

Dynamic clinical prediction models for cardiac surgery

Hickey GL¹, Grant SW², Caiado C³, Kendall S⁴, Dunning J⁴, Poullis M⁵, Buchan I¹, Bridgewater B^{1,2}

Northwest Institute of Bio-Health Informatics; ²University Hospital of South Manchester; ³University of Durham; ⁴The James Cook University Hospital; ⁵Liverpool Heart and Chest Hospital

This research was generously funded by Heart Research UK [Grant Number RG2583]

History of clinical prediction models for cardiac surgery

What's wrong with the status quo?

In April 2010, predicted mortality was 2.7 x observed mortality

Consequences

Options a

Approach	Description
Do nothing	Develop a model (e.g. on 1-years data) and leave to run forever
Periodically refit model	Every, e.g. 1-year, independently refit the model
Rolling window	Fit model to a fixed window (e.g. 2-years) of data and then rolling the window incrementally (e.g. every 1-year)
Dynamic logistic regression	Exploit dynamic statistical models that can update in 'real time' (1-month) online

'Nuts & bolts' of dynamic regression

- Described by McCormick et al. *Biometrics* 2012; 68:23-30 (with software)
- Assumes a state-space equation: $\beta_t = \beta_{t-1} + \delta$ for risk factors (cf. log odds ratios)
- As each batch of new data arrives, model updates estimate of β_t and its standard error using Bayesian statistics
- Assumptions made about δ and approximations in calculations

Strategy

- Focus on EuroSCORE risk factors
- Train all 3 models on 2001-02 clinical registry data for all adult cardiac surgery
- 'Update' models on 2002-11 clinical registry data
- Monitor model coefficients

Results

- 316,713 records
- 37 different hospital
- 120 months of clinical data (10 years)

Conclusions

- Doing nothing is not an option
- A patient today does not have the same risk as 10 years ago
- Is it sensible to wait for EuroSCORE III?
- Dynamic regression is more methodologically complex and would require concerted effort to implement