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Abstract

Due to the global energy crisis and environmental concerns, the development of

sustainable energy is considered by more and more countries. In order to make this

target, energy demand management is significantly necessary in which forecasting

the energy demand is the starting point. The accurate prediction of energy demand

could help the energy sectors to make these operation decisions and policy properly.

A novel approach, which is the support vector regression based local predictor

with false neighbor filtered (FNF-SVRLP), is proposed. This method is an amelio-

ration of the support vector regression based local predictor (SVRLP). SVRLP is a

powerful prediction method which employs phase reconstruction algorithms, such

as the correlation dimension and mutual information methods used in time series

analysis for data preprocessing. Compared with the global prediction method, in a

local prediction method, each predicting point has its own model constructed based

on its nearest neighbors (NNs) reconstructed from the time series, and the fitness of

NNs would mainly affect the model performance. However, it has been found that

NNs may contain a class of false neighbors (FNs) which would decrease the fitting

accuracy dramatically and lead to a poorer forecasting performance. Therefore, a

new false neighbor filter is proposed to remove those false neighbors and keep the

optimal nearest neighbors. Then, the FNF-SVRLP is proposed.

Wind power is one of the most popular renewable energy. The increasing pen-

etration of wind power into the electric power grid accompanied with a series of

challenges. Due to the uncertain and variable nature of wind resources, the output

power of wind farms is hard to control, which could lead to the instability of the

power grid operation and the unreliability of electricity supplies. In order to slove

this problem, the FNF-SVRLP based short-term wind power perdition model is p-
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resented. Through the comparison with the SVRLP based short-term wind power

perdition and ARMA based short-term wind power perdition, it is found that the

FNF-SVRLP based short-term wind power perdition model is much more accurate

than the others.

Due to the fact that natural gas is cleanest burning of all fossil fuel, it can be

considered as an important adjunct to renewable energy sources such as wind or

solar, as well as a bridge to the new energy economy. Different from the wind power,

the customer consumption behavior could effect the natural gas demand. Therefore,

the customer behavior based “Advanced Model” with FNF-SVRLP is presented to

undertake the natural gas prediction. The proposed FNF-SVRLP natural gas model

is compared with the SVRLP and autoregressive moving average (ARMA) to show

its superiority. In addition, a web sever based online natural gas demand perdition

system has been set up to help the National Grid to obtain the accurate daily natural

gas demand perdition easily and timely.

It is found that the most kinds of energy demand data are non-stationary, the in-

ternal regularity between predicting point and its nearest-neighbors are much more

complex than the stationary dataset. In order to help the local predictor to capture

the internal regularity between predicting point and its nearest-neighbors more ac-

curately, the morphological filter is proposed. the morphological filter is applied to

decompose the non-stationary dataset into several subsequences, ranked form the

low frequency subsequence to the high frequency subsequence. Through this way,

the local predictor could capture the non-stationary dataset more accurate, and im-

prove the final performance of prediction. The morphological filter is applied to

decompose the non-stationary into several subsequences, ranked form the low fre-

quency subsequence to the high frequency subsequence. Through this way, the local

predictor could capture the non-stationary dataset more accurate, and improve the

final performance of prediction.

Moveover, an novel calculation method of structure element (SE) is introduced.

Different form the conventional SE, this novel approach can optimize the scale and

shape of SE to match the original signal. After that, a novel algorithm, which

is mathematical morphology based local prediction with support vector regression
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(SVRLP-MM) is proposed. The real-world wind speed data has been used to eval-

uate the performance of SVRLP-MM. The final results presented demonstrate that

SVRLP-MM based wind speed prediction model can achieve a higher prediction

accuracy than the SVRLP based model and ARMA model based model by using

the same real-world wind speed data.
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Chapter 1

Introduction

1.1 Background of energy demand prediction

Energy is a vital input for social and economic development of any nation.

With the advent of industrialization and globalization, the demand for energy has

increased exponentially. Fossil fuels in the form of coal, oil and natural gas com-

prise 80% of the world’s energy use. It is said that if the current global energy

consumption pattern continues, the world energy consumption will be increased by

over 50% before 2030 [1]. Energy is essential for the functioning of all activities be

it a developed or developing nation. It is estimated that industrial energy usage in

developing countries accounts for 45-50% of the total commercial energy consump-

tion. Such mainly and largely energy consumption by industrial units will finally

result in global energy crisis. What’ worse, the global warming and air pollution are

another coming issues. For example, the smog, which is a type of air pollutant, has

been resulted from the emitting significant clouds of smoke by largely burning coal

in industrial or in a power-producing plant. Air pollution from this source has been

report in England since the Middle Ages. Currently, the air pollution of this type

is still a big problem in areas that generate significant smoke from burning coal, as

witnessed by the 2013 autumnal smog in Beijing and north part of China, which

closed roads, schools, and the airport [2].

Therefore, due to the global energy crisis and environmental concerns, the consen-
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1.1 Background of energy demand prediction 2

sus of the sustainable development is shared by more and more countries nowadays.

In order to make this target, nations are encouraged to apply the clean energy and

develop the renewable energy. Natural gas, one of clean but nonrenewable ener-

gy, plays a key role in many countries’ energy mix. According to HI-Energy [3]

and government report of UK [4], UKs 46% of total electricity (around 350,000

GWh) generation and approximately 70% of domestic heating in 2008 is produced

by natural gas. However, natural gas is an non-renewable energy source, which has

limited reserve on the planet and contributes to global warming. Thus, planning en-

ergy demand is becoming an important issue in the energy sector and forecasting its

demand is the starting point, especially for natural gas demand. Natural gas demand

prediction has been a very commonly addressed problem in nowadays.

On the energy generation side, wind power will be one of the most promising re-

newable energy. Wind power is a clean and inexhaustible energy, is safer and less

expensive to exploit in comparison with other renewable energy sources. Accord-

ing to the European Wind Energy Association [5][6](EWEA), by the end of 2020,

wind energy will meet 14% of the EUs total electricity consumption and achieve

30% lower emissions. However, the increasing penetration of wind power into the

electric power grid accompanied with a series of challenges. Due to the uncertain

and variable nature of wind resources, the output power of wind farms is hard to

be controlled, which could lead to the instability of the power grid operation and

the unreliability of electricity supplies. Therefore, to maintain a balanced gener-

ation and demand, wind power generation prediction i.e., wind speed prediction,

is crucially important to the power grid operation. There are numerous literatures

on natural gas demand prediction (NGDP), wind speed prediction (WSP) and wind

power prediction (WPP). However, the NGDP, WSP and WPP are still very impor-

tant research issues in energy demand prediction and management area. Due the

complex affecting factors, big data, and some other internal relationships, accurate

estimating the future gas demand or wind power generation with the historical data

has remained a difficulty up to now.

Lei Zhu



1.2 Objectives 3

1.2 Objectives

Considering the complexity of the historical data and the uncertainty of the influ-

encing factors such as weather and environments, global methods, on which all data

of the whole time series are involved in modeling experiments, have been developed

with phase space reconstruction and proposed to capture complicated historical data

characteristics. They can exhibit a good performance in analysing and predicting

the short term evolution in phase spaces reconstructed from analysis of the original

time series.

The support vector regression based local prediction (SVRLP) method is developed

by the University of Liverpool, 1997. The SVRLP method combines the power-

ful regression method SVR with local predictor. According to the our prior work

[7], local prediction methods based on phase reconstruction normally perform bet-

ter than global methods based on phase reconstruction. With a local prediction

method, each predicting point has its own model constructed based on its nearest

reconstructed from the time series, and the fitness of nearest neighbors (NNs) would

mainly affect the model performance. However, it has been found that NNs may

contain a class of false neighbors (FNs) which would decrease the fitting accuracy

dramatically and lead to a poorer forecasting performance. This means that not all

NNs are suitable for use in local prediction and some of them should be filtered [8].

One of the objectives of this research work is to overcome the problems in the local

predictor. Therefore, a false neighbors filter which combine the Euclidean distance

and the exponential separation rate is introduced to overcome the drawback.

With the purpose of the sustainable development and enhance the efficiency and sta-

bility, energy demand prediction, especially for natural gas demand and wind power

generation is very important. Applying the proposed method to predict the real-

world natural gas demand and real-world wind power(speed) are the objective of

this work as well.

Local modeling is sensitive to the internal regularity between targeted point and

its nearest-neighbors. The datasets, such as wind power, wind speed and natural

gas demand, which are non-stationary and complex, the internal regularity between

predicting point and its nearest-neighbors are much more complex than the station-
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1.3 Thesis outline 4

ary dataset. In order to improve the identifiable accuracy of the regularity of local

predictor, and further to improve the final accuracy of prediction performance, the

idea of decomposing the original non-stationary data into several subsequences is

applied. In order to decomposing original data into subsequences with different

frequency (ranked from low frequency to high frequency), the optimal filter should

be decided. The most conventional filters are based on the wavelet, however, the

mathematical morphology, which is powerful tool for image/signal processing, is

not applied in this area. Compared with the Wavelet, the mathematical morphology

is much easier to process and to calculate. Therefore, another objective of this work

is to develop a mathematical morphology based filter to precess the decomposition

of the original non-stationary data, and improve the accuracy of the final prediction

results.

1.3 Thesis outline

The thesis is structured as follows:

Chapter 2 This chapter gives a literature survey for energy demand forecasting

problem. The factors affecting the energy demand are introduced firstly, fol-

lowed by description of the various forecasting methods.

Chapter 3 In this chapter, the method of Support Vector Regression-Based Local

Prediction with False Neighbors Filtered is introduced. Firstly, the basic of

concept of SVR is given, together with the limitations of original local pre-

diction. In order to overcome the drawback of the original local prediction,

the false neighbors filter is presented. Then combined the optimal nearest

neighbors (NNs) and the powerful SVR to organize the novel approach which

is named as support vector regression-based local prediction false neighbors

filtered (FNF-SVRLP).

Chapter 4 The basic idea of phase-space reconstruction of the time series is intro-

duced. In order to reconstruct phase-space of the time series, the embedding
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dimension and the time delay constant must be estimated from the time se-

ries. A method is proposed for the estimation of the embedding dimension

and time delay constant is introduced. On the other side, the wind power

prediction has been received much attention with the fast development of the

renewable energy. In this chapter, the FNF-SVRLP is applied to undertake

short-term wind power prediction. The proposed predication method not only

combines the powerful SVR with the reconstruction properties of time series,

but also overcomes the drawback of the original local predictor by remov-

ing false neighbours. The proposed method (FNF-SVRLP) is evaluated with

the real world wind power data, and the final performance is compared with

the support vector regression based local predictor (SVRLP) and the autore-

gressive moving average (ARMA). The results demonstrate that the proposed

method can achieve a better performance than the other method.

Chapter 5 In this chapter, the FNF-SVRLP is applied to perform short-term pre-

diction of natural gas demand. During the natural gas demand prediction, the

accuracy-based method is introduced to estimate the embedding and delay. At

first, one unified model, named “Standard Model (SM) is presented to process

the whole daily dataset. Then, in order to make further improvement of pre-

diction accuracy, the customer behavior difference within one week is consid-

ered and three models are constructed based on datasets of Monday, Saturday

and other days of the week, and results in a customer behavior based “Ad-

vance Model (AM). The developed FNF-SVRLP based AM has been applied

successfully to predict natural gas demand for National Grid, United King-

dom (UK). It outperforms the SVRLP and the autoregressive moving average

(ARMA) methods using the real data from National Grid. An web-based on-

line server has been used to implement the algorithm developed, which can

process the real data for National Grid on a daily basis. The configuration

and interface of this online server have been described briefly. The overall

performance of the online system outperform the National Grid’s prediction

model.
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Chapter 6 This chapter investigates a novel prediction method, called the Mathe-

matical Morphology-based Local Predictor with Support Vector Regression

(SVRLP-MM) and its application of wind speed predictions. The basic con-

cept about the mathematical morphology is introduced firstly. The decompo-

sition schemes are discussed in detail. In addition, the optimal structural el-

ement (SE) calculation method is presented, through this method the SE can

be modified according to different input dataset. Then, the implementation of

the proposed SVRLP-MM is described. The test case with real wind speed is

presented to show the effectiveness of the proposed SVRLP-MM method by

comparing its performance with other methods.

Chapter 7 Finally, the thesis in concluded in this chapter and suggestions for future

work are given.

1.4 Major contributions

The major contributions of this research include devolvement of advanced local

prediction methods and their applications to energy demand prediction, in particular

for natural gas demand predication and wind power prediction. Moreover, a web

server based online prediction system has been implemented based on the algorithm

proposed and contribute successfully to the daily operation of National Grid. The

contributions are summarised as follows.

• An ameliorated local predictor is proposed. The main feature of the local pre-

diction is the fitness of NNs, which would mainly effect the final performance

of prediction. However, we has found that NNs may contain a class of false

neighbors (FNs) which would decrease the fitting accuracy dramatically and

cause the reduction of the forecasting performance. Therefore, the proposed

false neighbors filter is applied to remove those false neighbors and leave

the optimal nearest neighbors. Then, through the combination of the optimal

NNs and the powerful SVR, the novel approach which named as support vec-

tor regression-based local prediction false neighbors filtered (FNF-SVRLP) is

presented.
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• The FNF-SVRLP method is applied to short-term wind power prediction with

success. During the computation procedure of the WPP, the embedding di-

mension and the time delay are computed firstly, then the phase space recon-

struction is applied to the wind power data. In the local prediction, there are

some difference between the SVRLP and the proposed FNF-SVRLP. Com-

pared with the SVRLP, the proposed method not only applies the Euclidean

distance but also the exponential separation rate to modify nearest neighbors,

and only the optimal nearest neighbors can be selected as training samples.

The final results presented demonstrate that the proposed model can achieve

a higher prediction accuracy than the SVRLP model and ARMA model using

the same real world wind power data.

• The FNF-SVRLP based Advanced Model for short-term gas demand predic-

tion is proposed. The forecasted gas demand can aid the market in making

efficient decisions in balancing supply and demand, and reducing costs. The

accuracy-based method is proposed to estimate the value of embedding di-

mension and the time delay, then the phase space reconstruction is applied

to process the gas dataset. The final results presented demonstrate that the

FNF-SVRLP can achieve a higher prediction accuracy than that of the SVRLP

method and ARMA method using the same real world gas data. Moreover, the

study on the customer behavior of different day has been tested, and results in-

dicate that the customer behavior can affect the final forecasted performance.

• The web server based online natural gas demand prediction system has been

implemented. This online system is based on the FNF-SVRLP method, and

built with the friendly online interface. This online system is built for the

daily operation of the National Grid. The engineers of the National Grid can

access the online system via internet, and the prediction data obtained from

the online system has been used in the daily operation and management of the

National Grid.

• A new approach which is SVRLP-MM is presented The proposed approach

combines a powerful regression algorithm which is SVR with a morphologi-
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cal filter based local predictor. We applied the morphological filter to decom-

pose the original wind speed time series into several subsequences, the subse-

quences contains “noise” parts and “baseline” part, then applied the SVRLP

to predict each subsequence separately. The proposed approach is applied to

the wind speed prediction, and the final results presented demonstrate that the

proposed model can achieve a higher prediction accuracy than the SVR mod-

el, SVRLP model and ARMA model using the same real world wind speed

data.

• An optimal SE calculation method is presented. By using optimal SE calcu-

lation method, the value and shape of the SE would be modified according to

different dataset. The SE is considered as one of the key component of the

morphology analysis. Generally, only when the scale and shape of the sig-

nal are matched to those of SE, the signal can be reserved well. SE should

approach morphological features of the signal as far as possible.
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Chapter 2

Literature Review and Background

of Energy Demand Prediction

This chapter describes the main factors affecting the energy demand and reviews

the current popular prediction methods in energy demand prediction areas.

2.1 Factors affecting the energy demand

Generally, to all kinds of energy demand, they could be affected by many dif-

ferent kinds of factors. Those factors can be generally classified as weather, calen-

dar,economical, and random factors. The effects of these factors are listed as fol-

lows to provide a basic understanding of the characteristic of energy demand , which

would be helpful to find the hidden relationship between those factors and the final

energy demand, reduce the noise in the dataset and eliminate the unnecessary input

dataset.

• Weather: These factors include temperature, humidity, cloud cover, light in-

tensity and so on. Different kinds of weather will come with different natural

affect. Taken the London average wind speed as an instance, the average

wind speed during the winter period (December to February) is about 5.6 m/s,

and during the summer period (June to August), the average wind speed re-

duced to 3.5 m/s. What’ more, the change of the weather causes the change
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varying from one half-hour up to a day ahead.  
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Figure 2.1: Average intra-day profile for each day of the weekl

of consumers comfort feeling and in turn the usage of some appliances such

as gas heaters and air conditioners. To the most weather-sensitive energy de-

mand, for example natural gas demand, its demand was highest during the

coldest months of winter and lowest during the warmest months of summer.

The main driver for this primary cycle of natural gas demand is the need for

residential and commercial heating. As expected, heating requirements are

highest during the coldest months and lowest during the warmest months.

• Calendar: The calendar factors contains the day of the week, season, sun-

rise/sunset, etc. In other words, the calendar factors can be partly considered

as the customer behavior. For example, Fig. 2.1 presents the average load

cycle for each day of UK form 1st Jan. 2001. to 31st Dec. 2009. From Fig.

