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Abstract

In this paper, a novel strategy is designed to efficiently estimate set-valued

failure probabilities, coupling Monte Carlo sampling-based with optimization

methods. The notion of uncertainty is generalized to include both aleatory

and epistemic uncertainties, and capture gaps of knowledge and scarcity of

data. The proposed formulation of the generalized uncertainty model allows

for sets of probability distribution functions, also known as credal sets, and sets

of bounded variables. An Advanced Line Sampling method is developed and

combined with the generalized uncertainty model, not only to reduce the time

needed for a single reliability analysis, but also to increase the efficiency of the

search for lower and upper bounds of the failure probability. The proposed

strategy knocks down the computational barrier of computing interval failure

probabilities, and reduces the cost of a robust reliability analysis by many orders

of magnitude. The solution strategy is integrated into the open-source software

for uncertainty quantification and risk analysis OpenCossan, allowing its appli-

cation on large-scale engineering problems as well as broadening its spectrum of

potential applications. The efficiency and applicability of the developed method

is demonstrated via numerical examples.
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Model, Aleatory Uncertainty, Epistemic Uncertainty

1. Introduction

Engineering structures and systems, such as bridges, buildings, aircraft, off-

shore platforms, nuclear power plants, transmission towers and pipelines, are

designed to fulfil specific requirements, and they should be able to deal with

possible changes of loads and conditions. However, the design context is often5

characterized by partial knowledge and limited access to information. In such a

context, in order to be able to bypass the difficulties in quantifying vague infor-

mation, decisions often rely on experts opinions, rather than rigorous analyses.

In this paper a generalized model of uncertainty is proposed and used for relia-

bility assessment to address this issue. Within this model the risk is evaluated10

treating gaps of knowledge and scarcity of data as a key source of uncertainty.

To translate this into practice, computational models that consider imprecision

are proposed.

Risk is conventionally expressed as the product between the failure proba-

bility of the system and the consequences caused by the system’s failure. While15

the consequences are quantified in monetary units, the failure probability is cal-

culated, within a reliability assessment, in a rigorous probabilistic framework

[1]. Commonly, this requires the specification of precise distributional models

(of probability), including dependencies for the input variables.

Among the numerical methods proposed to assess reliability, simulation20

methods [2] have attracted significant attention. Simulation methods are gener-

ally applicable, but require a compromise between efficiency and accuracy. Sim-

ulation methods proposed in literature include Monte Carlo Simulation [3, 4],

Importance Sampling [5, 6], Directional Sampling [7, 8], Line Sampling [9, 10],

Subset Simulation [11] etc. The individual developments possess different per-25

formance features for different classes of problems. Herein, we target at high

numerical efficiency assuming that the limit state surfaces only show moderate

non-linearities. Since the latter applies to the majority of practical cases [12],
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this does not impose a strong restriction. Hence, Line Sampling is selected as

the basis for our development, which has been extended to deal with generalized30

probabilistic models.

The paper is organized as follows: In Section 2 a generalized uncertainty

model is introduced. In Section 3, an Advanced Line Sampling method and

adaptive algorithm is developed and, in Section 4, it is implemented in the

generalized uncertainty framework. In Section 5, the integration in the general35

computational toolbox OpenCossan is briefly explained. In Section 6, numerical

examples are given to demonstrate the efficiency of the method. Final remarks

and conclusions are provided in Section 7.

2. A generalized uncertainty model

Traditionally, the assessment of structural reliability is based on well-defined40

(precise) probabilistic models [1]. Probabilistic models are constructed from

data that, in a design context, are often scarce and not available to a sufficient

extent [13]. In such a context, it is advisable to relax the assumption of a precise

probabilistic model. A detailed reasoning and discussion in this direction with

an overview on available generalized models is provided in [14].45

In essence, a generalized model of uncertainty shall allow for imprecision in

both the state variables of the system, denoted as θ, and the parameters of the

probabilistic model p. Depending on the amount of information available about

the variables and parameters, imprecision can be modelled in different ways,

for example by means of Intervals [15, 16, 17], Convex Models [18] and Fuzzy50

Sets [19, 20]. Intervals are used when variables are only known to be bounded

within lower and upper limits, while Convex Models are used when variables are

known to be bounded and also show some dependences. Fuzzy Sets allow the

simultaneous analysis of different bounded sets, which is helpful if the bounds

are not known precisely and to explore sensitivity with respect to the bounds55

of the inputs. When imprecision is also present within the probabilistic model,

the uncertainty model shall include sets of probability distribution functions.
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This is the case, for example, when statistical distributions given along with

their confidence intervals are considered, or when data complying with several

statistical distribution models are processed. Credal Sets [21] provide a quite60

general pathway to express and analyse sets of probability distributions. Thus,

we utilize credal sets in combination with bounded sets for the subsequent de-

velopment.

2.1. Credal sets and bounded sets

The generalized model of uncertainty, denoted byM, defines type and extent65

of uncertainty in the state variables θ. The model M may represent a credal

set C (see e.g. [21]), a bounded (interval) set Q (see e.g. [18]), or both at the

same time.

A credal set of category I, namely CI , is a set of probability distribution

functions, where the imprecision is defined in the distribution parameters. A70

credal set of category II, CII , is a set of probability distribution functions, where

the imprecision is in the type of distribution functions (e.g. Normal, Log-normal,

Gamma, Beta), whilst a credal set of category III, CIII , has both imprecise

distribution parameters and function type.

A bounded set of category I, namely QI , is obtained by the Cartesian prod-75

uct×b

i
xi of interval variables x i = {xi | xi ∈ [xi, xi] ⊂ R} , i = 1, ..., b. A

bounded set of category II, namely QII , is obtained from interval variables xi,

taking into account dependencies between the variables. This may be done in

many different ways, for example using convex sets, i.e. by constructing the

enclosing ellipsoid (see e.g. [22]), or using other types of sets (e.g. convex hulls,80

polytopes).

In this paper, without limiting generality but providing a basic development,

only uncertainties where the imprecision is of category I are considered, thus

the sets CI and QI will be simply denoted as C and Q respectively.

