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ABSTRACT 

 

Active vibration control techniques are widely used in linear time-invariant and 

nonlinear systems. However, there still exist many difficulties in the application of 

conventional active vibration control techniques, including the following: (1) In 

application, some of the degrees of freedom may not be physically accessible to 

actuation and sensing simultaneously; (2) large flexible structures are difficult in 

terms of isolating one substructure from the vibration of another; (3) the incomplete 

understanding of the effects of softening nonlinearity may put conventional active 

controllers at risk; and (4) global stability of under-actuated nonlinear aeroelastic 

systems, resulting from actuator failure or motivated by weight and cost constraints 

imposed on next-generation flight vehicles, is extremely challenging, especially in 

the case of uncertainty and external disturbances. These intellectual challenges are 

addressed in this research by linear and nonlinear active control techniques.  

A new theory for partial pole placement by the method of receptances in the presence 

of inaccessible degrees of freedom is proposed. By the application of a new double 

input control and orthogonality conditions on the input and feedback gain vectors, 

partial pole placement is achieved in a linear fashion while some chosen degrees of 

freedom are free from both actuation and sensing. A lower bound on the maximum 

number of degrees of freedom inaccessible to both actuation and sensing is 

established. 

A theoretical study is presented on the feasibility of applying active control for the 

purpose of simultaneous vibration isolation and suppression in large flexible 

structures by block diagonalisation of the system matrices and at the same time 
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assigning eigenvalues to the chosen substructures separately. The methodology, 

based on eigenstructure assignment using the method of receptances, is found to 

work successfully when the open-loop system, with lumped or banded mass matrix, 

is controllable. 

A comprehensive study of the effects of softening structural nonlinearity in 

aeroelastic systems is carried out using the simple example of a pitch-flap wing, with 

softening cubic nonlinearity in the pitch stiffness. Complex dynamical behaviour, 

including stable and unstable limit cycles and chaos, is revealed using sinusoidal-

input describing functions and numerical integration in the time domain. Bifurcation 

analysis is undertaken using numerical continuation methods to reveal Hopf, 

symmetry breaking, fold and period doubling bifurcations. The effects of initial 

conditions on the system stability and the destabilising effects of softening 

nonlinearity on aerodynamic responses are considered. 

The global stability of an under-actuated wing section with torsional nonlinearity, 

softening or hardening, is addressed using a robust passivity-based continuous 

sliding-mode control approach. The controller is shown to be capable of stabilising 

the system in the presence of large matched and mismatched uncertainties and large 

input disturbance. With known bounds on the input disturbance and nonlinearity 

uncertainty, the continuous control input is able to globally stabilise the overall 

system if the zero dynamics of the system are globally exponentially stable. 

The merits and performance of the proposed methods are exemplified in a series of 

numerical case studies. 
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Chapter 1                                                                                                  

Introduction 

1.1 Introduction 

The subject of this thesis is vibration suppression in linear time-invariant (LTI) systems 

and nonlinear aeroelastic systems using active control techniques. The research will 

address several intellectual challenges in the development and application of active 

vibration control techniques. 

Aircraft design is conservative for flight safety reasons. For example, a 15% margin 

of safety on the estimated flutter speed is regularly used to determine the useable 

flight envelope. As aircraft design moves toward lighter-weight material, to improve 

fuel efficiency and aircraft agility, it is anticipated that aircraft will operate closer to 

the flutter boundary. Also, nonlinear flutter, typically limit cycle oscillation (LCO), 

is not infrequently encountered by military and civil aircraft, such as those observed 

in the F-16 fighter [1, 2], F-18 fighter [2] and airbus A320 [3], leading to a reduction 

in aeroelastic performance, compromising the ability of pilots to perform critical 

mission-related tasks, structural fatigue and even failure of the vehicle. Furthermore, 

the requirements of next-generation flight vehicles place increasing and contradictory 

demands on designers, typically greater structural flexibility, improved 

manoeuvrability and greater operational safety in severe environmental conditions 

[4]. Therefore, developing advanced techniques to improve the flight safety and 

satisfy the contradictory requirements placed on next-generation flight vehicles is of 
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significant importance. Active vibration control, superior to passive modification, is 

a promising technique that can be helpful in the treatment of such aeroelastic 

problems.  

Passive control methods have the advantage of guaranteed stability, but this is vastly 

outweighed by the flexibility of active methods to assign the dynamic of the system 

efficiently. For example, state feedback is capable theoretically of assigning all the 

eigenvalues of a system with a single input. On the other hand, structural 

modifications, such as the classical vibrations absorber, are awkward to use and must 

be tuned in an ad-hoc way. Also modifications in the form of added beams or masses 

are often impractical or too heavy. Much recent work has been carried out on 

nonlinear passive methods, including nonlinear vibration absorbers [5] and nonlinear 

energy sinks [6, 7]. Passive nonlinearities are difficult to design, may be difficult to 

retro-fit to existing hardware and in-situ modification to optimise performance may 

not be straightforward 

Active feedback control for aircraft vibration suppression is a science in its infancy. 

There are examples of feed-forward control for vibration cancellation, mostly in 

rotorcraft, and some examples of active damping in fixed-wing aircraft. There are 

academic examples of flutter suppression in wind tunnels, but nonlinear active 

feedback control has never been applied to a production aircraft. There still exist 

many difficulties in the application of conventional active vibration control 

techniques, including the following: (1) In application, some of the degrees of 

freedom may not be physically accessible to actuation and sensing simultaneously; (2) 

large flexible flight vehicles are difficult in terms of isolating the aircraft cabin from 

unwanted vibrations, e.g., the vibration of engines; (3) the incomplete understanding 
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of the effects of nonlinearities, e.g., softening nonlinearity, may put conventional 

active controllers at risk; (4) there unavoidably exist uncertainty and external 

disturbances; and (5) global stability of under-actuated nonlinear aeroelastic systems, 

resulting from the failure of partial actuation or motivated by weight and cost 

constraints imposed on next-generation flight vehicles, is extremely challenging. 

These problems are addressed in this research by linear and nonlinear active control 

techniques.  

In LTI systems, the method of receptances [8, 9] based on eigenvalue assignment 

will be further developed to cope with the first two challenges. Advantages include 

the following: (1) there is no need to know or to evaluate the M, C, K matrices 

usually determined from finite elements (FE) and containing errors due to modelling 

assumptions and approximations which must be corrected by model updating; and (2) 

there is no need for an observer or for model reduction - the receptance equations are 

complete for each sensor (output) measurement when the actuator inputs are 

measured. Generally there are a small number of actuators and the number of 

receptance equations is generally small. (3) By using the transfer function between 

actuator-input and sensor-output signals, any dynamic present in the actuation and 

sensing functions becomes included in the measurement so that mathematical 

modelling of the actuator/sensor dynamic becomes unnecessary. This is very 

advantageous in practical application since actuators (particularly) can possess 

unexpected modes not represented by the simple second order transfer functions 

often used in theoretical studies. In aeroelastic systems, the method of receptances, 

based on vibration tests carried out in-flight, is very advantageous in vibration 

suppression since unpredicted instabilities revealed during flight-tests will be controlled 

adaptively. 
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All systems in nature are inherently nonlinear. In aeroelastic systems, nonlinearity may 

lead to stable sustained periodic oscillation (stable LCO) in the vicinity of the linear 

flutter boundary. On the other hand, nonlinearity effects may result in wholly 

detrimental consequences. That is, a system that may be stable to a sufficiently small 

perturbation can become unstable due to a large disturbance [10]. Therefore, a good 

and complete understanding of the effects of nonlinearity in open-loop systems is 

crucial to effective active control design. Apparently, the presence of nonlinearity 

makes flutter suppression complicated. The problem becomes more difficult in 

nonlinear under-actuated aeroelastic systems with modelling errors and external 

disturbances. 

The objective of the present work is to further develop the method of receptances for 

LTI systems with inaccessible degrees of freedom and those requiring the 

combination of active vibration suppression and active vibration isolation. Also, the 

present work aims to systematically understand aeroelastic systems with softening 

nonlinearity and design a robust passivity-based sliding mode controller for 

nonlinear under-actuated aeroelastic systems in presence of uncertainty and input 

disturbance. 

1.2 Problem statement 

In this section, the intellectual challenges considered in this thesis are described in 

detail. The challenges in LTI systems are ubiquitous and exist in linear aeroelastic 

systems. We begin with partial pole placement with inaccessible degrees of freedom. 

1.2.1 Partial pole placement with inaccessible degrees of freedom 

In practice, there may be a large number of eigenvalues but only a few that are 

undesirable. While reassigning some eigenvalues related to large vibrations, other 
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eigenvalues, which are not intended to be altered, are affected by the control input 

with full controllability. It frequently happens that some eigenvalues shift to the right 

hand side of the complex plane with full controllability. This is and effect of the 

spill-over phenomenon resulting in dynamical instability. Therefore, partial pole 

placement, where some eigenvalues are required to be relocated and the remaining 

poles are rendered unchanged, is of practical value in suppressing vibration and 

stabilising dynamic systems.  

In the traditional application of active vibration control by partial pole placement 

with state feedback the input vectors are assumed to be given and the calculated 

vectors of the control gain are therefore in general fully populated. Consequently, to 

realise the control in practice it is required to sense the state at each degree of 

freedom. In applications, however, some of the degrees of freedom may not be 

physically accessible to actuation and sensing simultaneously. There exist some 

inaccessible degrees of freedom.  

In order to overcome this difficulty it is possible to consider the input vectors to be 

unknown and to solve the partial pole assignment problem with the added constraint 

that certain prescribed elements of the input and control gain vectors vanish 

simultaneously. Such a problem would become a nonlinear problem due to the 

interaction between the unknowns in the input vectors and the unknowns of the 

control gains. The partial pole placement problem would thus be transformed from a 

linear to a nonlinear problem  

In this research, a new theory for partial eigenvalue assignment by receptance-based 

active vibration control in the presence of inaccessible degrees of freedom is 

proposed. Both partial controllability and partial observability conditions are 
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exploited for maintaining the eigenvalues of open-loop system, intended to be 

unchanged. A new double input control involving position, velocity and acceleration 

feedback is proposed such that a linear system of constraints may be imposed 

causing chosen elements of the input vectors and the control gains to vanish. The 

methodology introduced in the research enables the input vectors and the vectors of 

control gains to be determined linearly while chosen degrees of freedom are rendered 

free from force excitation and state sensing. Hence, the nonlinear problem of 

determining input vectors and the control gains for partial pole placement with 

inaccessible degrees of freedom is converted into a linear one. A lower bound on the 

maximum number of degrees of freedom completely cleared of both sensing and 

actuation is then established using purely linear analysis. 

1.2.2 Block decoupling vibration control using eigenstructure assignment 

Active vibration isolation is a technique of vibration control by means of reducing 

transmitted forces between the isolated structure and its surroundings and its 

application is ubiquitous. It is well suited to industrial problems where a relatively 

massive piece of engineering hardware, such as an engine-block or a heavy machine 

tool is to be isolated from its surroundings. In the classic active vibration isolation 

methods, the isolated structure and its surroundings are assumed to be rigid and 

single degree of freedom models are used for analysis and design. Spacecraft 

structures, such as deployable antennae, space telescope or solar arrays, large flexible 

aircrafts and light-weight multi degree of freedom structures generally, are much 

more difficult in terms of isolating one substructure from the vibration of another 

since the rigid body assumption is invalid. The flexibility should be modelled, 

typically using finite element methods [11] or analytical impendence and mobility 
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[12-14]. In this research, experimentally measured receptances are used to represent 

the flexibility of large-scale flexible structures. 

In practice, it frequently happens that the isolated system is excited by multiple 

disturbances. The active vibration isolator, designed for isolating one of the 

disturbances, might be invalid since the isolated structure might still be prone to 

large amplitude oscillation or instability in the presence of other disturbances. 

Therefore, for flexible structures subjected to multiple excitation sources, it is of 

importance to combine active vibration isolation and active vibration suppression 

such that the isolated structure is isolated from its surrounding structures and also its 

behaviours can be regulated subjected to other excitation sources. This problem 

appears to be one that has received very little attention in the vibrations control 

literature to date.  

In this research, we consider from a purely theoretical point of view, the feasibility of 

decoupling multi degree of freedom systems to form substructures that are 

completely isolated from one another and with desired performances. The research 

reported in this article is a preliminary study, which might be deemed timely in view 

of contemporary interest in lightweight and deployable structures, piezo-based 

actuators and sensors with proven capability and a related literature on active input-

output decoupling. In this research, a new block decoupling control algorithm based 

on eigenstructure assignment, simultaneous eigenvalue and eigenvector assignment, 

using measured receptances is proposed for the combination of structural vibration 

suppression and vibration isolation. Modal degree of freedom constraints are 

imposed such that the matrix of closed-loop right eigenvectors is block-diagonalised, 

leading to block diagonal matrices of the second-order system in physical 
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coordinates. For the purpose of simplicity, we limit the investigation in this thesis to 

the problem of block decoupling to form two independent substructures from a linear 

multi degree of freedom system. It is straightforward to show that the approach can 

be extended to the case of multiple independent substructures and also diagonal 

decoupling in physical coordinates. 

1.2.3 Nonlinear analysis of aeroelastic systems with softening nonlinearity 

It is well known that classical linear aeroelasticity is able to provide accurate 

predictions for comparison with flight test results, including aeroelastic response to 

gust, turbulence and external excitation as well as flutter boundary estimation. 

However, aeroelastic systems are inherently nonlinear. Structural nonlinearities 

typically arise from free-play at the inter-connections between different components, 

such as the wing-pylon-engine connections or the attachment of external stores to the 

wing. Other structural nonlinearities include geometric ones due to large wing 

deflections and nonlinear damping. Aerodynamic nonlinearities may be introduced 

by shock motion in transonic flow and flow separation [10, 15]. A good 

understanding of the effects of structural and aerodynamic nonlinearities on the 

stability of aeroelastic system is crucial to the efficient and safe design of aircraft 

wings and control surfaces. The complexity of dynamic behaviour of systems with 

softening structural nonlinearity is one of the least well understood aeroelastic 

phenomena. Although, softening nonlinearities might be less prevalent than 

hardening ones, they are not uncommon. They tend to occur in structures under 

compressive loads such as panel buckling [16]. Also, kinetic heating at high Mach 

numbers can produce large reductions in structural stiffness and softening 
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nonlinearity [15]. Therefore, the dynamics of aeroelastic systems with softening 

nonlinearity is a topic of practical engineering significance.  

This research aims to investigate the presence of stable and unstable LCO and the 

conditions under which they may be found in aeroelastic systems with softening 

nonlinearity. LCO stability criteria, strictly applicable within the limitations of 

quasilinearisation by sinusoidal-input describing functions, are confirmed by 

numerical integration in the time domain. Excellent agreement is found at low 

steady-state amplitudes and even at higher amplitudes the approximation is found to 

be close to accurate time-domain predictions. The analysis confirms the existence of 

stable LCO, dependent upon initial conditions, and shows that a softening 

nonlinearity can destabilise LCO and chaos as well as prohibiting the occurrence of 

certain predicted LCO. Results are presented conveniently in the form of graphs of 

steady-state amplitude versus velocity and as basins of attraction with regions of 

stability, stable LCO, dynamic instability and static divergence. The boundaries 

separating the regions of different dynamic behaviour may be simple or non-simple 

depending upon the parameters of the aerofoil considered. 

1.2.4 Robust flutter suppression of nonlinear aeroelastic systems 

Nonlinear flutter may result in a reduction in vehicle performance, structural fatigue 

and even the failure of vehicle. Never-the-less the requirements of next-generation 

flight vehicles place increasing and  contradictory demands on designers, typically 

greater structural flexibility, improved manoeuvrability and greater operational safety 

in severe environmental conditions [4]. Hence, active nonlinear flutter suppression 

becomes increasingly important in ensuring the safety and efficiency of future 
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aircraft [17] and presents intellectual challenges that have attracted the interest of  

researchers in aerospace and control communities for more than three decades. 

Since linear active vibration control techniques have been proved to have limited 

success in the suppression of nonlinear flutter [18], nonlinear active vibration 

techniques should be used. 

In the control community, mechanical systems which have fewer independent 

actuators than degrees of freedom to be controlled are known as under-actuated 

mechanical systems [19]. The control design of under-actuated aeroelastic systems is 

of importance, firstly for reasons of actuator failure and the need to rely on fewer 

actuators. Secondly, under-actuation might be motivated by weight and cost 

constraints imposed on next-generation flight vehicles. A typical under-actuated 

aeroelastic system is a two-dimensional nonlinear wing section with a single control 

surface in incompressible flow, which is the control objective of the present thesis.  

Usually, for under-actuated systems, local asymptotic stability can be achieved by 

existing nonlinear control techniques. However, global asymptotic stabilisation for 

tracking control of under-actuated mechanical systems is considered to be extremely 

challenging [19, 20]. For example, by using feedback linearisation techniques, the 

stability of the zero dynamics only guarantees local stability of the system, global 

asymptotical stability can only be achieved if the internal dynamics is input-to-state 

stable [21]. Under-actuated nonlinear aeroelastic systems are even more complicated 

owing to the intrinsic uncertainty and/or softening nonlinearity. 

This research is to develop a robust passivity-based continuous sliding-mode control 

approach, which can globally stabilise all the degrees of freedom of an under-

actuated prototypical wing section with hardening or softening torsional nonlinearity 
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in the presence of nonlinearity uncertainty and input disturbance. The approach 

makes good use of the robustness of sliding-mode control to large matched 

uncertainty and large input disturbances. To deal with mismatched uncertainty in 

under-actuated systems, a robust passivity-based control method is used for the 

design of globally asymptotically (or exponentially) stable nonlinear sliding surfaces. 

Moreover, a proposed continuous sliding-mode control is able to alleviate the 

chattering which occurs in the process of discontinuous sliding-mode control. The 

sufficient conditions for global asymptotic stability and global stability of under-

actuated two-degree-of-freedom nonlinear aeroelastic systems are provided. 

Compared with feedback linearisation or adaptive feedback linearisation, the 

proposed method relaxes the requirements for global asymptotical stability because it 

does not require the internal dynamics to be input-to-state stable. Bounds must be 

specified on the nonlinear uncertainty, but knowledge of the structure of the 

nonlinearity is not needed.  

1.3 The scope of thesis 

Chapter 2 reviews the literature on active vibration control in LTI systems and 

nonlinear aeroelastic systems and nonlinear aeroelastic analysis.  

A new theory for partial eigenvalue assignment by receptance-based active vibration 

control in the presence of inaccessible degrees of freedom is proposed in Chapter 3. 

Also, the solvability conditions are discussed. Furthermore, a lower bound on the 

maximum number of degrees of freedom inaccessible to both actuation and sensing 

is established. For simplicity, distinct eigenvalues in both open and closed loops are 

assumed. 
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Chapter 4 reports a new block decoupling vibration control algorithm based on 

eigenstructure assignment using measured receptances. The investigation in this 

research is limited to the problem of block decoupling to form two independent 

substructures from a linear multi degree of freedom system. It is straightforward to 

show that the approach can be extended to the case of multiple independent 

substructures and also diagonal decoupling in physical coordinates. The eigenvalue 

assignment is limited to the case of distinct eigenvalues in both open and closed 

loops. The number of actuators and sensors required in the case of banded damping 

and stiffness matrices is considered. The research presented is a preliminary 

theoretical study. 

Chapter 5 presents comprehensive nonlinear aeroelastic analysis of aeroelastic 

systems with softening nonlinearity using sinusoidal-input describing functions, 

numerical integration in the time domain and numerical continuation techniques. 

Complex dynamic behaviour is demonstrated using the illustration of a nonlinear 

binary flutter model with a cubic stiffness in the pitch degree of freedom. 

Chapter 6 addresses the global stability of an under-actuated wing section with 

hardening or softening nonlinearity using a robust passivity-based continuous 

sliding-mode control approach. The controller is shown to be capable of stabilising 

the system in the presence of large matched and mismatched uncertainties and large 

input disturbance. With known bounds on the input disturbance and nonlinearity 

uncertainty, the continuous control input is able to globally stabilise the overall 

system if the zero dynamics of the system are globally exponentially stable. 

Conclusions are drawn and the future work proposed in Chapter 7. 
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Chapter 2                                                                                     

Literature review 

2.1 Introduction 

The purpose of this chapter is to present an overview of literature on active vibration 

control in LTI systems and nonlinear aeroelastic systems. The literature of active 

vibration control in linear systems includes (i) eigenvalue assignment (ii) 

eigenstructure assignment and (iii) decoupling control.  

The literature of active vibration control in nonlinear aeroelastic systems covers (a) 

nonlinear aeroelastic analysis and (b) active nonlinear flutter suppression.  

2.2 Active vibration control in LTI systems 

Active vibration control, by applying control forces to structures using actuators 

based on the signals perceived by sensors, enables desired performances to be 

achieved actively. Active vibration control strategies may be classified into two 

categories: feedback and feedforward control [22]. With the availability of 

disturbance signals, feedforward active vibration control methods can effectively 

alleviate unwanted vibrations due to the disturbances. When the disturbances are not 

available, feedback active vibration control approaches are widely used and also 

employed in this research. In feedback active vibration control, the feedback may 

affect the transmission path of disturbance such that unwanted oscillations are 

suppressed. A typical technique of transmission path control is active vibration 
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isolation. On the other hand, eigenvalue assignment is a commonly used active 

vibration suppression technique to affect disturbed structures directly by relocating 

eigenvalues. Apart from assigning eigenvalues, the use of multi-input feedback 

control allows to select closed-loop eigenvectors such that the closed-loop responses 

are reshaped. The simultaneous eigenvalue and eigenvector assignment is known as 

eigenstructure assignment. Decoupling vibration control is to decouple a structure 

into substructures such that the transmitted forces between substructures are 

eliminated and desired performances are achieved for each substructure, which may 

be viewed as the combination of active vibration isolation and active vibration 

suppression. We begin with reviewing the progress of active vibration control by 

using eigenvalue assignment. 

2.2.1 Eigenvalue assignment 

In LTI systems, eigenvalues determine the decay or growth rate of system’s response. 

The problem of eigenvalue placement, relocating the eigenvalues of a linear system 

such that its behaviour is altered as desired, has received considerable attention from 

the active control and vibration communities over several decades [23]. The 

eigenvalue assignment problem has many potential applications in structural 

dynamics, including the improvement of the stability of dynamic systems, avoidance 

of the damaging large-amplitude vibrations close to resonance, and adaptive changes 

to system behaviour. Wonham [24] stated that the closed-loop poles may be assigned 

arbitrarily by complete state feedback if the system is controllable. Davison [25] 

generalised Wonham’s results for the case of incomplete state feedback and 

demonstrated that a subset of closed-loop poles can be assigned but nothing was said 

about the remaining poles of the system. Kimura [26] improved Davison’s results 
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and showed that if the system is controllable and observable, then under certain 

conditions an almost arbitrary set of distinct closed-loop poles is assignable by gain 

output feedback. Constrained output feedback in the form of fixed zeros within the 

feedback matrix [27] can lead to inexact assignment to desired locations [28]. 

Fletcher and Magni [29], Fletcher [30] and Magni [31] investigated and proved that 

exact assignment of distinct poles using real output feedback is possible in any 

controllable and observable LTI multivariable system in which the number of inputs 

plus the number of outputs exceeds the number of states. By virtue of multi-input 

feedback control, the robust pole assignment problem, featured by the requirement 

that the assigned poles should be insensitive to perturbations, was studied by 

researchers, such as Byers and Nash [32], Kautsky et al. [33, 34], Chu and Datta [35] 

and Chua [36]. 

In practice, there may be a large number of eigenvalues but only a few that are 

undesirable. Therefore, partial pole placement, where some eigenvalues are required 

to be relocated and the remaining poles are rendered unchanged, is of practical value 

in suppressing vibration and stabilising dynamic systems. Saad [37] proposed a 

projection algorithm for the partial eigenvalue assignment for first-order systems. 

Datta et al. [38] developed an closed-form solution to the partial pole assignment 

problem by state feedback control in systems represented by second order differential 

equations. The method has been generalised for the case of multi-input control [39, 

40]. Chu [36] also proposed a partial pole assignment method with state feedback for 

second-order systems. The robust partial pole placement problem was investigated in 

[41-44]. The problem of optimising control efforts in the partial eigenvalue 

assignment problem was addressed by Guzzardo et al. [45]. The problem of partial 

pole placement with time delay was considered in [46-48]. 
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Recently, Ram and Mottershead [8] developed a new theory known as the receptance 

method for eigenvalue assignment in active vibration control using measured 

receptances. The receptance method has a wealth of advantages. There is no need to 

estimate or know the mass, stiffness and damping matrices, which are usually 

obtained from a finite element model. While by conventional methods force 

equations are formed using dynamic stiffness and the algorithms are based on the 

assumption that the dimension of the system is finite and measurable at every degree 

of freedom, in the receptance method the motion of system is represented by 

displacement equations. It can be seen that a complete displacement equation is 

formed for each measured degree of freedom provided each of the external forces 

applied by a small number of actuators is measured. Therefore, there is no need to 

estimate the unmeasured state using an observer or a Kalman filter and no need for 

model reduction. A series of experimental tests using collocated accelerometers and 

inertial actuators on a T-shaped plate were carried out to demonstrate the capability 

of the receptance method in active vibration suppression [49]. Ghandchi Tehrani et al. 

[50] developed the theory of partial pole placement using measured receptance for 

single-input and multi-input state feedback control. For multi-input control case, 

partial pole assignment was implemented by the sequential assignment of poles, 

ensuring at each step that previously assigned eigenvalues were unaffected by 

spillover of the most recently assigned pair of poles. Experimental implementation 

included (1) a lightweight glass-fibre beam with MFC sensors and actuators and (2) a 

heavy modular test structure in two configurations using electromagnetic actuators 

and piezoelectric accelerometers. The terminology “receptance” has become 

generalised to the ratio of inputs and outputs, for example input and output voltage 

signals to the actuators and from sensors, so that the sensor and actuator dynamics 
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were embedded in the measured data. The application of the receptance method to 

the vibration control of large industrial scale structures [51] and flutter suppression in 

aeroelastic systems [52-54] have been described. Very recently, Ram and 

Mottershead [9] developed a new theory of pole placement in active vibration control 

using the receptance method, which allows for multi-input state feedback partial pole 

assignment in a single application of the routine and is superior to the sequential 

application of single-input control. 

2.2.2 Eigenstructure assignment 

In LTI systems, the right eigenvectors fix the shape of the mode while the product of 

initial conditions and the left eigenvectors determines the amount each mode is 

excited in the response. By the use of multi-input feedback control, the closed-loop 

system cannot be uniquely determined by only assigning eigenvalues. That is, in 

addition to the eigenvalue assignment, there exists a freedom to assign eigenvectors. 

Eigenstructure assignment, simultaneous assignment of eigenvalues and eigenvectors, 

brings out design freedom beyond eigenvalue assignment. Moore [55] identified for 

the first time this freedom offered by state feedback beyond pole assignment in the 

case where the prescribed poles are distinct. Klein and Moore [56] presented an 

eigenstructure assignment method in the case of non-distinct closed-loop eigenvalues. 

Fahmy and O’Reilly [57] introduced a parametric approach of eigenstructure 

assignment using state feedback, in which the assignable set of eigenvectors is 

dependent upon arbitrarily chosen parameters. Srinathkumar [58] investigated the 

eigenstructure assignment problem using output feedback. He derived sufficient 

conditions for the maximum number of assignable eigenvalues via output feedback 

and also determined the maximum number of eigenvectors which can be partially 
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assigned with certain number of entries arbitrarily chosen. To preserve the symmetry 

and sparseness of system matrices of second-order mechanic systems, some 

eigenstructure assignment techniques were developed for second-order mechanic 

systems. Inman and Kress [59] developed an eigenstructure assignment approach 

using inverse eigenvalue methods for mechanical systems represented by second-

order systems of differential equations. Datta et al. [60] presented a partial 

eigenstructure assignment algorithm for systems modelled by a set of second order 

differential equations such that certain eigenpairs of a vibrating system may be 

assigned while the other eigenpairs remain unchanged. Ram and Mottershead [9] 

proposed a multi-input partial pole placement method based on measured 

receptances of open-loop systems, in which some modal constraints may be imposed 

on closed-loop right eigenvectors. 

A judicious choice of a right eigenvector may be useful in reshaping closed-loop 

responses while a judicious choice of a left eigenvector may prevent a mode from 

being excited. Simultaneous assignment of eigenvalues and right eigenvectors is 

known as right eigenstructure assignment. By contrast, simultaneous assignment of 

eigenvalues and left eigenvectors is known as left eigenstructure assignment. Right 

and/or left eigenstructure assignment has been widely applied for active vibration 

control.  

Disturbance decoupling, which aims to make the disturbance have no effects on 

controlled output, was considered in [61] by right eigenstructure assignment. Sobel et 

al. [62, 63] employed eigenstructure assignment to obtain some decoupled aircraft 

motions in flight control systems. Specifically, some modes are decoupled by 

specifying some entries of the corresponding right eigenvectors to be zero. Song and 
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Jayasuriya [64] proposed an algorithm primarily for modal localisation by 

prescribing the entries associated with certain areas of closed-loop right eigenvectors 

to relatively small values. Therefore, the vibration of these areas is relative small and 

the vibrational energy is restricted to the other areas. Shelley and Clark [65] 

presented an eigenvector assignment algorithm for modal localisation in mass-spring 

systems. The closed-loop eigenvalues were kept the same as their open-loop values. 

The closed-loop eigenvectors were given by scaling the entries, related to isolated 

areas, of the complete set of open-loop eigenvectors with a small factor while the 

entries related to localised areas with a big factor. Therefore, the displacements in the 

isolated areas would be proportionally smaller than the displacements in the localised 

portions of the system. An experimental implementation of their algorithm was 

presented in [66]. Also, they generalised the idea of modal localisation to distributed 

parameters systems [67, 68]. It was also shown that the performance of modal 

localisation depends on the number of actuators. 

Zhang et al. [69] used left eigenstructure assignment to reject undesired inputs to a 

vibrating flexible beam by orthogonalising left eigenvectors to the disturbance input 

matrix. Orthogonalising left eigenvectors to disturbance input matrix may degrade 

the controllability of the system. Both controllability and the disturbance rejection 

using left eigenstructure assignment were considered simultaneously in [70]. In [69, 

70], zeros were prescribed to the entries of the desired left eigenvectors 

corresponding to nonzero entries of the forcing vector. Alternatively, Wu and Wang 

[71] minimised the inner product of each left eigenvector and each forcing vector 

such that each left eigenvector was as closely orthogonal to each forcing vector as 

possible. It is understandable that the simultaneous assignment of right and left 

eigenstructure may improve the control performance or achieve multiple control 
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objectives. However, the assignment of left eigenstructure conflicts with that of right 

eigenstructure because they are coupled with each other. Choi [72] proposed an 

algorithm for simultaneous approximate assignment of left and right eigenstructure 

such that disturbance rejection and the disturbance decoupling are approximately 

achieved. Wu and Wang [73] presented a simultaneous left and right eigenstructure 

assignment method for active vibration isolation. Specifically, the left eigenvectors 

were prescribed to be as closely orthogonal to the forcing vector of the system as 

possible and the entries associated with the concerned region of the right 

eigenvectors are constrained to relatively small values. A performance index was 

minimised such that simultaneous assignment left and right eigenstructure was 

approximately achieved. 

2.2.3 Decoupling vibration control 

Decoupling vibration control is to decouple a structure into substructures such that 

the transmitted forces between substructures are eliminated and desired performances 

are achieved for each substructure.  

