Elsevier Editorial System(tm) for Ophthalmology Manuscript Draft

Manuscript Number: 2014-2033R2

Title: Corneal angiography for guiding and evaluating fine needle diathermy treatment of corneal neovascularization

Article Type: Manuscript

Corresponding Author: Ms. Natasha Spiteri, M.D., FRCOphth

Corresponding Author's Institution:

First Author: Natasha Spiteri, M.D., FRCOphth

Order of Authors: Natasha Spiteri, M.D., FRCOphth; Vito Romano, MD; Yalin Zheng, PhD; Sohraab Yadav, MBChB; Rahul Dwivedi, BSc(Hons), MBChB; Jern Chen, MD; Sajjad Ahmad, PhD, FRCOphth; Colin Willoughby, MD, FRCOphth; Stephen Kaye, MD, FRCOphth

Abstract: Corneal angiography for guiding and evaluating fine needle diathermy treatment of corneal neovascularization

Natasha Spiteri MD1, FRCOphth, Vito Romano1 MD, Yalin Zheng PhD 2, Sohraab Yadav MBChB 1, Rahul Dwivedi BSc(Hons), MBChB1, Jern Chen1 MD, Sajjad Ahmad PhD, FRCOphth 1,2, Colin Willoughby MD, FRCOphth1, Stephen B Kaye MD, FRCOphth1,2

1. St Paul's Eye Unit, Royal Liverpool University Hospital, Liverpool, L7 8XP, UK 2. Department of Eye and Vision Science, University of Liverpool, UK.

Tel: +44 1517062000

Corresponding Author: Natasha Spiteri St Paul's Eye Unit, 8Z link, Royal Liverpool University Hospital, Liverpool, L7 8XP, UK nax024@gmail.com

Meeting presentation: Poster presentation at ARVO, May, 2014

Financial support: None

Conflict of interest: No conflicting relationship exists for any author.

Running head: Targeted diathermy for corneal new vessels

Address for reprints: St Paul's Eye Unit, 8Z link, Royal Liverpool University Hospital, Liverpool, L7 8XP, UK

This article contains one video as additional online-only material.

Abstract

Purpose: To investigate the outcome of selective occlusion of the afferent vessel of corneal neovascular complexes (CoNV), using angiographically guided fine needle diathermy (FND).

Design: Retrospective interventional case series

Subjects: Patients with CoNV unresponsive to topical steroid therapy.

Methods: Visual acuity, color images, and fluorescein angiography (FA) and indocyanine green angiography (ICGA) were measured before and following FND with a minimum of three months followup. The number of afferent vessels crossing the limbus, time to fluorescein leakage, area and geometric properties of the CoNV were determined using an in-house automated program written in numerical computing language (MatLab R14; The MathWorks Inc., Natick, MA). The location of the afferent vessel was identified from the angiographic images and marked at the slit lamp using a needle to make a cut to the depth of the vessel. FND was then applied using an electrolysis needle.

Main Outcome Measure: Area of CoNV

Results: 30 patients underwent FND for CoNV that had not responded to treatment with topical steroids. The CoNV was associated with previous microbial keratitis (26), intrastromal corneal ring segments (2), ectodermal dysplasia (1) and corneal choristoma (1). Duration of CoNV was over six months in the 23 patients (77%), between three and six months in 3 patients (10%), and less than three months in 5 patients (13%). The number of afferent vessels per CoNV complex ranged from 1 to 3 with a mean diameter of 40μ m (SD 10μ m) and mean time to leakage from apical vessels was 44.22 seconds (min: 27.43s max: 63.59s). The number of episodes of FND treatments that were required was one for 20 patients (66.6%), two for 8 patients (26.6%) and three for 2 patients (6.6%). Following FND, the area of CoNV reduced by 1.80mm2 (SD: 1.40); from 2.42mm2 (SD: 1.59) to 0.62mm2 (SD: 0.73) up to 12 weeks post-operatively (p<0.01).

Conclusions: The differentiation of afferent and efferent vessels using corneal angiography enables treatment to be selectively applied to the afferent vessels of which, there are usually 1 to 2 for each CoNV complex.

POINT-BY-POINT RESPONSE FORM

Please list the editor's, reviewer(s)', and editorial office's comments in the left-hand column, spacing them so that you can insert the relevant response in the center column and the respective point(s) in the text (and tables or legends, if appropriate) in the right-hand column. Adding line numbers to the manuscript file and referring to specific line numbers will be useful in determining which parts of the manuscript changed.

Manuscript #: 2014-2033R1

Manuscript title: Corneal angiography for guiding and evaluating fine needle diathermy treatment of

corneal neovascularization

Suggestion, Question, or Comment from the Editor	Author's Response	Change in the Manuscript
Please clarify the length of follow-up in	Minimum 3 months follow-up	Lines 39-40, 106
the abstract, precis, and table(s), e.g. in	specified	
the precis: "appears effective with 4		
months of follow-up		
Please review, discuss and cite the paper	This paper which had a range of	Lines 78, 80-2, 194-
by Trikha et al. as suggested by Reviewer	follow-up of 1 -56months, has been	8
#2. This paper had a mean follow-up of	cited and discussed in both	
almost 19 months	introduction and discussion	
Please add details about the length of	Details regarding steroid treatment	Lines 101-2, 153
steroid treatment prior to considering	have now been included.	
diathermy, and whether steroid treatment	Steroids post-treatment limited to 4	
was continued beyond the first 4 weeks	weeks in all. Pre-treatment steroid	
after treatment in any cases	ranged between 6 and 10 weeks	

Suggestion, Question,	Author's Response	Change in the
or Comment from		Manuscript
Reviewer #1		
The authors need to acknowledge clearly	Whilst we respect the reviewer's	Lines 89 - 90
that the afferent vs. efferent nature of the	comment "the afferent vs. efferent	
neovessels in the cornea can often be	nature of the neovessels in the	Although in some
identified easily at the slit lamp and does	cornea can often be identified easily	cases it may be

not require imaging in all cases.	at the slit lamp", we would also offer	possible to
	evidence to the contrary (References	differentiate afferent
	11-14).	and efferent vessels
		on slit lamp
	We do however, agree that	biomicroscopy, aided
	Identifying and distinguishing afferent	for example by the
	and efferent vessels may be possible	patient's pulse, this
	in some cases but this is not the	can be difficult. Once
	general situation. We have shown	the afferent vessels
	that not all the vessels can be seen	or vessels have
	or easily distinguished on slit lamp	been identified on
	biomicroscopy even aided by the	angiography,
	patients pulse. We hope the	however, it then
	reviewer will accept our comment	makes the
	that 'once the afferent vessels or	identification on slit
	vessels have been identified on	lamp biomicroscopy
	angiography, it then makes their	more evident and
	identification on slit lamp	reliable.
	biomicroscopy more evident and	
	reliable' and that this is a fair	
	reflection of the literature.	
The authors make the erroneous	Thank you. Statement regarding	Line 218
assertion in their discussion (in citing	absence of LCs in central cornea	
reference 17) that the central epithelium	deleted	
of the cornea is entirely devoid of		
Langerhans cells. This misconception		
was laid to rest many years ago; the		
central epithelium of the cornea DOES		
contain a few LCs most are not		
functional. Thus, the authors need to		
modify their assertion and simply state		
that FND can increase the numbers of		
these cells.		

Suggestion, Question,	Author's Response	Change in the

or Comment from		Manuscript
Reviewer #2		
The technique described in the text lines	Thank you. It was unipolar and this	Line 149
(137-149) appear to show a bipolar	has been corrected.	
approach to fine needle diathermy		
whereas the original description by Pillai		
et al (ref 7) used a unipolar approach. In		
the methods it is not clear whether the		
approach is bipolar or unipolar. A		
unipolar approach uses one electrode		
(suture needle) allowing a current to pass		
through the vascular complex (the patient		
is 'earthed'), allowing tissue to be		
coagulated. In a bipolar diathermy		
approach the current passes at the point		
of the electrode and superficial heating of		
tissue (vaporization effect) is created.		
This difference may not be that clinically		
significant but the authors could consider		
adding this to the discussion and		
indicating in the methods which type of		
diathermy was used.		
The table data include BCVA pre- and	Thank you. Statistical test result has	Lines 156-7
post-op but there is no statistical analysis	been added.	176-7
on whether the improvement in BCVA is	There was a significant difference	
significant with this sample number.	between pre and post operative	
	BCVA	
The discussion mentions that long term	Thank you. We have acknowledged	Lines 78, 80-2, 194-
results are poorly understood (lines 218-	and added this to the manuscript.	8
19), however, Trikha et al BJO 'Long-	Trikha et al have shown a	
term outcomes of Fine Needle Diathermy	improvement in the reduction in	
for established corneal	CoNV using FND.	
neovascularization" have already shown		
a positive effect in the long term with this		
method.		

