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Abstract—Channel occupancy rate (COR) is the fraction of the
time that a channel is occupied, i.e., contains signal(s) in addition
to noise. Estimation of COR is important, e.g., in cognitive radio
systems, which can use this information for intelligently adapting
their spectrum use to the operating environment. For COR esti-
mation, both the ability to operate with weak signals (sensitivity)
and closeness of the estimate to the true COR value (accuracy)
are important. In this paper, an improved COR estimation
(iCOR) method is proposed enabling the use of high false alarm
probabilities to improve sensitivity without the overestimation
usually associated with high false alarm probabilities. The iCOR
method is compared with the conventional method in terms of
worst-case root-mean-square error (RMSE), which refers to the
RMSE for the COR level yielding the maximum RMSE. To fairly
compare different COR estimation methods, it is required that the
RMSE for strong signals equals a target value and the considered
methods are compared by their RMSE for weaker signals.
Comprehensive theoretical analysis is performed and both exact
results and approximations are derived. Experimental results
verify the theoretical analysis and show significant sensitivity
gains from the iCOR method (around 5 dB).

Keywords—Channel occupancy rate, cognitive radio, duty cycle,
energy detector, spectrum utilization, wireless LAN.

I. INTRODUCTION

More efficient spectrum utilization and sharing are critically
important for enabling wireless innovation and economic de-
velopment [1]. For example, dynamic spectrum access (DSA)
[2] using cognitive ratios (CRs) has been considered for more
efficient spectrum utilization and for making more spectrum
available. In the database approach the licensed (primary) users
make entries in the database about their current and future
spectrum utilization and the CRs can use this information along
with their current location to find spectrum to use for their
communication. The database approach is widely considered
for the television (TV) bands [3]. However, in bands with more
dynamic spectrum utilization the database based approach is
less attractive and the spectrum sensing based approach has
been widely studied. Therein the CRs use signal detection
techniques to determine if other signals are present or not
before making decision about their own transmissions [4]–[7].
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J. Lehtomäki and M. Juntti are with the Centre for Wireless Communica-
tions (CWC), University of Oulu, Oulu, Finland.
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Accurate spectrum sensing is often very challenging to
realize [8]. However, it has been shown that spectrum sensing
process can be significantly improved by using spectrum
utilization information [9], which can also be used for adapting
CRs’ medium access control (MAC) parameters [10]. The
3GPP LTE (Long Term Evolution) Advanced small cells in
unlicensed bands [11] could use the spectrum utilization in-
formation to find suitable component carrier center frequencies
and bandwidths for use with the listen-before-talk technique
while protecting co-existing users. Wireless local area net-
works such as WiFi over narrow channels (WiFi-NC) using
multiple narrow channels could use the spectrum utilization
information for channel selection in the 2.4 GHz industrial,
scientific and medical (ISM) band, which has potentially a
high level of fragmentation making channel selection difficult
[12].

Spectrum utilization can be characterized, e.g., by duty
cycle (DC) or channel occupancy rate (COR). Most spectrum
utilization measurements are based on using a large number of
frequency bins with each bin covering only a small bandwidth
such as 100 kHz [13]. A radio frequency (RF) channel of
a particular radio technology (or an arbitrary CR channel)
usually consists of several frequency bins. The COR is the
fraction of time that the considered channel is occupied, i.e.,
contains signal(s) in addition to noise only [14]–[16]. The COR
is defined so that even if only a portion of the channel is
occupied, the whole channel is considered as occupied [16].
The DC is a special case of the COR: the DC is the COR for a
channel consisting of only a single frequency bin. Numerous
spectrum utilization measurement campaigns have been per-
formed focusing on measuring the DC in frequency bins [13],
[17], [18]. Long-term measurement campaigns enable making
accurate spectrum utilization models [13], [19], [20].

The COR can be estimated as the maximum DC value
of frequency bins within the channel or by using an energy
detector (ED) measuring the energy in the whole channel
[16]. As mentioned in, e.g., [15], [16], [21] the ED can
be implemented by summing up the measured powers for
frequency bins within the considered channel. If the energy
exceeds a threshold η, the channel is assumed to be occupied
and otherwise it is assumed to be vacant. The calculation of the
COR for arbitrary channels requires recording the measured
power for each frequency bin in each frequency sweep. In
[16], the MED-FCME CORϵ technique has been proposed for
obtaining performance close to the ED but only requiring a
binary value (1 or 0) to be stored for each frequency bin
and sweep instead of a floating point value corresponding to
the measured power. This leads to remarkably reduced storage
requirements [22], which is important especially for long-term
measurement campaigns.
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The false alarm probability Pfa is the probability that the
decision variable (such as energy) exceeds the threshold η
when only noise is present. The value of η can be set based
on the constant false alarm rate (CFAR) criterion so that
Pfa equals a target value [5]. The statistics of the noise-only
samples must be known to enable the threshold setting. Most
works assume that the noise statistics are known. However,
the knowledge of the signals to be detected is not required.
In practice, the noise statistics can be determined, e.g., in a
protected measurement space shielded from radio signals or
while operating in a real environment. For example, we can
measure a channel that is known to be idle (e.g., a TV channel
that is known to be idle in the operating area of the CR device).
Another option is to switch the RF front-end between the
antenna and a matched load electronically so that the antenna
is selected when transmitting/sensing and the matched load
is selected when estimating/measuring the noise level of the
channel. Even if no free channels are known, it is possible to
estimate the noise level based on the received signal including
both signals and noise [16], [23], [24]. These techniques could
also be applied with the matched load, since very strong signals
can leak to the receiver even with a matched load.

