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Abstract 

Randomised controlled trials are considered the gold standard study design, as random 

treatment assignment provides balance in prognosis between treatment arms and 

protects against selection bias. When trials are subject to departures from randomised 

treatment, however, simple but naïve statistical methods that purport to estimate 

treatment efficacy, such as per protocol or as treated analyses, fail to respect this 

randomisation balance and typically introduce selection bias. This bias occurs because 

departure from randomised treatment is often clinically indicated, resulting in systematic 

differences between patients who do and do not adhere to their assigned intervention.  

There exist more appropriate statistical methods to adjust for departure from 

randomised treatment but, as demonstrated by a review of published trials, these are 

rarely employed, primarily due to their complexity and unfamiliarity. The focus of this 

research has been to explore, explain, demonstrate and compare the use of causal 

methodologies in the analysis of trials, in order to increase the accessibility and 

comprehensibility by non-specialist analysts of the available, but somewhat technical, 

statistical methods to adjust for treatment deviations. 

An overview of such methods is presented, intended as an aid to researchers new to the 

field of causal inference, with an emphasis on practical considerations necessary to 

ensure appropriate implementation of techniques, and complemented by a number of 

guidance tools summarising the necessary clinical and statistical considerations when 

carrying out such analyses. Practical demonstrations of causal analysis techniques are 

then presented, with existing methods extended and adapted to allow for complexities 

arising from the trial scenarios.   

A particular application from epilepsy demonstrates the impact of various statistical 

factors when adjusting for skewed time-varying confounders and different reasons for 



   
   

4 
 

treatment changes on a complicated time to event outcome, including choice of model 

(pooled logistic regression versus Cox models for inverse probability of censoring 

weighting methods, compared with a rank-preserving structural failure time model), 

time interval (for creating panel data for time-varying confounders and outcome), 

confidence interval estimation method (standard versus bootstrapped) and the 

considerations regarding use of spline variables to estimate underlying risk in pooled 

logistic regression.  

In this example, the structural failure time model is severely limited by its restriction on 

the types of treatment changes that can be adjusted for; as such, the majority of 

treatment changes are necessarily censored, introducing bias similar to that in a per 

protocol analysis. With inverse probability weighting adjustment, as more treatment 

changes and confounders are accounted for, treatment effects are observed to move 

further away from the null. Generally, Cox models seemed to be more susceptible to 

changes in modelling factors (confidence interval estimation, time interval and 

confounder adjustment) and displayed greater fluctuations in treatment effect than 

corresponding pooled logistic regression models. This apparent greater stability of 

logistic regression, even when subject to severe overfitting, represents a major 

advantage over Cox modelling in this context, countering the inherent complications 

relating to the fitting of spline variables. 

This novel application of complex methods in a complicated trial scenario provides a 

useful example for discussion of typical analysis issues and limitations, as it addresses 

challenges that are likely to be common in trials featuring problems with nonadherence. 

Recommendations are provided for analysts when considering which of these analysis 

methods should be applied in a given trial setting.  
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1. Introduction 

The focus of this thesis is an investigation into the issue of nonadherence to prescribed 

intervention in randomised trials, and a demonstration and comparison of statistical 

methods that may be used to appropriately adjust for such nonadherence. In particular, 

the following research questions will be explored: 

 What is the extent, nature, impact of and potential solutions for nonadherence 

in general practice and in randomised controlled trials? 

 What methods are available to adjust for such nonadherence in randomised 

trials and are these methods applied? 

 What are the assumptions made, limitations of and conclusions drawn from 

application of these methods in trials demonstrating various deviations from the 

treatment protocol? 
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Nonadherence to medical advice has been recognised as a widespread problem since 

the 1970s but its impact on clinical trial analyses and results is less well recognised. 

Failure to appropriately allow for changes to randomised treatment in trials may lead to 

biased results and misleading conclusions. 

Analysis methods must reflect the clinical research question of interest. When 

estimating the effectiveness of treatment policy (in other words, the effect of being 

assigned treatment) treatment changes can be ignored in the analysis, under the 

assumption that such treatment changes mirror what will happen in practice outside of 

the trial setting. Ignoring such treatment changes will, however, distort estimation of the 

efficacy (or biological effect) of treatment (in other words, the effect of treatment 

received).  

Randomised controlled trials (RCTs) are considered the gold standard study design, as 

random treatment assignment provides balance between treatment arms with respect to 

measured and unmeasured covariates that may influence prognosis. Simple but naïve 

statistical methods that purport to estimate treatment efficacy, such as ‘per protocol’ 

(PP) or ‘as treated’ (AT) approaches, fail to respect this balance produced by 

randomisation and typically lead to selection bias. This occurs because departure from 

prescribed or randomised treatment is often clinically indicated, resulting in systematic 

differences between those subgroups of patients who do and do not adhere to their 

assigned intervention.  

There exist more appropriate methods to adjust for departure from randomised 

treatment but these are rarely employed by trial statisticians, in part due to the fact that 

they are not widely known. This thesis will investigate their use in a number of 

expository trials.  
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In Chapter 2, the problem of nonadherence in general medical practice is described, 

followed by the implications of nonadherence for the design, analysis and interpretation 

of RCTs in Chapter 3. 

