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Abstract 

Pharmacoresistance in Epilepsy: An Integrative Genetic & Genomic Analysis 
Nasir Mirza 

Epilepsy effects up to 1% of the population, and up to 30% of people with epilepsy are 
pharmacoresistant—they continue to experience seizures despite treatment with maximal doses of 
multiple antiepileptic drugs. The causes of drug resistance in epilepsy remain poorly understood. In 
this work, I have used genetic and genomic analysis techniques to explore the causes of epilepsy 
pharmacoresistance. 

It has been reported that epilepsy pharmacoresistance results from impaired drug penetration into 
the epileptic focus secondary to a localized dysregulation of drug transporters. Solute carrier (SLC) 
transporters form the largest superfamily of multidrug transporters. I used novel in silico and 
stringent ex vivo strategies for identifying the SLCs that are dysregulated in the pharmacoresistant 
epileptic human hippocampus. I discovered that the SLCs dysregulated in the pharmacoresistant 
epileptic human hippocampus are either small metal ion exchangers or transporters of 
neurotransmitters, not antiepileptic drug transporters, and most likely contribute to 
pharmacoresistance by enhancing the intrinsic severity of epilepsy. This finding supports the newly-
proposed and intuitive ‘intrinsic severity hypothesis’ of epilepsy pharmacoresistance.  

According to the intrinsic severity hypothesis, pharmacoresistance in epilepsy results from the 
increased dysfunction of the biological pathways which underlie epilepsy. Hence, I proceeded to 
perform genome-wide genetic and genomic analyses in order to find the most important pathways 
underlying epilepsy and pharmacoresistance in epilepsy. I performed an integrative analysis of 
previously published large-scale gene expression profiling studies on brain tissue from epilepsy 
surgery; the largest and most robust microarray analysis of brain tissue from surgery for 
pharmacoresistant mesial temporal lobe epilepsy; and the first-ever genome-wide association study 
(GWAS) of pharmacoresistant focal epilepsy. By integrating the results of the genetic and genomic 
studies, I was able to show that pharmacoresistance is the result of accumulation of deleterious 
genetic variants of increasing severity and/or numbers within the genes that constitute the core 
pathways underlying epilepsy. I also found that the pathways disrupted in pharmacoresistant 
epilepsy, at both the genetic and genomic levels, belong to many different diverse and disparate 
functional domains, for example ‘axon guidance’, ‘transmembrane transport of small molecules’ and 
‘cell death signalling via NRAGE, NRIF and NADE’. However, using network analysis techniques, I 
showed that these seemingly unrelated pathways form a coherent highly interconnected network, 
and it can be expected that changes in one pathway in this network will have a cascading effect on 
the rest of the network. The most important pathways in these networks are the central ‘hub’ 
pathways, which I identified using betweenness centrality network analysis. 

I then performed the first-ever genetical genomics study in epilepsy using hippocampal samples 
from resective surgery for refractory mesial temporal lobe epilepsy. By integrating genome-wide 
genetic, genetical genomic and genomic studies, and then performing pathway, network and 
centrality analysis, I identified the most important putative central causal pathways underlying 
epilepsy pharmacoresistance: 'transmembrane transport of small molecules' and 'Deleted in 
colorectal cancer (DCC) mediated attractive signalling'. 

In conclusion, by performing genome-wide genetic, genetical genomic and genomic studies, 
followed by integrative analysis, pathway construction and network mapping, I have identified most 

important putative central causal pathways underlying epilepsy pharmacoresistance. 
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Chapter 1: Introduction 

In this introductory chapter, I will define epilepsy; review its burden on the individual and 

society; explain its pharmacological treatment; describe the problem of resistance to this 

treatment; and list the features and prognostic indicators of, and explore possible causes 

underlying, this drug resistance. I will then define and describe the methodology of 

integrative genetics and genomic analysis and explain why this approach is needed in order 

to understand pharmacoresistance in epilepsy. 

1.1 What is epilepsy? 

In 2005, a Task Force of the International League Against Epilepsy (ILAE) formulated 

conceptual definitions of ‘seizure’ and ‘epilepsy’ (Fisher et al. 2005). An epileptic seizure was 

defined as ‘a transient occurrence of signs and/or symptoms due to abnormal excessive or 

synchronous neuronal activity in the brain’. Epilepsy was defined as ‘a disorder of the brain 

characterized by an enduring predisposition to generate epileptic seizures, and by the 

neurobiologic, cognitive, psychological, and social consequences of this condition’. The 

definition of epilepsy required the occurrence of at least one epileptic seizure. 

More recently, the ILAE commissioned a Task Force to formulate an operational definition 

of epilepsy for purposes of clinical diagnosis (Fisher et al. 2014). In December of 2013, the 

ILAE Executive Committee adopted the recommendations as a position of the ILAE. 

According to this definition, epilepsy is a disease of the brain defined by any of the following 

conditions 

1. At least two unprovoked seizures occurring >24 hours apart. 

2. One unprovoked seizure and a probability of further seizures similar to the general 

recurrence risk (at least 60%) after two unprovoked seizures, occurring over the next 

10 years. 

3. Diagnosis of an epilepsy syndrome. 

Seizure types are divided into two broad categories: (1) generalised or (2) focal (also termed 

partial or localization-related). Generalized seizures are conceptualized as those that 

originate at some point within, and rapidly engage bilaterally distributed networks (Berg et 
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al. 2010). Focal seizures originate in networks limited to one cerebral hemisphere (Berg et 

al. 2010). 

The behavioural manifestations of seizures are protean. This is especially true among focal 

seizures where the clinical features vary based on the cortical location of the seizure onset 

zone. For example, possible features of mesial temporal lobe epilepsy (TLE), which is 

commonly caused by hippocampal sclerosis (neuronal cell loss and gliosis in the 

hippocampus), include mnestic, gustatory and olfactory sensations. TLE is the most frequent 

type of refractory partial epilepsy and considered the prototype of surgically remediable 

epilepsies (Mayanagi et al. 1996). 

Table 1.1 Incidences of epileptic syndromes (per 100,000 person years) in three published 

studies 

Type Syndrome (Loiseau et al. 
1990) 

(Zarrelli et al. 
1999) 

(Olafsson et al. 
2005) 

Focal 
epilepsies 

Total 15.3 34.9 18.6 

Idiopathic 1.7 0.2 1.6 

Symptomatic 13.6 17.2 8.4 

Cryptogenic - 17.5 8.6 

Generalised 
epilepsies 

Total 7.2 7.7 3.9 

Idiopathic 6.1 3.7 3.1 

Cryptogenic 1.1 1.7 0.7 

Symptomatic - 2.3 0.1 

 

1.2 Prevalence and burden of epilepsy 

Epilepsy is the most common neurological disorder after stroke: 65 million people have 

epilepsy worldwide (Ngugi et al. 2010). The prevalence of epilepsy varies by population. In 

developed countries, the prevalence is around 700 per 100,000 (Hirtz et al. 2007). In low 

and middle income countries, the prevalence is generally higher. For example, in Ethiopia, a 

developing country, the prevalence of epilepsy is as high as 29.5 per 1000 (95% confidence 

interval 20.5 to 40.9 per 1000) (Ngugi et al. 2010; Thurman et al. 2011). There are 2.6 million 

people with epilepsy in Europe (Olesen et al. 2012), and 400,000 new cases each year 

(Forsgren et al. 2005). 
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The global disease burden from epilepsy, measured as disability-adjusted life years, is higher 

than that for Alzheimer’s disease and other dementias, multiple sclerosis, and Parkinson’s 

disease combined (Murray et al. 2012). The global disease burden from epilepsy is greater 

than that of breast cancer for women, and nearly four-times greater than that of prostate 

cancer for men (Murray et al. 2012). In Europe, the total cost of epilepsy per year is €13.8 

billion (Olesen et al. 2012). 

At the individual level, the consequences of epilepsy can be severe and include shortened 

lifespan, physical injury, neuropsychological and psychiatric sequelae, and social and 

financial disadvantage (Sperling 2004). 

 

1.3 Pharmacological treatment of epilepsy 

Currently available antiepileptic drugs (AEDs) aim to achieve symptom control, i.e., 

suppression of seizures, but have no known impact on the underlying pathophysiology of 

epilepsy. A seizure is the clinical manifestation of a hyperexcitable neuronal network, in 

which the electrical balance underlying normal activity is pathologically altered. Effective 

seizure treatment generally augments inhibitory processes or opposes excitatory processes.  

The serendipitous discovery of phenobarbital in 1912 marked the beginning of the modern 

pharmacotherapy of epilepsy (Yasiry & Shorvon 2012). In the 100 years since, many new 

AEDs have been discovered (Table 1.2). Their mechanisms of action (Table 1.2) fall into a 

number of general categories: the main groups include sodium channel blockers, calcium 

current inhibitors, -aminobutyric acid (GABA) enhancers, and glutamate blockers. 

However, the mode of action of some AEDs falls outside these broad categories. Also, many 

AEDs possess multiple mechanisms of action. Finally, the primary mode of action of some 

AEDs remains to be discovered (Guimaraes & Ribeiro 2010). 

A proportion of patients with epilepsy are pharmacoresistant (see section 1.4 below): they 

continue to experience seizures despite treatment with maximal doses of multiple AEDs 

with different molecular targets and mechanisms of actions. For such patients, surgical 

treatment options may be considered, including surgical resection of the epileptic focus (for 
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example the epileptic hippocampus in mesial temporal lobe epilepsy), vagal nerve 

stimulation (Englot et al. 2011), and deep brain stimulation (Lega et al. 2010). 

 

Table 1.2 AEDs: table listing year in which the AED was first approved or marketed in the US 
or Europe, and its mode of action. Data is from (Schmidt & Schachter 2014). 

AED Year Presumed mechanism of action 

Potassium bromide 1857 GABA potentiation? 

Phenobarbital 1912 GABA potentiation 

Phenytoin 1938 Na+ channel blocker 

Primidone 1954 GABA potentiation 

Ethosuximide 1958 T-type Ca2+ channel blocker 

Diazepam 1963 GABA potentiation 

Carbamazepine 1964 Na+ channel blockade 

Valproate 1967 Multiple, including: GABA potentiation, glutamate (NMDA) 
inhibition, sodium channel and T-type calcium channel blockade 

Clonazepam 1968 GABA potentiation 

Clobazam 1975 GABA potentiation 

Vigabatrin 1989 GABA potentiation 

Lamotrigine 1990 Na+ channel blocker 

Oxcarbazepine 1990 Na+ channel blocker 

Gabapentin 1993 Ca2+ channel blocker (α2d subunit) 

Topiramate 1995 Multiple, including: GABA potentiation, glutamate (AMPA) 
inhibition, sodium and calcium channel blockade 

Levetiracetam 2000 SV2A modulation 

Zonisamide 2000 Na+ channel blocker 

Stiripentol 2002 GABA potentiation, Na+ channel blocker 

Pregabalin 2004 Ca2+ blocker (α2d subunit) 

Rufinamide 2004 Na+ channel blocker 

Lacosamide 2008 Enhanced slow inactivation of voltage gated Na+ channels 

Eslicarbazepine 2009 Na+ channel blocker 

Perampanel 2012 Glutamate (AMPA) antagonist 

 

1.4 Pharmacoresistance in epilepsy 

The Task Force of the ILAE Commission on Therapeutic Strategies has defined the minimum 

criteria for drug resistant epilepsy as the ‘failure of adequate trials of two tolerated and 

appropriately chosen and used AED schedules (whether as monotherapies or in 

combination) to achieve sustained seizure freedom’ (Kwan et al. 2010). To be regarded as 

an adequate trial, the AEDs must be “appropriate” for the patient’s epilepsy and seizure 
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type, and must be administered at therapeutic doses for sufficient lengths of time. Seizure 

freedom is defined as freedom from seizures for a minimum of three times the longest pre-

intervention inter-seizure interval (determined from seizures occurring within the past 12 

months) or 12 months, whichever is longer. This definition is based on observational cohort 

studies of newly diagnosed epilepsy in adults (Kwan & Brodie 2000; Mohanraj & Brodie 

2006) and children (Arts et al. 2004) which suggest that once two appropriately trialled AEDs 

have proven to be inefficacious, the probability of achieving seizure freedom with 

subsequent AED treatments is minimal. Some recent studies appear to suggest that a 

proportion of these patients may still become seizure-free with subsequent drug 

manipulation (Callaghan et al. 2007; Luciano & Shorvon 2007), but these studies were 

retrospective, and did not take into account the reasons for failure which may have included 

inappropriately chosen AEDs or suboptimal treatment schedules. A recent report from a 

prospective study in children documented that although many patients who had failed two 

adequate trials of AEDs had periods of seizure freedom with further drug trials, lasting 

remission remained elusive (Berg et al. 2006). 

30% of epilepsy patients are pharmacoresistant (Shorvon 1996; Tellez-Zenteno et al. 2014).  

1.5 Prognostic factors for pharmacoresistance in epilepsy 

A recent and comprehensive systematic review has summarized the evidence for 

independent prognostic factors for pharmacoresistant epilepsy derived from eleven 

published cohort studies (Wassenaar et al. 2013). Significant prognostic factors were 

symptomatic aetiology, focal seizures, younger age at onset, a high initial seizure frequency, 

epileptic EEG abnormalities, and several clinical items, such as a history of febrile seizures, 

status epilepticus, and a neurodevelopmental delay 

It is important to note that prognostic factors are not necessarily causally related to the 

outcome (Tripepi et al. 2008). Prognostic research is aimed at predicting the risk (that is the 

probability) of disease without any concern about causality. In contrast, aetiological 

research aims to investigate the causal relationship between putative determinants and a 

given disease. In the next section, we consider different theories which have been put 

forward in order to explain the development of pharmacoresistance in epilepsy. 
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1.6 Aetiology of pharmacoresistance in epilepsy 

Three distinct hypotheses have been put forward to explain the development of 

pharmacoresistance in epilepsy:  

1. The multidrug transporter (MDT) hypothesis. 

2. The drug target hypothesis. 

3. The intrinsic severity hypothesis. 

The merits and demerits of each hypothesis are discussed below. It is important to note, 

however, that these hypotheses are not mutually exclusive, and may act in an integrated 

manner to produce pharmacoresistance (Schmidt & Loscher 2009). 

1.6.1 The MDT hypothesis 

 

Figure 1.1 Examples of ABC and SLC transporters at the blood-brain barrier (Giardin 2006). 

ABC transporters require energy from ATP hydrolysis to actively remove compounds from 

the cell. In contrast, for many (though not all) SLCs the transport mechanism is based upon 

anion exchange. BCRP: breast cancer resistance protein; MDR1: multidrug resistance protein 

1, also known as P-gp; MRP: multidrug resistance protein; OATP: organic anion transporting 

protein; OCT: organic cation transporter. 
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Over the last two decades, the most popular and extensively studied hypothesis of epilepsy 

pharmacoresistance has been the MDT hypothesis (Chayasirisobhon 2009). According to 

this hypothesis, pharmacoresistance results from impaired drug penetration into the 

epileptic focus secondary to a localized dysregulation of drug transporters (Chayasirisobhon 

2009). MDTs have been implicated in pharmacoresistance in a number of diseases. The 

MDTs involved in drug resistance in humans are either adenosine triphosphate-binding 

cassette (ABC) proteins (Tiwari et al. 2011) or solute carrier (SLC) proteins (Figure 1.1) 

(Huang & Sadee 2006). There are over 450 known ABC and SLC proteins in total. However, 

research on the MDT hypothesis in epilepsy has been focused almost exclusively one ABC 

transporter: ABCB1 or P-glycoprotein (P-gp).  

1.6.1.1 Studies suggesting increased expression or function of P-gp in epilepsy 

P-gp was first suspected of playing a role in pharmacoresistance in 1979 when its expression 

was found to correlate with resistance to cancer chemotherapy in Chinese hamster ovary 

cells (Riordan & Ling 1979). In 1995, P-gp expression was shown to be increased (Tishler et 

al. 1995) in epileptic foci resected during brain surgery for intractable epilepsy. Since then, 

the overexpression of P-gp in epileptogenic lesions resected during brain surgery for 

refractory epilepsy was shown to be a common feature of different pathologies associated 

with drug-resistant epilepsy (Aronica et al. 2012), for example focal malformations of 

cortical development, hippocampal sclerosis, and tuberous sclerosis.  

Other data from studies on people with drug-resistant epilepsy have also been cited in 

support of a role for P-gp in epilepsy pharmacoresistance. Post-mortem analysis of tissue 

from pharmacoresistant temporal lobe epilepsy patients showed a significantly higher 

percentage area of P-gp-immunopositive labelling in the sclerotic epileptogenic 

hippocampus than in the contralateral hippocampus (Liu et al. 2012). A significant inverse 

linear correlation was found between the brain-to-plasma concentration ratio of an active 

metabolite of oxcarbazepine and the level of brain expression of the ABCB1 mRNA (Marchi 

et al. 2005). 

The results of a recent positron emission tomography (PET) imaging study (Feldmann et al. 

2013) are suggestive of higher P-gp activity in some brain regions for pharmacoresistant 

patients than for seizure-free temporal lobe epilepsy patients. PET revealed reduced uptake 
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of the radio-labelled form of verapamil, a P-gp substrate, in pharmacoresistant compared 

with seizure-free patients. Administration of P-gp inhibitor tariquidar led to an increase in 

the uptake of the radio-labelled substrate. However, it should be noted that the purported 

P-gp overactivity was also seen in areas outside the epileptic focus (for example the 

contralateral hippocampus), which is contrary to the MDT hypothesis, and the response to 

tariquidar was more pronounced in normal subjects than in the refractory epilepsy patients 

with purported P-gp overactivity. 

The results of some studies on animal models of epilepsy are also consistent with a possible 

role of P-gp in epilepsy pharmacoresistance. Kainic acid-induced limbic seizures transiently 

increase P-gp expression in the mouse hippocampus (Rizzi et al. 2002). Pharmacoresistant 

epileptic rats exhibit higher endothelial P-gp expression in limbic regions ipsilateral to the 

seizure focus than do pharmacosensitive rats (Volk & Loscher 2005). Brain/plasma ratio of 

phenytoin was significantly lower in brain regions that had P-gp overexpression (temporal 

hippocampus and parahippocampal cortex) in chronic epileptic rats than in the same brain 

regions in non-epileptic rats, and administration of P-gp inhibitor tariquidar to chronic 

epileptic rats significantly increased the phenytoin brain/plasma ratio in these brain regions 

(van Vliet et al. 2007). Also, studies utilising brain microdialysis in rats have shown that 

carbamazepine (Ma et al. 2013) and phenytoin (Potschka & Loscher 2001; Ma et al. 2013) 

levels in cerebral tissue extracellular fluid increase significantly after the administration of P-

gp inhibitors. Knock-out mice lacking P-gp protein show significant increase in phenytoin 

and carbamazepine concentrations in the hippocampus compared with wild-type mice (Rizzi 

et al. 2002). Co-administration of P-gp inhibitor tariquidar to phenobarbital-resistant rats 

restored the antiepileptic activity of phenobarbital without altering plasma 

pharmacokinetics of the antiepileptic drug (Brandt et al. 2006). Similarly, in the electrical 

post–status epilepticus rat model for temporal lobe epilepsy, co-administration of tariquidar 

improved the anticonvulsive action of phenytoin without altering plasma pharmacokinetics 

of the antiepileptic drug (van Vliet et al. 2006). 

Although the above findings are consistent with a possible role for P-gp in mediating 

pharmacoresistance in epilepsy, there is also a large body of compelling evidence (discussed 

below) which suggests that P-gp is unlikely to play a major role in the development of drug 

resistance in epilepsy. 
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1.6.1.2 Does P-gp transport AEDs? 

Table 1.3 AEDs shown not to be substrates for human P-gp 

AED References 

Carbamazepine (Owen et al. 2001; Mahar Doan et al. 2002; Weiss et al. 2003; 
Crowe & Teoh 2006; Baltes et al. 2007b; Feng et al. 2008; Luna-
Tortos et al. 2008; Zhang et al. 2011; Dickens et al. 2013) 

Diazepam (Cucullo et al. 2007; Feng et al. 2008) 

Ethosuximide (Crowe & Teoh 2006; Feng et al. 2008; Zhang et al. 2010) 

Gabapentin (Weiss et al. 2003; Crowe & Teoh 2006) 

Lacosamide (Zhang et al. 2013)  

Lamotrigine (Weiss et al. 2003; Crowe & Teoh 2006; Feng et al. 2008; Dickens et 
al. 2013) 

Levetiracetam (Baltes et al. 2007b) 

Midazolam (Feng et al. 2008) 

Phenobarbitone (Crowe & Teoh 2006) 

Phenytoin (Weiss et al. 2003; Crowe & Teoh 2006; Baltes et al. 2007b; Feng et 
al. 2008) 

Pregabalin (Chan et al. 2014) 

Rufinamide (Chan et al. 2014) 

Topiramate (Weiss et al. 2003; Crowe & Teoh 2006) 

Valproic acid (Weiss et al. 2003; Baltes et al. 2007a) 

Vigabatrin (Crowe & Teoh 2006) 

Zonisamide (Chan et al. 2014) 

 

If the overexpression of P-gp truly underlies pharmacoresistance in epilepsy, then many (if 

not all) AEDs must be substrates for this transporter. Although some studies have 

demonstrated the transport of a small number of AEDs by P-gp in animal models (Zhang et 

al. 2012), this transport was very weak. For vincristine, a classic P-gp substrate, inhibition of 

P-gp resulted in a 9-fold increase in brain uptake (Drion et al. 1996). In comparison, P-gp 

inhibition only increased the uptake of phenytoin, carbamazepine, phenobarbital, 

lamotrigine, and felbamate, 0.5- to 1.1-fold over baseline (Potschka et al. 2001; Potschka & 

Loscher 2001; Potschka et al. 2002). In the ABCB1 knockout mouse model, brain uptake of 

classic P-gp substrates vinblastine, cyclosporine, and digoxin increased 20- to 50-fold 

(Schinkel et al. 1994; Schinkel et al. 1995). In comparison, there was only a 2-fold increase 

for topiramate, and no increase in brain uptake for phenytoin, phenobarbital, 

carbamazepine, or lamotrigine (Sills et al. 2002). Therefore, the effect of P-gp on the brain 

uptake of AEDs in animal models is barely measurable (Anderson & Shen 2007). In addition, 
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there are inter-species differences in the substrate specificity of P-gp (Baltes et al. 2007b), 

and evidence for the lack of P-gp-mediated AED transport is even stronger in human studies. 

Numerous studies employing many different experimental models have repeatedly 

demonstrated that the most commonly prescribed AEDs are not substrates for human P-gp 

(Table 1.3).  

Is there any evidence that human P-gp is able to transport AEDs? Cucullo and colleagues 

(Cucullo et al. 2007) demonstrated weak transport of phenytoin by P-gp in an in vitro human 

epileptic blood-brain barrier model. However, other studies using the well-established 

hCMEC/D3 human blood-brain barrier model (Dickens et al. 2013); Caco-2 monolayers 

(Crowe & Teoh 2006); and transwell systems of polarized MDCKII dog kidney or LLC-PK1 pig 

kidney cells transfected with human ABCB1 (Weiss et al. 2003; Baltes et al. 2007b; Feng et 

al. 2008) have not found evidence to support transport of phenytoin by human P-gp.  

Given the lack of evidence for human P-gp-mediated transport of AEDs in studies using 

conventional widely accepted and well characterized in vitro assays, some researchers have 

recently employed a new in vitro system called concentration equilibrium transport assay 

(CETA) in an attempt to demonstrate transport of AEDs by human P-gp (Luna-Tortos et al. 

2008). The authors (Luna-Tortos et al. 2008) have argued that as AEDs have high 

permeability across cell barriers and low affinity for P-gp, diffusion across the cell layer may 

mask directional transport. In CETA, in order to remove the concentration gradient and thus 

diffusion, the drug is added at identical concentration to both sides of a polarized, P-gp-

overexpressing cell monolayer, instead of applying the drug to either the apical or 

basolateral side as in a conventional bi-directional assay. In the CETA system, P-gp-mediated 

transport has been demonstrated for phenytoin, phenobarbital, lamotrigine and 

levetiracetam (Luna-Tortos et al. 2008), topiramate (Luna-Tortos et al. 2009), oxcarbazepine 

and eslicarbazepine (Zhang et al. 2011), and lacosamide (Zhang et al. 2013). However, 

positive results in the CETA system cannot be taken as proof that P-gp-mediated transport 

of the AED is relevant in pharmacoresistant epilepsy, for the reasons stated below: 

1. The design of the CETA system is not an accurate representation of the conditions in 

vivo: the concentration of an actively transported drug is highly unlikely to be 

identical on both sides of a biological barrier in vivo (Dickens et al. 2013). 
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2. In the CETA system, the transport of even the most potently transported AED 

(topiramate) was approximately 75% less than for the classic P-gp substrate digoxin 

(Luna-Tortos et al. 2009), further demonstrating that AEDs are not strong substrates 

for P-gp. 

3. Given the high permeability of AEDs across cell barriers and their low affinity for P-

gp, the lack of AED transport in traditional bi-directional assays but weak transport in 

the CETA indicates that the passive diffusion component predominates over the 

active transport, resulting in the absence of significant efflux (Zhang et al. 2013). 

4. P-gp inhibitor tariquidar only partially inhibited transport of levetiracetam and 

phenobarbital (Luna-Tortos et al. 2008), demonstrating that P-gp was not solely 

responsible for the modest transport of these AEDs seen in the CETA system. 

5. The AED transport demonstrated by Luna-Tortos and colleagues (Luna-Tortos et al. 

2008) using the CETA system has not been recreated in an independent study, for at 

least one AED (Dickens et al. 2013). 

In summary, after many years of intense research efforts, there remains a lack of convincing 

evidence that AEDs are high-affinity substrates of human P-gp. 

1.6.1.3 Is there an association between ABCB1 genotypes and response to AEDs? 

In 2003, Siddiqui and colleagues reported a positive association between the ABCB1 

C.3435C>T genotype and poor response to AEDs (Siddiqui et al. 2003). Subsequent to this, at 

least 28 independent genetic association studies (Table 1.3) and at least three meta-

analyses (Leschziner et al. 2007; Bournissen et al. 2009; Haerian et al. 2010) have failed to 

find evidence for this association.  

Two other ABCB1 variants (C.2677C>T and C.1236C>T) have also been the subject of genetic 

association studies in pharmacoresistant epilepsy. For C.2677C>T, approximately 75% of the 

genetic association studies have been negative, while all the C.1236C>T genetic association 

studies have been negative (Table 1.4). Haplotypes of the three aforementioned variants 

have also been analysed and, again, have produced conflicting results (Table 1.4). 

Currently, there is no convincing evidence of a genetic association between ABCB1 variants 

and response to AEDs. It should be noted that the vast majority of the genetic association 

studies are underpowered. There is also a high degree of heterogeneity between the 
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studies, especially in the definition of drug resistance employed, the controls used, types of 

epilepsy included, and the range of AEDs utilised. There is a need for a well-designed and 

adequately powered study in order to resolve the controversial question of whether there is 

an association between ABCB1 genetic variants and epilepsy pharmacoresistance. 
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Table 1.4 Summary of published ABCB1 genotyping studies. 

First author Year Country n - T n - E Definition - T Definition - E Epilepsy 
type 

AEDs D A Gen 

 C.3435C>T                      

Siddiqui 2003 UK 200 115 4 seizures in year 1 year seizure free NS Various R Y CC 

Hajnsek 2004 Croatian 30 30 4 seizures in year 1 year seizure free Various Various R Y TT 

Tan 2004 USA 401 208 4 seizures in year 1 year seizure free Various Various R N - 

Hung 2005 Taiwan 108 223 10 seizures in year 2 year seizure free Various Various R Y CC 

Sills 2005 UK 230 170 1 seizure in a year 1 year seizure free Various NS R N - 

Kim 2006a Korea 99 100 4 seizures in year 1 year seizure free NS Various R N - 

Kim 2006b Korea 99 108 4 seizures in year 1 year seizure free NS Various R N - 

Seo 2006 Japan 126 84 1 seizure in a year 1 year seizure free Various Various R Y TT 

Chen 2007 China 50 164 UTD UTD UTD UTD R N - 

Ebid 2007 Egypt 63 37 1 seizure in 3 months 3 months seizure free Various PHT P Y CC 

Hung 2007 Taiwan 114 213 10 seizures in year 2 year seizure free Various Various R Y CC 

Kwan 2007 China 221 297 1 seizure per month  
over the previous year 

1 year seizure free Various Various R Y CC 

Leschziner 2007 UK 73 76 4 seizures in year or  
epilepsy surgery 

Any patient not 
fulfilling DRE criteria 

NS Various R N - 

Lu 2007 China 72 62 UTD UTD UTD UTD R Y CC 

Shahwan 2007 Ireland 124 242 <50% reduction in 
seizure frequency in 
year prior to recruitment 

50% reduction in 
seizure frequency in 
the year before 
recruitment 

Various Various R N - 

Dericioglu 2008 Turkey 89 100 Resective surgery for 
DRE 

Healthy volunteers Partial Various R N - 

Ozgon 2008 Turkey 44 53 4 seizures in year 1 year seizure free Various CBZ R N - 

Gao 2009 China 70 62 UTD UTD UTD UTD R N - 



25 
 

First author Year Country n - T n - E Definition - T Definition - E Epilepsy 
type 

AEDs D A Gen 

Kim 2009 Korea 198 193 4 seizures in year 1 year seizure free Partial Various R N - 

Kwan 2009 China 194 270 1 seizure per month  
over the previous year 

1 year seizure free Various Various R N - 

Lakhan 2009 India 94 231 4 seizures in year 1 year seizure free Various Various R N - 

Szoeke 2009 Australia,  
Scotland,  
Hong Kong 

208 334 1 seizure in 1 year of 
initial treatment 

 No seizures over the 
first year of treatment 

Various Various P N - 

Ufer 2009 Germany 118 103 NS NS Various Various R N - 

Vahab 2009 India 113 129 <6 months terminal 
remission with trials of 

2 AEDs 

1 year seizure free Various Various R N - 

Alpman 2010 Turkey 39 92 2 seizures while using 

2 AEDs within a 2-year 
period 

Healthy individuals  Various Various R N - 

Grover 2010 India 95 133 1 seizure in 10 months 10 months seizure 
free 

Various Various R N - 

Sanchez* 2010 Spain 111 178 4 seizures in year 1 year seizure free Various Various R N - 

Dong 2011 China 157 193 4 seizures in year 1 year seizure free Various Various R N - 

Haerian 2011a Malaysia 323 362 1 seizure in a year 1 year seizure free Various CBZ or 
VPA 

R N - 

Haerian 2011b Malaysia 249 256 1 seizure in a year 1 year seizure free Various VPA R N - 

Meng 2011 China 24 60 <50% reduction in 
seizure frequency in the 
year prior to last follow-
up 

50% reduction in 
seizure frequency in  
the year prior to last 
follow-up 

Various CBZ R N - 

Sayyah 2011 Iran 132 200 1 seizure per month  
over the previous year 

1 year seizure free Various Various R Y CC 
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First author Year Country n - T n - E Definition - T Definition - E Epilepsy 
type 

AEDs D A Gen 

Sporis 2011 Croatian 57 48 1 seizure per month  
over the previous year 

1 year seizure free Partial Various R N - 

Qu 2012 China 217 320 4 seizures in year 1 year seizure free Various Various R N - 

Sterjev 2012 Macedonia 68 94 4 seizures in year 1 year seizure free Various CBZ R N - 

Subenthiran  2013 Malaysia 162 152 NS 1 year seizure free Complex 
partial 

CBZ R Y TT 

Saygi 2014 Turkey 59 60 4 seizures in year 1 year seizure free Various Various R N - 

Seven 2014 Turkey 69 83 4 seizures over a period 
of 1 year with three 
AEDs 

NS Various Various R N - 

C.2677C>T                      - 

Hung 2005 Taiwan 108 223 10 seizures in year 2 year seizure free Various Various R N - 

Kim 2006 Korea 99 108 4 seizures in year 1 year seizure free NS Various R N - 

Seo 2006 Japan 126 84 1 seizure in a year 1 year seizure free Various Various R Y TT 

Kwan** 2009 China 194 270 1 seizure per month  
over the previous year 

1 year seizure free Various Various R Y TT 

Lakhan 2009 India 94 231 4 seizures in year 1 year seizure free Various Various R N - 

Vahab 2009 India 113 129 <6 months terminal 
remission with trials of 

2 AEDs 

1 year seizure free Various Various R N - 

Alpman 2010 Turkey 39 92 2 seizures while using 

2 AEDs within a 2-year 
period 

Healthy individuals  Various Various R N - 

Grover 2010 India 95 133 1 seizure in 10 months 10 months seizure 
free 

Various Various R N - 

Dong 2011 China 157 193 4 seizures in year 1 year seizure free Various Various R N - 

Haerian 2011 Malaysia 323 362 1 seizure in a year 1 year seizure free Various CBZ/VPA R N - 
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First author Year Country n - T n - E Definition - T Definition - E Epilepsy 
type 

AEDs D A Gen 

Haerian 2011 Malaysia 249 256 1 seizure in a year 1 year seizure free Various VPA R N - 

Meng 2011 China 24 60 <50% reduction in 
seizure frequency in the 
year prior to last follow-
up 

50% reduction in 
seizure frequency in  
the year prior to last 
follow-up 

Various CBZ R N - 

Sayyah 2011 Iran 132 200 1 seizure per month  
over the previous year 

1 year seizure free Various Various R Y - 

Subenthiran  2013 Malaysia 162 152 NS 1 year seizure free Complex 
partial 

CBZ R Y TT 

Seven 2014 Turkey 69 83 4 seizures over a period 
of 1 year with three 
AEDs 

NS Various Various R N - 

 C.1236C>T                     - 

Hung 2005 Taiwan 108 223 10 seizures in year 2 year seizure free Various Various R N - 

Kim 2006 Korea 99 108 4 seizures in year 1 year seizure free NS Various R N - 

Seo 2006 Japan 126 84 1 seizure in a year 1 year seizure free Various Various R N - 

Lakhan 2009 India 94 231 4 seizures in year 1 year seizure free Various Various R N - 

Vahab 2009 India 113 129 <6 months terminal 
remission with trials of 

2 AEDs 

1 year seizure free Various Various R N - 

Grover 2010 India 95 133 1 seizure in 10 months 10 months seizure 
free 

Various Various R N - 

Dong 2011 China 157 193 4 seizures in year 1 year seizure free Various Various R N - 

Haerian 2011 Malaysia 323 362 1 seizure in a year 1 year seizure free Various CBZ or 
VPA 

R N - 

Haerian 2011 Malaysia 249 256 1 seizure in a year 1 year seizure free Various VPA R N - 
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First author Year Country n - T n - E Definition - T Definition - E Epilepsy 
type 

AEDs D A Gen 

Meng 2011 China 24 60 <50% reduction in 
seizure frequency in the 
year prior to last follow-
up 

50% reduction in 
seizure frequency in  
the year prior to last 
follow-up 

Various CBZ R N - 

 Haplotype***                     - 

Zimprich 2004 Austria **** **** **** **** TLE Various R Y CGC 

Hung 2005 Taiwan 108 223 10 seizures in year 2 year seizure free Various Various R Y - 

Kim 2006 Korea 99 108 4 seizures in year 1 year seizure free NS Various R N - 

Seo 2006 Japan 126 84 1 seizure in a year 1 year seizure free Various Various R Y - 

Leschziner 2007 UK 73 76 4 seizures in year or  
epilepsy surgery 

 Any patient not 
fulfilling DRE criteria 

NS Various R N - 

Kwan 2009 China 194 270 1 seizure per month  
over the previous year 

1 year seizure free Various Various R Y - 

Lakhan 2009 India 94 231 4 seizures in year 1 year seizure free Various Various R N - 

Vahab 2009 India 113 129 <6 months terminal 
remission with trials of 

2 AEDs 

1 year seizure free Various Various R N - 

Alpman 2010 Turkey 39 92 2 seizures while using 

2 AEDs within 2-years 

Healthy individuals  Various Various R Y - 

Grover 2010 India 95 133 1 seizure in 10 months 10 months seizure 
free 

Various Various R N - 

Dong 2011 China 157 193 4 seizures in year 1 year seizure free Various Various R N - 

Haerian 2011 Malaysia 323 362 1 seizure in a year 1 year seizure free Various CBZ/VPA R N - 

Meng 2011 China 24 60 <50% reduction in 
seizure frequency in the 
year prior to last follow-
up 

50% reduction in 
seizure frequency in  
the year prior to last 
follow-up 

Various CBZ R N - 
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Symbol Description 

T Drug resistant epilepsy 

I Drug responsive epilepsy 

AED Antiepileptic drug 

A Association found? 

Gen Genotype 

D Design: Prospective or retrospective 

UTD Unable to determine as full article not available or not available in English 

TLE Temporal lobe epilepsy 

NS Not specified 

CBZ Carbamazepine 

PHT Phenytoin 

VPA Sodium valproate 

* In subgroup analysis, CC genotype was significantly associated with DRE in adults or those with symptomatic epilepsy 

** Association found in males and in patients with localization-related epilepsy 

*** Haplotypes were of C.1236C>T, C.2677C>T and C.3435C>T in all studies, except for Kwan et al. (2009): rs3789243 and 
G2677T/A, and Haerian et al. (2011): rs3789243, C.1236C>T, C.2677C>T, rs6949448, C.3435C>T. 

**** Cohort was divided into 3 groups according to seizures per month: A ≤2 seizures (n=44), B >2 and and <6 seizures (n=83), C ≥6 
seizures (n=66) 

 

 

 



 
 

30 
 

 

1.6.1.4 Transporters other than P-gp 

Other transporters studied in epilepsy pharmacoresistance include ABCG2 (breast cancer 

resistance protein or BCRP), and six ABCC proteins: ABCC1 to ABCC6 (multidrug resistance-

associated protein 1 to 6; MRP1 to MRP6).  

As is the case for P-gp, the expression of ABCC1-ABBC6 and ABCG2 is increased in epileptic 

foci resected during brain surgery for intractable epilepsy (Tishler et al. 1995; Dombrowski et 

al. 2001; Sisodiya et al. 2001; Sisodiya et al. 2002; Aronica et al. 2003; Aronica et al. 2004; Lazarowski 

et al. 2004; Vogelgesang et al. 2004; Aronica et al. 2005; Kubota et al. 2006; Lazarowski et al. 2006; 

Ak et al. 2007). 

Human ABCC1, ABCC2 and ABCC5 were unable to transport common AEDs (carbamazepine, 

valproate, levetiracetam, phenytoin, lamotrigine, phenobarbital and topiramate) even in the 

permissive CETA model (Luna-Tortos et al. 2009; Luna-Tortos et al. 2010). Similarly, 

primidone, phenobarbital, phenytoin, carbamazepine, lamotrigine, clonazepam, 

ethosuximide and valproic acid were not substrates for ABCG2 in transport experiments 

performed in human BCRP-expressing MDCKII cell lines (Cerveny et al. 2006). AED transport 

assays have not been performed for ABCC3, ABCC4 and ABCC6.  

A number of genetic association studies for ABCC2 variants and pharmacoresistant epilepsy 

have been published; a recent comprehensive meta-analysis of these studies found no 

significant associations (Grover & Kukreti 2013). Similarly, no association was found 

between polymorphisms in ABCC2 and response to carbamazepine (Radisch et al. 2014). No 

genetic association has been found between pharmacoresistant epilepsy and variations in 

ABCC5 or ABCG2 (Kim et al. 2009; Kwan et al. 2011).  

A conspicuous omission in the search for MDTs underlying epilepsy pharmacoresistance is 

the solute carrier (SLC) superfamily of transporters. The largest superfamily of MDTs is the 

SLC superfamily (Huang & Sadee 2006). There are more than 400 known SLC proteins. It 

would be useful to adopt a comprehensive and systematic approach to investigating the 

role SLC transporters might play in epilepsy drug resistance. 
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1.6.2 The drug target hypothesis 

The second major hypothesis of AED pharmacoresistance is the target hypothesis. According 

to the target hypothesis, epilepsy pharmacoresistance occurs when changes in drug targets 

make them less sensitive to AEDs (Schmidt & Loscher 2005; Remy & Beck 2006). Reduced 

sensitivity to carbamazepine, phenytoin and lamotrigine has been observed in hippocampal 

neurons from patients with intractable temporal lobe epilepsy (Vreugdenhil et al. 1998; 

Schaub et al. 2007). Two forms of the target hypothesis have been proposed: (1) acquired 

and (2) genetic. In the acquired form, the change in the target occurs in conjunction with 

epileptogenesis, as a result of seizures, or as a consequence of drug treatment. In 

the genetic form there is an inherited, inborn difference in the target that confers 

resistance.  

 

The following observations have been cited to support the acquired version of this 

hypothesis. Firstly, in kindled rats, sodium channels were found to exhibit reduced 

sensitivity to carbamazepine which returned to normal 5 weeks after kindling, indicating 

that the changes were related to kindling and not the epileptic state per se, which is 

persistent (Vreugdenhil et al. 1998; Vreugdenhil & Wadman 1999). Secondly, there is a loss 

in benzodiazepine sensitivity in a rat model of temporal lobe epilepsy resulting from 

alterations in the subunit composition of GABAAreceptors (Brooks-Kayal et al. 1998). Thirdly, 

resistance develops to benzodiazepines during prolonged status epilepticus as a result of 

internalization of synaptic GABAA receptors (Wasterlain & Chen 2008; Fritsch et al. 2010; 

Joshi & Kapur 2012).  

 

In support of the genetic version of the drug target hypothesis, the following study has been 

cited. Tate et al. (Tate et al. 2005) reported that a common functional polymorphism in 

the SCN1A gene, which encodes an isoform of voltage-activated sodium channels, was 

associated with the maximum doses of phenytoin and carbamazepine used clinically 

 

There are a number of major criticisms of the drug target hypothesis. Firstly, follow-on 

studies have failed to replicate the association between polymorphism in the SCN1A gene 

and maximum doses of AEDs prescribed (Tate et al. 2006; Zimprich et al. 2008). Secondly, a 

comprehensive genetic association study and meta-analysis has failed to identify any 
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association between SCN1A, SCN2A and SCN3A gene polymorphisms and responsiveness to 

antiepileptic drugs (Haerian et al. 2013). Thirdly, in amygdala-kindled epileptic rats, there is 

no difference in the inhibitory effect of phenytoin on sodium channels in acutely isolated 

hippocampal neurons from phenytoin responders and non-responders (Jeub et al., 2002). 

