure 5.8. Variation of turbulence length scale with current decay computed by the 

Prandtl mixing length model for two axial positions. P0=21.4 atm and di/dt=13 

Aμs
−1

. 
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  (a) 

  (b) 

Figure 5.9. Variation of turbulence velocity scale with radial position at different 

current levels on the ramp computed by the Prandtl mixing length model for two 

axial positions. P0=21.4 atm and di/dt=13 Aμs
−1

. (a) Z=2.3mm and (b) Z=7.9mm. 

 

B. The Standard K-Epsilon Model 

For the standard k-epsilon model, the turbulence length scale (λc) is related to the 

turbulence kinetic energy (k) and dissipation rate (ε) through the relation given by 

Equation (3.32). The variations of k and ε with the change of current are shown in 

Figures 5.10 and 5.11 for the axial positions of Z=2.3 mm and 7.9 mm, respectively. 

It is found that when the current is above 100 A, the values of k and ε in the arc core 

increase due to the transport of turbulent energy and dissipation rate (mainly by the 

diffusion process and/or radial inflow of the gas) from large value region towards the 

arc core. The relation between λc and the current (Figure 5.12) are more complicated 

as compared with that predicted by the Prandtl mixing length model (Figure 5.8). 



Chapter 5 The Modelling of a Turbulent SF6 arc in a Supersonic Nozzle: Part II. Current Zero 

Behaviour of the Nozzle Arc 

148 

The values of λc are, however, smaller than those computed by the Prandtl mixing 

length model (comparing results given by Figures 5.12 and 5.8). Nevertheless, 

turbulence velocity scale (Vc), which is defined as the square root of k by Equation 

(3.33), is significantly increased inside the arc core when the current is ramped down 

(Figure 5.13) as the values of k inside the arc core increases with decreasing current 

(Figure 5.10). Vc, therefore, becomes larger than that predicted by the Prandtl mixing 

length model for currents below 300 A, while at high currents (600 A and above), the 

values of Vc predicted by both models are comparable to each other. This explains a 

faster rate of rise of μt computed by the standard k-epsilon model when the current is 

ramped down (Figure 5.14), for which μt becomes comparable to that computed by 

the Prandtl mixing length model at 200 A instant (Figure 5.6) although it is smaller 

than μt computed by the Prandtl mixing length model at 600 A instant and above 

(Figure 5.7). The turbulence level predicted by the standard k-epsilon model is thus 

increased rapidly, which will result in a reduction of the local velocity gradients, and 

subsequently the rate of generation of turbulence kinetic energy Pk (Equation (3.31)) 

shortly before current zero. The values of both k and ε, therefore, start to decrease 

when the current is below 100 A (Figures 5.10 and 5.11). However, this does not 

result in a reduction of λc shortly before current zero (Figure 5.12), while λc predicted 

by the Prandtl mixing length model is always reducing with current (Figure 5.8). In 

addition, Vc is still much higher than that computed by the Prandtl mixing length 

model although k is decreased. Therefore, μt computed by the standard k-epsilon 

model becomes higher than that computed by the Prandtl mixing length model 

shortly before current zero and at current zero (Figures 5.14 and 5.15). Energy 

balance calculation at current zero reveals that turbulence enhanced radial thermal 

conduction computed by the standard k-epsilon model becomes stronger than that 

computed by the Prandl mixing length model at the arc core boundary (Table 5.5). At 

the electrical boundary, the values of radial thermal conduction computed by these 

two models are nearly the same (Table 5.6). At higher instantaneous currents the 

radial thermal conduction computed by the standard k-epsilon model is weaker than 

that computed by the Prandtl mixing length model at both the arc core boundary 
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(Tables 5.1 and 5.3) and the electrical boundary (Tables 5.2 and 5.4). The higher 

turbulence level predicted by the standard k-epsilon model shortly before current 

zero gives rise to the lowest axis temperature and the smallest arc radius at current 

zero in comparison with those obtained by all the other flow models (Figure 5.16). 

 

  (a) 

  (b) 

Figure 5.10. Variation of turbulence kinetic energy (k) with radial positions at 

different current levels on the ramp computed by the standard k-epsilon model for 

two axial positions. P0=21.4 atm and di/dt=13 Aμs
−1

. (a) Z=2.3 mm and (b) Z=7.9 

mm. 
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  (a) 

  (b) 

Figure 5.11. Variation of turbulence dissipation rate (ε) with radial positions at 

different current levels on the ramp computed by the standard k-epsilon model for 

two axial positions. P0=21.4 atm and di/dt=13 Aμs
−1

. (a) Z=2.3 mm and (b) Z=7.9 

mm. 
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  (a) 

  (b) 

Figure 5.12. Variation of turbulence length scale with current decay computed by the 

standard k-epsilon model. P0=21.4 atm and di/dt=13 Aμs
−1

. (a) Z=2.3 mm and (b) 

Z=7.9 mm. 
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  (a) 

  (b) 

Figure 5.13. Variation of turbulence velocity scale with radial positions at different 

current levels on the ramp computed by the standard k-epsilon model for two axial 

positions. P0=21.4 atm and di/dt=13 Aμs
−1

. (a) Z=2.3 mm and (b) Z=7.9 mm. 
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  (a) 

  (b) 

Figure 5.14. Variation of eddy viscosity on the nozzle axis computed by different 

turbulence models when current decays to zero for two axial positions. P0=21.4 atm 

and di/dt=13 Aμs
−1

. (a) Z=2.3 mm and (b) Z= 7.9mm. For Prandtl mixing model the 

value of eddy viscosity one grid off axis (r=0.015 mm) is taken as the axis value. 
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  (a) 

  (b) 

Figure 5.15. Radial profiles of the eddy viscosity at two axial positions computed by 

four flow models at current zero. P0=21.4 atm and di/dt=13 Aμs
−1

. (a) Z=2.3 mm and 

(b) Z= 7.9mm. 
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  (a) 

  (b) 

Figure 5.16. Variations of axis temperature and arc radius with axial position 

computed by five flow models at current zero. P0=21.4 atm and di/dt=13Aμs
−1

. (a) 

Axis temperature and (b) arc radius. 

 

Table 5.5. Electrical power input together with various energy transport processes for 

the whole arc length at the core boundary calculated by five flow models at current 

zero. P0=21.4 atm and di/dt=13 Aμs
−1

. Mathematical expressions for power input and 

power loss and the key to the models are the same as those in Table 5.1. 

Model Power 

input 

(W) 

Radiation 

loss 

(W) 

Radial 

thermal 

conduction 

(W) 

Axial 

enthalpy 

convection 

(W) 

Radial 

enthalpy 

convection 

(W) 

Rate of 

change of 

Energy 

storage 

(W) 

(1) 0.0 -1.08×10
3
 -1.09×10

3
 -9.49×10

2
 -8.66×10

2
 -4.76×10

3
 

(2) 0.0 -1.96×10
2
 -2.44×10

3
 -1.13×10

2
 -5.90×10

2
 -3.41×10

3
 

(3) 0.0 -4.22×10
2
 -3.30×10

3
 -2.10×10

2
 -1.04×10

3
 -5.19×10

3
 

(4) 0.0 -9.43×10
2
 -2.05×10

3
 -5.54×10

1
 -8.99×10

2
 -4.33×10

3
 

(5) 0.0 -1.03×10
3
 -1.76×10

3
 -1.93×10

2
 -8.91×10

2
 -4.35×10

3
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Table 5.6. Electrical power input together with various energy transport processes for 

the whole arc length at the electrical boundary calculated by five flow models at 

current zero. P0=21.4 atm and di/dt=13 Aμs
−1

. Mathematical expressions for power 

input and power loss and the key to the models are the same as those in Table 5.1. 

Model Power 

input 

(W) 

Radiation 

loss 

(W) 

Radial 

thermal 

conduction 

(W) 

Axial 

enthalpy 

convection 

(W) 

Radial 

enthalpy 

convection 

(W) 

Rate of 

change of 

energy 

storage 

(W) 

(1) 0.0 -1.03×10
3
 -3.65×10

2
 -7.71×10

3
 -5.39×10

3
 -1.57×10

4
 

(2) 0.0 -1.79×10
2
 -5.66×10

3
 -6.23×10

2
 -4.11×10

3
 -1.08×10

4
 

(3) 0.0 -3.52×10
2
 -5.43×10

3
 -4.30×10

2
 -4.99×10

3
 -1.16×10

4
 

(4) 0.0 -8.71×10
2
 -3.47×10

3
 -3.16×10

3
 -6.24×10

3
 -1.44×10

4
 

(5) 0.0 -9.51×10
2
 -2.94×10

3
 -3.87×10

3
 -6.11×10

3
 -1.47×10

4
 

 

C. The Chen-Kim Model and the RNG Model 

Variations of length scale (λc) and velocity scale (Vc) of turbulence with the change of 

current predicted by the Chen-Kim model and the RNG model are similar to those 

defined by the standard k-epsilon model. However, modifications to the dissipation 

rate equation of the standard k-epsilon model by these two models are intended to 

reduce turbulence (as indicated in Chapter 4), which results in reduced turbulence 

kinetic energy (k) and dissipation rate (ε) in comparison with those of the standard 

k-epsilon model. The predicted λc and Vc, and thus the eddy viscosity (μt), have the 

lowest values (Figures 5.6, 5.7, 5.14 and 5.15). The turbulence level, and thus the 

turbulence enhanced radial thermal conduction, predicted by the Chen-Kim model 

and the RNG model, are, therefore, the lowest (Tables 5.1 to 5.6), which results in 

the higher axis temperature and the larger arc radius at current zero (Figure 5.16) 

obtained by these two models as compared with those computed by the other two 

turbulence models. The arc voltage predicted by these two models is, therefore, lower, 

which does not appear to have extinction peak, neither (Figure 5.4). 
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5.2.1.5 The Dominant Energy Loss Mechanisms and the Characteristic Time for 

Arc Conductance Variation 

A. The Dominant Energy Transport Mechanism 

When the current is ramped down towards zero from the plateau of 1kA DC, the arc 

passes through the quasi-steady phase (current not less than 600A) during which 

Ohmic input is mainly taken out by radiation transport and the arc voltage predicted 

by the five flow models is within 15% of the average voltage of those voltages 

computed by the five flow models. As the axis temperature is much higher than 

12,000K below which radiation transport is negligible, a radiation transport 

dominated core can be identified (Table 5.1 and Figure 5.5). Since more than 80% of 

the current (hence arc voltage is determined by the core) is carried by this core, it can 

be ascertained that radiation is the most important energy loss mechanism during 

quasi-steady phase for all flow models employed in current investigation. 

When current is further reduced towards zero, the arc cannot maintain its 

quasi-steady state although the axis temperature is much higher than 12,000K (e.g. at 

200A, Figure 5.5). For the Prandtl mixing length model and the standard k-epsilon 

model at the core boundary radiation and turbulence enhanced thermal conduction 

are the dominant energy removal processes while for the other three models radiation 

is still the dominant energy transport process (Table 5.3). Much radiation is absorbed 

in the region between the core boundary and the electrical conducting boundary, thus 

reducing the amount of energy taken out by radiation. For the laminar flow model, 

the Chen-Kim model and the RNG model, at the electrical boundary radiation, axial 

and radial convection are all important while for the Prandtl mixing length model and 

the standard k-epsilon model energy inside the electrical conducting core is mainly 

taken out by radiation and turbulence enhanced thermal conduction (Table 5.4). 

The axis temperature of all the five flow models decreases at a very rapid rate a 

few microseconds before current zero. At current zero (Figure 5.16(a)), the very low 

axis temperature renders radiation loss negligible. The electrical behavior of the arc 

is determined by the energy balance at the electrical conducting boundary (Table 5.6) 
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which indicates that turbulence enhanced thermal conduction and radial convection 

cooling associated with the radial mass inflow are the dominant cooling mechanisms 

for the Prandtl mixing length model and the standard k-epsilon model. For the other 

three flow models, turbulence enhanced thermal conduction, radial and axial 

convection cooling control the thermal state of the arc. 

 

B. Characteristic Time for Arc Conductance Variation just before Current Zero 

The interruption of a fault current by a circuit breaker in an electrical network may 

affect the network operation due to the rapid rise of arc resistance a few 

microseconds around a current zero. In addition, electrical engineers often use a 

black box arc model (e.g. Cassie’s model [5.2] and Mayr’s model [5.3]) to describe 

the dynamic behaviour of arc conductance for power network simulation of 

switching phenomena. Such black box of arc model requires information on the 

characteristic time of arc conductance variation. The characteristic time for arc 

conductance variation ( G ) is computed for the five flow models using dtdGG  

at the instants 2.0 μs, 1.5 μs, 1.0 μs, 0.5 μs and 0.05 μs before current zero. These 

results are tabulated below for the five models (Table 5.7). The computational results 

show that the characteristic time changes with time. Thus, the assumption of constant 

characteristic (e.g. assuming G  to be a constant) of the black box arc models is 

questionable. The finding that the characteristic time for arc conductance varies with 

time, as indicated by computational results presented in this section, needs to be 

further verified by experiments. 
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Table 5.7. The arc conductance (G) and characteristic time for arc conductance 

variation ( G ) shortly before current zero computed by the five flow models. P0=21.4 

atm and di/dt=13 Aμs
−1

. 

Time instant 

before current zero 

(μs) 

Flow model Arc conductance 

before current zero 

G (10
-2

 S) 

characteristic time 

G  (μs) 

 

 

2.0 

(1) 8.50 2.70 

(2) 4.19 1.88 

(3) 4.34 1.79 

(4) 7.43 2.45 

(5) 7.87 2.60 

 

 

1.5 

(1) 6.93 2.19 

(2) 3.04 1.36 

(3) 3.12 1.28 

(4) 5.89 1.92 

(5) 6.30 1,98 

 

 

1.0 

(1) 5.33 1.69 

(2) 1.95 0.90 

(3) 1.95 0.86 

(4) 4.38 1.42 

(5) 4.76 1.53 

 

 

0.5 

(1) 3.78 1.31 

(2) 0.92 0.46 

(3) 0.87 0.42 

(4) 2.88 0.98 

(5) 3.24 1.11 

 

 

0.05 

(1) 2.51 0.97 

(2) 0.11 0.066 

(3) 0.058 0.042 

(4) 1.59 0.60 

(5) 1.97 0.78 

Key to the models: (1) Laminar flow model, (2) Prandtl mixing length model, (3) 

Standard k-epsilon model, (4) Chen-Kim k-epsilon model and (5) RNG k-epsilon 

model. 
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5.2.2 Arc Behaviour after Current Zero and RRRV 

A linearly increasing voltage at a given rate of rise (dV/dt) is used after current zero 

to investigate the thermal interruption capability of the nozzle configuration. The 

value of the rate of rise of recovery voltage (dV/dt), at which the arc will just be 

extinguished, is commonly known as the critical rate of rise of recovery voltage 

(RRRV). This will be found computationally using the five flow models. The 

qualitative features of the arc behaviour after current zero are similar when for 

different values of P0 and di/dt. Unless otherwise specified, results are for P0=21.4 

atm and di/dt=13 Aμs
−1

. 

Figure 5.17 shows typical results of post-arc current computed by the Prandtl 

mixing length model and the standard k-epsilon model at different values of dV/dt. 

Results obtained by the Chen-Kim model, the RNG model and the laminar flow 

model are given in Figure 5.18. The axis temperature and electrical field distributions 

at different instants after current zero are given in Figures 5.19, 5.20, 5.21 and 5.22 

respectively for the Prandtl mixing length model, the standard k-epsilon model, the 

Chen-Kim model and the laminar flow model. Results obtained by the RNG model 

are qualitatively very similar to those for the Chen-Kim model which are, therefore, 

not given here. 

 
Figure 5.17. Post-arc current computed by two flow models. P0=21.4 and di/dt=13 

Aμs
−1

. Key of the curves are:  

Prandtl mixing length model: (1) dV/dt=18 kVμs
−1

and (2) dV/dt=19 kVμs
−1

; 

Standard k-epsilon model: (3) dV/dt=80 kVμs
−1 

and (4) dV/dt=85 kVμs
−1

. 
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Figure 5.18. Post-arc current computed by three flow models. P0=21.4 and di/dt=13 

Aμs
−1

. Key of the curves are:  

Laminar flow model: (1) dV/dt=0.1 kVμs
−1

 and (2) dV/dt=0.13 kVμs
−1

; 

Chen-Kim k-epsilon model: (3) dV/dt=0.45 kVμs
−1

 and dV/dt=0.5 kVμs
−1

; 

RNG k-epsilon model: (5) dV/dt=0.3 kVμs
−1

 and dV/dt=0.35 kVμs
−1

. 

 

For the Prandtl mixing length model, when the arc is thermally extinguished, 

the arc temperature decays rapidly in 0.5 μs after current zero in the region of 

approximately 9 mm long downstream of the exit of the flat nozzle throat, i.e. from 

Z=5 mm to Z=14 mm (Figure 5.19(a)). It is this critical section of the arc that takes 

up most of the recovery voltage, where turbulent thermal conduction is mainly 

responsible for the rapid cooling of the arc. The electrical field of this critical section 

also increases rapidly with the temperature decay (Figure 5.19(b)). The standard 

k-epsilon model predicts a longer critical section than that predicted by the Prandtl 

mixing length model, which is from Z=2.5 mm to Z=14 mm (Figures 5.20(a) and 

5.20(b)). The axis temperature of this critical section also decays more rapidly, which 

falls below 4000 K within only 0.25 μs (Figure 5.20(a)). This is due to a higher level 

of turbulence predicted by the standard k-epsilon model shortly before current zero 

in comparison with that computed by the Prandtl mixing length model as previously 

discussed. The RRRV computed by the standard k-epsilon model (82.5 kVμs
−1

) is 

therefore significantly higher than that obtained by the Prandtl mixing length model 

(18.5 kVμs
−1

). 
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(a)                                (b) 

 

(c)                                (d) 

Figure 5.19. Variations of axis temperature and electrical field with axial position at 

various instants after current zero obtained by the Prandtl mixng length model. (a) 

Axis temperature distribution and (b) electrical field distribution for dV/dt = 18 

kVμs
−1

 (thermal clearance); (c) Axis temperature distribution and (d) electrical field 

distribution for dV/dt = 19 kVμs
−1

 (thermal reignition). 
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(a)                                 (b) 

 

(c)                                 (d) 

Figure 5.20. Variations of axis temperature and electrical field with axial position at 

various instants after current zero obtained by the standard k-epsilon model. (a) Axis 

temperature distribution and (b) electrical field distribution for dV/dt = 80 kVμs
−1

 

(thermal clearance); (c) Axis temperature distribution and (d) electrical field 

distribution for dV/dt = 85 kVμs
−1

 (thermal reignition). 