In Chapter 4, a number of expository RCTs are described in terms of the form and 

extent of nonadherence to randomised treatment that occurred and the resulting impact 

on trial analysis. Some of these trials will be used to illustrate the application of 

particular statistical methods to adjust for such nonadherence in this and subsequent 

chapters. 

In Chapter 5, an overview is provided of the statistical methods that may be used to 

adjust for nonadherence when analysing RCT data. The issue of confounding and 

selection bias, introduced with use of naïve but common methods of analysis such as 

PP or AT analyses, is discussed. An overview of causal methods is provided, 

introducing the concept of potential outcomes, and two methods appropriate for 

analysis of survival data (the rank preserving structural failure time model (RPSFTM) 

and inverse probability of censoring weights (IPCW)) are described in detail. In the 

spirit of the aims of the funding body (NIHR) supporting this studentship, this 

overview of statistical methods is provided as an aid to researchers who are new to the 

field of causal inference, and has thus been presented with an emphasis on practical 

considerations necessary to ensure appropriate implementation of techniques, with a 

particular focus on interpretation of methods, rather than technical detail. 

In Chapter 6, a review of recently published RCTs is presented, summarising the degree 

of nonadherence reported in RCTs and the extent to which trialists attempt to adjust 

for this nonadherence in their analysis.  
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In line with the remit of this PhD, Chapter 7 provides a clear description of the 

necessary practical and statistical considerations that are involved when implementing 

causal methodology, in order to clarify the process and enable other non-specialists to 

more easily carry out their own causal research. This chapter presents recommendations 

and guidelines to trial analysts in order to simplify and facilitate wider use of available 

causal estimation techniques, thus addressing potential barriers to the wider use of such 

methods by the trial community. In particular, a number of pictograms are provided to 

clarify the appropriate methods to use and statistical issues that must be considered, 

according to the particular trial scenario. 

The next three chapters demonstrate how to translate a clinical question of interest into 

an appropriate causal analysis procedure, particularly for trials with survival outcomes 

(which typically feature deviations from treatment protocol). These practical 

applications demonstrate how clinical considerations and data constraints must 

appropriately inform the statistical choices, not just as part of the modelling exercise but 

also in preparation of data. These issues are demonstrated in trials of contrasting 

complexity featuring different compliance issues.  

In Chapter 8, the RPSFTM is used to adjust for departure from randomised treatment 

in three trials (the honey trial, SANAD arm A and SANAD arm B); the applicability, 

appropriateness and limitations of applying this model are discussed for each trial 

setting. 

In Chapter 9, the IPCW model is demonstrated in the most complex of these trial 

settings (SANAD arm B). The IPCW methodology relies on the assumption of no 

unmeasured confounders (NUC), necessitating a variable selection process to determine 

which of the many measured covariates should be adjusted for in this model. 
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Considerations for this selection process include choice of threshold for inclusion of 

covariates, forward versus backward selection procedures and reliability of selection.  

The work in these chapters aims to investigate the impact of various statistical factors 

on treatment effect estimates when adjusting for treatment changes, including choice of 

model (survival versus pooled logistic regression (PLR) for IPCW, and IPCW versus 

RPSFTM), time interval (for defining time-varying covariates and outcome variables: 

monthly, fortnightly or weekly intervals), confidence interval (CI) estimation method 

(standard versus bootstrapped CIs), adjustment for time-varying confounding variables 

(seizure count, AE count and dose) and reason for treatment changes (to allow for the 

competing reasons of inadequate seizure control, unacceptable adverse events and 

personal choice). 

In Chapter 10, the IPCW and RPSFTM are compared in the context of the SANAD 

arm B, using the standard set of covariates determined by investigations described in 

Chapter 9, highlighting the challenges and limitations associated with each method. 

Chapter 11 concludes with a summary of the main findings of the thesis, ideas for 

further development of methods and recommendations for trialists and statisticians 

when analysing and reporting trial nonadherence. 
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2. Nonadherence in general 

clinical practice  

2.1. Introduction 

The aim of this thesis chapter is to describe the degree to which nonadherence is 

present and its impact in general medical practice. This will provide an important 

grounding for the purposes of this thesis, given that it is necessary to understand the 

issues relating to nonadherence in the context of routine healthcare before moving on 

to considering its impact in clinical trials. This chapter therefore summarises a review of 

the clinical research literature on adherence to prescribed intervention, including a 

description of the extent, nature and causes of nonadherence to prescribed treatment in 

general practice. 
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2.2. History of compliance research  

It has long been recognised that patients will often fail to follow medical advice, with 

the earliest record of nonadherence dating back to Hippocrates in 400 BC who is 

believed to have advised “keep watch also on the faults of the patients, which often 

make them lie about the taking of things prescribed”. The first record in modern 

medicine was by Robert Koch in 1882, who complained that non-adherent patients 

were ‘vicious consumptives, careless and/or irresponsible’ (1). 

Research into the area of nonadherence began in the early 1970s when, in 1972, David 

Sackett realised that poor response to treatment in hypertensive patients was likely to be 

due to non-compliance. The McMaster Workshop/Symposium on compliance with 

therapeutic regimens was held in 1974, and ‘patient compliance’ was included as an 

official Medical Subject Heading in the US National Library of Medicine in 1975. 