Fourthly, the validity of the target hypothesis is challenged by the broad range of molecular 

targets of AEDs, which include subunits of voltage-gated sodium and calcium channels as 

well α2δ proteins that are associated with calcium channels, GABAAreceptors, the GAT-1 

GABA transporter, the GABA catabolic enzyme GABA transaminase, KV7/KCNQ/M potassium 

channels, the synaptic vesicle protein SV2A, and AMPA receptors (Meldrum & Rogawski 

2007). Patients with drug-resistant epilepsy are for the most part resistant to all AEDs. 

Hence, targets of all the AEDs would need to be simultaneously modified to produce true 

multidrug resistance. Given the diversity of molecular targets it seems improbable that all of 

the targets would be modified in such a way as to produce pharmacoresistance to all 

available AEDs. Many of the newer drugs act at novel molecular targets that are entirely 

distinct from the targets of the older agents. If target-specific mechanisms were a factor in 

pharmacoresistance, as new, mechanistically novel AEDs were introduced into clinical 

practice there should have been a substantial reduction in the incidence of 

pharmacoresistance, but this has not occurred (Rogawski 2013). 

In summary, it is unlikely that the drug target hypothesis provides a unifying basis for 

pharmacoresistance in epilepsy. 

1.6.3 The ‘intrinsic severity’ hypothesis 

In 2008, Rogawski and Johnson formulated the ‘intrinsic severity hypothesis’ of 

pharmacoresistance in epilepsy (Rogawski & Johnson 2008). They postulated that 

pharmacoresistance is related to disease severity (Rogawski & Johnson 2008), and severity 

simply reflects the magnitude of the underlying epileptic process. In addition, separate 

factors likely regulate severity. Severity factors could be acquired as stochastic events during 

development or by environmental insults, or they could be genetically determined 

(Rogawski 2013).  

Rogawski and Johnson (Rogawski & Johnson 2008) have argued that the current view of 

pharmacoresistance in epilepsy conceptualizes resistance as a problem separate from the 
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disease itself, and this notion has constrained research in the field. This notion has proven 

equally unfruitful in other human diseases. There has been an enormous effort to define a 

role for drug transporters including P-gp as a cause of multidrug resistance in cancer and to 

develop transporter-targeted pharmacological strategies to overcome drug resistance in 

cancer. However, this line of research has not impacted cancer therapeutics. In contrast, 

therapies that take advantage of a deep understanding of cancer biology have been 

remarkably successful (Simon 2006). Similarly in epilepsy, it has been argued (Loscher & Sills 

2007) that there is no evidence that pharmacoresistance develops through mechanisms 

separate from the disease state itself but considerable evidence that the epilepsy in an 

individual patient has an inherent severity that defines the response to medication. 

In order to examine the validity of the intrinsic severity hypothesis, a measure or marker of 

disease severity must be established. It has been suggested that seizure frequency is an 

appropriate marker of disease severity in epilepsy. 

1.6.3.1 Seizure frequency as a marker of disease severity 

The concept that factors related to the occurrence of frequent seizures are associated with 

refractoriness seems biologically plausible: if the epilepsy is of a nature that seizures are 

easy to trigger leading to frequent seizures, then the seizures may also be more difficult to 

suppress. It has been observed in many acute seizure models that suppression of seizures 

conferred by any given dose of AED can be overcome by increasing the intensity of the 

pharmacological or electrical seizure stimulus (Barton et al. 2001). This suggests that if 

susceptibility to seizures is sufficiently high, it may not be possible to prevent recurrence of 

seizures with any nontoxic dose of an AED. 

1.6.3.2 Severity predicts treatment response 

There have been a number of prospective studies of outcome in newly treated epilepsy 

(Cockerell et al. 1997; MacDonald et al. 2000; Sillanpaa & Schmidt 2006) (Musicco et al. 

1997; van Donselaar et al. 1997; Marson et al. 2005; Kim et al. 2006; Leschziner et al. 2006; 

Mohanraj & Brodie 2006). A consistent finding across these studies is that the single most 

important factor associated with prognosis is the frequency of seizures in the early phase of 

epilepsy. Both the number of seizures pre-treatment (Kim et al. 2006; Leschziner et al. 2006; 

Mohanraj & Brodie 2006) and in the immediate period after presentation (MacDonald et al. 
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2000) influence the chance of remission. Indeed, the frequency of seizures in the early 

phase of epilepsy is the dominant risk factor influencing the chance of remission of seizures, 

outweighing the contribution from other factors associated with prognosis. In the National 

General Practice Study of Epilepsy (MacDonald et al. 2000), having 4 seizures in the 6-month 

period after diagnosis of epilepsy, compared to having a single seizure, was associated with 

a halving of the chance of seizure remission. In a hospital-based prospective cohort, patients 

with 11 or more seizures pre-treatment were more than twice as likely to be uncontrolled 

than patients with two or less seizures pre-treatment, independent of the time from first 

seizure to starting treatment (Mohanraj & Brodie 2006). These epidemiological data suggest 

that there are differences in inherent epilepsy severity reflected in the frequency of seizures 

in the early phase of the disease that influence an individual patient's response to AEDs, 

much in the same way that any other disease can vary from mild to severe and show a 

variable response to treatment. The observation that the occurrence of frequent seizures is 

associated with poorer outcome suggests that common neurobiological factors may 

underlie both epilepsy severity and pharmacoresistance. 

1.6.3.3 Genetic contribution to intrinsic severity: 

It has been suggested that genetic factors contribute to intrinsic severity. A number of 

observations support this assertion. There are variations in AED sensitivity within outbred 

rats subjected to the same epileptogenic treatment (Loscher & Rundfeldt 1991; Loscher 

2011), even though there is no difference in the severity of the seizure triggering 

epileptogenesis. These epileptic animals exhibit dramatic individual variability in response to 

AEDs, strongly suggesting that genetic factors play a key role in determining whether 

pharmacoresistance does or does not develop. Moreover, several reports have identified 

specific genetic variants conferring altered epilepsy severity in transgenic mouse models. A 

subclinical mutation in Kcnq2 was found to significantly increase epilepsy severity in mice 

bearing an epilepsy-inducing mutation in Scn2a (Kearney et al. 2006), and, similarly, 

mutations in Scn2a and Kcnq2 were found to increase epilepsy severity in an Scn1a epilepsy 

mutant (Hawkins et al. 2011). Finally, the results of a twin study suggest that genetic 

determinants of epilepsy susceptibility contribute to response to treatment (Johnson et al. 

2003). This study observed high correlations for outcome among twins concordant for 
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epilepsy syndrome, suggesting that epilepsy susceptibility genes have a major influence on 

outcome. 

1.6.3.4 Critiques of the intrinsic severity hypothesis: 

The intrinsic severity hypothesis has been criticised for the following reasons: 

1. Some previously intractable patients do achieve seizure freedom with new AEDs 

(Callaghan et al. 2007; Luciano & Shorvon 2007; Brodie 2010). This does not affect 

the potential validity of the intrinsic severity hypothesis, since a new AED that acts 

by a novel mechanism may be effective in a subset of patients because it is especially 

suited to the neurobiological abnormality underlying their epilepsy.  

2. Some patients with infrequent seizures are drug refractory. It should be noted, 

however, that there is no absolute scale on which to consider seizures frequent or 

infrequent. Furthermore, seizure frequency is not the sole measure of severity. 

Hence, a patient with less frequent seizures may actually have more severe epilepsy 

in the context of the seizure type and epilepsy type. For example, a person 

experiencing generalised tonic-clonic seizures with lower frequency may have a 

more severe epilepsy than another experiencing simple partial seizures with a higher 

frequency. Finally, if epilepsy is caused by an evolving brain pathology, for example 

mesial temporal sclerosis worsening over time, epilepsy may become refractory after 

a period of remission (Berg et al. 2003). 

3. Where response to treatment is defined as achieving freedom from seizures for a 

given period of time, it has been suggested that there is a potential for infrequent 

seizures to be misinterpreted as seizure remission (French 2006). However, if 

infrequent seizures give an erroneous impression of drug responsiveness because of 

the long interval of time between seizures, the association of seizure frequency with 

chance of remission should depend on the duration of the remission period 

analysed. In fact, the association is the same whether remission of epilepsy is 

defined as absence of seizures for a period of 1 or 5 years duration (MacDonald et al. 

2000). In addition, if patients with infrequent seizures and those with frequent 

seizures were equally drug responsive, then the practice of empirical titration of AED 

dose according to seizure recurrence should result in patients with frequent seizures 

achieving more rapid titration and therefore achieving remission of seizures in a 
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shorter period of time than patients with more widely spaced seizures. In practice, 

the opposite is observed (Leschziner et al. 2006).  

4. An alternative interpretation of the epidemiological data is that recurrent seizures 

render the epilepsy more resistant to treatment later on, leading to an acquired 

state of drug resistance. However, there is little evidence that ‘seizures beget 

seizures’ (Berg & Shinnar 1997; Shorvon & Luciano 2007), and good evidence that 

the chances of long-term remission of seizures are not dependent on the duration of 

epilepsy or early drug therapy (Musicco et al. 1997; Marson et al. 2005; Mohanraj & 

Brodie 2006).  

In summary, the intrinsic severity hypothesis offers an intuitive and appealing explanation of 

pharmacoresistance in epilepsy, and is supported by a wide range of epidemiological data. 

At the core of this hypothesis is the idea that pharmacoresistance is caused by increased 

dysfunction of the neurobiological processes underlying epilepsy. This hypothesis remains 

untested in the laboratory. As the processes underlying epilepsy are at present poorly 

understood, it is important that a comprehensive unbiased genome-wide analytical 

approach is adopted in order to identify the central causal mechanisms behind this 

condition. 

1.7 Analytical strategies for studying complex genetic diseases 

1.7.1 The genetic architecture of common epilepsies and response to AEDs 

Common or sporadic epilepsies can be defined as epilepsies ‘without an elicitable strong 

family history, and which are not obviously part of a broader condition (e.g. without 

learning difficulties, somatic malformation or facial dysmorphism)’ (Sisodiya & Mefford 

2011). Twin and family studies provide persuasive evidence that common epilepsies and 

response to AEDs are complex genetic phenotypes: they show evidence of hereditability 

without exhibiting a Mendelian pattern of inheritance (Lennox 1951; Ottman et al. 1996; 

Johnson et al. 2003; Vadlamudi et al. 2004; Tsai et al. 2013).  

Complex genetic diseases are thought to be caused by an unknown number of multiple 

genes, usually interacting with various environmental factors (Davey Smith et al. 2005). 
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There is compelling evidence that common genetic variants contribute to the susceptibility 

to common disease (Lohmueller et al. 2003). Specifically in epilepsy, a number of common 

variants have been found to increase the risk of developing epilepsy (see section 1.7.2). It 

has been suggested that epilepsy is caused by a ‘heterogeneous but pathogenic subsets of 

susceptibility alleles drawn from a much larger pool of potential susceptibility genes, 

meaning variation at no individual susceptibility gene is necessary or sufficient for seizures’ 

(Dibbens et al. 2007). However, it should be noted that rare genitive variations have also 

been found in some cases of common epilepsies (Sisodiya & Mefford 2011). Studies 

performed to date have found rare genetic variants in only small percentages of people with 

common epilepsies (Chen et al. 2003; Helbig et al. 2009; Heinzen et al. 2010). For example, 

Heinzen and colleagues found that the 16p13.11 deletion affects approximately 0.6% of 

patients in a diverse sporadic epilepsy cohort (Heinzen et al. 2010). The role of rare variants 

in the common epilepsies is at present under exploration by deep-sequencing approaches. 

No genetic variants have so far been convincingly shown to influence drug response in 

epilepsy.  

Traditional ‘candidate gene’ approaches have proven unfruitful in uncovering the causes of 

complex diseases as the number of involved genes is large, the disease genes might differ in 

different individuals, and each gene has a small effect size (Cho et al. 2012). In order to 

meet the challenge of studying complex genetic diseases, tools have been developed for the 

simultaneous large-scale genome-wide analysis of genes and gene products. The most 

widely used of these tools are Genome-Wide Association Studies (GWAS) for the 

identification of disease-associated genetic variants, and microarray studies for the 

identification of disease-associated gene transcripts; these tools are described below 

(sections 1.7.2 and 1.7.3). 

The polygenicity underlying a complex disease poses an intriguing translational challenge: 

how can the many different genes be coherently connected together? A parsimonious 

hypothesis is that the polygenic basis of a complex disorder is manifested in the 

dysregulation of one or a number of specific pathways. Genetic variations at many different 

loci could introduce numerous slight alterations that result in a pathway(s) that is 

insufficiently robust in response to an environmental insult. Risk for a complex disorder 
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could be conferred by the dysfunction of the pathway(s) rather than any single gene. 

Network mapping techniques are needed to understand of the roles of pathways in complex 

biological traits; these techniques are also discussed below (section 1.7.5). 

1.7.2 Studying structural genetic variation: 

The structural genetic variants most commonly subjected to whole-genome high throughput 

analyses are single nucleotide polymorphisms (SNPs). SNPs—common DNA sequence 

variations in which a single nucleotide differs between individuals—are the most abundant 

form of human genetic variation (Marth et al. 1999). A Genome-Wide Association Study 

(GWAS) surveys the whole of the genome for disease-associated SNPs. Millions of SNPs are 

analysed in a typical GWAS. By comparing the allele frequencies of genotyped SNPs 

between individuals with and without disease, a GWAS can identify putative causal variants 

or variants that are in strong linkage disequilibrium with putative causal variants. GWAS is a 

powerful tool in the study of complex diseases. GWAS has an impressive track record of 

success in complex human diseases and has yielded a plethora of findings: there are now 

well over 2000 loci that are significantly and robustly associated with one or more complex 

traits (Visscher et al. 2012). GWAS have also led to a number of notable discoveries about 

response to therapeutics. For example, a SNP close to the IL28B gene is associated with 

response to treatment for hepatitis C (Ge et al. 2009): the good response genotype is 

associated with a greater than 80% chance of clearance in European- Americans, while the 

poor response genotype is associated with only about a 30% chance. 

Compared to emergent deep-sequencing techniques (see below), GWAS is a mature and 

inexpensive technology; quality control, imputation, and analysis are readily accomplished; 

and there are large amounts of data that can be used for comparisons (Klein et al. 2010). 

The SNP content of most commercially-available GWAS arrays is sufficient to capture the 

majority of common variation in European populations (Klein et al. 2010). 

To date, there has been only one published GWAS of AED response, which did not find any 

significant variants (Speed et al. 2014). There have been a number of GWAS studies of 

susceptibility to common epilepsies, and a recent meta-analysis that included 8696 cases 

and 26 157 controls (2014) identified statistically significant loci at 2q24.3, implicating 
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SCN1A, and at 4p15.1, harbouring PCDH7. The vast majority of effect sizes for individual 

variants identified in GWAS are generally small (odds ratio ≤ 1.5) (Stranger et al. 2011). It 

has been suggested by utilizing even larger sample sizes, further susceptibility variants for 

epilepsy can be identified. The strategy of using very large sample sizes has proven highly 

effective in other neurological diseases, for example multiple sclerosis (Beecham et al. 

2013). It should be noted that another technique for increasing the power to detect genetic 

associations in GWAS is to use network modelling; this method is discussed in further detail 

below (section 1.7.5). 

Next-generation DNA sequencing, which allows a near comprehensive analysis of genetic 

variants, has to date been applied to only a small cohort of sporadic (idiopathic generalized) 

epilepsy patients in one study (Heinzen et al. 2012) and was restricted to exome 

sequencing; this limited study did not produce positive results. Larger scale deep-

sequencing studies in epilepsy are underway, and are likely to play an important role in 

finding rare disease-associated genetic variations which cannot be detected through GWAS. 

The analytical techniques discussed in this section provide valuable information about 

genetic structural variations, but do not provide an insight into changes in genetic function 

associated with epilepsy. High throughput transcriptomic analysis is a useful tool for 

performing a genome-wide study of changes in genetic function. 

1.7.3 Studying genetic function: transcriptomic analysis  

Transcriptomic analysis techniques include microarray studies and RNA sequencing (RNA-

seq). RNA-seq offers a number of advantages over microarrays, including enhanced 

sensitivity, but is also more costly (Wang et al. 2009b). Currently, microarray analysis is the 

more commonly used technology. To date, there are no published RNA-seq analyses of 

epileptic brain tissue, whereas there are a number of such microarray studies, which will be 

discussed in detail in Chapter 2. The most common form of microarray technology is the 

cDNA microarray. In this, mRNA extracted from the sample is reverse transcribed, with the 

simultaneous incorporation of label, and the resulting cDNA provides a quantifiable signal 

when it binds to complementary DNA spotted, in a grid arrangement, on to a solid support 

such as a glass slide (Wildsmith & Elcock 2001). The primary output from such studies is a 
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list of ‘differentially expressed’ genes: genes with significantly altered levels of expression in 

disease tissue relative to controls. Traditionally, a few of the most significantly dysregulated 

genes are chosen for further validation and study.  

Microarray studies have been used extensively and successfully to investigate biomarkers 

and mechanisms of human diseases and drug response (Gupta et al. 2010; Mendrick 2011; 

Aguilar et al. 2014; Davies et al. 2014; Raddatz et al. 2014; Zhu et al. 2014). 

1.7.4 Limitations of genetic and transcriptomic studies 

Although GWAS and microarray studies are powerful investigative techniques, limitations in 

the way data from these studies are traditionally analysed has constrained their potential 

impact on the understanding of disease.  

Microarray studies, on their own, cannot determine whether identified gene expression 

changes cause the disease, or are caused by the disease, or are unrelated to the disease 

process. Furthermore, it has been suggested that many of detected changes in gene 

expression are specific to laboratory or experimental conditions, and provide limited 

information about the underlying disease aetiology (Wang et al. 2010). Finally, the 

traditional methodology of choosing a few of the most significantly dysregulated genes for 

further validation and study underuses the ‘depth’ inherent in the microarray data set. This 

piecemeal approach risks missing causally important genes and processes.  

GWAS, on their own, cannot determine if any identified associations are due to genetic 

variations that cause the disease or variations that are unrelated to the disease. Also, 

individual genetic variations tend to have a small effect size and tests for association may 

not reach a stringent genome-wide statistical significance threshold. Furthermore, the small 

effect sizes for these associations do not explain the observed heritability of most traits 

(Maher 2008). In addition, it is can be challenging to translate a genetic association into a 

functional connection with the trait: the diseased-associated variant might lie in a genomic 

region that is yet to be annotated, or it may fall within a gene with multiple potential roles 

depending on the biological context. Even if the gene is successfully annotated, it might be 

unsuitable for therapeutic targeting. 
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In order to overcome the above weakness, integrative data processing techniques have 

been developed, which are discussed below. 

1.7.5 Integrative approaches 

The integrative approaches being considered fall into two broad categories: (1) network 

mapping, and (2) integration of intermediate phenotypes. 

1.7.5.1 Network mapping 

If a disease is caused by the combined influence of many dysfunctional genes, the individual 

effect of each gene might be small and thus hard to detect. This difficulty is further 

aggravated by the fact that, for complex genetic disease, different cases of the same disease 

might be caused by varying combination of genetic perturbations (Cho et al. 2012). Of 

course, genes do not work in isolation; genes and gene products interact with each other to 

form complex interaction networks. Thus a perturbation in one gene can be propagated 

through the interactions, and affect the whole network. The fact that similar disease 

phenotypes result from the dysfunction of different genes suggests that these different 

genes are not unrelated but form part of the same molecular network (Schadt 2009). 

Therefore, in studies of complex diseases, researchers increasingly focus on groups of 

interconnected genes forming a network.  

The network-based analytical approach offers several advantages over single-marker or 

single-gene analysis. Taking GWAS pathway-based analysis as an example, this method has 

been shown to boost the power to identify genetic associations (Wang et al. 2007). Genetic 

heterogeneity may cause any one causal variant to exhibit only modest disease risk in the 

sample as a whole, since different individuals may possess different disease risk 

polymorphisms at different loci in the same gene, or in different genes. This will reduce 

power to detect any one variant by traditional association methods. However, if the genes 

in question are members of the same biological network, then considering the pathway as 

the unit of analysis may increase power to detect association between the genes and 

disease.  For similar reasons, association of disease with biological pathways may be easier 

to replicate across different studies than association with individual SNPs. This was clearly 
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shown in an analysis of Crohn's disease (Wang et al. 2009a), where the IL12/IL23 pathway 

showed evidence of enrichment in four independent GWAS, despite the genes and SNPs 

involved differing between the studies. In addition, by identifying additional susceptibility 

genes, pathway-based analysis can be used to fill-in part of the ‘missing heritability’ 

described above (Fridley & Biernacka 2011). Furthermore, compared with gene-based or 

SNP-based analysis, pathway-based analysis may yield more secure insights into disease 

biology since an associated pathway is likely to implicate function better than a hit in a 

single gene that may have many functional possibilities. Finally, as the most associated gene 

in a pathway might not be the best candidate for therapeutic intervention, targeting 

susceptibility pathways might also have clinical implications for finding additional drug 

targets.  

Numerous network construction techniques have been devised, which can be divided into 

three broad categories: (1) Physical interaction network construction which is dependent on 

prior knowledge of protein-protein interactions; (2) Functional interaction network 

construction which is dependent on prior knowledge of functional interactions; and (3) Co-

expression network construction which is independent of prior knowledge. These 

techniques are described below: 

Protein interaction networks (an example is shown in Figure 1.2) can be constructed on the 

basis of known protein-protein interactions which have been collated, from published 

literature, in a number of publicly accessible databases (Salwinski et al. 2004; Kerrien et al. 

2012; Chatr-Aryamontri et al. 2013). However, it should be noted that the human protein 

interactome is still far from being fully identified. Current protein-protein interaction data 

comprise interactions only among a relatively small subset of the proteins known to be 

present in humans (de Silva et al. 2006; Stumpf et al. 2008). It has been shown that network 

inference using incomplete protein-protein interaction data can lead to biased results (de 

Silva et al. 2006). 
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Figure 1.2 An example of a protein-protein interaction network (Russell & Aloy 2008). The 

disease network is built from known protein-protein interactions around genes associated 

with the onset of chronic (green) and acute (blue) forms of myeloid leukaemia. Some of the 

nodes in the disease network are either primary or secondary targets (yellow triangles) of 

imatinib (Gleevec), a drug used to treat people with chronic myeloid leukaemia. The use of 

imatinib has several associated adverse effects, the most frequent of which is 

myelosupression. Imatinib affects a number of proteins in the network directly related to 

the formation of bone marrow tissue (alert signs). The authors drew the figure with 

AxPathBuilder (http://www.anaxomics.com/). Nodes have been represented by different 

shapes depending on the number of interactions they make outside the depicted network, 

from the 6 interactions of IL5RA to the 347 of TRAF6. 
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While physical interaction networks connect proteins that physically interact with each 

other, functional interaction networks connect molecules that work together to effect the 

same function even if they do not necessarily physically interact. These functional units are 

generally referred to as pathways (see Figure 1.3 for an example). The genes in a pathway 

work in a tightly regulated and highly coordinated manner to bring about a specific function. 

A number of high-quality well-annotated manually-curated pathway databases are in 

existence (Tanabe & Kanehisa 2012; Caspi et al. 2014; Croft et al. 2014). Typically, each 

pathway in a database contains not only topological connectivity information but also the 

roles of molecules such as whether a given molecule is an activator or inhibitor of the 

activity of another molecule.  The pathway databases can be exploited for identifying 

enriched pathways within a set of results (Curtis et al. 2005). Pathway-based analysis has 

found wide-spread acceptance in microarray analysis, and is now beginning to be applied to 

GWAS (Yaspan & Veatch 2011). A considerable advantage of identifying significant pathways 

within the results of an analysis is immediate functional characterisation of the output, as 

each pathway serves a clearly defined purpose. A limitation of the pathway-enrichment 

analysis approach, as it has been most widely applied, is that each pathway is considered an 

isolated entity, and the interactions between them are not explored. However, biological 

pathways do not work in isolation, and different pathways may interact through either 

shared components or regulatory mechanisms (Ponzoni et al. 2014). With this in view, 

various methods have recently been devised in order to construct networks of enriched 

pathways from transcriptomic data. For example, the Enrichment Map tool (Merico et al. 

2010) displays connections between pathways by analysing the overlap between their 

annotated genes, whereas other methodologies construct pathway networks based on 

known physical interactions between proteins belonging to different pathways (Li et al. 

2008). 
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Figure 1.3 Figure of antigen presentation pathway taken from a study by Degenhardt and 

colleagues (Degenhardt et al. 2010). Metastatic and vertical growth phase melanoma cell 

lines were subjected to microarray-based gene expression analysis. Significantly 

differentially expressed genes between metastatic and vertical growth phase melanoma cell 

lines were loaded into and viewed with the Ingenuity pathway analysis software (Jimenez-

Marin et al. 2009). Red represents decreased expression of components of this pathway in 

metastatic cells compared to vertical growth phase cells. 

Co-expression network construction is based on the premise that functionally related genes 

are likely to show mutual dependence in their expression patterns (Cho et al. 2012). Hence, 

gene co-expression can be seen as an indication of a functional relationship between the 

genes. The construction of co-expression networks consists of two steps (Veiga et al. 2010). 

First, a pairwise comparison of all gene expression profiles is performed using a similarity 

metric. This results in a fully connected network among all genes, with the weight of each 
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link equal to the similarity metric. Second, the complete set of links is filtered by their 

weight, using hard or soft thresholding (Langfelder & Horvath 2008). Links that ‘survive’ 

thresholding constitute the co-expression network. Dense sub-networks (or modules) are 

often identified within the larger co-expression network (see Figure 1.4 for an example). 

Certain lines of evidence indicate that co-expression networks are biologically meaningful 

(Veiga et al. 2010). The resulting networks have special properties (for example scale-free 

topology or fat-tailed degree distribution) that are shared by many other biological 

networks, and are robust to the dataset used for network inference, but disappeared when 

networks were regenerated using randomised data. Moreover, hubs (genes with many links) 

in these co-expression networks were enriched in essential genes.  

A number of similarity measures can be employed for co-expression network construction, 

for example correlation or mutual information (MI). It should be noted that correlation is 

geared towards discovering linear relationships between gene expression profiles, which do 

not always reflect the biological situation (Lecca & Priami 2013). For example, multiple 

binding sites and saturation effects can make the relationship between a transcription 

factor and its target non-linear. Like correlation, MI is a measure that detects statistical 

dependence between two variables. But unlike correlation, it does not assume linearity, or 

other specific properties, of the dependence (Faith et al. 2007). As such, MI is able to detect 

regulatory interactions that might be missed by linear metrics such as the correlation 

coefficient. 

Possible biological causes of gene co-expression are direct or indirect regulation of one gene 

by the other, or co-regulation of both by a third gene. Therefore, gene co-expression can 

indicate a direct or indirect regulatory relationship. A special from of co-expression network 

is the gene regulatory network. Gene regulatory network reconstruction algorithms identify 

regulatory relationships based on the assumption that changes in the expression level of a 

transcription factor should be mirrored in the expression changes of the genes regulated by 

the transcription factor. Indirect links in an inferred gene regulatory network are deemed 

undesirable as they are assumed not to represent physical interactions (Veiga et al. 2010). 

Several filtering techniques have been developed to reduce inference of interactions via 

intermediaries. For correlation-based networks, vanishing partial correlation (the 
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correlation between two genes disappears when the effect of a third gene is taken into 

account) can be used to filter out indirect links (de la Fuente et al. 2004). For MI-based 

network inference methods, an example of an algorithm that filters out indirect links is 

ARACNe (Margolin et al. 2006). ARACNe employs MI to detect regulatory interactions and 

uses data processing inequality, an information-theoretical property, to test whether a link 

is indirect, and therefore should be removed from the network. Another example is the 

context likelihood of relatedness (CLR) algorithm (Faith et al. 2007). After computing the MI 

between regulators and their potential target genes, CLR calculates the statistical 

significance of each MI value: the algorithm compares the MI between a transcription 

factor-gene pair to the background distribution of MI scores for all possible transcription 

factor-gene pairs that include either the transcription factor or its target. The most probable 

interactions are those whose MI scores stand significantly above the background 

distribution of MI scores. 

The network inference methods described above are unsupervised and rely on gene 

expression data alone. Supervised and integrative methods of regulatory network inference 

have also been developed.  For example SIRENE (Supervised Inference of Regulatory 

Networks) (Mordelet & Vert 2008) predicts new gene regulatory relationships by taking as 

input gene expression data and a list of known regulatory relationships between 

transcription factors and target genes. In contrast to other methods for regulation inference 

based on the detection of similarity between expression profiles of transcription factors and 

their targets, SIRENE is based on the hypothesis that genes regulated by the same 

transcription factor exhibit similar expression variations. 

It has been reported that the overlap between the gene regulatory predictions from 

different network inference methods can be low (De Smet & Marchal 2010). However, in 

many biologically meaningful ways, for example enriched biological processes and 

pathways, the ranks of the degree centrality values and the major hub genes in the inferred 

networks, there is a high degree of consistency between different methods (de Matos Simoes 

et al. 2013). Furthermore, it has been observed that the results of different network 

inference methods show a similar degree of overlap with an external validation standard 

(De Smet & Marchal 2010). This suggests that the discrepancy in predicted interactions is 

not due to the failure of individual methods to infer biologically relevant interactions, but is 
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rather due to the complementarity of the different methods. Hence, it is likely that different 

methods highlight different interaction types, so aggregating the outcomes of 

complementary methods offers a means of improving the breadth and the accuracy of the 

predictions. Indeed, it has been shown that an ensemble of the predictions made by the 

best performing methods (‘wisdom of crowds’) more closely approximates the true gene 

regulatory network than the predictions made by each method separately (Marbach et al. 

2012). 

Genome-wide gene network analyses typically produce large networks that involve 

hundreds of gene interactions. Such networks might have interesting topological properties 

that are biologically meaningful, but are normally difficult to interpret in terms of cellular 

functionality. The prediction of the functional role of a network may be possible if the 

network contains a sufficient number of genes of known functions. If a subset of genes can 

be assigned a specific functional category, for example a particular biological pathway, then 

statistical tests can be used to determine if that subset is larger than expected by chance 

(see Figure 1.4 for an example). A variety of software tools have been developed to perform 

such an analysis (Tipney & Hunter 2010).  
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Figure 1.4 Human liver coexpression network (Friend 2010). Gene modules are identified 

within the network using a hierarchical clustering algorithm. The colours of the nodes 

represent their module assignments. Pathway enrichment terms are assigned to individual 

modules. 

 

1.7.5.2 Integration of intermediate phenotypes 

The analytical approach of integrating intermediate phenotypes—termed ‘systems 

genetics’—is useful for the identification of genes, pathways and networks that underlie 

common human diseases. The science of systems genetics has been developed in response 

to the need to understand how loci identified in GWAS contribute to disease susceptibility. 

Systems genetics approaches can be integrated with GWAS results to predict causal genes 

and their functions. 

Systems genetics utilizes intermediate molecular phenotypes to bridge DNA variations with 

the traits of interest. Most commonly, the intermediate molecular phenotype examined is 

expression of gene transcripts. Transcript levels can be considered intermediate phenotypes 

as DNA variation contributes to the clinical trait by perturbing gene expression. Studies 

using mice, rats, and human cells and tissues have revealed that the expression of a high 
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percentage of genes (≥30%) is substantially influenced by DNA variants (Romanoski et al. 

2010; van Nas et al. 2010; Orozco et al. 2012). Most significant SNPs for GWAS map outside 

protein-coding regions, and >75% of GWAS SNPs map to functional regulatory elements that 

have been identified in the Encyclopedia of DNA Elements (ENCODE) project (Schaub et al. 

2012). These results suggest that genetic variants that alter gene expression, rather than 

variants that alter protein sequences, form the primary basis of natural variation in complex 

traits.  

Genomic sequence variants that correlate with gene-expression levels are termed 

expression quantitative trait loci (eQTL). eQTL studies (also termed genetical genomics 

studies) are similar to traditional genetic-association studies, but instead of associating 

genetic variants with discrete traits such as disease status, eQTL studies correlate genetic 

variants with quantitative gene-expression levels.  It is important that the intermediate 

phenotype is analysed in the context that is the most relevant to the clinical trait. It has 

been shown that 69% to 80% of eQTLs operate in a cell-type specific manner (Dimas et al. 

2009), and 93% of eQTLs within the same tissue show significant evidence of gene-by-

environment interactions (Orozco et al. 2012). Hence, whole-genome transcriptome-

expression analysis should be performed in samples of pathological tissue from affected 

individuals and whole-genome genotyping must be performed in the same individuals. The 

transcript levels can then be tested for correlation with genomic sequence variants.  

eQTL studies can be used to link genomic sequence variations to transcriptomic changes to 

the clinical phenotype. An eQTL that maps to a disease locus can be considered a likely 

causal gene underlying the disease (Thessen Hedreul et al. 2013). In addition to identifying 

the likely causal variants, the eQTL data helps to provide an explanation of its mechanism of 

action. 

Systems genetics techniques with network modelling have been used successfully in a 

number of human studies. For example, in a recent study employing such techniques, KLF14 

was identified as a causal gene for multiple metabolic phenotypes and its mechanism of 

action was successfully determined (Small et al. 2011). In another study, systems genetics 

techniques revealed that a non-coding polymorphism at the 1p13 locus modulates a 
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regulatory pathway for lipoprotein metabolism and alters the risk for myocardial infarction 

in humans (Musunuru et al. 2010Musunuru et al. 2010). 

1.8 Aims of this work 

As detailed in the preceding sections, drug resistance in epilepsy is a significant clinical 

problem, the causes of which remain poorly understood. To date, the MDT hypothesis has 

been the most widely investigated putative explanation of epilepsy pharmacoresistance, 

with the vast majority of the research effort being focused on P-gp. However, a review of 

the evidence indicates that dysregulation of P-gp is unlikely to provide a unifying basis for 

pharmacoresistance in epilepsy. A glaring omission in the search for MDTs underlying 

epilepsy pharmacoresistance is the SLC superfamily of transporters—the largest superfamily 

of MDTs. There is a need to systematically search for evidence of dysregulation of SLCs in 

refractory epilepsy. The intrinsic severity hypothesis offers an intuitive and appealing 

explanation of pharmacoresistance in epilepsy, but remains untested in the laboratory. It is 

important that this possible explanation of drug resistance in epilepsy is objectively 

investigated. At the core of this hypothesis is the idea that pharmacoresistance is caused by 

increased dysfunction of the neurobiological pathways underlying epilepsy. Systems 

genetics techniques with network modelling provide the most suitable tools for trying to 

decipher the pathways underlying epilepsy and epilepsy pharmacoresistance. 

In order to fill the substantial gaps in knowledge described above, the following analyses are 

proposed in this work: 

1. I will Identify the SLC transporters significantly dysregulated in the 

pharmacoresistant epileptic focus. For this, I will use a robust in silico approach that 

exploits relevant published data and builds upon them using cutting-edge 

computational tools; I will then verify the output of the in silico analysis using a 

robust ex vivo approach. 

2. There have been a number of published genome-wide transcriptomic studies on 

brain tissue from epilepsy surgery, but they have failed to make an impact on our 

understanding of pharmacoresistance in epilepsy. I will discuss the causes behind 

this failure and tackle these causes by performing an integrative analysis of 

previously published large-scale gene expression profiling studies on brain tissue 
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from epilepsy surgery. Through this analysis, I will identify the genes, pathways and 

processes most consistently dysregulated in pharmacoresistant epileptic foci, and 

determine if these results support the MDT hypotheses, the drug target hypothesis 

or the intrinsic severity hypothesis of pharmacoresistance in epilepsy. 

3. In order to overcome some of the shortcomings of previously published 

transcriptomic studies on brain tissue from epilepsy surgery, I will perform the 

largest and most robust microarray analysis of resected pharmacoresistant epileptic 

hippocampal tissue from surgery for refractory mesial temporal lobe epilepsy. I will 

identify the differentially expressed genes, and differentially expressed and 

differentially connected pathways. I will then construct a network of differentially 

regulated pathways and identify the most central pathways in the network. 

4. I will perform a GWAS in order to identify genetic variants associated with the 

pharmacoresistant focal epilepsy phenotype and to identify biological pathways 

enriched with disease-associated variants. Again, I will construct a network of 

disease-associated pathways and identify the most central pathways in the network. 

5. I will perform a genetical genomics or eQTL study on resected pharmacoresistant 

epileptic hippocampal tissue from surgery for refractory mesial temporal lobe 

epilepsy, in order to identify genetic variants that regulate gene expression in the 

pharmacoresistant epileptic human hippocampus. eQTL analysis is an important tool 

for identifying causal disease loci. 

6. I will integrate the above genetic and genomic studies in order to determine if 

genetic evidence supports the intrinsic severity hypothesis. I will integrate the 

aforementioned genetic, genetical genomic and genomic studies in order to identify 

putative causal genes and pathways. Once again, I will construct a network of causal 

pathways and identify the most central causal pathways in the network. These are 

likely to be the most central causal pathways underlying pharmacoresistant epilepsy. 
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Chapter 2: An Integrative Analysis of Large-Scale Gene 

Expression Profiling Studies on Brain Tissue from 

Epilepsy Surgery 

2.1 Introduction 

As detailed in Chapter 1, epilepsies are among the most common neurological disorders, 

affecting up to 1% of the population (Sander 2003). Most patients with epilepsy become 

seizure-free with antiepileptic drug (AED) therapy. However, approximately 30% of epilepsy 

patients have a medically intractable condition even if treated with various AEDs at maximal 

dosages either alone or in combination (Shorvon 1996). A subset of patients with intractable 

epilepsy have the potential for a surgical cure, most commonly those with hippocampal 

sclerosis (Engel 2003). Surgical samples from patients with intractable epilepsy provide a 

unique opportunity to directly analyse the human epileptic focus in order to determine the 

causes of pharmacoresistance. Many different causes of pharmacoresistance have been 

postulated (see Chapter 1). The exact molecular mechanisms underlying 

pharmacoresistance, however, are still poorly understood. Alterations in the expression of a 

large number of genes are thought to be responsible, but most of the numerous genes that 

participate in the development of pharmacoresistance in epilepsy remain unidentified.  

To date, the vast majority of studies on samples from epilepsy surgery have focused 

primarily on a number of selected candidate genes. However, these techniques are not 

suitable for dissection of multiple interacting molecular pathways or screening potential 

molecular abnormalities when the list of candidate genes is extensive. In contrast, large-

scale microarray studies offer the advantage of assaying gene expression in a 

comprehensive, unbiased and genome-wide fashion. Analysing the expression profile of 

many genes simultaneously in large-scale expression studies, without making prior 

assumptions about candidate genes, allows the identification of new genes and molecular 

pathways associated with the condition. There have been at least 12 published large-scale 

gene expression studies on tissue from epilepsy surgery in the last ten years (see below). 
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However, they have failed to make a significant impact on our understanding of the causes 

of pharmacoresistance. In our view, this failure is due to several reasons.   

First, authors of most microarray studies have focused on selected genes or pathways in 

their published results. Large-scale gene profiling studies suffer from high numbers of false 

positive results. Before drawing conclusions about the differential expression of a specific 

gene, it is thought necessary to demonstrate independent experimental validation (King & 

Sinha 2001) using techniques such as reverse transcription-polymerase chain reaction. 

Therefore, it is commonplace to use the microarray as a screening tool, then to validate a 

few chosen genes for additional investigation. However, this methodology under-uses the 

‘depth’ inherent in the original microarray dataset and is prone to missing potentially 

important genes and networks. Hence, experts (Rhodes et al. 2002) have proposed using 

multiple microarray datasets that address similar hypotheses to simultaneously cross-

validate all of the positive results. This inter-study cross-validation approach has been 

adopted in the present work.  

Second, doubts have been raised about the reproducibility of microarray studies in epilepsy 

(Lukasiuk & Pitkanen 2004; van Gassen et al. 2008; Wang et al. 2010). It has been suggested 

that the majority of changes in gene expression are specific to laboratory or experimental 

conditions with very few genes demonstrating changes in more than two publications 

(Wang et al. 2010).  

Third, the results of different microarray studies have not been integrated to give a 

coherent picture of the genomic changes involved in epilepsy pharmacoresistance.  

We believe that the above problems can be overcome by testing the validity and 

reproducibility of the individual microarray studies and by performing an integrative analysis 

of all available microarray results. We are aware of only two previous published reviews 

which have included microarray studies on non-cancerous brain tissue from epilepsy surgery 

(Lukasiuk & Pitkanen 2004; Wang et al. 2010). However, neither of these reviews included 

all currently available microarray studies on brain tissue from epilepsy surgery; in fact, the 

study by Lukasiuk and Pitkänen, (2004) includes only one human microarray study, and the 

study by Wang et al., (2010) includes only three human large-scale gene expression studies. 

These reviews found a very small number of genes that showed similar expression profiles 
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and, hence, found it difficult to draw robust conclusions about the possible mechanism(s) of 

pharmacoresistance in epilepsy. In the present work, we have performed an integrative 

analysis of all available microarray studies on non-cancerous brain tissue from epilepsy 

surgery with the aim of identifying novel and important genes and networks that play a role 

in pharmacoresistance. 

2.2 Methods 

2.2.1 Inclusion Criteria 

We aimed to include all large-scale gene expression profiling studies fulfilling the following 

criteria: 

1. Recruited patients had clearly defined refractory epilepsy. 

2. The epileptic focus was ascertained on the basis of clinical features, 

electroencephalography, brain imaging, and post-operative tissue histology as 

necessary. 

3. ‘Pharmacoresistant’ tissue was compared with suitable control (non-epileptic or 

‘pharmacoresponsive’) tissue. 

4. Epileptic tissue analysed was not cancerous or neoplastic. 

5. At least 500 genes from across the genome were assayed. 

6. Minimum Information About a Microarray Experiment (MIAME)-compliant data was 

provided or, at the very least, a list of significantly regulated genes and the direction 

of change (up- or down-regulated) was provided. 

2.2.2 Search Strategy 

We searched records in Medline and Embase, without language restriction, between 

January 1987 and January 2011. Large-scale microarray technology was first described in 

1987 (Kulesh et al., 1987); hence 1987 formed the starting point for our search. We used the 

following search terms: (1) "gene-expression profiling", or (2) "microarray analysis", or (3) 

"transcription profiling", or (4) "cluster analysis", or (5) "Affymetrix", (6) or "GeneChip", or 

(7) “serial analysis of gene expression”, or (8) “SAGE”, and (1) “epilepsy”, or (2) “TLE”, or (3) 

“MTLE”. We also hand-searched the reference lists of every primary study, previously 

published systematic reviews and other review articles. 
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We also searched public repositories of microarray datasets: Array Express 

(www.ebi.ac.uk/arrayexpress), GEO (www.ncbi.nlm.nih.gov/geo), Stanford Microarray 

Database (smd.stanford.edu), University of Pennsylvania RAD 

(www.cbil.upenn.edu/RAD/php/index.php), UNC Microarray Database (genome.unc.edu), 

MUSC Microarray Database (proteogenomics.musc.edu/musc_madb.html), Genevestigator 

(www.genevestigator.com), Princeton University MicroArray database 

(puma.princeton.edu), University of Tennessee Microarray Database (genome.ws.utk.edu). 