 

If dV/dt exceeds RRRV, temperature in the critical region still reduces 

immediately after current zero but this temperature decay is soon arrested as Ohmic 

input is pumped into a very thin core of the critical section, after which the axis 

temperature starts to increase. The rapid increase in axis temperature (Figures 5.19(c) 

and 5.20(c)) does not result in collapse of the voltage taken up by this section (as 

indicated by Figures 5.19(d) and 5.20(d) that electrical field is still going up) as the 

temperature away from the axis is still decreasing (thus arc radius is still reducing) 

due to thermal inertia. When the decay of temperature away from the axis has been 

arrested, the rate of rise of current is extremely rapid for a given dV/dt above RRRV 
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(Figure 5.17). Thus, the critical section is also responsible for thermal reignition 

when dV/dt is above RRRV. The duration before arc reignition is approximately 0.2 

μs for the Prandtl mixing length model (Figure 5.17). It is even shorter for the 

standard k-epsilon model (Figure 5.17). 

Chen-Kim and RNG models give similar results. The critical section of the arc 

is from Z= 8 mm to Z=14mm (Figures 5.21(a) and 5.21(b)), which is shorter than 

that predicted by the Prandtl mixing length model and the standard k-epsilon model. 

When the arc is thermally extinguished, the rate of temperature decay predicted by 

these two models appears to be quite slow (Figure 5.21(a)), for which the duration of 

thermal recovery and/or reignition is more than 5 times that predicted by the Prandtl 

mixing length model and 10 times that by the standard k-epsilon model. This is due 

to much weaker turbulence level predicted by the Chen-Kim and the RNG model as 

compared with the other two models. The values of computed RRRV obtained the 

Chen-Kim model (0.48 kVμs
−1

) and the RNG model (0.33 kVμs
−1

) are, therefore, of 

two orders of magnitude lower than those computed by the Prandtl mixing length 

model and the standard k-epsilon model. 
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(a)                                (b) 

 

(c)                                (d) 

Figure 5.21. Variations of axis temperature and electrical field with axial position at 

various instants after current zero obtained by Chen-Kim k-epsilon model. (a) Axis 

temperature distribution and (b) electrical field distribution for dV/dt = 0.45 kVμs
−1

 

(thermal clearance); (c) Axis temperature distribution and (d) electrical field 

distribution for dV/dt = 0.5 kVμs
−1

 (thermal reignition). 

 

The laminar flow model predicts that the axis temperature for the whole arc 

decays during thermal recovery but the rate of temperature decay is the slowest in 

comparison with those predicted by the other turbulence models (Figure 5.22(a)). 

The electrical field increases with time due to temperature decay and the contraction 

of arc size as a result of radial inflow (Figure 5.22(b)). The peak of the electrical field 

moves from the upstream region to the downstream region of the nozzle throat 

(Figure 5.22(b)), which is due to strong axial convection downstream of the nozzle 

throat that effectively cools the arc. For the reignited case, the axis temperature for 

the whole arc is increased substantially in 5 μs (Figure 5.22(c)). The electrical field 
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increases monotonically with time (caused by arc contraction) after current zero. The 

maximum electrical field occurs at the nozzle throat (Z = 0) within 2 μs after current 

zero (figure 5.22(d)), which is expected to move to the upstream region of the nozzle 

throat at later times (e.g. 10 μs). 

 

(a)                                (b) 

 

(c)                                (d) 

Figure 5.22. Variations of axis temperature and electrical field with axial position at 

various instants after current zero obtained by the laminar flow model. (a) Axis 

temperature distribution and (b) electrical field distribution for dV/dt = 0.1 kVμs
−1

 

(thermal clearance); (c) Axis temperature distribution and (d) electrical field 

distribution for dV/dt = 0.13 kVμs
−1

 (thermal reignition). 

 

5.3 Comparison with Experiments 

The computed RRRV as a function of P0 at di/dt=13 and 25 Aμs
-1

 are plotted in 

Figure 5.23 together with the experimental results given in [5.1] for comparison. The 

dependence of RRRV on P0 at a given di/dt computed by the five flow models are 
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listed in Table 5.8. 

 

 

Figure 5.23. Comparison of measured RRRV and predicted RRRV computed by five 

flow models. 

 

Table 5.8. The dependence of RRRV on P0 at a given di/dt computed by five flow 

models. 

 di/dt=13 A/μs di/dt=25 A/μs 

 Predictions Experiments Predictions Experiments 

Laminar flow 

model 
6.0

0PRRRV   
 

 

 

6.2
0PRRRV   

58.0
0PRRRV   

 

 

 

93.1
0PRRRV   

Prandtl mixing 

length model 
73.1

0PRRRV   69.1
0PRRRV   

Standard 

k-epsilon model 
5.2

0PRRRV   26.2
0PRRRV   

Chen-Kim 

k-epsilon model 
2.1

0PRRRV   93.0
0PRRRV   

RNG k-epsilon 

model 
15.1

0PRRRV   66.0
0PRRRV   
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The RRRV predicted by the Prandtl mixing length model with optimised value 

of turbulence parameter shows excellent agreement with experiments at di/dt=25 

Aμs
-1

. The model gives similar dependence of RRRV on P0 at di/dt=13 Aμs
-1

 to that 

for di/dt= 25 Aμs
-1

 while experimental results indicate a much stronger pressure 

dependence at lower di/dt (Table 5.8). In theory, the dependence of RRRV on P0 

should not be sensitive to di/dt. If the dependence of RRRV on stagnation pressure is 

related to di/dt, this will result in the intersection of lines in Figure 5.23. Such 

intersection implies that at certain pressure range RRRV for a lower di/dt will be 

smaller than that for a higher di/dt. This is not physical. It is well-known that the 

value of RRRV has a large short to short variation. The scatter of the experimental 

results is not mentioned in [5.1]. Taking into account of experimental uncertainties, 

we feel that the predicted RRRV by the Prandtl mixing length model at 13 Aμs
-1

 and 

21.4 atm is acceptable.  

The standard k-epsilon model grossly over-predicts the values of RRRV, which 

also show much stronger dependence on P0 at both values of di/dt (13 and 25 Aμs
−1

) 

in comparison with the dependence predicted by the Prandtl mixing length model. 

The laminar flow model gives the lowest values of computed RRRV among all 

the five flow models, which is also significantly lower than corresponding 

measurements for the range of P0 and di/dt considered in the present investigation. 

For both values of di/dt (13 and 25 Aμs
−1

), the computed RRRV is approximately 

proportional to square root of P0, which is consistent with the investigation of [5.4]. 

The Chen-Kim model and the RNG model give similar predictions of RRRV, 

both of which grossly under-estimate RRRV for all cases under investigation. 

Compared with experiments, the RRRV computed by the Chen-Kim model and the 

RNG model also shows much weaker dependence on P0 at di/dt =13 and 25 Aμs
−1

, 

which is only slightly stronger than the dependence predicted by the theory based on 

laminar flow as indicated in the present investigation and in [5.4]. 

It is noted that the experimentally measured RRRV, together with the computed 

RRRV obtained by the Prandtl mixing length model which gives the best prediction 

of measured values, shows that the RRRV is proportional to the square of stagnation 
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pressure. This is much stronger than the pressure dependence of arc voltage for the 

DC arcs investigated in Chapter 4, and the arcs under quasi-steady sate discussed 

earlier in this chapter, which is proportional to the square root of stagnation pressure. 

Up to now, there appears to be no satisfactory explanation for such pressure 

dependence of the RRRV. It is therefore necessary to further investigate factors 

affecting the dependence of the RRRV on stagnation pressure. Such investigation is, 

however, beyond the scope of this chapter, since the main objective of this chapter is 

to test the selected turbulence models in order to find a suitable turbulence model in 

predicting the thermal interruption capability of turbulent SF6 switching arcs. 

Therefore, we present the work done for this investigation and the main findings in 

Appendix B for reference. 

5.4 Relative Merits of Turbulence Models 

Of the four turbulence models investigated, the Prandtl mixing length model is the 

simplest but the turbulence parameter needs to be tuned to give the best fit for a 

single set of experimental results (e.g. the value of RRRV for a given stagnation 

pressure, P0, and and the rate of current decay, di/dt). If nozzle geometry is changed, 

this process needs to be repeated.  

As regards the predicted RRRV, the Prandtl mixing length model can generally 

give reasonable predictions for a range of P0 and di/dt with optimized value of 

turbulence parameter for a given nozzle geometry. It is obvious that the standard 

k-epsilon model overestimates RRRV of the nozzle arc for the nozzle investigated in 

this chapter, while its two variants (the Chen-Kim model and the RNG model) 

underestimate. 

Since the recommended values of the turbulence parameters in the standard 

k-epsilon model and its two variants (the Chen-Kim model and the RNG model) 

need to be adjusted to achieve agreement with test results, the Prandtl mixing length 

model is, therefore, preferred as the tuning of the value of its turbulence parameter is 

much easier and quicker. It is also much easier to implement and the computational 
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cost is the lowest. 

5.5 Concluding Remarks 

The current zero behaviour of the SF6 nozzle arc has been numerically investigated 

for Nozzle 2 using the five flow models employed in Chapter 4, i.e. the laminar flow 

model, the Prandtl mixing length model, the standard k-epsilon model, the Chen-Kim 

model and the RNG model.  

A comparative study of different flow models has been conducted for P0=21.4 

atm and di/dt=13 Aμs
-1

. A detailed analysis of the physical mechanisms encompassed 

in each flow model is given to show the adequacy of a particular model in describing 

the rapidly varying arc during current zero period. 

The RRRV has been calculated for two rates of current decay (di/dt=13 and 25 

Aμs
-1

) and three stagnation pressures (P0=11.2 atm, 21.4 atm and 35 atm) by 

applying the five flow models, which are compared with test results of Benenson et 

al. [5.1]. It has been shown that the Prandtl mixing length model can generally give 

satisfactory predictions of the RRRV with turbulence parameter adjusted to fit one 

test result of RRRV. The standard k-epsilon model grossly over-estimates RRRV 

which is much higher than measurements for all the discharge conditions 

investigated. The performances of the Chen-Kim model and the RNG model are 

similar, both of which grossly under-estimates the effect of turbulence, and the 

predicted RRRV is of the same order of magnitude of that predicted by the laminar 

flow model, which is much lower than measured RRRV. Based on the comparison 

between predicted RRRV, the relative merits of the turbulence models are discussed. 
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Chapter 6  

Effects of Nozzle Geometry on SF6 Arc Thermal 

Interruption 

 

6.1 Introduction 

Supersonic nozzle interrupters are commonly used in modern gas blast circuit 

breakers for the control of arc discharge conditions [6.1]. It is well-known that 

turbulent energy transport plays a critical role in thermal extinction of an SF6 nozzle 

arc [6.2]. Nozzle geometry determines the flow conditions, hence the turbulence 

level in the current zero period. Optimization of the nozzle interrupter is, therefore, 

an important part in the design process of a circuit breaker. 

    The investigation presented in this chapter forms the third part of the systematic 

investigation into the behaviour of a SF6 nozzle arc (hereafter referred to as Part III). 

Part III studies the effects of the nozzle geometry on the turbulence level during the 

current zero period which affects the arc characteristics and the RRRV. Of the 

commonly used turbulence models, the Prandtl mixing length model gives overall 

better prediction of SF6 arc behaviour during the current zero period as shown in Part 

II of the systematic investigation (Chapter 5) for Nozzle 2 of Benenson et al. [6.3], 

which will, therefore, be used in the present investigation to model the turbulent SF6 

nozzle arc. However, the application of the Prandtl mixing length model relies upon 

limited experimental data to fix the value of one turbulence parameter by matching 

the computed results with experiments for a given nozzle geometry, thus for a 

different nozzle geometry this turbulence parameter needs to be readjusted. The 

standard k-epsilon model, on the other hand, can also give satisfactory predictions 

for the certain nozzle geometries (e.g. Nozzle 1 in Figure 3.3, used in the 

experiments of Frind et al. [6.4]) under certain discharge conditions (e.g. P0=21.4 and 

35 atm, di/dt=13 Aμs
-1

) [6.5]. It is, therefore, believed that the standard k-epsilon 
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model can, at least qualitatively, give reasonable prediction on how the nozzle 

geometry will affect the turbulence level, although this model has not given 

satisfactory prediction on the thermal interruption capability of SF6 nozzle arcs for 

Nozzle 2 as shown in Chapter 5. Thus, the standard k-epsilon model will also be 

applied in the present investigation. 

    Three nozzle designs, i.e. those of Frind et al. [6.4], Benenson et al. [6.3] and 

Frind of Rich [6.1] (given in Figure 3.3, hereafter referred to as Nozzle 1, Nozzle 2 

and Nozzle 3, respectively), are considered in the present investigation. The 

measured RRRV for these three nozzles together with the computational results will 

be used to evaluate the turbulence level and the influence of the geometrical factors 

of a nozzle on thermal interruption. 

6.2 Nozzle Geometry and Relevant Experimental Results 

The test results in the form of the RRRV obtained from extensive GE experiments 

[6.1, 6.3, 6.4], which are described in detail in Section 3.6 of Chapter 3, are used for 

direct comparison with computational results as well as to evaluate the level of 

turbulence for different nozzle geometries. The three nozzle designs used in the 

present investigation are shown in Figure 3.3. The features of these nozzles and their 

key dimensional parameters are described in Section 3.6 of Chapter 3, which are not 

repeated here. 

It should be noted that experiments on the three nozzles were not designed to 

study specifically the effects of nozzle geometry as the shapes and dimensions of the 

upstream electrodes and the locations of the electrode tip are different (Figure 3.3). 

These three nozzles, therefore, have no geometrical similarities. Because of these 

differences, the arc lengths before the nozzle throat are different for the three nozzles. 

In addition, flow before the nozzle throat can be affected by the upstream electrode, 

since the shape and dimension of the upstream electrode affect the effective nozzle 

area upstream of the nozzle throat. Nevertheless, it should be noted that, in general, 

the critical arc section for arc interruption is downstream the nozzle throat, and thus 
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differences in upstream electrode configurations are not expected to substantially 

affect RRRV. Apart from the effects of the upstream electrode, the shape and 

dimension of the downstream electrode also affect the flow behaviour in front of this 

electrode, which has been discussed in detail in Chapters 4 and 5 and also in [6.5]. 

Despite such effects, it has been found that the arc section influenced by the presence 

of the downstream electrode only account for less than 5% of the total arc voltage 

[6.5], and thus it cannot substantially affect RRRV, neither. We, therefore, consider 

that the differences in RRRV for the three nozzles are attributed to the influence of 

nozzle geometry and the influences of electrodes (e.g. shape, position and 

dimensions of the electrodes) on RRRV are negligible. The electrode distances (i.e. 

arc lengths) for Nozzles 1 and 2 are almost the same, approximately 20 mm. For 

Nozzle 3, the electrode distance is approximately 50 mm.  

The computational results, unless otherwise specified, are obtained under 

discharge conditions identical with the experiments of [6.1, 6.3, 6.4]. These 

experimental results will be used to assess the performance of the two turbulence 

models (i.e. the Prandtl mixing length model and the standard k-epsilon model) in 

predicting the dependence of turbulence level on the nozzle geometry as well as to 

evaluate the influence of the geometrical factors of a nozzle on turbulence level and 

thermal interruption. 

6.3 Results and Discussion 

Computations were carried out using a current ramp with a plateau of 1 kA and a rate 

of current decay (di/dt) before current zero and a voltage ramp (dV/dt) after current 

zero to determine RRRV. The Prandtl mixing length model and the standard 

k-epsilon model are used to model the effects of turbulence. For Nozzles 1 and 2, the 

stagnation pressures (P0) ranging from 11.2 atm to 35 atm and two values of di/dt (13 

and 25 Aμs
-1

) are investigated with the static pressure at the nozzle exit (Pe) set to a 

very low value to ensure shock free in the nozzle. For Nozzle 3, the values of P0 

ranging from 7.8 atm to 37.5 atm and two values of di/dt (13.5 and 27 Aμs
-1

) have 
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been applied with Pe=P0/4 which is consistent with the experimental conditions in 

[6.4]. 

For the Prandtl mixing length model, the turbulence parameter, c, was adjusted 

to give the closet agreement between the computed and measured RRRV for a given 

nozzle geometry. The values of c for the three nozzles are respectively 0.054 for 

Nozzle 1, 0.057 for Nozzle 2 and 0.045 for Nozzle 3. 

Computational results show that the qualitative features of the arc behaviour for 

a given nozzle geometry are similar for different values of P0 and di/dt. Unless 

otherwise specified, the predicted results at P0=21.4 atm and di/dt=25 Aμs
-1

 (di/dt=27 

Aμs
-1

 for Nozzle 3) will be used to illustrate the typical arc behaviour and the 

differences between nozzles. Based on these computational results, we can predict 

the behaviour of the switching arc inside different nozzle geometries and identify the 

main physical process taking place during current zero period. A detailed 

interpretation of the results and their indications are given below. 

6.3.1 The Behaviour of the 1 kA DC Arc 

Axial variations of axis pressure, axis velocity, axis temperature, arc radius and 

electrical field for the three nozzles computed by the two turbulence models are 

shown in Figures 6.1, 6.2, 6.3, 6.4 and 6.5, respectively. These results show that the 

qualitative features of the nozzle arc at 1 kA DC predicted by the two turbulence 

models are similar. 
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  (a) 

  (b) 

Figure 6.1. Variations of pressure along the nozzle axis at 1 kA DC computed by the 

two turbulence models. (a) Prandtl mixing length model and (b) standard k-epsilon 

model. 
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  (a) 

  (b) 

Figure 6.2. Variations of axial velocity along the nozzle axis at 1 kA DC computed 

by the two turbulence models. (a) Prandtl mixing length model and (b) standard 

k-epsilon model. 
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  (a) 

  (b) 

Figure 6.3. Variations of axis temperature along the nozzle axis at 1 kA DC 

computed by the two turbulence models. (a) Prandtl mixing length model and (b) 

standard k-epsilon model. 
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  (a) 

  (b) 

Figure 6.4. Variations of arc radius with axial position at 1 kA DC computed by the 

two turbulence models. (a) Prandtl mixing length model and (b) standard k-epsilon 

model. 
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  (a) 

  (b) 

Figure 6.5. Variations of electrical field with axial position at 1 kA DC computed by 

the two turbulence models. (a) Prandtl mixing length model and (b) standard 

k-epsilon model. 