2.2. Problem formulation85

In performance-based engineering the structural system is considered as a

collection of performance variables gi, i = 1, 2, ..., Ng, which are functions of
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the state variables θ ∈ Θ ⊆ Rn (see e.g. [23]). Typically, the state variables

are the inputs that defines the structural system, such as material properties,

shape and size of structural elements, and load magnitudes, whilst the perfor-90

mances express specific structural responses, such as frequency and amplitude

of vibrations, stresses, deflections and so forth.

The performance function g : Rn → gi ∈ R maps values from the state

space Θ to the performance variables of interest. For given criteria on the

performance variables, g defines the failure domain ΘF = {θ ∈ Θ | g(θ) ≤ 0},95

which is identified by the limit state surface Θ̃ = {θ | g(θ) = 0}. Points θ̃ on

the limit state surface are referred to as limit state points. An important feature

for our development is that the limit state is invariant to the uncertainty model

M, because it is intrinsic in the structural system, i.e. depends solely on the

performance function g. The uncertainty model only determines the probability100

over the state space, but does not influence location of limit state points θ̃.

In our study, M is represented by both credal sets and bounded sets of

category I. In the credal set C, imprecision is considered in the distribution pa-

rameters of n1 imprecise random variables, which is expressed with the bounded

set Q1 of distribution parameters. A second bounded set Q2 is used to describe105

imprecision in the structural parameters, which are not associated with any

distribution model.

The state variables are, thus, split into n1 imprecise random variables ξ ∈

Ω ⊆ Rn1 belonging to C and n2 interval variables x ∈ X ∈ Rn2 belonging to Q2,

where n1+n2 = n. The credal set is defined as C = {hD (ξ;p) | p ∈ Rm, p ∈ Q1},110

where Q1 is the bounded set Q1 =×m

i
[pi, pi], hD is the joint probability dis-

tribution function of random variables ξ, D is the distributional model, and

p are the distributional parameters. The bounded set of the remaining state

variables is expressed as the Cartesian product Q2 =×n2

i
[xi, xi].

2.3. Failure probability for generalized uncertainty115

When the uncertainty model comprises only precisely defined probability

distributions, i.e. m = 0, b = 0 and C degenerates in one distribution function,
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structural reliability is assessed in terms of a precise failure probability. Precise

measures of failure probability are obtained as p(ΘF ,D,p) =
∫

ΘF
hD(ξ;p) dΘ,

where dΘ is the Lebesgue measure of an elementary portion of Θ. For simplic-120

ity p(ΘF ,D,p) is subsequently denoted by pF . Operating with the generalized

uncertainty model M leads to imprecise measures of failure probability. The

failure domain is split into two separate domains as ΘF = ΩF × XF , where

ΩF (x) = {ξ ∈ Rn1 | g(ξ,x) ≤ 0} and XF (ξ) = {x ∈ Rn2 | g(ξ,x) ≤ 0}. Pro-

vided the definition of C, the imprecise failure probability is expressed as the125

interval p
F

(C,Q2) =
[
p
F

(C,Q2), pF (C,Q2)
]
. The lower and upper bound of

the imprecise failure probability are

p
F

(C,Q2) = inf
x∈Q2

inf
p∈Q1

∫
ΩF (x)

hD(ξ;p) dΩ; pF (C,Q2) = sup
x∈Q2

sup
p∈Q1

∫
ΩF (x)

hD(ξ;p) dΩ,

(1)

where, the order to which the operations of infimum and supremum are per-

formed can be changed. The inner operand searches the bounds of pF within

C, while the outer one searches the bounds of pF within Q2.130

Upper and lower bounds of failure and survival probabilities show a dual

relationship. This can be seen clearly in the special case that the uncertainty

model is restricted to C only. The probability function h◦D that yields the lower

bound p(ΩF ), satisfies the equation
∫

ΩF
h◦D(ξ) dΩ+

∫
ΩS
h◦D(ξ) dΩ = 1, where ΩS

denotes the survival domain (complementary to the failure domain). Therefore,135

h◦ is also the function for which the upper bound p(ΩS) is obtained. Thus,

the Equation p(ΩF ) = 1− p(ΩS) establishes a dual (or conjugate) relationship

between lower and upper probability functions. This relationship allows to

identify the upper probability function when the lower probability function is

known and vice versa. Note, however, that the complete function, which may140

also have an infinite support, is needed in order for the relationship to be used.

From the definition of lower and upper probability follows that p
F
≤ pF . When

C degenerates into a single probability distribution function, precise measures

of probability pF = p
F

= pF are obtained.
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3. Advanced Line Sampling145

The computation of failure probabilities can be associated with quite a sig-

nificant numerical effort. In cases where the number of random variables is high

and the limit state surface is nonlinear, methods based on the computation of

the Hessian become impractical. In these cases, advanced simulation methods,

represent a useful alternative. Here, a new method that extends the concept150

of Line Sampling is presented. The method, named Advanced Line Sampling

(ALS), does not only increase the efficiency of single reliability analysis but

it proves to be essential for finding the lower and upper bound of the failure

probability.

3.1. Concept of Line Sampling155

Line Sampling, introduced in [9], and recently applied in [24], is an advanced

simulation method developed to efficiently compute small failure probabilities

for high dimensional problems. The method requires the knowledge of the so-

called “important direction”, α ∈ Rn, which is defined as pointing towards the

failure region. An initial approximation for the important direction is commonly

obtained by computing the gradient of the performance function in the origin

of the Standard Normal Space (SNS). Simulation methods estimate the failure

probability by computing the integral

pF =

∫ ∞
−∞
IF (u) hN (u) du, (2)

where, IF : Rn → {0, 1} is the indicator function, u = T (θ) are standard normal

variables, T : Rn → Rn maps variables ξ from the original space to the SNS,

and hN (u) =
∏n
i=1 φ(ui) is the standard normal PDF. Provided that hN (u) is

invariant to rotation of the coordinate axes, Equation 2 can be written in the

form

pF =

∫ ∞
−∞

(∫ ∞
−∞
IF (u)φ(u1)du1

) n∏
i=2

φ(ui)dui (3)

for convenient evaluations. With u1 pointing orthogonally towards the failure

domain, the expansion w(u2:n) =
∫∞
−∞ IF (u) φ(u1) du1 from Equation 3 is a
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function of the n − 1 remaining standard variables u2:n ∈ Rn−1 and provides

a measure of likelihood for the variable u2:n to be in the failure domain. All

of the points with coordinates u⊥ = {0,u2:n} lie on the hyperplane orthogonal160

to the first coordinate u1. Variable w can be calculated as w (u2:n) = Ψ(F1),

where Ψ(A) =
∫∞
−∞ IA(y)φ(y)dy is the Gaussian measure of a subset of A ⊂ R.