2.2.3 Data Gathering: Raw Data 

We found 12 published genome-wide gene expression profiling studies on non-neoplastic 

tissue from epilepsy surgery. Raw data for the study by Ozbas-Gerceker et al., (2006) was 

available from the GEO database. Minimum Information About a Microarray Experiment 

(MIAME)-compliant data for the study by van Gassen et al., (2008) was available on the 

ArrayExpress database. MIAME-compliant data was not publically available for any other 

study.  The corresponding author from each of the remaining ten studies was contacted to 

request MIAME-compliant microarray results data, but MIAME-compliant data was not 

provided by any author. As raw data was only available for two studies performed on two 

entirely different platforms (Serial Analysis of Gene Expression and two-channel 

oligonucleotide microarray analysis), we judged that a useful integrative analysis of the raw 

data could not be performed, and raw data was not used in the present study. Instead, we 

obtained differentially regulated gene lists from individual studies, as detailed below. 

2.2.4 Data Gathering: Gene Lists 

Six studies published complete lists of all genes which were differentially regulated in 

epileptic tissue according to each study’s individually defined criteria (Becker et al. 2002; 

Becker et al. 2003; Arion et al. 2006; Jamali et al. 2006; Ozbas-Gerceker et al. 2006; Lee et 

al. 2007; van Gassen et al. 2008). Xi et al., (2009) published a partial list of gene regulated in 

their study. Xiao et al., (2008) directly provided a list of all genes which were differentially 

regulated in epileptic tissue according to their individually defined criteria. Three studies did 

not publish a list of regulated genes and their authors did not provide this on request (Lee et 

al. 2004; Li et al. 2006; Liu et al. 2007), and hence were excluded from further analysis in 

this systematic review. 
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2.2.5 Data Integration 

To allow inter-study comparison, gene identifiers from each study were converted to Entrez 

gene numbers, unless these were provided in the publication.  Affymetrix probe numbers 

were converted to Entrez gene numbers using NetAffx Analysis Center 

(www.affymetrix.com/analysis). All other gene identifiers were converted to Entrez gene 

numbers using MatchMiner (build 137, discover.nci.nih.gov/matchminer). 

For each gene list, changes in gene expression were changed to a binary score: any gene up-

regulated was given a score of +1, while any gene down-regulated was given a score of −1. 

The nine lists of regulated genes from the nine included studies were integrated in a MS 

Excel spreadsheet. 42 genes were excluded because of conflicting scores (that is, they were 

down-regulated in one study but up-regulated in another), leaving 1407 regulated genes in 

the integrated list incorporating all included studies. The total score was calculated for each 

gene.  

2.2.6 Data Validation 

The overlapping probabilities of differentially regulated gene lists were calculated using 

ConceptGen (conceptgen.ncibi.org/core/conceptGen), a gene set enrichment testing tool. 

ConceptGen uses the Expression Analysis Systematic Explorer (EASE) score (a modified 

Fisher's exact test widely employed in published literature) to test pairs of gene lists to 

determine if there exists a larger number of overlapping genes than is expected by chance  

(Hosack et al. 2003). P-values are then adjusted for multiple testing by calculating the False 

Discovery Rate (Benjamini & Hochberg 1995), values <0.05 being deemed significant. All of 

the gene lists from the included studies were tested in pairs in this manner. In addition, to 

test the validity of the list of genes differentially regulated in only one study, we compared 

this to a list of all genes from CarpeDB (www.carpedb.ua.edu), a dynamic continuously-

updated epilepsy genetics database. We extracted the human genes in the CarpeDB 

database. In addition, we extracted the rat and mouse genes and mapped them to human 

homologues using ConceptGen. 278 CarpeDB human, mouse and rat genes in total mapped 

to ConceptGen.  



 
 

77 
 

2.2.7 Gene Ontology Enrichment Analysis 

Gene ontology (GO) terms enrichment analysis was performed in the Database for 

Annotation, Visualization and Integrated Discovery (DAVID) version 6.7 

(david.abcc.ncifcrf.gov). DAVID performs an enrichment test based on the EASE score, and a 

False Discovery Rate <0.05 is deemed significant. For biological process and cellular 

component terms, there were a large number of enriched broad GO terms, which made 

practical interpretation difficult. Hence, for biological process and cellular component 

domains, ‘Go Fat’ analysis was performed. Go Fat filters the broadest terms so that they do 

not overshadow the more specific terms. 

2.2.8 Pathway Analysis 

Ingenuity Systems (www.ingenuity.com) Core Analysis was used to determine significantly 

enriched canonical pathways and to build significantly enriched networks from the full list of 

differentially regulated genes. The significance of the association between our data set 

genes and the canonical pathways was measured in two ways: (1) a ratio of the number of 

genes from the data set that map to the pathway divided by the total number of genes that 

map to the canonical pathway is displayed, and (2) a Fischer’s exact test was used to 

calculate a p-value, determining the probability that the association between the genes in 

the data set and the canonical pathway was explained by chance alone. Networks were 

ranked by a score: the higher the score, the lower the probability of finding the observed 

data set genes in a given network by chance. The score takes into account the number of 

data set genes and the size of the network, and is the negative log of the p-value.  

2.2.9 Comparison with an Alzheimer’s Disease Brain Microarray Dataset 

To counter arguments that the genetic changes highlighted by this analysis are non-specific 

and could be found in any brain pathology, we compared our results with the results of a 

large-scale gene expression profiling study on brain samples from 34 individuals with 

Alzheimer’s disease (AD) (Liang et al. 2008). From this study, we extracted the list of genes 

exhibiting differential expression between AD-affected and normal hippocampi—an AD 

hippocampus dataset was used as most of the included epilepsy studies utilized 

hippocampal tissue. 3738 unique genes could be mapped to Entrez gene IDs. Ingenuity 

Systems Pathway Analysis was used to determine significantly enriched canonical pathways 
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from this gene list. The top ten canonical pathways from the epilepsy and AD datasets were 

then compared.  

2.3 Results 

2.3.1 Gene lists 

We found 12 published large-scale genome-wide gene expression profiling studies on non-

neoplastic tissue from epilepsy surgery (Becker et al. 2002; Becker et al. 2003; Arion et al. 

2006; Jamali et al. 2006; Ozbas-Gerceker et al. 2006; Lee et al. 2007; van Gassen et al. 2008; 

Xiao et al. 2008; Xi et al. 2009). Gene lists were available for nine genome-wide gene 

expression studies, and these were included in the present review. Seven studies published 

one differentially regulated gene list each. However, Lee et al., (2007) and van Gassen et al., 

(2008) used more than one type of control tissue and published more than one list of 

differentially regulated genes each. Lee et al., (2007) used two types of controls: (1) 

histologically normal CA1 from patients with ‘paradoxical temporal lobe epilepsy (PTLE)’, 

citing the evidence that the poor seizure free outcome (44%) in PTLE following 

hippocampectomy suggests that the hippocampus is unlikely to be epileptogenic in this 

group, and (2) histologically normal CA1 tissue from ‘mass-associated temporal lobe 

epilepsy (MaTLE)’ where the mass lesion was outside the hippocampus, citing the evidence 

that mesial temporal lobe epilepsy (MTLE) granule cells are hyperexcitable while those in 

MaTLE are not. The authors presented two lists of differentially regulated genes: (1) genes 

regulated by 1.5 fold or more for both MTLE vs. PTLE and MTLE vs. MaTLE, and (2) genes 

regulated 1.5 fold or more when MaTLE and PTLE were considered replicates of non-

sclerotic hippocampi. Regulated genes from both lists were integrated into the current 

systematic review, giving a list of 758 unique genes that could be mapped to Entrez gene 

numbers. Similarly, van Gassen et al., (2008), compared slices of sclerosed hippocampus 

with histologically normal hippocampal slices from patients with MTLE but no hippocampal 

sclerosis (HS). However, van Gassen et al., (2008) also compared normal hippocampal 

autopsy samples with histologically normal hippocampal slices from patients with MTLE but 

no HS. The non-HS MTLE and HS groups were found to share a large group of differentially 

expressed genes when compared to the autopsy group, and there was a significant overlap 

between functional gene classes affected in non-HS MTLE and HS groups when compared to 

autopsy samples. Hence, the autopsy vs non-HS MTLE gene list was also deemed 
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appropriate for inclusion in the current systematic review. In total, van Gassen et al., (2008) 

presented three differentially regulated gene lists: (1) autopsy vs HS, (2) autopsy vs non-HS, 

and (3) non-HS vs HS. Regulated genes from all three lists were integrated into the current 

systematic review. 24 genes had conflicting changes in expression (downregulated in one 

list but upregulated in another) and were excluded, leaving 521 unique genes. 

2.3.2 Study characteristics 

The nine included studies had sample sizes ranging from six to 60. All studies used test 

tissue from the temporal lobe, and all but three studies (Jamali et al. 2006; Xiao et al. 2008; 

Xi et al. 2009) used test tissue from the hippocampus. Gene expression profiling platforms 

used included one-channel microarrays, two-channel microarrays and Serial Analysis of 

Gene Expression (Table 2.1). The smallest microarray chip used was able to assay up to 588 

unique genes (Clontech’s Atlas Human Neurobiology array used by Becker et al. 2002), while 

the largest was able to assay up to 21,329 unique genes (Operon’s Human Array-Ready oligo 

set version 2.0 used by van Gassen et al. 2008).  

We assessed the methodological quality of the included studies. Each study had specific 

methodological strengths and weaknesses. For example, van Gassen et al. (2008) performed 

a like-for-like tissue comparison, detailed probe- and array-level quality control procedures, 

corrected p-values for multiple testing, and deposited MIAME-compliant data in a publically-

accessible repository, but used a modest sample size and applied no fold change criterion to 

differentially regulated gene lists. On the other hand, Xiao et al. (2008) used a large sample 

size and applied appropriate fold change criterion, but did not perform a like-for-like tissue 

comparison, or detail probe- and array-level quality control procedures, or perform 

correction for multiple testing, or deposit their data in a public database. Table 2.2 lists the 

criteria used to assess methodological quality, and the quality assessment outcomes for the 

individual studies. 
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Table 2.1 Included large-scale gene expression profiling studies on brain tissue from epilepsy surgery 

Name Test tissue Control tissue Chip Number of regulated 
genes 

Lee et al. 2007 Sclerosed CA1 from MTLE (n=8) Histologically normal CA1 from MaTLE 
(n=6) or PTLE (n=6) 

Affymetrix U133A 674 (MTLE vs PTLE and 
MTLE vs MaTLE)  
947 (MTLE vs others) 

van Gassen et al. 
2008 

Sclerosed hippocampus from MTLE 
patients (n=4) 

Hippocampus from MTLE patients 
without HS (n=4) and autopsy (n=4) 

Human Array-Ready 
oligo set version 2.0, 
Operon 
Biotechnologies 

Autopsy vs non-HS: 322  
Autopsy vs HS: 322 
non-HS vs HS: 206 

Xi et al. 2009 Anterior temporal neocortex 
epileptogenic zone (n=40) 

Anterior temporal neocortex removed 
for raised ICP (n=20) 

ns 143 

Ozbas-Gerceker 
et al. 2006 

Anterior hippocampus (n=6) Anterior hippocampus tissue from 
autopsy (n=1) 

SAGE 143 

Xiao et al. 2008 Temporal lobe (n=40): HS, FCD, etc Temporal neocortex, hippocampus, 
parietal cortex or frontal cortex from 
brain trauma patients (n=20) 

Biostar H-40s 142 
 

Arion et al. 2006 ‘Spiking areas’ from anterolateral 
temporal cortical samples (n=6) 

‘Non-spiking’ from anterolateral 
temporal cortical samples (n=6) 

Affymetrix U133A 76 

Becker et 
al.2003 

Sclerosed CA1 from MTLE (n=5) Dentate gyrus from same patients (n=5) Affymetrix U133A 25 

Becker et al. 
2002 

Sclerosed hippocampus (n=3) Normal hippocampus from tumor 
patients (n=2) or epilepsy patients (n=1) 

Atlas, Clontech 21 
 

Jamali et al. 
2006 

Entorhinal cortex (n=5) Lateral temporal neocortex (n=5) Micromax 16 

FCD=focal cortical dysplasia; HS=hippocampal sclerosis; ICP=intracranial pressure; IE=intractable epilepsy; MaTLE=mass-associated temporal 

lobe epilepsy; MTLE=mesial temporal lobe epilepsy; NIE=non-intractable epilepsy; ns=not specified; PTLE=paradoxical temporal lobe epilepsy; 

SAGE=serial analysis of gene expression. 
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Table 2.2 Critical appraisal of included studies. FDR: false discovery rate; FWER: Family-wise error correction. 

Study Sample size Like-for-like 
test & control 
tissues used 

Data QC 
procedures 
detailed 

Correction for 
multiple 
testing 

Effect size 
criterion applied 

Raw data 
provided 

Lee et al. 2007 20   FDR < 0.05 Fold change ≥ 1.5  

van Gassen et al. 2008 12   FWER < 0.05   

Arion et al. 2006 12   FDR=0.057 Fold change ≥ 1.2  

Jamali et al. 2006 10 §  na§ Fold change ≥ 2.56  

Xi et al. 2009 60    Fold change ≥ 2  

Ozbas-Gerceker et al. 2006 7 *     

Xiao et al. 2008 60    Fold change ≥ 2  

Becker et al. 2003 10    Fold change ≥ 1.5  

Becker et al. 2002 6      

§In the study by Jamali et al. 2006, tissue from the entorhinal cortex (test) was compared with tissue from the lateral temporal neocortex 

(control). However, genes were only considered regulated in the epileptic focus if quantitative RT–PCR confirmed no significant difference in 

expression between the entorhinal cortex and lateral temporal neocortex of non-epileptic autopsy brain samples. The statistical test employed 

was the ‘z-score’. 

Did not specify what, if any, statistical test used. 

*Autopsy control used. 
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2.3.3 Study heterogeneity 

There was heterogeneity within the studies and the number of genes found to be regulated 

in the individual studies varied widely (Table 2.1). The largest parts of this variation can be 

explained by: 

1. The number of genes that can be assayed by the different arrays (see above). 

2. The widely differing criteria used to define statistically significant change in gene 

expression (Table 2.2). 

Other sources of heterogeneity were: 

1. Differences in sample handling and RNA extraction techniques. 

2. Different gene expression profiling platforms used. 

3. Varying microarray data normalization procedures.  

4. Test tissue used: Sclerosed hippocampus was used by most studies, but other 

anatomical regions and other pathologies were also employed by some studies 

(Table 2.1). 

5. The use of at least four different types of control tissue:  (1) non-epileptic brain 

tissue removed from the same patients as part of the surgical procedure, (2) normal 

hippocampal tissue from autopsy, (3) normal brain tissue removed from other 

patients for various indications, (4) histologically normal hippocampal tissue from 

patients with MTLE.  

While acknowledging the heterogeneity within the studies, it is important to note that there 

is also an underlying commonality in the design of the studies: comparing gene expression 

between pharmacoresistant epileptic brain samples and non-epileptic or 

pharmacoresponsive brain samples. Although some of the differentially expressed genes 

identified in individual studies will be specific to the histological characteristics of the tissues 

being compared and to laboratory conditions, a significant subset of genes in each list 

represents the universal genetic changes linked with pharmacoresistance. As validation of 

this concept, we determined the size of the overlap between pairs of gene lists and 

calculated if this size was greater than would be expected by chance alone (see ‘Data 

validation’ section below). 
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2.3.4 Data validation 

The overlapping probabilities of differentially regulated gene lists were calculated—all of 

the gene lists from the included studies were tested in pairs. The size and statistical 

significance of the overlaps are shown in Appendix 1. Our results show that there was a 

statistically significant overlap between gene lists from studies done on different types of 

brain tissue using different array platforms (elaborated further below). 

To test the validity of the list of genes differentially regulated in only one study, we 

compared this to a list of all human genes and human homologues of mouse and rat genes 

from CarpeDB (www.carpedb.ua.edu), a dynamic continuously-updated epilepsy genetics 

database. Of the 278 genes thus extracted from CarpeDB, 54 overlapped with our list of 

genes differentially regulated in only one study. This overlap was statistically significant (FDR 

P=1.2x10−24).  

2.3.5 Overlapping gene lists 

Genes differentially expressed in three or four studies are listed in Table 2.3.  Prominently 

represented in these two lists are genes involved in neuroinflammation, in the control of 

synaptic transmission and in the restructuring of neuronal networks—specific examples are 

discussed below (see Discussion section). Genes differentially regulated in one study or two 

studies are shown in Appendix 2.  

2.3.6 Gene Ontology Enrichment Analysis 

The top 25 significantly enriched GO terms are listed in Table 2.4. The cellular component 

ontology term enrichment suggests that the most important processes in the development 

of pharmacoresistance are occurring in neuronal projections, in the growth cone, at the pre- 

and post-synaptic terminal, in the cytoskeleton and in membrane-bound vesicles. The most 

important molecular functions are calcium transport and signalling, cytoskeletal function, 

and transporter activity. The most significant biological processes are synaptic transmission 

and synaptic plasticity, regulation of the action potential, cellular cation homeostasis, axonal 

and dendritic morphogenesis, and cytoskeletal organization. 

2.3.7 Pathway Analysis 

The top 25 significantly enriched canonical pathways and networks are shown in Table 2.5. 

Details of all enriched pathways and networks are provided in Appendix 3. An explanation of 
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how some of the most significant pathways and networks might contribute to the 

development of pharmacoresistance is presented in the Discussion section. 

2.3.8 Comparison with an Alzheimer’s disease brain microarray dataset 

To counter arguments that the genetic changes highlighted by this analysis are non-specific 

and could be found in any brain pathology, we compared our results with the results of a 

microarray study on AD-affected hippocampi. From the AD study, we extracted 3738 unique 

genes which could be mapped to Entrez IDs. Ingenuity Systems Pathway Analysis was used 

to determine significantly enriched canonical pathways from this gene list. In Table 2.6, we 

compare the top ten canonical pathways from the AD and the epilepsy datasets which 

convincingly demonstrated that there was no overlap between the identified top canonical 

pathways for the two datasets. In addition, the processes performed by the canonical 

pathways were also very different. For example, the top five canonical pathways in the 

pharmacoresistant epilepsy dataset are related to restructuring of neuronal networks 

(cholecystokinin signalling), modulation of synaptic transmission (synaptic long term 

potentiation, neuropathic pain signalling), and neuroinflammation (semaphorin signalling, 

chemokine signalling), while the top five pathways in the AD dataset are related to protein 

degradation (protein ubiquitination pathway), energy metabolism (mitochondrial 

dysfunction, oxidative phosphorylation), and translational regulation (regulation of eIF4 and 

p70S6K signalling, eIF2 signalling). 
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Table 2.3 Genes differentially expressed in three or four studies 

Symbol Description Molecular function Up or down 
regulated 

Number of 
studies 

GABRA5 GABA-A receptor, alpha 5 GABA-A receptor activity Down 4 

NRGN Neurogranin calmodulin binding Down 4 

CCL2 Chemokine (C-C motif) ligand 2 CCR2 chemokine receptor binding Up  4 

GFAP Glial fibrillary acidic protein protein binding Up 4 

CPLX2 Complexin 2 syntaxin binding Down 3 

ENC1 Ectodermal-neural cortex  actin binding Down 3 

HPCAL4 Hippocalcin like 4 calcium channel regulator activity Down 3 

INHBA Inhibin, beta A cytokine activity Down 3 

PLCB1 Phospholipase C, beta 1 calcium ion binding Down 3 

PSD Pleckstrin and Sec7 domain containing ARF guanyl-nucleotide exchange factor activity Down 3 

SNAP25 Synaptosomal-associated protein, 25kDa SNARE binding Down 3 

STMN2 Stathmin-like 2 protein binding Down 3 

CAPN3 Calpain 3, (p94) calcium ion binding Up 3 

CD99 CD99 molecule protein binding Up 3 

CDK2AP1 CDK2-associated protein 1 DNA binding Up 3 

DYNLT1 Dynein, light chain, Tctex-type 1 motor activity Up 3 

OGG1 8-oxoguanine DNA glycosylase damaged DNA binding Up 3 

PABPC4 Poly(A) binding protein, cytoplasmic 4 RNA binding Up 3 

RDX Radixin actin binding Up 3 

SPARC Secreted protein, acidic, cysteine-rich calcium ion binding Up 3 

TF Transferrin ferric iron binding Up 3 

ZFP36L1 Zinc finger protein 36, C3H type-like 1 AU-rich element binding Up 3 
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Table 2.4 Gene ontology term enrichment 

Molecular Function Biological Process Cellular Component 

protein binding transmission of nerve impulse neuron projection 

Binding synaptic transmission Synapse 

calmodulin binding cell projection organization Vesicle 

cytoskeletal protein binding neuron development cytoplasmic vesicle 

kinase activity cell-cell signalling cell fraction 

protein kinase activity Behaviour Cytosol 

actin binding neuron differentiation cell projection 

nucleotide binding neuron projection development vesicle membrane 

protein serine/threonine kinase activity learning or memory membrane-bounded vesicle 

ribonucleotide binding cell projection morphogenesis plasma membrane part 

purine ribonucleotide binding response to organic substance Axon 

transferase activity, transferring phosphorus-
containing groups 

cell morphogenesis cytoplasmic membrane-bounded vesicle 

phosphotransferase activity, alcohol group as 
acceptor 

cellular component morphogenesis synapse part 
purine nucleotide binding cell part morphogenesis cell soma 

structural molecule activity cell motion insoluble fraction 

transporter activity neuron projection morphogenesis cytoplasmic vesicle part 

lipid binding regulation of synaptic plasticity cytoplasmic vesicle membrane 

adenyl ribonucleotide binding regulation of neuron projection development membrane fraction 

cation-transporting ATPase activity response to endogenous stimulus coated vesicle 

protein complex binding regulation of cell projection organization clathrin-coated vesicle 

ATP binding intracellular signalling cascade plasma membrane 

protein tyrosine kinase activity glial cell development site of polarized growth 

di-, tri-valent inorganic cation transmembrane 
transporter activity 

cellular ion homeostasis synaptic vesicle 

#24 not significant regulation of cell death clathrin coated vesicle membrane 

#25 not significant regulation of axonogenesis growth cone 
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Table 2.5 Top 25 canonical pathways 

Canonical Pathways 

Cholecystokinin/Gastrin-mediated Signaling 

Synaptic Long Term Potentiation 
Semaphorin Signaling in Neurons 

Neuropathic Pain Signaling In Dorsal Horn Neurons 
Chemokine Signaling 

GNRH Signaling 
RhoA Signaling 

Renin-Angiotensin Signaling 

Role of NFAT in Cardiac Hypertrophy 
Glutamate Receptor Signaling 

Axonal Guidance Signaling 

CDK5 Signaling 

Integrin Signaling 
CXCR4 Signaling 

Ephrin Receptor Signaling 

Molecular Mechanisms of Cancer 
Melatonin Signaling 

Thrombin Signaling 
CREB Signaling in Neurons 

Protein Kinase A Signaling 
IGF-1 Signaling 

Regulation of Actin-based Motility by Rho 

Calcium Signaling 

ERK/MAPK Signaling 

Corticotropin Releasing Hormone Signaling 
 
 

Table 2.6 Top 10 canonical pathways 

Pharmacoresistant epilepsy Alzheimer’s disease 

Cholecystokinin/Gastrin-mediated Signalling Protein Ubiquitination Pathway 

Synaptic Long Term Potentiation Mitochondrial Dysfunction 

Semaphorin Signalling in Neurons Regulation of eIF4 and p70S6K Signalling 

Neuropathic Pain Signalling In Dorsal Horn Neurons eIF2 Signalling 

Chemokine Signalling Oxidative Phosphorylation 

GNRH Signalling Purine Metabolism 

RhoA Signalling Breast Cancer Regulation by Stathmin1 

Renin-Angiotensin Signalling NRF2-mediated Oxidative Stress Response 

Role of NFAT in Cardiac Hypertrophy Huntington's Disease Signalling 

Glutamate Receptor Signalling Estrogen Receptor Signalling 
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2.4 Discussion 

2.4.1 Study heterogeneity and validation 

While there is heterogeneity within the studies included in this review, there also is an 

underlying commonality in their design: comparing the gene expression between 

pharmacoresistant epileptic brain samples and non-epileptic or pharmacoresponsive brain 

samples. Although some of the differentially expressed genes identified in individual studies 

will be specific to the histological characteristics of the tissues being compared and to 

laboratory conditions, a significant subset of genes in each list represents the universal 

genetic changes linked with pharmacoresistance. As validation of this concept, our pairwise 

comparisons showed that there was a statistically significant overlap between gene lists 

from studies done on different types of brain tissue using different types of array 

technologies. For example, a study comparing various epileptic focus pathologies (focal 

cortical dysplasia, temporal lobe malacia, hippocampus sclerosis, neuron loss, neuron 

degeneration, gliosis, astrocytosis) with normal tissue from various brain regions of brain 

trauma patients using a Biostar H-40s microarray (Xiao et al., 2008) had a statistically 

significant overlap (FDR=1.2x10−2) with a study comparing sclerosed CA1 with histologically 

normal CA1 from MTLE patients using an Affymetrix U133A microarray (Lee et al., 2007).  

In addition, a significant number of the 1174 genes which were differentially expressed in 

only one study (a ‘non-corroborated gene set’) are also likely to be relevant to 

epileptogenesis and pharmacoresistance. To demonstrate this we compared the non-

corroborated gene set with CarpeDB, a dynamic continuously-updated epilepsy genetics 

database. Of the 278 genes extracted from CarpeDB, 54 genes overlap with our non-

corroborated gene set. This overlap is highly significant (FDR=1.2x10−24). This suggests that 

the non-corroborated gene list is also an important data source which should be 

appropriately studied and interpreted (see below). 

It is of course possible that some of the gene expression changes identified in this analysis 

are the consequence, rather than the cause, of refractory seizures; this limitation is inherent 

in large-scale gene expression profiling studies and, hence, also in this analysis. The 

causative role of candidate genes identified as potentially playing a part in the development 

of pharmacoresistance will need to be established with further investigation, such as 
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electrophysiological studies in hippocampal neuronal cultures or studies in rodent epilepsy 

models where the expression of the relevant gene has been appropriately altered. Another 

limitation which applies to all transcriptomic studies, and also to this analysis, is that mRNA 

concentration may not be a predictor of protein abundance or activity because of the many 

processes downstream of mRNA synthesis (for example, alternative mRNA splicing and 

microRNA regulation) that may affect the total amount and activity of protein in tissue.   

2.4.2 Data integration 

Microarray technology has become an important tool for biological research, but it can 

suffer from both low sensitivty and high false positive rates (Rhodes et al. 2002). One way of 

overcoming these limitations is to use meta-analysis methods that integrate the results of 

separate microarray studies. Meta-analysis is a classical statistical methodology for 

combining results from different studies addressing the same scientific questions, and has 

recently been applied to the analysis of microarray data, increasing both the sensitivity and 

reliability of measurements of gene expression changes (Rhodes et al. 2002). Two basic 

meta-analysis methods have been applied to microarray studies: (1) combining p-values for 

each gene from the individual studies to estimate an overall p-value for each gene across all 

studies (Rhodes et al. 2002), and (2) integrating effect size estimates to obtain an overall 

estimate of the average effect size (Choi et al. 2003). However, the majority of studies 

included in this review did not provide the basic information that would allow either meta-

analysis method to be applied. This being the case, we integrated the gene lists provided by 

each study to generate lists of genes consistently regulated in two, three or four studies. 

This integrative technique successfully improved the reliability of the regulated gene lists, 

without enhancement of the sensitivity. Hence, the 233 genes shown in this review to 

overlap between two or more studies are a ‘corroborated gene set’ unlikely to be specific to 

the histological characteristics of the tissues being compared or to laboratory conditions, 

and most likely to represent universal genetic changes linked with epileptogenesis and 

pharmacoresistance. For GO term enrichment analysis, canonical pathway analysis and 

network analysis, we included both the corroborated and non-corroborated gene sets. This 

is because a significant number of the non-corroborated genes are also likely to be relevant 

to pharmacoresistance, as demonstrated by the significant overlap with the CarpeDB 

database. Further, in terms of genes found to be regulated in single studies, we took the 
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view that different genes validate each other if they are significantly enriched together in a 

GO term category, canonical pathway or an interaction network. 

2.4.3 What does this analysis tell us about the mechanism of pharmacoresistance? 

Current theories on pharmacoresistance in epilepsy include the multidrug transporter 

(MDT) hypothesis, the drug target hypothesis, and the inherent severity hypothesis 

(Schmidt & Loscher 2009). It has recently been suggested that these processes are likely to 

act not in a mutually exclusive manner, but rather an integrated manner, to cause 

pharmacoresistance (Schmidt & Loscher 2009). The current analysis supports this view, 

suggesting that all three hypotheses may be important. However, much of the integrated 

evidence generated by this analysis is weighted towards the intrinsic severity hypothesis. 

2.4.3.1 MDT hypothesis 

According to the MDT hypothesis, pharmacoresistance results from impaired drug 

penetration into the epileptic focus secondary to dysregulation of drug transporters 

(Chayasirisobhon 2009). Studies on the role of MDTs in pharmacoresistant epilepsy have, 

hence far, been limited to a small number of selected adenosine triphosphate-binding 

cassette (ABC) transporters, with a predominant focus on ABCB1 (Lazarowski et al. 2007). It 

is interesting to note that ABCB1, which has been the focus of the majority of research on 

the role of MDTs in epilepsy pharmacoresistance (Hughes 2008), was not shown to be 

dysregulated in any of the included studies, even though a probe for ABCB1 was present on 

the arrays of at least four of the nine studies. The role that solute carrier (SLC) transporters 

may play in epilepsy pharmacoresistance is much neglected. SLC transporters have been 

shown to play a role in cancer pharmacoresistance (Gupta et al. 2011), but their potential 

role in epilepsy pharmacoresistance has not been studied. Twenty-seven different SLC 

transporters were shown to be dysregulated in the studies included in this analysis. These 

findings suggest that the search for drug transporters relevant to epilepsy 

pharmacoresistance needs to be expanded to include SLC transporters. 

2.4.3.2 Drug target hypothesis 

According to the drug target hypothesis, pharmacoresistance is caused by the modification 

of one or more drug target molecules.  
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An important AED drug target is the voltage-gated sodium channel. These channels consist 

of α and β subunits. To date, nine -subunits and four -subunits have been identified. It 

has been suggested that in pharmacoresistant epilepsy subunit composition of these 

channels is altered, such that the expression of AED-insensitive subunit combinations is 

promoted. The SCN1A subunit gene has been the focus of most research so far (Loscher et 

al. 2009). This analysis showed that the expression of SCN2A, SCN3A, SCN3B and SCN8A was 

also altered in pharmacoresistant epilepsy. SCN2A was downregulated in two different 

microarray studies included in this analysis. In support of this finding, SCN2A was also 

downregulated in epileptic foci in a radioactive in situ hybridisation study (Whitaker et al. 

2001). In addition, two different SCN2A polymorphisms have been reported to be 

associated with epilepsy pharmacoresistance (Kwan et al. 2008; Lakhan et al. 2009). The 

role of SCN2A, and the other subunits identified in this analysis, should be confirmed in 

future studies. 

Another important AED target is the GABAA receptor (Rogawski & Loscher 2004). The 

pharmacological properties of GABAA receptors depend on the combination of subunits of 

which there are more than 20 to choose from (Brooks-Kayal et al. 1998). Three GABAA 

receptor subunit genes were shown to be downregulated in the studies included in this 

analysis: GABRA5, GABRB3 and GABRG2. Mutations in the GABRG2 gene are associated with 

a number of familial epilepsy syndromes: generalized epilepsy with febrile seizures plus, 

type 3 (Baulac et al. 2001; Harkin et al. 2002; Carvill et al. 2013), childhood absence epilepsy 

(Wallace et al. 2001; Kananura et al. 2002), familial febrile seizures (Audenaert et al. 2006), 

and familial idiopathic generalized epilepsy (Lachance-Touchette et al. 2011). 

GABRA5 was downregulated in four of the included studies. Using immunohistochemical 

labelling, Bethmann et al., (2008) showed that GABRA5 subunit protein expression in the 

hippocampi of antiepileptic drug resistant rats was significantly lower than in responsive 

rats (Bethmann et al. 2008). Bonin et al., (2007) have shown that the depolarizing current 

required to generate an action potential was two-fold greater in neurons from wildtype 

than from GABRA5 knockout mice (Bonin et al. 2007). Phenytoin (Mariotti et al. 2010) and 

carbamazepine (Almgren et al. 2008) have been shown to up-regulate GABRA5, and this has 

been suggested to be involved in their antiepileptic mechanism. GABRA5-selective inverse 

agonists have been shown to have convulsant or proconvulsant effect in mice in a dose-
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dependent manner and proportional to the extent of GABRA5 efficacy (Atack et al. 2006). 

The current analysis reveals strong evidence of downregulation of GABRA5 in human 

epileptic tissue. Further studies are needed to look for associations between polymorphisms 

in the GABRA5 gene and pharmacoresistance, and for ways to reverse the downregulation 

of GABRA5.  

2.4.3.3 Intrinsic severity hypothesis 

The observation that a high frequency of seizures prior to onset of treatment is a prognostic 

signal of increased severity and future drug failure suggests that common neurobiological 

factors may underlie both disease severity and pharmacoresistance (Schmidt & Loscher 

2009). A number of processes are thought to contribute to the development of 

pharmacoresistant epilepsy through promoting severity: neuroinflammation, enduring 

increases in excitatory synaptic transmission, changes in GABAergic inhibition, neuronal cell 

death, and the development of aberrant innervation patterns in part arising from reactive 

axonal growth (Gall & Lynch 2004). Although this review lends supports to all these 

processes playing a part, three basic themes were most prominently overrepresented in the 

gene list assembled: 

1. Neuroinflammation 

2. Modulation of synaptic transmission 

3. Restructuring of neuronal networks 

It is worth noting that although the important processes highlighted by this analysis may 

appear somewhat non-specific, the pattern of genetic changes demonstrated is distinctly 

different from those seen in other common brain pathologies, as shown by our comparison 

with an AD dataset.  

What follows is a brief summary of the aforementioned three themes, as represented by 

our analysis. From the themes, we highlight novel and important genes and pathways. This 

is not a comprehensive précis, and we invite interested researchers to peruse the gene lists 

and enriched GO terms, pathways and networks to find other genes, pathways and 

networks of interest.  

Neuroinflammation 
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It is being increasingly recognised that inflammation plays an important role in the 

pathogenesis of epilepsy (Vezzani & Granata 2005). The role of chemokine- and 

semaphorin-induced inflammation in the development of refractory epilepsy is little studied 

(Fabene et al. 2010). Our analysis suggests that chemokine and semaphorin signalling plays 

a significant role in epilepsy pharmacoresistance. We have also identified particular 

chemokines and semephorins that are potentially important therapeutic targets.  

Chemokines 

The chemokine signalling canonical pathway was shown to be dysregulated in our analysis, 

and the chemokine CCL2 and chemokine target Inhibin β-A were prominent in our gene list. 

Chemokines can induce neuronal hypersynchronization and neuronal epileptiform activity 

(Seiffert et al. 2004; Ivens et al. 2007; Marchi et al. 2007), leading to seizure generation in 

animal models of epilepsy (Fabene et al. 2008). CCL2 upregulation has been linked to 

increased susceptibility to seizures in a 'two-hit' seizure model in rats (Somera-Molina et al. 

2009), and valproic acid has been shown to downregulate CCL2 mRNA in rat brain (Sinn et 

al. 2007).  Inhibin β-A is a member of the transforming growth factor-β superfamily 

(Unsicker & Krieglstein 2002) and may mediate neuroprotective actions of basic fibroblast 

growth factor (Alzheimer & Werner 2002). Zhang et al., (2009) have identified inhibin -A as 

one of a set of neuroprotective genes, termed Activity-regulated Inhibitor of Death (AID) 

genes, which promote survival of hippocampal neurons after growth factor withdrawal or 

staurosporine treatment in vitro and after kainic acid-induced status epilepticus in vivo 

(Zhang et al. 2009). 

In addition, the canonical pathway of chemokine receptor CXCR4 was dysregulated. 

Increased expression of CXCR4 allows for increased CXCL12 binding. CXCL12 induces a slow 

inward current followed by a spontaneous synaptic activity via ionotropic glutamatergic 

receptors (Ragozzino et al. 2002), and induces microglia to release TNFα, which potentiates 

prostaglandin-dependent Ca++ activation and glutamate release (Lee et al. 2007). Other 

dysregulated chemokines in our analysis were CCL3, CCL4, CCL28, CCL3L1, CX3CL1 and 

CXCL14. 
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Figure 2.1 Up-regulated genes in the semaphorin pathway. The intensity of the colour 
indicates the number of studies in which the gene is up-regulated. 

 

Semaphorin Signaling in Neurons 

The current review reveals the upregulation of the semaphorin pathway (Figure 2.1), most 

importantly Sema4D and Plexin B1. Semaphorins are a large family of secreted and 

transmembrane molecules that function as repulsive axon guidance factors (Kolodkin et al. 

1993) and modulate dendritic and axonal arborizations of developing neurons. In addition, 

semaphorins play a significant role in microglia activation and in neuroinflammation. A 

recent study by (Okuno et al. 2010) has shown that Sema4D promoted inducible nitric oxide 
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synthase expression by primary mouse microglia. This expression was Plexin B1-dependent 

as it was abolished in Plexin B1-deficient cells. Moreover, during the development of Myelin 

Oligodendrocyte Glycoprotein-peptide-induced experimental autoimmune 

encephalomyelitis (EAE), the expression of Sema4D and Plexin B1 was induced in infiltrating 

mononuclear cells and microglia, respectively (Okuno et al. 2010). Wild-type Myelin 

Oligodendrocyte Glycoprotein-specific T cells adoptively transferred into Plexin B1-deficient 

mice were not able to induce the disease. Similarly, bone marrow chimeric mice with Plexin 

B1-deficient central nervous system resident cells were not able to develop EAE. 

Furthermore, blocking antibodies against Sema4D significantly inhibited neuroinflammation 

during EAE development. Mutations in members of the semaphorin gene family have been 

associated with a number of  human diseases: SEMA4A variants with retinitis pigmentosa, 

cone-rod dystrophy and congenital blindness (Abid et al. 2006), and SEMA3E variants with 

CHARGE (coloboma, heart defect, atresia choanae, retarded growth and development, 

genital hypoplasia, ear anomalies/deafness) syndrome (Lalani et al. 2004). The role 

semaphorins play in the inflammatory processes associated with epilepsy is not yet known, 

but deserves further study. 

Modulation of synaptic transmission 

The cellular component ontology term enrichment shows that some of the most important 

processes in the development of pharmacoresistance are occurring in membrane-bound 

vesicles and at the pre- and post-synaptic terminal. The most significant biological processes 

are cellular cation homeostasis, synaptic transmission and synaptic plasticity. The enriched 

gene ontology terms suggest that the most important molecular functions in the 

development of pharmacoresistance are calcium transport and signalling, and transporter 

activity. Therefore, changes in calcium signalling and in synaptic structure and function were 

shown to be important in our analysis. 

Calcium signalling 

Network 3 shows that changes in calcium-mediated cell signalling leading to alterations in 

neuronal excitability are likely to be important in the development of pharmacoresistance in 

epilepsy. The network reveals dysregulation of proteins regulating calcium channels 

(calcium-binding protein 1 and calpastatin), of proteins involved in calcium homeostasis 
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(inositol 1,4,5-triphosphate receptor, type 1, ATPase Ca++ transporting cardiac muscle slow 

twitch 2, ATPase Ca++ transporting plasma membrane 1, solute carrier family 8 

sodium/calcium exchanger member 1, calcium channel voltage-dependent alpha 2/delta 

subunit 1, calcium channel voltage-dependent gamma subunit 3, calcium channel voltage-

dependent alpha 2/delta subunit 1, adenosylhomocysteinase-like 1), and of calcium-

dependent signalling proteins (calpain 3, and calcium-binding protein 1). Calcium signalling 

is amongst the top 25 enriched canonical pathways in our gene list. Calcium signalling, 

therefore, is likely to play a significant part in pharmacoresistance and its manipulation may 

be an important therapeutic strategy—two potential target genes which overlap in three or 

more studies are neurogranin and SNAP-25.  

Neurogranin has been implicated in the modulation of postsynaptic signal transduction 

pathways, in synaptic plasticity (Kubota et al. 2008), and in the enhancement of long-term 

potentiation by promoting calcium-mediated signalling (Huang et al. 2004), and it is 

hypothesized that it participates in the action of valproate (Wu et al. 2011). SNAP-25 

modulates neurotransmitter exocytosis (Schiavo et al. 1997; Augustine 2001; Chapman 

2002; Zhang et al. 2002) and negatively regulates voltage-gated calcium channels (VGCC) in 

glutamatergic neurons (Condliffe et al. 2010). Silencing of endogenous SNAP-25 in 

glutamatergic neurons leads to an augmentation of VGCC activity, which would increase 

network excitability. Reductions in SNAP-25 expression have been correlated with 

neurological conditions characterized by increased network excitability. For example, VGCC 

currents are up-regulated resulting in absence-like epilepsy and hyperactivity (Risinger & 

Bennett 1999) in the Coloboma mouse mutant characterized by the heterozygous deletion 

of the SNAP-25 gene. Also, alterations in SNAP-25 expression have been described in human 

patients with attention deficit hyperactivity disorder and schizophrenia (Zhang et al. 2002).  

Alterations in synaptic structure and function 

As stated above, GO term enrichment analysis suggests that some of the most important 

processes in the development of pharmacoresistance are occurring in membrane-bound 

vesicles and at the pre- and post-synaptic terminal and some of the most significant 

biological processes are synaptic transmission and synaptic plasticity.  



 
 

97 
 

Network 1 reveals that there is dysregulation of proteins involved in maintaining synaptic 

structure and function. There is dysregulation of pre-synaptic cytomatrix proteins (bassoon, 

ELKS/RAB6-interacting/CAST family member 2, and piccolo), an active zone protein (PTPRF 

interacting protein, binding protein 1), a protein which controls presynaptic residual Ca++ 

concentrations (ATPase Ca++ transporting plasma membrane 2), proteins in postsynaptic 

sites which form a multimeric scaffold for the clustering of receptors, ion channels, and 

associated signaling proteins (calcium/calmodulin-dependent serine protein kinase and 

DLG2), and proteins which may play a role in clustering of NMDA receptors at excitatory 

synapses (DLG3). Complexin, a part of the SNARE complex (Neher 2010) which is the core of 

the synaptic release machinery (Sudhof & Rothman 2009), was downregulated in three 

studies and is particularly deserving of further study. Perturbations of the complexin 

proteins causes an increase in spontaneous and asynchronous release of neurotransmitter 

in some types of synapses, indicating an inhibitory role of the proteins (Neher 2010). Hence, 

the reduction in complexin 2 expression in the epileptic focus, as demonstrated in this 

review, could lead to increases in excitatory synaptic transmission, and deserves further 

study. 