 

For Nozzle 3, a shock is generated downstream of the nozzle throat which is due 

to the exit pressure not sufficiently low to ensure shock free inside the nozzle. The 

location of this shock almost coincides with the position of the downstream electrode 

tip in Nozzles 1 and 2 as shown in Figure 6.1 (Curve 3 which shows the pressure rise 

in the region between Z=15 mm and Z=20 mm). The adverse pressure gradient after 

the shock results in deceleration of the oncoming gas flow (Figure 6.2), which 

subsequently causes flow separation and formation of vortices after the shock [6.6, 

6.7]. The vortices can deform the arc boundary, thus increasing the arc cross-section 

behind the shock as indicated by the arc radius [6.6, 6.7]. More information will be 
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given in Section 6.3.2 to show that the flow separation due to the presence of the 

shock results in slow thermal recovery of the arc section after the shock, thus 

reducing the effective arc length and subsequently the thermal interruption capability 

of a nozzle (characterized by RRRV of a nozzle arc). In the rest of this section, for 

Nozzle 3, attention will be paid to the arc section before the shock, since it is this part 

of the arc length (instead of the part behind the shock) that plays a crucial role in 

determining the thermal interruption capability of this nozzle. 

For a given stagnation pressure and in the absence of a sizeable upstream 

electrode, the axial variation of nozzle area ratio (Nozzle cross-sectional area at a 

given axial position/Nozzle throat area=A/At) approximately determines the pressure 

distribution within the nozzle. The axial pressure gradient controls the axial growth 

of the arc radius through enthalpy transport while the absolute value of pressure 

determines the radiation loss. Therefore, optimization of nozzle geometry can 

achieve the best interruption performance by controlling arc temperature and radius.  

With the same stagnation pressure, the mass flow rate of Nozzle 2 is 

approximately 4 times that of Nozzle 1. Compared with Nozzle 1, Nozzle 2 has a 

gentler area variation, which results in a slower rate of pressure decrease than Nozzle 

1 (Figure 6.1). Thus, gas acceleration in Nozzle 1 is stronger than Nozzle 2 (Figure 

6.2). The arc radius of Nozzle 1 is smaller in the region where Z<7.5mm than that of 

Nozzle 2 but the reduction in absolute pressure after Z=7.5mm makes the arc radius 

larger than that of Nozzle 2 (Figure 6.4). Thus, the electrical field distribution for 

Nozzle 1 is higher than that of Nozzle 2 in the region where Z<7.5 mm but is lower 

than that of Nozzle 2 after Z=7.5 mm (Figure 6.5). 

Nozzles 2 and 3 have the same throat area with slightly different stagnation 

pressures, thus nearly the same mass flow rate. Nozzle 3 gives the smallest axial 

pressure gradient (dp/dz) as well as the lowest absolute pressure in comparison with 

the other two nozzles (Figure 6.1) for the major part of its length. The arc radius for 

Nozzle 3 is, therefore, the largest (Figure 6.4) and the electrical field the lowest 

(Figure 6.5). Thus, of the three nozzles, for the arc radius and electrical field 

averaged over the whole arc length Nozzle 2 has the smallest arc radius (Figure 6.4) 
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and highest electrical field (Figure 6.5).  

It has been found that for the 1 kA DC arc, around 80% of the current is carried 

by the high temperature core, the boundary of which is defined as the radial position 

corresponding to a temperature of 83.3% of the axis temperature. Electrical field is 

mainly determined by the energy balance of this high temperature core. Energy 

balance calculations for the three nozzles show that Ohmic input into this core is 

largely taken out by radiation (consistent with investigations in Chapters 4 and 5). 

For such radiation transport dominated arc core, the axis temperature is not sensitive 

to nozzle geometry (Figure 6.3). The fact that radiation transport is the dominant 

energy transport mechanism for the arc at 1 kA DC explains the similar qualitative 

features of the arc computed by the two turbulence models for a given nozzle 

geometry, because at this current turbulence enhanced thermal conduction is not 

important in the determination of the aerodynamic and electrical behaviour of the arc. 

However, for the arc shortly before current zero the qualitative features and the 

electrical behaviour of the arc will be dependent on turbulence models for a given 

nozzle geometry, which will be discussed in Section 6.3.2. 

6.3.2 The Behaviour of the Transient Arc before Current Zero 

For the transient arc with the current ramping from 1 kA DC towards zero, the arc 

temperature decreases and the arc shrinks due to reduction of Ohmic heating, which 

result in the absolute value of pressure inside the arc to decrease with current decay. 

The axis pressure at current zero is, therefore, lower than that of 1 kA DC (Figure 

6.6). Nevertheless, the qualitative features of the axial variations of axis pressure are 

always similar to those at 1 k A DC as shown in Figure 6.1. The location of the shock 

is not sensitive to current as indicated by Figures 6.1 and 6.6.  
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  (a) 

  (b) 

Figure 6.6. Variations of pressure along the nozzle axis at current zero computed by 

the two turbulence models. (a) Prandtl mixing length model and (b) standard 

k-epsilon model. 

 

The time variations of axis temperature and arc radius for the three nozzles 

obtained by the Prandtl mixing length model and the standard k-epsilon model are 

given in Figures 6.7, 6.8 and 6.9. It is noted that for the arc section behind the shock, 

the rates of decrease of the axis temperature and the arc radius are significantly 

slower than those upstream of the shock. This means the presence of the shock 

results in slower recovery speed of the arc section behind the shock. As a result, the 

arc voltage taken by the section behind the shock accounts for less than 20% of the 

total arc voltage before current zero when the current is ramping down, which is even 
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negligible a few microseconds before current zero. This renders the effective arc 

length of Nozzle 3 for arc interruption almost the same as those of Nozzles 1 and 2. 

Therefore, the use of RRRV for the three nozzles as a means to assess the turbulence 

effects is meaningful. The effects of the shock on the behaviour of an SF6 nozzle arc 

is beyond the scope of this chapter, thus no further discussion will be made in this 

chapter. Detailed investigation on this topic will be presented in Chapter 7. In the rest 

of this chapter, for Nozzle 3, attention will only be paid to the arc section before the 

shock when discussing the computational results unless otherwise specified. 

 

  (a) 

  (b) 

Figure 6.7. Variations of axis temperature with axial position at different current 

levels before current zero computed by the two turbulence models. P0=21.4 atm and 

di/dt=25 Aμs
-1

. (a) Prandtl mixing length model and (b) standard k-epsilon model. 
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  (a) 

  (b) 

Figure 6.8. Variations of arc radius with axial position at different current levels 

before current zero computed by the Prandtl mixing length model. P0=21.4 atm and 

di/dt=25 Aμs
-1

. (a) Variation of arc radius between the contact gap and (b) enlarged 

diagram of (a) between Z=-10 mm and Z=25 mm. 
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  (a) 

  (b) 

Figure 6.9. Variations of arc radius with axial position at different current levels 

before current zero computed by the standard k-epsilon model. P0=21.4 atm and 

di/dt=25 Aμs
-1

. (a) Variation of arc radius between the contact gap and (b) enlarged 

diagram of (a) between Z=-10 mm and Z=25 mm. 

 

For currents of 600 A and above, the qualitative features of the arc indicated by 

the axis temperature (Figure 6.7) and arc radius (Figures 6,8 and 6.9) are similar to 

those of the 1 kA DC arc for a given nozzle geometry. The results are not sensitive to 

different turbulence models, neither. This is because, for currents of 600 A and above, 

the arc is known to be in quasi-steady state stage. In this stage, the arc also has a 

radiation dominated arc core which takes approximately 80% of the current: similar 

to the arc at 1 kA DC. For such radiation transport dominated arc core, the axis 

temperature is not sensitive to nozzle geometry (Figure 6.7), and the arc voltage for a 
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given nozzle is almost independent of current for current greater than 600 A (Figure 

6.10). 

 

  (a) 

  (b) 

Figure 6.10. Voltage-current characteristics for the arcs in the three nozzles 

computed by the two turbulence models. P0=21.4 atm and di/dt=25 Aμs
-1

. (a) Prandtl 

mixing length model and (b) standard k-epsilon model. 
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  (a) 

  (b) 

Figure 6.11. Enlarged voltage-current characteristics in the last 4 μs before current 

zero. P0=21.4 atm and di/dt=25 Aμs
-1

. (a) Prandtl mixing length model and (b) 

standard k-epsilon model. 

 

When the current further decays towards its zero point, the arc deviates from 

quasi-steady state. From the instant when the arc deviates from quasi-steady state to 

the instant of current zero, the arc is known to be in current zero period. During 

current zero period, the axis temperature further decreases and the arc column 

contracts which favours radial turbulent thermal conduction. At 100 A, the axis 

temperature is reduced to 17,000 K (Figure 6.7). As previously mentioned in Chapter 

4, the radial turbulent thermal conduction is expected to become important due to, 

firstly, the relative importance of thermal conduction to radiation loss is inversely 
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proportional to the arc radius, and, secondly, net radiation loss decreases rapidly with 

temperature for temperatures below 18,000 K. As a result, turbulence thermal 

conduction gradually becomes the dominant energy loss mechanism and the arc 

voltage starts to rise (the reason for this has been explained in Chapter 4) as indicated 

by Figure 6.10. Thus, the accumulated turbulence effects determines the axis 

temperature and arc radius during the whole current zero period and those at current 

zero. Computational results are, therefore, dependent on the application of different 

turbulence models. 

By applying the Prandtl mixing length model, the axis temperature (Figure 6.7 

(a)) and arc radius (Figures 6.8 (a) and 6.8(b)) at 100 A and at current zero, as well as 

the electrical field distributions (Figure 6.12), indicate that Nozzle 2 tends to have the 

best thermal interruption capability while the thermal interruption capability of 

Nozzle 3 will be the worst. In addition to the axis temperature, arc radius and the 

electrical field distributions, arc voltage before the current zero point is the most 

sensitive indicator regarding the accumulated effects of turbulence cooling. As 

shown in Figure 6.10(a), when the current is high (i > 100 A), Nozzle 3 gives the 

highest arc voltage due to its arc length being 2.5 times larger than those of Nozzles 

1 and 2. However, when current zero is approached, the effective arc length of 

Nozzle 3 becomes almost the same as those of the other two nozzles. The arc voltage 

for Nozzle 3 then becomes the lowest towards current zero (Figure 6.11(a)). Since 

during current zero period turbulence cooling is the most important energy transport 

mechanism, the highest extinction peak of Nozzle 2 (Figures 6.10(a) and 6.11(a)) 

indicates that the highest turbulence level is attained within Nozzle 2, whereas the 

lowest arc voltage of Nozzle 3 shortly before current zero (Figure 6.11(a)) indicates 

that the turbulence level within Nozzle 3 is the lowest among the three nozzles. 
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  (a) 

  (b) 

Figure 6.12. Variations of electrical field at two current levels before current zero 

computed by the Prandtl mixing length model. P0=21.4 atm and di/dt=25 Aμs
-1

. (a) 

100 A and (b) 1.25 A (0.05 μs before current zero). 
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  (a) 

  (b) 

Figure 6.13. Variations of electrical field at two current levels before current zero 

computed by the Prandtl mixing length model. P0=21.4 atm and di/dt=25 Aμs
-1

. (a) 

100 A and (b) 1.25 A (0.05 μs before current zero). 

 

By applying the standard k-epsilon model, the axis temperature (Figure 6.9(b)), 

arc radius (Figures 6.9(a) and 6.9(b)) at current zero and electrical field distributions 

(Figure 6.13) all indicate that Nozzle 3 will have better thermal interruption 

capability than Nozzle 1. The thermal interruption capability of Nozzle 1 will be the 

worst as indicated by the axis temperature, arc radius and electrical field distributions. 

The electrical field distributions immediately before current zero (Figure 6.13(b)) 

show that the electrical field at a given axial position along the arc for Nozzle 3 is 

almost comparable to that of Nozzle 2. In addition, the effective arc length of Nozzle 

3 is slightly longer than that of Nozzle 2 as indicated by the electrical field 

distributions (Figure 6.13(b)). This explains the highest arc voltage of Nozzle 3 
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shortly before current zero (Figure 6.11(b)), which means the highest turbulence 

level is attained within Nozzle 3. The lowest electrical field along the arc for Nozzle 

1 (Figure 6.13), and thus the lowest arc voltage of Nozzle 1 (Figures 6.10(b) and 

6.11(b)), indicates that the turbulence level within Nozzle 1 is the lowest among the 

three nozzles. Apparently, the results obtained by the standard k-epsilon model and 

their indications with regard to the influences of nozzle geometry on turbulence level 

are different from those obtained by the Prandtl mixing length model. 

6.3.3 Computed RRRV and Comparison with Experiments 

The RRRV of the nozzle arc has been determined by applying a linearly increasing 

voltage at a given rate of rise (dV/dt) after current zero. The computed RRRV as a 

function of P0 (with P0 ranging from 7.8 atm to 37.5 atm) at di/dt=13 and 25 Aμs
-1

 

(di/dt=13.5 and 27 Aμs
-1

 for Nozzle 3) for the three nozzles, together with 

experimental results for comparison, are plotted in Figures 6.14 and 6.15 for those 

obtained by the Prandtl mixing length model and the standard k-epsilon model, 

respectively.  

By applying the Prandtl mixing length model, the computed RRRV generally 

agrees well with the measured RRRV for the three nozzles (Figure 6.14). The model 

gives similar dependence of RRRV on P0 for di/dt=13 Aμs
-1

 to that for di/dt= 25 

Aμs
-1

 while the experimental results for Nozzles 1 and 2 indicate a much stronger 

pressure dependence at lower di/dt (Figure 6.16). In theory, the dependence of RRRV 

on P0 should not be sensitive to di/dt. If the dependence of RRRV on stagnation 

pressure is related to di/dt, this will result in the intersection of lines in Figure 6.16. 

Such intersection implies that at certain range of stagnation pressure RRRV for a 

lower di/dt will be smaller than that for a higher di/dt. This is not physical. The 

experimental results for Nozzles 1 and 2 at di/dt=13 μs
-1

 are, therefore, not very 

reliable. It is well-known that the value of RRRV has a large short to short variation. 

Error bars of the experimental results of [6.1, 6.3, 6.4] are not given. Taking into 

account the experimental uncertainties, we feel that the predicted RRRV by the 

Prandtl mixing length model at 13 Aμs
-1

 for Nozzles 1 and 2 is acceptable. As 
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expected, the computed RRRV for Nozzle 2 is higher than those of the other two 

nozzles for the range of P0 studied and at both two values of di/dt, which indicate that 

the highest turbulence level can be attained within Nozzle 2. However, it is noted that 

the RRRV of Nozzles 1 and 2 at different discharge conditions are close to each other. 

This means that the levels of turbulence for both two nozzles are similar, with that 

for Nozzle 2 slightly higher. Nozzle 3 has the lowest RRRV for all the discharged 

conditions (with different values of P0 and di/dt), which means the turbulence level 

within Nozzle 3 is the lowest. 

By applying the standard k-epsilon model, for Nozzles 2 and 3, computations 

grossly over-predicts the values of RRRV (Figure 6.15), which also show much 

stronger dependence on P0 at both values of di/dt (13 and 25 Aμs
−1

) in comparison 

with the dependence predicted by the Prandtl mixing length model (comparing 

results shown in Figures 6.14 and 6.15). However, for Nozzle 1, the model can give 

reasonable predictions under certain discharge conditions (e.g. P0=18 atm and 21.4 

atm, di/dt=13 Aμs
-1

, as shown in Figure 6.15(a)). Therefore, the performance of the 

standard k-epsilon model is dependent on the nozzle geometry, and thus one cannot 

draw a general conclusion that the standard k-epsilon model always over predicts 

RRRV. The computational results indicate that Nozzles 2 and 3 have similar RRRV 

for all the discharge conditions investigated, with the RRRV of Nozzle 3 slightly 

higher (Figure 6.15). This means the highest turbulence level can be attained within 

Nozzle 3, but Nozzle 2 can produce similar turbulence level as compared with that of 

Nozzle 3. Nozzle 1 has the lowest computed RRRV for all the discharged conditions 

(with different values of P0 and di/dt), which means the turbulence level within 

Nozzle 1 is the lowest. 

 

 

 

 

 

 



Chapter 6 Effects of Nozzle Geometry on SF6 Arc Thermal Interruption 

194 

 

  (a) 

  (b) 

Figure 6.14. Comparison of measured RRRV and predicted RRRV computed by the 

Prandtl mixing length model. (a) di/dt=13 Aμs
-1

 (di/dt=13.5 Aμs
-1

 for Nozzle 3) and 

(b) di/dt=25 Aμs
-1

 (di/dt=27 Aμs
-1

 for Nozzle 3). 
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  (a) 

  (b) 

Figure 6.15. Comparison of measured RRRV and predicted RRRV computed by the 

standard k-epsilon model. (a) di/dt=13 Aμs
-1

 (di/dt=13.5 Aμs
-1

 for Nozzle 3) and (b) 

di/dt=25 Aμs
-1

 (di/dt=27 Aμs
-1

 for Nozzle 3). 
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Figure 6.16. Measured RRRV for the three nozzles of Figure 3.3. These results are 

given in fitted lines only, and the measured points are not plotted. 

 

The application of two turbulence models results in different indications with 

regard to the effects of nozzle geometry on the turbulence level and the thermal 

interruption capability of a given nozzle. However, as readily shown by the results 

presented in this section, the agreement between measured and computed RRRV 

obtained by the Prandtl mixing length model is still the best, although changes in 

nozzle and electrode configuration necessitates the readjustments of turbulence 

parameter for this model. Therefore, we believe that the computational results 

obtained by the Prandtl mixing length model have given correct prediction on the 

effects of nozzle geometry on turbulence level, i.e. the highest turbulence level can 

be attained by Nozzle 2, while Nozzle 3 gives the lowest turbulence level. In this 

sense, the geometry of Nozzle 2 is preferred in comparison with the other two 

nozzles in the design of circuit breakers. 

As discussed in Section 6.2, there is no geometrical similarity of these three 

nozzles and their electrode configurations. However, the nozzle shape and the 

electrode effects can all affect the flow in the nozzle and the behaviour of the arc. For 
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such non-correlated nozzle geometries and their electrode configurations, it is not 

possible to separate the effects of nozzle geometry on turbulence from those of the 

electrodes. It is, therefore, difficult to quantify effects of nozzle geometry on 

turbulence and the effects of the turbulence on the arc for the nozzle geometries used 

in the present investigation. Since the experimental results suitable for this 

investigation is very limited, we have no other choice except the experimental results 

reported in [6.1, 6.3, 6.4], although the nozzle-electrode configurations used in their 

experiments do not have geometrical similarities. If attempts will have to be made to 

further investigate and quantify the effects of nozzle geometry on turbulence level 

and thermal interruption, more experimental results are required. Relevant 

experiments should be conducted using nozzle-electrode configurations which have 

geometrical similarities, i.e. the nozzle radius, the lengths of the different nozzle 

sections (upstream, throat and downstream sections) and the dimensions of 

electrodes (electrode length and radius) should be affinely related (suggestions for 

this will be given in the section for future work in Chapter 8). 

