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Abstract 

HIV continues to be a global healthcare challenge, with estimates suggesting there 
are currently 35.5 million infected people globally. To date, there have been an 
estimated 36 million HIV/AIDS related deaths worldwide. The story is changing 
however, with the advent of Highly Active Antiretroviral Therapies (HAART), 
allowing patients to live to normal life expectancies and with increasingly better 
quality of life. This, coupled with the fact that there has been a 40-fold increase in 
the number of people with access to antiretroviral therapy, has led to a 29% 
reduction in AIDS related deaths since 2005. 
 Despite this encouraging data, there are still numerous limitations of antiviral 
therapy, including poor bioavailability, poor patient adherence, and emerging 
resistance.  It is hoped that nanomedicine may offer a route to alleviating some of 
these issues by achieving an equal therapeutic concentration of drug but with a lower 
dose. The aims of this thesis were to develop a novel nanoemulsion based 
formulation of EFV and LPV and to assess the suitability of this formulation as 
dosage form. 
 Nanoemulsions can be stabilised by surfactants, but often this can have 
unwanted safety profiles. Stabilisation can also be achieved using amphiphillic 
polymers that can be synthesised using biocompatible monomers like ethylene 
glycol. Chapter 2 demonstrates the synthesis of Ethylene Glycol based polymers 
using both conventional free radical and Atom Transfer Radical Polymerisation 
techniques. Nanoemulsions have previously been shown in the literature to increase 
the bioavailability of poorly water-soluble drugs, Chapter 3 shows the development 
and optimisation of an Oil-in-Water nanoemulsions. The data showed that 
nanoemulsions synthesised with volatile cosolvents were able to achieve sub 300 nm 
diameters and have good long-term stability.  

Increasing the accumulation and permeation of a poorly water-soluble 
compound should lead to improvements in bioavailability. Chapter 4 shows that the 
optimal nanoemulsion had comparable accumulation to aqueous solutions and 
superior apparent permeability cross Caco-2 cell monolayers. The antiviral activity 
was equipotent to the aqueous solution, as shown in Chapter 5. This confirms that 
nanoemulsion did not prevent the API from reaching its sight of action. Finally, all 
new formulations have the potential for detrimental side effects and immunological 
responses. It is therefore necessary to conduct pre clinical studies to predict such 
occurrences. Chapter 6 details the lack of immunological response seen in 
nanoemulsions, but highlights potential interactions with coagulation. 

 In conclusion, this study has found that polymer stabilised oil-in-
water nanoemulsions based on Castor oil have promising safety and 
pharmacological profiles. Further in vivo and studies are now warranted in order to 
further predict the suitability of nanoemulsions in man. 
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1.1 Scale of the HIV Epidemic 

The latest figures form UNAIDS shows that worldwide, there are currently around 

35 million (31.4- 35.9 million) people living with Human immunodeficiency Virus 

(HIV). In 2011 alone, there were 2.5 million (2.2-2.8 million) new HIV infections, 

and 1.7 million (1.5- 1.9 million) Acquired Immunodeficiency Syndrome (AIDS) 

related deaths. There has been progress made however, with 25 countries worldwide 

reporting a decrease in new HIV infections of at least 50%, although this progress is 

not uniform, and in some places there have been increases in the infection rates [1]. 

Latest data available on the level of access to antiretroviral therapies (ARVs) shows 

that in 2012 a total of 9.7 million HIV infected patients had access to ARVs, up by 

1.6 million on the previous year. This increase represented the biggest year on year 

increase ever recorded, and also showed that the number of HIV infected patients in 

African nations with access to ARVs has risen from 50,000 to 7.5 million over a ten 

year period [2]. 

 

These figures show the vast scale of the epidemic, and importance of research into 

developing new, and improving existing treatments against the virus all with the key 

goal of enabling greater access to ARV therapies. 
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1.2 The HIV Virus: Classification and Origins  

According to the International Committee on Taxonomy of Viruses, the HIV virus is 

a Lentivirus, of the Retroviridae family [3]. A schematic of the viral structure is 

shown in figure 1. There are two major types of HIV virus, HIV-1, which is related 

to gorillas and chimpanzees found in West Africa [4], and HIV-2, which is related to 

the Sooty Mangabey, also found is West Africa [5]. The HIV virus is the result of a 

zoonotic transfer of viruses that infected these primates [6]. Of the two types of HIV 

virus, HIV-1 is by far the most common, and is found in patients infected all across 

the globe. HIV-2 on the other hand, is largely restricted to West Africa, with 

particularly high prevalence in both Senegal and Guinea-Bisssu [7]. However, the 

overall prevalence rates of HIV-2 infection are decreasing, and there is an increase 

in HIV-1 infections in West Africa, which may be explained by the lower viral loads 

and transmission rates that are seen in HIV-2 infected individuals, and the fact that 

most people infected with HIV-2 virus, do not actually progress to AIDS [8-10]. 

Thus, the work reported here is focused upon the development of treatments 

effective against HIV-1. 
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Figure 1.1 Schematic of HIV, showing the essential membrane proteins and viral 
enzymes needed for replication. Taken from National Institute for Allergy and 
Infectious Disease 
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1.3 HIV Pathogenesis 

HIV is transmitted via contact with infected blood [11], unprotected sex with an 

infected patient (both heterosexual and homosexual) [12, 13], or by injecting using a 

needle that has been contaminated by previous use by a infected individual [14]. 

There is also the possibility of mother to child transfer during childbirth [15] or 

breast-feeding [16]. The virus initially infects dendritic cells that are found in the 

mucosal membranes of tissues that line areas of the body such the rectum, penis, 

vagina, mouth and the gastrointestinal tract. Infected dendritic cells then carry the 

virus into the lymphatic system, where is it able to infect CD4+ T cells [17].  

 

Infection of these cells causes a dramatic decrease in CD4+ cell count, which along 

with macrophage and dendritic cells are vital for the working of the human immune 

system [18]. Loss of these cells due to infection by HIV occurs in a number of ways. 

The cells can be directly killed by the infection, as the virus hijacks the host genome, 

using it to generate copies of viral particles and inducing cell cycle arrest [19]. This 

generation of new particles involves budding out of the host cell, a process that 

damages and removes parts of the host cell membrane [20, 21], damaging the host 

cell. The distortion of the cells normal metabolism and genetic machinery, caused by 

viral replication within the cell, causes apoptosis to occur [22, 23]. Uninfected CD4+ 

cells can also be killed by the host immune response [24] and this can happen for a 

number of reasons. When the virus is attached to the healthy cell membrane, it 

appears to the immune system as if infected. Antibodies bind to the virus, and these 



Chapter	  1	  

16	  

antibodies are then recognised by CD8+ cytotoxic T cells, which kill the cell. This 

process is known as antibody-dependant cellular cytotoxicity [25]. 

 

It is possible for healthy cells to consume HIV fragments [26-28], and these 

fragments can be expressed on the surface of the healthy host cell. CD8+ T cells can 

again recognise these fragments as if the cell is infected and set about destroying it 

[29]. There are also similarities between some of the proteins that are present in the 

viral envelope and expressed on CD4+ cells. These similarities can sometimes cause 

the immune system to identify the proteins and damage the cell, ultimately leading 

to the death of the cell [30, 31]. 

  

HIV can infect and reside in cells that are beyond the reach of drugs that enter the 

systemic circulation. These so-called sanctuary sites include the lymph nodes, brain, 

testes [32]. HIV can also reside within reservoirs, such as CD4+ cells [33], 

macrophages and monocytes [34]. The ability of the virus to penetrate and reside 

inside of these sanctuaries and reservoirs adds to the challenge of trying to treat it, 

because if the virus is not cleared from these sites, it will constantly reseed the 

circulation with new viral particles [35, 36]. Sanctuary sites differ to reservoirs in 

that current drug therapies are unable to penetrate inside, but in the case of reservoirs 

they can. Thus the strategy of current antiretroviral therapies is to hold back the 

virus by keeping the number of viral particles in the blood to a minimum. More 

effective treatments would be able to penetrate these sanctuary sites and clear the 

virus from within them. 
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1.3.1 HIV Life Cycle 

 

 

 

Figure 1.2. HIV life cycle (Picture taken from the National Institute for Allergens 
and Infectious Disease) 
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The HIV life cycle can be broken down into 8 distinct stages, Binding and Fusion, 

insertion of the HIV enzymes into the host cell, Reverse transcription, Integration, 

Transcription, Assembly, and finally budding / protein maturation. A schematic of 

this process is shown in figure 2. During the Binding and fusion stage, the HIV 

binds to CD4 receptors expressed on the surface of CD4+ T cells via two vitally 

important surface glycoproteins called gp41 and gp120 [37]. However, these 

receptors alone are not enough for successful binding to take place, as the virus 

needs to associate with a co-receptor also expressed on the surface of the CD4, 

namely CCR5 or CXCR4. Thus, different strains of HIV will be referred to as being 

CCR5 tropic, or CXCR4 tropic, depending upon which of the co-receptors they are 

able to utilise [38], and there are instances of dual tropic viruses, utilising both co-

receptors [39]. The tropism of the virus is of importance as it can influence where in 

the body and how the virus is able to replicate [40], and also the suitability of 

therapies that target specific tropisms eg: maraviroc [41]. There are also reports of 

HIV being able to convert which co-receptor it uses to facilitate entry into CD4+ 

cells [42], however the majority of new infections use CCR5, with CXCR4 usage 

emerging later in infection.  

 

Once bound to the surface of the host cell, the viral particle is able to fuse to the 

membrane and create a pore, into which it then injects its cargo of enzymes and 

single stranded RNA [43-45]. Inside the host cell, the viral reverse transcriptase 

enzyme sets about converting the single stranded viral RNA into double stranded 

viral DNA, in such a way that proof reading does not occur, leading to very high 
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mutation rates [46-48]. This is essential for the genetic material of the virus to be 

compatible with the host cell, and thus be able to integrate with the host genome. 

 

During the integration phase of the life cycle, viral DNA that has infiltrated the 

nucleus of the CD4 cell is inserted into the host genome using the viral integrase 

enzyme [49]. Once part of the host genome, the genetic material of the virus is able 

to “hijack” the host cell, and use the cells own enzymes to create more of the viral 

genetic material [50]. At this stage, the viral DNA that has become part of the host 

genome is known as a provirus. Activation of the provirus may not happen 

immediately, and infected cells may lay dormant for many years in infected patients 

leading to lifelong persistence of HIV [51]. 

 

When activation occurs, mediated by the HIV TAT protein [52-54], the virus hijacks 

the host cell RNA Polymerase [55] and uses it to transcribe the integrated DNA viral 

genome into viral mRNA. The viral mRNA is then used to create long viral proteins, 

which are later cleaved during the assembly stage by viral protease enzymes. This 

cleavage step is vital for the viral material to come together with the viral RNA 

copies and form mature viral particles, capable of further infection [56].  

 

The final step is for the viral particles to leave the host cell and enter the systemic 

circulation, this is known as budding [57]. The new viral material associates with the 

membrane of the host cell, and then leaves by “budding” out of the cell, taking with 

it part of the host cell membrane, which is used as a container for the newly 
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synthesised viral material [57]. The host membrane now also contains the 

glycoproteins that are essential for the virus to bind to new CD4 receptors and co-

receptors [57]. 

 

1.3.2 Disease Progression 

There are defined clinical stages of the HIV infection, starting with the initial acute 

primary infective stage. This is the stage immediately after infection with the virus, 

where CD4+ cells are rapidly infected. At this stage, the patient will have a very 

high viral load [58, 59], leading to the virus seeding itself in many organs throughout 

the body. At this stage the virus can also latently infect CD4+ cells, where the virus 

will reside only to be activated and replicate at a later time [60]. This is the stage in 

which the previously mentioned anatomical sanctuary sites are infected with the 

virus [33, 61]. It is also the stage of infection in which the virus is able to undergo 

the initial stages of the HIV life cycle, integrating itself into the host genome, 

preferentially within areas that contain active genes [50], and may lay dormant for a 

long period of time [51].  

 

During the next stage of infection, which can occur anywhere between two and four 

weeks post initial infection, the host immune system is able to respond to the 

infection by utilising antibodies against the virus [62, 63], which are made in B cells. 

These antibodies associate with the viral particles, making them targets for cytotoxic 

CD8+ T cells [64-66]. During this period, the levels of virus in the circulation 

massively decrease and in some cases levels of CD4+ T cells can return to levels 
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seen before infection. Due to the immune system returning to this normal state, an 

infected patient would now enter the phase known as HIV latency [67-69], in which 

no symptoms occur that are related to HIV infection. The most common signs of 

infection at this stage are symptoms that closely match those of flu, such as fever, 

aches and fatigue [70]. This stage can last for several years. However, during this 

stage, the virus continues to replicate in the immune tissues of the lymph nodes, 

where it initially infiltrated [71]. 

 

After the latent phase, the virus activates and begins to continually seed the blood 

with viral particles infecting more and more CD4+ T cells [72]. This overwhelms the 

immune system, and it is no longer able to supress the virus. Infected CD4+ cells are 

destroyed [73], and this compromises the immune system [73], with patients having 

very low CD4 counts. Such low levels of CD4 cells mean that the immune system is 

no longer able to protect against other pathogens, and the patient becomes 

susceptible to opportunistic infections, such as Tuberculosis [74], Influenza [75], 

and pneumonia [76]. A patient is classed as having progressed to AIDS when they 

have one or more of these opportunistic infections (AIDS-defining events), and the 

levels of CD4+ cells in the blood has dropped to levels of less than 200 per cubic 

millilitre [77]. 
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1.4 Antiviral Therapies 

The advent of antiretroviral (ARV) therapies, and in particular Highly Active 

Antiretroviral Therapy (HAART) has led to patients being able to live to much 

greater life expectancies [78], provided they adhere strictly to the treatment regimen 

[79]. The quality of life is still not that of a non-infected individual, with multiple 

doses of pills to be taken each and every day, with undesirable side effects that can 

impact on patient adherence to HAART regimens [80]. At the time of writing there 

were 29 different antiretroviral drugs approved by the Federal Drug Administration 

(FDA), falling into five distinctive types: Nucleoside Reverse Transcriptase 

Inhibitors (NRTIs), Non-Nucleoside Reverse Transcriptase Inhibitors (NNRTIs), 

Protease Inhibitors (PIs), entry inhibitors (both fusion and co-receptor antagonists), 

and Integrase Inhibitors (Table 1). 

 

There are also multiple class combinations of these drugs that are approved by the 

FDA, these combinations are used in HAART formulations. Fixed dose 

combinations (FDCs) are also available that consist of two or more types of 

antiretroviral drugs formulated into the same tablet. This has the effect of reducing 

pill burden placed upon the patient, but affords less flexibility for personalising 

therapy to the needs of the patient. 
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Table 1.1 List of approved drugs for the treatment of HIV infeaction. (Adapted from 
Federal Drug Adminstraton, 
http://www.fda.gov/ForConsumers/byAudience/ForPatientAdvocates/HIVandAIDS
Activities/ucm118915.htm) 
 

Class	   Drug	  

Nucleoside	  
Reverse	  

Transcriptase	  
Inhibitors	  

Lamivudine	  
Zidovudine	  
Emtricitabine	  
Abacavir	  
Zalcitabine	  

Dideoxycytidine	  
Azidothymidine	  

Tenofovir	  
Didanosine	  
Stavudine	  

	   	  
Non	  Nucleoside	  

Reverse	  
Transcriptase	  
Inhibitors	  

Rilpivarine	  
Etravirine	  
Delavirdine	  
Efavirenz	  
Nevirapine	  

	   	  

Protease	  
Inhibitors	  

Amprenavir	  
Tipranavir	  
Saqunavir	  
Indinavir	  
Lopinavir	  
Ritonavir	  

Fosamprenavir	  
Darunavir	  
Atazanavir	  
Nelfinavir	  

	   	  
Fusion	  Inhibitors	   Enfuvirtide	  

	   	  
Co-‐receptor	  
Antagonist	   Maraviroc	  

	   	  
Integrase	  
Inhibitors	  

Raltegravir	  
Dolutegravir	  
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 1.4.1 NRTIs 

NRTI drugs work by inhibiting the activity of the viral reverse transcriptase enzyme, 

which is responsible for obtaining copies of the viral single-stranded RNA into 

double-stranded viral DNA, which is then compatible with the host genome. The 

inhibition is caused by the NRTIs binding directly to the active site of viral reverse 

transcriptase in a competitive inhibition, thus rendering it inactive [81]. Figure 1.3 

shows the chemical structure of tenofovir, a front line NRTI drug. 

 

 

 

Figure 1.3 The chemical structure of the NRTI drug tenofovir. 
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1.4.2 NNRTIs 

NNRTIs work in the same way as NRTIs in that they inhibit the viral reverse 

transcription enzyme responsible for transcribing viral ribonucleic acid (RNA) into 

Deoxyribonucleic acid (DNA). Unlike NRTIs though, these drugs act upon a 

specific site away from the active site of the enzyme, known as the NNRTI pocket 

[82]. When the drug binds to this site, the enzyme is no longer able to effectively 

reverse transcribe the viral RNA due to this non-competitive antagonistic action, and 

so replication is prevented [83]. Examples of NNRTIs include efavirenz, nevirapine 

and rilpivirine, with rilpivirine being the first HIV drug to be reformulated as a 

nanoformulation for a long acting parental depot [84]. The chemical structure of 

efavirenz, one of the two antiretroviral drugs used in the experimental sections of 

this thesis, is shown in figure 1.4. 

 

 

Figure 1.4 The chemical structure of NNRTI drug efavirenz. 
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1.4.3 Integrase Inhibitors 

Integrase inhibitors are the most recent class of drug to be approved by the FDA, and 

prevent the virus from inserting its viral genome into the DNA of the infected host 

cell [85]. This inhibition is achieved by targeting the viral integrase enzyme, and is 

effective at preventing the spread of HIV infection to other cells. The first drug of 

this class to be approved for therapy was raltegravir, developed by Merck and 

released in 2007 [86]. The second drug in this class, dolutegravir, was approved very 

recently in August 2013, and has been shown to be effective even in patients who 

have acquired resistance to raltegravir [87]. A further drug in this class is currently 

in late stage development and will be a parental long acting nanoformulation, 

designated GSK744, the drug has shown protection against SIV/HIV in recent 

primate testing [88]. The chemical structure of raltegravir, a current front line 

integrase inhibitor is shown in figure 1.5 

 

 

Figure 1.5 The chemical structure of the integrase inhibitor raltegravir 

 

 

 

 



Chapter	  1	  

27	  

1.4.4 Entry Inhibitors 

Entry inhibitors such as maraviroc [89] and enfuvirtide [90], have extracellular 

targets, whereas all other classes of drugs have intracellular targets. As their name 

suggests, Fusion and Entry inhibitors work by preventing the viral particles from 

entering healthy cells, and they do this in two distinct ways. Maraviroc, an entry 

inhibitor, works by binding specifically to the cell surface receptor CCR5 [89]. As 

previously mentioned this receptor is needed by the virus in order to gain entry into 

the cell. The viral gp120 associates with the CCR5 receptor, allowing the virus to 

then fuse with the membrane of the healthy cell and enter. Maraviroc occupies this 

co-receptor, and thus prevents gp120 from associating with it [89]. However, HIV 

can utilise other receptors on the cell surface, such as CXCR4, and so maraviroc is 

only effective against HIV that is CCR5 tropic [91] and thus it is important to 

determine co-receptor usage prior to initiating therapy. The chemical structure of 

maraviroc is shown in figure 1.6. 

 

 

Figure 1.6 The chemical structure of entry inhibitor maraviroc. 
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Enfuvirtide, also known as T-20 or Fuzeon, prevents the viral particle from fusing 

with the cell membrane after it has associated with a cell surface receptor. It does 

this by binding directly to gp41 on the virus [90]. Gp41 undergoes a conformational 

change during fusion to the cell membrane [92], with enfuvirtide bound to the gp41, 

this conformational change cannot happen, and so the viral particle is unable to 

properly fuse with the membrane and create a pore into which it can pass its contents 

into the healthy cell [93]. Currently there are new generation fusion inhibitors being 

developed for HIV therapy, but as yet none are approved for use, with major 

limitations being in their need for daily injections to administer the dose [94]. The 

chemical structure of enfuvirtide is shown in figure 1.7. 

 

 

 

Figure 1.7 The chemical structure of enfuvirtide, a poly peptide consisting of 37 

peptide units. 

 

1.4.5 Protease Inhibitors 

Protease inhibitors (PIs) work by directly inhibiting the viral enzyme that is 

responsible for the proteolytic cleavage of new viral proteins, this enzyme is 

essential for the replication of the virus, as it breaks up protein molecules into 

smaller fragments to be used during replication [95]. Examples of PIs include 

lopinavir and darunavir, and they are given in combination with another PI called 

ritonavir. Ritonavir is not administered for its antiviral activity, but instead acts as a 
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pharmacoenhancer, inhibiting CYP450 3A4 and 2D6, which are the major enzymes 

involved with the metabolism of PIs [96]. The chemical structure of lopinavir, the 

second antiretrioviral drug to be used in the experimental sections of this thesis is 

shown in figure 1.8. 

 

 

Figure 1.8 The chemical structure of the protease inhibitor lopinavir 

 

1.4.6 Limitations of Antiviral Therapies 

The main limitation of antiviral therapy is the risk of resistance and treatment failure 

due to poor patient adherence to treatment regimens [79]. ARV therapies need to be 

administered multiple times during the day, and at the same time each day, in order 

to maintain the optimal concentration of drug in the patients’ systemic circulation. 

This can be particularly difficult due to the common toxicities of the drugs and the 

effect these toxicities have on the patient’s quality of life [97, 98].  
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Many of the drugs suffer from a lack of bioavailability, brought on by the poorly 

water-soluble nature of the drugs [99]. A lack of bioavailability means that large 

doses of the drugs are needed in order to achieve a therapeutic concentration in the 

systemic circulation. This then leads to an exacerbation of the main problem with 

ARV drugs: side effects, both minor and severe, and many in a dose dependant 

nature, which then leads to potential reduction in adherence [100]. Common side 

effects of ARV drugs include, headache, nausea, diarrhoea, fatigue, dizziness, 

disturbed sleep, and abdominal pain [101]. More serious side effects of ARV drugs 

can include hyperlipidaemia, anaemia, and liver injury [98]. 

 

There are also non-dose dependent side effects that are associated with antiviral 

therapies such as hypersensitivity reactions, typically associated with abacavir or 

nevirapine and specific genetic variations in patients [102-105]. Stevens-Johnsons 

syndrome is a serious hypersensitivity reaction that effects the skin and mucous 

membranes of the body [106]. It is similar to toxic epidermal necrolysis (TEN) 

[107]. 

 

There are more specific side effects associated with the particular class of ARVs that 

feature in this thesis, namely the PIs and NNRTIs. For the NNRTI, there is a risk of 

insomnia, abnormal dreams, teratogenicity and the risk of false positive test results 

for cannabinoid and benzodiazepine screening, although the later is not due to a 

toxicity effect from the drug. It is recommend that Efavirenz is taken on an empty 

stomach, before going to bed [108]. 



Chapter	  1	  

31	  

For lopinavir, there is a risk of fatal pancreatitis, myocardial infarction, as well as 

PR and QT elongation. The PR interval is a measure between the end of a P wave 

and the beginning of the R wave in an electrocardiogram. Similarly, the QT interval 

is a measure of the start of the Q wave to the end of the T wave [109]. It is 

recommend that taking with food will help with tolerating the drug, but there are no 

specific food restrictions [108]. As the drug is metabolised by cytochrome P450 

3A4, there are also a number of significant drug-drug interactions that can occur, 

specifically with patients who are being treated for other diseases which are 

associated with HIV infection, such as tuberculosis [110]. Thus, giving larger doses 

of the drugs, leads to the increased likelihood and increased severity of any side 

effects, but to limit the amount of drug in an attempt to limit the side effects, would 

lead to a sub optimal plasma concentrations. There is also the issue of lopinavir 

being coadministered with ritonavir for its pharmacoenhancing properties, this leads 

to the inhibition of drug transporters and CYP450 enzymes, which are the cause of 

many drug-drug interactions [111, 112]. 

 

1.4.7 Antiviral Resistance 

Having a suboptimal concentration of the antiviral drug in the circulation is a 

particularly dangerous scenario, as it increases the likelihood of resistance to that 

drug. HIV does not have any proof-reading mechanisms during its replication [113], 

and so mutations are constantly occurring in the viral genome. Occasionally, these 

mutations will lead to the virus gaining resistance to one of the ARV drugs [114, 

115]. This situation is exacerbated when there is a suboptimal concentration of drug 
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present in the patient, as it will not effectively prevent the replication of viral 

particles. Viruses that have gained a resistance mutation will have a greater chance 

of surviving, and then infecting new cells, releasing more viral particles with the 

newly acquired resistance [116-120]. Cross-resistance is a particular problem for the 

NNRTI class of drugs, as many share the same binding pocket on the reverse 

transcriptase enzyme, and so resistance to one drug can result in class wide 

resistance [121-124]. 

 

As mentioned earlier, HIV has the ability to penetrate into anatomical sanctuary sites 

within the body. Current formulations of antiretroviral drugs are unable to 

effectively penetrate into these sites [36]. Complete eradication of the virus from an 

infected individual is not possible without clearing the virus from all cells in the 

body. 

 

The cost of the drugs, particularly the most effective frontline therapies can be an 

issue too, more so in resource-limited settings, where the burden of the disease is 

higher. This problem is further exacerbated by the fact that many resource-limited 

nations have high levels of HIV infected individuals.  
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1.5 Nanotechnology and Nanomedicine 

It is hoped that many of the limitations discussed above can be addressed by using 

nanotechnology and nanomedicine approaches, in order to reformulate existing 

drugs in such a way as to enhance their chemical and biological properties, without 

altering the chemical structures, and thus retaining the antiretroviral activities while 

reducing off-target toxicities or improving bioavailability. 

 

Nanotechnology is the use of materials and systems that are in the nanoscale size 

range. For the purpose of this thesis, a material is defined as being in the nanoscale 

size range, when its diameter in less than 1 micron (although this definition has been 

heavily debated in recent years and no single definition has been fully accepted). 

Nanomedicine refers to the application of different nanotechnologies for the benefit 

of health. It is a very broad and active field, which includes the use of nanomaterials 

for synthetic tissues, nano-biologic sensors, cellular imaging, and drug development 

and delivery [125-128].   

 

Exploiting nanotechnology for the advancement of drug delivery is a major field, 

and a simple PubMed search for “Nanotechnology and Drug Delivery” conducted in 

August 2014 delivered 5468 articles. Major aims for nano drug delivery are the 

reformulation of existing drugs into nanosuspensions [129] or the carrying of drugs 

either within or upon a nanocarrier. Nanosuspensions have been successfully applied 

to poorly soluble drugs to enhance dissolution rates and improve their 

bioavailability. It is estimated (Figure 3) that 90% of new drug candidates in the 
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pharmaceutical pipeline suffer from poor water solubility [130]. This physical 

property is preventing many promising candidates from progressing further, and is 

putting a strain on the pharmaceutical industry in the search for new frontline drugs. 

 

1.5.1 Benefits to Research and Development in Pharmaceutical Companies 

There are potential cost benefits for some nanotechnologies that target improved 

bioavailability, as giving a lower physical dose of the drug may reduce the material 

cost for the therapeutic agent within that particular formulation. This does however 

need to be balanced with whatever additional cost would be incurred by 

reformulating the drug in a particular way [131]. There is always a need to keep 

costs low, not only in terms of profit margins for pharmaceutical companies, but in 

being able to cheaply supply effective, first line drugs to low income countries, in 

which the drugs are often needed most [132].  

 

Another benefit to those involved in Research and Development, is that 

reformulating existing drugs into nanoformulations allows comparisons to be 

immediately made with the FDA approved formulations. The therapeutic compound 

will already be approved for use, however when reformulated it will be classed as a 

new entity, and as such would need to be approved by the FDA [133]. This often 

still greatly reduces the amount of initial research that is required; nanocarriers are 

often developed to only enhance the delivery of the therapeutic to its intended target, 

and not physically alter the drug. If the efficacy of the drug remains at least the same 

as the standard formulation, new nanocarrier systems still need to be tested for 
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safety, which is not an easy task due to the inherent difference between 

nanomaterials and their bulk material counterparts [134]. At present there are a large 

number of nanomedicine-based approaches being developed in the pharmaceutical 

industry [135]. 