A related, but different problem is that of input-output decoupling in LTI 

multivariable control. The purpose of input-output decoupling is simplification to 

form a number of single variable systems by the elimination of cross-couplings 

between the variables of the system. There is an extensive literature on this topic 

spanning several decades using state feedback (Morgan [74], Falb and Wolovich [75], 

Gilbert [76] and Descusse et al. [77]) and output feedback (Paraskevopoulos and 

Koumboulis [78], Howze [79], Denham [80] and Descusse [81]). The combined 

problem of simultaneous decoupling and pole placement in LTI multivariable 

systems was addressed by several authors [75, 82-84] and the block decoupling 
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problem was investigated [85-91]. A transfer function matrix approach with block-

decoupling was proposed by Hautus and Heymann [92] and Commault et al. [93] and 

unity-output feedback systems with decoupling and stability was investigated using a 

transfer function matrix approach [94-97], especially for vibration control of 

industrial-scale structures. Q.-G. Wang provides a detailed account of input-output 

decoupling control in the research monograph [98]. 

Although there are considerable volumes of literature devoted to the development of 

theoretical input-output decoupling methods, far less attention has been paid to the 

application of decoupling to structural vibration control. Zacharenakis [99, 100] 

investigated the decoupling problems of civil engineering structures via state/output 

feedback with the assumption that the number of inputs is equal to the number of 

outputs. Li et al. [101] proposed decoupling control law for vibration control of 

multi-story building using a diagonal mass matrix and tri-diagonal damping and 

stiffness matrices. The control laws were based on the second-order matrix 

differential equations directly. 

Almost all the existing input-output decoupling algorithms are developed based on 

first-order state space formulation. In structure dynamics, it is preferable to deal with 

dynamic equations in the second-order form rather than in the first order state-space 

form. This is due to the fact that converting the equations of motion into a first-order 

state-space formulation, the bandedness, definiteness and symmetry, of the mass 

damping and stiffness matrices are lost [102]. Also, anther obvious drawback of a 

first-order realisation is that  the system matrices become 2 2n n , which is 

computationally expensive if the order of the system n  is large [103]. The transfer 

function matrix approach, which requires much algebraic manipulation of rational 
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functions, becomes increasingly complicated as the dimension of the system 

increases.  

2.3 Active vibration control in nonlinear aeroelastic systems 

All aeroelastic systems in nature are nonlinear. It is known that linear analysis and 

active vibration control methods have limited performances in nonlinear aeroelastic 

systems. Therefore, the modelling and performance of systems can be improved by 

applying nonlinear analysis methods. A good understanding of open-loop nonlinear 

aeroelastic systems is crucial to nonlinear control design. In what follows, the 

literature starts with nonlinear aeroelastic analysis, followed by nonlinear active 

flutter suppression. 

2.3.1 Nonlinear aeroelastic analysis 

It is well known that classical linear aeroelasticity is able to provide accurate 

predictions for comparison with flight test results, including aeroelastic response to 

gust, turbulence and external excitation as well as flutter boundary estimation. 

However, aeroelastic systems are inherently nonlinear. Structural nonlinearities 

typically arise from free-play at the inter-connections between different components, 

such as the wing-pylon-engine connections or the attachment of external stores to the 

wing. Other structural nonlinearities include geometric ones due to large wing 

deflections and nonlinear damping. Aerodynamic nonlinearities may be introduced 

by shock motion in transonic flow and flow separation [10, 15]. A good 

understanding of the effects of structural and aerodynamic nonlinearities on the 

stability of aeroelastic system is crucial to the efficient and safe design of aircraft 

wings and control surfaces. The complexity of dynamic behaviour of systems with 

softening structural nonlinearity is one of the least well understood aeroelastic 
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phenomena and forms one of the topics in the thesis. Although, softening 

nonlinearities might be less prevalent than hardening ones, they are not uncommon. 

They tend to occur in structures under compressive loads such as panel buckling [16]. 

Also, kinetic heating at high Mach numbers can produce large reductions in 

structural stiffness and softening nonlinearity [15]. Therefore, the dynamics of 

aeroelastic systems with softening nonlinearity is a topic of practical engineering 

significance. 

Although there are great volumes of literature devoted to nonlinear aeroelastic 

analysis of hardening nonlinearity, far less attention has been paid to aeroelastic 

systems with softening nonlinearity. Woolston et al. [16] studied the effects of cubic 

nonlinearities on the flutter of a two-degree-of-freedom system using an analogue 

computer. They discovered that the softening spring had a destabilising effect on 

flutter. In particular, flutter could be induced below the linear flutter speed and 

oscillations above the flutter boundary were found to be highly divergent. Lee et al. 

[104] studied the flutter characteristics of a two-dimensional aerofoil in an 

incompressible flow with a cubic structural restoring force. Their numerical results, 

obtained using a fourth-order Runge-Kutta scheme, showed that the divergent flutter 

boundary was dependent upon on initial conditions when a softening nonlinearity 

was present. The system stability close to equilibrium was presented using a plot 

similar to the bifurcation diagram. They discovered that the motion was stable when 

the initial displacement was less than a threshold value at the flutter boundary. 

Beyond the flutter boundary the system diverged rapidly. Liu and Chan [105] 

investigated the limit cycle behaviour of a rigid sweptback wing with a tip mass 

connected by a tri-linear spring and aerodynamic forces determined using a doublet 

lattice method. Analysis was carried out using the harmonic balance method and a 
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fourth order Runge-Kutta procedure. Using the harmonic balance method they 

predicted stable, semi-stable and unstable LCO for hardening and softening 

nonlinearities and confirmed the predicted stable LCO by numerical integration. 

Unfortunately, the numerical integration did not show the predicted unstable and 

semi-stable LCO. Dimitriadis et al. [106] employed the extended centre manifold 

technique to predict bifurcation conditions and limit cycle oscillation amplitudes for 

simple aeroelastic systems with hardening or softening cubic stiffness nonlinearities. 

In the case of the hardening cubic nonlinearity, the extended centre manifold 

linearisation produced very good predictions of the LCO amplitudes in the nonlinear 

degree of freedom. In the case of the softening cubic nonlinearity the same method 

produced a so-called ‘worst-case’ stability boundary - a combination of the predicted 

static divergence and dynamic instability boundaries - which was found to be 

significantly narrower than the stability envelope predicted by numerical integration. 

LCO was not predicted for the case of softening cubic nonlinearity. Ghadiri and Razi 

[107] investigated the nonlinear aeroelastic analysis of rectangular flexible cantilever 

wings with cubic nonlinearity. As for hardening nonlinearity, they used a higher-

order harmonic balance method to predict the amplitude and frequency of LCO. A 

better agreement between frequency and time domain results was achieved by using 

the higher-order harmonic balance method. For the wings containing softening cubic 

nonlinearity, LCO was found not to occur in the vicinity of the linear flutter. 

According to [108], subcritical LCO induced by softening nonlinearity is unstable 

but turns into a stable large-amplitude LCO due to the existence of higher-order 

hardening nonlinearities.  

The reported nonlinear responses of aeroelastic systems with softening nonlinearity 

can be classified into two categories. First, in the presence of softening nonlinearity, 



 

25 

 

the aeroelastic responses are reported to be dependent upon initial conditions and to 

take the form of divergent flutter well below the linear flutter boundary. Secondly, 

there may exist stable, semi-stable and unstable LCO in softening nonlinear 

aeroelastic systems. In terms of stable LCO, contradictory comments can been found 

in references [105] and [108]. Stable LCO are predicted for aeroelastic systems with 

tri-linear stiffness in [105]. However, according to comments in [108], the same 

system will only result in unstable LCO because of the absence of higher-order 

hardening nonlinearity. Although it is recognised that unstable LCO exist in 

softening nonlinear aeroelastic systems, as predicted by frequency-domain methods 

in reference [105], the reporting of numerical or experimental results that show the 

presence of unstable LCO is very limited. This is usually explained by the statement 

that unstable LCO are sensitive to small perturbation. Stable LCO are not always 

reported in aeroelastic system with softening nonlinearities and ambiguous 

explanations for the destabilising effects of softening nonlinearity are present in the 

literature. It can be seen that the literature on softening stiffness nonlinearity in 

aeroelastic systems is not definitive, contains partial explanations and even 

conflicting results. 

At this point a small clarification regarding concepts of divergence and flutter (static 

and dynamic instability) will be helpful to the understanding of later discussion in 

this article. Whereas, flutter of a linear system is a dynamic instability characterised 

by an exponential growth of the oscillation with time, the flutter of a nonlinear 

system may be amplitude limited, neutrally stable and referred to as LCO. Use of the 

term ‘divergence’ will be reserved for the non-oscillatory static instability with 

dramatically increasing magnitude.  
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2.3.2 Nonlinear active flutter suppression 

Nonlinear flutter, typically limit cycle oscillation, is not infrequently encountered by 

military and civil aircraft [1, 3, 109-112] and can have catastrophic consequences as 

discussed previously. Never-the-less the requirements of next-generation flight 

vehicles place increasing and  contradictory demands on designers, typically greater 

structural flexibility, improved manoeuvrability and greater operational safety in 

severe environmental conditions [4]. Hence, active nonlinear flutter suppression 

becomes increasingly important in ensuring the safety and efficiency of future 

aircraft [17] and presents intellectual challenges that have attracted the interest of  

researchers in aerospace and control communities for more than three decades. 

In the control community, mechanical systems which have fewer independent 

actuators than degrees of freedom to be controlled are known as under-actuated 

mechanical systems [19]. The control design of under-actuated aeroelastic systems is 

of importance, firstly for reasons of actuator failure and the need to rely on fewer 

actuators. Secondly, under-actuation might be motivated by weight and cost 

constraints imposed on next-generation flight vehicles. A typical under-actuated 

aeroelastic system is a two-dimensional nonlinear wing section with a single control 

surface in incompressible flow, which is the control objective of the present thesis.  

Linear control techniques, namely pole placement [53], the linear quadratic 

regulation [18] and linear quadratic Gaussian methods [113], have been employed 

for nonlinear flutter suppression in two-dimensional wing sections with a single 

control surface, but with limited success [18]. Hence, nonlinear control 

methodologies are required for flutter suppression in nonlinear aeroelastic systems, 
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e.g. Ko et al. [114, 115] employed feedback linearisation techniques to control a 

prototypical wing section with torsional nonlinearity. 

In practice, there unavoidably exist unmodelled dynamics, parameter uncertainty, 

and external disturbances in nonlinear control systems. Adaptive and robust control 

are two of the leading techniques for uncertainty compensation. Several adaptive 

control algorithms have been proposed for control of typical wing sections with 

structural nonlinearity using a single trailing-edge control, namely adaptive feedback 

linearisation [116], structured model reference adaptive control [117], output-

feedback adaptive control [118] and backstepping-based adaptive control [119]. 

Alternatively, Lyapunov-based robust control is considered in [120] for an under-

actuated nonlinear wing section. A robust controller in the form of state feedback 

control in conjunction with a proportional-integral observer, is used for active flutter 

suppression of a nonlinear two-dimensional wing-flap system [121]. Usually, robust 

constant-gain feedback control  allows for the handling small uncertainties, while 

adaptive control is applicable for a wider range of parameter variation but is sensitive 

to unstructured uncertainty [19].  

In recent years, sliding-mode control (SMC), a variable-structure controller, has been 

developed for control design of dynamic systems under uncertainty conditions. The 

idea of sliding-mode control is to design a high-frequency switching (discontinuous) 

control law to drive the system onto a specified sliding surface in state space and 

maintain it there for all subsequent time. The resultant sliding mode is claimed to be 

insensitive to matched model uncertainties and disturbances which do not steer the 

system away from the specified surface. The advantage of sliding-mode control is its 

tolerance of large matched uncertainty and large input disturbance.   
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Continuous sliding-mode control [122], second-order sliding-mode control [123, 124] 

and dynamic sliding-mode control [125] have been applied to suppress flutter 

instability in two-dimensional nonlinear wing sections with leading- and trailing-

edge control surfaces, i.e. fully actuated aeroelastic systems. Very little research 

appears to have been carried out on the use of sliding-mode control for under-

actuated aeroelastic systems. Examples include the robust control of supersonic three 

degree-of-freedom aerofoils using sliding-mode control [126]. Gujjula and Singh 

[127] designed a discontinuous sliding-mode controller for the pitch angle trajectory 

control of an unsteady aeroelastic system with a single control surface. Of course 

control of under-actuated systems is more complicated than the control of fully-

actuated ones, requiring the consideration of globally stability and the presence of 

mismatched uncertainty.  

Usually, for under-actuated systems, local asymptotic stability can be achieved by 

existing nonlinear control techniques. However, global asymptotic stabilisation for 

tracking control of under-actuated mechanical systems is considered to be extremely 

challenging [19, 20]. For example, by using feedback linearisation techniques, the 

stability of the zero dynamics only guarantees local stability of the system, global 

asymptotical stability can only be achieved if the internal dynamics is input-to-state 

stable [21]. Under-actuated nonlinear aeroelastic systems are even more complicated 

owing to the intrinsic uncertainty and/or softening nonlinearity. 

2.4 Conclusion 

In this chapter an overview of active vibration control in LTI systems and nonlinear 

aeroelastic systems is provided. The survey of active vibration control in LTI 

systems covers eigenvalue assignment, eigenstructure assignment and decoupling 
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vibration control. Progress in nonlinear aeroelastic analysis of aeroelastic systems 

with softening nonlinearity and active vibration control for under-actuated nonlinear 

aeroelastic systems is discussed in detail. 
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Chapter 3                                                                                              

Partial pole placement with inaccessible degrees of freedom 

3.1 Introduction 

This chapter presents a new theory of partial pole placement by the receptance 

method with inaccessible degrees of freedom [128]. The classical theory of partial 

pole placement problem [38] is reviewed, which aims to show that, in the presence of 

inaccessible degrees of freedom, the partial pole placement problem becomes 

nonlinear. It is shown that this nonlinear active vibration control problem is rendered 

linear by the application of a new double input control methodology implemented in 

conjunction with a receptance-based scheme where full pole placement is achieved 

while some chosen degrees of freedom are free from both actuation and sensing. The 

necessary equations for partial pole placement with inaccessible actuators and 

sensors represented by zero terms in the input vector and the control-gain vectors are 

established. The solvability conditions that enable lower bounds on the maximum 

numbers of inaccessible actuators and sensors to be determined are established. A 

lower bound on the maximum number of degrees of freedom inaccessible to both 

actuation and sensing is achieved. Simplification provides a solution to the natural 

frequency modification problem with inaccessible degrees of freedom. Eventually, a 

series of numerical examples are used to demonstrate the working of the proposed 

theory.  
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3.2 Motivation 

The motion of the n  degree of freedom system 

  Mx Cx Kx 0  (3.1) 

where M , C  and K  are real symmetric n n  matrices and where M  is positive-

definite and C  and K are positive-semidefinite, may be altered by state feedback 

control, 

 u t  Mx Cx Kx b  (3.2) 

where 

  T Tu t  f x g x  (3.3) 

and where b , f  and g  are real vectors denoting force-distribution  and control-gain 

terms. 

It is well known that (3.1) has exponential solutions of the form 

  tt ex v  (3.4) 

for certain values of   and constant vectors v . Substituting (3.4) in (3.1) gives  

 2   M C K v 0 . (3.5) 

The quadratic eigenvalue problem (3.5) of the open loop system has a self-conjugate 

set of 2n  poles,  
2

1

n

k k



, with corresponding eigenvectors  

2

1

n

k k
v  that satisfy (3.5).  

Similarly exponential solutions of the form 

  tt ex w  (3.6) 

applied to the closed loop system (3.2) lead to the eigenvalue problem 

  2 T T     M C bf K bg w 0 . (3.7) 
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The self-conjugate set of 2n  poles,  
2

1

n

k k



, with corresponding eigenvectors 

 
2

1

n

k k
w  that satisfy (3.7) are the eigenpairs of the closed loop system. The 

eigenvalues of both the open- and closed-loop systems are assumed to be distinct, the 

case of repeated roots and defective systems to be considered in further work beyond 

the scope of the present thesis. 

To regulate the dynamic of the open loop system (3.1) it is frequently required to 

alter a subset of eigenvalues. Since the eigenvalues may be ordered arbitrarily, 

without loss of generality we may assume that the 2 2m n  poles of the self-

conjugate set  
2

1

m

k k



 associated with (3.5) are required to be changed to a 

predetermined self-conjugate set  
2

1

m

k k



 by the applied control force. To avoid 

spillover it is further requested that    
2 2

2 1 2 1

n n

k kk m k m
 

   
 . These conditions may be 

thus written in the form 

1,2,...,2

2 1,2 2,...,2 .

k

k

k

k m

k m m n







 

  
 (3.8) 

The classical problem of partial pole placement by state feedback control is 

formulated as follows. 

Problem 1: Partial pole assignment by state feedback control  

Given: M , C , K , b  and a self-conjugate set  
2

1

m

k k



 

Find: f , g  such that the poles of (3.7) form the closed-conjugate set 

(3.8).  

Datta, Elhay and Ram [38] gave the following closed form solution to Problem 1,  

m mf MV Λ β , (3.9) 
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m g KV β  (3.10) 

and 

2

1

1
, 1,2,...,2

m
i i k i

i T
ki i k i
k i

i m
   


  



 
 




b v
 (3.11) 

where 

 , 1,2,...,2m kdiag k m Λ , (3.12) 

 1 2 2m mV v v v  (3.13) 

and 

 1 2 2

T

m  β . (3.14) 

We note in passing that it follows from (3.11) that if 0T

k v b , 2k m , the -thk pole 

is not movable by a finite control force. It is invariant regardless of f and g .  

By inspection of the solution we realize that in general we may choose for example

1b e , where ke  is the -thk unit vector of appropriate dimension, and solve Problem 

1. The solution however would generally lead to fully populated vectors of control 

gains f  and g . The physical meaning is that the state feedback control may be 

implemented in general by one actuator and n  sensors measuring the complete state 

of the system in real time. In practice, however, some of the degrees of freedom may 

not be accessible to both sensing and actuation. For brevity we will refer to such 

degrees of freedom as the inaccessible degrees of freedom.  

Since the degrees of freedom may be numbered arbitrarily, without loss of generality 

we may assume that the last p  degrees of freedom are inaccessible. Let 

     
2 2 2

T T T

k k k k   e b e f e g , (3.15) 

then the condition 
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1

0
n

k

k n p


  

 , (3.16) 

implies that there is no need to sense or actuate the last p  degrees of freedom since 

every term in (3.16) is non-negative and therefore 0k k kb f g    for 

1, 2,...,k n p n p n     .  

In addressing the problem of state feedback control with inaccessible degrees of 

freedom we may thus attempt to modify Problem 1 to the problem of finding b , f  

and g  subject to the constraint (3.16). Problem 1, which is linear, would then be 

changed to a non-linear problem since the unknowns elements of b  interact with the 

unknown elements of f  and g  nonlinearly.  

It will be shown in this chapter that with a new double-input controller taking form  

   1 2u t u t   1 2Mx Cx Kx b b  (3.17) 

where, 

 1

T Tu t  f x g x  (3.18) 

 2

T Tu t  f x g x  (3.19) 

it is possible to solve in a linear fashion the partial pole placement with inaccessible 

degrees of freedom. In (3.17) the vectors 1b and 2b  represent the distributions of 

control forces. The magnitudes of individual terms denote amplification factors to be 

applied to the inputs 1u and 2u . The closed loop quadratic eigenvalue problem 

associated with (3.17) in conjunction with (3.18) and (3.19) then becomes 

    2 2

1 1 2 2

T T T T        M C K w b f b g b f b g w  (3.20) 

or 

      2

1 1 2 2

T T T T       M b f C b g b f K b g w 0   (3.21) 
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The control force on the right-hand-side of (3.20) may be rewritten as 

     2

1 1 2 2 1 2

T T T T T T        b f b g b f b g w b b f g w  (3.22) 

so that the eigenvalue problem (3.20) becomes 

    2

1 2

T T       M C K w b b f g w  (3.23) 

 and the condition (3.16), with  

       
2 2 2 2

1 2

T T T T

k k k k k    e b e b e f e g  (3.24) 

ensures that there is no need to actuate or sense the last p  degrees of freedom of the 

controlled system (3.17). 

The problem under consideration is thus  

Problem 2: Partial pole assignment with inaccessible degrees of freedom 

Given: M , C , K ,  
2

1

m

k k



 and 0 p n   

Find: 1b , 2b , f  and g  such that the poles of (3.23) form the set (3.8) 

and the condition (3.16), in conjunction with (3.24), is satisfied.  

3.3 Immovable and assigned eigenvalues 

We begin by writing the open-loop and closed-loop eigenvalue problems, (3.5) and 

(3.23), as 

 2 , 1,2,...,2k k k k n    M C K v 0  (3.25) 

and 

    2

1 2 , 1,2,...,2T T

k k k k k k k n        M C K w b b f g w  (3.26) 

with the understanding that 

, 2 1,2 2,...,2k k k m m n      (3.27) 

and 
2

1

m

k k



are assumed to be distinct from  

2

1

n

k k



.  
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It is apparent that the matrix   1 2

T T

k k  b b f g  is asymmetric, so that the 

closed-loop eigenvalue problem may be expressed in terms of the left eigenvector 

kψ , 

    2

1 2 , 1,2,...,2T T T T

k k k k k k k n        ψ M C K ψ b b f g   (3.28) 

It follows from (3.26) that 
k k   and k kw v whenever 

  0T T

k k  f g v   (3.29) 

and from (3.28) that k k   and k kψ v  when 

 1 2 0T

k k  v b b   (3.30) 

We now partition the set of unchanged eigenvalues    
2 2

2 1 2 1

n n

k kk m k m
 

   
 , closed 

under conjugation, so that those eigenvalues with indices 2 1, ,2k m   , rendered 

unchanged by virtue of (3.29), are separated from those with 2 1, ,2k n  , given 

by satisfaction of (3.30) and m n   . To summarise, there are 2m  eigenvalues to 

be assigned arbitrarily,  2 m   that are unchanged due to (3.29) and  2 n 

unchanged due to (3.30) as shown in Fig. 3.1 

 

Fig. 3.1  Eigenvalues assigned and retained 

 

To ensure that    
2 2

2 1 2 1k kk m k m

 
 

   
  we re-write equation (3.29) in the form 

 
 

 

f
Q 0

g
 (3.31) 

where 
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2 1 2 1 2 1

2 2 2 2 2 2

2 2 2

T T

m m m

T T

m m m

T T

  







  

  

 
 
 
 
 
 

v v

v v
Q

v v

 (3.32) 

Likewise equation (3.30) may be recast to ensure    
2 2

2 1 2 1

n n

k kk k 
 

   
  

1

2

 
 

 

b
Φ 0

b
 (3.33) 

where 

2 1 2 1 2 1

2 2 2 2 2 2

2 2 2

T T

T T

T T

n n n

  

  







  

  

 
 
 
 
 
 

v v

v v
Φ

v v

, (3.34) 

The rows of Q  and Φ  are independent when the retained eigenvalues of the open-

loop system are distinct. 

The assignment of 2m eigenvalues  
2

1

m

k k



 is achieved as in [9] by the satisfaction of 

characteristic equations arranged in the form, 

 
 

 

f
P e

g
 (3.35) 

where 

   

1 1 1

1
2 22 2 2

1 2

2 2 2

1

1
, ,

1

T T

T T

m

k k k k

T T

m m m




  





   
   
         
   
   

  

r r

r r
P r M C K b b e

r r

. (3.36) 

The rows of P are independent when the assigned eigenvalues  
2

1

m

k k



 are distinct. 
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3.4 Degrees of freedom free of actuation and sensing 

Let us assume that the number of inaccessible actuators is 1p , 10 p n  , the number 

of inaccessible sensors is 2p , 20 p n   and zero entries are placed in the last 1p  

terms of 1b  and 2b  and in the last 2p terms of f  and g . Since there is no restriction 

on the choice of degrees of freedom to be assigned zero entries, we may write 

1

2

 
 

 

b
E 0

b
  (3.37) 

where 

1

1

1

2

n p

n p

n

 

 

 
 
 
 
 
 

E

E
E

E

 (3.38) 

In addition, 

.
 

 
 

f
E 0

g
 (3.39) 

where 

2

2

1

2

n p

n p

n

 

 

 
 
 
 
 
 

E

E
E

E

 (3.40) 

and kE  is a 2 2n  matrix 

T

k

k T

k n

 
  
 

e
E

e
. (3.41) 

The rows of E  and  E  are by definition independent. 
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3.5 Lower bounds on the maximum numbers of inaccessible actuators and 

sensors 

In this section conditions are established that determine lower bounds on the 

maximum numbers of inaccessible actuators and sensors. These include the existence 

of nontrivial solutions for the force-distribution terms  1 2

T
T T

b b  and that such 

solutions are always admitted when  1 1p   . Then the conditions under which 

exact solutions are admitted for the control gains  
T

T T
f g  are established. It is 

shown that certain identical exact solutions are available for  2p n    to 

guarantee at least  n   null terms in f  and g . Thus the lower bounds on the 

maximum numbers of inaccessible actuators and sensors are found to be 

 1 1 1p p     and  2 2p p n     respectively. 

We begin by establishing the necessary systems of equations. Thus, by combining 

equations (3.33) and (3.37), 

1

2

    
    

    

bΦ 0

bE 0
  (3.42) 

and also equations (3.31), (3.35) and (3.39), 

   
         
       

P e
f

Q 0
g

E 0

  (3.43) 

The inaccessible actuators and sensors are denoted by vanishing entries placed in the 

last 1p  terms of 1b  and 2b  and in the last 2p terms of f  and g respectively. Thus, 
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 

 

 

 

1 2

1 2

1

1 11

2 2

1 1

;
p p

p p

 

 

  
  

      
       

     
   
   

b f

0 0b f

b gb g

0 0

  (3.44) 

Then equations (3.31), (3.33) and (3.35) may be recast in the form, 

     1 1

1

1 2 1 2: ,1: : , 1:2

2

; ;
n p n n p  

 
   

 

b
Φ Φ 0 Φ Φ Φ Φ

b
  (3.45) 

   

   

2 2

2 2

1 2: ,1: : , 1:21 2

1 2 1 2: ,1: : , 1:2

;
;

;

n p n n p

n p n n p

  

  

     
         

P P P PP P ef

Q Q 0 Q Q Q Qg
  (3.46) 

where, 

     1 2

1 2 1 2

1 2

dim 2( ) 2 ; dim 2 2n n p n p 
 

       
 

P P
Φ Φ

Q Q
  (3.47) 

Lemma 3.1: There exists a non-trivial solution  1 2

T
T T

b b  to equation (3.42) if and 

only if    1 2 1rank 2 n p Φ Φ . 

Proof: The necessary and sufficient condition for the existence of a nontrivial 

solution to a homogeneous system of linear equations is that the rank of the 

coefficient matrix is smaller than the number of unknowns. 

□ 

Corollary 3.1: There always exists a non-trivial solution  1 2

T
T T

b b  to equation 

(3.42) when 1 1p   . 

Proof: From (3.47), if 1 1p    then   1 2nullity 2Φ Φ .  

Therefore, a nontrivial solution is available from, 



 

42 

 

 1

1 2

2

; null
 

  
 

b
Nα N Φ Φ

b
  (3.48) 

where α is an arbitrarily chosen parameter vector and 1 1p   denotes the number 

of null entries in  1 2

T
T T

b b . 

□ 

Corollary 3.2: The lower bound on the maximum number of inaccessible actuators 

is given by 1 1p   . 

Proof: If 1 1p    and 12  of the  2 n  rows of  1 2Φ Φ  are redundant then 

  1 2 1nullity 2 2 Φ Φ  and a further 1  inaccessible actuators may be admitted 

while still ensuring that 2( )n   eigenvalues remain unchanged. Therefore the lower 

bound on the maximum number of inaccessible actuators is given when 1 0  so 

that 1 1 1p p    . 

□ 

Lemma 3.2: There always exists one or more identical exact solutions  
T

T T
f g  to 

equation (3.43) for different  2p n    when 

2 2

1 2 1 2

1 2 1 2

rank rank

p n p n    

   
   

   

P P P P e

Q Q Q Q 0
, and any other solution requires a 

greater number of sensors. 

Proof: One or more exact solutions exist when 

2 2

1 2 1 2

1 2 1 2

rank rank

p n p n    

   
   

   

P P P P e

Q Q Q Q 0
so the right-hand-side of equation 
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(3.46) is given by a linear combination of the columns of 

2

1 2

1 2 p n  

 
 
 

P P

Q Q
. However, 

any exact solution when  2p n    is also a solution when  2p n    because 

the columns of 

2

1 2

1 2 p n  

 
 
 

P P

Q Q
 are included in 

2

1 2

1 2 p n  

 
 
 

P P

Q Q
. Other solutions exist 

when  2p n   but are given by the linear combination of a greater number of 

columns, therefore requiring a greater number of sensors. 

□ 

Corollary 3.3: If 

2 2

1 2 1 2

1 2 1 2

rank rank

p n p n    

   
   

   

P P P P e

Q Q Q Q 0
 then the lower 

bound on the maximum number of inaccessible sensors is given by 2p n   . 

Proof: If 22  of the 2  rows of 

2

1 2

1 2 p n  

 
 
 

P P

Q Q
 are redundant then 

2

1 2

2

1 2

nullity 2

p n  

  
      

P P

Q Q
 and a further 2  inaccessible sensors may be 

admitted while still ensuring that  2 m   eigenvalues remain unchanged and 2m  

eigenvalues are assigned.  Therefore the lower bound on the maximum number of 

inaccessible sensors is given when 2 0  so that 2 2p p n    . 

□ 

The solution of equation (3.43) is dependent upon the solution of (3.42) in that the 

eigenvalues to be assigned must be controllable. This imposes a condition on the 

solution of (3.42) that, 
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1

2

0; 1,2, ,2T T

k k k k m
 

     
 

b
v v

b
  (3.49) 

or, 

 
 1

1

1:

2

0;T T

k k k k k n p




 
     

 

b
v v v v

b
  (3.50) 

Lemma 3.3: The eigenvalues to be assigned in (3.43) are controllable when the α is 

chosen so that 

0; 1,2, ,2T T

k k k k m    v v Nα   (3.51) 

Proof: 

Equation (3.50) may be obtained by the combination of equation (3.51) with (3.48). 

□ 

3.6 Lower bound on the maximum number of inaccessible degrees of freedom 

The numbers of degrees of freedom inaccessible to actuation and sensing are 1p  and 

2p  respectively. Our objective is to have equal values for 1p  and 2p so that the 

number of inaccessible degrees of freedom is maximised. It was already shown that 

the lower bound on the maximum numbers of inaccessible actuators is 1 1p   and 

if equation (3.43) is satisfied for 2 2p p n    , the lower bound on the maximum 

numbers of inaccessible sensors is 2p n   . Therefore, under the solvability 

condition, a lower bound on the maximum inaccessible degrees of freedom may be 

achieved by equating 1 1p    and 2p n   . 

We have already established that the eigenvalues can be separated into three groups: 

  2m  eigenvalues to be assigned  

  2 m   eigenvalues to be unchanged due to equation (3.29) and  

  2 n   eigenvalues to be unchanged due to equation (3.30).  
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where n m  .  

Equal numbers of degrees of freedom without sensing and actuation can be achieved 

when 1 2p p , so that 1 n     and is possible when n  is odd and 
1

2

n
m


 , in 

which case 
1

2

n



 .  This case is illustrated in Fig. 3.2 where it is seen that it 

corresponds to an optimal maximum solution  
1 2

1

2

n
p p p


    of equations 

(3.42) and (3.43).  

When n  is even and 
1

2

n
m


  a sub-optimal solution is obtained as shown in Fig. 

3.3. This results in two solutions or 1
2 2

n n
     corresponding to 1

2

n
p   . 

