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Statement of Contributions 

 

1) We consider a novel and challenging problem in liner shipping concerning service 

capacity planning and dynamic shipment routing with uncertain demands, 

container transhipment, and delivery time constraints. 

2) The joint optimisation problem has been resolved rigorously. This involves the 

formulation of the problem as a two-stage stochastic programming model and the 

implementation of three solution strategies. 

3) An extension of PHA method based on Lagrangian relaxation method, APHA, has 

been proposed. It can be used to solve large-scale problems that are not tractable 

using the existing methods such as SAA and PHA. 

4) A link-based dynamic container routing model is applied to formulate the second 

stage problem.  According to Wang (2014), “the number of variables in link-based 

models increases polynomially with the size of the liner shipping network”. 

Therefore, the model has good tractability.  Furthermore, the container routing 

model considers the dynamics of container shipping system on a daily basis or 

even shorter, thus it has the merit of modelling the container waiting time more 

accurately. 
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Highlights 

 Model the joint service capacity planning and dynamic container routing for 

stochastic customer demands with day-to-day changes 

 Apply SAA and PHA to solve small-scale problems 

 Develop a new APHA(Adapted PHA) to solve the problems for large shipping 

network in reality 

 Illustrate the relative merits of the three solution strategies on both hypothetic and 

realistic shipping networks 
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Abstract: Service capacity planning is a key tactic decision in container shipping, which has 20 

a significant impact on daily operations of shipping company. On the other hand, operational 21 

decisions such as demand fulfilment and shipment routing will impact on service capacity 22 

requirements and utilisation, particularly in the presence of demand uncertainty. This article 23 

proposes a two stage stochastic programming model with recourse to deal with the problem 24 

of joint service capacity planning and dynamic container routing in liner shipping.  The first 25 

stage of the model concerns how to determine the optimal service capacity, and the second 26 

focuses on the optimal routing of shipments in stochastic and dynamic environments under a 27 

given service capacity plan. Initially, SAA (Sample Average Approximation) is employed to 28 

solve the model. Noting the computational complexity of the problem, Progressive Hedging 29 

Algorithm (PHA) is employed to decompose the SAA model into a number of scenario-based 30 

models so that reasonably large scale problems can be solved.  To handle larger scale 31 

problems, we develop a new solution procedure termed as APHA (Adapted Progressive 32 

Hedging Algorithm) that further decomposes the scenario-based model into job (customer 33 

order) based models with measurable error bounds. Numerical experiments are conducted to 34 

illustrate the effectiveness of the proposed APHA in solving the problems under 35 

consideration. 36 

Keywords:  service capacity planning, dynamic container routing, container shipping, 37 

stochastic 38 
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 1 

1 Introduction 2 

 3 

Container shipping industry plays a very important role in world economy. Each year 4 

container shipping industry transports two-thirds of the value of total global trade, which 5 

equals more than US$ 4 trillion. It also has direct gross output or GDP contribution -- 6 

US$ 183.3 Billion per year (http://www.worldshipping.org/benefits-of-liner-shipping/global-7 

economic-engine ). Improving the efficiency of container transport system would benefit not 8 

only the shipping industry itself but also other broad industrial sectors and the general public.  9 

 10 

One of the key decisions in container shipping is to determine the service capacity (i.e. 11 

supply) to meet fluctuating trade (i.e. demand). Basically, the issue concerns how to 12 

determine the capacity of each vessel deployed on the shipping service network, which 13 

includes the decisions on chartering in slot capacities from other companies‘ vessels (e.g. the 14 

slot exchange and purchase between members of a shipping alliance). The importance of the 15 

problem can be evidenced from several aspects. Firstly, the purchase of container vessel 16 

involves huge capital investment, e.g., in the current ship markets, one 4,000-TEUs vessel 17 

costs $60 million roughly, and  a 12,000-TEUs vessel costs $120 million. Secondly, it has a 18 

medium/long-term and significant impact on the operations of shipping companies, e.g., a 19 

container ship‘s life span can be as long as some 30 years. Thirdly, nowadays shipping 20 

alliance is becoming increasingly popular in shipping practice, which involves vessel sharing 21 

and slot chartering between different companies, e.g.,  CKYHE Alliance, G6 Alliance, and 22 

the recent proposals of 2M alliance (Maersk and MSC) and Ocean Three alliance (CMA 23 

CGM, UASC and CSCL). As the members of an alliance are independent from the financial 24 

and market perspective, it is vital for them to determine how much capacity of their own 25 

vessels should be kept and how much capacity of other members‘ vessels should be chartered 26 

in by considering their own market demands. Fourthly, a service capacity planning problem 27 

can also be regarded as a part of liner service network design problem, in which the shipping 28 

line needs to determine its service capacity (and vessel deployment) in the service network 29 

(that may consist of existing service routes and new candidate service routes). For example, 30 

Maersk uses the term ‗network management‘ to describe the adjustment of their service 31 

routes and service capacity in response to the change of demand patterns and/or the 32 

http://www.worldshipping.org/benefits-of-liner-shipping/global-economic-engine
http://www.worldshipping.org/benefits-of-liner-shipping/global-economic-engine
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deployment of new ships (e.g. the delivery of Triple-E vessels in 2013), and regards it as the 1 

heart of their business. 2 

 3 

Determining service capacity is interwoven with the routing of container shipments on 4 

shipping network. The optimal service capacity can only be obtained when container flow is 5 

distributed in the best way. In shipping practice, container flows are driven by uncertain and 6 

dynamic customer demands. It is a challenging task to find the optimally distributed container 7 

flows and consequently the optimal service capacity in a stochastic and dynamic environment.  8 

In the paper, we will use a two-stage stochastic model with recourse to tackle the challenge. 9 

In shipping practice, container flows are driven by uncertain and dynamic customer demands. 10 

It should be pointed out that forecasting the market demand is difficult due to many external 11 

factors including the potential competitors and their behaviours. However, as most shipping 12 

lines have been running business for many years and their historical data could be used as 13 

reference data to fit into a probability distribution. In fact, probability distribution is a 14 

common approach to represent uncertain demands in the literature, e.g. Meng and Wang 15 

2010; Meng et al. 2012. Furthermore, our model uses the average value of sample processes 16 

to approximate the expected value of the random variables, which essentially just takes 17 

historical demand information as input without the need to determine the distribution function 18 

of demand. 19 

 20 

Many studies in relation to service capacity planning and container routing have been 21 

conducted. In previous studies, service capacity planning is partially dealt with under the 22 

name of Liner Ship Fleet Deployment (LSFD). LSFD aims to decide how many vessels for a 23 

specific type should be deployed to each service route on container shipping network. The 24 

solution to LSFD implies the capacities that a service route should have. Service capacity 25 

planning is significantly different from LSFD. LSFD normally selects vessels from a given 26 

set of vessel types and the vessels deployed on each service route are homogeneous, whereas 27 

service capacity planning in our context concerns more about the amount of TEU slots on 28 

each vessel rather than the vessel type, which implies that the available capacities could vary 29 

vessel by vessel even they belongs to the same service route.  With regard to LSFD, the 30 

studies can be classified as deterministic models and stochastic models.  The deterministic 31 

models have been proposed in Perakis and Jaramillo (1991), Jaramillo and Perakis (1991), 32 

Cho and Perakis (1996), Powell and Perakis (1997), Gelareh and Meng (2010), Wang et al.  33 
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(2011), Meng and Wang (2011a, b), and Zacharioudakis, et al (2011).  These models consider 1 

either direct shipping service or single service route, and therefore, transhipment issues are 2 

not concerned. Some other deterministic models have been designed for multiple service 3 

routes where transhipments have been considered, e.g., Mourão et al (2010),  Liu et al (2011),  4 

Wang and Meng (2012a), Meng and Wang (2012), Fagerholt et al (2009). The research 5 

methods adopted in the deterministic models are mainly Linear Programming (LP), Integer 6 

Linear Programming(ILP) or Mixed Integer Linear Programming(MILP).  The research 7 

community has also recognised the stochastic nature of the issue, and developed a number of 8 

stochastic models. Meng and Wang (2010) perhaps is the first study considering stochastic 9 

demands in containership fleet planning. The study focuses on the vessel deployment on a 10 

single service route with uncertain demands. A more complex model has been presented in 11 

Meng et al (2012), which considers both transhipment and uncertain demands. Wang et al 12 