2.1, it can bee seen that the load is clearly much lower at the weekends than

on the weekdays. The load profile for Saturdays differs from Sundays, and

for the weekdays, there are some differences, most notably on Mondays and

Friday afternoons.

• Economic: The economics factor play an important role to the many kinds

of energy demand. For example, to the natural gas, some countries like UK,
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which is highly depend on import natural gas from Norway , the price of nat-

ural gas in Norway will effect the import demand of UK. To the load part,

the relationship between electricity price and load profile is even stronger

with the development of modern electricity markets [9, 10]. Although time

of use pricing and demand-side management had arrived before deregulation,

the volatility of spot markets and incentives for consumer to adjust loads are

potentially of a much greater magnitude. At low price, elasticity is still neg-

ligible, but at times of extreme conditions, price-induced rationing is a much

more likely scenario in a deregulated market compared to that under central

planning.

• Other random factors: The modern energy system is composed of numerous

users. The startup and shutdown of the large consumers, such as steel mill,

which is an important source of random disturbance and always lead to an

obvious impulse to the load curve. The startup and shutdown time of these

users is quite random, i.e., there is no obvious rule of when and how they get

power from the grid. In addition, special events are another source of random

disturbance. A typical special event is, for example, a large social event in the

winter, the indoor heating which supplied by the natural gas, would lead the

natural gas demand increase dramatically.

2.2 Classification of conventional energy demand pre-

diction method

Energy demand prediction is helpful to the effective utilization of the energy re-

sources, reliability in supply and energy consumption. It can benefit the combined

heat and power systems, renewable energy systems, integrated energy systems and

independent power delivery systems. Cost effective options, commercially viable

alternatives and environmental friendly solutions are desired to be explored. An

accurate demand prediction plays a key role on the planning, implementing, and

monitoring activities of energy utilization that and also to encouraging consumers
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to modify their level and pattern of energy usage. To every nations, energy demand

is found to be closely linked to energy price and GDP. Energy models are devel-

oped using macro economic variables to forecast the energy demand. This helps in

planning and drafting policies for energy management on the demand side. Energy

demand management can help in achieving self sufficiency and cost effectiveness

and provide for a sustainable economic development. Energy demand prediction

should thus help in

• planning for the future requirement, identifying conservation measures

• identification and prioritization of energy resources, optimized energy utiliza-

tion, strategies for energy efficiency improvements

• framing policy decisions

• identification of strategies for reduced emission

2.2.1 Time series method

Time series models are the most simplest of models which uses time series trend

analysis for extrapolating the future energy requirement. Times series models have

been used for decades in different field such as digital signal precessing, economics,

as well as energy demand prediction. The autoregressive moving average (ARMA),

autoregressive integrated moving average (ARIMA) are both the traditional exam-

ples of the time series methods. Ergin and Shi employed four competing approaches

based on the ARMA method for forecasting of wind speed as well as wind direc-

tion and strived to determine the best performing model while marking comparisons

among them according to the mean absolute error (MAE) [11]. Erdogdu focused

on the characteristics of demand and estimated short and long-run price and income

elasticities of sectoral natural gas demand in Turkey and forecasted future growth

in this demand using an ARIMA modeling, comparing these results with official

projections [12]. Bargur and Mandel have examined the energy consumption and

economic growth using trend analysis for Israel [13]. Gonzales et al. have forecast
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energy production and consumption in Asturias-Northern Spain [14]. A semi statis-

tical cyclic pattern analysis was used for forecasting the primary energy demand for

Turkey. The results are found to be similar to Winter’s exponential smoothing tech-

nique [15]. Hunt et al. investigated the energy demand in sectoral basis for the UK

using time series approach [16]. Three time series models, namely, Grey-Markov

model, Grey-Model with rolling mechanism, and singular spectrum analysis (SSA)

are used to forecast the consumption of conventional energy in India. Grey-Markov

model has been employed to forecast crude-petroleum consumption while Grey-

Model with rolling mechanism to forecast coal, electricity (in utilities) consumption

and SSA to predict natural gas consumption [17]. Sourcewise analysis is also carried

out to determine the future demand. The consumption of oil and price is forecast

under three scenarios: Parabolic, linear and chaotic behavior [18]. Aras and Aras

[19] used the first-order autoregressive time-series model to predict the natural gas

requirement for Eskisehir.

A time-series-based decision support system that integrates data management,

model base management, simulation, graphic display, and statistical analysis to pro-

vide near-optimal forecasting models for electricity peak load forecasting in UAE

is developed. The model base includes a variety of time-series techniques, such as

exponential smoothing, BoxCJenkins (BJ), and dynamic regression [20].

Gonzalez-Romera et al. [21] used trend extraction method to examine the elec-

tric energy consumption for Spain. In the field of interval time-series (ITS) fore-

casting, different techniques have been developed. Arroyo et al. [22]have developed

three exponential smoothing methods for ITS forecasting.

Himanshu and Lester [23] have used time series analysis for predicting elec-

tricity demand in Sri Lanka. Electrical power requirement for Jordon is predicted

using models that account for trend, monthly, seasonal and cyclic dynamics [24].

Amarawickrama and Hunt [25] have presented a time series analysis of electricity

demand in Sri Lanka. Various time series estimation methods were used to analyse

using past electricity consumption. They have used income and price elasticities to

predict the future electricity consumption in Sri Lanka.
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2.2.2 Regression method

Energy forecasts are very important in the framing of energy of environment

policies. Regression models have been used to forecast the coal, oil, gas, electricity

requirement [26]. ONeill and Desai [27] analyse the accuracy in the projections

of US energy consumption presented by Energy Information Administration (EIA).

GDP and energy intensity (EI) are used in the projection of energy requirement. It

is found that the GDP projections are consistently too high while EI projections are

consistently too low. This tends to underestimate the future energy consumption.

Linear and nonlinear effect of energy consumption on economic growth for Taiwan

is examined by Lee and Chang [28]. It is found that a threshold regression provides

a better empirical model than the standard linear model.

Jannuzzi and Schipper [29] have examined the of electrical energy consump-

tion for the residential sector in Brazil. It was found that the increase in electricity

demand was faster than the income. Dynamic relationship between electricity con-

sumption and weather, price, and consumer income are examined by Harris and

Lon-Mu [30] using 30 years data series from south east USA. Electricity demand

based on the intensity of consumption is developed [31] and [32] to predict the fu-

ture requirement.

The influence of economic variables on the annual electricity consumption in

N. Cyprus is examined [33]. Using multiple regression analyses, the relationship

between energy consumption, the number of customers, the price of electricity and

the number of tourists is determined. A linear regression model was used [34] to

predict the electricity consumption for Turkey based on the population and percapita

consumption rates. Tunc et al. [35] used the regression analysis to predict Turkey’s

electric energy consumption.

Bessec and Fouquau [36] have examined the non linear relationship between

electricity demand and temperature in the European Union. A panel threshold re-

gression with exponential and logistic functions is considered for the data collected

from 15 European countries. An empirical model based on multivariate regression

is developed [37] to predict the electricity requirement of Jordon’s industrial sector.

Industrial production outputs and capacity utilization were found to be two most
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important variables that affect electrical power demand. The residential and com-

mercial sector electricity consumption pattern in Hong Kong was examined [38].

Principal component analysis of five major climatic variablesłdry-bulb temperature,

wet-bulb temperature, global solar radiation, clearness index and wind speedłwas

conducted. It was found that sector-wide electricity consumption correlated with

the corresponding two principal components determined using multiple regression

technique.

A non parametric regression model [39] is used to assess the wind energy fore-

casts. The conditional price distribution is found to be non Gaussian. The forecast-

ing models for electricity spot prices for which parameters are estimated by a least

squares technique will not have Gaussian residuals.

2.2.3 Econometric method

Econometric models correlate the energy demand with other macro-economic

variables. Samouilidis and Mitropoulos [40] have researched energy and econom-

ic growth in industrialized countries. Econometric models are developed to fore-

cast energy consumption as a function of Gross National Product (GNP), energy

price, technology, population for India [41]. Ramaprasad Sengupta [42] and Rao

and Parikh [43] have been established that such models are effective in forecasting

energy patterns in developing countries. Berndt and Watkins attempted to estimate

an econometrics model Arsenault et al. [44] have predicted the total energy de-

mand as a function of previous year’s energy demand, price of energy, real income

and heating day for the province of Quebec. Ordinary least square technique (OL-

S) is used and prediction is made sectorwise C residential, commercial, industrial

and street lighting. Yearly data has been used for demand side projection. Energy

forecast is influenced by weather conditions data.

Energy supply and demand for the Asia-Pacific region is analysed [45]. The

demand is forecast for three scenarios C high, low, base case considering variations

in economic performance, prices and fuel substitution at the national and regional

level. Four factors are considered for each country C econometric factors (GDP, for-

eign trade) with oil prices, domestic oil prices, substitution. A bottom up country by

Lei Zhu



2.2 Classification of conventional energy demand prediction method 17

country approach is followed. Oil, natural gas, coal and electricity requirements are

projected. The effect of price elasticities, income elasticities and technical efficiency

on residential energy demand is studied for OECD countries using econometric en-

ergy models [46]. The energy requirement and CO2 emission for Greece is forecast

using econometric models. Demand equations are derived for each sector of eco-

nomic activity traded, non-traded, public and agricultural sector and for each type

of energy C oil, electricity and solid fuels. The energy system is integrated so that

all interactions between energy, prices and production factors are considered [47].

Sharma et al. [48] analysed the requirement of three major forms of commer-

cial energy in the state of Kerala (viz electricity, petroleum products and coal).

Sectorwise/productwise econometric demand models are generated using regres-

sion method. ZhiDong [49] has conducted an econometric study for China linking

energy, economy and the environment. A three equation model [50] is used for en-

ergy modelling and forecasting energy demand in UK and Germany. An economic

model considers the price of electricity, oil, gas, coal, total energy demand and tech-

nological progress. The statistical model has the economic model embedded in its

equation along with the error correction term. The results from the two models are

then processes for structural change and stability.

Energy consumption in industrial, transportation, residential and commercial is

determined for China using the consumption of fuel in a sector taking the case of

a well off society [51]. Sectoral energy related parameters are identified to deter-

mine the final energy consumption in the sector. Econometric modelling is used for

energy forecasting. Rural, social and economic data is collected for six provinces

in China [52]. A sectoral energy demand analysis and a forecasting model are de-

veloped. Variables such as GDP, per capita income, agricultural production output,

industrial production output, capital investment are used.

A modified form of econometric model EDM (Energy Demand Model) is used

by Gori and Takanen [53] to forecast the Italian energy consumption. The possi-

ble substitution of various energy resources is investigated. In addition, the long

term electricity consumption pattern in Italy is examined using cointegration and

stationary time series models. The primary energy demand in Japan is determined
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by exploring the relationship between energy demand, GNP and real energy price

[54]. The resulting econometric model is used to determine long run price elasticity

and income elasticity. The model is utilized to forecast the energy consumption and

CO2 emission.

Raghuvanshi et al. [55] determine the characteristics of the drivers of energy

development for India. The primary energy consumption is decomposed as a prod-

uct of three variables, population, per capita GDP and energy intensity of GDP.

Similarly the CO2 emissions are decomposed as the product of the primary energy

consumption and the carbon intensity of primary supply. Ramanathan [56] has used

data envelopment analysis to analyse the patterns of efficiency in terms of world en-

ergy consumption, Gross Domestic Product (GDP) growth and CO2 emissions. The

impacts of the changes in energy prices due to deregulation of prices is examined

[57] on aggregate energy intensity and coal/oil/electricity intensity is studied. Price

elasticities by energy type are determined.

The levels and types of demands for energy services in 2040 for Australia are

determined by projecting the levels of economic activity [58]. Demand for 2040 is

estimated by examining how energy intensity has been changing in each sector in

recent years and this is used to project the future energy requirement. The changes

in energy price elasticity and elasticities of substitution are examined [59] between

energy and non-energy (capital and labour) sectors in China. It is found that accel-

erated market oriented reforms lead to energy efficiency improvements because the

energy price elasticity declines, and elasticities of substitution and cross price elas-

ticities between energy, capital and labour rise. An econometric model is developed

to predict China’s energy demand [60]. The energy requirement is forecast and an

energy balance is presented for 2020 for China.

2.2.4 Intelligent algorithms

In recent times, thee intelligent algorithms have been widely used for energy

demand projections. Neural network is used to model the energy consumption of

appliances, lighting, and space-cooling in Canadian residential sector [61]. The

energy consumption for Turkey is predicted using artificial neural-network (ANN)
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technique [62]. Two models are used: population, gross generation, installed capac-

ity and years are used in the input layer of the network for Model 1 and other energy

sources are used in input layer of network for Model 2.

Gorucu and Gumrah [63] have used ANN to predict the gas requirement for

Ankara. GNP, population and vehicle kilometre are used as input parameters in

training neural network model for predicting the transport energy demand for Turkey

[64]. The best network architecture is selected using the training and validation data

set. The final network is tested using the test data. The transport energy consump-

tion in Thailand is determined using the national gross domestic product, population

and the numbers of registered vehicles as independent variables [203]. Log-linear

regression models and feed-forward neural network models are used in the study.

Brown et al.[121] and Brown and Matin [122] used ANN to predict natural gas

demand and demonstrated a better accuracy than the model with liner regression.

Khotanzad and Elragal [123] and Khotanzad et al. [124] combined ANN with d-

ifferent methods and proposed a two-stage prediction models, which showed that

different combinations of ANN models can improve prediction accuracy. In Serbia,

Ivezić [125] applied the daily gas demand and daily minimal and maximal temper-

ature as inputs to do the short-term NGPD with ANN. Azadeh et al. [126] applied

an ANN-based algorithm, which is ANFIS, to predict natural gas demand in the I-

ranian network. They applied the same day gas demand in the previous year as an

additional input with other conventional inputs.

Researchers have argued that green energy can be considered as a catalyst for

energy security, sustainable development, and social, technological, industrial and

economic development. In paper [72], it analysis the world green energy consump-

tion through artificial neural networks (ANN). The world primary energy consump-

tion including fossil fuels such as coal, oil and natural gas is also considered.

Arcaklioglu [73] used three different models to train the ANN. In Model 1, en-

ergy indicators such as installed capacity, generation, energy import and energy

export, in Model 2, GNP was used and in the Model 3, GDP was used as the input

in ANN. The output of the network is net energy consumption (NEC). It is found

that the ANN approach presents greater accuracy when economic indicators namely
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GNP, GDP are used for prediction. The energy demand for South Korea is esti-

mated using a feed forward multilayer perception, error back propagation algorithm

[74]. The model considered gross domestic product, population, import and export.

The results are compared with the multiple linear and exponential regression energy

demand models.

Pao [75] examines the following linear models: the exponential smoothing mod-

el (Winters), the exponential form of the generalized autoregressive conditional het-

eroscedasticity (EGARCH) and seasonal EGARCH (SEGARCH) models, the com-

bined Winters with volatility EGARCH model (WARCH) and ANN non linear mod-

el. Based on the above models, two hybrid non linear models SEGARCH C ANN

and WARCH C ANN are developed to predict Taiwan’s consumption of electricity

and petroleum. The models are validated using root mean square error (RMSE),

mean absolute error (MAE) and mean absolute percentage error (MAPE). The re-

sults indicate the hybrid models give better accuracy and among the hybrid models

WARCH-ANN is the better model.

The extent to which an economy relies upon imports in order to meet its en-

ergy needs is defined as Energy dependency (ED). Turkey’s energy dependency is

determined using ANN based on basic energy indicators and sectoral energy con-

sumption [76]. Two models have been used. In Model 1, main energy indicators

such as total production of primary energy per capita, total gross electricity gen-

eration per capita and final energy consumption per capita were used in the input

layer of the ANN while sectoral energy consumption per capita was used in Model

2. A global optimization method called Modal Trimming Method is used to identify

the values of model parameters [77]. In addition, the trend and periodic change are

removed from time series data on energy demand. The converted data is used as the

main input to a neural network. Furthermore, predicted values of air temperature

and relative humidity are considered as additional inputs to the neural network, and

their effect on the prediction of energy demand is investigated.

The Greek long-term energy consumption is predicted using ANN multilayer

perception model. The input variables chosen are yearly ambient temperature, in-

stalled power capacity, yearly per resident electricity, consumption, gross domestic
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product [78]. Energy consumption in Turkey is modelled based on socio-economic

and demographic variables (gross domestic product-GDP, population, import and

export amounts, and employment) using artificial neural network (ANN) and re-

gression analyses. The models are validated using relative errors and RMSE [79].

Cadenas and Rivera applied ANN to the hourly wind speed time series and

aimed to enhance prediction accuracy developing a model for each month of the year

[80]. Then, a comprehensive study was presented by investigating the performances

of three different ANN types, namely, Adaptive Linear Element (ADALINE), Feed

Forward Back-Propagation (FFBP) and Radial Basis Function (RBF) for 1-h-ahead

wind speed predictions and as a result, the authors indicated that different structures

and model parameters can yield different forecast accuracies for the same wind data

in terms of various evaluation criteria [81].
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Chapter 3

Support Vector Regression-Based

Local Prediction with False

Neighbors Filtered

3.1 Introduction

Support Vector Regression is a powerful methodology which derived from Sup-

port Vector Machines (SVMs). It is based upon statistical machine learning and

can be utilized to achieve nonlinear mapping from sample space to feature space

through kernel functions. Moreover, SVR replaces the empirical risk minimization

which is generally employed in the classical methods such as ANNs, with a more

advantageous structural risk minimization principle. Therefore, SVR can achieve

an outperforming of fitting accuracy for chaotic time series prediction [7].