Sackett and Haynes’ landmark book “Compliance with therapeutic regimens’ was 

published in 1976 (2), providing the first, and most commonly cited, definition of 

medical compliance: “the extent to which a patient’s behaviours (in terms of taking 

medication, following diets, or executing lifestyle changes) coincide with health care 

providers’ recommendations for health and medical advice” (3). 

Over the next twenty years, more than 10,000 research papers were published 

investigating the issue of nonadherence (4). This extensive research has demonstrated 

that poor compliance with recommended medical intervention is a common problem, 

widespread across all areas of medicine, irrespective of disease type or severity (5, 6). 
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2.3. Types of nonadherence  

Specific manifestations of nonadherence vary according to the type and duration of 

prescribed intervention or medical advice. 

Adherence to prescribed drug treatment (referred to in this thesis as ‘medication 

adherence’) may be categorised into three phases relating to the start, execution and end 

of the treatment period, defined respectively by Vrijens (3) as initiation, implementation 

and persistence. Typical patterns of medication nonadherence include taking too much 

or too little (even none) of the prescribed course of medication, or taking medication at 

different times or intervals, or under contraindicated conditions, to those directed (7).  

Failing to initiate therapy (or ‘primary non-compliance’) occurs, for example, when 

patients receive a prescription but fail to have it made up at a pharmacy. During the 

implementation period, patients may not follow the correct treatment schedule by 

taking treatment at incorrect doses, times or intervals; the most common form of such 

nonadherence is delaying or omitting doses, referred to as ‘partial nonadherence’ (4, 8). 

Patients may also repeatedly stop and restart treatment, taking ‘drug holidays’ (stopping 

treatment for at least three days before restarting) or may improve compliance around 

the time of follow up appointments (known as ‘white-coat compliance’) (9). Premature 

cessation of prescribed treatment occurs, for example, when patients fail to obtain 

repeat prescriptions or simply decide to stop taking their treatment. 

Nonadherence may also result when patients endeavour to seek out, receive and 

persevere with other forms of treatment, especially those involving lengthy and complex 

processes. General forms of nonadherence to medical intervention carrying 

consequences from a population-wide, as well as a personal, perspective include delay in 
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seeking appropriate health care, refusing to participate in screening programmes and 

failure to attend medical follow up appointments (4, 9). 

2.4. Prevalence 

Compliance is typically higher with curative or short-term symptom-relieving, rather 

than preventative, treatments (10). As such, nonadherence to prescribed medication 

tends to be a greater problem with chronic rather than acute diseases, especially when 

the disease is asymptomatic or when nonadherence seems to present no obvious, 

immediate or drastic consequences. The likelihood of nonadherence in chronic 

conditions is also affected by the long term nature of treatment, along with the need for 

continual monitoring or follow up, all of which can present challenges to adherence. 

Haynes (11) gives the example of a hypertensive patient who must adhere not only to 

long-term treatment regimens but also to advice on lifestyle factors (weight, diet, 

exercise, stress) as well as attending numerous investigative and monitoring 

appointments, all potentially for the rest of their lives. Haynes (6) estimates that up to 

half of patients drop out of medical care completely within the first year of starting a 

treatment regime for chronic conditions, and of those who persist with treatment, one 

third do not take sufficient medication to achieve therapeutic benefit. 

As such, estimated adherence rates with long-term interventions for chronic diseases are 

typically lower (40-50%) than for acute illness or short-term interventions (70-80%) 

(12). Even lower compliance is observed for behavioural or lifestyle prescriptions (20-

30%), and only 10% of patients are believed to comply with advice on smoking or 

weight loss in the long term. Although approximately half of patients with chronic 

disease are believed to demonstrate some form of nonadherence, this estimate varies 

more widely in certain disease states; for example, non-compliance is typically low with 
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prescriptions of oral contraceptives (8%) but may be up to 70% for long term treatment 

of arthritis (6). 

In the past 60 years, disease burden has shifted from acute to chronic disease as modern 

medicine has advanced and life expectancy in developed countries has increased. 

Noncommunicable diseases, mental health disorders, HIV/AIDS and tuberculosis 

made up more than half of all global illness in 2001 and are expected to exceed two 

thirds of all illness by 2020 (5). This shift in disease profiles, along with the high rates of 

nonadherence associated with chronic disease, has led to increasingly significant 

worldwide consequences of nonadherence, both clinical and economic; the impact of 

these consequences has been recognised for decades, with non-compliance having been 

designated “America’s other drug problem” (13).  

2.5. Consequences  

 “Drugs don’t work in patients who don’t take them.”(14) 

In chronic conditions (such as diabetes, AIDS and asthma), patient’s disease may 

worsen as a direct consequence of inadequate compliance, with clinical consequences in 

terms of both decreased efficacy and increased toxicity. Medication nonadherence may 

result in more extreme relapses than when treatment is taken as recommended, and may 

decrease patients’ chances of responding to treatment in the long term. Patients may 

also risk adverse effects, rebound or recurrent first-dose effects (for example, when 

therapy is restarted after a drug holiday), accidents (for example, if ignoring advice 

regarding lifestyle changes necessary when taking medication) and treatment 

dependence (5, 15). 