 

Currently there are over 24 FDA approved nanoformulations of drugs, for the 

treatment of diseases including but not limited to AIDS related Kaposi’s scarcoma, 

Hepatitis B and C, Fungal infections and Rheumatoid Arthritis. Some of these FDA 

approved formulations are shown in Table 2. 
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Table 1.2 List of selected FDA approved nanoformulations currently available for 
prescribing to patients. Adapted from [136] 
 

Trade Name Active 

Ingredient 

Indication Manufacturer Date of 

Approval 

Abelcet Liposomal 

amphotericin B 

Invasive fungal 

infections 

Sigma Tau 1995 

Abraxane Albumin protein-

bound paclitaxel 

Metastatic breast 

cancer 

Celgene 2005 

Adagen Pegylated 

adenosine 

deaminase enzyme 

Severe combined 

immunodeficiency 

disease 

Sigma Tau 1990 

Cimzia Pegylated Fab′ 

fragment of a 

humanized anti–

TNF-alpha 

antibody 

Crohn’s disease, 

rheumatoid 

arthritis 

UCB 2008 

Doxil Pegylated-

stabilized 

liposomal 

doxorubicin 

AIDS-related 

Kaposi’s sarcoma, 

refractory ovarian 

cancer, multiple 

myeloma 

Janssen 1995 

Emend Aprepitant 

nanocrystal 

particles 

Chemotherapy-

related nausea and 

vomiting 

Merck 2003 

Mircera Methoxy PEG-

epoetin beta 

Symptomatic 

anemia associated 

with CKD 

Hoffman La Roche 2007 

Neulasta Pegfilgrastim Chemotherapy-

associated 

neutropenia 

Amgen 2002 

Pegasys Peginterferon 

alpha-2a 

Hepatitis B and C Genentech 2002 



Chapter	  1	  

37	  

 

Nanomedicine is not always aimed at increasing the bioavailability of a drug. For 

example, a nanocarrier system may improve a drug by modulating its interaction 

with the immune system [137-139] or an inorganic nanoparticle (e.g. iron oxide) 

could be using for medical imaging [140-142]. The following section will highlight 

the current areas of research in the nanomedicine field, before focusing on 

nanoemulsions as a nanocarrier drug delivery system (figure 1.9). 

 

 

 

 

Figure 1.9. Breakdown of the current areas of research that collectively make up the 
field of nanomedicine.  
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1.6 Current Nanotechnology and Nanomedicine Development 

1.6.1 Environmental Nanoparticles 

For nanotechnology there are still many unanswered questions [143, 144]. In 

particular, as with all novel materials, there is limited data available regarding the 

long-term effect on health and the environment caused by nanomaterials, and as 

there is such a wide range of nanoparticle types, it is important to study the relative 

effects of each. Most work to date has been carried out with engineered 

nanoparticles that enter the environment, such as metals and particles within exhaust 

fumes [145, 146]. Many nanomaterials are present in the environment as a result of 

manmade actions, an example of which is particulates from diesel fuel [147, 148]. 

However, there is a difference between persistent nanomaterials such as silver 

nanoparticles and diesel particulates, and that of biocompatible and biodegradable-

engineered nanomaterials, such as those reported in this thesis. 

 

1.6.2 Regenerative Medicine 

Regenerative nanomedicine is an area of medical research focused on the use of 

nanoparticles and nanomaterials for the regeneration or reprogramming of cells or 

organs in the body [149, 150]. The use of nanoparticles is currently being explored 

for the treatment of Macular Degeneration by Chen et al, in which nanoparticles of 

cerium oxide have been developed as reactive oxygen species scavengers [151]. 

Reactive oxygen species continually bombard photoreceptor cells, causing a 

damaging toxic effect and subsequent degeneration of these cells. The data by Chen 

et al, suggests that cerium oxide nanoparticles can reduce levels of reactive oxygen 
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species in rodent retina models and could potentially have benefits in other reactive 

oxygen species induced disease states such as diabetes [151]. 

 

Gene therapy is another highly active area of research in the regenerative 

nanomedicine field, with nanoparticles offering the potential of safe and low cost 

vectors for gene delivery, away from the traditional viral vectors which have 

associated dangers [152]. There have been many studies performed which show that 

nanoparticles and in particular DNA conjugated to nanoparticles can be used to 

deliver genes to desired targets [153-156]. 

 

Nanoparticles have also been used in conjunction with stem cell therapies to 

facilitate regenerative medicine treatments [157], particularly in the use of 

nanomaterials as scaffolding for the transplantation and growth of stem cells for the 

regeneration of tissues such as articular cartilage for osteoarthritis [158]. More 

recently data by Zhou et al, has suggested that conductive single walled carbon 

nanotubes could be used together with hydrogels to scaffold cardiomyocytes, which 

were then successfully transplanted into a rodent infarct model [159].  
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1.6.3 Diagnostics 

Diagnostic nanotechnology refers to areas such as Magnetic Resonance Imaging 

(MRI) contrast agents, cellular imaging using gold nanoparticles and iron oxide 

nanoparticles for novel magnetic applications. As they are not therapeutic uses of 

nanotechnology, they won’t be addressed in this work, but have been reviewed 

elsewhere [160-166]. 

 

1.6.4 Solid Drug Nanoparticles 

Solid drug nanoparticles (SDNs) consist of drug and stabilisers, usually polymers 

and surfactants, in which the polymer and surfactant is adsorbed directly onto the 

surface of the nanoparticles of drug in order to increase their dispersability in water. 

Formulating drugs in this way does have limitations on the amount of drug that can 

be contained within the total SDN formulation, as compared with the amount of 

surfactant and polymer, usually in the region of less than 25wt% drug. However, 

recent advances in SDN technology at the University of Liverpool have shown that 

it is possible to load SDNs with 70wt% of drug when an emulsion-template freeze 

drying (or spray drying) design is used. These SDNs also have demonstrated 

improved transport across gut monolayers, and in rodent models using antiretroviral 

drugs, were shown to have a four-fold improvement in terms of pharmacokinetic 

exposure [167]. 
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1.6.5 Nanocarriers 

Putting a drug inside a nanocarrier allows the drug to be hidden from the aqueous 

environment. The nanocarrier therefore contains an active ingredient, which can be 

either hydrophobic [168, 169] or hydrophilic dependent upon the nature of the drug 

being formulated. For example, recent work by Maity et al has demonstrated a 

graphene-based nanocarrier that is suitable for both hydrophobic and hydrophilic 

active pharmaceutical agents [170]. Figure 1.10 shows a schematic of a nanocarrier 

system, specifically a nanoemulsion, in which the active ingredient is dissolved 

within the carrier system. 

 

 

Figure 1.10 Schematic of oil-in-water nanoemulsion nanocarrier system, consisting 

of an oil phase (grey) stabilised by amphiphilic polymers (red and blue lines). The 

active pharmaceutical ingredient (green triangles) is dissolved within the oil phase. 

	  
	  

Oil 
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The active is hidden from the aqueous environment by the addition of amphiphilic 

stabilisers that contain (in the case of hydrophobic core structures) hydrophobic 

sections to anchor to the core, and hydrophilic sections to allow suspension in the 

aqueous phase. These stabilisers can consist of polymers [171], surfactants [172], 

amino acids [173] or “Pickering Stabilisers” [174]. With the drug dissolved in the 

hydrophobic section, it is possible to load high concentrations of therapeutic agent 

into the nanocarrier, allowing for smaller doses to be given, but yet achieving the 

same therapeutic concentration [175].  

 

These benefits of nanocarrier systems have multiple implications, particularly in the 

area of dose-dependent side effects. Lowering the amount of drug without 

compromising the concentration in the systemic circulation should in theory reduce 

the likelihood and severity of any side effect. This can be further enhanced if the 

nanocarrier has been designed to target specific cells or tissues [176]. This can be 

done by placing a targeting moiety onto the surface of the carrier, such as an 

antibody or ligand for a cell surface receptor on the target cell [177, 178]. Targeting 

to just the affected cells would mean that again, in theory, side effects would be 

reduced due to the healthy cells and tissues not being exposed to the therapeutic or 

the nanocarrier system.  

 

Preventing the therapeutic from being readily cleared from the systemic circulation 

is another way in which nanocarriers can improve existing drug formulations [179]. 

Shielding the encapsulated drug from first pass metabolism and clearance by 
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immune cells, will have the benefit of allowing the drug to reside in the patient for a 

longer period of time, potentially increasing the time between doses, and lowering 

the dose that needs to be administered [180]. As already alluded to, this is highly 

desirable for drugs that have associated dose dependent side effects or need to be 

taken on a regular basis, as it increases the likelihood of patient adherence by 

reducing both side effects and pill burden [80]. 

 

1.6.6 Inorganic Nanoparticles 

Inorganic nanoparticles have been studied extensively for drug delivery applications, 

due in particular to their wide availability, ability to be functionalised for 

applications such as cell targeting, and good biocompatibility with cellular systems 

[181]. Inorganic nanoparticles comprise nanoparticles synthesised from gold [182], 

silver [183], ceramics [184], silica [185], nanorods [186], quantum dots [187] and 

metal oxides [188].  

 

Gold nanoparticles have shown promise for the application of gene transfection, due 

to their amenability to being functionalised with thiolated ligands, allowing for the 

subsequent attachment of DNA molecules [189]. Work by Jan et al has shown that 

by modifying gold nanoparticles with thiolated oligonucleotides, it is not only 

possible to improve the stability of the gold nanoparticles in physiologically-relevant 

fluids, but also to allow use as non-viral DNA delivery vectors [190]. 
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Silica nanoparticles have been used for the passive targeting of cancerous tumours, 

as evidenced in work by Barbe et al [185]. In this study, it was shown that by 

keeping the particle size between 50 nm and 250 nm, doxorubicin loaded silica 

nanoparticles were able to release the drug at a steady rate over 20 days, and avoid 

clearance from the systemic circulation.  

 

1.6.7 Polymer Conjugates and Polymeric Nanoparticles 

Polymer conjugated drug therapies have been the most successful of the 

nanomedical approaches to date, with a number of FDA approved formulations in 

existence, including those mentioned in Table 2 [191-193]. Polymer conjugates 

consist of the active drug associated with or chemically bound to polymer molecules 

(such as PEG) that enhance the bioavailability of the drug by shielding it from the 

aqueous environment. 

 

Dendrimers are polymer nanoparticles that consist of repeating highly branched 

polymer chains and functional groups, symmetrically arranged around a central core. 

For the benefit of delivery of poorly water-soluble drugs, this core can be a 

hydrophobic region, in which the drug can be contained, with the polymer chains 

that spread out from this core being hydrophilic [194]. Dendrimers have been the 

subject of much pharmaceutical research since the discovery of a convergent 

approach to their synthesis in 1990 [195]. 
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Non-dendrimer polymer nanoparticles have been shown to be appropriate for a wide 

variety of nanomedical applications, including, vaccine development [196], 

immunotherapy [197], delivery of siRNA for gene therapies [198], aerosol 

formulations [199] and drug delivery of poorly water soluble drugs [200] and 

biologics [201]. 

 

1.6.8 Lipid Based Nanoparticles 

There are a number of lipid-based nanoparticles currently being used for 

development of nanomedical formulations, including liquid based materials such as 

liposomes and micelles, as well as solid based systems such as solid lipid 

nanoparticles. Nanoemulsions have been developed for the work featured in this 

study, and they are classed as a liquid lipid based nanoparticle. 

 

Liposomes are artificially prepared lipid bilayers, assembled such that there is an 

internal aqueous core, which is surround by the hydrophobic lipid membrane. This 

arrangement is particularly useful in a drug delivery setting, as both hydrophilic 

(within the core) and hydrophobic (within the lipid bilayer) compounds can be 

carried by the liposome. Liposomes can also be functionalised with Polyethylene 

Glycol (PEG); this prevents the liposomes from being detected by the immune 

system and increase the circulation time [202, 203].  

 

Micelles, unlike liposomes, do not form lipid bilayers and instead arrange 

themselves so that the hydrophilic portion of the surfactant is in contact with the 
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external aqueous solvent, and the hydrophobic portions pack themselves into the 

centre, thus creating a hydrophobic core. This type of micelle is known as a “Normal 

Phase” micelle, whereas an “Inverse Phase” micelle refers to one in which the 

hydrophilic portions are grouped at the core and the hydrophobic portions are 

arranged around the outside. A reverse phase micelle would occur when a non-polar 

solvent is present as the continuous phase [204, 205]. 

 

1.6.9 Solid Lipid Nanoparticles 

Unlike traditional lipid nanocarriers, such as the previously mentioned liposomes, 

micelles, and emulsions (section 1.6.4), solid lipid nanoparticles (SLNs) do not have 

a liquid lipid core, and instead have a solid lipid core [206]. SLNs first began 

development in the 1990s [207] and have since been used to process a broad range 

of drugs into SLN formulations, including, but not limited to, paclitaxel [208-211], 

clozapine [212] and estradiol [213]. 

 

To aid in the production of SLNs, synthesis is usually carried out using elevated 

temperature homogenisation, typically at temperatures exceeding that of the melting 

point of the lipid being used, with a subsequent cooling phase to return to solid form, 

or by using a solvent diffusion approach [214-219]. SLNs can also be formed by the 

freeze or spray drying of liquid nanosuspensions, in order to produce a solid form. 

 

Solid lipid nanoparticles have been said to be particularly useful for the controlled 

and sustained release of actives from the particles, as is evidenced by a number of 
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studies that claim a slow release profile [212, 220-223]. However, these results have 

been argued as being artificial, due to poor set up of experiments, and the fact that 

lipid dispersions are harder to assess than the associated solid dosage forms, mainly 

due to them not disappearing in the experimental media (via dissolution). Their 

presence can then interrupt analytical readouts [224]. 

 

1.7 Nanoemulsions 

Of most interest to this thesis are oil-in-water nanoemulsions; droplets of oil 

stabilised in an aqueous environment by surfactants and/or polymers. As with most 

of the other previously mentioned systems, the benefit of nanoemulsions for drug 

delivery is obtained by the presence of a hydrophobic oil core [225, 226]. The poorly 

water-soluble drug can be dissolved into this oil core, and suspended in the aqueous 

environment by means of the hydrophilic sections of surfactant or polymer.  

 

Nanoemulsions typically have droplet sizes that range between 100 and 500 nm 

[227], and should not be confused with “Microemulsions”, which despite the prefix 

of “Micro” suggesting sizes in the micron range, actually have droplet sizes of below 

100 nm [228]. Previously in the literature, nanoemulsions have also been referred to 

as “miniemulsions” [229, 230] and “submicron” emulsions [231], thus there is a lack 

of common nomenclature of emulsions based on particle size, which is likely due to 

the original definition of a microemulsion being thermodynamically stable, whereas 

nanoemulsions are referred to as “approaching thermodynamic stability” [232]. 
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Nanoemulsions can occur spontaneously when emulsifiers and surfactant mixes are 

added to water, due to the arrangement of the amphiphilic molecules so that the 

hydrophobic sections associate with the oil phase and the hydrophilic sections 

associate with the water, as this is energetically favourable [232, 233]. However, 

there are cases in which an input of energy is required to overcome kinetic barriers 

to self-emulsification [234, 235]. This latter type of oil-in-water nanoemulsion will 

form the basis of work in this thesis. 

 

Energy can be added to a system in a number of ways, including mixing [236], 

sonication [237] and high pressure homogenisation [238]. Co-solvents can also be 

used, as reported in this body of work, to obtain smaller sized emulsion droplets. 

The co-solvent approach works by addition of a volatile solvent, which is miscible 

with the chosen oil phase. After the initial emulsion is made, this solvent can be 

evaporated, causing the oil droplets to shrink whilst surrounded by stabilisers and 

decreasing the droplet diameters [239]. Smaller diameter particles are of benefit in a 

drug delivery setting as they should be able to enter into cells and cross the tight 

membranes of the gut endothelium, a driving factor in oral bioavailability. 

 

Oral delivery of therapeutics is the preferred route for the treatment of chronic 

diseases as it is simple and removes the need for patients to visit healthcare 

professionals for infusions or from having to self inject. Oral delivery of poorly 

water-soluble drugs is not ideal however, and the need for large doses is a serious 

drawback [240]. This is where nanoemulsions are ideally suited, as they can greatly 
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improve the solubilisation of such drugs, and increase bioavailability via means of 

increased permeation across gut endothelium [241-243]. Although there is a lack of 

clinically available FDA approved nanoemulsion formulations of therapeutics, there 

is a vast amount of literature in which studies have shown dramatic increases in 

bioavailability of nanoemulsion formulations, when compared to the standard parent 

drug (Table 3). This leads to the prediction that nanoemulsion formulations will 

appear on the market in the years to come.  
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Table 1.3 Example literature studies showing nanoformulations of poorly water-

soluble drugs, with increased bioavailability, in animal models. Adapted from [244]. 

Drug Formulation Particle Size 

(nm) 

Animal Model Increase in 

Bioavailability 

(%) 

Ezetimibe nanoemulsion 46.53 ± 8.24 Wistar Rats 477.09 

Ibuprofen SEDDS O/W 

microemulsion 

40 SD Rats  

800 ± 100 

Ketoprofen SEDDS O/W 

microemulsion 

19 SD Rats 150 ± 23 

Tolbutamide SEDDS O/W 

microemulsion 

60 SD Rats 280 ± 15 

Disopyramide SEDDS O/W 

microemulsion 

47 SD Rats 150 ± 27 

Ramipril Nanoemulsion 80.9 Wistar Rats 229.62 

N-4472 Microemulsion 17.7 ± 4.8 SD Rats 243.11 (Fasted), 

393.73 (Non 

fasted) 

Biphenyl 

dimethyl 

dicarboxylate 

Nanoemulsion 329.98 ± 24.31 SD Rats 502.76 
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1.8 Aims of this Thesis 

The aim of this thesis was to develop a novel nanoemulsion formulation of poorly 

water-soluble antiretroviral drugs lopinavir and efavirenz [245]. Further to 

development and final optimisation of chemically stable and biocompatible 

formulations, the pharmacological properties of the nanoemulsion formulation were 

tested, in comparison to standard aqueous formulations, in order to assess the 

potential benefit of nanoemulsion for oral delivery of therapeutic drugs. 

 

• Chapter 2 explores the development of linear and branched polymers 

consisting of repeat units of oligoethylene glycol methacylate. These 

polymers were synthesised as emulsifiers for subsequent oil-in-water 

nanoemulsions. Characterisation of these polymers was performed using 

NMR spectroscopy, Gel Permeation Chromatography and cell based toxicity 

assays to determine the biocompatibility of the polymers. 

 

• In Chapter 3 the polymers developed in Chapter 2 are used to stabilise oil-in-

water emulsions consisting of castor oil, in which the active pharmaceutical 

agent (API) was dissolved. These emulsions were characterised for size, 

surface charge and size distribution using Dynamic Light Scattering and Zeta 

potential measurements. Long-term stability studies were also performed on 

the emulsion formulations to assess possible shelf lives, and biocompatibility 

was assessed using the same cellular toxicity assays performed on the 

polymer stabilisers in Chapter 2. 
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• In Chapter 4 the emulsions were assessed for any potential enhanced 

pharmacological benefit, in terms of permeation through model gut systems 

(Caco-2 monolayers) and accumulation into a range of relevant cell lines. 

Quantification of any enhanced effect was determined by the amount of API 

present in the assay, when comparing emulsion formulation with standard 

aqueous formulation, using HPLC methods. 

 

• Chapter 5 the emulsions were assessed for their antiviral activity against a 

laboratory adapted strain of HIV (HIV-1IIIB). In these assays, CD4+ cell 

lines were exposed to HIV-1IIIB in the presence or absence of various 

concentrations of aqueous or emulsion formulated antiretroviral.  

 

• Chapter 6 was the final experimental chapter, in which any potential immune 

interactions were probed. The purpose of these assays was to consider 

immunological safety, in terms of immune suppression or activation, and any 

detrimental effects of coagulation times. In all assays the emulsion 

formulation was compared to current aqueous formulations to assess the 

relative safety. 

 

• Chapter 7 comprised a final discussion, bringing together the findings of the 

previous 5 experimental Chapters.
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Synthesis and Characterisation of Oligo Ethylene 
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Polymers (PolyOEGMA) Via Conventional Free 
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2.1 Introduction  

There are a number of lipid based nanomedicine platforms in development that are 

particularly suited for the delivery of poorly water soluble and low bioavailability 

drugs [246-254]. 

 

Of these platforms, nanoemulsions provide a system in which a drug can be 

encapsulated as a payload within the emulsion droplet itself, allowing for the 

dissolution of that drug to be altered. Emulsions are traditionally stabilised with 

surfactants [255-259] or solid “Pickering Stabilisers” [260-263], but these can have 

unwanted cytotoxicity profiles and potential irritant properties [264-266]. 

 

Alternatively nanoemulsions can be stabilised with biocompatible polymers, which 

helps to overcome the problem of persistence of the stabiliser within the body and, 

dependent upon the structure and chemical properties, can be tuned to prevent 

cytotoxicity [267, 268]. Polymers containing repeat units of ethylene glycol have 

been used in many medical settings previously [269-273], and as such have shown 

the molecule to be safe and effective in a medical setting. Ethylene glycol is also 

relatively hydrophilic and as such would allow the oil droplets they are stabilising to 

be freely dispersed in an aqueous environment. There are a number of examples in 

the literature that demonstrate the synthesis of oil-in-water emulsions stabilised by 

polymers consisting at least in part of ethylene glycol monomeric units [274-279]. 
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There are a number of methods in which polymers can be synthesised, including 

controlled radical polymerisation techniques such as reversible addition-

fragmentation chain transfer polymerisation (RAFT) [280], nitroxide mediated free 

radical polymerisation [281] and atom transfer radical polymerisation (ATRP) [282]. 

Other strategies include utilising “Click” chemistry [283] and photoinitiated 

polymerisation [284].  

 

Conventional free radical polymerisation is a method of polymer synthesis which 

imparts little control on the reaction and generates polymers with broad molecular 

weight distributions and potentially with large variability in structure when 

undertaking co-polymerisation. Although the simple nature of the method makes it 

suitable for producing large batches of polymer quickly, the variation in the sample 

characteristics could potentially lead to issues in reproducibility, especially during 

scale-up of the polymerisation. This may impact negatively in a drug delivery 

setting, where it is vital to maintain continuity from batch to batch in order to be 

certain of the quality and effectiveness of a given formulation. A reaction scheme for 

the synthesis of linear and branched polymers of oligo ethylene glycol monomethyl 

ether methacrylate (PolyOEGMA) via conventional free radical polymerisation is 

shown in Scheme 2.1. 
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Scheme 2.1 Reaction scheme showing conventional free radical polymerisation 

initiated by azobisisobutyronitrile (AIBN) and using ethanol as the solvent at 70°C, 

of branched (using EGDMA) (top) and linear (bottom) PolyOEGMA. Docecane 

thiol was used as the chain transfer agent. 

 

In contrast, the ATRP process is a more finely controlled method in which the length 

of polymer chains can be tightly defined by the use of specific initiators and the 

control of radical concentrations using organometallic catalyst-mediated redox 

equilibrium. Atom transfer radical polymerisation has been used to synthesise a 

range of polymers with control of chain length and relatively low dispersity [285-

289]. As previously mentioned, having this control enables batches of polymer to be 

comparable, ensuring that samples are consistent. A reaction scheme for the 

synthesis of linear and branched polyOEGMA via ATRP is shown in Scheme 2.2. 
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Scheme 2.2 Reaction scheme showing copper catalysed ATRP polymerisation of 

branched (using EGDMA) (top) and linear (bottom) PolyOEGMA DP80. 2-

dodecylbromoisobutyrate was used as the initiator, and 92.5/7.5 IPA/water mix as 

the solvent at 20°C. 

 

Linear and branched polymers were made by both of the methods described above in 

order to compare the suitability of each as a stabiliser. Copolymers of OEGMA and 

methacrylic acid were also synthesised via the conventional free radical route as 

extensive work by Weaver et al has demonstrated the use of conventional free 

radical polymerisation for the facile synthesis of pH responsive co-polymers [290, 

291] and the subsequent formation of pH responsive nanoparticles [292, 293] and 

nanoemulsions [294, 295]. Incorporation of methacrylic acid into the polymer allows 

for aggregation to be triggered by exposure to acid, with the droplets redispersing 
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after returning to a neutral or alkaline pH. This could potentially be used as a 

strategy to protect pharmaceutical agents from the harsh conditions of the stomach 

by encapsulation in an aggregated mass of emulsion. 

 

There would also be the issue of determining the cytotoxicity of polymers from each 

technique. The more uncontrolled nature of the free radical polymerisation would 

make it more likely to create different sized polymer chains. These chains would 

contribute at different magnitudes to any observed cytotoxicity and the use of 

methacrylic acid as a co-polymer could add to the cytotoxic potential, as well as 

MAA being difficult to incorporate by ATRP methods. As such, pH responsiveness 

would have to be weighed against potential added cytotoxicity. 

 

The cytotoxicity of the polymers produced in this Chapter was assayed using a Cell 

TiterGlo® Viability Assay on both Caco-2 and HepG2 cells. These two cell lines 

were chosen as Caco-2 cells are a model intestinal cell line, and as such provide a 

good system to look at interactions of orally dosed formulations encountering the 

intestinal epithelium. HepG2 cells were chosen due to them being a liver cell line, 

and as such a model for observing the effects a formulation may have if it 

successfully enters the systemic circulation and enters the liver for metabolism. 

 

The aims of this Chapter were to synthesise biocompatible polymers for subsequent 

use as emulsifiers, by both conventional free radical polymerisation and ATRP 

methods. This approach was taken to assess the merits of the simplicity of reaction 
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using conventional free radical and the controlled nature of ATRP. Cytotoxicity 

assessments were carried out to determine the biocompatibility of polymers 

produced and to inform changes to polymer content where necessary. Thus it was 

hypothesised that polymer stabilisers synthesised via radical polymerisation 

techniques, and consisting of repeat PEG units would be suitable for stabilising an 

oil-in-water drug delivery system; both in terms of the physical stability of the 

system, and the cytotoxic profile. 
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2.2 Materials and Methods 

2.2.1 Materials 

Oligo ethylene glycol monomethyl ether methacrylate (OEGMA), poly(ethylene 

glycol monomethyl ether methacrylate) (PEGMA), methacrylic acid (MAA), 

azobisisobutyronitrile (AIBN), 2-dodecylbromoisobutyrate, tetrahydrofuran (THF), 

ethylene glycol dimethacrylate (EGDMA), dodecanethiol (DDT), copper chloride, 

2,2’-bipyridine (BPY), anisole, methanol, isopropyl alcohol, Dowex Marathon MSC 

acid form beads, aluminium oxide, deuterated methanol (MeOD), acetone, squalene, 

dodecane, castor oil, peanut oil, soy bean oil, coconut oil, sesame oil, Dulbecco’s 

modified Eagles medium (DMEM), Roswell Park Memorial Institute 1600 medium 

(RPMI 1600), Hank’s balanced saline solution (HBSS), Trypsin-EDTA, (3-(4,5-

dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT), glacial acetic acid 

and dimethylformamide (DMF) were all purchased from Sigma-Aldrich (Dorset, 

UK). Oxygen-free Nitrogen gas was supplied by BOC Industrial gases (Guildford, 

UK) and NMR tubes were supplied by Bruker UK (Coventry, UK).  

 

Nuclear Magnetic Resonance spectroscopy analysis was performed using a Bruker 

Avance III HD 450 MHz NMR spectrometer (Bruker UK, Coventry, UK) or a 

Bruker Avance 400 MHz spectrometer (Bruker UK, Coventry, UK). Gel 

permeation/size exclusion chromatography equipment was supplied by Malvern 

Instruments, (Malvern, UK) fitted with triple detection system of refractive index, 

differential viscometry, right angle light scattering (90° detection angle) and low 
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angle light scattering (7° detection angle). THF was used as the eluent at a flow rate 

of 1 mL/minute. Rotary evaporator was bought from Büchi UK (Oldham, UK) 

 

Fetal bovine serum was supplied by Life Technologies (Paisley, UK), cell culture 

flasks, cell culture plates, 10 and 25 mL pipettes, pipette tips and isopropyl alcohol 

were all purchased from Fisher Scientific (Loughborough, UK). Cell TiterGlo® 

ATP assay was supplied by Promega (Southampton, UK). Caco-2 human epithelial 

colorectal adenocarcinoma cells and HepG2 hepatocellular carcinoma cells were 

both purchased from the American Tissue Culture Collection (ATCC) (Manassas, 

US). 24 well HTS® Transwell plates were supplied by Corning Life Sciences 

(Amsterdam, The Netherlands). 

 

2.2.2 Conventional Free Radical Polymerisation 

In a typical experiment OEGMA, MW=300 g/mol (targeted DPn = 80) (10g, 3.3 x 

10-2 moles) and EGDMA brancher (0.65 g, 3.3 x10-3 moles) were weighed into a 

round bottom flask. For copolymers, methacrylic acid was also added (0.166 moles). 

The flask was equipped with magnetic stirrer bar, sealed and degassed by bubbling 

with N2 for 20 minutes and maintained under N2 at ambient temperature. Ethanol 

(115 mL) was degassed separately and subsequently added to the monomer mixture. 

Azobisisobutyronitrile initiator (0.113g) was added under a positive nitrogen flow in 

order to initiate the reaction and the temperature was set to 70°C. Reactions were 

stopped after 3 days when conversions had reached over 98% determined by 1H 

NMR using the vinyl CH2 peaks and protons of the polymer backbone. 
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After reactions had completed, excess solvent was removed by rotary evaporation 

followed by subsequent drying in a vacuum oven for 24 hours.  Ice-cold diethyl 

ether was added to the dried polymers and left in sealed vials in a spark free freezer 

overnight to ensure precipitation of the polymers and extraction of any residual un-

reacted monomer (Please note that use of a non spark-free freezer, or unsealed 

diethyl ether in a freezer is an explosive hazard).  The polymers were kept at -20°C 

whilst in diethyl ether to prevent them from dissolving. After 24 hours, diethyl ether 

was decanted and the polymers dried once more in the vacuum oven to ensure all 

residual solvent had been removed. 

 

2.2.3 Atom Transfer Radical Polymerisation and Kinetic Studies 

In a typical experiment, dodecylbromoisobutyrate initiator (0.118 g, 3.52 x10-4 

moles), OEGMA, MW=300 g/mol (targeted DPn = 80) (9.44 g, 3.15 x 10-2 moles) 

and EGDMA brancher (62.5 µL, 3.3 x10-4 moles) were weighed into a round bottom 

flask. The flask was equipped with magnetic stirrer bar, sealed and degassed by 

bubbling with N2 for 20 minutes and maintained under N2 at ambient temperature. 