Let the scalar c∗ be the smallest (in magnitude) value of the coordinate u1

where the function IF (u) steps from zero to one. This enables w to be approxi-

mately calculated as w (u2:n) = Φ(−|c∗|), where Φ is the standard normal CDF.165

Therefore, the failure probability can be obtained as the expected value

pF = E[w (u2:n)] =

∫ ∞
−∞

w (u2:n)

n∏
i=2

φ(ui)dui. (4)

Note that considering the standard normal CDF Φ(−|c∗|) in place of the

Gaussian measure Ψ(F1), the probability w can only be overestimated, because

it assumes that no further failure regions can be found on the line beyond

c∗. LS provides an estimation of E[w] by repeatedly generating points u2:n

from the standard normal PDF in Rn−1, and computing the respective partial

probabilities w (u2:n). For example, generating NL points u
{j}
2:n , j = 1, 2, .., NL,

an estimate of the failure probability is obtained computing the average

p̂F =
1

NL

NL∑
j

w(u
{j}
2:n ). (5)

Despite the important direction α is not oriented as the first coordinate u1,

the above integrals can still be calculated exploiting the geometric features of

the SNS. Standard normal points on the hyperplane orthogonal to α can be

generated from any standard normal point u as u⊥α = u − (u · α)α. In this170

way, the search for the limit state, for each random point {j}, can be set as

u
{j}
α (c) = u

⊥{j}
α + c α. Standard implementation of LS operates with a fixed,

initially determined important direction α. For each random point u{j}, the

distance from the hyperplane to the performance function in the direction of

α is identified searching along the lines u
{j}
α (c). The line search is conducted175

evaluating the performance function g on the support sequence c = {c1, ..., cNc
},
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to find the value c∗ by means of interpolation, usually requiring 6 − 8 model

evaluations per line.

3.2. Adaptive Algorithm

An Adaptive algorithm, is developed in order to further improve the numer-180

ical efficiency for implementation in the generalized uncertainty environment.

The improvement concerns the efficiency in evaluating Equation 5. In contrast

to the standard algorithm, ALS uses a support sequence that is dynamically

generated to adapt to the shape of the limit state surface. This makes the algo-

rithm significantly faster and capable of recognising the level of non-linearity of185

the performance function. Moreover, ALS not only allows for variations in the

important direction but is also capable of identifying new important directions

to be updated during the simulation. Hence, only a very rough estimation of

the important direction is required at the start of the simulation.

The main features of ALS are: (i) it minimizes the number of samples along190

the lines {j} to identify c∗{j}, (ii) it adapts the important direction to the shape

of the limit state surface. The first feature is achieved developing an efficient line

search procedure and line selection. The second feature is achieved computing

weights to each working direction.

As in standard implementations, ALS algorithm operates setting an (initial)195

important direction α and generating a number NL of points u
{j}
α . First, a

line j is deployed from the origin of the SNS approximately towards the failure

region as u
{0}
α (c) = c α. Then, the value c◦ = {c ∈ R | g(c◦α) = 0}, is used

for the starting point on the first line as u
{1}
α (c0) = u⊥{1} + c0 α. A line

search procedure, based on a Newton-Raphson iterative procedure, is applied200

to identify the root c∗{j}, which is used to compute the partial probability

p
{j}
F = w(u

{j}
α ) = Φ(−|c∗{j}|). Using the identified root, the procedure is

repeated as u
{j}
α (c0) = u⊥{j} + c∗{j−1} α, until all lines are processed. To

increase the efficiency, the algorithm does not process the lines randomly as

they are generated. Lines are selected according to a criterion based on the205

metric space that recognizes the nearest line to one being currently processed.
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Hence, in case of slightly non-linear limit state surface the distances c∗{j} and

c∗{j−1}, for lines j and j−1 respectively, are expected to have approximately the

same value. To identify the neighbouring lines, the index of the line closest to

the origin is computed as k1 = arg min
j

∥∥u⊥{j} − 0
∥∥. Subsequently, all the other210

indices are calculated as ki+1 = arg min
j 6=ki

∥∥u⊥{j} − u⊥{ki}∥∥, and as illustrated in

the pseudo code of the algorithm in Figure 1.

3.3. Adaptation of the important direction

ALS allows to change the important direction without re-evaluating the per-

formance function along the processed lines. This feature is useful when there215

is only little evidence of the optimal important direction, so that an approx-

imate direction can be set at the beginning of the simulation and a better

direction can be obtained during the simulation. An optimal direction generally

provides a more accurate estimate of the failure probability. The important

direction is usually associated with the design point ũ∗ = minu∈{u|g=0} ‖u‖,220

i.e. the point on the limit state that carries the highest probability density.

As the ALS proceeds, the norm of the new state points ũ = u⊥ + c∗α can

be computed with nearly no cost, thus a new direction can be set as a more

probable point is identified on the limit state. Thus, if a point ũ{j}α is found,

such that ||ũ{j−1}
α || > ||ũ{j}α ||, then the new important direction can be set225

as αnew = ũ{j}α /||ũ{j}α ||. Changing the important direction does not affect

the expected value of the failure probability. However, an improvement of the

important direction reduces the variance of the estimation.

3.4. Efficiency and accuracy

Adaptive Line Sampling shows an improvement in efficiency and accuracy230

above the standard version. This is elucidated in a comparative study with a

reference solution obtained by Monte Carlo simulation. An explicit performance

function is used to test the methods, which is expressed as g(x) = −
√
xTx+ a,

where x are NRV independent normal random variables and a is a constant.