Restructuring of neuronal networks 

The gene ontology enrichment analysis suggests that some of the most important processes 

in the development of pharmacoresistance are occurring in the cytoskeleton, the dendrite, 

the axon, and the growth cone. Some of the most significant biological processes are 

apoptosis, cytoskeletal organization, neuronal development and differentiation, axonal and 

dendritic morphogenesis, and one of the most important molecular functions in the 

development of pharmacoresistance is cytoskeletal function. In support of this, Network 2 

reveals dysregulation of proteins involved in apoptotic mechanisms (translocase of inner 

mitochondrial membrane 23, histone cluster 1 H1c, peptidylprolyl isomerase F, dedicator of 

cytokinesis 1, and jumonji domain containing 6), in cell growth (protein tyrosine kinase 2, 

protein tyrosine phosphatase non-receptor type 12, and neural precursor cell expressed 

developmentally down-regulated 9), and in cell shape maintenance (tensin 1). Network 3 

reveals dysregulation of proteins involved in neurogenesis, neurite outgrowth and axon 

guidance (neurogenic differentiation 2, neurofascin, and dihydropyrimidinase-like 3). 

Network 1 reveals that there is also dysregulation of proteins involved in axon guidance 
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(protein tyrosine phosphatase receptor type f and protein tyrosine phosphatase receptor 

type D). Similarly, the enriched canonical pathways include axonal guidance signalling, RhoA 

signalling (which plays a significant role in actin stress fibers formation), CDK5 signalling 

(which regulates neurite outgrowth), and ephrin receptor signalling (which is involved in 

nervous system development). The cholecystokinin (CCK) signalling pathway was the most 

significantly enriched canonical pathway in our analysis (Figure 2.2) and has an important, 

yet understudied, role in the development of aberrant neuronal networks. 

Cholecystokinin Signaling 

CCK controls the perisomatically targeting inhibitory interneurons of the hippocampus (Lee 

& Soltesz 2011). In kindling rodent models of epilepsy, there is a reduction of GABA-evoked 

inhibitory post-synaptic currents in the hippocampus, and this loss corresponds with a 

reduction in CCK-labelled interneurons (Sayin et al. 2003). In humans, the CCK content of 

cortical tissue from which active epileptic spiking was recorded at the time of surgery was 

significantly decreased in comparison to tissue samples from patients in whom the lateral 

temporal cortex was electrographically free of epileptiform spikes (Iadarola & Sherwin 

1991). CCK may have anticonvulsant and neuroprotective properties. Pretreatment of 

hippocampal slices with sulfated CCK blocked the effect of kainic acid on synaptic 

transmission (Aitken et al. 1991). Seizures in a breed of rat with congenital audiogenic 

seizure were suppressed by cholecystokinin octapeptide injected intraperitoneally (Zhang et 

al. 1993) and by intracerebral injection of a CCK gene vector (Zhang et al. 1992). Seizures 

induced by picrotoxin and electroshock are inhibited by intracerebroventricular 

administration of cholecystokinin in rats (Kadar et al. 1984). There is also a positive 

influence of CCK on the anticonvulsant efficacy of vigabatrin (Ferraro & Sardo 2009). CCK 

genetic variants have not been studied specifically in epilepsy, but variants in the gene are 

known to be associated with another common brain disorder: Parkinson’s disease (Fujii et 

al. 1999). CCK, therefore, is another potential therapeutic agent that should be further 

studied. 

2.5 Conclusions 

Large-scale gene expression profiling studies on brain tissue from epilepsy surgery have 

been performed largely with the aim of generating hypotheses about the causes of 
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epileptogenesis and pharmacoresistance. Although there have been at least 12 such studies 

in the last ten years, they have failed to make a significant impact on our understanding of 

pharmacoresistance in epilepsy for the reasons which have been outlined in this chapter.  

Our analysis shows that there is a statistically significant overlap between the gene lists of 

studies performed on different kind of epileptic foci using different types of microarrays. We 

have used an inter-study cross-validation technique to simultaneously verify the expression 

changes of large numbers of genes. We have performed an integrative analysis of the gene 

lists from different studies to identify the cellular components, biological processes, 

molecular functions, pathways, networks and individual genes which are likely to be 

important in the development of refractory epilepsy.  
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Figure 2.2 Down-regulated genes in the CCK pathway. The intensity of the colour indicates 
the number of studies in which the gene is down-regulated. 
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Chapter 3: SLC Transporters in Pharmacoresistant 

Epilepsy: An Integrative In Silico & Ex Vivo Analysis  

3.1 Introduction 

Epilepsies are among the most common neurological disorders, affecting up to 1% of the 

population (Sander 2003). Most patients with epilepsy become seizure-free with 

antiepileptic drug (AED) therapy. However, approximately 30% of epilepsy patients are 

pharmacoresistant: they continue to experience seizures even if treated with various AEDs 

at maximal dosages (Shorvon 1996). A number of hypotheses have been put forward to 

explain pharmacoresistance (Chayasirisobhon 2009); one of these is the multidrug 

transporter (MDT) hypothesis. According to this hypothesis, pharmacoresistance results 

from decreased drug concentrations at the epileptic focus secondary to a localized 

dysregulation of drug transporters (Chayasirisobhon 2009), which could either increase drug 

efflux from, or reduce influx into, the epileptic focus.  

The largest superfamily of MDTs is the solute carrier (SLC) superfamily which are mainly 

influx transporters (Huang & Sadee 2006). Downregulation within the epileptic focus of SLC 

transporters which are normally expressed at significant levels could thus potentially 

contribute to the development of pharmacoresistance. There are approximately 400 known 

SLC proteins in total, but very few of these have been studied in epilepsy. 

Mesial temporal lobe epilepsy (MTLE), in which seizures originate from the hippocampus, is 

the most common cause of refractory epilepsy and the most common indication for 

epilepsy surgery (Engel 2003). In this study, therefore, we focus on SLCs most relevant to 

this phenotype.  

In order to identify the SLCs which are downregulated in the pharmacoresistant epileptic 

hippocampus, we devised a robust in silico approach that exploits relevant published data 

and builds upon them using cutting-edge computational tools; we then verified the output 

using a robust ex vivo approach. We anticipate that our in silico strategy will be adaptable to 

other pathologies and protein families. 

 



 
 

109 
 

 

Figure 3.1 Our in silico strategy; see text for details. SLC=solute carrier transporter 

3.2 Methods: 

3.2.1 In silico analysis 

Our in silico strategy was to:  

1. rank SLCs based on the strength of the published evidence of their downregulation in 

pharmacoresistant epileptic foci, if such data is available;  

2. for SLCs with no such published data, rank genes based on the computationally-

determined likelihood of their downregulation in pharmacoresistant epileptic foci; 

this step was limited to the SLCs most abundantly expressed in the normal human 

hippocampus, as these SLCs are most likely to be functionally important in the 

pharmacoresistant epileptic hippocampus;  and 

3. based on 1 and 2 above, create a prioritized list of SLCs most likely to be 

downregulated in pharmacoresistant epileptic foci. 

The individual steps and processes are illustrated schematically in Figure 3.1. 
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Integrative analysis of microarray studies: We started by performing an integrative analysis 

of large-scale gene expression profiling studies on brain tissue from epilepsy surgery—

details of this analysis can be found in Chapter 1. Data relating to SLCs from this analysis was 

carried forward into the convergent functional genomics step.  

Convergent functional genomics (CFG): CFG is an approach for prioritizing candidate genes 

for complex disorders by integrating and tabulating multiple lines of evidence, such as 

human and animal-model gene and protein expression data (Le-Niculescu et al. 2007). In 

order to implement the CFG approach, each SLC transporter was scored on the strength of 

the evidence of down-regulation of the gene or protein in epileptic foci of humans or of 

animal models of pharmacoresistant epilepsy. The search strategy and search terms used in 

order to find this data is detailed in Appendix 4. Details of the scoring system are given in 

Table 3.1. 

Table 3.1 Convergent Functional Genomics scoring scheme for SLC transporters 

Evidence Score Reason 

Gene/protein expression data   

Downregulated in ≥2 studies on 
pharmacoresistant MTLE epileptic 
foci 

1 Maximum weight given to confirmed 
downregulation in MTLE, which is our 
phenotype of interest 

Downregulated in only 1 study on 
pharmacoresistant MTLE epileptic 
foci 

0.50 Lower score given to non-replicated evidence 

Downregulated in ≥1 study on 
pharmacoresistant non-MTLE 
epileptic foci 

0.50 Lower score given to evidence in other 
phenotypes 

Evidence of downregulation in brain 
tissue from animal models of 
pharmacoresistant epilepsy 

0.25 Lowest score for animal models 

 

Six SLC transporters (SLC1A2, SLC1A3, SLC2A3, SLC12A5, SLC17A7 and SLC24A3) were 

deemed to have strong evidence in support of a role in epilepsy pharmacoresistance (see 

Discussion below). These six transporters were used as ‘training genes’ for computational 

gene prioritization.  
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Computational gene prioritization (CGP): To perform CGP, we used a bioinformatics 

software application called Endeavour (Tranchevent et al. 2008), whose key feature is that it 

uses multiple genomic data sources (e.g. sequence, expression, literature and annotation) to 

estimate how promising a candidate gene is by measuring its similarity with a set of training 

genes. The training genes are those which are already known to play a role in the biological 

process under study. The underlying assumption is that the most promising candidate genes 

are the ones that exhibit most similarities with the training genes. CGP was performed using 

all available data sources in Endeavour. 

Our training gene set comprised the top scoring SLCs from the CFG step: SLC1A2, SLC1A3, 

SLC2A3, SLC12A5, SLC17A7 and SLC24A3. Our candidate gene set comprised SLCs which are 

highly likely to be expressed—and abundantly so—in the normal human hippocampus. This 

candidate gene set was created as described below. 

Determining the presence and abundance of SLC transcripts in the normal human 

hippocampus: In order to determine the presence and abundance of SLC transcripts in the 

normal human hippocampus, we extracted data from publically-available large-scale 

microarray studies on the human hippocampus. We searched the ArayExpress (Parkinson et 

al. 2007) and GEO (Edgar et al. 2002) databases for studies fulfilling the following criteria: 

1. Studies done using the Affymetrix GeneChip Human Genome U133 Plus 2.0 Array. 

This chip was chosen as: (i) it is a single-channel array, (ii) it is one the most 

comprehensive whole human genome expression arrays available, and (iii) it is 

widely used.  

2. Studies which included samples from normal post-mortem human hippocampus in 

the analysis. 

3. Studies for which MIAME-compliant data was publically available. 

For the included studies, CEL files relating to normal hippocampal tissue were downloaded 

for processing. Using this strategy, we obtained 73 CEL files relating to 73 different normal 

hippocampal tissue samples from four different studies (GEO accession numbers: GSE3526, 

GSE5281, GSE7307 and GSE11882). 
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Quality control (QC) analysis and normalization was performed on the downloaded CEL files 

using the affyAnalysisQC pipeline through the arrayanalysis.org webportal (Eijssen et al. 

2013). We used the following options: (1) Absent (A), Marginal (M) and Present (P) calls 

were computed based on the MAS5 function; (2) re-annotation of the probes was 

performed using a custom Chip Definition File environment from the BrainArray database.   

For each gene, the number of P, M and A calls was summed using a value of 1 for P and 0.50 

for M, and 0 for A. Genes with a cumulative score of 37 or above were chosen as there was 

greater evidence of their presence than of their absence. These chosen genes were than 

ranked by transcript abundance as described below. 

We used ‘rank product’—a non-parametric statistic that detects items that are consistently 

highly ranked in a number of lists—to create one combined hierarchical list of transcript 

abundance. Analysis was performed in R using the RankProd Bioconductor package (Hong et 

al. 2006). The function ‘RPadvance’, which performs the rank product analysis for multiple-

origin data, was used. From this analysis, the 50 most abundant SLCs were chosen as the 

candidate gene set—all these genes had a false discovery rate (FDR) of less than 5% for 

being ranked amongst the 50 most abundant SLC genes. 

Computational verification of CGP results: To validate our CGP approach and prioritized 

lists, the following steps were undertaken: 

1. The validity of the CGP result is vitally dependent on the quality of the training set. 

Therefore, to ensure the quality of the training set, we: 

a. performed a comprehensive literature review of our training genes to show 

that they are highly likely to be involved in epilepsy pharmacoresistance (see 

details in Discussion section), and 

b. performed leave-one-out analysis (LOOA). LOOA was performed in order to 

assess the quality (homogeneity) of the training set. LOOA was performed 

using a specifically designed utility provided by the authors of Endeavour. 

This analysis comprises multiple automated validation runs. In each 

validation run, one gene, termed the 'defector' gene, was deleted from a set 

of training genes and added to 99 randomly selected test genes. The 
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software then determined the ranking of this defector gene. This procedure 

makes it possible to assess the quality (homogeneity) of the training set 

2. We set up an in silico experiment. For this experiment, we created (i) a ‘positive 

control’ training set comprising the most consistently down-regulated genes from 

our previously mentioned integrative analysis of gene-expression profiling studies on 

brain tissue from epilepsy surgery (Mirza et al. 2011), and (ii) a ‘negative control’ 

training set consisting of randomly chosen genes from our integrative analysis. Both 

the control training sets were used to perform CGP of the same 50 SLC genes.  The 

list of genes comprising the control training sets can be found in the Appendix 5. We 

hypothesized that the ‘positive control ranking’ would be significantly similar to the 

original ranking, whereas the ‘negative control ranking’ would be dissimilar to the 

original ranking. We compared the original CGP ranking to the positive control and 

negative control CGP rankings in turn, using the following two methods: 

a. We calculated the size of the overlap between the top 20 genes in the two 

lists, and calculated the probability of this overlap occurring by chance 

according to the hypergeometric equation using the function phyper in R 

(Fury, Batliwalla et al. 2006). 

b. We compared the two gene lists using the Bioconductor package OrderedList 

(Lottaz, Yang et al. 2006). This package determines if there exist significant 

order similarities between pairs of gene lists. The package quantifies the 

similarity between ordered gene lists; the significance of the similarity is 

estimated from random scores computed on perturbed data.   

Creation of the final in silico gene list: To create the final in silico list of 20 genes, we 

amalgamated the CFG and CGP results. Giving precedence to genes with direct published 

evidence of downregulation, CFG genes were placed at the top of the list in rank order, 

followed by the CGP genes, with a cut-off being applied at a total of 20 genes. As our chosen 

cut-off of 20 total genes could be deemed arbitrary, we created for testing two further lists 

of 10 and 30 total genes. 

3.2.2 Ex vivo analysis 

Sample collection: Samples used in the study originated from three UK sites: the Walton 

Centre for Neurology and Neurosurgery in Liverpool, the Salford Royal Hospital in Salford 
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and the Southern General Hospital in Glasgow. We aimed to recruit patients of age 5 years 

and older with pharmacoresistant mesial temporal lobe epilepsy of at least 3 months 

duration for which a therapeutic temporal lobectomy was being undertaken. As recently 

proposed by the ILAE, pharmacoresistance was defined as the failure of adequate trials of 

two tolerated, appropriately chosen and used antiepileptic drug schedules (whether as 

monotherapies or in combination) to achieve sustained seizure freedom (Kwan et al. 2010). 

The diagnosis of MTLE was made by the treating clinician based on seizure semiology, MRI 

brain and EEG characteristics being consistent with a seizure focus in the mesial temporal 

lobe. Patients suspected of having a neoplastic or malignant temporal lobe lesion were 

excluded. After surgery, the hippocampus was divided into two portions: (1) one portion 

was preserved for RNA isolation, (2) the other portion underwent histological analysis by an 

experienced neuropathologist. Any subjects found to have a neoplastic or malignant lesion 

on histological analysis were excluded. The portion preserved for RNA isolation was either 

stored in RNAlater (Liverpool and Glasgow) or frozen directly at -80 oC (Salford). It should be 

noted that the quality of the RNA generated from the directly frozen brain samples was not 

significantly different from RNAlater-preserved samples: mean RIN values were 7.82 and 

7.25 respectively, and two-sample t-test p-value for difference between group RINs was 

0.07. 

Frozen post-mortem histologically-normal hippocampal samples from donors with no 

known brain diseases were obtained from the MRC Edinburgh Brain Bank (Edinburgh, UK) 

and the Queen Square Brain Bank (London, UK).  

RNA isolation: Brain samples were disrupted and homogenized in an appropriate volume of 

QIAzol lysis reagent (Qiagen, Crawley, United Kingdom) by using a TissueRuptor handheld 

rotor-stator homogenizer (Qiagen, Crawley, United Kingdom). Total RNA was extracted from 

the homogenates using the RNeasy Lipid Tissue Mini Kit (Qiagen, Crawley, United Kingdom), 

according to the manufacturer’s instructions. RNA quality was examined by capillary 

electrophoresis on an Agilent Bioanalyzer 2100 (Agilent, Palo Alto, CA) and Agilent 2100 

Expert software was used to calculate the RNA Integrity number (RIN) of each sample. Purity 

of the RNA sample was assessed using a NanoDrop1000 Spectrophotometer. Capillary 

electrophoresis traces were also examined. Samples with RNA integrity number  scores 

(RIN) below 6, obvious RNA degradation, significant 18S or 28S ribosomal  RNA degradation, 
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ratio of absorbance at 260nm and 280nm <1.95, or with  noticeable DNA or  background  

contaminants  did  not pass  QC,  and  were  withheld from microarray analysis.  It should be 

noted that RNA samples with RIN scores of 6 and lower have been successfully used for 3’ 

microarrays (Hawrylycz et al. 2012) and exon microarrays (Trabzuni et al. 2011). 

Microarrays: The microarrays were processed at the Centre for Genomics Research in the 

University of Liverpool (http://www.liv.ac.uk/genomic-research/). 50ng of total RNA was 

amplified and labelled using the Agilent Low Input Quick Amp One-Colour Labeling Kit and 

labelled RNA was hybridized to Agilent SurePrint G3 Custom Exon 8x60K Microarrays 

designed to contain probes for each exon of 936 selected genes, including all known SLC 

genes. Standard Agilent protocols were followed. The quality of the synthesized cRNA was 

assessed using an Agilent Bioanalyzer 2100—the resulting electropherograms were found to 

be satisfactory.  Each scanned image was viewed for visible artefacts, and if multiple 

artefacts were present, the array was rejected. Detailed QC reports were generated for each 

array using the Feature Extraction 11.0.1.1 Software (Agilent, Palo Alto, CA). Based on these 

reports, we excluded arrays in which more than 1% of features were non-uniform outliers, 

or the average of the net signals in negative controls was >40, or the average of the 

background-subtracted signals in negative controls was <-10 or >5, or the standard 

deviation of the background-subtracted signals in negative controls was >10, or the residual 

noise after spatial detrending was >15, or the median coefficient of variation for spike-in 

probes or non-control probes was >12%, or the dose-response curve of the spike-ins had a 

slope of <0.9 or >1.20, or the spike-in detection limit was <0.01 or >2. One array failed on 

five of these metrices and, hence, was excluded. Intensity data was extracted from the 

remaining arrays using the Feature Extraction Software. In line with the manufacturer’s 

recommendations, spatial and multiplicative detrending was applied but background 

subtraction was not. 

Data exported from Feature Extraction Software was imported into GeneSpring GX Software 

(Agilent, Palo Alto, CA). Features which were population outliers, saturated or non-uniform 

were flagged as ‘Compromised’ and filtered out. 75th percentile normalization, the default 

method recommended by Agilent for their exon arrays, was performed. Gene level values 

were obtained by summarizing the signal intensity values of probes mapping to various 

exons in the gene. As GeneSpring does not include functions that allow adjusting for 
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confounders and covariates, gene-level intensities were exported and further analysed using 

the limma package in R. This package has been used successfully for exon microarray 

analysis—see, for example, (Okoniewski et al. 2007; Zhang et al. 2007; Hall et al. 2011; Liu et 

al. 2011; Alagaratnam et al. 2013). Covariates included in the model were RIN, age, sex and 

batch—eight arrays (four cases and four controls) were processed together on each slide, 

hence, each batch comprised the eight samples processed together on each slide. 

From the microarray analysis, we created a list of SLCs significantly downregulated in the 

pharmacoresistant epileptic hippocampus. To be deemed significantly downregulated, SLC 

genes had to fulfil the following criteria: (1) strong evidence of expression in normal 

hippocampal tissue: the gene was flagged ‘detected’ in more than half of control samples; 

(2) FDR < 0.05; (3) fold-change ≥ 1.5. 

Quantitative Real-Time PCR: For each sample included in the microarray analysis, 1.8 µg of 

total RNA was reverse transcribed, according to the manufacturer's instructions, using the 

QuantiTect reverse transcription kit (Qiagen Inc., Valencia, CA) with integrated removal of 

genomic DNA contamination. 

Quantitative real-time PCR (qRT-PCR) was performed for three of the most significantly 

downregulated SLC genes. qRT-PCR was performed using the QuantiFast Multiplex PCR Kit 

(Qiagen Inc., Valencia, CA). Proprietary primer and FAM-labelled probe sets for target genes 

SLC24A3 (QF00004536), SLC47A1 (QF0052735) and SLC25A23 (QF00499555) were 

purchased from Qiagen (Qiagen Inc., Valencia, CA). Proprietary primer and MAX-labelled 

probe set for endogenous control GAPDH (QF00531132) was bought from Qiagen (Qiagen 

Inc., Valencia, CA), and for endogenous control CALR (Hs.PT.51.19228618) from IDT 

(Glasgow, UK). These two genes were chosen as endogenous controls as they are amongst a 

small group of validated ‘high quality’ housekeeping genes which have previously been 

shown to exhibit high expression and low variance (She et al. 2009), and they were also 

found to be invariant between the cohorts in our study after adjusting for covariates (data 

not shown). Each sample was assayed in triplicate using a duplex format in which a target 

gene and a control gene are assayed in the same well. The duplex format gives more reliable 

results as there is no well-to-well variability due to co-amplification of the internal control. 

To enable detection of contamination, ‘no template controls’ (containing all the 
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components of the reaction except for the template), and ‘no reverse transcriptase controls’ 

(containing all the components except for the reverse transcriptase) were included in 

triplicate for each target gene-control gene combination. The qRT-PCR reactions were 

conducted on the ABI 7900HT Fast Real-Time PCR System (Applied Biosystems, CA, USA), 

using conditions recommended for the QuantiFast Multiplex PCR Kit by its manufacturer. 

qRT–PCR data were analyzed using the RQ manager version 2.2 (Applied Biosystems, CA, 

USA). In line with the manufacturer’s recommendations, all baseline and threshold values 

were reviewed and adjusted manually where necessary. Further analysis was performed in 

DataAssist (Applied Biosystems, CA, USA). Expression levels of each target gene were 

normalized to the geometric mean of the two endogenous controls. Fold change (relative to 

the epilepsy group) was calculated, and a p-value was generated based on a two-sample, 

two-tailed Student’s t-test comparing the two groups and then adjusted using the 

Benjamini-Hochberg False Discovery Rate. 

3.2.3 Overlap between computational and microarray results 

The statistical significance of the overlap between the computationally-generated gene list 

and the list of SLCs significantly downregulated in our microarray was calculated using the R 

function phyper.  
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3.3 Results 

3.3.1 In silico analysis 

CFG: The results of the CFG analysis are summarized in Table 3.2; references for the data 

used can be found in Appendix 6. As Table 3.2 shows, there was data in published literature 

relating only to 17 SLC transporters. We also wished to obtain a prioritized list of SLC 

transporters that have hence far been overlooked in epilepsy research. To do this, we used 

the software ‘Endeavour’ to perform CGP.  

Table 3.2 Results of the CFG analysis for SLC transporters. Please see the methods section 

for a description of the scoring system employed. 

Transporter Total score 

SLC1A2 1.5 

SLC1A3 1.5 

SLC17A7 1.5 

SLC24A3 1 

SLC2A3 1 

SLC12A5 1 

SLC30A3 0.5 

SLC8A2 0.5 

SLC47A1 0.5 

SLC4A8 0.5 

SLC15A2 0.5 

SLC8A1 0.5 

SLC17A1 0.5 

SLC6A20 0.5 

SLC16A1 0.5 

SLC1A6 0.5 

SLC1A1 0.5 
 

CGP: To create a training gene set, we utilized the six SLC transporters with the highest CFG 

scores and with replicated evidence in support of a role in epilepsy pharmacoresistance. To 

assess the quality of our chosen training set, we performed leave-one-out cross-validation. 

The results of this analysis show that four defector genes were ranked first, while two were 

ranked second (see Appendix 7). This demonstrates that the training set is homogenous. We 

also performed a comprehensive literature review of our training genes to show that they 
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are highly likely to be involved in epilepsy pharmacoresistance (see Discussion section 

blow). 

To compile a candidate gene set for CGP, we created a hierarchical list of the most abundant 

SLC transporters in the normal human hippocampus. To do this, we performed a ‘meta-

analysis’ of 73 publically-available Affymetrix GeneChip Human Genome U133 Plus 2.0 

Arrays on the normal human hippocampus, as described in the Methods section. The results 

of this meta-analysis can be found in the Appendix 8. The 50 most abundant SLC genes were 

taken forward as the candidate gene set for CGP. All these genes had an FDR of less than 5% 

for being ranked amongst the 50 most abundant SLC genes.  

To verify the results of the above CGP, we performed a second CGP of the same candidate 

SLC genes using a different and independently selected ‘positive control’ training set: the 10 

genes most consistently downregulated in the integrative analysis of large-scale microarray 

studies on brain tissue from epilepsy surgery presented in Chapter 1. We compared the 

results of the two CGPs (original and positive control): of the top 20 genes in each list, 13 

were common to both lists. The probability of this overlap occurring by chance alone is 

0.004, according to the hypergeometric equation. We also compared the two prioritized 

gene lists using the Bioconductor package OrderedList (Lottaz et al. 2006). The order of 

genes in the two lists was significantly similar (p-value=0.01). In contrast, when the original 

CGP ranking was compared with the ‘negative control’ CGP ranking, generated using a 

‘negative control’ training set of randomly chosen genes from our integrative analysis, there 

was no significant overlap in the top 20 genes of the two lists (p=0.614) and no significant 

similarity between the order of genes in the two lists (p=0.10). 

Creation of the final in silico gene list: To create the final in silico gene list, we amalgamated 

the CFG and CGP results. Giving precedence to genes with direct published evidence of 

downregulation, CFG genes were placed at the top of the list in rank order, followed by the 

CGP genes. In order to test the accuracy of in silico gene lists of varying sizes, we created 

lists of 10, 20 and 30 genes (Table 3.3). 
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3.3.2 Ex vivo analysis 

For ex vixo validation, we collected 24 hippocampal samples from surgery for 

pharmacoresistant mesial temporal lobe epilepsy and obtained 24 histologically-normal 

post-mortem hippocampal samples from donors with no known brain disease. Important 

patient and donor individual and sample characteristics are summarized in Table 3.4.  

There was no statistically significant difference in the sex distribution of the two groups (the 

number of males in cases was 12, and in controls was 18, 2= 2.2222, df = 1, p-value = 

0.136). There was a statistically significant difference in the mean RIN values for the two 

groups (7.487500 in cases and 6.383333 in controls, 2-sample t-test p-value < 0.05). RIN was 

included as a covariate in the linear model used to analyse the microarray data.  There was 

also a statistically significant difference in the mean age of the two groups (36.33333 years 

in cases and 53.95833 years in controls, 2-sample t-test p-value <0.05). Again, age was 

included as a covariate in the linear model used to analyse the microarray data. 

One of the control samples failed microarray QC evaluation (see Methods section) and, 

hence, was excluded, leaving 24 disease samples and 23 normal control samples for 

subsequent analysis. We filtered out SLC genes lacking strong evidence of expression in the 

control samples (see Methods section) and utilized linear models implemented in the R 

Bioconductor package limma for data analysis, including as covariates batch, RIN, age and 

sex. 18 SLC genes (Table 3.5) were significantly downregulated (FDR < 0.05, fold change ≥ 

1.5).  qRT-PCR results for the three tested SLC genes were highly concordant with the 

microarray results (Table 3.5) 

3.3.3 Overlap between computational and microarray results 

We calculated the size of the overlap between the 18 SLC genes shown to be down-

regulated by our microarray and our in silico gene lists of 10, 20 and 30 SLC genes 

respectively. All three overlaps were highly significant, with p-values of 8.4 x 10-7, 7.9 x 10-6 

and 9.9 x 10-7 respectively. 
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Table 3.3 In silico gene list of 30 genes. 

In silico list of 30 
genes 

SLC1A2 

SLC1A3 

SLC17A7 

SLC24A3 

SLC2A3 

SLC12A5 

SLC30A3 

SLC8A2 

SLC47A1 

SLC4A8 

SLC15A2 

SLC8A1 

SLC17A1 

SLC6A20 

SLC16A1 

SLC1A6 

SLC1A1 

SLC1A4 

SLC6A1 

SLC24A2 

SLC12A7 

SLC25A22 

SLC6A8 

SLCO1C1 

SLC7A5 

SLCO3A1 

SLC7A11 

SLC25A11 

SLC4A3 

SLC20A1 
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Table 3.4 Sample characteristics. RIN=RNA Integrity Number 

Sample Phenotype Age Sex RIN  Sample Phenotype Age Sex RIN 

D1 Case 41 F 7.4 N1 control 81 M 6.5 

D2 Case 23 F 6.8 N2 control 78 F 6.2 

D3 Case 51 M 6 N3 control 84 F 6.6 

D4 Case 49 F 6.9 N4 control 91 F 6.7 

D5 Case 50 F 7.8 N5 control 88 M 6.3 

D6 Case 45 F 6.6 N6 control 38 M 6.1 

D7 Case 12 M 7 N7 control 50 M 6.2 

D8 Case 29 F 7.8 N8 control 45 M 6.3 

D9 Case 33 M 6.8 N9 control 39 M 6.1 

D10 Case 25 F 7.1 N10 control 40 M 6 

D11 Case 34 M 7 N11 control 61 M 6.2 

D12 Case 33 M 8.8 N12 control 63 F 6.2 

D13 Case 33 M 8.6 N13 control 66 M 6.2 

D14 Case 22 F 7.3 N14 control 22 F 6.3 

D15 Case 48 M 7.6 N15 control 27 M 6.3 

D16 Case 39 F 7.4 N16 control 45 M 6.9 

D17 Case 29 F 7.1 N17 control 44 F 6.7 

D18 Case 44 M 7.9 N18 control 50 M 6.5 

D19 Case 40 F 6.6 N19 control 43 M 6.6 

D20 Case 48 M 8.5 N20 control 46 M 6.8 

D21 Case 23 M 8.4 N21 control 51 M 6.2 

D22 Case 63 M 7.9 N22 control 48 M 6 

D23 Case 31 M 8.2 N23 control 43 M 6.6 

D24 Case 27 F 8.2      
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Table 3.5 Microarray and qRT-PCR results. FDR=false discovery rate 

Gene 
Symbol 

Microarray results qRT-PCR results 

FDR Fold-change FDR Fold-change 

SLC24A3 1.65 x10-4 3.7 0 3.7 

SLC47A1 1.49 x10-3 2.6 1.60 x10-3 2.8 

SLC25A23 3.38 x10-4 2.3 1.00 x10-4 1.9 

SLC8A2 1.64 x10-5 2.0  

SLC17A7 3.89 x10-3 1.8 

SLC25A41 1.20 x10-5 1.6 

SLC26A10 5.28 x10-5 1.6 

SLC4A3 8.02 x10-5 1.6 

SLC4A7 2.26 x10-2 1.6 

SLC12A5 1.24 x10-2 1.6 

SLC7A1 6.81 x10-5 1.6 

SLC16A2 3.38 x10-4 1.6 

SLC25A22 1.88 x10-4 1.6 

SLC29A4 1.22 x10-3 1.5 

SLC8A1 1.24 x10-2 1.5 

SLC35E2 6.80 x10-4 1.5 

SLC4A8 1.83 x10-4 1.5 

SLC18A2 2.89 x10-2 1.5 

 

3.4 Discussion: 

Our contributions, in the present work, are twofold. The first contribution is 

methodological—we have developed a novel in silico strategy that can aid epilepsy research 

by prioritizing specific genes for study from within large gene sets. The second contribution 

is biological—we have identified the most significantly downregulated SLCs in the 

pharmacoresistant epileptic human hippocampus. 

3.4.1 In silico strategy 

There are more than 400 known SLC proteins. From amongst these, we were able to make a 

prioritized list of 20 SLCs, using our in silico approach, which was highly predictive of our 

robust exon microarray results. We wish to highlight the following novel and noteworthy 

elements of our in silico strategy that are particularly responsible for its success: 

1. We validated the output from each step of our strategy, before carrying that output 

forward into the next step: 
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a. The ‘training gene-set’ created through CFG was validated using LOOA and a 

detailed literature review. 

b. The prioritized gene list from the CGP step was validated using a completely 

novel approach, by performing an in silico experiment. We prioritized the 

candidate genes using a robust independent ‘positive control’ training set 

(containing the most consistently downregulated genes from nine 

microarray studies) and showed that there was significant overlap and rank 

order similarity between the two prioritized lists. To compare, we prioritized 

the same genes using a ‘negative control’ training set consisting of a random 

selection of differentially regulated genes from the aforementioned nine 

microarray studies; the latter prioritized gene list had neither a significant 

overlap nor significant rank order similarity with our first list. 

2. When creating the candidate gene list for CGP, we adopted a robust filtering 

approach, which is discussed in detail below. 

Filtering the candidate genes for CGP: SLC proteins are, in the main, influx transporters. We 

were interested, therefore, in SLC transporters that are most highly expressed in the normal 

human hippocampus, but downregulated in the pharmacoresistant epileptic focus. To 

create a hierarchical list of the most abundant SLC transporters in the normal hippocampus, 

we extracted data from four different single-channel large-scale microarray studies. In this 

way, we were able to combine the gene expression data for 73 different donor samples and, 

hence, obtain a robust estimate of the relative abundance of genes in the human 

hippocampus. 

Before creating the hierarchical list of transcript abundance, we filtered out non-expressed 

genes—not all genes are expressed at levels that are biologically significant in any particular 

tissue—based on ‘fraction present’ according to Affymetrix Microarray Suite 5.0 (MAS5) 

detection call. The MAS5 data processing algorithm provides a qualitative detection call 

(Absent, Present or Marginal) for each probe set on each array (Shi et al. 2006); this 

detection call is based on a non-parametric statistical test (Wilcoxon signed rank test) (Shi et 

al. 2006) of whether significantly more perfect matches show hybridization signal than their 

corresponding mismatches. We retained genes that were called Present in more than 50% 

of the samples, i.e. there was greater evidence of their presence than of their absence. 
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Filtering on detection call has been demonstrated to reduce the number of false positive 

findings (McClintick et al. 2003; McClintick & Edenberg 2006; Pepper et al. 2007; Hackstadt 

& Hess 2009). Cross-platform correlation also increases as the percent present call filter is 

increased (Shippy et al. 2004). 

To create one hierarchical list of transcript abundance for the retained genes, we used ‘rank 

product’—a non-parametric statistic that detects items that are consistently highly ranked 

in a number of lists to create one combined list (Hong et al. 2006). The premise of the rank 

product approach is that highly expressed genes should be highly ranked in each 

independent biological replicate set. The rank product method entails ranking genes by 

expression level within each replicate, then computing the product of the ranks across the 

replicates; the rank product value for each gene increases if the gene is consistently present 

at the top of the lists. The rank product can be translated into a measure of statistical 

significance by comparing the observed rank product statistic to a rank product statistic 

obtained from a large number of simulated data sets. On this basis, a ‘percent false positive’ 

value is calculated for each gene as an estimate of the FDR. Converting expression values 

into ranks increases robustness against noise and heterogeneity across studies. The rank 

product method has high sensitivity and specificity and desirable operating characteristics, 

as demonstrated in extensive numerical studies (Breitling & Herzyk 2005; Hong et al. 2006; 

Jeffery et al. 2006; Hong & Breitling 2008). Although developed originally for microarrays, 

the rank product method has found widespread acceptance in diverse settings, for example 

RNAi analysis (Birmingham et al. 2009), proteomics (Wiederhold et al. 2009) and machine 

learning model selection (Hoefsloot et al. 2008). The 50 most abundant SLC genes were 

taken forward for CGP. All these genes had an FDR of less than 5% for being ranked amongst 

the 50 most abundant genes.  

Our robust approach to candidate gene set selection improved the results of the CGP—by 

filtering out SLCs from the candidate set that were less likely to be relevant, more relevant 

SLCs were ranked more favourably. If no filters were applied to the candidate gene set, the 

overlap between the top CGP and microarray results was not statistically significant 

(p=0.3861). But by filtering into the candidate set genes which were present in more than 

50% of meta-analysis samples and were amongst the 50 most abundant SLCs, the overlap of 

the top CGP and microarray results became statistically significant (p=0.0087).  
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Limitations of our in silico approach: One possible criticism of our CFG-cum-CP approach is 

that as we have prioritized genes based on a training set derived from data mining, any 

functionally important SLC proteins that have been neglected in epilepsy research to date 

will also be overlooked in this study. However, we feel that our data collection and collation 

methodology minimizes the effect of this limitation as we have gathered data not only from 

studies focusing on one or more selected genes but also from genome-wide microarray 

studies. Furthermore, our CFG-cum-CP gene list compares favourably with the prioritized 

gene list created using an independent training set derived from nine microarray studies; 

the latter training set does not contain any SLC genes. 

It should be noted that for collating published MDT gene and protein expression data, we 

included studies not only on microvascular endothelial (blood-brain barrier) cells isolated 

from epileptic foci, but also studies on brain parenchymal tissue obtained from epilepsy 

surgery. This is because in epileptic foci, MDTs have been shown to be dysregulated not only 

in the capillary endothelial cells (Tishler et al. 1995; Dombrowski et al. 2001; Calatozzolo et 

al. 2005; van Vliet et al. 2005; Volk & Loscher 2005; Sisodiya et al. 2006), but also in the 

perivascular glia (Tishler et al. 1995; Aronica et al. 2003b; Lu et al. 2004; Calatozzolo et al. 

2005), and even in the neurons (Seegers et al. 2002; Aronica et al. 2003a; Aronica et al. 

2004; Lazarowski et al. 2004a; Lazarowski et al. 2004b; Lazarowski et al. 2004c; Marchi et al. 

2004; Marchi et al. 2005; Hoffmann et al. 2006). MDTs expressed in the lesional perivascular 

glia may facilitate the transport of AEDs between the extraneuronal space and the blood. 

Furthermore, altered expression of MDTs in neurons also contributes to AED resistance as 

demonstrated in a recent study on the Drosophila epilepsy model (Bao et al. 2011). 

Effectiveness of our in silico approach: Our in silico predictive gene lists of various sizes—

10, 20 or 30 genes—were very significantly enriched for truly downregulated SLCs, with p-

values as significant as 8.4 x 10-7. This demonstrates that our in silico strategy shows much 

promise for the task of prioritizing specific genes for study from within very large datasets. 

Its performance with different phenotypes and gene groups will vary depending on the 

quality and quantity of base data available. However, the approach is intuitive, pragmatic 

and practical, and includes suggested methods for computational verification of outputs 

making it more attractive to future researchers.  
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3.4.2 Ex vivo strategy 

To ensure that our ex vivo analysis was robust, we chose to make use of an exon array. The 

whole-transcript amplification protocol of exon arrays allows more accurate measurement 

of gene expression than standard microarrays (Kapur et al. 2007; Xing et al. 2007; Lockstone 

2011). Stringent QC filters were applied to arrays and individual features, and a ‘percent 

present’ filter was applied to the genes to reduce false positives. Finally, important technical 

(batch and RIN) and clinical (age and sex) covariates were included in the linear model; this 

reduced the false positive rate significantly. For example, without adjusting for these 

important covariates, 540 out of 936 genes (56%) covered by the exon array would be 

differentially expressed at an FDR of 0.05 (detailed data not shown); such a high rate of 

differential expression clearly indicates the presence of false positive results. After adjusting 

for these covariates, only 56 out of 936 genes (6%) are differentially expressed at an FDR of 

0.05.  

It is interesting to note that three training genes (SLC1A2, SLC1A3 and SLC2A3), created 

from CFG and used for CGP, were not significantly dysregulated in our exon array. SLC1A2 

and SLC1A3 were not significantly downregulated in any previous epilepsy microarray study, 

although they were downregulated in previous PCR studies; this may be a result of the 

wider dynamic range of PCR assays. SLC2A3 was significantly downregulated in two previous 

microarray studies and was also borderline significant in our study, but failed to fulfil our 

stringent cut-off criteria—p-value was 0.02, and fold-change was 1.3 in our analysis. 

3.4.3 SLC proteins downregulated in the pharmacoresistant epileptic human hippocampus 

Table 3.6 summarizes the functions of the 18 SLC proteins downregulated in our exon array. 

As examples, three of the proteins are discussed in greater detail below, in order to 

illustrate their potential role in epilepsy pharmacoresistance. 

SLC12A5 is a neuron-specific potassium-chloride symporter which is expressed throughout 

the central nervous system (Payne et al. 1996; Lu et al. 1999; Williams et al. 1999). As 

demonstrated by our analysis, it is one of the most abundant SLC transporter transcripts in 

the hippocampus and its downregulation in pharmacoresistant epilepsy has been confirmed 

in independent studies (Palma et al. 2006; Lee et al. 2007). Studies in animal models reveal 

that a reduction in SLC12A5 expression results in an increased susceptibility to the 



 
 

128 
 

development of seizures: complete deletion of SLC12A5 is incompatible with life (Hubner et 

al. 2001), a 95% reduction in SLC12A5 expression results in handling-induced seizure 

behaviour (Woo et al. 2002), and heterozygous animals have a lower threshold for epileptic 

seizures—electrophysiological measurements in the hippocampus show hyperexcitability 

and animals demonstrate a twofold increase in pentylenetetrazole-induced seizures (Woo et 

al. 2002).  