6.4 Concluding Remarks 

The effects of nozzle geometry on SF6 arc thermal interruption are investigated using 

the Prandtl mixing length model and the standard k-epsilon model. The measured 

and computed RRRV for three nozzle-electrode configurations are used to evaluate 

the influence of nozzle geometry on turbulence level. 

The application of different turbulence models results in different indications 

with regard to the influence of nozzle geometry on turbulence level. Since the RRRV 

predicted by the Prandtl mixing length model generally shows best agreement with 

corresponding measured RRRV, we believe that the Prandtl mixing length model can 

give the most consistent results once the value of the turbulence parameter for a 

given nozzle is fixed according to relevant experimental results. The results obtained 

by the Prandtl mixing length model show that Nozzle 2 gives the highest RRRV 

among the three nozzles investigated for a given set of discharge conditions (with 
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fixed P0 and di/dt). This means the highest turbulence level can be attained by Nozzle 

2. In this sense, the geometry of Nozzle 2 is preferred in comparison with the other 

two nozzles in the design of circuit breakers. 

For Nozzle 3, computational results show that a shock is generated downstream 

of the nozzle throat which is due to the exit pressure not sufficiently low to ensure 

shock free inside the nozzle. This results in slow thermal recovery of the arc section 

after the shock, thus reducing the effective arc length and subsequently the thermal 

interruption capability of a nozzle. The effects of the shock on the behaviour of the 

SF6 switching arc forms the subject matter of Chapter 7. 
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Chapter 7  

Current Zero Behaviour of an SF6 Nozzle Arc 

under Shock Conditions 

 

7.1 Introduction 

Supersonic nozzles are commonly used in modern gas blast circuit breakers as well 

as in other arc devices for the control of arc discharge conditions [7.1]. During the 

operation of such breakers (e.g. puffer circuit breakers), the presence of a shock in 

the nozzle interrupter cannot in general be avoided because the inlet and exit 

pressures of the nozzle may change greatly due to the limited gas supply from the 

puffer chamber, nozzle ablation and the confined exhausting space downstream of 

the nozzle exit. 

It is well-known that in the absence of an arc, a shock can occur in the diverging 

section of a supersonic nozzle if the ratio of the back pressure at the nozzle exit plane 

to the upstream stagnation pressure (hereafter referred to as the pressure ratio) falls in 

between the pressure ratios corresponding to the subcritical and critical solutions 

predicted by one-dimensional isentropic flow theory [7.2]. For the nozzle of Frind 

and Rich [7.1] (Nozzle 3 as shown in Figure 3.3(c) in Chapter 3), the pressure ratio 

determined by the ratio of the exit nozzle area to that of the throat for supercritical 

solution is approximately 0.02 for SF6. If an arc is drawn in a supersonic nozzle with 

the pressure ratio within this range it is expected that the shock in the cold flow will 

be modified by the presence of the arc and the arc itself by the shock. Arc-shock 

interaction in a supersonic nozzle for direct current arcs has been investigated by 

Fang et al. [7.3] and Yan et al. [7.4]. It has been shown that, in contrast with the 

shock without the arc, the shock in the presence of the arc has been considerably 

broadened with the shock centre shifted upstream which is accompanied by the 

formation of vortices due to flow separation. As a result, the arc is broadened after 
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the shock, thus slightly reducing the arc voltage [7.4].  

It is now well recognized that an SF6 arc in a nozzle interrupter of a high 

voltage circuit breaker is turbulent. Modelling of turbulent arc is still at its infancy as 

the mechanisms for generating arc instability and maintaining turbulence in the arc 

context are little understood. However, an arc in a supersonic nozzle has similarity to 

a shear boundary layer in that the axially dominant flow inside the arc attains a much 

higher speed than that of its surrounding cold flow and the axial momentum and 

energy diffusion can be neglected in comparison with their radial counterparts (as 

discussed in Chapter 2). Thus, there is a direct resemblance between a round free jet 

in a stagnant external flow and an arc surrounded by a cold and low speed flow in a 

nozzle (as discussed in Chapter 2). Turbulent arc modelling to date is exclusively 

based on the Prandtl mixing length model or the k-epsilon model and its variants (as 

discussed in Chapter 3). These turbulence models are originally devised for 

incompressible turbulent shear layer flow. The application of the Prandtl mixing 

length model relies upon limited experimental data to fix the value of one turbulence 

parameter (c) by matching the computed results with experiments for a particular 

nozzle geometry (as shown in Chapters 5 and 6). There are altogether 5 turbulence 

parameters in the k-epsilon model and even more in its variants (Section 3.5 of 

Chapter 3). The recommended default values for these parameters cannot give the 

correct prediction of temperature measurements [7.5, 7.6] and RRRV after current 

zero (as shown in Chapters 5 and 6). The necessity to adjust the values of turbulence 

parameters of the k-epsilon model and its variants and the high computing cost (in 

comparison with the Prandtl mixing length model) favour the adoption of the Prandtl 

mixing length model for the simulation of turbulent arc. Thus, the Prandtl mixing 

length model will be used for the present investigation. 

The objective of the present work is to investigate arc-shock interaction under a 

rapidly varying current usually encountered by a gas blast breaker before current 

zero and to assess the effects of the shock on arc’s thermal recovery capability after 

current zero. Since the value of a turbulence parameter in the Prandtl mixing length 

model needs to be found by matching the computed RRRV with that measured, 
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reproducible experimental results under well defined test conditions are essential. In 

addition, the elucidation of the physical processes occurring inside a nozzle in the 

presence of a shock requires the elimination of pressure waves often encountered in a 

circuit breaker operation due to the interaction between the nozzle arc interrupter and 

other parts of the breaker connected to the interrupter. Thus, the two-pressure system 

of Frind and Rich [7.1] is used for the current investigation. Computer simulation 

results for the nozzle arc experimentally investigated by Frind and Rich [7.1] have 

been reported in [7.7, 7.8, 7.9]. In [7.7], the presence of a shock is avoided by the use 

of a sufficiently low exhaust pressure at the nozzle exit. However, the exhaust 

pressure for all experiments reported in [7.1] is set at 25% of the upstream stagnation 

pressure, which will inevitably generate a shock inside the nozzle [7.2]. In [7.8, 7.9], 

the exhaust pressure is fixed at 0.3 MPa while the upstream stagnation pressure 

varies from 0.6 to 4.1 MPa. Thus, the resultant pressure ratios will generate a shock 

inside the nozzle in the absence of the arc according to one-dimensional isentropic 

flow theory [7.2]. The likely presence of the shock and its effects on the arc are not 

discussed in [7.8, 7.9]. It should also be noted that the pressure ratio is fixed for the 

experiments of Frind and Rich [7.1] while the exit pressure varies with the upstream 

pressure. The prescribed exhaust pressure in [7.8, 7.9] is, therefore, not consistent 

with the experimental conditions of [7.1].   

In the presence of the shock, flow outside the nozzle is often sucked into the 

computation domain [7.4, 7.10]. The thermodynamic state of this sucked-in flow is 

usually not known. Attention will, therefore, be paid to the correct prescription of the 

boundary conditions at the flow exit when the gas is sucked in. 

This chapter is organized as follows. Section 7.2 gives the information on the 

computational domain and grid system used in the investigation of this chapter. 

Discussion of the computational results and comparison with experiments are 

presented in Section 7.3. In Section 7.4, a comparison between a shock free arc and 

an arc under shock conditions is given. The influence of different specifications of 

boundary conditions at the nozzle exit plane on the arc behavior and thermal 

interruption performance is discussed in Section 7.5. Finally, appropriate conclusions 
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are drawn. 

7.2 Computational Domain 

Computation has been performed on the nozzle used by Frind and Rich [1]. The 

calculation domain is shown in Figure 7.1, which includes a convergent-divergent 

nozzle and two electrodes. The nozzle has an expansion half angle of 15° and the 

nozzle length is 94 mm. The diameter of the nozzle inlet is 25 mm and that of the 

outlet 38.4 mm. The nozzle throat is 31.3 mm away from the inlet plane and its 

diameter is 12.5 mm. The upstream electrode has a round tip and the downstream 

electrode is hollow, both of which have an outer diameter identical with the diameter 

of the nozzle throat. The inner diameter of the hollow contact is 4 mm. 

 

 
Figure 7.1. Nozzle geometry and grid system used in the computation. Body-fitted 

grid (BFC) system is used for the computation of gas flow. The domain is divided 

into 7 and 4 intervals in the axial and radial directions, respectively. The axial and 

radial coordinates defining the intervals as well as the number of cells over each 

interval are given. The axial position of the nozzle throat is 31.3 mm downstream of 

the nozzle inlet plane. 

 

A grid system based on BFC is adopted in the computation to accommodate the 

nozzle and electrode geometries. The grid distribution is indicated in Figure 7.1, with 

fine radial grids being employed in the arc region and an average axial grid density 

of approximately 0.55 mm. Altogether 120×165 grids are used to obtain results.  



Chapter 7 Current Zero Behaviour of an SF6 Nozzle Arc under Shock Conditions 

204 

7.3 Results and Discussion 

Computations have been carried out for three upstream stagnation pressures P0 (7.8 

atm, 14 atm and 37.5 atm) and three corresponding downstream pressures Pe fixed at 

0.25P0. The current is linearly ramped down to zero with a fixed rate of decay, di/dt, 

from a plateau of 1 kA DC. Two rates of current decay, 27 Aμs
-1

 and 13.5 Aμs
-1

, have 

been investigated. After current zero, a linearly increasing voltage ramp, dV/dt, is 

applied to investigate the thermal interruption capability of the nozzle in Figure 7.1. 

The turbulence parameter c is found to be 0.045 by matching the calculated RRRV 

with that measured at P0 = 37.5 atm and di/dt = 27 Aμs
-1

. This value of c is used for 

the other cases. 

Unless otherwise specified, computational results reported in this chapter are for 

an upstream pressure of 37.5 atm, an exit pressure of 9.2 atm, and di/dt = 27 Aμs
-1

. 

The qualitative features of results obtained with different stagnation pressures and 

di/dt but with the same exit pressure to inlet stagnation pressure ratio are very similar. 

Based on these computational results, we can predict the behaviour of the nozzle arc 

under shock conditions and identify the main physical process taking place during 

current zero period. A detailed interpretation of the results and their indications are 

given below. 

7.3.1 The Behaviour of the 1 kA DC Arc 

The temperature contours together with the pressure isobars for an arc at 1 kA DC in 

the nozzle of Figure 7.1 are given in Figures 7.2(a) and 7.2(b) which respectively 

correspond to stagnation pressures of 37.5 atm and 14 atm. The qualitative features 

of the arc and the surrounding flow field do not appear to be sensitive to the 

stagnation pressure, as long as the same pressure ratio (0.25) is maintained. However, 

the arc size for 14 atm is larger than that of 37.5 atm as it is known that the arc size 

for DC arcs is inversely proportional to the square root of the stagnation pressure 

[7.11]. 

For the discussion of arc-shock interaction, it is convenient to separate the 
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nozzle arc system into three regions: a high temperature core which carries the arc 

current with a boundary temperature of approximately 10,000 K (this is different 

from the arc core defined for radiation transport in Section 3.5 of Chapter 3), a thin 

layer (commonly known as the thermal layer) surrounding the arc core in which the 

temperature rapidly decays to that of the surrounding cold flow, and the cold flow 

region (see Figure 7.2 the arc section upstream of the shock). A shock generated in 

the cold flow due to the high ratio of exit pressure to the inlet stagnation pressure 

interacts with the arc core and thermal boundary layer. The adverse pressure gradient 

of the shock is felt by both the core and the thermal layer. The axial velocity in the 

core is reduced but not reversed. However, the flow in the thermal layer is reversed 

by the adverse pressure gradient, thus causing flow separation, which is similar to 

flow separation in a boundary layer attached to a solid wall [7.12]. The flow 

separation distorts the arc boundary. The cold flow from upstream cannot penetrate 

the distorted arc boundary due to its high temperature, hence low density (Figure 

7.3(a)). Such a flow situation is similar to a supersonic flow passing a compression 

corner [7.13]. The equivalent angle of inclination α of compression corner in the 

presence of the arc is given in Figure 7.3(a). The equivalent compression corner 

deflects the cold flow from upstream and generates compression waves as indicated 

by the distribution of the isobars in Figure 7.3(b). Direct analogy with the 

compression corner in fluid dynamics is very limited as the nozzle arc system is far 

more complex because of highly non-uniform temperature distribution caused by 

Ohmic heating and the density gradients. In a large region inside the nozzle, the 

pressure is lower than the nozzle exit pressure (Figure 7.3(b)). The gas is, therefore, 

sucked into the nozzle. This relatively cold inflow gas stream forms the reverse flow 

in the flow separation region and is returned to the nozzle exit. In between the two 

counter streams, the inflow gas stream and the high velocity jet in the arc core, a 

vortex is formed in between (Figure 7.3(a)). Due to the close coupling of temperature 

and flow fields a complex flow pattern is formed within the nozzle. Gas flow 

originated upstream of the shock is exhausted through the cold flow region close to 

the nozzle wall and the hollow electrode. The sucked-in gas flow is returned to 
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nozzle exit through circulation, thus making no contribution to the mass flow rate 

through the nozzle. 

 

  (a) 

 

  (b) 

Figure 7.2. Temperature contour together with pressure distribution in the nozzle at 1 

kA DC corresponding to different upstream stagnation pressures. The axial position 

is consistent with that of Figure 7.1. (a) P0=37.5 atm and (b) P0=14 atm. 
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  (a) 

  (b) 

Figure 7.3. The streamline pattern, pressure and temperature contours in the 

arc-shock interaction region at 1 kA DC, P0=37.5 atm. The axial position is 

consistent with that of Figure 7.1. (a) Streamline pattern and (b) Pressure and 

temperature contours. 

 

Compared with the flow behaviour in the absence of the arc, the shock centre 

moves upstream and the shock is broadened which cannot be regarded as a normal 

shock (Figures 7.3, 7.4 and 7.5). The pressure and Mach number on the arc axis and 

those along the nozzle wall are respectively shown in Figure 7.4 and Figure 7.5. The 

Mach number behind the shock (Figures 7.4(b) and 7.5(b)) can still be above unity 

which corresponds to the weak shock, similar to that observed in a compression 

corner [7.13]. The arc cross-section is considerably broadened, thus reducing the 

voltage in the arc-shock interaction region. 
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  (a) 

  (b) 

Figure 7.4. Variations of pressure and Mach number distributions on the axis with 

axial position for the cold flow and at different current levels during current zero 

period. P0=37.5 atm and di/dt=27 Aμs
-1

. The axial position is consistent with that of 

Figure 7.1. (a) Pressure distributions and (b) Mach number distributions. 
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  (a) 

  (b) 

Figure 7.5. Variations of pressure and Mach number near the nozzle wall with axial 

position for the cold flow and at different current levels during current zero period. 

P0=37.5 atm and di/dt=27 Aμs
-1

. The axial position is consistent with that of Figure 

7.1. (a) Pressure distributions and (b) Mach number distributions. 

 

7.3.2 The Behaviour of the Transient Arc before Current Zero 

7.3.2.1 Overall Features 

As the current ramps down linearly towards zero, the arc shrinks due to the reduction 

of Ohmic heating. Variations of axis pressure and Mach number with axial position 

at different current levels before current zero are shown in Figure 7.4 and those of 

axis temperature, axis velocity, electrical field and arc radius defined as the position 

of 3000 K isotherm are given in Figure 7.6. The qualitative behavior of the arc 
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section before the shock is similar to those reported for a transient nozzle arc under 

shock free conditions [7.7]. The temperature decays and arc size shrinks the fastest 

downstream of the throat. However, the electrical field distribution only changes 

significantly when current zero is approached. This results in a small voltage 

extinction peak as shown in Figure 7.7 where the arc voltage for the shock free case 

(Section 7.4) is also plotted. The differences between an arc with and without shock 

under the same discharge conditions except the exit pressure are caused entirely by 

the arc section after the shock as indicated by curves (3) and (3a) in Figure 7.6. It is, 

therefore, important to discuss arc-shock interaction when current reduces towards 

zero and its influence on arc interruption.  

 

           (a) of Figure 7.6 

            (b) of Figure 7.6 
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           (c) of Figure 7.6 

            (d) of Figure 7.6 

Figure 7.6. Variations of axis temperature, axis velocity, electrical field and arc 

radius with axial position at different current levels before current zero for P0=37.5 

atm and di/dt= 27 Aμs
-1

. The axial position is consistent with that of Figure 7.1. 

Curve (3a) is shock free case. (a) axis temperature distribution, (b) axis velocity 

distribution, (c) electrical field distribution and (d) arc radius. 
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Figure 7.7. Comparison of the arc voltage variations computed with and without 

shock for P0=37.5 atm and di/dt= 27 Aμs
-1

. 

 

In the cold flow region, the pressure (Figure 7.5(a)) and streamlines (Figure 7.8) 

hardly change as they cannot respond quickly to the current decay because of large 

momentum and thermal inertia. However, much change has occurred in the flow 

pattern in the arc-shock interaction region. As the rate of decay of temperature in the 

arc core is the fastest compared with other parts of the arc-shock interaction zone due 

to its small thermal inertia, the pressure is, therefore, immediately reduced by the 

decreasing temperature. This generates a radial mass inflow, thus increasing the 

density in the region where temperature has dropped. The instant streamlines at a 

current of 607 A show that, in the neighborhood of the flow separation point, gas is 

supplied to the arc region by reducing the size of the vortex (Figure 7.8(a)). At 4 μs 

before current zero (108 A), the flow in the arc region after the shock is almost 

entirely supplied from the surrounding region. Almost all flow from upstream is 

deflected by the “compression” corner. The flow separation point moves towards the 

axis when the current decreases and, at current zero, it is on the axis as shown by 

curve (4) in Figure 7.6(b) which indicates a flow stagnation point on the axis. Once 

the surrounding flow penetrates into the arc core, the flow becomes extremely 

stagnant near current zero (Figure 7.6(b)). The extremely stagnant flow is responsible 

for the slow decay of temperature (Figure 7.6(a)) and arc radius (Figure 7.6(d)) in 

this region. 
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  (a) 

 

  (b) 

Figure 7.8. Streamline pattern of the gas flow in the nozzle during current zero 

period at P0=37.5 atm and di/dt=27 Aμs
-1

, with an instantaneous current of (a) 607 A 

and (b) 108 A. The axial position is consistent with that of Figure 7.1. 