Firstly, the test is run with just two random variables, but with decreasing235
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begin

α = α1; % set initial direction

u{j}
N
1 ∼ N (0, 1);

u⊥{j}
N
1 = u{j}

N
1 − (u{j}

N
1 · α) α;

k1 = min
j

∥∥u⊥{j} − 0
∥∥ % get the first line index

find c◦ such that g(T (c◦ α)) = 0;

c0 = c◦; % initialize distance from hyperplane

for i = 1→ N do

u
{ki}
α (c0) = u⊥{ki} + c0 α;

find c∗ such that g(T (u
{ki}
α (c∗)) = 0;

ki+1 = min
j 6=k1,...,i

∥∥u⊥{j} − u⊥{ki}∥∥ ; % get the next line index

c0 = c∗;

p
{i}
F = Φ(−|c∗|); % compute partial probability

if ||u{ki}α (c∗)|| < c◦ then

c◦ = ||u{ki}α (c∗)||;

α = u
{ki}
α (c∗)/c◦; % update direction

end if

end for

p̂F = 1
N

∑N
i p
{i}
F ; % failure probability

end

Figure 1: Pseudocode for Adaptive Line Sampling
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Figure 2: Directional change in standard normal space with ALS over the non-

linear limit state boundary defined in the original space by the performance

function: g(θ) = −(θ1+θ2)+d2 (1+a sin(b tan−1(θ1, θ2))), where θ1 ∼ N(5, 22),

θ2 ∼ N(2, 22), d = 10, a = 0.2 and b = 20.

probability targets, by selecting different values of a in the performance function

g, as shown in Table 1. Note that, in this case, the values of probability pF =

Φ(−β) obtained by First Order Reliability Method [25] are biased because of the

concave shape of the limit state surface. An illustration of the performance of the

methods is shown in Figure 3a. A satisfactory level of accuracy (CoV = 5·10−2)240

is achieved with just 65 samples using ALS compared to a necessary sample size

of 210 samples using LS. Secondly, the test is run fixing probability targets

(approximately to 10−3), while progressively increasing the number of random

variables, as shown in Table 2. The results of this second test, as illustrated

in Figure 3b, show that Monte Carlo, is insensitive to the number of variables,245

whilst the other methods show some sensitivity to the number of variables but

require significantly less samples to achieve the same level of accuracy. As

expected, in this second test, the probability of failure computed with the First

Order Reliability Method is inaccurate, as also shown in Table 2. In both cases,

ALS demonstrated to be the most efficient, and 3− 4 times faster than LS.250
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g(x) = −
√

x2
1 + x2

2 + a; x1 ∼ N(5, 22), x2 ∼ N(2, 22); a = (10, 10.2, 10.5, 12, 14, 16)

MC ALS LS

|c◦| p̂MC
F CoV p̂ALS

F CoV Ns p̂LS
F CoV Ns

2.307 1.49 10−2 0.8 10−2 1.35 10−2 6.0 10−2 63 1.32 10−2 5.5 10−2 210

2.407 1.16 10−2 0.9 10−2 1.08 10−2 10.8 10−2 66 9.75 10−3 5.4 10−2 210

2.557 7.40 10−3 1.1 10−2 6.60 10−3 4.5 10−2 67 7.00 10−3 5.8 10−2 210

3.304 7.06 10−4 3.8 10−2 6.58 10−4 9.2 10−2 65 6.69 10−4 13.6 10−2 210

4.307 1.42 10−5 26.5 10−2 1.23 10−5 13.9 10−2 59 1.18 10−5 8.3 10−2 210

5.307 − − 9.18 10−8 12.4 10−2 64 10.14 10−8 14.0 10−2 210

Table 1: Test of ALS and LS on the bidimensional performance g(x) =

−
√
x2

1 + x2
2 + a; comparison with the reference solution obtained via MC with

106 samples.
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Figure 3: Number of samples required from ALS and LS compared to the refer-

ence solution obtained with MC and 106 samples (a) for a decreasing probability

target, and (b) for increasing dimension.
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g(x) = −
√

xTx + a; xi ∼ N(2, 1); a = (7.0, 9.3, 14.7, 18.1, 24.8, 34.0, 52.5)

MC ALS LS

NRV |c◦| p̂MC
F p̂ALS

F CoV Ns p̂LS
F CoV Ns

4 3.000 3.27 10−3 3.52 10−3 19.7 10−2 94 2.75 10−3 7.2 10−2 215

10 2.975 8.37 10−3 6.97 10−3 11.1 10−2 102 8.57 10−3 16.9 10−2 221

30 3.745 4.56 10−3 4.13 10−3 12.9 10−2 120 4.27 10−3 15.6 10−2 241

50 3.958 7.44 10−3 7.87 10−3 17.8 10−2 144 7.59 10−3 16.5 10−2 261

100 4.800 4.87 10−3 5.27 10−3 17.5 10−2 222 5.92 10−3 19.7 10−2 311

200 5.716 5.85 10−3 5.20 10−3 18.3 10−2 323 6.16 10−3 17.0 10−2 411

500 7.778 4.15 10−3 3.44 10−3 21.4 10−2 619 3.56 10−3 17.8 10−2 711

Table 2: Test of ALS and LS on the performance function g(x) = −
√
xTx+ a;

comparison with reference solution from MC with 106 samples and CoV ≤ 0.03,

and increasing dimension of the limit state.