Local prediction methods can normally perform better than global methods for

chaotic time series prediction [7]. In local prediction methods, each predicting point

has its own model constructed by its nearest neighbors (NNs) which were found

in the neighborhood of the phase space reconstructed from the time series, and the

fitness of NNs would mainly effect the final performance of prediction. However, it

has been found that NNs may contain a class of false neighbors (FNs) which would

decrease the fitting accuracy dramatically and cause the reduction of the forecasting
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performance, so that not all of NNs are suitable for using in the local prediction, and

these FNs should be filtered [8].

In this chapter, a false-neighbors filtered local predictor based on a proven powerful

algorithm, which is the SVR combined with space reconstruction of time series, is

introduced. The resulting predictor is referred as SVR based local prediction with

false neighbors filtered (FNF-SVRLP).

3.2 Support Vector Regression

3.2.1 The foundation theory of SVR

Suppose there is a set of training data {xi, yi}Ni=1 where each xi ∈ ℜd denotes

the inputs space of the sample and has a corresponding target value yi ∈ ℜ for

i = 1, ..., N , where N corresponds to the size of the training data. SVR looks for an

approximation function f(x) that has at most ε from the targets for all the training

data and is as flat as possible for good generalization. This means that, we do not

care about errors as long as they are less than the ε deviation.

Let the function f(x) is linear as follows:

f(x) = ⟨ω, x⟩+ b (3.2.1)

where ⟨., .⟩ denotes the dot product, ω contains the coefficients that have to be esti-

mated from the data and b is real constant.

The flatness of the function (3.2.1) implies seeking a small ω, through minimising

the square norm ∥ω∥2. Minimsing ∥ω∥2 = ⟨ω, x⟩ is equivalent to maximising the

distance between the data point and the approximation function[1]. The coefficients

ω and b can thus be estimated by minimising the regularized risk function [82].

RSV R = Remp +
1

2
∥ω∥2 = C

N

N∑
i=1

Lε (yi, f(xi))+
1

2
∥ω∥2 (3.2.2)

where RSV R and Remp represent the regression and empirical risks, respectively

while Lε (yi, f(xi)) is ε insensitive loss function. C is the regularization constant

which determines the trade-off between the flatness of f and its accuracy in captur-

ing the training data.
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In the regularized risk function given by equation (3.2.2), the regression risk (test

set error), RSV R, is the possible error committed by the function f in predicting

the output corresponding to a new (test) example input vector. In equation (3.2.2),

the first term C
N

∑N
i=1 Lε (yi, f(xi)) denotes the empirical error (termed “training set

error”), which is estimated by the the ε insensitive loss function. The second item,
1
2
∥ω∥2, is the regularization term.

To estimate ω and b, equation (3.2.2) is converted to the primal function by intro-

ducing slack variables ξi,ξ∗i . Hence we have the following optimisation problem for

SVR [83]:

min
ω,b,ξi,ξ∗i

1

2
∥ω∥2 + C

N∑
i=1

(ξi + ξ∗i ) (3.2.3)


yi − ⟨ω, xi⟩ − b ≤ ε+ ξ∗i

⟨ω, xi⟩+ b− yi ≤ ε+ ξ∗i

ξi, ξ
∗
i ≥ 0

where (ξ)i is the lower training error (ξi∗ is the upper) subject to the ε-insensitive

tube. SVR avoid under-fitting and over-fitting of the training data by minimising

the regularisation term 1
2
∥ω∥2 as well as the training error C

N∑
i=1

(ξi + ξ∗i ). The ξ-

insensitive loss function which introduction by Vapnik [83] enforces the distance

between the approximation function and examples no more that ξ. This loss function

is shown in following figure in which the slope is determined by C and defined as

follows:

|ξ|ε =

{
0 if |ξ| < ε

|ξ| − ε otherwise
(3.2.4)

3.2.2 Primal and dual optimisation

The Lagrange multipliers technique can be applied to solve equation (3.2.3) as

following [84]:
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Figure 3.1: The ξ-insensitive loss function

L = 1
2
∥ω∥2 + C

N∑
i=1

(ξi+ξ
∗
i )−

N∑
i=1

αi(ε+ ξi − yi + ⟨ω, xi⟩+ b)

−
N∑
i=1

α∗
i (ε+ ξ∗i − yi + ⟨ω, xi⟩ − b)−

N∑
i=1

(ηiξi + η∗i ξ
∗
i )

(3.2.5)

HereL is the Lagrangian and the feature αi, α
∗
i , ηi and η∗i are Lagrange multiplier

with:

αi, α
∗
i , ηi, η

∗
i ≥ 0 (3.2.6)

Equation (3.2.5) is known as the primal objective function. The solution of this

function is obtained by solving the dual objective function when the gradient of L

with respect to ω, b, ξi and ξ∗i is equal to 0, therefore, we have

∂L

∂b
=

N∑
i=1

(α∗
i − αi) = 0 (3.2.7)

∂L

∂ω
= ω −

N∑
i=1

(ai − a∗i )xi = 0 (3.2.8)

∂L

∂ξi
= C − αi − ηi = 0 (3.2.9)
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∂L

∂ξ∗i
= C − α∗

i − η∗i = 0 (3.2.10)

By substituting equations (3.2.7)-(3.2.10) into (3.2.5), the dual optimisation function

can be obtained as follows :

max
αi,α∗

i

{
−1

2

∑N
i,j=1 (αi − α∗

i )(αj − α∗
j ) ⟨xi, xj⟩

−ε
∑N

i=1 (αj + α∗
j ) +

∑l
i=1 yi(αj − α∗

j )
(3.2.11)

subject to

{ ∑N
i=1 (αj − α∗

j ) = 0

αj, α
∗
j ∈ [0, C]

In deriving equation (3.2.11) the dual variables ηi, η∗i were eliminated through con-

ditions (3.2.9) and (3.2.10) (ηi = C − αj and η∗i = C − α∗
j ), as these variables

did not appear in the dual objective function anymore but only were presented in

the dual feasibility conditions. Therefore, the support vector expansion comes form

equation (3.2.8) which can be rewritten as follows [85]:

ω =
N∑
i=1

(αi − α∗
i )xi thus f̂(x) =

N∑
i=1

(αi − α∗
i ) ⟨xi, x⟩+ b (3.2.12)

In order to calculate b, the KarushoKuhn-Tucker (KKT) conditions can be used

[86][87] . These condition will be stated in the SVR optimisation subsection. Allow-

ing inequality constraints, the KKT approach to nonlinear programming generalises

the method of Lagrange multipliers, which have allowed only equality constrains.

The KKT conditions state that the product between dual variables and constraints

has to vanish at the optimal solution.

αi(ε+ ξi − yi + ⟨ω, xi⟩+ b) = 0 (3.2.13)

α∗
i (ε+ ξ∗i − yi + ⟨ω, xi⟩+ b) = 0 (3.2.14)

and

(C − αi)ξi = 0 (3.2.15)

(C − α∗
i )ξ

∗
i = 0 (3.2.16)
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Consequently, when αi, α
∗
i ∈ (0, C), we have ξi, ξ∗i = 0. This allows us to conclude

that

b = yi − ⟨ω, xi⟩ − ε for αi ∈ (0, C) (3.2.17)

b = yi − ⟨ω, xi⟩+ ε for αi ∈ (0, C) (3.2.18)

From equation (3.2.13) and equation3.2.14, the Lagrange multipliers are nonzero

only if
∣∣∣f̂(xi)− yi

∣∣∣ > ε. Therefore we have a sparse expansion of ω in terms of

xi. The examples correspond to the nonzero Lagrange multipliers are called support

vectors (SV). The support vector expansion can be rewritten as follows:

f̂(xi) =
N∑
i=1

(αi − α∗
i ) ⟨xi, x⟩+ b =

∑
i∈SV

(αi − α∗
i ) ⟨xi, x⟩+ b (3.2.19)

The equivalence between SVR and sparse approximation has been pointed out by

Girosi [90] where the same solution can be obtained from both SVR and spars ap-

proximation by solving the same quadratic programming problem.

3.2.3 Nonlinear Support Vector Regression

The Next step is to make the support vector regression algorithm nonlinear. This

could be achieved by using a nonlinear mapping (ϕ ) to map the low dimensional

input space into a high dimensional feature space (z) (Fig. 3.2) via a function,

ϕ : ℜd → z. Then the following estimate function is used to make linear regression

in the feature space [91] as:

f(x) = ⟨ω, ϕ(x)⟩+ b (3.2.20)

where ϕ(x) denotes the high dimensional feature space which is nonlinearly mapped

from the input space. ω contains the coefficients that have to be estimated from the

data and b is a real constant.

Figure 3.3 shows an example of a nonlinear regression function with an ε-

insensitive loss function. The variables ξi, ξ∗i measure the cost of the errors on the

training points. These variables are equal to zero for all points inside the ε [91].
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Input space

(a)

Feature space

(b)

(x) 

Figure 3.2: Transformation process illustration of s SVR Model. A nonlinear map-
ping function ϕ(x) defined to mapping a nonlinear problem in two dimensional input
space (a) to linear problem in two dimensional feature space (b).

 

* 

!

!

X

Y

Figure 3.3: The ε-insensitive loss function for a nonlinear regression function. The
solid line is the approximation function and the dashed line is the contour of the
margin. The points lying on or outside
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The nonlinear SVR solution based on ε-insensitive loss function is given by [89]:

max
αi,α∗

i

{
−1

2

∑N
i,j=1 (αi − α∗

i )(αj − α∗
j )Q (xi, xj)

−ε
∑N

i=1 (αj + α∗
j ) +

∑l
i=1 yi(αj − α∗

j )
(3.2.21)

subject to

{ ∑N
i=1 (αi − α∗

i ) = 0

αi, α
∗
i ∈ [0, C]

where Q(xi, xj) = ⟨ϕ(xi), ϕ(xi)⟩ is the kernel function that is the inner product of

the point ϕ(xi) and ϕ(xj) mapped into feature space.

The two parameters C and ε are free parameters selected by the user. The com-

plexity of SVR method depends on these parameters, therefore they must be tuned

simultaneously. The regression output takes the following form [89]:

f̂(x) =
N∑
i=1

(αj − α∗
j )Q (xi, xj) + b =

∑
i∈SV

(αj − α∗
j )Q (xi, xj) + b (3.2.22)

The ε-insensitive loss function is attractive because unlike to quadratic and Huber

cost functions, where all the data points will be support vectors, the algorithm solu-

tion can be sparse[88].

We can briefly review the basic properties of the SVR algorithm for the regression

as described so far. First, the input low dimensional input space (for which a predic-

tion is to be made) is mapped into high feature space by a map ϕ, This equivalents to

calculate kernel functions. Finally, the dot products are added up using the weights.

This, plus the constant term b yields the final prediction output.

3.2.4 Kernel function

As stated, the nonlinear SVR utilisers the fact that the kernel Q (xi, xj) becomes

a dot product on the feature space z in constrast to a dot product of the input space

of the linear case. The dot product on the feature space is denoted as ⟨ϕ(xi), ϕ(xi)⟩z.

The idea of the kernel function is to enable operations to be performed in the input

space after rather than the potentially high dimensional feature space. Therefore, the

inner product does not need to be evaluated in the feature space [88]. The following

theorem of functional analysis which based upon Reproducing Kernel Hilbert Space
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[90] shows that an inner product in feature space has an equivalent kernel in input

space which provided certain conditions hold.

Q(xi, xj) = ⟨ϕ(xi), ϕ(xi)⟩ (3.2.23)

If Q is a symmetric positive definite function, which satisfies Mercers Conditions,

Q(xi, xj) =
∞∑
z=1

αzϕz(xi)ϕz(xj), where αz ≥ 0 (3.2.24)

and∫ ∫
Q(xi, xj)a(xi)a(xj)dxidxj > 0, where

∫
(ψ)2(x)d(x) <∞ (3.2.25)

then the kernel represents a legitimate inner product in feature space.

There are different types of kernel functions that satisfy Mercers conditions for SVR.

They can be defined as follows:

• Linera kernel: The liner kernel is the simplest function of all kernel functions.

Q(xi, xj) = ⟨xi, xj⟩ (3.2.26)

• The Gaussian radial basis function kernel:

Q(xi, xj) = exp

(
−∥xi − xj∥2

2σ2

)
(3.2.27)

• The polynomial kernel: A polynomial kernel of degree p is defined as:

Q(xi, xj) = (⟨xi, xj⟩+ 1)p (3.2.28)

• The hyperbolic tangent kernel:

Q(xi, xj) = tanh (scale ⟨xi, xj⟩+ offset) (3.2.29)

• The Laplace radial basis function kernel:

Q(xi, xj) = exp

(
−∥xi − xj∥

2σ2

)
(3.2.30)
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• The linear splines kernel:

Q(xi, xj) = 1 + ⟨xi + xj⟩+ ⟨xi, xj⟩min (xi, xj)− xi+xj

2
(min (xi, xj))

2

+ 1
3
(min (xi, xj))

3

(3.2.31)

• The Additive kernel: More complicated kernel can be obtained by forming

summing kernels, since the sum of two positive definite functions is positive

definite.

Q(xi, xj) =
∑
z

Qz(xi, xj) (3.2.32)

The Gaussian and Laplace radial basis function kernels are general-purpose kernels

used when there is no prior knowledge about the data. Whereas, the linear kernel

is useful when dealing with large sparse data vectors as is usually the case in text

categorisation. In addition, the polynomial kernel is popular in image processing

[94].

3.2.5 SVR optimisation

In the ε-insensitive loss function SVR algorithm, a large quadratic programming

(QP) problem (equation (3.2.21)) must be solved which gives a unique global mini-

mum. The QP problem can be expressed in matrix notation as follows:

min
αi,α∗

i

1

2
βTQβ + cTβ (3.2.33)

subjectto

{
Aβ = 0

αi, α
∗
i ∈ [0, C] , i = 1, ..., N

where

β =

[
αi

α∗
i

]
, c =

[
ε+ y

ε− y

]
(3.2.34)

Q

[
Q −Q
−Q Q

]
, A =

1, ..., 1,︸ ︷︷ ︸
N

−1, ...,−1︸ ︷︷ ︸
N

 (3.2.35)

y = [y1, ..., yN ]
T and Q = Q (xi, xj) for i, j = 1, ..., N .

According to Fletcher [95], when Q is a positive definite matrix and the constraints
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of equation (3.2.21) are linear, the solution of equation (3.2.21) must satisfy the

KKT condition as follows;

βi = 0 ⇔ yif̂i ≥ 1,

0 < βi < C ⇔ yif̂i = 1,

βi = C ⇔ yif̂i ≤ 1,

(3.2.36)

where f̂i = f̂(xi) is the output of the SVM for the ith training example.

Two algorithms will be introduced to solve the large quadratic programming prob-

lem. They are Decomposition Algorithm (DA) [97] and Sequential Minimal Opti-

mization (SMO) [96] [85].

Decomposition algorithm

The Decomposition Algorithm (DA) solves a sequence of small quadratic pro-

gramming sub-problems instead of solving the large quadratic programming prob-

lem at once [97]. It is based on the observations that a sequence of quadratic pro-

gramming sub-problems which at least always contains one example violating the

KKT conditions will eventually converge to the optimal solution [98]. Osuna [98]

suggested keeping a constant size matrix for every quadratic programming sub-

problem, which implies adding and deleting the same number of examples in each

iteration.

In the DA, the index of the training set is partitioned into two sets. The first one is

called a working set (G) while the second on is called a correcting set (E). There-

fore, β, y, c and Q from equation (3.2.33) can be aggraded properly as follows:

β =

[
βG

βE

]
, c =

[
cG

cE

]
, y =

[
yG

yE

]
, Q =

[
QGG QGE

QEG QEE

]
(3.2.37)

The dual objective function can be rewritten involving the two sets G and E as

follows:

min
αi,α∗

i

1

2
βT
GQGGβG − βT

G (cGQGEβE) (3.2.38)

subject to

{
⟨yG, βG⟩+ ⟨yE, βE⟩ = 0

0 ≤ βG ≤ C
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where C is a column vector with all elements equal to C.

At each step, n elements exchange between set G and E where at least one variable

violating the KKT conditions is moved form E toG. Then the sub-problem (3.2.38)

which involving the new working set is solved. The cycle repeats until no example

violates the KKT conditions. Note that n is arbitrary.

Sequential minimal optimisation

Sequential Minimal Optimisation (SMO) is a special case of the DA. The SMO

was derived in [96] and applied to text categorisation problems. Then, Smola et al.

[85], has generalised SMO for solving the regression problems.

The SMO is derived by taking the idea of DA to its extreme and optimising a min-

imal set of just two points at each iteration (n = 2). The advantage of SMO comes

from the fact that the optimisation problem for two data points admits an analytical

solution, eliminating the need to use an iterative OP solver, which is hard to pro-

gram, as part of algorithm.