Further repercussions on patient health may occur if undisclosed non-compliance leads 

physicians to make inappropriate decisions regarding treatment (16).  For example, 
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white-coat compliance may cause clinical confusion, as short-term responses to 

treatment (for example, blood pressure) measured at clinic visits may be normal, 

reflecting the patient’s improved compliance to treatment prior to appointments, but 

longer term outcomes may be poor due to general nonadherence otherwise (17). If 

clinicians are unaware of patients’ non-compliance, they may deem it necessary to 

(inappropriately) prescribe higher doses or more invasive or stronger, more toxic 

medication (18).  

Nonadherence in infectious disease carries both direct and indirect consequences. For 

example, underdosing of anti-infective drugs (caused by delayed or omitted doses, 

premature discontinuation of treatment or drug holidays in particular) can lead, not only 

to poor outcome on the part of individuals involved, but also to consequences affecting 

the wider population, such as drug-resistance caused by excessive microorganism 

replication in the presence of inadequate or intermittent doses (19, 20). 

Nonadherence to appropriate medication prescription impacts not only the health of 

individual patients but also the health care system and society as a whole (21). 

Economic consequences result not only because of wasted medication but also 

because of increased health care demands to deal with subsequent unnecessary health 

deterioration (21), manifested as disease exacerbation, crisis or relapse (5). The cost to 

the NHS of unused medication has been estimated at £100 million per year (21), while 

the overall cost of medication nonadherence in US is estimated at $100 billion per year 

(4). The burden on health care systems increases as a result of more frequent hospital 

admissions, increased length of hospital stay and increased expenditure on health care. 

One tenth of US hospital admissions are reported to be due to inappropriate use of 

medication (while between one and two thirds of all medication-related admissions are 

caused by poor medication adherence (14)), and nearly one quarter of admissions to 
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nursing homes are said to be caused by patients’ inability to manage their own treatment 

(4).  

The clinical and economic consequences of nonadherence vary according to the severity 

of the patient’s condition and their comorbidities. Failing to correctly follow treatment 

for a life-threatening disease, for example, incurs greater costs than nonadherence to 

treatment for a mild condition (22). Indirect costs result from patients’ reduced quality 

of life (5) and loss of productivity (18). Additional costs may result if apparent poor 

response to treatment (caused by undisclosed non-compliance) causes the clinician to 

prescribe an alternative more costly or complex treatment (18). 

2.6. Measurement of adherence  

Measurement of patient adherence has occurred since the time of Hippocrates, who 

noted whether or not patients had taken various prescribed potions when recording 

their effectiveness. Numerous direct and indirect adherence measurement methods 

exist, each featuring their own particular advantages and disadvantages.  

Direct measurement methods generally provide more accurate compliance information 

than indirect methods but they suffer from a number of disadvantages which preclude 

their use in long term compliance assessment, most notably being labour intensive or 

invasive. Although theoretically the most accurate measurement technique available, 

direct observation of therapy (observing a patient taking their prescribed drug) still 

provides opportunity for patients to hide medication in their mouth, rather than 

swallowing it, and is feasible only for monitoring single-dose or intermittent treatment 

of hospitalised patients rather than long term self-administered treatment (9, 14).  

Biochemical measurement in body fluids (blood, saliva or urine) of drug levels, 

metabolites or biological markers added to medication provides an alternative direct 
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method to assess medication adherence, but this too suffers from major disadvantages. 

Such measurements are subject to pharmacokinetic variation between patients (being 

affected, for example, by diet and rates of absorption and excretion) and thus may be 

misleading or highly variable, they may be unacceptably invasive or prohibitively 

expensive and not all medications can be readily measured in bodily fluids. Drugs level 

in body fluids may be distorted by timings of doses taken and in particular by white-coat 

compliance, as this improved compliance prior to a follow up visit will overestimate 

typical levels of compliance (1, 14). 

Indirect measurement measures tend to be more practicable, convenient and affordable 

but at the expense of accuracy.  

Patients are typically nervous about disclosing any deviation from their prescribed 

regimen and thus are likely to overstate their compliance when self-reporting (10, 20). 

Thus various commonly used patient self-reporting methods (such as interviews, 

treatment diaries or questionnaires) are all prone to intentional overestimation of 

adherence by the patient, as well as recall error. Diaries filled in concurrently may help 

to overcome the problem of inaccurate recall but are likewise easily distorted by 

patients; furthermore patients may resent the constant reminder of their disease that 

these diaries present and thus fail to complete them regularly. Given the reluctance on 

the part of patients to disclose adherence problems when faced with direct questioning 

or open discussions with their treating doctor, it is unsurprising that doctors have been 

shown to be poor at detecting nonadherence in their patients, typically doing so no 

better than chance (6, 23).  

Pill counts (or weighing) of returned pill bottles is another easy, inexpensive method of 

assessing compliance to longterm medication and has been the most common method 

of adherence assessment used to date in clinical research. This method provides an 
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indication of proportion of drug taken but captures no information on the timing of 

doses taken; furthermore it has been demonstrated to be entirely unreliable when 

compared with more objective methods, unsurprising given the opportunity for patients 

to simply discard or hoard any left-over medication (14, 23).  