4. Sampling-based estimation of set-valued reliability

When imprecision is considered, the failure probability is obtained as interval

pF . In order to calculate the bounds of the failure probability, a global search in

the bounded sets Q1 and Q2 is performed. A naive approach to the problem for

searching in the above sets would be prohibitive in the majority of cases due to255

the numerical effort incurred. In fact, two nested loops are required, where the

inner loop estimates the failure probability and the outer loop searches for the

bounds of the probability. The ALS method not only makes the computation

of probabilities faster compared with Monte Carlo, but most importantly, can

be adopted to significantly ease the search procedure of failure probability.260

4.1. The global search for lower and upper failure probabilities

The objective function for the global search in the sets Q1 and Q2 is given

as the failure probability depending upon the coordinates of Q1 and Q2. The
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search can be seen as an iterative procedure that converges after some steps,

towards the sought lower and upper failure probability bounds.265

4.1.1. The search in the bounded set of distribution parameters Q1

The set Q1 of distribution parameters defines the set of all probability dis-

tribution functions to be considered in the analysis. Any element of Q1 is asso-

ciated with a different value of failure probability. Nonetheless, the limit state

does not change as we search in Q1. This is because the limit state depends270

upon the structural system and not upon the uncertainty model that defines

the probability distribution over the state variables. Since the important direc-

tion is defined as any direction pointing towards the failure domain, during the

search in Q1, an approximate α can be set for the entire analysis, independently

from the distribution functions of the random variables. However, changing the275

distribution functions modifies the location of the most probable point on the

limit state surface. Hence, the direction α, set at beginning of the analysis,

might not be the optimal one for all the distributions analysed. This motivates

the implementation of a flexible algorithm capable of searching and updating

new optimal directions.280

Each step of the search procedure requires the estimation of a failure proba-

bility. In the standard approach a completely new simulation would be carried

out to find each of these failure probabilities. However, if the distribution func-

tions do not significantly change, it is not necessary to run a whole new sim-

ulation. For this reason, the proposed strategy includes a verification of those

changes during the search for the probability bounds. Taking advantage of the

bijective mapping T of the random variables between original and standard nor-

mal space, and of the fact that the limit state does not change as we search in

Q1, any point ũ on the limit state can be transformed back onto the original

space, and then re-mapped to the SNS for the next simulation. When a new

reliability analysis is started, the points on the limit state ũ, previously found,

can be used to feed further analyses. Let αi denote the direction of the current

simulation and αi−1 be the direction of the previous simulation. At the current
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simulation, the failure probability

pF (i) =

∫
Rn−1

w(u⊥αi
) hN (u⊥αi

) dun−1 (6)

can be computed using the limit state points from the previous simulation

w(u⊥αi−1
) → w(u⊥remap

αi
). However, the new values of w obtained with the

re-mapped points are no longer drawn from a probability distribution. There-

fore, in order to be able to compute the failure probability using the points from

previous simulations, a dummy probability density function hX is constructed285

around the re-mapped points on the hyperplane. The density function hX is a

multi-modal distribution with density peaks centred on the re-mapped points

and are weighed using the metric properties of the SNS. The failure probability

can then be written as

pF (i+1) =

∫
Rn−1

w(u⊥remap
αi+1

) hN (u⊥αi
)
hX (u⊥remap

αi+1
)

hN (u⊥αi
)

dun−1. (7)

By means of the ratio q = hX (u⊥remap
αi

)/hN (u⊥αi−1
), the probability pF (i) can290

now be computed using the information from simulation i− 1 as

p̃F (i) =
1

N

N∑
j

q{j} w(u⊥remap
αi

) =
1

N

N∑
j

q{j} R(w(u⊥αi−1
)), (8)

where, R(.) is a function that transforms variable w(u⊥αi−1
) from the standard

space of simulation i− 1 to the standard space of simulation i.

4.1.2. The search in the bounded set of structural parameters Q2

Imprecision of structural parameters, characterized by the bounded set Q2,295

requires an extension of the procedure developed so far. In fact, the bounded

variables x ∈ Rn2 change the shape of the limit state boundary, which needs to

be addressed with a second search as described in Equation (1). In this section,

we propose a strategy to include the variables x ∈ Q2 in the numerical frame-

work presented so far. The strategy consists of an extension to an augmented300

probability space, where the interval variables are treated as dummy normal

random variables having imprecise mean values and fixed standard deviations.
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In simple terms, this permits a combined consideration of the bounded set Q2

together with the bounded set Q1 in the same manner. Each dummy imprecise

random variable has an interval mean value µx = x, and a real-valued standard305

deviation σx to be fixed with some convenient value. By defining these dummy

imprecise random variables a thorough search can be performed in both sets Q1

and Q2 simultaneously. The only requirement for the dummy imprecise random

variables is that the chosen value of σx should neither be too large nor be too

small to avoid numerical issues in computing the failure probability. The stan-310

dard deviation σx can be set, for example, as a fraction of the interval radius

σx = k(x−x)/2, where k can be any value between 0 and 1. Once the argument

optima in the sets Q1 and Q2 are found, the associated bounds on the failure

probability are also known. Two more reliability analyses at the end of the

search, run on the argument optima, will be needed to find the failure probabil-315

ity bounds. Note that during this procedure sampling outside the intervals may

occur. However, points outside the intervals are solely used to drive the search

process. In cases where the physical model restricts the evaluation to the range

of the intervals, truncated normal random variables are used for the dummy

imprecise variables, which lower and upper limits are equal to the endpoints of320

the intervals.

When the limit state surface is only slightly non-linear the search procedure

can be sensibly sped up. In fact, in this case the important directions in the

original space are all oriented towards the same region of the state space. This

implies that, as we search in Q1 and Q2, the coordinates of the important325

directions may vary but do not change in sign. Therefore, the sign of the

coordinates of the important direction in the original space can be used to

identify the mean states that are the nearest and furthest from the limit state

surface. Let us denote these two states as conjugate states. Where the mean

state is the nearest to the limit state surface (upper conjugate state), it is also330

where the failure probability attains its maximum. The contrary applies at the

furthest mean state from the limit state surface (lower conjugate state), where

the failure probability is minimum. However, at this stage, a distinction between
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distributions defined in terms of moments (first and second) and in terms of

parameters is necessary. If the probability distribution is defined in terms of335

moments, the argument optima of the failure probability are obtained at the

conjugate states, by selecting the maximum and minimum variance, respectively

for the minimum and maximum failure probability. This applies because we

can pick values at the corners at the hyper-cube defined in terms of moments,

without problems of dependency. If the probability distribution is defined in340

terms of parameters, the search domain in the space of the moments may no

longer be a hyper-cube. In fact, in this case a conjugate state (either lower or

upper) corresponds to only one value of variance, which may not be at a corner

of the domain. However, lower and upper bounds of the failure probability

can still be found selecting the conjugate states and the maximum/minimum345

variance independently, and find the associated parameter combinations.