Unfortunately, keeping the size of working set equal to 2 leads to more sub-problems

which need to be solved by using SMO, but each sub-problem can be solved very

quickly due to the existence of analytical solutions. Therefore, the overall training

time of the SMO is less than the DA. In addition, the SMO does not require extra

matrix storage due to the fact the QP sub-problem can be solved analytically.

There are two main components of SMO [96]. They are the analytical solution for

the sub-problem and a heuristic strategy for choosing which two examples are to be

optimised which corresponds to exchanging two examples form G to E and reverse.

The implementation of the SMO is straightforward. The details and pseudo code of

the SMO for regression can be found in [85].

3.3 Local Prediction with False Neighbors Filtered

Local prediction methods based on phase reconstruction normally perform bet-

ter than global methods based on phase reconstruction. With the local prediction

method, each predicting point has its own model constructed based on its nearest
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neighbors (NNs) which are found in the neighborhood of the phase space recon-

structed from the time series, and the fitness of NNs would mainly affect the model

performance. However, it has been found that NNs may contain a class of false

neighbors (FNs) which would decrease the fitting accuracy dramatically and lead to

a poor modeling performance. This means that not all NNs are suitable for use in

local prediction and some of them should be filtered [8]

3.3.1 Local Prediction

In global predictor, a prediction model is trained based on the entire data history

and used to predict the energy demand at a specific time with a fixed data window.

To overcome the the drawbacks of the global predictors, the local predictors can

be used. In last few decades, the local predictor approach has interested many re-

searchers to solve the nonlinear time series prediction problem such as McNames,

et al. introduced the local liner model for very short dataset. Therefore, this model

was used in to generate the winning entry of the K. U. Leuven time series competi-

tion. Lau, et al [7]. combined the strength of SVR and local predictor, and proposed

a better algorithm for nonlinear time series prediction. More details is discussed in

Section 3.4.1.

The local prediction method relies on a set of nearest neighbors which evolves sim-

ilarly in the reconstructed phase space. The set of nearest neighbors DN can be

obtained as follow:

DN = {zi, yi} ,{
zi = xj,

yi = xi + n,
when ∥x− xj∥ < r, j = 1, ...,M, (3.3.1)

where n is the prediction horizon, x belongs to the testing sample and r is the radius

enclosing the neighbors in reconstructed state space, and ∥x− xj∥ =
√∑m

t=1 [x(t)− xj(t)]
2

is the Euclid distance in the phase space. The local prediction method takes the n-

earest neighbors DN as the training data set of the prediction model.
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3.3.2 False Neighbors Filter

The local predictor relies on a set of nearest neighbors which evolves similarly

in the reconstructed phase space. The choice of choosing neighbors is effected and

limited by the finite size of the data set, by the stochastic noise, and especially by

the complex structure of the attractor. These limitation are the main source of errors

in the analysis. Finding suitable and reasonable neighbors of one known point is

one of the most important tasks in achieving reliable results. The original method to

chose the subset (neighborhoods) is on the basis of the Euclidian distance between

the testing data and the training data in the input space. For each query vector q,

the K nearest neighbors {g1q , g2q , ..., gKq } among the training inputs are chosen by

using the Euclidian distance as the distance metric between the q and each g in the

reconstructed time series. where∥∥q − gKq
∥∥ > ∥∥q − gK−1

q

∥∥
However, false neighbors could exist in the reconstruct state space after using a

particular embedding method. Those FNs can be caused by improper embedding,

such as an insufficient large embedding dimension. This effect is illustrated by Fig.

3.4. Suppose the predicting (reference) point is Xn(t). By utilizing the original

local predictor (Euclidian distance), two NNs are found, Xn+1(t) and Xn+2(t), and

∥Xn(t)−Xn+2(t)∥ < ∥Xn(t)−Xn+1(t)∥. Note that, Xn+2(t) is a true neighbor

of Xn(t). However, since the deviation between Xn+2(t + 1) and the predicting

(target) point Xn(t+ 1) is large, it would decrease the fitting accuracy dramatically

if we choose Xn+2(t) as a training sample. Actually, Xn+1(t) is much better than

Xn+2(t), even Xn+2(t) is closer to the reference point. Such neighbors like Xn+2(t)

are called false neighbors. If those points are selected as the training samples, the

predicted performance will obviously reduce. There are many ways to calculate the

false neighbors. In this paper, we present a simple and effective way which is applied

with the exponential separation rate. In the reconstructed phase space, set X(t) as

the predicting (reference) point at time t, and Xj(t) is the jth neighbor of X(t) in

the phase space, where 1 ≤ j ≤ N . The exponential separation rate between the
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Figure 3.4: The schematic diagram of affecting forecast on evolutionary track of
neighbor points. In this figure, Xn+2(t) is the false neighbour point of Xn(t)

track of X(t) and the track of Xj(t) is,

ξj = ln |dj(t)/dj(t− 1)| (3.3.2)

where dj(t − 1) is the the Euclidean distance between X(t − 1) and Xj(t − 1) at

time t−1. The proposed method employs the Euclidean distance dj and exponential

separation rate ξj to determine the validity of Xj(t), which is 1 ≤ j ≤ N and ξj ≤
φ. This method ensures that Xj(t) is one of the nearest neighbors with a very small

exponential separation rate, and the number of N and φ can be modified(enlarged

or reduced) in order to achieve K optimal nearest neighbors.

3.4 Implementations of the Proposed FNF-SVRLP

3.4.1 SVRLP

This method is a general SVR based local predictor [7], which is presented by us

previously. The SVRLP method can be summarized as follows: Firstly, τ and m are

used to reconstruct the time series. Then, the local predictor (Euclidean distance) is

applied to find the K nearest neighbors (could contain FNs) for each query vector.

Thirdly, the K nearest neighbors are used to train the SVR to obtain support vectors

and corresponding coefficients. Following is the brief process of SVRLP:
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• The first step is to reconstruct the time series by applying the delay coordinate

embedding methodology. The key part of this step is to obtain the embedding

dimension m and the time delay constant τ . They can be finished by uti-

lizing the correlation dimension method and the mutual information method

respectively.

• The second step of this procedure is to find theK nearest neighbor
{
X1

Z , X
2
Z , X

3
Z , ...X

K
Z

}
for test. These points should be satisfied this rule: the distance from each of

them to Z (the query point) has to be matched the function below:

d (X,Z) =

√∑d

j=1
[x(t1 − (j − 1)m− Z(t2 − (j − 1)m)]2

• When finishing these steps, it should be started to train the SVR algorithm. In

the step 3, the value of {x(Zl + T )}Kl=1 (T is the prediction step) will be set as

the objective value. Using the MATLAB optimization toolbox and complied

code, the support vectors and their weight coefficients can be obtained.

• Achieve the prediction result of the point x(t+T ) of the corresponding vector

Z. And the step 2 and 3 will be repeated if the future values of different Z are

all required.

3.4.2 FNF-SVRLP

From Section 3.3.2, it is found that the false neighbors can exist in the recon-

struct state space, and if those FNs are selected as the training samples, the accuracy

of local modeling will be weaken. Therefore, it is necessary to optimize those NNs

with false neighbors filtered before we apply them to train the SVR. The steps for

gas demand prediction based on the proposed method can be summarized as follow-

ing:

• Step 1 Reconstruct the time series: Load the multivariate time series dataset

X = (xt(t), x2(t), ..., xi(t)), (t = 1, 2, ...T ). Determining the embedding

dimension m and time delay constant τ . Then, reconstruct the multivariate

time series using these values.
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• Step 2 Form a training and validation data: The input dataset after reconstruc-

tion X̃ is divided into two parts, that is a training X̃tr and validation X̃va. The

size of the training dataset isNtr while the size of the validation dataset isNva

• Step 3 Determine the nearest neighbors: For a query point xq(t) at time t,

choosing the N nearest neighbors. {z1x(t)q , z
2
x(t)q

, z3x(t)q
, ...zNx(t)q

} of this query

point using Euclidian distance between xq(t) and each point in X̃tr(1 < N ≪
Ntr)

• Step 4 Calculate the exponential separation rate: For the N nearest neigh-

bors {z1x(t)q , z
2
x(t)q

, z3x(t)q
, ..., zNx(t)q

}, each nearest neighbor can achieve its cor-

respondent exponential separation rate via Equation 3.3.2, which is

{ξz1
x(t)q

, ξz2
x(t)q

, ξz3
x(t)q

, ..., ξzN
x(t)q

}.

• Step 5 Achieve K optimal nearest neighbors: Firstly, the Equation 4.3.1 is

applied to calculate the number of K. To the ith optimal nearest neighbors,

1 ≤ i ≤ K < N and ξzi
x(t)q

< φ. The value of N and φ are modified until

achieving K optimal nearest neighbors.

• Step 6 Train SVR: The K optimal nearest neighbors of query point are used

to train the SVR algorithm.

• Step 7 Calculate the prediction value of the current query point using Equation

(8).

• Step 8 Then, the steps 3 to 7 can be repeated until the future values of different

query points are all acquired.

Fig. 3.5 presents the computation procedure for the proposed method.

3.5 Conclusion

In this chapter, an ameliorated local predictor has been proposed. The core of the

modeling of the local prediction is the fitness of NNs, which mainly effect the final

performance of prediction. However, due to the existence of false neighbors (FNs),
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Figure 3.5: Flowchart of the proposed model
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the fitting accuracy would be decreased dramatically and thus cause the reduction of

the forecasting performance. The proposed approach is applying the false neighbors

filter to remove those false neighbors and obtain the optimal nearest neighbors. The

SVR is combined with NNs filter and result in a novel approach which is named

as support vector regression-based local prediction false neighbors filtered (FNF-

SVRLP).
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Chapter 4

FNF-SVRLP Based Wind Power

Prediction

4.1 Introduction

In recent years, the interest in the utilization of renewable energy has been sig-

nificantly developed due to the global energy crisis and environmental concerns.

In comparison with other renewable energy, wind power, a clean and inexhaustible

energy, is safer and less expensive to exploit. Therefore, an increasing number of

countries in the European (EU) are devoted to developing wind farms. According

to the reports, published by European Wind Energy Association [5][6](EWEA), by

the end of 2020, wind energy will meet 14% of the EU’s total electricity consump-

tion and achieve 30% lower emissions. However, the increasing penetration of wind

power into the electric power grid accompanied with a series of challenges. Due to

the uncertain and variable nature of wind resources, the output power of wind farms

is hard to control, which could lead to the instability of the power grid operation and

the unreliability of electricity supplies. Therefore, wind power prediction (WPP),

particularly short-term (a few hours to a few minutes) WPP, is crucially important to

grid operation. Utilization of short-term WPP allows scheduled operation of wind

turbines and conventional generators, thus ensure the stability and efficiency of the

power grid at optimal operating cost [99].
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To deal with WPP, various methods have been utilized to build the prediction mod-

els. They can be classified into several categories, such as physical methods and

statistical methods. The physical method is based on numerical weather prediction

(NWP). This method is using abundant physical considerations as input variables

to forecast the wind information. This kind of method performs well in long-term

prediction. The statistical method aims to find the relationship between input data

and the forecasted output data directly by a statistical analysis of previous time se-

ries data. The statistical methods usually have advantages in short-term prediction.

Autoregressive moving average (ARMA) [100] is one of the tractional statistical

methods. Support Vector Regression (SVR) is a powerful methodology derived

from Support Vector Machines (SVMs), it is based upon statistical machine learn-

ing and can be utilized to achieve nonlinear mapping from sample space to feature

space through kernel functions. Moreover, the SVR can achieve an outperformance

of fitting accuracy for chaotic time series prediction [127]. Recently, it has already

been utilized to predict short-term wind speed with success [102][103].

According to previous research [104], local prediction methods can normally per-

form better than global methods for chaotic time series prediction. In local predic-

tion methods, each predicting point has its own model constructed by its nearest

neighbours (NNs) which were found in the neighbourhood of the phase space re-

constructed from the time series. However, it has been found that NNs may contain

a class of false neighbours (FNs) which are unsuitable for use in the local prediction,

and these FNs can cause the reduction of the forecasting performance [105].

In this chapter, the proposed FNF-SVRLP is used to predicted the wind power, and

the results are compared with the original SVRLP and ARMA to show its superior-

ity.

4.2 Phase Space Reconstruction

As for a chaotic system, Packard [106] believed that the phase space can be re-

constructed from a univariate time series, since the univariate time series contains

the information of all the variables in this dynamic system. Takens [107] and Sauer
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[108] developed the embedding theorem and supported Packard’s idea. The theo-

rem regards a one-dimensional chaotic time series as compressed information of a

higher dimension. Therefore chaotic features can be extracted by extending the one-

dimensional time series to higher dimensional one. A univariate time series (xi)
K
i=1,

when K is the length of time series, is obtained by monitoring a scalar signal of a

D-dimension chaotic attractor for a finite time T and with finite precision, the phase

space RD of the attractor can be reconstructed by using delay coordinate defined as

X (t) = [x (t) , x (t+ τ) , ..., x (t+ (m− 1) τ)]T (4.2.1)

subject to: t = 1, ...,M,M = K − (m− 1) τ, and m = integer (2d+ 1), where m

is the embedding dimension, d is the correlation dimension which is an estimation

of the dimension of the chaotic attractorD, τ is the delay constant and T denotes the

vector transpose. After reconstructing one-dimensional to a higher dimensional time

series, the obtained time series is called a reconstructed time series. In practices,

both the dimension of the attractor and the delay constant must be estimated from

the time series.

4.2.1 Estimate the delay constant

In order to reconstruct the phase space, it is necessary to estimate the delay

constant τ . In principle, any choice of the delay constant τ is acceptable in the limit

of an infinite amount of data. However, for a finite amount of data, the choice of τ

can not be too small or too large, or else it will result in redundancy or irrelevance in

the reconstructed phase space. The mutual information method developed by Fraser

and Swinney [109] based on research by Shaw and others [110] is used to catch a

reasonable choice of τ . To give a brief introduction of method used, the following

case is discussed. In this case, the evolution vectors are of the form

(x, y) = [x(t), x(t+ τ)], t = 1, ..., N. (4.2.2)

The mutual information function is defined by averaging the mutual information

between two sets of measurements of x and y as a function of τ . This average
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mutual information is defined by

Ixy(τ) = H(x) +H(y)−H(x, y), (4.2.3)

where

H(x) = −
∑

Px(x) log[Px(x)],

H(y) = −
∑

Py(y) log[Py(y)], (4.2.4)

H(x, y) = −
∑

Pxy(x, y) log[Pxy(x, y)],

whereH(·) is the entropy function which represents the average mutual information,

Px(x) and Py(y) are probability density distribution of x and y, and Pxy(x, y) is the

joint probability density distribution of x and y. The reasonable choice of τ is the

value that yields the first minimum of Ixy(τ).

4.2.2 Estimate the embedding dimension

To estimate the dimension of a dynamic system from the a given time series,

the correlation dimension method can be used. The correlation dimension can be

determined from the correlation integral which is defined as follows:

C(r) =
1

M2

M∑
i,j=1

θ[r − ∥X(i)−X(j)∥], (4.2.5)

where θ(·) is the Heaviside step function:

θ(x) =

{
0 if x ≤ 0,

1 if x > 0.
(4.2.6)

Obviously, the correlation integral depends on the size of r. When r is large,

rij (the distance between two points) is smaller that r, then C(r) = 1; when r is

small, rij is larger than r, then C(r) = 0. Neither of the above cases can reflect the

inner properties of the dynamic system, they are insignificant. So it is important to

choose an appropriate r according to different parameters. When r → 0, the relation

between the correlation integral C(r) and r is

lim
r→0

C(r) ∝ rd, (4.2.7)
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and choose an appropriate r, the correlation dimension d is given by

d =
log(C(r))

log(r)
(4.2.8)

4.3 Optimal value of nearest neighbors

In order to establish the local predictor, it is important to choose value of the

nearest neighbors, K. There are some methods used in literatures to determine

this parameter, such as cross validation [138] and bootstrap [139]. This parameter

should be low for high density datasets and should be high for low density ones. We

calculate K using a systematic method proposed by us in previous work [140] as

follows:

K = round

(
∂

H × kmax ×Dmax

H∑
i=1

kmax∑
k=1

Dk(xi)

)
(4.3.1)

where H is the total number of training points, kmax is the maximum number of

nearest neighbors, Dk(xi) is the distance between each training point x and its near-

est neighbors while Dmax is the maximum distance, 1
H×kmax×Dmax

H∑
i=1

kmax∑
k=1

Dk(xi) is

the average distance around the points, which is inversely proportional to the local

densities and ∂ is a constant. The two constants kmax and ∂ are parameters with very

low sensitivity. kmax can be chosen as a percentage of the number of training points

(H) for efficiency while ∂ can be chosen as a percentage.

4.4 Case study

The data set used to evaluate the performance of the proposed FNF-SVRLP

based WPP model is the real world wind power data from China, it was collected

from wind power plants in the Jing-Jin-Tang area. The quarter hourly wind power

data are the main inputs. The data set was the wind power from Apr. 16th, 2011

to Aug. 15th, 2011, which covers four months. The first three months (from Apr.