IPA:H20; 92.5:7.5 (12 mL) was degassed separately and subsequently added to the 

monomer/initiator mixture. The catalytic system; Cu(I)Cl (0.034 g 3.52 x10-4 moles) 

and BPY (0.137 g, 8.8 x10-4 moles), were added under a positive nitrogen flow in 

order to initiate the reaction. The polymerisations were stopped after 8 hours, when 

conversions had reached over 98 % determined by 1H NMR using the vinyl CH2 

peaks and protons of the polymer backbone. The polymerisation was stopped by 
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diluting with a large excess of THF, which caused a colour change from dark brown 

to a bright green colour.  

 

For each sample taken during a kinetics study, nitrogen was again pumped into the 

reaction flask, and the sampling needle was purged of oxygen. This prevented 

addition of oxygen to the polymerisation reaction, which would have quenched the 

radical species and thus terminated the reaction before it reached completion. The 

samples taken for kinetics analysis were transferred immediately from the reaction 

vessel into a glass vial containing MeOD (for NMR spectroscopic analysis) or THF 

(for GPC analysis) and stirred vigorously. This ensured that the sample was 

quenched of any radical species and the polymerisation no longer continued, 

allowing for an accurate determination of percentage conversion and molecular 

weights to be obtained. 

 

2.2.4 NMR Spectroscopy 

Polymer samples were dissolved in deuterated methanol overnight and placed into 5 

mm Bruker NMR tubes, compatible with both NMR machines available within the 

Department of Chemistry. 1H NMR spectroscopy was used as the analysis method, 

with multiple samples being run in batches using an auto-sampling carousel. 
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2.2.5 Gel Permeation Chromatography 

Samples of polymer were dissolved in THF overnight, at a final concentration of 2 

mg/mL. Samples were then filtered using 200 nm nylon filters to remove any 

impurities or contaminants from the sample. Analysis was conducted using a 

Viscotek GPC machine fitted with Refractive Index (RI), Ultraviolet (UV), Right 

Angle Light Scattering (RALS) and viscosity detectors.  

 

2.2.6 Rotary Evaporation 

Residual solvent was removed from polymer batches using rotary evaporation, with 

vacuum set to 200 mBar and temperature of the water bath at 55°C. Cold tap water 

was pumped around the condensing vessel and solvent collected in a Wolffe bottle 

attached to the bottom of the condenser. 

 

2.2.7 Polymer Precipitation 

Polymer purification was carried out by firstly dissolving the polymer in the 

minimum volume of THF and adding dropwise to a conical flask containing ice-cold 

petroleum ether 60-80 in which it precipitated out of solution. To maintain the low 

temperatures, the conical flask was placed in a crystallisation dish and surrounded 

by dry ice. After addition of all polymer solution the petroleum ether was decanted 

and polymer sample dried using rotary evaporation, to remove residual organic 

solvent. 
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2.2.8 Adherent Cell Culture 

All mammalian cell culture was carried out under strict aseptic conditions. Caco-2 

and HepG2 cells were cultured by seeding a starter culture vial of approximately 5 

million cells in a Nunc T25 flask, containing 10 mL of pre-warmed DMEM 

supplemented with 15% FBS. The FBS was sterile filtered before addition to media 

using 0.2 µm syringe filters. Cells were placed at 37°C in an incubator containing 

5% CO2 overnight. At this point cell media was changed to remove residual DMSO 

that came from the starting culture vial. Cells were then grown until they were 

around 80-90% confluent, as determined by inversion microscopy, at which point 

they were continually passaged for further growth into larger flasks (T-75 or T-175).  

 

Cell passage was carried out at around 80% confluence. Cells were washed twice 

with hanks balanced salt solution in order to remove any serum, which would inhibit 

trypsin activity. 5 mL of trypsin-EDTA was added, and incubated at 37°C for around 

5-10 minutes. Cells that were stuck onto the surface of the flask after this time were 

removed by gently striking the flask. Serum containing media was added to 

inactivate remaining trypsin, and this cell suspension removed and centrifuged to 

pellet the cells. Supernatant was aspirated in order to remove trypsin. The cell pellet 

was re-suspended in an appropriate volume of fresh pre-warmed DMEM 

supplemented with 10% FBS, and the cells counted in order to determine dilutions 

for experimental procedures and correct volumes to reseed flasks. 
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Cells were counted using an Invitrogen Countess® automated cell counter 

(Invitrogen-Life Technologies, Paisley, UK), as per the manufacturers protocol. In 

short, 10 µL of trypan blue was added to 10µL of cell suspension and pipetted into 

the counting slide. The slide was inserted into the Countess reader, and the total 

numbers of cells, including live and dead cells were derived by automated 

microscopy based upon trypan blue not entering live cells. 

 

2.2.9 Suspension Cell Culture 

Suspension cells were raised from frozen stocks in the same way as previously 

described in 2.2.8. However RPMI 1600 medium supplemented with 10% sterile 

filtered FBS was used in place of DMEM. Also during the changing of the media 

after overnight incubation, the cells were pelleted at 2000 RPM for 5 minutes at 4°C, 

and re-suspended in fresh culture media. 

 

Cell suspension was transferred from culture flasks into 50 mL falcon tubes, and 

cells pelleted for 5 minutes at 2000 RPM. Cell culture media was aspirated and fresh 

complete culture media used to re-suspend the cell pellet. The cell suspension was 

then transferred to fresh culture flasks at a 1 in 4 ratio, such that cells would 

continue to divide and grow. Cells were passaged in this way every 3 days or sooner 

if cell culture media had turned from red to orange in colour, due to the phenol red 

indicator present in the media. Cells were counted in the same way as described in 

2.2.8. 
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2.2.10 Cell TiterGlo® Viability Assay 

Approximately 10,000 cells per 100 µL were seeded per well in a 96 well tissue 

culture plate, and left to adhere for 24 hours. After this time, 100 µL of polymer 

sample was added to each well for a dilution 1:1 series with a maximal of 5% (w/v) 

and left for 5 days incubation. 

 

Upon completion of the incubation, 180 µL was removed from each well, and 20 µL 

of ATP reagent was added, leaving each well with a volume of 40 µL. The ATP 

reagent lysed the cells, and reacted with the ATP of the cells to produce a 

luminescent signal. After a 10-minute incubation to stabilise the signal, the plates 

were read using a TECAN GENios plate reader, set to luminescence mode, with 2 

seconds of shaking prior to reading. 

 

The CellTiterGlo® assay worked on the principle that metabolic activity of the cells 

can be used as a proxy for determining cellular viability. The amount of ATP present 

was directly proportional to the amount of cells, and thus the level of luminescence 

was directly proportional to the amount of cells. Comparing the luminescent values 

of sample conditions to the control untreated condition allowed for a direct measure 

of cellular viability. 
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2.2.11 Data Analysis 

NMR spectra were analysed using Spinworks software, GPC data were analysed 

using OmniSec 4.7 software, DLS data were analysed using Zetasizer software, 

Mastersizer data were analysed using Mastersizer 2000 software, and all of the 

above were plotted using Microsoft Excel for Macintosh computers 2011. 

 

Data for cytotoxicity was analysed using Graphpad Prism 6 software, using a Non-

Linear Regression Sigmoidal dose response curve analysis, after data had been log 

transformed. For this, concentrations causing half maximal inhibition (IC50 values) 

were derived. All data were presented as mean ± standard deviation of experiments 

conducted in quadruplicate.  
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2.3 Results 

2.3.1 Conventional Free Radical Polymerisation  

Initially a conventional free radical polymerisation method was used to generate 

both homopolymers of oligo ethylene glycol monomethyl ether methacrylate MW = 

300 g/mol (OEGMA), poly ethylene glycol monomethylether methacrylate MW = 

950 g/mol (PEGMA) and co-polymers of these with methacrylic acid (MAA), all of 

which were branched using ethylene glycol dimethacrylate (EGDMA). Reactions 

were left for 72 hours to reach completion and resulted in a range of different 

molecular weight polymers, based upon the starting composition (Table 2.1). The 

highest molecular weight achieved was that of polymer 79, which contained both 

MAA and PEGMA, whereas the lowest molecular weight polymer was 82, which 

contained MAA and OEGMA.  

 

Table 2.1 Final compositions of branched copolymers that were synthesised using 
conventional free radical polymerisation method. Both the weight average molecular 
weight (Mw) and the number average molecular weight (Mn) are shown. 
 
Polymer 
Reference 
Number 

Composition Mw Mn Mw/Mn 

79 MAA96/PEG22MA4-EGDMA10-DDT10 347,500 16,616 20.9 
80 MAA92/PEG22MA8-EGDMA10-DDT10 327,528 31,827 10.3 
81 OEG4.5MA100-EGDMA10-DDT10 16,991 6,683 2.5 
82 MAA82/OEG4.5MA18-EGDMA10-DDT10 15,312 6,369 2.4 
83 MAA69/OEG4.5MA31-EGDMA10-DDT10 15,961 6,893 2.3 
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2.3.2 ATRP Polymerisations to Form Branched Polymers 

The controlled radical polymerisation ATRP was used to synthesise an analog of 

polymer 81 to a number average degree of polymerisation of 80 (DP80), i.e. there 

were 80 repeat units of OEGMA within each primary chain of the branched 

polymer, from now on referred to as PolyOEGMA DP80. 2-Dodecyl 

bromoisobutyrate was used as the reaction initiator, and also acted as the 

hydrophobic anchor, mirroring the chain ends derived from dodecanethiol that were 

present in the conventional free radical polymers. The reaction reached >97%  

(Figure 2.3) completion after 8 hours at ambient temperature, as determined by 1H 

NMR spectroscopy (Figures 2.1 and 2.2). The Mw of the branched PolyOEGMA 

DP80 polymer was 3.59 MDa, Mn was 1.65 MDa and Mw/Mn was 2.170, whereas the 

linear PolyOEGMA D0P80 had Mw, Mn and Mw/Mn of 124,526 Da, 79,511 Da and 

1.6 respectively (Table 2.2, as determined by gel permeation chromatography 

(Figure 2.4 and 2.5).  

 

Table 2.2 Summary of final the molecular weights of PolyOEGMA DP80 synthesised 

by ATRP method. Determined by gel permeation chromatography using THF eluent 

and RI detector, with a sample concentration of 2 mg/mL. 

ATRP Polymers Mw Mn Mw/Mn 

Linear PolyOEGMA DP80  124,526 79,511 1.6 

Branched PolyOEGMA DP80 3,590,000 1,650,000 2.2 
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Figure 2.1 1H NMR spectrum of PolyOEGMA DP80 B at time zero. Determined using a 
Bruker Avance 400 MHz  NMR Spectrometer and MeOD as the solvent. A 15-minute scan 
was performed. 
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Figure 2.2 1H NMR spectrum of PolyOEGMA DP80 B at 8 hours. Determined using a 
Bruker Avance 400 MHz NMR Spectrometer and MeOD as the solvent. A 15-minute scan 
was performed. 
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Figure 2.3. Kinetic time course of linear and branched PolyOEGMA DP80 

polymerised by ATRP at ambient temperature under nitrogen atmosphere. The % 

conversion was derived from 1H NMR spectroscopy by integrating the proton signal 

of the monomer double bond and deriving the ratio of that to the polymer signal. 
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Figure 2.4 GPC Refractive Index (top) and Right Angle Light Scattering (bottom) 

chromatograms of kinetic time points of linear PolyOEGMA DP80 synthesised by 

ATRP. THF was used as eluent and samples ran for 45 minutes at a flow rate of 1 

mL/min. Sample concentration was 2mg/mL. 
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Figure 2.5 GPC Refractive Index (top) and Right Angle Light Scattering (bottom) 

chromatograms of kinetic time points of branched PolyOEGMA DP80 synthesised by 

ATRP.  THF was used as eluent and samples ran for 45 minutes at a flow rate of 1 

mL/min. Sample concentration was 2 mg/mL. 
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2.3.3 Free Radical Polymer Cytotoxicity Using CellTiterGlo® ATP Assay 

Cytotoxicity of polymers 79-83 (Table 2.1) was assessed using CellTiterGlo® ATP 

assay in both Caco-2 cell (Figure 2.6) and HepG2 cells (Figure 2.7). IC50 values 

were derived from non-linear regression analysis and are shown in Table 2.3. The 

polymers were incubated with the cells for 5 days, with the most toxic polymer 

being 79 in HepG2 cells and 81 in Caco-2 cells, having IC50 values of 0.17 % w/v 

and 0.20 % w/v respectively. 

 
Table 2.3 IC50 values of polymers 79-83 after incubation with HepG2 and Caco-2 
cell lines for 5 days, at 37°C and 5% CO2. IC50 values were determined by 
CellTiterGlo® ATP assay 
 

Polymer HepG2 (IC50 %w/v) Caco-2 (IC50 %w/v) 

79 (MAA96/PEG22MA4-
EGDMA10-DDT10) 

0.17 0.39 

80 (MAA92/PEG22MA8-
EGDMA10-DDT10) 

0.52 1.15 

81 (OEG4.5MA100-
EGDMA10-DDT10) 

0.40 0.20 

82 (MAA82/OEG4.5MA18-
EGDMA10-DDT10) 

0.17 0.28 

83 (MAA69/OEG4.5MA31-
EGDMA10-DDT10) 

0.32 0.63 
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Figure 2.6 Effect of polymers 79-83 (A-E), synthesized by conventional free radical 

polymerisation, on the metabolic activity of Caco-2 cells determined by ATP assay. 

As a proxy for cytotoxicity. 
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Figure 2.7 Effect of polymers 79-83 (A-E), synthesized by conventional free radical 

polymerisation, on the metabolic activity of HepG2 cells determined by 

CellTiterGlo® ATP assay. As a proxy for cytotoxicity 
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2.3.4 ATRP Polymer Cytotoxicity  

The cellular cytotoxicity of the optimal branched polymer PolyOEGMA DP80, 

synthesised using ATRP method, was assessed using CellTiterGlo® ATP assay. The 

results showed that the cytotoxicity shown towards both Caco-2 and HepG2 cells 

was less than that seen with non ATRP synthesised polymers 79-83, having an IC50 

value of 0.98 % w/v in HepG2 cells and 2.9 % w/v in Caco-2 cells (Figure 2.8) 
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Figure 2.8 Effect of ATRP synthesised Branched PolyOEGMA DP80 on the 

metabolic activity of Caco-2 cells (A) and HepG2 cells (B) as determined by 

CellTiterGlo® ATP assay. A proxy for cellular cytotoxicity. 
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2.4 Discussion 

Initially, conventional free radical polymerisation was used for its facile and one-

step approach to synthesising polymer stabilisers. The resultant polymers did, 

however, vary significantly in their molecular weights, as was to be expected from 

this type of synthesis. As it was an uncontrolled method, it is not possible to 

precisely target a desired degree of polymerisation and the dispersity of the polymer 

samples is high. In a drug delivery setting this is not desirable, as any downstream 

effects on cellular assays, such as cytotoxicity or membrane integrity, could be 

variable due to variability in size, charge and amount of polymer present on the 

nanocarrier. Work by Liu et al had shown that these factors influence the 

cytotoxicity of a nanocarrier system [296], and work conducted by Knetsch et al 

demonstrated a change in polymer cytotoxicity dependent upon amounts of different 

types of monomer unit present [297]. Therefore having a controlled method that was 

as reproducible as possible was extremely important. It was for this reason that the 

uncontrolled free radical approach was abandoned in favour of an ATRP synthesis 

[298], compounded by cytotoxicity data that was suggestive of non-biocompatible 

characteristics.  

 

Examining the cytotoxicity of the different conventional free radical polymers used 

for the stabilisation of emulsions, there was a difference observed between those 

polymers that were co-polymers of ethylene glycol and methacrylic acid (79, 80, 82 

and 83) and those consisting of just poly ethylene glycol repeat units (free radical 

polymer 81 and ATRP PolyOEGMA DP80). This can be put down to the fact that the 
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methacrylic acid monomer is irritant, toxic and has been shown to be a teratogen 

[299-301] and even in small quantities, residual unreacted monomer in these 

polymer mixes would have an effect on cells. Poly(ethylene glycol) on the other 

hand has a good safety profile and has appeared in many recent publications in the 

nanomedicine field [302-308].  

 

ATRP allows the primary polymer chain lengths to be tightly controlled, such that a 

targeted number average degree of polymerisation (DPn) can be used to keep the 

individual component chain lengths to a desired size. In the case of the final chosen 

polymer (PolyOEGMA), this was DP80, as in 80 repeat units of the monomer per 

polymer chain [282, 298]. The ATRP method also produced polymers in a much 

shorter time (8 hours compared to 72 hours), which is beneficial when considering 

possible scale up issues. For these reasons, PolyOEGMA was chosen as the polymer 

to stabilise the emulsion droplets. Poly ethylene glycol had also been previously 

reported in a number of drug formulations [302, 308-319] and appeared in FDA 

approved formulations [320].  

 

In summary, this work resulted in the selection of branched PolyOEGMA DP80 as a 

suitable stabiliser for oil-in-water emulsions. The next Chapter will present data that 

showed that this polymer was also suitable in terms of its effectiveness at stabilising 

oil-in-water nanoemulsions with desirable physical characteristics, as well as long-

term stability. 
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3.1 Introduction 

There are a number of reports in the literature that show a size dependant effect on 

the cytotoxicity of nanomaterials and nanoformulations [321-326] and, as such, 

being able to tune the size of a nanoformulation may be highly beneficial. Different 

sized nanoformulations may also be more or less likely to have specific biological 

interactions, such as with the immune system [327, 328], uptake into cells [329-331] 

and permeation across biological barriers [332, 333] 

 

Different methods of synthesis can be employed in order to obtain different sized 

nanoemulsions, including the use of low energy techniques such as homogenisation 

and microfluidics [334] or stirring [335], or the use of high energy techniques such 

as sonication [336] and high pressure homogenisation [337]. The use of low energy 

techniques has the benefit of being more cost effective, as the equipment needed is 

less expensive.  

 

A potential drawback of low energy techniques is that the size of the droplets may 

not be in the desired size range, as the energy put into the system to break up the oil 

phase into smaller droplets is not as great. To overcome this, it could be possible to 

use a volatile solvent in combination with the non-volatile oil phase, and 

subsequently evaporate the volatile solvent component from the emulsion droplets 

[338]. This would have the effect of reducing the droplet sizes without the need for 

high power systems. 
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It is important therefore to select appropriate non-volatile oil and volatile solvent 

phases that are compatible with each other and also possess a high capacity for drug 

loading. Castor oil has been used in many cosmetic products and has a full 

toxicological profile supporting its safety for use in man [339]. It was also shown to 

be a good solvent for the target antiretroviral drugs efavirenz and lopinavir, with 

maximum concentrations of 50 mg/mL and 25 mg/mL being achieved, respectively. 

Castor oil can also be dissolved into ethyl acetate, which is both volatile and has an 

LD50 in rats of 11.3 g/kg, indicated its low toxicity[340].  

 

As in Chapter 2, Caco-2 and HepG2 cells have been used to assess cytotoxicity of 

the prepared nanoemulsions, as they are good models for intestinal and liver 

environments, respectively. In addition to these cells, two immune cell lines have 

been used to assess cytotoxicity, namely CEM and Raji B cells. These were chosen 

due to being well established immune cell lines and providing a good starting point 

for considering the biocompatibility of the candidate nanoemulsions before 

progressing to ex vivo primary human cells (Chapter 6). This is particularly 

important in the context of HIV, since the target cells reside within the immune 

system. 

 

Again, as in Chapter 2, CellTiterGlo® assay was used to assess cytotoxicity of 

nanoemulsions, but here it was also complemented with the 3-(4,5-dimethylthiazol-

2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. Both assays measure cellular 

viability as function of cell metabolism, but the MTT assay is more widely used and 
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accepted as a method for assessing cellular viability. Therefore, both assays were 

employed to facilitate literature comparisons. 

 

Thus, the following Chapter explores the formation and optimisation of an oil-in-

water nanoformulation, stabilised with ethylene glycol based amphiphilic polymers. 

The polymers and their synthesis were previously described in Chapter 2 and were 

used to make both pH responsive and non-pH responsive emulsion droplets. pH 

responsive droplets would have the potential benefit of adding a protective effect in 

the stomach, due to aggregation and shielding of the drug. However, if aggregation 

was not quickly reversed then the pH responsive emulsions may prove to have no 

benefit. Nanoemulsions were physically characterised using dynamic light scattering 

(DLS) techniques to obtain size and surface charge and, for larger emulsions, laser 

diffraction using a Malvern Mastersizer 2000 was employed. 

 

The aim of this Chapter was to develop a stable nanoemulsion system that was able 

to be loaded with lopinavir or efavirenz and to assess the cytotoxicity of these 

nanoemulsions. It was hypothesised that the polymers produced in Chapter 2 would 

prevent the aggregation of oil droplets, by means of steric stabilisation. Furthermore, 

it would be expected that methacrylic acid containing polymer stabilisers would 

produce pH responsive emulsion characteristics, but may have increased cytotoxicity 

due to the presence of methacrylic acid.  
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3.2 Materials and Methods 

3.2.1 Materials 

In addition to the materials stated in section 2.2.1, the following were also acquired: 

Acetone, squalene, dodecane, castor oil, peanut oil, soy bean oil, coconut oil, sesame 

oil, were all purchased from Sigma-Aldrich (Dorset, UK). 

 

TecanGENios 96 well plate reader was supplied by Tecan Group limited (Reading, 

UK). THP-1 human monocytic cell line, CEM human T Lymphoblast cell line and 

Raji-B Human Lymphoblastoid cell line were all acquired from stocks stored within 

the laboratory. 24 well HTS Transwell plates were supplied by Corning Life 

Sciences (Amsterdam, The Netherlands). Efavirenz and lopinavir were supplied by 

LGC Pharma (London, UK), and pH meter and refractometer were both obtained 

from Mettler-Toledo (Greifensee, Switzerland). Zetasizer NanoZS dynamic light 

scattering equipment and Mastersizer 2000S were supplied by Malvern Instruments, 

(Malvern, UK). Ultra Turrax T-25 digital homogeniser was bought from IKA 

Laboratory products (Staufen, Germany) and Sartorius M-Pact balance supplied by 

Sartorius Lab Products (Epsom, UK).  

 

 

 

 

 

 



Chapter	  3	  
	  

89	  

3.2.2 Emulsion Synthesis via Homogenisation 

For emulsions prepared using co-polymers of OEGMA or PEGMA with methacrylic 

acid synthesised via the conventional free radical route (See Section 2.2.1), and not 

containing a co-solvent, 3 mL of oil phase (squalene, dodecane, or coconut oil) was 

added to 3 mL of polymer dissolved in water in a 14 mL glass tube. This two-phase 

mixture was homogenised for 2 minutes using an Ultra Turaxx T-25 digital 

homogeniser fitted with an S 25 N -10G dispersing element, and set to maximum 

speed of 25,000 RPM. During the 2 minutes, the vial was rotated clockwise for 30 

seconds, anticlockwise for 30 seconds, and then up and down for 1 minute, to 

achieve a creamy emulsion (figure 3.1). Each emulsion sample was analysed using 

the Mastersizer 2000. 

 

For emulsions prepared using the cosolvent approach and stabilised using polymers 

synthesised using the ATRP method, a slightly different methodology was followed 

before the homogenisation step. Firstly, non-volatile oil and volatile cosolvent were 

mixed in a desired ratio.  A range of ratios (99:1 volatile cosolvent to non-volatile 

oil, up to 50:50 volatile cosolvent to non volatile oil) was examined in order to find 

the optimum ratio based on size of nanoemulsion droplets, however, for the 

experimental data referring to emulsion E65 in the following Chapters of this thesis, 

a 99:1 volume ratio of volatile cosolvent to non-volatile oil was used. This ratio gave 

nanoemulsion droplets below 300 nm in diameter. Thus 2.970 mL of volatile 

cosolvent (ethyl acetate) was added to 30 µL of non-volatile oil (castor oil), to make 

a total oil/cosolvent phase of 3.00 mL. To this, 3 mL of a 5% w/v concentration of 
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polymer dissolved in water was added and the homogenisation method detailed 

previously carried out (figure 3.1). After homogenisation, the cosolvent was 

evaporated over a period of 24 hours by removing the vial cap and leaving in a fume 

hood at ambient temperature. These emulsions were analysed for size and charge 

using Dynamic Light Scattering (DLS). 

 

2 Minutes 
Homogenisation at 
25,000 rpm

99:1
Ethyl Acetate:
Castor Oil

Water containing 5% 
w/v Polymer

200-400 nm emulsion droplet  

Figure 3.1 Schematic of emulsion formation using homogenisation technique. The 
active pharmaceutical agent was dissolved in the castor oil and the polymer stabiliser 
in the water phase. Prior to homogenisation two distinct phases were observed, with 
a single continuous creamy emulsion phase seen after homogenisation for 2 minutes 
at 25,000 rpm. 
 
 
3.2.3 Determination of Droplet Diameter using Laser Diffraction 

The size of emulsion droplets stabilised with the polymers synthesised by 

conventional free radical polymerisation (See section 2.3.1) was determined by laser 

diffraction using a Mastersizer 2000 (Malvern Instruments LTD, Malvern, UK). 

Briefly, one or two droplets of emulsion were added to the sample dispersion unit 

until laser obscuration was in the range of 5 and 20%. The unit circulates distilled 
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water through the laser source and detector, allowing the sample to be continually 

analysed. The mass moment mean D[4,3] diameter of the emulsion droplets was 

determined. Five repeat measurements were taken, and the average of those was 

used to report the D[4,3] diameter of the emulsion droplets. Circulating water was 

replaced before each new measurement to ensure no contamination. 

 

3.2.4 Determination of Droplet Diameter and Surface Charge Using Dynamic 

Light Scattering  

The size of emulsion droplets made using the volatile cosolvent approach and 

stabilised with polymers synthesised via the ATRP route (see section 2.3.2) were 

measured using Dynamic Light Scattering (DLS), as they had diameters below that 

of the Mastersizer lower limit of accurate detection (<1 µm). Samples were 

measured in plastic ‘zeta cells’, which allowed for measurement of both z-average 

diameter and zeta potential (surface charge) Samples were diluted to obtain a laser 

attenuation of 5 or 6, in order to limit any effects of overly concentrated or dilute 

samples. Each sample was measured 3 times for both diameter and surface charge, 

with each measurement having an automated number of scans, as determined by the 

Zetasizer software, but usually around 12 scans for diameter and 50 scans for zeta 

potential. The average value from the 3 scans was reported. The temperature within 

the measurement cell was set to a constant 25 ºC.  
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3.2.5 Adherent Cell Culture 

As described in 2.2.8 

 

3.2.6 Suspension Cell Culture 

As described in 2.2.9 

 

3.2.7 Cellular Cytotoxicity using 3-(4,5-dimethylthiazol-2-yl)-2,5-

diphenyltetrazolium bromide (MTT) Assay 

Approximately 100,000 cells per 100 µL were seeded per well in a 96 well tissue 

culture plate, leaving 24 hours for cells to adhere to the plate. After this 24-hour 

period, media was aspirated from all wells and replaced with fresh complete culture 

media containing appropriate sample concentrations. A maximal drug concentration 

of 10 µM was used, decreasing in a 1:1 dilution series. For blank emulsion samples 

were an equivalent volume of nanoemulsion was used to prepare the sample, such 

that the volume of nanoemulsion was the same as those in the drug loaded 

nanoemulsion samples. 

 

Plates were left for between 1 and 5 days, after which time 20 µL of 5 mg/mL MTT 

reagent (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) was added 

to every well and left for 2 hours. At the end of the 2-hour incubation, 100 µL of 

MTT lysis buffer (50% DMF, 10% SDS, adjusted to pH 3.2 using glacial acetic 

acid) was added to each well and left for a further 24 hours in order to dissolve 

formazan crystals. Plates were then read on a Tecan GENios plate reader (Tecan 
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Group, Manndorf, Switzerland) reader set to absorbance mode, with wavelength at 

560 nm.  

 

The assay works on the principle that the mitochondria within the cells being 

assayed will be able to metabolise the 3-(4,5-dimethylthiazol-2-yl)-2,5-

diphenyltetrazolium bromide into formazan. This is provided that the metabolic 

function of the cells was not affected after exposure to the test compound. The 

formazan crystals that were formed by this metabolism were dissolved by the lysis 

buffer and the amount of absorbance was proportional to the metabolic activity of 

the cells. With all values compared to control wells on each plate that contained only 

cells and complete cell culture media, it was possible to use the assay as a proxy for 

cellular viability. 

 

3.2.8 Cell TiterGlo® Viability Assay 

As described in 2.2.10. A maximal drug concentration of 10 µM was used, 

decreasing in a 1:1 dilution series. For blank emulsion samples an equivalent volume 

of nanoemulsion was used to prepare the sample, such that the volume of 

nanoemulsion was the same as those in the drug loaded nanoemulsion samples. 