5. Integration of the strategy in OpenCossan

The developed algorithm has been integrated into OpenCossan [26], which

is an open-source integrated numerical framework for uncertainty quantifica-

tion and risk analyses [24]. OpenCossan is coded exploiting the object-oriented350

Matlab R© environment, which makes it highly flexible using a modular soft-

ware architecture. Recalling that a class is an extensible case of objects and

properties [27], the strategy takes advantage of three main new classes, namely

AdvancedLineSampling, LineSamplingData and ExtremeCase.

5.1. Class Advanced Line Sampling355

The class AdvancedLineSampling integrates the methods for estimating pre-

cise failure probabilities. Provided a ProbabilisticModel, containing a perfor-

mance function, and an Input object, a reliability analysis can be performed

invoking the method computeFailureProbability, as shown in Figure 4. In order

to optimize the performance and increase the robustness of AdvancedLineSam-360

pling several new methods are developed. These methods include: lineSearch,
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which implements a Newton-Raphson method to look for the roots of the limit

state surface, extractLineIndex, which searches the index of the nearest line to

the current one amongst the ones not already processed, and computePartial-

Probabilities, which computes the probabilities p
{i}
F = Φ(−|c∗{i}|) for every line365

i = 1, ..., N . The design of these methods ensure the accuracy and robustness of

the algorithm. The method computePartialProbabilities, for example, is respon-

sible for evaluating the expansions w and can be given the option of eliminating

individual lines during the search process. The lineSearch method provides the

user with the choice to adjust the control parameters, such as the tolerance370

on the values of g and the minimum step size, to control the accuracy of the

algorithm if necessary.

5.2. Class Line Sampling Data

The class LineSamplingData is a key-component in the economy of the strat-

egy. It stores the results obtained from every line in a structured and organized375

way, it can be used to plot the results, and feed further analyses. This class is

essential also for the parallelization of the algorithm, in combination with the

methods merge and add, which allow to gather results coming from different

analyses.

5.3. Class Extreme Case Analysis380

Eventually, in order to search for lower and upper bounds of the failure

probability, the class ExtremeCase is created in OpenCossan. ExtremeCase

connects the inner solver running the ALS simulations with an optimizer such as

Genetic Algorithms. ExtremeCase makes use of the method optimize to deploy

the optimization, and of the method ConstructSolutionSequence to formulate385

the optimization problem. ConstructSolutionSequence is a central method for

the efficiency of the algorithm; it checks number and accuracy of simulations

and controls whether more simulations are needed to complete the optimization.
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Figure 4: Simplified UML diagram for the implementation of the Advanced Line

Sampling strategy in OpenCossan.
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Figure 5: Simplified UML diagram with patterns for the implementation of the

Extreme Case strategy in OpenCossan.
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6. Examples and applications

6.1. Synthetic example390

To demonstrate the performance of the proposed method a synthetic exam-

ple is presented. The approach developed in this paper, denoted as approach

A, is compared to a solution obtained through global optimization, denoted

as approach B. Both approaches are applied to calculate the interval failure

probability pF . In approach A the argument optima are detected using the395

information of the important direction as explained in Section 4.1.2. The sign

of the important direction in the original space identifies the conjugate states

where the optima of the failure probability are located.

In approach B, the search procedure is driven by optimizers. The example is

solved using both Genetic Algorithm (GA) according to [28] and BOBYQA from400

[29], as global and local searchers, respectively. With this approach a thorough

search in the setsQ1 andQ2 is performed. The objective function is given by the

failure probability, thus, at any iteration of GA/BOBYQA, a simulation with

ALS is performed. This approach can be run only because ALS requires just

few evaluations of the performance function to complete an iteration. Replacing405

ALS with Monte Carlo would lead to hundreds of evaluations of the performance

function for each iteration, making approach B intractable.

Two cases are considered in this study, namely case (a) and case (b).

Case (a): The linear performance function g(ξ, x) = 7 + ξ− 2x, is evaluated.

It includes the imprecise random variable ξ ∈ C, where410

C = {hN (ξ;µ, σ) | µ ∈ [0.9, 1.3], σ ∈ [0.7, 2.1]} , and the interval variable

x = [1, 3]. In this illustrative case the gradient ∇g = (1,−2), suggests the

initial important direction α = (1,−2)/
√

5. Approach A leads to the bounds

of the failure probability and the associated argument optima (x∗, x
∗) = (x, x),

and p∗ = (µ, σ), p∗ = (µ, σ), as shown in Table 3. With approach B, using415

GA with a population size of 50 individuals, an approximation of the of lower

and upper bound was obtained after 52 iterations, while BOBYQA delivered

a slightly less accurate estimate. In this case approach A coincides with the
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g = 7 + ξ − 2x;

Approach A Approach B (GA) Approach B (BOBYQA)

(µ∗, µ
∗) (2, 0) (2, 0.04) (2, 0.12)

(σ∗, σ
∗) (1.2, 2.3) (1.28, 2.3) (1.32, 2.3)

(x∗, x
∗) (1, 3) (1, 3) (1, 2.92)

pF [2.717 10−9, 0.332] [2.702 10−8, 0.322] [4.371 10−7, 0.134]

Table 3: Results from Example I, case (a), argument optima and associated

failure probabilities for approaches A and B respectively.

g = 9 + ξTa1 − xTa2;

a1 = (1, 4, 2, 0.1, 0.2, 0.6, 5, 0.01, 0.2, 0.3, 0.25, 0.14, 0.8, 3), a2 = (−2, 0.1, 1)

Approach A Approach B (GA) Approach B (BOBYQA)

pF [1.795 10−9, 0.1452] [7.302 10−6, 0.0053] [2.538 10−5, 0.0046]

Table 4: Results from Example I, case (b), interval failure probability for ap-

proach A and B.

closed-form solution and it is clearly advantageous above approach B.