(2012) have made some extension to the study by incorporating risk oriented costs into the 13 

objective function.  14 

 15 

With regard to container routing problems in liner shipping, there was very little research 16 

before 2004 (Christiansen et al., 2004). In the last decade, it has attracted a lot of attention. 17 

The existing studies can be classified as link-based routing (Alvarez, 2009; Agarwal & Ergun, 18 

2008; Bell et al. , 2011, 2013;  Meng & Wang, 2012; Yan et al., 2009; Song et al. , 2005;) 19 

and path-based routing (Brouer et al., 2011; Song and Dong, 2012; Wang et al., 2013; Wang 20 

and Meng, 2012b). In general, the scale of link-based routing model is smaller than that of 21 

path-based routing model as path-based model is based on the enumeration of all possible 22 

paths or dynamical generation of the profitable paths (Wang, 2014). However, the majority of 23 

the existing studies tackle the container routing problems at the tactic level without 24 

considering the detailed operations, e.g. assuming that containers‘ travelling time on a path 25 

and waiting time at transhipment ports are fixed and known input data, and irrelevant to the 26 

container routing decisions; there are fixed weekly demands without uncertainties; there are 27 

no constraints on the delivery time.  28 

 29 

In the study, we will consider service capacity planning and shipment routing with uncertain 30 

demands, container transhipment, and delivery time constraints. A two-stage stochastic 31 

model with recourse will be developed. The first stage centres on minimising the acquisition 32 

costs of service capacity, and the second stage is to seek the optimal dynamic routing plan of 33 
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container flows with uncertainty. Our second stage model is a dynamic link-based container 1 

routing model in which waiting-time at transhipment ports is dependent on the routing plan, 2 

and can only be revealed in the execution of the routing plan.  Moreover, the waiting-times at 3 

transhipment ports are measured on a daily basis or even shorter.  4 

 5 

The way we model the problem can provide good accuracy as it models the operational 6 

details of a realistic container shipping system. However, the formulation can lead to very 7 

large-scale problems, which is computationally challenging to find the optimal solutions. In 8 

this study, we propose a solution procedure termed as Adapted Progressive Hedging 9 

Algorithm (APHA). The APHA is developed by tailoring Progressive Hedging Algorithm 10 

(PHA) (Rockafellar & Wets, 1991) to our specific problem using Lagrangian relaxation 11 

method. The numerical experiments show that the proposed solution method has good 12 

performance in solving large-scale problem. 13 

 14 

The contributions of the article are summarised as follows. 15 

1) We consider a novel and challenging problem in liner shipping concerning service 16 

capacity planning and dynamic shipment routing with uncertain demands, container 17 

transhipment, and delivery time constraints. 18 

2) The joint optimisation problem has been resolved rigorously. This involves the 19 

formulation of the problem as a two-stage stochastic programming model and the 20 

implementation of three solution strategies. 21 

3) An extension of PHA method based on Lagrangian relaxation method, APHA, has 22 

been proposed. It can be used to solve large-scale problems that are not tractable 23 

using the existing methods such as SAA and PHA. 24 

4) A link-based dynamic container routing model is applied to formulate the second 25 

stage problem.  According to Wang (2014), ―the number of variables in link-based 26 

models increases polynomially with the size of the liner shipping network‖. Therefore, 27 

the model has good tractability.  Furthermore, the container routing model considers 28 

the dynamics of container shipping system on a daily basis or even shorter, thus it has 29 

the merit of modelling the container waiting time more accurately. 30 

 31 

The rest of the article is structured as follows. In Section 2, the problem of joint service 32 

capacity planning and dynamic shipment routing with uncertain demands will be formulated 33 
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as a two-stage stochastic programming model with recourse. In Section 3, we will develop 1 

three solutions including SAA, PHA, and APHA for solving the problem. Numerical 2 

examples are given to illustrate the effectiveness of the three solution methods in Section 4. 3 

Lastly, concluding remarks are made in Section 5. 4 

 5 

2 Model formulation 6 

In the section, we firstly define the notations to be used in the remainder of the articles, and 7 

then we give the formulation of our problem. In the literature, the space-time network model 8 

is often used to formulate the container flows in a shipping network (e.g. Brouer et al. 2011). 9 

We present a slightly different model in the following, which offers a more intuitive view of 10 

the evolution of the jobs‘ status over space and time. 11 

 12 

2.1 Notations 13 

 14 

Index and sets 15 

P the set of ports 

V the set of vessels 

Ω the entire populations of customer demands 

ω(n) a sample process of customer demands, 1 ≤ n ≤ N, where N represents the 

number of samples. 

J(ω(n)), J the set of transportation jobs for a sample process of customer demands ω(n). To 

simplify our narrative, we drop off ω(n) and just use J when our discussion is 

limited for a given ω(n). 

j an individual transportation job, j ∈  J or j ∈ J(ω(n)). The important information 

associated with job j is its original and destination port, generation time (the 

time that job j is available to be serviced), the promised delivery time for job j, 

and its amount in TEUs.  

p P   a port 

i   a port-of-call (or portcall), and i+1 represents the next portcall after i. In the 

study, the first portcall is numbered as 0. p(v,i) denote its port that vessel v calls 

at in its ith portcall in a round-trip. 

l   a loop (round-trip or voyage) that vessel v sails along the service route. 
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v V a vessel 

t a decision period 

Pv  the set of ports that vessel v calls at in the service 

Vp
a
 (t)  the set of vessels that arrive at port p at beginning of period t 

Vp
d
 (t)  the set of vessels that depart from port p at the beginning of period t 

 1 

Parameters 2 

oj original port of job j 

dj destination port of job j 

Dj transportation volume of job j in TEUs, which is a random variable in a certain 

range. For a realised customer demand ω(n), it is a known number. 

t
0

j The generation time period of job j 

Tj The promised delivery time for job j 

t
a

v,l,i  the time period that vessel v arrives at portcall i in its l
th

 loop (round-trip) 

t
d

v,l,i  the time period that vessel v departs from portcall i in its l
th

 loop (round-trip) 

Cv the unit cost of the shipping capacity for vessel v per period 

j

tc  The waiting cost per unit per period of job j during the delivery from the original 

port to the destination port 

f

pc  the lifting-off costs per unit of shipment at port p 

o

pc  the lifting-on costs per unit of shipment at port p 

Lv the minimum vessel capacity that the shipping company has to charter or 

purchase from vessel v 

Uv the maximum vessel capacity that the shipping company can charter and 

purchase from vessel v 

T the planning time horizon 

 3 

Decision variables 4 

yv   the shipping service capacity on vessel v 

x
j
v(t)  1, if job j is on board of vessel v during period t; otherwise, 0 

z
j
p(t)  1, if job j is at port p during period t; otherwise, 0 

u
j
p(t)  1, if job j is loaded onto a vessel at port p at time t 

v
j
p(t)  1, if job j is unloaded from a vessel at port p at time t 
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Y   Y={y1, …, yv, …, y|V|}, a vector consisting of all vessel shipping capacities 

X X ={x
j
v(t), z

j
p(t), u

j
p(t), v

j
p(t) | j ∈ J, v ∈ V, p ∈ P, 0 < t < T}, which denotes all 

the second-stage decision variables 

 1 

 2 

2.2 Two stage stochastic programming model 3 

We consider a container shipping system comprising a set of ports P, a set of vessels V, a 4 

container shipping network, and a set of transportation jobs J that involves moving 5 

customers‘ cargoes from the original ports to the destination ports in P using the vessels in V. 6 

Each route on the given container shipping network comprises a number of ports in a fixed 7 

sequence. Normally, some common ports are shared by different shipping service routes, 8 

which become transhipment ports to link different shipping service routes to form an 9 

interconnected shipping network. The interconnection of shipping service routes enables 10 

container shipping company to move containers across shipping service routes, consequently 11 

provides much wider coverage of customer demands. The vessels in V are scheduled in a way 12 

that they repetitively make round trips on their deployed service routes on a weekly basis. 13 

The capacity of each vessel in V is treated as a decision variable in our suggested model. 14 