Suggestion, Question,	Author's Response	Change in the
or Comment from the		Manuscript
Editorial Office		
Please upload the Author Contributorship	Author contributorship form	
Form. If you have more than 8 co-authors	uploaded.	
on the byline, please use additional		
forms. The form can be found		
at http://cdn.elsevier.com/promis_misc/O		
PHTHA_Contributorship.pdf.		
Please be sure your references conform	References checked and conform to	
to OPHTHALMOLOGY's style at this	Ophthalmology's style and NLM	
stage. Journal abbreviations should	abbreviations.	
conform to those used by the National		
Library of Medicine. For more information,		
please visit the "References" section of		
our Guide for Authors		
at http://cdn.elsevier.com/promis_misc/op		
h%20gfa%2018%20mar%202014.pdf.		

Fine needle diathermy is an easy and effective treatment for corneal neovascularization, however since its cellular effects are poorly understood, diathermy should be used sparingly. This can be achieved by angiographically-guided targeting of afferent vessels.

1	Corneal angiography for guiding and evaluating fine needle diathermy treatment of corneal
2	neovascularization
3	
4	Natasha Spiteri MD ¹ , FRCOphth, Vito Romano ¹ MD, Yalin Zheng PhD ² , Sohraab Yadav MBChB ¹ , Rahul
5	Dwivedi BSc(Hons), MBChB ¹ , Jern Chen ¹ MD, Sajjad Ahmad PhD, FRCOphth ^{1,2} , Colin Willoughby MD,
6	FRCOphth ¹ , Stephen B Kaye MD, FRCOphth ^{1,2}
7	
8	1. St Paul's Eye Unit, Royal Liverpool University Hospital, Liverpool, L7 8XP, UK
9	2. Department of Eye and Vision Science, University of Liverpool, UK.
10	
11	Tel: +44 1517062000
12	
13	Corresponding Author:
14	Natasha Spiteri
15	St Paul's Eye Unit, 8Z link, Royal Liverpool University Hospital, Liverpool, L7 8XP, UK
16	nax024@gmail.com
17	
18	Meeting presentation:
19	Poster presentation at ARVO, May, 2014
20	
21	Financial support: None
22	
23	Conflict of interest: No conflicting relationship exists for any author.
24	
25	Running head: Targeted diathermy for corneal new vessels
26	
27	Address for reprints:
28	St Paul's Eye Unit, 8Z link, Royal Liverpool University Hospital, Liverpool, L7 8XP, UK
29	
30	This article contains one video as additional online-only material.
31	
32	

33 Abstract

- 34 **Purpose:** To investigate the outcome of selective occlusion of the afferent vessel of corneal
- 35 neovascular complexes (CoNV), using angiographically guided fine needle diathermy (FND).
- 36 **Design:** Retrospective interventional case series
- 37 Subjects: Patients with CoNV unresponsive to topical steroid therapy.
- 38 **Methods:** Visual acuity, color images, and fluorescein angiography (FA) and indocyanine green
- 39 angiography (ICGA) were measured before and following FND with a minimum of three months
- 40 <u>follow-up</u>. The number of afferent vessels crossing the limbus, time to fluorescein leakage, area and
- 41 geometric properties of the CoNV were determined using an in-house automated program written in
- 42 numerical computing language (MatLab R14; The MathWorks Inc., Natick, MA). The location of the
- 43 afferent vessel was identified from the angiographic images and marked at the slit lamp using a
- 44 needle to make a cut to the depth of the vessel. FND was then applied using an electrolysis needle.
- 45 Main Outcome Measure: Area of CoNV
- 46 **Results:** 30 patients underwent FND for CoNV that had not responded to treatment with topical
- 47 steroids. The CoNV was associated with previous microbial keratitis (26), intrastromal corneal ring
- 48 segments (2), ectodermal dysplasia (1) and corneal choristoma (1). Duration of CoNV was over six
- 49 months in the 23 patients (77%), between three and six months in 3 patients (10%), and less than
- 50 three months in 5 patients (13%). The number of afferent vessels per CoNV complex ranged from 1
- 51 $\,$ to 3 with a mean diameter of 40 μm (SD 10 μm) and mean time to leakage from apical vessels was
- 52 44.22 seconds (min: 27.43s max: 63.59s). The number of episodes of FND treatments that were
- 53 required was one for 20 patients (66.6%), two for 8 patients (26.6%) and three for 2 patients (6.6%).
- 54 Following FND, the area of CoNV reduced by 1.80mm² (SD: 1.40); from 2.42mm² (SD: 1.59) to
- 55 0.62 mm^2 (SD: 0.73) up to 12 weeks post-operatively (p<0.01).
- 56 **Conclusions:** The differentiation of afferent and efferent vessels using corneal angiography enables
- treatment to be selectively applied to the afferent vessels of which, there are usually 1 to 2 for each
 CoNV complex.
- 59

60 Introduction

61

62 Avascularity of the cornea is important for its homeostasis and function. Corneal neovascularization 63 (CoNV), however, may develop in response to hypoxia or inflammations, as infectious, allergic, toxic 64 and traumatic injuries.¹ The presence of CoNV reflects an imbalance between anti-angiogenic 65 factors, such as pigment-epithelium-derived factor (PEDF), and angiogenic factors, such as fibroblast and vascular endothelial growth factors (VEGF).^{2, 3} CoNV is however, part of the wound healing 66 67 response and may be useful in the acute phase for the transport of, humoral and cellular elements 68 involved in immune response, materials required for repair and regeneration, removal of toxic 69 substances and drugs to the site of inflammation. Chronic up-regulation of the angiogenic response, 70 however, results in the persistence of pathological new vessels, which have increased vascular 71 permeability resulting in corneal oedema, lipid exudation, chronic or recurrent inflammation and scarring.⁴ There is also the potential establishment of lymphatics, normally absent from the cornea, 72 73 which may further disrupt the "immune privilege" status of the cornea.⁴ 74 75 Various techniques have been employed to treat CoNV, including topical steroids, anti-VEGF, 76 metalloproteinase inhibitors, photodynamic therapy, Argon laser, yellow dye laser, radiation, cryotherapy and conjunctival resection.⁴⁻⁶ Fine-needle diathermy (FND) has been described by 77 several groups for the treatment of CoNV.^{5, 7.9} It involves the application of a coagulating current 78 79 through a unipolar diathermy unit or thermal cautery, usually delivered through a needle such as a cutting or an electrolysis needle. Although FND has shown promise with the largest retrospective 80 81 study reporting a series of 56 eyes, showing regression of CoNV in 89.3% of patients following two or less treatments.⁹ It is, however not known what long-term effects diathermy has on the cornea at a 82 83 cellular level, particularly if applied to the multitude of vessels in the CoNV complexes. Reducing the 84 number of vessels that need to be closed may reduce the potential risks associated with FND and 85 improve the efficacy of the procedure. It is questionable whether both the afferent (presumed 86 arteriole) and efferent (presumed venule) systems of CoNV require treatment and selective 87 treatment to the afferent system may be sufficient. It is of note, that Cursiefen et al found that on histology, that arterioles tend to comprise less than 1% of CoNV.¹⁰ One option therefore, would be 88 to only treat the afferent vessel(s) of the CoNV complex.¹¹ While it is sometimes possible to 89 90 distinguish afferent from efferent CoNV using slit lamp biomicroscopyat the slit lamp, it has been shown that the full extent and origin of the CoNV complex is not apparent often difficult to identify 91 on color images.¹²⁻¹⁴ We have, however, recently shown that corneal angiography (fluorescein 92

93 angiography, FA and indocyanine green angiography, ICGA) are particularly useful in identifying

vessels not seen on color images¹²⁻¹⁴, especially in the presence of corneal scars or inflammation and
 <u>facilitate</u> identification and differentiation of afferent and efferent vessels and vessel leakage.¹³ In
 order therefore, to minimise the amount of diathermy applied to the cornea, we describe the use of
 angiography to identify and specifically treat the afferent vessels using FND.