Case (b): The multidimensional linear performance function g(ξ,x) = 9 +420

ξTa1 − xTa2, where a1 ∈ R14, and a2 ∈ R3, is considered. The imprecise ran-

dom variables ξ ∈ R14 are defined by the credal set C =
{
hN (ξ;µ,σ) | µ ∈ µ,σ ∈ σ

}
,

where µ = [0.1, 1]14, and σ = [1.2, 2.3]14, while the interval variables x ∈ R14

are defined by the bounded set x = [1, 3]3. Again, because of the linearity,

approach A delivers numerically exact results for the failure probability (equal425

to the closed-form solution). As expected, approach B provides only a rough

approximation of the solution, as shown in Table 4. The global search becomes

inefficient when the dimensionality of the search domain grows, in the example

up to 31.
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6.2. Large scale finite element model of a six-storey building430

In this example the reliability analysis of a six-story building subject to wind

load is carried out. Three different models of uncertainty are considered with

increasing level of generality. Firstly, a standard reliability analysis, where the

inputs are modelled by precise probability distribution functions, is performed.

Secondly, the structural parameters are modelled as imprecise random variables435

with the credal set C. In the third analysis both imprecise random variables

and intervals are considered for structural parameters.

An ABAQUS finite element model (FEM) is built for the six-story building,

as illustrated in Figure (6), which includes beam, shell and solid elements. The

load is considered as combination of a (simplified) lateral wind load and the self-440

weight, which are both modelled by deterministic static forces acting on nodes

of each floor. The magnitude of the wind load increases with the height of the

building. The FEM of the structure involves approximately 8200 elements and

66, 300 DOFs. A total of 244 independent random variables are considered to

account for the uncertainty of the structural parameters. The material strength445

(capacity) is represented by a normal distribution, while log-normal distribu-

tions are assigned to the Young’s modulus, the density and the Poisson ratio.

In addition, the cross-sectional width and height of the columns are modelled

by independent uniform distributions. A summary of the distribution models is

reported in Table 5.450

Component failure for the columns of the 6th storey is considered as failure

criterion. The performance function is defined as

f(θ) = |σI(θ)− σIII(θ)| /2− σy, (9)

i.e. as the difference between the maximum Tresca stress, where σIII ≤ σII ≤ σI
are the principal stresses, and σy is the yield stress.

Standard reliability analysis. A reliability analysis is carried out with the precise455

distribution models from Table 5, and using LS and ALS for comparison of

efficiency. The initial important direction is selected based on the gradient in
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Figure 6: FE-model of the six-story building.

# U.V. Probability dist. Distribution Description Units

1 N(0.1, 0.001) Normal Column’s strength GPa

2− 193 Unif(0.36, 0.44) Uniform Sections size m

194− 212 LN(35.0, 12.25) Log-normal Young’s modulus GPa

213− 231 LN(2.5, 0.0625) Log-normal Material’s density kg/dm3

232− 244 LN(0.25, 0.000625) Log-normal Poisson’s ratio -

Table 5: Precise distribution models for the input structural parameters.

the origin of the SNS. The identified important direction is displayed in figure 7,

where the first coordinate (the material’s strength) appears to be the most

important one. The other coordinates refer to the size of the cross-sections, the460

Young’s modulus, the density, and the Poisson’s ratio, respectively (see Table

5). As illustrated in Figure (7), only a few uncertain variables (U.V.) dominate

the important direction; these are the Young’s modulus of columns of floor 6

(U.V. #199) and the density of the columns of floors 5 and 6 (U.V. #223 and

#224), along with the yield strength (U.V. #1). In this example, performing LS465

with 30 lines (180 samples) leads to the failure probability of p̂F = 1.30 · 10−4

and a coefficient of variation of CoV = 0.076. ALS leads to the probability

of failure p̂F = 1.42 · 10−4 with a coefficient of variation of CoV = 0.092, but
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Figure 7: Values of the 244 coordinates of the initial important direction in the

standard normal space.

with only 62 samples. Both methods estimate approximately the same value of

failure probability, but with quite a smaller number of model evaluations were470

required by ALS.

Imprecision in distribution parameters (MI). The model of uncertainty is ex-

tended to include the credal set

C
{
hD (θ;p) | p ∈ R488, p ∈ Q1

}
, where D are the probability distribution

models from Table 5, and475

p = (µ1, σ1, ...,m244, v244) are the distribution parameters of these models

specified by the bounded set Q1 =×488

i
p
i
. The interval parameters are repre-

sented as p = pc (1− ε), p = pc (1 + ε), using the interval center pc = (p+ p)/2

and the relative radius of imprecision ε. These intervals [p, p] are summarized

in the bounded set Q1. In the example, all interval parameters, are modeled480

with the same relative imprecision ε. In order to explore the effects of ε on the

results, we use a fuzzy set to consider a nested set of intervals p̃ =
{

[p, p]
}

for the parameters in one analysis. The amplitude (width) of the intervals is

controlled by ε to obtain fuzzy sets p̃ as shown in Figure 9. An upper limit

for the relative uncertainty is set as ε = 0.075. Specifically, the intervals for485

ε = {0, 0.005, 0.01, 0.025, 0.05, 0.075} are considered. The reliability analysis
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Figure 8: Values of the performance function along the lines in SNS for one

reliability analysis of the multi-storey building. In Figure (a), the lines are

plotted aginst the distance from the hyperplane c, while in Figure (b) the lines

are plotted against the L-2 norm ||ũ|| of the state points ũ = T (θ̃).

with the generalized model of uncertainty is performed using the important

direction determined in the original space.

From a rough search in the set Q1, it was found that the important direction

did not significantly change in the original space. This allowed us to identify the490

argument optima in the bounded set Q1 as combination of extreme moments as

described in Section 4.1.2. These upper and lower conjugate states are also asso-

ciated with the maximum and minimum of the failure probability, respectively.

The result of the robust reliability analysis is shown in Figure 9b and in Table

6. From Table 6 can be appreciated that the number of samples required by495

one robust reliability analysis, on average, is approximately 254, which is even

less than number of samples required by two standard reliability analyses using

Line Sampling (∼ 360 samples). This is an astounding results considering that

a standard approach, driven by two nested loops, would have required several

hundreds of thousands of samples. The failure probability is obtained as a fuzzy500

set, which includes the standard reliability analysis as special case with ε = 0.