In practice, 1
2

n
   is preferable because it requires fewer actuators than sensors. 

When 
1

2

n
m


  and m  then the only solution available is that denoted by the 

thick line in Fig. 3.4. We are free to choose any value of p n    on the thick line 

and the best available solution is m  . This solution results in fewer degrees of 

freedom free of sensing than those free of actuation and, as such, is a practical 

solution because fewer actuators are required than sensors. 

To summarise: 

Case 1 - n  is an odd number and 
1

2

n
m


 : 

1 1
;

2 2

n n
p

 
    (3.52) 

Case 2 - n  is an even number and 
1

2

n
m


 : 
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or 1; 1
2 2 2

n n n
p        (3.53) 

Case 3 - 
1

2

n
m


 : 

;m p n m      (3.54) 

 

 

Fig. 3.2  Number of inaccessible degrees of freedom (Case 1) 

 

 

Fig. 3.3  Number of inaccessible degrees of freedom (Case 2) 
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Fig. 3.4  Number of inaccessible degrees of freedom (Case 3) 

The procedure for partial pole placement with inaccessible degrees of freedom may 

be summarised as follows: 

1. Determine  such that the lower bound on the maximum number of 

inaccessible degrees of freedom is achieved;  

2. Choose 1 1p   and 2p n    and check the solvability of equation (3.43);  

3. Solve equations (3.42) and (3.43). 

Sufficient conditions for achieving the lower bound of the maximum number of 

inaccessible degrees of freedom are: 

1. The force distribution vector should not be orthogonal to the first 2m modes 

(by choice of vector α ); 

2.  

2 2

1 2 1 2

1 2 1 2

rank rank

p n p n    

   
   

   

P P P P e

Q Q Q Q 0
. 

3.6.1 Example 3.1 

Consider the open loop system with 
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3

10

20

12

 
 
 
 
 
 

M , 

2.3 1

1 2.2 1.2

1.2 2.7 1.5

1.5 1.5

 
  
 

  
 

 

C ,  

40 30

30 60 30

30 90 30

30 30

 
  
 

  
 

 

K . 

The open-loop eigenvalues are 

1,2

3,4

5,6

7,8

= 0.0108  0.8736i

= 0.0809  1.6766i

= 0.1336 2.5280i

= 0.3980 4.0208i.









 

 

 

 

 

We wish to assign the first two pairs of eigenvalues while the remaining eigenvalues 

are unchanged 

1,2

3,4

0.03 1i

0.1 2i.





  

  
 

Following the analysis given in Section 3.6 the system has 1p   degree of freedom 

inaccessible when either 2   or 3  . Here we choose 2    and then 1 1p   and 

2 2p   . Equation (3.43) is found to be solvable. The vector  1 2

T
T T

b b is required to 

be orthogonal to the last two pairs of open-loop eigenvectors 

1

2

 
 

 

b
Φ 0

b
 

where  

5 5 5

6 6 6

7 7 7

8 8 8

T T

T T

T T

T T









 
 
 
 
 
 

v v

v v
Φ

v v

v v
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 

 

5

7

0.0941 0.2578i 0.0829 0.1727i  0.1056 0.2807i 0.0738 0.1775i

0.0535 0.2107i 0.0220 0.0613i 0.0033 0.0077i 0.0006 0.0014i

T

T

       

      

v

v

6 5 8 7,  v v v v . 

It is assumed that the fourth degree of freedom is inaccessible.  Then 

1

4

2

 
 

 

b
E 0

b
 

where 

4

0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 1

 
  
 

E . 

Then  

      
1

1 2 1 2:,1:3 :,5:7

2

, null , and .
 

    
 

b
Nα N Φ Φ Φ Φ Φ Φ

b
 

By choosing  0.5 1
T

α , we obtain 

1 2

0.1277 0.2199

0.4544 1.0059
, .

0.3831 0.9057

0 0

   
   

    
   
   
   

b b  

Also, from  

3

4

   
         
       

P e
f

E 0
g

E 0

 

where 

1 1 1

2 2 2

3 3 3

4 4 4

T T

T T

T T

T T









 
 
 
 
 
 

r r

r r
P

r r

r r

, 1

0.0869 + 0.0672i

0.1165 + 0.0848i

0.1399 + 0.0916i

0.2343 + 0.1512i

 
 
 
 
 
 

r , 3

0.0547 + 0.0592i

0.0613 + 0.0615i

0.0168 + 0.0162i

0.0278 0.0269i

 
 
 
 
 

 

r , 

2 1 4 3,  r r r r , 
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 1 1 1 1T e , 

and 

3

0 0 1 0 0 0 0 0

0 0 0 0 0 0 1 0

 
  
 

E  

the control gains are found to be  

0.4784 17.1376

4.8277 7.3027
,

0 0

0 0

   
   

    
   
   
   

f g . 

The last two terms of g and f are made zero so that there is one totally inaccessible 

degree of freedom and a further degree of freedom where there is actuation but no 

sensor. 

Now closed-loop system becomes 

     1 1 2 2 0T T T T      M b f x C b g b f x K b g x  

with roots given by 

1,2

3,4

5,6

7,8

= 0.03 1i

= 0.1 2i

= 0.1336 2.5280i

= 0.3980 4.0208i









 

 

 

 

 

which are exactly the prescribed eigenvalues. 

3.7 The natural frequency modification problem 

The natural frequency modification problem is the problem of spectrum modification 

by feedback control in the simplified case when both the open-loop and the closed-

loop systems are undamped. Then the open loop eigenvalue problem (3.5) is reduced 

to 
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  , 1,2,...,k k k n  K M v 0  (3.55) 

and the closed loop system (3.20) becomes 

  , 1,2,...,T

k k k k n  K M w bg w . (3.56) 

and, in terms of the left eigenvectors 

  , 1,2,...,T T T

k k kk
k n  ψ K M ψ bg   (3.57) 

We note that (3.56), (3.57) is an eigenvalue problem by position feedback control.  

Here we want to modify the natural frequencies such that 

1,2,...,

1, 2,...,

k

k

k

k m

k m m n







 

  
 (3.58) 

where  
1

m

k k



 is a predefined set of non-negative real eigenvalues.  

The condition for inaccessibility of the last p  degrees of freedom is 

    
2 2

1

0
n

T T

k k

k n p  

  e b e g  (3.59) 

With these definitions Problem 2 is reduced to the following problem. 

Problem 3: Natural frequency modification with inaccessible degrees of freedom 

Given: M , K ,  
1

m

k k



and 0 p n   

Find: b , g  such that the poles of (3.56) form the set (3.58) and the 

condition (3.59) is satisfied. 

The no spillover condition    
1 1

n n

k kk k 
 

   
  is imposed by the linear constraint, 

Φb 0  (3.60) 

where 
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1

2

T

T

T

n









 
 
 
 
 
 

v

v
Φ

v

 (3.61) 

The constraint  
1 1

0
n

k k n p
b

  
 , which renders the last 1p degrees of freedom 

inaccessible to actuation, is imposed by 

1

1

1

2

T

n p

T

n p

T

n

 

 

 
 
  
 
 
 

e

e
b 0

e

 (3.62) 

or 

Eb 0 . (3.63) 

Combining (3.60) and (3.63) leads to  

 
 

 

Φ
b 0

E
 (3.64) 

There exists a non-trivial solution to equation (3.64) when rank n
 

 
 

Φ

E
. 

Consequently, equation (3.64) always has a nontrivial solutions when 1 1p   . 

Then, the non-trivial solution for input vector b  is given by 

 

   1

1

1

1 1 1 1 :, 1:

1

, , null , .
n p

p





 
    
 
 

b
b b Nα N Φ Φ Φ

0
 (3.65) 

where α is an arbitrary vector.  

The terms α should be chosen such that the eigenvalues to be assigned are 

controllable. 

The modification of m  eigenvalues is achieved by satisfaction of the linear equations 

Pg e  (3.66) 
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where 

 

1

12

1

1
, ,

1

T

T

m

k k

T

m




   
   
       
   
   

  

r

r
P r K M b e

r

 (3.67) 

The no spillover condition    
1 1k kk m k m

 
 

   
 is imposed by the linear constraints 

Qg 0  (3.68) 

where 

1

2

T

m

T

m

T







 
 
 
 
 
 

v

v
Q

v

 (3.69) 

The control gains g  with 2p  degrees of freedom inaccessible to sensing 

 
2 1

0
n

k k n p
g

  
 , are then determined by solving 

2

2

1

2;

T

n p

T

n p

T

n

 

 

 
     

     
          

 

e
P e

e
Q g E0

E 0
e

 (3.70) 

Let  

 

 

2

2

1 1: ,1:

1 1: ,1:

m n p

m n p



 





P P

Q Q
 (3.71) 

Equation (3.70) is solvable when 2p n   and
1 1

1 1

rank rank
   

   
   

P P e

Q Q 0
. 

Similar to the previous analysis in section 3.5, the lower bound on the maximum 

number of inaccessible actuators is given by 1 1p   . When equation (3.70) is 

satisfied for 2 2p p n    , the lower bound on the maximum number of 
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inaccessible sensors is given by 2p n   . Hence, under the solvability condition, 

the maximum number of inaccessible degrees of freedom is given by exactly the 

same analysis as in Section 3.6. 

3.7.1 Example 3.2  

Consider the five degree-of-freedom mass-spring system shown in Fig. 3.5. 

 

Fig. 3.5  The five degree-of-freedom system  

The system matrices are given by 

M I , 

2 1

2 1 1

1 1

1 2 1

1 1 2

 
  
 

  
 
  
   

K . 

The open-loop eigenvalues are 

1 2 3 4 5= 0.0810, =0.6903, =1.7154, = 2.8308, = 3.6825.      

We wish to assign the first two eigenvalues while the remaining eigenvalues are 

unchanged 

1 2= 0.5, =1.   

According to the analysis in section 3.6, two inaccessible degrees of freedom are 

achievable when 3  . Hence 1 2p  and 2 2p  . It will be shown later on that 

equation (3.70) is solvable. In accessibility of 4x and 5x  requires that 

4

5

0

T

T

 
 

 

e
b

e
 

where 
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 4 0 0 0 1 0T e  

 5 0 0 0 0 1T e . 

Also the term b  is required to be orthogonal to of the last two open-loop 

eigenvectors 

4

5

T

T

 
 

 

v
b 0

v
 

where  

 4 0.5485 0.5969 0.3260 0.4557 0.1699T   v  

 5  0.3260 0.4557 0.1699 0.5485 0.5969 .T    v  

Then 

   1 1 1 :, 1:3
, null , .  b N N Φ Φ Φ  

By choosing 10.3781   , it is found that  

1

4.2287

.9.4246

0

0

 
 
 
 
 
 
 
 

b  

To reassign the first two eigenvalues, g should satisfy the characteristic equations 

1

2

T

T

 
 

 

r
g 0

r
,  

the no spillover condition 3 3   requires that 

3 0T v g , 

and because the last two degrees of freedom 4x and 5x  are inaccessible 

4

5

0

T

T

 
 

 

e
g

e
. 

Hence, by solving  
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1

2

3

4

5

1

1

0

0

0

T

T

T

T

T

   
   
   
    
   
   
     

r

r

gv

e

e

 

where 

 1 14.5759 6.7160 5.4172 22.8638 19.7198T     r , 

 2 9.4246 9.4246 12.6533 8.4246 1T    r , 

and 

 3 0.5969 0.3260 0.4557 0.1699 0.5485T   v  

it is found that 

0.0330

0.1005

0.0287

0

0

 
 

 
  
 
 
 
 

g . 

Now closed-loop system becomes 

  0T  Mx K bg x  

with roots given by 

1 2 3 4 5= 0.5, =1, =1.7154, = 2.8308, = 3.6825      

which are exactly the prescribed eigenvalues. 

3.8 Conclusion 

A new theory for partial eigenvalue assignment by active vibration control in the 

presence of inaccessible degrees of freedom is proposed. A new double-input 

feedback control involved acceleration, velocity and displacement feedback is 

described. The eigenvalues of the open-loop system, intended to be unchanged, are 
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maintained in the closed-loop system by the application of orthogonality conditions 

on the input and feedback gain vectors. The flexibility from the new double-input 

feedback control and the combination of partial controllability and partial 

observability allows the simultaneous imposition of zero terms on the input and 

feedback gains vectors, resulting in the appearance of zero terms in desired locations 

corresponding to degrees of freedom inaccessible to both actuation and sensing. The 

methodology is based entirely on linear systems of equations, thereby avoiding the 

need to use nonlinear optimisation routines. Lower bounds on the maximum numbers 

of inaccessible actuators and sensors are given and the corresponding conditions are 

established. By equalising the maximum numbers of inaccessible actuators and 

sensors, a lower bound on the maximum number of inaccessible degrees of freedom 

allowed for precise implementation of partial pole placement is given. After 

simplification of the theory, active natural frequency modification is described. The 

theory is of practical value to the vibration control of large-dimension structures with 

many inaccessible degrees of freedom. In the next chapter, multiple-input feedback 

control will be considered, which allows the closed-loop eigenvectors to be assigned 

apart from eigenvalues and consequently will produce extra control design freedom. 
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Chapter 4                                                                                              

Block-decoupling vibration control using eigenstructure assignment 

4.1 Introduction 

In this chapter, a new block decoupling vibration control algorithm based on 

eigenstructure assignment using measured receptances is proposed for structural 

vibration control [129]. Apart from eigenvalue assignment, modal degree of freedom 

constraints are imposed such that the matrix of closed-loop right eigenvectors is 

block-diagonalised, leading to block diagonal matrices of the second-order system in 

physical coordinates. Consequently, the system is decoupled into substructures with 

desired closed-loop performances. Specifically, the block-diagonal receptance matrix 

is introduced and eigenstructure assignment by the method of receptances is briefly 

reviewed. The block decoupling vibration control algorithm for undamped and 

damped systems with lumped masses is explained. The number of actuators and 

sensors required in the case of banded damping and stiffness matrices is considered. 

The methodology is extended to cope with damped systems with inertia coupling 

using a hybrid block-decoupling vibration control law by the application of 

acceleration, velocity and displacement feedback control. The merit and performance 

of the block decoupling control method are exemplified by several numerical 

examples.  

In this chapter we consider from a purely theoretical point of view, the feasibility of 

decoupling multi-degree of freedom systems to form substructures that are 
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completely isolated from one another by active vibration control. The research 

presented is a preliminary study, which might be deemed timely in view of 

contemporary interest in lightweight and deployable structures, piezo-based actuators 

and sensors with proven capability and a related literature on active input-output 

decoupling. For the purpose of simplicity, we limit the investigation in this chapter to 

the problem of block decoupling to form two independent substructures from a linear 

multi-degree of freedom system. It is straightforward to show that the approach can 

be extended to the case of multiple independent substructures and also diagonal 

decoupling in physical coordinates.  

4.2 The closed-loop block-diagonal receptance matrix 

The equation of motion of the n  degree of freedom linear system may be cast in 

second-order form as, 

  Mx Cx Kx 0  (4.1) 

where M , C and K  
n n are symmetric matrices, M is positive definite and C and 

K are positive semi-definite. denotes the field of real numbers. 

Now, velocity and displacement feedback is applied to decouple and control the 

system so that the closed-loop system may be written as, 

   T T    Mx C BF x K BG x 0   (4.2) 

where 
n qB is the force distribution matrix, and n qF G are velocity and 

displacement feedback control gain matrices respectively, q  is the number of control 

inputs. 

The dynamic stiffness matrix of the closed-loop system is denoted by, 

     2ˆ T Ts s s    Γ M C BF K BG  (4.3) 
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Correspondingly, the closed-loop receptance matrix is the inverse of the dynamic 

stiffness, 

   1ˆ ˆs sH Γ  (4.4) 

where  ̂  denotes the closed-loop system.  

A list of integers  1 2, , , vn n n is called a partition of n  if 1, =1, 2, ,in i v  and 

1

v

i

i

n n


 .  

The closed-loop dynamic system is said to be block diagonal with respect to the 

partition  1 2, , , vn n n  if the receptance matrix takes the form, 

 

 

 

 

11

22

ˆ

ˆ
ˆ

ˆ

s

s
s

s

 
 
 

  
 
 
 

H 0

H
H

0 H

 (4.5) 

where    ˆ , 1, 2, ,i in n

ii ps s i v


 H ,  i in n

p s


is the ring of proper rational 

functions. In the special case when v n  and 1, =1, 2, ,in i v , the closed-loop 

system is said to be diagonally decoupled. For a linear system with closed-loop 

receptance (4.5), the dynamic behaviour may be expressed as, 

     ˆ s s sH q x  (4.6) 

where  sq  and  sx  are the external forces and displacement responses 

respectively, indicating that a substructure with receptance matrix  ˆ
ii sH  is 

independent of other substructures under the external force  sq .  

In the paper, we show how a multi-degree of freedom linear structure can be 

decoupled into two independent substructures ( 2v  and 1 2n n n  ) by a new block 
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decoupling algorithm. The algorithm can be extended straightforwardly to the case of 

multiple independent substructures and also diagonal decoupling in terms of physical 

coordinates. 

4.3 Pole placement by the method of receptances 

Multi-input active vibration control is proposed in this article by pole placement 

using the method of receptances proposed by Ram and Mottershead [9]. They 

showed that when the open-loop system is controllable, there exists a solution to the 

system of equations,  

1 1 1 1

2 2 2 2

2 2 2 2

T T T

T T T

T T T

n n n n







   
  

           
  

   

w w α

Fw w α

G

w w α

 (4.7) 

thereby assigning closed-loop eigenvalues  
2

1

n

k k



, closed under conjugation, by the 

application of displacement and velocity feedback control gains ,F G .  

Terms appearing in (4.7) are given by Ram and Mottershead [9] as, 

,1 ,1 ,2 ,2 , , , 1,2, ,2
k k k k k k kk q q k k n             w r r r R α  (4.8) 

1
2

,1 ,2 , ;
k k k k k kq k k       



         R r r r H B H M C K  (4.9) 

,1 ,2 ,k k k

T

k q       α  (4.10) 

and ,k j are arbitrary parameters. 
k

H are open-loop receptance matrices which may 

be measured experimentally and kw  are the closed-loop right eigenvectors. 

Constraints may be applied at the j
th

 degree of freedom of the k
th

 mode by the choice 

of ,k j , 

0
k

T T

j k j k e w e R α  (4.11) 



 

63 

 

where je denotes the -thj unit vector. 

It is assumed in the following sections that equation (4.7) is solvable and the closed-

loop eigenvalues are closed under conjugation - to ensure strictly real ,F G . 

4.4 Block-decoupling control for undamped structures 

To illustrate the idea of block-decoupling control, we begin with the problem of 

undamped systems. The equations of motion of the open-loop and closed-loop n  

degree-of-freedom undamped systems ( C 0 , F 0 ) may be written as , 

 Mx Kx 0  (4.12) 

and 

 T  Mx K BG x 0   (4.13) 

The closed-loop eigenvalue problem is  

   , 1,2, ,T

k k k n   K BG M w 0   (4.14) 

or 

 T  K BG W MWΛ 0   (4.15) 

We consider the problem of block decoupling the closed-loop system with respect to 

the partition  1 2n n . By choice of parameters ,k j  to satisfy equation (4.11), 

modal degree of freedom constraints may be imposed on right eigenvector 
kw , 

1 1 1

1 1 1

0, 1, 2, , , 1, 2, ,

0, 1, 2, , , 1, 2, ,

jk

jk

w j n n n k n

w j n k n n n

    

    
 (4.16) 

where jkw , is the thj  entry of the thk right eigenvector of the closed-loop system. 

This leads to the block-diagonal matrix of mode shapes, 
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11

22

 
  
 

W 0
W

0 W
  (4.17) 

and n nW , 1 1

11

n nW , 2 2

22

n nW and zero matrices inside are of proper 

dimension. 

Lemma 4.1: The closed-loop stiffness and receptance matrices will be block 

diagonal with partition  1 2n n  with assigned closed-loop system eigenvalues when 

the closed-loop right eigenvector matrix W  is block diagonal with the same partition 

and M is a lumped mass matrix. 

Proof: Since the system is controllable, distinct eigenvalues  1 2, , , n    may be 

assigned with block-diagonal constraints on W  by the method of receptances using 

equation (4.7) (described in full by Ram and Mottershead [9]). When block-diagonal

W  has partition  1 2n n , then 

1

1 11

1

22







 
  
 

W 0
W

0 W
 (4.18) 

Hence, from equation (4.15), the closed-loop stiffness matrix  

  1T  K BG MWΛW  (4.19) 

is block diagonal with respect to the partition  1 2n n . Consequently, the closed-

loop dynamic stiffness and receptance matrices are block diagonal and the system is 

block decoupled. 

□ 

Remark 4.1: Equation (4.19) admits the use of a block diagonal mass matrix M  

with partition  1 2n n . However, for reasons of physical practicality, we discuss 

only the case of the diagonal (lumped) mass matrix. 



 

65 

 

□ 

Therefore, the block-decoupling vibration control algorithm for undamped systems 

may be summarised as: 

1. Decouple the open-loop undamped system to form two uncoupled substructures. 

This is achieved by the imposition of modal degree of freedom constraints (4.16) 

on the closed-loop right eigenvectors kw by the choice of parameters ,k j  to 

satisfy equation (4.11). 

2. Assign desired eigenvalues   1

11 1

n

k k
diag 


Λ  and  

1
22 1

n

k k n
diag 

 
Λ to the 

two substructures by the choice of control gain matrix G  based on the method 

of receptances using equation (4.7). 

The eigenpairs  11 11Λ W  and  22 22Λ W are then assigned to the two 

independent substructures respectively. 

If W  is block diagonal with partition  1 2, , , vn n n , then it is straightforward to 

show that the closed-loop stiffness matrix is also block diagonal with respect to the 

partition  1 2, , , vn n n . The system becomes strictly diagonal when v n . 

4.4.1 Example 4.1 

Consider the two degree-of-freedom mass-spring system,  

1 0 2 1
and

0 1 1 1

   
       

M K . 

The open-loop eigenvalues are, 

1

2

0.3820

2.6180








 

and the eigenvector matrix is, 
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0.5257 0.8507

0.8507 0.5257

  
   

V . 

Now, a two-input proportional feedback controller is used to decouple the system 

into two independent single-degree-of-freedom systems. The prescribed eigenvalues 

of the two independent subsystems are  

1

2

0.5

3.0.








 

According to the above analysis, modal nodal constraints are imposed to the closed-

loop right eigenvectors so that the second entry of the first eigenvector and the first 

entry of the second eigenvector are zero. The force distribution matrix is chosen as, 

 1 2

2 2

2 3

 
   

 
B b b . 

To impose the required modal nodal constraints, the parameters ,k j are chosen as,  

1 1 2 2

1 2

1 2

2 ,2 ,2 1 ,2 ,2

,1 ,1

2 ,1 1 ,1

;

T T

T T

   

 

 

 
    

e r e r

e r e r
 

where, 

   
1 2,2 ,2 2 11, 0 1 , 1 0T T

     e e  

This leads to the matrix of control gains, 

3.25 2.5

0.5 1.0

 
   

G . 

The resulting closed-loop eigenvalues are found to be, 

1

2

0.5

3.0








 

and the eigenvectors are  

1 2

1 0
and .

0 1

   
    
   

w w  
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The closed-loop systems matrices are   

1 0 0.5 0
and

0 1 0 3.0
CL CL

   
    
   

M K . 

Hence, the closed-loop system is found to be decoupled into two independent single-

degree-of-freedom systems with desired eigenvalues. 

4.5 Block-decoupling control for damped structures with lumped masses 

The closed-loop right- and left-eigenvalue problems may be written as, 

    2 T T

k k k     M C BF K BG w 0 . (4.20) 

and, 

    2 , 1,2, ,2T T T

k k k k n      ψ M C BF K BG 0   (4.21) 

By combining all the modes into a single expression the right eigenvalue problem 

(4.20) becomes, 

   2 T T    MWΛ C BF WΛ K BG W 0  (4.22) 

and the left eigenvalue problem (4.21) is, 

   2 T T T T T    Λ Ψ M ΛΨ C BF Ψ K BG 0   (4.23) 

In these expressions 2n nW is the matrix of right eigenvectors, 
2n nΨ is the 

matrix of left eigenvectors,   2 2

1 2diag n n

n   Λ is the spectral matrix. 

denotes the field of complex numbers. 

We partition matrices Λ , W  and Ψ  as follows, 

   

1

2

1 1 2 1 2diag ; diagn n n n

n n n    



 
  
 

   

Λ
Λ

Λ

Λ Λ

  (4.24) 
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 
   

L R

L 1 2 R 1 2 2;n n n n

n n n n

 

 



   

W W W

W w w w W w w w
  (4.25) 

and 

 
   

L R

L 1 2 R 1 2 2;n n n n

n n n n

 

 



   

Ψ Ψ Ψ

Ψ ψ ψ ψ Ψ ψ ψ ψ
 (4.26) 

In the case of complex eigenvalues, n i n 

   where  
*

  denotes complex 

conjugation. Real eigenvalues are grouped equally in 
1Λ  and 2Λ  at the same 

diagonal locations.  

Then by choice of ,k j in (4.11), modal degree of freedom constraints on the closed-

loop right eigenvectors kw may be imposed, 

 

 

1 1 1

1 1 1

0, 1, 2, , , 1, 2, ,

0, 1, 2, , , 1, 2, ,

jk j k n

jk j k n

w w j n n n k n

w w j n k n n n





     

     
 (4.27) 

Thus, LW  and RW  are block diagonalised with respect to the partition  1 2n n  as, 

L11 R11

L R

L22 R22

;
   

    
   

W 0 W 0
W W

0 W 0 W
  (4.28) 

where 1 1

L11 R11, n nW W  and 2 2

L22 R22, n nW W . 

We now write equations (4.22) and (4.23) in first-order form as, 

AX XΛ   (4.29) 

T TY A ΛY   (4.30) 

where (from Appendix 4.1), 

 

   

1
U

L

U U1 U2 U2 L L1 L2 L2

;

;

T
T

n n

    
            

 

YW K BG ΨΛ
X Y

YWΛ MΨ

Y y y y Y y y y

  (4.31) 

and, 
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   1 1T T 

 
  

     

0 I
A

M K BG M C BF
 (4.32) 

Pre-multiplying and post-multiplying equations (4.29) and (4.30) by 
T

Y and X  

respectively lead to,  

T T T Y AX ΛY X Y XΛ  (4.33) 

It can be seen from (4.33) that 
T

Y X commutes withΛ  so that, 

1

T Y X D  (4.34) 

where 
2 2

1

n nD  is diagonal. 

Then by normalising the left and right eigenvectors, 

T Y X I  (4.35) 

or, 

1T Y X   (4.36) 

where I  is the identity matrix. 

From equations (4.28) and (4.31), 

   

   

L11 R11

L22 R22

L11 R111 11 2 11

L22 R221 22 2 22

 
 
 


 
 
  

W 0 W 0

0 W 0 W
X

W Λ 0 W Λ 0

0 W Λ 0 W Λ

 (4.37) 

where 

 

 

 

 

1 11 2 11

1 2

1 22 2 22

;
   

    
      

Λ 0 Λ 0
Λ Λ

0 Λ 0 Λ
 (4.38) 

and 
   

1 1

1 11 2 11
, n nΛ Λ ; 

   
2 2

1 22 2 22
, n nΛ Λ .  

The matrix T
Y  may be written as 
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UL11 UL21 LL11 LL21

UL LL UL12 UL22 LL12 LL22

U L

UR LR UR11 UR21 LR11 LR21

UR12 UR22 LR12 LR22

T T T T

T T T T T T

T T T

T T T T T T

T T T T

 
 

           
 
 

Y Y Y Y

Y Y Y Y Y Y
Y Y Y

Y Y Y Y Y Y

Y Y Y Y

 (4.39) 

where 

   U UL UR L LL LR

UL11 UL12 LL11 LL12

UL LL

UL21 UL22 LL21 LL22

UR11 UR12 LR11 LR12

UR LR

UR21 UR22 LR21 LR22

, ,

, ,

,

 

   
    

  

   
    

  

Y Y Y Y Y Y

Y Y Y Y
Y Y

Y Y Y Y

Y Y Y Y
Y Y

Y Y Y Y

 (4.40) 

with UL UR LL LR, , , n nY Y Y Y ; 1 1

UL11 LL11 UR11 LR11, , , n nY Y Y Y ; 

1 2

UL12 LL12 UR12 LR12, , , n nY Y Y Y ; 2 1

UL21 LL21 UR21 LR21, , ,
n n

Y Y Y Y ; 

2 2

UL22 LL22 UR22 LR22, , , n nY Y Y Y .  

Lemma 4.2: The closed-loop damping and stiffness matrices will be block diagonal 

with partition  1 2n n  with assigned closed loop eigenvalues when the closed-loop 

right eigenvector matrices RW and LW are block diagonal with the same partition 

and M  is a lumped mass matrix. 

Proof:  Since the system is controllable, distinct eigenvalues  1 2 2, , , n   , may 

be assigned with block-diagonal constraints on W  by the method of receptances 

using equation (4.7), described in full by Ram and Mottershead [9].  

By using elementary transformations, the right eigenvector matrix X  may be 

expressed as,  
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   

   

L11 R11

L11 R111 11 2 11

L22 R22

L22 R221 22 2 22

 
 
 


 
 
  

W W 0 0

W Λ W Λ 0 0
X

0 0 W W

0 0 W Λ W Λ

 (4.41) 

The left eigenvector matrix Y may then be written, using the relationship (4.36), as  

   

   

UL11 LL11 UL21 LL21

UR11 LR11 UR21 LR21

UL12 LL12 UL22 LL22

UR12 LR12 UR22 LR22

1

L11 R11

L11 R111 11 2 11

1

L22 R 22

L22 R 221 22 2 22

T T T T

T T T T

T T T T

T T T T





 
 
 
 
 
 

   
   
   


  
  

   

Y Y Y Y

Y Y Y Y
Y

Y Y Y Y

Y Y Y Y

W W 0 0

W Λ W Λ 0 0

W W0 0

W Λ W Λ0 0





 
 
 
 

 (4.42) 

so that, 

UL12 LL12 UR12 LR12

UL21 LL21 UR21 LR21

, , ,

, , ,

T T T T

T T T T

   

   

Y 0 Y 0 Y 0 Y 0

Y 0 Y 0 Y 0 Y 0
 (4.43) 

Therefore 

UL11 LL11

UL22 LL22

UR11 LR11

UR22 LR22

T T

T T

T

T T

T T

 
 
 
 
 
 

Y 0 Y 0

0 Y 0 Y
Y

Y 0 Y 0

0 Y 0 Y

 (4.44) 

with 

LL11 LR11

LL LR

LL22 LR22

and 
T T

T T

T T

   
    
   

Y 0 Y 0
Y Y

0 Y 0 Y
 (4.45) 

block diagonal with respect to the partition  1 2n n . 

From (4.31), 

LL L LR R; Y MΨ Y MΨ  (4.46) 
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Since M  is the lumped mass matrix it follows from equation (4.46) that 

L RandΨ Ψ  are block diagonal with respect to the partition  1 2n n . 

It is known that the receptance matrix may be expressed as, 

   
 

 

   

1

1 L

L R 1

R2

1 1

L 1 L R 2 R

ˆ
T

n

T

n

T T

n n

s
s

s

s s





 

   
   
    

   

I Λ 0 Ψ
H W W

Ψ0 I Λ

W I Λ Ψ W I Λ Ψ

 (4.47) 

so that  ˆ sH is block diagonal with respect to the partition  1 2n n : so too is the 

dynamic stiffness matrix, i.e. the inverse of  ˆ sH . 