98

99 Methods

100 Patients who were undergoing FND for CoNV associated with previous corneal disease such as 101 microbial keratitis and that had not responded to topical steroid therapy were included. Topical 102 steroids had been usedgiven for between 66 and 12 weeks duration. Inclusion criteria were CoNV 103 extending more than 3mm into cornea with varying degrees of lipid keratopathy and no active 104 keratitis or corneal ulceration. Patients were followed up for a period of at least four months. 105 Patients were examined with slit lamp biomicroscopy, and color and red free images, and FA and 106 ICGA were obtained pre-treatment and three months post-treatment. IRB approval and informed 107 consent were obtained and the Tenets of the Declaration of Helsinki were adhered to.

108

109 Color, FA and ICGA images.

- 110 Color images were captured using a slit lamp mounted digital system (Topcon SL-D Digital Slit Lamp,
- 111 Tokyo, Japan) with 10 to 25 times magnification. An HRA2 Scanning Laser Ophthalmoscope
- 112 (Heidelberg Engineering, Heidelberg, Germany) with a 20 degree imaging lens set at 34 diopter (D),
- 113 was used for ICGA and FA as previously described.^{12, 13} After injection of 5ml of indocyanine green
- 114 dye (5mg/ml) (Pulsion Medical Systems, Germany) videography was recorded for 25 seconds. Single
- $115 \qquad {\rm frame \, ICGA \, images \, of \, the \, whole \, cornea \, capturing \, corneal \, blood \, vessel \, fluorescence \, were \, taken}$
- 116 every 3-5 seconds for 3 minutes followed by late images at 5 and 10 minutes. An intravenous
- 117 injection of 3mL of 20% Sodium fluorescein (Martindale Pharmaceuticals, Essex, UK) was then given
- 118 $\,$ and the videography repeated. During the acquisition of single frame ICGA and FA images hi-
- 119 resolution mode with eye tracking automatic real-time (ART) software was used.
- 120
- 121 Image analysis
- 122 The region of interest (ROI) was defined pre-operatively as the area of the cornea containing the
- 123 CoNV and was used to compare pre and post-operative images. Images of pre- and final post-
- 124 operative angiograms of grade 3 or 4 were selected for analysis as previously described by two
- 125 independent observers (SY and RD).¹² The number of afferent vessels crossing the limbus and time
- 126 to leakage of fluorescein were recorded. The area and geometric properties of the vessels were
- 127 determined on the selected images using an in-house automated program developed in Matlab R14

(The MathWorks Inc., Natick, MA).¹³ In brief, the major steps of the program are as follows. For 128 each image the pixel resolution (mm/pixel) was first defined as the ratio between the diameter of 129 130 the cornea (mm) and the number of pixels measured manually from the image. A ROI containing all 131 the corneal vessels was then defined by hand. The CoNV in the ROI was detected by applying 132 Gaussian enhancement, selective vessel enhancement and thresholding techniques to the ROI in a 133 sequential order. In the resulting binary image (1 indicating vessel pixels while 0 indicating 134 background pixels) the area of CoNV (mm²) was computed by multiplying the number of CoNV pixels 135 and the area (mm²) occupied by a pixel. The centrelines of the vessels were identified by a 'thinning' 136 operation so that the branch points and terminal points can be identified. The branching and 137 terminal points were then used to divide the vascular tree into individual vessel segments. The 138 mean diameter (mm) of each segment can be computed so as to characterise the CoNV complex in 139 the image. 140 141 FND technique (Video) 142 Afferent and efferent vessels were identified on videography (Figure 1) and the former labelled. The 143 annotated image was used as a reference to mark the afferent vessel(s) with an inked needle. Using 144 slit lamp biomicroscopy, under topical anaesthesia, a partial thickness incision was made using a 25 145 gauge needle on a 1 ml syringe into the posterior stroma over the identified afferent vessel(s) either at the limbus or at the level of marginal corneal arcades.¹⁵ If the afferent vessel was transected, an 146 147 interruption of flow was evident in the visible vessels carrying red blood cells (Video). Under the 148 operating microscope, an Ellman MH-EL-A2D fine wire electrolysis needle was then applied into the 149 incision. Energy was delivered <u>using a unipolar approach</u> by a Surgitron[®] Dual RF[™] machine (Ellman 150 International Inc, Oceanside, NY, USA) using the lowest setting (1 joule per second) until a visible 151 blanching of the cornea around the afferent vessel was seen and segmentation of the blood flow in 152 the larger efferent vessels if not already present. Patients received guttae prednisolone 1% gds and 153 chloramphenicol 0.5% qds post-operatively for 4 weeks only. 154 155 Statistical analysis 156 A Mann Whitney test was used to compare pre- and post-operative area of CoNV and a paired

- 157 samples t-test for change in visual acuity (SPSS Statistics 21).
- 158

159 Results

- 160 30 patients (mean age 56 years, range: 23 to 95 years, male:female::1:1) undergoing FND for CoNV
- 161 were included. Demographic details as well as diagnoses and previous treatments are provided in

162 Table 1. The causes of the CoNV were previous herpes simplex keratitis (HSK) (13), clinically

- 163 suspected bacterial keratitis (13), vascularization associated with intrastromal corneal ring segments
- 164 (2), ectodermal dysplasia (1) and corneal choristoma (1). The duration of CoNV at time of FND was
- 165 over six months in the 23 patients (77%), between three and six months in 3 patients (10%), and less
- 166 $\,$ than three months in 5 patients (13%). The number of FND treatments performed was single
- 167 treatment for 20 patients (66.6%), two for 8 patients (26.6%) and three for 2 patients (6.6%) (Table1).
- 169 The number of afferent vessels per CoNV complex ranged from 1 to 2 with a mean diameter of
- 170 40μm (SD: 10μm) (Table 2). The mean time to leakage from the apical vessels on fluorescein
- 171 angiography was 44.22 seconds (min: 27.43s, max: 63.59s). The area of CoNV reduced from
- 172 2.42mm² (SD: 1.59) to 0.62mm² (SD: 0.73) post-operatively (p<0.01), a mean reduction of 1.80mm²
- 173 (SD: 1.40). The percentage reduction in area of CoNV for each patient is shown in Table 2. Although
- 174 the area of CoNV reduced post-treatment (Figure 2), FND did not lead to a complete closure of the
- 175 entire CoNV complexes in all patients with some residual vessels in the periphery of the cornea.
- 176 There was statistically significant improvement in BCVA from 0.59 (SD: 0.71) to 0.40 (SD: 0.42) post-
- 177 treatment <u>, t(29) = 2.32, two tail (p =0.027) with</u>, and a mean change of 0.17 LogMAR (Table 1).
- 178 Adverse events and reactions included peripheral corneal thinning (Patient 6), intrastromal
- 179 haemorrhage, which cleared spontaneously (Patient 11), recurrence of herpes simplex keratitis
- 180 (Patients 9 and 11) and a change in refractive error (Patient 1).
- 181

182 Discussion

- 183 The presence of CoNV threatens the functional integrity of the cornea with the risk of lipid 184 exudation, loss of transparency, loss of visual acuity, increased inflammatory response and an 185 increased risk of graft failure. To date, there is no universally accepted treatment strategy to 186 successfully treat CoNV although topical steroids are perhaps the most commonly employed 187 treatment.⁴ Topical and injected anti-VEGF has been utilised in the treatment of CoNV, however, it 188 has been suggested that once vessels mature and acquire a pericyte-covered wall, they are no longer dependent on VEGF for growth and are thus unresponsive to anti-VEGF.^{16,17} Argon laser has 189 190 been shown to have limited efficacy and with a risk of complications such as iris atrophy.^{4,7} The 191 speed of red blood cell movement in afferent vessels and their usual deeper location in the cornea 192 makes them relatively insensitive to Argon laser. 193
- FND has shown promising short-term results for treatment of CoNV. Trikha et al reported FND to be
 a-safe and effective in the medium to long term, with mean follow-up of 18.9 months (range 1 56