 

7.3.2.2 Energy Balance and the Dominant Process for Energy Transport 

In order to identify the dominant energy transport processes, especially those in the 

arc-shock interaction region, the plots of radial integrated energy balance are given in 

Figures 7.9 and 7.10 at different instants for two typical cross-sections, one of which 

is the nozzle throat and the other at Z = 61 mm in the arc-shock interaction region.  

At the nozzle throat, inside the electrically conducting core, the arc is still in 
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quasi-steady state at an instantaneous current of 607 A (22.5 μs before current zero) 

and radiation is the dominant energy loss mechanism (Figure 7.9(a)) in the region 

from the axis to the start of the radiation reabsorption region (corresponding to the 

maximum of curve (5)). In this region, axial enthalpy transport and radial turbulent 

thermal conduction are of equal importance. Turbulence is very strong in the 

radiation reabsorption region where both temperature and axial velocity decrease 

rapidly, thus resulting in the rapid increase of turbulent viscosity (Equation (3.25) 

given in Section 3.6.1 of Chapter 3). Therefore, in the radiation reabsorption region, 

power loss due to radial turbulent thermal conduction gradually becomes more 

important than other energy loss mechanisms. At the electrically conducting 

boundary (the starting point of the flat region of curve (4) in Figure 7.9), energy loss 

by turbulence becomes the most important. Because of axial acceleration and the 

decrease in temperature, a radial inflow is required for the mass balance which gives 

rise to equivalent power input (curve (2)) as the radial convection term is written in 

the conservation form (Equation (3.19) given in Section 3.5 of Chapter 3). This term 

includes the conventional radial convection term, 
r

h
u



  , which represent power 

loss for a radial inflow. Qualitative features of radial energy balance at an instant 

current of 108 A (4μs before current zero, Figure 7.9(b)) are similar to those at 607 A 

except that axial enthalpy convection is negligible due to nearly constant axis 

temperature and the greatly reduced axial acceleration due to density increase 

accompanying the reduction in temperature (curve (3) in Figures 7.6(a) and 7.6(b)). 

At current zero, radiation is negligible at the nozzle throat because the temperature is 

below 12,000 K [7.14]. Turbulent energy transport becomes dominant (Figure 

7.9(c)).  

The energy balance at Z = 61 mm, which is in the arc-shock interaction region, 

shows an entirely different picture with regard to various energy transport processes 

in comparison with those at the nozzle throat. Because of the arc-shock interaction 

the arc cross section is much larger than that of the arc region before the shock 

(Figure 7.6(d)) and the flow in this region especially near current zero is extremely 
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stagnant (Figure 7.6(b)). At an instantaneous current of 607 A, arc radiation loss 

greatly exceeds Ohmic input which is balanced by the power input due to axial 

enthalpy convection in the arc core region. In the radiation reabsorption region, net 

radiation loss reduces (Figure 7.10(a)) and enthalpy convection associated with radial 

inflow due to flow separation (Figure 7.8(a)) has replaced axial convection as the 

main power input mechanism. Radial convection together with Ohmic input supply 

the energy taken away by turbulent radial thermal conduction and axial convection. 

When the current decreases to 108 A, Ohmic input is negligible in comparison with 

the power input due to radial convection (Figure 7.10(b)) in the arc core. Radial 

convection is mainly balanced by radiation loss, axial convection and the rate of 

change of energy storage. In the radiation reabsorption region and beyond, radial 

convection is balanced by turbulent thermal conduction and the rate of change of 

energy storage. The energy balance at current zero (Figure 7.10(c)) is similar to that 

at 108 A. In contrast with the energy balance near current zero in the arc section 

before the shock, energy transport associated with inward radial flow is very 

prominent and turbulent transport of energy in the electrically conducting core is not 

important. This is of course the consequence of weak turbulence intensity associated 

with the very stagnant flow (Figure 7.6(b)). 

 

            (a) of Figure 7.9 
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            (b) of Figure 7.9 

            (c) of Figure 7.9 

Figure 7.9. Radial integrated energy balance at different instants before current zero 

at the nozzle throat. P0= 37.5 atm and di/dt= 27 Aμs
-1

, with an instantaneous current 

of (a) 607 A, (b) 108 A and (c) current zero. Key of the curves is indicated as 

follows:  

(1) Axial convection:   


 rdrwh
z

 2 ,  

(2) Radial convection:    


 rdrvhr

rr
 2

1
, 

(3) Radial thermal and turbulent conduction:  





















 rdr

r

h

c

k
r

rr p

2
1

, 

(4) Ohmic heating:  rdrE  22 , (5) Radiation loss:  rdrq 2 , 

(6) Rate of change of energy storage: 
 

 


 rdr

t

h



2 , and, 

(7) Radial temperature profile.  
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  (a) 

  (b) 

  (c) 

Figure 7.10. Radial integrated energy balance at different instants before current zero 

at Z= 61 mm downstream of the nozzle inlet plane. P0= 37.5 atm and di/dt= 27 Aμs
-1

, 

with an instantaneous current of (a) 607 A, (b) 108 A and (c) current zero. Key of the 

curves is the same as that indicated in Figure 7.9. 
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As a consequence of arc-shock interaction, the arc cross section is enlarged. 

Because of the stagnant flow leading to weak turbulence, temperature decay in this 

region is very slow (Figure 7.6(a)). The electrical field in this region is very low 

(Figure 7.6(c)). The voltage taken up by this section of the arc is only 16% of the 

total arc voltage at 1 kA, and it reduces to 3% at 0.5 μs before current zero. The 

presence of the shock, therefore, reduces the effective arc length for thermal 

interruption. 

7.3.3 The behavior of the Transient Arc after Current Zero and RRRV 

A linearly increasing voltage at a given rate of rise (dV/dt) is used after current zero 

to investigate the thermal interruption capability of the nozzle configuration. The 

value of the rate of rise of recovery voltage (dV/dt), at which the arc will just be 

extinguished, is commonly known as the critical rate of rise of recovery voltage 

(RRRV). This will be found computationally and the computed RRRV will be 

compared with the results given by [7.1]. 

Typical results of post-arc current at different values of dV/dt are shown in 

Figure 7.11 for P0=37.5 atm and di/dt=27 Aμs
-1

. The axis temperature and electrical 

field distributions at different instants after current zero are given in Figures 7.12 and 

7.13 respectively for dV/dt of 2.7 kVμs
-1

 (thermal clearance) and 2.85 kVμs
-1

 

(thermal reignition). When the arc is thermally extinguished (e.g. dV/dt=2.7 kVμs
-1

), 

the arc temperature decays rapidly in 1 μs before current zero in the region of 

approximately 15 mm long downstream of the nozzle throat but before the shock 

(referred hereafter to as the critical section for interruption) (Figure 7.12(a)). It is this 

critical section of the arc that takes up most of the recovery voltage (more than 95%). 

In this region, turbulent thermal conduction is responsible for the rapid cooling of the 

arc. The temperature downstream of the critical section hardly changes while the 

critical section recovers thermally. If dV/dt exceeds RRRV, temperature in the critical 

region still reduces immediately after current zero (Figure 7.13(a)) but this 

temperature decay is soon arrested as Ohmic input is pumped into a very thin core of 

the critical section. Temperature outside of this core still reduces as shown in Figure 
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7.13(b) where the radial temperature profiles at Z = 42 mm at different instants are 

plotted. The applied voltage is again mainly taken up by this section (Figure 7.13(c)). 

Thus, the critical section is also responsible for thermal reignition in the time 

duration of 1 μs after current zero if dV/dt is too high.  

 

 

Figure 7.11. Post-arc current for different values of dV/dt. P0= 37.5 atm and di/dt=27 

Aμs
-1

. The RRRV is 2.83 kVμs
-1

. 
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  (a) 

  (b) 

Figure 7.12. Axis temperature and electrical field distributions at various instants 

after current zero for dV/dt = 2.7 kVμs
-1

 (thermal clearance). The axial position is 

consistent with that of Figure 7.1. (a) Axis temperature distribution and (b) Electrical 

field distribution. 
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  (a) 

  (b) 

  (c) 

Figure 7.13. (a) Axis temperature distribution, (b) instantaneous radial temperature 

profiles at 4 instants at Z = 42 mm and (c) electrical field distributions at various 

instants after current zero for dV/dt= 2.85 kVμs
-1

 (thermal reignition). The axial 

position is consistent with that of Figure 7.1. 
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The qualitative features of the arc behaviour at other stagnation pressures, di/dt 

and dV/dt are similar to those reported here. The computed values of RRRV at 37.5 

atm, 14 atm and 7.8 atm for di/dt= 27 Aμs
-1

 and 13.5 Aμs
-1

 are plotted in Figure 7.14 

together with the experimental results given in [7.1] for comparison. The 

experimental scatter for clearance and reignition is not known but it could be as large 

as the difference between clearance and reingition (Figure 7.14). Certain 

experimental points appear less reliable (e.g. at 14 atm). The only experimental 

information on the likely magnitude of the scatter is the measurement of arc 

conductance around current zero of a nitrogen arc by Hermann et al. [7.15]. The 

average relative scatter of arc conductance around its mean after current zero is no 

less than %30  due to turbulence [7.15]. As the SF6 nozzle arc is also turbulent, 

experimental scatter in the measured RRRV is expected to be substantial. In view of 

these uncertainties of the test results, the computed RRRV with the chosen value of 

the turbulence parameter, c, is considered to give satisfactory prediction.  

 

 

Figure 7.14. Comparison of computed and measured RRRV. 
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7.3.4 Dependence of RRRV on P0 and di/dt 

The computed dependence of RRRV on P0 at a given di/dt appears to be weakly 

dependent on the value of di/dt. It has been found that 

                     2.1

0RRRV P  at di/dt  = 27 Aμs
-1 

                     3.1

0RRRV P  at di/dt  = 13.5 Aμs
-1 

The average slope of the two straight lines (Figure 7.14) which are the best fits 

for the experimental results indicate 25.1

0RRRV P  for both values of di/dt. The 

calculated dependence of RRRV on stagnation pressure at a given di/dt is, therefore, 

acceptable in view of the experimental uncertainties mentioned above. The reason for 

such a pressure dependence of RRRV at a given di/dt is attributed to the pressure 

dependence of electrical conductivity, and the specific heat at a constant pressure in 

the temperature range below 10,000 K [7.7, 7.10]. 

The dependence of the calculated and the measured RRRV on di/dt at a fixed 

stagnation pressure are in agreement, given as 

                        

0.2

d

d
RRRV













t

i
 

7.4 Comparison of Shock Free Nozzle Arc with that under the 

Influence of a Shock 

It would be of interest to breaker designers to know the thermal interruption 

performance under shock free conditions. Computation for the nozzle in Figure 7.1 

has been performed for P0=37.5 atm and di/dt= 27 Aμs
-1

 under shock free conditions 

by lowering the exit pressure. It has been found that arc temperature, velocity, 

electrical field and arc radius of the arc section upstream of the shock are identical 

with those of the shock free arc (curves 3 and 3(a) in Figure 7.6). This is not 

surprising as the arc section before the shock has no knowledge of the arc-shock 

interaction region due to supersonic flow ahead of the shock. The mass flow rate 
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passing the nozzle is the same for the cases with and without the presence of a shock 

provided that the upstream stagnation pressure and temperature are the same. The 

difference between the two is that the effective length of the arc for the shock free 

case is longer than that of the arc with shock. As a result, the voltage of a shock free 

arc is slightly higher (Figure 7.7). RRRV for the shock free case is increased from 

2.83 kVμs
-1

 with shock to 3.77 kVμs
-1

, i.e. RRRV of a nozzle arc with shock is 25% 

lower than that of a corresponding shock free nozzle arc. In addition to the improved 

thermal interruption capability, the speed of dielectric recovery for the shock free 

case is expected to be much faster than that of the shock case, as the shock free arc 

does not have a region where flow is very stagnant. 

7.5 Effects of the Exit Flow Conditions on the Arc in the Nozzle 

Results reported in the previous sections show that, at the nozzle exit, gas is sucked 

into the nozzle which travels through the flow separation region and returns to the 

nozzle exit (see the streamlines in Figure 7.3(a)). Such a flow is produced by the 

pressure within the nozzle which is lower than the prescribed exit pressure. The 

thermodynamic state of the sucked in gas cannot be calculated using the same 

method for the gas flowing into the nozzle at the nozzle entrance (Section 3.7 of 

Chapter 3). This is because the sucked in gas can form a closed streamline (i.e. part 

of a vortex) part of which is outside the nozzle. When such a situation arises, the 

calculation domain should be extended to include such circulating flow within the 

computation domain. Attempts have been made to extend the calculation domain. It 

has been found that even the calculation domain (i.e. move the exit plane of Figure 

7.1 further downstream) is extended well into the downstream dumping tank of the 

experiments [7.1], gas is still suck into the nozzle. It is, therefore, decided to include 

the dumping tank as part of the solution domain. 

With the fixed exit pressure, thermal conduction at the nozzle exit is assumed to 

be negligible in comparison with convection (Point (c) in Section 3.7.5 of Chapter 3). 

The temperature at the nozzle exit can be extrapolated from the nozzle side. The 
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thermodynamic state of the gas is thus determined with the prescribed pressure at the 

exit. For computational investigations of Nozzles 1 and 2, it is suitable to extrapolate 

temperature at the nozzle exit from the interior of the nozzle. This is because, for 

these two nozzles, the exit pressure is very low to ensure shock free inside the nozzle, 

and thus there is no flow sucked in. Under such circumstances, the thermodynamic 

state of the gas at the nozzle exit is always determined by the gas inside the nozzle 

the state of which is obtained during computation and is, therefore, known. Thus, we 

do not require information on flow conditions downstream of the nozzle exit, for 

which the downstream tank is not needed in the computations. The aforementioned 

boundary conditions are, therefore, always applied to simulations of nozzle arcs with 

the same flow conditions [7.5, 7.7, 7.16], which have also been applied to 

investigations of Nozzles 1 and 2 as presented in previous chapters. However, if 

there is flow sucked into the nozzle from outside the nozzle exit, as for Nozzle 3, the 

thermodynamic state of the gas sucked in is usually not known. Under such 

circumstances, using fixed pressure and extrapolation of temperature at the nozzle 

exit is reasonable in that the temperature is quite uniform in the computation domain 

which is influenced by the sucked in gas. Otherwise, the information on flow 

conditions downstream of the nozzle exit is required to correctly specify the exit flow 

conditions, which can be done by including the dumping tank. Therefore, the 

question is whether the prescribed exit pressure and the temperature thus calculated 

in the exit plane are close to those computed when the dumping tank is included. 

Simulation is, therefore, carried out by including the dumping tank to assess if the 

arc behavior can be reasonably simulated using a fixed pressure at the nozzle exit. 

The cylindrical gas dumping tank is 250 mm long with a radius of 192 mm, 

which is initially filled with SF6 gas at an absolute pressure of 0.25P0 at room 

temperature. The downstream of the tank is sealed and, therefore, no flow exit is 

available in the calculation. The size of the tank is determined such that the total 

mass of the gas flowing from the nozzle to the tank is negligible in comparison with 

the mass of the gas inside the tank during the whole arcing period under investigation. 

The variation of the average pressure caused by mass flow from the nozzle within the 
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downstream tank is thus negligible. Calculation is performed with a current plateau 

of 1000 A followed by a linear current ramp with di/dt=27 Aμs
-1

. The upstream 

stagnation pressure is 37.5 atm. Results obtained with this modified calculation 

domain are compared with those discussed in previous sections. 

At 1 kA DC, the temperature distribution together with the pressure isobars are 

given in Figure 7.15, and the streamline pattern in the arc-shock interaction region is 

shown in Figure7.16. With the modified downstream condition, there is little change 

on the qualitative features of the arc and the surrounding gas flow between two 

electrodes in comparison with those illustrated in Figure 7.2. As shown in Figure 

7.17, the hot gas away from the nozzle wall exhausts into the dumping tank through 

the nozzle exit as well as through the hollow contact. The temperature of the gas 

exhausted through the nozzle exit into the tank is above 1500 K and above 10,000 K 

from the hollow contact (Figure 7.17). The gas jet exhausted from nozzle exit is 

divided into two streams: a part is returned to the nozzle via a region close to the axis 

and the other forms part of the circulating flow in the tank (Figure 7.17(b)), thus 

forming a stagnation point on the axis. The high temperature gas exhausted through 

the hollow electrode collides with the stream returning to the nozzle exit creating 

another flow stagnation point close to the hollow electrode exit. Almost all gas 

exhausted from the hollow electrode is returned to the nozzle (Figure 7.16). Several 

vortices near the nozzle exit are formed (Figure 7.17(b)). 
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Figure 7.15. Temperature contour together with the pressure distribution in the 

nozzle at 1000 A DC, P0=37.5 atm: obtained with the dumping tank. Only part of the 

dumping tank is shown. 

 

 

 
Figure 7.16. Streamline pattern in the arc-shock interaction region at 1000 A DC, 

P0=37.5 atm: obtained with the dumping tank. Only part of the dumping tank is 

shown. 
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  (a) 

 

  (b) 

Figure 7.17. Flow behaviour downstream of the nozzle exit at 1000 A DC, P0=37.5 

atm: obtained with the dumping tank. (a) Temperature contour together with velocity 

vector and (b) Temperature contour together with streamline pattern. Only part of the 

dumping tank is shown. 
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The presence of three vortices near the nozzle exit makes the local flow pattern 

very different from that computed with exit pressure fixed (Figure 7.3(a)), which in 

turn affects the pressure, density and temperature at the nozzle exit plane. The nozzle 

exit pressure with a dumping tank is different from the prescribed exit pressure 

(Figure 7.18(a)). The computed density and temperature at the nozzle exit plane with 

a dumping tank are substantially different from those computed assuming constant 

exit pressure (Figure 7.18). In spite of these differences, the location of the shock 

centre is only shifted by 0.6 mm, which is negligible in comparison with the total arc 

length. Axis temperature and electric field distributions are given in Figure 7.19 

inside the arc which indicates that the arc characteristics with and without the 

dumping tank are hardly affected by the conditions at the exit plane. The arc and its 

surrounding flow upstream of the shock cannot be affected by the nozzle exit 

conditions nor is the arc section in the arc-shock interaction region sensitive to these 

conditions. 

The arc voltage before current zero and the post arc current after current zero 

are nearly identical with those shown in Figures 7.7 and 7.11. Thus, RRRV is the 

same as that of the nozzle arc with exit pressure fixed. The calculated thermal 

interruption capability of the nozzle arc is, therefore, not sensitive to the exit 

boundary conditions. 