This manuscript considers estimation of COR. This is a
problem different to spectrum sensing, which is performed in
order to decide if a secondary user can begin transmitting or
not. The performance metrics for spectrum sensing are detec-
tion probability (protection of primary users) and also false
alarm probability (which reduces achieved rate of secondary
communications). The performance for COR estimation is
related to how close the estimated values are to the true ones.
There are many metrics for estimators. We use root mean
square error (RMSE) and the mean absolute error (MAE).
False alarm probability in this work is not a performance met-
ric but a design parameter, affecting estimation performance,
that needs to be optimised for an accurate COR estimation.

With the conventional method, which counts the fraction of
detections in a set of samples, high Pfa values such as 0.10
lead to severe overestimation, because the DC or the COR
estimate is around 10%, even when no signals are present.
Lower Pfa values result in less overestimation at the cost
of much reduced sensitivity. In this paper, we propose an
improved COR estimation (iCOR) method, which is able to
suppress overestimation by using the knowledge of the value
of Pfa to improve the tradeoff between the sensitivity and the
estimation error. Our analysis focuses on the ED. However, the
iCOR can be applied with any detection technique as long as
Pfa can be set to an arbitrary target value. Our results are also
applicable to DC estimation in addition to the COR estimation.
Our contributions include the following:

1) We find closed-form expressions of the maximum al-
lowed Pfa for a given estimation error level for the
conventional method, which finds the COR estimate Ψ̂
as the number of observations k exceeding the threshold
divided by the total number of observations M , i.e.,
Ψ̂ = k/M , for the Bernoulli [14] and the m-out-of-M
signal occupancy models.

2) We propose the iCOR method, which does not require

any additional information compared to the conven-
tional one. The iCOR output stays 0 until k is larger
than a threshold depending on the used Pfa value. We
find an approximation to the maximum allowed Pfa for
the iCOR. The results show that the iCOR method is
able to use a much higher Pfa than the conventional
method while yielding the same RMSE levels of the
COR estimates leading to significant sensitivity gains.

3) The derived theoretical expressions are validated by
numerical examples and illustrations as well as real
experiments with a spectrum analyzer.

4) We optimize the mapping function from k to the COR
estimate Ψ̂ using two different optimization criteria
and compare the resulting performance with the per-
formance of the iCOR method to confirm the good
performance of the iCOR method.

The remainder of this paper is organized as follows. The
performance equations for a single observation with the ED
are presented in Section II. In Section III, we present models
for signal occupancy which characterize signal presence in a
sequence of M observations. In Section IV, we find the RMSE
and MAE for a COR estimate with an arbitrary mapping func-
tion, derive truncated Gaussian approximation to the RMSE
and MAE for an arbitrary clipped linear mapping function,
and define the worst-case RMSE and the worst-case MAE.
The specific analysis of the conventional COR estimation
method is presented in Section V and the iCOR method
is proposed and analyzed in Section VI. The measurement
setup, and numerical and measurement results are presented
in Section VII. In Section VIII, we compare the iCOR to two
numerically optimized mapping functions to show its validity.
Conclusions are presented in Section IX.

II. SIGNAL DETECTION FOR SINGLE OBSERVATION

Assume that N complex baseband temporal samples ri, i =
1, 2, · · · , N are obtained during a single observation period.
We follow the random signal model with complex sampling
[7]

H0 : ri = ni

H1 : ri = xi + ni
(1)

where H0 refers to the hypothesis with only noise present and
H1 denotes the case with also a signal present. Both noise
and signal samples are assumed to be temporally and mutually
independent, identically distributed (i.i.d) Gaussian. The noise
samples (white due to the i.i.d assumption) ni ∼ CN

(
0, 2σ2

n

)
and the signal samples xi ∼ CN

(
0, 2σ2

s

)
.

A. Conventional Energy Detection
The ED finds the sum of the magnitude-squared samples

V =
N∑
i=1

|ri|2. (2)

1) Ideal ED: The probability of false alarm is [7]

Pfa = Prob (V > η|H0) = Γ̃

(
N,

η

2σ2
n

)
(3)
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where Γ̃ is the regularized gamma function defined as
Γ̃ (a, z) = 1

Γ(a)

∫∞
z

ta−1e−tdt and Γ (·) is the gamma function
[25, (6.1.1)]. Let us assume that the noise variance σ2

n is
perfectly known. Now, the threshold to obtain a given Pfa value
is

η = 2σ2
nΓ̃

−1 (N, Pfa) (4)

where Γ̃−1 is the inverse of the regularized gamma function.
The probability of detection, i.e., the probability of correctly
detecting a signal present under H1, is [7]1

Pd = Prob (V > η|H1) = Γ̃

(
N,

Γ̃−1 (N,Pfa)

1 + SNR

)
, (5)

where the signal-to-noise ratio (SNR) is SNR = σ2
s

/
σ2
n.