16th, 2011 to Jul. 15th, 2011) was used as training data and the fourth month (from

Jul. 16th, 2011 to Aug. 15th, 2011) was used as testing data.

For all models, the prediction performance was quantified by the mean absolute
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percentage error (MAPE) and the normalized mean square error (NMSE). They can

be defined as

MAPE =
1

N

N∑
i=1

|ŷi − yi|
yi

× 100 (4.4.1)

NMSE =
1

∆2N

N∑
i=1

(ŷi − yi)
2,∆

2

=
1

N − 1

N∑
i=1

(yi − ȳ)2 (4.4.2)

whereN is the size of testing dataset, ŷi is the forecasted wind power, yi is the actual

wind power , ȳ is the mean of the actual wind power, and i means the test instance

index.

4.4.1 Models analyzed in the case study

1. ARMA model : ARMA was proposed by Box and Jenkins in 1976. ARMA

is short for Autoregressive moving average. It has been widely used as the

prediction approach . The basic principles of ARMA is analyzed in [100].

2. SVRLP model : This model is a general SVR based local predictor. NNs

which are found by the local predictor (Euclidean distance) are all used as

training samples. Those NNs may contain some FNs which would cause a

decrease in final accuracy.

3. Proposed FNF-SVRLP model : The way of selecting training samples for this

proposed model is different from the original SVRLP. In this model, not only

the Euclidean distance but also the exponential separation are all judgemental

features. Using this method, the probability of FNs is reduced, and the final

accuracy is improved. Fig. 4.1 presents the computation procedure for the

proposed model for wind power prediction.

4.4.2 Numerical Results and Discussion

In order to implement a good model, there are several important parameters to

choose, such as the embedding dimensionm and the time delay τ . Using the mutual

information method and the correlation dimension method, which were described in
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Table 4.1: MAPE and NMSE of different models

MAPE MAPE Impro. NMSE NMSE Impro.

FNF-SVRLP 4.39 - 0.012 -

SVRLP 5.75 23.65% 0.023 47.8%

ARMA 9.23 52.43% 0.065 81.7%

Section II, can determine the τ and m respectively. The final optimal τ is 2 and m

is 9.

To evaluate the performance of the proposed FNF-SVRLP, a comparison with AR-

MA and SVRLP was conducted. The results of the comparison is shown in Table

4.1 and depicted in Fig.4.4 to Fig. 4.7.

These results show that the FNF-SVRLP performs better than ARMA and SVRLP.

The MAPE of FNF-SVRLP is 4.39%, which is an improvement over the ARMA

model and the SVRLP model by 52.43% and 23.65% respectively. Moveover, the

NMSE of FNF-SVRLP at 0.012 is smaller than the others. Fig.5 shows results of the

wind power prediction from the 16th to 19th July by different models in comparison

with the actual wind power.

From previous results, it indicates that the accuracy of the SVR based local predictor

and the importance of filtering false neighbours. Through filtering false neighbours,

to leave the optimal neighbours, and using those optimal neighbours as training

samples improves the accuracy.
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4.5 Conclusion

In this chapter, the FNF-SVRLP has been applied to short-term wind power pre-

diction. The embedding dimension and the time delay are estimated firstly. Then

the phase space reconstruction is applied to the wind power data. In the local predic-

tion, there are some difference between the SVRLP and the proposed FNF-SVRLP.

Compared with the SVRLP, the proposed method not only applies the Euclidean

distance but also the exponential separation rate to modify nearest neighbours, and

only the optimal nearest neighbours can be selected as training samples. The final

results presented demonstrate that the proposed model can achieve a higher predic-

tion accuracy than the SVRLP model and ARMA model using the same wind power

data.
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Figure 4.1: Flowchart of the proposed model
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Figure 4.2: Actual wind power data used in this chapter
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Figure 4.3: Comparison of FNF-SVRLP model and other models using the dataset
of wind power
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Figure 4.4: Comparison of FNF-SVRLP model and other models using the dataset
of wind power
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Figure 4.5: Result of wind power prediction from 16th to 19th July by ARMA model
in comparison of actual wind power
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Figure 4.6: Error of the results of wind power prediction from 16th to 19th July by
ARMA model in comparison of actual wind power
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Figure 4.7: Result of wind power prediction from 16th to 19th July by SVRLP model
in comparison of actual wind power
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Figure 4.8: Error of the results of wind power prediction from 16th to 19th July by
SVRLP model in comparison of actual wind power
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Figure 4.9: Result of wind power prediction from 16th to 19th July by FNF-SVRLP
model in comparison of actual wind power
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Figure 4.10: Error of the results of wind power prediction from 16th to 19th July by
FNF-SVRLP model in comparison of actual wind power
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Figure 4.11: Results of wind power prediction from 16th to 19th July by different
models in comparison of actual wind power
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Chapter 5

FNF-SVRLP Based Natural Gas

Demand Prediction

5.1 Introduction

Energy is a vital element to the development of society and economy of al-

l contries[111]. Energy modeling and forecasting has attracted increasing attention

within energy sectors due to the environmental concerns and increasingly stringent

government polices on energy source. Natural gas as a primary energy source at

the present time, was first commercially used around 1785, and has since been used

widely in Europe [112][113], with UK becoming the largest market in Europe in

the past decade. According to HI-Energy [114] and government report of UK [115],

UK’s 46% of total electricity (around 350,000 GWh) generation and approximately

70% of domestic heating in 2008 is produced by natural gas. It plays a key role in

UK’s energy mix. However, natural gas is an non-renewable energy source, which

has limited reserve on the planet and contributes to global warming. Thus, planning

energy demand is becoming an important issue in the energy sector and forecasting

its demand is the starting point, especially for natural gas demand. At the same time,

there are some countries, for example, UK, which is highly dependent on the import

of gas, the accurate gas demand prediction can directly lower the purchase costs for

distributors as well as for final consumers. Therefore, accurate gas demand predic-
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tion could enhance the efficiency of natural gas usage with an optimal purchase cost

and lower the emissions of global warming gas.

Pervious researches in the area of natural gas demand prediction (NGDP) can be

roughly classified as the long-term NGPD and the short-term NGPD. The long-term

prediction focus on forecasting the gas demand in a long time period, i.e. annual

basis or monthly basis. And the main purpose of long-term prediction is always

force on trend of natural gas demand, which would be helpful to the policy plan-

ning or investment et al. Similar to long-term prediction, an accurate short-term

NGPD is equally important because that distributors are required by their suppliers

to provide the amount of natural gas they would need for the coming hours or days

within a regulated tolerance interval. Support vector machine (SVM) is a powerful

machine learning method based on statistical learning theory [127]. The empiri-

cal risk minimization (ERM) principle, which is generally employed in traditional

ANN, is replaced by structural risk minimization (SRM) principle in SVM. The

most important concept of SRM is the utilization of minimizing an upper bound to

the generalization error instead of minimizing the training error. On the basis of this

principle, SVM will be equivalent to solving a linear constrained quadratic program-

ming problem, so that the solution of SVM is always unique and globally optimal.

With the introduction of Vapniks ε-insensitive loss function, SVM has been extend-

ed to solve the regression problems called support vector regression (SVR) [128].

Recently, SVR has been applied to various applications with excellent performances

[129][130].

Because of the complexity of the historical gas demand and the uncertainty of the

influencing factors, such as weather, economical, and other random factors, the time

series reconstruction technique could be applied to the gas demand forecasting. Ac-

cording to the authors’ work [7], local prediction methods based on phase recon-

struction normally perform better than global methods based on phase reconstruc-

tion. With the local prediction method, each predicting point has its own model

constructed based on its nearest neighbors (NNs) which are found in the neighbor-

hood of the phase space reconstructed from the time series, and the fitness of NNs

would mainly affect the model performance. However, it has been found that NNs
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may contain a class of false neighbors (FNs) which would decrease the fitting accu-

racy dramatically and lead to a poor modeling performance. This means that not all

NNs are suitable for use in local prediction and some of them should be filtered [8].

In this chapter, FNF-SVRLP is examined for its applicability in short-term gas de-

mand forecast. FNF-SVRLP is an ameliorated SVRLP, which improve the local

predictor (LP) by optimizing NNs. Those NNs play important roles in improving

accuracy of local modeling. False neighbors filtered algorithm that uses combina-

tion of exponential separation rate and Euclid distance is proposed to optimize NNs.

We proposed an unified model at first, named “Standard Model” (SM), which even-

ly treats the whole dataset. Then the customer behavior based “Advanced Model”

(AM) is presented. The AM is the combination of three models, which are Mon.

Model, Sat. Model, and other days of a week Model. The proposed FNF-SVRLP is

verified by using operational gas dataset collected from National Grid and is com-

pared with the SVRLP and ARMA to show its superiority.

5.2 Time Series Reconstruction

Packard [131] indicated that the phase space can be reconstructed from a uni-

variate time series, since the latter contains the information of all the variables in this

dynamic system. Takens [132] and Sauer [133] developed the embedding theorem

and supported Packard’s idea. The theorem regards a one-dimensional time series

as compressed information of a higher dimension. An univariate one-dimensional

time series x(t) for t = 1, 2, 3...T can be extracted by extending x(t) to a vector

X(t) in a m-dimensional space as follows:

X (t) = [x (t) , x (t− τ) , x (t− 2τ) , ..., x (t− (m− 1) τ)] (5.2.1)

where m is the embedding dimension, τ is the delay constant. After reconstructing

one-dimensional to a higher dimensional time series, the obtained time series is

called a reconstructed time series. There are numbers of methods to calculate the

attractor and the delay constant. For example, the correlation dimension method

[134] is the most popular method for determining m, and the mutual information
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[135] is a good method for the selection of τ . To the multivariate time series, it

is difficult to apply the above methods, we present an accuracy-based method to

estimate the embedding dimension and the delay time, progress shown in Section

5.3.2.

5.3 Case Study

Case studies are based on the recorded gas data from Nation Grid, UK. At first,

the FNF-SVRLP based Standard Model (Section 5.3.3) is proposed for processing

the whole gas dataset. Then, based on the results obtained from the Standard Mod-

el, it is found that the accuracy of the proposed Standard Model could be improved

by considering the customer behavior difference within one week. We upgrade the

Standard Model to the Advanced Model (Section 5.3.4), which includes three mod-

els (Mon. Model, Sat. Model, and other days of a week Model). Details would be

described in following parts.

5.3.1 Data Description

The dataset used in the research is provided by National Grid. There is a data

item explorer on National Grid’s website [136], it provides the market participants

and shippers with information relative to gas. After numbers of testings, following

datasets which are obtained from the data item explorer are selected as our experi-

mental data:

• NTS, National Transmission System (NTS) demand refers to the amount of

gas used by gas consumers directly connected to the NTS and all local distri-

bution zones (In UK, there are totally 13 local distribution zones. Shown in

Fig. 5.1).

• CWV, Composite Weather Variable (CWV) is a single measure of weather

for each local distribution zone, which takes into account not only tempera-

ture, but also wind speed, effective temperature and pseudo seasonal normal

effective temperature.
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Figure 5.1: UK Local Distribution Zones
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Table 5.1: Dataset Description

Data set Start Time Stamp End Time Stamp Description

A 01/01/2009 31/12/2012 Total dataset; 1461 days

B1 01/01/2009 31/12/2011 Train dataset; 1095 days

B2 01/01/2012 31/12/2012 Test dataset; 366 days

The NTS gas demand and 13 CWVs are recorded at one day interval. Time scale

of the dataset is starting from Jan. 1st, 2009 to Dec. 31th, 2012 (Dateset A in

Table 5.2), which covers four years. Then Dataset A are divided into two subsets,

Dataset B1 and Dataset B2. We utilize the Dataset B1 which contains the first three

years(from Jan. 1st, 2009 to Dec. 31th, 2011) to develop a prediction model for

NTS gas demand. Dataset B2 (from Jan. 1st, 2012 to Dec. 31th, 2012) is used to

test the prediction performance of the model learned from Dataset B1.

For all performed models, we quantified the prediction performance with mean

absolute percentage error (MAPE) and mean absolute error (MAE). They can be

defined as

MAPE =
1

N

N∑
i=1

|ŷi − yi|
yi

× 100 (5.3.1)

MAE =
1

N

N∑
i=1

|ŷi − yi| (5.3.2)

where N is the size of testing dataset, ŷi is the forecasted gas demand, yi is the

actual gas demand , ȳ is the mean of the actual gas demand, and i represents the test

instance index.

5.3.2 Parameters Setting

Embedding Dimension and Delay Constant

In this section, the accuracy-based method is introduced to estimate the embed-

ding dimension m and the delay time τ . We denote day i as Di, then one day before

Di is Di−1 and one day after Di is Di+1. In order to forecast the NTS gas demand

Gi+1 of Di+1, we summarize the prior-known variables in Table 5.2.
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Table 5.2: Obtained Variables

Target Prior-known

Day Di+1 Di Di−1 Di−2 ... D1

NTS gas demand Gi+1 Gi Gi−1 Gi−2 ... G1

Actual CWVs - Ci(13) Ci−1(13) Ci−2(13) ... C1(13)

Forecast CWVs - Cf
i+1(13) - - ... -

Table 5.3: MAPE of different value of embedding dimension with τ = 1

M m τ = 1 MAPE

1 27 Di 4.1%

2 41 Di Di−1 3.8%

3 55 Di Di−1 Di−2 3.5%

4 69 Di Di−1 Di−2 Di−3 3.4%

In Table 5.2, Gi is NTS gas demand of day Di, Ci(13) are the actual CWVs

of 13 local distribution zones of day Di and Cf
i+1(13) are the forecasted CWVs of

13 local distribution zones of day Di+1. All the above data can be obtained from

National Grid’s website. Then we apply SVRLP based SM model with Dataset

B1 to help us to estimate embedding dimension and delay constant. Results are

presented in Table 5.3 and Table 5.4. The threshold MAPE value of 3.5% achieved

in computation has been considered as a good quality result. A lower threshold

value leads to more predictors. A large number of predictors can result in inferior

performance of extracted models due to “the course of dimensionality” principle

[137]. Therefore, the embedding dimension m is 55 and the delay time τ is 1.

5.3.3 Standard Model

The Standard Model is an unified model, which is applied to process the whole

dataset. We denote the week j as Wj , then one week before Wj is Wj−1 and one

week after Wj is Wj+1. The input dataset for Standard Model is shown in Table 5.5.
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Table 5.4: MAPE of different value of embedding dimension with τ = 2

M m τ = 2 MAPE

1 14 Di−1 5.4%

2 28 Di−1 Di−3 5.1%

3 42 Di−1 Di−3 Di−5 4.7%

4 56 Di−1 Di−3 Di−5 Di−7 4.3%

Table 5.5: Input dataset for Standard Model

Target Input

. . . .

Mon.(Wj+1) Sun.(Wj) Sat.(Wj) Fri.(Wj)

Sun.(Wj) Sat.(Wj) Fri.(Wj) Thu.(Wj)

Sat.(Wj) Fri.(Wj) Thu.(Wj) Wen.(Wj)

Fri.(Wj) Thu.(Wj) Wen.(Wj) Tue.(Wj)

Thu.(Wj) Wen.(Wj) Tue.(Wj) Mon.(Wj)

Wen.(Wj) Tue.(Wj) Mon.(Wj) Sun.(Wj−1)

Tue.(Wj) Mon.(Wj) Sun.(Wj−1) Sat.(Wj−1)

Mon.(Wj) Sun.(Wj−1) Sat.(Wj−1) Fri.(Wj−1)

Sun.(Wj−1) Sat.(Wj−1) Fri.(Wj−1) Thu.(Wj−1)

. . . .

Comparison among SM with ARMA, SM with SVRLP and SM with FNF-SVRLP

are presented in following part.

Results

In order to evaluate the performance of the proposed FNF-SVRLP, comparison

with ARMA and SVRLP are conducted. The comparison is shown in Table 5.6 and

Fig. 5.2, and we can see that SVRLP is much better than AMRA, and FNF-SVRLP

is the best among of all three methods. The MAPE of FNF-SVRLP is 3.8%, it
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Table 5.6: MAPE and MAE of different methods with the Standard Model

MAPE MAPE Impro. MAE MAE Impro.

FNF-SVRLP 3.8% - 9.2 -

SVRLP 4.4% 13.7% 10.4 11.5%

ARMA 6.1% 27.9% 13.6 23.5%

improves the MAPE over ARMA method and SVRLP method by 27.9% and 13.7%.

Moveover, the MAE of FNF-SVRLP is 9.2 mcm (million cubic meters), which is

smaller than others. Using the MAE of SVRLP subtract the MAE of FNF-SVRLP,

the result we achieved is about 1.2 mcm, which means that the FNF-SVRLP could

save 1.2 mcm more gas demand per day than SVRLP. Fig. 5.3 and Fig. 5.4 show

the MAPE and MAE of every day of the week (Monday-Sunday) during the testing

period. These results confirm the superiority of the FNF-SVRLP. In addition, the

MAPE and MAE of the whole testing data of 12 months are calculated, shown in

Table 5.6. From this table, it can be seen that the performance of SVRLP with

FNF is much better than the SVRLP. The aggregated distribution of MAPE’s is

illustrated in Fig. 5.5. From the above results, it clearly indicates that the accuracy

of the SVR based local predictor and the importance of filtering false neighbors.