Patients’ prescription refill dates may be obtained from supplying pharmacies’ records 

to inform on the regularity with which patients obtain prescribed medication, but such 

data only provide information on the supply, rather than intake of medication, and will 

be accurate only if a patient takes all of the dispensed medication and utilises a single 

pharmacy whose records are complete and up-to-date.  

A relatively new technology, first developed in 1977 and taking the form of a 

microprocessor incorporated into electronic monitoring devices fitted to treatment 

dispensers, has provided the most reliable indirect medication adherence data to date 

(17). Such medication event monitoring systems (MEMS, where “medication event” 

is defined as the set of actions needed in order to take a dose of medication) store time 

and date data when the relevant treatment dispenser (for example, medicine bottle, 

blister pack, inhalator or eye drop dispenser) is triggered.  

The detailed dose timing information obtained from MEMS has been used to test the 

reliability of other methods, demonstrating, for example, the unreliability of pill counts 

and other patient self-reporting methods. By recording the exact time and date of 

opening or activation of drug dispensers, MEMS data have provided valuable insight 

into the patterns of patients’ drug-taking, unearthing various typical manifestations of 

nonadherence such as drug holidays and white-coat compliance (17). Such data can also 

be input into pharmacokinetic/pharmacodynamic (PK/PD) models, as the dosing 

records allow prediction of the time courses of drug plasma concentrations and drug 

actions (15). 
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In providing a complete dosing history and thus allowing detailed comparison between 

prescribed and realised drug regimens, MEMS is considered to be the most accurate and 

useful single approach available for measuring medication adherence in clinic trials or 

adherence research (17). These devices are, however, prohibitively expensive and 

cumbersome for routine practice (5, 6). Furthermore, the account of treatment taking 

provided by such devices, although detailed, nevertheless only provides an indirect 

account of treatment timing rather than a direct measure of treatment ingestion. There 

is therefore the potential for patients to mislead (if they regularly activate the treatment 

dispenser at the correct dose times but then fail to actually take the intervention); 

although such behaviour would require substantial effort on the part of the patient and 

is therefore unlikely to be sustained over long periods (15), there is some evidence 

indicating such behaviour (in a cancer setting with self-administered chemotherapy) 

(16).  

Thus, even the most reliable methods for measuring patient’s self-administered 

treatment provide only an estimate of actual intake (5). The resulting lack of a gold 

standard measurement technique for measuring compliance has been cited as a major 

barrier to compliance research (4, 22). 

2.7. Causes 

Despite these difficulties in reliably measuring compliance, recognition of its impact and 

extent has prompted a huge amount of research into its causes. Traditionally patient 

factors have been considered the primary cause of non-compliance (14) but research 

has demonstrated that demographics (such as age, sex and social class) do not strongly 

predict compliance (9). Age impacts on a patient’s practical ability to comply, with 

elderly patients more like to suffer problems with memory, vision, mobility and 
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cognition; however elderly patients may also be more concerned and focused on their 

health than younger individuals so, with appropriate help, may be more likely to comply 

to prescribed regimens. Heterogeneous findings regarding educational levels have been 

reported; some studies have demonstrated higher compliance among those with higher 

education levels (because of a greater understanding of the disease and its 

consequences) while others suggest that a lower educational level will enhance 

compliance (because of a greater trust in clinical advice). Similarly, contradictory results 

have been reported for gender, ethnicity and marital status (18). Inconsistent results 

regarding demographic factors may be due to underlying correlations with variables 

relating to psychological influences or a patient’s cultural and socioeconomic 

background (18). 

Social and economic factors also play a role, along with the practical limitations 

presented by daily life. Employment status may impact on practical limitations on time 

due to work commitments or may provide insufficient funds to meet the cost long term 

treatment. The quality of health care provision from health care systems impacts on 

compliance, for example in terms of affordable medication, adequately trained and 

supported health care workers, continuity of care from the same provider, sufficiently 

long appointment times and convenient access to appropriate health care facilities (5, 

18).   

Social support may be required to overcome practical problems with compliance, or 

may help to reinforce positive attitudes to treatment and thus enhance patients’ 

motivation (18). On the other hand, patients who fail to comply with medication may in 

fact relish the increased care and attention received from health care professionals, 

friends and family as a result of the clinical consequences of their non-compliance, 

which will serve only to encourage their non-compliance further. 
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Treatment factors which impact on adherence include the convenience, duration, cost 

and complications involved. Dosing frequency and number of prescribed treatments 

both affect compliance, though greater problems are caused by the number of daily 

doses required rather than the number of different prescribed treatments (9). Invasive 

or complicated treatments will discourage compliance, and side effects of treatment may 

negatively impact a patient’s motivation and trust in the treatment or prescribing 

clinician (18).  

Disease factors, such as severity of symptoms, duration of disease and rate of disease 

progression, also impact on adherence. Long term illness typically leads to a greater 

probability of compromised compliance, although newly diagnosed chronic disease 

patients may demonstrate lower compliance rates than those who have had a disease for 

many years, perhaps because they feel no sense of urgency or have not yet experienced 

the adverse effects of living with the disease (18). Noticeable improvement of 

symptoms with treatment, or worsening of symptoms when treatment is discontinued, 

encourage compliance, while comorbidities may hinder compliance, especially 

depression, poor cognition and alcohol or drug abuse (5). Patients are naturally less 

likely to adhere when taking long-term preventative medication for asymptomatic 

conditions presenting no immediate risk than for conditions with life-threatening or 

serious consequences. Premature cessation of prescribed treatment, for example, occurs 

most often in asymptomatic disease when risk is not immediately obvious (for example, 

in hypertension) (19). 