When 0s  ,  

   ˆ 0 T Γ K BG  (4.48) 

which shows that the closed-loop stiffness matrix is block diagonal with respect to 

the partition  1 2n n . The dynamic stiffness may be recast as 

 
   

   

 

 

11 121 2

2
21 22

11

22

ˆ

T T

T T

T

T

s s s
   
   
   
 

 
 
 
 

C BF C BFM 0
Γ

0 M C BF C BF

K BG 0

0 K BG

 (4.49) 

so that, 

   
12 21

0 and 0T Ts s   C BF C BF  (4.50) 

for arbitrary s . Hence the closed-loop damping matrix  TC BF is block diagonal 

with respect to the partition  1 2n n . 



 

73 

 

Thus, if the sub-matrices of the right eigenvector, L RandW W , are block diagonal 

with respect to the partition  1 2n n , then the closed-loop damping and stiffness 

matrices will also be block decoupled with respect to the partition  1 2n n . 

□ 

Remark 4.2: Equations (4.46) admit the use of a block diagonal mass matrix M  

with partition  1 2n n . For the same reasons as given before, we only consider the 

case of the diagonal (lumped mass matrix).  

□ 

Therefore, the block-decoupling vibration control algorithm for damped systems may 

be summarised as: 

1. Decouple the open-loop damped system into two uncoupled substructures. 

This is achieved by the imposition of modal degree of freedom constraints 

(4.27) on the closed-loop right eigenvectors kw by choice of parameters ,k j  

to satisfy equation (4.11). 

2. Assign desired eigenvalues          1 1

1 11 2 11 1 1

n n n

k kk k n
diag diag 



  
Λ Λ  

and          
1 1

2

1 22 2 22 1 1

n n

k kk n k n n
diag diag 

    
Λ Λ to the two 

substructures by the choice of control gain matrices ,F G  based on the 

method of receptances described by (4.7). 

The eigenpairs 
      L11 R111 11 2 11

 
 
Λ Λ W W  and 

      L22 R221 22 2 22
 
 
Λ Λ W W are then assigned to the two independent 

substructures respectively. 
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If L RandW W are block diagonal with respect to the partition  1 2, , , vn n n , then 

the closed-loop stiffness and damping matrices are also block diagonal with respect 

to the partition  1 2, , , vn n n . The system becomes strictly diagonal when v n .  

4.5.1 Example 4.2 

Consider the three degree-of-freedom system shown in Fig. 4.1.  

 

Fig. 4.1  The three degree-of-freedom system 

The system matrices of the open-loop system are , 

2 1 0 10 5 0

, 1 2 1 and 5 10 5

0 1 1 0 5 5

    
         
   

       

M I C K . 

The open-loop eigenvalues are, 

1,4

2,5

3,6

0.0990 0.9902i

0.7775 2.6777i

1.6235 3.6877i







  

  

  

. 

Now, the block decoupling control method is used to decouple the three degree-of-

freedom system into two independent substructures as shown in Fig. 4.1 . The 

eigenvalues of the first substructure are prescribed as, 

1,4

2,5

0.1 1.0i

0.8 2.8i





  

  
 

and the second substructure  
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3,6 1.6 3.7i    . 

Modal degree of freedom constraints are imposed on the right eigenvectors of the 

closed-loop system so that the first two entries of the eigenvectors of the last mode 

and the last entry of the eigenvectors corresponding to the first two modes are zero. 

The three inputs are used and the force distribution matrix is chosen as 

 1 2 3

1 2 3

0 1 3

2 0 0

 
  
 
  

B b b b . 

The parameters ,k j are chosen as, 

,2 ,30.5, 1, 1,2,4,5
k k

k      

,3 1, 3,6
k

k     

       ,1 ,2 ,3,1 3 ,2 3 ,3 3
inv , 1,2,4,5

k k kk k k
k    

      r r r  

     
,1

,31:2,1:2 ,3 1:2

,2

inv , 3,6
k

kk k

k

k


 








 
     

 

R r . 

and the control gains are found to be,   

0 3.0559 6.1117 0 0.6617 1.3235

2.5 1.9910 3.9820 and 0.5 0.4420 0.8840

5.6250 10.6250 5.2083 1.1000 2.1000 1.0333

   
          
   
         

G F . 

The closed-loop system is found to have eigenvalues, 

1,4

2,5

3,6

0.1 1.0i

0.8 2.8i

1.6 3.7i







  

  

  

 

and eigenvectors  
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1 2 3

4 1 5 2 6 3

0.7122+0.0948i 0.0683+0.1660i 0

0.8198+0.1091i , 0.1245+0.2759i , 0 ,

0 0 0.1062 - 0.2082i

, ,  

     
     

  
     
          

  

w w w

w w w w w w

 

The closed-loop system matrices are 

3.2939 3.0359 0

, 5.6322 5.0939 0

0 0 3.2000

CL CL

 
   
 
  

M I C  

and 

14.4469 13.4281 0

26.3910 23.9371 0

0 0 16.2500

CL

 
  
 
  

K  

which are decoupled to form two independent substructures with desired eigenvalues. 

4.6 The number of actuators and sensors 

We have seen that the application of modal degree of freedom constraints to block 

diagonalise the right eigenvector matrix with respect to the partition  1 2n n  will 

cause the closed-loop stiffness and damping matrices to be block decoupled with the 

same partition. Ram and Mottershead [9] showed that the number of required control 

inputs should be no less than  1 21 max ,n n . In this section, it will be shown that 

the number of required control inputs may be reduced for structures with banded 

damping and stiffness matrices with semi-bandwidth r . 

For practical engineering structures, the connections between components are in 

general localised. If discretised by finite element methods, it appears that the 

damping and stiffness matrices are banded with non-zero entries confined to a 

diagonal band and the coupling in general exists between adjacent degrees of 

freedom. Hence, the original structure may be decoupled into two independent 
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substructures if the coupling effect is eliminated in the connection of the two 

substructures. 

Consider a n degree-of-freedom system structure whose dynamic stiffness matrix is 

banded with equal lower and upper semi-bandwidth r ,  1 21 min ,r n n  , as shown 

in Fig. 4.2.  

 

 

Fig. 4.2  The banded dynamic stiffness matrix 

 

Now, the control objective is to decouple the structure into independent substructure 

1 of dimension 1 1n n  and substructure 2 of dimension 
2 2n n . It can be seen that 

the two substructures are only locally coupled from the  
th

1 1n r   degree of 

freedom to the  
th

1n r  degree of freedom. Hence, the two substructures can be 

decoupled if the cross-coupling from the  
th

1 1n r   degree of freedom to the 

 
th

1n r  degree of freedom is removed by using feedback control. This may be 
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achieved by applying neutralising feedback forces from the  
th

1 1n r   degree of 

freedom to the  
th

1n r  degree of freedom.  

Lemma 4.3: The n  degree of freedom open-loop dynamic system with lumped mass 

and banded damping and stiffness matrices having equal lower and upper semi-

bandwidth  1 21 min ,r n n   may always be decoupled into two independent 

subsystems when 2r actuators are located at the coupled degrees of freedom and the 

number of inputs 2q r . 

Proof: Let us begin by assuming there are 2r  actuators at the coupled degrees of 

freedom. The force distribution matrix B may then be written as 

 

 

1

2

2 and 2

n r q

r q

n r q

q r

 



 

 
 

  
 
 

0

B B

0

 (4.51) 

where 2r qB is real parameter matrix chosen so that all open-loop eigenvalues are 

controllable. 

We have seen that the closed-loop damping and stiffness matrices become block 

diagonal when the right eigenvector matrices LW  and RW  are made block diagonal 

with the same partition  1 2n n  by choice of parameters
1q

k

α , 1,2, ,2k n . 

From equations (4.9) and (4.27), 
kα  should be chosen such that, 

      21 1 1 1 1
2 11: 1: , : 1: , 1:

1 1

,

1,2, , , 1, 2, ,

k kk r q k nk n n n n n n n r n r

k n n n n n

        
  

   

w H Bα H B α 0
 (4.52) 

and 

      11 1 1 1 1
2 11: 1: , : 1: , 1:

1 1 1 1

,

1, 2, , , 1, 2, ,2

k kk r q k nk n n n n r n r

k n n n n n n n n

     
  

      

w H Bα H B α 0
 (4.53) 
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Strang and Nguyen [130] showed if a symmetric matrix    is banded with semi-

bandwidth r , then above the -thr subdiagonal every submatrix of  
1

 has rank r , 

and below the -thr superdiagonal every submatrix of  
1

 has rank r . Therefore 

  
1 1 11: , 1:

rank
k n n n r n r

r    
H  (4.54) 

and 

  
1 1 11: , 1:

rank
k n n r n r

r   
H  (4.55) 

Since  

     
1 1 1 1 1 1

21: , 1: 1: , 1:
rank rank

k kr qn n n r n r n n n r n r
r        

 H B H  (4.56) 

and 

     
1 1 1 1 1 1

21: , 1: 1: , 1:
rank rank

k kr qn n r n r n n r n r
r      

 H B H  (4.57) 

it follows that there always exists nontrivial kα satisfying equations (4.52) and (4.53) 

  
1 1 1

2 1 11: , 1:
, 1,2, , , 1, 2, ,

kk r qn n n r n r
k n n n n n    

    α null H B γ  (4.58) 

and 

  
1 1 1

21: , 1:

1 1 1 1

,

1, 2, , , 1, 2, ,2

kk r qn n r n r

k n n n n n n n n

   


      

α null H B γ
 (4.59) 

where γ  is an arbitrary non-zero vector. 

□ 

Remark 4.3: It may be proved similarly that if    1 2 1 2min , max ,n n r n n  , then 

 1 2min ,n n r  actuators are sufficient for decoupling control of the open-loop 

system. 
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Lemma 4.4 A necessary condition for block decoupling is that sensors should be 

placed at the coupled degrees of freedom of the system. 

Proof: The force distribution and control gain matrices may be partitioned as 

1 1 1

2 2 2

3 3 3

,   and  

     
       
     
          

B F G

B B F F G G

B F G

 (4.60) 

Let the degrees of freedom associated with 
2B , 2F  and 2G be the coupled degrees of 

freedom. If there are no sensors placed on the coupled degrees of freedom, then 

2 F 0  and 
2 G 0  and 

1 1 1 2 1 3 1 1 1 2 1 3

3 1 3 2 3 3 3 1 3 2 3 3

  and  

T T T T T T

T T

T T T T T T

   
   

    
   
   

B F B F B F B G B G B G

BF 0 0 0 BG 0 0 0

B F B F B F B G B G B G

 (4.61) 

Consequently, the coupling between the coupled degrees of freedom cannot be 

eliminated by feedback control. 

□ 

When the mass matrix is diagonal and the damping and stiffness matrices are banded, 

certain degrees of freedom may be free of actuation and the eigenvalues can be 

assigned exactly by using full state feedback, which is illustrated in the following 

example.  

4.6.1 Example 4.3 

Consider a five-degree-of-freedom system with matrices  

M I , 

2 1

1 2 1

1 2 1

1 2 1

1 1

 
  
 

   
 

  
  

C  and 

20 10

10 15 5

5 10 5

5 10 5

5 5

 
  
 

   
 

  
  

K . 
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The open-loop eigenvalues are 

1,6

2,7

3,8

4,9

5,10

0.0462 0.7706i

0.3550 2.0897i

0.9051 3.0365i

1.6249 3.7653i

1.5688 5.0190i











  

  

  

  

  

 

The open-loop system is to be decoupled into two uncoupled subsystems. The first 

subsystem consists of the first three degrees of freedom with prescribed eigenvalues, 

1,6

2,7

3,8

0.05 0.60i

0.35 1.80i

0.90 2.80i







  

  

  

 

and the second subsystem consists of the last two degrees of freedom with prescribed 

eigenvalues, 

4,9

5,10

1.42 3.50i

1.90 3.90i.





  

  
 

Modal degree of freedom constraints are imposed on the right eigenvectors so that 

the first three entries of the eigenvectors corresponding to the last two modes and the 

last two entries of the eigenvectors corresponding to the first three modes are zero. 

The semi-bandwidth of the damping and stiffness matrices is one. Hence, it is 

possible to have the first two and the last degrees of freedom free actuation. Here, 

two inputs are used and the force distribution matrix is chosen as, 

 1 2

0 0

0 0

1 2

5 4

0 0

 
 
 

   
 
 
  

B b b  

The parameters 
,k j are chosen as,   
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   14:5,1:2
, 1,2,3,6,7,8

k
k k


 α null R e  

and, 

   11:3,1:2
, 4,5,9,10

k
k k


 α null R e  

where 1e is the 1st unit vector. 

The control gains are found to be, 

3.3447 4.1809 75.1354 93.9193

0.2537 0.3172 63.8172 79.7715

and  2.6000  3.0000 19.7563  23.4453

0.5467 0.2267 2.6953 1.1523

2.0508 1.0254 10.2043 5.1021

    
    
   

     
   
      
       

F G  

and the closed-loop eigenvalues are, 

1,6

2,7

3,8

4,9

5,10

0.05 0.60i

0.35 1.80i

0.90 2.80i

1.42 3.50i

1.90 3.90i











  

  

  

  

  

 

with eigenvectors, 

1 2 3

0.1970 0.0071i 0.0057 0.1784i 0.0113 0.1808i

0.3869 0.0131i 0.0026 0.2974i 0.0651 0.2025i

, , ,0.7384 0.0630 0.3240i 0.0706 + 0.1435i

0 0 0

0 0 0

        
     

    
     
         
     
     
     
     

w w w  

4 5

6 1 7 2 8 3 9 4 10 5

0  0

0 0

,0 0

0.0846 0.2086i 0.0926+0.1900i

0.0452 + 0.1130i 0.0340-0.0681i

, , , ,    

   
   
   
    
   
     
   
   

    

w w

w w w w w w w w w w

 

The closed-loop system matrices are, 
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M I  

 2 1 0 0 0

1 2 1 0  0

5.0170 1.3806 1.4000 0 0

0 0 0 5.6400 5.1525

0 0 0 1 1

CL

 
  
 

   
 
 
  

C  

20 10 0 0 0

10 15 5 0  0

112.7032 90.7257 17.1343 0 0

0 0 0 28.09 25.6128

0 0 0 5 5

CL

 
  
 

   
 
 
  

K  

Thus, two independent subsystems are achieved as desired with given eigenvalues.  

4.7 Decoupling of linear structures with banded mass matrix 

In the preceding analysis the mass matrix was assumed to be diagonal (or lumped). 

This is an unrealistic assumption and in this section we seek to replace it with the 

more practical representation of a banded mass matrix. The coupling between system 

degrees of freedom may reasonably be assumed to be localised, as in the case of the 

finite-element consistent mass matrix. Here we introduce acceleration feedback (in 

addition to displacement and velocity feedback) to decouple the linear dynamic 

system with inertia interaction. 

In this case, the equations of motion of the closed-loop system may be expressed as, 

     T T T     M BD x C BF x K BG x 0  (4.62) 

where D , F and G
n q are the acceleration, velocity and displacement feedback 

gain matrices respectively. 
n qB is the force distribution matrix. If the open-loop 

dynamic stiffness matrix   2s s s  Γ M C K  is of semi-bandwidth r , 
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 1 21 min ,r n n  , then the minimum number of inputs is 2q r  and the force 

distribution matrix may be given by (4.51).  

 

 

1

2

2

2 2

2

n r r

r r

n r r

 



 

 
 

  
 
 

0

B B

0

 (4.63) 

where 2 2r rB is chosen to be invertible. 

If the acceleration gain matrix is of the form, 

 

 

1

2

2

2 2

2

n r r

r r

n r r

 



 

 
 

  
 
 

0

D D

0

 (4.64) 

then, 

         

   

         

1 1 1 1 2

1 2

2 1 2 2 2

2

2 2 2 22 2

2

n r n r n r r n r n r

T T

r r r rr n r r n r

n r n r n r r n r n r

       

    

       

 
 

  
 
  

0 0 0

BD 0 B D 0

0 0 0

 (4.65) 

The open-loop mass matrix may be written as 

       

 

 

   

   

1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1

1: ,1: 1: , 1: 1: , 1: 1: , 1:

1: ,1: 1: , 1: 1: , 1: 1: ,

1: ,1: 1: , 1: 1: , 1:

n r n r n r n r n n r n n r n r n r n

n r n n r n r n n r n n r n n n r n r n n

n n r n r n n r n r n n n r n n r

          

            

          

 
  

  

M M 0 0

M M M 0
M

0 M M

 

 

       

1

1 1 1

1 1 1 1 1 1 1 1 1 1

1:

1: , 1:

1: ,1: 1: , 1: 1: , 1: 1: , 1:

r n

n n r n r n

n r n n r n r n n r n n r n n n r n r n n r n

 

   

              

 
 
 
 
 
 
  

M

0 0 M M

(4.66) 

where we denote the central sub-matrix as, 

   

   

1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1

1: , 1: 1: , 1:

1

1: , 1: 1: , 1:

n r n n r n n r n n n r

n n r n r n n n r n n r

       

       

 
  
  

M M
M

M M
 (4.67) 

Acceleration feedback is now applied to modify 1M  such that 

1 1

T M M BD  (4.68) 
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where  

   

   

1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1

1: , 1: 1: , 1:

1

1: , 1: 1: , 1:

n r n n r n n r n n n r

n n r n r n n n r n n r

       

       

 
 
  

M 0
M

0 M
 (4.69) 

is prescribed to be symmetric and to make the closed-loop mass matrix CLM

nonsingular. 

       

 

 

   

   

1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 11 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1

1: ,1: 1: , 1: 1: , 1: 1: , 1:

1: ,1: 1: ,1: , 1: 1: , 1:

1: ,1: 1: , 1: 1: , 1:

n r n r n r n r n n r n n r n r n r n

n r n n r n r n n rn r n n r n n r n n n r

CL

n n r n r n n r n r n n n r n n r

          

             

          



M M 0 0

M 0M 0
M

0 0 M

 

 

       

1 1 1

1 1 1 1 1 1 1 1 1 1

1:

1: , 1:

1: ,1: 1: , 1: 1: , 1: 1: , 1:

n

n n r n r n

n r n n r n r n n r n n r n n n r n r n n r n

   

              

 
 
 
 
 
 
  

M

0 0 M M

(4.70) 

From equation (4.68), the acceleration feedback gain submatrix D  is seen to be 

given by, 

  
1

1 1

T


 D M M B  (4.71) 

Now, the eigenvalue problem associated with the closed-loop linear system becomes 

   2 2 , 1,2, ,2T T T

k k k k k k k n        M C K w B D F G w  (4.72) 

Then, 

,1 ,1 ,2 ,2 , ,k k k k k k k

T

k q q k            w r r r R α  (4.73) 

where 

 2

, , 1,2, ,2 , 1,2, ,
k

T T T

j k j k j j k k n j q      d f g w  (4.74) 

 
1

2 , 1,2, ,2
k k k k n  



   R M C K B  (4.75) 

and ,k j are arbitrary variables and 
T

kα are non-zero vectors. 

Equations (4.74) may be rewritten as, 

 2

, , , 1,2, ,2 , 1,2, ,
k k

T T T

j j k j k k j j k k n j q         d w f g w  (4.76) 



 

86 

 

or, 

2 , 1,2, ,2T T T

k k k k k n  ξ α w D  (4.77) 

where, 

,1 ,2 ,k k k

T

k q       ξ  (4.78) 

Hence, the velocity and displacement feedback control gains are obtained by solving,  

 
 

 

F
P Ξ

G
 (4.79) 

where, 

1 1 1 1

2 2 2 2

2 2 2 2

,

T T T

T T T

T T T

n n n n







   
   
    
   
   
   

w w ξ

w w ξ
P Ξ

w w ξ

, (4.80) 

The closed-loop system will be block decoupled when modal degree of freedom 

constraints (4.27) are imposed on kw in (4.80). It is seen that the decoupling 

algorithm is basically similar to that presented in Section 4.5 except for the 

additional of acceleration feedback to generate a block diagonal closed-loop mass 

matrix.  

4.7.1 Example 4.4 

Consider the structure shown in Fig. 4.3, which consists of a beam of length 

5 5 ml  fixed at both ends. Assume the cross section of the beam to be rectangular 

with width 2cmsb   and height 1cmsh   respectively and the material of the beam 

to be steel with Young’s modulus, 
112.0 10 Pa,E   and mass density, 

37,800 kg/ms  . 
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Fig. 4.3  A beam with both ends fixed 

The beam is discretised into five beam elements of equal length, with the joints 

undergoing lateral and rotational displacements. The consistent-mass matrix is 

employed to include the inertia coupling effect. That is, the mass matrix of each 

beam element eM is 

2 2

2 2

156 22 54 13

22 4 13 3

54 13 156 22420

13 3 22 4

s
e

l l

l l l lAl

l l

l l l l



 
 
 

 
 
   

M . 

For the sake of illustration, proportional damping 1 2  C M K , (
1 0.001   and 

2 0.0002  ) is assumed.  

The open-loop eigenvalues are  

   

   

   

 

2 2

1,9 2,10

2 2

3,11 4,12

2 2

5,13 6,14

2 2

7,15 8,16

10 0.0002 0.1309i ; 10 0.0013 0.3620i ;

10 0.0051 0.7167i ; 10 0.0143 1.1940i ;

10 0.0402 2.0045i ; 10 0.0891 2.9830i ;

10 0.1940 4.4003i ; 10 0.3882 6

 

 

 

 

       

       

       

        .2186i .

 

Now, as shown in Fig. 4.3, the beam is to be decoupled such that beam 1 of length 

2.5l  with prescribed eigenvalues 

   

   

2 2

1,9 2,10

2 2

3,11 4,12

10 0.001 0.12i ; 10 0.002 0.38i ;

10 0.007 0.60i ; 10 0.02 1.00i ;

 

 

       

       
 

is independent from beam 2 of length 2.5l  with eigenvalues. 
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   

   

2 2

5,13 6,14

2 2

7,15 8,16

10 0.04 2.20i ; 10 0.09 3.50i ;

10 0.22 4.00i ; 10 0.40 6.00i .

 

 

       

       
 

The closed-loop mass submatrix is given as, 

 1 3:6,3:6

1.2 0.2 0 0

0.2 0.1 0 0

0 0 1.2 0.2

0 0 0.2 0.1

 
 
  
 
 
 

M M  

and the force distribution matrix is chosen to be, 

0 0 0 0

0 0 0 0

2 18 5 7

1 8 3 17

19 9 6 2

4 1 5 21

0 0 0 0

0 0 0 0

 
 
 

  
 
 

    
 
  

 
 
 

B . 

Then the acceleration feedback gain matrix is found to be 

0 0 0 0

0 0 0 0

0.0001 0.0126 0.0496 0.0089

0.0003 0.0178 0.0334 0.0066

0.0059 0.0065 0.0044 0.0070

0.0111 0.0066 0.0112 0.0011

0 0 0 0

0 0 0 0

 
 
 

  
 

  
  
 

  
 
 
 

D . 

By using the proposed method, the arbitrary parameters are chosen as 

   15:8,1:4
, 1, 4,9, ,12

k
k k


 α null R e  

and 

   11:4,1:4
, 5, ,8,13, ,16

k
k k


 α null R e  

where 1e is the 1st
unit vector. 
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The velocity and displacement feedback matrices are found to be,  

0.0437   0.1278      0.3051       0.0749

0.2646   1.8709      3.3882       0.7680

  0.3407      2.3008   4.0814   0.9461

0.0180   0.0095      0.1289       0.0273

5.1846     18.4621 64.9532    

 

 

 

 


 
F

  2.4458

1.5823       4.5051  16.0528      0.6276

22.9302   66.8830  237.2810    9.0499

    0.1412  0.5029        1.7722  0.0678

 
 
 
 
 
 
 
 
  

  
 

  

 

5

0.0012      0.0026   0.0003      0.0003

0.0014      0.0123   0.0132   0.0023

  0.0030   0.0111      0.0135      0.0012

0.0004      0.0043   0.0018   0.0005
10

  0.4696   0.1181      0.5902   

 

  



  
 


G

0.0221

  0.1085   0.0226      0.1165   0.0031

  1.5801   0.4320      2.0866   0.0720

0.0121       0.0035  0.0168      0.0006

 
 
 
 
 
 
 
 

  
  
 
  

 

and the closed-loop matrices are, 

11

22

0CL

CL

CL

 
  
 

M
M

0 M
 

11

1.1589 0 0.2006 0.0483

0 0.0297 0.0483 0.0111

0.2006 0.0483 1.2000 0.2000

0.0483 0.0111 0.2000 0.1000

CL

 
 
 
 
 
  

M  

22

1.2000 0.2000 0.2006 0.0483

0.2000 0.1000 0.0483 0.0111

0.2006 0.0483 1.1589 0

0.0483 0.0111 0 0.0297

CL

 
 
 
 
 
  

M  

11

22

CL

CL

CL

 
  
 

K 0
K

0 K
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6

11

0.0080 0 0.0040 0.0020

0 0.0027 0.0020 0.0007
10

0.0006 0.0154 0.0066 0.0072

0.0006 0.0015 0.0031 0.0005

CL

 
 
  

 
 
  

K  

6

22

1.1436 0.2551 3.8470 0.0279

0.1419 0.0165 0.5212 0.0051
10

0.0040 0.0020 0.0080 0

0.0020 0.0007 0 0.0027

CL

 
   
  
  
 
 

K  

11

22

CL

CL

CL

 
  
 

C 0
C

0 C
 

3

11

0.0016 0 0.0008 0.0004

0 0.0005 0.0004 0.0001
10

0.0020 0.0220 0.0286 0.0003

0.0008 0.0084 0.0103 0.0003

CL

 
 
  
  
 
   

C  

3

22

0.3156 0.0846 1.2401 0.0091

0.3369 0.0831 1.2174 0.0091
10

0.0008 0.0004 0.0004 0

0.0004 0.0001 0 0.0005

CL

   
 
  
   
 
 

C  

with the prescribed eigenvalues. The two independent beams are obtained with given 

eigenvalues. 

4.8 Conclusion 

In the theoretical study reported here, it is found that block diagonalisation of the 

system damping and stiffness matrices are achievable by the imposition of modal 

degree of freedom constraints on right eigenvectors when the open-loop eigenvalues 

are controllable. In the case of velocity and displacement feedback, the mass matrix 

is practically restricted to the diagonal (lumped mass) form. This restriction can be 

lifted to allow for bandedness of the mass matrix when acceleration feedback is 
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included together with velocity and displacement feedback. In the case of velocity 

and displacement feedback, the procedure is based on eigenstructure assignment 

using the method of receptances, while a hybrid method is developed using the 

receptance and mass matrix when additional acceleration feedback is included. In 

both cases the closed-loop system is decoupled to form independent substructures 

and it is demonstrated that eigenvalues can be assigned to the substructures 

separately. In the case of banded system matrices, the number of actuators required 

can be reduced to twice of the semi-bandwidth. The theory reported here works well 

in LTI systems. However, all systems in nature are inherently nonlinear. The 

presence of nonlinearity will make the dynamic analysis of open-loop systems 

complicated and linear active vibration control approaches less effective. In the next 

chapter, a comprehensive investigation of the effects of softening nonlinearity on 

dynamic responses of aeroelastic systems will be described.  

Appendix 4.1:  Left eigenvalue problem 

From equation (4.30) 

   1 1

T T

k k kT T


 

 
 

     

0 I
y y

M K BG M C BF
 (4.81) 

where  U L

T T T

k k ky y y . Thus,  

      1 1

L U L U L

T T T T T T T

k k k k k k k      y M K BG y y M C BF y y  (4.82) 

 1

U L

T T T

k k k   y y M K BG  (4.83) 

and  

 1

L U L

T T T T

k k k k   y y y M C BF  (4.84) 

Combining equations (4.83) and (4.84) leads to  
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       1 2 1 1

L L L

T T T T T

k k k k k       y M M y M C BF y M K BG 0  (4.85) 

Hence 1

L

T

k


y M is the left eigenvector associated with 

k , i.e. 

1

L

T T

k k

 y M ψ  (4.86) 
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Chapter 5                                                                                          

Aeroelastic systems with softening nonlinearity 

5.1 Introduction 

All systems in nature are nonlinear. It is well known that linear analysis and active 

vibration control methodologies have limited performance in nonlinear systems. 

Therefore, the modelling and performance of the systems can be improved by 

applying nonlinear analysis methods. A good understanding of open-loop systems is 

of importance to effective controller design. In this chapter, a comprehensive study 

of the effects of softening nonlinearity on aeroelastic systems is performed [131]. 

The nonlinear active flutter control problem is considered in the next chapter. 

This chapter aims to investigate the presence of stable and unstable LCO and the 

conditions under which they may be found in aeroelastic systems with softening 

nonlinearity. LCO stability criteria, strictly applicable within the limitations of 

quasilinearisation by sinusoidal-input describing functions, are confirmed by 

numerical integration in the time domain. Excellent agreement is found at low 

steady-state amplitudes and even at higher amplitudes the approximation is found to 

be close to accurate time-domain predictions. Numerical continuation is employed to 

explore the complete bifurcation behaviour and to confirm the time- and frequency-

domain results. The analysis confirms the existence of stable LCO, dependent upon 

initial conditions, and shows that a softening nonlinearity can destabilise LCO and 

chaos as well as prohibiting the occurrence of certain predicted LCO. Results are 
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presented conveniently in the form of graphs of steady-state amplitude versus 

velocity and as basins of attraction with regions of stability, stable LCO, dynamic 

instability and static divergence. The boundaries separating the regions of different 

dynamic behaviour may be simple or non-simple depending upon the parameters of 

the wing considered. 

5.2 Non-dimensional equations 

The two-degree-of-freedom wing shown in Fig. 5.1 is considered. It represents a 

rigid rectangular wing of span ws and chord c  supported at the root with two 

nonlinear rotational springs having flexural stiffness  K  and torsional stiffness

 K  , where and  denote the flap and pitch degrees of freedom respectively. The 

springs are attached at a distance ec from the aerodynamic centre (on the quarter 

chord), defining the position of the flexural axis. e is the eccentricity between 

flexural axis and aerodynamic centre(positive if the spring lies behind the 

aerodynamic centre). The wing mass per unit area is wm . It is assumed that the wing 

has a uniform mass so that the mass axis lies on the mid-chord. Inertial coupling I is 

generally present if the wing mass and flexural axes do not coincide.  

 

Fig. 5.1  Binary aeroelastic model  
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The aeroelastic equations of motion with simplified unsteady aerodynamic terms are 

given by Wright and Cooper [132] for the case of linear root stiffnesses. When 

nonlinear restoring forces are present they may be re-written as 

 
3 2 2

0
6 4

w w w wVcs a V cs a
I I C G  

 
            (5.1) 

 
32 2 2 2

0
4 8 2

ww w w w
Vc s MVec s a V ec s a

I I C M
  

 
              (5.2) 

where I  and I are mass moments of inertia in flap and pitch respectively. I is the 

product moment of inertia. C  and C are structural damping coefficients in flap and 

pitch respectively.  is the air density. V is the free airflow speed. M


is an unsteady 

aerodynamic derivative term accounting for unsteady dynamic behaviour. wa is the 

lift curve slope.  G  and  M  are the nonlinear flap and pitch restoring force and 

moment, respectively. They may be expressed as    G K G  and

   M K M  , where K and K are linear stiffness coefficients in the flap and 

pitch degrees of freedom and  G   and  M   are generally nonlinear functions of 

 and   respectively. 