 

 

 

 

 



Chapter	  3	  
	  

94	  

3.3 Results 

The following data refers to emulsions stabilised by the polymers described in 

Chapter 2. They are summarised below in Table 3.1  

 

Table 3.1 Summary of polymer composition and characteristics as determined by 

GPC analysis. Free radical polymers from are shown as a comparison to the ATRP 

polymers 

Polymer 

Reference 

Number 

Conventional Free Radical Branched 

Polymers 

Mw Mn Mw/Mn 

79 MAA96/PEG22MA4-EGDMA10-DDT10 347,500 16,616 20.9 

80 MAA92/PEG22MA8-EGDMA10-DDT10 327,528 31,827 10.3 

81 OEG4.5MA100-EGDMA10-DDT10 16,991 6,683 2.5 

82 MAA82/OEG4.5MA18-EGDMA10-DDT10 15,312 6,369 2.4 

83 MAA69/OEG4.5MA31-EGDMA10-DDT10 15,961 6,893 2.3 

ATRP Polymers Mw Mn Mw/Mn 

Linear PolyOEGMA DP80  124,526 79,511 1.6 

Branched PolyOEGMA DP80 3,590,000 1,650,000 2.2 
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3.3.1 Emulsions Stabilised with Polymer prepared by Conventional Free 

Radical Polymerisation 

Two polymers from Table 3.1  (79 and 81) were then used to stabilise oil-in-water 

emulsions consisting of a squalene oil phase with no volatile cosolvent. The polymer 

concentration was 5% w/v. In neutral conditions emulsions FR1 (stabilised by 

polymer 79) and FR2 (stabilised by polymer 81) produced the same average droplet 

volume moment mean diameter D[4,3] of 9 µm. When the emulsions were placed in 

acidic conditions, FR1 had a greatly increased average diameter (100 µm) (Figure 

3.2), whereas there was very little change in size and distribution for emulsion FR2 

(Figure 3.3). 

 

 

Figure 3.2. Distribution of droplet D[4,3] diameters for emulsion FR1 in pH 7 (red) 

and pH 2 (blue) as determined by laser diffraction, using a concentration of sample 

to achieve laser obscuration of between 5 and 20%. 
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Figure 3.3. Distribution of droplet D[4,3] diameters for emulsion FR2 in pH 7 (red) 

and pH 2 (blue) as determined by laser diffraction, using a concentration of sample 

to achieve laser obscuration of between 5 and 20%. 

 
 

Emulsion FR1 was placed in initial neutral conditions within the Mastersizer and the 

pH was rapidly dropped to pH 2 by addition of concentrated hydrochloric acid, in 

order to simulate the conditions upon entering the human digestive tract. The 

volume moment mean diameter D[4,3] of the droplets was measured every 5 

minutes for 150 minutes. At 20 minutes the pH was increased back to pH 7, to 

simulate the conditions from stomach, through intestine and eventually the systemic 

circulation. The initial droplet D[4,3] diameter was 9 µm, upon addition of 

hydrochloric acid this size increased to a maximum of 98 µm. After addition of 
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sodium hydroxide, to increase the pH back to initial starting conditions, the average 

droplet D[4,3] diameter slowly began to decrease, eventually reaching a plateau of 

22 µm, but not returning to the original droplet size of 9 µm (Figure 3.4). 

 

 

Figure 3.4. Change in average droplet diameter of emulsion 79 after exposure to 

sudden decrease in pH (pH 10 down to 2) by addition of HCl and subsequent 

increase in pH back to pH 10 by addition of NaOH. Data obtained by laser 

diffraction using a concentration of sample to achieve laser obscuration of between 5 

and 20%. 
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3.3.2 Nanoemulsions Stabilised by ATRP PolyOEGMA DP80 Polymers 

A library of nanoemulsions was produced as described in Section 3.2.2 and using the 

constituents identified in Figure 3.5.  This resulted in 74 nanoemulsion samples 

being produced, which were subsequently assessed for physical characterisation 

(Figure 3.6 and Tables 3.2 to 3.6). The nanoemulsions were rejected if average 

diameters exceeded 500 nm, and their stability after emulsification was poor, in 

terms of particle aggregation over time. There was also a series of experiments 

conducted to quantify the drug loading capacities of each non-volatile oil phase 

used, from which castor oil was shown to have the greatest loading capacity at 50 

mg/mL of EFV and 25 mg/mL of LPV possible (Data not shown). Based on all of 

these characteristics, an optimal emulsion formulation was chosen for further 

studies. 
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Figure 3.5. Constituent library and Screening protocol for optimisation of drug-

loaded nanoemulsions. Oils used were castor oil, peanut oil, soybean oil, sesame oil, 

squalene, dodecane and coconut oil. 4 volatile co-solvents used were ethyl acetate, 

hexane, THF and chloroform. Polymers used are described in Table 3. 
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Figure 3.6. Average droplet diameters of the nanoemulsion library as determined by laser diffraction D[4,3] (A) or dynamic light scattering (z-
average) (B) (Note: Those with no data bars present had demulsified before the measurement could be taken.
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Table 3.2 Composition of emulsions containing coconut oil as the non-volatile oil 

phase. All polymers are branched unless stated as linear.  

Identifier Oil Solvent Polymer 
E13 100% Coconut Oil N/A 5% PolyOEGMA DP50 
E14 100% Coconut Oil N/A 5% PolyOEGMA DP80 
E15 100% Coconut Oil N/A 5% PolyOEGMA FR 
E16 25% Coconut Oil 75% Hexane 5% PolyOEGMA DP50 
E17 25% Coconut Oil 75% Hexane 5% PolyOEGMA DP80 
E18 25% Coconut Oil 75% Hexane 5% PolyOEGMA FR 
E19 10% Coconut Oil 90% Hexane 5% PolyOEGMA DP50 
E20 10% Coconut Oil 90% Hexane 5% PolyOEGMA DP80 
E21 10% Coconut Oil 90% Hexane 5% PolyOEGMA FR 
E22 1% Coconut Oil 99% Hexane 5% PolyOEGMA DP50 
E23 1% Coconut Oil 99% Hexane 5% PolyOEGMA DP80 
E24 1% Coconut Oil 99% Hexane 5% PolyOEGMA FR 
E41  10% Coconut Oil 90% Ethyl Acetate 5% PolyOEGMA DP50  
E42  10% Coconut Oil 90% Ethyl Acetate 5% PolyOEGMA DP80  
E43  10% Coconut Oil 90% Ethyl Acetate 5% PolyPEGMA DP50 

(Linear) 
E44  10% Coconut Oil 90% Ethyl Acetate 5% PolyPEGMA DP50  
E45  1% Coconut Oil 99% Ethyl Acetate 5% PolyOEGMA DP50  
E46 1% Coconut Oil 99% Ethyl Acetate 5% PolyOEGMA DP80  
E47  1% Coconut Oil 99% Ethyl Acetate 5% PolyPEGMA DP50 

(Linear) 
E48  1% Coconut Oil 99% Ethyl Acetate 5% PolyPEGMA DP50  
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Table 3.3 Composition of emulsions containing 100% volatile solvent phase. All 

polymers are branched unless stated as linear.  

Identifier Oil Solvent Polymer 

E27 N/A 100% Hexane 5% PolyOEGMA DP80 

E27 N/A 100% Hexane 5% PolyOEGMA DP80 

E28 N/A 
100% Hexane 

5% PolyOEGMA DP50  

E29 N/A 100% Hexane 5% PolyPEGMA DP50 (Linear) 

E30 
N/A 

100% Hexane 5% PolyPEGMA DP50  

E37  N/A 
100% Ethyl Acetate 

5% PolyOEGMA DP50  
E38  

N/A 100% Ethyl Acetate 5% PolyOEGMA DP80  

E39  N/A 100% Ethyl Acetate 5% PolyPEGMA DP50 (Linear) 

E40  N/A 100% Ethyl Acetate 5% PolyPEGMA DP50  
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Table 3.4 Composition of emulsions containing dodecanoic acid as the non-volatile 

oil phase. All polymers are branched unless stated as linear. 

Identifier Oil Solvent Polymer 

E4 50% Dodecanoic Acid 50% Chloroform 2% PolyOEGMA 
DP50 

E25 10% Dodecanoic Acid 90% Hexane 
5% PolyOEGMA 
DP80 

E26 1% Dodecanoic Acid 99% Hexane 5% PolyOEGMA 
DP80 

E49 10% Dodecanoic Acid 90% Ethyl Acetate 5% PolyOEGMA 
DP50  

E50 10% Dodecanoic Acid 90% Ethyl Acetate 5% PolyOEGMA 
DP80  

E51  10% Dodecanoic Acid 90% Ethyl Acetate 5% PolyPEGMA 
DP50 (Linear) 

E52  10% Dodecanoic Acid 90% Ethyl Acetate 5% PolyPEGMA 
DP50  

E53  1% Dodecanoic Acid 99% Ethyl Acetate 5% PolyOEGMA 
DP50  

E54  
1% Dodecanoic Acid 

99% Ethyl Acetate 5% PolyOEGMA 
DP80  

E55  1% Dodecanoic Acid 99% Ethyl Acetate 5% PolyPEGMA 
DP50 (Linear) 

E56  1% Dodecanoic Acid 99% Ethyl Acetate 5% PolyPEGMA 
DP50  
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Table 3.5 Composition of emulsions containing squalene as the non-volatile oil 

phase. All polymers are branched unless stated as linear. 

Identifier Oil Solvent Polymer 

E31 10% Squalene 
90% Hexane 

5% PolyOEGMA DP50  

E32 10% Squalene 
90% Hexane 

5% PolyPEGMA DP50 
(Linear) 

E33  10% Squalene 90% Hexane 5% PolyPEGMA DP50  

E34  1% Squalene 99% Hexane 5% PolyPEGMA DP50 
(Linear) 

E35  1% Squalene 99% Hexane 5% PolyPEGMA DP50  

E36  1% Squalene 99% Hexane 5% PolyOEGMA DP50  

E57  10% Squalene 90% Ethyl Acetate 5% PolyOEGMA DP50  

E58  10% Squalene 90% Ethyl Acetate 5% PolyOEGMA DP80  

E59  10% Squalene 90% Ethyl Acetate 5% PolyPEGMA DP50 
(Linear) 

E60  
10% Squalene 

90% Ethyl Acetate 5% PolyPEGMA DP50  

E61  1% Squalene 99% Ethyl Acetate 5% PolyOEGMA DP50  

E62  1% Squalene 99% Ethyl Acetate 5% PolyOEGMA DP80  

E63  1% Squalene 99% Ethyl Acetate 5% PolyPEGMA DP50 
(Linear) 

E64  
1% Squalene 

99% Ethyl Acetate 
5% PolyPEGMA DP50  
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Table 3.6 Composition of emulsions containing castor oil, sesame oil, peanut oil, 

soybean oil or O-Xylene as the non-volatile oil phase. All polymers are branched 

unless stated as linear. 

Identifier Oil Solvent Polymer 

E65  1% Castor Oil 99% Ethyl Acetate 5% PolyOEGMA DP80  

E66 1% Sesame Oil 99% Ethyl Acetate 5% PolyOEGMA DP80  

E67 1% Peanut Oil 99% Ethyl Acetate 5% PolyOEGMA DP80  

E68 1% Soybean Oil 99% Ethyl Acetate 5% PolyOEGMA DP80  

E69 1% O-Xylene 99% Ethyl Acetate 5% PolyOEGMA DP80  

E70 1% Castor Oil 99% Hexane 5% PolyOEGMA DP80  
E71 

1% Sesame Oil 99% Hexane 5% PolyOEGMA DP80  

E72 1% Peanut Oil 99% Hexane 5% PolyOEGMA DP80  

E73 1% Soybean Oil 99% Hexane 5% PolyOEGMA DP80  

E74 1% O-Xylene 99% Hexane 5% PolyOEGMA DP80  
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3.3.3 Nanoemulsion With Optimal Droplet Diameter, Stability and Drug 

Loading Capacity 

The optimal nanoemulsion in terms of its droplet diameter (< 300 nm) and its long-

term stability in terms of lack of aggregation over time (> 2 years) was selected from 

the group of emulsion described in Section 3.3.2. It was stabilised with a 5% w/v 

solution of PolyOEGMA DP80, had a non-volatile oil core consisting of castor oil, 

and ethyl acetate was used as the volatile cosolvent. This emulsion had a ratio of 

99:1 ethyl acetate to castor oil, prior to homogenisation and subsequent evaporation 

of ethyl acetate and will be referred to from hereon in as E65. 

 

Changing the solvent to oil ratio within the emulsion prior to homogenisation 

allowed the final size of the droplets to be finely tuned. Increasing the ratio of non 

volatile castor oil increased the overall droplet size, until at 50:50 ethyl acetate to 

castor oil, the droplet sizes were in excess of 1 µm  (Figure 3.7) 

 

The sizes of the droplets could also be tuned by changing the concentration of 

branched PolyOEGMA DP80, whilst maintaining the ethyl acetate to castor oil ratio 

at 99:1. An optimal concentration of 5% w/v of PolyOEGMA DP80 was found to 

confer the greatest stability and smallest sizes to the emulsions. Concentration  >5% 

w/v of branched PolyOEGMA DP80 did not result in emulsion droplets with smaller 

z-average diameters, but below 5% w/v, droplet z-average diameters were seen to 

increase (Figure 3.8). The change in particle size distribution when the concentration 

of polymer stabiliser was changed is shown in Figure 3.9. 
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Figure 3.7 Effect on size of changing the ratio of cosolvent to oil prior to 
homogenisation. Increasing the amount of cosolvent resulted in smaller final droplet 
diameters, after evaporation for 24 hours. Droplet diameters were determined by 
dynamic light scattering 

 

Figure 3.8. Effect on droplet diameter as a result of changing the final concentration 
of polymer stabiliser from between 0.5% w/v and 5% w/v. The cosolvent to oil ratio 
was maintained at 99:1. Droplet diameters were determined using dynamic light 
scattering. 
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Figure 3.9 Effect on the distribution of droplet diameters as a result of altering the % 

w/v of polymer stabiliser between 0.5% w/v and 5% w/v. Cosolvent to oil ratio was 

maintained at 99:1. Droplet diameters were determined using dynamic light 

scattering. 

 

 
E65 could be loaded with either EFV or LPV and for comparisons; a blank emulsion 

containing castor oil without any loaded drug was also produced. The average 

droplet sizes were the same regardless of which drug was dissolved in the non-

volatile oil phase (Figures 3.10 and 3.11), and this was true also for the surface 

charge (Figure 3.12). The concentration of drug in the final undiluted emulsion was 

1.59 mM for EFV and 379 µM for LPV.  
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Figure 3.10 Z-average diameters of blank, efavirenz and lopinavir loaded E65 
emulsions. Data was obtained using dynamic light scattering, with a 100-fold 
dilution of neat emulsion sample in order to obtain laser attenuation between 5 and 
7. 
 

 
Figure 3.11 Z-Average droplet diameter distribution of E65 nanoemulsion loaded 
with EFV, LPV or no drug. Data was obtained using dynamic light scattering, with a 
100-fold dilution of neat emulsion sample in order to obtain laser attenuation 
between 5 and 7. 
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Figure 3.12 Zeta potential of blank, EFV and LPV loaded emulsion E65. Here, Zeta 
potential refers to the potential difference between the nanoemulsion droplets and 
the aqueous phase into which they were dispersed (distilled water). Data was 
obtained using a zeta cell and dynamic light scattering, with a 100-fold dilution of 
neat emulsion sample in order to obtain laser attenuation between 5 and 7 using a 
Malvern Zetasizer Nano ZS. 
 

The long-term stability of E65 was shown to be in excess of 2 years in water, 

whether loaded with EFV, LPV or no drug. This was determined by assessing the 

nanoemulsion diameter and the distribution of nanoemulsion droplet size over time. 

A shorter stability study was carried out using E65 dissolved into complete cell 

culture media (DMEM) and left at 4°C for 3 months. Again emulsions remained 

stable over this period. However, unlike storage in water, the medium diluted 

emulsions had slightly smaller average droplet sizes; 194 nm for EFV loaded E65 

and 164 nm for Blank E65 compared to 294 nm for the same emulsion in water 

(Figure 3.13). 
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Figure 3.13. Two-year stability of emulsion E65 (A) and stability study of emulsion 
diluted in biological media after 3 months storage at 4°C (B). Corresponding DLS 
size distributions for two-year stability study (C) and media stability study (D). Data 
was obtained using dynamic light scattering, with a 100-fold dilution of neat 
emulsion sample in order to obtain laser attenuation between 5 and 7. 
 
 
The stability of emulsion droplets when diluted was also assessed (Figure 3.14). 

Emulsions were seen to maintain the same droplet size throughout each dilution, to a 

maximum of 4096 fold dilution. Further dilution past this point rendered the 

emulsion sample too dilute to be detected and analysed by the DLS instrument. DLS 

measurements could not be reliably taken until a 4-fold dilution of the neat emulsion 

was made, due to multiple scattering artefacts affecting the reported z-average 

diameters. 
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Figure 3.14 Stability of emulsion E65 when diluted in water up to 4096 fold, as 
determined by no change in z-average diameters (A) and size distributions (B). Data 
was obtained using dynamic light scattering, with a 100-fold dilution of neat 
emulsion sample in order to obtain laser attenuation between 5 and 7. 
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3.3.4 Nanoemulsion Cytotoxicity 

3.3.4.1 Caco-2 Cells 

The final optimised emulsion E65 (3.3.3) was assessed for its cytotoxicity against 

Caco-2 cells, both as a blank emulsion and having a payload of EFV or LPV. The 

cytotoxicity of the emulsion was compared to that of an equivalent concentration of 

an aqueous solution of EFV and LPV. The results for MTT assay showed that the 

EFV aqueous formulation had an IC50 value of 55 µM but that the LPV aqueous 

solution did not show any overt cytotoxicity at the concentrations tested, as reported 

by the non-convergence of sigmoidal dose response curves (Figure 3.15). The same 

was observed for EFV and LPV loaded nanoemulsions, as well blank nanoemulsion 

in that no convergence occurred (Figure 3.15). 

 

The data from the CellTiterGlo® ATP assay this time showed no convergence for 

EFV aqueous solution but an IC50 value of 31.5 µg/ml for aqueous LPV. There was 

also no convergence for EFV nanoemulsion (nEFV), LPV nanoemulsion (nLPV), 

and blank nanoemulsions (Figure 3.16). 
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Figure 3.15 Effect of LPV aqueous solution (A), EFV aqueous solution (B), LPV 
nanoemulsion (C), EFV nanoemulsion (D) and blank nanoemulsion (E), on the 
metabolic activity of Caco-2 cells determined by MTT assay. Metabolic activity is 
proportional to absorbance, and used as a proxy for cytotoxicity. 
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Figure 3.16 Effect of LPV aqueous solution (A), EFV aqueous solution (B), LPV 
nanoemulsion (C), EFV nanoemulsion (D) and blank nanoemulsion (E), on the 
metabolic activity of Caco-2 cells determined by ATP assay. Metabolic activity is 
proportional to luminescence and used as a proxy for cytotoxicity. Data expressed as 
% viability of control untreated cells. 
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3.3.4.2 HepG2 Cells 

The final optimised emulsion E65 (Section 3.3.3) was assessed for its cytotoxicity 

against HepG2 cells, both as a blank emulsion and having a payload of EFV or LPV. 

The cytotoxicity of the emulsion was compared to that of an equivalent 

concentration of EFV and LPV as aqueous solutions. The results for MTT assay 

showed that the aqueous solutions of LPV and EFV did not show any cytotoxicity at 

any of the concentrations tested. The same was true for the LPV and EFV 

nanoemulsions (Figure 3.17) 

 

CellTiterGlo® ATP assay also showed there was no overt cytotoxicity for LPV and 

EFV aqueous solutions and for LPV and EFV nanoemulsions (Figure 3.18). 
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Figure 3.17 Effect of LPV aqueous solution (A), EFV aqueous solution (B), LPV 
nanoemulsion (C), EFV nanoemulsion (D) and blank nanoemulsion (E), on the 
metabolic activity of HepG-2 cells determined by MTT assay. As a proxy for 
cytotoxicity. 
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Figure 3.18 Effect of LPV aqueous solution (A), EFV aqueous solution (B), LPV 
nanoemulsion (C), EFV nanoemulsion (D) and blank nanoemulsion (E), on the 
metabolic activity of HepG2 cells determined by ATP assay. Metabolic activity is 
proportional to luminescence and used as a proxy for cytotoxicity. Data expressed as 
% viability of control untreated cells. 
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3.3.4.3 CEM Cells 

The final optimised emulsion E65 (Section 3.3.3) was assessed for its cytotoxicity 

against CEM cells (T-lymphocyte), both as a blank emulsion and having a payload 

of EFV or LPV. The cytotoxicity of the emulsion was compared to that of an 

equivalent concentration of EFV and LPV aqueous solution. The results for MTT 

assay showed that there was no overt cytotoxicity observed at any of the 

concentrations other than the highest tested for the aqueous solutions of EFV and 

LPV (Figure 3.19). The nanoemulsion formulations had IC50 values of 4 µM for 

LPV loaded nanoemulsion; 6 µM for EFV loaded nanoemulsion and 12 µM for 

blank nanoemulsion (Figure 3.19).  
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Figure 3.19 Effect of LPV aqueous solution (A), EFV aqueous solution (B), LPV 
nanoemulsion (C), EFV nanoemulsion (D) and blank nanoemulsion (E), on the 
metabolic activity of CEM cells determined by MTT assay. As a proxy for 
cytotoxicity. 
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3.3.4.4 Raji B Cells  

The final optimised emulsion E65 (Section 3.3.3) was assessed for its cytotoxicity 

against Raji B cells (B-lymphocyte), both as a blank emulsion and having a payload 

of EFV or LPV. The cytotoxicity of the emulsion was compared to that of an 

equivalent concentration of EFV and LPV aqueous solution. The results for MTT 

assay showed that the LPV aqueous solution did not show any cytotoxicity other 

than at the highest concentration tested and EFV aqueous solution had an IC50 value 

of 7.9 µM. LPV nanoemulsion also showed no cytotoxicity other than at the highest 

concentration, whereas EFV nanoemulsion had an IC50 value for 1.7 µM and blank 

nanoemulsion 0.4 µM (Figure 3.20) 
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Figure 3.20 Effect of LPV aqueous solution (A), EFV aqueous solution (B), LPV 
nanoemulsion (C), EFV nanoemulsion (D) and blank nanoemulsion (E), on the 
metabolic activity of Raji-B cells determined by MTT assay. As a proxy for 
cytotoxicity. 
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3.4 Discussion 
 
Size is an important factor when considering an emulsion drug delivery vehicle, as 

the size of the droplets will influence how they interact with the human body, such 

as ability to cross biological membranes [341] (e.g. intestine [342], placenta [343] or 

blood brain barrier [344]), interact with the immune system or how the droplets 

would be cleared from the systemic circulation. A successful oral drug delivery 

system needs to be able to efficiently cross the intestinal barrier and enter into the 

systemic circulation. Once there, it needs to avoid interacting with the immune 

system in such a way that it triggers an adverse immune response, an area of 

research [345-352] that is receiving much attention as nanomedicine becomes 

increasingly common (see also Chapter 6). The nanocarrier then needs to deliver the 

drug payload to its desired site and remain in circulation as long as possible [353].  

 

It is obviously difficult to get all of these attributes perfectly optimised in a single 

formulation, so the goal of nanomedicine is to target specific areas for improvement, 

dependent on the drug in question [354]. For EFV and LPV the goal is to make them 

more bioavailable by increasing their permeation across the gut barrier (increased 

penetration into target cells is also desirable). It has also been shown that efavirenz 

has a lower bioavailability in HIV infected patients compared to healthy individuals 

[355], further showing the importance of developing novel formulations to 

overcome this.  
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For increased penetration across the biological barriers, smaller sized droplets have 

been reported as being more effective [356, 357], as they can pass between cells via 

paracellular permeation [358], or through cells by endocytosis [359-366]. Thus the 

droplet sizes of the emulsions stabilised by free radical polymers (FR1 and FR2) 

were not fit for purpose. Exploration of the pH responsiveness of these emulsions as 

had previously been shown by Weaver et al [292-295], did not lead to any benefits 

when considering protection from the acid environment in the stomach, as the 

emulsions did not disperse fully after acid triggered aggregation.  The methodology 

for synthesising the emulsion was therefore changed to a homogenisation with co-

solvent evaporation technique. This technique allowed smaller emulsion droplets to 

be formed, as during the evaporation of the co-solvent, droplets would collapse and 

be stabilised by the polymer. This change in methodology also coincided with the 

change from conventional free radical polymer synthesis to ATRP polymer synthesis 

due to moving away from the use of methacrylic acid, due to its cytotoxicity, its pH 

responsive nature when in a copolymer with OEGMA and its difficulty to use in 

ATRP reactions. 

 

The co-solvent evaporation method allowed much smaller droplets to be formed, 

simply by allowing the volatile solvent ethyl acetate to evaporate after 

homogenisation of the emulsion. This evaporation caused the oil droplets to collapse 

whilst maintaining their surfaces coated in the branched PolyOEGMA DP80 

polymer, imparting great stability. 
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Ethyl acetate was chosen as the co-solvent as it was immiscible in water, was able to 

dissolve the desired oil phase (castor oil) and was volatile enough that evaporation 

could take place over a 24-hour period at room temperature. Ethyl acetate also has 

been reported to exhibit low cytotoxicity [340], mitigating concern about residual 

solvent after evaporation. 

 

The optimal emulsion E65 (99:1 ethyl acetate: castor oil stabilised with 5% w/v 

branched PolyOEGMA DP80) was chosen from the nanoemulsion library due to 

both its physical characteristics (size and charge) as well as its initial stability. The 

long-term stability study showed that the emulsion droplets were stable for in excess 

of 2 years when left in a sealed glass vial at room temperature, away from direct 

sources of light. This was in keeping with literature reports of nanoemulsions being 

stable for long periods of time [367], and that of data presented by Shakeel et al in 

which nanoemulsions were produced with predicted shelf lives of 2.38 years, as 

determined by accelerated stability studies [368]. The stability of the E65 emulsion 

was thought to be conferred by the steric repulsion that would be afforded by the 

large branched polymer anchored to the oil droplet, and the fact that there were 

multiple anchor points per polymer, due to its branched nature.  

 

The polymers would prevent the surface of the oil droplets coming into contact with 

each other, and in doing so prevent Ostwald Ripening [369]. This steric repulsion 

theory was further supported by the neutral surface charge (zeta potential values of 

between 0 and 10/-10 are considered to be neutral) [370], such that charge 
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stabilisation was not observed. This would explain the good stability in biological 

media, as a charge stabilised particle would be subject to destabilisation and possible 

aggregation due to the presence of charged salts and proteins present in biological 

media, as previously described [371-373]. 

 

Tuning the size of the emulsion droplets was possible by either changing the volatile 

cosolvent to non-volatile oil ratio, or changing the concentration of branched 

PolyOEGMA DP80 stabiliser. Changing the solvent to oil ratio had the simple effect 

of increasing the amount of oil present in the final emulsion, and so increasing the 

overall size of the droplets. Reducing the amount of polymer present had the effect 

of increasing the size of the droplets due to a lack of stabilisation, and so it was 

thought that droplets had more chance of coming together to form larger droplets 

before being covered with polymer [374-376]. 

 

An exciting set of data was that of the stability of the emulsion droplets when 

exposed to a series of dilutions. The data showed that the droplets did not destabilise 

when diluted, and this is important when considering doses of drug. Having a system 

that can be diluted easily in water, without detrimental effect on its stability is highly 

promising for being able to adjust the amount of drug being administered, especially 

in children or those with special requirements. If given in a liquid form, water would 

simply need to be added to the stock suspension in order to reduce dose. It would 

also be much more accurate than extemporaneous formulations, those in which 

tablets are crushed up to produce a liquid dose [377-380]. 
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The lack of overt cytotoxicity seen throughout the testing of E65 nanoemulsions 

gives early confidence in the choice of polymer, oil and synthesis procedure. It 

would have been possible to generate IC50 values by using higher starting 

concentrations of both the aqueous solutions of EFV and LPV, and the equivalent 

nanoemulsions. However, this would be difficult for two reasons: 1) increasing the 

concentration would involve ranges that are approaching non therapeutically 

relevant levels and is limited by the poor aqueous solubility of the drugs without 

modification [381-383], and 2) increasing the starting concentration of the 

nanoemulsion formulations would mean a large volume of sample relative to the 

culture media. This would have the effect of skewing the cytotoxicity data as 

cytotoxicity could have been caused by lack of nutrients for cell function and growth 

[384-387], particularly since incubation times were 5 days for cellular cytotoxicity 

assays, and that the cells would be in a suspension containing a high volume of 

water relative to complete cell medium.  

 

Further studies of nanoemulsion cytotoxicity by Yu and Huang [388] demonstrated 

no cytotoxicity against Caco-2 cells as compared with micron sized emulsions, in 

agreement with the findings reported here. However, there was a difference in 

cytotoxicity observed against HepG2 cells [388], contrary to the data shown in this 

report, further validating the biocompatible nature of the polymer stabiliser and 

emulsion system used in this thesis. Literature reports suggest also that non-lipid 

based nanomaterials, such as those consisting of metal oxides and silica are 

considerably more cytotoxic in comparative in vitro studies [389-392]. 
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In summary, the assessments carried out in this and the previous Chapter have 

shown that both the constituents and the final constructed nanoemulsion carrier 

system are non-cytotoxic at the relevant concentrations for therapeutic usage. 