196	months). They reported only one complication, that of corneal and subconjunctival haemorrhage in
197	their large series of patients, and also demonstrated a significant improvement in LogMAR VA from
198	0.82 pre-treatment to 0.72 post-treatment. ⁹ FND, has however, has been applied without
199	distinction to afferent or efferent vessels, usually to the larger vessels identified on color images. ¹⁸
200	The larger vessels and more numerous vessels that are identified on color images, slit lamp
201	biomicroscopy are efferent vessels so that FND applied to these vessels may not be as effective as if
202	applied to the afferent vessels, which are narrower and slightly less tortuous. In particular, the
203	differentiation of afferent and efferent vessels aided by corneal angiography enables such treatment
204	to be applied to the afferent vessels of which, there are usually only 1 to 2 for each CoNV complex.
205	Although in some cases it may be possible to differentiate afferent and efferent vessels on slit lamp
206	biomicroscopy, aided for example by the patient's pulse, this can be difficult. Once the afferent
207	vessel or vessels have been identified on angiography, however, it then makes the identification on
208	slit lamp biomicroscopy more apparent and reliable. In particular, the differentiation of afferent and
209	efferent vessels using corneal angiography enables such treatment to be applied to the afferent
210	vessels of which there are usually only 1 to 2 for each CoNV complex.
211	
212	FND is a relatively easy procedure to perform with only a few minor complications reported,
213	including transient whitening of the cornea and intrastromal haemorrhage, which usually resolves
214	without sequelae, ^{5,7} recurrent HSK and localised thinning and ectasia. ⁷ The cellular changes that
215	occur following FND, however, are less well understood. In rats, a significant increase in the number
216	of <u>B7+</u> MHC II ⁺ Langerhans cells in the limbal surface epithelium occurs within hours of cautery, and
217	later throughout the entire corneal epithelium, suggesting an inflammatory reactionas well as of
218	these cells the central cornea, where they are normally <mark>abound</mark> . ¹⁹ _Langerhans cells are the
219	professional antigen presenting cells of the corneal epithelium, and their absence from the central
220	cornea plays an important role in maintaining the immune privilege of the cornea. In addition,
221	Feldman et al, -in an experimental study on rabbits-showed that radial thermokeratoplasty caused
222	significant damage to the corneal endothelium beneath and surrounding the coagulation site. ²⁰
223	Furthermore corneal heating reduces corneal curvature, with therapeutic potential for correction of
224	myopia and as a treatment for corneal ectasia. ^{21,22} AHowever at a molecular level, however, it
225	results in shrinkage of corneal stromal collagen. ²² It is also unclear what the long-term effects of
226	diathermy to the cornea may be. The process of corneal diathermy itself may be a stimulus for
227	further CoNV. It would therefore seem reasonable, to try and minimise the application of FND to the
228	cornea. ICGA or FA offers the ability to identify the afferent or feeder vessels for FND, and
229	application of anti-angiogenic factors such as anti-VEGF may be better applied to less mature or

Comment [NS1]: Have changed back to American spelling for Ophthalmology

230	immature vessels, ¹⁷ which can be identified using time to leakage on FA. ^{12, 13} In particular topically	
231	applied pazopanib, a selective multi-targeted receptor tyrosine kinase inhibitor of VEGF receptor and	
232	platelet derived growth factor (PDGF) receptor has shown promise in the treatment of CoNV. ¹⁵	
233		
234	Our results suggest that angiographically-guided FND, targeting the afferent vessels may be effective	Forma
235	in reducing the area of CoNV. In our series, although around a third of patients required	
236	retreatment, this may reflect identification of vessels on angiography that are not apparent on	
237	colour images. ¹¹⁻¹⁴ Similar to Trikha et al ⁹ , adverse events were uncommon and mostly transient, and	
238	there was an small improvement in visual acuity. In those patients undergoing corneal	
239	transplantation, the reduction in CoNV may be of benefit. Since the long-term effects of FND are	
240	poorly understood, it is the authors' opinion that diathermy should be used sparingly. The	
241	differentiation of afferent and efferent vessels <u>aided by using</u> corneal angiography, enables such	
242	treatment to be applied to the afferent vessels, of which there are usually only 1 to 2 for each CoNV	
243	complex.	
244		
245		
246		
247		
248		
249		
250		
251		
252		
253		
254		
255		
256		
257		
258		
259		
260		
261		
262		
263		

Formatted: Line spacing: 1.5 lines

264				
265				
266				
267				
268				
269				
270				
271				
272				
273				
274				
275				
270	Poforo		_	Earmattad: Line spacing: 1.5 lines
278	1	Chang IH, Gabison FF, Kato T, Azar DT, Corneal neovascularization, Curr Opin Ophthalmol		Tormatted. Line spacing. 1.5 miles
270	_ .			
279	2001;1	2:242-9.		
280	2.	Manzano RP, Peyman GA, Khan P, et al. Inhibition of experimental corneal		
281	neovas	cularisation by bevacizumab (Avastin). Br J Ophthalmol 2007;91:804-7.		
282	3.	Clements JL, Dana R. Inflammatory corneal neovascularization: etiopathogenesis. Semin		
283	Ophtha	almol 2011;26:235-45.		
284	4.	Gupta D, Illingworth C. Treatments for corneal neovascularization: a review. Cornea		
285	2011:3	0:927-38.		
000				
286	5.	I hatte S. Fine needle diathermy - a choice for managing corneal vascularization. Nepal J		
287	Ophtha	almol 2011;3:23-6.		
288	6.	Bucher F, Parthasarathy A, Bergua A, et al. Topical Ranibizumab inhibits inflammatory		
289	cornea	hem- and lymphangiogenesis. Acta Ophthalmol 2014;92:143-8.		
290	7.	Pillai CT, Dua HS, Hossain P. Fine needle diathermy occlusion of corneal vessels. Invest		
		· · · · · · · · · · · · · · · · · · ·		

291 Ophthalmol Vis Sci 2000;41:2148-53.

292	8.	Koenig Y, Bock F, Kruse FE, et al. Angioregressive pretreatment of mature corneal blood
293	vessels	before keratoplasty: fine-needle vessel coagulation combined with anti-VEGFs. Cornea
294	2012;3:	1:887-92.
295	<u>9.</u>	Trikha S, Parikh S, Osmond C, et al. Long-term outcomes of Fine Needle Diathermy for
296	<u>establis</u>	hed corneal neovascularisation. Br J Ophthalmol 2014;98:454-8.
297	10.	Cursiefen C, Hofmann-Rummelt C, Kuchle M, Schlotzer-Schrehardt U. Pericyte recruitment in
298	human	corneal angiogenesis: an ultrastructural study with clinicopathological correlation. Br J
299	Ophtha	lmol 2003;87:101-6.
300	11.	Romano V, Spiteri N, Kaye SB. Angiographic guided treatment of corneal neovascularization.
301	J <u>ama</u> C	Ophthamol <u>. In press.</u>
302	12.	Kirwan RP, Zheng Y, Tey A, et al. Quantifying changes in corneal neovascularization using
303	fluores	cein and indocyanine green angiography. Am J Ophthalmol 2012;154:850-8.
304	13.	Anijeet DR, Zheng Y, Tey A, et al. Imaging and evaluation of corneal vascularization using
305	fluores	cein and indocyanine green angiography. Invest Ophthalmol Vis Sci 2012;53:650-8.
306	<u>14.</u>	Zheng Y, Kaye AE, Boker A, Stewart RK, Tey A, Ahmad S, Willoughby CE, Bron AJ, Kaye SB.
307	Margin	al corneal vascular arcades. Invest Ophthalmol Vis Sci 2013;54:7470-7.
308	15.	Amparo F, Sadrai Z, Jin Y, et al. Safety and efficacy of the multitargeted receptor kinase
309	inhibito	or pazopanib in the treatment of corneal neovascularization. Invest Ophthalmol Vis Sci
310	2013;54	4:537-44.
311	16.	Chaoran Z, Zhirong L, Gezhi X. Combination of vascular endothelial growth factor
312	recepto	or/platelet-derived growth factor receptor inhibition markedly improves the antiangiogenic
313	efficacy	for advanced stage mouse corneal neovascularization. Graefes Arch Clin Exp Ophthalmol
314	2011;24	49:1493-501.
315	17.	Asena L, Akova YA, Cetinkaya A, Kucukerdonmez C. The effect of topical bevacizumab as an

316 adjunctive therapy for corneal neovascularization. Acta Ophthalmol 2013;91:246-8.