2) ENP-ED: When using the energy detection with esti-
mated noise power (ENP), the noise variance σ2

n is estimated
based on K reference samples [7], [26]. Following [7], the
probability of detection for the random signal model for given
Pfa and assuming noise-only reference samples (such as from
a known free channel or from a matched load) is2

Pd = Ix (K,N) , (6)

where Ix (z, w) is the incomplete beta function defined as

Ix (z, w) =
Γ (z + w)

Γ (z) Γ (w)

x∫
0

tz−1(1− t)
w−1

dt, (7)

where
x =

1 + SNR

1/ζ + SNR
, (8)

and ζ is the solution of

Pfa = Iζ (K,N) . (9)

B. FFT based Energy Detector
The fast Fourier transform (FFT) based ED divides the

N samples into blocks of NFFT samples. The time domain
samples ri for FFT block l = 1, 2, · · · , L are

rl = [ri]i=(l−1)(1−γ)NFFT+1,··· ,(l−1)(1−γ)NFFT+NFFT
, (10)

where γ ∈ [0, 1] is the overlap ratio indicating the degree of
overlapping between different FFT blocks (γNFFT is assumed
to be an integer) and the number of blocks L is

L =

⌊
N −NFFT

(1− γ)NFFT

⌋
+ 1, (11)

where ⌊ ⌋ denotes the floor function. A windowed FFT
operation in each block can be represented as

yl = FWrl = [y0,l, y1,l, · · · , yNFFT−1,l]
T
, (12)

where F =
(
e−2πjki/NFFT

)
j,k=0,1,··· ,NFFT−1

is the discrete
Fourier transform matrix, i =

√
−1, and the diagonal matrix

1gammainc(gammaincinv(PFA,N,’upper’)/(1+SNR),N,’upper’)
in MATLAB

2betainc((1+SNR)/(SNR+1/betaincinv(PFA,K,N)),K,N)

W = diag (w0, w1, · · · , wNFFT−1) contains the real-valued
window coefficients normalized as

∑NFFT−1
k=0 w2

k = 1. Dif-
ferent window functions have different pros and cons such as
frequency resolution and spectral leakage [27]. The magnitude-
squared frequency domain samples within the studied channel
and from L FFT blocks are summed to find the decision
variable V as [21]

V =
L∑

l=1

∑
i∈Θs

|yi,l|2, (13)

where Θs denotes the set of frequency bins within the studied
channel s. The total number of magnitude-squared values used
for finding V is |Θs|L, where |·| denotes the cardinality of
a set. The number of time-combined blocks L needs to be
controlled to avoid overestimation resulting from the fact that
with time-domain combining the output is not representing
instantaneous channels state [16]. It is possible to control the
overestimation by keeping N fixed so that the FFT size NFFT

is reduced as L is increased leading to reduced frequency
resolution [24]. The frequency domain averaging over Θs does
not lead to problems, since even if a part of the channel is
occupied, it is classified as occupied [16]. The distribution
of V under noise-only case H0 has been found in [21] for
both γ = 0 and γ > 0. Because we did not use time-domain
combining to avoid overestimation in the experimental tests
there is no difference between these cases. Thus, we will use
the results for γ = 0 for an arbitrary L (L = 1 corresponds to
the experiments).

In order to determine the decision threshold for a particular
Pfa, let us define |Θs| × |Θs| matrix A [21]

[A]pq =

NFFT−1∑
l=0

w2
l exp

(
2πl (p− q) i

NFFT

)
(14)

and let us denote the eigenvalues of matrix A as λi. Both
exact results and approximations using these eigenvalues are
presented in [21]. The exact results are numerically difficult to
evaluate. Therefore, we use an accurate approximation found
by using the results for weighted sums of chi-squared variables
in [21], [28]:

η = σ2
n

{
c1 + 2Γ̃−1

(
h′

2
, Pfa

)√
c2
h′ −

√
c2h′

}
, (15)

where

cj = 2L

NFFT∑
i=1

λj
i (16)

and
h′ =

c32
c23

. (17)

The practical pulse waveforms used for communication
are typically not random. However, the random data symbol
pattern leads to frequency domain fluctuation [24], and we can
approximate a signal as i.i.d Gaussian in frequency domain
[16]. Since only the frequency bins within the considered
channel are important, the SNR is defined as the average ratio
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between the signal and noise power within the considered
channel (Θs). We get the probability of detection Pd for
Gaussian signals in additive white Gaussian noise (AWGN)
channel (corresponding to the random signal model) as

Pd,AWGN (SNR) = Γ̃

(
h′

2
,
α

2

√
h′

c2

)
(18)

where

α =
c1 + 2Γ̃−1

(
h′

2 , Pfa

)√
c2
h′ −

√
c2h′

1 + SNR
− c1. (19)

If we also include the Rayleigh (flat) fading channel, we get

Pd,RAYL (SNR) =

∞∫
0

Pd,AWGN (x)
1

SNR
e−

x
SNR dx, (20)

where SNR refers now to the average signal-to-noise-ratio.

III. SIGNAL OCCUPANCY MODEL

We assume that the COR estimation is performed based
on the results of M observations. Two models for signal
occupancy are considered: 1) the Bernoulli model, and 2) the
m-out-of-M model.