Additionally, in the process of serving customer demands, a very important decision that the 15 

container shipping company needs to make in their daily operation is which route is the best 16 

for a customer order. Their routing decisions are subject to vessel capacity constraint aimed 17 

at minimising transportation costs and transhipment costs. In this study, the transportation 18 

costs are assumed positively proportional to travelling times. An unfulfilled customer order 19 

will have a ‗travelling time‘ equal to the difference between planning horizon and the 20 

generation time of the job, and will incur a cost in proportional to the ‗travelling time‘. This 21 

will serve as a penalty costs for not serving a job. We adopt this penalty mechanism to 22 

simplify the cost structure and the model development. It is noted that such a penalty may 23 

lead to rejecting servicing jobs near the end of the planning period T if the transportation 24 

costs exceed the penalty cost. This drawback can be overcome by appropriately selecting the 25 

job list and the planning horizon, e.g. using a cut-off time to exclude those jobs. The 26 

transhipment costs are incurred for lifting-on and lifting-off the containers at transhipment 27 

ports in the process of transferring them from one service route to another.  When the vessel 28 

capacities are sufficiently big, the routes with the lowest transportation costs and 29 

transhipment costs can be selected for each order. However, this may lead to excessive 30 
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investment on the vessel capacity.  Our research question is how to achieve the best balance 1 

among the investment on vessel capacity, the operational costs including transportation costs 2 

and transhipments costs, and the unfulfilled job penalty costs in the stochastic demand 3 

situations.  4 

 5 

Our problem is formulated based on the following assumptions. 6 

Assumption 1: A shipment has to be at a port at least one period earlier before loading onto a 7 

vessel. 8 

Assumption 2: The empty container repositioning is not considered explicitly. 9 

Assumption 3: Container lifting-off from a vessel is performed in the vessel‘s arrival period; 10 

and lifting-on is done in the vessel‘s departure period. The vessel arrival and departure 11 

periods are different for each portcall. 12 

Assumption 4: The supply of vessel capacities that container shipping companies can obtain 13 

by purchasing new ships, and charting in slots from the other shipping companies are 14 

sufficiently large. In other words, Uv is sufficiently large. 15 

 16 

Assumption 1 is in line with the shipping practice as containers must be ready prior to the 17 

vessel arrival. Assumption 2 is common in the literature on container shipping network 18 

design and ship fleet deployment, e.g., Meng et al (2012), Wang et al (2012). The rationales 19 

for Assumption 2 may be explained as follows: (i) empty container repositioning does not 20 

generate revenue directly, and therefore laden container transportation usually has priority 21 

over empty container repositioning; (ii) liner service routes are cyclic. This implies that the 22 

service capacity into and out of a port is the same. In theory, the shipping line should have the 23 

shipping capacity to reposition empty containers (although in reality it is difficult to achieve); 24 

in that sense, empty container repositioning can be treated as a separate problem under the 25 

constraints of service network and capacity; (iii) incorporating empty container repositioning 26 

into our problem would be mathematically more complicated and difficult to solve. 27 

Assumption 3 ensures that container lifting-on/off activities are modelled.  By setting the 28 

length of a decision stage reasonably short, e.g., 1 day or half a day, vessel arrival and 29 

departure are guaranteed to be distinguishable. Assumption 4 ensures shipping companies can 30 

acquire adequate vessel capacities if they need. It should be noted that Assumption 4 is only 31 

needed when constructing an upper bound in Proposition 5. 32 

 33 
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We model the problem as a two stage stochastic programming model. Its objective function is 1 

given below, in which the first term of the right-hand-side represents the total service 2 

capacity cost per period, and the second term represents the job-related costs per period): 3 

P0 min Z(Y, X) = ),(
1

XYQE
T

yC
v

vv   (1)  

The first stage is to minimise the capacity investment, and the second stage is to minimise the 4 

expectation of the sum of the shipment transportation costs and transhipment costs and the 5 

unfulfilled job penalty costs with respect to random customer demands. For a given 6 

realisation of customer demands ω(n) , ))(,,( nQ XY is the optimal value of a linear 7 

programming problem.  The objective function of the linear programming is to find the 8 

cheapest route for each realised customer order (or transportation job) subject to the vessel 9 

capacity constraints given in Y. 10 

 ))(,,( nQ XY = ])([
))((

0
 




nJj t

j
dj

j
tj tztTcD

j


 +  



))((

)]()([
nJj p t

j
p

f
p

j
p

o
pj tvctucD



 (2)   

In Eq. (2), the first term represents the transportation costs that are in proportion to travelling 11 

times and the unfulfilled job penalty costs that are in proportion to T – t
0

j, and the second 12 

term is total lifting-on/off costs.   13 

Constraints 14 

Constraint 1: Constraints related to each v V;  15 

During the time at port p(v,i),  job j‘s status on vessel v will not change in this duration. 16 

 x
j
v(t

a
v,l,i) = … = x

j
v(t

d
v,l,i – 1) (3)   

During the time at sea between portcall i and portcall i+1, job j‘s status on vessel v will not 17 

change. 18 

 x
j
v(t

d
v,l,i) = … = x

j
v(t

a
v,l,i+1 – 1), if portcall i is not the vessel v‘s final 

portcall in the loop; 

x
j
v(t

d
v,l,i) = … = x

j
v(t

a
v,l+1,0 – 1), if portcall i is vessel v‘s final portcall in the 

loop; 

(4)  

Constraint 2: Constraints related to vessel v‘s each portcall;  19 

At vessel v‘s arrival period at port p(v,i), i.e. t
a

v,l,i, the following constraints should be met. 20 

 x
j
v(t

a
v,l,i−1) ≥ x

j
v(t

a
v,l,i)                                                  ∀ ta

v,l,i > t
0
j (5)  
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 )(
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,,

)(
a

ilv
a

i tVu

a

ilv

j

u tx )( ,,),(

a

ilv

j

ivp tz                                                ∀ ta
v,l,i > t

0
j  

Eq. (5) represents that a shipment on a vessel will remain on board or unloaded from the 1 

vessel when the vessel arrives at a port. Eq. (6) represents that the state relationship of 2 

shipment j between the time periods t
a
v,l,i – 1 and t

a
v,l,i when the vessel v arrives at port p(v,i). 3 

For example, if shipment j is located at port p(v,i) at time period t
a

v,l,i – 1, then it will either 4 

remain at the port p(v,i) or be loaded on one of the departing vessel at time period t
a

v,l,i, which 5 

is reflected by Eqs. (6) and (5). On the other hand, if shipment j is on board of one of the 6 

arriving vessel at time period t
a

v,l,i – 1, then it will either remain on the vessel or be unloaded 7 

to the port p(v,i) at time period t
a

v,l,i. 8 

At vessel v‘s departure period at port p(v,i), i.e. t
d

v,l,i: 9 

 x
j
v (t

d
v,l,i−1) ≤ x

j
v(t

d
v,l,i)                                                   ∀ td

v,l,i > t
0
j (7)  
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v,l,i > t

0
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(8)  

Constraint 3: Constraints related to port p P at the periods without vessel arrivals or 10 

departures:  11 

Suppose tp is the first event epoch (time period) that a vessel arrives at or departs from port p 12 

after the time t
0

j. Then, job j‘s status at port p will not change before tp. 13 

 z
j
p(t) = z

j
p(t

0
j)                                                                 ∀ t0

j < t < tp (9)  

Suppose t1 and t2 are two consecutive vessel arrival or vessel departure event epochs at port 14 

p. In other words, there is no vessel arrival or departure in the time interval (t1, t2). Then, job 15 

j‘s status at port p will not change in this interval: 16 

 z
j
p(t1) = z

j
p(t1+1) = … = z

j
p(t2 – 1)                                 ∀ t1 > t

0
j;  (10)   

 17 

Constraint 4: Constraints of vessel capacity 18 

 
v

Jj

j

j

v yDtx 


)(                                                              ∀  v, t (11)   

Constraint 5: Constraints of job status 19 

 



Pp

j

p

Vv

j

v tztx )()(  = 1,                                               ∀ t ≥ t
0
j 

x
j
v(t) = 0,                                                                       ∀ j, v, t ≤ t

0
j 

(12)   
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z
j
p(t) = 0,                                                                       ∀ j, p, t < t

0
j 

0( ) 1;
j

j

o jz t   z
j
p(t

0
j) = 0, if p ≠ oj                                      ∀ j 

Constraint 6: Constraints of vessel chartering market 1 

 Lv≤ yv ≤ Uv                                                                     ∀v (13)  

Constraint 7: Constraints of promised delivery time of job j (i.e. the fulfilled job must be  2 

delivered within Tj time period after its generation), 3 

 
t

j

d

j

dj tzTztT
jj

)()()( 0
≤ Tj                                                                                ∀ j  (14)  

