

Risk stratification: The UK cardiothoracic experience

Graeme L Hickey¹; Stuart W Grant²; Iain Buchan¹; Ben Bridgewater^{1,2}

¹Northwest Institute of BioHealth Informatics, Manchester University

²Department of Cardiothoracic Surgery, University Hospital of South Manchester

Background

- Around 35,000 adult cardiac surgery procedures performed each year in UK
- In-hospital mortality rate in 2010-11 was 3.4%

What's risk stratification used for?

Governance

Decision-making

Motivation

- Total cost = £1.48m/year in England (<1% of the total NHS spend on adult cardiac surgery)*
- Associated with a 50% reduction in risk adjusted mortality*

Infrastructure

Monitoring methodology

1. Funnel plot

- Fixed time period (e.g. 3 years)
- Identify 'outlier' units
- Doesn't address whether hospitals are getting worse

2. Variable life adjusted display (VLAD) plot

- Intuitive dynamic summary
- Doesn't identify when a unit is an outlier

Funnel plot

National average ±2σ

:::: ±3σ

Number of cardiac procedures

VLAD plot

Variable Life-Adjusted Display plot for an individual surgeon

Problems to overcome

- 1. Systematic model miscalibration
- 2. Data dissemination
- 3. Pooled vs. separate models
- 4. Data quality
- 5. Gaming
- 6. Subgroup performance
- 7. Ancillary methodology

Systematic miscalibration What's wrong with this?

Number of cardiac procedures

Systematic miscalibration

- Observed mortality is decreasing
 - better surgical tools
 - improvements in postsurgery treatment
- Predicted mortality is increasing
 - increase in older patients
 - more complex procedures
- Model validation essential!

Dynamical modeling vs. periodic recalibration vs. doing nothing

Model 1

Data dissemination: past

Abandoned CQC website

The SCTS 'Blue Book'

Data dissemination: future

Data dissemination: future

Data quality Outlier surgeon ≠ rogue surgeon

- Missing data
- Input software errors
- Registry cleaning errors

- Imputation
- Validation

Pooled vs. separate models

- CABG + MVR + Tricuspid repair = AVR?
- Cardiac surgery is a 'catch-all' term
- We could have risk prediction models for:
 - 1. all procedures (combinations)
 - 2. all procedures with multiple procedure variables
 - 3. each procedure group (e.g. CABG, Valve, CABG + Valve, ...)

Decision depends on application.

Gaming (+ other unexpected extraneous variation)

Distribution of ranks of risk factor prevalence might be expected to homogenous across hospitals

Further investigation required

Subgroup performance

 Stratification does not ensure good model performance

Ancillary methodology

- Multiple testing
 - correction adjustments (e.g. Bonferroni)
- Overdispersion
 - multiplicative variance inflation
 - random effects models