A. Bernoulli Model

The Bernoulli model corresponds to the case of binomial
probability of success Ψ generating the signal occupancies.
We want to estimate this fundamental parameter Ψ (the true
COR level) based on a finite number of observations M [14].
Let us define p as the probability to observe the channel as
occupied. Now,

p = (1−Ψ)Pfa +ΨPd, (21)

where Pd < 1 leads to not all true signal occupancies
being detected and Pfa > 0 leads to false alarms. Let us
define pk as the probability that k observations out of M are
detected as occupied. We assume the independence between
observations. It is reasonable for swept spectrum analyzers,
since it takes time to visit a frequency again, but not valid
for real-time spectrum analyzers, which sample the whole
bandwidth simultaneously. Thus, pk is given by the binomial
probability mass function (PMF)

pk =

(
M
k

)
pk(1− p)

M−k
. (22)

B. m-out-of-M Model

In the m-out-of-M model, the aim is to estimate the instan-
taneous COR Ψ = m/M , where m is the number of observa-
tions containing signals in the current observation period. In
this model, we specify that a realization of an arbitrary process
generating the occupancies led to m observations containing
signals in the current observation period. By convolving the

binomial PMFs corresponding to m observations with signals
present (H1) and M −m observations with only noise (H0),

pk =
M−m∑
i=0

pH1

k−ip
H0
i (23)

where k = 0, 1, · · · ,M , and

pH0
z =

(
M −m

z

)
P z
fa(1− Pfa)

M−m−z
, (24)

z = 0, 1, · · · ,M −m corresponding to the M −m noise-only
observations, and

pH1
z =

(
m
z

)
P z
d (1− Pd)

m−z (25)

when z = 0, 1, · · · ,m (and zero otherwise) corresponding to
the m observations with signals.

IV. RMSE & MAE ANALYSIS

The RMSE of the COR estimate is defined as

rmse (Ψ) =

√
E
[(

Ψ̂−Ψ
)2]

, (26)

where E[·] denotes expectation, Ψ is the true COR, and Ψ̂ is
the estimated COR. The MSE (square of RMSE) is equal to
the sum of the variance of the estimator and its squared bias.
For unbiased estimators, the RMSE is equal to the standard
deviation. The MAE is defined as

mae (Ψ) = E
[∣∣∣Ψ̂−Ψ

∣∣∣], (27)

For example, if we say that a channel is actually busy for
80% of the time (the true COR) but we estimate it as busy
for 75% of the time (estimated COR), both MAE and RMSE
are 5%. In practice, the estimated COR is a random variable
leading to differences between the metrics as the MAE puts
less emphasis on large errors. We will consider both metrics
with the main focus on the RMSE.

For any arbitrary function Ψ̂ (k) mapping k to an COR
estimate Ψ̂, the RMSE is

rmse (Ψ) =

√√√√ M∑
k=0

[
pk

(
Ψ̂ (k)−Ψ

)2]
. (28)

The corresponding MAE is

mae (Ψ) =
M∑
k=0

pk

∣∣∣Ψ̂ (k)−Ψ
∣∣∣. (29)

A. Truncated Gaussian Approximation

Linear mapping functions are an important subset of the
possible mapping functions. Let us assume a generic linear
mapping function a1k + a0 where a1 > 0. Since valid values
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of Ψ̂ are between 0 and 1, we use clipping leading to

Ψ̂ (k) =

{
0 a1k + a0 < 0

a1k + a0 0 ≤ a1k + a0 ≤ 1
1 a1k + a0 > 1

(30)

Let us approximate the distribution of k with a normal
distribution with mean µk and variance σ2

k. For the Bernoulli
model µk = Mp and σ2

k = Mp(1 − p). For the m-out-of-
M model µk = mPd + (M − m)Pfa and σ2

k = mPd(1 −
Pd) + (M − m)Pfa(1 − Pfa). The clipping in Ψ̂ can be
represented by limiting the values of k. Let us denote the
limited values of k as k′. The values of k > (1 − a0)/a1
are set to k′ = b = (1− a0)/a1 so that a1b+ a0 = 1 and the
values of k < −a0/a1 are set to k′ = a = −a0/a1 so that
a1a+ a0 = 0.

Let us define µk′,1 = E [k′] and µk′,2 = E
[
k′

2
]
. We find

µk′,1 by using the theory of truncated Gaussian variables [29]
and by taking into account the clipping leading to

µk′,1 = ad4 + µk (d3 − d4)− b (d3 − 1)− σk (d1 − d2),
(31)

where
d1 = ϕ ((b− µk)/σk) ,
d2 = ϕ ((a− µk)/σk) ,
d3 = Φ((b− µk)/σk) ,
d4 = Φ((a− µk)/σk) ,

(32)

and ϕ and Φ denote the density and cumulative distribution
functions of the standard normal random variable, respectively.
Similarly, we get µk′,2 as

µk′,2 =

 σ2
k

(
d2(a−µk)

σk
− d1(b−µk)

σk

d3−d4
− (d1−d2)

2

d2
3

+ 1

)
+
(
µk − σk(d1−d2)

d3−d4

)2


× (d3 − d4) + a2d4 − b2 (d3 − 1)
(33)

Finally, we get an approximation to the RMSE for any linear
mapping function as

rmse (Ψ) ≈
√
E
[
(a1k′ + a0 −Ψ)

2
]

=

√
E
[
a21k

′2 + 2a1 (a0 −Ψ) k′ + (a0 −Ψ)
2
]

=

√
a21µk′,2 + 2a1 (a0 −Ψ)µk′,1 + (a0 −Ψ)

2
.