Through filtering false neighbors, to leave the optimal neighbors, and using those

optimal neighbors as training samples improves the accuracy.

5.3.4 Advanced Model

According to results obtained from the Standard Model (Section 5.3.3), it can

be found that the accuracy of Saturday and Monday are always lower than the other

days with a week (Shown in Fig. 5.3 and Fig. 5.4). In UK, Monday is the starting of

the weekday, and Saturday is the starting of the weekend, so that the customer be-

havior of the two days will be different from the other days. However, the customer

behavior is an unmeasurable factor, in order to eliminate its impact, we presented

the Advanced Model, which includes Mon. model (only contains the dataset rela-

tive to Mon.), Sat. model (only contains the dataset relative to Sat.) and other days
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Figure 5.2: Comparison of FNF-SVRLP method and other methods

Lei Zhu



5.3 Case Study 65

Mon. Tue. Wen. Thu. Fri. Sat. Sun.
2

3

4

5

6

7
M
A
P
E
(%
)

SVRLP

FNF−SVRLP

Figure 5.3: Average prediction MAPE of every day of the week during the whole
testing period
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Figure 5.5: The aggregated distribution of MAPE’s for FNF-SVRLP and SVRLP
during the whole testing period.

Table 5.7: Average prediction MAPE and MAE of every month during the whole
testing period

Month MAPE(%) MAE(mcm)

SVRLP FNF-SVRLP SVRLP FNF-SVRLP

1 3.2 3.0 9.8 9.2

2 5.1 4.3 17.0 14.8

3 2.9 2.5 7.6 6.5

4 4.2 3.9 10.4 9.6

5 3.6 3.1 7.8 6.8

6 4.9 3.7 8.9 6.7

7 4.0 3.6 7.2 6.4

8 3.9 3.7 6.7 6.3

9 8.8 7.1 12.2 9.8

10 7.5 6.6 16.9 14.8

11 2.6 2.4 7.1 6.4

12 4.8 4.5 14.3 13.4
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Table 5.8: Input dataset for Mon. Model

Target Input

. . . .

Mon.(Wj+1) Sun.(Wj) Sat.(Wj) Fri.(Wj)

Mon.(Wj) Sun.(Wj−1) Sat.(Wj−1) Fri.(Wj−1)

Mon.(Wj−1) Sun.(Wj−2) Sat.(Wj−2) Fri.(Wj−2)

. . . .

Table 5.9: Input dataset for Sat. Model

Target Input

. . . .

Sat.(Wj+1) Fri.(Wj+1) Thu.(Wj+1) Wen.(Wj+1)

Sat.(Wj) Fri.(Wj) Thu.(Wj) Wen.(Wj)

Sat.(Wj−1) Fri.(Wj−1) Thu.(Wj−1) Wen.(Wj−1)

. . . .

model (contains the remaining exclude Mon. and Sat.), shown in Table 5.8-5.10,

respectively. Comparison between SVRLP based AM and FNF-SVRLP based AM

are presented in the results part.

Table 5.10: Input dataset for Other days Model

Target Input

. . . .

Tue.(Wj+1) Mon.(Wj+1) Sun.(Wj) Sat.(Wj)

Sun.(Wj) Sat.(Wj) Fri.(Wj) Thu.(Wj)

Fri.(Wj) Thu.(Wj) Wen.(Wj) Tue.(Wj)

. . . .
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Table 5.11: Prediction results of Standard Model and Advanced Model with differ-
ent methods under the same testing gas dataset

MAPE(%) MAE(mcm)

SVRLP FNF-SVRLP SVRLP FNF-SVRLP

Standard Model 4.4 3.8 10.4 9.2

Advanced Model 4.2 3.6 9.7 8.6

Results

The results obtained from Standard Model show that the FNF-SVRLP provides

significantly better forecast results than ARMA and SVRLP. However, it is found

that the MAPE of Mon. and MAPE of Sat. are the top two highest MAPE among

the seven days as well as MAE. Considering the customer behavior of the two days

would be different from the other days, we presented a three-models combined Ad-

vanced Model to overcome this problem. In Table 5.11, it contains the prediction

results of Standard Model and Advanced Model using two different methods. It

shows that no matter which method is applied, the predicted results of Advanced

Model are always much better than the Standard Model. Moveover, the combina-

tion of the FNF-SVRLP method and the Advanced Model outperforms the other

combinations. From Fig. 5.6 and Fig. 5.7, it can be clearly seen that there are

some improvements on the accuracy of seven days, especially on the Monday and

Saturday. From above results, it shows the Advanced Model performs much better

than the Standard Model, which indicates that the customer behavior can affect the

forecasting performance.

5.4 Web server based implematation

National Grid produces NTS demand forecast and LDZs demand forecast, which

is published on Nation Grids Information Exchange website to inform the market

participants and shippers the demand. Through the conventional National Grid’s

prediction model, Nation Grid generates an individual day-ahead gas demand fore-

cast for 13 LDZs and for each NTS direct customer, such as the separate power
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Figure 5.6: Comparison of average prediction MAPE of every day of the week
between Standard Model and Advanced Model by using FNF-SVRLP method.
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tween Standard Model and Advanced Model by using FNF-SVRLP method.
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station, industry load, etc, based on 13 Composite Weather Variables. The day-

ahead natural gas demand is delivered to the website at 13:00 each day. Our online

Liverpool Natural Gas Demand Prediction System employs the FNF-SVRLP based

Advanced Model. Compared with the conventional model (National Grid’s mod-

el), our online prediction model not only reduced the forecast complexity but also

increased the accuracy.

5.4.1 Background of online prediction

The operation server

The server is purchased from DELL, with four 3.10GHz Intel Xeon CPU and 8

GB of RAM.

The basic software of the online prediction system

Windows Server 2012 Windows Server 2012 is full-featured 64-bit version of Win-

dows Server that enables core IT resources, such as file and print sharing, re-

mote access, and security. It provides a network foundation from which the

user can centrally manage settings on computers that are based on the Win-

dows operating system, and upon which the user can run the most popular

business applications. It also provides a familiar Windows user experience

that helps to manage users and safeguard business information. Because Win-

dows Server 2012 comes pre-installed with the server hardware, we do not

need to separately obtain and then install the hardware and operating system.

Windows Server 2012 Foundation is supported by an extensive network of

certified professionals who can to provide service for the Windows Server

network. By design, Windows Server 2012 Foundation uses the Windows

Server Catalog.

APS.net ASP.NET is an open source server-side Web application framework de-

signed for Web development to produce dynamic Web pages. It was devel-

oped by Microsoft to allow programmers to build dynamic web sites, web
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applications and web services. It was first released in January 2002 with ver-

sion 1.0 of the .NET Framework, and is the successor to Microsoft’s Active

Server Pages (ASP) technology. ASP.NET is built on the Common Language

Runtime (CLR), allowing programmers to write ASP.NET code using any

supported .NET language. The ASP.NET SOAP extension framework allows

ASP.NET components to process SOAP messages. ASP.NET is in the process

of being re-implemented as a modern and modular web framework, together

with other frameworks like Entity Framework.

Visual Studio Professional 2013 Visual Studio is an integrated development en-

vironment (IDE) from Microsoft. It is used to develop computer programs

for Microsoft Windows, as well as web sites, web applications and web ser-

vices. Visual Studio uses Microsoft software development platforms such as

Windows API, Windows Forms, Windows Presentation Foundation, Windows

Store and Microsoft Silverlight. It can produce both native code and managed

code. Visual Studio includes a code editor supporting IntelliSense as well as

code refactoring. The integrated debugger works both as a source-level debug-

ger and a machine-level debugger. Other built-in tools include a forms design-

er for building GUI applications, web designer, class designer, and database

schema designer. It accepts plug-ins that enhance the functionality at almost

every levelłincluding adding support for source-control systems (like Subver-

sion) and adding new toolsets like editors and visual designers for domain-

specific languages or toolsets for other aspects of the software development

lifecycle (like the Team Foundation Server client: Team Explorer). Visual

Studio supports different programming languages and allows the code editor

and debugger to support (to varying degrees) nearly any programming lan-

guage, provided a language-specific service exists. Built-in languages include

C, C++ and C++/CLI (via Visual C++), VB.NET (via Visual Basic .NET), C

♯(via Visual C ), and F ♯ (as of Visual Studio 2010). Support for other lan-

guages such as M, Python, and Ruby among others is available via language

services installed separately. It also supports XML/XSLT, HTML/XHTML,

JavaScript and CSS.
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Figure 5.8: The design of the online prediction system

MATLAB 2012 MATLAB (matrix laboratory) is a multi-paradigm numerical com-

puting environment and fourth-generation programming language. Developed

by MathWorks, MATLAB allows matrix manipulations, plotting of functions

and data, implementation of algorithms, creation of user interfaces, and in-

terfacing with programs written in other languages, including C, C++, Java,

and Fortran. Although MATLAB is intended primarily for numerical comput-

ing, an optional toolbox uses the MuPAD symbolic engine, allowing access

to symbolic computing capabilities. An additional package, Simulink, adds

graphical multi-domain simulation and Model-Based Design for dynamic and

embedded systems.

5.4.2 Design of the online prediction system

The Fig. 5.8 shows the briefly design of the online prediction system.

5.4.3 Outline of the online prediction system

The engineers of National Grid in the National Grid House, Warwick, can easily

connect to our server (Liverpool) via our online prediction system. The engineers
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just need enter the current data, the system will do the calculation on the background,

and then shows the final predicted results on new page directly.

5.4.4 Overall performance of the online prediction system

The following results are obtained from the online recording system, the record-

ing system contain all information about the data, the input data, the out data and so

on. The presented time period is from 01/01/2013 to 31/12/2013.

To the NTS

Due the Non Disclosure Agreement with the National Grid, only the sample

results can be presented. The results are shown in Fig. 5.10-5.14. Fig. 5.10 is the

one day predicted results. Fig. 5.11 is the two days predicted results. Fig. 5.12 is

the one day predicted results. Fig. 5.13 is the three days predicted results. Fig. 5.14

is the four days predicted results. Fig. 5.15 is the five days preditied results.

To the LDZs

To the LDZs, in UK, there are totally 13 LDZs. The performance for different

LDZs are shown in Fig. 5.15-5.20.
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Figure 5.9: The outline of the online prediction system
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Figure 5.10: Comparsion between Liverpool online model and National Grid model
for one day ahead prediton of NTS natual gas demand
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Figure 5.11: Comparsion between Liverpool online model and National Grid model
for two days ahead prediton of NTS natual gas demand
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Figure 5.12: Comparsion between Liverpool online model and National Grid model
for three days ahead prediton of NTS natual gas demand
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Figure 5.13: Comparsion between Liverpool online model and National Grid model
for four days ahead prediton of NTS natual gas demand
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Figure 5.14: Comparsion between Liverpool online model and National Grid model
for two days ahead prediton of NTS natual gas demand
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Figure 5.15: Comparsion between Liverpool online model and National Grid model
for two LDZs gas demand prediction
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Figure 5.16: Comparsion between Liverpool online model and National Grid model
for two LDZs gas demand prediction
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Figure 5.17: Comparsion between Liverpool online model and National Grid model
for two LDZs gas demand prediction
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Figure 5.18: Comparsion between Liverpool online model and National Grid model
for two LDZs gas demand prediction
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Figure 5.19: Comparsion between Liverpool online model and National Grid model
for two LDZs gas demand prediction
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Figure 5.20: Comparsion between Liverpool online model and National Grid model
for two LDZs gas demand prediction

5.5 Conclusion

In this chapter, we have presented a FNF-SVRLP based Advanced Model for

short-term gas demand prediction. The forecasted gas demand can aid the market

in making efficient decisions in balancing supply and demand, and reducing costs.

The FNF-SVRLP combines the SVR based local predictor with a false-neighbors

filter. During the computation procedure of the gas demand forecasting, the embed-

ding dimension and the time delay are computed firstly through the accuracy-based

method, then the phase space reconstruction is applied to process the gas dataset.

In the local predictor, there are some difference between the SVRLP and the pro-

posed FNF-SVRLP. Compared with the SVRLP, the FNF-SVRLP not only applies

the Euclidean distance but also the exponential separation rate to verbify the near-

est neighbors, and only the optimal nearest neighbors can be selected as training

samples. The final results presented demonstrate that the FNF-SVRLP can achieve

a higher prediction accuracy than that of the SVRLP method and ARMA method

using the same real world gas data. Moreover, the study on the customer behav-

ior of different day has been tested, and results indicate that the customer behavior

can affect the final forecasted performance. In addition, the FNF-SVRLP based Ad-

vanced Model is applied to built the online natural gas demand prediction system for
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National Grid, and overall obtained results outperform the National Grid’s model.
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Chapter 6

Mathematical Morphology-based

Local Predictor with Support Vector

Regression

6.1 Introduction

In previous chapters, we have introduced that the Support Vector Regression

(SVR) which derived from the Support Vector Machine (SVM), can be utilized to

achieve nonlinear mapping from sample space to the feature space through kernel

functions. Since the SVR can make a better performance for chaotic time series

prediction [127], it has already been utilized to predict the wind power (Chapter 4)

and natural gas demand(Chapter 5). We also presented that the local methods can

perform much better than global methods when doing the chaotic time series predic-

tion [104]. Each predicting point of local methods has its own model constructed by

its nearest neighbors which were found in the neighborhood of the phase space re-

constructed from the time series, and the reliability of the constructed model would

affect the final predicted performance. However, the reliability of the constructed

model is sensitive to the internal regularity between predicting point and its nearest-

neighbors. What’ more, the datasets, such as wind power, wind speed and gas de-

mand, which are non-stationary, the internal regularity between predicting point and
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its nearest-neighbors are much more complex than the stationary dataset. In order

to improve the identifiable accuracy of the regularity of local predictor, the morpho-

logical filter is applied to decompose the non-stationary into several subsequences,

ranked form the low frequency subsequence to the high frequency subsequence.

Through this way, the local predictor could capture the non-stationary dataset more

accurate, and improve the final performance of prediction.

In this chapter, a mathematical morphology based local predictor with a proven

powerful algorithm, which is the SVR combined with space reconstruction of time

series, is introduced. Dataset is decomposed into several subsequences through the

mathematical morphology. Then, a SVR algorithm is developed as a local predic-

tor is applied to do the subsequences prediction. The forecasting results of each

subsequences are summarized to achieve the final predicted result. The resulting

predictor is referred as SVR based local predictor with mathematical morpholo-

gy (SVRLP-MM). At the final, a real-world wind speed data which collected from

Coffey wind farm is used to evaluated the proposed prediction method. And results

demonstrated that the predicted performance of SVRLP-MM method is better than

SVRLP method and the autoregressive moving average (ARMA) method with the

same real-world wind data.

6.2 Basic concepts of mathematical morphology

When first introduced, morphology was based on the set theory, which meant it

was limited to quantitatively describing shape and size for binary images. In 1978,

Nakagawa and Rosenfeld linked the binary dilation and erosion operations to the

maximum and minimum filter applied to grey-value images[141]. The notion of

umbra was also introduced by Sternberg around 1978, which made it possible to

apply all mathematics developed for binary images to grey-scale images[142]. As a

result of the pioneering work, MM has achieved the status of a powerful tool image

processing with applications in many area, and later on the MM is widely used in

signal processing area. Given a set G defined in (E)d, where (E)d is d-dimensional

Euclidean space[143], the following definitions can be developed [144]:
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• Translation: The translation of G by a vector x, denote as Gx, is defined as:

Gx = {g : g = a+ x; a ∈ G} (6.2.1)

• Reflection: The reflection of G based on its origin, denoted as Ǧ, is defined

as:

Ǧ = {−g : g ∈ G} (6.2.2)

• Complement: The complement of G, denoted as Gc, is defined as:

Gc = {g : g /∈ G} (6.2.3)

Letting two sets, A,B ⊆ (E)d represents the binary input set and the binary SE

respectively, the dilation of A by the SE B can be developed as A
⊕

B with the

definition of [144]:

A⊕B =
∩
b∈B

(A+ b) (6.2.4)

The oppsite of dilation is known as erosion. The same as dilation, given two sets

A,B ⊆ Ed, A is the input set and B is the binary SE. The erosion can be developed

as A⊕B, its definition is:

A⊖B =
∩
b∈B

(A− b) (6.2.5)

Generally speaking, A is the image being processed, while B servers as an SE that

slides as probe across image A and interacts with each pixel of A. Obviously, the

size ofB should be much smaller than that ofA. To have a clear view of this process,

we give an example in Fig. 6.1 to show how dilation and erosion function between

a binary image and an SE. Here, the origin of B is set at (0,0). Figure 6.1 illustrates

an important property of dilation and erosion - duality, which means that applying

dilation to A is equivalent to apply erosion to its complement Ac. This property can

be expressed as:

A⊕ B = (Ac⊖Bc) (6.2.6)

A⊖ B = (Ac⊕Bc) (6.2.7)
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Proof:
Ac ⊕ B =

∪
b∈B

(I − A)b =
∪
b∈B

(I − A)−b

= I −
∩
b∈B

(A)−b

= I − A⊖B = (A⊖B)c

⇒ A⊖B = (Ac ⊕B)c

The property of duality illustrates that the processing of dilation and erosion is not

reversible and there is no inverse transform for the operators. As we can see from

the following sections, applying dilation and erosion alternately actually produces a

pair of new operations. Another property of dilation and erosion is the distributivity:

A⊖B ⊖ C = A− (B ⊕ C) (6.2.8)

Proof:
A⊖B ⊖ C = (Ac ⊕B)c ⊖ C

= [(Ac ⊕B)⊕ C]c

A⊖ (B ⊕ C) = [Ac ⊕ (B ⊕ C)]c

∵ (Ac ⊕B)⊕ C = Ac ⊕ (B ⊕ C)

∴ A−B − C = A− (B ⊕ C)

6.2.1 Basic Morphological Operators

Set Representations of Functions

In order to extend morphological operators to functions, the functions are repre-

sented by their umbra [146], which is defined as:

U(f) = {(x, a)|a ≤ f(x)} (6.2.9)

Hence, a d-dimensional function f(x) is represented by a (d + 1)-dimensional set.