SLC17A7 encodes vesicular glutamate transporter isoform 1 (vGLUT1).  There are two other 

known isoforms of vGLUT: vGLUT2 and and vGLUT3. vGLUTs mediate the uptake of 

glutamate into synaptic vesicles. The three vesicular glutamate transporters are expressed 

in distinct populations of neurons, and SLC17A7 is the predominant vGLUT in the 

hippocampus (Rasmussen et al. 2007). SLC17A7 was downregulated in pharmacoresistant 

MTLE in a large-scale microarray study (Lee et al. 2007). In agreement with this, both 

SLC17A7 transcript and protein levels were downregulated in another study that used 

immunohistochemistry, immunofluorescence, in situ hybridization, Western blotting, and 

quantitative polymerase chain reaction to quantitate SLC17A7 in pharmacoresistant MTLE 

(van der Hel et al. 2009). Reduced vGLUT1  immunoreactivity was also found in epileptic 

peritumoural neocortex (Alonso-Nanclares & De Felipe 2005). In a recent study, SLC17A7-

heterozygous mice displayed increased anxiety (Tordera et al. 2007), but the authors did not 

determine if there was neuronal hyperexcitability or if there was a reduced seizure 

threshold in these animals. Interestingly, mice heterozygous for SLC17A6 (which encodes 

vGLUT2) show increased susceptibility to clonic seizures induced by pentylenetetrazol 

(Schallier et al. 2009), while mice lacking SLC17A8 (which encodes vGLUT3) exhibit primary 

generalized epilepsy (Seal et al. 2008). Further studies are needed to determine if 

downregulation of SLC17A7 predisposes to epilepsy. 

SLC24A3 encodes the plasma membrane sodium/calcium exchanger NCKX3 (Blaustein & 

Lederer 1999). SLC24A3 transcripts are most abundant in the brain, with highest levels 

found in hippocampal CA1 neurons (Kraev et al. 2001). SLC24A3 was downregulated in two 

independent microarray studies on the pharmacoresistant epileptic hippocampus (Lee et al. 

2007; van Gassen et al. 2008). Although SLC24A3 has not been studied specifically in 

epilepsy research, supportive evidence for its possible role in epilepsy comes from the 

observation that the downregulation of the functionally-similar sodium/calcium exchanger 
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NCX3 leads to the hyperexcitability of hippocampal neurones in gerbils—NCX3 

immunoreactivity in the hippocampus of seizure-sensitive gerbils is lower than that of 

seizure-resistant gerbils (Park et al. 2011). 

As can be seen from Table 3.6, the vast majority of the identified SLC proteins are either 

small metal ion exchangers or transporters of neurotransmitters, particularly glutamate. 

Given the key roles played by ionic transport and gluatmatergic transmission in neuronal 

function, it stands to reason that these should be the most important SLC proteins in the 

epileptic hippocampus. However, for SLC transporters of metal ions, there is as yet no 

evidence of non-endogenous substrate transport—their small endogenous ionic substrates 

are markedly dissimilar to most xenobiotics, so it might be expected that they are not 

readily involved in xenobiotic transport (Dobson & Kell 2008). Similarly, there is no evidence 

as yet that the transporters of glutamate or of other neurotransmitters are able to transport 

therapeutic drugs. Therefore, while these SLCs potentially mediate pharmacoresistance in 

epilepsy, it is unlikely that they do this through altered transport of AEDs, but rather by 

enhancing the intrinsic severity of epilepsy (Schmidt & Loscher 2009).   

3.5 Conclusions 

We have developed a novel in silico strategy that can aid epilepsy research by prioritizing 

specific genes for study from within large gene sets. We have identified the most 

significantly downregulated SLCs in the pharmacoresistant epileptic human hippocampus. 

The role of these SLCs in the epileptic hippocampus will need to be defined through future 

functional studies. 
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Table 3.6 Functions of the 18 SLC proteins downregulated in the exon microarray. Data from 

Gene (http://www.ncbi.nlm.nih.gov/gene) and UniPort 

(http://www.uniprot.org/help/uniprotkb). 

Gene 
Symbol 

Function 

SLC24A3 Calcium, potassium:sodium antiporter activity 

SLC47A1 Monovalent cation:hydrogen antiporter activity 

SLC25A23 Calcium-dependent mitochondrial solute carrier activity 

SLC8A2 Sodium:calcium exchange activity 

SLC17A7 L-glutamate transmembrane transporter activity 

SLC25A41 Mitochondrial ATP-magnesium:phosphate carrier activity 

SLC26A10 Anion exchange activity 

SLC4A3 Anion exchange activity 

SLC4A7 Sodium bicarbonate cotransporter activity 

SLC12A5 Potassium:chloride transporter activity 

SLC7A1 Transport of the cationic amino acids (arginine, lysine and ornithine) 

SLC16A2 Thyroid hormone transporter 

SLC25A22 Transport of glutamate across the inner mitochondrial membrane 

SLC29A4 Reuptake of monoamines into presynaptic neurons 

SLC8A1 Sodium:calcium exchanger activity 

SLC35E2 Transport of nucleotide sugars into endoplasmic reticulum and Golgi bodies 

SLC4A8 Sodium- and carbonate-dependent chloride:bicarbonate exchange activity 

SLC18A2 Vesicular transport of biogenic amine neurotransmitters 
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Chapter 4: A New Microarray Analysis of Brain Tissue 

from Epilepsy Surgery 

4.1 Introduction 

Genome-wide transcriptomic studies continue to be a cornerstone in the investigation of 

mechanisms underlying complex diseases. Because of their whole genome approach, 

microarray studies enable researchers to identify not only differentially expressed genes, 

but also dysregulated pathways and networks. Such a holistic approach is essential for 

uncovering the many interlinked biological processes that are likely to be underlying a 

multifactorial condition like pharmacoresistant epilepsy. 

There are a number of published microarray studies on brain tissue from surgery for 

pharmacoresistant epilepsy; these studies have been extensively examined in Chapter 2. 

Although the previously published microarray studies have provided important insights into 

this condition, they suffer from a number of important methodological weaknesses, of 

which the following are particularly noteworthy:  

1. The sample sizes have been small: the largest published study on hippocampal tissue 

from pharmacoresistant mesial temporal lobe epilepsy to date included 8 disease 

samples only. 

2. In recent years, it has become widely recognized that adjusting for batch effect, 

hidden sources of heterogeneity and polymorphisms-in-probes is essential in 

microarray analysis; previously published microarray studies on human epilepsy have 

not accounted for these confounders. 

3. The previous microarray studies have not attempted to objectively demonstrate the 

therapeutic and causal relevance of the identified differentially expressed genes. 

4. The previous microarray studies have been limited to an analysis of differential 

expression; differential connectivity has not been studied and, hence, much of the 

information contained in the gene expression datasets has been ignored. 

5. A few previous microarray studies have included pathway-based analyses. However, 

as individual pathways do not function in isolation, it is useful to construct a network 
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of pathways and to identify the most central pathways in this network; this has not 

been attempted before. 

In order to resolve these deficiencies, we have performed the largest and most robust 

microarray analysis of brain tissue from surgery for pharmacoresistant mesial temporal lobe 

epilepsy. 

4.2 Aims 

1. To perform a robust microarray analysis of hippocampal tissue from surgery for 

pharmacoresistant mesial temporal lobe epilepsy. 

2. To objectively demonstrate the therapeutic and causal relevance of the differentially 

expressed genes from the microarray study. 

3. To identify differentially expressed pathways. 

4. To identify differentially connected pathways. 

5. To construct a network of differentially expressed and differentially connected 

pathways. 

6. To identify the ‘hub’ pathways. 

4.3 Methods 

4.3.1 Sample collection 

Samples used in the study originated from three UK sites: the Walton Centre for Neurology 

and Neurosurgery in Liverpool, the Salford Royal Hospital in Salford and the Southern 

General Hospital in Glasgow. We aimed to recruit patients of age 5 years and older with 

pharmacoresistant mesial temporal lobe epilepsy of at least 3 months durations for which a 

therapeutic temporal lobectomy was being undertaken. As recently proposed by the ILAE, 

pharmacoresistance was defined as the failure of adequate trials of two tolerated, 

appropriately chosen and used antiepileptic drug schedules (whether as monotherapies or 

in combination) to achieve sustained seizure freedom. The diagnosis of MTLE was made by 

the treating clinician based on seizure semiology, MRI brain and EEG characteristics being 

consistent with a seizure focus in the mesial temporal lobe. Patients suspected of having a 

neoplastic or malignant temporal lobe lesion were excluded. After surgery, the 

hippocampus was divided into two portions: (1) one portion was preserved for RNA 
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isolation, (2) the other portion underwent histological analysis by an experienced 

neuropathologist. Any subjects found to have a neoplastic or malignant lesion on 

histological analysis were excluded. The portion preserved for RNA isolation was either 

stored in RNAlater (Liverpool and Glasgow) or frozen directly at -80 oC (Salford). It should be 

noted that the quality of the RNA generated from the directly frozen brain samples was not 

significantly different from RNAlater-preserved samples: mean RIN values were 7.82 and 

7.25 respectively, and two-sample t-test p-value for difference between group RINs was 

0.06554. 

Frozen post-mortem histologically-normal hippocampal samples from donors with no 

known brain diseases were obtained from the MRC Edinburgh Brain Bank (Edinburgh, UK) 

and the Queen Square Brain Bank (London, UK).  

4.3.2 RNA isolation 

Brain samples were disrupted and homogenized in an appropriate volume of QIAzol lysis 

reagent (Qiagen, Crawley, United Kingdom) by using a TissueRuptor handheld rotor-stator 

homogenizer (Qiagen, Crawley, United Kingdom). Total RNA was extracted from the 

homogenates using the RNeasy Lipid Tissue Mini Kit (Qiagen, Crawley, United Kingdom), 

according to the manufacturer’s instructions. RNA quality was examined by capillary 

electrophoresis on an Agilent Bioanalyzer 2100 (Agilent, Palo Alto, CA) and Agilent 2100 

Expert software was used to calculate the RNA Integrity number (RIN) of each sample. Purity 

of the RNA sample was assessed using a NanoDrop1000 Spectrophotometer. Capillary 

electrophoresis traces were also examined. Samples with RNA integrity number  scores 

(RIN) below 6, obvious RNA degradation, significant 18S or 28S ribosomal  RNA degradation, 

ratio of absorbance at 260nm and 280nm <1.95, or with  noticeable DNA or  background  

contaminants  did  not pass  QC,  and  were  withheld from microarray analysis.  It should be 

noted that RNA samples with RIN scores of 6 and lower have been successfully used for 3’ 

microarrays (Hawrylycz et al. 2012) and exon microarrays (Trabzuni et al. 2011). 

4.3.3 Microarray processing and quality control 

The microarrays were processed at the Centre for Genomics Research in the University of 

Liverpool. 50ng of total RNA was amplified and labelled using the Agilent Low Input Quick 

Amp One-Colour Labeling Kit and labelled RNA was hybridized to Agilent SurePrint G3 
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Custom Exon 8x60K Microarrays. Standard Agilent protocols were followed. The quality of 

the synthesized cRNA was assessed using an Agilent Bioanalyzer 2100—the resulting 

electropherograms were found to be satisfactory.  Each scanned image was viewed for 

visible artefacts, and if multiple artefacts were present, the array was rejected. Detailed QC 

reports were generated for each array using the Feature Extraction 11.0.1.1 Software 

(Agilent, Palo Alto, CA). Based on these reports, we excluded arrays in which more than 1% 

of features were non-uniform outliers, or the average of the net signals in negative controls 

was >40, or the average of the background-subtracted signals in negative controls was <-10 

or >5, or the standard deviation of the background-subtracted signals in negative controls 

was >10, or the residual noise after spatial detrending was >15, or the median coefficient of 

variation for spike-in probes or non-control probes was >12%, or the dose-response curve of 

the spike-ins had a slope of <0.9 or >1.20, or the spike-in detection limit was <0.01 or >2. 

One array failed on five of these metrices and, hence, was excluded. Intensity data was 

extracted from the remaining arrays using the Feature Extraction Software. Spatial and 

multiplicative detetrending and local background substraction was applied.  

We employed an unbiased approach for the detection of outlier samples: samples with 

average inter-array correlation (IAC) ≤ 2 standard deviations below the mean were 

removed. This approach has been used successfully in published studies (Yang et al. 2006a; 

Flight & Wentzell 2010; Yang et al. 2012). 

4.3.4 Data normalization, adjustment and filtering 

Data exported from Feature Extraction Software was imported into GeneSpring GX Software 

(Agilent, Palo Alto, CA). Features which were population outliers, saturated or non-uniform 

were flagged as ‘Compromised’ and filtered out. Non-expressed probes were filtered out: a 

probe was deemed expressed only if it was flagged ‘Detected’ in at least 25% of control or 

case samples. Quantile normalization was applied. As GeneSpring does not include functions 

that allow adjusting for confounders and covariates, probe-level intensities were exported 

for further processing. 

Batch effect was corrected using the ComBat (Johnson et al. 2007) algorithm implemented 

in the SVA Bioconductor package. Eight arrays (four cases and four controls) were processed 

per slide; hence, each batch comprised the eight samples processed together on a slide. To 
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adjust for known and unknown confounders, Independent Surrogate Variable Analysis 

(ISVA) (Teschendorff et al. 2011) was applied; RIN, age and sex were explicitly included in 

the ISVA adjustment. Where multiple probes mapped to the same gene and mRNA variant, 

the probe with the highest variance was retained, as the most variant probe is likely to be 

most informative. 

4.3.5 Assessing the influence of confounders 

To determine if there was residual confounding after data adjustment, we used the 

phenoTest Bioconductor package to test for association between probes and confounders 

(batch, RIN, age and sex).  

4.3.6 Assessing the influence of polymorphisms-in-probes (PIP) 

Polymorphisms present in the probe-target sequences have been shown to alter probe 

hybridization affinities, leading to reduced signal intensity measurements and resulting in 

false-positive results, at least for Affymetrix microarrays (Benovoy et al. 2008). Similar 

studies have not been performed for Agilent microarrays so far. To establish if PIP could be 

leading to false-positive results in our analysis, we used a recently devised tool (Ramasamy 

et al. 2013) to determine which probes in our microarray had polymorphisms located within 

the probe sequences; we then determined if these probes with polymorphisms were 

overrepresented within the list of differentially expressed probes. 

4.3.7 Differential expression analysis 

Differential expression analysis of the adjusted dataset was performed using the limma 

package (Smyth 2004). A probe was considered differentially expressed if FDR was < 0.05 

and FC was ≥ 1.5. 

4.3.8 External validation of differential expression 

As robust validation of our differential expression results, we determined if there was 

significant overlap and rank order similarity between our results and the results from three 

previous microarray studies on hippocampal tissue from epilepsy surgery (Lee et al. 2007; 

van Gassen et al. 2008; Venugopal et al. 2012). For comparison, we determined if our 

results show a significant overlap or a significant rank order similarity with a previously 

published microarray study on hippocampal tissue from Alzheimer’s disease sufferers (Liang 

et al. 2008).  
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Statistical significance of overlap was calculated using the hypergeometric equation, and 

statistical significance of rank order similarity was calculated using the OrderedList 

Bioconductor package (Yang et al. 2006b). 

4.3.9 Assessing the potential therapeutic relevance of differentially expressed genes 

We created a comprehensive list of the targets of all current AEDs by searching three 

publically-available databases of drug targets: Stitch, SuperTarget and DrugBank. We then 

determined if our microarray results were enriched with AED targets by calculating the 

statistical significance of the overlap between AED targets and our DEG-list. For comparison, 

we did the same analysis for all previously published microarray studies on brain tissue from 

epilepsy surgery. 

4.3.10 Assessing the potential causative relevance of differentially expressed genes 

We performed a genome-wide association study (GWAS) of pharmacoresistant epilepsy 

(described in detail in Chapter 5 of the current thesis). We determined if our DEG-set was 

significantly enriched in the GWAS. For comparison, we did the same analysis for all 

previously published microarray studies on brain tissue from epilepsy surgery.  

4.3.11 Differential connectivity 

For performing differential connectivity analysis, three algorithms were compared: 

Differential Correlation in Expression for meta-module Recovery (DICER) (Amar et al. 2013), 

coXpress (Watson 2006) and DiffCoEx (Tesson et al. 2010).  

Including all microarray probes in the analysis was not computationally feasible: the time 

and memory requirements were both prohibitive. Hence, the probes were sequentially 

filtered as follows: (1) only probes mapping to genes with valid current Entrez numbers and 

HUGO Gene Nomenclature Committee gene symbols were retained, (2) where multiple 

probes mapped to the same gene, the most variant probe only was retained, (3) the 10,000 

probes with the highest variance were retained. Hence, after filtering, 10,000 probes with 

high variance remained, each mapping to a unique gene. 

DICER was the best differential connectivity algorithm (see below). The genes in 

differentially connected clusters from DICER were used to perform pathway enrichment 
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analysis. For the enriched pathways, differential connectivity was further confirmed using 

the Gene Set Co-Expression Analysis (Choi & Kendziorski 2009) protocol.  

4.3.12 Pathway-enrichment analysis 

Pathway-enrichment analysis was performed using the Reactome database on the Gene Set 

Enrichment Analysis website.  

4.3.13 Network of pathways and network analysis 

Enrichment Map (Merico et al. 2010) tool was used to determine the connections between 

enriched pathways. Enrichment Map was used with default settings. Specifically, we 

employed an overlap coefficient cut-off of 0.5—two pathways were deemed connected only 

if the ratio of the size of the intersection over the size of the smallest pathway was 0.5 or 

more. The Network Analysis tool was used to calculate network parameters, including 

‘betweenness centrality’ of nodes. 

4.4 Results 

4.4.1 Detecting Outlier Arrays Using Inter-Array Correlation (IAC) 

Mean IAC for control samples was 0.98 (range 0.96 – 0.98), while mean IAC for disease 

samples was 0.95 (range 0.95 – 0.98). As there were no arrays with IAC ≤ 2 standard 

deviations below the mean, no arrays were deemed to be outliers and no arrays were 

excluded. 

Important patient and donor individual and sample characteristics are summarized in Table 4.1. 

4.4.2 Effective Adjustment for Confounders 

We confirmed that, after ComBat and ISVA treatment, confounders had been adjusted for 

appropriately: we found that no probes were associated with RIN, age, batch or sex at an 

FDR<0.10 in the adjusted data. 
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Table 4.1 Sample characteristics. RIN=RNA Integrity Number 

Sample Phenotype Age Sex RIN  Sample Phenotype Age Sex RIN 

D1 Case 41 F 7.4 N1 control 81 M 6.5 

D2 Case 23 F 6.8 N2 control 78 F 6.2 

D3 Case 51 M 6 N3 control 84 F 6.6 

D4 Case 49 F 6.9 N4 control 91 F 6.7 

D5 Case 50 F 7.8 N5 control 88 M 6.3 

D6 Case 45 F 6.6 N6 control 38 M 6.1 

D7 Case 12 M 7 N7 control 50 M 6.2 

D8 Case 29 F 7.8 N8 control 45 M 6.3 

D9 Case 33 M 6.8 N9 control 39 M 6.1 

D10 case 25 F 7.1 N10 control 40 M 6 

D11 case 34 M 7 N11 control 61 M 6.2 

D12 case 33 M 8.8 N12 control 63 F 6.2 

D13 case 33 M 8.6 N13 control 66 M 6.2 

D14 case 22 F 7.3 N14 control 22 F 6.3 

D15 case 48 M 7.6 N15 control 27 M 6.3 

D16 case 39 F 7.4 N16 control 45 M 6.9 

D17 case 29 F 7.1 N17 control 44 F 6.7 

D18 case 44 M 7.9 N18 control 50 M 6.5 

D19 case 40 F 6.6 N19 control 43 M 6.6 

D20 case 48 M 8.5 N20 control 46 M 6.8 

D21 case 23 M 8.4 N21 control 51 M 6.2 

D22 case 63 M 7.9 N22 control 48 M 6 

D23 case 31 M 8.2 N23 control 43 M 6.6 

D24 case 27 F 8.2      

 

4.4.3 Effect of PIP 

We found that, as opposed to Affymetrix microarrays (Merico et al. 2010), PIP are not a 

source of false-positive results in our Agilent microarray. Of all the probes included in our 

microarray, 18% had polymorphisms located within the probe sequences. We found that 

probes with polymorphisms were not overrepresented within the list of differentially 

expressed probes, for varying definitions of differential expression (Table 4.2). 

4.4.4 Differential Expression: External Replication 

There was a highly statistically significant overlap between the DEG-list from our study and 

from three previously published microarray studies on pharmacoresistant epileptic 

hippocampal tissue (Table 4.3). Furthermore, the rank order of the DEGs from our study and 
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the previously published studies was statistically significant (Table 4.3). For comparison, we 

demonstrated that our results show neither a significant overlap nor a significant rank order 

similarity with a previously published microarray study on hippocampal tissue from 

Alzheimer’s disease sufferers.  

Table 4.2 Proportion of probes with polymorphisms 

 Total probes Probes with 
polymorphisms 

Proportion 

All probes on microarray 61341 11027 18.0 

Differentially expressed probes: 
FDR<0.05 

22281 3872 17.4 

Differentially expressed probes: 
FDR<0.05 & FC≥1.5 

1729 304 17.6 

Differentially expressed probes: 
FDR<0.05 & FC≥2 

310 52 16.8 

Differentially expressed probes: 
FDR<0.03 

19144 3310 17.3 

Differentially expressed probes: 
FDR<0.03 & FC≥2 

308 53 17.2 

Differentially expressed probes: 
FDR<0.01 & FC≥1.5 

1541 258 16.7 

Differentially expressed probes: 
FDR<0.01 & FC≥2 

304 50 16.4 

 

Table 4.3 Statistical significance (FDR) of overlap and rank order similarity between the 
DEGs from the current microarray study and previously published microarrays on 
hippocampal tissue. AD= Alzheimer’s disease 

Phenotype Study Statistical 
significance of 

overlap 

Statistical significance of rank 
order similarity 

Epilepsy van Gassen et al., 2008 6.191x10-7 0 

Epilepsy Venugopal et al., 2012 2.245x10-8 0.027 

Epilepsy Lee et al., 2007 3.272x10-14 0.010 

AD Liang et al., 2008 1 0.707 

 

4.4.5 Differential Expression: Evidence of Potential Therapeutic Relevance 

We found that the DEG-lists from a number of microarray studies on brain tissue from 

epilepsy surgery have statistically significant overlaps with targets of current AEDs, but the 

most significant overlap by far was for our microarray study (Table 4.4 and Figure 4. 1). 
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Table 4.4 Enrichment within microarray DEGs for targets of current AEDs. FDR=false 
discovery rate 

 

 

 

 

 

 

 

Table 4.5 GWAS association of microarray DEG-sets. FDR=false discovery rate 

Study FDR 

Current study 1.92x10-18 

Lee et al., 2007 3.14x10-7 

van Gassen et al., 2008 1.43x10-2 

Arion et al., 2006 2.62x10-2 

Jamali et al., 2006 2.44x10-1 

Venugopal et al., 2012 2.84Ex10-1 

Xiao et al., 2008 4.20Ex10-1 

Becker et al., 2003 4.96Ex10-1 

Becker et al., 2002 2.75Ex10-1 

Ozbas-Gerceker et al., 2006 2.75Ex10-1 

 

4.4.6 Differential Expression: Evidence of Potential Causative Significance 

We found that the DEG-sets from a number of microarray studies on brain tissue from 

epilepsy surgery were significantly enriched in the focal epilepsy GWAS study, but the most 

significant enrichment by far was for our microarray study (Table 4.5 and Figure 4.2). 

 

Study FDR 

Current study 2.75x10-6 

Jamali et al., 2006 0.0008 

Lee et al., 2007 0.0013 

Arion et al., 2006 0.0024 

van Gassen et al., 2008 0.0306 

Ozbas-Gerceker et al., 2006 0.0956 

Becker et al., 2003 0.1445 

Xiao et al., 2008 0.6933 

Becker et al., 2002 1 

Venugopal et al., 2012 1 
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Figure 4.1 Statistical significance of overlaps between targets of current AEDs and DEG-lists from a number of microarray studies on brain tissue from 
epilepsy surgery. Red line demarcates the level of statistical significance at FDR=0.05. 
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Figure 4.2 GWAS enrichment of microarray DEG-sets. Red line demarcates the level of statistical significance at FDR=0.05. 
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4.4.7 Differential Expression: Pathway-Enrichment Analysis 

Pathway-enrichment analysis of the 1010 DEGs with valid gene symbols revealed 91 

significantly enriched pathways (FDR<0.05). The top 10 significantly-enriched pathways are 

listed in Table 4.6, while the remaining can be found in Appendix 9.  

Table 4.6 The 10 most significantly enriched Reactome pathways amongst DEGs. 

Gene set name FDR q-value 

Signalling by GPCR 0 

GPCR downstream signalling 0 

Transmembrane transport of small molecules 0 

GPCR ligand binding 0 

Class A1 rhodopsin-like receptors 0 

Neuronal system 0 

Transmission across chemical synapses 1.07 x10-14 

Peptide ligand binding receptors 8.89 x10-13 

G alpha I signalling events 1.85 x10-12 

SLC-mediated transmembrane transport 4.40 x10-12 

 

4.4.8 Differential Connectivity: Clusters and Genes 

We compared differentially connected clusters produced by DICER, coXpress and DiffCoEx. 

Pathway and GWAS enrichment analysis revealed that the results produced by DICER were 

the most functionally coherent and potentially causative (coXpress and DiffCoEx results not 

shown). 

DICER produced 36 differentially connected clusters, ranging in size from 15 genes to 102 

genes. 17 clusters exhibited increased connectivity in disease tissue, while 19 clusters 

exhibited decreased connectivity. The contents of each cluster are tabulated in Appendix 10. 

The plot in Figure 4.3 illustrates, as an example, the clearly contrasting connectivity between 

normal and disease tissue for one of the clusters. Similar plots for all identified clusters are 

shown in Appendix 11.  

In total, 890 of the 10,000 genes (9%) included in the DICER analysis were differentially 

connected. While 211 of these genes were also found in our list of differentially expressed 

genes, the majority (76%) were differentially connected without being significantly 

differentially expressed. 
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Figure 4.3 Plot illustrating differential connectivity in one of the identified clusters. Nodes represent genes and edges represent connectivity between genes. 

Edges are coloured from blue to red indicating correlation value of -1 to 1. 
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4.4.9 Differential Connectivity: Pathway-Enrichment Analysis 

Pathway-enrichment analysis of the 890 differentially connected genes revealed 75 

significantly enriched pathways (FDR<0.05). The top 10 significantly-enriched pathways are 

listed in Table 4.7, while the remaining can be found in the Appendix 9. We further 

confirmed that these pathways are differentially connected (FDR<0.05) using the GSCA 

package (see Appendix 9). 

Table 4.7 Differential connectivity: The top 10 significantly enriched Reactome pathways. 

Pathway FDR 

Neuronal system 2.73x10-08 

Transmembrane transport of small molecules 8.85x10-08 

Developmental biology 2.23x10-06 

Axon guidance 5.79x10-06 

Transmission across chemical synapses 9.58x10-06 

Generic transcription pathway 1.01x10-05 

SLC-mediated transmembrane transport 4.68x10-05 

Semaphorin interactions 1.25x10-04 

Sema3a PAK dependent axon repulsion 2.12x10-04 

Amino acid and oligopeptide SLC transporters 7.78x10-04 

 

4.4.10 Differential Connectivity: Evidence of Genetic Basis and Potential Causality 

The differentially connected gene-set was significantly enriched in the focal epilepsy GWAS 

(p= 4.50x10-10). We created a further gene-set consisting of genes which were differentially 

connected but not differentially expressed—this latter gene set was also significantly 

enriched in the GWAS (p=6.52x10-06). 

4.4.11 Identifying a Network of Pathways 

Enrichment Map analysis revealed a highly interconnected central network of pathways 

(Figure 4.4). In this central network, each pathway is directly connected to, on average, 10.5 

other pathways. In order to identify the most central ‘hub’ pathways, ‘betweeness 

centrality’ network analysis was performed; the results are illustrated in Figure 4.5 and the 

top 15 pathways are listed in Table 4.8. The complete ranked list can be found in the 

Appendix 9.  
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Figure 4.4 Network of pathways. Nodes with a red centre represent differentially expressed pathways, nodes with a blue border represent differentially 
connected pathways, and nodes with both a red centre and blue border represent pathways which are both differentially expressed and connected. Major 

functional groups containing at least three pathways are labelled. 
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Figure 4.5 The central network of interconnected pathways. Node sizes are proportional to their betweenness centrality. Major functional 
groups of pathways are labelled. 
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Table 4.8 Betweenness centrality 

Pathway Betweenness Centrality 

Signalling by NOTCH  0.6 

CREB phosphorylation through the activation of CAMKII  0.31572334 

Signalling by PDGF  0.22722128 

Nephrin interactions  0.225894 

Transmembrane transport of small molecules  0.18478239 

Signalling by GPCR  0.16146105 

Immune system  0.15259226 

Neuronal system  0.15097778 

Signalling by NOTCH3  0.15 

Receptor ligand binding initiates the second proteolytic cleavage 
of notch receptor  

0.15 

Transmission across chemical synapses  0.10843453 

NCAM signalling for neurite out growth  0.09770921 

NCAM1 interactions  0.09770921 

Post NMDA receptor activation events  0.08083733 

Neurotransmitter receptor binding and downstream transmission 
in the postsynaptic cell  

0.07588839 

 

4.5 Discussion 

Although there have been a number of previous microarray studies on brain tissue from 

surgery for pharmacoresistant epilepsy, the current analysis advances this field of study in a 

number of significant and novel ways, of which the following aspects are especially 

noteworthy: 

1. This is the largest transcriptomic study of hippocampal tissue from 

pharmacoresistant mesial temporal lobe epilepsy to date, having thrice the number 

of disease samples of the previous largest study. 

2. We have externally validated our results by showing statistically significant 

similarities with previously published studies (see results). 

3. Cutting edge analytical techniques have been applied which improve the sensitivity 

and reliability of our results: 

a. Batch effects have now been recognized as an important but overlooked 

source of confounding in transcriptomic studies; we have accounted and 
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corrected for batch effects using careful study design and appropriate data 

processing. 

b. We effectively adjusted for known confounders. We confirmed that, after 

ComBat and ISVA treatment, no probes were associated with RIN, age, batch 

or sex at an FDR<0.10 in the adjusted data. It should also be noted that 

Agilent microarrays are robust to differences in RIN values between 

compared samples (Opitz et al. 2010). 

c. We have adjusted for unknown confounders using the cutting edge 

Independent Surrogate Variable Analysis technique. 

d. Polymorphisms-in-probes (PIP) have recently been established as a potential 

source of false-positive results in many microarray studies; we have carefully 

assessed the influence of PIP in our study. 

4. We have shown the therapeutic and causal relevance of our results: 

a. We have demonstrated the functional and therapeutic relevance of our 

results by showing that they are enriched with antiepileptic drug targets and 

more so than any previous microarray study. 

b. We have demonstrated the causal relevance of our results by showing their 

enrichment in a genome-wide genetic association study of pharmacoresistant 

partial epilepsy. 

5. In addition to a differential expression analysis, we have performed a ‘differentially 

connectivity’ analysis; the first such analysis in epilepsy. 

6. We have revealed the extensively interconnected network of pathways underlying 

pharmacoresistant epilepsy and identified the ‘hub’ pathways. 

Some of these aspects are discussed in greater detail below. 

4.5.1 Adjustment for batch effect 

Batch effect refers to the systematic error introduced when samples are processed in 

multiple batches (Chen et al. 2011). Although batch effects can be reduced by careful 

experimental design, they cannot be eliminated unless the whole study is done in a single 

batch. Hence, batch effects are almost inevitable as practical considerations limit the 

number of samples that can be amplified and hybridized at one time. Combining data from 

different batches without carefully removing batch effects can give rise to misleading 



 
 

159 
 

results, since the bias introduced by the non-biological nature of the batch effects can be 

strong enough to mask, or confound true biological differences. However, of the thousands 

of DNA microarray papers published every year, few address the problem (Chen et al. 2011). 

Certainly, none of the human epilepsy transcriptomic studies published hence far have 

addressed this issue. 

A number of approaches have been developed for identifying and removing batch effects 

from microarray data. In the current study, we have utilized an empirical Bayes method 

called ComBat (Johnson et al. 2007), which has been shown to outperform other programs 

(Chen et al. 2011), and is currently the most widely used method for batch effect correction.  

After completing the data adjustment, we have demonstrated that our data has been 

effectively corrected by showing that the probes are not associated with batch or with other 

known confounding factors (age, sex and RNA quality). 

4.5.2 Adjustment for hidden confounders 

It is relatively straightforward to account for those confounders that are known and 

measured. When measured, inclusion of these known factors in the analytical model allows 

for a more sensitive analysis. For example, it is standard procedure to include covariates 

such as age and gender in the analysis. In practise it is not possible to measure or even be 

aware of all potential sources of variation. Unobserved hidden genetic, environmental, 

demographic, and technical factors may have substantial effects on gene expression levels, 

and may create spurious false associations or mask real genetic association signals (Leek & 

Storey 2007). These factors cannot be directly included in modelling if they are not 

measured, and techniques that have been used to explicitly adjust for known factors (for 

example, ComBat for batch effect) cannot be used. A number of statistical approaches have 

been developed to account for such hidden determinants of expression variation (Leek & 

Storey 2007; Kang et al. 2008; Teschendorff et al. 2011; Fusi et al. 2012; Stegle et al. 2012). 

Of these approaches, the most popular and widely is surrogate variable analysis (SVA) (Leek 

& Storey 2007), which has been shown to lead to improved estimates of statistical 

significance, biological accuracy and reproducibility. SVA uses the expression data itself to 

identify groups of genes affected by each unobserved factor and estimates the factor based 

on the expression of those genes; the confounding factors can then be regressed out of the 
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dataset. A recent improvement upon the SVA protocol is Independent Surrogate Variable 

Analysis (ISVA), which has been shown to outperform SVA (Teschendorff et al. 2011). ISVA is 

the protocol employed in the current study. 

4.5.3 Checking for the presence of false-positive results caused by polymorphisms-in-

probes 

Polymorphisms present in the probe-target sequences have been shown to alter probe 

hybridization affinities, leading to reduced signal intensity measurements and resulting in 

false-positive results in Affymetrix (Benovoy et al. 2008) and, to a lesser extent, in Illumina 

(Ramasamy et al. 2013) microarrays. Similar studies have not been performed for Agilent 

microarrays so far. To establish if PIP could be leading to false-positive results in our 

analysis, we used a recently devised tool (Ramasamy et al. 2013) to determine which probes 

in our microarray had polymorphisms located within the probe sequences; we then 

determined if these probes with polymorphisms were overrepresented within the list of 

differentially expressed probes. 

We have shown for the first time that Agilent gene expression microarrays are not 

deleteriously affected by PIP. This is an important methodological contribution to the 

analysis of Agilent microarrays. The differing susceptibility of the various microarray 

platforms to the PIP problem can be explained by the different lengths of the probes used. 

The presence of a polymorphism in a longer sequence has a less pronounced effect on the 

binding affinity than in a shorter sequence (Rennie et al. 2008). It has previously been 

shown that results generated using the Affymetrix array (25-mer probe design) are much 

more affected by the PIP problem than those results generated using the Illumina array (50-

mer probe design). We have now demonstrated that results generated using the Agilent 

array (60-mer probe design) are not significantly affected by PIP. However, previous 

pharmacoresistant human epilepsy microarray studies which were performed using the 

Affymetrix platform (Becker et al. 2003; Arion et al. 2006; Lee et al. 2007), and perhaps 

studies performed on other non-Agilent platforms, are likely to have been affected by the 

PIP problem. 
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4.5.4 Demonstrating the potential therapeutic and causal significance of our results 

The discovery of new therapeutic targets is one of the main motivations behind conducting 

microarray studies in pharmacoresistant epilepsy. From this point of view, we wished to 

determine if the DEGs we have identified are potentially enriched with novel AED targets. 

We reasoned that if our DEGs are enriched with targets of current AEDs, then the DEGs are 

also likely to be harbouring future AED targets. We created a comprehensive list of the 

known targets of current AEDs using an objective unbiased unsupervised methodology. We 

found that the DEG-lists from a number of microarray studies on brain tissue from epilepsy 

surgery have statistically significant overlaps with targets of current AEDs, but the most 

significant overlap by far was for our microarray study (Table 4.3 and Figure 4.1). This shows 

that our list of DEGs is likely to be a highly valuable source for future drug discovery. 

A limitation inherent in transcriptomic studies is that the gene expression changes identified 

can be a consequence, rather than a cause, of the disease. In order to demonstrate that the 

DEGs identified are causally relevant, we have devised a novel strategy: we have 

determined if the DEG-set is enriched in a GWAS study of pharmacoresistant partial epilepsy 

(described in Chapter 5). We found that the DEG-sets from a number of microarray studies 

on brain tissue from epilepsy surgery were significantly enriched in the focal epilepsy GWAS, 

but the most significant enrichment by far was for our microarray study (Table 4.4 and 

Figure 4.2). 

The above observations illustrate that our results are clearly more therapeutically and 

causally relevant than any previous microarray study on brain tissue from epilepsy surgery. 

We feel that our superior results can be attributed to our stringent QC and cutting edge 

data processing strategies (for example, adjustment for batch effect and hidden 

confounders, described above), which ensure that more false positive are filtered out from 

our results and our results are more enriched with true positives. 

4.5.5 Differential Connectivity 

All published transcriptomic studies on human epileptic brain tissue, and the vast majority 

of transcriptomic studies in general, have focused on identifying genes or gene sets showing 

average expression levels that vary across biological conditions. Although such differential 

expression approaches have been very successful, much of the information contained in 
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gene expression datasets is ignored. Disease genes are often not differentially expressed in 

diseases because genetic variations in the coding region can affect the function of the gene 

without affecting its expression level. Furthermore, a variety of post-translational 

modifications can affect regulatory activities of a gene product independently of its 

expression level. Hence, manifestation of disease can result from a de- or reregulation of 

genes that does not significantly affect each gene’s average expression level. For these 

reasons, it is being increasingly appreciated that focusing solely on differential expression 

and overlooking other types of differential regulation, such as differential connectivity (also 

known as differential co-expression or differential correlation) can be critically limiting 

(Mentzen et al. 2009). 

Differential connectivity is defined as a change in the correlation relationships between 

genes. Transcriptomic correlation analysis identifies sets of genes that are expressed in a 

coordinated fashion. Such correlation is considered evidence for possible coregulation 

under the principle of guilt-by-association (Chu et al. 1998). Hence, major changes in 

correlation patterns between classes may indicate changes in regulation. 

Differential connectivity analysis algorithms can be divided into two distinct types: (1) 

targeted approaches study gene modules that are defined a priori, while (2) untargeted 

approaches aim at grouping genes into modules on the basis of their differential correlation 

status. In order to ensure that our results are reliable, we utilized both an untargeted and a 

targeted approach. Starting with an untargeted approach, we used the program ‘Differential 

Correlation in Expression for meta-module Recovery’ (DICER), to identify differentially 

connected clusters. The plot in Figure 4.3 illustrates, as an example, the clearly contrasting 

connectivity between normal and disease tissue for one of the clusters. We confirmed the 

causal relevance of the differentially connected genes identified using DICER by showing 

that they are enriched in a GWAS study of pharmacoresistant partial epilepsy. The 

differentially connected gene-set remains enriched in the GWAS study even when we 

exclude those genes which are also differentially expressed. Pathway-enrichment analysis of 

the differentially connected genes revealed 75 significantly enriched pathways. We further 

confirmed that these pathways are differentially connected using a targeted algorithm, 

implemented in the package Gene Set Co-Expression Analysis (GSCA) (Choi & Kendziorski 

2009). 
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We have revealed for the first time that there is widespread differential connectivity in the 

pharmacoresistant epileptic hippocampus. In fact, we have shown that differential 

connectivity is more widespread than differential expression. Of the 10,000 probes 

subjected to DICER analysis, 890 (9%) were differentially connected. Of the 29,003 probes 

included in the differential expression analysis, 1176 probes (4%) were differentially 

expressed.  

4.5.6 Identifying a network of pathways and ‘hub’ pathways 

Figure 4.6 Differential expression (red) and connectivity (green) pathway-analysis confirm 
and complement each other. 

 

 

As illustrated in Figure 4.6, differential expression and differential connectivity pathway-

analyses confirm and complement each other. We identified 118 unique differentially 

regulated (differentially expressed or differentially connected) Reactome pathways. Out of 

these, 48 pathways (41%) were both differentially expressed and differentially connected, 

41 pathways (36%) were only differentially expressed, and 27 pathways (23%) were solely 

differentially connected (Figure 4.6). This point is further highlighted by looking at the ten 

most differentially expressed and the ten most differentially connected pathways (Tables 

4.6 and 4.7). Common to both Tables are pathways related to the neuronal system, 

transmission across chemical synapses and SLC-mediated transmembrane transport of small 

43 27 48 
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molecules. However, prominent amongst the most differentially expressed pathways, but 

not amongst the most differentially connected pathways, are pathways related to ligand 

binding to G protein-coupled receptors (GPCR), especially class A1 rhodopsin-like receptors 

such as chemokine receptor 1 (CCR1), and the resultant downstream signalling events. By 

contrast, prominent amongst the most differentially connected pathways, but not amongst 

the most differentially expressed pathways, are pathways related to axon guidance, 

especially via semaphorins. These observations demonstrate that considering only one form 

of differential regulation (that is, only differential expression or only differential 

connectivity) may lead to important biological processes being overlooked. 

The differentially expressed and differentially connected Reactome pathways identified in 

our microarray analysis (Tables 4.6 and 4.7,  and Appendix 9) could be deemed to represent 

disparate and disconnected processes, for example ‘axon guidance’, ‘transmembrane 

transport of small molecules’ and ‘class A1 rhodopsin-like receptors’. Using the Enrichment 

Map utility, we have shown that these differentially expressed and differentially connected 

pathways in fact form a highly interconnected central network (Figure 4.4). In this central 

network, each pathway is directly connected, on average, to 10.5 other pathways. The 

seemingly unrelated pathways, therefore, form a coherent whole and it can be expected 

that changes in one pathway in this network will have a cascading effect on the rest of the 

network. 

We acknowledge that alternative methods of network construction are available (see 

Chapter 1). We have adopted a strategy that begins with the identification of enriched 

biological pathways within the transcriptomic data and then constructs a network of the 

enriched pathways. This methodology is well suited to addressing a key unanswered 

question in epilepsy research: which pathways and processes are most central in the 

dysregulated transcriptomic network underlying pharmacoresistant epilepsy? The current 

analysis and previously published studies have shown that numerous functionally diverse 

genes are dysregulated in the epileptic human hippocampus. Starting with a pathway-

enrichment analysis approach allows immediate functional characterisation of these 

complex transcriptomic results, as each biological pathway serves a clearly defined purpose. 