Patient knowledge regarding disease and treatment is known to influence compliance 

rates (18). Patients need sufficient information on the impact of the prescribed 

treatment on the course of disease and the consequences of suboptimal treatment 

compliance and should be provided with written information to complement verbal 
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instructions. The quality of this information will impact on their likelihood of 

adherence, as patients may forget, not understand or simply ignore inadequate 

instructions.   

Indeed non-compliance is not always intentional; it may simply be due to ignorance or 

lack of understanding on the part of the patient. A patient may occasionally forget to 

take treatment (indeed, forgetfulness has been reported as the leading reason for poor 

compliance with long-term medication) (14, 24, 25), or may be more severely limited 

when following a prescribed treatment regimen, either by their mental or physical 

capability or because of inadequate financial or health care resources (21).  

Patient beliefs and their experience of their prescribed medication and medication as a 

whole is a very important determinant of compliance, and patients will balance their 

beliefs of the benefit and harms of treatment when deciding on how to take their 

medication. The Health Belief Model has been applied to the study of compliance, such 

that patients are believed to comply more readily if they believe they actually have the 

disease in question, that they will benefit from following the prescribed course of 

therapy or will otherwise be susceptible to consequences of the disease course (9). 

Patients make decisions regarding treatment compliance by, consciously or 

unconsciously, weighing up the health benefits gained from complying with treatment 

against the practical implications of compliance on their daily lives, taking into account 

cost, inconvenience or side effects (4).  

Psychological factors, such as embarrassment, anxiety or anger regarding disease or 

medicine-taking, fear of side effects, interactions with other treatments or developing 

addiction to long-term treatment, or poor motivation to persist with treatment or 

behavioural changes, will impact on a patient’s compliance status (26). Those who are 

not concerned by their ill-health will be less likely to comply, especially if the act of 
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taking regular medication presents physical or practical problems (1). Although disease 

severity has been shown to correlate with compliance, evidence suggests that a patient’s 

perception of their health status may in fact be more influential on compliance than 

actual disease severity (18). Negative beliefs about medication in general, for 

example that they are unnatural or harmful, or patients’ suspicions regarding chemicals 

or science, will impact on adherence. Patients may be in denial regarding their diagnosis 

or may wish to avoid the constant reminder of their illness presented by taking regular 

medication (10, 27). Nonadherence may be a coping mechanism, if patients are 

otherwise unable to express their fear, anger or frustration with their situation (12). 

The quality of communication between the patient and their clinician is cited as a key 

factor in determining compliance (12, 28) though it is difficult to measure, quantify and 

therefore adequately study the impact of precise factors relating to the patient-doctor 

relationship (9). It is acknowledged that clinicians often fail to inform patients of 

crucial information when initially prescribing treatments (29). Insufficient consultation 

time, or poor rapport, with prescribing clinicians may leave patients with unanswered 

questions (for example, regarding  diagnosis, absence of symptoms, expected adverse 

events, and expected delay from start, or duration, of treatment effect) (9).  

Prescribing practice varies amongst clinicians; thus, when confronted with conflicting 

dosing advice from different clinicians, patients may be inclined to instead rely more 

heavily on their own judgement. Blackwell (27) sums it up nicely: “…the physician will 

be expected to prescribe with only approximate accuracy, and the patient will be 

expected to comply with only modest fidelity. Thus mankind has been able to survive 

bleeding, cupping, leeches, mustard plasters, turpentine stupes, and Panalba.” As such, 

patients with chronic diseases often become “experts of their own disease” and, 

regardless of clinical advice, will adjust their treatment intake (e.g. dosing levels or 
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timing) according to perceived therapeutic or side effects in order to balance perceived 

benefit and harms, or to determine their own personal minimum effective dose of 

treatment (9). 

Thus extensive research into the causes of non-compliance has revealed numerous 

associated factors related to the patient, disease, treatment, health care provider and 

health care system (4, 5). However, despite suggestions of causal influence, none have 

demonstrated consistent or fully predictive association with compliance (9), due in part 

to the difficulties in accurately measuring and quantifying the complex interaction 

between these factors.  

2.8. Terminology 

“One of the most striking reasons for the lack of progress in compliance research is the 

absence of a crucial factor: the patient’s perspective.” (9). 

In spite of extensive research into its causes in the 1970s and 1980s, nonadherence 

continued to be a problem, with no apparent consistent predictors or solutions to the 

problem. As Becker commented “Patient non-compliance has become the best 

documented but least understood health related behaviour” (30). This research 

demonstrated not only the pervasive problem of discrepancy between prescribed and 

received interventions, but also of the moral limitations of the original term 

“compliance” (9). This traditional term has negative connotations, implying a 

paternalistic relationship between a doctor and their patient, whereby patients should 

submit to their doctor’s advice, and failure to do so is considered disobedience (9). 