Each interval for pF corresponds to the respective interval p = [p, p] in the
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Lower Bound Upper Bound

ε p
F

CoV pF CoV Ns

0.000 1.42 10−4 9.2 10−2 1.42 10−4 9.2 10−2 126

0.005 5.75 10−5 8.7 10−2 2.63 10−4 7.1 10−2 257

0.010 4.57 10−5 33.6 10−2 5.30 10−4 11.5 10−2 250

0.025 1.75 10−6 8.8 10−2 3.22 10−3 5.3 10−2 253

0.050 2.27 10−8 57.0 10−2 3.88 10−2 5.4 10−2 255

0.075 1.88 10−11 12.2 10−2 2.02 10−1 3.5 10−2 254

Table 6: Results of the robust reliability analysis of the multi-storey building

from model MI , obtained in terms of lower and upper bounds of the failure

probability.

input for the same membership level, and each membership level is associated

with a different value ε, see Figure 9b. In a design context, this result can be

used to identify a tolerated level of imprecision for the inputs given a constrain505

on the failure probability. For example, fixing an allowable failure probability

of 10−3, the maximum level of imprecision for the distribution parameters is

limited to 1%, see Figure 9.

Imprecision in both distribution parameters and structural parameters (MII).

In this example the section sizes x ∈ R192 are considered as interval variables,510

while the remaining structural parameters ζ ∈ R52 are considered as imprecise

random variables. The model of uncertainty comprises the set C
{
hD (ζ;p) | p ∈ R104, p ∈ Q1

}
,

and the set Q2 =×192

i
xi. The imprecise distribution parameters are modeled

using the radius of imprecision ε, as in model case MI , see Table 8. An upper

limit for the relative radius of imprecision is set to ε = 0.03. In the analy-515

sis, a rough search in the sets Q1 and Q2 allowed us again to identify a main

important direction for determining the argument optima associated with the

minimum and maximum value of failure probability. The result is shown in

Table 9 and Figure 10b. From Table 9 can be appreciated that the number of
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Figure 9: (a) Fuzzy paramters p̃ = {pc [1− εj , 1 + εj ]}6j=1 and (b) fuzzy failure

probability obtained with model MI as set of results for different levels of

imprecision.

samples required by one robust reliability analysis, on average, is approximately520

254. Again, it is necessary to point out that a standard approach, driven by two

nested loops, would have required several hundreds of thousands of samples to

compute the interval failure probability.

To explore the sensitivity against imprecision of the uncertain parameters,

the failure probability is obtained as a fuzzy set. The relative radii of imprecision525

ε = {0, 0.01, 0.015, 0.020, 0.025, 0.03} are considered to construct a fuzzy model

for all parameters, see Figure 10a. The intervals for the structural parameters

x in Q2, describing the size of the cross-sections, are independent of ε, see Table

8. Once more, the analysis may serve as a design tool to find the tolerable level

of imprecision provided a threshold of allowable probability.530

Here, the uncertainty due to imprecision is larger, because the whole range of

the intervals is taken into account for the cross-sections. As in the previous case,

a rough search in the sets Q1 and Q2 allowed us to identify a main important

direction for selecting the argument optima producing minimum and maximum

value of failure probability. Values of failure probability, obtained with ε =535

{0, 0.01, 0.015, 0.020, 0.025, 0.03}, are shown in Figure 10 (b).
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# U.V. Prob. dist. p = pc [1− ε, 1 + ε] Description Units

1 N(µ, σ) µc = 0.1 σc = 0.01 Columns’ strength GPa

2− 193 Unif(a, b) ac = 0.36 bc = 0.44 Sections’ size m

194− 212 LN(m, v) mc = 35 vc = 12.25 Young’s modulus GPa

213− 231 LN(m, v) mc = 2.5 vc = 0.0625 Material’s density kg/dm3

232− 244 LN(m, v) mc = 0.25 vc = 0.000625 Poisson’s ratio -

Table 7: Inputs definition from uncertainty model MI ; the relative radius of

imprecision for this model is set as ε = {0, 0.005, 0.0.01, 0.025, 0.05, 0.075}.

# U.V. Uncertainties type p = pc [1− ε, 1 + ε], x = [x, x]

1 distribution N(µ, σ2) µc = 0.1 σ2
c = 0.001

2− 193 interval x x = 0.36 x = 0.44

194− 212 distribution LN(m, v) mc = 35 vc = 12.25

213− 231 distribution LN(m, v) mc = 2.5 vc = 0.0625

232− 244 distribution LN(m, v) mc = 0.25 vc = 0.000625

Table 8: Inputs definition from uncertainty model MII ; the relative radius of

imprecision for this model is set as ε = {0, 0.01, 0.015, 0.020, 0.025, 0.03}.

7. Conclusions

In this paper an efficient computational strategy for computing set-valued

failure probabilities was presented. The approach couples advanced sampling-

based methods with optimization procedures. An Adaptive algorithm was devel-540

oped and implemented into the broader Advanced Line Sampling method. The

global search for lower and upper bounds of the failure probability was driven

using the information provided by an averaged important direction, obtained in

the original space of the state variables, to identify the conjugate states. It was

shown, by means of examples, how the advanced search strategy dramatically545
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Lower Bound Upper Bound

ε p
F

CoV pF CoV Ns

0.000 4.70 10−7 10.2 10−2 6.73 10−3 11.5 10−2 259

0.010 2.28 10−7 13.4 10−2 9.71 10−3 12.2 10−2 247

0.015 1.10 10−7 10.3 10−2 1.11 10−2 7.6 10−2 255

0.020 5.19 10−8 13.1 10−2 2.08 10−2 14.6 10−2 255

0.025 2.51 10−8 9.97 10−2 2.72 10−2 15.3 10−2 249

0.030 1.40 10−8 9.94 10−2 3.21 10−2 6.5 10−2 254

Table 9: Results of the robust reliability analysis of the multi-storey building

from model MII , obtained in terms of lower and upper bounds of the failure

probability.
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Figure 10: (a) Fuzzy distribution parameters p̃ = {pc [1− εj , 1 + εj ]}6j=1 and

(b) fuzzy failure probability from model MII obtained as set of results for

different levels of imprecision
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reduces the computational time of robust reliability analysis without compro-

mising the accuracy of results. The efficiency of the proposed method allows

its application on real scale engineering problems, while its accuracy guarantees

the computation of informative intervals of failure probability.
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