Constraint 8: Constraints of decision variables; 4 

 u
j
p(t)+ v

j
p(t) ≤ 1;                                                             ∀ t, j, p 

v
j
p(t) – u

j
p(t) =  z

j
p(t+1) – z

j
p(t)                                       ∀ t < H, j, p 

u
j
p(t) = 0 or 1                                                                  ∀ t, j, p 

v
j
p(t) = 0 or 1                                                                  ∀ t, j, p 

x
j
v(t) = 0 or 1                                                                  ∀ t, j, v 

z
j
p(t) = 0 or 1                                                                   ∀ t, j, p 

(15)   

 5 

Proposition 1: P0 is an NP-complete problem. 6 

This can be proved by simplifying the problem P0 to a knapsack problem. 7 

 8 

3 Solution strategy 9 

In the section, three solution methods including SAA (Sample Average Approximation), 10 

PHA (Progressive Hedging Algorithm) and APHA (Adapted Progressive Hedging 11 

Algorithm) will be proposed to solve the aforementioned model.  SAA and PHA are mature 12 

methods to solve stochastic programming problems, while APHA is our proposed method 13 

tailored for our specific research question based on Lagrangian relaxation. 14 

 15 

3.1 SAA method 16 

In the above formulation, ),( XYQE  is very difficult to calculate. Actually, even the closed 17 

form of ),( XYQE  is hard to obtain. In the study, we use SAA (Sample Average 18 

Approximation) to cope with the problem. In SSA scheme, ),( XYQE  is approximated by 19 

 

 N

n
nnQN

1

1 ))()),((,( XY  that comprises N realised sample processes of customer demands: 20 

{ω(1), ω(2), …, )(n , …, ω(N)}, and scenario-dependent decision variables ))(( nX . 21 
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 N

n
nnQN

1

1 ))()),((,( XY is an unbiased estimator of  ),( XYQE ( Dantzig and  Thapa, 1 

2003), and will converge to ),( XYQE  with probability 1 as the sample size N goes to 2 

infinity, i.e., P{  




N

nN nnQN
1

1 ))()),((,(lim XY  = ),( XYQE } = 1 (Ruszczynski and Shapiro, 3 

2003). This result is obtained based on the law of Large Numbers.  By substituting 4 

 

 N

n
nnQN

1

1 ))()),((,( XY into P0, we can get the following linear programming model: 5 

P1 



N

nv
vv

n

nnQ
TN

yCnZ
1))((,

))()),((,(
1

)))((,(min 


XYXY
XY

 (16)  

s.t. 6 

 )),(())(( YBAX nn                                                  for n = 1…N (17)    

 7 

Eq. (16) is the objective function to minimise capacity investment and the average of 8 

operational costs related to N different demand realisations. Eq. (17) comprises N copies of 9 

Eqs. (3) - (15). Apart from the first stage decision variables Y={yv|∀v∈V}, the decision 10 

variables in each copy become scenario-dependent decision variables such as  x
j
v(t,ω(n)), 11 

z
j
p(t,ω(n)), u

j
p(t,ω(n)) and v

j
p(t,ω(n)) and relate to a given sample process of customer 12 

demands ω(n).  13 

 14 

If the scale of problem P1 is not large, it can be solved using standard integer programming 15 

method such as branch and cut, which has been well implemented in the commercial 16 

optimisation software such as IBM CPLEX or Matlab. In general, however, P1 unfortunately 17 

has a very large number of decision variables and constraints. This is because the scale of P1 18 

is positively proportional to the sample size N, and N has to be sufficiently large to ensure 19 

 

 N

n
nnQN

1

1 ))()),((,( XY  close enough to ),( XYQE . Additionally, each scenario in P1 has a 20 

formulation similar to Eqs.(3) - (15) , which is in fact a capacitated dynamic container routing 21 

problem. In other words, P1 is a combination of N capacitated dynamic container routing 22 

problems. Considering that dynamic routing problem is hard to solve, there is a need to 23 

develop efficient solution methods for our problem. 24 

 25 

3.2 Progressive Hedging Algorithm (PHA) 26 

An idea to solve the problem like P1 is to decompose it to a number of smaller problems that 27 

are easier to solve. Some methods have been proposed, e.g., L-shaped method (Slyke & Wets, 28 

1969), PHA (Progressive Hedging Algorithm) (Rockafellar & Wets, 1991). As L-shaped 29 
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method needs to compute the duals of the second stage problem, it would not be suitable for 1 

our case because our second stage problem is a standard 0-1 programming. Therefore, we 2 

choose PHA to solve our problem. 3 

 4 

The logic behind PHA is to decompose problem P1 into N independent scenario based 5 

problems with each modelling container routing problem for a given sample process. In PHA, 6 

Lagrangian relaxation is employed to decompose the problem. Prior to the implementation of  7 

Lagrangian relaxation, we introduce scenario-dependent decision variables 8 

Y(ω(n))={y1(ω(n)), …, yv(ω(n)), …, y|V|(ω(n))}(1 < n  < N), and re-write the original 9 

problem. 10 

P2 ))()),(,(min
))()),(,

)X(ωY(ωY
X(ωY(ωY

nnZ
nn

= ]))()),(()),(((
1

))(([
1

1

 



N

n v
vv nnnQ

T
nyC

N
 XY  (18)  

s.t. 11 

 )))((),(())(( nnn  YBAX                                                  ∀n (19)    

 yv(ω(n)) = yv                                                                                                      ∀  n, v (20)  

 Lv≤ yv(ω(n)) ≤ Uv                                                             ∀n, v (21)   

 12 

It should be noted that the newly added variables do not affect the optimal solution, thus P2 is 13 

equivalent to P1.  14 

 15 

By dropping off the constant coefficient 1/N, and moving nonanticipativity constraints into 16 

the objective function based on Lagrangian relaxation method, we can have 17 

P3 

),)()),(,(minmax
)()),(,
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nn
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(22)  

s.t.  18 

 λ(n, v) ≥ 0                                                                         ∀ n, v (23)  

 Eq. (19) – (21)  

 19 

In the above formulation, to simplify the computer programming, we use the absolute value 20 

of the difference between scenario-dependent variables and first-stage decision variables 21 

times Lagrangian multipliers to relax non-anticipativity constraints instead of Augmented 22 
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Lagrangian method suggested by Rockafellar & Wets (1991) who firstly proposed PHA.  The 1 

method has been used in another study by Long et al. (2012) 2 

 3 

P3 is separable on a scenario base. As it contains N scenarios, it can be broken down into N 4 

individual sub-problems. An arbitrary sub-problem indexed by n ∈ (1, N) has the following 5 

form, 6 

P4 
),)()),(,(minmax

)()),(,

λ)X(ωY(ωY
)X(ωY(ωYλ

nnZn
nn

=



||

1

))((),(
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v
vv ynyvn   

                                      + ))()),(()),(((
1

))(( nnnQ
T

nyC
v

vv  XY  

(24)   

s.t. 7 

 )))((),(())(( nnn  YBAX   (25)   

 λ(n, v) ≥ 0                                                                     ∀ v (26)  

 8 

It is noted that P4 is nonlinear due to the first term in the objective function. We introduce 9 

auxiliary variables, a ={av | v ∈ V} and a = {av
’
 | v ∈ V}  to linearise the absolute value in Eq. 10 

(24), we can get the following problem 11 

P5 
),,,)()),(,(minmax

)()),(,

aaλ)X(ωY(ωY
)X(ωY(ωYλ

nnZn
nn

= 
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1

))(( nnQ
T

nyC
v

vv  Y  

(27)  

s.t. 12 

 )))((),(())(( nnBnAX  Y  (28)  

 
vvvv aayny ))((                                                   ∀ v (29)  

 
va ≥0, 

va≥0                                                                    ∀ v (30)  

 λ(n, v) ≥ 0                                                                       ∀ v (31)  

 13 

According to the solution to P5, an approximated costs for P1 can be calculated, i.e.,  14 

 
))((,( nZ XY


= ),)()),(,( λ)X(ωY(ωY nnZ = 
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 15 
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Proposition 2: (i) When 0),( vn (∀n, v), 


N

n
n nnZ

N 1

),)()),(,(
1

)X(ωY(ωY is a lower bound to 1 

)))((,( nZ XY  in P1; (ii) 