Further safety assessment of the nanoemulsions in terms of enhanced therapeutic 

benefit continues in Chapters 4 and 5, followed by assessment of immune safety in 

Chapter 6.  
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4.1 Introduction 

A novel drug formulation not only has to be safe, but also has to have a 

pharmacological profile equal to or better than the existing formulation or the drug 

in solution. Poor bioavailability is often the main limiting factor in the effectiveness 

and efficacy of a drug, particularly for the estimated 70% of new drugs coming 

though the pharmaceutical pipeline with poor bioavailability classification [130]. 

 

Aside from simply increasing the bioavailability of a pharmaceutical compound, it 

can be beneficial to improve the way in which it can be administered or the chemical 

environment in which it has to be dissolved. For example, many oral solutions of 

pharmaceutical compounds rely on a solvent into which the drug is dissolved prior 

to administration. This can lead to unpleasant tastes and burning sensations in the 

mouth due to the high percentage of solvent needed which can be particularly 

problematic in paediatric formulations, and indeed potentially harmful, due to the 

level of solvent used [393]. Therefore, taking a drug with poor water solubility and 

formulating it in such a way as to allow for its direct dispersal and dissolution into 

water is highly attractive. This would also allow for easy manipulation of dosages 

for patient populations that are not suited to standard tablet sizes, such as children 

and those with low body weights. It could also be used for personalising dose 

according to pharmacogenetics, removing the requirement for extemporaneous 

formulations [378] and additionally allowing patients who have difficulty in 

swallowing tablets (e.g. dysphagia) to take their medications [394, 395]. It would 

also remove the need for physically cutting up the standard dosage tablets in an 
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attempt to modify the amount of drug being administered, a practice that is risky, 

especially in HIV therapy where a precise therapeutic concentration window needs 

to be maintained in order to prevent toxicity or viral resistance.   

 

Increasing the amount of the drug that can traverse the intestinal epithelium is also a 

desirable feature for any drug delivery system. However, it should be noted that 

increased accumulation and penetration into some cell types is not always beneficial. 

The liver for example is the main site of metabolism for pharmaceutical compounds, 

and as such preventing the amount of drug that enters the liver could potentially 

have a positive impact on bioavailability, in terms of increasing the residence time of 

the active form of the pharmaceutical or avoiding first pass metabolism. This is also 

of benefit in situations where the toxicity of a pharmaceutical agent comes not from 

the drug directly, but from one or more of its subsequent metabolites [396]. In this 

regard, central nervous system toxicity of EFV has been suggested to involve the 8-

Hydroxy EFV metabolite [397]. 

 

The aims of the work presented in this Chapter were to assess any pharmacological 

benefit of having LPV or EFV in a nanoemulsion formulation. The accumulation of 

drug into cells, as well as the permeation across a model intestinal system was 

investigated, with the purpose of predicting any potential improvement in 

bioavailability. It was hypothesised that the formulation of EFV or LPV into a 

nanoemulsion would increase the apparent permeability and accumulation into cells, 

as compared with an equivalent aqueous solution. 
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4.2 Materials and Methods 

In addition to the materials stated in sections 2.2.1 and 3.2.1, the following were also 

acquired: HPLC grade acetonitrile and methanol were purchased from Sigma-

Aldrich (Dorset, UK). 24 well HTS Transwell plates were supplied by Corning Life 

Sciences (Amsterdam, The Netherlands). C18 HPLC separation column was 

purchased from Fortis Technologies LTD (Cheshire, UK) 

 

4.2.1 Adherent Cell Culture 

As described in 2.2.8 

 

4.2.2 Suspension Cell Culture 

As described in 2.2.9 

 

4.2.3 Assessment of Transcellular Permeation Across Caco-2 Cell Monolayers 

Caco-2 cells were seeded at a density of 35,000 cells per well in the apical chamber 

of a 24 well Corning® HTS® transwell plate, and left to adhere for 24 hours. After 

this time, culture media was replenished by removal with an aspirator, also removing 

those cells that had not adhered. Culture media used was DMEM supplemented with 

15% FBS, which was continually replenished every other day for a three week 

period. After three weeks had passed, the formation of an intact caco-2 monolayer 

was assessed using a trans-epithelial electrical resistance (TEER) probe (Merck 

Millipore, Billerica, USA), resistance values in excess of 600 ohms indicated that 

tight caco-2 monolayers were ready for use in the assay [398]. 
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During the assay, culture media was removed from wells and replaced with 15% 

FBS supplemented DMEM that had a final concentration of 10 µM aqueous solution 

or nanoemulsion equivalent of LPV or EFV. In different wells the apical or 

basolateral chambers (donor chambers) were loaded with drug or nanoemulsion 

containing media, with the opposite chambers (acceptor chambers) of those wells 

being filled with fresh drug-free media. Samples were taken from both apical and 

basolateral chambers from all wells at 1, 2, and 24 hour time periods. Samples were 

then immediately frozen at -40°C for subsequent batch analysis via HPLC. Figure 

4.1 shows the set up and layout of the transwell plates. 

 

 

Figure 4.1 Schematic of the Caco-2 transwell system. The cells are allowed to 

adhere and polarise for 14-21 days, after which test samples are loaded into either 

the apical or basolateral chamber. Sampling either side of the cell monolayer allows 

for the level of drug permeation (Papp) to be calculated. 
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The apparent permeability (Papp) was calculated using the following equation:  

 

 

Where A is the concentration in the sample, T is the time in seconds at which the 

sample was collected, V is the total volume of sample contained in the chamber 

being sampled, S is the initial starting concentration of the drug and 0.3 is the 

surface area in cm2 of the transwell insert on which the Caco-2 cells are grown.  

 

4.2.4 Adherent Cellular Accumulation 

1 x 106 cells (Caco-2 or HepG2) were seeded per well in 24 well cell culture plates 

and incubated for 24 hours in order for cells to adhere to culture plastics. After this 

time the media was removed and replaced with DMEM supplemented with 10% 

FBS and containing a final concentration of 10 µM of either aqueous solution or 

nanoemulsion formulation of LPV or EFV. Samples were taken at 4 and 24 hours 

post incubation with drug or nanoemulsion containing media and both intracellular 

and extracellular samples were taken. Extracellular samples were taken by simply 

removing the media and storing in a universal tube at -40°C prior to analysis on 

HPLC. Intracellular samples were taken by first washing the adherent cells 3 times 

with ice cold HBSS to remove any free drug. After the final wash an ice-cold 

solution of 50% methanol and 50% water was pipetted onto the cells and a cell 

scraper used to remove the cells from the surface of the cell culture plate. The cell 

lysate was then pipetted into universal tubes and again stored at -40°C prior to 

analysis.  



Chapter!4!
!

!137!

Cellular accumulation ratio (CAR) was calculated using the following equation:  

 

 

 

Cell volumes were derived using a Cell Sceptre 2.0 Handheld Automated Cell 

Counter (Merck Millipore, Billerica, USA). 

 

4.2.5 Suspension Cell Cellular Accumulation 

1 x 106 cells (Caco-2 or HepG2) were seeded per well in 24 well cell culture plates 

and DMEM supplemented with 10% FBS and containing a final concentration of 10 

µM of either aqueous solution or nanoemulsion formulation of LPV or EFV was 

added. Samples were taken at 4 and 24 hours post incubation by transferring the 

samples to deep well plates and centrifuging at 2000 xg for 5 minutes. Supernatant 

was taken as the extracellular sample, and the pellet washed 3 times with ice cold 

HBSS to remove any free drug. After the final wash an ice cold solution of 50% 

methanol and 50% water was added and the cell lysate transferred to universal tubes 

for storage at -40°C prior to analysis. 

 

4.2.6 High Performance Liquid Chromatography  

High Performance Liquid Chromatography (HPLC) protocols for the analysis of 

LPV and EFV were previously developed in house. These protocols were for 

aqueous forms of LPV and EFV and therefore, the method was further validated to 

include an appropriate extraction phase (see 4.2.6.3) to remove any nanoemulsion-
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associated drug molecules. The method was adapted to also increase the wash phase 

at the end of the run for each individual sample, so as to remove residual polymer 

stabiliser that was found to accumulate in the C18 column. This extra wash step was 

incorporated to extend the life of the column thereby preventing degradation of the 

C18 beads.  

 

4.2.6.1 HPLC Sample Extraction Protocol 

Samples from transwell and accumulation assays first underwent an extraction 

procedure to remove drug molecules from any remaining intact nanoemulsion 

droplets as well as to remove any proteins that may have bound to and coated the 

drug molecules. 200 µL of sample (thawed from -40°C storage) was added to 1 ml 

of HPLC grade acetonitrile in a universal tube and vortexed for 30 seconds. The 

universal tubes where then centrifuged for 5 minutes at 4°C at 13,300 rpm, after 

which the supernatant was transferred to fresh glass tubes. These tubes were placed 

in a vacuum centrifuge drier and heated to 35°C to remove excess acetonitrile and 

dry down the sample to a pellet. Pellets were then re-suspended in 200 µL fresh 20% 

HPLC grade acetonitrile, 80% HPLC grade water, and transferred to 1.8 ml HPLC 

vials and sealed for HPLC analysis. 

 

4.2.6.2 EFV HPLC Conditions 

The mobile phase (C) consisted of 95% water and 5% acetonitrile, with 5mM final 

concentration of ammonium formate. The elution buffer (D) consisted of 90% 

acetonitrile and 10% water with no ammonium formate. A calibration curve was 
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produced using a 1:2 dilution from 20,000 ng/ml to 39 ng/ml, with separate quality 

control samples at 600 ng/ml, 3000 ng/ml and 15,000 ng/ml.  

 

The initial starting conditions of each run were 100% C, changing to 92% D / 8% C 

after 30 seconds, holding at this percentage for 5 minutes before raising to 100% D 

for 1 minute. The final 2 minutes of the run returned the column to 100% of C, ready 

for the injection of the next sample. The EFV was eluted at around 4.3 minutes into 

the run. 

 

4.2.6.3 LPV HPLC Conditions 

The mobile phase (C) consisted of 10 mM potassium phosphate buffer (pH 3.2 with 

orthophosphoric acid). The elution buffer (D) consisted of 95% acetonitrile and 5% 

water with no ammonium formate. A calibration curve was produced using a 

doubling dilution from 20,000 ng/ml down to 39 ng/ml, with separate quality control 

samples at 600 ng/ml, 3000 ng/ml and 15,000 ng/ml.  

 

The initial starting conditions of each run were 50% C / 50% D, holding for 2 

minutes before changing over the next 2 minutes to 70% D / 30% C. At 4.1 minutes 

the % of D increased to 80% holding at this percentage for 3 minutes before 

returning to the initial conditions of 50% C and 50% D for 2 minutes, to prepare the 

column for the next injection. The LPV was eluted at 5.2 minutes into the run. 
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4.2.7 Statistical Analysis of Data 

Statistical analysis was performed using SPSS version 21 for Macintosh computers, 

where data was normally distributed a independent samples t-test was performed to 

obtain p values. Where data was non normally distributed a non-parametric Mann-

Whitney U test was performed. P values are stated throughout. 
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4.3 Results 

4.3.1 LPV HPLC Quantification and Calibration Curve 

Calibration curves were created for the quantification of aqueous and nanoemulsion 

formulations of LPV. The standard curve produced an r2 value of 0.99 showing a 

good linearity across the assay concentration range (Figure 4.2).  

 

 

Figure 4.2 Calibration curve for HPLC analysis of LPV. Standards were analysed 

using a 1:1 dilution ration from 20,000 ng/ml to 39 ng/ml, using a C18 column and 

flow rate of 1 mL/min. 
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4.3.2 EFV HPLC Quantification and Calibration Curve 

Calibration curves were created for the quantification of aqueous and nanoemulsion 

formulations of EFV. The standard curve produced an r2 value of 0.99 showing a 

good linearity across the assay concentration range (Figure 4.3) 

 

 

Figure 4.3 Calibration curve for HPLC analysis of EFV. Standards were analysed 

using a 1:1 dilution ration from 20,000 ng/ml to 39 ng/ml, using a C18 column and 

flow rate of 1 mL/min. 
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4.3.3 Assessment of Transcellular Permeability of LPV Aqueous Solution and 

LPV Nanoemulsion in the Apical to Basolateral Direction 

For apparent permeability (Papp, apical to basolateral direction; modelling intestine 

to systemic circulation) there was a significantly greater permeability seen for the 

nanoemulsion formulation of LPV at both 1 hour and 2 hour time points, with Papp 

values of 1 x 10-4 vs. 8.4 x 10-6  (p = <0.05) at 1 hour and 6.4 x 10-5 vs. 2.7 x 10-6  (p 

= <0.05) at 2 hours  (Figure 4.4). At 24 hours there was a Papp value for the LPV 

nanoemulsion of 1.8 x 10-6, compared with a Papp of for LPV aqueous solution of 

4.6 x 10-6 although this was not significant (p =0.18) (Figure 4.4). 

 

 

Figure 4.4 Apparent permeability of aqueous (blue) and nanoemulsion (red) 
formulations of LPV in the direction of apical to basolateral. Samples were 
incubated for 1, 2 or 24 hours at a concentration of 10 µM LPV, added to the apical 
chamber. The full volume of media was taken from each chamber, for subsequent 
HPLC analysis. Data expressed as +/- standard deviation, N=4. 
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4.3.4 Assessment of Transcellular Permeability of LPV Aqueous Solution and 

LPV Nanoemulsion in the Basolateral to Apical Direction  

The apparent permeability (Papp, basolateral to apical direction; systemic circulation 

to intestine) was significantly greater for the nanoemulsion formulation of LPV at 

the 1 hour time point, with a Papp value of 6.1 x 10-5 compared with 9.3 x 10-6 for 

LPV aqueous solution (p = <0.05) (Figure 4.5). This correlated with the Papp values 

observed in the apical to basolateral direction, suggesting that the nanoemulsion 

formulation was able to permeate the caco-2 monolayer to a much greater degree 

than the aqueous formulation, regardless of the direction across the monolayer. 

 

There was no difference in Papp observed at 2 hours between the LPV 

nanoemulsion and LPV aqueous solution with values of 6.0 x 10-6 and 1.3 x 10-5 (p = 

0.11). At the final 24-hour time point the Papp values showed a significantly higher 

B-A permeability for LPV aqueous solution 5.1 x 10-6 compared to 3.5 x 10-6 for 

LPV nanoemulsion (p = < 0.05) (Figure 4.5). 
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Figure 4.5 Apparent permeability of aqueous (blue) and nanoemulsion (red) 
formulations of LPV in the direction of basolateral to apical. Samples were 
incubated for 1, 2 or 24 hours at a concentration of 10 µM LPV, added to the 
basolateral chamber. The full volume of media was taken from each chamber, for 
subsequent HPLC analysis. Data expressed as +/- standard deviation, N=4. 
 

4.3.5 Assessment of Transcellular Permeability of EFV Aqueous Solution and 

EFV Nanoemulsion in the Apical to Basolateral Direction  

The Papp value for EFV nanoemulsion at the 1-hour time point was 6.5 x 10-6 

compared with 1.7 x 10-5 for the EFV aqueous solution, which showed no significant 

difference (p = 0.20). For the 2 hour time point, the aqueous solution of EFV had a 

significantly lower apparent permeability of 8.2 x 10-6 compared to 1.1 x 10-5 for 

EFV nanoemulsion (p = <0.05), and the same was observed at the 24 hour time point 

with EFV aqueous solution having a Papp of 7.0 x 10-7 compared with 6.4 x 10-6 for 

EFV nanoemulsion (p = <0.05) (Figure 4.6). 
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Figure 4.6 Apparent permeability of aqueous (blue) and nanoemulsion (red) 
formulations of EFV in the direction of apical to basolateral. Samples were 
incubated for 1, 2 or 24 hours at a concentration of 10 µM EFV, added to the apical 
chamber. The full volume of media was taken from each chamber, for subsequent 
HPLC analysis. Data expressed as +/- standard deviation, N=4. 
 

 

4.3.6 Assessment of Transcellular Permeability of EFV Aqueous Solution and 

LPV Nanoemulsion in the Basolateral to Apical Direction  

At the 1-hour time point the EFV aqueous solution had a Papp of 2.4 x 10-5 which 

was significantly greater than the Papp of EFV nanoemulsion at 4.2 x 10-6 (p = 

<0.05). At 2 hours the EFV aqueous solution was again significantly greater than 

EFV nanoemulsion with Papp values of 2.6 x 10-5 and 1.2 x 10-5 respectively (p = 

<0.05). At the final 24-hour time point, the EFV nanoemulsion was shown to be 

significantly higher when compared to the EFV aqueous solution with Papp values 

of 8.5 x 10-6 and 8.4 x 10-7 respectively (p = <0.05) (Figure 4.7). 



Chapter!4!
!

!147!

 

Figure 4.7 Apparent permeability of aqueous (blue) and nanoemulsion (red) 
formulations of EFV in the direction of basolateral to apical. Samples were 
incubated for 1, 2 or 24 hours at a concentration of 10 µM EFV, added to the 
basolateral chamber. The full volume of media was taken from each chamber, for 
subsequent HPLC analysis. Data expressed as +/- standard deviation, N=4. 
 

4.3.7 Monitoring the Apical and Basolateral Concentrations of Transcellular 

Permeability Studies 

10 µM EFV or LPV (aqueous or nanoemulsion) was added to either the apical or 

basolateral chambers of a transwell plate and then samples taken from both apical 

and basolateral chambers, regardless to which one the drug had been added. As 

detailed, in Figures 4.8 to 4.11, when drug was added to the apical chamber of the 

transwell plate, there was a gradual reduction in concentration of drug as it 

permeated into the basolateral chamber, regardless of the formulation of the drug.  
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Figure 4.8 Change in apical (blue) and basolateral (red) aqueous LPV concentration 
measured over the 24-hour period of permeability assay. 10 µM of LPV was added 
to the apical 
chamber.

 
Figure 4.9 Change in apical (blue) and basolateral (red) nanoemulsion LPV 
concentration measured over the 24-hour period of permeability assay. 10 µM of 
LPV was added to the apical chamber. 
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Figure 4.10 Change in apical (blue) and basolateral (red) aqueous EFV concentration 
measured over the 24-hour period of permeability assay. 10 µM of EFV was added 
to the apical chamber. 
 

 

Figure 4.11 Change in apical (blue) and basolateral (red) nanoemulsion EFV 
concentration measured over the 24-hour period of permeability assay. 10 µM of 
EFV was added to the apical chamber. 
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The same was seen when drug was added to the basolateral chamber, again 

regardless of the formulation of the drug (Figures 4.12 to 4.15). Interestingly, when 

aqueous EFV was added to the basolateral chamber, the concentrations in both of the 

chambers did reach equilibrium (Figure 4.14). 
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Figure 4.12 Change in apical (blue) and basolateral (red) aqueous LPV concentration 
measured over the 24-hour period of permeability assay. 10 µM of LPV was added 
to the basolateral chamber. 
 

 
Figure 4.13 Change in apical (blue) and basolateral (red) nanoemulsion LPV 
concentration measured over the 24-hour period of permeability assay. 10 µM of 
LPV was added to the basolateral chamber. 
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Figure 4.14 Change in apical (blue) and basolateral (red) aqueous EFV concentration 
measured over the 24-hour period of permeability assay. 10 µM of EFV was added 
to the basolateral chamber. 
 

 

Figure 4.15 Change in apical (blue) and basolateral (red) nanoemulsion EFV 
concentration measured over the 24-hour period of permeability assay. 10 µM of 
LPV was added to the basolateral chamber. 
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4.3.8 Cellular Accumulation in Caco-2 Cells 

In Caco-2 cell experiments, there was no difference in cellular accumulation ratio 

(CAR) seen between the aqueous EFV solution and EFV nanoemulsion after both 4 

and 24-hour incubations. Reported CAR values at 4 hours were 1.1 for aqueous 

solution and 6.4 for nanoemulsion (p = 0.89), while at 24 hours the CAR values 

were 1.1 for both aqueous and nanoemulsion EFV (p = 0.41) (Figure 4.16).  

 

4.3.9 Cellular Accumulation of EFV in HepG2 Cells 

There was a difference observed between aqueous EFV solution and EFV 

nanoemulsion after 4-hour incubation in HepG2 cells, with CAR values of 4.6 and 

0.8 respectively. However this could only be viewed as borderline significant as the 

p value was p = 0.053. At 24 hours there was again no difference observed, with 

CAR values of 0.8 for EFV aqueous solution and 1.6 for EFV nanoemulsion (p = 

0.09). There was a significant increase in CAR observed between the EFV aqueous 

solution at 4 and 24 hours (p = 0.02) (Figure 4.16). 
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Figure 4.16 Cellular Accumulation Ratio (CAR) of both Aqueous (blue) and 

nanoemulsion (red) formula of EFV in Caco-2 cells (top) and HepG2 cells (bottom). 

1 million cells per well, in a 24 well plate, were incubated with a final concentration 

of 10 µM drug. Sample concentrations were derived by HPLC analysis Data is 

shown as +/- standard deviation of N=3. 
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4.3.10 Cellular Accumulation of EFV in Raji-B Cells 

Cellular accumulation in Raji B cells showed that there was no difference between 

the EFV aqueous solution and the EFV nanoemulsion (p = 0.10) (Figure 4.17).  

 

4.3.11 Cellular Accumulation of EFV in CEM Cells 

Cellular accumulation in CEM cells showed that there was no difference between 

the EFV aqueous solution and the EFV nanoemulsion (p = 0.70) (Figure 4.17).  
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Figure 4.17 Cellular accumulation ratios of 10 µM aqueous (blue) and nanoemulsion 

(red) formulations of EFV in Raji-B cells (top) and CEM cells (bottom). All samples 

were taken at 4-hour time point. 1 million cells per well, in a 24 well plate, were 

incubated with a final concentration of 10 µM drug. Sample concentrations were 

derived by HPLC analysis Data is shown as +/- standard deviation of N=3. 
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4.4 Discussion 

The Papp data for aqueous and nanoemulsion LPV initially showed that the apical to 

basolateral permeation was improved for the nanoemulsion at the 1-hour time point. 

However it is also observed that the permeation in the opposite direction, that is 

basolateral to apical, is also much higher than the aqueous value. LPV is a known p-

gp substrate [399], which would make it likely to undergo efflux back out of the 

Caco-2 cells in the B-A direction. However, the conditions of the transwell assay 

system do not ideally match those that would be found in an animal model or indeed 

the human body, as the drug would not accumulate and build up in the basolateral 

compartment, instead being carried away by the systemic circulation. Additionally 

caco-2 cells do not form as tight monolayers as those found in vivo, which has been 

cited as a source for the underestimation of compounds that permeate via 

paracellular routes, as opposed to transport [400]. For this reason it is very 

promising that the large increase in permeation in the A-B direction at 1 hour would 

likely result in more drug crossing the intestinal barrier. 

 

The data for the 2-hour time point again showed there was an increase in the 

permeation from apical to basolateral for the nanoemulsion compared to the aqueous 

solution of LPV. However, in this instance the same increase in the basolateral to 

apical direction was not observed, suggestive that the permeation of LPV 

nanoemulsions is superior to LPV aqueous solution. 
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The difference in permeation between the aqueous and nanoemulsion formulations 

could suggest that the drug is being transported across the monolayer by different 

mechanisms. As the nanoemulsion would be unlikely to be transported across the 

monolayer via transport proteins, it would infer that the nanoemulsion droplets 

permeate across the monolayer via paracellular transport, which has been seen in 

previous studies of nanoparticle permeation [401-404]. This could also explain why 

there is such a large increase in B-A permeation of the nanoemulsion over the 

aqueous, as the formulation allows for the movement of drug between the small gaps 

in the monolayer as it is entrapped within the emulsion droplet. A possible 

explanation for the reduction in B-A permeation at 2 hours as compared with at 1 

hour for the nanoemulsion could be that the nanoemulsions have begun to aggregate 

and can no longer pass through the monolayer via paracellular means.  

 

By the 24-hour time point, the amount of permeation from A-B and B-A had 

reached similar levels for both aqueous and nanoemulsion LPV. This could have 

been due to the nanoemulsion formulation no longer holding the LPV within the oil 

droplet, due to the LPV leaching out and entering into the aqueous environment. 

This would be in contrast to studies which have shown a sustained and slow release 

of drug from within an oil-in-water nanoemulsion [405, 406], but it would be in 

agreement with a study by Bali et al in which oil-in-water nanoemulsions released 

>60% of loaded drug within 1 hour [407].  It would not be expected that the 

nanoemulsion had broken down and thus released its payload due to the data 

observed in Chapter 3 showing that the nanoemulsions remained stable for in excess 
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of 2 years when dispersed into water, and at least 3 months when dispersed into cell 

culture medium, as used in the permeation studies.  

  

The data for nanoemulsion EFV permeation was initially less promising, as after 1 

hour there was no increase observed in apparent permeability. However after both 2 

and 24 hours, the EFV nanoemulsion had significantly increased permeability. At 1 

and 2 hours the B-A permeability of EFV aqueous solution was increased compared 

to EFV nanoemulsion, but again it should be noted that in a static system like the 

transwell assay, B-A permeability is a less useful measure than A-B. It is still 

promising to see a reduction in B-A permeability. Another issue of the Caco-2 

transwell system is that Caco-2 cells do not express cytochrome P450 2B6 [408, 

409], and as this is the main route of metabolism for EFV, there will be an 

underestimation as to the protective effects that having the drug within the emulsion 

droplet could have, if it is protected from metabolism. It should also be noted that 

EFV already shows good intestinal permeability, as it has class 2 status with the 

FDA (poor solubility, high intestinal permeability) [410, 411], so to have seen 

further improvements suggests the nanoemulsion formulation has inherently good 

permeability characteristics. 
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The role of efflux transporter p-gp (ABCB1, MRP1) is not fully understood for 

EFV, in a study by Janneh et al it was shown that EFV was not a substrate for p-gp, 

as accumulation was not affected by p-gp [412]. However, other studies have 

presented conflicting results [413-416], and as such it is hard to put the results for B-

A permeability for EFV into context with the transport proteins that would be 

present in the assay. 

 

The benefit of the nanoemulsion formulation was shown in that it could be directly 

diluted into aqueous culture media and used in the assay, without need for prior 

dissolution into a solvent. This could be highly attractive for making more tolerable 

and safe oral formulations that are easily dose adjustable, especially as in a 

paediatric setting where the use of solvents such as ethanol is a concern [393], and 

where there is limited availability to appropriate dosage forms and unknown 

bioavailability [377, 417, 418].  

 

Monitoring the concentration between the apical and basolateral chambers when one 

or the other was given media with aqueous or nanoemulsion EFV at 10 µM, showed 

that the drug was able to permeate through the monolayer and that the 

concentrations reached equilibrium between the two chambers. Where the final 24 

hour time point showed a slight deviation from equal concentrations in both 

chambers, this could be attributed to the concentration of drug that could have been 

accumulated within the caco-2 cells in the monolayer, or potentially interacting with 
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the membrane of the transwells if the nanoemulsions had aggregated and prevented 

the total release of the encapsulated drug. 

 

Accumulation of EFV in HepG2 cells and Caco-2 cells showed a small difference 

only at the 4 hour time point in HepG2, suggesting that the ability of the 

nanoemulsion formulation to accumulate into cells is at least as good as the aqueous 

solution. Taken one way, these data suggested that there had been no increase in the 

pharmacological properties of EFV as a nanoemulsion formulation. However, it 

must be remembered that in order to achieve the equivalent concentrations of 10 µM 

of LPV and EFV, the aqueous powders were initially dissolved in solvent and then 

diluted to the appropriate concentration, whereas the nanoemulsion was dispersed in 

an aqueous phase of water. This is due to the very low aqueous solubility attributed 

to EFV powder, at approximately 4 µg/ml [419] and LPV is practically insoluble in 

water [420]. This opens up the possibility of being able to formulate EFV into a 

liquid solution that does not require an undesirable solvent, such as ethanol [393]. 

Again, this would be particularly beneficial in paediatric settings, especially 

considering that 90% of HIV positive children are found in developing countries 

[419] and these countries do not have access to adequate dosage formulations for 

children or in those patients that find it difficult to swallow tablets [377]. Having an 

appropriate adjustable dosage would remove the need to cut up or crush tablets, 

which has been shown to affect dosage accuracy [421, 422]. 
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This ability to disperse the EFV in oil-in-water nanoemulsions is due to the highly 

lipophilic nature of the drug (LogP 3.89 as determined by ALOGPS [423]) and that 

the stock solution of the drug can be made by directly dissolving into the castor oil, 

which makes up the oil phase of the nanoemulsion. The logP of a compound refers 

to the ratio of that compound in the aqueous or oil phase of a mixture of two 

immiscible liquids. 

Castor oil is made up of long chain triglycerides, of which 90% are ricinoleate [339], 

and as such provides an ideal environment to obtain high dissolution and loading of 

highly lipophilic drugs such as EFV. The maximum concentration of EFV in the oil 

phase of the nanoemulsion was 50 mg/ ml and for LPV it was 25 mg/ml, which 

correlates with other studies in the literature in which castor oil based nanoparticles 

have been used to achieve delivery vehicles with good drug loading [424-426]. 