Eqs. (5.1) and (5.2) may be cast in non-dimensionalised form 

 
 

2
3 2 2

22 2

2
0

3 2

w wr AR a AR a
G

r mr V mr V

 

  

 
     

  

 
         

 
  (5.3) 

 
 

2
2

22 2 2

2 2 1
0w w

ARMr eAR a eARa
M

r mr mr V mr V

 

   


      

   

 
           

 
 (5.4) 

where    and   are the first and second derivatives of   with respect to 

dimensionless time t Vt b . b is the semi-chord of the wing and 2c b . 
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/wm m b  is the mass ratio of wing and air. /wAR s b  is the aspect ratio of the 

wing. K I     and K I     are uncoupled flap and pitch natural 

frequencies respectively.     is the frequency ratio. *V V b  is the 

dimensionless free airflow speed. / 2C I     and / 2C I     are structural 

viscous damping ratios in flap and pitch respectively. r and r  are dimensionless 

radius of gyration about the flap and pitch axes respectively. r is a dimensionless 

quantity corresponding to I . r , r , r and   are functions of system parameters 

AR , e  and K , and their definitions are given in full in the Appendix 5.1. 

It can be seen that the dimensionless aeroelastic model is defined by the following 

eight independent dimensionless quantities AR , m , e , K , M


, wa ,  ,   and the 

dimensionless nonlinear terms  G   and  M  . 

5.3 Limit cycle prediction and stability analysis 

It is convenient in this paper to consider a linear spring in flap and a cubic spring in 

pitch, which conveniently reveals the nature of stability in a softening nonlinear 

binary aeroelastic system. Then  G   and  M   are given by 

 G    (5.5) 

  3

nlM K     (5.6) 

where 
3nlK K K  is the ratio of cubic and linear stiffness coefficients. In the case 

of a softening nonlinearity, 
nlK is negative. 

Hence, the dimensionless aeroelastic equations of motion become 
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 

2
3 2 2

22 2

2
0

3 2

w wr AR a AR a

r mr V mr V

 

  

 
     

  

 
         

 
 (5.7) 

 
 

2
2

2 2

3

22

2

2 1
0

w

w
nl

ARMr eAR a

r mr mr V

eARa
K

mr V

 

  




    

 

  






 
        

 

   

 (5.8) 

5.3.1 Limit cycle prediction 

A limit cycle prediction method based on describing functions and the Sherman-

Morrison formula [53] is proposed here for the dimensionless aeroelastic system 

already described. In the case of first bifurcation and its post-instability dynamic, the 

aeroelastic system exhibits a strong filtering property such that the fundamental 

harmonic is predominant [133]. The nonlinear responses may be assumed to have the 

following form 

 i i,  
t tA e A e

  

  


    (5.9) 

where A  and A  are the amplitudes of nonlinear responses in the flap and pitch 

degrees of freedom respectively and is the phase shift in flap response with respect 

to the pitch response. 

The reduced frequency is generally defined as 

b

V
   (5.10) 

so that 

 i i,  
t tA e A e

  

  


   (5.11) 

and the dimensionless Laplacian argument is given by 

b
s s

V
  (5.12) 
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Laplace transformation and application of the sinusoidal-input describing function 

leads to the quasi-linearised equations corresponding to Eqs. (5.7) and (5.8) 

     2

1 3A As s A s
       M C C K K K x 0  (5.13) 

where the matrices M , C , AC , AK , 
1K ,  3 AK  and  sx  are given in full in the 

Appendix 5.1. 

The Sherman-Morrison formula allows the receptance matrix of the quasilinearised 

system to be determined as 

   
     

   
ˆ

1

T

f f

T

f f

N A s s
s s

N A s





 


H e e H
H H

e H e
 (5.14) 

when the receptance of the underlying linear system 

    
1

2

1A As s s


    H M C C K K  (5.15) 

and the describing function 

 
 

2

2

1 3

4
nl

A
N A K

V





  (5.16) 

are both known and  0 1
T

f e  is a vector that defines the location of the 

nonlinearity. 

The characteristic equation is given by 

     , 1 T

f fP A s N A s   e H e  (5.17) 

Limit cycle oscillations are undamped, neutrally-stable oscillations. Mathematically, 

the eigenvalues corresponding to limit cycle oscillations are purely imaginary 

numbers, denoted as i . Therefore the limit cycle equations are 

   Re 1 0
i

T

f fN A s
s




 
  

  
e H e  (5.18) 
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 Im 0
i

T

f fs
s 

 
 

  
e H e  (5.19) 

It is evident that Eq.(5.19) is an equation in the non-dimensional frequency  only. If 

there exist limit cycles, we can derive the frequency  from Eq.(5.19), substitute 

into Eq.(5.18) and then solve it for the amplitude A . Therefore, it is unnecessary to 

solve coupled equations in the amplitude A and frequency , which reduces the 

computation effort and makes the limit cycle prediction process very straightforward. 

5.3.2 Stability of LCO 

A limit cycle stability criterion may be used to determine the stability of LCO in the 

presence of amplitude and/or frequency perturbations and is derived here for the 

dimensionless aeroelastic system already described.  

If there exists a limit cycle with amplitude 0A and eigenvalue 0 is  , the following 

equation holds 

     0 0 0 0, 1 0T

f fP A s N A s  e H e  (5.20) 

Small perturbations in the limit cycle amplitude and eigenvalue are introduced by 

making the following changes to Eq.(5.20) 

0 0

0 0 0

,

i

A A A

s s s s  

 

      
 (5.21) 

Then 

 0 0, i 0P A A s        (5.22)  

and by expanding Eq. (5.22) in a Taylor series around the equilibrium state  0 0,A s  it 

is found that 
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   

   

0 0 0 0, i ,

i 0

P P
P A A s P A s A

A s

P
O A O s

s

  



 
          

 


      


 (5.23) 

Subtracting Eq. (5.20) from Eq. (5.23) and eliminating the high-order terms leads to 

i 0
P P P

A
A s s

 
  

     
  

 (5.24) 

Satisfaction of Eq. (5.24) requires that the real and imaginary parts are separately 

equal to zero 

Re Re Re i 0
P P P

A
A s s

 
       

          
       

 (5.25) 

Im Im Im i 0
P P P

A
A s s

 
       

          
       

 (5.26) 

But, 

Re Im i
P P

s s

    
   

    
 (5.27) 

Im Re i
P P

s s

    
    

    
 (5.28) 

so that Eqs. (5.25) and (5.26) may be cast as 

Re Re Im 0
P P P

A
A s s

 
       

          
       

 (5.29) 

Im Im Re 0
P P P

A
A s s

 
       

          
       

 (5.30) 

Eliminating   then leads to  

2 2

Re Re Im
P P P P

conj
A s s s A

                 
                                  

 (5.31) 

The first term on the right-hand-side is strictly non-negative. The null value is the 

case of the unchanging characteristic equation with frequency and damping, which is 

not of interest. Therefore, if the left-hand-side is positive, then /A<0. A positive 
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amplitude perturbation ( 0A  ) results in the eigenvalue moving to the left-hand 

side of the complex plane. This is a stable system configuration, in which energy is 

dissipated until the amplitude decays to its unperturbed value. Similarly, negative 

amplitude perturbation ( 0A  ) requires an unstable system whose eigenvalue 

moves to the right-hand side of the complex plane( 0  ) causing the amplitude to 

grow until the unperturbed LCO is again attained. This condition, /A<0, defines 

a stable LCO. Similarly, /A>0, defines an unstable LCO. 

Based the above perturbation analysis, for a stable limit cycle 

Re 0
P P

conj
A s

   
   

   
 (5.32) 

at 0A A  and 0s s . 

And for an unstable limit cycle, 

Re 0
P P

conj
A s

   
   

   
 (5.33) 

at 0A A  and 0s s . 

5.4 Softening nonlinearity: Examples, results and discussion 

For softening nonlinearity, static divergence is a common occurrence and therefore it 

is of importance to estimate the static instability boundary when investigating the 

nature of the instability. The softening stiffness nonlinearity is located in the pitch 

degree of freedom so that the nonlinear restoring moment is expressed as,  

 
 

 3

2 2

1 2 w
nl

eARa
M K

mrV 

   


    (5.34) 

The nonlinear restoring moment first grows with increasing pitch angle but then 

decreases. When the pitch angle reaches a critical value the nonlinear restoring 
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moment becomes zero, which indicates that the nonlinear system has lost its 

restoring capability and the system is statically divergent. The negative nonlinear 

restoring moment is not admissible for a physical engineering structure. Therefore, a 

static divergence boundary is achieved for the softening nonlinear system for the 

entire flight speed range. 

The LCO prediction method described above is used to determine the amplitudes of 

steady-state responses for the two-degree-of-freedom aeroelastic system with 

softening cubic nonlinearity in pitch. Results are compared to time-domain results 

obtained by using the built-in MATLAB solver ODE45, which is an adaptive step-

size solver based on the explicit Runge-Kutta(4,5) formula, the Dorman-Prince pair 

[134]. Results from two typical numerical examples are presented here.  

Before carrying out the nonlinear aeroelastic response analysis, the linear flutter 

speed for each case is computed by selecting 0nlK   and then increasing *V  until 

the real part of one pair of eigenvalues becomes positive. 

5.4.1 Example 5.1 

5.4.1.1 LCO prediction and stability analysis 

The softening nonlinear system has model parameters 26,m  0.23,e   14,K   

15,nlK    1.2,M

   2 ,wa  0   and 0  . The chosen value of 

nlK leads 

to small steady-state aeroelastic response amplitudes (approx.  <15 ) so that linear 

aerodynamic assumption is satisfied [104]. Limit cycle amplitudes and frequencies 

over the airflow speed range from 0 to 3.0 may be determined by the proposed limit 

cycle prediction method. The resultant LCO amplitudes versus speed and LCO 

frequency against speed curves are shown in Figs. 5.2 and 5.3. The stability of the 
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obtained LCO is determined by the inequalities (5.32) and (5.33). For instance, at 

speed * 1.2V  , there exist two LCOs. One LCO has amplitude 1 0.1969A  and 

frequency 1 0.5751  . Based on the LCO stability criterion it is found that 

0.1969
Re 9.3338 0

i0.5751

AP P
conj

sA s

   
          

 (5.35) 

which indicates the LCO is an unstable one. The other LCO has amplitude 

2 0.2314A   and frequency 2 0.5092   so that 

0.2314
Re 34.2899 0

i0.5092

AP P
conj

sA s

   
         

 (5.36) 

and is found to be stable. 

As shown in Fig. 5.2, at the same speed, the amplitude of the stable LCO is larger 

than that of the unstable one. However, it can be seen in Fig. 5.3 that the frequency 

of the stable LCO is smaller than the unstable LCO frequency. This result is to be 

expected because stiffness reduces with amplitude so low amplitude vibrations will 

have higher frequencies. 

 

Fig. 5.2  Predicted LCO amplitude versus dimensionless velocity 
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Fig. 5.3  Predicted LCO frequency against dimensionless velocity 

It is seen that LCO is predicted to start to occur at a speed * 0.73V  , much below the 

linear flutter boundary at * 2.215V  , so that the Hopf-bifurcation is subcritical. 

Beyond the linear flutter boundary, the unstable LCO amplitude is zero, which 

indicates that the initial equilibrium state is an unstable attractor and any disturbance 

will cause the system to move away from this state. This is exactly the characteristic 

of the corresponding linear system after the Hopf-bifurcation point, which confirms 

the correctness of predicted results in terms of the linear flutter boundary. It is, 

however, well known that the accuracy of the describing-function approximation 

diminishes with increase in amplitude. Thus it is necessary to confirm the results of 

frequency domain analysis by detailed analysis (without approximation) in the time 

domain. 

5.4.1.2 Time-domain response 

Time-domain responses over the speed range of interests are calculated by numerical 

integration of Eqs. (5.7) and (5.8). To compute the time history, any initial condition 

may be chosen as a combination of initial state variables. Obviously, it would not be 

possible in this research to explore every combination. It is convenient however to 

use the pitch angle as the only non-zero initial condition, because (1) the static 
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divergence boundary can be computed analytically in terms of the pitch angle and (2) 

the describing function technique is also able to directly produce the LCO pitch 

amplitude. This facilitates the direct comparison of LCO amplitude in the pitch 

degree of freedom with both the static divergence boundary in terms of pitch angle 

and the initial pitch angle. And, the subsequent stability analysis can be carried out 

entirely in the pitch degree of freedom. Hence, unless otherwise stated a single initial 

condition is placed on the pitch angle,    00 0 0       . The 

resulting steady-state time-domain responses are summarized in Fig. 5.4.  

At velocities less than 0.73 with the initial pitch angle below static divergence 

boundary the aeroelastic system is always stable, characterised by a decaying time-

domain response. However, when the initial pitch angle is slightly above the static 

divergence boundary, the time-domain response is divergent and the system 

experiences static instability. Two time series at the same speed, * 0.4V  , are given 

in Figs. 5.5 and 5.6 to illustrate this behaviour. 

 

Fig. 5.4  Time-domain LCO amplitude and initial condition against velocity. a-static divergence 

boundary; b-initial condition for unstable LCO; c-unstable LCO; d-stable LCO; e-asymmetric 

stable LCO; f-unstable LCO (nonzero initial flap velocity); g-stable LCO (nonzero initial flap 

velocity) 
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Fig. 5.5  Pitch time series at 0.4V  

        0 , 0 , 0 , 0 (0,0.2570,0,0)      

Fig. 5.6  Pitch time series at 0.4V  

        0 , 0 , 0 , 0 (0,0.2571,0,0)      

  

Fig. 5.7  Pitch time series at 0.9V    

        0 , 0 , 0 , 0    

(0,0, ,0)0.1760243095254420270245  

Fig. 5.8  Pitch time series at 0.9V    

        0 , 0 , 0 , 0    

(0,0, ,0)0.1760243095254420270246  

Over speeds ranging from approximately 0.73 to 0.972, the system experiences 

similar responses to those at speeds less than 0.73 when the only initial condition is a 

nonzero pitch angle,    00 0 0       . However, both stable and 

unstable LCO can be achieved under initial excitation by the flap velocity only, 

   00 0 0       , as depicted in the curves ‘f’ and ‘g’ in Fig. 5.4. 

The time series at * 0.9V  are given in Figs. 5.7 and 5.8. Neither stable nor unstable 

LCO could be found in this region when the only initial condition was on the pitch 

angle – this is thought to be due to the close proximity of the initial condition to the 

static divergence boundary.  
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For *0.972 1.39V  , the system exhibits decaying responses when the initial pitch 

angle is less than an initial condition boundary for unstable LCO, denoted by curve 

‘b’ in Fig. 5.4. Above this initial condition boundary quite different system responses 

are obtained. In order to illustrate the features of responses in this region clearly, the 

aeroelastic system at speed * 1.2V   is analysed thoroughly and its responses are 

represented here. At the initial condition boundary,

        0 , 0 , 0 , 0 (0, ,0,0)0.2157308904     , critical initial displacement 

excitation results in oscillations first with constant amplitude, which later decay 

gradually, shown in Figs. 5.9 and 5.10. When the initial pitch angle is very slightly 

changed (         0 , 0 , 0 , 0 (0, ,0,0)0.2157308905     ), the system oscillates 

with constant amplitude at the beginning and subsequently moves to another motion 

state with greater amplitude. Eventually, it encounters a dramatic climb and 

undergoes unbounded motion, demonstrated in Figs. 5.11 and 5.12. After further tiny 

increase of initial excitation, so that         0 , 0 , 0 , 0 (0, ,0,0)0.2157308906     , 

the time-domain response depicted in Figs. 5.13 and 5.14 shows a stable limit cycle 

oscillation after a preliminary-stage vibration with the same limited-amplitude as that 

in Figs. 5.9 – 5.12. Referring to Figs. 5.9 – 5.14, it is clear that the system first 

experiences an unstable limit cycle oscillation sensitive to any small perturbation. It 

may die away as a point attractor [135] as in Figs. 5.9 and 5.10. If a slight change 

happens, the motion starting with constant amplitude may grow and become 

statically divergent as in Figs. 5.11 and 5.12. Alternatively a stable LCO, or periodic 

attractor [135], such as depicted in Figs. 5.13 and 5.14 may be found. Further 

searching reveals unstable limit cycle oscillations for *0.73 3V  , with amplitudes 



 

108 

 

denoted by curves ‘c’ and ‘f’ in Fig. 5.4. The occurrence of unstable LCO depends 

on the initial condition.  

When the initial pitch angle is close to the amplitude of the stable LCO, the unstable 

LCO tends to disappear, and the system experiences stable LCO, shown typically in 

Figs. 5.15 and 5.16. The stable LCO is characterised by local stability. That is to say 

the stable LCO has its own basin of attraction. This can be illustrated by the fact that 

when the initial pitch angle is larger than the stable LCO amplitude, the system may 

be attracted directly to the zero-amplitude equilibrium state rather than the periodic 

attractor of the stable LCO, as shown in Figs. 5.17 and 5.18.  

  

Fig. 5.9  Pitch time series at 1.2V    

        0 , 0 , 0 , 0 (0, ,0,0)0.2157308904      

Fig. 5.10  Phase plane 1.2V  

        0 , 0 , 0 , 0 (0, ,0,0)0.2157308904      

  

Fig. 5.11  Pitch time series at 1.2V    

        0 , 0 , 0 , 0 (0, ,0,0)0.2157308905      

Fig. 5.12  Phase plane 1.2V  

        0 , 0 , 0 , 0 (0, ,0,0)0.2157308905      
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Fig. 5.13  Pitch time series at 1.2V    

        0 , 0 , 0 , 0 (0, ,0,0)0.2157308906      

Fig. 5.14  Phase plane at 1.2V    

        0 , 0 , 0 , 0 (0, ,0,0)0.2157308906      

  

Fig. 5.15  Pitch time series at 1.2V    

        0 , 0 , 0 , 0 (0, ,0,0)0.2204      

Fig. 5.16  Phase plane at 1.2V    

        0 , 0 , 0 , 0 (0, ,0,0)0.2204      

Furthermore, after disturbing the unstable LCO the response of the system may 

become unbounded directly rather than arrive at the stable LCO as shown in Figs. 

5.13 and 5.14. This can be understood by comparing Figs. 5.15 and 5.16 to Figs. 5.19 

and 5.20, where the system is subjected to very slightly different initial excitations.  

In the speed range *1.4 1.46V  , the stable LCO responses, denoted by curve ‘e’ in 

Fig. 5.4, seem to be offset and lose their symmetry. A mirrored time-domain 

response, about 0   axis, can be obtained for a different initial condition – both are 

illustrated in Figs. 5.21 and 5.22. For *1.47 1.476V  , the steady-state response 
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remains periodic and asymmetric about the about 0   axis, but the magnitude is 

not constant anymore and several amplitudes appear in turn.  

  

Fig. 5.17  Pitch time series at 1.2V    

        0 , 0 , 0 , 0 (0, ,0,0)0.24785      

Fig. 5.18  Phase plane at 1.2V    

        0 , 0 , 0 , 0 (0, ,0,0)0.24785      

  

Fig. 5.19  Pitch time series at 1.2V    

        0 , 0 , 0 , 0 (0, ,0,0)0.2203      

Fig. 5.20  Phase plane at 1.2V    

        0 , 0 , 0 , 0 (0, ,0,0)0.2203      

 

  

Fig. 5.21  Pitch time series at 1.45V    

        0 , 0 , 0 , 0 (0, ,0,0)0.1851375901      

Fig. 5.22  Pitch time series at 1.45V    

        0 , 0 , 0 , 0 (0, ,0,0)0.18513759011    
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For *1.477 1.49V  , LCO cannot be obtained. Instead, the time series is offset 

about the 0   axis up and down alternately before the occurrence of static 

divergence. An example of this sort of response when * 1.48V   is given in Fig. 5.23. 

Also, different ODE solvers (MATLAB ODE45 and stiff solver ODE23s as well as 

the standard fourth order Runge-Kutta algorithm) with various maximum step sizes 

have been used to integrate the equations of motion, with similar time series 

achieved. This confirms that the response is genuine and not caused by numerical 

instability. Furthermore, similar time-domain responses were achieved in an 

aeroelastic system with hardening nonlinearity by Price et al. [136]. They concluded 

that time series of this sort were chaotic. To check if the time history obtained is 

indeed chaotic, the Lyapunov exponent is calculated using a numerical scheme given 

in [137], originating from the works of Shimada and Nagashima [138] and Benettin 

et al. [139]. The Lyapunov exponent is used to measure the rate of divergence of 

nearby orbits in the phase space and a positive Lyapunov exponent indicates chaotic 

motion. The limit cycle oscillation corresponds to a zero Lyapunov exponent and the 

negative exponent denotes a stable response. The system response, also at * 1.48V  , 

but with a different initial condition was obtained by numerical integration using a 

fourth order Runge-Kutta scheme with a fixed time step 0.01t  . Once again 

similar time series results are obtained as shown in Fig. 5.24. The resultant Lyapunov 

exponent for time series shown in Fig. 5.24 (prior to static divergence) is 0.0635, 

indicating that the system experiences chaos before static instability. 

It can be seen from Figs. 5.23 and 5.24 that the chaotic motion is destroyed by static 

divergence. For speeds ranging from 1.49 to 2.145, neither LCO nor chaotic motions 

are obtained. The system undergoes dynamic instability followed by static instability, 
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which is probably due to the magnitude of the dynamic response becoming close to 

the static divergence boundary. 

  

Fig. 5.23  Pitch time series at 1.48V    

        0 , 0 , 0 , 0    

(0, ,0,0)0.21199993099996  

Fig. 5.24  Pitch time series at 1.48V    

        0 , 0 , 0 , 0    

(0, ,0,0)00.211999930929051  

When the flight speed is beyond the linear flutter boundary, the system is always 

unstable. The response depends upon the initial displacement. When the initial 

displacement in the pitch degree of freedom is less than the critical value for static 

divergence, the time series first shows oscillatory growth and then a sharp non-

oscillatory increase. A typical time-domain response of this type is presented in Fig. 

5.25. When the initial condition is equal to or exceeds the static divergence boundary 

the responses are always non-oscillatory and increase dramatically as in Fig. 5.26. 

  

Fig. 5.25  Pitch time series at 2.5V    

        0 , 0 , 0 , 0 (0, ,0,0)0.02      

Fig. 5.26  Pitch time series at 2.5V    

        0 , 0 , 0 , 0 (0, ,0,0)0.2113      
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5.4.1.3 Comparison of frequency-domain and time-domain results 

Fig. 5.27 is obtained by superimposing Fig. 5.2 on Fig. 5.4 and allows time-domain 

steady-state responses to be compared with those predicted by using describing 

functions and the Sherman-Morrison formula. It can be seen that the unstable LCO 

achieved in time domain agree with those predicted by frequency-domain method, 

especially in flight regime where the amplitude of unstable LCO is relatively small. 

In terms of stable LCO, it is seen that frequency-domain (describing function) 

approach results in a slight amplitude overestimate for the softening nonlinearity, 

especially in the region of the fold bifurcation. Never-the-less the frequency domain 

prediction remains accurate enough for most engineering purposes, but is not able to 

predict the stable LCO with offset or chaos. Also, it can be seen that the static 

divergence boundary intersects the curve of predicted stable LCO at * 2.145V  . It is 

understandable that neither LCO nor chaos can be found after the intersection 

because the static instability occurs before stable LCO or chaos. Furthermore, the 

softening nonlinearity may have a destabilising effect on stable LCO or chaos and 

prohibit the appearance of these phenomena when initial pitch angles required for 

their appearance are close to the static divergence boundary. This is thought likely to 

account for the absence of time-domain stable LCO (initial condition on the pitch 

angle only) when *0.73 0.972V  . It might also be the reason why neither chaos 

nor stable LCOs are found in the range *1.49 2.145V   although stable LCO are 

predicted by the frequency domain approach. Further analysis using numerical 

continuation codes allows for a more complete understanding of the bifurcation 

behaviour of the system. 
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Fig. 5.27  Comparison of results of time-domain and frequency-domain. a-static divergence 

boundary; b-initial condition for unstable LCO; c-unstable LCO; d-stable LCO; e-asymmetric 

stable LCO; f-unstable LCO (initial flap velocity); g-stable LCO (initial flap velocity); h-

predicted stable LCO; i-predicted unstable LCO 

5.4.1.4 Complete bifurcation analysis 

To fully understand the nonlinear behaviour of aeroelastic systems with softening 

nonlinearity, complete bifurcation analysis is explored using the numerical 

continuation software package MATCONT [140]. Two equilibrium curves are 

obtained, denoted by ‘a’ and ‘b’ in Fig. 5.28. Curve ‘a’ represents zero equilibrium 

with two Hopf-bifurcation points ‘A’ ( * 2.215V  ) and ‘C’ ( * 6.916V  ) and a 

branch point ‘B’ ( * 4.351V  ). Hopf-bifurcation ‘A’ is subcritical, indicated by a 

positive first Lyapunov coefficient. The limit cycle arising from this bifurcation point 

is unstable, as are the equilibrium points on segment ‘AC’. On the other hand, the 

Hopf-bifurcation ‘C’ is supercritical because it has a negative first Lyapunov 

coefficient. It can be seen from Fig. 5.28 that the branch point is actually the 

intersection of the two equilibrium curves. Apart from the branch point ‘B’, 

equilibrium branch ‘b’ includes a subcritical Hopf-bifurcation point ‘D’ 

( * 4.038V  ). By comparison, the equilibrium branch ‘b’ coincides with the 
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computed static divergence boundary shown in Fig. 5.4. As would be expected the 

static divergence boundary represents an equilibrium condition of the system. 

 

Fig. 5.28  Equilibrium and primary LCO branches 

From any of the two Hopf-bifurcation points, numerical continuation of limit cycles 

can be computed, thereby generating primary LCO branches, shown by curves ‘c’ 

and ‘d’ in Fig. 5.28. On the primary LCO curves, a fold bifurcation (limit point of 

cycles (LPC)), which generically corresponds to a turning point of a curve of limit 

cycles, occurs at ‘E’ ( * 0.73V  ). At this position two cycles collide and merge into a 

critical cycle with two Floquet multipliers equal to 1. From this it follows that a 

stable primary branch ‘d’ occurs after the LPC point. Therefore, the primary LCO 

branch ‘c’ between the LCP point and the first Hopf-bifurcation ‘A’ is unstable and 

the other branch ‘d’ is stable, which agrees with the results from frequency-domain 

stability analysis. For *0.73 1.4V  , the LCO branch ‘d’ is stable and symmetric. 

However, at * 1.4V  , the primary LCO branch encounters a branch point ‘F’ with 

one real Floquet multiplier exiting the unit cycle at +1, which is actually a symmetry-

breaking bifurcation [141]. Subsequently, the LCO branch ‘d’ becomes unstable, 

shown as dashed curve ‘FC’, and two stable asymmetric sub-branches are created on 

either side. This bifurcation is also known as supercritical pitchfork bifurcation of 
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limit cycles [141, 142]. Afterwards, at * 1.405V  , a Neimark-Sacker bifurcation 

point of limit cycles appears.  However, at this point, the periodic solution has real 

multipliers 
1 2 1    and consequently the Neimark-Sacker bifurcation point turns 

into a neutral saddle, which is a not bifurcation point [143].  

Further branch-following numerical continuation on the periodic LCO solutions are 

shown in Fig. 5.29. Starting from the branch point ‘F’ on the primary LCO, two sub-

branches of LCO around the primary LCO branch ‘d’, i.e., lower branch ‘e’ and 

upper branch ‘f’, are obtained. The upper branch ‘f’ undergoes a period doubling 

bifurcation (flip bifurcation) at * 1.47V   with a negative normal form coefficient 

indicating the appearance of stable double-period cycles, and ends at the Hopf-

bifurcation point ‘D’ of the equilibrium branch ‘b’, which is subcritical with a 

positive first Lyapunov coefficient. It indicates that the segment from the period 

doubling bifurcation point ‘H’ to the Hopf-bifurcation point ‘D’ is unstable. The 

lower branch ‘e’ also experiences a period doubling bifurcation ‘G’ at * 1.47V   with 

a negative normal form coefficient, followed by an unstable segment. Neither sub-

branch ‘e’ nor ‘f’ are symmetric in terms of the zero equilibrium branch. However, 

sub-branches ‘e’ and ‘f’ are mirror images of each other, which is in accordance with 

the mirrored time domain responses computed by the adaptive step size Runge-Kutta 

algorithm over the speed range *1.4 1.46V  , as shown in Figs. 21 and 22. 

Following the sub-branch ‘e’, a new branch of LCO emerges at the period doubling 

point ‘G’, shown as branch ‘g’. This is a bifurcation to a branch of periodic orbits of 

double period. This can be confirmed by the phase plane at * 1.475V  shown in Fig. 

5.30, exhibiting the doubled period and obtained by using the adaptive step-size 

Runge-Kutta algorithm. Increasing the flight speed leads to the phenomenon of 
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stable single-period oscillation on sub-branch ‘e’ that splits into stable double-period 

oscillations on branch ‘g’. The features of stable double-period oscillations also 

agree with that of the time domain responses over the speed range *1.47 1.476V  .  

Branch ‘g’ remains stable until further period doubling occurs at * 1.476V  , denoted 

by point ‘I’. Similarly, branch ‘f’ undergoes period doubling at the same velocity, 

shown as ‘H’, where a new branch ‘h’ arises. Also, it can be seen that new branch ‘h’ 

encounters a further period doubling bifurcation ‘J’.  

From Fig. 5.29, the emanating branch of periodic orbits undergoes a sequence of 

period doublings, one of the possible routes to chaos [142]. Based on the above 

complete bifurcation analysis, the computed time domain responses and Lyapunov 

exponent, it is confidently concluded that the aeroelastic system with softening 

nonlinearity undergoes chaos at speed range beyond * 1.477V   and a sequence of 

period doubling is the route to chaos. However, it can be seen from Fig. 5.29 that the 

amplitude of potential chaotic behaviour approaches the static divergence boundary, 

so that the static divergence boundary prohibits the appearance of stable chaos in the 

time domain.  

 

(a) 

 



 

118 

 

 

(b) 

Fig. 5.29  Complete bifurcation branches obtained via MATCONT. a-zero equilibrium branch; 

b-static divergence boundary; c-unstable primary branch of LCO; d-stable primary branch of  

LCO; e-lower sub-branch; f- upper sub-branch; g-period-doubling branch of e; h-period-

doubling branch of f 

 

 

Fig. 5.30  Phase plane of LCO at 
* 1.475V    

The time-domain responses achieved by the adaptive step size Runge-Kutta 

algorithm (stable and unstable symmetric LCO, asymmetric LCO, and LCO with 

doubled period) coincide with the LCO obtained by numerical continuation 

techniques. 
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5.4.1.5 Two-dimensional section of the basin of attraction 

The preceding time-domain analysis confirms that the stability of the system is 

sensitive to initial conditions. To fully appreciate the dependence of stability on 

starting values a thorough time domain response calculation is carried out in a two-

dimensional section with *0.01 3.0V   and 00 0.35  . The steps for non-

dimensional velocity and starting pitch angle are 0.01 and 0.0001 respectively. The 

other initial state variables are zero. That is, the initial condition is 

   00 0 0       . Actually, the basin of attraction is five 

dimensional. The stability of each point in the two-dimensional section is indexed 

and depicted in Fig. 5.31. Within region 3 the system is statically unstable. The 

boundary between this and other regions is the static divergence boundary. In region 

2 the system first undergoes dynamical instability followed by static divergence. The 

time histories are convergent if initial values are located in region 1 and the system is 

absolutely stable. The majority of region 1 is located under the static divergence 

boundary and to the left of region 2. However, we can see that many isolated small 

regions denoted by ‘+’ exist within region 2 where they are entirely surrounded by 

instability. This shows that there exists no simple boundary which separates the 

stable and unstable regions as indicated previously [104, 106]. The time histories 

show unstable LCO for a while before bifurcating to other sorts of motion (stable 

oscillation, stable LCO or dynamic instability) if appropriate initial values are chosen 

near the boundaries between region 1 and region 2 or between region 1 and region 4. 