 

 

 



Chapter 7 Current Zero Behaviour of an SF6 Nozzle Arc under Shock Conditions 

230 

  (a) 

  (b) 

  (c) 

Figure 7.18. Radial distributions of pressure, temperature and density at the nozzle 

exit plane at 1000 A DC, P0=37.5 atm. (a) radial pressure distribution with the 

dumping tank, (b) radial temperature distributions with and without the dumping 

tank and (c) radial density distributions with and without the dumping tank. 
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  (a) 

  (b) 

Figure 7.19. Axis temperature and electrical field distributions computed with and 

without the dumping tank at 1000 A DC, P0=37.5 atm. (a) axis temperature 

distributions and (b) electrical field distributions. 

 

7.6 Concluding Remarks 

The effects of the arc-shock interaction on the behaviour of an SF6 arc have been 

numerically investigated with a current ramp before current zero and a voltage ramp 

after current zero. Results show that the presence of the shock causes flow separation 

in the thermal boundary layer of the arc, which generates vortices and broadens the 

arc cross-section. When the current is ramped down to zero, the flow separation point 

moves to the axis thus creating a stagnation point on the axis, which results in very 

slow thermal recovery in the arc-shock interaction region. It has been found that the 

arc voltage is mainly taken up by the arc section before the shock. The effective arc 
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length is reduced and, thus, the RRRV of a nozzle arc under the influence of a shock 

is lower than that of a corresponding shock free nozzle arc by 25% for the pressure 

ratio investigated. The predicted values of RRRV with the chosen value of turbulence 

parameter are compared with test results of Frind and Rich [7.1] which shows good 

agreement between each other.  

The effects of the boundary conditions at the nozzle exit on the arc behaviour 

are also investigated by including a gas dumping tank in the calculation domain. It 

has been found that the arc section before the shock and the current carrying part of 

the arc behind the shock are not affected by the conditions near the nozzle exit. The 

RRRV with or without a gas dumping tank is almost identical, which means that the 

prediction of thermal interruption capability for the nozzle arc is not affected by exit 

flow conditions. 
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Chapter 8  

Conclusions and Future Work 

 

8.1 Conclusions 

This thesis is exclusively concerned with the mathematical modelling of turbulent 

switching arcs. Turbulent arc modeling is still in its infancy as the mechanisms for 

driving arc instability are not fully understood. However, there is a direct 

resemblance between a nozzle arc and a rounded free jet both of which are 

dominated by shear flow. Thus, the modelling of turbulent switching arcs follows the 

same approach as that for modelling of turbulent jets. We, therefore, derive the time 

averaged conservation equations for switching arcs using Reynolds’s approach. We, 

then, borrow method for the closure of the time averaged conservation equations 

(commonly known as turbulence models) from the modelling of turbulent jet, which 

is based on the adoption of Boussinesq assumption to relate Reynolds stress to the 

time averaged velocity gradient through eddy viscosity. The turbulent heat flux is 

assumed to be related to Reynolds stress through a constant turbulent Prandtl 

number. 

Additional equations are introduced to determine the turbulence length scale 

and velocity scale required by eddy viscosity. There are numerous turbulence models 

and the most fruitful approach for turbulent arc modelling is to examine the 

applicability of those turbulence models, which have a track record of success in 

fluid mechanics and aerodynamics, to turbulent SF6 arcs. Careful comparison of the 

flow conditions of a turbulent nozzle arc with those of a turbulent free jet results in 

the selection of the standard k-epsilon model and its two variants (the Chen-Kim 

model and the RNG model) for the modeling of SF6 turbulent switching arc. Since 

the application of the Prandtl mixing length model to SF6 switching arc has met some 

success, this turbulence model is included in our present investigation. In order to 
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demonstrate the effects of turbulence, laminar flow model is also included. Therefore, 

altogether five flow models have been used to study the turbulent nozzle arc. 

The applicability of the turbulence models are subject to verification by 

experimental results under a wide range of discharge conditions. To avoid these 

complications and to focus our attention on the modelling of turbulent effects we 

choose the experimental results obtained using a two-pressure system and a simple 

nozzle-electrode configuration (i.e. those reported by Benneson et al. [8.1], Frind et 

al. [8.2] and Frind and Rich [8.3]) for the verification of turbulence arc models. 

Altogether, arcs in three nozzles (i.e. the nozzle of Frind et al. [8.2], the nozzle 

of Benneson et al. [8.1] and the nozzle of Frind and Rich [8.3], respectively referred 

to as Nozzle 1, Nozzle 2 and Nozzle 3 in Chapter 3) with different shapes and 

dimensions as well as electrode configurations at different stagnation pressures have 

been studied. Detailed computational results obtained by the five flow models are 

given for Nozzle 2 since the qualitative features of the computational results for the 

other two nozzles are the same. 

The cold flow in Nozzle 2 has been computed by four flow models (Prandtl 

mixing length excluded). Results show that turbulence effects are negligible in the 

regions away from electrodes. All the four flow models predict a wake near the tip of 

the upstream electrode and a bow shock in front of the downstream electrode. 

However, the size of the wake and the strength and the structure of the shock differ 

widely between flow models. The implications of the wake and shock on dielectric 

breakdown have been discussed.  

The characteristics of nozzle arc under direct currents are then investigated by 

the five flow models. The V-I characteristic of the nozzle arc is given and the reasons 

for the shape of the V-I characteristic are explained for the first time. At currents 

above 600 A, radiation is the dominant energy transport process, while the effects 

turbulence enhanced thermal conduction is not important. The computed arc voltage 

is, therefore, not sensitive to the flow models. Thus, arc voltage at high current is not 

an effective means for the verification of flow models. For arc currents below 600 A, 

turbulence enhanced thermal conduction and radiation become dominant which give 
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rise to the negative V-I characteristic. There is a large difference between voltages 

predicted by different flow models with those predicted by the Prandtl mixing length 

model the highest and that by the laminar flow model the lowest. It is found that the 

arc voltage for DC nozzle arcs is proportional to the square root of stagnation 

pressure for all the current range investigated. 

The current zero behaviour of the SF6 switching arc has been numerically 

investigated for Nozzle 2 using the five flow models. The computed RRRV is 

compared with that measured for Nozzle 2. Such a comparison shows that for Nozzle 

2 the Prandtl mixing length model can generally give satisfactory predictions of the 

RRRV with turbulence parameter adjusted to fit one test result of RRRV. The 

standard k-epsilon model grossly over-estimates RRRV which is much higher than 

measurements for all the discharge conditions investigated. The performances of the 

Chen-Kim model and the RNG model are similar, both of which grossly 

under-estimates the effect of turbulence and the predicted RRRV is of the same order 

of magnitude of that predicted by the laminar flow model, which is much lower than 

measured RRRV.  

The effects of the nozzle geometry on turbulence have been computationally 

investigated using the Prandtl mixing length model and the standard k-epsilon model. 

The computed RRRV obtained by the two turbulence models for the three nozzles 

are compared with corresponding measured RRRV [8.1, 8.2, 8.3]. The standard 

k-epsilon model under predicts RRRV for Nozzle 1 for most discharge conditions 

investigated, while good agreement between predictions and measurements can be 

achieved by using the Prandtl mixing length model. We therefore believe that the 

Prandtl mixing length model can give the most consistent results once the value of 

the turbulence parameter for a given nozzle is fixed according to relevant 

experimental results. The results obtained by the Prandtl mixing length model show 

that Nozzle 2 gives the highest RRRV among the three nozzles investigated for a 

given set of discharge conditions (with fixed P0 and di/dt). This means the highest 

turbulence level can be attained by Nozzle 2. 

Shock waves inevitably occur during the operation of a circuit breaker. The 
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effects of shock wave on thermal interruption are investigated using the Prandtl 

mixing length model for Nozzle 3 where the exit pressure is set at a quarter of the 

stagnation pressure (P0/4) consistent with the experimental conditions of Frind and 

Rich [8.3]. Results show that the presence of the shock causes flow separation and 

generation of vortices in the arc-shock interaction region, which results in very slow 

thermal recovery in this region. It has been found that the arc voltage is mainly taken 

up by the arc section before the shock. The effective arc length is therefore reduced. 

Thus, RRRV of a nozzle arc under the influence of a shock is lower than that of a 

corresponding shock free nozzle arc by 25% for the pressure ratio investigated. The 

predicted RRRV with the chosen value of turbulence parameter are compared with 

test results of Frind and Rich [8.3], which shows good agreement between each other. 

The effects of the boundary conditions at the nozzle exit on the arc behaviour are 

also investigated by including a gas dumping tank in the computational domain, 

which shows that the arc between two electrodes and subsequently, RRRV, are not 

affected by the conditions near the nozzle exit. 

In summary, altogether five flow models have been used to predict the 

behaviour of SF6 switching arc under a wide range of discharge conditions. RRRV 

predicted by laminar flow model is a few orders of magnitude lower than that 

measured, which indicates that turbulence plays a decisive role in the determination 

of thermal interruption capability of a nozzle arc. Of the four turbulence models, the 

Prandtl mixing length model gives the best prediction of RRRV when compared with 

experimental results. The drawback is that the value of the turbulence parameter of 

the Prandtl mixing length model needs to be derived from one test result for a given 

geometry. With our current understanding of the physics of turbulent arc, the Prandtl 

mixing length model is the only turbulence model which can be used to predict the 

thermal interruption capability of a nozzle arc arrangement. 
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8.2 Future Work 

The key to the achievement of predictive design of high voltage circuit breakers lies 

with the accurate prediction of turbulent arc behaviour especially during current zero 

period. Although it is commonly recognized that the physics of turbulence is 

contained within the conservation equations for arcs, direct numerical solution of arc 

conservation equations with the grid size and time step required for a complete 

description of turbulence is not possible at present even with the most advanced 

computer. Such approach is neither practical in terms of the computational cost nor is 

necessary as the majority of engineering designs only require the statistical 

information about a system. This means that, in the foreseeable future, theoretical 

investigation of turbulent arcs will be based on the derivation of the statistical 

behaviour of arcs from arc conservation equations. The application of statistical 

treatment (e.g. Reynolds time average) to conservation equations results in the 

so-called closure problem: that is the number of equations is always greater than the 

number of unknowns. The closure of the equations involves ad hoc assumptions, 

which introduce unknown constants. The values of these constants will have to be 

optimized according to experimental results.  

Successful modeling of turbulent arc critically depends on reproducible 

experimental results under well defined conditions for fixing the values of constants 

and for verification. Up to now, no experiments have been performed to characterize 

the turbulent nozzle arc. As indicated in the thesis, turbulent arc modeling is at its 

infancy. What has been done so far in turbulent arc modeling is to apply turbulence 

models designed for incompressible turbulent free jet to turbulent nozzle arc. It is in 

a way surprising that the Prandtl mixing length model and the standard k-epsilon 

model can predict arc features a few microseconds before current zero. The Prandtl 

mixing length model is able to predict the thermal interruption capability under a 

wide range of discharge conditions provided that its turbulence parameter is derived 

from a single test result of the nozzle concerned. Thus, its range of application is 

limited.  
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The work proposed below is for immediate future. The list is, therefore, not 

exhaustive. It rather reflects the author’s view on the most fruitful line which should 

be followed in order to make progress in turbulent arc modelling. 

8.2.1 Experimental Work 

8.2.1.1 Investigation of Scaling Laws for DC arcs Burning in Affinely Related 

Nozzles in a Two-Pressure System 

Although the highly non-linear nature of arc conservation equations prevents the 

derivation of scaling laws, the approximately method for arc analysis, the integral 

method, does indicate the existence of scaling laws [8.4]. Arc experiments should be 

performed in a set of affinely related nozzles defined by A/At = f(z/zt), where At and 

Zt are respectively the throat area and the distance between the nozzle entrance and 

the throat. In order to avoid the influence of electrodes on the flow within the nozzle, 

the two electrodes need to be located outside the nozzle. Measurements of arc 

voltage and pressure within the nozzle would be sufficient to see if experimental arcs 

can be scaled according to the work of Fang et al. [8.4]. Experimental proof of 

scaling laws would greatly facilitate high voltage breaker development based on 

existing products with lower current and voltage ratings. 

8.2.1.2 Experimental Investigation of DC Nozzle Arcs Burning in Different 

Gases 

The superior arc quenching capability of SF6 is due to turbulence cooling of the arc. 

However, the green house effects of SF6 make its replacement by environmentally 

friendly gases highly desirable. If turbulence also plays a decisive role for arc 

extinction in gases other than SF6, experiments should be performed on DC arcs in 

different gases to determine the onset of arc instability and the material properties of 

the gas which influence the onset. In addition to the measurements of current, voltage 

and pressure, temperature measurement using emission spectroscopy would be 
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necessary to characterize the arc along the arc length. In addition to SF6, gases to be 

investigated include air, CO2 and mixtures of SF6. 

8.2.1.3 Experimental Investigation of DC Nozzle Arcs under Shock Conditions 

No experimental results can be found in the literature for DC nozzle arcs under shock 

conditions. With a two-pressure system standing shock can be produced by choosing 

proper exit pressure. Quantities to be measured are the same as those in Section 

8.2.1.2.  

8.2.1.4 Experimental Investigation of Current Zero Period and the 

Measurement of RRRV under Shock Free and Shock Conditions 

The current zero period will be investigated using a current ramp before current zero 

and a voltage ramp after current zero, the same as in Benenson et al. [8.1]. 

Measurements close to current zero require high time resolution of no bigger than 0.2 

μs. Accurate measurement of post arc current is essential for the verification of 

turbulence models. Emission spectroscopy of temperature measurement close to 

current zero is unlikely to be feasible as the arc temperature will be below 10,000K. 

8.2.1.5 Investigation of Electrode Effects on RRRV 

The above experiments will be repeated after the insertion of electrodes into the 

nozzle to investigate the effects of wake and bow shock on RRRV. 

8.2.2 Theoretical Work 

Once the experimental information associated with the proposed future experimental 

work is available, one could seriously contemplate improving the modeling of 

turbulent arc. Turbulence modeling in fluid and aerodynamics has been an active 

research field since the introduction of time averaged conservation equations by 

Reynolds over 100 years ago [8.5]. Much valuable experience has been accumulated 

[8.6] especially in the area of turbulent combustion [8.7]. 
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Prandtl mixing length model, the standard k-epsilon model and its variants are 

devised for turbulent fluids with constant density and fluid property. Such 

assumptions are apparently not valid for arcs. Density variation inside a nozzle arc 

will be very large as temperature varies from ambient to around 28,000K and 

pressure drop of 10 bar or more from nozzle entrance to exit. The gas is, therefore, 

highly compressible and the effects of density fluctuation due to turbulence cannot 

usually be neglected. In addition, computational results given in this thesis show that 

the characteristic time for temperature variation is much shorter than that for velocity. 

The use of unity turbulent Prandtl number assumes that temperature and velocity 

vary with the same characteristic time. More accurate prediction of the temperature 

variation during the current zero period is crucial for the correct prediction of RRRV, 

as temperature determines electrical conductivity.  

A good turbulence model should achieve universality at a reasonable 

computation cost. The approach adopted for the modelling of turbulent combustion 

problems appears to be a realistic path to follow for turbulent arc modelling [8.8]. It 

is proposed to use Favre average to derive the mass averaged conservation equations, 

thus taking care of density fluctuation and compressible effects. Mass averaged 

conservation equations retain the same form as those time averaged conservation 

equations for constant density fluid. The introduction of a time scale for turbulent 

temperature variation requires two additional equations, the temperature (or enthalpy) 

variance equation and the dissipation rate of temperature variance. The turbulent 

kinetic energy equation and its dissipation rate equation of the k-epsilon model are 

included, which enable eddy viscosity to be calculated. Gradient transport will be 

used to link the corresponding unknown turbulent fluxes involving the correlation of 

the time or mass averaged product of two fluctuating quantities [8.9]. 

The comparison of the predicted temperature with experimental results requires 

the conversion of mass averaged temperature to time averaged temperature. It is 

recommended to adopt the method of Lee [8.10] for such a conversion, which uses a 

probability density distribution function.  
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Appendix A 

Properties of High Pressure Arc in Local 

Thermodynamic Equilibrium (LTE) 

 

A.1 Introduction 

The gas pressure encountered in circuit breakers is at atmospheric and above. At such 

pressure, collisions between particles in the arc column are very frequent. For such 

collision dominated arc and for the discharge conditions normally met in circuit 

breakers the arc can be regarded as in the state of local thermodynamic equilibrium 

(LTE). The properties of LTE plasmas and the conditions to ensure LTE in the 

context of circuit breaker plasmas are given in this Appendix. 

A.2 Properties of LTE Plasmas and Conditions for the Attainment of 

LTE in Circuit Breaker Arcs 

The properties of an LTE plasmas are characterized by [A.1, A.2]: 

(a) All species attain a single temperature, T, and the velocity distribution of each 

species obeys Maxwellian distribution: for species r, the number density of particles 

with speed in vr and vr+dvr is given by 

                            rrrr dvvfndn                         (A.1a) 

where  
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where vr is the magnitude of the velocity vector, nr the number density and mr the    

mass per particle of species r. T is the common temperature for all particle species 

and k is the Boltzmann constant. 
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To attain a single temperature within a circuit breaker arc requires the largest 

temperature relaxation time to be much smaller than the characteristic times for the 

variation of discharge conditions (e.g. current variation) and the transient time of a 

plasma element travelling form upstream electrode to the downstream electrode. 

 

(b) The population density of excited stages for each particle species at every energy 

level (the distribution of internal energy) obeys the Boltzmann distribution: 
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where nr is the total number density of ions of species r, Qr is the partition function 

the detail of which is given in [A.1], Er,k is the energy of the kth quantum state, and 

gr,k is the statistical weight of this state, the detail of which is given in [A.1]. 

To attain Boltzmann distribution in plasma of finite dimension, we require that 

the effects of photo excitation and radiation decay are not important in comparison 

with electron impact excitation and collision of second kind. Thus, the electron 

number density must be sufficiently high to maintain the Boltzmann distribution at 

lower energy level Ei and at a higher energy level Ek . Such electron number density 

(Ne) is related to the energy difference between the two energy levels concerned and 

the temperature (T) of the plasma: for Hydrogen for example, we require [A.2] 

 ike EETN  2/11210                       (A.3) 

where Ne in cm
-3

, T in K and Ei and Ek in eV. 

 

(c) The number densities of charged particle species (electrons, positive and negative 

ions) are related by Saha-Eggert equation: 
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             (A.4) 

where nr and nr+1 are respectively the number density of ion species in the rth and 

(r+1)th ionization state. ne is the electron number density, Er+1 is the ionization 

energy which is required to produce an ion in the (r+1)th state from the rth state, me 
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the electron mass and h the Planck constant. 

When Equation (A.4) is applied to ionization, the relation is known as Saha’s 

equation. For the electron number density in a plasma to attain the value given by 

Equation A.4, the electron number density must exceed the value given below [A.2]: 

-315 cm 105eN                        (A.5) 

Chemical equilibrium is assumed when Equation (A.4) is applied. This requires 

that the life time of a plasma element between two contacts and the characteristic 

times of time variation of discharge conditions (e.g. characteristic time for current 

variation, dtdiii  ) should be much greater than that of the slowest reaction of 

all chemical reactions involved. 