N

n
n nnZ

N 1

),)()),(,(
1

)X(ωY(ωY  converges to an upper bound to P1 as 2 

),( vn is sufficiently large. There exists the following relationship: 3 
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n
n nnZ
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1
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n
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)X(ωY(ωY ( λ
’
 represents a sufficiently large λ ) 

(33)  

 4 

Proof: When 0),( vn (∀n, v), each scenario can choose the best vessel capacity for itself, 5 

therefore, the sum of the minimised costs over all the scenarios will be lower than the original 6 

problem P1 where all the scenarios must have the same vessel capacity. When λ is 7 

sufficiently large, it forces 



||

1

)(),(
V

v
vv aavn to be zero. Thus we can have ))(nY(ωY  =0, 8 

which is a feasible solution to P1, and consequently lead to the upper bound. This completes 9 

the proof.  10 

 11 

According to Proposition 2, an efficient way to update λ can be designed. Initially, we set 12 

0),( vn (∀n, v), and then increase the value of ),( vn . The increment of ),( vn  is 13 

positively proportional to the absolute value of the difference between ))(nY(ω  and its average 14 

value of Y . A more detailed description of the algorithm is described as follows.  15 

 16 

Algorithm 1: Progressive Hedging Algorithm 

Step 1: Initialisation. Set λ(n,v) = 0, (∀ n, v);  iteration number k = 0; and assign a 

constant to ρ
(0)

, and another constant greater than 1 to α; 

Step 2: Solve P5 for each scenario, and obtain the scenario dependant solution for the k
th

 

iteration, Y
(k)

(ω(n)) = { )(k
vy (ω(n))| v =1, …, |V|}, and the corresponding optimal value 

of objective function, )(k
nZ ; 

Step 3: Compute the reference point,   
(k)

={ )(k
vy (ω(n))| v =1, …, |V|}, where )(k

vy = 




N

n

k
v ny

N 1

))((
1

 ; 
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Step 4: The algorithm stops if either of the following criteria is satisfied: 

a. 
 


N

n

V

v

i
v

i
v yny

1

||

1

)()( ))((  ≤ η, where η is a small positive number. 

b. There is no improvement in recent L steps 

Where, η and L are the pre-specified control parameters. 

Step 5: Update Lagrangian multipliers using the following equation: 

   λ
(i+1)

(n,v)= λ
(i)

(n,v) + ρ
(i+1)

| )()( ))(( i
v

i
v yny  |          where, ρ

(i +1)
 = α ρ

(i)
 (34)  

Step 6: i = i+1, and go to (2) 

 1 

It should be noted that Algorithm 1 decomposes a large-scale problem into a number of 2 

smaller scenario-based problems, which can produce near-optimal solutions (Rockafellar & 3 

Wets 1991). Our numerical experiments also confirm that the PHA can achieve a very high 4 

accuracy when the decomposed problems are solvable.  5 

 6 

3.3 Adapted Progressive Hedging Algorithm (APHA) 7 

The above progressive hedging strategy can decompose a large stochastic programming 8 

problem (e.g. when there are many samples in the SSA model) into a number of smaller 9 

scenario-based problems. Therefore, it is very helpful to solve the problem that contains a 10 

large number of samples. However, in many cases, even the problem for an individual sample 11 

has a large number of variables and constraints that are beyond the capability of  PHA.  The 12 

problem we are dealing with actually is one of them. Each decomposed problem, i.e., P5, still 13 

contains a capacitated dynamic routing problem, which can be difficult to solve for large 14 

shipping networks. Unfortunately, the existing literature in relation to stochastic 15 

programming does not give a solution to the issue as they mainly focuses on how to 16 

decompose SSA model into scenario-based sub-problems, e.g., the aforementioned PHA and 17 

the famous L-Shaped method (Slyke & Wets, 1969).  In this section, we will develop a new 18 

approach to cope with the issue. Our approach is along the same line as PHA. Its main idea is 19 

to decompose the scenario-based problem obtained in PHA into smaller job (customer order) 20 

based problems using Lagrangian relaxation once again. Therefore, we term the approach as 21 

Adapted Progressive Hedging Algorithm (APHA). APHA can be used for the situation where 22 

PHA cannot work due to the large-scale of a single scenario or sample process.  23 

 24 
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The key issue in APHA is to determine the tight lower bound and upper bound to original 1 

problem P1. The overall procedure of the APHA can be regarded as a two-phase procedure. 2 

In the first phase, we focus on the lower bound. The way to obtain the lower bound in APHA 3 

is slightly different from that in PHA. In PHA, only non-anticipativity constraints are relaxed 4 

whereas, in APHA, both the capacity constraint and non-anticipativity constraints will be 5 

relaxed. Initially, arbitrary Lagrangian multipliers, e.g., 0, are used to obtain a loose lower 6 

bound. By updating the Lagrangain multipliers using the subgradient procedure (Fisher, 7 

2004), the lower bound will become tighter. When changing the Lagrangian multipliers 8 

cannot improve the lower bound any more, the searching procedure for lower bound stops. 9 

The finally obtained lower bound can be used as an estimate of the optimal value of P1.  10 

 11 

However, the lower bound may not provide a feasible solution since some constraints have 12 

been relaxed and moved to the objective function.  Therefore, we need to search for a good 13 

feasible solution and obtain a tight upper bound, which is the focus of the second phase of the 14 

procedure. Our approach here is to tweak the solution corresponding to the lower bound to 15 

make it feasible. During the process, we will follow some mathematically proved principles. 16 

If the obtained feasible solution is not good enough, a special procedure called Lagrangian 17 

Costs Guided Gradient Search (LCGGS) will be followed to further improve the quality of 18 

feasible solution and seek a tighter upper bound. The LCGGS is similar to normal gradient 19 

search method except that the Lagrangian-relaxed problems instead of the original problem 20 

will be used to calculate the gradients. The LCGGS will stop when there is no improvement 21 

in a certain number of iterations. After the procedure described above, we can obtain both 22 

upper bound and lower bound, and calculate the gap between them and measure the 23 

performance of our algorithm. 24 

 25 

3.3.1 The relaxed problems 26 

To simplify the narrative, we drop n and ω(n) from P4, introduce y
'
v and Y

′ 
 to replace the 27 

scenario-dependent symbol Y(ω(n)) and y(ω(n)), and substitute Q(⋅ ) with Eq.(2), then we get 28 
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(35)   

s.t. 29 
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 )(YBAX   (36)   

 λ(v) ≥ 0                                                                             ∀ v (37)  

 1 

We move the capacity constraints in Eq.(36) whose explicit form was given in Eq. (11) into 2 

the objective function of P6, then we can have, 3 

P7 
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XYYγλ,
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(38)   

s.t. 4 

 BXA   (39)     

 Lv≤ y
'
v ≤ Uv                                                                         ∀ v (40)    

 Lv≤ yv ≤ Uv                                                                         ∀ v (41)    

 λ(v) ≥ 0                                                                               ∀ v (42)  

 γ(v, t) ≥ 0                                                                            ∀ v, t  (43)   

It is noted that A′ and B′ were introduced in Eq.(39)  to reflect the change of relaxing the 5 

vessel capacity constraints, and that B′ is not dependent on  ′ as the constraints related to  ′ 6 

have been either moved to the objective function or written explicitly in Eq.(40). γ(v,t) (∀v, t) 7 

are the corresponding Lagrangian multipliers for a given single scenario. To be more accurate, 8 

the Lagrangian multipliers corresponding to capacity constraints should be denoted as γ(n, v, 9 

t). Here, to simplify our narrative, we have dropped off n and limit our discussion in a single 10 

scenario. 11 

 12 

After removing the constants ]}[{
1 0
 

j
j

j
tj tTcD

T
 in Eq. (38) , we will have the following 13 

problem. 14 

P8 
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(44)   

s.t. (39) – (43) 15 

It can be observed that Eq.(44)  can be divided into two groups: X related terms, and Y and Y
’
 16 

related items, thus P8 can be rewritten as: 17 
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Z  + ),()2(min γX
X

Z } 
(45)   

 1 

The explicit forms of ),()1(
,

min YY
YY




Z  and )()2(min X
X

Z  will lead to two independent set of 2 

optimisation problems, P9 and P10,  as described below.  3 
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s.t. (40) – (43) 4 