Most interestingly, the regions of stable limit cycle oscillation are defined and shown 

in black. They appear not to form a single connected region, though they are seen to 

be present as predicted by frequency domain analysis, close to the nose the 
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unstable/stable LCO curve (curves ‘h’ and ‘i’ in Fig. 5.27) and below the static 

divergence boundary. 

To summarise, the aeroelastic system with softening nonlinearity defined in Example 

1, shows regions of stable (convergent), neutrally stable (unstable or stable LCO) and 

unstable responses within a two-dimensional section of the basin of attraction. Above 

the static divergence boundary, the system experiences static instability. The 

occurrence of convergent responses, unstable and stable LCO, dynamic instability 

and subsequent static divergence are all very sensitive to initial conditions. The 

boundaries between the regions are generally not simple. 

 

Fig. 5.31  Two-dimensional section of the basin of attraction (Example 5.1). Region 1-

convergence; Region 2-dynamical instability followed by static divergence; Region 3-static 

divergence; Region 4-stable LCO. 

5.4.2 Example 5.2 

Another softening nonlinear system with the same model parameters m , 
nlK , M


, 

wa ,   and  as Example 5.1 but different 9AR  , 0.24e  and 6K  is used. The 

stable and unstable LCO are predicted by the frequency-domain method and the 

speed at which the unstable LCO disappears is found to agree with the linear flutter 

speed. The global bifurcation point occurs at 0.26V   , far below the linear flutter 
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speed 2.697V   . However, this case is different from the previous one in that the 

static divergence boundary intersects with the unstable LCO branch predicted by 

describing functions, as shown in Fig. 5.32 . Hence, the system is expected to 

experience static instability before the appearance of predicted stable LCO. Indeed, 

no stable LCO is achieved in time domain over the whole flight regime. However, it 

is known that the frequency-domain prediction, based on describing function is likely 

to be slightly inaccurate in the region of the of the fold bifurcation. Therefore is in 

necessary to carry out a complete bifurcation analysis in order to achieve a 

comprehensive understanding of the nonlinear dynamics of the system. 

 

Fig. 5.32  Comparison of static divergence boundary and predicted LCO. a-zero equilibrium 

branch; b-static divergence boundary;  g-predicted stable LCO; h-predicted unstable LCO 

Using numerical continuation, complete bifurcation branches are obtained as shown 

in Fig. 5.33. It can be seen that the zero equilibrium branch has two Hopf-bifurcation 

points ‘A’ ( * 2.697V  ) and ‘C’ ( * 8.186V  ), which are subcritical and supercritical 

indicated by positive and negative first Lyapunov coefficient respectively. Also, it 

has branch point ‘B’ ( * 4.252V  ), at the intersection with equilibrium branch ‘b’. 

Apart from the branch point ‘B’, branch ‘b’ includes two subcritical Hopf-bifurcation 

points ‘D’ and ‘E’ ( * 3.692V  ). As before, branch ‘b’ denotes the static divergence 
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boundary. Starting from the subcritical Hopf-bifurcation point ‘A’, an unstable LCO 

branch ‘c’ emerges and encounters a branch point ‘G’ ( * 0.404V  ) and a fold 

bifurcation at ‘F’ ( * 0.318V  ). A stable LCO branch ‘d’ continues from point ‘F’ 

without further branch points and eventually ends at the supercritical Hopf-

bifurcation point ‘C’. Two sub-branches (‘e’ and ‘f’) emerge from the branch point 

‘G’ on the unstable LCO branch ‘c’, and are mirror images of each other, finally 

ending at the two subcritical Hopf-bifurcation points ‘D’ and ‘E’ of branch ‘b’ 

respectively, which indicates that these two sub-branches are unstable. 

 

(a) 

 

(b) 

Fig. 5.33  Complete bifurcation branches obtained via MATCONT. a-zero equilibrium branch; 

b-static divergence boundary; c-unstable primary branch of LCO; d-stable primary branch of 

LCO; e-lower sub-branch; f- upper sub-branch 
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Fig. 5.34  Comparison of bifurcation branches obtained via the describing functions and 

MATCONT. a-zero equilibrium branch; b-static divergence boundary; c-unstable branch of 

LCO; d-stable branch of  LCO; g-predicted stable LCO; h-predicted unstable LCO 

According to the preceding complete bifurcation analysis, it can be seen that the 

static divergence boundary passes exactly through the fold bifurcation point ‘F’ and 

has stable and unstable LCO branches above and below respectively. Consequently 

LCO on the stable branch are prohibited by the static divergence boundary. 

Comparison of the bifurcation branches obtained via the describing functions and by 

MATCONT, shown in Fig. 5.34, reveals that although the describing function 

approach is an approximation, especially in the region of the fold bifurcation, it 

produces regions of system stability almost coincident with those determined from 

numerical continuation. That is, the system experiences static instability before the 

occurrence of stable LCO, which is prohibited.  

The stability of the system with softening nonlinearity described in Example 5.2 is 

very sensitive to initial conditions with regions of convergence, dynamic instability 

and static divergence shown in Fig. 5.35. The boundaries between the regions in this 

case are simple. 
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Fig. 5.35  Two-dimensional section of the basin of attraction (Example 5.2). a-static divergence 

boundary; b-initial condition for unstable LCO 

5.5 Conclusion 

A comprehensive study of the effects of softening structural nonlinearity is presented 

including stable and unstable LCO, static divergence and chaos. Complex dynamic 

behaviour is demonstrated using the illustration of a nonlinear binary flutter model 

with a cubic stiffness in the pitch degree of freedom. A limit cycle prediction method 

based on describing functions and Sherman-Morrison formula is proposed to predict 

LCO in frequency domain, which avoids solving coupled equations about limit cycle 

frequency and amplitude and makes the limit cycle prediction procedure 

considerably straightforward. The stability of predicted LCO is determined by 

proposed stability criteria. The frequency domain methods are confirmed by 

numerical integration of the governing differential equations in the time domain. In 

addition, new dynamic responses, including asymmetric LCO and chaos, are 

revealed in time domain. Aeroelastic stability in the presence of softening structural 

nonlinearity is found to be strongly dependent upon initial conditions. LCO and 

chaos may be destabilised when the amplitude of oscillation approaches the static 

divergence boundary and predicted stable LCO are prohibited. Complete bifurcation 

analysis by the use of numerical continuation techniques and two-dimensional 



 

125 

 

sections of the basin of attraction allow the nature of stability occurring over the 

whole speed range to be explained. It is demonstrated the aeroelastic systems with 

softening nonlinearity are characterised by Hopf, fold, pitchfork (symmetry-breaking) 

and period doubling (flip) bifurcations. In some circumstances, the basins of 

attractions are not singly connected regions, so that the boundaries between different 

dynamic regimes are not simple. Dependent upon the wing parameters, regions may 

appear where the predicted stable LCO are free from the destabilising effect of 

softening nonlinearity. With a sound understanding of the effects of softening 

nonlinearity presented here, in conjunction with well-known effects of hardening 

nonlinearity, a new active vibration control approach will be presented in the next 

chapter for aeroelastic systems with softening or hardening nonlinearity.  

 

Appendix 5.1 Coefficients in Eqs.(5.3) , (5.4) and (5.13) 

The following non-dimensional terms are defined: 
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Chapter 6                                                                                        

Robust passivity-based continuous sliding-mode control for under-

actuated nonlinear wing sections 

6.1 Introduction 

The purpose of this chapter is to develop a robust passivity-based continuous sliding-

mode control approach, which can globally stabilise all the degrees of freedom of an 

under-actuated nonlinear prototypical wing section with matched and mismatched 

uncertainty and input disturbance. The approach makes good use of the robustness of 

sliding-mode control to large matched uncertainty and large input disturbances. To 

deal with mismatched uncertainty in under-actuated systems, a robust passivity-

based control method is used for the design of globally exponentially stable 

nonlinear sliding surfaces. Moreover, a proposed continuous sliding-mode control is 

able to alleviate the chattering which occurs in the process of discontinuous sliding-

mode control. The sufficient conditions for global asymptotic stability and global 

stability of under-actuated two-degree-of-freedom nonlinear aeroelastic systems are 

provided. 

6.2 Nonlinear aeroelastic model 

The under-actuated nonlinear system in question takes the form of a generic two-

dimensional wing section with trailing-edge control surface, as depicted in Fig. 6.1. 

This example was used previously for classic aeroelastic analysis and control design 
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[117]. The wing section with chord 2c b  and unit span 1ws   is supported by a 

linear spring with stiffness hK  in plunge and a nonlinear torsional spring with 

stiffness  K   in pitch. The springs are attached at a distance ha b  from the 

midchord, defining the elastic axis. The centre of mass is at a distance 
cgr x b  from 

the elastic axis. 

The governing equations of motion of the model were given by Ko et al. [117] , 

t w h hm h m x b C h K h L       (6.1) 

 wm x bh I C K M           (6.2) 

where h  and  denote plunge and pitch displacements respectively; tm is the total 

mass of wing and its supporting structure; wm  is the mass of wing; I is the mass 

moment of inertia about the elastic axis; and hC and C are structural damping 

coefficients in plunge and pitch respectively.  

L and M are the aerodynamic lift and moment about the elastic axis. Quasi-steady 

aerodynamic forces [144] are employed such that, 
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      
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 (6.4) 

where  is the air density; V is the free airflow speed;  is the trailing-edge control 

surface deflection;
LC

and LC


 are aerodynamic lift coefficients due to the angle of 

attack and the deflection of trailing-edge control surface; and 
MC


and MC


are the 

aerodynamic moment coefficients. 
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Fig. 6.1  The aeroelastic model with pitch and plunge degrees of freedom 

 

In this chapter, bounded nonlinear torsional uncertainty and control input disturbance 

are considered. Then by combining equations (6.1)-(6.4) and introducing the 

nonlinear uncertainty and input disturbance, it is found that, 

     A A        Mx C C x K K x ΔKx b  (6.5) 

where 

t w

w

m m x b

m x b I



 

 
  
 

M , 
 

 

2

2 3

1 2

1 2

L L h

A

M M h

VbC Vb C a

Vb C Vb C a

 

 

 

 

 
  

    

C ,  

0

0

hC

C

 
  
 

C , 

2

2 2

0

0

L

A

M

V bC

V b C









 
  

  

K , 
 

0

0

hK

K 

 
  
 

K ,  

 

0 0

0 K 

 
    

K , 
h



 
  
 

x , 

2

2 2

L

M

V bC

V b C









 
 
 
 

b . 

and  K   and   represent the nonlinear torsional uncertainty and input 

disturbance respectively. 

If  1 2 3 4

T T Th h x x x x      x , then Equations in (6.5) may be cast in 

state-space form 
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        x f x g δ  (6.6) 

where 

    

  

3

4

2

1 1 2 2 2 1 3 2 4 3

2
43 1 4 2 2 3 3 4 4

0

0
, ,

x

x

k x k V p x x c x c x g

gk x k V q x x c x c x

   
   
           
   
        

f x g  

   2 2 3 4, 0 0 ,
T

K x x t t  δ t t  

2 2 2

t wd m I m x b   , 1 hk I K d ,  3

2 L w Mk I bC m x b C d
     ,  

3 w hk m x bK d  ,  2 2

4 w L t Mk m x b C m b C d
     ,  

   wp x m x bK x d   ,    tq x m K x d , 

  3

1 h L w Mc I C VbC m x Vb C d
      

 
,  

  2

3 w h L t Mc m x b C VbC m Vb C d
       

 
, 

   2 4

2 1 2 1 2L h w w M hc I Vb C a m x bC m x Vb C a d
            , 

    3 3

4 1 2 1 2t M h w L hc m C Vb C a m x Vb C a d
        

 
, 

 2 3

3 L w Mg V I bC m x b C d
      ,  2 2 2

4 w L t Mg V m x b C m b C d
    , 

3 wt m x b d  and 4 tt m d  . 

6.3 Normal form 

The pitch angle is here selected as the output feedback variable, 

2oy x    (6.7) 

The relative degree of the system, denoted by dr , is determined by the number of 

times the output can be differentiated until the input appears explicitly in the 

expression for the 
th

dr  time derivative. In the present case, 
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    

    

  

    

      

    

2

3

4

2 4
1 1 2 2 2 1 3 2 4

2

3 1 4 2 2 3 3 4 4

4

2

3 1 4 2 2 3 3 4 4 4

d d d
.

d d d

0 1 0 0

d d d
.

d d d

0 0 0 1

o

o o
o

o
o

y x

y y
y

t

x

x

x
k x k V p x x c x c x

k x k V q x x c x c x

y x
y

t

k x k V q x x c x c x g

 

 

 

 



       

 
 
 

      
 
     
 

       

      

        

x
f x g δ

x x

x
f x g δ

x x

f x g δ

2

  (6.8) 

where  2 4 2 2t K x x   . 

Since the input  4g    appears in the expression for oy  it is apparent that 

relative degree 2dr  . The significance of this is that the nonlinear system may be 

divided into an external sub-system of dimension dr , generally with nonlinear input, 

and a sub-system of 2 dn r nonlinear equations known as the internal dynamics, 

where n is the number of degrees of freedom. In the present case both subsystems are 

of order 2. This arrangement of equations is known as the normal form, which in the 

present case may be obtained by means of the transformation, 

1 14 3

2 24 4 3 4

3 3

4 4

0 0

0 1
or

0 1 0 0

0 0 0 1

z xg g

z xg g

z x

z x

 

    
    
     
    
    

    

z Tx  (6.9) 

where 2

4 3 1 4 2 3 3 4 4 3 0g c g c c g g c g      , such that 1 0
dz

d
g

x
, 2 0

dz

d
g

x
 to ensure 

that the input does not appear explicitly in the equations of the internal dynamics. 

The matrix T , being invertible, is a global diffeomorphism.  

Application of equation (6.9), in (6.6) leads to the normal form, 
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       1 2 3 3 11 2 1 2 1 2
, z z

  
  z f z f z δ  (6.10) 

3 4z z  (6.11) 

   4 4 2bz f g       z  (6.12) 

where 

      
4

1 1 2 1 2 1 2

1 4 2

0 

    

 
   

 
f z Sz z  (6.13) 

  
  

4

2 31 2

2 4 31 32 3

4

, 1z
K z



   




 
 

       
  

f z  (6.14) 

     7 1 4 8 3 2 91 3 92 3 3 10 4bf z z z z K z z z          z  (6.15) 

   1

1 3 31 2 4 3

2 2

4

0
0

, ,
w t

z
K z z g m x b g m

z t
d

 




 
               
     

 

z δ t t  (6.16) 

   2 2 2

1 3 3 4 1 31 3 1 4 2 3 3 4 3 4,k g g k g k g k V k g g g k V        (6.17) 

   2 3 3 4 1 32 4 3 7 3 4 8 3 4, , ,w tc g g c g m x b g m d k g c g           (6.18) 

     2

91 3 3 4 4 92 10 3 3 4 4, andtk g g k V m d c g g c           (6.19) 

In the new coordinate system, equations (6.11) and (6.12) comprise the chain of 

simple integrators whereas the internal dynamics, determined by equation (6.10), are 

not directly affected by the control input. Together, equations (6.10)-(6.12) define a 

cascaded system of equations in the normal form. 

The zero dynamics of the system (6.10)-(6.12), without uncertainty and disturbance, 

are given by the linear system, 

      11 2 1 2 1 2  
 z f z Sz   (6.20) 

when the output is set to zero, 3 0oy z  , which in turn causes 4z  to vanish, i.e. 

4 0z  . The zero dynamics in nonlinear systems is equivalent to the zero dynamics in 
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LTI systems in that stability of the zero dynamics means that the system is minimum 

phase. In feedback linearisation, the global exponential stability of the zero dynamics 

is a necessary condition for the global asymptotic stability of the overall system, the 

sufficient condition being that the internal dynamics is input-to-state stable [21]. The 

nonlinear system is globally minimum phase if the zero dynamics has a global, 

asymptotically-stable equilibrium point. 

In this paper, we will employ sliding-mode control to globally stabilise the nonlinear 

system (6.10)-(6.12). The idea of sliding-mode control is to design a control input   

to force the system states to move toward a desired stable sliding surface S  and 

maintain the states on it. Once on the sliding surface, all the states will move along 

the sliding surface and converge to zero. On the sliding surface, the behaviour of the 

system is determined by the prescribed sliding surface. It will be shown later that the 

design of a stable sliding-mode surface will stabilise the internal dynamics. 

Due to the form of equations (6.10)-(6.12) it is convenient to choose a nonlinear 

sliding surface as,  

  4 1 1 3
0S z


  z  (6.21) 

where 
    31 3 1 2

,
T

T z
 

 
 

z z  and   1 1 3
 z  is an unknown function to be designed with 

the requirement that the origin of the dynamics of the reduced-order model, 

       1 2 3 3 11 2 1 2 1 2
, z z

  
  z f z f z δ  (6.22) 

  3 1 1 3
z


 z  (6.23) 
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confined to the sliding surface, shall be globally asymptotically stable. The design of 

  1 1 3
 z amounts to solving a stabilisation problem for the system (6.22)-(6.23) 

with   4 1 1 3
z


 z viewed as the control input.  

In view of its importance, the stability properties of the zero dynamics of system 

(6.10)-(6.12) will now be considered. Suppose the origin of zero dynamics 

      11 2 1 2 1 2  
 z f z Sz  is globally asymptotically stable, then S is Hurwitz,

  2

2 1det        S I  so that 1 2, 0   . Hence, for any given positive definite 

symmetric matrix Q , there exists a positive definite symmetric matrix P  that 

satisfies the Lyapunov equation, 

T  PS S P Q  (6.24) 

Correspondingly, there exists a continuously differentiable, radially unbounded 

storage function
1
  W z  satisfying  

              

2 2

min max1 2 1 2 1 2 1 2 1 2
2 2

TW 
    

  P z z z Pz P z  (6.25) 

and 

     
 

          

21 2

1 min1 2 1 2 1 2 1 2 1 2
2

1 2

d

d

T
W

W 


    



    
z

z f z z Qz Q z
z

 (6.26) 

for 
 

2 1

1 2




 z , where   1 2

W


z  and     1 2 1 2
d dW

 
z z are the differentials of 

  1 2
W


z with respect to time t and  1 2

z  respectively,  min   and  max  are 

                                                 
1
 A radially unbounded function is a function  W z for which  W z z . 
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minimum and maximum eigenvalues of   , and  
2

 is the Euclidean norm of    

[21]. 

In the analysis above, positive-definite Q  may be chosen arbitrarily, but in this 

paper is taken to be,  

1

1 2

2

0
, 0, 0

0

q
q q

q

 
   
 

Q  (6.27) 

Then P is found as,  

1 2 1 2 1 4 1

2

2 4 2 1 111 12

2
12 22 4 1 2 4 1

1 2 1 2

2 2 2 2

2 2 2

q q q q

p p

p p q q q

  

    

 

   

 
  

 
   
     
 

P  (6.28)  

which is indeed a positive-definite, symmetric matrix. Since the zero dynamics are 

linear they are not only globally asymptotically stable but converge to zero 

exponentially. 

6.4 Nonlinear aeroelastic system with control input disturbance 

First, we consider the case where the only uncertainty is the control input disturbance,   

1 2, 0 and  0    δ 0  (6.29) 

Then the system (6.10)-(6.12) becomes, 

       1 2 3 31 2 1 2 1 2
, z z

  
 z f z f z  (6.30) 

3 4z z  (6.31) 

   4 4bz f g     z  (6.32) 

6.4.1 Passivity-based sliding surface design 

Consider the system (6.30) and (6.31). 4z may be viewed as the input to the system 

and 3z the output variable. According to the definition of passivity [21, 145], the 



 

136 

 

system (6.30) and (6.31) is said to be strictly passive if there exists a differentiable 

and positive definite storage function 
  1 1 3

U


z  such that  

1 3 4 3 4 3, , , 0.U z z z z z      (6.33) 

This may be understood physically as follows. If 
  1 1 3

U


z  represents the energy of 

the system, then inequality (6.33) indicates that the system (6.30) and (6.31) is 

dissipative because the energy storage rate is less than the external energy supply  

rate 3 4z z , with the difference being the energy dissipation rate. If 4z is designed such 

that 
1 30 with 0U z   , then the system can be stabilised with input 4z . Here, the 

feedback passivity property [21, 145] is used to design   4 1 1 3
z


 z  such that 

global stability of the system (6.30), (6.31) is obtained.  

Lemma 6.1 Suppose the origin of the zero dynamics       11 2 1 2 1 2  
 z f z Sz  is 

globally exponentially stable, then the origin of the system (6.30)-(6.31) can be 

globally exponentially stabilised by,  

     
 

1 2

4 1 2 31 3

1 2

, 0
dW

z z z
d

 






     
z

f
z

 (6.34) 

Proof:  Take a storage function candidate,  

      2

1 31 3 1 2

1

2
U W z

 
 z z  (6.35) 

for the system (6.30)-(6.31), where   1 2
W


z satisfies (6.25) and (6.26). It may be 

shown that, 

          

2 2

min 1 max1 3 1 3 1 3
2 2

1 1
min , max ,

2 2
U 

  

   
    

   
P z z P z  (6.36) 
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The derivative of 1U  is, 

 
 

  
 

 1 2 1 21
1 31 3

1 3 1 2 3

dd

d d

WU
U z

z

 



 

   
    
     

z z
z

z z
 (6.37) 

Substitution (6.30) and (6.31) into (6.37) leads to, 

  
 

  
 

  
 

  
 

1 2 1 2

1 1 3 2 3 4

1 2 1 2

1 2 1 2

1 3 2 4

1 2 1 2

d d

d d

d d

d d

W W
U z z z

W W
z z

 

 

 

 

  

 
   
 
 

z z
f f

z z

z z
f f

z z

 (6.38) 

and applying the feedback control (6.34) gives, 

  
 

    

21 2 2

1 1 3 min 1 3
2

1 2

d
min ,

d

W
U z  







   
z

f Q z
z

 (6.39) 

Then by invoking Theorem 4.10 [21] with inequalities (6.36) and (6.39) , the origin 

of the system (6.30), (6.31) is found to be globally exponentially stable. 

□ 

Now, considering the reduced-order model (6.30)-(6.31), supposing the zero 

dynamics to be globally exponentially stable, a nonlinear sliding surface may be 

chosen as 

     
 

1 2

4 1 4 2 31 3

1 2

d
0

d

W
S z z z







 
       
 
 

z
z f

z
 (6.40) 

which is globally exponentially stable. The stable sliding surface guarantees the 

stability of the internal dynamics (6.30). However, it is still necessary to determine 

the input   that ensures that the states of the system are attracted to the sliding 

surface and remain upon it.  
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6.4.2 Sliding mode control design 

The sliding-mode control input aims to compel the states of the system, starting away 

from the sliding surface S , to move toward it (i.e., the reaching phase) and then to be 

maintained upon it (i.e., sliding phase). In this way the sliding surface S is made 

globally attractive. Here, an approach based on Lyapunov stability theory is used for 

the design of a sliding-mode control input. If a candidate Lyapunov function is 

selected as 

 
2

2
2

S
U S   (6.41) 

then the control input should be designed such that  

2 0, 0U SS S     (6.42) 

By differentiating equation (6.40) and combining this with equations (6.30)-(6.32), 

and (6.13)-(6.15), the derivative of S may be determined as, 

      4 1 2 41 3
 S z g  


      z z  (6.43) 

where 
  1 1 3

 z  and  2 z  are given in Appendix 6.1. 

The term on the left-hand-side of inequality (6.42) becomes, 

    2 2 4U S g      z  (6.44) 

To ensure inequality (6.42) is satisfied globally, a discontinuous sliding-mode 

control input may be applied according to, 

 
 2

4 4 4

sgn S S
g g g

 


 
    
 

z
 (6.45) 

where , 0   . The term  2 4g z , a continuous control input, is used to 

neutralise the known term  2  z in equation (6.44). The other two terms in (6.45) 
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both have negative signs, so that deviation of the dynamic response from 0S   leads 

to an input that returns the system to the sliding surface. Specifically, 

   4 sgng S  is used to compensate the input disturbance and  4g S  is an 

exponential approaching law that guarantees an exponential convergence rate in the 

reaching phase and consequently reduces the approaching time to the sliding surface. 

Substituting (6.45) into (6.44) leads to,  

  

 

 

2 4

2

4

2

4

sg 

 

nU S S g S

S S g S

g S S

  

  

  

    

    

    

 (6.46) 

It is assumed that, 

4 0 g      (6.47) 

where 0 ,   are chosen based upon an estimate of the input uncertainty   and the 

known 4g  while 00 1  . 

Then, inequality (6.46) becomes, 

  2

2 01 0U S S        (6.48) 

which indicates that the discontinuous sliding control input (6.45) is able to force the 

system states to move toward the sliding surface (6.40) if the control input 

disturbance satisfies (6.47). Once the states are restricted the sliding surface, they 

exponentially converge to zero as time approaches infinity because the sliding 

surface (6.40) is designed to be globally exponentially stable. It is however well 

known that a discontinuous sliding control will result in chattering, which presents an 

obstacle to the practical application of sliding-mode control [146]. 
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The continuous sliding-mode approach is commonly used to overcome the problem 

of chattering caused by the signum function in equation (6.45). Here, the signum 

function  sgn S  is replaced by a saturation function, 

 sgn

sat

S S
S

S
S



 


 
 

  
  



 (6.49) 

where  is a small constant that defines a boundary layer of constant width 

neighbouring the sliding surface at 0S  .  

Then the continuous sliding-mode control input becomes, 

 2

4 4 4

sat
S

S
g g g

 




  
     

  

z
 (6.50) 

If the zero dynamics are exponentially stable and the input disturbance is bounded by 

(6.47) , then the system can be globally stabilised by using the continuous sliding 

mode control input (6.50) and the trajectories are shown in Appendix 6.2 to reach 

the positively invariant set,  

       1 31 3
U U S  


   z   (6.51) 

close to the sliding surface defined by a boundary layer of thickness   and an 

associated energy term  3U   defined in the Appendix 6.2. Thus the application of 

continuous sliding-mode control generally results in the sliding phase never being 

reached, but the states are instead restricted to the thin boundary layer close to it. 

 □ 

Remark 6.1: The analysis above, and in Appendix 6.2, does not imply an 

assumption of smallness of the input disturbance. The controller is able to admit 
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large input disturbances under the practical limitation of the control surface 

deflection. 

Remark 6.2: The analysis above, and in Appendix 6.2, does not imply an 

assumption that the structural nonlinearity is hardening or softening. Hence with 

known bounded input disturbance, the controller is able to globally stabilise under-

actuated wing sections with hardening or softening nonlinearity. 

6.4.3 Example 6.1 

A two-degree-of-freedom plunging and pitching prototypical wing section with 

torsional nonlinearity [117] is used here for the purposes of demonstration. The 

system parameters are given in Table 6.1. The nonlinear torsional stiffness is 

 
 

   

5
1

1

2 3 46.8614 1 1.1438 96.6696 9.5134 727.6641 N.m/rad

i

i

i

K k  

   







    


 

which is a softening nonlinearity. 

Table 6.1 System parameters 

Parameters Value Parameters Value 

tm  12.3870 Kg 
MC


  0.5 h La C


  

wm  2.0490 Kg 
LC


 3.358 

b  0.135 m 
MC


 -1.94 

  1.225 Kg/m
3
 

hK  2844.4 N/m 

cgr   0.0873 hb a b   m hC  27.43 Kg/s 

I  2 0.0517w cgm r   kgm
2
 C  0.036 Kgm

2
/s 

ws   0.6 m 
ha  -0.6847 

LC


 2    
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The linear flutter boundary of the open-loop system is found to be 11.5 m/s and at 

velocity 16m/s, the nonlinear responses are given in Fig. 6.2. 

  

(a) (b) 

 

  

(c) (d) 

Fig. 6.2  The open-loop time histories with initial condition

         0 0 0 0 0.02 0 0 0
T T

h h      

In this example, a sinusoidal input disturbance  4 0.1sin 50g t  , which satisfies 

the matching condition, is considered. In principle, Q  may be any positive-definite 

matrix,   and   may be chosen as any positive real numbers,  and 0 as arbitrarily 

chosen nonnegative real numbers satisfying (6.47) and 00 1  , but in practice are 
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limited by the trailing-edge control surface angle of an experimental rig. In this 

example the following parameters are selected, 

0

1 8 0
, 550, 0.2, 0.5, 47 and 0.02

0 1 2
    

 
      
 

Q  

for illustration. The closed-loop responses in Fig. 6.3 show the complete state of 

closed-loop system to be stable and in Fig. 6.4 a sinusoidal response of very low 

amplitude is shown to exist. Fig. 6.5 confirms that the responses are bounded in a 

small region around the origin, as explained by (6.51). Also, the control input, shown 

in Fig. 6.6 is sinusoidal with low amplitude. Despite the presence of very low 

amplitude sinusoidal response, the large-amplitude open-loop responses have been 

constrained into a very small positively invariant set around origin, which 

significantly alleviates effects of nonlinear flutter. 

  

(a) (b) 
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(c) (d) 

Fig. 6.3  The closed-loop time histories with initial condition

         0 0 0 0 0.02 0 0 0
T T

h h      

 

 

  

(a) (b) 

Fig. 6.4  The zoomed closed-loop time histories with initial condition

         0 0 0 0 0.02 0 0 0
T T

h h      
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(a) (b) 

Fig. 6.5  Sliding surface 

 

  

(a) (b) 

Fig. 6.6  Trailing-edge control surface angle 

 

6.5 Nonlinear aeroelastic systems with bounded torsional nonlinear uncertainty 

In general structural nonlinearity is identified experimentally. There unavoidably 

exist measuring and identification errors, which produce unmatched and matched 

uncertainties 1 δ 0  and 2  0  respectively.  

It is assumed that the structural nonlinearity uncertainty is bounded by 
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     3 3 3 3K K z z n z z       (6.52) 

where  3n z , differentiable with respect to 
3z , is a known upper bound of the 

uncertain nonlinearity stiffness. 

The case of uncertain structural torsional nonlinearity is considered whereby the 

overall system (6.10)-(6.12) is re-written as, 

       1 2 3 3 11 2 1 2 1 2
, z z

  
  z f z f z δ  (6.53) 

3 4z z  (6.54) 

 4 4 2bz f g    z  (6.55) 

 

6.5.1  Robust passivity-based sliding surface design 

In this case, a robust passivity-based control technique [147] is used to design a 

stable nonlinear sliding surface. According to the definition [147], the system (6.53) 

and (6.54) , with 3z  and 4z viewed as output variable and input respectively, is said 

to be robust strictly passive if there exists a differentiable positive-definite function 

  1 1 3
U


z  such that, 

  
 

     1 1 3 1 2 3 3 11 2 1 2

1 3 4 3

1 3
4

,
, 0

dU z z
U z z z

d z

  



  
    
 
 

z f z f z δ

z
  (6.56) 

holds for any 1δ subjected to the constraint (6.52). In what follows, it will be shown 

how 4z will be chosen such that the system (6.53) and (6.54) can be stabilised. 

Lemma 6.2  Suppose the origin of the zero dynamics       11 2 1 2 1 2  
 z f z Sz is 

globally exponentially stable and let   1 2
W


z  be a continuously differentiable, 
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radially unbounded Lyapunov function candidate satisfying (6.25) and(6.26). Then 

there exists a positive real constant  such that, 

  
 

  
 

 

2

21 2 1 2

1 1 1 2
2

1 2 1 2
2

dW dW

d d




 



 

 
   
 
 

z z
f t z

z z
 (6.57) 

where 1 is a positive constant.  