 

The nanoemulsion accumulating to a lesser degree after 4 hours incubation in 

HepG2 cells is potentially a beneficial outcome, considering that HepG2 cells are a 

human hepatic cell line, and it is in the liver where the majority of the first pass 

metabolism of EFV occurs by cytochrome P450s and in particular the 2B6 isoform 

[427, 428]. These metabolites are ineffective against HIV [429, 430] and thus 

preventing or delaying metabolism is key to prolonging the circulation of the active 

drug. 
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Reducing the amount of drug that accumulates in hepatic tissue would potentially 

result in an increased circulation time of the drug, due to the fact it is evading 

metabolism for longer. However, these data are for HepG2 cell lines only, which are 

not a like-for-like environment that would be found within the liver itself, 

particularly when it comes to the expression levels of the important metabolic 

enzymes as shown in previous studies that compared levels of expression of 

important metabolic genes between human liver and HepG2 cells [431-433]. A 

further study by Guo et al showed that HepG2 cells did not express CYP2B6 or the 

expression of CYP2B6 was lower than could be detected [434]. 

 

As with the HepG2 and Caco-2 data, when accumulation studies were performed in 

the immune cell lines CEM and Raji-B there was no significant difference observed 

in the accumulation ratios between the aqueous and nanoemulsion formulations. 

 

EFV binds readily to proteins, with data suggesting that it can be  >97% protein 

bound in the systemic circulation [435], so it is possible that the EFV could also 

interact with the hydrophilic poly ethylene glycol chains which stabilise the 

nanoemulsion droplets. This could potentially be investigated by the use of 

Isothermal Titration Calorimetric analysis, which would give a clearer answer as to 

whether the polymer and drug molecules could interact [436]. Another hypothesis 

would be that the nanoemulsion droplets interact with, and again possibly bind to the 

surface of the cells being used in the assay. With the cell surface covered, either 
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partially or completely, then the ability of EFV to enter into the cell via passive 

diffusion would be reduced.   

 

In summary the data presented here has shown that the nanoemulsions are able to 

accumulate and permeate at least as well as the standard aqueous solutions of EFV 

and LPV. This is particularly promising, as the nanoemulsion formulations require 

no addition of solvent to achieve the appropriate concentrations. 
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Assessment of Antiviral Activity of Optimised Oil-in-

Water Nanoemulsion (E65) Against HIV-1 IIIB 
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5.1 Introduction 

Nanomaterials have the potential to improve the activity of certain drugs, primarily 

by improving their bioavailability, targeting to diseased cells, or interacting with 

targets. A number of examples have already been reported in the literature [437-441] 

and many are in use clinically at present with more in development. In the case of 

the antiretroviral drugs EFV and LPV, their primary site of action is located inside 

cells infected with HIV as they target the HIV reverse transcriptase and protease 

respectively [245, 442]. This is also the case for a number of other therapies that 

have intracellular targets or mode of action [443-445]. Therefore, by increasing the 

intracellular accumulation of the API in relevant target cells it may be possible to 

improve the activity of API without altering their inherent chemical structure.  

 

As highlighted in Chapter 1, EFV is a non-nucleoside reverse transcriptase inhibitor 

(NNRTI) and impacts HIV replication by inhibiting the viral reverse transcriptase 

enzyme [442]. This inhibition disrupts the formation of new copies of viral RNA 

being formed by binding to a distinct site away from the active site on the viral 

reverse transcriptase enzyme, and as a result new viral particles cannot be created 

[446]. LPV is a protease inhibitor [245] and works by inhibiting the viral protease 

enzyme, which is vital for the cleavage of the gag-pol polyprotein, which consists of 

the viral group antigens (gag) [447] and the viral reverse transcriptase enzyme (pol) 

[448]. Preventing the cleavage of the polyprotein results in the formation of 

immature viral particles that are non-infectious [449]. 
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As both of the drugs being used in this thesis have intracellular targets, it was vital 

for the nanoemulsion formulations to be able to either; permeate the drug molecules 

inside of the cell as an intact nanostructure and then be broken down to release the 

drug, or for the nanoemulsion to release the drug prior to entering the cell itself, 

allowing for the drug molecules to then enter the cells. This could occur as a result 

of the drug molecules leaching out of the emulsion droplets or from the emulsion 

droplets associating with the cellular membranes and then the drug diffusing out of 

the oil phase and into the cell. 

 

There are a number of methods available to assess in vitro the antiviral activity of a 

compound, including enzyme-linked immunosorbant assay (ELISA) for HIV p24 

antigen, MTT assay and real time polymerise chain reaction (RT-PCR) techniques. 

 

The method utilised in this Chapter was via MTT viability assay and was used due 

to its ability to determine the direct effect of the virus on cell viability, and not just 

to determine number of viral particles, as well as it being a higher throughput assay. 

Cells that become infected with the virus and are subsequently exposed to viral 

replication within them will become non viable and have metabolic dysfunction 

[450]. As the MTT assay is a measure of metabolic function, it is appropriate for the 

assessment of HIV impact of cellular viability.  The MTT assay has also been used 

previously in the literature to assess the antiviral activity of novel compounds 

targeting HIV [451]. 
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The aims of the work presented within this Chapter were to assess the viral activity 

of both LPV and EFV nanoemulsion formulations, and compare that activity with 

aqueous solutions of these agents. Cytotoxicity against MT4 cells was initially 

assessed in order to ensure no interference with antiviral activity assays. It was 

hypothesised that following on from the data presented for cellular accumulation in 

chapter 4, that there would be no increase in antiviral activity as a result of 

formulation into a nanoemulsion. 
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5.2 Materials and Methods 

5.2.1 Materials 

In addition to sections 2.21, 3.2.1, and 4.2, the following materials were purchased: 

HIV-1 IIIB was acquired from the National Institute of Biological Standards and 

Control (Potters Bar, UK) and MT4 human T-Cell leukaemia cell line was 

purchased from Public Health England General Cell Collection (Porton Down, UK). 

 

5.2.2 Containment Level 3 Protocols 

Containment Level 3 (CL3) safety and viral handling training was undertaken before 

commencement of viral activity assays and all associated work carried out in the 

CL3 laboratory in the Department of Molecular and Clinical Pharmacology. 

 

5.2.3 MT4 Cell Culture 

MT4 cells were cultured by seeding a starter culture vial of approximately 5 x 106 in 

a Nunc T25 flask, containing 10 ml of pre-warmed RPMI media supplemented with 

15% FBS. The FBS was sterile filtered before addition to media using 0.2 µm 

syringe filters. Cells were placed at 37°C in an atmosphere containing 5% CO2 

overnight. After this time, cell media was changed to remove residual DMSO from 

the starting culture vial by pelleting the cells at 2000 RPM for 5 minutes at 4°C, and 

re-suspended in fresh culture media containing 10% FBS. DMSO at a concentration 

of 10% had been used as a cryopreserving agent whilst cells were stored at -80°C. 
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5.2.4 MT4 Cell Passage 

The cell suspension was transferred from culture flasks into 50 ml falcon tubes and 

centrifuged for 5 minutes at 2000 RPM in order to pellet cells. Media was aspirated 

and fresh complete culture media used to re-suspend the cell pellet. The cell 

suspension was then transferred to fresh culture flasks at a 1 in 4 ratio, such that 

cells would continue to divide and grow. Cells were passaged in this way every 3 

days or sooner depending on indicators from media (phenol red). Cells were counted 

in the same way as described in section 2.2.8. 

 

5.2.5 Viral Replication and Isolation 

The lab adapted HIV-1 IIIB strain was added to CD4+ MT4 cells in T-75 cell 

culture flasks containing 20 mL of pre-warmed RPMI cell culture media, 

supplemented with 10% sterile filtered FBS. HIV-1 IIIB replicates within the MT4 

cells before budding out into the culture media. Viral particles were extracted and 

frozen at -80°C for future use. The multiplicity of infection (MOI) for the virus was 

0.01.  

 

5.2.6 MTT Cytotoxicity Assay 

Cytotoxicity of EFV and LPV nanoemulsion and aqueous solutions was assessed 

using MTT assay as described in section 3.2.7 
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5.2.7 Assessing the Activity of Aqueous solution and Nanoemulsion 

Antiretrovirals Against HIV-1 IIIB 

1 vial of HIV-1 IIIB per 1 x 106 MT4 cells suspended in cell culture medium was 

defrosted and added to MT4 cells in a 50 ml falcon tube. This was centrifuged for 90 

minutes at 5000 rpm and 4°C such that the viral particles were able to be in 

proximity to the MT4 cells and encourage infection of those cells. The supernatant 

was discarded and the cell-virus pellet re-suspended in fresh culture media to give a 

concentration of 20,000 cells per 80 µL.  

 

80 µL of cell and virus suspension was plated into individual wells of a 96 well cell 

culture plate. To this, 20 µL of a 5x concentrated stock solution of candidate drug 

(aqueous solution or nanoemulsion formulations) was added, giving a final maximal 

concentration of 10 µM, reducing in a 1:1 dilution series to 0.00512 nM. Negative 

controls consisted of wells containing only cells and media, whereas positive 

controls consisted of wells containing cells, media and HIV-1 IIIB without the 

antiretroviral drug. Plates were incubated for 5 days at 37°C and 5% CO2. Activity 

of both aqueous and nanoformulations against HIV-1 IIIB was determined by 

quantifying the amount of live cells in each condition by means of an MTT cell 

viability assay. Concentrations of LPV and EFV used were below that which 

showed cytotoxicity, ensuring that any observed cell death was due solely to HIV 

infection. 
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The assay worked on the principle that cellular viability could be used as a proxy for 

viral activity of the aqueous and nanoemulsion formulations. Using the MTT assay 

to determine cellular viability as previously described in chapters 2 and 3, it was 

possible to quantify an IC50 value for both LPV and EFV. Higher levels of cellular 

metabolism would be indicative of increased cell viability, which in turn would 

suggest that there had been an increase in viral kill 

 

5.2.8 Data Analysis 

Data were analysed using a non-linear regression curve fit model to generate dose 

response graphs using Prism for Macintosh computers version 6. Statistical analysis 

was performed using SPSS version 21 for Macintosh computers. Where data were 

normally distributed an independent samples t-test was performed to obtain p values. 

Where data were non normally distributed a non-parametric Mann-Whitney U test 

was performed. P values are stated throughout. 
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5.3 Results 

5.3.1 LPV Cellular Cytotoxicity 

The data showed that both aqueous solution and nanoemulsion LPV exhibited no 

cytotoxicity towards MT4 cells at the concentrations used in the assay, as shown by 

the lack of convergence of sigmoidal dose response curves in Figure 5.1. Analysis of 

the data was unable to produce an IC50 value at this concentration range (10 - 5 x 10-

6 µM), confirming that at the highest concentration used for the activity assay there 

would be no skewing of the data due to a cytotoxic effect of either the aqueous 

solutions or nanoformulations.  
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Figure 5.1 Metabolic activity of 100,000 MT4 cells per well in a 96 well plate. Cells 

were exposed to a concentration range of aqueous (circles) and nanoemulsion 

(squares) LPV after 24 hours incubation (A) and 5 days incubation (B).  Data 

represented as +/- standard deviation, N=4. As a proxy for cellular viability. 
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5.3.2 EFV Cellular Cytotoxicity  

As with the LPV samples, the data for EFV showed that both aqueous and 

nanoemulsion formulations exhibited no cytotoxicity towards MT4 cells except for 

at the highest concentration used in the assay, as shown by the lack of convergence 

of sigmoidal dose response curves in Figure 5.2. Analysis of the data was unable to 

produce an IC50 value at this concentration range (10 - 5 x 10-6 µM), suggesting that 

at the highest concentration used for the activity assay there would potentially be a 

loss in viability due to the concentration of the drug as opposed to the virus, but at 

all other concentrations in the activity assay this would not be the case. 
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Figure 5.2 Metabolic activity of 100,000 MT4 cells per well in a 96 well plate. Cells 

were exposed to a concentration range of aqueous (circles) and nanoemulsion 

(squares) EFV after 24 hours incubation (A) and 5 days incubation (B).  Data 

represented as +/- standard deviation, N=4. As a proxy for cellular viability. 
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5.3.3 Antiviral Activity of LPV 

The antiviral activity of aqueous LPV was slightly lower than that of the 

nanoemulsion LPV with IC50 values of 0.9 µM and 1.1 µM, respectively. Figure 3 

shows the % viral kill of both aqueous and nanoemulsion LPV, and it was seen that 

the activity of both formulations were equal, despite the small difference observed in 

overall IC50 values. 
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Figure 5.3 Antiviral activity of aqueous LPV (circles) and nanoemulsion LPV 

(squares) after 5 days incubation with MT4 cells and HIV-1 IIIB. Viral kill was 

derived by using MTT assay to quantify the metabolic activity of the MT4 cells, 

using this a proxy of cellular viability. Increased viability indicated an increased 

viral kill, as compared to control untreated MT4 cells, exposed only to HIV-1 IIIB.  

Data expressed as +/- standard deviation, N=8. 
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5.3.4 Antiviral Activity of EFV 

The antiviral activity of aqueous EFV solution and EFV nanoemulsion was identical 

with IC50 value of 0.6. Figure 4 shows the % viral kill of both aqueous EFV solution 

and EFV nanoemulsion, and it was again seen that the activity of both formulations 

were equipotent despite the small difference observed in overall IC50 values. 
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Figure 5.4 Antiviral activity of aqueous EFV (circles) and nanoemulsion EFV 

(squares) after 5 days incubation with MT4 cells and HIV-1 IIIB. Viral kill was 

derived by using MTT assay to quantify the metabolic activity of the MT4 cells, 

using this a proxy of cellular viability. Increased viability indicated an increased 

viral kill, as compared to control untreated MT4 cells, exposed only to HIV-1 IIIB.  

Data expressed as +/- standard deviation, N=8. 
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5.3.5 Antiviral Activity of Unloaded Nanoemulsion 

As the data in Figure 5 shows, when unloaded nanoemulsion was incubated with 

MT4 cells and HIV-1 there was no antiviral activity observed. This confirms the 

nanoemulsion delivery vehicle itself had no inherent antiviral properties, and the 

activity seen in 5.3.4 and 5.3.3 was due to the entrapped LPV and EFV. 
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Figure 5.5 Antiviral activity of unloaded nanoemulsion after 5 days incubation with 

MT4 cells and HIV-1 IIIB. Viral kill was derived by using MTT assay to quantify 

the metabolic activity of the MT4 cells, using this a proxy of cellular viability. 

Increased viability indicated an increased viral kill, as compared to control untreated 

MT4 cells, exposed only to HIV-1 IIIB.  Data expressed as +/- standard deviation, 

N=4. 
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5.3.6 Statistical Summary of Antiviral Activity 

 

Table 5.1 Summary of IC50 values for all formulations tested 

Formulation IC50 (µM, +/- SD) 

Aqueous LPV 0.9 (+/- 0.32) 

Nanoemulsion LPV 1.1 (+/- 0.59) 

Aqueous EFV 0.6 (+/- 0.01) 

Nanoemulsion EFV 0.6 (+/- 0.22) 

 

 

Statistical analysis showed that there was no difference between the IC50 of LPV 

aqueous solution and LPV nanoemulsion with values of 0.9 µM and 1.1 µM 

respectively, (p= 0.4). The same was seen for EFV aqueous solution and EFV 

nanoemulsion with a value of 0.6 µM for both (p= 0.1) (Figure 5.6). 
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Figure 5.6 Summary of IC50 values for viral kill of HIV-1 IIIB after exposure to EFV 

and LPV aqueous solutions and nanoemulsions. Viral kill was derived by using 

MTT assay to quantify the metabolic activity of the MT4 cells, using this a proxy of 

cellular viability. Increased viability indicated an increased viral kill, as compared to 

control untreated MT4 cells, exposed only to HIV-1 IIIB. Data is represented as +/- 

standard deviation N=8. 
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5.4 Discussion 

The data for cytotoxicity showed that both the LPV aqueous solution and LPV 

nanoemulsion formulations had no cytotoxic effect towards the MT4 cells after 5 

days, this is in agreement with the data presented in Chapter 3, in which both 

showed no cytotoxicity towards a range of human cell lines. There was a cytotoxic 

effect seen for both EFV aqueous solution and EFV nanoemulsion at the highest 

concentration used, but again, no IC50 value was determined at the concentration 

range used, so in order to determine an IC50 value for cytotoxicity an increased range 

of drug concentrations would be needed. This was however not necessary in this 

study, as only the highest concentration of drug used for the activity testing showed 

a slight cytotoxicity, and as such it reassures that the activity data was not overtly 

skewed by the loss of MT4 cells due to overt cellular cytotoxicity, although this 

doesn’t necessarily mean that the materials are not cytotoxic at higher 

concentrations.  

 

The data for viral activity was very promising as it showed that the nanoemulsion 

formulations had equal activity against the laboratory strain HIV-1 IIIB. This was 

highly suggestive that the incorporation of antiviral drugs into nanoemulsion 

formulations would not have a detrimental effect on the effectiveness of those drugs, 

at least in the case for drugs whose targets lie within the cell. As equal activity was 

shown for both LPV and EFV, this inferred that the formulation of the drugs into a 

nanoemulsion did not affect the activity, despite LPV and EFV having different 
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target sites and modes of action. Nanoemulsions have previously been reported as 

having controlled drug release profiles [405, 452-454].  

 

There are no literature reports that show nanoemulsions as enhancing the 

antiretroviral activity of HIV drugs. There are however reports on polymer based 

nanoformulations. Work by das Neves et al has shown that dapivirine (also known 

as TMC120) when formulated into poly(epsilon-caprolactone) based nanoparticles 

has an increase antiviral activity. The increase in antiviral activity correlated with 

increased intracellular accumulation [455]. In other work by Balkundi et al it was 

shown that nanoformulations of EFV, indinavir (IDV), RTV, and atazanavir (ATV) 

produced by wet milling techniques had varying antiretroviral activities. This 

variance correlated with the drug being used, and potentially due to the milling 

technique used, as the drug would be a core part of the nanoparticle structure [456].  

 

The data for the unloaded nanoemulsion droplets showed there was no antiviral 

effect and as such the activity of the nanoemulsion formulations of EFV and LPV 

was solely due to the drug molecules. This would also explain why there was no 

increase in activity shown when the drugs were in nanoemulsion form and also 

supports the hypothesis that the drug molecules were prevented from leaving the 

emulsion droplet. It was not possible from this data however to determine when the 

drug molecules left the nanoemulsion droplets, or how they left, be it by leaching or 

breakdown of the entire nanoemulsion. It was also not possible to determine if any 

intact nanoemulsions, or constituents of those nanoemulsions (polymer, initiator, oil) 
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had entered into the cells. This could be explored further in the future by the 

incorporation of radioisotope tracer to the constituent parts of the nanoemulsions. 

 

In summary, the nanoemulsions produced in this thesis have been shown to have 

equal activity against HIV-1 IIIB. Added to the findings in the previous Chapter 4, 

suggest that the nanoemulsion formulation is a valid vehicle for the delivery of 

ARVs and does not affect the antiviral activity. The data presented in Chapter 6 will 

finally explore the safety of these nanoemulsion formulations in respect to the 

human immune system. 
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6.1 Introduction 

Chapters 2 and 3 provided evidence to demonstrate that the formulated 

nanoemulsions are stable and have good, reproducible, physicochemical 

characteristics. Additionally, there was no overt cytotoxicity of either the unloaded 

nanoemulsion or the drug-loaded nanoemulsions in the cells assessed. However, it is 

possible that nanoemulsions, and nanoparticles in general, may have other 

deleterious effects. The aim of this Chapter was to investigate the interaction of 

these nanoemulsions with human immunological and haematological systems using 

in vitro and ex vivo assays that have been shown to have good correlation with in 

vivo effects [457]. There is an increasing body of evidence of these kinds of 

interactions by nanoparticles and suggestions that their investigation should form a 

part of any preclinical assessment of novel nanomaterials.  

 

Currently there is a relative lack of guidance on the preclinical assessment of 

nanomaterials compared to small molecules and biotherapuetics. The view of the 

regulatory agencies is generally that each new material should be investigated on a 

case-by-case basis [458-460]. Additionally, due to their inherent physicochemical 

properties, many nanomaterials can directly interfere with the assays being used to 

assess them [461, 462]. The heterogeneity of nanomaterials being produced is 

perhaps the biggest advantage and disadvantage of the field. Whilst nanomaterials 

can be engineered to produce a number of desired effects, this heterogeneity makes 

determining structure-activity relationships difficult. Additionally, differences in 

experimental approach and the relative lack of reporting negative effects of 
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nanomaterials makes their safety/compatibility assessment challenging. In 2008 a 

workshop was held at the National Cancer Institute, USA,  in an effort to begin to 

address these challenges, with the recommendations being published by 

Dobrovolskaia et al [463]. 

 

For the purposes of this Chapter, immunotoxicity will be used as a term not only for 

direct cytotoxicity of nanomaterials to cells of the immune system, but also their 

impact on immune function. There have been a number of cases reported in the 

literature where apparent immunotoxicity of nanomaterials has been shown to be 

caused by chemical or biological contaminants in the samples used rather than the 

material itself [464]. Biological contamination may come from endotoxin 

(lipopolysaccharide; LPS), mycoplasma or bacteria. Endotoxin can be present in a 

material and not cause any problems, but there have been cases in the literature in 

which endotoxin was detected alongside nanomaterials at levels that usually cause 

no response, but the presence of the nanomaterial exacerbated the effects [465]. The 

presence of these contaminants must be screened for, as there is the potential hazard 

to health, as well as published guidelines on the amount of endotoxin that can be 

present in administered materials. Currently the accepted levels are set at 5 

endotoxin units (EU) per kg for any route of administration and 0.2 EU/kg for 

intrathecal, as stipulated in the US Pharmacopeia. For reference, the current 

endotoxin limit for pure water is 0.25 EU/kg.  Additionally, these biological 

contaminants can provide potential false positive results in immunological assays 
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[462, 466] and it is therefore important to measure contamination prior to studies of 

immune interference. 

 

In this Chapter the interaction of nanoemulsions with various immunological and 

haematological targets was investigated. The choice of these targets is based on the 

disease context i.e. HIV infection as well as evidence from the literature on previous 

undesirable interactions.  

 

Macrophages are a very important component of the immune system in regards to 

HIV therapy, as they are sites for infection and sanctuary for the HIV particles [467], 

allowing continual replication with sub-optimal concentrations of current therapeutic 

agents [468, 469]. Macrophages can be split into two types; M1 macrophages [470] 

that are usually responsible for the engulfing and subsequent removal of cellular 

debris and pathogenic materials; and M2 macrophages [471] that are used in cellular 

repair [472]. It is important to assess any interaction with macrophages due to their 

vital role in maintaining host defence mechanisms. Macrophages also have the 

potential to alter the biodistribution of nanoparticle-based delivery systems as they 

may engulf the particles and transfer them elsewhere [473], including routing them 

to the lymph nodes. The lymph nodes are heavily populated with T cells and as such 

exposure to macrophages may increase nanoparticle exposure to T cells via the 

lymphatic system. 
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For immunotoxicity, T-cells are also important due to their role in the immune 

response. T helper cells [474] are responsible for the activation of the immune 

response after being presented with an antigen. T helper cells can secrete cytokines 

[475], which can then go on to activate other immune cells including cytotoxic 

CD8+ T cells [476]. After activation T helper cells can differentiate into either type 

1 T Helper cells (Th1) or type 2 T Helper cells (Th2) [477], each with its own 

cytokine profile, allowing for the activation and regulation of distinct immune 

responses [478]. Previously nanoparticles have been shown to interact with and 

affect the differentiation and response of T cells after exposure [479-482]. 

 

CD8+ T cells are responsible for the destruction of virally infected cells, and as such 

play a vital role in the immune response [483, 484]. Assessments must be made on 

new nanomaterials to determine any interactions with CD8+ T cells, as any 

stimulating effect could lead to problems with autoimmune related conditions and an 

inhibitory effect could lead to compromised immune responses and a lack of 

protection towards infective entities, particularly in the case of a disease like HIV. 

This is particularly relevant for nanoemulsions as, depending on their route of 

administration, they may come directly into contact with immune cells in the blood 

as well as being taken up into the cells and having an intracellular effect.  In the 

context of HIV therapy, CD4+ T-cells are a desirable target for a nanoformulation 

due to the fact that HIV can reside within these cells, and drug penetration into these 

cells can be low for standard HIV drugs [468, 485, 486]. This highlights the 
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importance of this cellular target for immunotoxicity studies where an increased 

uptake of material needs to be balanced for desirability versus safety. 

 

Nanomaterials can also interact directly with red blood cells, particularly those 

formulations that are to be injected [487, 488]. This can cause haemolysis: the 

process in which red blood cells are damaged by biological or mechanical means 

[489], resulting in the leakage of haemoglobin into the blood stream and subsequent 

binding to haptoglobin [490]. It is therefore important to assess any interaction a 

nanomaterial may have on red blood cells, particularly as there is the chance for 

serious complications, such as anaemia, to arise [348, 460, 491, 492]. 

 

Aside from the destruction of red blood cells, nanomaterials should also be assessed 

for their propensity to induce or prevent coagulation of blood via clotting or in the 

formation of a thrombus; a mixture of red blood cells, platelets and fibrin [352]. 

Coagulation is essential not only for the prevention of bleeding in response to a 

wound, but it also plays a role in the immune response, specifically when pathogens 

are present in the blood stream [493]. Maintaining homeostasis between 

procoagulant and anticoagulant states is controlled by a combination of cells (such 

as platelets), blood proteins and the flow of blood itself, collectively known as 

Virchow’s triad [494]. Nanomaterials have the potential to interact at all stages of 

the coagulation system, and as such investigations into the effect of the 

nanoemulsion formulations on coagulation were essential to predict any potential 
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effects, particularly as nanoparticles have been previously shown to interact with 

blood coagulation [495-498]. 

 

Exposing a patient to a material that has shown an ability to induce clotting carries 

an inherent risk, but it would not necessarily signal the end of development for a 

formulation as if the effect on clotting was only small and well documented, then 

appropriate precautions and the administration of an anticoagulant may mitigate the 

risk. This would however only be a viable option if the benefits of that particular 

formulation outweighed the added risk.  

 

Natural killer (NK) cells are a type of lymphocyte that play a cytotoxic role in the 

body’s immune response to virally infected and cancerous cells [499-501], but they 

differ from cytotoxic CD8+ T cells in that they are involved in innate immunity and 

early defence [502]. NK cells are also involved in the secretion of cytokines when 

activated [503, 504], further adding to the immune response and in particular against 

viral infections. As such it was important to assess the effect nanomaterials may 

have on NK cells due to their vital role in viral suppression, as well as their ability to 

initiate further immune responses. 

 

The complement system, a part of the innate immune system, is an aid to antibodies 

and phagocytic cells, helping them to remove pathogens from the body [505]. In 

mammals there are around 30-40 proteins that have been associated with the 

complement system and they are found in the blood plasma, body fluids and 
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associated on surfaces [506]. A material that had the effect of activating the 

complement system would be undesirable because of the chance of activation 

leading to inflammatory and autoimmune reactions, and the recruitment of 

complement molecules to the nanomaterial may also lead to a decrease in the levels 

of complement in the systemic circulation and potential for pathogens to avoid the 

immune response. Activation of the complement system can also have a pro-

coagulant effect that may lead to clotting via disseminated intravascular 

coagulopathy [507]. There have been reports in the literature of nanomaterials that 

have activated the complement system [508-510]. 

 

The work presented in this Chapter aims to evaluate the safety of the nanoemulsion 

system with respect to the different areas of the immune system outlined previously. 

Nanoemulsions were compared with aqueous solutions of EFV in order to give a 

comparison with the currently approved pharmaceutical agent. It was hypothesised 

that the formulation of EFV into the nanoemulsion carrier would not have a 

significant impact on immunological safety, as compared to the aqueous solution of 

EFV. This would be due to the polymer stabilisers consisting of relatively inert poly 

PEG chains, which has been used in other forms previously, in pharmaceutical 

products. 

 

 

 

 



Chapter!6!
!

!196!

6.2 Materials and Methods 

In addition to sections 2.21, 3.2.1, 4.2, and 5.2.1 the following materials were 

purchased: 

Ficoll-Paque was purchased from Fisher Scientific (Loughborough, UK), Buffy 

coats were obtained from the National Health Service Blood and Transplant Special 

Health Authority (Liverpool, UK). FITC fluorescently labelled CD4 and CD8 

antibodies, APC fluorescently labelled CD44 and CD69 antibodies and PE 

fluorescently labelled CD25 and CD95 were all bought from Miltenyi Biotec GmbH 

(Bergisch Gladbach, Germany). Miltenyi also supplied MACSQuant® running 

buffer, MACSQuant® calibration beads, MACS separation beads (human CD8, 

CD56 and CD4), QuadroMACSTM magnetic separator, MACS LS separation 

columns, and human T-cell activation/expansion kit containing: Anti-Biotin 

MACSiBeadTM particles cell culture grade, human CD2-Biotin, human CD3-Biotin, 

and human CD28-Biotin. H3 thymidine was supplied by Moravek Biochemicals 

(California, USA). 

 

All reagents for cytokine secretion studies were supplied by Bio-Rad Laboratories 

LTD (Hemel Hempstead, UK) in the form of a Bio-Plex Pro kit, containing: coupled 

magnetic beads, detection antibodies (for IL-1b, IL-2, IL-6, IL-8 IL-10, TNF-α and 

IFN-γ), cytokine standards, standard diluent, sample diluent, assay buffer, wash 

buffer, detection antibody diluent, streptavidin-PE and a 96 well filter plate. Bio-

Plex calibration and validation kits, along with Bio-Plex sheath fluid were also 

purchased from Bio-Rad Laboratories LTD. 
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For NK cell studies, phosphate buffered saline, horse serum, fetal bovine serum, 

MEM alpha modification, RPMI-1640 and L-glutamine were purchased from GE 

Healthcare HyClone (Logan, USA), Myo-inositol and folic acid were purchased 

from Sigma-Aldrich (St Louis, USA), while 2-mercaptoethanol and trypan blue 

solution were bought from Invitrogen (Life Technologies, New York, USA). NK92 

cells were purchased from the American Tissue Culture Collection (ATCC) 

(Manassas, US). 