Indeed, the Cambridge Dictionary defines compliance as “the act of obeying an order, 

rule, or request”. Furthermore, use of the term “non-compliance” has been cited as a 

potential tool by health care providers to label and discredit their patients (31). 
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Justified use of the term ‘compliance’ implies certain underlying assumptions which may 

not be realised in practice, namely that the clinician correctly diagnoses the patient’s 

condition and prescribes the most appropriate individually tailored treatment with clear 

instructions to ensure adherence. Although medication is usually prescribed by 

clinicians in good faith that it will provide the best help available to the patient, a 

clinician is unable to guarantee to a patient that the benefit of the prescribed treatment 

will indeed outweigh its harm; “compliance” with a prescribed treatment may therefore 

not be in a patient’s best interest. Rather than assuming a purely passive role, patients 

(especially those with long-term illness) may need to evaluate and make decisions 

regarding their treatment intake, in order to maximise benefits and minimise harms. 

Donovan (4) raises the point that recommended doses are based on average patient 

responses, but given the great variation between patients’ metabolism rates, it may 

therefore be necessary for individual patients to experiment with dosage and timings of 

treatment in order to find their optimal dose requirements. Thus when patients alter 

their drug intake levels, this may in fact be a “sensible and rationale response”.  

Therefore, with increased recognition of these multifactorial causes of non-compliance, 

including not only patient factors but also those related to the disease and drug itself, 

the treatment providers and health care system, there was a move away from using the 

term “compliance”. Indeed, researchers have long recognised the need to work with a 

“problem-solving approach” to encourage patients in developing strategies in working 

towards their own self-management of long-term condition and treatment (27), and that 

patients should be encouraged to assert their own needs, preferences and expectations 

as regards their treatment (12). Even Sackett’s landmark book on compliance (2) 

referred to the need for a “tailored consensual regimen” with consideration of practical 

problems encountered by the patient and the need to prevent any notion of blame when 
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assessing compliance behaviour (32), but this focus has only recently permeated into 

compliance research.  

Research in the 1990s therefore shifted from an assumption of an authoritative 

relationship between doctor and patient, introducing a new regard for the need to 

understand a patient’s motivations and attitudes towards treatment, and the importance 

of the patient as ultimate decision maker. Thus, in an attempt to move away from the 

blame associated with the term ‘compliance’, the term ‘adherence’ was introduced in the 

WHO document (5), defined as ‘the extent to which a person’s behaviour – taking 

medication, following a diet, and/or executing lifestyle changes, corresponds with 

agreed recommendations from a health care provider”. It was hoped that this term 

would better portray the notion of cooperation and partnership between patient and 

prescriber, the main difference with compliance being the need for the patient to agree 

to the prescribed course of therapy rather than simply passively following orders (9, 14). 

However, over time the term “adherence” became almost synonymous with 

“compliance” because of the persisting underlying implication of obligation on the part 

of the patient to follow the assigned treatment plan (with the Cambridge dictionary 

defining adherence as “behaving exactly according to rules, beliefs”).  

Recognition of this flawed terminology led members of the working party of the Royal 

Pharmaceutical Society to propose a new framework to replace the traditional 

“compliance” model. The term “concordance” was introduced, describing a situation 

where the health care provider works with the patient to determine the optimal course 

of treatment for the patient, with consideration of their personal needs and values, thus 

aiming for “agreement and harmony” between patients and prescribers (9). 

Concordance (defined in the Cambridge dictionary as “the state of there being 

agreement or similarity between things”) “signifies the practical and ethical goal of 
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treatment”, founded on the patient as decision maker with encouragement from an 

empathetic treatment provider (9). Other terms that have been used synonymously with 

concordance include ‘cooperation’, ‘agreement’ and ‘therapeutic alliance’, all of which 

suggest a ‘meeting of the minds’ of patients and health care providers (3) with mutual 

respect between doctor and patient for their (clinical and personal) contribution 

towards the treatment decision. Key to the notion of concordance is acceptance that 

“increasing compliance with prescribing instructions is not as important as meeting 

patients’ individual needs and priorities” (10). 

Concordance in practice 

The move towards concordance requires a shift from the traditional relationship 

between patient and clinician towards a more equal partnership with mutual respect for 

the respective personal and clinical expertise that each has to offer. Patients need to feel 

confident that disclosing their honest opinions about their difficulties with compliance 

or their treatment preferences will be received without judgement or reprimand. 

Concordance is particularly important when treatment is first prescribed or when 

changes are made to prescribed treatments (3) requiring prescribing clinicians to 

consider not only the effectiveness but also feasibility and acceptability of treatments 

(32). 

However, barriers to achieving concordance in practice are substantial, with limited time 

in initial and follow up consultancy appointments, spent mostly in discussion regarding 

diagnosis or symptom control (32), patients’ reticence to disclose their difficulties in 

following prescribed regimen and lack of perception on the part of clinicians to detect 

compliance problems.  
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Heath (33) feels that “patients need different information, not more of the same, and 

there is an urgent need for more honesty about the limitations of medicine and the 

uncertainties of medical knowledge”. Aronson (34) agrees, stating that “clinicians’ views 

about therapy can never be perfectly concordant with those of patients”, as patients are 

unlikely to be able to make a sound judgement based on complex medical information 

(35). Aronson feels that the idea of concordance is well-intentioned but is “not relevant 

to the interaction between a clinician and a patient (which is not a negotiation)”; instead 

clinicians should focus on providing clear communication and appropriate patient 

support, with recognition that patients then have a right to choose whether to follow or 

deviate from their clinical advice.  