317	18.	Faraj LA, Elalfy MS, Said DG, Dua HS. Fine needle diathermy occlusion of corneal vessels. Br J
318	Ophtha	ılmol 2014;98:1287-90.
319	19.	Chen W, Lin H, Dong N, et al. Cauterization of central cornea induces recruitment of major
320	histoco	mpatibility complex class II+ Langerhans cells from limbal basal epithelium. Cornea
321	2010;2	9:73-9.
322	<u>20.</u>	Feldman ST, Ellis W, Frucht-Pery J, et al. Experimental radial thermokeratoplasty in rabbits.
323	Arch O	phthalmol 1990;108:997-1000.
324	<u>21.</u>	Ehrlich JS, Manche EE. Regression of effect over long-term follow-up of conductive
325	kerator	plasty to correct mild to moderate hyperopia. J Cataract Refract Surg 2009;35:1591-6.
326	<u>22.</u>	Barsam A, Patmore A, Muller D, Marshall J. Keratorefractive effect of microwave
327	<u>kerator</u>	plasty on human corneas. J Cataract Refract Surg 2010;36:472-6.
328	Figure	Captions
329		
330	Figure	1. Identification of afferent and efferent vessels.
331	The 3 a	fferent vessels (two superiorly and one inferiorly are identified as the first to fluoresce in the
332	angiogr	ram (arrows in A). As the angiogram is continued (B and C) the efferent vessels fill and
333	become	e prominent (arrows). Note the larger efferent vessels partially overlying and obscuring the
334	narrow	er afferent vessels (D).
335		
336	Figure	2. Treatment of CoNV effect following FND.
337	Pre (A)	and post-treatment closure of CoNV (B) following occlusion of the afferent vessel with FND.
338	Note th	ne narrower and less tortuous afferent vessel compared to the more obvious efferent vessels
339	drainin	g the complex.
340		
341	Video	
342	Transeo	ction of afferent vessel using a 25 gauge needle. Note the stagnation of flow in the larger

343 efferent vessels.

1	Corneal angiography for guiding and evaluating fine needle diathermy treatment of corneal
2	neovascularization
3	
4	Natasha Spiteri MD ¹ , FRCOphth, Vito Romano ¹ MD, Yalin Zheng PhD ² , Sohraab Yadav MBChB ¹ , Rahul
5	Dwivedi BSc(Hons), MBChB ¹ , Jern Chen ¹ MD, Sajjad Ahmad PhD, FRCOphth ^{1,2} , Colin Willoughby MD,
6	FRCOphth ¹ , Stephen B Kaye MD, FRCOphth ^{1,2}
7	
8	1. St Paul's Eye Unit, Royal Liverpool University Hospital, Liverpool, L7 8XP, UK
9	2. Department of Eye and Vision Science, University of Liverpool, UK.
10	
11	Tel: +44 1517062000
12	
13	Corresponding Author:
14	Natasha Spiteri
15	St Paul's Eye Unit, 8Z link, Royal Liverpool University Hospital, Liverpool, L7 8XP, UK
16	nax024@gmail.com
17	
18	Meeting presentation:
19	Poster presentation at ARVO, May, 2014
20	
21	Financial support: None
22	
23	Conflict of interest: No conflicting relationship exists for any author.
24	
25	Running head: Targeted diathermy for corneal new vessels
26	
27	Address for reprints:
28	St Paul's Eye Unit, 8Z link, Royal Liverpool University Hospital, Liverpool, L7 8XP, UK
29	
30	This article contains one video as additional online-only material.
31	
32	

St Paul's Eye Unit, Royal Liverpool University Hospital, Liverpool, UK
 Department of Eye and Vision Science, University of Liverpool, UK.

33 Abstract

- 34 **Purpose:** To investigate the outcome of selective occlusion of the afferent vessel of corneal
- 35 neovascular complexes (CoNV), using angiographically guided fine needle diathermy (FND).
- 36 **Design:** Retrospective interventional case series
- 37 **Subjects:** Patients with CoNV unresponsive to topical steroid therapy.
- 38 Methods: Visual acuity, color images, and fluorescein angiography (FA) and indocyanine green
- 39 angiography (ICGA) were measured before and following FND with a minimum of three months
- 40 follow-up. The number of afferent vessels crossing the limbus, time to fluorescein leakage, area and
- 41 geometric properties of the CoNV were determined using an in-house automated program written in
- 42 numerical computing language (MatLab R14; The MathWorks Inc., Natick, MA). The location of the
- 43 afferent vessel was identified from the angiographic images and marked at the slit lamp using a
- 44 needle to make a cut to the depth of the vessel. FND was then applied using an electrolysis needle.
- 45 Main Outcome Measure: Area of CoNV
- 46 **Results:** 30 patients underwent FND for CoNV that had not responded to treatment with topical
- 47 steroids. The CoNV was associated with previous microbial keratitis (26), intrastromal corneal ring
- 48 segments (2), ectodermal dysplasia (1) and corneal choristoma (1). Duration of CoNV was over six
- 49 months in the 23 patients (77%), between three and six months in 3 patients (10%), and less than
- 50 three months in 5 patients (13%). The number of afferent vessels per CoNV complex ranged from 1
- 51 to 3 with a mean diameter of 40μm (SD 10μm) and mean time to leakage from apical vessels was
- 52 44.22 seconds (min: 27.43s max: 63.59s). The number of episodes of FND treatments that were
- required was one for 20 patients (66.6%), two for 8 patients (26.6%) and three for 2 patients (6.6%).
- 54 Following FND, the area of CoNV reduced by 1.80mm² (SD: 1.40); from 2.42mm² (SD: 1.59) to
- 55 0.62 mm^2 (SD: 0.73) up to 12 weeks post-operatively (p<0.01).
- 56 **Conclusions:** The differentiation of afferent and efferent vessels using corneal angiography enables
- 57 treatment to be selectively applied to the afferent vessels of which, there are usually 1 to 2 for each
- 58 CoNV complex.
- 59

- 60 Introduction
- 61

62 Avascularity of the cornea is important for its homeostasis and function. Corneal neovascularization 63 (CoNV), however, may develop in response to hypoxia or inflammations, as infectious, allergic, toxic 64 and traumatic injuries.¹ The presence of CoNV reflects an imbalance between anti-angiogenic 65 factors, such as pigment-epithelium-derived factor (PEDF), and angiogenic factors, such as fibroblast and vascular endothelial growth factors (VEGF).^{2,3} CoNV is however, part of the wound healing 66 67 response and may be useful in the acute phase for the transport of, humoral and cellular elements 68 involved in immune response, materials required for repair and regeneration, removal of toxic 69 substances and drugs to the site of inflammation. Chronic up-regulation of the angiogenic response, 70 however, results in the persistence of pathological new vessels, which have increased vascular 71 permeability resulting in corneal oedema, lipid exudation, chronic or recurrent inflammation and 72 scarring.⁴ There is also the potential establishment of lymphatics, normally absent from the cornea, 73 which may further disrupt the "immune privilege" status of the cornea.⁴ 74

75 Various techniques have been employed to treat CoNV, including topical steroids, anti-VEGF, 76 metalloproteinase inhibitors, photodynamic therapy, Argon laser, yellow dye laser, radiation, 77 cryotherapy and conjunctival resection.⁴⁻⁶ Fine-needle diathermy (FND) has been described by several groups for the treatment of CoNV.^{5, 7-9} It involves the application of a coagulating current 78 79 through a unipolar diathermy unit or thermal cautery, usually delivered through a needle such as a 80 cutting or an electrolysis needle. FND has shown promise with the largest retrospective study 81 reporting a series of 56 eyes, showing regression of CoNV in 89.3% of patients following two or less treatments.⁹ It is, however not known what effects diathermy has on the cornea at a cellular level, 82 83 particularly if applied to the multitude of vessels in the CoNV complexes. Reducing the number of 84 vessels that need to be closed may reduce the potential risks associated with FND and improve the 85 efficacy of the procedure. It is questionable whether both the afferent (presumed arteriole) and 86 efferent (presumed venule) systems of CoNV require treatment and selective treatment to the 87 afferent system may be sufficient. It is of note, that Cursiefen et al found that on histology, that arterioles tend to comprise less than 1% of CoNV.¹⁰ One option therefore, would be to only treat the 88 89 afferent vessel(s) of the CoNV complex.¹¹ While it is sometimes possible to distinguish afferent from 90 efferent CoNV using slit lamp biomicroscopy, it has been shown that the full extent and origin of the CoNV complex is not apparent on color images.¹²⁻¹⁴ We have, however, recently shown that corneal 91 angiography (fluorescein angiography, FA and indocyanine green angiography, ICGA) are particularly 92 useful in identifying vessels not seen on color images¹²⁻¹⁴, especially in the presence of corneal scars 93