Proof: Since 
      11 2 1 2 1 2  

 z f z Sz is globally exponentially stable, there exists a 

continuously differentiable, radially unbounded Lyapunov function 
  1 2

W


z  

satisfying (6.25) and (6.26). Thus, 

  
 

   
1 2

2 1 12 2 221 2

1 2

2 2T
dW

t z p z p
d







  
z

t z Pt
z

 (6.58) 

Therefore, 

  
 

  
 

  
 

 

2

1 2 1 2

1

1 2 1 2

1 2 22

1 2 1 12 2 22

1 2

2

2

dW dW

d d

dW
t z p z p

d





 

 





 
 
 
 

  

z z
f t

z z

z
f

z

 (6.59) 

Then, due to (6.26) and the expression, 

        
2 2 2 2 2 2 2

1 12 2 22 1 12 2 22 12 22 1 22 2 2max ,z p z p z p z p p p z z      (6.60) 

 equation (6.59) becomes, 

  
 

  
 

     

 

2

1 2 1 2

1

1 2 1 2

2
2 2 2

min 2 12 22 1 2
2

2

1 1 2
2

2

4 max ,

dW dW

d d

t p p



 



 

 





 
 
 
 

   
 

 

z z
f t

z z

Q z

z

 (6.61) 

where 1 0  provided that 
 
 

min

2 2 2

2 12 224 max ,t p p


 

Q
. 
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□ 

Lemma 6.3  Suppose the origin of the zero dynamics       11 2 1 2 1 2  
 z f z Sz  is 

globally exponentially stable, then the origin of the uncertain subsystem (6.53)-(6.54) 

can be globally exponentially stabilised by  

     
 

 
1 2 2

4 3 2 3 3 31 3

1 2

1
, 0

2

dW
z n z z z

d
 









      
z

z f
z

 (6.62) 

where   1 2
W


z  is a radially unbounded, positive-definite Lyapunov function 

satisfying (6.25) and (6.26) and  satisfies (6.57). 

Proof: Suppose the origin of the zero dynamics       11 2 1 2 1 2  
 z f z Sz  is globally 

exponentially stable and there exist a radially unbounded, positive definite Lyapunov 

function 
  1 2

W


z  satisfying (6.25) and (6.26). 

Take a storage function candidate, 

      2

1 31 3 1 2

1

2
U W z

 
 z z  (6.63) 

for the uncertain subsystem (6.53)-(6.54), which satisfies (6.36). 

The derivate of 1U is,  

 
 

  
 

 1 2 1 21
1 31 3

1 3 1 2 3

dd

d d

WU
U z

z

 



 

   
    
     

z z
z

z z
 (6.64) 

Substitution (6.53) and (6.54) in (6.64), in conjugation with (6.16), leads to, 
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  
 

  
 

  
 

  
 

  
 

  
 

 

1 2 1 2 1 2

1 1 3 2 1 3 4

1 2 1 2 1 2

1 2 1 2 1 2

1 3 2 3 4 3 3

1 2 1 2 1 2

dW dW dW
U z z z

d d d

dW dW dW
z z z K z z

d d d


  

  

  

  

   

    

z z z
f f δ

z z z

z z z
f f t

z z z

 (6.65) 

and using the bound on the nonlinearity (6.52), 

  
 

  
 

  
 

 
1 2 1 2 1 2

1 1 3 2 3 4 3 3

1 2 1 2 1 2

dW dW dW
U z z z n z z

d d d

  

  

   
z z z

f f t
z z z

 (6.66) 

Since 

  
 

 
  

 

 

  
 

 

  
 

 

1 2 1 2

3 3 3 3

1 2 1 2

2

2
1 2

3 3

1 2

2

1 2 2 2

3 3

1 2

1

1 1 1

2 2

1

2 2

dW dW
n z z n z z

d d

dW
n z z

d

dW
n z z

d











 

 









 
      

 

 
        

 

 
  
 
 

z z
t t

z z

z
t

z

z
t

z

 (6.67) 

inequality (6.66) becomes, 

  
 

  
 

  
 

 

2

1 2 1 2 1 2 2 2

1 1 3 2 3 4 3 3

1 2 1 2 1 2

1

2 2

dW dW dW
U z z z n z z

d d d





  

  

 
     
 
 

z z z
f f t

z z z
 (6.68) 

Then, by using feedback control (6.62), 

  
 

  
 

 

 

2

1 2 1 22

1 3 1

1 2 1 2

2
2

3 1 1 2
2

2

2 1 3
2

2

dW dW
U z

d d

z




 



 

 





 
    
 
 

  

 

z z
f t

z z

z

z

 (6.69) 

where  2 1min , 0    . 
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Hence, by invoking Theorem 4.10 [21] with inequalities (6.36) and (6.69), the origin 

of the system (6.53) and (6.54) is found to be globally exponentially stable.  

□ 

Now considering the reduced order system defined by equations (6.53) and (6.54), if 

the zero dynamics,       11 2 1 2 1 2  
 z f z Sz , is globally exponentially stable, in the 

presence of bounded nonlinear torsional uncertainty, the nonlinear sliding-mode 

surface may be chosen as, 

  4 3 1 3
0S z


  z  (6.70) 

to ensure that the reduced-order uncertain system is robustly exponentially stable. 

 

6.5.2 Sliding mode control input design 

Similarly to the analysis in Section 6.4.2, a sliding control input is to be designed 

such that the sliding manifold 0S   is globally attractive. If a candidate Lyapunov 

function is selected as, 

 
2

2
2

S
U S   (6.71) 

then the control input should be designed such that,  

2 0, 0U SS S     (6.72) 

By differentiating equation (6.70) and combining this with equations (6.85), (6.53)-

(6.55), and (6.13)-(6.16), the derivative of S may be determined as,  

     4 5 3 3 4S K z z g    z z  (6.73) 
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where    
  2

3 3

4 2 4

3

1

2

n z z
z

z


   


z z  with  2 z given by equation (6.86) in 

Appendix 6.1 and  

    2 4 1
5 4 2 2 31 32 3

2 4 1 2

q q
t t q K z


 

  

   
        

    

z  (6.74) 

Then, 

     2 4 5 3 3 4U S S K z z Sg      z z  (6.75) 

To ensure (6.72) is satisfied globally, a discontinuous sliding-mode control input 

may be applied in the form, 

   
 4

4 4 4

sgn S S
g g g

 


 
    
 

z z
 (6.76) 

where   , 0  z .  

Substituting (6.76) into (6.75) leads to, 

      2

2 5 3 3U n z z S S S      z z  (6.77) 

It is assumed that, 

       5 3 3 0n z z      z z z  (6.78) 

where    0 z  is a continuous function, and 00 1  . 

Then by combining (6.77) and (6.78) it is found that,  

  2

2 0 01 0U S S        (6.79) 

provided that  
 

0

01


 


 



z
z  and 0 0  . 

Inequality (6.78) shows that the discontinuous control input (6.76) is able to compel 

the states of the system, with bounded torsional nonlinearity uncertainty satisfying 
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(6.78), to move toward the sliding surface (6.70). Once the states are restricted the 

sliding surface (6.70), they exponentially converge to zero as time approaches 

infinity because the sliding surface (6.70) is designed to be globally exponentially 

stable.  

Similarly to previous analysis in section 6.4.2, chatter may be alleviated by replacing 

the control input (6.75) with a continuous control input, 

   4

4 4 4

sat
S

S
g g g

 




  
     

  

z z
 (6.80) 

If the zero dynamics are exponentially stable, the nonlinearity uncertainty is bounded 

by (6.52) and satisfies the condition (6.78) then the system can be globally stabilised 

by using the continuous sliding mode control input (6.80) and the trajectories are 

shown in Appendix 6.3 to reach the positively invariant set,  

       1 41 3
U U S  


   z   (6.81) 

close to the sliding surface defined by a boundary layer of thickness   and an 

associated energy term  4U   defined in the Appendix 6.3.  

The system (6.53)-(6.54) with 
  4 3 1 3

z


  z  is globally exponentially stable. If

  0 0 and 0 0  , then for a small enough  , the origin of the full closed-loop 

system is shown in Appendix 6.3 to be globally asymptotically stable.  

Remark 6.3: The analysis above, and in Appendix 6.3, does not imply an 

assumption of smallness of the torsional nonlinear uncertainty. Hence the controller 

is able to admit large matched and mismatched uncertainties under the practical 

limitation of the control surface deflection. 
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Remark 6.4: The analysis above, and in Appendix 6.3, does not imply an 

assumption that the structural nonlinearity is hardening or softening. Hence with 

known bounded nonlinearity uncertainty, the controller is able to globally stabilise 

under-actuated wing sections with hardening or softening nonlinearity. 

6.5.3 Example 6.2 

The system with the same parameters described in section 6.4.3, except that the 

nonlinearity is hardening, is considered,  

 

   

5
1

1

2 3 46.8614 1 1.1438 96.6696 9.5134 727.6641 N.m/rad

i

i

i

K k  

   







    


 (6.82) 

with globally bounded uncertainty,  

     0.1K n K          (6.83) 

Suppose that the coefficients in (6.82), 1k , 3k and 5k are 8% , 7% and 9%  

underestimated respectively, and 2k  and 4k  are 2% and 5%  overestimated 

respectively. The nonlinear uncertainty   2

1 20.08 0.02K k k        

3 4 5

3 4 50.07 0.05 0.09k k k       is found to satisfy the inequality (6.83).  

The responses of the real open-loop system, with uncertainty included, shown in Fig. 

6.7 are in limit cycle oscillation.  

Let 

 
 

min

2 2 2

2 12 22

0.91 8 0
, , 80000 52.2

0 1 2 4 max ,t p p


  

 
    
 

Q
Q , 

 
 

     0 0 0 5 3 3

0

, 0, 0.01,
1

n z z


    


      


z
z z z  
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Using the proposed robust continuous sliding-mode controller designed based on the 

nominal open-loop system, the closed-loop responses at 16V  m/s are shown in Fig. 

6.8, demonstrating the asymptotic stability of the closed-loop system. The matrix Q

may be any positive definite matrix,  ,  and   are arbitrarily chosen positive real 

numbers and   z ,   z and 
0  are arbitrarily 

  

(a) (b)  

  

(c) (d) 

Fig. 6.7  The open-loop time histories with initial condition

         0 0 0 0 0.02 0 0 0
T T

h h      

chosen such that (6.78) and  
 

0

01


 


 



z
z are satisfied within the limitations of 

the control input level.  
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The sliding surface is depicted in Fig. 6.9, where it can be seen to begin away from 

the boundary layer. It firstly achieves the positively invariant set (6.81) and then 

stabilises asymptotically to the origin. This is because the origin of the reduced-order 

system is globally exponentially stable and   0 0  and 0 0   for the current 

aerofoil with torsional nonlinear uncertainty. The control input in Fig. 6.10 is seen to 

be smooth with low-amplitude. 

  

(a) (b)  

  

(c) (d) 

Fig. 6.8  The closed-loop time histories with initial condition

         0 0 0 0 0.02 0 0 0
T T

h h      

 



 

156 

 

 
 

(a) (b) 

Fig. 6.9  Sliding surface 

 

 

Fig. 6.10  Trailing edge control surface angle 

6.5.4 Example 6.3 

The system with softening nonlinearity described in section 6.4.3 is considered. 

Suppose that the coefficients 1k  and 3k  are 8%  and 7%  underestimated 

respectively, and 2k , 4k  and 5k  are 2% , 5%  and 9%  overestimated respectively. 

The nonlinearity uncertainty is   2 3

1 2 30.08 0.02 0.07K k k k          

4 5

4 50.05 0.09k k    . There exists a differentiable upper bound function  

   2 3 4

1 2 3 4 50.1 0.1 0.1 0.1 0.1n k k k k k                (6.84) 
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which globally satisfies    K n      . 

The responses of the real open-loop system, with uncertainty included, shown in Fig. 

6.11, are statically divergent under the given initial condition due to the presence of 

softening nonlinearity.  

Let 

 
 

 
min

2 2 2

2 12 22

0.91 8 0
, , 80000 52.2

0 1 2 4 max ,t p p


  

 
    
 

Q
Q , 

  
 

     0 0 0 5 3 3

0

, 0, 0.01,
1

n z z


    


      


z
z z z  

Using the proposed robust continuous sliding-mode controller designed based on the 

nominal open-loop system, the closed-loop responses at 16V  m/s are shown in Fig. 

6.12, demonstrating the asymptotic stability of the closed-loop system under the 

same initial condition. 

 

  

(a) (b) 
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(c) (d) 

Fig. 6.11  The open-loop time histories with initial condition

         0 0 0 0 0.3 0 0 0
T T

h h      

 

The sliding surface is depicted in Fig. 6.13, where it can be seen to begin away from 

the boundary layer. It firstly achieves the positively invariant set (6.81) and then 

stabilises asymptotically to the origin. This is because the origin of the reduced-order 

system is globally exponentially stable and   0 0  and 0 0   for the current 

aerofoil with torsional nonlinear uncertainty. The control input in Fig. 6.14 seen to be 

smooth. Hence, the robust passivity-based sliding mode controller is able to globally 

stabilise the under-actuated wing section with softening nonlinearity in the face of 

nonlinearity uncertainty. 
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(a) (b)  

  

(c) (d) 

Fig. 6.12  The closed-loop time histories with initial condition

         0 0 0 0 0.3 0 0 0
T T

h h      

 
 

(a) (b) 

Fig. 6.13  Sliding surface 

 



 

160 

 

 

Fig. 6.14  Trailing edge control surface angle 

 

6.6 Conclusion 

A new approach is developed for the suppression of flutter instability in an under-

actuated prototypical wing section with torsional nonlinearity. Passivity-based 

control is used to design a nonlinear sliding-mode surface in the presence of matched 

uncertainty and input disturbance, while robust passivity-based control is employed 

in the presence of mismatched uncertainty. A continuous sliding-mode control input, 

designed by the use of an approach based on Lyapunov stability theory, is employed 

to stabilise the overall system. With known bounds on both the input disturbance and 

nonlinear uncertainty, the controller is able to globally stabilise the overall system 

with softening or hardening torsional nonlinearity, when the zero dynamics are 

globally exponentially stable. The controller is able to admit large nonlinearity 

uncertainty and input disturbance under the practical limitation of the control surface 

deflection. Application of the controller is demonstrated by means of a series of 

example problems. 
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Appendix 6.1: Expressions for 
  1 1 3

 z  and  2 z  

  1 1 3
 z may be determined using (6.25) , (6.28) and (6.14) as, 

     
 

 
      

  

  

1 2

1 2 31 3

1 2

2 3 2 31 2 1 2 1 2

1 2

1 2 1 1
4 31 32 3 12

2 4 2 1

2 4 1
2 31 32 3 2 3

2 4 1 2

2T T

dW
z

d

d
z z

d

q q q
K z z

q q
q K z z z







 


  

   


  

   







  



   

     

  
      

  

  
      

  

z
z f

z

z Pz f z Pf
z

 (6.85) 

 2 z may be determined using (6.43), (6.85) and (6.13)-(6.16) as 

     

    

  

   

2 7 1 4 8 3 2 91 3 92 3 3 10 4

1 2 1 1
4 31 32 3 4 3 22

2 4 2 1

2 4 1
2 31 32 3

2 4 1 2

1 1 4 2 3 2 31 3 32 3 3

4

32 1 2
1 32

1 2 4

1

z z z z K z z z

q q q
K z z z

q q
q K z

z z z z K z z

q q
z









     


   

   


 

   

    





  

      

  
      

  

  
     

  

 
         
 

  

z

 34 1
2 4 4

1 2 3

K zq
z z z

z




 

   
   

  

 (6.86) 

 

Appendix 6.2: - Continuous sliding-mode control design – robustness to input 

disturbance. 

The motion during continuous sliding-mode control generally consists only of a 

reaching phase, during which trajectories, starting away from the sliding surface 

0S  , move towards it and are then confined to a thin boundary layer close to it. 
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There is generally no sliding phase because the states never reach the sliding surface 

exactly.  

In the reaching phase, i.e.,   4 1 1 3
0S z


  z , the system (6.30)-(6.31) becomes, 

       1 2 3 31 2 1 2 1 2
, z z

  
 z f z f z  (6.87) 

  3 1 1 3
z S


  z  (6.88) 

Equations (6.87)-(6.88) define a reduced order system with S  viewed as input. The 

saturation function in equation (6.49) allows the behaviour under two different input 

levels, outside the boundary layer  S   and inside the boundary layer  S  , 

to be considered separately. 

Outside the boundary layer, S  : 

The substitution of equation (6.50) into (6.44) leads to,  

2 4sat 
S

U S g S  


  
      

  
 (6.89) 

Then by combing this expression with the inequalities (6.49) and (6.47) it is found 

that, 

 

 

 

2

2 4

2

4

2

01 0

 U S S g S

g S S

S S

  

  

  

    

    

    

 (6.90) 

Inequality (6.90) implies that whenever  0S  ,  S t  will decrease until it 

reaches in the boundary layer  S   and afterwards remain there. The boundary 

layer S   is a positively invariant set. 

Inside the boundary layer, S  :  
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The behaviour of the overall closed-loop system can be further examined by 

investigating the behaviour of the system (6.87)-(6.88) with S , S   , viewed as 

the input. 

Taking   1 1 3
U


z  given by (6.35) as a Lyapunov function candidate for the system 

(6.87)-(6.88),  

 
 

  
 

 1 2 1 21
1 31 3

1 3 1 2 3

dd

d d

WU
U z

z

 



 

   
    
     

z z
z

z z
 (6.91) 

combining with equations (6.87)-(6.88), 

  
 

  
 

  1 2 1 2

1 1 3 2 3 1 31 3

1 2 1 2

d d

d d

W W
U z z z S

 



 

    
z z

f f z
z z

 (6.92) 

and with (6.34), leads to, 

  
 

1 2 2

1 1 3 3

1 2

d

d

W
U z z S





  
z

f
z

 (6.93) 

Now, introducing the inequality (6.26),  

   

2
2

1 min 3 31 2
2

U z z S 


   Q z  (6.94) 

and separating 2

3z  into two parts,   2

1 31 z   and 2

1 3z , then, 

             

 

2 2 2
2 2

1 2 min min min1 2 1 2 1 2
2 2 2

2 2

1 3 1 3 3

1
2 2

1

U

z z z S

 
   

  

  
    

   

Q z Q z Q z
  (6.95) 

where 1 20 , 1   . 

It is readily seen that 
   

2 2

1 21 2 1 2
2 2

and z z
 

 z z , in which case, 
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         

 

2
2 2

1 2 min 1 3 min 11 2
2

22
min 2 1 3 3

1 1
2

2

U z z

z z z S


    


 


     

  

Q z Q

Q

 (6.96) 

If  1 3S z  , such that, 

2

1 3 3 0z z S     (6.97) 

then, 

           

       

        

2
2 2 2

1 2 min 1 3 min 1 min 21 2
2

2
2

2 min 1 31 2
2

2

2 min 1 1 3
2

1 1
2 2

1 1

min 1 , 1

0

U z z z

z

 
     

   

   







      

    

   



Q z Q Q

Q z

Q z

 (6.98) 

Also, if  

    2

3 1 2 1 min 1and 2z S S z    Q   (6.99) 

or  

    2

3 1 2 1 min 2and 2z S S z    Q   (6.100) 

then, 

   2 2
min 1 3 min 2 30 or 0

2 2
z z S z z S

 
      Q Q  (6.101) 

and  

       

       

        

2
2 2

1 2 min 1 3 1 31 2
2

2
2

2 min 1 31 2
2

2

2 min 1 1 3
2

1 1

1 1

min 1 , 1

0

U z z

z

    

   

   







     

    

   



Q z

Q z

Q z

 (6.102) 

By combining the conditions (6.97), (6.99) and (6.100) on the inequalities (6.98) and 

(6.102), the dynamics of the system is found to be stable under the single condition 

that there exists a positive real number 3  such that, 
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           2

3 1 1 2 1 min1 3 1 3
2

max , 2S S S    
 


  z z Q   (6.103) 

 where  


 is the infinity norm of    and 
 

3 1

1 3




 z . It can be seen that 

 1 S  a strictly increasing function of S  with  1 0 0 . 

Then by invoking Theorem 4.19 [21] with inequalities (6.36), (6.98) , (6.102) and 

(6.103) the subsystem (6.87)-(6.88) is found to be input-to-state stable so that the 

states are bounded under bounded input.  

Lemma A2.1 If the origin of the zero dynamics of subsystem (6.30)-(6.31) is 

globally exponentially stable and (6.47) is satisfied, then by using the continuous 

sliding-mode controller (6.50), the trajectory of the full closed-loop system will be 

bounded for all 0t   reaching the positively invariant set 

       1 31 3
U U S  


   z  determined by a small design parameter  .  

Proof: The preceding analysis shows that whenever  0S  ,  S t  will decrease 

until it reaches the boundary layer  S   and remain inside thereafter. The 

boundary layer is a positively invariant set  S  . 

 Remembering that  1 S  is a strictly increasing function of S , we now choose 

S   as the upper limit of S within the boundary layer. Then 3U  may be 

introduced as a strictly increasing function of   as, 

     
2

3 max 1

3

1 1
max ,

2
U   



  
   

  
P  (6.104) 

where S  . 
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Let us assume that 
    1 31 3

U U 


z .  Then by combining (6.36) and (6.104) it is 

found that, 

            

2
2

3 max 1 1 max1 3 1 3
2

3

1 1 1
max , max ,

2 2
U U   

  

    
      

    
P z P z (6.105) 

which means that, 

       

2
2

1 11 3 1 3
2 2

3 3

1 1
or 

  

 
  

 
z z  (6.106) 

Since S  , inequality (6.106) becomes,  

     1 11 3
2

3 3

1 1
S

 
 z  (6.107) 

This result confirms the inequality (6.103). Thus, inside the boundary layer, if 

    1 31 3
U U 


z   (6.108) 

then 
1 0U  , so that the system is globally stable under the condition, 

       1 31 3
U U S  


   z  (6.109) 

where denotes the intersection.  

Thus, whenever  0S  ,  S t  will decrease until it reaches the boundary layer 

and eventually the positively invariant set (6.109) and remains inside the boundary 

layer thereafter.  

□ 

Appendix 6.3: Continuous sliding-mode control design – robustness to nonlinear 

uncertainty. 

In the reaching phase, i.e., 
  4 3 1 3

0S z


  z , the system (6.53)-(6.54) becomes, 
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       1 2 3 11 2 1 2 1 3
z

  
  z f z f z δ  (6.110) 

  3 3 1 3
z S


  z  (6.111) 

Equations (6.110)-(6.111) define a reduced order system with S  viewed as input. 

The saturation function in equation (6.80) allows the behaviour under two different 

input levels, outside the boundary layer  S   and inside the boundary layer 

 S  , to be considered separately. 

Outside the boundary layer, S  : 

The substitution of equation (6.80) into (6.75) leads to,  

      2

2 5 3 3 sat
S

U S K z z S S  


 
     

 
z z  (6.112) 

Then by combining this expression with the inequalities (6.49) and (6.78)  it is found 

that, 

  2

2 0 01 0U S S        (6.113) 

Inequality (6.113) implies that whenever  0S  ,  S t  will decrease until it 

reaches in the boundary layer  S   and afterwards remain there. The boundary 

layer  S   is a positively invariant set. 

Inside the boundary layer, S  :  

The behaviour of the overall closed-loop system can be further examined by 

investigating the behaviour of the system (6.110)-(6.111) with S , S   , viewed as 

the input. 
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Taking   1 1 3
U


z  given by (6.35) as a Lyapunov function candidate for the system 

(6.110)-(6.111),  

 
 

  
 

 1 2 1 21
1 31 3

1 3 1 2 3

dd

d d

WU
U z

z

 



 

   
    
     

z z
z

z z
 (6.114) 

combining with equations (6.110)-(6.111), (6.62), and (6.57) leads to,  

     
2

2 22 2
1 2 1 1 3 1 1 1 2 1 3 31 2

2
1 1

2 2
U z z z z z S

 
      


        z   (6.115) 

where 1 20 , 1   . 

If  1 3S z  , such that, 

2

1 3 3 0z z S    (6.116) 

and separately, if  

   
2

3 1 2 1 1 1and 2z S S z      (6.117) 

or  

   
2

3 1 2 1 1 2and 2z S S z      (6.118) 

it may be shown that, 

      

2

1 2 1 1 1 3
2

min 1 , 1 0U    


    z  (6.119) 

By combining the conditions (6.116), (6.117) and (6.118) on the inequality (6.119), 

the dynamics of the system is found to be stable under the single condition that there 

exists a positive real number 4  such that, 

            

2 3 1

4 2 1 2 1 11 3 1 3 1 3
2

max , 2 ,S S S     

  


    z z z (6.120) 

It can be seen that  2 S  a strictly increasing function of S  with  2 0 0 . 
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Then by invoking Theorem 4.19 [21] with inequalities (6.36) , (6.119) and (6.120) 

the subsystem (6.110)-(6.111) is found to be input-to-state stable so that the states are 

bounded under bounded input. 

Lemma A3.1 Consider the system (6.53)-(6.55). Suppose the zero dynamics 

 1 z f z Sz  are globally exponentially stable and inequalities (6.52) and (6.78) are 

satisfied. Then using the continuous sliding-mode controller (6.80), the trajectory of 

the full closed-loop system will be bounded for all 0t   and reaches a positively 

invariant set (6.125) controlled by the design parameter . Moreover, if   0 0 and 

0 0  , then there exists * 0   such that for all *0    , the origin of the full 

closed-loop system will be globally asymptotically stable. 

Proof: We choose S   as the upper limit of S within the boundary layer. Then 

4U  may be introduced as a strictly increasing function of   as, 

     
2

4 max 2

4

1 1
max ,

2
U   



  
   

  
P  (6.121) 

where S  . 

Let us assume that     1 41 3
U U 


z . Then by combining (6.36) and (6.121) it is 

found that, 

            

2
2

4 max 2 1 max1 3 1 3
2

4

1 1 1
max , max ,

2 2
U U   

  

    
      

    
P z P z (6.122) 

which means  that, 

   2 1 3
2

4

1


 
 z  (6.123) 

Since S  , inequality (6.123) becomes,  
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     2 21 3
2

4 4

1 1
S

 
 z  (6.124) 

This result confirms the inequality (6.120). Thus, inside the boundary layer, if 

     1 41 3
U z U 


 , then 

1 0U  , so that the system is globally stable under the 

condition,  

       1 41 3
U U S  


   z  (6.125) 

where denotes the intersection.  

Thus, whenever  0S  ,  S t  will decrease until it reaches the boundary layer 

 S   and afterwards remain there. Eventually, the trajectory of the full closed-

loop system is found to be bounded for all 0t   and reaches a positively invariant 

set (6.125) controlled by the design parameter . Moreover, the system (6.53)-(6.54) 

with 
  4 3 1 3

z


  z  is globally exponentially stable. If   0 0 and 0 0  , then 

according to Theorem 14.2 [21], then there exists *  such that for all *0    , the 

origin of the full closed-loop system will be globally asymptotically stable.  

□ 
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Chapter 7                                                                                                    

Conclusion and future work 

7.1 Conclusion 

In this research basic theoretical solutions to several intellectual challenges in active 

vibration control in linear time invariant systems and nonlinear aeroelastic systems 

are presented. The method of receptances based on eigenvalue assignment, which 

was developed for vibration suppression in linear systems [8, 9], is further developed 

for linear systems with inaccessible degrees of freedom and large flexible structures 

requiring block decoupling vibration control. Also, a comprehensive investigation of 

aeroelastic systems with softening nonlinearity and robust active flutter suppression 

in under-actuated wing sections with softening or hardening nonlinearity is presented.  

Partial pole placement is of practical value in vibration suppression and stabilisation 

of large-dimension structures. It is found not infrequently in practice that there exist 

certain degrees of freedom inaccessible to actuation and sensing simultaneously. In 

Chapter 3, a new theory for partial pole assignment using measured receptances in 

the presence of inaccessible degrees of freedom is proposed [128]. A new double-

input feedback control involving displacement, velocity and acceleration feedback is 

described. The eigenvalues of the open-loop system, intended to be unchanged, are 

maintained in the closed-loop system by utilising both partial controllability and 

partial observability conditions such that both input and feedback gain vectors are 

unknown. Extra null constraints on desired entries in the input and feedback gain 
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vectors results in the appearance of degrees of freedom inaccessible to both actuation 

and sensing. The methodology is based entirely on linear systems of equations, 

thereby avoiding the need to use nonlinear optimisation routines. A lower bound on 

the maximum number of inaccessible degrees of freedom allowed for precise 

implementation of partial pole placement is given. The simplification of the theory 

results in active natural frequency modification, which is also described. 

Large flexible structures are very difficult in terms of isolating one substructure from 

the vibration of anther since the rigid body assumption in convectional vibration 

isolation techniques is invalid. It is not infrequent that large flexible structures are 

disturbed by multiple excitations. Even though one of the disturbances has been 

isolated, isolated substructures are still prone to oscillations with large amplitude in 

the face of other disturbances. To address this problem, a new block decoupling 

vibration control algorithm based on eigenstructure assignment using measured 

receptances is proposed for simultaneous active vibration isolation and suppression 

in Chapter 4 [129]. It is found that independent substructures with desired 

eigenvalues assigned separately are achievable by assigning eigenvalues and adding 

modal degree of freedom constraints on right eigenvectors when the open-loop 

system is controllable. The restriction to the block diagonal mass matrix in the case 

of velocity and displacement feedback can be lifted to allow for bandedness of the 

mass matrix when additional acceleration feedback is included for inertial 

decoupling. In the case of banded system matrices, the number of actuators required 

can be reduced to twice of the semi-bandwidth. The algorithm lays a preliminary 

theoretical foundation for simultaneous vibration isolation and suppression in large 

flexible structure subjected to multiple excitations. 
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All systems in nature are nonlinear. A good understanding of the effects of 

nonlinearity improves the active vibration control design in nonlinear systems. A 

comprehensive study of the effects of softening structural nonlinearity in aeroelastic 

systems is presented in Chapter 5 [131], which sheds new light on to topic that is not 

completely understood. Complex dynamic behaviour is demonstrated using the 

illustration of a nonlinear binary flutter model with a cubic stiffness in the pitch 

degree of freedom. The identification and stability analysis of limit cycles in the 

frequency domain using describing functions and the receptances of the underlying 

linear system are carried out. Numerical integration of the governing differential 

equations in the time domain confirms the frequency domain results and also reveals 

new behaviour, including asymmetric LCO and chaos. Also, aeroelastic stability in 

the presence of softening structural nonlinearity is found to be strongly dependent 

upon initial conditions. LCO and chaos may be destabilised when the amplitude of 

oscillation approaches the static divergence boundary and predicted stable LCO are 

prohibited. Bifurcation analysis using numerical continuation methods are 

undertaken to demonstrate that the aeroelastic systems with softening nonlinearity 

are characterised by Hopf, fold, pitchfork and period doubling bifurcations. 

Complete bifurcation analysis and two-dimensional sections of the basin of attraction 

allow the nature of stability occurring over the whole speed range to be explained. In 

some circumstances, the basins of attractions are not singly connected regions, so 

that the boundaries between different dynamic regimes are not simple. Dependent 

upon the wing parameters, regions may appear where the predicted stable LCO are 

free from the destabilising effect of softening nonlinearity. 

Due to the effects of nonlinearity, linear active control techniques exhibit limited 

success in flutter suppression in nonlinear aeroelastic systems. Nonlinear active 
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vibration control methodologies are preferred. The global stability of under-actuated 

nonlinear aeroelastic systems is a challenging research topic of importance to the 

problem of the actuator failure and in the development of next-generation flight 

vehicles constrained by weight and cost. Since there are unavoidable modelling 

errors and external disturbances, the global stability of under-actuated aeroelastic 

system becomes more complicated. In Chapter 6, a robust passivity-based sliding 

mode control approach is developed for globally stabilising an under-actuated 

prototypical wing section with torsional nonlinearity, softening or hardening [148]. 