(34)

In order to find an approximation to the MAE, we define
ϑ1 = E [(a1k

′ + a0 −Ψ)] = a1µk′,1+a0−Ψ and ϑ2
2 = ρ−ϑ2

1,
where ρ = E

[
(a1k

′ + a0 −Ψ)
2
]
, which is equal to the square

of (34). The parameters ϑ1 and ϑ2
2 correspond to the mean

and variance of a1k′ + a0 −Ψ, respectively. Since the absolute
value of a normal random variable follows the folded normal
distribution [30], we get

mae (Ψ) ≈ E [|a1k′ + a0 −Ψ|]
= ϑ2

√
2/πexp

(
−ϑ2

1/2ϑ
2
2

)
+ ϑ1 [1− 2Φ (−ϑ1/ϑ2)] .

(35)

B. Worst-case RMSE & MAE
Since Ψ is unknown, it is reasonable to consider the worst-

case RMSE of a COR estimator, i.e.,

rmsemax = max
Ψ∈[0,1]

rmse (Ψ) . (36)

to characterize estimation error. As the worst-case RMSE is
found by considering all possible Ψ values, it includes RMSE
with only noise present (Ψ = 0). In the remainder of
this paper, we require that the worst-case RMSE of the
considered COR estimators when Pd = 1 is less than or
equal to λW,RMSE. The specified constraint value λW,RMSE

(such as 0.05) determines the maximum allowed Pfa. The
constraint value is defined for Pd = 1. Guaranteed worst-case
RMSE with strong signals, i.e., Pd ≈ 1, is reasonable, since at
least with strong easy-to-detect signals the COR estimators
should give a good performance. Performance of different
estimators is then compared by their RMSE with medium to
low signal powers, i.e., Pd < 1.

Similarly, the worst-case MAE is

maemax = max
Ψ∈[0,1]

mae (Ψ) (37)

and the constraint value in terms of MAE for Pd = 1 is denoted
as λW,MAE.

V. CONVENTIONAL COR ESTIMATOR

The conventional DC/COR estimate is [13], [14], [18]

Ψ̂ =
k

M
(38)

corresponding to a1 = 1/M and a0 = 0, and k is the
number of observations out of M total samples whose decision
variables exceed the threshold η.

A. Bernoulli Model
The RMSE for the Bernoulli model is

rmse (Ψ) =

√
E
[(

k
M −Ψ

)2]
=

√
E
[(

k
M

)2]− 2ΨE
[

k
M

]
+Ψ2

=
√

p(1−p)
M + p2 − 2Ψp+Ψ2,

(39)

where p is given in (21) and the expected values are obtained
from the properties of the binomial random variables. We get
the maximum allowed Pfa for the Bernoulli model for given
constraint λW,RMSE as (42) on p. 7 (the proof is in Appendix
A). We point out that

lim
M→∞

P ∗
fa = λW,RMSE (40)

Typically, Ψ = 0 (or close to 0) is the the worst-case. When
Ψ = 0, the error is solely from the false alarms leading to
RMSE ≈ Pfa. One might think that by subtracting Pfa from
the estimated COR, i.e.,

Ψ̂ =
k

M
− Pfa (41)
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we could remove the bias of the estimate due to false alarms.
However, it would just move the worst-case RMSE to occur
at Ψ = 1 instead of (say) Ψ = 0. The reason is that when
Ψ = 1 and Pd = 1, all observations are detected leading to
k = M so that Ψ̂ = 1− Pfa. Since the real value Ψ = 1, this
corresponds to RMSE = Pfa leading to no improvement.

B. m-out-of-M Model

We use (28) together with (23) and obtain the optimization
problem for finding the maximum allowed Pfa (to achieve good
sensitivity):

max Pfa

s.t. max
m∈{0,1,··· ,M}

√
M∑
k=0

[
pk(k −m)

2
]
≤ MλW,RMSE,

0 ≤ Pfa ≤ 1, Pd = 1
(43)

where pk depends on Pfa as shown in (23). Since
M∑
k=0

pk(k −m)
2
= (M −m)Pfa (1− Pfa) + (M −m)

2
P 2
fa

=
[
(M −m)Pfa +

(1−Pfa)
2

]2
− (1−Pfa)

2

4

(44)
reaches its maximum when m = 0 we use m = 0 to get the
maximum allowed Pfa as

P ∗
fa =

√
4 (M2 −M) λ2

W,RMSE + 1− 1

2 (M − 1)
(45)

when 0 ≤ λW,RMSE ≤ 1 and otherwise there is no solution.
The above solution is exactly the same as that for the Bernoulli
model when Ψ = 0 is its worst-case. This is reasonable, since,
when Ψ = 0, there is no difference between the Bernoulli and
m-out-of-M models.

VI. IMPROVED COR ESTIMATOR

A. Bernoulli Model

Because the SNR, and thus Pd, are assumed to be unknown,
we find the maximum likelihood estimator (MLE) of Ψ for
Pd = 1. Because the constraint λW,RMSE is specified for
Pd = 1, this makes Pd = 1 a reasonable choice, but does
not mean that during the actual operation Pd should be very
close 1, although high Pfa values enabled by the iCOR do
increase Pd. The choice Pd = 1 is just an assumption used to
derived the MLE which is then used for the actual input signal
with unknown Pd. In the numerical and experimental results
in Section VII, we present performance as a function of SNR
leading to varying Pd (from almost 0 to almost 1).