Because of the above properties, the composition of LTE plasmas and 

thermodynamic properties can be calculated using the same method as that for 

plasmas in thermodynamic equilibrium. 

A.3 Conservation Equations of LTE Flowing Plasmas 

The arc plasma under LTE state can be treated as a single conductive fluid. The 

conservation equations for arc plasma are, therefore, similar to Navier-Stokes 

equations [A.3] but modified to take into account the effects of radiation transport 

and the effects of electromagnetic fields. These conservation equations can be written 

as: 

(a) Continuity equation (Conservation of mass) 

  0



V



t
                         (A.6) 

where t is the time, ρ the gas density and V the velocity vector. 

(b) Momentum equation (Newton’s second law of motion) 
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ij

t
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where J is the current density, B the magnetic flux density, and ij  the stress 

tensor. For a Newtonian fluid obeying Stokes’ relation, the stress tensor is 
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where p is the pressure, ij  is the Kronecker delta function ( 1ij  if ji   

and 0ij  if ji  ). u1, u2, u3 are the three components of the velocity vector 

V and x1, x2, x3 the three components of the position vector, μ is the coefficient 

of viscosity and μ’ the second coefficient of viscosity, both of which are related 

to the coefficient of bulk viscosity (κ) by the expression [A.3, A.4]: 
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If not for study of the structure of shock waves and in the absorption and 

attenuation of acoustic waves, the coefficient of bulk viscosity can be neglected 

according to Stokes’ hypothesis. The stress tensor can then be written as [A.4]: 
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where ijτ  is the viscous stress tensor given by 
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(c) Energy equation (Thermodynamics first law) 
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where e is the internal energy, T the temperature, p the pressure, k the thermal 

conductivity, J the current density, E the electrical field intensity, and q the net 

radiation loss per unit volume and time.   is the viscous dissipation function 

which is given by [A.4] 
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For computer simulation of circuit breaker arcs, the conservation equation is often 

written in terms of enthalpy: 
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where cp is the specific heat at constant pressure, and h is the enthalpy given by 



p
eh                           (A.15) 

(d) For low frequency (i.e. at industrial frequency of 50 Hz or 60 Hz), the equations 

describe electromagnetic fields are simplified to 

 Ohm’s law:                  EJ


                          (A.16) 

Ampere’s law:              JB
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0                        (A.17) 

Current continuity equation:   0)(  EJ


                    (A.18) 

Introducing electrical potential, , the above equation can be written as 

0)(                          (A.19) 

which is commonly used for the computation of electrical potential distribution 

inside the arc interrupter of a circuit breaker.  

A.4 Thermodynamic Properties (Equation of State) and Transport 

Properties of LTE SF6 Arc Plasma 

The present thesis is solely concerned with SF6 due to its excellent dielectric and arc 

quenching properties and, therefore, its exclusive use at transmission voltage level. 

The solution of conservation equations requires knowledge of the equation of state 

and transport properties. For SF6 arc plasma in LTE, the thermodynamic state and the 

transport properties are determined by two thermodynamic quantities (commonly 

pressure, p, and temperature, T). The equation of state is then relating the density to p 

and T. Since the temperature in a circuit breaker can reach 30,000K, the composition 

of SF6 plasma is very complex due to chemical and ionization reactions (Figure A.1 

[A.5]). The equation of state, thermodynamic properties and the transport properties 

are, therefore, given in tabulated or graphic form [A.6]. 
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Figure A. 1. Variation of particle density with temperature for SF6 arc plasma for 

pressure of 1 atm, reproduced from [A.5]. 

 

A.4.1 Thermodynamic Properties 

For completeness, those frequently used thermodynamic properties of SF6 for 

switching arc applications are given as a function of pressure and temperature taken 

from Frost and Liebermann [A.6]. Figures A.2 to A.5 give respectively the density, the 

enthalpy, the specific heat at constant pressure, and the sound speed. 
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(a) 

(b) 

Figure A. 2. Density (ρ) of SF6 arc plasma as a function of temperature for pressure 

of 1, 2, 4, 8 and 16 atm, reproduced from [A.6]. (a) Density and (b) enlarged diagram 

of (a) in the temperature range of 0 to 5,000 K. 
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Figure A. 3. Enthalpy (h) of SF6 arc plasma as a function of temperature for pressure 

of 1, 2, 4, 8 and 16 atm, reproduced from [A.6]. 

(a) 

(b) 

Figure A. 4. Specific heat at constant pressure (cp) of SF6 arc plasma as a function of 

temperature for pressure of 1, 2, 4 and 8 atm, reproduced from [A.6]. (a) Specific 

heat and (b) enlarged diagram of (a) in the temperature range of 0 to 5,000 K. 
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Figure A. 5. Sound speed (c) of SF6 arc plasma as a function of temperature for 

pressure of 1, 2, 4, 8 and 16 atm, reproduced from [A.6]. 

 

A.4.2 Transport Properties 

The transport properties characterize momentum transport (viscocity), energy 

transport (thermal conductivity) and charge transport (electrical conductivity). For 

LTE plasma, these transport properties are uniquely determined by two 

thermodynamic quantities (p and T). For SF6, these transport properties are also 

tabulated by Frost and Liebermann [A.6] as a function of p and T. In graphic form, 

they are given in Figure A.6 for electrical conductivity, Figure A.7 for the viscosity 

and Figure A.8 for the thermal conductivity.  
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(a) 

(b) 

Figure A. 6. Electrical conductivity (ζ) of SF6 arc plasma as a function of 

temperature for pressure of 1, 2, 4, 8 and 16 atm, reproduced from [A.6]. (a) 

Electrical conductivity and (b) enlarged diagram of (a) in the temperature range of 0 

to 20,000 K. 

 
Figure A. 7. Molecular viscosity (μ) of SF6 arc plasma as a function of temperature 

for pressure of 1, 2, 4, 8 and 16 atm, reproduced from [A.6]. 
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(a) 

(b) 

Figure A. 8. Thermal conductivity (k) of SF6 arc plasma as a function of temperature 

for pressure of 1, 2, 4, 8 and 16 atm, reproduced from [A.6]. (a) Thermal 

conductivity and (b) enlarged diagram of (a) in the temperature range of 0 to 1,000 

K. 

A.5 Radiation Transfer 

It has been confirmed by experimental observations that radiation is an important 

transport mechanism for high pressure and high temperature arcs [A.7, A.8]. 

However, radiation transfer in arc plasma is an extremely complex phenomenon.  

The effects of radiation transport inside the arc plasma is represented by the net 

radiation loss (emission minus absorption) in the energy conservation equation 

(Equation (A.14)) which is related to the radiation flux vector (F) by [A.2] 

Fq                            (A.20) 



Appendix A 

255 

 

Figure A. 9. Definition of the monochromatic radiation intensity of the radiation 

field. 

 

The radiation flux (F) at a position vector r can be calculated through the integration 

of monochromatic radiation intensity  tI ,,sr  (Figure A.9) over the emission 

spectra of of the arc and over the solid angle (Ω), which is given by 

  


 ddtI 






 

0

4

0
  ,, ssrF                   (A.21) 

where s is the unit vector and ν the frequency of radiation. The monochromatic 

radiation intensity,  tI ,,sr , at a given frequency ν can be derived from the 

radiation transport equation given by 

   tIKtI ,,,, srsrs                     (A.22) 

where εν is the volumetric emission coefficient and K   the total spectral absorption 

coefficient at frequency ν taking into account of stimulated emission. For 

collision-dominated plasmas in LTE, K  , can be expressed as 

  

















kT

h
PTKK


 exp1 ,,                 (A.23) 

where  PTK ,,  is the true spectral absorption coefficient as a function of 

frequency, temperature and pressure [A.9]. For high pressure plasmas at LTE 
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emission can be calculated using  

 BK                            (A.24) 

where Bv is the radiation intensity of black body which is given by 

 
1)exp(

12
2

3




kThc

h
TBv




                  (A.25) 

Thus, in addition to the boundary condition, the solution of radiation transport 

equation (Equation (A.22)) needs the knowledge of K  . For the plasma as a whole, 

the calculation of q requires the solution of radiation transport equation in 

three-dimension (3D) for the whole radiation spectrum and in the volume occupied 

by the arc. However, radiation transfer in an arc plasma is extremely complex which 

renders the above method of calculation net radiation loss impractical in terms of 

computational cost and the required time. This is because for SF6 arc plasma we 

encounter the following difficulties: 

(a) The radiation spectra of SF6 span from infrared to vacuum ultra violet. The 

computation of the absorption coefficient at a given point in the arc and at a 

given frequency requires the computation of SF6 composition at the local 

temperature and pressure. Such computation is very costly. The computation of 

the spectra absorption coefficient requires the photo absorption cross section over 

hundreds of lines, the basic spectra data of which is not complete. In addition, the 

variation of absorption coefficient in the vicinity of a line can change by 5 to 6 

orders of magnitude. Thus, the accurate integration over frequency (Equation 

(A.21)) requires a very small frequency interval, which increases the computation 

cost enormously. 

(b) Radiation transport within an SF6 arc is dominated by hundreds of lines which 

are neither optically thick nor optically thin. Thus, radiation absorption is 

important within an SF6 arc. The calculation of absorption is three dimensional. 

Thus, an approximate method for radiation transport calculation must be found. 

Zhang et al. [A.10] have found that the use of the net emission coefficients derived at 

the arc axis by Liebermann and Lowke [A.9] for an infinitely long cylindrical wall 
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stabilized arc can be used to predict correctly the temperature of nozzle arcs. For 

such a wall stabilized arc, the 3D computation can be reduced to a 2D computation 

within a plane perpendicular to arc axis. The net emission coefficient on the axis for 

a wall stabilized arc with a top hat radial temperature profile can easily be calculated 

using 

  dRKKBN 



0

)exp(                  (A.26) 

where R is the tube radius. N  is a function of temperature (T), pressure (p) and 

tube radius (R), the typical results of which are given in Figure A.10(a). 

This method is commonly known as the net emission coefficient (NEC) method. 

The NEC has also been calculated for air [A.11], nitrogen [A.12] and SF6 arcs [A.9], 

etc. This method has been modified by Zhang et al [A.10] considering re-absorption 

of the radiative energy escaping from the high temperature arc core, which has 

achieved considerable success in predicting the behaviour of nitrogen [A.10] and SF6 

arcs [A.13, A.14].  

With the rapid increase in computing power, more advanced methods for the 

radiaton modelling, for example the five band P1 model [A.15] and the method of 

partial characteristics [A.16], has become attractive. However, a comparative study 

of the aforementioned three radiation models for the prediction of SF6 nozzle arc 

behaviour recently performed by Dixon et al. [A.17] shows that the method of Zhang 

et al. [A.10] generally gives the best performance. The modified method of Zhang et 

al. [A.10], which is virtually a one dimensional model, will therefore be applied to 

account for radiation transport in all the computations presented in this thesis. The 

procedure for the calculation of net radiation loss (q) with this one dimensional 

model is given below: 

(a) Search the maximum temperature Tmax (Figure A.10(b)), which is normally on the 

arc axis. Radiation will not be calculated if Tmax is lower than 10,000 K. 

(b) Search in the negative r-direction (from the cold gas surrounding the arc towards 

the arc axis) for the radial position where the temperature is 4000 K. The radius 

of this position corresponds to the edge of the arc column, which is therefore 
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known as the arc radius and is designated as R4K (Figure A.10(b)). 

(c) Search in the negative r-direction for the radial position where the temperature is 

83.3% of Tmax. The region from the arc axis to this position (i.e. 8330 Rr  ) is 

defined as the arc core (Figure A.10(b)), and R833 therefore corresponds to the 

radius of the arc core edge. The region between the arc core edge and the edge of 

the arc column (i.e. KRrR 4833  ) is defined as the radiation re-absorption 

layer (Figure A.10(b)).  

(d) The radiation radius (R) of the arc is defined as R=0.5(R833+R4K). 

(e) The net radiation loss (q) at any point inside the arc core (qe) is calculated using 

the NEC (Figure A.10 (a)) for a given radiation radius R (defined in (d)) and 

according to the local temperature and pressure at that point. The total amount of 

radiation emitted from the arc core, Qe, is then calculated by integrating qe over 

all emitting volumes for a unit length: 

rdrqQ e

R

e 2
833

0                      (A.27) 

(f) In the radiation re-absorption region, the radiation coefficient (qa) is assumed to 

have a radial profile given by 
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where 

eq

e

A

PCTQ
q


0                         (A.29) 

where PCT means the percentage of the total radiation emission from the arc core 

edge (Qe) which are re-absorbed into the re-absorption layer. For SF6 nozzle arcs 

PCT is assumed to be 80%, which is determined to achieve agreement between 

computed and measured temperature profile [A.14]. Aeq represents the equivalent 

radiation area for re-absorption region which is defined as 
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(g) Set qe to be positive indicating the radiation emission and qa to be negative 
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indicating radiation re-absorption. The net radiation loss is then q=qe in the arc 

core and q=qa in the radiation re-absorption layer (Figure A.10(b)). 

 

  (a) 

  (b) 

Figure A. 10. Calculation of net radiation. (a) NEC for SF6 plasma of various radii at 

p=1 atm, reproduced from [30] and (b) Schematic diagram of the modified model of 

Zhang et al [A.10]. 
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Appendix B 

The Dependence of the RRRV on Stagnation 

Pressure 

 

B.1 Introduction 

It has been known that, for a given nozzle, the DC arc voltage is proportional to the 

square root of stagnation pressure (Section 4.3.2.2 of Chapter 4). However, the 

experimentally measured RRRV is approximately proportional to the square of 

stagnation pressure, which is much stronger than the pressure dependence of arc 

voltage. There appears, up to now, no satisfactory explanation for such pressure 

dependence of RRRV. Efforts have, therefore, been made to investigate further the 

factors which will affect the dependence of RRRV on pressure. Of the five flow 

models used in this thesis, the Prandtl mixing length model and the standard 

k-epsilon model give the best RRRV in comparison with the measured values. The 

results obtained by these two models will be used to investigate the effects of 

pressure on RRRV. 

B.2 The Effects of Pressure Dependence of Electrical Conductivity 

For DC nitrogen nozzle arc, the arc voltage computed with pressure dependent 

electrical conductivity is close to that computed with electrical conductivity fixed at 

10 atm [B.1]. The computational results reported in this thesis are, therefore, 

obtained using SF6 electrical conductivity at 8 atm. However, a careful examination 

of the dependence of electrical conductivity on pressure and temperature (Figures 

B.1(a) and B.1(b)) reveals two distinct regimes. That is, for temperature below 

approximately 12,000K, electrical conductivity reduces with increased pressure at a 

given temperature. This trend is reversed above 12,000K. In the low temperature 
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range, arc plasma is weakly ionized. Thus, electron collisions are dominated by 

electron-neutral collisions. The reduction in electrical conductivity at higher pressure 

is mainly due to the increase in neutral number density, which results in an increase 

of electron collision frequency. When the temperature is raised, the plasma density 

increases with gas pressure due to thermal ionization. However, when temperature is 

above 12,000K, electron collisions with neutrals gradually become less important 

than the collisions between electrons and ions. Electrical conductivity in this 

temperature range increases with plasma density (hence the gas pressure [B.2]). 

 

  (a) 

   (b) 

Figure B. 1. Electrical conductivity as a function of temperature at five pressures: 1, 

2, 4, 8 and 16 atm. (a) Electrical conductivity and (b) enlarged diagram of Figure 

5.27(a) within temperature range of 2,000K to 20,000 K. 

 

Since the pressure effects on electrical conductivity are considerable, a 

computational study has been carried out using the Prandtl mixing length model and 
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the standard k-epsilon model with pressure dependent electrical conductivity. The 

qualitative features of the computational results are similar for the two turbulence 

models. We use the results obtained by the standard k-epsilon model to illustrate the 

influence of pressure dependent electrical conductivity on arc features and on the 

value of RRRV. 

Figure B.2 shows a comparison of the computational results obtained by taking 

into account the pressure dependence of electrical conductivity (hereafter referred to 

as variable conductivity) and that by using the electrical conductivity fixed at 8 atm 

(referred to as the fixed conductivity for future reference) at the plateau of 1 kA DC 

for P0 = 11.2 atm and di/dt= 25 Aμs
-1

. There are virtually no differences in axis 

temperature (Figure B.2(a), arc radius (Figure B.2(b)) and axis pressure (Figure 

B.2(c)). However, in comparison with fixed conductivity, electrical conductivity 

upstream of nozzle throat is higher while that downstream of throat is lower (Figure 

B.2(d)). This results in the axial electrical field distribution shown in Figure B.2(e). 

The difference in overall arc voltages is negligible as shown in Figure B.3, where the 

V-I characteristics for the variable conductivity and the fixed conductivity are 

plotted.  

          (a) of Figure B.2 
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            (b) of Figure B.2 

           (c) of Figure B.2 

            (d) of Figure B.2 
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            (e) of Figure B.2 

Figure B. 2. Comparison of computational results on the arc axis obtained by taking 

into account variable conductivity (EC different P in the figure legend) and fixed 

conductivity (EC P=8 atm in the figure legend). The current is 1 kA DC and P0=11.2 

atm. The results are obtained by the standard k-epsilon model. (a) Axis temperature, 

(b) arc radius, (c) axis pressure, (d) axis electrical conductivity and (e) electrical 

field. 

 

 
Figure B. 3. Comparison of V-I characteristics obtained by taking into account 

variable conductivity (EC different P in the figure legend) and fixed conductivity 

(EC P=8 atm in the figure legend). Results are obtained by the standard k-epsilon 

model. P0=11.2 atm and di/dt=25 Aμs
-1

. 

 

When the current decays towards zero, the effects of variable conductivity on 

arc characteristics are accumulated. However, the axis temperature, arc radius and 

axis pressure for variable and fixed conductivities at 0.05 µs before current zero are 

remarkably close to each other (Figure B.4). In the low pressure region, electrical 

conductivity for the variable conductivity is higher than that of fixed conductivity 
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(Figure B.4(d)), which results in a lower electrical field in this region (Figure B.4(e)). 

The arc voltage for variable conductivity at this instant (67.1 V) is about 12% lower 

than that of fixed conductivity (76.3 V). RRRV for the variable conductivity (1.45 

kVμs
-1

) is lower than that of fixed conductivity (1.65 kVμs
-1

) by a similar 

percentage. 