As λ(v) increases, 



||

1

)(
V

v
vv yyv  in Eq. (46) will approach to 0 eventually, which will ensure 5 

that all the scenarios have the same vessel capacities. P9 can be solved using the same 6 

solution strategy introduced in Section 3.2.  The main idea of the strategy is adding auxiliary 7 

variables like a ={av | v ∈ V} and a = {av
’
 | v ∈ V}  to linearise P9,  and using 
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n
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1
to 8 

estimate yv. 9 
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(47)  

s.t.  (39) and (43) 10 

 11 

P10 can be broken down into |J| independent sub-problems as there are no correlations 12 

between jobs (customer demands) in Eq.(39). Each individual sub-problem has the following 13 

structure, 14 

P11 ),(min γX
X

jZ = 
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 (48)   

s.t. (3) – (10), (12),(14), (15) 15 

 16 

It should be noted that Dj has been removed from the objective function in P11 as it is the 17 

common coefficient for each item in the objective function.   18 

 19 

P11 is a dynamic shortest path problem for a given set of {γ(v,t)|∀v, t} if γ(v,t) is treated as 20 

the cost for using vessel v at time t. It has the following properties. 21 

 22 
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Proposition 3: If r is a possible path for a transportation job j, then it is always not optimal to 1 

use part of path r and leave transportation job j halfway unfinished.  2 

 3 

Proof: Let ),0( γ
jZ  denote the value of objective function when job j is not serviced; and 4 

),( γXr
jZ  the value of objective function when path r is selected to transport job j. Clearly, we 5 

have ),0( γ
jZ  = 0 from (48). If the job j carried on the path r did not reach the final 6 

destination port at the end of planning horizon, we would have ( , )
j

j

dz r t =0 for any t. It 7 

follows that ),( γXr
jZ > 0 by (48). Therefore, leaving the transportation job j unfinished en 8 

route is worse than not servicing it in the first place. This completes the proof. 9 

 10 

Proposition 3 reveals that partial use of a path and uncompleted transportation job should not 11 

be included in the optimal solution, and job j should be either left at the original port or be 12 

delivered to the destination port before the planning horizon. By excluding the partial use of a 13 

path that can serve job j, the space of feasible solutions can be significantly reduced. 14 

 15 

Proposition 4: If path r is chosen to serve job j in the optimal solution to P11, then r satisfies 16 

the following conditions: 17 
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Condition (i) follows from Proposition 3, which ensures that choosing path r outperforms not 20 

servicing the job; and condition (ii) ensures that path r minimises the objective function of 21 

P11 among all the paths. 22 

 23 

Let 
*
 and γ

*
 be the optimal Lagrange multipliers of P8. Let ),,,( ***

)1( γλYYZ  be the optimal 24 

cost of P9,  ),( **

γXjZ denote the optimal cost of problem P11, and )(
*

tx j
v be the 25 

corresponding optimal value of )(tx j
v (v ∈ V, 1 ≤ t ≤ T ). In addition, let yv

U
 = 26 

max{max[ 



))((

*
)(

nJj
j

j
v Dtx



| 1≤ n ≤N, 1≤ t ≤T ],  Lv }.  A lower bound and an upper bound to the 27 

original problem P1, )))((,( nZ L XY  and )))((,( nZU XY , respectively, can be obtained using 28 

the following proposition. 29 
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Proposition 5: )))((,( nZ L XY =
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an upper bound for P1. 3 

 4 

Proof: For the first part, as the average value of all the optimal solutions to P9 and P11 will 5 

be the optimal solution to the Lagrangian relaxation based problem P8, it will then construct 6 

a lower bound to the original problem after adding the constants )(
1 0

j
j

tj tTcD
T

  that has been 7 

removed from P7. For the second part, according to the definition of yv
U

 (∀ v∈ V), they are the 8 

minimum sufficient capacities that can ensure all the optimal solutions to P11 to be served, 9 

hence  )))((,( nZU XY  =  
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vv yC  is an upper bound.  This completes 10 

the proof.  11 

 12 

Following Proposition 5, we can construct a good estimate of the optimal value of P1 as13 

)))((,( nZ XY


=
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Lemma 1: When γ = 0, )))((,( nZ SPL XY
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and an upper bound for P1, respectively . 18 

Proof:  γ = 0 is a special case for Proposition 5.  Since 
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0X ]. In the situation, finding the solution to P11 is equivalent to 21 

obtaining the shortest path for all the jobs in J without capacity constraint. Therefore,  22 
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P1, where SPU
vy  = max{max[ 
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(1< n <N, 1< t <T  )], Lv}, is the minimum 1 

sufficient capacities when γ = 0. This completes the proof. 2 

 3 

3.3.2 The lower bound of relaxed problems 4 

To determine the lower bound specified in Proposition 5, we need to find the optimal 5 

Lagrangian multipliers 
*
 and γ

*
. We use subgradient procedure (Fisher, 2004) to update the 6 

Lagrangian multipliers. The detailed algorithm procedure is described below. 7 

 8 

Algorithm 2: Lower Bound of P2 

Step 1: Initialisation. Set γ = 0, i.e., γ(n,v)=0(∀ n, v); a constant α(0<α <1);  

Step 2: Set iteration number k = 0. Allocate constants to τ
(0)

(v,t)(∀ v, t) and ρ
(0)

. Solve P9 

(∀ω(n)) and P11(∀ j∈ J(ω(n)), 1 ≤ n ≤ N) and obtain )))((,(
)(

nZ
kL XY = 

)))((,( nZ SPL XY
 , and )))((,( nZ SPU XY

  according Proposition 5 and Lemma 1. 

Step 3: k = k+1;  ρ
(k )

 = α ρ
(k–1)

; τ
k
(v,t) = α τk–1

(v,t)⋅   

Step 4: Update Lagrangian multipliers γ(v,t) and λ(n,v) 

 

γ
(k)

(v,t) = max[0, γ
(k-1)

(v,t) + t
(k)

(v,t) ⋅ ))(( v
Jj
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v yDtx 


]           ∀ v, t 

where, t
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 = τ
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 (49)  

 λ
(k)

(n,v)= λ
(k–1)

(n,v) + ρ
(k)

| )1()1( ))((   k
v

k
v yny  |           (50)  

Step 5:  Solve P9(∀ω(n)) and P11(∀j∈ J(ω(n)) based on new updated γ
(k)

(v,t) and λ
(k)

(n,v), 

and obtain updated )))((,(
)(

nZ
kL XY .  

Step 6: Go to Step 3 unless one of the following termination criteria is satisfied: 

a. | )))((,(
)(

nZ
kL XY − )))((,(

)1(
nZ

kL XY


| < ϵ
1
, where ϵ

1
 is a pre-determined error 

bound; 

b. Any τ
k
 (v,t) < ϵ

2
 , where ϵ

2 
 is a small positive number; 

c. There is no improvement in recent L consecutive iterations, where L is 

predetermined control parameters. 

 9 

3.3.3 The upper bound of relaxed problems 10 

 11 
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In the section, we will firstly present an upper bound, and then discuss how to improve the 1 

upper bound when the performance of heuristics bound is not satisfactory. 2 

Upper bound 3 

 4 

After solving the relaxed problem P11, apply the following procedure to obtain a heuristic 5 

upper bound: 6 

1) According to Proposition 3, remove the jobs which have not arrived at destination 7 

ports from the solution to P11; 8 

2) According to Proposition 4, remove the jobs which do not satisfy condition (1) in 9 

Proposition 4; 10 

3) Derive an upper bound for P1 based on the rest of solutions to P11 according to 11 

Proposition 5.  12 

Note that the above upper bound is obtained by tweaking the solution to the Lagrangian 13 

relaxation based problem so that it becomes a good feasible solution to the original problem, 14 

which is a common approach in the literature. The heuristics method has advantage on 15 

computational time. However, its gap to the lower bound might not be satisfactory in some 16 

cases. In the section, we will propose a procedure to further reduce the gap when it is not 17 

satisfactory. 18 

Lagrangian Costs Guided Gradient Search (LCGGS) 19 

The procedure was inspired by the stochastic quasigradient methods (Ermoliev, 1983; 20 