The MLE for (22) assuming Pd = 1 is

Ψ̂ (k) = max
Ψ̃∈[0, 1]

{(
M
k

)[(
1− Ψ̃

)
Pfa + Ψ̃

]k
×
[
1−

(
1− Ψ̃

)
Pfa − Ψ̃

]M−k
} (46)

and by taking the derivative of the expression inside the curly
brackets with respect to Ψ̃ and setting the result equal to zero
we obtain

Ψ̂ (k) =
k
M − Pfa

1− Pfa
. (47)

If Ψ̂ is negative, it is not a valid outcome and the boundary
point zero is selected instead, i.e.,

Ψ̂ (k) =

{
k
M −Pfa

1−Pfa
k ≥ MPfa

0 k < MPfa

(48)

We refer to this approach as the iCOR method. The exact
RMSE for iCOR can be obtained with (28) and the coefficients
for the truncated Gaussian approximation are

a1 = − 1

M (Pfa − 1)
, (49)

a0 =
Pfa

Pfa − 1
. (50)

Even with the truncated Gaussian approximation it is dif-
ficult to find the maximum allowed Pfa for given λW,RMSE.
Therefore, we use the standard (untruncated) Gaussian approx-
imation. Straightforwardly, we obtain an approximation

P ∗
fa ≈ 1− 1

Mλ2
W,RMSE + 1

, (51)

which is reasonably accurate when M ≥ 1000 and 0.02 ≤
λW,RMSE ≤ 0.09. In Section VII-B, we use the exact Pfa

values found with a numerical search but also state the values
obtained with the above approximation.

B. m-out-M Model
The MLE for Pd = 1 and the m-out-of-M model is

Ψ̂ (k) =
1

M
max

m∈{0,1,··· ,k}

(
M −m
k −m

)
P k−m
fa (1− Pfa)

M−k

(52)
which can be found by a numerical search over a finite set.
Since the resulting mapping function is very close to the iCOR,
we will apply the iCOR also for the m-out-of-M model.

VII. NUMERICAL AND EXPERIMENTAL RESULTS

In this section, we present the measurement setup (VII-A)
used in the experimental tests. Then in sections VII-B–VII-C
we present both exact theoretical results and the results with
the truncated Gaussian approximation. Finally, we show both
measurements results and theoretical results in section VII-D.

A. Measurement Methodology
The measurement setup is summarized in Table I. The

studied band is the 2400–2500 MHz ISM band which the
instrument covers by using five FFT frequency segments
each covering 20 MHz. The time required to collect the
samples for one FFT segment was around 10 µs. To avoid
overestimation we did not apply time-domain combining, i.e.,
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P ∗
fa =


2MλW,RMSE

√
4Mλ2

W,RMSE−1−4Mλ2
W,RMSE+1

(4M 2−4M)λ2
W,RMSE+1

√
1

4M ≤ λW,RMSE ≤
√√

8M+1−4M+1
8M−8M2

− 1
M +

√
4λ2

W,RMSE(1−1/M)+1/M2

2(1−1/M) 1 ≥ λW,RMSE >
√√

8M+1−4M+1
8M−8M2

No solution possible otherwise

(42)

where
√

1
4M is the ultimate performance limit with the Bernoulli model and 1 is the maximum possible RMSE.
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Fig. 1. Worst-case RMSE, M = 1000, ideal ED with N = 100, ENP-ED
with N = 100 and K = 100, λW,RMSE = 0.05, Bernoulli model.

L = 1. Signal following the IEEE 802.11b standard is
generated with a signal generator with a random payload.
The reference COR Ψ = 0.40 is obtained by controlling
the idle time between packets. The signal generator output
is connected to a channel emulator input and the channel
emulator output is connected to the measurement system input.
With this approach measurements can be controlled with a
high precision. Both AWGN and time-variant and frequency
selective ETSI BRAN WLAN model A (corresponding to a
typical office environment) channels are utilized. We measured
100 000 noise-only ED decision variables in a measurement
chamber shielded from radio signals (matched load was used
to further suppress any possible signals) to estimate σ2

n and to
set threshold for any target Pfa with (15).

B. iCOR vs Conventional Method

Figs. 1 and 2 show the worst-case RMSE for iCOR and
conventional COR estimation methods for M = 1000 obser-
vations and the ED (both ideal and ENP-ED with K = 100)
with N = 100 complex samples used for each observation.
Results show an excellent agreement of the truncated Gaussian
approximation to the exact theoretical results by (28). Since M
is large, the used occupancy model is not significantly affecting
the results. The noise estimation in the ENP-ED results in a
few dB loss.