 

For LAL studies, sodium hydroxide and hydrochloric acid were bought from Sigma-

Aldrich (St Louis, USA) while control endotoxin standard, LAL reagent and LAL 

water were purchased from Associates of Cape Cod (East Falmouth, USA). 

 

6.2.1 Adherent Cell Culture 

As described in 2.2.8 

 

6.2.2 NK92 Cell Culture 

NK92 cells were cultured in Alpha Minimum Essential medium without 

ribonucleosides and deoxyribonucleosides but with 2 mM L-glutamine, 1.5 g/L 

sodium bicarbonate, 0.2 mM inositol, 0.1 mM 2-mercaptoethanol, 0.02 mM folic 

acid, 200 U/ml recombinant IL-2 and adjusted to a final concentration of 12.5% 

horse serum and 12.5% fetal bovine serum. Viability of NK92 following treatment 

with nanomaterials was assessed via trypan blue exclusion.  
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6.2.3 Suspension Cell Culture 

As described in 2.2.9 

 

6.2.4 Peripheral Blood Mononuclear Cell Isolation and Culture 

Peripheral Blood Mononuclear Cells (PBMCs) were isolated from buffy coats that 

had been separated from whole blood via Ficoll-Paque density centrifugation. Whole 

blood was layered on top of the Ficoll reagent in a 50 mL falcon tube at a ratio of 2 

parts blood to 1 part Ficoll. This was then centrifuged for 30 minutes at 2000 rpm 

and 4°C and importantly the brakes of the centrifuge were not applied, instead 

allowing the rotor to come to a natural stop so as to prevent disruption to the PBMC 

layer. The PBMC layer was present between the top layer of plasma and the bottom 

layer of red blood cells; PBMCs were carefully removing using a transfer pipette 

and placed into a 50 mL falcon tube. This was topped up with HBSS and further 

centrifuged for 5 minutes at 2000 rpm and 4°C in order to wash the cells. The 

supernatant was discarded and cell pellet re-suspended in fresh RPMI media 

supplemented with 10% sterile filtered FBS, before transfer into a T-175 cell culture 

flask. 

 

PBMCs were placed in T-175 cell culture flasks and left in a cell incubator overnight 

at 37°C and 5% CO2. For subsequent immune assays fresh PBMCs were again 

isolated from new batches of buffy coats. 
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6.2.5 Detection and Quantification of Gram Negative Bacterial Endotoxin 

Contamination in Nanoemulsions by Kinetic Turbidity Limulus Amoebocyte 

Lysate (LAL) Assay 

This assay was conducted by Dr Neill Liptrott while a visiting researcher at the 

Nanotechnology Characterisation Laboratory based within the National Cancer 

Institute, Maryland, USA.  The assay worked on the principle that the presence of 

endotoxin in the sample would cause the LAL to coagulate, thus forming a gelled 

clot. The result of the experiment was a simple clot or no clot read out, therefore 

providing a non-qualitative measure of any endotoxin present.  

 

Standard lipopolysaccharide (LPS) from E. coli was reconstituted to a final 

concentration of 1000 EU/mL in pyrogen-free LAL water. Further dilutions were 

then made in pyrogen-free LAL water to produce a standard curve of 1, 0.1, 0.01 

and 0.001 EU/mL. LAL was reconstituted in Glucashield buffer to prevent possible 

interference by β-glucans that may be present in sample materials. Negative control 

consisted of pyrogen-free LAL water only and positive control 0.05 EU/mL LPS. 

Samples of EFV aqueous solution and EFV nanoemulsion were prepared in 

pyrogen-free LAL water at concentrations of 4 µg/mL and 40 µg/mL. 

Inhibition/enhancement (IEC) controls consisted of test samples containing 0.05 

EU/mL LPS. Reactions consisted of standard, sample or control with the addition of 

LAL (50 µL). Samples were then analysed using a Pyros Kinetic Flex reader 

(American Associates of Cape Cod). Results from each individual assay run were 

not considered valid unless the precision and accuracy of the standard curve (r2 ≥ 
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0.98) and quality controls were within 25% and the inhibition/enhancement control 

exhibited 50–200% spike recovery. 

 

6.2.6 Detection and Quantification of Gram Negative Bacterial Endotoxin 

Contamination in Nanoemulsions by Limulus Amoebocyte Lysate (LAL) 

analysis (gel-clot) 

This assay was conducted by Dr Neill Liptrott while a visiting researcher at the 

Nanotechnology Characterisation Laboratory based within the National Cancer 

Institute, Maryland, USA.  

 

Samples were prepared as for kinetic turbidity analysis with the exception of 

standard curve samples, which were prepared as 0.25 λ to 2 λ (λ is the sensitivity of 

the lysate provided for each lot of the lysate by the manufacturer). IEC were 

prepared in 0.25 λ to 2 λ samples to assess interference with the assay. Samples were 

incubated for 1 hour at 37°C in an unstirred water bath. Following incubation, 

sample tubes were inverted to assess the formation of a clot. 

 

 

 

 

 

 

 



Chapter!6!
!

!201!

6.2.7 Sterility Testing of Nanoemulsions by LB Agar Plate Streaks 

This assay was conducted by Dr Neill Liptrott while a visiting researcher at the 

Nanotechnology Characterisation Laboratory based within the National Cancer 

Institute, Maryland, USA.  

 

To determine if microbial contamination was present in sample materials 50 µL (1 

mg/mL) of material was streaked onto LB agar plates and incubated in a humidified 

incubator at 37°C for 48 hours. An E. coli stock solution was used as a positive 

control for microbial growth. Following incubation plates were visually inspected 

for signs of microbial growth and recorded digitally. 

 

6.2.8 Sterility Testing of Nanoemulsions by Mycoplasma Analysis in H460 Cells 

This assay was conducted by Dr Neill Liptrott while a visiting researcher at the 

Nanotechnology Characterisation Laboratory based within the National Cancer 

Institute, Maryland, USA.  

 

H460 cells were treated with sample materials (4 µg/mL) and passaged every 48 

hours in RPMI-1640 media containing 10% FBS. At each passage, a sample of 

culture supernatant was retained for mycoplasma analysis. After 18 passages the first 

and last passage samples were analysed for the presence of mycoplasma using 

endpoint PCR containing specific primer sequences. 
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6.2.9 MACs Separation of Immune Cell Subsets from PBMCs 

PBMCs were separated from buffy coats as described in 6.2.4 and cell number 

determined by trypan blue exclusion (See Section 2.2.8), up to 1 x 107 were used for 

the following separation conditions. Higher cell numbers would require scale-up of 

reagents as appropriate. All work was carried out on ice and buffers and solutions 

had been pre-cooled. Cells were centrifuged at 300 x g for 10 minutes at 4°C. 

Supernatant fraction was aspirated and discarded, with cell pellet being re-suspended 

in 80 µL of buffer (PBS at pH 7.2 supplemented with 0.5% bovine serum albumin 

and 2 mM EDTA). 20 µL of appropriate (CD4 or CD56 or CD8) MicroBeads were 

added to the cell suspension and mixed well then left in the fridge (2-8 °C) for 15 

minutes. After this time, cells were washed by adding 2 mL of buffer and 

centrifuging for 10 minutes at 300 x g and 4°C, supernatant was discarded and cell 

pellet re-suspended in 500 µL of buffer. At this point cells were ready to proceed to 

the separation step. 

 

Miltenyi Biotec LS columns (columns containing ferromagnetic spheres with cell-

friendly coating) were placed into a Miltenyi Biotec QuadroMACSTM cell separator 

and prepared by rinsing with 3 mL of buffer. Magnetically labelled cell suspension 

was applied to the top of the column and washed through with 3 x 3 mL of buffer, 

allowing unlabelled cells to pass through the column whilst labelled cells were held 

in the column under the magnetic field. After the final rinse, 5 mL of buffer was 

added to the column, and immediately the column was removed from the 

QuadroMACSTM and labelled cells flushed out of the column into a 15 mL falcon 
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tube, by applying the LS column plunger and firmly pressing down. Immune subsets 

were now ready for use directly into cellular assays, or for placing into RPMI media 

and incubated for use later. 

 

6.2.10 Human T-Cell Activation Via Miltenyi T Cell Activation Kit 

PBMCs were separated from buffy coats as described in section 6.2.4 and cell 

number determined by trypan blue exclusion (See section 2.2.8). T cell activation 

was performed on resting T cells from the PBMCs, but positively selected T Cells 

(CD4, CD8, etc) could also be processed using the protocol described in section 

6.2.9.  

 

Anti-Biotin MACSiBeadTM particles were re-suspended by thoroughly vortexing 

before use in order to obtain a homogenous suspension of particles. 100 µL each of 

CD2-Biotin, CD3-Biotin and CD28-Biotin was pipetted into a 1.8 mL universal 

tube, to which 500 µL of Anti-Biotin MACSiBeadTM particles were added, giving a 

total of 1 x 108 particles. Finally, 200 µL of buffer (PBS at pH 7.2 supplemented 

with 0.5% human serum albumin and 2 mM EDTA) was added to adjust the volume 

to 1 mL, and this was placed on a gentle roller in a 4°C cold room for 2 hours. After 

this time the loaded bead particles were ready for use and could be stored for up to 4 

months. 

 

The following protocol was used to give a ratio of 1 Anti-Biotin MACSiBeadTM 

particle per 2 PMBC and the volumes were used for up to 5 x 106 cells. When using 
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higher cell numbers, reagent volumes would be scaled-up appropriately. Loaded 

Anti-Biotin MACSiBeadTM particles were re-suspended thoroughly by vortexing, 

and 25 µL was transferred to a 15 mL falcon tube. 200 µL of RPMI culture media 

was added, following which the suspension was centrifuged at 300 x g for 5 minutes 

at 4°C. Supernatant was aspirated and discarded, with loaded Anti-Biotin 

MACSiBeadTM re-suspended in 100 µL of fresh RPMI culture media. PMBCs were 

re-suspended to a density of 5 x 106 cells per 900 µL of RPMI culture media, to 

which the 100 µL of Anti-Biotin loaded MACSiBeadTM particles were added. These 

were then used as the bead activated cells for cytokine secretion studies. 

 

6.2.11 Stimulation of Lymphocytes for Cytokine Secretion Studies 

PBMCs were separated from buffy coats as described in section 6.2.4 and cell 

number determined by trypan blue exclusion (See section 2.2.8), 1 x 106 cells were 

seeded per well in 24 well cell culture plates. The assay was set up separately using 

both activated PBMCs (See Section 6.2.10) and non-activated PBMCs straight from 

buffy coats. EFV aqueous solution and EFV nanoemulsion were added to 

appropriate wells to give a final concentration of 10 µM of drug in 1 mL total of 

suspension. Negative controls of PBMCs (either bead activated or non-bead 

activated) were plated without the presence of drug compound to give a background 

reading of cytokine secretion. All conditions were performed on N=4 buffy coats in 

duplicate. 
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The 24 well cell culture plates were then incubated at 37°C with an atmosphere of 

5% CO2 for 24 hours, after which time the culture plates were centrifuged at 2000 

rpm for 5 minutes and 4°C. The supernatant was collected in 100 µL fractions in 96-

well plates and stored at -80°C for analysis later using the Bio-Plex 200 Luminex 

Plate Reader (Bio-Rad Laboratories LTD, Hemel Hampstead, UK).  

 

6.2.12 Cytokine Secretion Studies in Differentiated Monocyte Derived 

Macrophages  

PBMCs were separated from buffy coats as described in section 6.2.4 and then from 

these, CD14+ cells were isolated using MACs separation as described in section 

6.2.9. The CD14+ cells were seeded at a density of 500,000 cells per well in 24-well 

plates to which 50 ng/ml of macrophage colony-stimulating factor (MCSF) was 

added. These plates were left for 7 days to allow the CD14+ cells to differentiate 

into macrophages. The macrophages were then exposed to EFV aqueous solution 

and EFV nanoemulsion in the same was as for stimulated lymphocytes, described in 

section 6.2.11. 

 

 

 

 

 

 



Chapter!6!
!

!206!

6.2.13 Quantification of Cytokine Concentrations by Bio-Plex 200 Luminex 

System 

An 8-point standard curve was generated by reconstituting the lyophilised standard 

provided in the Bio-Plex kit (Bio-Plex ProTM Human Cytokine Standard 27-Plex 

Group 1). The analytes of interest for PBMCs (IL-2, IL-10, IFN-γ) had top 

concentrations of 13,690 pg/mL, 26,094 pg/mL and 34,920 pg/ml, respectively. The 

analytes of interest for macrophage secretion (IL-1b, IL-6, IL-8 and TNF-α) had top 

concentrations of 31,130 pg/ml, 25,160 pg/ml, 26,160 pg/ml and 107,172 pg/ml, 

respectively. 

 

50 µL of the coupled beads was added to each well and then the wells washed twice 

using wash buffer and vacuum filtration. 50 µL of cytokine standard and 50 µL of 

sample (from section 6.2.11 for T cells or section 6.2.12 for macrophages) was then 

added to each well and incubated at room temperature on an orbital shaker for 30 

minutes.  

 

After the 30 minute incubation the plate was again washed 3 times using wash buffer 

and vacuum filtration, after which 25 µL of detection antibody was added to each 

well and incubated on an orbital shaker at room temperature for 30 minutes. After 

the incubation period the plate was washed 3 times and then 50 µL streptavidin 

solution added to each well. The streptavidin was incubated on an orbital shaker at 

room temperature for 10 minutes, after which the cells were washed 3 times. After 

the final wash, 125 µL of assay buffer was added to each well and shaken for 30 
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seconds at 1100 rpm. The plate was now ready to run on the Bio-Plex 200 Luminex 

Plate Reader. 

 

The Bio-Plex 200 was calibrated and validated prior to use by running the in-built 

calibration and validation protocols, together with Bio-Plex calibration and 

validation bead kits. The information of the standards and analytes was entered into 

the software, including the maximum concentration of each standard and the bead 

region (all provided within the assay kit). Importantly, the data acquisition was set to 

50 beads per region, bead map was set to 100 region, sample size was 50 µL and the 

doublet discriminator (DD) gates were set to 5000 (low) and 25,000 (high).  

 

6.2.14 Immune Cell Surface Antibody Expression Studies by Flow Cytometry 

PBMCs were separated from buffy coats as described in section 6.2.4 and cell 

number determined by trypan blue exclusion (see section 2.2.8) and 1 x 106 cells 

were seeded per well in 1 mL volume in 24 well plates. A further 1 mL of either 

EFV aqueous solution or EFV nanoemulsion containing media was added to 

appropriate wells to give a final concentration of 10 µM drug. These plates were 

then left to incubate at 37°C and 5% CO2 for 24 hours. 

 

After the 24-hour incubation period, cell suspensions were collected into deep 

welled 96-well plates and cells pelleted by centrifuging at 2000 x g for 5 minutes. 

Supernatant was aspirated and discarded, while cells were re-suspended in 100 µL of 

buffer (PBS at pH 7.2, supplemented with 2 mM EDTA and 0.5% BSA). To this, 10 
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µL of each antibody (anti-CD4, CD8, CD25, CD44, CD69, or CD95) was added as 

appropriate. 

 

Samples were mixed well and then left in the dark in a fridge (2-8°C) for 10 

minutes, after which unbound antibody was washed from the cells by adding 2 mL 

of buffer and centrifuging at 300 xg for 10 minutes. Supernatant was aspirated and 

discarded and cells re-suspended in 1 mL of MASCQuant® running buffer, ready 

for analysis on a MACSQuant® flow cytometer (Miltenyi Biotec GmbH, Bergisch 

Gladbach, Germany). The PBMC population was gated using linear forward and 

side scatter and a previously optimised compensation matrix applied, suitable for the 

antibody conjugates used. 

 

6.2.15 T-Cell Proliferation Studies 

PBMCs were separated from buffy coats as described in 6.2.4 and cell number 

determined by trypan blue exclusion (see section 2.2.8). 250,000 cells per well were 

seeded in 96-well cell culture plates, half of which were spiked with 50 µL of 

Phytohaemagglutinin (PHA) to deliberately induce T Cell proliferation, the other 

half were not stimulated with PHA. 

 

50 µL of RPMI media containing either EFV aqueous solution or EFV 

nanoemulsion was added to both the PHA+ and PHA- plates to give a final 

concentration of 10 µM and incubated for 72 hours at 37°C and 5% CO2. For the last 

16 hours of the incubation period, 1 µL of a 1 mCi/ml stock solution of H3 labelled 
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thymidine was added to each well to give a final concentration of 1 µCi of H3 

thymidine per well. 

 

Cells were transferred from 96-well cell culture plates to nitrocellulose membranes 

using a cell washer and harvester (TomTec Life Sciences, Connecticut, USA). Solid 

scintillation was added on top of the nitrocellulose membranes and placed into a 

MicroBeta counter (Perkin Elmer, Ohio, USA) and the level of H3 thymidine 

incorporation quantified to give a measure of T-Cell proliferation. 

 

6.2.16 Plasma Coagulation Studies 

This assay was conducted by Dr Neill Liptrott while a visiting researcher at the 

Nanotechnology Characterisation Laboratory based within the National Cancer 

Institute, Maryland, USA.  

 

Human blood from three donors was collected by venepuncture into tubes anti-

coagulated with sodium citrate; blood was used within one hour of collection. Test 

plasma was prepared by centrifuging blood at 2500 x g, at 21°C, for 10 minutes with 

the resultant plasma collected and pooled. Pooled plasma was stable at room 

temperature for 8 hours. Nanoemulsion samples were prepared at 10x the required 

final concentration to accommodate dilution when added to test plasma. 

Concentrations and subsequent dilutions were based on the concentrations of EFV 

contained within the samples with dilutions of blank nanoemulsion diluted in the 

same fashion. Final concentrations tested were 40 µg/mL, 4 µg/mL, 0.8 µg/mL and 

0.16 µg/mL. Nanoemulsion samples were mixed with test plasma and incubated at 
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37°C for 30 minutes. Each nanoemulsion preparation was prepared in triplicate. 

Lyophilised controls representing normal and abnormal plasma (plasma with 

coagulation delay) were reconstituted with distilled water (2mL) and left to 

equilibrate to room temperature 30 minutes prior to use. These controls were used as 

instrumentation controls for the STArt4 coagulometer (Diagnositca Stago).  

 

Cuvettes were placed into A, B, C and D test rows on the coagulometer and one 

metal ball added into each cuvette (warmed for at least 3 minutes prior to use). 100 

µL of either control or test plasma was added to a cuvette when testing PT or 

thrombine time and 50µL when testing APTT with three duplicate cuvettes for each 

plasma sample. Additionally, for the APTT assays 50 µL of PTT-A was also added. 

The timer was started for each of the test rows and cuvettes transferred to PIP row 

10 seconds prior to alarm notification. Once incubation time was complete, 

coagulation reagent was added to each cuvette and coagulation time recorded. 

Percentage coefficient of variation was calculated for each control and test samples 

according to the following formula: %CV = SD/Mean X 100%. If %CV was greater 

than 5% for study samples that sample was reanalysed. Data was expressed as a 

percentage of the coagulation time recorded for plasma with no nanomaterial present 

(plasma only control). 
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6.2.17 Platelet Aggregation Studies 

This assay was conducted by Dr Neill Liptrott while a visiting researcher at the 

Nanotechnology Characterisation Laboratory based within the National Cancer 

Institute, Maryland, USA.  

 

Platelet rich plasma (PRP) was prepared from healthy volunteer whole blood in 

sodium citrate by centrifugation at 250 x g for 8 minutes. Platelet poor plasma (PPP) 

was prepared by centrifugation of whole blood at 2500 x g for 10 minutes.  PRP was 

treated with either 4 µg/mL or 40 µg/mL of sample materials for 15 minutes at 37°C. 

PPP was used as a background control and also treated with the same concentrations 

of sample materials. Samples were analysed using a Chrono-log aggregometer, gain 

was set to 0.005 and optical baseline established using PPP controls. Platelet 

aggregation (turbidity) and ATP release (luminescence) were recorded as area under 

the curve for treated and untreated samples. Collagen (1 µg/mL) was used as a 

positive control for platelet aggregation and materials were also tested in the 

presence of collagen to ensure inhibition of aggregation did not occur. 
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6.2.18 Haemolysis Studies 

This assay was conducted by Dr Neill Liptrott while a visiting researcher at the 

Nanotechnology Characterisation Laboratory based within the National Cancer 

Institute, Maryland, USA.  

 

Haemolysis was determined using cyanomethaemoglobin (CMH) reagent and a 

haemoglobin standard. A standard curve of known haemoglobin concentrations was 

created (range 0.025-0.8 mg/mL) with low (0.0625 mg/mL), medium (0.125 

mg/mL) and high (0.625 mg/mL) quality control samples. Triton X100 was included 

as a positive control. Sample materials were tested at a range of concentrations 

(0.16, 0.8, 4 and 40 µg/mL). Whole blood was collected from healthy volunteers in 

Li-heparin tubes and pooled blood prepared by mixing equal volumes of blood from 

each donor. An aliquot of pooled whole blood was taken and centrifuged at 800 x g 

for 15mins to determine plasma free haemoglobin (PFH). Briefly, 200 µL of 

calibration standard, quality controls and blanks were added to respective wells of a 

96 well plate.  TBH (200 µL, prepared by combining 20 µL of pooled whole blood 

and 5 mL of cyanomethaemoglobin) was added to each well. 100 µL of plasma (for 

PFH) was added per well. Finally, 100 µL of CMH reagent was added to each well 

containing samples. Plates were covered with a plate sealer and gently shaken for 1-

2 minutes. Absorbance at 540 nm was measured to determine haemoglobin 

concentration. Remaining pooled whole blood was diluted with Ca2+/Mg2+ 

Dulbeccos Phosphate Buffered Saline (DPBS) to adjust total blood haemoglobin 

concentration to 10 ±2 mg/mL (TBHd). In a separate universal tube, 100 µL of test 
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sample, blank or positive/negative control was added. Ca2+/Mg2+ DPBS (700 µL) 

was then added to each tube and 100 µL of TBHd to each test sample. In parallel, 

100 µL of Ca2+/Mg2+ DPBS was added to separate tubes to represent a “no blood” 

control to evaluate potential interference of the sample materials with the assay. 

Tubes were covered and mixed gently avoiding vortexing which may damage 

erythrocytes. Tubes were then placed in an incubator at 37°C for 3 hours (±15mins) 

and samples were mixed every 30mins. Following incubation, tubes were 

centrifuged at 800 x g for 15 minutes. A fresh set of calibrators and controls were 

prepared previously. To a fresh 96-well plate, 200 µL of blank reagent, calibrators, 

and quality controls of TBHd were added to each well. 100 µL of test samples, 

positive and negative controls were also added to the plate followed by 100 µL of 

CMH reagent to every well. The plate was covered with a plate sealer and shaken 

gently on a plate shaker for 1-2 minutes. Absorbance at 540 nm was measured 

spectrophotometrically and the %CV and percentage difference from theoretical 

(PDFT) were calculated. Assays were accepted if %CV and PDFT were within 20%. 

 

6.2.19 Complement Activation Studies 

This assay was conducted by Dr Neill Liptrott while a visiting researcher at the 

Nanotechnology Characterisation Laboratory based within the National Cancer 

Institute, Maryland, USA.  

 

Blood was collected from healthy volunteers in tubes containing sodium citrate as 

anticoagulant. Plasma was prepared by centrifugation of blood samples at 2500 x g 
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for 10 minutes. Plasma was evaluated visually for haemolysis; plasma deemed to be 

haemolysed was not used to prepare the plasma pool. Plasma was used for 

complement testing within 1 hour of collection. Pooled plasma was combined with 

either test material (at concentrations of 0.16, 0.8, 4 and 40 µg/mL) or positive 

control (cobra venom factor) or negative control (0.9% saline). Plasma was also 

treated with a generic form of Taxol as a clinically relevant example of a licensed 

drug with known complement activation. Samples were incubated for 30mins at 

37°C. Following incubation the manufacturers guidelines were then followed for 

completion of the iC3b ELISA. Optical density of the samples was measured at 

405nm.   

 

The assay worked on a 3-step principle, in which in the first step, the samples were 

added to assay well that contained iC3b antibody. This antibody would bind only the 

iC3b, and a washing step ensured removal of any other material. The second step 

added a HRP bound iC3B antibody, which would bind to the previously trapped 

human iC3b. The final step added a HRP specific enzyme substrate, which produced 

a green colour, the intensity of which was proportional to the amount of iC3b 

present. 
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6.2.20 Assessment of Nanoemulsion Effect on Natural Killer Cells 

This assay was conducted by Dr Neill Liptrott while a visiting researcher at the 

Nanotechnology Characterisation Laboratory based within the National Cancer 

Institute, Maryland, USA.  

 

Effector cells (NK92) were prepared at 1 x 106 cells/mL and treated with test 

nanoparticles for 24 hours. Target cell (HepG2) density was adjusted to 0.5 x 106 

cells/mL. Media (50µL RPMI-1640) was added to all wells and plate attached to real 

time-cell electronic sensing (RT-CES) system (ACEA Biosciences, San Diego, 

USA), starting the appropriate program. Following background measurement, 

HepG2 (50µL) were added per well of the RT-CES plate and data acquisition 

started. HepG2 cells were left in culture for approximately 16-20 hours prior to the 

addition of NK92 cells. On the second day, NK92 cell viability was determined via 

trypan blue exclusion and cells readjusted to a density of 25 x 106 viable cells/mL 

resulting in an effector to target (E:T) ratio of 5:1. The RT-CES program was paused 

for the addition of NK92 cells and then returned to the incubator to resume data 

acquisition for a further 24 hours. On day 3, data acquisition was stopped and the 

data analysed by assessing the area under the curve (AUC) for each sample. 
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6.2.21 Statistical Analysis 

Statistical analysis was performed using SPSS version 21 for Macintosh computers, 

where data was normally distributed an independent samples t-test was performed to 

obtain p values. Where data was non normally distributed a non-parametric Mann-

Whitney U test was performed. P values are stated throughout. 
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6.3 Results 

6.3.1 Gram Negative Bacterial Endotoxin Analysis by Kinetic Turbidity LAL 

Assay 

Results from the turbidimetric endotoxin analysis showed that there were 0.8 

endotoxin units per mL (EU/mL) of blank emulsion sample and 0.1 endotoxin units 

per mL of EFV loaded nanoemulsion (Figure 6.1). These were well below the 

regulatory guideline concentration of 5 EU/ml as set out in the US Pharmacopeia. 
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Figure 6.1. Amount of endotoxin detected in Blank and EFV (nEFV) loaded 

nanoemulsions . Data derived from kinetic turbidity LAL Assay and expressed in 

endotoxin units per mL (EU/mL). For reference, the limit of endotoxin permitted in 

a sample, as defined by the US Pharmacopeia was 5 EU/mL. 
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6.3.2 Gram Negative Bacterial Endotoxin Analysis by Gel-Clot Assay 

Results from gel clot assay confirmed the results obtained in section 6.3.1 in that 

there was no significant amount of endotoxin present, as no clot was formed. 

 

6.3.3 Nanoemulsion Sterility Testing by LB Agar Plate Streaks 

Visual analysis of the LB agar plates that had been streaked with blank and EFV 

loaded nanoemulsion samples showed that there was no bacterial growth after 2 days 

incubation (Figure 6.2). 
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Figure 6.2 Agar plates after streaking with either Negative control (A), positive 

control (B), aqueous EFV solution at 4 µg/ml (C) and 40 µg/ml (D), EFV loaded 

nanoemulsion at 4 µg/ml (E) and 40 µg/ml (F), or blank nanoemulsion at 4 µg/ml 

(G) and 40 µg/ml (H). 
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6.3.4 Nanoemulsion Sterility Testing Mycoplasma Analysis in H460 Cells 

Samples from H460 cells that had been exposed to 4 µg/mL of nanoemulsion 

sample, both blank and EFV loaded were sent to the Fredrick National Laboratory 

for Cancer Research (Fredrick, USA). The results from that analysis showed that 

there was no mycoplasma present in the nanoemulsion samples. 

 

6.3.5 Cytokine Secretion Studies in T-Cells 

The extracellular media of the expression assay (see section 6.3.7) was isolated and 

analysed for the secretion levels of cytokines IL-2, IL-10 and IFN-γ using a Bioplex 

200 system and assay kit (Bio-Rad). Data for cells that were pre-stimulated with a T-

cell activation kit showed that the levels of IL-10 were the same between control 

cells, EFV aqueous solution and nanoemulsion EFV (p > 0.05). For IL-2, there was 

no difference observed between the control cells and either EFV aqueous solution or 

EFV nanoemulsion (p > 0.1 for all conditions) and the same was true for IFN-γ (p > 

0.2) (Figure 6.3). 

 

The same experiment was conducted on un-stimulated cells, with the results 

showing undetectable levels of cytokines across all conditions (data not shown). 
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Figure 6.3. Levels of secretion of cytokines IL-2, IL-10 and IFN-γ from 1x106 T-

Cells per well in a 24 well plate. Cells were separated from PBMCs and incubated 

with 10 µM of either aqueous EFV solution or EFV nanoemulsion sample for 24 

hours prior to analysis. Data shown as +/- standard deviation N=4. 