Obviously, the umbra is the set of points below the surface represented by f(x).

After getting the umbra, binary morphological operators can be applied to the signal.
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Figure 6.1: Binary dilation and erosion of a binary image
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In general, the umbra set extends to a = −∞, and the function f can be reconstructed

from its umbra since:

f(x) = max{a|(x, a) ∈ U(f)}, ∀x (6.2.10)

Figure 6.2 shows, as an example, the umbra of a sinusoidal function, where the um-

bra of f(x) is the shaded region. We can easily show that f ≤ g ⇔ U(f) ⊆ U(g).

Some definitions for grey-scale operations based on sets are defined as follows

[147]:

• Grey-scale union: The union of two functions f and g, denoted by f
∨
g, is

defined as:

(f
∨

g)(x) = f(x)
∨

g(x). (6.2.11)

There is a one-to-one correspondence between the union of functions and the

set union:

U(f
∨

g) = U(x)
∪

U(g). (6.2.12)

• Grey-scale intersection: The intersection of two functions f and g, denoted

by f
∧
g, is defined as:

(f
∧

g)(x) = f(x)
∧

g(x). (6.2.13)

A similar one-to-one correspondence exists for the function and the set inter-

section:

U(f
∧

g) = U(x)
∩

U(g). (6.2.14)

• Grey-scale transpose: The transpose f̌ of a function f is defined as:

f̌(x) = f(−x). (6.2.15)

• Grey-scale complement: The complement f c of a function f is defined as:

f c(x) = −f(x.) (6.2.16)
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Figure 6.2: Umbrae U(f) of a sinusoidal function f

For an eight-bit grey-scale digital image, each pixel of which can have 28 = 256

possible values to carry the full and only information about its intensity, the image

can be represented as a set whose components are in Z3. In this case, two com-

ponents of each element of the set refer to the coordinates of a pixel, and the third

corresponds to its discrete intensity value. For a signal, the set is defined in Z2 with

each element corresponding to a sample of the digitised signal. Similarly, the first

component of each element represents the coordinate and the second represents its

value. Sets in a higher dimensional space can contain other attributes, such as the

colour information of an image.

Grey-Scale Dilation and Erosion

In order to use MM in signal processing where most signals are not binary,

morphological operators should be extended to a grey-scale level. Instead of per-

forming dilation and erosion by union and intersection as in the binary case, they

are performed by algebraic addition and subtraction in the grey-scale case. Let f

denote a signal and g denote an SE, and the length of g be considerably shorter than

that of f [149]. Dilation and erosion are defined as follows:

f ⊕ g(x) = max
s

{f(x+ s) + g(s)|(x+ s) ∈ Df , s ∈ Dg} (6.2.17)

f ⊖ g(x) = max
s

{f(x+ s)− g(s)|(x+ s) ∈ Df , s ∈ Dg} (6.2.18)

where Df , Dg are the definition domains of f and g, respectively. For example,

suppose the SE, g, has a length of five samples with its origin in the middle. In this
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case, the domain of g is given by Dg = −2,−1, 0, 1, 2. The dilation and erosion of

f by g are therefore calculated from

f ⊕ g(x) = max{f(x− 2) + g(−2), f(x− 1) + g(−1), f(x) + g(0),

f(x+ 1) + g(1), f(x+ 2) + g(2)}

and

f ⊖ g(x) = min{f(x− 2)− g(−2), f(x− 1)− g(−1), f(x)− g(0),

f(x+ 1)− g(1), f(x+ 2)− g(2)}

respectively. Intuitively, dilation can be imagined as swelling or expanding, while

erosion can be thought of as a shrinking procedure.

As explained previously, the SE is a small set used to probe the signal under study.

A simple case is that the SE has the form of g(s) ≡ 0, s ∈ Dg, which is referred to

as a ‘flat SE. Hence, definitions of dilation and erosion degrade to:

f ⊕ g(x) = max
s

{f(x+ s) + g(s)|(x+ s) ∈ Df , s ∈ Dg} (6.2.19)

f ⊖ g(x) = min
s
{f(x+ s) + g(s)|(x+ s) ∈ Df , s ∈ Dg} (6.2.20)

The function of g is to indicate which samples are involved when processing the

current sample. For a binary signal, the SE, g, must be flat. The dilation and erosion

of a one-dimensional signal are illustrated in Figs. 6.3a and b, respectively. Both

operations use a flat SE of length 3: g(−1) = g(0) = g(1) = 0.

Figure 6.3 demonstrates another property of dilation and erosion, i.e. that they

are increasing transforms. The property can be expressed as follows. For two sig-

nals, f1 and f2, and an arbitrary SE, g, we have:

f1 ≤ f2 ⇒

{
f1 ⊕ g ≤ f2 ⊕ g

f1 ⊖ g ≤ f2 ⊖ g
. (6.2.21)

The ordering relation between dilation and erosion can be expressed as the erosion

of a signal by an SE being less than or equal to its dilation by the same SE: f ⊖ g ≤
f ⊕ g. If the SE contains its origin, which means processing a sample of the signal

within a window that contains the sample, the following ordering exists:

f ⊖ g ≤ f ≤ f ⊕ g. (6.2.22)
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Figure 6.3: Grey-scale dilation and erosion of an one-dimensional signal. (a) Dila-
tion. (b) Erosion.

6.2.2 Morphological Filters

Definitions of Morphological Filters

Morphological filters are non-linear signal transforms that locally modify the

geometrical features of signals or image objects. The idempotents and increasing

properties are necessary and sufficient conditions for a transform, ψ, to be a mor-

phological filter: ψ is a morphological filter ⇔ ψ is increasing and idempotent. The

property of idempotents implies that applying a morphological filter twice to a sig-

nal is equivalent to applying it only once: ψ is idempotent ⇔ ψψ=ψ. The increasing

property ensures that the ordering relation on signals is preserved after being filtered

if the same SE is employed.

Opening and Closing

Opening is an operator that performs dilation on a signal eroded by the same SE.

The definition is given as follows:

f ◦ g = (f ⊖ g)⊕ g (6.2.23)

where f is the signal, g is the SE, and ◦ denotes the opening operator. Opening

can recover most structures lost by erosion, except for those completely erased by

erosion. Closing, on the other hand, can be defined by its duality as:

f • g = (f ⊕ g)⊖ g. (6.2.24)
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Figure 6.4: Grey-scale opening and closing of an one-dimensional signal. (a) Open-
ing. (b) Closing.

Usually, opening and closing are also denoted by operators γ and ϕ, respectively.

The results of performing opening and closing on the signal used in the previous

section by the same SE are illustrated in Fig. 6.4. Morphological opening and

closing are both increasing transforms:

f1 ≤ f2 ⇒

{
γ(f1) ≤ γ(f2)

ϕ(f1) ≤ ϕ(f2)
. (6.2.25)

Moreover, successive applications of openings or closings do not further modify the

signal, which means that they are both idempotent transforms:

γγ = γ

ϕϕ = ϕ
(6.2.26)

Apparently, opening and closing fulfill the conditions of morphological filters. Open-

ing and closing are also a pair of dual transforms:

A ◦B = (Ac •B)c (6.2.27)

A •B = (Ac ◦B)c (6.2.28)

Proof:
(A ◦B)c = (A−B ⊕B)c = (A−B)c −B

= Ac ⊕B −B = Ac •B
⇒ A ◦B = (Ac •B)c
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Alternating Sequential Filters

Opening and closing are the basic morphological filters and new filters can be

designed from their sequential combinations, such as an opening followed by a clos-

ing or vice versa. In fact, all the following combinations are filters: γϕ, ϕγ and ϕγϕ.

Moverover, for these new filters, the ordering relations of

γ ≤ γϕγ ≤
γϕ

ϕγ
≤ ϕγϕ ≤ ϕ (6.2.29)

are always satisfied [1]. The pair of dual filters γϕ and ϕγ are called opening-

closing and closing-opening filters, and they have almost the same filtering effects.

Therefore, in practice, usually only one of them is employed.

In some applications, such as when the objects under processing are over a wide

range of sizes, there is a need to alternatively use openings and closings with an SE

of an increasing size. This sequential application of the basic operators is called

an alternating sequential filter. Since the four types of sequential combinations of

opening and closing are all morphological filters, four alternating sequential filters

can be developed hereafter. Let γi and ϕi be a pair of dual operators with an SE of

size i. Suppose the size of SE increases from i to j. Therefore, the four types of

alternating sequential filters are given as:

faoc = (γjϕj) · · · (γiϕi) (6.2.30)

faco = (ϕjγj) · · · (ϕiγi) (6.2.31)

faoco = (γjϕjγj) · · · (γiϕiγi) (6.2.32)

facoc = (ϕjγjϕj) · · · (ϕiγiϕi) (6.2.33)

6.3 Multi-resolution Decomposition Schemes

Multi-resolution decomposition schemes provide convenient and effective ap-

proaches for signal processing. The core idea is to remove high frequencies in a

signal, thus to obtain a reduced-scale version of the original signal [3]. Therefore,
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by repeating this procedure, a collection of coarse signals at different levels are pro-

duced. Meanwhile, a collection of detail signals can be constructed by subtracting

the coarse signal at level i + 1 from the coarse signal at level i. Let J ⊆ N be an

index set indicating the levels in a multi-resolution decomposition scheme; J can

be finite or infinite. Therefore, for a domain Vj(j ∈ J), signals of level j belong

to Vj . The analysis operator ψ↑ decomposed a signal in the direction of increasing,

i.e. ψ↑
j : Vj → Vj+1. On the other hand, the synthesis operator ψ↓ proceeds in the

direction of decreasing, i.e. ψ↓
j : Vj+1 → Vj . In others words, the analysis operator

ψ↑ maps a signal to a higher level and reduces information, while ψ↓ maps it to a

lower level. Composing analysis operators successively, a signal at any level i can

be transferred to a higher level j. The composed analysis operation is denoted as

ψ↑
i,j and is defined to be:

ψ↑
i,j = ψ↑

i,jψ
↑
i,j...ψ

↑
j , j > i (6.3.1)

It maps an element in Vi to an element in Vj . It should be noted that here the

operations are carried from right to left. Likewise, the composed synthesis operator:

ψ↓
j,i = ψ↓

iψ
↓
j,i...ψ

↓
j−1, j > i (6.3.2)

takes the signal back from level j to level i. Finally, the composition operator that

takes a signal from level i to level j and then back to level i is defined as:

ψ̂↑
i,j = ψ↓

j,iψ
↑
i,j, j > i (6.3.3)

where ψ̂i,j is viewed as an approximation operator because analysis operator ψ↑
j

reduces signal information and, in general, the synthesis operator ψ↓
j cannot com-

pensate the information lot in the analyzing procedure.

Analysis and synthesis operators play an important role in the construction of a de-

composition scheme. If there is no information lost during the analysis and synthesis

procedure, then this decomposition scheme would be perfect.

6.3.1 Morphological Pyramid Transform

Pyramid transform is a multi-resolution decomposition scheme that does not

influence the decomposition when analysis and synthesis steps are repeated. A
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premise of pyramid transform is the so-called pyramid condition [50]. The anal-

ysis and synthesis operators ψ↑
j and ψ↓

j are said to satisfy the pyramid condition if

ψ↑
jψ

↓
j = id, where id represents the identity operator.

Although analysis operator ψ↑
j is the left inverse of synthesis operator ψ↓

j , it is in

general not the right inverse of the latter, which means that ψ↓
jψ

↑
j (x) is only an ap-

proximation of x ∈ Vj . Denoting the approximation of x by x̂, i.e. x̂ = ψ̂j,j+1(x) =

ψ↑
jψ

↓
j (x) ∈ V̂j , it is assumed that there exists a subtraction operator (x, x̂) 7→ x−̇x̂

mapping Vj×V̂j into a set Yj , as well as an addition operator (x̂, y) 7→ x+̇y mapping

V̂j × Yj , where y = x−̇x̂ is the detail signal that contains information about x that

is not present in x̂. If a signal x can be reconstructed from its approximation x̂ and

the detail signal y, i.e. x̂+̇(x−̇x̂) = x, the signal can be decomposed recursively as:

x→ {y0, x1} → {y0, y1, x2} → · · ·
→ {y0, y1, · · · , yi, xj+1} → · · ·

(6.3.4)

where 
x0 = x ∈ V0

xj+1 = ψ↑
j (xj) ∈ Vj+1, j ≥ 0.

yi = xj − ψ↓
j (xj + 1) ∈ Yj

(6.3.5)

This scheme is called the pyramid transform and the original signal x0 can be exactly

reconstructed from xj+1 and yj ,yj−1,...,y0 by means of the backward recursion xj =

ψ↓
j (xj+1)+yj . Morphological pyramid is a special pyramid transform satisfying the

following conditions [50]:

• All domains Vj are complete lattices;

• The pair (ψ↑
j , ψ

↓
j ) is an adjunction between Vj and Vj+1.

To satisfy the pyramid condition, ψ↑
j is an erosion and ψ↓

j is a dilation.

6.3.2 Morphological Wavelet

The morphological wavelet engages two analysis operators and one synthesis

operator. A formal definition of the morphological wavelet is presented as follows.

Assume that there exit sets Vj and Wj . Vj is referred to as the signal space at level
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j and Wj denotes the detail space at level j. The two analysis operators are used to

decompose a signal in the direction of increasing j. The signal analysis operator,

ψ↑
j , maps a signal form Vj to Vj + 1, i.e. ψ↑

j : Vj → Vj+1, while the detail anal-

ysis operator, w↑
j , maps it from Vj to Wj+1, i.e. w↑

j : Vj → Wj+1. On the other

hand, a synthesis operator proceeds in the direction of decreasing j, denoted as Ψ↓
j :

Vj+1×Wj+1 → Vj . In order to yield a complete signal representation, the mappings

(ψ↑
j , ω

↑
j ): Vj → Vj+1×Wj+1 and Ψ↓

j : Vj+1×Wj+1 → Vj should be inverses of each

other, which means that the following condition:

Ψ↓
j(ψ

↑
j (x), ω

↑
j (x)) = x, x ∈ Vj (6.3.6)

should be fulfilled. This is called the perfect reconstruction condition, and{
ψ↑
j (Ψ

↓
j(x, y)) = x, x ∈ Vj+1, y ∈ Wj+1

ω↑
j (Ψ

↓
j(x, y)) = y, x ∈ Vj+1, y ∈ Wj+1

(6.3.7)

where x is called the approximation signal and y is the detail signal. Therefore,

decomposing an input signal x0 ∈ V0 with the following recursive analysis scheme:

x0 → {x1, y1} → {x2, y2, y1} → · · ·
→ {xj, yj, yj−1, · · · , y1} → · · ·

(6.3.8)

where {
xj+1=ψ

↑
j (xj) ∈ Vj+1

yj+1 = ω↑
j (xj) ∈ Wj+1

(6.3.9)

x0 cab be exactly reconstructed form xj and yj , yj−1, ..., y1 by means of the follow-

ing recursive synthesis scheme:

xj−1 = Ψ↓
j−1 (xj, yj) (6.3.10)

This signal representation scheme is referred as the morphological wavelet decom-

position scheme and is illustrated in Fig. 6.5.

6.4 Advanced Multi-resolution Morphological Filter

with Optimal Structure Element

In previous Sections, the basic contents about the mathmatic morphology and

morphological decomposition are presented. In fact, nowadays the multi-resolution
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Figure 6.5: Samples stages of the morphological wavelet decomposition scheme
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decomposition scheme is considered as a powerful tool for signal processing. In the

following parts, an advanced multi-resolution morphological filter based on mor-

phological wavelet with optimal structure element is presented.

6.4.1 Algorithm Description

In practice, morphological filters are chosen based on different application sce-

narios of signal processing. Sometimes it is difficult to obtain the prior knowledge

of the positive or negative impulsive features from a signal, especially when it has

both the positive and negative impulsive features. Open-closing and close-opening

are two commonly used morphological filters derived from opening and closing,

defined as:
OC(f) = f ◦ g • g
CO(f) = f • g ◦ g

(6.4.1)

where
f ◦ g = f ⊖ g ⊕ g

f • g = f ⊕ g ⊖ g
(6.4.2)

Combination of Open-Closing (OC) and Close-Opening (CO) can solve this case,

such as the average filter formulated below:

ϑ(x) = [OC(f) + CO(f)]/2 (6.4.3)

The f(x) is the input signal and the ϑ(x) is the output signal after filtered. In this

filter, the structure element (SE) functions as the SE functions as a moving window

through the signal to extract the high-frequency components. If the length of the

SE is longer than the width of the noise in a segment of the signal, the noise can

be eliminated. In prior-works, SE is always determined by trail and error, in this

chapter, an optimal SE is introduced, more details is presented in following section.