Subsequent construction of a network of dysregulated pathways and analysis of network 

properties allows the identification of the most important hub pathways within the 
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network. In order to construct a network of dysregulated pathways, we have opted for a 

simple and intuitive approach not reliant on strong assumptions. The underlying assumption 

is that the dysfunction of a pathway will spread to overlapping pathways with which it 

shares constituent genes. 

Of particular importance in this network are likely to be the ‘hub pathways’ identified using 

betweenness centrality network analysis. Betweenness is a measure of the centrality of a 

node in a network, and is calculated as the fraction of shortest paths between node pairs 

that pass through the node of interest. Hence, betweenness is a measure of the influence a 

node has over the spread of information through the network. The most central pathway by 

far was ‘signalling by Notch’. We have conducted a literature review in order to highlight 

any published evidence of the potential role of Notch signalling in epilepsy.  

4.5.7 Notch signalling pathway in epilepsy: a literature review 

It is important to note that the differential expression of the Notch signalling pathway 

reported here can be independently and robustly confirmed: in a study published recently, 

it has been shown using Western Blots that Notch signalling is significantly upregulated in 

the pharmacoresistant epileptic human hippocampus (Sha et al. 2013).  

Notch is a cell surface receptor that engages at least two signal transduction pathways: one 

that controls nuclear gene expression and another that directly targets the cytoskeleton 

(Giniger 2012). Notch signalling plays critical roles in both the developing and the adult 

brain. In the developing brain, Notch regulates specification of neuronal identity and 

neuronal division, survival and migration, as well as axon guidance, morphogenesis of 

dendritic arbors and weighting of synapse strength (Giniger 2012). Notch pathway 

components are expressed throughout the adult brain (Ables et al. 2011). In the adult 

hippocampus and other brain regions, Notch is localized at synapses and is an essential 

contributor to synaptic plasticity (Wang et al. 2004; Dahlhaus et al. 2008; Alberi et al. 2011), 

and is involved in neuronal excitability and discharges (Alberi et al. 2011; Lieber et al. 2011). 

Using the kainate murine model of temporal lobe epilepsy, Sha and colleagues (Sha et al. 

2013) have recently shown that Notch is activated in response to seizure activity, and that 

the pharmacological induction of Notch expression has proconvulsant effects, while the 

inhibition of Notch suppresses seizures. The authors show that Notch enhances 
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transmission at glutamatergic synapses of CA1 pyramidal neurons. In summary, this data 

demonstrates that Notch is activated in response to seizure activity and that its activation in 

turn promotes seizures. 

Notch is known to modulate a number of transcription factors and this list is constantly 

growing (Borggrefe & Oswald 2009). Mutations in the NOTCH3 gene have been associated 

with human brain disorders: cerebral arteriopathy with subcortical infarcts and 

leukoencephalopathy (Rutten et al. 2014), and migraine (Menon et al. 2011). Based on the 

preceding observations, it can be postulated that the Notch signalling pathway occupies a 

central position in the transcriptional network that underlies the development of 

pharmacoresistant epilepsy. 

4.6 Conclusions 

We have performed the largest and most robust transcriptomic analysis of hippocampal 

tissue from pharmacoresistant mesial temporal lobe epilepsy to date. We have externally 

validated our results using previously published studies. We have shown the causal 

relevance of our results using novel objective methodology, and we have demonstrated that 

our list of DEGs is likely to be a highly valuable source for future drug discovery. For the first 

time, we have identified the differentially connected pathways in the pharmacoresistant 

epileptic hippocampus, and revealed the network of differentially expressed and 

differentially connected pathways underlying this disease, and identified the hub pathways. 
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Chapter 5: A Genome-Wide Association Study of 

Pharmacoresistant Partial Epilepsy: Pathway and 

Network Analysis 

5.1 Introduction 

It has been shown that genetic factors have a major influence on epilepsy prognosis 

(Johnson et al. 2003). However, for many complex traits, including pharmacoresistant 

epilepsy, the underlying pathobiology is not well understood, making it difficult to select 

candidate genes for analysis. For such traits, performing genome-wide association studies 

(GWAS) is an important initial strategy for identifying susceptibility genes. This approach can 

be quite successful—several highly significant SNP-disease associations have been found 

through GWAS that have been replicated across studies (Manolio et al. 2008), for example 

the association between interleukin-23 receptor polymorphisms and inflammatory bowel 

disease (Duerr et al. 2006; Raelson et al. 2007). Despite the success of single-marker 

association tests, this strategy has limited power to identify disease genes, given the 

hundreds of thousands of SNP markers used in most GWA studies. Some genes may be 

genuinely associated with disease status but may not reach a stringent genome-wide 

significance threshold in any GWAS. Most genetic associations have a small effect size and 

require very large sample sizes across several cohorts to be robustly identified. 

Furthermore, the small effect sizes for these associations do not explain the observed 

heritability of most traits (Maher 2008). In addition, it is can be challenging to translate a 

genetic association into a functional connection with the trait based only on the annotation 

of a single gene.  

In pathway-based association tests for GWAS, researchers examine a collection of 

predefined gene sets; each set represents a pathway (based on prior biological knowledge); 

and the significance of each pathway can be summarized based on the disease association 

of markers in or near genes that are components of that pathway (Wang et al. 2010). 

Intuitively, it seems likely that susceptibility markers for any given disorder are not randomly 

distributed among genes but instead, are distributed among one (or more) set(s) of genes 

whose functions are to some extent related (Holmans 2010). Hence, GWAS pathway 
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analysis can assess whether a group of genes with related functions are jointly associated 

with a trait of interest. 

The pathway-based GWAS approach offers several advantages over single-marker analysis. 

Firstly, pathway-based methods boost the power to identify genetic associations (Wang et 

al. 2007). Genetic heterogeneity may cause any one causal variant to exhibit only modest 

disease risk in the sample as a whole, since different individuals may possess different 

disease risk polymorphisms at different loci in the same gene, or in different genes. This will 

reduce power to detect any one variant by traditional association methods. However, if the 

genes in question are members of the same biological pathway, then considering the 

pathway as the unit of analysis may increase power to detect association between the 

genes and disease.  For similar reasons, association of disease with biological pathways may 

be easier to replicate across different studies than association with individual SNPs. This was 

clearly shown in an analysis of Crohn's disease (Wang et al. 2009), where the IL12/IL23 

pathway showed evidence of enrichment in four independent GWAS, despite the genes and 

SNPs involved differing between the studies. In addition, by identifying additional 

susceptibility genes, pathway-based analysis can be used to fill-in part of the ‘missing 

heritability’ described above (Fridley & Biernacka 2011). Furthermore, compared with SNP-

based analysis, pathway-based analysis may yield more secure insights into disease biology 

since an associated pathway is likely to implicate function better than a hit in a single gene 

that may have many functional possibilities. Finally, as the most associated gene in a 

pathway might not be the best candidate for therapeutic intervention, targeting 

susceptibility pathways might also have clinical implications for finding additional drug 

targets. 

To date, there has been only one GWAS of response to antiepileptic drugs. No single variant 

achieved genome-wide significance in this study, although a number of significant pathways 

were identified (Speed et al. 2013). The current study is distinct from the previously 

published work in three important ways:  (1) we have included only patients with partial 

epilepsy, (2) we have applied stringent definitions of pharmacoresistance (see below), and 

(3) we have used normal subjects as controls. These characteristics mean that the design of 

our GWAS closely mirrors the design of our transcriptomic study (Chapter 4), and the two 

types of studies can be effectively integrated (in Chapter 7). 
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5.2 Aims 

1. To perform a GWAS of pharmacoresistant partial epilepsy. 

2. To perform objective validation of a gene-set based analysis approach of our GWAS. 

3. To perform pathway-level enrichment analysis of GWAS results. 

4. To demonstrate pathway-level replication of GWAS results. 

5. To create a network of enriched pathways and identify ‘hub’ pathways. 

5.3 Methods 

5.3.1 Patients 

The control dataset consisted of 3000 subjects from the Wellcome Trust Case Control 

Consortium (WTCCC) 1958 British Birth Cohort (dataset EGAD00000000022). This dataset 

was downloaded from the European Genome-Phenome Archive after obtaining the 

requisite approval from the Wellcome Trust Case Control Consortium Data Access 

Committee. 

The epilepsy cases used in the discovery cohort were from amongst the patients recruited 

into the Standard and New Antiepileptic Drugs (SANAD) trial (Marson et al. 2007a, b). 

SANAD was an unblinded randomised controlled trial in hospital-based outpatient clinics in 

the UK which examined the longer-term outcomes of standard versus new antiepileptic 

drugs. Patients were included in SANAD if they had a history of two or more clinically 

definite unprovoked epileptic seizures in the previous year. This allocation allowed inclusion 

of patients with newly diagnosed epilepsy, patients who had failed treatment with previous 

monotherapy, and patients who had entered a period of remission from seizures but had 

relapsed after withdrawal of treatment. Patients were excluded if the clinician or patient felt 

that treatment was contraindicated, if all their seizures had been acute symptomatic 

seizures (including febrile seizures), they were aged 4 years or younger, or if there was a 

history of progressive neurological disease. Clinicians were asked to classify seizures and 

epilepsy syndromes by International League Against Epilepsy (ILAE) classifications(1981; 

1989) as far as was possible, and at least to differentiate between partial onset (focal) or 

generalised onset seizures. Patients were seen for follow-up at 3 months, 6 months, 1 year, 

and at successive yearly intervals from the date of randomisation. At every visit, details of 
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the occurrence of seizures, adverse events, hospital admissions, and antiepileptic drug 

treatment were documented.  

For the purposes of our GWAS, we extracted subjects from the SANAD trial with a history of 

pharmacoresistant partial epilepsy. Pharmacoresistant epilepsy was defined as failure to 

achieve seizure freedom with two appropriately chosen antiepileptic drugs (used as 

monotherapies or in combination) at their minimum therapeutic doses or above for at least 

three months, in keeping with ILAE guidelines (Kwan et al. 2010). Seizure freedom was 

defined as freedom from all seizures for a minimum period of 12 months. Total daily 

minimum therapeutic doses of antiepileptic drugs used in our classification protocol were 

taken from the British National Formulary 60 (September 2010), and are listed in Table 5.1. 

Table 5.1 Total daily minimum therapeutic doses of antiepileptic drugs used in our 
classification of pharmacoresistance.  

Antiepileptic drug Minimum therapeutic dose (mg) 

Carbamazepine 600 

Clobazam 20 

Clonazepam 4 

Eslicarbazepine  800 

Ethosuximide 1000 

Gabapentin 1200 

Lacosamide 200* 

Lamotrigine 150 

Levetiracetam 1000* 

Oxcarbazepine 900 

Phenobarbital 60 

Phenytoin 200 

Pregabalin 300 

Primidone 750 

Tiagabine 15§ 

Topiramate 150 

Valproate 1000 

Vigabatrin 1000 

Zonisamide 150 

*Minimum therapeutic dose not stated in the British National Formulary and taken from 

product literature. §30mg in patients receiving enzyme inducing drugs. 

 

The epilepsy cases used in the replication cohort were from amongst the patients recruited 

into the ‘Pharmacogenetics of GABAergic Mechanisms of Benefit and Harm in Epilepsy’ 
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study. The aims of the study were: (i) to determine a genomic profile that predicts 

therapeutic response to clobazam (CLB), and (ii) to develop a gene-test for predicting 

vigabatrin (VGB) related visual field defects. Patients were recruited from hospital-based 

outpatient clinics in the UK. Patients were invited to join the CLB arm of the study if they 

had continued seizures despite current treatment with between one and three conventional 

antiepileptic drugs and the addition of CLB to the existing antiepileptic regime was clinically 

indicated. Patients were asked to join the VGB arm of the study if they were over the age of 

12 years and had taken VGB for at least 6 months. For the CLB and VGB studies, the dose 

and duration of use details for previously prescribed antiepileptic drugs was not recorded. 

Hence, it was not possible to make use of the ILAE definition stated above for the 

identification of pharmacoresistant patients. However, both CLB and VGB are used in the UK 

as adjunctive treatments in cases where first- and second-line antiepileptic drugs have 

proven ineffective. The chief investigator for the study, who is familiar with clinical practice 

at the participating hospitals, confirmed that both CLB and VGB are prescribed in 

pharmacoresistant patients in the concerned centres. To further ensure that we included 

only a pharmacoresistant phenotype in our GWAS, we selected only those patients who had 

active epilepsy for at least 10 years and were still uncontrolled at the time of initiating CLB 

or VGB. The epilepsy syndrome of the recruited patients was recorded as part of the CLB 

and VGB studies, and we included in our GWAS only those with documented partial 

epilepsy. 

5.3.2 Genotyping, imputation and quality control 

DNA was extracted from blood samples using standard procedures. All samples from 

patients with epilepsy were genotyped at the Wellcome Trust Sanger Institute on an 

Illumina 670K chip. Our standard data quality control (QC) procedures were as follows. 

Individuals were excluded on the basis of discordance between reported and observed sex, 

SNP call rate <95%, outlying autosomal heterozygosity rates (>3 standard deviations from 

the mean), inadvertent subject duplication or cryptic relatedness based on pairwise identity-

by-descent estimations (the individual with greater missing data was removed from each 

pair with -hat >0.1875), being outliers from the European cluster in a plot of the first two 

principal components of genotypes for samples from the study and HapMap Phase III. SNPs 

were excluded on the basis of genotype missing rate ≥5% if minor allele frequency (MAF) 
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was ≥0.05 and missing rate ≥1% if MAF was <0.05, observed minor allele frequency <0.01, 

significant deviation (P <10−4) from Hardy-Weinberg equilibrium, significant difference (P 

<10−4) in the genotype missing rate in cases compared to controls, and all non-autosomal 

SNPs. As an additional filter against false-positive associations resulting from genotyping 

errors, genotype imputation was used as a strategy for detecting genotyping errors 

(Marchini & Howie 2010). Samples were pre-phased using ShapeIt version 2 (Delaneau et al. 

2013) and then imputed using Impute2 (Howie et al. 2009), with 1000 Genomes Project 

haplotypes (released in March 2012) as the reference panel. Impute2 produces a 

concordance metric: each genotyped SNP in the study dataset is masked one at a time, and 

then imputed using information from the reference data and nearby study variants; 

concordance between imputed and original genotypes is then calculated. SNPs imputed 

with high certainty (Impute2 ‘info’ score >0.9) but with low concordance (<0.9) were 

excluded. 

For controls, we obtained the WTCCC 1958 British Birth Cohort dataset genotyped on the 

Illumina 1.2M chip. This dataset was chosen as the SNPs on our Illumina 670K chip are a 

complete subset of those on the Illumina 1.2M chip. This ensures maximal overlap between 

the genotyped SNPs for the control and epilepsy samples. Hence, we reduced the SNPs in 

the control dataset to those also found on the Illumina 670K chip. For QC, we started by 

excluding all 231 individuals listed as 'individual exclusions' in the data release 

documentation. We then applied our standard per-individual QC filters stated above—this 

led to the exclusion of only two additional individuals, based on outlying ancestry. We 

excluded all SNPs listed as 'SNP exclusions' in the WTCCC data release documentation. We 

then applied our standard per-SNP QC filters stated above. In total 68114 SNPs were 

excluded, 53326 of which were in the suggested SNP exclusions from the Wellcome Trust 

data release documentation, and 1209 were identified using the imputation-based filter. 

In the SANAD cohort, there were 84 genotyped samples with pharmacoresistant partial 

epilepsy. The final dataset, after applying the QC filters described above, included 76 

samples. 
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In the combined clobazam and vigabatrin cohort, there were 385 genotyped samples with 

pharmacoresistant partial epilepsy. The final dataset, after applying the QC filters described 

above, included 345 samples. 

For case-control analysis, our ‘discovery’ dataset comprised the SANAD cohort and half of 

the WTCCC 1958 British Birth Cohort chosen at random. Our ‘replication’ dataset comprised 

the combined clobazam and vigabatrin cohort and the other half of the WTCCC 1958 British 

Birth Cohort. Our standard QC filters were applied again to the discovery and replication 

cohorts. In the end, our discovery cohort consisted of 76 cases and 1312 controls genotyped 

over 509319 SNPs, and our replication cohort consisted of 345 cases and 1312 controls 

genotyped over 509269 SNPs. 

We also created a ‘mega-analysis’ dataset by merging the SANAD, clobazam, vigabatrin and 

WTCCC 1958 British Birth cohorts. After QC, this dataset comprised 421 cases and 2624 

controls genotyped over 509534 SNPs. 

Genotype imputation was performed in order to boost power and to aid fine mapping of 

any association signals (Marchini & Howie 2010). The ‘mega-analysis’ dataset were pre-

phased using ShapeIt version 2 (Delaneau et al. 2013) and then imputed using Impute2 

(Howie et al. 2009), with 1000 Genomes Project haplotypes (released in March 2012) as the 

reference panel. The QCTOOL software was used to exclude SNPs with an ‘info’ score of 

<0.9. GTOOL software was then used to transform the imputed data to PED format, with a 

posterior probability of 0.9 used as a threshold to call genotypes. In the end, our standard 

per-SNP QC filters, described above, were applied. The final dataset included 5,519,310 

genotyped and imputed SNPs. 

5.3.3 Association, pathway and network analysis 

SNP-level association analysis was performed using the chi-squared (2) test in Plink version 

1.07 (Purcell et al. 2007). Based on the results of the 2 test, genomic inflation factor () was 

calculated and quantile-quantile (QQ) plots were generated. Where results were inflated 

due to population stratification, the association analysis was performed using logistic 

regression with significant principal components (PCs) as covariates. Specifically, PC analysis 

was performed using the package SNPRelate (Zheng et al. 2012). Tracy-Widom (TW) statistic 

(Patterson et al. 2006) and significance for the eigenvalue of each PC was calculated using 
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the package EigenCorr (Lee et al. 2011); PCs with statistically significant eigenvalues 

(FDR<0.05) were included as covariates in the logistic regression analysis. Sex was not 

included as a covariate as this can substantially reduce power for the identification of 

associated variants when the disease prevalence is lower than a few percent (Pirinen et al. 

2012; Bezzina et al. 2013). 

We wished to demonstrate that GWAS gene-set analysis was able to discriminate 

functionally relevant from irrelevant gene-sets. For this purpose, we used a robust objective 

methodology for compiling a highly functionally relevant gene-set: we created a 

comprehensive list of the targets of all current AEDs by searching three publically-available 

databases of drug targets: Stitch, SuperTarget and DrugBank. For comparison, we divided 

the rest of the genome randomly into 122 gene-sets of the same size as our functional gene-

set. We determined the degree of enrichment of these gene-sets with our discovery and 

cohort association results. 

Gene-set and pathway-level enrichment analysis was performed using the widely used 

program GSA-SNP (Nam et al. 2010). For SNP-to-gene mapping, we used a mapping distance 

of 20kb, and compared results obtained with using the first and second most significant 

SNP. In order to maintain consistency with our transcriptomic pathway analysis, the 

Reactome pathways database downloaded from the Gene Set Enrichment Analysis website 

was used in the enrichment analysis.  

The statistical significance of the overlap between the list of enriched pathways in the 

discovery and replication cohorts was calculated using the hypergeometric equation.  

As described for our transcriptomic analysis, Enrichment Map (Merico et al. 2010) tool was 

used to determine the connections between enriched pathways. Enrichment Map was used 

with default settings. Specifically, we employed an overlap coefficient cut-off of 0.5—two 

pathways were deemed connected only if the ratio of the size of the intersection over the 

size of the smallest pathway was 0.5 or more. The Network Analysis tool was used to 

calculate network parameters, including ‘betweenness centrality’ of nodes. 
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5.4 Results 

5.4.1 SNP-level analysis 

For the discovery cohort 2 association analysis, the  was 1.01 and the QQ plot of the 

observed p-values revealed a good fit with the null distribution (Figure 5.1). For the 

replication cohort 2 association analysis, the  was 1.04. The eigenvalues for the first two 

PCs were statistically significant; these PCs were included as covariates in a logistic 

regression analysis. After PCA-adjustment, both the  (1.03) and the QQ plot showed 

appropriate improvement (Figure 5.2), suggesting that there was little evidence of residual 

inflation due to population stratification. For the combined cohort 2 association analysis, 

the  was 1.05. The eigenvalues for the first eight PCs were significant; these PCs were 

included as covariates in a logistic regression analysis. After PCA-adjustment, both the  

(1.03) and the QQ plot (Figure 5.3) showed appropriate improvement, suggesting that there 

was little evidence of residual inflation due to population stratification. The association 

results of the combined imputed dataset were adjusted by including the same eight PCs as 

covariates in the logistic regression analysis. Again, the the  (1.03) and the QQ plot (Figure 

5.4) showed little evidence of residual inflation due to population stratification. 

None of the p-values in our discovery or replication studies reached the now widely-

accepted 5×10−8 threshold for genome-wide significance in association studies (McCarthy et 

al. 2008), nor the 9.8×10−8 threshold required to achieve significance after applying 

Bonferroni correction for the 509316 tests in our discovery analysis or the 509266 tests in 

our replication analysis. 54 SNPs reached a suggestive (<5x10-5) level of significance in the 

discovery cohort and 39 in the replication cohort. There was no overlap between the 

suggestive SNPs in the two cohorts. 

In the combined analysis, one SNP (rs35452866) reached genome-wide significance 

(p=1.6x10-9), while 29 SNPs reached a suggestive level of significance (Table 5.2 and Figure 

5.5). In the combined imputed analysis, one SNP (rs35452866) reached genome-wide 

significance (p=3.4x10-9), while 402 reached a suggestive level of significance (Figure 5.6). 

 



 
 

181 
 

5.4.2 Gene-set enrichment validation 

We demonstrated that a gene-set comprised of all known targets of current AEDs is 

significantly enriched in both the discovery (FDR<0.005) and the replication (FDR<0.0004) 

GWAS (Figure 5.7). By contrast, out of 122 random gene-sets of the same size as our AED-

targets gene-set, none was significantly enriched in either GWAS (smallest FDR=0.15). 

Table 5.2 SNPs reaching genome-wide or suggestive level of significance in the combined 
analysis. BP: base-pair position. OR: odds ratio.  

Chromosome SNP BP OR P 

4 rs35452866 97950633 2.717 1.59x10-9 

2 rs2176529 194613887 1.701 1.33x10-7 

5 rs10069413 84055052 1.649 1.32x10-6 

8 rs6470428 87256166 1.451 5.77x10-6 

8 rs7815102 87270243 1.447 6.83x10-6 

15 rs12323994 44770917 1.423 9.89x10-6 

1 rs10493734 83221230 1.389 1.43x10-5 

1 rs1144256 83160157 1.385 1.73x10-5 

17 rs4789963 74741972 1.39 1.78x10-5 

5 rs1979006 156666964 1.845 1.88x10-5 

22 rs763280 23923452 1.381 2.39x10-5 

11 rs11606985 2800252 1.428 2.44x10-5 

1 rs11163625 83210060 1.374 2.65x10-5 

1 rs1144269 83169134 1.373 2.79x10-5 

20 rs6110905 16035405 0.6973 2.80x10-5 

4 rs2242226 189709167 1.525 2.88x10-5 

7 rs722037 7282916 1.367 3.39x10-5 

16 rs2531995 3953468 1.371 3.42x10-5 

1 rs11163602 83137141 1.366 3.56x10-5 

8 rs6996246 87281129 1.375 3.60x10-5 

16 rs2230742 3956677 1.507 3.60x10-5 

7 rs11974777 80050992 1.673 3.82x10-5 

7 rs1638210 7284485 1.364 3.95x10-5 

22 rs6000762 36248418 1.41 3.95x10-5 

13 rs7990091 25645138 1.455 4.27x10-5 

3 rs11710045 57212261 0.7202 4.45x10-5 

14 rs12586261 44062009 2.628 4.51x10-5 

3 rs269392 19824546 1.419 4.53x10-5 

3 rs4060726 57310916 0.7227 4.61x10-5 

20 rs1418925 52259138 1.357 4.70x10-5 
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Figure 5.1 QQ plot for GWAS discovery cohort 
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Figure 5.2 QQ plot of GWAS replication cohort 
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Figure 5.3 QQ plot for combined GWAS cohort 
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Figure 5.4 QQ plot for combined imputed GWAS dataset 
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Figure 5.5 Manhattan plot of association results for the combined cohort 
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Figure 5.6 Manhattan plot of association results for the combined imputed cohort 
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Figure 5.7 GWAS gene-set enrichment analysis
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5.4.3 Gene-set and pathway level replication of results 

The gene-set analysis p-values for the AED-targets gene-set and 122 random gene-sets were 

highly significantly correlated between the discovery and replication cohorts (Pearson’s 

correlation coefficient=0.8, one-sided p-value<2.2x10-16).  

For the Reactome pathway enrichment analysis, 49 pathways were enriched in the 

discovery cohort and 73 pathways were enriched in the replication cohort. Out of the top 10 

discovery cohort enriched pathways, all were replicated in the replication cohort; out of the 

top 20 discovery cohort enriched pathways, 17 were replicated in the replication cohort. In 

total 28 of the discovery cohort enriched pathways were replicated in the replication cohort 

(overlap hypergeometric p-value <3.7x10-17). 

The combined GWAS was also used to perform pathway enrichment analysis. The top 10 

pathways are listed in Table 5.3, while the rest can be found in Appendix 12. 

Table 5.3 Top 10 enriched Reactome pathways for the combined GWAS analysis. FDR=False 
Discovery Rate 

Pathway FDR 

Axon guidance 8.62x10-10 

Developmental biology 3.33x10-8 

Neuronal system 2.79x10-8 

Signalling by Rho GTPases 2.29x10-8 

Transmembrane transport of small molecules 3.67x10-7 

NRAGE signals death through JNK 4.10x10-7 

Netrin1 signalling 1.86x10-6 

Transmission across chemical synapses 1.24x10-5 

Cell death signalling via NRAGE, NRIF and NADE 3.27x10-5 

G12/G13  subunits signalling events 3.26x10-5 

 

5.4.4 Identifying a Network of Pathways 

Enrichment Map analysis revealed a highly interconnected central network of pathways 

(Figure 5.8). In this central network, each pathway is directly connected to, on average, 8.4 

other pathways. In order to identify the most central ‘hub’ pathways, ‘betweeness 

centrality’ network analysis was performed; the results are illustrated in Figure 5.9 and the 

top 10 pathways are listed in Table 5.4. The complete ranked list can be found in Appendix 

12. 
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Table 5.4 The top 10 pathways according to betweenness centrality 

Pathway Betweenness Centrality 

Signalling by NGF  0.343469 

DSCAM interactions  0.273255 

Transmembrane transport of small molecules  0.238506 

Developmental biology  0.185783 

Signalling by GPCR  0.183818 

Haemostasis  0.085772 

Glucagon signalling in metabolic regulation  0.070287 

PKA mediated phosphorylation of CREB  0.0569 

G--z signalling events  0.056336 

Neuronal system  0.05371 
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Figure 5.8 Central network of pathways enriched in combined GWA analysis results 
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Figure 5.9 The central network of interconnected pathways. Node sizes are proportional to 
their betweenness centrality. 

 

 



 
 

193 
 

5.5 Discussion 

We have performed the first GWAS of pharmacoresistant partial epilepsy. 

One SNP (rs35452866) reached genome-wide significance in the combined ‘mega-analysis’. 

rs35452866 is an intergenic SNP. Its flanking genes (PDHA2 and COX7AP2) have no known 

role in epilepsy, and its neighbouring SNPs did not reach a genome-wide or suggestive level 

of significance (Figures 5.5 and 5.6). It would be advisable, therefore, to exercise caution in 

interpreting the importance to this SNPs, until it is replicated in future independent studies. 

We went on to perform a gene-set or pathway-level analysis. 

5.5.1 Validation of GWAS Gene-Set Analysis 

Although GWAS gene-set enrichment analysis is an increasingly utilized tool, we are not 

aware of any published study demonstrating objectively that this technique can successfully 

discriminate functionally relevant from irrelevant gene-sets. In previously published studies, 

the assertion that significantly enriched gene-sets are truly linked to the disease phenotype 

has been based on conjecture, sometimes supported by evidence picked from a literature-

review. However, the use of an inappropriate clinical cohort, genotyping errors, or 

employing a flawed GWAS gene-set analysis protocol could all render the GWAS gene-set 

enrichment analysis results unreliable. 

We, therefore, devised a novel strategy to show that both our discovery and replication 

GWAS analyses results are enriched with a gene-set of obvious objective relevance to drug-

resistant epilepsy: the targets of antiepileptic drugs. This gene-set was created in an 

unsupervised and unbiased manner using three different publically-available drug-target 

databases. This gene-set was significantly enriched in both our discovery and replication 

cohorts. We divided the rest of the genome into 122 random gene-sets of the same size as 

the antiepileptic-targets gene-set: none of these random gene-sets was enriched in either 

the discovery or the replication dataset. We consider this to be an objective validation of 

our clinical cohorts and of the GWAS gene-set analysis technique. 

5.5.2 Gene-set and pathway level replication of results 

Although there was no overlap between the suggestive SNPs in the discovery and 

replication cohorts, there was significant replication of results at the gene-set and pathway 

level. There was a striking correlation (Figure 5.7) between the discovery and replication 
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cohorts in the gene-set analysis results for the AED-targets gene-set and 122 random gene-

sets (Pearson’s correlation coefficient=0.8, one-sided p-value<2.2x10-16). Furthermore, out 

of the top 10 discovery cohort enriched pathways, all were replicated in the replication 

cohort; and out of the top 20 discovery cohort enriched pathways, 17 were replicated in the 

replication cohort. Overall, there was a highly significant overlap between the enriched 

pathways for the discovery and replication cohorts (hypergeometric distribution p-value 

<3.7x10-17).  

5.5.3 Identifying a Network of Pathways and Hub Pathways 

The Reactome pathways enriched in the GWAS (Table 5.3 and Appendix 12) could be 

deemed to represent disparate and disconnected processes, for example ‘axon guidance’, 

‘transmembrane transport of small molecules’ and ‘cell death signalling via NRAGE, NRIF 

and NADE’. Using the Enrichment Map utility, we have shown that these enriched pathways 

in fact form a highly interconnected central network (Figure 5.8). In this central network, 

each pathway is directly connected, on average, to 8.4 other pathways. The seemingly 

unrelated pathways, therefore, form a coherent whole and it can be expected that changes 

in one pathway in this network will have a cascading effect on the rest of the network. 

Of particular importance in this network are likely to be the ‘hub pathways’ identified using 

betweenness centrality network analysis. Betweenness is a measure of the centrality of a 

node in a network, and is calculated as the fraction of shortest paths between node pairs 

that pass through the node of interest. Hence, betweenness is a measure of the influence a 

node has over the spread of information through the network. 

5.5.4 The most important pathways: a literature review 

The ten most enriched pathways are shown in Table 5.3 and the ten most important 

pathways according to ‘betweenness centrality’ are listed in Table 5.4. It is remarkable that 

the enriched and central pathways identified are directly related to the formation and 

function of neuronal and supporting tissues. The relevance of pathways such as ‘axon 

guidance’, ‘neuronal system’ and ‘transmission across chemical synapses’ is self-evident. We 

will examine below the evidence from literature in support of a role in epilepsy 

pharmacoresistance for a number of the other pathways.  
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One of the most enriched pathways is ‘signalling by Rho GTPases’. The Rho family of 

GTPases and related molecules play an important role in various aspects of neuronal 

development, including neurite outgrowth and differentiation, axon path finding, and 

dendritic spine formation and maintenance (Govek et al. 2005). A recent GWAS found a SNP 

within the Rho GTPase ARHGAP11B to be associated with epilepsy prognosis at a suggestive 

level of significance (Speed et al. 2013). Genetic variants in ARHGEF9 and ARHGEF6, both 

members of the Rho GTPase signalling pathway, have been associated with early infantile 

epileptic encephalopathy (Harvey et al. 2004) and mental retardation with refractory 

seizures (Shimojima et al. 2011), respectively. 

 

One of the enriched pathways is ‘PPAR- activates gene expression’. Peroxisome 

proliferator-activated receptor- (PPAR-) is one of three subtypes of the nuclear receptor 

PPAR family. PPAR- is expressed at functionally significant levels in neuronal tissue 

(Cullingford 2008). PPAR- may have antiepileptic properties via modulation of gene 

expression. PPAR- can regulate genes encoding enzymes of neurotransmitter metabolism 

in the brain (Cullingford 2004). It can also regulate inflammatory pathways (Delerive et al. 

2001; Moraes et al. 2006). In addition, PPAR- directly interacts with proteins involved in 

acute voltage-dependent neuronal responses (LoVerme et al. 2006). Hence, PPAR- may 

favourably perturb neurotransmitter concentrations (Cullingford 2004); PPAR--induced 

anti-inflammatory actions may protect against convulsion-induced cell damage (Chen et al. 

2007); and PPAR--induced action on membrane channels may favourably perturb the 

nerve-cell membrane potential. In keeping with these observations, a single dose of PPAR- 

agonist WY14643 or chronic administration of PPAR--agonist fenofibrate significantly 

reduces behavioural and EEG expression of nicotine-induced seizures (Puligheddu et al. 

2013). PPAR- exhibits a broad ligand tolerance, including valproate, phenytoin, and 

polyunsaturated fatty acids (as present in the ketogenic diet) (Cullingford 2008). Thus PPAR-

 has potential relevance to the mechanism of several antiepileptic classes. Finally, it is 

worth mentioning that common human PPAR- polymorphisms, such as L162V, lead to 

different basal and ligand-induced PPAR- responses (Sapone et al. 2000) and, hence, are of 
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potential relevance in patients exhibiting diverse responses to the ketogenic diet and 

antiepileptics.  

Two other significantly enriched pathways are ‘cell death signalling via NRAGE, NRIF and 

NADE’ and ‘NRAGE signals death through JNK’. One of the most central pathways was 

‘Signalling by NGF’. The p75 neurotrophin receptor (p75NTR) is a key regulator of neuronal 

apoptosis, both during development and after injury. Apoptosis is triggered by binding of 

either mature neurotrophin, for example nerve growth factor (NGF), or proneurotrophin, 

for example proNGF, and requires activation of c-JUN N-terminal Kinase (JNK). The p75NTR 

signals by recruiting intracellular binding proteins. Many proteins have been identified that 

can interact with the p75NTR intracellular domain, and several of these proteins have been 

implicated in apoptotic signalling, such as neurotrophin receptor-interacting factor (NRIF), 

p75NTR-associated Cell Death Executor (NADE) and neurotrophin receptor–interacting MAGE 

homolog (NRAGE). NRIF is required for p75NTR-mediated apoptosis following seizures, as 

pilocarpine treatment of NRIF–/– mice yields significantly fewer dying neurons compared 

with wild-type mice (Volosin et al. 2008). NADE can be co-induced with p75NTR following 

kainate-induced seizures (Yi et al. 2003), and may also play a role in cell death signalling. In 

addition, NRAGE has been detected in a complex with NRIF following proNGF stimulation 

(Volosin et al. 2008). Therefore, these p75NTR adapter proteins may act together in a 

complex to stimulate downstream apoptotic signalling (Friedman 2010). Genetic variants in 

NGF genes have been associated with a neurological disorder hereditary sensory and 

autonomic neuropathy type V (Einarsdottir et al. 2004; Carvalho et al. 2011). 

 

One of the most significantly enriched pathways was ‘Netrin1 signalling’ and two central 

pathways were ‘DCC mediated attractive signalling’ and ‘DSCAM interactions’. All of these 

pathways play essential roles in appropriate axon guidance within the hippocampus. Proper 

axonal targeting is fundamental to the establishment of functional neural circuits. In 

temporal lobe epilepsy, there is aberrant axonal targeting, known as mossy fibre sprouting, 

which results in the formation of hyperexcitable recurrent networks (Muramatsu et al. 

2010). Netrins are secreted proteins that play an important role in neuronal migration and 

in axon guidance. Netrin1 is the most studied member of the family and has been shown to 
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play a crucial role in neuronal navigation through its interaction with its receptors. In the 

human hippocampus, netrin1 attracts mossy fibres to CA3, which is their normal target 

under physiological conditions (Muramatsu et al. 2010). The deleted in colorectal cancer 

receptor (DCC) is required for netrin-induced axon attraction (Muramatsu et al. 2010). 

Another netrin1 receptor is the Down syndrome cell adhesion molecule (DSCAM), which 

induces dendritic arborization. DSCAM expression in the epileptic foci of intractable epilepsy 

patients is significantly higher compared to controls (Shen et al. 2011). In addition, DSCAM is 

also highly expressed in the rat brain during the different phases of the epileptogenic and 

epileptic process; this suggests that DSCAM may be involved in the generation and the 

development of pharmacoresistant epilepsy (Shen et al. 2011). Furthermore, DSCAM was 

associated with susceptibility to epilepsy at a suggestive level of significance in a recent 

GWAS (Guo et al. 2012). 

 

5.6 Conclusions 

We have performed the first ever GWAS of pharmacoresistant partial epilepsy, and the first 

ever objective validation of the GWAS gene-set analysis approach. We have identified the 

most significant polymorphisms and pathways underlying pharmacoresistant partial 

epilepsy, and we have demonstrated that there is significant replication of the most 

significant pathways. Furthermore, we have shown that the enriched pathways form a 

highly interconnected central network and, finally, we have identified the hub pathways in 

this network. 

Potential future avenues of research, for further prioritizing from amongst the pathways identified in 

this work, would involve identifying ‘causal’ pathways (which we aim to do in Chapter 7) and 

performing functional studies in animal models of epilepsy to determine if genetic manipulation of 

key pathways leads to changes in drug responsiveness. 
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Chapter 6: Genetic Regulation of Gene Expression in 

the Pharmacoresistant Epileptic Human Hippocampus 

6.1 Introduction 

Genetic contribution to phenotypic diversity can result from changes in amounts of proteins 

as from functional modifications in them (Li & Burmeister 2005). Studies in animal and 

human tissues have revealed that the expression of a high percentage of genes is 

substantially influenced by DNA variants (Romanoski et al. 2010; van Nas et al. 2010; Orozco 

et al. 2012). Most significant SNPs in genome-wide association studies (GWAS) map outside 

protein-coding regions, and >75% of significant GWAS SNPs map to functional regulatory 

elements that have been identified in the Encyclopedia of DNA Elements (ENCODE) project 

(Schaub et al. 2012). Also, in contrast to polymorphisms that change the amino acid 

sequence of genes, genetic variants that are responsible for changes in gene expression 

might have more subtle phenotypic effects that better explain complex genetic diseases. 

These observations suggest that genetic variants that alter gene expression, rather than 

variants that alter protein sequences, form the primary basis of natural variation in complex 

traits. Hence, genetic variation driving gene expression is likely to be integral to the 

pathogenic processes active within the pharmacoresistant epileptic human hippocampus.  

We have performed whole-genome genotyping and transcriptome-expression analysis on a 

series of control and pharmacoresistant epileptic human hippocampal samples to reveal 

expression quantitative trait loci (eQTLs) that influence gene expression within the 

pharmacoresistant epileptic human hippocampus. eQTLs are genomic sequence variants (as 

determined by genome-wide polymorphism analysis) that correlate with gene-expression 

levels (as determined by genome-wide microarray analysis). eQTL studies are similar to 

traditional genetic-association studies, but instead of associating genetic variants with 

discrete traits such as disease status, eQTL studies correlate genetic variants with 

quantitative gene-expression levels. The outputs from this type of analysis are SNP-

transcript pairs in which gene expression is correlated with genotype in a dose-dependent 

fashion. ‘Cis’ associations are between a gene’s expression level and a nearby SNP (one 

located within an arbitrarily defined distance, such as 500kb). ‘Trans’ associations include all 
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non-cis pairs, and can be between the expression of a gene on one chromosome and a SNP 

located on another chromosome. 

In complex diseases, truly trait-associated SNPs are more likely to be eQTLs (Nicolae et al. 

2010), and it has been suggested that eQTL analysis is a powerful approach for the detection 

of novel disease risk loci (Schadt 2005). Furthermore, determining the relationship between 

disease-associated SNPs and gene expression levels offers potential insights into the 

pathological mechanisms associated with these SNPs. 

It has been shown that 69% to 80% of eQTLs operate in a cell-type specific manner (Dimas 

et al. 2009). We are aware of only one previously published eQTL study on human 

hippocampal tissue (Kim et al. 2012). This study was limited to cis-eQTL analysis. There are 

currently no published trans-eQTL analyses of hippocampal tissue, and no eQTL analyses of 

the epileptic human hippocampus. Our study not only examines eQTLs in hippocampal 

tissue, but specifically in samples with the disease, a strategy which may be necessary for 

the identification of the disease-related eQTLs (Ertekin-Taner 2011). 

6.2 Aims 

 To identify eQTLs within the pharmacoresistant epileptic human hippocampus. 

 To validate the identified eQTLs using previously published data. 

 To determine if the eQTLs are relevant to disease by establishing if 

o eQTLs are enriched within disease-associated SNPs. 

o more eQTLs converge on differentially-expressed than non-differentially-

expressed genes 

 To identify the most important eQTLs and determine the biological processes 

enriched within these eQTLs. 

 To illustrate the practical utility of our eQTL dataset by using it to prioritize GWAS 

SNPs and reveal their functional implications. 

6.3 Methods 

The normalized microarray gene expression data generated previously (Chapter 3) was 

utilized for the eQTL analysis. The methods used for generating this data are repeated 

below for the reader’s convenience. 
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6.3.1 Sample collection 

Samples used in the study originated from three UK sites: the Walton Centre for Neurology 

and Neurosurgery in Liverpool, the Salford Royal Hospital in Salford and the Southern 

General Hospital in Glasgow. We aimed to recruit patients of age 5 years and older with 

pharmacoresistant mesial temporal lobe epilepsy of at least 3 months durations for which a 

therapeutic temporal lobectomy was being undertaken. As recently proposed by the ILAE, 

pharmacoresistance was defined as the failure of adequate trials of two tolerated, 

appropriately chosen and used antiepileptic drug schedules (whether as monotherapies or 

in combination) to achieve sustained seizure freedom. The diagnosis of MTLE was made by 

the treating clinician based on seizure semiology, MRI brain and EEG characteristics being 

consistent with a seizure focus in the mesial temporal lobe. Patients suspected of having a 

neoplastic or malignant temporal lobe lesion were excluded. After surgery, the 

hippocampus was divided into two portions: (1) one portion was preserved for RNA 

isolation, (2) the other portion underwent histological analysis by an experienced 

neuropathologist. Any subjects found to have a neoplastic or malignant lesion on 

histological analysis were excluded. The portion preserved for RNA isolation was either 

stored in RNAlater (Liverpool and Glasgow) or frozen directly at -80oC (Salford). It should be 

noted that the quality of the RNA generated from the directly frozen brain samples was not 

significantly different from RNAlater-preserved samples: mean RIN values were 7.82 and 

7.25 respectively, and two-sample t-test p-value for difference between group RINs was 

0.06554. 