 

  (a) of Figure B.4 

               (b) of Figure B.4 
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  (c) of Figure B.4 

            (d) of Figure B.4 

            (e) of Figure B.4 

Figure B. 4. Comparison of computational results on the arc axis obtained by taking 

into account variable conductivity (EC different P in the figure legend) and fixed 

conductivity (EC P=8 atm in the figure legend). The current is 1.25 A corresponding 

to the instant of 0.05µs before current zero. P0=11.2 atm and di/dt=25 Aμs
-1

. The 

results are obtained by the standard k-epsilon model. (a) Axis temperature, (b) arc 

radius, (c) axis pressure, (d) axis electrical conductivity and (e) electrical field. 
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Similar results to those of the standard k-epsilon model have been obtained for 

the Prandtl mixing length model with the results summarized in Figure B.5 (Similar 

to Figure B.3). The differences in RRRV predicted by the Prandtl mixing length 

model for variable and fixed conductivities is about 15% (RRRV considering fixed 

conductivity=1.15 kVμs
-1

 and RRRV considering variable conductivity=1.0 kVμs
-1

). 

 

 
Figure B. 5. Comparison of V-I characteristics obtained by taking into account 

variable conductivity (EC different P in the figure legend) and fixed conductivity 

(EC P=8 atm in the figure legend). Results are obtained by the Prandtl mixing length 

model. P0=11.2 atm and di/dt=25 Aμs
-1

. 

 

The differences in RRRV predicted by the two turbulence models for variable 

and fixed conductivities are well within the experimental scatter of the measured 

RRRV. Thus, variable electrical conductivity will not alter the pressure dependence 

of RRRV as predicted by the two turbulence models (Section 5.3).  

B.3 The Effects of Nonlinear System Dynamics on the Pressure 

Dependence of RRRV 

The governing equations which determine the dynamic behaviour of a turbulent arc 

during current zero period are highly nonlinear. The temperature and velocity fields, 

electrical field and turbulent effects are closely coupled through the nonlinear 

transport properties, radiation characteristics and eddy viscosity. Before current zero 
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the arc is highly transient. The state of the arc at current zero depends on the arcing 

history after the breakdown of quasi-steady state. It is, therefore, very difficult to 

identify a particular physical process to be associated with the influence of stagnation 

pressure. Nonetheless, attempts will be made to examine the computational results at 

P0 =21.4 atm and 11.2 atm, and, at dt/dt= 13 Aμs
-1

, in the hope that certain arc 

features can be identified with a change in stagnation pressure, hence the causes of 

pressure dependence of RRRV.  

For DC nozzle arcs, the arc cross section is inversely proportional to the square 

root of stagnation pressure (as indicated in Section 4.3.2.5 of Chapter 4). Since the 

arc is smaller at higher stagnation pressure (Chapter 4), it is expected that a nozzle 

arc at higher stagnation pressure will be able to maintain quasi-steady state longer 

than that of an arc at a lower stagnation pressure for the same di/dt. When a nozzle 

arc at a lower stagnation pressure departs from quasi-steady state, the arc at a higher 

stagnation pressure would still be able to maintain quasi-steady state for the same 

di/dt. Thus, the voltage ratio of the two arcs would be higher than the square root of 

the pressure ratio. This implies that the pressure dependence of RRRV for a given 

di/dt would be stronger than the square root of pressure. However, the results shown 

in Figure B.6 indicate that the voltage ratio from 1 kA to 5 A, defined as the arc 

voltage at 21.4 atm divided by that at 11.2 atm, is only about 10% higher than the 

square root of the pressure ratio. This cannot explain the pressure dependence of 

RRRV of the experimental results and those predicted by the two turbulence models 

(Table 5.8 in Section 5.3 of Chapter 5). 
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  (a) 

  (b) 

Figure B. 6. The voltage-current (V-I) characteristics for the nozzle arcs computed 

by the Prandtl mixing length model and the standard k-epsilon model corresponding 

to the current ramp. P0= 11.2 atm and 21.4 atm, and, di/dt=13 Aμs
−1

. (a) V-I 

characteristics and (b) enlarged V-I characteristics in the last 5 μs before current zero. 

 

As noted in Section 4.3.2.1 of Chapter 4, the arc thermal influence region is less 

than 8% of the nozzle cross section area at 1 kA DC and at 11.2 atm, and this 

percentage is even lower for 21.4 atm. The pressure imposed on the arc outside the 

thermal influence region is the same as that in the absence of the arc. This pressure 

distribution will not be affected when the current decays from 1 kA DC to current 

zero. When current is reduced from 600 A to current zero, axis temperature drops on 

average over the arc length by 13,000K (Figure B.7) for the two turbulence models 

and at two stagnation pressures. Such a large drop in axis temperature only results in 

a decrease in axis pressure of less than 5% (Figure B.8). Such a small drop in 
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pressure is sufficient to generate a radial inward flow to supply the mass in the arc 

region required by the decreasing arc temperature.  

 

  (a) 

  (b) 

Figure B. 7. Variation of axis temperature at different instants (different currents) 

before current zero and at current zero. Results are obtained by the Prandtl mixing 

length model and the standard k-epsilon model. P0= 11.2 atm and 21.4 atm, and, 

di/dt=13 Aμs
−1

. (a) 600 A and (b) current zero. 
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  (a) 

  (b) 

Figure B. 8. Variation of axis pressure at different instants (different currents) before 

current zero and at current zero. Results are obtained by the Prandtl mixing length 

model and the standard k-epsilon model. P0= 11.2 atm and 21.4 atm, and, di/dt=13 

Aμs
−1

. (a) 600 A and (b) current zero. 

 

The qualitative features of the radial temperature profiles calculated by the two 

turbulence models when the current decays towards zero at Z=2.3 mm (Figure B.9) 

and 7.9 mm (Figure B.10) are similar to those of DC arc. However, the instant radial 

profiles of radial velocity v are the most complex. For example, at Z=7.9 mm there is 

an outward radial flow at an instant current of 600 A (Figure B.11(a)). The speed of 

this outflow reduces when current is decreased (Figure B.11(b) at 200A instant). In 

order to maintain instant mass balance the outward flow region around the axis of the 

arc shrinks when temperature in this region decreases with current. An inward flow is 

developed at the electrical boundary at 50A (Figure B.11(c)). Rapid temperature 
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decay in the last 1 µs before current zero within the electrically conducting core 

(Figures B.10(e) and B.10(f)) requires a radially inward flow to main mass balance 

as shown in Figures B.11(e) and B.11(f). Accompanied with this change of radial 

flow pattern, radial enthalpy convection assumes an increasingly important role as an 

energy removal mechanism especially at high stagnation pressure when current 

decays towards zero. This is clearly shown in the arc energy balance calculation in 

Tables B.1 (for P0=21.4 atm) and B.2 (for P0=11.2 atm).  

 

            (a) of Figure B.9 

            (b) of Figure B.9 
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            (c) of Figure B.9 

            (d) of Figure B.9 

            (e) of Figure B.9 
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            (f) of Figure B.9 

Figure B. 9. Radial temperature profiles at different instants (different currents) 

before current zero and at current zero for Z=2.3 mm. Results obtained by the Prandtl 

mixing length model and the standard k-epsilon model. P0= 11.2 atm and 21.4 atm, 

and, di/dt=13 Aμs
−1

. (a) 600 A, (b) 200 A, (c) 50 A, (d) 20 A, (e) 10 A and (f) current 

zero. 

 

            (a) of Figure B.10 

            (b) of Figure B.10 
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            (c) of Figure B.10 

            (d) of Figure B.10 

            (e) of Figure B.10 
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            (f) of Figure B.10 

Figure B. 10. Radial temperature profiles at different instants (different currents) 

before current zero and at current zero for Z=7.9 mm. Results obtained are by the 

Prandtl mixing length model and the standard k-epsilon model. P0= 11.2 atm and 

21.4 atm, and, di/dt=13 Aμs
−1

. (a) 600 A, (b) 200 A, (c) 50 A, (d) 20 A, (e) 10 A and 

(f) current zero. 

 

            (a) of Figure B.11 

            (b) of Figure B.11 
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            (c) of Figure B.11 

            (d) of Figure B.11 

            (e) of Figure B.11 
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            (f) of Figure B.11 

Figure B. 11. Radial profiles of radial velocity v at different instants (different 

currents) before current zero and at current zero for Z=7.9 mm. Results are obtained 

by the Prandtl mixing length model and the standard k-epsilon model. P0= 11.2 atm 

and 21.4 atm, and, di/dt=13 Aμs
−1

. (a) 600 A, (b) 200 A, (c) 50 A, (d) 20 A, (e) 10 A 

and (f) current zero. 

 

When current is reduced from 1 kA plateau to current zero, turbulence enhanced 

radial thermal conduction predicted by the Prandtl mixing length model is always 

stronger than that by the standard k-epsilon model (Tables B.1 and B.2). This 

explains why V-I characteristics for the Prandtl mixing length model is always above 

that for the standard k-epsilon model (Figure B.6(a)). However, such a trend is 

reversed in the interval starting approximately 1 μs before current zero (Figure 

B.6(b)) during which the temperature decay and the contraction of electrically 

conducting region for the standard k-epsilon model are much faster than those for the 

Prandtl mixing length model. 
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Table B. 1. Electrical power input together with various energy transport processes 

for the whole arc length at the electrical boundary (4000 K isotherm) at different 

instants (different currents) before current zero and at current zero. Results are 

obtained by the Prandtl mixing length model and the standard k-epsilon model. 

P0=21.4 atm and di/dt=13 A/μs. Mathematical expressions for power input and power 

loss are the same as those in Table 5.1 of Chapter 5. 

 

Model Power 

input 

(W) 

Radiation 

loss 

(W) 

Radial 

thermal 

conduction 

(W) 

Axial 

enthalpy 

convection 

(W) 

Radial 

enthalpy 

convection 

(W) 

Rate of 

change of 

energy 

storage  

(W) 

600 A instant 

(1) 2.336×10
5
 -3.504×10

4
 -1.510×10

5
 -8.327×10

4
 2.467×10

4
 -2.463×10

4
 

(2) 2.112×10
5
 -4.894×10

4
 -9.714×10

4
 -1.107×10

5
 3.240×10

4
 -2.774×10

4
 

200 A instant 

(1) 9.816×10
4
 -2.644×10

4
 -6.852×10

4
 -1.823×10

4
 2.977×10

3
 -1.769×10

4
 

(2) 8.971×10
4
 -3.155×10

4
 -5.366×10

4
 -2.079×10

4
 1.107×10

3
 -2.090×10

4
 

50 A instant 

(1) 2.993×10
4
 -7.128×10

3
 -2.811×10

4
 -4.799×10

3
 -3.330×10

3
 -1.503×10

4
 

(2) 2.829×10
4
 -8.608×10

3
 -2.509×10

4
 -3.496×10

3
 -5.801×10

3
 -1.634×10

4
 

20 A instant 

(1) 1.244×10
4
 -2.269×10

3
 -1.624×10

4
 -1.828×10

3
 -4.482×10

3
 -1.317×10

4
 

(2) 1.215×10
4
 -2.758×10

3
 -1.563×10

4
 -1.180×10

3
 -6.614×10

3
 -1.485×10

4
 

10 A instant 

(1) 6.643×10
3
 -9.574×10

2
 -1.177×10

4
 -1.213×10

3
 -5.011×10

3
 -1.285×10

4
 

(2) 6.778×10
3
 -1.203×10

3
 -1.176×10

4
 -7.388×10

2
 -6.587×10

3
 -1.408×10

4
 

5 A instant 

(1) 3.692×10
3
 -5.454×10

2
 -9.259×10

3
 -9.382×10

2
 -4.912×10

3
 -1.232×10

4
 

(2) 4.059×10
3
 -7.046×10

2
 -9.295×10

3
 -5.204×10

2
 -6.252×10

3
 -1.314×10

4
 

Current zero 

(1) 0.0 -1.788×10
2
 -5.663×10

3
 -6.229×10

2
 -4.105×10

3
 -1.078×10

4
 

(2) 0.0 -3.523×10
2
 -5.429×10

3
 -4.298×10

2
 -4.991×10

3
 -1.157×10

4
 

Key of the models: (1) Prandtl mixing length model and (2) Standard k-epsilon model 
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Table B. 2. Electrical power input together with various energy transport processes 

for the whole arc length at the electrical boundary (4000 K isotherm) at different 

instants (different currents) before current zero and at current zero. Results are 

obtained by the Prandtl mixing length model and the standard k-epsilon model. 

P0=11.2 atm and di/dt=13 A/μs. Mathematical expressions for power input and power 

loss are the same as those in Table 5.1 of Chapter 5. 

 

Model Power 

input 

(W) 

Radiation 

loss 

(W) 

Radial 

thermal 

conduction 

(W) 

Axial 

enthalpy 

convection 

(W) 

Radial 

enthalpy 

convection 

(W) 

Rate of 

change of 

energy 

storage 

(W) 

600 A instant 

(1) 1.583×10
5
 -1.656×10

4
 -1.043×10

5
 -6.954×10

4
 2.309×10

4
 -1.782×10

4
 

(2) 1.408×10
5
 -2.603×10

4
 -5.936×10

4
 -9.654×10

4
 3.009×10

4
 -2.095×10

4
 

200 A instant 

(1) 6.716×10
4
 -1.645×10

4
 -4.736×10

4
 -1.716×10

4
 3.848×10

3
 -1.354×10

4
 

(2) 5.931×10
4
 -1.991×10

4
 -3.331×10

4
 -2.082×10

4
 3.396×10

3
 -1.572×10

4
 

50 A instant 

(1) 2.004×10
4
 -4.802×10

3
 -1.897×10

4
 -3.842×10

3
 -1.835×10

3
 -1.069×10

4
 

(2) 1.836×10
4
 -5.763×10

3
 -1.628×10

4
 -3.919×10

3
 -3.540×10

3
 -1.253×10

4
 

20 A instant 

(1) 8.083×10
3
 -1.576×10

3
 -1.090×10

4
 -1.697×10

3
 -3.012×10

3
 -9.732×10

3
 

(2) 7.603×10
3
 -1.892×10

3
 -1.017×10

4
 -1.362×10

3
 -4.351×10

3
 -1.082×10

4
 

10 A instant 

(1) 4.190×10
3
 -8.679×10

2
 -7.961×10

3
 -1.083×10

3
 -3.324×10

3
 -9.408×10

3
 

(2) 4.060×10
3
 -9.411×10

2
 -7.686×10

3
 -7.745×10

2
 -4.285×10

3
 -1.011×10

4
 

5 A instant 

(1) 2.241×10
3
 -4.160×10

2
 -6.343×10

3
 -8.253×10

2
 -3.232×10

3
 -8.927×10

3
 

(2) 2.276×10
3
 -5.449×10

2
 -6.257×10

3
 -5.724×10

2
 -4.249×10

3
 -9.725×10

3
 

Current zero 

(1) 0.0 -1.381×10
2
 -4.161×10

3
 -5.318×10

2
 -2.807×10

3
 -7.843×10

3
 

(2) 0.0 -2.513×10
2
 -3.939×10

3
 -3.965×10

2
 -3.622×10

3
 -8.462×10

3
 

Key of the models: (1) Prandtl mixing length model and (2) Standard k-epsilon model 
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  (a) 

  (b) 

  (c) 

Figure B. 12. Variation of temperature on the arc axis as a function of current 

(instant) shortly before current zero for three axial positions. Results are obtained by 

the Prandtl mixing length model and the standard k-epsilon model. P0= 11.2 atm and 

21.4 atm, and, di/dt=13 Aμs
−1

. (a) Z=-2.6mm, upstream of nozzle throat, (b) 

Z=2,3mm, middle section of parallel nozzle throat region and (c) Z=7.9mm in 

downstream region of nozzle throat. 
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The rates of temperature decay in three typical regions of the nozzle arc (Figure 

B.12) start to increase rapidly towards current zero approximately 1 µs before current 

zero. The accelerated temperature decay is the result of the combined effects of 

turbulence enhanced thermal conduction and the cooling by the cold gas brought in 

by the radial inflow. Within the parallel throat region and the region downstream of 

the nozzle throat axis temperature is in the region of 9,000K to 6,000K for the two 

turbulence models and for the two stagnation pressures investigated (Figures B.7 and 

B.12). In this temperature range, electron density varies with temperature 

exponentially as given by Saha’s equation for thermal ionization. Thus, associated 

with the rapid decay of temperature the arc resistance increases rapidly before 

current zero (Figure B.13). At di/dt= 13Aµs
-1

, arc resistance ratio at current zero, 

which is defined as arc resistance at 21.4 atm divided by that at 11.2 atm (i.e. 

atmatm RR 2.114.21 / ), is approximately 1.95 for the Prandtl mixing length model and 2.71 

for the standard k-epsilon model. These ratios are close to the pressure dependence of 

RRRV predicted by the two turbulence models (Table 5.8 in Section 5.3 of Chapter 

5). Since arc resistance at current zero determines the post arc current, pressure 

scaling of RRRV according to resistance ratio at current zero appears reasonable.  

The analysis of computational results shows that the pressure dependence of 

RRRV greater than the square root of stagnation pressure is the consequence of 

accelerated temperature decay rate approximately 1µs before current zero. 

Turbulence enhanced thermal conduction and radial cooling are the two dominant 

energy transport mechanisms. This is of course the accumulated effects of the 

non-linear interaction between turbulent fluctuation, temperature, velocity and 

electrical fields from the breakdown of quasi-steady state to current zero. It is not 

possible to derive analytically a simple expression for RRRV as all processes are 

strongly coupled. However, radial enthalpy transport associated with increasingly 

strong radial inflow just before current zero plays a critical role in determining the 

temperature decay rate and the speed of contraction of the arc conducting core. The 

rapid rise of arc resistance just before current zero makes RRRV approximately 
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proportional to the square of stagnation pressure. 

 

  (a) 

  (b) 

Figure B. 13. Variation of arc resistance as a function of current. Results are 

obtained by the Prandtl mixing length model and the standard k-epsilon model. P0= 

11.2 atm and 21.4 atm, and, di/dt=13 Aμs
−1

. (a) Variation of arc resistance and (b) 

enlarged arc resistance variation shortly before current zero. 

 

B.4 Concluding Remarks 

The pressure dependence of the measured RRRV and that of those predicted by 

the Prandtl mixing length model and the standard k-epsilon model are close to the 

square of stagnation pressure rather than to the square root of the stagnation pressure 

for the DC arc. Such strong pressure dependence is due to the rapid decay of arc 

temperature and the shrinkage of the electrically conducting core 1 μs before current 

zero under the combined influence of turbulent enhanced thermal conduction and the 
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radial inflow of cold gas. It has been found that the arc resistance at current zero 

increases with the square of stagnation pressure. It has been suggested that RRRV is 

strongly correlated to the arc resistance at current zero, hence the pressure 

dependence of RRRV. 
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