Hybridising the above ϑ and the morphological wavelet scheme, a multi-resolution

morphological filter is constructed with the analysis operators ψ↑
j and ω↑

j :

ψ↑
j (xj) = xj+1 = ϑ(xj) (6.4.4)

ω↑
j (xj) = yj+1 = id− ϑ(xj) (6.4.5)
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Figure 6.6: SEs of various shapes:(a) flat SE; (b) triangular SE; and (c) semicircular
SE

ϑ(xj) = (OC(xj) + CO(xj))/2 (6.4.6)

where xj ∈ Vj , xj+1 ∈ Vj+1, yj+1 ∈ Wj+1, and id denotes the identity transform:

f, id(f) = f

6.4.2 Optimal Structure Element Selection

After selecting the morphological filter, the SE is the next key component of the

morphology analysis to be defined. Generally, only when the scale and shape of the

signal are matched to those of SE, the signal can be reserved well. Therefore, the

shape, length (domain) and height (amplitude) of SE should be selected according

to the signal to be analyzed. The shapes of SE can vary from regular to irregular

curves, such as flat, triangle, semicircle, and so on. Fig. 6.6 illustrates some of the

common SEs.

As there are limited rules or guidelines for choosing the optimum SE for various

morphological filter, the traditional SE selection method is adopted by prior knowl-

edge. This is simple, and easy to be implemented. However, the prior knowledge

is not always available for some applications and sometimes it is impossible to gain

such knowledge before hand. Based on the [158], an optimal morphological SE

calculation method is proposed.

Step 1: Select the shape of SE and the morphological filter. As previous introduced

that, the OC-CO filter is selected as the morphological filter. Then, When
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defining the shape of SE, an important principle shall be followed, which is

that the SE should approach morphological features of the signal as far as

possible. In other words, the shape of the SE should be similar to the shape of

original signal. For most current energy demand dataset, such as natural gas

demand, wind power demand, and electrical load demand, if we tread them as

2-D signal in time domain, the shape of their wave can be only loosely classify

as triangular or dome-like. If only one fixed shape of the SE is used, the final

result after filter may not good. Therefore, we presented a optimal SE shape

selection method to overcome the problem. Suppose that there is an input

signal f(n) and a sequential multiple SE aggregation gtriangular, gsemicircular.

The definitions of the OC-CO filter are:

Φoc[f(n)] = MAX(OC(gtriangular),OC(gsemicircular)) (6.4.7)

Φoc[f(n)] = MAX(OC(gtriangular),OC(gsemicircular)) (6.4.8)

Because the output of the OC filter is smaller and the output of the CO filter

is larger than the original signal, we take the maximum output of the OC filter

and the minimum outcome of the CO filter in multiple SE filtering, then take

the average value of both outputs, this result could be much approach the

practical signal. The framework of the OC-CO filter is shown in Fig. 6.7.

Step 2: Calculate the value of SE λ When defining the value SE, the length and

width of original signal should be considered. According to the Zhang et

al.[158], in order to find the suitable value SE, the local maximum and mini-

mum peak values hmax and hmin of the original signal should be calculated as

well as the minimum and maximum of peak intervals, imax and imin. Then the

minimum and maximum of length scales of SE can be achieved as following:

lmin = ⌈(imin − 1)/2⌉
lmax = ⌊(imax − 1)/2⌋

(6.4.9)

where ⌈ ⌉ denotes the operator of round toward infinity, and ⌊ ⌋ the operator of

round toward minus infinity. Then the width and height of SE under different
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Figure 6.7: Framework of the OC-CO filter

size j can be calculated as following:

lj = lmin + j, (j = 0, 1, 2, ..., lmax − lmin)

hj = δ × [hmin + j × (hmax − hmin)/(lmax − lmin)]
(6.4.10)

where, δ is the magnitude coefficient (0 ≤ δ ≤ 1). In this Chapter, triangular

shape and semicirular shape are both selected as the structuring elements.

SEtrig = hj × [0 1 · · · lj−1 lj lj−1 · · · 1 0]
SEdemo = hj × sin( π

2×lj
[0 1 · · · lj−1 lj lj−1 · · · 1 0])

(6.4.11)

6.4.3 Advanced Multi-resolution Morphological Filter

The OC-CO filter with optimal SE is the key feature to achieve the advanced

morphological filter, then the following figure shows the multi-resolution method,

In Fig 6.8, the original signal x0 is filtered 4 times. In order to explain it more

clearly, we pre-set the x0 as a sinusoidal signal polluted by white noise. The signal

is filtered by a basic SE, which is flat SE with the length of j+1 (j=1,2,3,4). The

results are shown in Fig. 6.8, which includes the decomposed signals xj (“baseline

parts”)and the detail signals yj at each level j (“noise parts”). From the Fig. 6.9,

it can be clearly seen the changing from the x0 to x4, the signal x4 is more smooth

than the original x0. To the common multi-resolution method, the ward “multi” is
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Figure 6.8: Computational process of Morphological Filter
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Figure 6.9: Performance of multi-resolution morphological filter on a sinusoidal
signal

referred to the multiple filtering times, we denoted the times asN , in order to achieve

an reasonable value N , we applied the signal-to-noise ration (SNR) to evaluate the

amount of noise remaining in each level of the signal. The value of SNR is defined

as:

SNR = 10× log10
Sσ

Nσ

(6.4.12)

where S is noise-free signal and N is the noise. For a given signal X , Xσ is defined

as:

Xσ =
L−1∑
l=0

(X(l)− µx)2 (6.4.13)

where µx and L are the mean and length ofX respectively. The values if SNR of the

original signal and the decomposed signals are shown in Table 6.1. As it can be seen

form Tab. 6.1. SNR increases as the level ascends, but the increment is descending.

At level 4, the improvement is not evident, which implies that it is enough after 3
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Table 6.1: Performance of multi-resolution morphological filter

Signal SNR (dB) Increment

x0 33.61 -

x1 41.08 22.3%

x2 42.95 4.5%

x3 43.08 0.3%

x4 43.17 0.2%

times filtered. Therefore, to the common application, if the filering times is N , for

each i = 1, 2, 3...N level, there is a corresponding SNRi,then applied the

ηi = (SNRi − SNRi−1)/SNRi−1

, used the η to compare the pre-set increment value κ, if ηi ≤ κ, filtering process

will stop, if not, the filtering process keep running, until the ηi ≤ κ. The proposed

SVRLP-MM model is presented in Fig. 6.10.

6.4.4 Case study

Dataset

The dataset used in this chapter is the wind speed dataset which downloaded

from the Illinois Wind, a website dedicated to information for Illinois residents who

interested in wind as a source of renewable energy. We choose the data collected

from the Coffey wind farm as our testing targets, shown in Fig. 6.11. The wind

speed measuring point is 30 meters high from ground, every 10 minutes for one

record, and the time scale of wind data is from 17/04/2005 to 18/04/2006, totally

amount of the wind speed dataset is 58485.

Parameters

We used the 100 points which from the 58386th to 58485th of the wind speed

time series to test the performances of proposed method, and we applied those 58485
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Figure 6.11: Real-world wind speed data used in this chapter
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points before as historic data set. Firstly, in order to determine phase space recon-

struction parameters, we randomly select 25 parts of the wind speed time series, and

used them to do the phase space reconstruction parameters analysis. The results are

shown in Fig. 6.12 and Fig. 6.13 we can see that the most often embedding dimen-
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Figure 6.12: Observation times about the embedding dimension delay of the 25
random wind speed time series parts
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Figure 6.13: Observation times about the sampling time delay of the 25 random
wind speed time series parts

sion and sampling time delay constant are 7 and 2 respectively. In order to verify

the accuracy of the selection, the SVRLP with different input dimension are tested

(the sampling time delay is 2). And result shows in the Fig. 6.14.

From the Fig. 6.14, we can see that the MAPE is the lowest when the sampling

time delay is 2 and the embedding dimension is 7. Therefore, the sampling delay

time 2 and embedding dimension 7 are fixed in the following tests. Also, choosing
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Figure 6.14: The MAPE of different dimension inputs by the SVRLP model

K is very important step in local prediction model. To calculate the best value of K

for each dataset, Equation (4.3.1) is used. In addition, the parameter kmax and α are

fixed for all test cases in this Chapter at 30% of N and 120, respectively.

Then, the wind speed dataset is treated as the signal and the proposed morphological

filter is applied to it. According to the SNR results, which summarized in the Table.

6.2, we can find that the SNR increases as the level ascends, but the increment

from level 7 to level 8 is quite small, it means that it is enough to perform the

decomposition seven times. Therefore, to this case, the wind speed is filtered 7

times. The Figure shows results of morphological decomposition (In order to keep

definition of figure, only 500 points of wind speed time series are demonstrated).

From this figure, we can clearly find that shape of the x7 is quite similar to the x7,

but with a more smooth feature.

6.4.5 Results

All of the prediction results of different models are summarized in Tab.6.3 and

Fig.6.16-6.19. Form the Tab.6.4, it clearly shows that the SVRLP-MM is much

better than others, it improves the accuracy and reduces the MPE. Moreover, it is

also necessary to investigate the absolute percentage error (APE) of each samples to

see the stability of models. In Fig. 6.20, the mainly absolute percentage error (APE)
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Table 6.2: Performance of multi-resolution morphological filter for the wind speed
dataset

Signal SNR (dB) Increment

x1 18.79 -

x2 22.92 21.9%

x3 25.79 13.0%

x4 27.98 8.4%

x5 29.58 5.7%

x6 30.81 4.2%

x7 31.53 2.3%

x8 31.81 0.8%

of SVRLP-MM is also lowest among all models. In other words, the SVRLP-MM

is more stable than others.

6.5 Conclusion

In this chapter, we have presented a SVRLP-MM model. The proposed approach

combines a powerful regression algorithm which is SVR with a morphological filter

based local predictor. During the computation procedure, the embedding dimension

and the time delay are computed, and the phase space reconstruction is applied to

the dataset. We use the morphological filter to decompose the original wind speed

time series into several subsequences, the subsequences contains “noise” parts and

“baseline” part, then applied the SVRLP to predict each subsequence separately.

The proposed approach is applied to the wind speed predicito, and the final results

presented demonstrate that the proposed model can achieve a higher prediction ac-

curacy than the SVR model, SVRLP model and ARMA model using the same real

world wind speed data.
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Figure 6.15: Result of morphological decomposition
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Figure 6.16: Results of wind speed prediction by ARMA model in comparison of
actual wind speed
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Figure 6.17: Results of wind speed prediction by SVR model in comparison of
actual wind speed
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Figure 6.18: Results of wind speed prediction by SVRLP model in comparison of
actual wind speed
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Table 6.4: MAPE and MPE of different models

MAPE MAPE Impro. MPE MPE Impro.

SVRLP-MM 4.43 - 18.61 -

SVRLP 5.38 17.7% 20.87 10.8%

SVR 5.94 22.5% 24.27 23.3%

ARMA 7.51 41.0% 22.56 17.5%
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Chapter 7

Conclusion and Future Work

This chapter concludes the thesis. It summarizes the major achievements of

the presented research work in the filed of new algorithm development for energy

demand prediction. In this chapter, possible direction for future investigation are

also indicated.

7.1 Conclusion

Due to the global energy crisis and environmental concerns, the energy demand

management is becoming an important issue in the energy sector and forecasting the

energy demand is the starting point. The original local predictor is widely used to

predict the energy demand, and outperforms the global predictor. In local predic-

tion, each predicting point has its own model constructed by its nearest neighbors

(NNs) which were found in the neighborhood of the phase space reconstructed from

the time series, and the fitness of NNs would mainly effect the final performance of

prediction. However, it has been found that NNs may contain a class of false neigh-

bors which would decrease the fitting accuracy dramatically and cause the reduction

of the forecasting performance, so that not all of NNs are suitable for using in the lo-

cal prediction, and these FNs should be filtered. Therefore, the false neighbor filter

is presented to remove those false neighbor and leave the optimal nearest neighbors.

In addition, the Support Vector Regression is a powerful methodology which de-
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rived from Support Vector Machines, it is based upon statistical machine learning

and can be utilized to achieve nonlinear mapping from sample space to feature space

through kernel functions. Moreover, SVR replaces the empirical risk minimization

which is generally employed in the classical methods such as ANNs, with a more

advantageous structural risk minimization principle. Therefore, SVR can achieve

an outperforming of fitting accuracy for chaotic time series prediction. Then, the

local predictor with false neighbor filtered is combined the SVR to proposed a nov-

el method which is the FNF-SVRLP. The FNF-SVRLP is an ameliorated SVRLP.

Compared with the SVRLP, the FNF-SVRLP not only applies the Euclidean dis-

tance but also the exponential separation rate to verbify the nearest neighbors, and

only the optimal nearest neighbors can be selected as training samples.

The FNF-SVRLP based short-term wind power prediction is introduced. Wind

power is widely used in the world. However, the increasing penetration of wind

power into the electric power grid accompanied with a series of challenges. Due to

the uncertain and variable nature of wind resources, the output power of wind farms

is hard to control, which could lead to the instability of the power grid operation

and the unreliability of electricity supplies. The accurate short-term wind power

prediction could help to solve this problem. During the computation procedure of

the WPP, the embedding dimension and the time delay are computed firstly, then the

phase space reconstruction is applied to the wind power data. Then the FNF-SVRLP

is applied to predict the wind power data. The final results presented demonstrate

that FNF-SVRLP based WPP model can achieve a higher prediction accuracy than

the SVRLP based WPP model and ARMA model based WPP model.

Natural gas, one of the most important energy, is considered as the clean energy

in most counties. However, natural gas is an non-renewable energy source, which

has limited reserve on the planet and may contribute to global warming. Thus,

planning energy demand is becoming an important issue in the energy sector and

forecasting its demand is the starting point, especially for natural gas demand. Be-

fore the FNF-SVRLP is applied to do the short-term natural gas demand prediction,

the natural gas data should be reconstructed in time series. The dataset of natural

gas which contains both the demand information and weather information, are the
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multivariate time series. Then, an accuracy-based method is proposed to determine

the embedding dimension and the delay time for the natural gas data. Through in-

vestigating the natural gas data which obtained from National Grid, it is found that

the customer behavior can affect the final forecasted performance. Therefore, the

customer behavior based “Advanced Model” (AM) is presented. The FNF-SVRLP

based AM for short-term natural gas demand prediction is verified by using oper-

ational gas dataset collected from National Grid and is compared with the SVRLP

and ARMA to show its superiority. In addition, the online natural gas demand pre-

diction system is set up. The engineers of Nation Grid can easily access the online

system via internet in anywhere. The FNF-SVRLP based AM is installed in the on-

line system, and the overall performance shows that our online natural gas prediction

system is better than the National Grid’s.

After numerous researches, we find that the most kinds of energy demand da-

ta are the non-stationary, the internal regularity between predicting point and its

nearest-neighbors are much more complex than the stationary dataset. In order to

help the local predictor to capture the internal regularity between predicting point

and its nearest-neighbors more accurately, the morphological filter is proposed. the

morphological filter is applied to decompose the non-stationary into several subse-

quences, ranked form the low frequency subsequence to the high frequency sub-

sequence. Through this way, the local predictor could capture the non-stationary

dataset more accurate, and improve the final performance of prediction. In addition,

an novel calculation method of SE is introduced. Different form the conventional

SE, this novel approach can optimize the scale and shape of SE to match the original

signal. After that, a novel algorithm, which is SVRLP-MM is proposed. The real-

world wind speed data has been used to evaluate the performance of SVRLP-MM.

The final results presented demonstrate that SVRLP-MM based wind speed model

can achieve a higher prediction accuracy than the SVRLP based model and ARMA

model based model by using the same real world wind speed data.
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7.2 Future work

This study has presented some novel techniques for solving the energy demand

prediction problem. Although this study has achieved reasonable results, there are

still many aspects which can be developed to improve the forecasting accuracy and

increase the application areas.

In this study, the natural gas demand and wind power has been investigated in

detail, there are some other important energy need to be research. For example,

the electricity load. The forecasting of the future electricity load is one of the most

important aspects of effective management of electric power systems. Therefore,

the novel approaches which were introduced in this study can be applied to the load

prediction. What’ more, the prediction methods are not only applied in energy area,

they can be applied to many other areas, such as the marking, the biosciences and so

on. Therefore, the proposed prediction methods can be applied in many other areas.

Based on the experience of the web server based online natural gas demand pre-

diction system, this web server based model can be extend the applications to other

grid operators or other countries. According to the characteristic of the research

object, special design and optimization can be applied, and care must be taken in

defining the model parameters in view of the criteria that are set up by gas market

operators in these countries.

As the numerous factors of the energy demand, prediction is never 100% accu-

rate. Inaccuracies in energy demand prediction, for example, the natural gas demand

prediction, may cause an increase in the cost of operating the gas system. The eco-

nomic impact analysis of energy demand is not included in this study. Therefore,

the economical impact of the energy demand, can be considered in the future.
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