The gain of the proposed iCOR method for λW,RMSE =
0.05 (Fig. 1) is around 4 dB at the worst-case RMSE = 0.1,

TABLE I. MEASUREMENT SETUP

Instrument Agilent N6841A
Center frequency 2450 MHz
Frequency span 100 MHz
Resolution bandwidth 242.27 kHz
Frequency bin separation 109.375 kHz
Window type Gausstop window
NFFT (in a frequency segment) 256
L 1
Digital IF bandwidth 20 MHz
Number of frequency points 916
Sweep time ≈10 ms

Filter Creowave filter
Band-pass frequency range 2400–2500 MHz
Insertion loss (pass-band) 0.8 dB
Rejection bands 0–2300 MHz &

2600–5500 MHz
Rejection at rejection bands ≥90 dB

Low noise amplifier Mini-Circuits ZRL-3500
Frequency range 700–3500 MHz
Gain (2.45 GHz) 19.5 dB
Noise Figure (2.45 GHz) 2.5 dB

Signal generator Agilent E4438C ESG
Signal type IEEE 802.11b
Actual COR level Ψ 0.40
Data rate 11 Mbit/sec
Total packet size 1508 bytes
Center frequency 2472 MHz

Channel emulator EB Propsim F8
Channel types AWGN

ETSI WLAN A
Channel for COR estimation IEEE 802.15.4 channel
Number of frequency bins |Θs| 18
Bandwidth 2 MHz
Offset to the signal center freq. 7 MHz

and around 7 dB at RMSE = 0.8. For λW,RMSE = 0.02 in
Fig. 2 the iCOR gain is around 2 dB at RMSE = 0.1, and
around 4 dB at RMSE = 0.8. Therefore, the improvement
observed is around 4–7 dB in Fig. 1 and 2–4 dB in Fig. 2.

The performance advantage of the iCOR estimator stems
from the fact that it allows using a much higher Pfa value for
the same RMSE constraint level λW,RMSE as compared to the
conventional COR estimation method. For λW,RMSE = 0.05,
the conventional method can use Pfa = 0.0495 while iCOR
can use Pfa = 0.735 (approximation (51) gives 0.71). For
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λW,RMSE = 0.02, the conventional method can use Pfa =
0.019 while iCOR can use Pfa = 0.209 (approximation (51)
gives 0.29). Fig. 3 shows the worst-case RMSE as a function
of Pfa for SNR = −10 dB. We can see that the optimal
Pfa for the conventional method is around the point where
Pd − Pfa reaches its maximum. However, since the iCOR
can suppress the effect of Pfa, its optimal point is at Pfa

of more than 0.9. Since the worst-case RMSE with Pd = 1
is constrained, neither of these methods is able to use their
optimal Pfa (for this particular SNR level). However, the iCOR
can use Pfa = 0.735, which is much closer to its optimal
point than the conventional method tied to a very small value
(Pfa = 0.0495).

In Fig. 4, we show the RMSE contour as the functions
of SNR and Ψ. The worst-case RMSE can be obtained by
selecting for each SNR the highest value in the vertical
direction corresponding to selecting the value of Ψ leading
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to the highest RMSE.
Fig. 5 shows the worst-case MAE for the iCOR and the

conventional COR estimation methods for M = 1000 obser-
vations and ideal ED with N = 100 complex samples used
for each observation. The constraint value used is λW,MAE =
0.05. The gain of the proposed iCOR method is around 4–7
dB. By comparing Fig. 5 with the results for ideal ED in Fig. 1
we observe that the results for MAE and RMSE do not have
significant differences.

C. Effect of the Signal Occupancy Model

In order to show the impact of the signal occupancy model,
we use a smaller number of samples than above, since for
large values of M the occupancy model is not significantly
affecting the results. Fig. 6 shows the results for M = 110.
The improvement of the iCOR estimate over the conventional
method observed in Fig. 6 is less than 1 dB for the Bernoulli
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model, but it can be up to 4 dB, which is a remarkable
improvement, under the m-out-of-M model. Thus, for the m-
out-of-M model the iCOR significantly improves performance
compared to the conventional method. The reason for this
behaviour lies in the allowed Pfa values. The allowed Pfa for
the conventional method is 0.0279 for the Bernoulli model and
0.0459 for the m-out-of-M model. For the iCOR solutions,
the allowed Pfa is 0.047 for the Bernoulli model and 0.239 for
the m-out-of-M model. The truncated Gaussian approximation
still gives very good accuracy.

D. Experimental Results

The measurement results in Fig. 7 for the AWGN channel
validate the iCOR method and also show an excellent fit
between the experimental and theoretical results. Small dif-
ferences result from the random signal model not being exact
and from the limited number of measurement samples.

In Fig. 7, for SNR values around 5 dB, it is observed that
the theoretical RMSE for the conventional method increases
with the SNR and then converges to a final level. Usually, the
RMSE is a non-increasing function of the SNR. This behavior
is caused by the false alarms. When Pd = 1, the false alarms
can only be harmful. When Pd is close to one, the false alarms
can offset the loss due missing actual signals.

The RMSE at high SNR can be smaller for the conventional
method. The reason is the fact that we limit the worst-case
RMSE to the worst actual COR level. The conventional method
has its worst RMSE, when the actual COR is around zero, but
the iCOR estimate has its worst RMSE at a higher COR level.
The value Ψ = 0.4 utilized in the experiments is closer to the
COR level leading to the worst-case RMSE for the iCOR than
that for the conventional method.

Fig. 8 shows the results with the ETSI BRAN A WLAN
channel model. For the theoretical results we use the Rayleigh
fading channel model providing excellent fit to the measure-
ments.
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VIII. OPTIMIZED MAPPING FUNCTIONS

We may ask: is the mapping function (48) for the proposed
iCOR method optimal? We already know that it is the MLE for
Pd = 1. However, this does not imply the optimality for the
RMSE. In this section, we compare the iCOR to two differently
optimized mapping functions with the m-out-of-M model.