Frozen post-mortem histologically-normal hippocampal samples from donors with no 

known brain diseases were obtained from the MRC Edinburgh Brain Bank (Edinburgh, UK) 

and the Queen Square Brain Bank (London, UK).  

6.3.2 RNA isolation 

Brain samples were disrupted and homogenized in an appropriate volume of QIAzol lysis 

reagent (Qiagen, Crawley, United Kingdom) by using a TissueRuptor handheld rotor-stator 

homogenizer (Qiagen, Crawley, United Kingdom). Total RNA was extracted from the 

homogenates using the RNeasy Lipid Tissue Mini Kit (Qiagen, Crawley, United Kingdom), 

according to the manufacturer’s instructions. RNA quality was examined by capillary 

electrophoresis on an Agilent Bioanalyzer 2100 (Agilent, Palo Alto, CA) and Agilent 2100 
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Expert software was used to calculate the RNA Integrity number (RIN) of each sample. Purity 

of the RNA sample was assessed using a NanoDrop1000 Spectrophotometer. Capillary 

electrophoresis traces were also examined. Samples with RNA integrity number  scores 

(RIN) below 6, obvious RNA degradation, significant 18S or 28S ribosomal  RNA degradation, 

ratio of absorbance at 260nm and 280nm <1.95, or with  noticeable DNA or  background  

contaminants  did  not pass  QC,  and  were  withheld from microarray analysis.  It should be 

noted that RNA samples with RIN scores of 6 and lower have been successfully used for 3’ 

microarrays (Hawrylycz et al. 2012) and exon microarrays (Trabzuni et al. 2011). 

6.3.3 Microarray processing and quality control 

The microarrays were processed at the Centre for Genomics Research in the University of 

Liverpool. 50ng of total RNA was amplified and labelled using the Agilent Low Input Quick 

Amp One-Colour Labeling Kit and labelled RNA was hybridized to Agilent SurePrint G3 

Custom Exon 8x60K Microarrays designed to contain probes for each exon of 936 selected 

genes, including all known SLC genes. Standard Agilent protocols were followed. The quality 

of the synthesized cRNA was assessed using an Agilent Bioanalyzer 2100—the resulting 

electropherograms were satisfactory.  Each scanned image was viewed for visible artefacts, 

and if multiple artefacts were present, the array was rejected. Detailed QC reports were 

generated for each array using the Feature Extraction 11.0.1.1 Software (Agilent, Palo Alto, 

CA). Based on these reports, we excluded arrays in which more than 1% of features were 

non-uniform outliers, or the average of the net signals in negative controls was >40, or the 

average of the background-subtracted signals in negative controls was <-10 or >5, or the 

standard deviation of the background-subtracted signals in negative controls was >10, or 

the residual noise after spatial detrending was >15, or the median coefficient of variation for 

spike-in probes or non-control probes was >12%, or the dose-response curve of the spike-

ins had a slope of <0.9 or >1.20, or the spike-in detection limit was <0.01 or >2. One array 

failed on five of these metrices and, hence, was excluded. Intensity data was extracted from 

the remaining arrays using the Feature Extraction Software. Spatial and multiplicative 

detetrending and local background substraction was applied.  

We employed an unbiased approach for the detection of outlier samples: samples with 

average inter-array correlation (IAC) ≤ 2 standard deviations below the mean were 
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removed. This approach has been used successfully in published studies (Yang et al. 2006; 

Flight & Wentzell 2010; Yang et al. 2012). 

6.3.4 Data normalization, adjustment and filtering 

Data exported from Feature Extraction Software was imported into GeneSpring GX Software 

(Agilent, Palo Alto, CA). Features which were population outliers, saturated or non-uniform 

were flagged as ‘Compromised’ and filtered out. Non-expressed probes were filtered out: a 

probe was deemed expressed only if it was flagged ‘Detected’ in at least 25% of control or 

case samples. Quantile normalization was applied. As GeneSpring does not include functions 

that allow adjusting for confounders and covariates, probe-level intensities were exported 

for further processing. 

Batch effect was corrected using the ComBat (Johnson et al. 2007) algorithm implemented 

in the SVA Bioconductor package. Eight arrays (four cases and four controls) were processed 

per slide; hence, each batch comprised the eight samples processed together on a slide. To 

adjust for known and unknown confounders, Independent Surrogate Variable Analysis 

(ISVA) (Teschendorff et al. 2011) was applied; RIN, age and sex were explicitly included in 

the ISVA adjustment. Where multiple probes mapped to the same gene, the probe with the 

highest variance was retained, as the most variant probe is likely to be most informative. 

6.3.5 Excluding probes-with-polymorphisms (PwP) 

Polymorphisms present in the probe-target sequences have been shown to alter probe 

hybridization affinities, leading to reduced signal intensity measurements and resulting in 

false-positive results (Ramasamy et al. 2013). We used the ‘PIP Finder’ tool (Ramasamy et al. 

2013) to determine which probes in our microarray had polymorphisms with a minor allele 

frequency >1% in Europeans located within the probe sequences; all such probes were 

excluded from the eQTL analysis in keeping with current practice. 

6.3.6 Assessing the influence of confounders 

To determine if there was residual confounding after data adjustment, we used the 

phenoTest Bioconductor package to test for association between probes and confounders 

(batch, RIN, age and sex). 
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6.3.7 DNA extraction 

Cortical brain samples were available for some subjects; DNA was extracted from these 

cortical samples using the DNeasy Blood & Tissue Kit (Qiagen, Crawley, United Kingdom) 

according to the manufacturer’s recommended protocol. For other subjects, for whom 

cortical brain samples were not available, DNA was extracted from hippocampal 

homogenate in QIAzol that was prepared during RNA isolation, according to the protocol 

provide by Qiagen: In 1ml of homogenate, 200µl of chloroform was added, shaken 

vigorously and incubated at room temperature for 3 minutes, followed by centrifugation at 

12,000xg for 15 min at 4°C. The upper, aqueous phase was transferred to a new tube and 

stored at -80oC for future use. To precipitate the DNA pellet, 0.3ml of 100% ethanol was 

added to the interphase and phenol phase, the sample was incubated at room temperature 

3 min, and then centrifuged at 2,000xg for 2 min at 4°C. The DNA pellet was washed twice in 

sodium citrate: for each wash 1 ml sodium citrate solution was added to the pellet, followed 

by incubation at room temperature for 30 min, with mixing by inversion every 5 min, and 

then centrifugation at 2000xg for 5 min at 4°C. The DNA pellet was then washed in 75% 

ethanol: 2 ml of 75% ethanol was added to the DNA pellet, followed by incubation at room 

temperature for 20 min, with mixing by inversion every 5 min, and then centrifugation at 

2,000xg for 5 min at 4°C. The DNA pellet was air-dried and then re-dissolved in 500µl of 

8mM NaOH. The solution was centrifuged at 14,000xg for 10 min at room temperature. The 

supernatant, containing the DNA, was removed. 60µl of 0.1M HEPES and 5.5µl of 100mM 

EDTA was added to the DNA solution. Extracted DNA was quantitated using the PicoGreen® 

dsDNA Quantitation Kit (Invitrogen, UK). 

6.3.8 Genotyping and Quality Control 

All samples were genotyped on the Illumina Infinium HumanOmniExpressExome BeadChip 

in the ARK Genomics facility at the Roslin Institute, UK 

Our quality control (QC) procedures were as follows. Individuals were excluded on the basis 

of discordance between reported and observed sex, SNP call rate <95%, outlying autosomal 

heterozygosity rates (>3 standard deviations from the mean), inadvertent subject 

duplication or cryptic relatedness based on pairwise identity-by-descent estimations (the 

individual with greater missing data was removed from each pair with -hat >0.1875), being 

outliers from the European cluster in a plot of the first two principal components of 
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genotypes for samples from the study and HapMap Phase III. Three individuals were 

excluded from the eQTL analysis on the basis of these QC filters, and one further individual 

was excluded from the eQTL analysis having failed the microarray QC criteria. SNPs were 

excluded on the basis of genotype missing rate ≥5% if minor allele frequency (MAF) was 

≥0.05 and missing rate ≥1% if MAF was <0.05, observed minor allele frequency <0.01, 

significant deviation (P <10−4) from Hardy-Weinberg equilibrium, significant difference (P 

<10−4) in the genotype missing rate in cases compared to controls, and all non-autosomal 

SNPs. 250,985 SNPs were excluded on the basis of these QC criteria. The final data-set, after 

QC filtering, included 22 controls and 22 cases genotyped over 550,043 SNPs. 

6.3.9 Imputation 

Genotype imputation was performed using Impute2(Howie et al. 2009), with 1000 Genomes 

Project haplotypes (March 2012) as the reference panel. The QCTOOL software was used to 

exclude SNPs with an ‘info’ score of <0.9. GTOOL software was then used to transform the 

imputed data to PED format, with a posterior probability of 0.9 used as a threshold to call 

genotypes. Our standard per-SNP QC filters, described above, were then applied. The final 

dataset included 4,663,226 genotyped and imputed SNPs. 

6.3.10 eQTL analysis 

eQTL analysis was performed using the linear model in the program Matrix eQTL (Shabalin 

2012). To investigate potential confounding effects from population stratification, the 

principal components (PC) of variance of the genotyping dataset were calculated using the 

package SNPRelate (Zheng et al. 2012), and then the Tracy-Widom (TW) statistic (Patterson 

et al. 2006) and significance for the eigenvalue of each PC was calculated using the package 

EigenCorr (Lee et al. 2011). Furthermore, the top ten PCs were separately correlated with 

the probe expression profiles in R. 

6.3.11 External validation of eQTL results 

We are aware of only one previously published eQTL study on human hippocampal tissue 

(Kim et al. 2012). In this study, 61 hippocampal samples were analysed in total, obtained 

from post-mortem donors with schizophrenia and normal controls. This study was limited to 

cis-eQTL analysis. In order to perform a comparison with this study, we also performed a cis-

eQTL analysis using the linear model in the program Matrix eQTL (Shabalin 2012). cis-eQTLs 
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were defined as eQTLs that map within 20kb upstream or downstream of the physical 

location of the probe on the genomic sequence. To find ‘conditional’ eQTLs—eQTLs which 

are active in either the normal or the pharmacoresistant partial epilepsy phenotype only—a 

further analysis was carried out which included phenotype as an interaction term in the 

model (Ackermann et al. 2013); this analysis was limited to significant cis-eQTLs only as the 

computational requirements for analysing all SNPs and probes were prohibitive. 

We calculated the statistical significance of the overlap between the cis-eQTL genes 

discovered in our study and the study by Kim and colleagues.   

6.3.12 Enrichment of eQTLs within significant GWAS results 

We wished to determine if significant GWAS SNPs are enriched with significant eQTLs. We 

calculated the number of significant eQTLs within ‘suggestive’ GWAS SNPs (those with a p-

value <5x10-5). We calculated the statistical significance of the size of this enrichment by 

using permutation-based methods. There were 403 suggestive SNPs within our GWAS. We 

employed two permutation-based methods: (1) we generated 10,000 random sets of 403 

GWAS SNPs and then determined how many sets were as (or more) enriched with eQTLs as 

the suggestive SNPs, and (2) the GWAS SNPs were sorted in descending order of statistical 

significance and divided into 10,000 sets of 403 SNPs each, and we then determined how 

many sets were as (or more) enriched with eQTLs as the suggestive SNPs.  

6.3.13 eQTL genes and disease-associated genes under eQTL influence 

We created a list of eQTL genes: eQTL SNPs within 20kb of the flanking sequence of a gene 

were mapped to the gene. We calculated the number of probes whose expression is 

effected by each eQTL gene.  We also determined how many disease-associated genes 

(genes differentially expressed at FDR<0.05 and FC≥1.5) are under significant eQTL 

influence, and how many eQTL genes influence each disease-associated gene. Gene 

ontology analysis of the most prominent eQTL genes and targets was done using Broad 

Institute’s Gene-Set Enrichment Analysis web-tool.  

6.3.14 Utilizing eQTL data to prioritize GWAS SNPs and reveal their functional 

implications: practical examples 

There were no SNPs associated at a genome-wide level of significance (p<5x10-8) in our 

GWAS of pharmacoresistant partial epilepsy. We demonstrated how the eQTL data we have 
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generated can be utilised in order to select genetic variants for further study from amongst 

the large number of SNPs with a ‘suggestive’ level of significance (p<5x10-5). We determined 

which of these suggestive SNPs are significant eQTLs and which of these eQTLs influence the 

expression of genes which are differentially-expressed in the pharmacoresistant epileptic 

hippocampus. Finally, based on a literature-review, we examined the potential functional 

importance of this latter set of genes. 

Similarly, we extracted from the online ‘Catalog of Published Genome-Wide Association 

Studies’ a list of SNPs associated with schizophrenia at a suggestive level of significance. 

Again, we determined if any of these suggestive SNPs are significant eQTLs according to our 

data. Finally, we extracted from the same online database a list of variants associated with 

schizophrenia at a genome-wide level of significance, determined which of these SNPs are 

significant eQTLs, and examined the potential functional importance of the genes under 

eQTL influence based on a literature-review. 

6.4 Results 

6.4.1 Final datasets 

The final genetic and genomic datasets included 22 cases and 22 controls. The participant 

characteristics are shown in Table 6.1. The final genetic dataset included 4,663,226 

genotyped and imputed SNPs. The final genomic dataset, after applying the variance-based 

filter described above and removing probes-with-polymorphhisms, included 18,916 unique 

probes. 
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Table 6.1 Sample characteristics. RIN=RNA Integrity Number. The sample labels used in 
Chapter 3 have been maintained. 

Sample Phenotype Age Sex RIN  Sample Phenotype Age Sex RIN 

D1 case 41 F 7.4 N1 control 81 M 6.5 

D2 case 23 F 6.8 N2 control 78 F 6.2 

D3 case 51 M 6 N3 control 84 F 6.6 

D4 case 49 F 6.9 N4 control 91 F 6.7 

D5 case 50 F 7.8 N5 control 88 M 6.3 

D6 Case 45 F 6.6 N6 control 38 M 6.1 

D7 Case 12 M 7 N7 control 50 M 6.2 

D8 Case 29 F 7.8 N8 control 45 M 6.3 

D9 Case 33 M 6.8 N9 control 39 M 6.1 

D11 Case 34 M 7 N10 control 40 M 6 

D12 Case 33 M 8.8 N11 control 61 M 6.2 

D14 Case 22 F 7.3 N12 control 63 F 6.2 

D15 Case 48 M 7.6 N13 control 66 M 6.2 

D16 Case 39 F 7.4 N14 control 22 F 6.3 

D17 Case 29 F 7.1 N15 control 27 M 6.3 

D18 Case 44 M 7.9 N16 control 45 M 6.9 

D19 Case 40 F 6.6 N18 control 50 M 6.5 

D20 Case 48 M 8.5 N19 control 43 M 6.6 

D21 Case 23 M 8.4 N20 control 46 M 6.8 

D22 Case 63 M 7.9 N21 control 51 M 6.2 

D23 Case 31 M 8.2 N22 control 48 M 6 

D24 Case 27 F 8.2 N23 control 43 M 6.6 

 

6.4.2 Adjustment for confounders and population stratification 

After ComBat and ISVA treatment of the genomic dataset, confounders had been adjusted 

for appropriately: we found that no probes were associated with RIN, age, batch or sex at an 

FDR<0.10 in the adjusted dataset. 

Similarly, we found no evidence of confounding effects from population stratification. The 

eigenvalues of none of the PCs reached statistical significance. Furthermore, none of the 

probe expression profiles were significantly correlated with any of the top ten PCs, 

demonstrating that the gene expression profile was not significantly influenced by 

population stratification in this cohort (Fairfax et al. 2012). Hence, the PCs were not 

included as covariates in the analysis. 



 
 

214 
 

6.4.3 External validation of eQTL results 

We are aware of only one previously published eQTL study on human hippocampal tissue 

(Kim et al. 2012). In this study, 61 hippocampal samples were analysed in total, obtained 

from post-mortem donors with schizophrenia and normal controls. This study was limited to 

cis-eQTL analysis. In order to perform a comparison with this study, we also performed a cis-

eQTL analysis. Kim and colleagues found 281 significant cis-eQTL genes. 55 of these genes 

were also significant cis-eQTLs in our study; this overlap is highly statistically significant 

(hypergeometric distribution p-value 1.9x10-34).  

We also determined which of our significant cis-eQTLs are ‘conditional’—eQTLs which are 

active in either the normal or the pharmacoresistant partial epilepsy phenotype only—by 

performing a further analysis which included phenotype as an interaction term in the 

model. We found that only 4% of significant cis-eQTLs in our study are conditional. 

6.4.4 cis- and trans-eQTLs 

We found 298,703 SNPs (6.4% of all genotyped or imputed SNPs included in the eQTL 

analysis) to be significant (FDR<0.05) cis- or trans-eQTLs. 7516 probes were under significant 

eQTL influence; 5680 of these probes correspond to protein-coding genes, and the 

remaining probes correspond to long non-coding RNAs. The full list of eQTL SNPs and 

associated probes is provided in the Appendix 13. 

6.4.5 Enrichment of eQTLs within significant GWAS results 

There were 403 ‘suggestive’ SNPs (p-value <5x10-5) in our GWAS; 53 (13%) of these were 

significant eQTLs. In comparison, from the 5,519,309 SNPs in our GWAS as a whole, 200,835 

(3.6%) were eQTLs. This difference is statistically significant (p-value <0.001 for one-tailed 

test for significance of the difference between two proportions). 

Similarly, the ‘suggestive’ GWAS SNPs were significantly enriched with eQTLs based on our 

permutation-based tests: p-value <0.0001 based on 10,000 sets of 403 random SNPs, and p-

value <0.009 based on 10,000 sets of 403 SNPs ordered according to GWAS statistical 

significance. 
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6.4.6 eQTL ‘hub’ genes 

We created a list of eQTL genes: eQTL SNPs within 20kb of the flanking sequence of a gene 

were mapped to the gene. The median number of probes influenced by each eQTL gene was 

7, with a range of 1 to 284. We consider eQTL genes influencing 100 or more probes to be 

‘hub’ genes. Out of all the eQTL genes, 0.7% (158 genes, see list in Appendix 14) were hub 

genes. Out of eQTL genes which were also associated with the phenotype at an empirical p-

value<0.05 in our GWAS, 0.9% were hub genes; this proportion is significantly different 

compared to the hub genes amongst all eQTL genes (p=0.02, test for equality of 

proportions). Out of eQTL genes which were also associated with the phenotype at an 

empirical p-value<0.005 in our GWAS, 1.6% were hub genes; this proportion is significantly 

different compared to the hub genes amongst all eQTL genes (p=4.2x10-7, test for equality 

of proportions). In order to gain an understanding of the biological processes eQTL hub 

genes are involved in, we performed gene ontology enrichment analysis using all 158 eQTL 

hub genes; the results are shown in Table 6.2. 

6.4.7 Disease-associated genes under eQTL influence 

Of the 1010 significantly (FDR<0.05 and FC≥1.5) differentially-expressed genes from our 

microarray (see Chapter 4), 369 genes are under significant eQTL influence (FDR<0.05); we 

term these 369 genes ‘differentially-expressed plus genetically-regulated (DE+GR)’. We 

found that 3569 eQTL genes significantly (FDR<0.05) effect the expression of the 369 DE+GR 

genes (9.7 eQTL genes per target DE+GR gene). 16429 genes significantly (FDR<0.05) affect 

the expression of the 7147 genes which are not differentially-expressed (2.3 eQTL genes per 

target gene). Hence, there are 4.2 fold greater eQTL genes converging on each differentially-

expressed gene; this difference is statistically significant (one-tail two-sample test for 

equality of proportions p-value < 2.2x10-16). The difference becomes even more prominent 

if we restrict the eQTL genes to those that are also associated with pharmacoresistant focal 

epilepsy in our GWAS: eQTL genes which are also associated with the pharmacoresistant 

focal epilepsy phenotype at an empirical p-value of <0.05 converge 4.5 fold more on genes 

which are differentially-expressed than on those not differentially-expressed, and eQTL 

genes which are associated with the pharmacoresistant focal epilepsy phenotype at an 

empirical p-value of <0.005 converge 5 fold more on genes which are differentially-

expressed than on those not differentially-expressed 
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Table 6.2 Biological processes enriched with eQTL hub genes. GO=gene ontology 

GO Biological Process GO 
Accession 

FDR 

Extracellular structure organization and biogenesis GO:0043062 1.19x10-9 

Synaptogenesis GO:0007416 1.44x10-9 

Synapse organization and biogenesis GO:0050808 5.18x10-9 

Nervous system development GO:0007399 0.000106 

Anatomical structure development GO:0048856 0.000209 

System development GO:0048731 0.000209 

Synaptic transmission GO:0007268 0.000575 

Cell-cell signalling GO:0007267 0.000718 

Transmission of nerve impulse GO:0019226 0.000718 

Multicellular organismal development GO:0007275 0.000865 

Anti-apoptosis GO:0006916 0.000865 

Regulation of developmental process GO:0050793 0.00097 

Negative regulation of cellular process GO:0048523 0.00208 

Negative regulation of apoptosis GO:0043066 0.00208 

Negative regulation of programmed cell death GO:0043069 0.00208 

Negative regulation of biological process GO:0048519 0.00245 

Cell development GO:0048468 0.00461 

Negative regulation of developmental process GO:0051093 0.00608 

Signal transduction GO:0007165 0.00827 

Regulation of apoptosis GO:0042981 0.00827 

Regulation of programmed cell death GO:0043067 0.00827 

Generation of precursor metabolites and energy GO:0006091 0.00942 

Neurological system process GO:0050877 0.0131 

Defence response GO:0006952 0.0194 

Negative regulation of cell proliferation GO:0008285 0.0204 

Apoptosis go GO:0006915 0.0221 

Programmed cell death GO:0012501 0.0221 

Biopolymer metabolic process GO:0043283 0.0271 

Lipid metabolic process GO:0006629 0.0367 

Regulation of gene expression GO:0010468 0.039 

Positive regulation of transcription factor activity GO:0051091 0.0425 

Positive regulation of DNA binding GO:0043388 0.0483 
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6.4.8 Utilizing eQTL data to prioritize GWAS SNPs and reveal their functional 

implications: practical examples 

There were 403 SNPs within our GWAS with a ‘suggestive’ level of significance (p<5x10-5). 53 

of these SNPs were also significant (FDR<0.05) eQTLs in our genetical genomics study (see 

Appendix 14 for full list). From these 53 SNPs, one (rs11163824) was chosen as an example 

to demonstrate how eQTL data can be used to prioritize GWAS SNPs and reveal their 

functional implications. 

We extracted from the online ‘Catalog of Published Genome-Wide Association Studies’ a list 

of 125 SNPs associated with schizophrenia at a suggestive or genome-wide level of 

significance (see Appendix 14). Six of these SNPs are significant eQTLs according to our data 

(see Appendix 14). One SNP (rs11038167) associated with schizophrenia (Yue et al. 2011) at 

a genome-wide level of significance (p-value 1x10-11), is an eQTL according to our data. This 

SNP has a significant influence on the expression levels of genes SYNDIG1L and RFX4 

according to our study. We examined the potential functional importance of these genes 

through a literature-review. 

6.5 Discussion 

We present the first ever study to analyse trans-eQTLs in human hippocampal tissue and the 

first ever eQTL study to include epileptic human brain tissue. 

6.5.1 External validation and comparison 

Before proceeding to draw conclusions from our study, we have carried out external 

validation of our results. We are aware of only one previously published eQTL study on 

human hippocampal tissue (Kim et al. 2012). In this study, 61 hippocampal samples were 

analysed in total, obtained from post-mortem donors with schizophrenia and normal 

controls. This study was limited to cis-eQTL analysis. In order to perform a comparison with 

this study, we also performed a cis-eQTL analysis. Kim and colleagues found 281 significant 

cis-eQTL genes. Our study uncovered 577 cis-eQTL genes (not including lincRNAs, which 

were not assayed in the study by Kim and colleagues).  

Firstly, it is worth considering why we have discovered a much higher number of cis-eQTLs 

than Kim et al. One potential reason is than Kim and colleagues’ study included only 309,531 

SNPs, while our analysis included 4,663,227 SNPs. There are 15-fold fewer SNPs in Kim and 
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colleagues’ study and, hence, in their analysis there are likely to be more genes without 

SNPs within or near them. The 15-fold greater SNP coverage in our study also means that 

we are likely to capture associated genetic variants which are not covered in Kim and 

colleagues’ SNP panel. It should be noted that although we include 15-fold higher SNPs in 

our analysis, we only discover 2.3-fold more cis-eQTL genes. This suggests that our multiple-

testing correction methodology adequately controls the false-discovery rate from the 

significantly higher number of tests in our analysis. 

It may be argued that the overlap between the significant cis-eQTL genes from our study 

and Kim and colleagues’ study is small. However, this overlap is highly statistically significant 

(hypergeometric distribution p-value 1.9x10-34) and, hence, unlikely to be a chance 

occurrence.  

On the other hand, it may be argued that such a significant overlap between two eQTL 

studies on tissue from two different pathologies is unexpected. By including phenotype as 

an interaction term in our eQTL analysis model, we were able to show that only 4% of 

significant cis-eQTLs are ‘conditional’. Conditional eQTLs influence gene expression in only 

one of the two conditions in our study. The remaining 96% of significant cis-eQTLs are 

‘static’—they influence gene expression under any condition. In addition to this, it is being 

increasingly recognised that schizophrenia and epilepsy have common underlying causal 

mechanisms, including genetic mechanisms (Chang et al. 2011). Hence, it is possible that 

some of the conditional eQTLs relevant to epilepsy are also relevant to schizophrenia.  

6.5.2 eQTLs and their targets: characteristics and patterns 

We found that eQTLs are enriched within the most significantly trait-associated SNPs from 

our GWAS of pharmacoresistant partial epilepsy. This is consistent with the previously 

published observation that, in complex diseases, truly trait-associated SNPs are more likely 

to be eQTLs (Nicolae et al. 2010). This feature can be exploited in order to select genetic 

variants for further study from amongst a large number of SNPs with a ‘suggestive’ level of 

significance, as demonstrated in an example below. 

It is worth noting that not all eQTL genes and the genes under their influence (‘target 

genes’) have an exclusive one-to-one relationship; one-to-many and many-to-one 

relationships are a prominent feature of the genetic regulation of gene expression.  
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We found 158 eQTL-hub genes which effect the expression of 100 or more target genes 

each. These eQTL-hubs are likely to be of particular importance in the genetic regulation of 

gene expression and clinical traits. As shown in Table 6.2, the eQTL-hubs are enriched in 

many regulatory processes, such as ‘regulation of gene expression’ and ‘regulation of 

apoptosis’. The proportion of eQTL-hubs increased significantly amongst genes which were 

more strongly associated with the phenotype in our GWAS analysis. 

On the other hand, multiple eQTL genes often converge on the same target gene. We found 

that the number of convergent eQTL genes is significantly greater if the target gene is 

disease-linked (differentially-expressed in diseased tissue). We found that there were, on 

average, 9.7 eQTL genes targeting each DE+GR gene, which was over four fold greater than 

the number of eQTL genes targeting non-differentially expressed genes. This fold difference 

became even more prominent if we limited our analysis to those eQTL genes which are 

more strongly associated with the disease in our GWAS analysis. Similar patterns have 

previously been noted within eQTLs in the peripheral blood (Fehrmann et al. 2011). It has 

previously been suggested (Fehrmann et al. 2011) that for a particular phenotype the 

different associated genetic variants eventually converge on the same downstream target 

genes; our results are consistent with this observation. 

Taken together, the above observations suggest that in the pharmacoresistant epileptic 

human hippocampus: (1) genetic variants most significantly associated with the clinical 

phenotype are more likely to be eQTLs, (2) genes more significantly associated with the 

clinical phenotype are more likely to be eQTL-hubs, and (3) genes which are differentially 

expressed in this phenotype are under the influence of significantly higher numbers of 

disease-associated eQTLs. This demonstrates that the eQTLs identified in our study are 

relevant to the clinical phenotype. 

6.5.3 Applying the eQTL data 

In complex diseases, truly trait-associated SNPs are more likely to be eQTLs (Nicolae et al. 

2010). This feature can be exploited in order to select genetic variants for further study from 

amongst a large number of SNPs with a ‘suggestive’ level of significance. From the SNPs with 

a suggestive level of significance (p<5x10-5) in our pharmacoresistant epilepsy GWAS ‘mega-

analysis’, 53 SNPs were also significant (FDR<0.05) eQTLs in our genetical genomics study. 
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One of these 53 SNPs, rs11163824, was associated with the expression of gene ALDH5A1, 

which was significantly down regulated (FDR<0.05) in our microarray study. It is interesting 

to note that rs11163824 lies within a long non-coding RNA (lincRNA:chr1:84106887-

84316837). It can be postulated that altered activity of this lincRNA leads to differential 

expression of ALDH5A1. ALDH5A1 (also known as succinic semialdehyde dehydrogenase) is 

involved in the degradation of the inhibitory neurotransmitter GABA and patients with 

ALDH5A1 deficiency (an autosomal recessive disorder) suffer from seizures (Lorenz et al. 

2006). Furthermore, genetic variations within ALDH5A1 were among a set of SNPs found to 

contribute to disease predisposition in sporadic epilepsy (Cavalleri et al. 2007). 

As shown above, epilepsy and schizophrenia share many eQTLs. Hence, our dataset will 

prove useful for the study of schizophrenia and other diseases in which the hippocampus is 

affected. As an example, one SNP (rs11038167) associated with schizophrenia at a genome-

wide level of significance (p-value 1x10-11) in a previous study (Yue et al. 2011) is an eQTL 

according to our data. This SNP lies within the TSPAN18 gene and has a significant influence 

on the expression levels of genes SYNDIG1L and RFX4 according to our dataset. We 

examined the potential functional importance of these genes through a literature-review. 

TSPAN18 encodes one member of a large family of transmembrane proteins (tetraspanins) 

found in all multicellular eukaryotes. Expressed widely and in diverse cell types, the 

tetraspanins appear to affect cellular penetration, adhesion, motility, and signal conduction, 

and are thought to be influential in diverse physiologic processes and diseases (Charrin et al. 

2009; Rubinstein 2011). TSPAN18 genetic variants have been associated with both bipolar 

disorder and schizophrenia (Scholz et al. 2010; Yue et al. 2011). RFX4 is a transcription factor 

and is differentially expressed in patients with schizophrenia (Glatt et al. 2011). 

Interestingly, RFX4 is located in the linkage region of bipolar affective disorder (Ewald et al. 

1998) and schizophrenia (Holmans et al. 2009), and a RFX4 haplotype confers bipolar 

disorder disease risk (Glaser et al. 2005). SYNDIG1L is the Synaptic Differentiation Induced 

Gene I-Like gene. SYNDIG1 encodes a novel postsynaptic transmembrane protein that plays 

a critical role in excitatory synapse development (Diaz 2010). 

6.6 Conclusions 

We have presented the first ever study to analyse trans-eQTLs in human hippocampal tissue 

and the first ever eQTL study to include epileptic human brain tissue. We have shown that 
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these eQTLs are relevant to disease: genetic variants most significantly associated with the 

clinical phenotype are more likely to be eQTLs, genes more significantly associated with the 

clinical phenotype are more likely to be eQTL-hubs, and genes which are differentially 

expressed in this phenotype are under the influence of significantly higher numbers of 

disease-associated eQTLs. We have also identified the most enriched biological processes 

for eQTL-hubs. Finally, we have demonstrated how this eQTL dataset can be utilized in order 

to interpret and prioritize GWAS results from epilepsy and other disease. 
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Chapter 7: Testing the Intrinsic Severity Hypothesis 

and Identifying the Causal Pathways Underlying 

Intrinsic Severity 

7.1 Introduction 

In the current chapter, I will integrate the data and results from the previous chapters in 

order to present a combined view of the genetic and genomic changes which underlie 

pharmacoresistance in epilepsy. 

The analyses presented in the preceding chapters demonstrate that underlying epilepsy 

pharmacoresistance, at both genetic and transcriptomic levels, are diverse pathways and 

processes pertaining to disparate domains, such as axon guidance, neuroinflammation, 

transmembrane transport of small molecules and synaptic neurotransmitter release 

machinery. This observation lends credence to the intrinsic severity hypothesis of 

pharmacoresistance in epilepsy, which states that pharmacoresistance is the results of 

increased dysfunction of the neurobiological processes underlying epilepsy (please see 

Chapter 1 for a detailed discussion of this hypothesis). It has previously been suggested that 

genetic variations are likely to be key components of the biological factors that mediate 

increased severity and intractability (Rogawski 2013). The results presented in Chapters 5 

and 6 tend to support this suggestion, but this idea has never been objectively examined. In 

this chapter, I will objectively test the hypothesis that pharmacoresistance is the result of 

accumulation of deleterious genetic variations of increasing severity and/or numbers within 

the genes that constitute the core pathways and processes underlying epilepsy. In order to 

achieve this aim, I will first create a gene-set that represents the main pathways and 

processes underlying epilepsy, and then determine if this gene-set is more enriched in a 

GWAS of pharmacoresistant epilepsy than in a GWAS of pharmacoresponsive epilepsy. 

Following on from the above analysis, I will identify the ‘causal’ pathways underlying 

pharmacoresistant epilepsy, using the data presented in the previous chapters.  

 



 
 

228 
 

7.2 Aims 

I. To test the hypothesis that pharmacoresistance is the result of accumulation of 

deleterious genetic variations of increasing severity and/or numbers within the 

genes that constitute the core pathways and processes underlying epilepsy.   

II. To identify the causal pathways underlying pharmacoresistance in epilepsy.  

7.3 Methods 

7.3.1 Methods overview 

We wished to demonstrate that pharmacoresistance is the result of accumulation of 

deleterious genetic variations of increasing severity and/or numbers within the genes that 

constitute the core pathways and processes underlying epilepsy. In order to show this, we 

first identified the single most functionally-relevant gene-set in the epileptic human 

hippocampus and then determined if this was affected by genetic variation more in drug 

resistant than in drug responsive epilepsy. Putative functionally-relevant gene-sets were 

identified by performing Weighted Gene Co-expression Network Analysis (WGCNA) 

(Langfelder & Horvath 2008) on our microarray data from Chapter 4, and the most 

important gene-set was chosen (see below for details). In order to identify the genetic 

variations associated with drug responsive epilepsy, a genome-wide association study 

(GWAS) was performed of drug responsive epilepsy. Similarly, in order to identify the 

genetic variations associated with drug resistant epilepsy, a GWAS was performed of drug 

resistant epilepsy. We then compared the degree of enrichment of the functionally-relevant 

gene-set in the two GWAS. Finally, in order to perform a head-to-head comparison of drug 

responsive and resistant partial epilepsy, a GWAS of drug responsive versus resistant partial 

epilepsy was performed. 

In order to identify ‘causal’ pathways, we determined the Reactome pathways enriched in 

genes which are significant in the pharmacoresistant focal epilepsy GWAS and are also 

significant eQTLs for differentially-expressed genes. We also identified ‘intermediate’ 

pathways: the Reactome pathways enriched in genes which are genetically regulated by 

eQTLs and are also differentially expressed in the pharmacoresistant epileptic hippocampus.  
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7.3.2 Weighted Gene Co-expression Network Analysis (WGCNA) 

The microarray data was adjusted for batch effects and for known and unknown 

confounders using ComBat and ISVA, as described in Chapter 4. Including all microarray 

probes in the WGCNA was not computationally feasible: the time and memory 

requirements were both prohibitive. Hence, the probes were sequentially filtered as 

follows: (1) only probes mapping to genes with valid current Entrez numbers and HUGO 

Gene Nomenclature Committee gene symbols were retained, (2) where multiple probes 

mapped to the same gene, the most variant probe only was retained, (3) 75% of the probes 

with the highest variance were retained. Hence, after filtering, 13,367 probes with high 

variance remained, each mapping to a unique gene. 

WGCNA was performed using the WGCNA R package according to the authors’ instructions. 

WCGNA network construction and module detection was carried out using the one-step 

automatic network construction and module detection approach, with a soft threshold of 

β=9 and a minimum module size of 30. The most important module, from amongst those 

detected, was identified using techniques devised and validated by the authors of WGCNA 

(Langfelder & Horvath 2008) and used successfully by others. Briefly, the most important 

module was identified based on (a) the significance of its association with the phenotype of 

interest and lack of association with confounders, and (b) the strength of the correlation 

between module membership and gene significance. Gene significance of a gene is defined 

as {GeneSignificance(i)=|cor(xi, T)|} where xi is the gene expression profile of Gene i and T is 

the trait of interest. The module membership of a gene is the correlation between its gene 

expression profile and module eigengene of a given module; the module eigengene 

corresponds to the first principal component of a given module. 

Pathway-enrichment analysis for the most important module was performed using the 

Reactome database on the Gene Set Enrichment Analysis website. 

7.3.3 External validation of the chosen WGCNA module 

Before using the chosen WGCNA module in our own GWAS gene-set enrichment analysis, 

we validated the module using an independent previously published partial epilepsy GWAS 

dataset (Kasperaviciute et al. 2010). Complete genome-wide results for this study were 

downloaded from the authors’ website. The size of our chosen WGCNA module was 1594 
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genes. The rest of the genome was divided into 12 random gene-sets of 1594 genes. The 

chosen WGCNA module and the 12 random gene-sets were then tested for enrichment in 

the previously published independent GWAS using the GSA-SNP software. 

7.3.4 GWAS study cohorts 

Three GWAS analyses were carried out: 

i. Drug responsive partial epilepsy versus normal population controls (NPC) 

ii. Drug resistant partial epilepsy versus NPC 

iii. An extreme discordant phenotype (EDP) analysis: Drug resistant versus drug 

responsive partial epilepsy 

The epilepsy cases used in the drug responsive cohort were from amongst the patients 

recruited into the Standard and New Antiepileptic Drugs (SANAD) trial (Marson et al. 2007); 

this study has been described in detail in Chapter 5. For the purposes of this analysis, 

subjects were said to have drug responsive epilepsy if they entered 12-month remission 

immediately upon starting treatment. On this basis, 155 subjects from the SANAD study 

were classified as having drug responsive partial epilepsy. The epilepsy cases used in the 

drug resistant cohort were from amongst the patients recruited into the SANAD and 

‘Pharmacogenetics of GABAergic Mechanisms of Benefit and Harm in Epilepsy’ studies; 

these studies have been described in detail in Chapter 5. We utilized subjects included in 

our ‘mega-analysis’ (please see Chapter 5 for details). The definitions of drug resistance 

used in our analysis have been stated in Chapter 5. The control dataset consisted of subjects 

from the Wellcome Trust Case Control Consortium (WTCCC) 1958 British Birth Cohort 

(dataset EGAD00000000022). We used the 2624 subjects passing our quality control (QC) 

filters, as described in Chapter 5. 

7.3.5 GWAS genotyping and QC 

The genotyping and QC procedures employed have been detailed in Chapter 5.  

After per-individual QC, 146 cases remained in the drug responsive cohort. In order to allow 

a fair comparison, for the drug resistant partial epilepsy versus NPC analysis, 146 cases were 

chosen at random from the 421 total subjects in the drug resistant cohort. Hence, the final 

drug responsive partial epilepsy versus NPC dataset included 146 cases and 2624 normal 
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controls, and the final drug resistant partial epilepsy versus NPC dataset similarly included 

146 cases and 2624 normal controls. The EDP analysis included 146 drug responsive and 421 

drug resistant subjects. 

After per-SNP QC, there were 510501 SNPs in the drug responsive cohort and 509534 SNPs 

in the drug resistant cohort. In order to allow a fair comparison, both datasets were reduced 

to the 509534 SNPs which were common to both cohorts. 

7.3.6 Association and gene-set analysis 

Association analysis was performed using the chi-squared (2) test in Plink. In order to 

ensure consistency in correcting for inflation due to population stratification, the genomic 

control method, which has proven effectiveness (Bouaziz et al. 2011), was applied to both 

the drug responsive partial epilepsy versus NPC analysis and the drug resistant partial 

epilepsy versus NPC analysis. 

We tested the chosen WGCNA module for enrichment in three GWAS analyses using the 

program GSA-SNP. 

7.3.7 Causal genes and pathways 

The step-wise scheme for identifying causal genes is illustrated in Figure 7.1. In this 

approach, potentially causal genes are those that are (1) disease-associated, (2) eQTLs, and 

(3) influence the transcript levels of genes differentially-expressed in pharmacoresistant 

epilepsy. 

SNPs within 20kb of the flanking sequence of a gene were mapped to the gene. The results 

of the GWAS mega-analysis (Chapter 5) were used to identify disease-associated genes. In 

order to select a GWAS p-value cut-off for defining disease associated genes, we created 

sets of genes at various GWAS p-values cut-offs (0.05, 0.005, 0.0005), and then determined 

how enriched each set was with disease-specific eQTLs (eQTLs which regulate differentially-

expressed genes). After this process, we used an empirical p-value <0.005 cut-off to define 

disease-associated genes. Then, we retained the subset of disease-associated genes which 

are significant eQTLs (Chapter 6). Then, we retained the subset of eQTLs which regulate 

differentially-expressed genes (DEGs) identified through microarray analysis (Chapter 4); 

this final subset (721 genes) represents causal genes. 
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Figure 7.1 Step-wise scheme for the identification of causal genes. First, we used Genome-

Wide Association Study (GWAS) to identify diseased-associated genes (DAGs)—those 

bearing SNPs associated with the clinical phenotype. Then, we retained the subset of DAGs 

which are significant expression quantitative trait loci (eQTL) genes. Then, we retained the 

subset of eQTLs which regulate differentially-expressed genes (DEGs) identified through 

microarray analysis; this subset represents causal genes. 

 

As our initial GWAS empirical p-value<0.005 cut-off could be considered somewhat 

arbitrary, we determined if the chosen 721 genes were significantly associated with the 

pharmacoresistant focal epilepsy phenotype at the gene-set level, by analysing the 721 

genes as one set in the program GSA-SNP. For comparison, we divided the rest of the 

genome into 25 gene-sets of 721 genes and analysed them similarly in GSA-SNP.  

We performed Reactome pathway enrichment analysis on this set of 721 genes using the 

Gene Set Enrichment Analysis website. These pathways were designated ‘causal’ pathways, 

as they are likely to represent the genetic changes which influence the transcriptomic 
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intermediate phenotype which, in turn, contributes to the development of the clinical 

phenotype. Enrichment Map (Merico et al. 2010) tool was used to determine the 

connections between enriched pathways. Enrichment Map was used with default settings.  

Betweenness centrality network analysis was used to identify the most central pathways in 

this network. 