- or inflammation and facilitate identification and differentiation of afferent and efferent vessels and
 vessel leakage.¹³ In order therefore, to minimise the amount of diathermy applied to the cornea, we
 describe the use of angiography to identify and specifically treat the afferent vessels using FND.
- 97

98 Methods

99 Patients who were undergoing FND for CoNV associated with previous corneal disease such as 100 microbial keratitis and that had not responded to topical steroid therapy were included. Topical 101 steroids had been used for between 6 and 12 weeks duration. Inclusion criteria were CoNV 102 extending more than 3mm into cornea with varying degrees of lipid keratopathy and no active 103 keratitis or corneal ulceration. Patients were followed up for a period of at least four months. 104 Patients were examined with slit lamp biomicroscopy, and color and red free images, and FA and 105 ICGA were obtained pre-treatment and three months post-treatment. IRB approval and informed

106 consent were obtained and the Tenets of the Declaration of Helsinki were adhered to.

107

108 Color, FA and ICGA images.

- 109 Color images were captured using a slit lamp mounted digital system (Topcon SL-D Digital Slit Lamp,
- 110 Tokyo, Japan) with 10 to 25 times magnification. An HRA2 Scanning Laser Ophthalmoscope
- 111 (Heidelberg Engineering, Heidelberg, Germany) with a 20 degree imaging lens set at 34 diopter (D),
- 112 was used for ICGA and FA as previously described.^{12, 13} After injection of 5ml of indocyanine green

113 dye (5mg/ml) (Pulsion Medical Systems, Germany) videography was recorded for 25 seconds. Single

- 114 frame ICGA images of the whole cornea capturing corneal blood vessel fluorescence were taken
- every 3-5 seconds for 3 minutes followed by late images at 5 and 10 minutes. An intravenous
- 116 injection of 3mL of 20% Sodium fluorescein (Martindale Pharmaceuticals, Essex, UK) was then given
- 117 and the videography repeated. During the acquisition of single frame ICGA and FA images hi-

118 resolution mode with eye tracking automatic real-time (ART) software was used.

119

120 Image analysis

121 The region of interest (ROI) was defined pre-operatively as the area of the cornea containing the

122 CoNV and was used to compare pre and post-operative images. Images of pre- and final post-

123 operative angiograms of grade 3 or 4 were selected for analysis as previously described by two

124 independent observers (SY and RD).¹² The number of afferent vessels crossing the limbus and time

125 to leakage of fluorescein were recorded. The area and geometric properties of the vessels were

- 126 determined on the selected images using an in-house automated program developed in Matlab R14
- 127 (The MathWorks Inc., Natick, MA).¹³ In brief, the major steps of the program are as follows. For

128 each image the pixel resolution (mm/pixel) was first defined as the ratio between the diameter of 129 the cornea (mm) and the number of pixels measured manually from the image. A ROI containing all 130 the corneal vessels was then defined by hand. The CoNV in the ROI was detected by applying 131 Gaussian enhancement, selective vessel enhancement and thresholding techniques to the ROI in a 132 sequential order. In the resulting binary image (1 indicating vessel pixels while 0 indicating 133 background pixels) the area of CoNV (mm²) was computed by multiplying the number of CoNV pixels 134 and the area (mm²) occupied by a pixel. The centrelines of the vessels were identified by a 'thinning' 135 operation so that the branch points and terminal points can be identified. The branching and 136 terminal points were then used to divide the vascular tree into individual vessel segments. The 137 mean diameter (mm) of each segment can be computed so as to characterise the CoNV complex in 138 the image.

139

140 FND technique (Video)

141 Afferent and efferent vessels were identified on videography (Figure 1) and the former labelled. The 142 annotated image was used as a reference to mark the afferent vessel(s) with an inked needle. Using 143 slit lamp biomicroscopy, under topical anaesthesia, a partial thickness incision was made using a 25 144 gauge needle on a 1 ml syringe into the posterior stroma over the identified afferent vessel(s) either 145 at the limbus or at the level of marginal corneal arcades.¹⁵ If the afferent vessel was transected, an 146 interruption of flow was evident in the visible vessels carrying red blood cells (Video). Under the 147 operating microscope, an Ellman MH-EL-A2D fine wire electrolysis needle was then applied into the incision. Energy was delivered using a unipolar approach by a Surgitron[®] Dual RF[™] machine (Ellman 148 149 International Inc, Oceanside, NY, USA) using the lowest setting (1 joule per second) until a visible 150 blanching of the cornea around the afferent vessel was seen and segmentation of the blood flow in 151 the larger efferent vessels if not already present. Patients received guttae prednisolone 1% qds and 152 chloramphenicol 0.5% qds post-operatively for 4 weeks only.

153

154 Statistical analysis

155 A Mann Whitney test was used to compare pre- and post-operative area of CoNV and a paired

- 156 samples t-test for change in visual acuity (SPSS Statistics 21).
- 157

158 Results

159 30 patients (mean age 56 years, range: 23 to 95 years, male:female::1:1) undergoing FND for CoNV

160 were included. Demographic details as well as diagnoses and previous treatments are provided in

161 Table 1. The causes of the CoNV were previous herpes simplex keratitis (HSK) (13), clinically

- 162 suspected bacterial keratitis (13), vascularization associated with intrastromal corneal ring segments
- 163 (2), ectodermal dysplasia (1) and corneal choristoma (1). The duration of CoNV at time of FND was
- 164 over six months in the 23 patients (77%), between three and six months in 3 patients (10%), and less
- 165 than three months in 5 patients (13%). The number of FND treatments performed was single
- 166 treatment for 20 patients (66.6%), two for 8 patients (26.6%) and three for 2 patients (6.6%) (Table
- 167 1).
- 168 The number of afferent vessels per CoNV complex ranged from 1 to 2 with a mean diameter of 169 40µm (SD: 10µm) (Table 2). The mean time to leakage from the apical vessels on fluorescein 170 angiography was 44.22 seconds (min: 27.43s, max: 63.59s). The area of CoNV reduced from 171 2.42 mm² (SD: 1.59) to 0.62 mm² (SD: 0.73) post-operatively (p<0.01), a mean reduction of 1.80 mm² 172 (SD: 1.40). The percentage reduction in area of CoNV for each patient is shown in Table 2. Although 173 the area of CoNV reduced post-treatment (Figure 2), FND did not lead to a complete closure of the 174 entire CoNV complexes in all patients with some residual vessels in the periphery of the cornea. 175 There was significant improvement in BCVA from 0.59 (SD: 0.71) to 0.40 (SD: 0.42) post-treatment (p 176 =0.027) with a mean change of 0.17 LogMAR (Table 1). Adverse events and reactions included 177 peripheral corneal thinning (Patient 6), intrastromal haemorrhage, which cleared spontaneously 178 (Patient 11), recurrence of herpes simplex keratitis (Patients 9 and 11) and a change in refractive 179 error (Patient 1).
- 180

181 Discussion

182 The presence of CoNV threatens the functional integrity of the cornea with the risk of lipid 183 exudation, loss of transparency, loss of visual acuity, increased inflammatory response and an 184 increased risk of graft failure. To date, there is no universally accepted treatment strategy to 185 successfully treat CoNV although topical steroids are perhaps the most commonly employed 186 treatment.⁴ Topical and injected anti-VEGF has been utilised in the treatment of CoNV, however, it 187 has been suggested that once vessels mature and acquire a pericyte-covered wall, they are no longer dependent on VEGF for growth and are thus unresponsive to anti-VEGF.^{16,17} Argon laser has 188 189 been shown to have limited efficacy and with a risk of complications such as iris atrophy.^{4,7} The 190 speed of red blood cell movement in afferent vessels and their usual deeper location in the cornea 191 makes them relatively insensitive to Argon laser.