 

6.3.6 Cytokine Secretion Studies in Macrophages 

The level of cytokine secretion from monocyte-derived macrophages is shown in 

Figure 6.4. For both TNF-α and IL-1b the error in the values suggested that there 

was no secretion detected within the limits of the assay. The secretion of IL-6 

showed no difference from the control cells for both EFV aqueous solution and EFV 

nanoemulsion (p > 0.4), whilst IL-8 also showed no difference between the EFV 

aqueous solution and EFV nanoemulsion as compared with the cellular control (p = 

1.000).  
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Figure 6.4 Levels of secretion of cytokines IL-1b, IL-6, IL-8 and TNF-α from 

0.5x106 monocyte derived macrophages per well in a 24 well plate. Cells were 

incubated either aqueous EFV solution or EFV nanoemulsion sample for 24 hours 

prior to analysis. Data shown as +/- standard deviation N=4.  
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6.3.7 Effect of Nanoemulsion on Immune Cell Surface Maker Expression 

The expression of cell surface activation markers (CD25, CD44, CD69 and CD95) 

were determined using both CD4+ and CD8+ cells separated from the PBMC’s. The 

data for the un-activated PBMC set showed that there was no difference in the 

expression of the activation markers as a result of exposure to the nanoemulsion 

formulation of EFV or EFV aqueous solution, when compared to untreated control 

cells (Figure 6.5). The data for the activated PBMC set again showed no difference 

in the levels of expression of these surface markers, and showed that neither EFV 

nanoemulsion nor EFV aqueous solution impacted the expression by either 

stimulating or supressing the surface markers (Figure 6.5). 
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Figure 6.5 Levels of expression of cell surface markers on stimulated CD4+ (A) and 

CD8+ (C) PBMCs, and also unstimulated CD4+ (B) and CD8+ (D) PBMCs after 

exposure to EFV aqueous solution, EFV nanoemulsion and blank nanoemulsion. 

Cells were seeded at a density of 1x106 cells per well in a 24-plate, and sample 

incubated for 24 hours prior to analysis. Cell population was gated on the flow 

cytometer using linear forward and side scatter, and a previously optimised 

compensation matrix. Data is showed as +/- standard deviation, N=4. 
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6.3.8 Nanoemulsion Effect on Primary lymphocyte Proliferation 

No significant difference in the incorporation of 3H-thymidine was observed for 

PBMC samples treated with either EFV aqueous solution or EFV nanoemulsion (p > 

0.2). Similarly the aqueous solution and nanoemulsion had no significant inhibitory 

effect on the proliferation caused by addition of PHA (p  > 0.3) (Figure 6.6). 
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Figure 6.6 Proliferation of primary T-Cells after exposure to EFV aqueous solution 
and EFV nanoemulsion. Cells previously stimulated with PHA to induce 
proliferation are shown (bottom), and non-PHA stimulated cells shown in top figure. 
Data is expressed as a box and whisker figure, showing the maximum and minimum 
values  +/- standard deviation, N=4. 
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6.3.9 Nanoemulsion Effect on the Coagulation of Plasma 

The data for coagulation of plasma was separated into 3 areas in order to assess 3 

major pathways to coagulation. In both the prothrombin time (PT) and thrombin 

time (TT) data sets, there was no difference observed between aqueous EFV 

solution, blank nanoemulsion and EFV-loaded nanoemulsion, in the time taken for 

plasma coagulation to occur. All of the test formulations had coagulation times that 

were identical to the control (Figures 6.7 and 6.8). 
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Figure 6.7 Prothrombin time (induced by neoplastine) in healthy volunteer plasma in 

response to aqueous EFV solution (white), unloaded blank nanoemulsions (gold) 

and EFV-loaded nanoemulsions (brown). Data is expressed as percentage difference 

in time taken for coagulation, as compared to control values. 
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Figure 6.8 Thrombin time (induced by thrombine) in healthy volunteer plasma in 

response to aqueous EFV solution (white), unloaded blank nanoemulsions (gold) 

and EFV loaded nanoemulsions (brown). Data is expressed as percentage difference 

in time taken for coagulation, as compared to control values. 

 

 
A significant prolongation in activated partial thromboplastin time (APTT) was 

observed for the EFV loaded nanoemulsions at 40 and 4 µg/ml, which demonstrated 

a 147% and 88% increase in coagulation time as compared to test plasma 

respectively (p < 0.001). Similarly for the unloaded nanoemulsions, significant 

increases in APTT were observed at both 4 µg/ml  (52 % increase) and 40 µg/ml 

(159% increase) (p < 0.001) (Figure 6.9). 
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Figure 6.9 Activated Partial Thromboplastine time (induced by CaCl2) in healthy 

volunteer plasma in response to aqueous EFV solution (white), blank nanoemulsion 

(gold) and EFV loaded nanoemulsion (brown). Data is expressed as percentage 

difference in time taken for coagulation, as compared to control values. 

 

6.3.10 Nanoemulsion Effect on the Aggregation of Platelets 

The data showed that there was no aggregation of platelets after exposure to both the 

aqueous solution of EFV and the nanoemulsion formulation of EFV, at 4 µg/ml and 

40 µg/ml concentrations. These two conditions had the same values as for the 

negative control of 0.9% saline solution and significantly lower than the collagen 

spiked positive control sample (Figure 6.10). 
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Figure 6.10 Amount of platelet aggregation after 15 exposure to collagen (positive 

control), saline (negative control), aqueous EFV solution, blank nanoemulsion and 

EFV nanoemulsion at 37°C. Data is shown as area under the curve (AUC) plus and 

minus standard deviation. 

 

When the collagen positive control was also added to the aqueous and 

nanoformulations there was no effect seen on aggregation, with both aqueous EFV 

and nanoemulsion EFV showing the same levels of aggregation as the positive 

control, showing that aggregation was not being prevented when stimulated (Figure 

6.11).  
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Figure 6.11 Amount of platelet aggregation after 15 minute exposure to collagen 

(positive control), saline (negative control), aqueous EFV solution plus collagen, 

blank nanoemulsion plus collagen and EFV nanoemulsion plus collagen at 37°C. 

Data is shown as area under the curve (AUC) plus and minus standard deviation. 

 

The data for ATP release from platelets mirrored that of the aggregation data in that 

both formulations at both concentrations had no effect on causing aggregation to 

occur (Figure 6.12), or from preventing it when stimulated to aggregate (Figure 

6.13). 
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Figure 6.12 Amount of ATP release from platelets after 15 minute exposure to 

collagen (positive control), saline (negative control), aqueous EFV solution, blank 

nanoemulsion and EFV nanoemulsion, at 37°C.   
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Figure 6.13 Amount of ATP release from platelets after 15 minute exposure to 

collagen (positive control), saline (negative control), aqueous EFV solution plus 

collagen, blank nanoemulsion plus collagen and EFV nanoemulsion plus collagen 

37°C.  
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6.3.11 Nanoemulsion Effect on the Activation of Complement 

The data showed that the levels of complement receptor iCb3 detected for all test 

conditions were the same as for that of the negative control 0.9% saline solution. 

Both the blank nanoemulsion and the EFV loaded nanoemulsion showed lower 

levels of complement activation than the clinically approved nanoformulation of 

paclitaxel, Abraxane (Figure 6.14). 

 

 

Figure 6.14 The amount of compliment iC3b detected by ELISA assay after 
exposure of blood plasma to positive (combra venom factor) and negative (0.9% 
saline) controls, and aqueous and nanoemulsion formulations of EFV. Abraxane was 
used as an indicator of acceptable compliment activation, as it was a clinically 
approved formulation, regarded as having a safe complement profile. 
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6.3.12 Nanoemulsion Effect on Haemolysis of Red Blood Cells 

The data showed that for the aqueous solution of EFV at 40 µg/ml there was a 

significant increase in the percentage of haemolysis observed as compared to the 

negative control, with values of 86% and 3% respectively (p = < 0.001). At the 

lower concentrations the percentage haemolysis was similar to that of the negative 

control (p = > 0.05) (Figure 6.15). 

***

 

Figure 6.15 Haemolysis of erythrocytes following addition of aqueous EFV solution. 
Samples were incubated for 3 hours at 37°C, and were mixed every 30 minutes. Data 
expressed as percentage haemolysis as compared to positive control, plus and minus 
standard deviation. 
 

There was no haemolysis observed for the blank nanoemulsion formulation at any of 

the concentrations tested (p > 0.8) (Figure 6.16). For the EFV loaded nanoemulsion 

there was an increase observed in the haemolysis at 40 µg/ml with values of 17% 

compared with 3% for the negative control, but this was not significant (p = 0.96) 

(Figure 6.17). There was no haemolysis observed for the EFV loaded nanoemulsion 

at 4.0, 0.8 and 0.16  µg/ml concentrations (Figure 6.17). 
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Figure 6.16 Haemolysis of erythrocytes following addition of blank nanoemulsion. 
Samples were incubated for 3 hours at 37°C, and were mixed every 30 minutes. Data 
expressed as percentage haemolysis as compared to positive control, plus and minus 
standard deviation. 
 

 

Figure 6.17. Haemolysis of erythrocytes following addition EFV nanoemulsion. 
Samples were incubated for 3 hours at 37°C, and were mixed every 30 minutes. Data 
expressed as percentage haemolysis as compared to positive control, plus and minus 
standard deviation. 
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6.3.13 Nanoemulsion Effect on NK Cells 

Treatment of NK cells with both blank nanoemulsion (Figure 6.18) and EFV loaded 

nanoemulsion (Figure 6.19) did not affect the cytotoxic ability of the NK cells 

against HepG2 target cells. 

 

 

Figure 6.18 % viability of 1x106 NK cells after 24-hour exposure to blank 

nanoemulsion. Viability of NK cells was calculated by determining the amount of 

target HepG2 cells that had been destroyed by the NK cells, using RT-CES system. 

Increased removal of HepG2 cells correlated with increased viability of the NK 

cells. 
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Figure 6.19 % viability of 1x106 NK cells after 24-hour exposure to EFV 

nanoemulsion. Viability of NK cells was calculated by determining the amount of 

target HepG2 cells that had been destroyed by the NK cells, using RT-CES system. 

Increased removal of HepG2 cells correlated with increased viability of the NK 

cells. 
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6.4 Discussion 

The focus of this Chapter was to perform a preliminary, preclinical assessment of the 

immunological compatibility of the nanoemulsions. The data showed that the 

amount of endotoxin present in nanoemulsion samples was below that of the USP 

and FDA limit of 5 EU/ml [511], which suggests the synthesis protocol and 

subsequent handling and storage of the nanoemulsions is appropriate to prevent 

contamination. The low concentrations of endotoxin not only means that the 

synthesis method appears to be relatively free of endotoxin (as compared to 

guideline amounts) but also that the subsequent immunological assays carried out 

were not affected by the presence of endotoxin, which has been shown to interfere 

and skew the results of some immunological tests [512]. 

 

There was also no detectable presence of either mycoplasma or bacteria in any of the 

samples, which again suggests that the method of synthesis of the nanoemulsions did 

not introduce contamination into the final product, and that there was no interference 

with the assays subsequently used, as has previously been demonstrated for other 

materials [513, 514]. 

 

As cytokines have such a wide-ranging effect on the immune system, it has been 

suggested that they would act as a good marker for investigating the immunotoxicity 

of nanomaterials [515]. To this end, the data from the cytokine secretion assays is 

very promising as it clearly shows that the nanoemulsion formulation of EFV had 

neither an inhibitory nor enhancing effect on the secretion of cytokines from primary 
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immune cells. The levels of all three cytokines assayed (IL-2, IL-10 and IFN-γ) were 

identical to those of the untreated control cells, showing that the nanoemulsions do 

not have an effect on the immune cells in terms of secretion. A number of reports 

have shown a range of nanomaterials that have been produced having no effect on 

the secretion profiles of cytokines [516, 517], a trend which the nanoemulsions in 

this study follow. 

 

Previously published work by Villiers et al showed gold nanoparticles significantly 

modified the secretion of cytokines, suggesting a disruption to the immune system 

[518]. Furthermore, De Jong et al showed that silver nanoparticles could affect the 

immune system of rats [519]. Further work by Liptrott et al demonstrated that 

modified and unmodified gold nanoparticles augmented the release of cytokines 

from PBMCs [520]. 

 

A lack of immune stimulation in response to nanoemulsions was also seen when 

looking at the secretion of cytokines from macrophages. When LPS was used as a 

positive control, a clear increase in the secretion of IL-1b, IL-6 and TNF-α was 

observed.  Previously nanoparticles have been shown to interact with macrophages, 

affecting their function and cytokine secretion [521-524]. 

 

In addition to cytokine secretion, data for the expression of cell surface markers on 

PBMCs revealed no apparent interaction or activation of T cells. The levels of 

expression were not significantly different when comparing activation markers to 
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untreated PBMCs. These markers were selected for analysis for individual reasons; 

CD25 is the alpha chain of the IL-2 receptor [525] and as such is used for measuring 

the increase in IL-2, CD44 is involved in cell-to-cell interactions and also in cell 

adhesion, thus is used to assess cell migration due to chemoattraction [526]. CD69 

has been shown as one of the earliest cell surface markers for lymphocyte 

proliferation [527] and CD95 is the FAS receptor, involved in apoptosis [528]. 

 

As this data was produced using primary immune cells from 4 separate blood 

donors, it showed some of the variability that can occur across the population, as 

evidenced by the size of the error bars. However, using primary immune cells as 

opposed to immune cell lines, such as CEM or THP-1 is much more representative 

of what will occur in vivo due to the primary cells having the appropriate expression 

profiles [529]. It is well documented that immortalised cell lines, although 

convenient, are lacking in expression of certain important enzymes and proteins 

when compared to primary cells [530].  

 

As mentioned previously in the introduction (see section 6.1), T-Cells play a vital 

role in the immune response and any alteration in the expression or proliferation of 

these cells can have profound effects on the body. The effect of T-Cell exposure to 

nanoemulsions was shown to be minimal. As with all of the data discussed thus far, 

levels of T-cell proliferation were seen to be equal to that of untreated control T-

cells for all of the formulations tested. This was true regardless of whether the T-

cells have been previously stimulated with PHA, showing that the nanoemulsions 
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had neither a stimulatory nor suppressive effect. As this data is for primary T-cells it 

would suggest that the nanoemulsions would not produce a T-cell response in 

humans, but as the assay was conducted on isolated T-cells it should only be taken 

as a guidance, as the interplay between cells of the immune system is complex.  

 

The data for the coagulation study takes into consideration the three main routes 

from which coagulation can be triggered, the intrinsic [531], extrinsic [532], and 

common pathways. The extrinsic pathway was assessed by inducing coagulation 

using neoplastine and then measuring the prothrombin time, and as seen from the 

data there were no difference observed between the aqueous or nanoemulsion 

formulations. The same was true for the common pathway, which was assessed by 

triggering coagulation using thrombine and then measuring the thrombin time. There 

was no difference observed in the thrombin time between aqueous solution and the 

nanoemulsion formulation. 

 

Differences were seen when assessing the intrinsic pathway, which was measured by 

inducing coagulation with CaCl2 and recording the activated partial thromboplastine 

time (APTT). The data showed a prolongation in APTT for both the blank 

nanoemulsion and the EFV loaded nanoemulsion at 40 µg/ml and 4 µg/ml. One 

explanation for the prolonged APTT of the nanoemulsions might lie in the potential 

for the nanoemulsion to be interacting with the various factors (FVIII for example 

[533]) and possibly sequestering them, leading to a prolonged time taken to 

coagulate.  
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The increase in APTT time may not necessarily mean that the nanoemulsion 

formulations are not suitable, as if the exact mode in which they cause prolongation 

can be derived then it would be possible to manage the situation with additional 

treatments to cancel out the anticoagulant effect (although clearly this is not ideal). 

There are also some disease states, cancers for example, that produce procoagulant 

effects [534], so a nanoemulsion formulation of an anti-cancer therapeutic that also 

reduced the procoagulant effect of the cancer itself may be worth pursuing in the 

future. 

 

The platelet aggregation studies showed no difference in aggregation between the 

negative control and the nanoemulsion formulations, both blank and EFV loaded. 

The same was true for the aqueous solution of EFV, giving some confidence the 

incorporation of EFV into a nanoemulsion would not cause issues with platelet 

aggregation if the intact nanoemulsion droplets made it into the blood stream. It is 

currently unknown whether or not the nanoemulsion droplets would enter the blood 

stream intact after oral administration, but if used in an intravenous setting the data 

give some indication that there would be no negative effect on platelet aggregation. 

Clearly, in vivo analysis of this would also be required. Nanoemulsions have 

previously been shown to be good vehicles for the intravenous delivery of 

therapeutics [535-537]. 
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The nanoemulsions did not cause an increase in the levels of compliment iC3b 

detected via an ELISA assay. The amount of iC3b detected was in fact lower than 

that of Abraxane, which is a currently licensed nanoformulation of the anti-cancer 

drug paclitaxel [538]. Abraxane has previously been shown to have a stimulatory 

effect on compliment, but despite this, is still safe to use clinically. This data further 

supports the safety profile of the nanoemulsions. 

 

When looking at the haemolysis of red blood cells it was observed that at 40 µg/ml 

of aqueous EFV solution there was over 80% haemolysis. When the concentration 

was 4 µg/ml and lower this haemolytic effect was no longer present. This is in 

comparison to both the blank and EFV loaded nanoemulsions, which displayed no 

haemolysis at all concentrations used. These data suggest that the haemolysis was 

due to the high concentration of EFV aqueous solution present, and this effect is 

masked when EFV in nanoemulsion formulation due to the encapsulation of the 

drug. This would be expected due to the poor aqueous solubility of the EFV aqueous 

solution leading to it potentially not being fully dissolved at the 40 µg/ml 

concentrations. The data further reinforces the benefits of the nanoemulsion system, 

at least in respect to its ability to disperse poorly water-soluble therapeutics. 

 

The nanoemulsion had no effect on the cytotoxic activity of NK cells, which is of 

particular importance to a HIV therapeutic due to the vital role that NK cells play in 

the host defence against viral infections.  
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In summary, the nanoemulsion formulations were shown to have no interactions 

with the main areas of the immune system, with the exception of the intrinsic 

coagulation pathway. The data suggest that the nanoemulsion formulation of EFV 

could be used for further experimental testing in vivo to progress the formulation 

further, with studies in humans possible subject to successful in vivo preclinical 

safety.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



!

!

Chapter!7!

245!

 

 
 
 
 

CHAPTER 7 
 

General Discussion  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Chapter!7!
!

!246!

7.1 General Discussion 

The work in this thesis set out to explore the use of nanomedicine approaches to 

tackle the limitations associated with HIV therapies. The work can, however, be 

applied to other therapies which are poorly water soluble, especially those that 

utilise lipophilic APIs. With the pharmaceutical industry currently facing an 

uncertain future in terms of the number of major frontline patented drugs on the 

market [539], and with a portfolio containing increasing numbers of therapeutic 

compounds that have both poor solubility and poor permeability, it is likely that 

reformulation strategies using nanomedicine approaches will become increasingly 

common [540-542].  

 

The work presented in this thesis has shown a rational and iterative process for the 

development of novel nanoparticle based drug delivery systems. The close 

relationship between chemical development, cytotoxicity testing and detailed 

pharmacological testing, has allowed the project to assess a large number of 

potential formulations with limited resources [543]. This has mainly been possible 

due to an early screening approach, which prevented the incorporation of 

substituents with undesirable profiles.  

 

Large scale cytotoxicity testing is manageable and multiple assays can be run in 

parallel even in the scope of a single PhD project. However, detailed 

pharmacological testing, such as transcellular permeability and immunological 

safety assessments are much more intensive and expensive. By excluding excipients 
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based upon undesirable cytotoxicity profiles earlier in the development process, it 

meant less potential for failure downstream [544]. Figure 7.1 details the approach 

taken to the development of the project and highlights the stages in which 

information from pharmacological testing was fed back in order to steer the 

chemical development. 
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Figure 7.1 Workflow of structure based and iterative development process for novel 

nanomedicine based drug delivery systems. 
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The order of experimentation that this work followed was also designed in a rational 

way. Once lead candidates had been identified it was important to prioritise 

assessment of pharmacological benefit (Papp, CAR etc.) prior to a more in depth 

immunological safety assessment. Having this level of pre-assessment assures that 

only the most promising candidates are subjected to the more intensive assays, 

which involve expensive reagents and primary cells, as well as considerable time 

investment to conduct the assays. This approach could be translated to development 

of novel formulations in settings as small as individual research laboratories, right 

up to pharmaceutical enterprises. In both situations it may help optimise the 

efficiency of development and reduce costs. 

 

There was a constant need to assess the physicochemical properties of the samples 

being produced throughout this project, both in terms of assessing batch-to-batch 

variability, but also to screen out candidates based upon their size. There are 

numerous literature reports that demonstrate size-dependent characteristics in 

nanoparticles, in particular with the likelihood of permeability and accumulation 

[545, 546]. There is however, an on-going global problem with the validation of 

physicochemical properties of nanoparticles. This is in part due to there not being a 

single defined value for nanoemulsion size [547], and because different labs across 

the world use a variety of different platforms to determine the size of their particles. 

Measurements are also conducted at different concentrations and in different 

diluents, which all lead to variation in reported sizes of the same material. There is a 

need for a recognised definition and agreed standard of measurement, which may 
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take the form of a validation process across several different size determination 

platforms [548-551]. 

 

The next logical step in the progression of the work presented in this study would be 

to progress the candidates through to in vivo studies [457, 552, 553]. The distribution 

of EFV and LPV would be assessed in comparison to equivalent aqueous solutions 

of the drug and/or previously validated preclinical formulations. Previously, 

nanoemulsions have been shown to increase the distribution of poorly water-soluble 

drugs in rodent models [554-556]. In vivo studies would provide a more robust 

estimation of the likelihood of any benefits gained by having EFV or LPV in 

nanoemulsion formulation. The pharmacokinetic profile of EFV and LPV 

nanoemulsions could also be determined in rodent models, and all of this work 

would be conducted within the academic setting in the first instance. 

 

For in vivo studies, the current scale of production would be sufficient to produce the 

volume of sample required for the experiments proposed. However, for longer-term 

progression of the formulations, initial safety trials would need to be conducted in 

humans. This would require the scale-up in production of the nanoemulsions and 

production at GMP standards [557]. This stage of development would likely be 

conducted in collaboration with a contract manufacturing organisation or a 

commercial partner, as the cost of equipment necessary is not feasible for the 

academic setting [558-560]. Potential problems could arise when making the move 
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to large-scale production of the nanoemulsions, particularly in assuring batch-to-

batch reproducibility.  

 

The step after in vivo studies would be to progress to human trials, initially with a 

phase 0 “first in man” pharmacokinetic study [561], followed up with a phase 1 

initial safety assessment. Currently, there are nanoformulated anticancer therapeutics 

undergoing phase 1 clinical trials [562]. Both of these trial phases could be 

conducted in healthy volunteers. The phase 0 trial would be very small, with no 

more than 10-15 volunteers involved. Phase 0 clinical trials are becoming 

commonplace, particularly in the development of anticancer therapeutics [563-565]. 

The dosage received would be sub therapeutic, and deliberately low to ensure there 

is the least possible chance of any unsafe reactions. This small dose would still allow 

for the absorption, distribution, metabolism and excretion (ADME) [566] to be 

assessed, essential if the formulation were to proceed any further in the development 

process.  

 

It would be here that any unexpected accumulation or distribution would be seen, 

which would inform on the suitability of the drug formulation for its intended task, 

but more importantly from a safety point of view. There would also be the 

opportunity at this stage to examine whether smaller doses of the nanoemulsion 

could result in greater therapeutic concentrations (i.e. bioequivalence from a lower 

dose).  
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The phase 1 trial would be larger in scope (20-100 volunteers), but still focused 

exclusively on healthy volunteers. The purpose of this phase would be to determine 

a safe range of concentrations in which the nanoemulsion formulation could be 

administered. It would be hoped that a therapeutic concentration of LPV or EFV was 

reached before the dose of the nanoemulsion equalled that of the standard 

formulation. At this stage of the trial, any side effects would also be monitored 

carefully. Previous work involving nanoformulations of cancer therapeutics has led 

to phase 1 trials being conducted [567-569]. A phase 1 trial would involve a 

considerable amount of resource and investment, and is something that would have 

to be conducted in partnership with a large charitable organisation or pharmaceutical 

company. Again, nanoformulations of anticancer therapeutics have gained a lot of 

attention over the past decade, with a number of clinical trials having already taken 

place [570]. 

 

The issue of scale-up would again be an issue for the clinical trial phases of 

development. The requirement for all constituents of the nanoemulsion system to be 

at GMP grade would add significantly to the cost of producing the formulation at 

large quantities. There would be the need to conduct accelerated stability studies, 

complete with assessment of any possible degradation products that may be formed. 

All of this information would need to be detailed in a complete Investigational 

Medicinal Product Dossier (IMPD) [571] and regulatory approval would be needed 

before any progression to clinical trials would be allowed. The IMPD would have to 

include a detailed summary relating to all aspects of the nanoemulsion formulation, 
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including its production, quality and the manufacturing process. There would also be 

the need to include all preclinical data generated to date. The IMPD would also 

contain the relevant certificates of GMP quality for all of the constituents used in 

making the formulation [571]. This is where a potential hurdle would be 

encountered, as the production of PolyOEGMA would need to be outsourced. Large 

scale production and to GMP grade would not be possible within the laboratories at 

the University of Liverpool. 

 

Every piece of scientific work is not without its limitations and the same applies to 

the work described in this thesis. The main limitations of a Ph.D. project are time 

and resources, and although the work presented here was funded by a generous grant 

from the British Society for Antimicrobial Chemotherapy, there is still much more 

work to be done.  

 

There are a large number of polymers and copolymers that could have been made 

and assessed for their ability as emulsion stabilising agents. The project had the 

advantage of being informed from the work of Weaver et al [290-295], and as such 

there was a solid starting point with lots of background work already complete. 

Further iteration in this area is certainly worth considering however, in that polymer 

which could be reacted in such a way as to add signalling molecules or recognition 

sites to the polymer chain would be highly beneficial. Having a dual 

stabilising/targeting agent would allow for potentially increased distribution and 

accumulation to certain tissues types, for example CD4+ T cells, which would have 
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a direct positive benefit for HIV therapy. To expand further into different APIs, 

targeting molecules could be used for a variety of tissue types, dependent upon the 

disease being treated. Previous work in the literature has demonstrated the use of 

targeting strategies on nanoparticle-based therapies [572-576]. This is of course all 

assuming that the formulation of different lipophilic APIs translates as well as it did 

for EFV and LPV. 

 

There were also limitations in the type and numbers of experiments that were 

conducted. Cytotoxicity, for example, was assessed by two different assays, namely 

MTT and Cell TiterGlo® assay. These two assays respond to changes in the 

mitochondrial metabolism of the cells, and it could be argued that using two assays 

that targeted different aspects of the cell (such as trypan blue for cell membrane 

integrity) would have been more informative. It would also have been informative to 

assess the effect of the drugs on the growth rates of the cells, as there may not have 

been any overt cytotoxicity observed, but potentially the growth of the cells over 

time could be affected. This is tricky to assess in cell lines however, as changes in 

the morphology of cell lines can occur dependent upon passage number [577, 578]. 

 

The experimentation to assess the level of pharmaceutical benefit (accumulation, 

Papp) was conducted solely on model cell lines. Although these are well developed 

and accepted models, they still deviate significantly from primary human cells and 

tissues. To expand this investigation, it would be necessary to repeat the tests in 
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primary human tissues [579, 580], although this would have added significantly to 

the cost of the project. 

 

The use of animal models would provide a significant increase in the confidence of 

the level of benefit seen. Animal models of drug distribution and plasma 

concentrations would provide an indication as to how the nanoemulsion would 

perform in a whole body situation. Again this was not possible in this study due to 

financial and time constraints, as well as the issues of strict licensing and control of 

animal testing. As stated previously above, in vivo animal testing is certainly the 

next step to take in the continuation of development of this project. 

 

Although there was a large set of immunological safety assays conducted, in part 

due to the collaboration with the Nanotechnology Characterisation Laboratory, there 

are many other aspects that can be assessed. It would be unrealistic to conduct every 

possible type of immune assay available, but the assays used in this project do cover 

a wide range of scenarios and represent an in depth first assessment of potential 

immunological side effects. There is room for further investigation into the 

coagulation effect of the nanoemulsions, as this was the only assay conducted that 

showed significant effect. It would be important to follow up this result in order to 

ascertain why the prolonged APTT coagulation was seen, and to work out a 

mechanism for it. Potential detrimental effects can be predicted and possibly 

prevented. This may perhaps be achieved by avoiding dosage to patients already 
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identified as having impaired coagulation functions or by co administration with a 

compound to offset the effect seen by the nanoemulsion. 

 

In summary, the work presented in this thesis has shown a successful and cosrt 

effective approach to developing a nanoformulation of an existing first line drug. 

The data suggest that the nanoemulsion formulations have good potential to be 

beneficial over the existing aqueous formulation. The data also justifies the further 

investigation into the nanoemulsion formulations in order to further characterise and 

quantify the effect that this formulation may have in a drug delivery setting. 

Dependant upon the results of further investigation, particularly that which addresses 

the limitations of this study, nanoemulsions could be a viable platform for achieving 

improvements in the effectiveness of poorly water soluble therapeutics.  
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