7.3.8 Intermediate genes and pathways  

We collated the list of genes which are under significant (FDR<0.05) eQTL control of causal 

genes and significantly differentially expressed (FDR<0.05 and FC≥1.5) in pharmacoresistant 

epileptic tissue. We performed Reactome pathway enrichment analysis on this set of genes 

using the Gene Set Enrichment Analysis website. These pathways were designated 

‘intermediate’ pathways, as they are likely to represent the true transcriptomic 

intermediate phenotype which contributes to the development of the clinical phenotype of 

interest. Enrichment Map (Merico et al. 2010) tool was used to determine the connections 

between enriched pathways. Enrichment Map was used with default settings. 

7.4  Results 

7.4.1 WGCNA  

WGCNA revealed 18 distinct modules. Out of the 18 modules detected, the blue module 

was deemed most relevant and important because (1) it was the module most significantly 

(p-value=7.1x10-7) associated with the phenotype, and it was not associated with any 

confounders (Appendix 15), and (2) module membership in the blue module was highly 

correlated with gene-significance (correlation=0.94, p<1x10-200, Figure 7.2). The genes 

included in the blue module, and all other detected modules, are tabulated in the Appendix 

15. The Reactome pathways enriched in the blue module are also listed in the Appendix 15. 

7.4.2 External validation of the chosen WGCNA module  

We tested the blue module and 11 other random gene-sets of equal size for enrichment 

within the results of a previously published GWAS study of partial epilepsy. We found that 

while the blue module was highly significantly enriched in this GWAS analysis (FDR<3x10-17), 

none of the other gene-sets showed significant enrichment (minimum FDR 0.15); the gene-

set enrichment analysis results can be found in the Appendix 15. 
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7.4.3 GWAS analyses of drug responsive and drug resistant epilepsy  

The quantile-quantile (QQ) plots of the GWAS analysis of drug responsive partial epilepsy 

versus NPC and drug resistant partial epilepsy versus NPC are shown in the Appendix 15. 

Gene-set analysis of the blue module showed that there was greater enrichment for these 

genes in the drug resistant (p=2.6x10-14) than in the drug responsive (p=1.1x10-9) GWAS 

study.  

The genomic inflation factor (1.01) and the QQ plot (Figure 7.3) for the EDP GWAS study 

showed that there no significant inflation in the results and, hence, the no further 

adjustments were applied to the analysis. Gene-set analysis showed significant enrichment 

(p<8.5x10-10) of the blue module in the EDP GWAS analysis.  

7.4.4 Causal genes and pathways 

We found 721 genes that associated with the pharmacoresistant focal epilepsy phenotype 

in our genome-wide genetic-association (GWAS) analysis at an empirical p-value <0.005 and 

were also significant (FDR<0.05) eQTLs for differentially-expressed genes. This particular 

GWAS p-value cut-off was chosen for the following reason: as increasingly stringent GWAS 

p-values are used, the proportion of selected genes which are also eQTLs for DEGs 

increases; GWAS p-value <0.005 is the final cut-off at which this proportion is significantly 

increased compared to more lenient cut-offs (Bonferroni corrected p-value 6.7x10-16 for 2-

sample test for equality of proportions). We also determined if these 721 genes were 

significantly associated in the pharmacoresistant epilepsy GWAS at the gene-set level. These 

721 genes were significantly associated with the pharmacoresistant focal epilepsy 

phenotype at the gene-set level (FDR<5x10-20), while 25 random sets of 721 genes were not 

(minimum FDR=0.7). We performed Reactome pathway enrichment analysis on this set of 

721 genes. We term these enriched pathways ‘causal’ pathways—the 10 most enriched 

pathways are shown in Table 7.1 and the complete list in the Appendix 15. Enrichment Map 

analysis revealed a highly interconnected network of pathways (Figure 7.4). In this network, 

each pathway is directly connected to, on average, 9 other pathways. In order to identify 

the most central ‘hub’ pathways, ‘betweeness centrality’ network analysis was performed; 

the top 10 most central pathways are listed in Table 7.2, and the complete ranked list can be 

found in the Appendix 15. 
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Figure 7.2 Module membership versus gene significance for the blue module 
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 Table 7.1 The 10 most enriched ‘causal’ pathways: enriched Reactome pathways for 721 
genes that are significant (FDR<0.05) eQTLs for differentially-expressed genes and also 
significantly associated with the pharmacoresistant focal epilepsy phenotype at the gene-
level (empirical p-value <0.005) and gene-set level (FDR<5x10-20). 

Pathway P-Value FDR 

Signalling by NGF 5.66x10-9 3.81x10-6 

Axon guidance 4.40x10-8 1.48x10-5 

Developmental biology 2.21x10-7 4.95x10-5 

GPVI-mediated activation cascade 1.28x10-6 1.99x10-4 

Regulation of signalling by CBL 1.47x10-6 1.99x10-4 

Nephrin interactions 2.62x10-6 2.94x10-4 

Metabolism of lipids and lipoproteins 3.59x10-6 3.46x10-4 

p75-neurotrophin receptor mediated signalling 4.38x10-6 3.69x10-4 

Netrin1 signalling 7.07x10-6 4.97x10-4 

Transmembrane transport of small molecules 7.37x10-6 4.97x10-4 

 

Table 7.2 Top 10 central causal pathways 

Pathway 

Transmembrane transport of small molecules  

DCC mediated attractive signalling  

Axon guidance  

Cell-cell communication  

Developmental biology  

Signalling by NGF  

Immune system  

TIE2 signalling  

Signalling by constitutively active EGFR  

CREB phosphorylation through the activation of RAS  
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Figure 7.3 Quantile-quantile plot for extreme discordant phenotype genome-wide genetic association analysis 
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 Figure 7.4 Network of causal pathways. Major functional groups of pathways are labelled. 
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7.4.5 Intermediate genes and pathways 

We collated the list of genes which are both differentially expressed (FDR<0.05 and FC≥1.5) 

and significantly (FDR<0.05) regulated by causal genes. Of the 1010 genes which are 

differentially expressed (FDR<0.05 and FC≥1.5), the expression of 369 (37%) is significantly 

(FDR<0.05) influenced by causal genes (see list in Appendix 15). This set of 369 genes is 

highly functionally coherent, being enriched (FDR<0.05) with 58 Reactome pathways. We 

term these enriched pathways ‘intermediate’ pathways—the 10 most enriched pathways 

are shown in Table 7.3, and the full list of 58 enriched pathways is tabulated in the Appendix 

15. Enrichment Map analysis revealed a highly interconnected network of pathways (Figure 

7.5). In this network, each pathway is directly connected to, on average, 10 other pathways.  

Table 7.3 Top 10 ‘intermediate’ pathways: enriched Reactome pathways for 369 
differentially-expressed genetically-regulated genes 

Pathway p-value FDR 

Transmembrane transport of small molecules 2.22x10-16 1.50x10-13 

Neuronal system 6.66x10-16 2.24x10-13 

Class A1 rhodopsin-like receptors 4.00x10-15 8.98x10-13 

Signalling by GPCR 1.13x10-14 1.91x10-12 

GPCR downstream signalling 7.33x10-14 9.88x10-12 

SLC-mediated transmembrane transport 9.53x10-14 1.07x10-11 

GPCR ligand binding 1.16x10-12 1.12x10-10 

Transport of inorganic cations, anions and amino acids oligopeptides 2.34x10-12 1.97x10-10 

Transmission across chemical synapses 3.74x10-12 2.80x10-10 

Axon guidance 2.63x10-10 1.77x10-8 
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Figure 7.5 Network of intermediate pathways. Major functional groups of pathways are 

labelled. 

 

7.5  Discussion 
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the genes that constitute the core pathways and processes underlying epilepsy. In order to 

achieve this aim, we first created a gene-set that represents the main pathways and 

processes underlying epilepsy, and then determined:  

1. If this gene-set is more enriched in a GWAS of pharmacoresistant epilepsy than in a 

GWAS of pharmacoresponsive epilepsy 

2. If this gene-set is enriched in a GWAS of pharmacoresponsive vs pharmacoresistant 

epilepsy. 

7.5.1 Creating a gene-set that represents the main pathways and processes underlying 

epilepsy 

It has previously been shown in a number of studies that WGCNA can identify functionally 

and causally relevant gene modules. For example, it has been demonstrated that a 

significant WGCNA module from a microarray study of mouse weight is enriched with eQTLs 

for mouse weight (Ghazalpour et al. 2006). Similar to our findings in epilepsy, Roussos and 

colleagues found that WGCNA modules from transcriptomic profiling of post-mortem brain 

samples in schizophrenia are enriched in an independent schizophrenia GWAS (Roussos et 

al. 2012).  

Before using the selected WGCNA module for testing our hypothesis, we took two steps to 

‘validate’ it—we confirmed that it was a functionally relevant and causally significant gene-

set: 

1. We analysed the Reactome pathways enriched in this module (please see Appendix 

15), and found that they were appropriate and consistent with our previous 

pathways analyses in Chapters 1, 4, 5 and 6.  

2. We demonstrated that this module was highly enriched in an independent 

previously published GWAS of partial epilepsy, while 12 random gene-sets of equal 

size were not. 

7.5.2 Testing our hypothesis using GWAS enrichment analysis 

We showed that the selected WGCNA module was significantly enriched in the 

pharmacoresponsive epilepsy GWAS (p=1.1x10-9), but considerably more enriched in the 

pharmacoresistant epilepsy GWAS (p=2.6x10-14). To ensure that the comparison was fair, 
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both GWAS datasets had genotype data for the same SNPs and the same normal population 

control samples and the same number of disease samples. Additionally, in order to ensure 

consistency in correcting for inflation due to population stratification, the stringent genomic 

control method, which has proven effectiveness (Bouaziz et al. 2011), was applied to both 

the GWAS analyses. In the genomic control method, one calculates the λGC (the ratio of the 

observed-to-expected median 2 test statistic) and divides all of the test statistics by the 

λGC (Devlin & Roeder 1999).  

The above findings suggest that the same gene-set potentially plays a causal role in both 

pharmacoresponsive and pharmacoresistant epilepsy, but is considerably more enriched 

with genetic variations in the latter condition. This lends support to our hypothesis that 

pharmacoresistance is the result of accumulation of deleterious genetic variations of 

increasing severity and/or numbers within the genes that constitute the core pathways and 

processes underlying epilepsy. 

To confirm that there is a significant difference in the burden of genetic variations within 

this gene-set between the two conditions, we performed a further ‘extreme discordant 

phenotype’ GWAS analysis with pharmacoresistant cases and pharmacoresponsive controls; 

the gene-set was highly enriched in this analysis. 

7.5.3 Causal pathways 

It has previously been suggested that an eQTL that maps to a disease locus can be 

considered a likely causal gene underlying the disease (Thessen Hedreul et al. 2013). We 

have advanced this concept in two novel respects: 

1. We have made this concept more stringent by only including eQTLs that target 

significantly differentially expressed genes (FDR<0.05, fold change ≥ 1.5) in the 

disease tissue. 

2. We have extended this concept to the gene-set and pathway level, by identifying the 

pathways enriched within the causal genes. 

 

721 genes fulfilled the criteria of being significantly associated with the pharmacoresistant 

focal epilepsy phenotype at the gene-level (empirical p-value <0.005) and gene-set level 
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(FDR<5x10-20), and also being significant (FDR<0.05) eQTLs for differentially-expressed 

genes. 61 Reactome pathways were enriched within these 721 genes.  

The 61 enriched Reactome pathways form a highly interconnected network, which is shown 

in Figure 7.4 with the major groups labelled. This figure illustrates the major causal 

processes in pharmacoresistant epilepsy, for example immune system and activation of 

NMDA receptors. The 10 most enriched individual pathways are shown in Table 7.1, and the 

10 most central pathways are shown in Table 7.2  

7.5.4 Intermediate genes and pathways  

Table 7.4 Pathways which are both causal and intermediate. 

Pathway 

Axon guidance 

CREB phosphorylation through the activation of RAS 

Cytokine signalling in immune system 

Developmental biology 

Downstream signal transduction 

GPCR downstream signalling 

Haemostasis 

Interaction between L1 and ankyrins 

L1CAM interactions 

Neuronal system 

RAS activation upon calcium influx through NMDA receptor 

Signalling by FGFR 

Signalling by FGFR in disease 

Signalling by GPCR 

Signalling by PDGF 

Transmembrane transport of small molecules 

 

Gene expression is an informative intermediate phenotype that links variation in genetic 

information to human disease (Williams et al. 2007; Fehrmann et al. 2011). Of the genes 

that were significantly differentially expressed (FDR<0.05 and FC≥1.5), 369 were under 

significant cis- or trans-eQTL (FDR<0.05) control of causal genes; we term these 

‘intermediate’ genes. This gene-set is highly functionally coherent, being enriched 

(FDR<0.05) with 58 Reactome pathways. We term these enriched pathways ‘intermediate’ 

pathways. These 58 enriched Reactome pathways form a highly interconnected network, 

which is shown in Figure 7.5 with the major groups labelled. This Figure illustrates the major 
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intermediate processes in pharmacoresistant epilepsy, for example cytokine signalling in the 

immune system. The most enriched individual pathways are shown in Table 7.3. 

16 Reactome pathways (Table 7.4) were both causal and intermediate pathways and, hence, 

can be considered of special interest, as therapeutic targets, because they bear not only 

causal genetic variations but also the transcriptomic changes that link causal genetic 

variations to the disease. 

As an example, we demonstrate below, using a literature review, the potential relevance of 

a pathway which is both a causal and an intermediate pathway. 

7.5.5 Fibroblast growth factors in epilepsy 

Fibroblast growth factors (FGFs) are a family of growth factors. Many members of the FGF 

family are dysregulated in brain tissue from epilepsy surgery (Paradiso et al. 2013), for 

example FGF2 (Sugiura et al. 2008; Ueda et al. 2011). FGFs have been implicated in a 

number of morphological and functional alterations associated with epileptogenesis in the 

hippocampus, including apoptosis, astrocytosis, blood-brain barrier disruption, changes in 

synaptogenesis, axonal sprouting, and aberrant neurogenesis (Paradiso et al. 2013). The 

therapeutic potential of FGFs has also been demonstrated in an animal model of epilepsy: 

injecting a viral vector expressing FGF2, as well as brain-derived neurotrophic factor, into 

the hippocampus of pilocarpine-treated rats significantly reduces neuronal loss and 

prevents the emergence of spontaneous recurrent seizures (Paradiso et al. 2011). Genetic 

variants in a fibroblast growth factor FGF14 are associated with a human neurological disorder: 

spinocerebellar ataxia 27 (van Swieten et al. 2003; Dalski et al. 2005). 

 

7.6 Conclusions 

Using novel bioinformatics strategies, we have presented evidence in support of the 

hypothesis that pharmacoresistance is the result of accumulation of deleterious genetic 

variations of increasing severity and/or numbers within the genes that constitute the core 

pathways and processes underlying epilepsy.  We have identified the causal and 

intermediate pathways that are likely to be of particular importance in the development of 

pharmacoresistant epilepsy. 
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Chapter 8: Discussion 

Epilepsy effects up to 1% of the population, and up to a third of people with epilepsy are 

pharmacoresistant—they continue to experience seizures despite treatment with maximal 

doses of multiple antiepileptic drugs with differing molecular targets and mechanisms of 

action. As detailed in Chapter 1, two different theories have gained the widest acceptance 

as possible explanations of pharmacoresistance: the multidrug transporter hypothesis and 

the intrinsic severity hypothesis. In the present work, we started by studying previously 

unexplored aspects of the multidrug transporter hypothesis, and then focused our attention 

on the intrinsic severity hypothesis. 

8.1 An in silico and ex vivo analysis of SLC transporters in the 

pharmacoresistant epileptic hippocampus 

According to the MDT hypothesis, pharmacoresistance results from decreased drug 

concentrations at the epileptic focus secondary to a localized dysregulation of drug 

transporters (Chayasirisobhon 2009), which could either increase drug efflux from, or 

reduce influx into, the epileptic focus. There are two main superfamilies of drug 

transporters: ABC proteins and SLC proteins. Research on multidrug transporters in epilepsy 

pharmacoresistance has been focused almost exclusively on ABC transporters. In spite of 

twenty years of research on the role of ABC proteins in intractable epilepsy, there remains a 

lack of convincing evidence that these transporters mediate pharmacoresistance. 

Meanwhile, SLC proteins, which constitute a much larger superfamily of transporters—there 

are over 400 known SLC proteins and less than 50 known ABC proteins—have hence far 

been neglected within epilepsy research. In order to identify the SLCs which are 

dysregulated in the pharmacoresistant epileptic hippocampus, we devised a robust in silico 

approach that exploits relevant published data and builds upon them using cutting-edge 

computational tools; we then verified the output using a robust ex vivo approach. 

It has been recognized in the study of cancers that SLCs typically mediate uptake of drugs 

(Huang & Sadee 2006; Nakanishi 2007), and lower activity of these transporters may result 

in resistance to chemotherapy (Rochat 2009; Rosenbaum 2011). As SLCs are primarily influx 

transporters, we focused on SLCs that are significantly downregulated in the 
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pharmacoresistant epileptic hippocampus. We extracted data relating to downregulated 

SLCs from (1) our integrative analysis of microarray studies on brain tissue from epilepsy 

surgery (Chapter 2), and (2) a comprehensive review of published literature on epilepsy 

pharmacoresistance, and integrated all the data using ‘convergent functional genomics 

(CFG)’—a validated technique (Bertsch et al. 2005) for prioritizing genes involved in complex 

diseases by collating evidence using a pre-defined scoring system. To identify SLCs which 

have not been studied in epilepsy pharmacoresistance but could potentially be involved, we 

employed a computational gene prioritization tool called Endeavour (Tranchevent et al. 

2008), using SLCs with the highest CFG-scores as the training genes. We validated this 

computationally prioritized gene list by (1) prioritizing the same candidate genes using a 

robust independent ‘positive control’ training set comprising the 10 most consistently 

downregulated genes from the aforementioned integrative analysis and, then, 

demonstrating significant rank order similarity with the original list, and (2) prioritizing the 

same candidate genes using a ‘negative control’ training set comprising 10 randomly chosen 

genes from the aforementioned integrative analysis and demonstrating no significant rank 

order similarity with the original list.  

As our in silico strategy was novel, we validated our in silico strategy by ex vivo analysis of 

human brain tissue. We used a custom one-colour Agilent oligonucletoide microarray 

containing exon probes for all known SLCs to analyse 24 hippocampal samples obtained 

from surgery for pharmacoresistant mesial temporal lobe epilepsy and 24 hippocampal 

samples from normal post-mortem controls. The whole-transcript amplification protocol of 

exon arrays allows more accurate measurement of gene expression than standard 

microarrays (Kapur et al. 2007; Xing et al. 2007; Lockstone 2011). Stringent QC filters were 

applied to arrays and individual features, and a ‘percent present’ filter was applied to the 

genes to reduce false positives. Finally, important technical (batch and RIN) and clinical (age 

and sex) covariates were included in the linear model; this reduced the false positive rate 

significantly. Our exon array identified 18 SLCs significantly (FDR <0.05) downregulated in 

the epileptic hippocampus by 1.5 fold or more. There was a highly significant overlap 

between the genes identified by our in silico and ex vivo strategies: p <9.0x10−7 

(hypergeometric distribution) for the overlap between the top bioinformatically-identified 

SLCs and the 18 experimentally-identified SLCs. Our successful in silico strategy can be 
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adapted in order to prioritize genes relevant to epilepsy from other gene families. qRT-PCR 

results for the three tested SLC genes were highly concordant with the microarray results. 

The vast majority of the identified SLC proteins are either small metal ion exchangers or 

transporters of neurotransmitters, particularly glutamate (see Table 3.6 in Chapter 3). Given 

the key roles played by ionic transport and gluatmatergic transmission in neuronal function, 

it stands to reason that these should be the most important SLC proteins in the epileptic 

hippocampus. However, for SLC transporters of metal ions, there is as yet no evidence of 

non-endogenous substrate transport—their small endogenous ionic substrates are markedly 

dissimilar to most xenobiotics, so it might be expected that they are not readily involved in 

xenobiotic transport (Dobson & Kell 2008). Similarly, there is no evidence as yet that the 

transporters of glutamate or of other neurotransmitters are able to transport therapeutic 

drugs. Therefore, while these SLCs potentially mediate pharmacoresistance in epilepsy, it is 

unlikely that they do this through altered transport of AEDs, but rather by enhancing the 

intrinsic severity of epilepsy (Schmidt & Loscher 2009).   

8.2 Objective evidence in support of the intrinsic severity hypothesis 

According to the intrinsic severity hypothesis, pharmacoresistance in epilepsy is the 

manifestation of increased dysfunction of the processes and pathways which underlie 

epilepsy. It has previously been suggested that genetic variations are likely to play a key role 

in producing increased dysfunction of these pathways and processes (Rogawski 2013). We 

are not aware of any previous attempts to test the hypothesis that pharmacoresistance is 

the result of accumulation of deleterious genetic variations of increasing severity and/or 

numbers within the genes that constitute the core pathways and processes underlying 

epilepsy. In order to test this hypothesis, we first identified the single most functionally-

relevant gene-set that represents the main pathways and processes underlying epilepsy, 

through the widely-used and validated WGCNA,  and then determined if this gene-set was 

affected by genetic variation more in drug resistant than in drug responsive epilepsy. In 

order to identify the genetic variations associated with drug responsive epilepsy, a GWAS 

was performed of drug responsive epilepsy. Similarly, in order to identify the genetic 

variations associated with drug resistant epilepsy, a GWAS was performed of drug resistant 

epilepsy. We then compared the degree of enrichment of the functionally-relevant gene-set 

in the two GWAS. We showed that the gene-set was significantly enriched in the 
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pharmacoresponsive epilepsy GWAS (p=1.1x10-9), but considerably more enriched in the 

pharmacoresistant epilepsy GWAS (p=2.6x10-14). To ensure that the comparison was fair, 

both GWAS datasets had genotype data for the same SNPs and the same normal population 

control samples and the same number of disease samples. To confirm that there is a 

significant difference in the burden of genetic variations within this gene-set between the 

two conditions, we performed a further ‘extreme discordant phenotype’ GWAS analysis 

with pharmacoresistant cases and pharmacoresponsive controls; the gene-set was highly 

enriched in this analysis. Using this strategy, we have demonstrated that 

pharmacoresistance is the result of accumulation of deleterious genetic variations of 

increasing severity and/or numbers within the genes that constitute the core pathways and 

processes underlying epilepsy. 

What are the different pathways underlying pharmacoresistant epilepsy and which of these 

are most important? In order to answer these questions, we have taken a step-wise 

analytical approach: 

1. Complexity: Identifying the different and diverse dysfunctional pathways underlying 

pharmacoresistant epilepsy. 

2. Coherence: Mapping a coherent interconnected network formed by the above 

dysfunctional pathways. 

3. Centrality: Identifying the most central ‘hub’ pathways in the above network. 

8.3 Complexity: The pathways underlying epilepsy pharmacoresistance are 

diverse 

The pathways underlying epilepsy belong to diverse functional domains—this was suggested 

by our integrative analysis of previously published large-scale gene expression profiling 

studies on brain tissue from epilepsy surgery (Chapter 2), and confirmed by our microarray 

analysis (Chapter 4), and further supported by our GWAS analysis (Chapter 5).  

In the integrative analysis of previously published large-scale gene expression profiling 

studies on brain tissue from epilepsy surgery (Chapter 2), we integrated the lists of 

differentially expressed genes from nine previously published microarray studies. The 

validity of our integrative approach was demonstrated by using an inter-study cross-
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validation technique and by demonstrating a statistically significant overlap with CarpeDB, a 

dynamic continuously updated epilepsy genetics database. The integrated gene list was 

then subjected to pathway and gene ontology analysis. The enriched pathways belonged to 

a number of different functional domains, but three domains were most prominently 

overrepresented in the integrated gene list: neuro-inflammation, modulation of synaptic 

transmission, and restructuring of neuronal networks. 

Although, as stated above, there have been a number of previous microarray studies on 

brain tissue from surgery for pharmacoresistant epilepsy, we went onto perform our own 

microarray analysis that is superior to the previous studies in a number of significant and 

novel ways. This is the largest transcriptomic study of hippocampal tissue from 

pharmacoresistant mesial temporal lobe epilepsy to date, having thrice the number of 

disease samples of the previous largest study. Furthermore, cutting edge analytical 

techniques have been applied which improve the sensitivity and reliability of our results: we 

have accounted and corrected for batch effects using careful study design and appropriate 

data processing; we have adjusted for unknown confounders using the cutting edge 

Independent Surrogate Variable Analysis technique; we have demonstrated the functional 

and therapeutic relevance of our results by showing that they are enriched with 

antiepileptic drug targets and more so than any previous microarray study; we have 

demonstrated the causal relevance of our results by showing their enrichment in a GWAS of 

pharmacoresistant partial epilepsy; and we have performed a ‘differentially connectivity’ 

analysis, which is the first such analysis in epilepsy. We identified 118 unique dysregulated 

(differentially expressed or differentially connected) pathways. As found in the integrative 

analysis of previously published microarray studies, the enriched pathways identified in our 

microarray analysis belong to diverse functional domains, for example ‘axon guidance’, 

‘transmembrane transport of small molecules’ and ‘class A1 rhodopsin-like receptors’. 

We performed the first ever genome-wide association study (GWAS) of pharmacoresistant 

partial epilepsy, with discovery and replication cohorts including, in total, 421 cases and 

2624 normal population controls, and 5,519,310 genotyped and imputed SNPs. At the single 

SNP level, there was no overlap in the top results of the two cohorts. We went on to 

perform gene-set and pathway-level analyses. We carried out the first ever objective 

validation of the GWAS gene-set analysis approach by showing that a gene-set comprising 
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antiepileptic drug targets is very significantly enriched in the GWAS, while random gene-sets 

of equal size are not. We then demonstrated that, at the gene-set and pathway level, there 

is clear replication of results between the two cohorts: there was a striking correlation 

between the discovery and replication cohorts in the gene-set analysis results (Pearson’s 

correlation coefficient=0.8, one-sided p-value<2.2x10-16). Furthermore, out of the top 10 

enriched pathways in the discovery cohort, all were replicated in the replication cohort. 

Overall, there was a highly significant overlap between the enriched pathways for the 

discovery and replication cohorts (hypergeometric distribution p-value <3.7x10-17). The 

combined GWAS ‘mega-analysis’ was used to perform pathway enrichment analysis. Again, 

the pathways enriched in the GWAS represent disparate processes, for example ‘axon 

guidance’, ‘transmembrane transport of small molecules’ and ‘cell death signalling via 

NRAGE, NRIF and NADE’. 

8.4 Coherence: the dysfunctional pathways underlying epilepsy form a 

coherent interconnected network 

Enrichment Map (Merico et al. 2010) tool was used to determine the connections between 

enriched pathways. Enrichment Map was used with default settings. Specifically, we 

employed an overlap coefficient cut-off of 0.5. Given sets A and B, and the cardinality 

operator | | where |X| equals to the number of elements within set X, the overlap 

coefficient (OC) is defined as: 

 

In other words, two pathways were deemed connected only if the ratio of the size of the 

intersection over the size of the smallest pathway was 0.5 or more 

Enrichment Map analysis of our transcriptomic study revealed a highly interconnected 

central network of pathways in which each pathway is directly connected to, on average, 

10.5 other pathways. Similarly, Enrichment Map analysis of our GWAS study revealed a 

highly interconnected central network of pathways in which each pathway is directly 

connected to, on average, 8.4 other pathways.  
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The above analysis shows that the dysregulated pathways underlying epilepsy 

pharmacoresistance, though seemingly unrelated, in fact form a coherent whole, and it can 

be expected that changes in one pathway in this network will have a cascading effect on the 

rest of the network. 

8.5 Centrality: Identifying the most central ‘hub’ pathways  

The Network Analysis tool was used to calculate the ‘betweenness centrality’ of nodes 

(individual pathways) in the networks. Betweenness is a measure of the centrality of a node 

in a network, and is calculated as the fraction of shortest paths between node pairs that 

pass through the node of interest. Hence, betweenness is a measure of the influence a node 

has over the spread of information through the network.  

In our transcriptomic analysis, the most central pathway by far was ‘signalling by Notch’. In 

our genetic analysis, the most central pathway by far was ‘signalling by NGF’. We have 

conducted literature reviews in order to highlight previously published evidence of the 

potential role of Notch signalling (see Chapter 4) and signalling by NGF (see Chapter 5) in 

epilepsy.  

It must be noted, however, that the central pathways identified are not necessarily causal. 

For example, it is possible that some of the gene expression changes identified in our 

transcriptomic analysis are the consequence, rather than the cause, of refractory seizures. 

Similarly, some of the genetic changes identified in our GWAS might be ‘bystander’ 

variations that do not have a causal link with the phenotype. In order to identify, with 

greater certainty, the pathways which are likely to be causal, we performed an expression 

quantitative trait loci (eQTL) analysis, and integrated the results with our genetic and 

transcriptomic analyses. 

8.6 Causality 

Our eQTL analysis included hippocampal samples from 22 patients with mesial temporal 

lobe epilepsy and from 22 normal controls. It has been shown that 69% to 80% of eQTLs 

operate in a cell-type specific manner (Dimas et al. 2009). There is only one previously 

published eQTL study on human hippocampal tissue (Kim et al. 2012); this study was limited 

to cis-eQTL analysis. There are currently no published trans-eQTL analyses of hippocampal 



 
 

256 
 

tissue, and no eQTL analyses of the epileptic human hippocampus. Our study not only 

examines eQTLs in hippocampal tissue, but specifically in samples with the disease, a 

strategy which may be necessary for the identification of the disease-related eQTLs (Ertekin-

Taner 2011).  

In complex diseases, truly trait-associated SNPs are more likely to be eQTLs (Nicolae et al. 

2010), and eQTL analysis is a powerful approach for the detection of novel disease risk loci 

(Schadt 2005). It has been suggested that an eQTL that maps to a disease locus can be 

considered a likely causal gene underlying the disease (Thessen Hedreul et al. 2013). We 

found 721 genes that were associated with the pharmacoresistant focal epilepsy phenotype 

in our GWAS analysis at an empirical p-value <0.005 and were also significant (FDR<0.05) 

eQTLs for differentially-expressed genes from our microarray study. Because our chosen 

GWAS p-value cut-off of 0.005 could be criticised for being uncorrected, we determined if 

these genes were significantly associated with pharmacoresistant epilepsy at the gene-set 

level. These 721 genes were significantly associated with the pharmacoresistant focal 

epilepsy phenotype at the gene-set level (FDR<5x10-20), while 25 random sets of 721 genes 

were not (minimum FDR=0.7). 61 Reactome pathways were enriched within these 721 

genes. These 61 pathways were designated ‘causal’ pathways, as they are likely to represent 

the genetic changes which influence the transcriptomic intermediate phenotype which, in 

turn, contributes to the development of the clinical phenotype. As shown previously for our 

genetic and transcriptomic pathway analysis, we demonstrated again that these 61 causal 

pathways, although apparently diverse and disparate, form a highly interconnected 

coherent network. The top 10 most central pathways in this causal network are shown in 

Table 8.1 

We also collated the list of genes which are under significant (FDR<0.05) eQTL control of 

causal genes and significantly differentially expressed (FDR<0.05 and FC≥1.5) in 

pharmacoresistant epileptic tissue. We performed Reactome pathway enrichment analysis 

on this set of genes. These pathways were designated ‘intermediate’ pathways, as they are 

likely to represent the true transcriptomic intermediate phenotype which contributes to the 

development of the clinical phenotype of interest. 16 Reactome pathways (see Table 7.3 in 

Chapter 7) were both causal and intermediate pathways and, hence, can be considered of 
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special interest, as therapeutic targets, because they bear not only causal genetic variations 

but also the transcriptomic changes that link causal genetic variations to the disease.  

Table 8.1 Top 10 central causal pathways 

Pathway 

Transmembrane transport of small molecules  

DCC mediated attractive signalling  

Axon guidance  

Cell-cell communication  

Developmental biology  

Signalling by NGF  

Immune system  

TIE2 signalling  

Signalling by constitutively active EGFR  

CREB phosphorylation through the activation of RAS  

 

8.7 Limitations 

The potential limitations of this work should be considered.  

The first point to consider is the type of control tissue used in the transcriptomic analysis. 

Table 8.2 lists the desired features of the ‘ideal’ control tissue for a transcriptomic study on 

the causes of pharmacoresistant MTLE.  

Table 8.2 Desired features of the ‘ideal’ control tissue for a transcriptomic study on the 

causes of pharmacoresistant MTLE 

Desired features of the ‘ideal’ control tissue 

1. Tissue is from donors: 
a. with drug responsive epilepsy 
b. exposed to the same range of AEDs as the disease group 

2. Epileptic hippocampus; free from other diseases 
3. Surgically resected and stored under conditions similar to disease tissue 
4. Histologically similar to the disease/pharmacoresistant group 
5. Comparable subsections of the hippocampus are used for both disease and control 

groups 
6. Tissue is available for research studies! 

 

Considering the features listed in table 8.2, it is evident that the ideal control tissue for a 

transcriptomic study on the causes of pharmacoresistant MTLE is non-existent and 
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unobtainable. For example, patients with drug responsive epilepsy will not be exposed to 

the same range of AEDs as those with drug resistant epilepsy, and patients with drug 

responsive epilepsy will not undergo epilepsy surgery. Hence, various types of alternative 

brain tissue have been tried by epilepsy researchers (see Table 2.1 in Chapter 2). For 

example, Lee and colleagues (Lee et al. 2007) utilized hippocampi from surgery for drug 

resistant MTLE that were not affected by hippocampal sclerosis, even though the 

hippocampi were thought to be the epileptic foci. However, comparing drug resistant 

epileptic hippocampi in such a way runs the risk of failing to discover important 

transcriptional changes contributing to pharmacoresistant epilepsy. Becker and colleagues 

(Becker et al. 2002) used hippocampal tissue adjacent to and resected along with brain 

tumours. This hippocampal tissue was thought to be normal. This approach also poses 

certain difficulties. It is impossible to be certain that there is no cancerous contamination 

within the hippocampal tissue which lies just adjacent to the tumour. Even if there is no 

overt histological evidence of contamination with cancer cells within the portions of 

hippocampal tissue being used for transcriptomic analysis, some of these hippocampal cells 

may be in a ‘pre-cancerous’ state at the transcriptomic level. Becker and colleagues (Becker 

et al. 2003) also tried using different subsections of the same hippocampus for disease and 

control tissue: CA1 formation was treated as disease tissue, while the dentate gyrus was 

treated as control tissue. This methodology is also flawed. Firstly, the denate gyrus also 

plays a role in MTLE (Kralic et al. 2005; Sloviter et al. 2012). Secondly, the transcriptomic 

profiles of two histologically distinct tissues will be significantly dissimilar.  

Normal post-mortem hippocampal tissue has been used as the control in a number of 

studies (Ozbas-Gerceker et al. 2006; van Gassen et al. 2008; Venugopal et al. 2012). The use 

of such control tissue offers a number of benefits. Various parts of the donor brain have 

been histologically studied to ensure that they are free from pathology. Also, the whole 

hippocampus is available and, hence, equivalent anatomical subsections of the 

hippocampus can be used for control and disease groups. Furthermore, utilizing normal 

hippocampus, rather than drug resistant epileptic hippocampus, does not run the risk of 

obscuring important transcriptional changes contributing to epilepsy pharmacoresistance. 

On the other hand, some will argue that comparing pharmacoresistant epileptic 

hippocampus with normal hippocampus will reveal changes underlying epilepsy in general 
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and not epilepsy pharmacoresistance in particular. However, as we have shown in the 

present work, epilepsy pharmacoresistance results from the increased dysfunction of the 

same pathways and processes that underlie epilepsy. This being the case, using normal post-

mortem hippocampal control tissue is likely to be the most effective and efficient strategy 

for uncovering the causes of epilepsy and epilepsy pharmacoresistance.  

The final point presented in the above discussion is also applicable to GWAs analyses. We 

used normal controls in the GWAS analysis presented in Chapter 5. Again, a possible 

criticism is that comparing pharmacoresistant epilepsy with normal controls will reveal 

changes underlying epilepsy in general and not epilepsy pharmacoresistance in particular. 

However, as stated above, epilepsy pharmacoresistance results from the increased 

dysfunction of the same pathways and processes that underlie epilepsy and, hence, 

studying epilepsy and epilepsy pharmacoresistance in unison, rather than in artificial 

isolation, is likely to be most fruitful and efficient. This can be achieved by comparing 

pharmacoresistant epilepsy with normal controls 

Finally, in previous studies by other researchers (Thessen Hedreul et al. 2013), an eQTL that 

maps to a disease locus has been considered potentially causal. We have adopted an even 

more robust and selective approach to identifying potentially causal genes. In this approach, 

(Figure 8.1) potentially causal genes are those that are (1) disease-associated, (2) eQTLs, and 

(3) influence the transcript levels of genes differentially-expressed in pharmacoresistant 

epilepsy. However, even such a stringent approach is, on its own, insufficient for confirming 

the causal influence of the identified genes. Causality can only be confirmed using functional 

studies; one such functional strategy is proposed in the next section. 
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Figure 8.1 Overall scheme for the identification of causal genes. eQTL: expression 

quantitative trait locus; DEGs: differentially expressed genes. 

 

 

8.8 Coming full circle and future work 

We started this work by focusing on the multidrug transporter hypothesis. Specifically, we 

determined which SLC proteins are dysregulated in the pharmacoresistant epileptic 

hippocampus and, based on current knowledge about substrates of these proteins, we 

judged whether they are likely to transport antiepileptic drugs. We found a number of SLC 

proteins to be dysregulated in the pharmacoresistant epileptic hippocampus. However, 

these particular SLC proteins are highly unlikely to be transporters of xenobiotics (although 

we cannot completely exclude this as we did not undertake transport studies). Instead, as 

we suggested in Chapter 2, these SLC proteins are more likely to contribute to the 

development of pharmacoresistance through altered transport of small metal ions or 

neurotransmitters.  

We then turned our attention to the intrinsic severity hypothesis, and used genome-wide 

genetic, transcriptomic and integrative systems level approaches to find the most important 

pathways underlying epilepsy pharmacoresistance. At the genetic level, the 

Causal genes 

eQTLs for DEGs 

eQTL genes 

Disease-associated 
genes 
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‘transmembrane transport of small molecules’ pathway was one of the most significant in 

our GWAS of pharmacoresistant epilepsy and one of the most central. Similarly, at the 

transcriptomic level, this pathway was one of the most significantly differentially expressed, 

differentially connected and central pathways. Most importantly, in our integrative systems 

level analysis for discovering ‘causal’ pathways, we found the ‘transmembrane transport of 

small molecules’ pathway to be most central. As expected, this pathway was also one of the 

‘intermediate’ pathways, which represent the true transcriptomic intermediate phenotype 

which contributes to the development of the clinical phenotype of interest.  

This brings us back full circle to the conclusion drawn from our initial exon array analysis: 

altered transport of small molecules plays an important role in the development of 

pharmacoresistant epilepsy. The central position of transporters of small molecules within a 

network comprising diverse and distinct biological pathways suggests a potential role for 

these transporters in the regulation of many processes. How can we identify the key 

transporters which are likely to be most influential? A proposed integrative schema is 

illustrated in Figure 8.2. Steps 1 and 2 of this schema represent the strategy employed for 

finding causal genes in Chapter 7; this strategy is based on the observation that an eQTL 

that maps to a disease locus can be considered a likely causal gene underlying the disease 

(Thessen Hedreul et al. 2013). Steps 2 and 3 represent two complimentary and proven 

methods for identifying genes with the most prominent regulatory roles. Step 2 identifies 

important eQTLs: transporters whose genotype is significantly correlated with differentially 

expressed genes. Step 3 utilises a recently developed innovative method for identifying 

genes with an important regulatory role: the ‘Regulatory Impact Factor (RIF)’ (Reverter et al. 

2010). RIF identifies the regulator genes that are most consistently differentially co-

expressed with differentially expressed genes. RIF analysis has been shown to recover well-

recognised experimentally validated regulator genes for the processes studied, for example 

PPAR signalling in adipose development and the importance of transduction of oestrogen 

signals in breast cancer survival and sexual differentiation (Reverter et al. 2010). 
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Figure 8.2 Suggested schema for the identification of transporters of causal and regulatory 
importance in pharmacoresistant epilepsy. 

Steps  Rationale  Procedure 

      

Step 1  C
au

sal gen
es 

  Transporters associated with phenotype at a 

nominal level of significance in GWAS 

Step 2  

R
egu

lato
ry gen

es 

  
Transporters which are significant 

eQTL genes for differentially 

expressed genes 

 

Step 3      
Transporters with 

high ‘Regulatory 

Impact Factor’ 

  

Step 4  In vitro studies    Hippocampal slice 

cultures 
  

Step 5  Therapeutics    Drug repositioning   

 

After the identification of transporters of putative causal and regulatory importance, in vitro 

studies can be performed to confirm the functional significance of these proteins in 

epilepsy. As the transporters potentially exert an influence upon diverse functional domains, 

including electrophysiological and histological, they must be studied in an in vitro model 

that allows detailed investigation of cellular and molecular features of epilepsy, yet is 

amenable and rapidly responsive to genetic and pharmacological manipulation. The 

organotypic hippocampal slice culture (OHSC) is such a model. 

OHSCs are becoming an increasingly popular tool in the study of epileptogenesis, chronic 

epilepsy and antiepileptics. OHSCs are a robust and rapid model of epileptogenesis, and can 

be maintained for weeks or longer (Dyhrfjeld-Johnsen et al. 2010). The key features of 

human epileptogenesis are reproduced in this model (Berdichevsky et al. 2012): latency (the 

cultures become spontaneously epileptic after a latent period in vitro), electrographic 

spiking prior to the onset of spontaneous seizures, clustering of seizure activity, suppression 

of seizures but not interictal spikes by anticonvulsants and the gradual development of 

anticonvulsant resistance. Advantages of this preparation include dramatically improved 
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experimental accessibility (Wahab et al. 2010): organotypic cultures easily lend themselves 

to continuous recordings of electrical activity, imaging of cellular plasticity, gene transfer 

and transduction, and chronic application of drugs. Given the convenience of in vitro 

preparations and the relative compressed time frame of epileptogenesis in OHSCs, this 

model could serve for high-throughput screening of candidate antiepileptic drugs. The best 

candidates from the initial in vitro screen could then be tested further in traditional in vivo 

models of epilepsy. 

A number of different transporters are targeted by widely-used medicinal agents, for 

example cardiac glycosides and proton pump inhibitors (Alexander 2011). Hence, after the 

identification of transporters of putative clinical significance in epilepsy, the first strategy 

should be to employ computational drug repositioning (Hurle et al. 2013) in order to 

repurpose therapeutic agents that can be used to tackle the problem of pharmacoresistant 

epilepsy. 
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Appendix 

Appendices can be found in the enclosed compact disc. 