Passivity-based control is used to design a nonlinear sliding-mode surface in the 

presence of matched uncertainty and input disturbance, while robust passivity-based 

control is employed in the presence of mismatched uncertainty. A continuous 

sliding-mode control input is employed to stabilise the overall system. With known 

bounds on both the input disturbance and nonlinear uncertainty, the controller is able 

to globally stabilise the overall system when the zero dynamics are globally 

exponentially stable and the trajectories will reach a positively invariant set 

determined by the thickness of a boundary layer. Large nonlinearity uncertainty and 

large input disturbance can be admitted under the practical limitation of control 

surface deflection. Furthermore, the overall system will be globally asymptotically 

stable provided that certain conditions (described in section 6.5.2) are satisfied. 

The research reported here offers sound theoretical solutions to several intellectual 

challenges in the development and the application of active vibration control 

techniques in linear time invariant systems and nonlinear aeroelastic systems. Also, 

the research sheds new light on to the effects of softening nonlinearity in aeroelastic 

systems, which is not completely understood. The methods and outcomes have 
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significant applications to not only aerospace engineering stressed in the preceding 

chapters but also other industries including automotive and civil.  

7.2 Future work 

The research has potential applications in many industries and can be developed 

further into many directions of research. The basic theories for partial pole placement 

with inaccessible degrees of freedom and block decoupling vibration control in linear 

time invariant systems, and global robust flutter suppression in under-actuated 

nonlinear aeroelastic systems are developed and presented in this thesis. Also, semi-

analytical and numerical investigation of the effects of softening nonlinearity on 

aeroelastic systems is presented. Other aspects that can be considered as further work 

may be summarised here: 

1. The method of receptances, originally developed in [8, 9] and further 

developed in this thesis [128, 129], is based on the assumption of distinct 

eigenvalues in both open- and closed-loop systems. In practice, systems with 

closely spaced eigenvalues, which are close to being defective, are common. 

Developing the method of receptances in defective systems is an interesting 

line of research. 

2. Experiments for block decoupling vibration control in large flexible smart 

structures with embedded piezo-based actuators and sensors may be carried 

out. 

3. The Boeing Joined-Wing SensorCraft is a concept proposed to serve as a 

next-generation, high altitude, long endurance reconnaissance unmanned 

aircraft. Buckling is considered to be a critical constraint for its aeroelastic 

performance [149]. It is of significant importance to comprehensively 
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investigate the effects of softening nonlinearity experimentally, due to 

buckling of the aerodynamic responses of joined-wing sensor-crafts. 

4. Experiments for robust passivity-based sliding mode control may be carried 

out on a nonlinear wing section at the University of Liverpool. 

 

 

 

 

 

 

 

  



 

177 

 

 

 

References 

 

[1] C.M. Denegri, Limit cycle oscillation flight test results of a fighter with external 

stores, Journal of Aircraft, 37 (2000) 761-769. 

[2] Denegri C.M, Jr., M.R. Johnson, Limit cycle oscillation prediction using artificial 

neural networks, Journal of Guidance, Control, and Dynamics, 24 (2001) 887-895. 

[3] J. Croft, Airbus elevator flutter: Annoying or dangerous?, Aviation Week & Space 

Technology, 155 (2001) 41. 

[4] L. Librescu, G. Chiocchia, P. Marzocca, Implications of cubic physical/aerodynamic 

non-linearities on the character of the flutter instability boundary, International 

Journal of Non-Linear Mechanics, 38 (2003) 173-199. 

[5] O. Cuvalci, A. Ertas, S. Ekwaro-Osire, I. Cicek, Nonlinear-linear vibration absorber 

for a system under sinusoidal and random excitation: experiments, Journal of Sound 

and Vibration, 249 (2002) 701-718. 

[6] Y.S. Lee, A.F. Vakakis, L.A. Bergman, D.M. McFarland, G. Kerschen, Suppressing 

aeroelastic instability using broadband passive targeted energy transfers, part 

1:Theory, AIAA Journal, 45 (2007) 693-711. 

[7] Y.S. Lee, G. Kerschen, D. Michael McFarland, W. Joel Hill, C. Nichkawde, T.W. 

Strganac, L.A. Bergman, A.F. Vakakis, Suppressing aeroelastic instability using 

broadband passive targeted energy transfers, part 2: Experiments, AIAA Journal, 45 

(2007) 2391-2400. 

[8] Y.M. Ram, J.E. Mottershead, Receptance method in active vibration control, AIAA 

Journal, 45 (2007) 562-567. 

[9] Y.M. Ram, J.E. Mottershead, Multiple-input active vibration control by partial pole 

placement using the method of receptances, Mechanical Systems and Signal 

Processing, 40 (2013) 727-735. 

[10] E.H. Dowell, D. Tang, Nonlinear aeroelasticity and unsteady aerodynamics, AIAA 

Journal, 40 (2002) 1697-1707. 

[11] Y.Q. Tu, G.T. Zheng, On the vibration isolation of flexible structures, Journal of 

Applied Mechanics, 74 (2006) 415-420. 

[12] P. Gardonio, S.J. Elliott, R.J. Pinnington, Active isolation of structural vibration on a 

multiple-degree-of-freedom system, Part 1: The dynamics of the system, Journal of 

Sound and Vibration, 207 (1997) 61-93. 



 

178 

 

[13] P. Gardonio, S.J. Elliott, R.J. Pinnington, Active isolation of structural vibration on a 

multiple-degree-of-freedom system, Part II: Effectiveness of active control strategies, 

Journal of Sound and Vibration, 207 (1997) 95-121. 

[14] P. Gardonio, S.J. Elliott, Passive and active isolation of structural vibration 

transmission between two plates connected by a set of mounts, Journal of Sound and 

Vibration, 237 (2000) 483-511. 

[15] B.H.K. Lee, S.J. Price, Y.S. Wong, Nonlinear aeroelastic analysis of airfoils: 

bifurcation and chaos, Progress in Aerospace Sciences, 35 (1999) 205-334. 

[16] D.S. Woolston, H.L. Runyan, T.A. Byrdsong, Some effects of system nonlinearities 

in the problem of aircraft flutter, in:  NACA TN-3539, 1955. 

[17] J.S. Vipperman, J.M. Barker, R.L. Clark, G.J. Balas, Comparison of mu- and H2-

Synthesis Controllers on an experimental typical section, Journal of Guidance, 

Control, and Dynamics, 22 (1999) 278-285. 

[18] J.J. Block, T.W. Strganac, Applied active control for a nonlinear aeroelasticstructure, 

Journal of Guidance, Control, and Dynamics, 21 (1998) 838-845. 

[19] L. Yang, Y. Hongnian, H. Yu, Y. Liu, A survey of underactuated mechanical 

systems, IET Control Theory & Applications, 7 (2013) 921-935. 

[20] R. Xu, Ü. Özgüner, Sliding mode control of a class of underactuated systems, 

Automatica, 44 (2008) 233-241. 

[21] H.K. Khalil, Nonlinear systems, Upper Saddle River, N.J. : Prentice Hall, 2002. 

[22] R. Alkhatib, M.F. Golnaraghi, Active structural vibration control: A review, Shock 

and Vibration Digest, 35 (2003) 367-383. 

[23] J.E. Mottershead, Y.M. Ram, Inverse eigenvalue problems in vibration absorption: 

Passive modification and active control, Mechanical Systems and Signal Processing, 

20 (2006) 5-44. 

[24] W.M. Wonham, On pole assignment in multi-input controllable linear systems, 

Automatic Control, IEEE Transactions on, 12 (1967) 660-665. 

[25] E.J. Davison, On pole assignment in linear systems with incomplete state feedback, 

Automatic Control, IEEE Transactions on, 15 (1970) 348-351. 

[26] H. Kimura, Pole assignment by gain output feedback, Automatic Control, IEEE 

Transactions on, 20 (1975) 509-516. 

[27] E.Y. Shapiro, J.C. Chung, Application of eigenvalue/eigenvector assignment by 

constant output feedback to flight control system design, in:  15th Annual 

Conference on Information Sciences and Systems,, Johns Hopkins University, 

Baltimore, Maryland, 1981, pp. 164-169. 

[28] A.N. Andry, E.Y. Shapiro, J.C. Chung, eigenstructure assignment for linear systems, 

Aerospace and Electronic Systems, IEEE Transactions on, AES-19 (1983) 711-729. 

[29] L.R. Fletcher, J.F. Magni, Exact pole assignment by output feedback. Part 1, 

International Journal of Control, 45 (1987) 1995-2007. 



 

179 

 

[30] L.R. Fletcher, Exact pole assignment by output feedback. Part 2, International 

Journal of Control, 45 (1987) 2009-2019. 

[31] J.F. Magni, Exact pole assignment by output feedback. Part 3, International Journal 

of Control, 45 (1987) 2021-2033. 

[32] R. Byers, S.G. Nash, Approaches to robust pole assignment, International Journal of 

Control, 49 (1989) 97-117. 

[33] J. Kautsky, N.K. Nichols, E.K.W. Chu, Robust pole assignment in singular control 

systems, Linear Algebra and Its Applications, 121 (1989) 9-37. 

[34] J. Kautsky, N.K. Nichols, P. Van Dooren, Robust pole assignment in linear state 

feedback, International Journal of Control, 41 (1985) 1129-1155. 

[35] E.K. Chu, B.N. Datta, Numerically robust pole assignment for second-order systems, 

International Journal of Control, 64 (1996) 1113-1127. 

[36] E.K. Chu, Pole assignment for second-order systems, Mechanical Systems and 

Signal Processing, 16 (2002) 39-59. 

[37] Y. Saad, Projection and deflation method for partial pole assignment in linear state 

feedback, Automatic Control, IEEE Transactions on, 33 (1988) 290-297. 

[38] B.N. Datta, S. Elhay, Y.M. Ram, Orthogonality and partial pole assignment for the 

symmetric definite quadratic pencil, Linear Algebra and its Applications, 257 (1997) 

29-48. 

[39] Y.M. Ram, S. Elhay, Pole assignment in vibratory systems by multi-input control, 

Journal of Sound and Vibration, 230 (2000) 309-321. 

[40] B.N. Datta, D.R. Sarkissian, Multi-input partial eigenvalue assignment for the 

symmetric quadratic pencil, in:  Proceedings of the 1999 American Control 

Conference (99ACC), IEEE, San Diego, CA, USA, 1999, pp. 2244-2247. 

[41] B.N. Datta, L. Wen-Wei, W. Jenn-Nan, Robust partial pole assignment for vibrating 

systems with aerodynamic effects, Automatic Control, IEEE Transactions on, 51 

(2006) 1979-1984. 

[42] S. Xu, J. Qian, Orthogonal basis selection method for robust partial eigenvalue 

assignment problem in second-order control systems, Journal of Sound and 

Vibration, 317 (2008) 1. 

[43] S. Brahma, B. Datta, An optimization approach for minimum norm and robust 

partial quadratic eigenvalue assignment problems for vibrating structures, Journal of 

Sound and Vibration, 324 (2009) 471-489. 

[44] Z.-J. Bai, B.N. Datta, J. Wang, Robust and minimum norm partial quadratic 

eigenvalue assignment in vibrating systems: A new optimization approach, 

Mechanical Systems and Signal Processing, 24 (2010) 766-783. 

[45] C.A. Guzzardo, S.S. Pang, Y.M. Ram, Optimal actuation in vibration control, 

Mechanical Systems and Signal Processing, 35 (2013) 279-290. 



 

180 

 

[46] Y.M. Ram, J.E. Mottershead, M.G. Tehrani, Partial pole placement with time delay 

in structures using the receptance and the system matrices, Linear Algebra and its 

Applications, 434 (2011) 1689-1696. 

[47] Z.-J. Bai, M.-X. Chen, J.-K. Yang, A multi-step hybrid method for multi-input 

partial quadratic eigenvalue assignment with time delay, Linear Algebra and its 

Applications, 437 (2012) 1658-1669. 

[48] K.V. Singh, R. Dey, B.N. Datta, Partial eigenvalue assignment and its stability in a 

time delayed system, Mechanical Systems and Signal Processing, (In press) (2013). 

[49] J.E. Mottershead, M.G. Tehrani, S. James, Y.M. Ram, Active vibration suppression 

by pole-zero placement using measured receptances, Journal of Sound and Vibration, 

311 (2008) 1391-1408. 

[50] M. Ghandchi Tehrani, R.N.R. Elliott, J.E. Mottershead, Partial pole placement in 

structures by the method of receptances: Theory and experiments, Journal of Sound 

and Vibration, 329 (2010) 5017-5035. 

[51] J.E. Mottershead, M.G. Tehrani, S. James, P. Court, Active vibration control 

experiments on an AgustaWestland W30 helicopter airframe, Proceedings of the 

Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering 

Science, 226 (2012) 1504-1516. 

[52] E. Papatheou, X. Wei, S. Jiffri, M.G. Tehrani, S. Bode, K.V. Singh, J.E. Mottershead, 

J.E. Cooper, Flutter control using vibration test data: theory, rig design and 

preliminary results., in:  International Conference on Noise and Vibration 

Engineering., KU Leuven, Leuven, 2012, pp. Paper No. 424. 

[53] X. Wei, J. Mottershead, Limit cycle assignment in nonlinear aeroelastic systems 

using describing functions and the receptance method, in: R. Allemang, J. De Clerck, 

C. Niezrecki, A. Wicks (Eds.) Topics in Modal Analysis, Volume 7, Springer New 

York, 2014, pp. 701-713. 

[54] K.V. Singh, L.A. McDonough, R. Kolonay, J.E. Cooper, Receptance-based active 

aeroelastic control using multiple control surfaces, Journal of Aircraft, 51 (2014) 

335-342. 

[55] B.C. Moore, On the flexibility offered by state feedback in multivariable systems 

beyond closed loop eigenvalue assignment, in:  Decision and Control including the 

14th Symposium on Adaptive Processes, 1975 IEEE Conference on, 1975, pp. 207-

214. 

[56] G. Klein, B.C. Moore, Eigenvalue-generalized eigenvector assignment with state 

feedback, Automatic Control, IEEE Transactions on, 22 (1977) 140-141. 

[57] M. Fahmy, J. O'Reilly, On eigenstructure assignment in linear multivariable systems, 

Automatic Control, IEEE Transactions on, 27 (1982) 690-693. 

[58] S. Srinathkumar, Eigenvalue/eigenvector assignment using output feedback, 

Automatic Control, IEEE Transactions on, 23 (1978) 79-81. 

[59] D.J. Inman, A. Kress, Eigenstructure assignment using inverse eigenvalue methods, 

Journal of Guidance, Control, and Dynamics, 18 (1995) 625-627. 



 

181 

 

[60] B.N. Datta, S. Elhay, Y.M. Ram, D.R. Sarkissian, Partial eigenstructure assignment 

for the quadratic pencil, Journal of Sound and Vibration, 230 (2000) 101-110. 

[61] W.M. Wonham, Linear multivariable control: A geometric approach (2nd ed.), 

Springer-Verlag, New York, 1979. 

[62] K.M. Sobel, E.Y. Shapiro, Application of eigensystem assignment to lateral 

translation and yaw pointing flight control, in:  Decision and Control, 1984. The 

23rd IEEE Conference on, 1984, pp. 1423-1428. 

[63] K. Sobel, E. Shapiro, Eigenstructure assignment for design of multimode flight 

control systems, Control Systems Magazine, IEEE, 5 (1985) 9-15. 

[64] B.-K. Song, S. Jayasuriya, Active vibration control using eigenvector assignment for 

mode localization, in:  American Control Conference, 1993, 1993, pp. 1020-1024. 

[65] F.J. Shelley, W.W. Clark, Closed-loop mode localization for vibration control in 

flexible structures, in:  American Control Conference, 1994, 1994, pp. 1826-1830 

vol.1822. 

[66] F.J. Shelley, W.W. Clark, Experimental application of feedback control to localize 

vibration, Journal of Vibration and Acoustics, 122 (1996) 143-150. 

[67] F.J. Shelley, W.W. Clark, Active mode localization in distributed parameter systems 

with consideration of limited actuator placement, Part 1: Theory, Journal of 

Vibration and Acoustics, 122 (2000) 160-164. 

[68] F.J. Shelley, W.W. Clark, Active mode localization in distributed parameter systems 

with consideration of limited actuator placement, Part 2: Simulations and 

experiments, Journal of Vibration and Acoustics, 122 (2000) 165-168. 

[69] Q. Zhang, G.L. Slater, R.J. Allemang, Suppression of undesired inputs of linear 

systems by eigenspace assignment, Journal of Guidance, Control, and Dynamics, 13 

(1990) 330-336. 

[70] J.W. Choi, J.G. Lee, Y. Kim, T. Kang, Design of an effective controller via 

disturbance accommodating left eigenstructure assignment, Journal of Guidance, 

Control, and Dynamics, 18 (1995) 347-354. 

[71] T.Y. Wu, K.W. Wang, Vibration control via disturbance rejection through left 

eigenvector assignment, in:  Proceedings of SPIE - The International Society for 

Optical Engineering, 2005, pp. 378-389. 

[72] J.W. Choi, A simultaneous assignment methodology of right/left eigenstructures, 

IEEE Transactions on Aerospace and Electronic Systems, 34 (1998) 625-634. 

[73] T.Y. Wu, K.W. Wang, Active vibration isolation via simultaneous left-right 

eigenvector assignment, Smart Materials and Structures, 17 (2008). 

[74] B. Morgan, Jr., The synthesis of linear multivariable systems by state-variable 

feedback, Automatic Control, IEEE Transactions on, 9 (1964) 405-411. 

[75] P.L. Falb, W. Wolovich, Decoupling in the design and synthesis of multivariable 

control systems, Automatic Control, IEEE Transactions on, 12 (1967) 651-659. 



 

182 

 

[76] E. Gilbert, The decoupling of multivariable systems by state feedback, SIAM 

Journal on Control, 7 (1969) 50-63. 

[77] J. Descusse, J.F. Lafay, M. Malabre, Solution to Morgan's problem, Automatic 

Control, IEEE Transactions on, 33 (1988) 732-739. 

[78] P.N. Paraskevopoulos, F.N. Koumboulis, A new approach to the decoupling 

problem of linear time-invariant systems, Journal of the Franklin Institute, 329 (1992) 

347-369. 

[79] J.W. Howze, Necessary and sufficient conditions for decoupling using output 

feedback, Automatic Control, IEEE Transactions on, 18 (1973) 44-46. 

[80] M.J. Denham, A necessary and sufficient condition for decoupling by output 

feedback, Automatic Control, IEEE Transactions on, 18 (1973) 535-536. 

[81] J. Descusse, A necessary and sufficient condition for decoupling using output 

feedback, International Journal of Control, 31 (1980) 833-840. 

[82] A. Morse, W. Wonham, Decoupling and Pole Assignment by Dynamic 

Compensation, SIAM Journal on Control, 8 (1970) 317-337. 

[83] M.M. Bayoumi, T. Duffield, Output feedback decoupling and pole placement in 

linear time-invariant systems, Automatic Control, IEEE Transactions on, 22 (1977) 

142-143. 

[84] P.N. Paraskevopoulos, F.N. Koumboulis, Decoupling and pole assignment in 

generalised state space systems, Control Theory and Applications, IEE Proceedings 

D, 138 (1991) 547-560. 

[85] S. Sato, P.V. Lopresti, On the generalization of state feedback decoupling theory, 

Automatic Control, IEEE Transactions on, 16 (1971) 133-139. 

[86] P.N. Paraskevopoulos, S.G. Tzafestas, Group decoupling theory for a generalized 

linear multivariable control system, International Journal of Systems Science, 6 

(1975) 239-248. 

[87] H. Hikita, Block decoupling and arbitrary pole assignment for a linear right-

invertible system by dynamic compensation, International Journal of Control, 45 

(1987) 1641-1653. 

[88] J. Descusse, Block noninteracting control with (non)regular static state feedback: A 

complete solution, Automatica, 27 (1991) 883-886. 

[89] G. Basile, G. Marro, A state space approach to noninteracting controls, Ricerchi di 

Automatica, 1 (1970) 68-77. 

[90] S.M. Sato, P.V. Lopresti, New results in multivariable decoupling theory, 

Automatica, 7 (1971) 499-508. 

[91] M. Malabre, J.A. Torres-Munoz, Block decoupling by precompensation revisited, 

IEEE Transactions on Automatic Control, 52 (2007) 922-926. 

[92] M.L.J. Hautus, M. Heymann, Linear feedback decoupling-Transfer function analysis, 

IEEE Transactions on Automatic Control, AC-28 (1983) 823-832. 



 

183 

 

[93] C. Commault, J.M. Dion, J.A. Torres, Minimal structure in the block decoupling 

problem with stability, Automatica, 27 (1991) 331-338. 

[94] Q.-G. Wang, Decoupling with internal stability for unity output feedback systems, 

Automatica, 28 (1992) 411-415. 

[95] Q.-G. Wang, Y. Yang, Transfer function matrix approach to decoupling problem 

with stability, Systems & Control Letters, 47 (2002) 103-110. 

[96] Q.-G. Wang, Decoupling Control, Heidelberg : Springer, 2006. 

[97] L. Ching-An, Necessary and sufficient conditions for existence of decoupling 

controllers, Automatic Control, IEEE Transactions on, 42 (1997) 1157-1161. 

[98] Q.-G. Wang, Decoupling control, Springer, Heidelberg, 2006. 

[99] E.C. Zacharenakis, Input-output decoupling and disturbance rejection problems in 

structural analysis, Computers & Structures, 55 (1995) 441-451. 

[100] E.C. Zacharenakis, On the input-output decoupling with simultaneous disturbance 

attenuation and h∞  optimization problem in structural analysis, Computers & 

Structures, 60 (1996) 627-633. 

[101] Q.S. Li, J.Q. Fang, A.P. Jeary, D.K. Liu, Decoupling control law for structural 

control implementation, International Journal of Solids and Structures, 38 (2001) 

6147-6162. 

[102] D.J. Inman, Active modal control for smart structures, Philosophical Transactions of 

the Royal Society A: Mathematical, Physical and Engineering Sciences, 359 (2001) 

205-219. 

[103] B.N. Datta, F. Rincón, Feedback stabilization of a second-order system: A nonmodal 

approach, Linear Algebra and its Applications, 188–189 (1993) 135-161. 

[104] B.H.K. Lee, L.Y. Jiang, Y.S. Wong, Flutter of an airfoil with a cubic restoring force, 

Journal of Fluids and Structures, 13 (1999) 75-101. 

[105] J.K. Liu, H.C. Chan, Limit cycle oscillations of a wing section with a tip mass, 

Nonlinear Dynamics, 23 (2000) 259-270. 

[106] G. Dimitriadis, G. Vio, J. Cooper, Stability and limit cycle oscillation amplitude 

prediction for simple nonlinear aeroelastic systems, in:  45th 

AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials 

Conference AIAA, Palm Springs, California, 2004, pp. 2001-2014. 

[107] B. Ghadiri, M. Razi, Limit cycle oscillations of rectangular cantilever wings 

containing cubic nonlinearity in an incompressible flow, Journal of Fluids and 

Structures, 23 (2007) 665-680. 

[108] B. Stanford, P. Beran, Direct flutter and limit cycle computations of highly flexible 

wings for efficient analysis and optimization, Journal of Fluids and Structures, 36 

(2013) 111-123. 



 

184 

 

[109] R.W. Bunton, C.M. Denegri Jr, Limit cycle oscillation characteristics of fighter 

aircraft, Journal of Aircraft, 37 (2000) 916-918. 

[110] T. L, W. L, Y. R, Active aeroelastic oscillation control on the F/A-18 aircraft, in:  

Guidance, Navigation and Control Conference, American Institute of Aeronautics 

and Astronautics, 1985. 

[111] P.M. Hartwich, S.K. Dobbs, A.E. Arslan, S.C. Kim, Navier-Stokes computations of 

limit-cycle oscillations for a B-1-like configuration, Journal of Aircraft, 38 (2001) 

239-247. 

[112] S. Jacobson, R. Britt, D. Freim, P. Kelly, Residual pitch oscillation (RPO) flight test 

and analysis on the B-2 bomber, in:  39th AIAA/ASME/ASCE/AHS/ASC Structures, 

Structural Dynamics, and Materials Conference and Exhibit, American Institute of 

Aeronautics and Astronautics, 1998. 

[113] K.D. Frampton, R.L. Clark, Experiments on Control of Limit-Cycle Oscillations in a 

Typical Section, Journal of Guidance, Control, and Dynamics, 23 (2000) 956-960. 

[114] J. Ko, A.J. Kurdila, T.W. Strganac, Nonlinear control of a prototypical wing section 

with torsional nonlinearity, Journal of Guidance, Control, and Dynamics, 20 (1997) 

1181-1189. 

[115] J.W. Ko, T.W. Strganac, A.J. Kurdila, Stability and control of a structurally 

nonlinear aeroelastic system, Journal of Guidance Control and Dynamics, 21 (1998) 

718-725. 

[116] J. Ko, T.W. Strganac, A.J. Kurdila, Adaptive feedback linearization for the control 

of a typical wing section with structural nonlinearity, Nonlinear Dynamics, 18 (1999) 

289. 

[117] J. Ko, T.W. Strganac, J.L. Junkins, M.R. Akella, A.J. Kurdila, Structured model 

reference adaptive control for a wing section with structural nonlinearity, Journal of 

Vibration and Control, 8 (2002) 553-573. 

[118] A. Behal, P. Marzocca, V.M. Rao, A. Gnann, Nonlinear adaptive control of an 

aeroelastic two-dimensional lifting surface, Journal of Guidance, Control, and 

Dynamics : A Publication of the American Institute of Aeronautics and Astronautics 

Devoted to the Technology of Dynamics and Control, 29 (2006) 382. 

[119] W. Xing, S.N. Singh, Adaptive output feedback control of a nonlinear aeroelastic 

structure, Journal of Guidance, Control, and Dynamics, 23 (2000) 1109-1116. 

[120] K.W. Lee, S.N. Singh, Global robust control of an aeroelastic system using output 

feedback, Journal of Guidance, Control, and Dynamics, 30 (2007) 271-275. 

[121] F. Zhang, D. Soffker, Active flutter suppression of a nonlinear aeroelastic system 

using PI-observer, in: H. Ulbrich, L. Ginzinger (Eds.) Motion and Vibration Control, 

Springer Netherlands, 2009, pp. 367-376. 

[122] T. Degaki, S. Suzuki, Sliding mode control application for two-dimensional active 

flutter suppression, Transactions of the Japan Society for Aeronautical and Space 

Sciences, 43 (2001) 174-181. 



 

185 

 

[123] C.L. Chen, C.C. Peng, H.T. Yau, High-order sliding mode controller with 

backstepping design for aeroelastic systems, Communications in Nonlinear Science 

and Numerical Simulation, 17 (2012) 1813-1823. 

[124] K.W. Lee, S.N. Singh, Robust higher-order sliding-mode finite-time control of 

aeroelastic systems, Journal of Guidance, Control, and Dynamics, 37 (2014) 1664-

1671. 

[125] C. Chieh-Li, C. Chung-Wei, Y. Her-Terng, Design of dynamic sliding mode 

controller to aeroelastic systems, Applied Mathematics & Information Sciences, 6 

(2012) 89-98. 

[126] B.-H. Lee, J.-h. Choo, S. Na, P. Marzocca, L. Librescu, Sliding mode robust control 

of supersonic three degrees-of-freedom airfoils, International Journal of Control, 

Automation and Systems, 8 (2010) 279-288. 

[127] S. Gujjula, S.N. Singh, Variable structure control of unsteady aeroelastic system 

with partial state information, Journal of Guidance, Control, and Dynamics, 28 

(2005) 568-573. 

[128] X. Wei, J.E. Mottershead, Y.M. Ram, Partial pole placement by feedback control 

with inaccessible degrees of freedom, Mechanical Systems and Signal Processing, 

(submitted) (2015). 

[129] X. Wei, J.E. Mottershead, Block-decoupling vibration control using eigenstructure 

assignment, Mechanical Systems and Signal Processing, In press (2015). 

[130] G. Strang, T. Nguyen, The interplay of ranks of submatrices, SIAM Review, 46 

(2004) 637-646. 

[131] X. Wei, J.E. Mottershead, Aeroelastic systems with softening nonlinearity, AIAA 

Journal, 52 (2014) 1915-1927. 

[132] J.R. Wright, J.E. Cooper, Introduction to aircraft aeroelasticity and loads, John 

Wiley, Chichester, 2007. 

[133] S.F. Shen, An approximate analysis of nonlinear flutter problems, Journal of the 

Aerospace Sciences 26 (1959) 25-32. 

[134] J. Dormand, P. Prince, A family of embedded Runge-Kutta formulae, Journal of 

Computational and Applied Mathematics, 6 (1980) 19-26. 

[135] J.M.T. Thompson, H.B. Stewart, Nonlinear dynamics and chaos: geometrical 

methods for engineers and scientists, Wiley, Chichester, 1986. 

[136] S.J. Price, H. Alighanbari, B.H.K. Lee, The aeroelastic response of a two-

dimensional airfoil with bilinear and cubic structural nonlinearities, Journal of Fluids 

and Structures, 9 (1995) 175-193. 

[137] F.C. Moon, Chaotic vibrations: an introduction for applied scientists and engineers, 

Wiley, New York, 1987. 

[138] I. Shimada, T. Nagashima, A numerical approach to ergodic problem of dissipative 

dynamical systems, Progress of Theoretical Physics, 61 (1979) 1605-1616. 



 

186 

 

[139] G. Benettin, L. Galgani, A. Giorgilli, J.-M. Strelcyn, Lyapunov Characteristic 

Exponents for smooth dynamical systems and for hamiltonian systems; A method 

for computing all of them. Part 2: Numerical application, Meccanica, 15 (1980) 21-

30. 

[140] A. Dhooge, W. Govaerts, Y.A. Kuznetsov, MATCONT : A MATLAB package for 

numerical bifurcation analysis of ODEs, ACM Transactions on Mathematical 

Software, 29 (2003) 141. 

[141] G. Dimitriadis, Shooting-based complete bifurcation prediction for aeroelastic 

systems with freeplay, Journal of Aircraft, 48 (2011) 1864-1877. 

[142] R. Seydel, Practical bifurcation and stability analysis, 3rd ed., Springer, New York, 

2010. 

[143] Y.A. Kuznetsov, Elements of applied bifurcation theory, Springer, New York, 1998. 

[144] Y.C. Fung, An introduction to the theory of aeroelasticity, Wiley, New York, 1955. 

[145] C.I. Byrnes, A. Isidori, J.C. Willems, Passivity, feedback equivalence, and the global 

stabilization of minimum phase nonlinear systems, Automatic Control, IEEE 

Transactions on, 36 (1991) 1228-1240. 

[146] K.D. Young, V.I. Utkin, U. Ozguner, A control engineer's guide to sliding mode 

control, IEEE Transactions on Control Systems Technology, 7 (1999) 328-342. 

[147] W. Lin, T. Shen, Robust passivity and feedback design for minimum-phase 

nonlinear systems with structureal uncertainty, Automatica, 35 (1999) 35-47. 

[148] X. Wei, J.E. Mottershead, Robust passivity-based continuous sliding-mode control 

for under-actuated nonlinear wing sections, Journal of Guidance, Control, and 

Dynamics, (submitted) (2015). 

[149] C.C. Rasmussen, R.A. Canfield, M. Blair, Joined-wing sensor-craft configuration 

design, Journal of Aircraft, 43 (2006) 1470-1478. 

 

 

 