192

193 FND has shown promising results for treatment of CoNV. Trikha et al reported FND to be safe and

194 effective in the medium to long term, with mean follow-up of 18.9 months (range 1 - 56 months).

195 They reported only one complication, that of corneal and subconjunctival hemorrhage and also

196 demonstrated a significant improvement in LogMAR VA from 0.82 pre-treatment to 0.72 post-197 treatment.⁹ FND, however, has been applied without distinction to afferent or efferent vessels, usually to the larger vessels identified on color images.¹⁸ The larger vessels and more numerous 198 199 vessels that are identified on color images, slit lamp biomicroscopy are efferent vessels so that FND 200 applied to these vessels may not be as effective as if applied to the afferent vessels, which are 201 narrower and slightly less tortuous. In particular, the differentiation of afferent and efferent vessels 202 aided by corneal angiography enables such treatment to be applied to the afferent vessels of which, 203 there are usually only 1 to 2 for each CoNV complex. Although in some cases it may be possible to 204 differentiate afferent and efferent vessels on slit lamp biomicroscopy, aided for example by the 205 patient's pulse, this can be difficult. Once the afferent vessel or vessels have been identified on 206 angiography, however, it then makes the identification on slit lamp biomicroscopy more apparent 207 and reliable.

208

209 FND is a relatively easy procedure to perform with only a few minor complications reported, 210 including transient whitening of the cornea and intrastromal haemorrhage, which usually resolves 211 without sequelae,^{5,7} recurrent HSK and localised thinning and ectasia.⁷ The cellular changes that 212 occur following FND, however, are less well understood. In rats, a significant increase in the number 213 of B7+ MHC II⁺ Langerhans cells in the limbal surface epithelium occurs within hours of cautery, and later throughout the entire corneal epithelium, suggesting an inflammatory reaction.¹⁹ In addition, 214 215 Feldman et al, showed that radial thermokeratoplasty caused significant damage to the corneal endothelium beneath and surrounding the coagulation site.²⁰ Furthermore corneal heating reduces 216 217 corneal curvature, with therapeutic potential for correction of myopia and as a treatment for corneal ectasia.^{21,22} At a molecular level, however, it results in shrinkage of corneal stromal 218 collagen.²² It is also unclear what the long-term effects of diathermy to the cornea may be. The 219 220 process of corneal diathermy itself may be a stimulus for further CoNV. It would therefore seem 221 reasonable, to try and minimise the application of FND to the cornea. ICGA or FA offers the ability to 222 identify the afferent or feeder vessels for FND, and application of anti-angiogenic factors such as anti-VEGF may be better applied to less mature or immature vessels,¹⁷ which can be identified using 223 224 time to leakage on FA.^{12, 13} In particular topically applied pazopanib, a selective multi-targeted 225 receptor tyrosine kinase inhibitor of VEGF receptor and platelet derived growth factor (PDGF) 226 receptor has shown promise in the treatment of CoNV.¹⁵

227

228 Our results suggest that angiographically-guided FND, targeting the afferent vessels may be effective 229 in reducing the area of CoNV. In our series, although around a third of patients required

230	retreatment, this may reflect identification of vessels on angiography that are not apparent on
-----	---

231 colour images.¹¹⁻¹⁴ Similar to Trikha et al⁹, adverse events were uncommon and mostly transient, and

there was an improvement in visual acuity. Since the long-term effects of FND are poorly

- 233 understood, it is the authors' opinion that diathermy should be used sparingly. The differentiation of
- afferent and efferent vessels aided by corneal angiography, enables such treatment to be applied to
- the afferent vessels, of which there are usually only 1 to 2 for each CoNV complex.

264 Refe	rences
----------	--------

Chang JH, Gabison EE, Kato T, Azar DT. Corneal neovascularization. Curr Opin Ophthalmol
 2001;12:242-9.

267 2. Manzano RP, Peyman GA, Khan P, et al. Inhibition of experimental corneal

268 neovascularisation by bevacizumab (Avastin). Br J Ophthalmol 2007;91:804-7.

Clements JL, Dana R. Inflammatory corneal neovascularization: etiopathogenesis. Semin
 Ophthalmol 2011;26:235-45.

Gupta D, Illingworth C. Treatments for corneal neovascularization: a review. Cornea
 2011;30:927-38.

Thatte S. Fine needle diathermy - a choice for managing corneal vascularization. Nepal J
Ophthalmol 2011;3:23-6.

Bucher F, Parthasarathy A, Bergua A, et al. Topical Ranibizumab inhibits inflammatory
corneal hem- and lymphangiogenesis. Acta Ophthalmol 2014;92:143-8.

Pillai CT, Dua HS, Hossain P. Fine needle diathermy occlusion of corneal vessels. Invest
Ophthalmol Vis Sci 2000;41:2148-53.

8. Koenig Y, Bock F, Kruse FE, et al. Angioregressive pretreatment of mature corneal blood

280 vessels before keratoplasty: fine-needle vessel coagulation combined with anti-VEGFs. Cornea

281 2012;31:887-92.

282 9. Trikha S, Parikh S, Osmond C, et al. Long-term outcomes of Fine Needle Diathermy for

283 established corneal neovascularisation. Br J Ophthalmol 2014;98:454-8.

284 10. Cursiefen C, Hofmann-Rummelt C, Kuchle M, Schlotzer-Schrehardt U. Pericyte recruitment in

285 human corneal angiogenesis: an ultrastructural study with clinicopathological correlation. Br J

286 Ophthalmol 2003;87:101-6.

287 11. Romano V, Spiteri N, Kaye SB. Angiographic guided treatment of corneal neovascularization.

288 JAMA Ophthamol. In press.

12. Kirwan RP, Zheng Y, Tey A, et al. Quantifying changes in corneal neovascularization using
 fluorescein and indocyanine green angiography. Am J Ophthalmol 2012;154:850-8.

291 13. Anijeet DR, Zheng Y, Tey A, et al. Imaging and evaluation of corneal vascularization using

292 fluorescein and indocyanine green angiography. Invest Ophthalmol Vis Sci 2012;53:650-8.

293 14. Zheng Y, Kaye AE, Boker A, Stewart RK, Tey A, Ahmad S, Willoughby CE, Bron AJ, Kaye SB.

294 Marginal corneal vascular arcades. Invest Ophthalmol Vis Sci 2013;54:7470-7.

295 15. Amparo F, Sadrai Z, Jin Y, et al. Safety and efficacy of the multitargeted receptor kinase

inhibitor pazopanib in the treatment of corneal neovascularization. Invest Ophthalmol Vis Sci

297 2013;54:537-44.

298 16. Chaoran Z, Zhirong L, Gezhi X. Combination of vascular endothelial growth factor

299 receptor/platelet-derived growth factor receptor inhibition markedly improves the antiangiogenic

300 efficacy for advanced stage mouse corneal neovascularization. Graefes Arch Clin Exp Ophthalmol

301 2011;249:1493-501.

302 17. Asena L, Akova YA, Cetinkaya A, Kucukerdonmez C. The effect of topical bevacizumab as an
 303 adjunctive therapy for corneal neovascularization. Acta Ophthalmol 2013;91:246-8.

304 18. Faraj LA, Elalfy MS, Said DG, Dua HS. Fine needle diathermy occlusion of corneal vessels. Br J
305 Ophthalmol 2014;98:1287-90.

306 19. Chen W, Lin H, Dong N, et al. Cauterization of central cornea induces recruitment of major

307 histocompatibility complex class II+ Langerhans cells from limbal basal epithelium. Cornea

308 2010;29:73-9.

309 20. Feldman ST, Ellis W, Frucht-Pery J, et al. Experimental radial thermokeratoplasty in rabbits.
310 Arch Ophthalmol 1990;108:997-1000.

311 21. Ehrlich JS, Manche EE. Regression of effect over long-term follow-up of conductive

keratoplasty to correct mild to moderate hyperopia. J Cataract Refract Surg 2009;35:1591-6.

313 22. Barsam A, Patmore A, Muller D, Marshall J. Keratorefractive effect of microwave

keratoplasty on human corneas. J Cataract Refract Surg 2010;36:472-6.