Gaivoronski, 1988; Birge & Louveaux, 2011). We made some changes to the original 21 

quasigradient procedure to avoid solving the large ILP model comprising Eqs. (2) – (15) as it 22 

is quite difficult to solve for the large shipping network. Our method is to relax the capacity 23 

constraint, and use the maximised Lagrangian costs to estimate true costs and then descent 24 

gradient with respect to yv (∀ v). 25 

 26 

LCGGS starts from a known position k denoted by {Y
k
, )))((,( nZ kkk XY }, and searches for 27 

the next point with lower costs.  The gradient at position k will be needed to search for the 28 

next position. This involves calculating the partial derivative at position {Y
k
, 29 

)))((,( nZ kkk XY }, denoted by 30 

 )))((,( nZ k XY =
Y

XYXYY



 )))((,()))((,( nZnZ kkkkkk 
 (51)   
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 1 

This formula requires to calculate )))((,( nZ kkk XYY  } for perturbed Y
k
. As (Y

k
+ΔY) is 2 

known in this situation, the problem P1 is reduced to a set of separated ILP problems. Each 3 

problem has a formulation comprising Eqs. (2)-(15) but with different realised demand data. 4 

For the small-scale problem, the exact solution to the scenario level model can be obtained, 5 

hence, )))((,( nZ k XYY   can be measured accurately. However, when shipping network is 6 

large, the scenario level model cannot be solved.  As the paper aims to solve relatively large 7 

scale of shipping network for which the exact solution cannot be obtained using standard ILP 8 

solution method, we adopt Lagrangian relaxation to decompose the scenario level model 9 

comprising Eqs. (2) – (15) into job based problems. The relaxed problem can be formulated 10 

as (assume yv′ is perturbed to be yv′ +  in Y + Y), 11 
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 12 
In the formulation, the first five terms are constants. The rest of items can be decomposed 13 

into a number of job-based problems, and each of them will have the same formulation as 14 

P11. We use the optimal solution to P12, ),,( **
γXYY Z to estimate )))((,( nZ k XYY  , Eq. 15 

(51) can be rewritten as,  16 

 )))((,( nZ k XY =
Y

XYγXYY



 ),,(),,( **** kk ZZ
 (53)    

 17 

Once the gradient is determined, the next searching position can be easily determined. The 18 

details of the LCGGS procedure are described in Algorithm 3. 19 

 20 

Algorithm 3: LCGGS 

Step 1: Initialisation. Set iteration number k = 0; yv
k 
= yv

U 
(∀v∈V); )))((,( nZ kkk XY |k = 0=

))),( nZU
X(ω(Y ; the best-so-far solution Y

best
 = {yv

best
 = yv

U 
| ∀v∈V}, )))((,( nZbest XY =

)))((,( nZ kkk XY |k = 0.  

Step 2: Calculate )))((,( nZ kkk XY  

(a). Add a positive small variation Δ onto an element k
vy   in Y

k
, then the vessel capacity 
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vector becomes, k
v

k
 YY  = {y1

k
, …, k

vy  +Δ, …, k
Vy || } 

(b). Set inner loop number m = 0, γ
m
 = 0, a positive constant α; 

(c). Solve the problem P11 for the given γ
m
; obtain an estimate of  

)))((,( nZ kk
v

kk XYY  : 
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(d). Set m = m + 1; update the Lagrangian multipliers using the following equation: 
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))((,( nZ L XY  is the lower bound obtained from Algorithm 2. 

(55)  

(e). Go to sub-step (b) unless | )))((,(1 nZ kk
v

km XYY 
 


− )))((,( nZ kk

v
km XYY 


| < ϵ ;   

(f). Let )))((,( nZ kk
v

kk XYY   = )))((,(1 nZ kk
v

km XYY 
 


, then the partial derivative for 

vy   can be estimated as follows: 
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(g). Go back to sub-step (a)  until all the elements in Y have been perturbed and 

)))((,( nZ kkk XY  has been determined. 

Step 3: Determine next searching point. 

Y
k+1

 = Y
k
 + 

)))((,(

))))((,())((,(

nZ

nZnZ
kkk

Lkkk





XY

XYXY




 

Step 4: Evaluate the costs )))((,( 111 nZ kkk 
XY  using the procedure similar to (b) − (e) in 

Step 2 for the new position Y
k+1

 . 

Step 5: Obtain an upper bound )))((,( 11 nZ kkU 
XY using the method described in 

Proposition 5 for )))((,( 111 nZ kkk 
XY . If )))((,( 11 nZ kkU 

XY  < )))((,( nZbest XY , then  

Y
best

 = Y
k+1

 , )))((,( nZbest XY = )))((,( 11 nZ kkU 
XY ; otherwise, go to next step. 

Step 6: k = k+1, and go to Step 2 unless one of the following condition is met: 

(a). )))((,( 11 nZ kkU 
XY  is close enough to the estimated value )))((,( nZ XY


 denoted by  
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=
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(b). There is no update for )))((,( nZbest XY in a certain number of iterations. 

 1 
 2 

4 Numerical experiments 3 

The three solution strategies including SAA, PHA, and APHA were coded using Visual C++ 4 

2010 and IBM CPLEX 12.5 library functions. Around 7000 lines of C++ codes have been 5 

written excluding the functions for processing data files. Additionally, both Linux and 6 

Microsoft Windows version have been developed. We use Windows version to test the 7 

algorithm for small-scale shipping network on laptops and desktops, and the Linux version 8 

for practical shipping network on high performance server. 9 

 10 

The implemented three algorithms have been experimented on two datasets detailed in Song 11 

and Dong (2012). The two datasets involve a hypothetical small-scale shipping network and a 12 

realistic shipping network. We will examine the solution accuracy and computational times 13 

of the three algorithms for the two shipping systems, and then discuss their strengths and 14 

weaknesses and possible further improvements in future. It should be noted that although in 15 

the two datasets below, there is only one job for each port-pair on a particular day, our model 16 

and programme is able to deal with multiple jobs for each port-pair per day as long as each 17 

job has a unique index. In addition, our programme can also process the customer orders/jobs 18 

(which may have seasonality) as input data from a stored text file. 19 

 20 

4.1 The small-scale shipping network 21 

The small shipping network comprises 5 ports, 3 shipping services routes, and 3 vessels. 22 

Each day there will be 5 × 5 =25 jobs generated. The amount of containers required for each 23 

job varies on a daily basis and generated from Normal distribution with average values and 24 

standard deviations as detailed below. 25 

Table 1 The average values of daily demands 26 

 5001 5002 5003 5004 5005 

5001 0 0 0 0 0 

5002 10 0 0 0 10 

5003 5 0 0 0 5 

5004 10 0 0 0 10 

5005 0 0 0 0 0 
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 1 

Table 2 The standard deviations of daily demands 2 

 5001 5002 5003 5004 5005 

5001 0 0 0 0 0 

5002 2 0 0 0 2 

5003 1 0 0 0 1 

5004 2 0 0 0 2 

5005 0 0 0 0 0 

 3 

We set Cv = 1000 British Pounds per day, and the waiting costs ct
j
 = 100 British Pounds per 4 

day. The planning horizon considered is 5 weeks. The other parameters are the same as those 5 

in Song and Dong (2012).  6 

 7 

We ran our programme on a Windows desktop with an INTEL I7 3.4G HZ CPU and 8GB 8 

RAM, and obtained the outputs of the three algorithms as shown below. 9 

 10 

Table 3 The results of SAA, PHA, and APHA for a Small-Scale Shipping Network 11 

N 
SAA 

))((,( nZ XY  
PHA 

),)()),(,( )X(ωY(ωY nnZ  

APHA 

upper Bound 

)))((,( nZU XY
 

LCGGS 

)))((,( nZbest XY
 

Lagrangian 

Lower Bound 

)))((,( nZ L XY
 

 
Costs 

Time 

(s) 
Costs 

Time 

(s) 

Gap to 

SAA 
Costs 

Time 

(s) 

Gap to 

SAA 
Costs 

Time 

(s) 

Gap to 

SAA 
Costs 

Time 

(s) 

Gap to 

SAA 

5 338129 8 339075 78 0.28% 341008 1 0.84% — — — 315910 512 -6.57% 

10 347206 20 347869 139 0.19% 359273 1 3.36% 356720 2225 2.67% 322116 848 -7.23% 

20 348678 101 349990 259 0.37% 363376 1 4.04% 353118 4851 1.26% 321453 2436 -7.81% 

40 346003 606 346329 1029 0.09% 364586 1 5.10% 360945 19759 4.14% 313600 4172 -9.36% 