A. RMSE-optimal for Pd = 1

We find the weights for Pd = 1 that are optimal in terms of
the worst-case RMSE when Pd = 1. The optimization problem
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for a given Pfa is

min
Ξ

 max
m∈{0,1,··· ,M}

 ∑
k∈{0,1,··· ,M}

pk

(
ξk − m

M

)2
 , (53)

where Ξ = [ξ0 ξ1 · · · ξM ] corresponds to an arbitrary vector
mapping k to Ψ̂ and pk is found with (23) assuming Pd =
1. We solve the optimization problem and increase the target
Pfa value as long as the worst-case RMSE-optimal mapping
function satisfies the λW,RMSE constraint. This leads to the
mapping function allowing the highest possible Pfa for the
specified constraint λW,RMSE.

B. Optimized Linear
We numerically optimize the coefficients a1 and a0 of the

linear function (30). The optimization target was to find the
coefficients that minimize the required SNR for reaching the
worst-case RMSE of 0.1 (corresponding to 2λW,RMSE) while
satisfying the constraint λW,RMSE. The aim here is to not only
optimize for Pd = 1 but also to consider weaker signals for
which Pd < 1.

C. Results for Mapping Function and Worst-case RMSE
For M = 100 and λW,RMSE = 0.05, the resulting mapping

functions are presented in Fig. 9. The RMSE-optimal weights
for Pd = 1 are slightly non-linear and allow using the highest
Pfa from all the considered methods as it should be, because
this was the optimization target. However, as shown in Fig. 10,
even with the higher Pfa, the performance of the RMSE-
optimal mapping function for Pd = 1 is worse for medium
signal power levels than the performance of the iCOR method.
This is because the mapping function optimized for Pd = 1 is
not necessarily optimal for lower SNR values. The RMSE-
optimal mapping function for Pd = 1 uses Ψ̂ less than 1
even when k = M . When the signal power is reduced, signals
are not always detected, i.e., Pd < 1. In this case, it would
be better to use higher output COR values to compensate for
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Fig. 10. Worst-case RMSE for RMSE-optimal weights for Pd = 1, iCOR,
conventional method, and optimized linear weights, ideal ED with N = 100,
m-out-of-M model, λW,RMSE = 0.05.

the undetected signals. In fact, the optimized linear mapping
function is doing exactly this. It has the highest output COR
from all the considered methods for large values of k. The
iCOR was also found assuming Pd = 1 (it is MLE for Pd = 1).
However, its output is significantly larger at high values of k
than the RMSE-optimal mapping function for Pd = 1, leading
to better performance when Pd < 1. The conventional method
also has large output values at high values of k, but it greatly
suffers from too large output when k is small (leading to
no suppression of false alarms). The linear mapping function
has a slightly better performance than iCOR. However, the
performance of the iCOR is close and a significant amount
of computation is required to find the optimal linear mapping
function. Thus, the iCOR presents an excellent compromise
between the complexity and performance.

IX. CONCLUSION

The objective of this work was to consider estimation of the
channel occupancy rate. The proposed iCOR method is able
to suppress the effect of false alarms unlike the conventional
COR estimation method. Comprehensive theoretical analysis
was performed. The numerical and experimental results con-
firm that the iCOR significantly outperforms the conventional
method. Thus, the iCOR method can be applied for more
accurate COR estimation than possible with the conventional
method for both spectrum utilization measurement campaigns
and spectrum utilization measurements during operation of
a cognitive transmitter. In the future work, methods with
knowledge of the SNR will be considered for obtaining a
higher performance but requiring more information. We will
also consider other noise uncertainty models in addition to
the ENP-ED such as the bounded worse behaviour (BWB)
model [7]. Other interesting topics for future research include
considering actual operation of secondary users with their
spectrum sensing being assisted with COR measurements for
assessing the secondary user communication rates.
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APPENDIX A
Proof that the maximum allowed Pfa for conventional

COR estimation under Bernoulli model is (42): The RMSE is
given in (39). For Pd = 1 and given Pfa, the extremum point
obtained by solving d[mse(Ψ)]

dΨ = 0 (extremum points are the
same for mse and rmse) is

Ψ(Pfa) =
3Pfa + 2MP 2

fa − 2P 2
fa − 1

4Pfa + 2MP 2
fa − 2P 2

fa − 2
(54)

which is valid, i.e., Ψ ∈ [0 1], if

0 ≤ Pfa ≤
√
8M + 1− 3

4 (M − 1)
(55)

The MSE for the extremum point is

− (Pfa − 1)
2

4M (2Pfa +MP 2
fa − P 2

fa − 1)
(56)

The MSE for the boundary point Ψ = 0 is

Pfa

M
+ P 2

fa

(
1− 1

M

)
(57)

As the extremum point MSE is always greater than or equal
to MSE of Ψ = 0 (within its validity region), we get that the
worst-case MSE is − (Pfa−1)2

4M(2Pfa+MP 2
fa−P 2

fa−1)
0 ≤ Pfa ≤

√
8M+1−3
4(M−1)

Pfa

M + P 2
fa −

P 2
fa

M otherwise
(58)

This results into maximum allowed Pfa given by (42).
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