315 Figure Captions

- 316
- 317 Figure 1. Identification of afferent and efferent vessels.
- 318 The 3 afferent vessels (two superiorly and one inferiorly are identified as the first to fluoresce in the
- 319 angiogram (arrows in A). As the angiogram is continued (B and C) the efferent vessels fill and
- become prominent (arrows). Note the larger efferent vessels partially overlying and obscuring the
- 321 narrower afferent vessels (D).
- 322

323 Figure 2. Treatment of CoNV effect following FND.

- 324 Pre (A) and post-treatment closure of CoNV (B) following occlusion of the afferent vessel with FND.
- 325 Note the narrower and less tortuous afferent vessel compared to the more obvious efferent vessels
- 326 draining the complex.
- 327
- 328 Video
- 329 Transection of afferent vessel using a 25 gauge needle. Note the stagnation of flow in the larger
- 330 efferent vessels.

Patient	Age	Diagnosis**	Sex	Duration (months) of CoNV	Treatment prior to FND * N°. of FND Adverse reactions		Pre-op BCVA (logMAR)	Post-op BCVA (logMAR)	
1	74	HSK	F	>6	Aciclovir	Aciclovir 1 None 0.18		0.18	0
2	56	BK (S.aureus)	F	3-6	Antimicrobial	1	None	0	0.2
3	23	Corneal choristoma	F	>6	Bevacizumab	1	None	0	0
4	54	HSK	М	<3	Aciclovir	1	None	0.6	0.6
5	70	BK (S.aureus)	М	>6	Aciclovir, Antimicrobial	1	None	0.18	0.18
6	70	HSK	М	>6	Aciclovir	1	Peripheral thinning	0.6	0.48
7	79	BK (S. aureus)	М	>6	Antimicrobial	3	None	0.3	0.3
8	78	BK (S. aureus)	F	>6	Antimicrobial	1	None	0.3	0.5
9	70	HSK	F	>6	Aciclovir	2	Recurrence of HSK	0.18	0.18
10	54	ВК	М	>6	Antimicrobial	1	None	1	0.78
11	47	нѕк	М	>6	Aciclovir	2 Recurrence of HSK , intrastromal hemorrhage		0.18	0.18
12	70	BK (S.aureus)	М	>6	Antimicrobial	1 None		0.3	0.3
13	22	BK (P. aeruginosa)	М	>6	Antimicrobial	1 None		-0.2	-0.2
14	84	BK (S.aureus)	М	3-6	Antimicrobial	nicrobial 1 None		0.18	0.18
15	52	HSK	М	>6	Aciclovir, Antimicrobial	1	Refractive error	0.18	0.18
16	39	BK (S.aureus)	F	3-6	Antimicrobial	2	None	0.3	0.18
17	34	KC (Intacs)	М	<3		1	None	3	2
18	34	HSK	Μ	>6	Aciclovir, Foscarnet	1	None	0.18	0
19	59	BK (S.aureus)	М	>6	Antimicrobial, Argon laser	1	None	0.5	0.6
20	67	HSK	F	>6	Aciclovir	2	None	1.3	0.67
21	47	Ectodermal dysplasia	F	>6	Retinoic acid	3	None	0.48	0.48
22	69	HSK	F	<3	Aciclovir	1	None	0.18	0.18
23	44	BK (S.aureus)	Μ	<3	Antimicrobial	2	None	1	0.3
24	71	BK (P. aeruginosa)	М	>6	Antimicrobial	2	None	0.6	1
25	95	HSK	F	>6	Argon laser	2	None	1	0.8
26	25	HSK	F	<3	Aciclovir	1	None	2	0.48
27	35	KC (Intacs)	F	>6		1	None	0.18	0.18
28	62	HSK	F	>6	Aciclovir	1	None	2	0.6
29	24	HSK	F	>6	Aciclovir	2	None	0	0
30	62	BK (S. aureus)	F	>6	Antimicrobial	1	None	1	0.78
Mean	56							0.59	0.40
SD	19.72						0.71	0.42	

Table 1 Patient demographics, diagnosis, treatment and outcomes.

Footnotes: *All the patient had received topical stereoids before and after treatment.; HSK: Herpes Simplex Keratits, KC: keratoconus; BK: bacterial keratitis, LSCD: Limbal stem cell deficiency, ACV: aciclovir, AM: antimicrobials. Diagnosis** type of bacteria if isolated

Table 2. Data on pre- and post-operative outcomes

	Ar	ea of CoNV (mr	m²)		Afferen	Time to	
Patient number	Pre-op	Post-op	Change	Percentage change	Diameter (mm)	Number on pre-op angiogram	leakage on pre-op FFA (s)
1	0.89	0	-0.89	100	0.04	1	27.43
2	2.89	0	-2.89	100	0.04	2.5	28.28
3	0.5	0	-0.5	100	0.06	1	38.26
4	3.13	0	-3.13	100	0.03	1	30.83
5	0.25	0	-0.25	100	0.04	3	63.59
6	0.98	0	-0.98	100	0.07	2	48.9
7	2.42	0	-2.42	100	0.05	2	41.7
8	0.96	0	-0.96	100	0.04	1.5	33.91
9	4.04	0.12	-3.92	97	0.03	1	30
10	5.09	0.44	-4.65	91	0.05	2	41.82
11	3.81	0.36	-3.45	91	0.03	2	32.37
12	5.67	0.61	-5.06	89	0.05	2.5	41
13	2.85	0.41	-2.44	86	0.04	1	27.98
14	2.84	0.44	-2.4	85	0.05	2.5	34.79
15	0.95	0.19	-0.75	79	0.05	1	35.71
16	0.13	0.04	-0.1	77	0.03	1	43.18
17	0.5	0.12	-0.38	76	0.03	2	33.41
18	2.52	0.61	-1.9	75	0.04	2	42.31
19	2.11	0.61	-1.5	71	0.08	3	55.8
20	5.54	1.62	-3.91	71	0.05	2	32.01
21	4.6	1.48	-3.11	68	0.04	3	50.91
22	3.17	1.11	-2.07	65	0.04	1	38.19
23	3.02	1.16	-1.86	62	0.03	1	33.64
24	2.1	1.02	-1.08	51	0.04	2	28.15
25	2.49	1.46	-1.03	41	0.05	1	28.01
26	0.77	0.51	-0.25	32	0.03	1	30.5
27	0.6	0.41	-0.19	32	0.04	1	27.87
28	1.82	1.26	-0.56	31	0.05	3	40.1
29	1.52	1.13	-0.39	26	0.05	3	49.19
30	4.37	3.46	-0.91	21	0.05	2	36.85
Mean	2.42	0.62	-1.80	74	0.04	1.80	37,55
SD	1.59	0.73	1.40		0.01	0.75	9.06

Figure 1 Click here to download high resolution image

Conflict of Interest Form (ICMJE COI) CW Click here to download Conflict of Interest Form (ICMJE COI): coi_disclosureCW.pdf Conflict of Interest Form (ICMJE COI) JC Click here to download Conflict of Interest Form (ICMJE COI): coi_disclosureJC.pdf Conflict of Interest Form (ICMJE COI) NS Click here to download Conflict of Interest Form (ICMJE COI): coi_disclosureNS.pdf Conflict of Interest Form (ICMJE COI) RD Click here to download Conflict of Interest Form (ICMJE COI): coi_disclosureRD.pdf Conflict of Interest Form (ICMJE COI) SA Click here to download Conflict of Interest Form (ICMJE COI): coi_disclosureSA.pdf Conflict of Interest Form (ICMJE COI) SBK Click here to download Conflict of Interest Form (ICMJE COI): coi_disclosureSBK.pdf Conflict of Interest Form (ICMJE COI) SY Click here to download Conflict of Interest Form (ICMJE COI): coi_disclosureSY.pdf Conflict of Interest Form (ICMJE COI) VR Click here to download Conflict of Interest Form (ICMJE COI): coi_disclosureVR.pdf Conflict of Interest Form (ICMJE COI) YZ Click here to download Conflict of Interest Form (ICMJE COI): coi_disclosureYZ.pdf *Author Contributorship Form Click here to download Author Contributorship Form: OPHTHA_Contributorship 1 of 2.pdf *Author Contributorship Form Click here to download Author Contributorship Form: OPHTHA_Contributorship 2 of 2.pdf Video Click here to download Multimedia: Video.mov