60 344427 1465 344913 1508 0.14% 365951 1 5.9% 355305 16529 3.06% 316000 7243 -8.25% 

80 — — 343246 1987 — 366975 1 — 360148 74109 — 313416 14017 — 

100 — — — — — 347733 1 — 364236 103441  312701 19443 — 

 12 

In Table 3, SAA is solved using the standard branch-and-cut solution algorithm implemented 13 

in IBM CPLEX. The algorithm in CPLEX can provide exact solution with the shortest 14 

computational time.  However, when the sample size N increases to 80 scenarios or above, 15 

SAA cannot produce any result due to the large scale of the problem. 16 

 17 

PHA needs longer computation time than SAA as it needs to iterate the Lagrangian 18 

multipliers corresponding to nonanticipativity constraints. For each iteration, it requires to 19 

solve N scenario based ILP using CPLEX. PHA will converge to a feasible solution with a 20 
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small gap to the exact solution of SAA. However, it should be noted that PHA is not able to 1 

solve the problems as the size increases, e.g. N ≥ 100. 2 

 3 

APHA requires the longest computational time among three algorithms as it involves more 4 

iterations of Lagrangian multipliers. It can be observed that the majority of computational 5 

times were spent on calculating the lower bound )))((,( nZ L XY  and LCGGS, whereas the time 6 

taken to obtain an upper bound from the solutions to P9 and P10 was less than 1 second.  The 7 

average upper bound has an average gap 3.85% above the optimal costs (from the exact 8 

solution) according to the results for the problems with sample size 5 – 80; and LCGGS can 9 

further narrow the average gap down to 2.78%. In the experiment, we terminate the LCGGS 10 

procedure when the best-so-far solution is close to the estimated optimal value of P1 (within 11 

5%). Mathematically, the criterion we adopt to stop LCGGS is when | )))((,( nZ best XY  − 12 

2

)))((,()))((,( nZnZ LU  XYXY  | < 5%. It should be pointed out that the LCGGS has the potential to 13 

find better solution if the acceptable gap is further reduced at the expense of more 14 

computational time. 15 

 16 

4.2 A practical sized shipping network 17 

We now experiment the algorithms on a realistic shipping network that contains 25 ports, 24 18 

vessels, and 5 shipping service routes. Everyday there are 25× 25 = 625 jobs generated, i.e., 19 

|J(ω(n))| = 625. The amount of containers required for each job follows normal distribution. 20 

The coefficient of variation (i.e. the ratio of the standard deviation to the average value) is 0.2. 21 

To save the space, we do not list the average value and standard deviation of each OD pair 22 

here. The planning horizon is 77 days (11 weeks), thus the number of jobs that need to be 23 

processed in a single scenario is 48125.  For the case with a sample size of 10 (N = 10),  the 24 

number of the variables xv
i
(t) in SSA,  in PHA (scenario based model) and in APHA (job-25 

based  model), will be 10× 625 × 24 × 77 ≈ 1.12 × 10
7
 ; 625 × 24 × 77 ≈1.12 × 10

6
; and 24 26 

× 77 = 1848, respectively.  27 

 28 

We used a Linux server with 4 AMD 2.3 GHz CPU and 64GB memory to do the experiments. 29 

The maximum memory usage allocated by the server administrator is 16 GB out of the 64GB. 30 

Unfortunately, neither PHA nor SAA can produce any result due to the large scale of the 31 
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problem. APHA is the only method that can produce result. The obtained results are given in 1 

Table 4. 2 

 3 

Table 4 The results of APHA for a realistic Shipping Network 4 

N 
CPU 
Time 

(s) 

Heuristics 

upper Bound 

)))((,( nZU XY
 

CPU 
Time 

(s) 

Lagrangian 
Lower Bound 

)))((,( nZ L XY
 

Estimated 
true value 

)))((,( nZ XY


 

Gaps between 

Upper bound & 

Estimated  true 
value 

10 1 2616560 81950 2748190 2682375 2.39% 

20 1 2554590 305236 2689420 2622005 2.51% 

30 1 2508080 545796 2653620 2580850 2.74% 

40 1 2503270 883176 2677370 2590320 3.25% 

 5 

It can be observed that the solution generated by APHA has good performance since the 6 

average gaps between the heuristic upper bounds and the estimated true values are 2.72% for 7 

the sample size ranging from 10 to 40 scenarios. The gradient-based search (LCGGS) is not 8 

required to start as the gap is less than the aforementioned threshold level 5%.  9 

 10 

The CPU times spent on the second network are very similar to that in the first one. The 11 

majority of CPU times are spend on solving the Lagrangain relaxed problems, i.e., P9 and 12 

P10, and it only take less than 1 second to obtain the upper bound and the corresponding 13 

feasible solutions.  14 

 15 

From the two sets of numerical experiments conducted above, we can find that the merits of 16 

APHA are that it has good solution quality, and is able to solve much larger problems (e.g. 17 

either larger N or larger shipping network) which SAA and PHA cannot.  However, it may 18 

still require long running time due to the iteration of Lagrangian multipliers. 19 

 20 

One idea to reduce the running time of APHA is to apply the parallel computing technique 21 

into APHA. Note that the logic of APHA is to repetitively solve a number of decomposed 22 

problems with smaller scale. This feature happens to fit the logic of parallel computing. For 23 

example, our case needs to solve a large number of problems like P11 repetitively, which can 24 

be run on multiple computers simultaneously. 25 

 26 

5 Conclusion 27 

 28 
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The paper proposes a two-stage stochastic programming model for joint shipping service 1 

capacity planning and dynamic container routing in a shipping network with uncertain 2 

demands and delivery time constraints. The first stage focuses on minimising the costs of 3 

acquiring vessel capacity, and the second stage is to minimise the expected operational costs 4 

including transportation costs, lifting on/off costs, and unfulfilled job penalty costs. The 5 

second stage model can provide the operational performance of a given set of vessel 6 

capacities under uncertain demands and delivery time constraints.  7 

 8 

Firstly, two relatively mature methods, Sample Average Approximation (SAA) and 9 

Progressive Hedging Algorithm (PHA), are used to solve the stochastic programming 10 

problem under consideration. Noting the computational limitation of SAA and PHA in 11 

solving large scale problems, we then designed a new solution method, Adapted Progressive 12 

Hedging Algorithm (APHA), which is able to solve larger scale problems (e.g. with more 13 

samples and more complex shipping networks). The idea of APHA is to further decompose 14 

scenario-based models into job (customer order) based problems using Lagrangian 15 

multipliers. Lower bound and upper bounds are provided to quantify the accuracy of the 16 

algorithm. 17 

 18 

The involved three algorithms have been tested and compared on two datasets that have been 19 

used in Song and Dong (2012). According to the experiment results, we find that the merits 20 

of APHA include:  21 

1) It is capable of solving large scale problems which cannot be solved by SAA and 22 

PHA; 23 

2) APHA can provide the measurement of error bounds, which can quantify the accuracy 24 

of a feasible solution. 25 

3) The solution generated from APHA has a good quality, and is close to the solution 26 

obtained from SAA and PHA for the smaller scale problem. 27 

 28 

This paper has a few limitations. Firstly, we describe the demand using a known probability 29 

distribution. This might not be easy to obtain since forecasting demand is a big challenge in 30 

the shipping industry. In particular, the current shipping market is highly volatile. Secondly, 31 

we did not take into account the empty container repositioning issue. Since the world trade is 32 

severely imbalanced and empty container repositioning incurs a significant amount of cost to 33 
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shipping lines, it would be desirable to incorporate it at the service capacity design stage. To 1 

extend our model to include empty container repositioning and investigate the computational 2 

complexity is a further research direction. Thirdly, from the experiments, it can be seen that 3 

although the APHA is able to solve the large-scale problems that cannot be solved by SAA 4 

and PHA, the computation time could be very long. Note that the APHA attempts to solve a 5 

large number of small-scale problems repetitively. This enables APHA to meet the 6 

requirements of parallel computing techniques such as Message Passing Interface (MPI) or 7 

Open Multi-Processing (OPENMP). These parallel computing techniques would allow us to 8 

use multiple CPUs or multi-core CPU to solve the multiple ILP problems in a single iteration 9 

in APHA simultaneously. Therefore, another further research direction is to implement the 10 

APHA using the parallel computing techniques and explore other ways to improve its 11 

computational efficiency. 12 
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