2.9. Taxonomy 

A systematic literature review of papers on adherence terminology published in the first 

half of 2009 demonstrated use of more than ten different terms to describe departure 

from prescribed treatments, including “adherence”, “compliance”, “persistence”, 

“pharmionics”, “therapeutic alliance”, “persistency”, “patient irregularity” and 

“pharmacoadherence” (3). Vrijens reported inconsistency in the definitions of terms 

and found that these definitions did not provide guidance on how to measure or report 

these quantities, for example when trying to succinctly but adequately summarise 

multiple dimensions (e.g. timing, dosage and frequency) of longitudinal time-series data 

on patients’ dosing histories with single summary measures (36).  

The need for a standard and unambiguous taxonomy has been recognised; indeed, 

Vrijens et al (3) identified the need for clarification not only of the terminology used to 

describe the study of adherence, but also of the fundamental structure of adherence in 

relation to both the process and measurement of adherence, in order to “facilitate a 
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smooth transition from conceptual to operational definitions”. In their recent 

publication, they describe a foundation which clearly distinguishes between what they 

believe to be the three core elements of adherence research: ‘adherence to medications’, 

‘management of adherence’ and ‘adherence-related sciences’.  

 

Figure 1 (from (3)): Illustration of the process of adherence to medication (light 
blue) and the process of management of adherence (dark blue) 

The first component to this structure, ‘adherence to medications’, is defined as ‘the 

process by which patients take their medications as prescribed’ and consists of three 

stages, namely ‘initiation’, ‘implementation’ and ‘discontinuation’. Initiation occurs at 

the point at which the patient takes their first dose of prescribed medication, and 

discontinuation occurs when the patient takes their final dose. The implementation 

period extends between these two time points, with ‘persistence’ being defined as the 

length of time between first and final doses. Therefore medication nonadherence may 

be manifested by a patient failing to initiate prescribed therapy, failing to follow the 

prescribed course of treatment over the implementation period or discontinuing 

treatment prematurely. This terminology framework has been used through this thesis, 

particularly in the review of published trials. 
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The second element of adherence research, ‘management of adherence’, relates to the 

process by which patients are monitored and supported in their adherence to prescribed 

medication by family, friends, patient support groups or health care providers and 

systems. The final component, ‘adherence-related sciences’, encompasses the many 

disciplines (including, for example, medicine, biostatistics, biopharmaceutics and health 

economics) involved in furthering understanding of the causes and impact of the 

nonadherence process.  

One such relatively new adherence-related science is ‘pharmionics’, the study of how 

patients take medication that has been prescribed to them (‘what the patient does with 

the drug’) first introduced in 1987 to complement the two existing subdisciplines in the 

field of biopharmaceutics, namely pharmacokinetics (‘what the patient’s body does to 

the drug’) and pharmacodynamics (‘what the drug does to the patient’s body’).  

2.10. Summary measures 

Vrijens (36) discusses the limitations of terms such as ‘adherence’ and ‘concordance’ 

when measuring and analysing drug regimen compliance data, arguing that these 

“blanket” terms describe multidimensional processes but without physical dimensions 

and thus do not support quantitative analysis. Instead Vrijens proposes they be replaced 

by substituent measures, ‘initiation’, ‘compliance’ and ‘persistence’ in order to 

adequately summarise the differences between the actual and prescribed dosing 

regimens over the implementation period (the time over which the patient takes their 

prescribed treatment).  

Given that initiation and discontinuation are events occurring at a particular time point, 

while implementation refers to a continuous time period, these three phases of the 

‘adherence to medication’ process should be summarised separately and appropriately. 
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The definitions of typical summary measures used to describe these features of 

compliance are summarised in Table 1, along with a brief discussion of their potential 

limitations.  

Table 1 Recommended measures to describe features of medication adherence 

Feature Definition  Typical summary measures Limitations 

Initiation Time between 
receipt of 
prescription and 
first dose 

Initiation rate  

 proportion of patients 
starting prescribed treatment 

Potentially overly simplistic, 
providing no indication of the 
time between prescription receipt 
and starting treatment  

    

Compliance  Degree of 
correspondence 
between 
patient’s actual 
dosing history 
and prescribed 
dosing regimens 

Within-patient summary statistics 
of this period; e.g.  

 proportion of prescribed 
drug taken 

 number of drug holidays  

 proportion of days when 
correct dosage is taken  

 proportion of doses taken 
on time 

May be misleading in isolation 
(without further information on 
initiation or discontinuation) 
e.g. reporting average percentage 
of dose taken provides no 
information on the continuity of 
therapeutic action 

    

  Therapeutic coverage  

 proportion of patients who 
are exposed to a (minimal 
clinically important) 
therapeutic dose for a 
minimum percentage of 
time 

Typically difficult to justify choice 
of thresholds (for dose and time) 
required in order to define 
measure 
Requires detailed temporal dose 
data (e.g. from electronic 
monitoring device) 

    

Persistence Time between 
first dose and 
treatment 
discontinuation 

Discontinuation rate 

 proportion of patients 
stopping treatment per unit 
time 

Potentially overly simplistic, 
providing no indication of the 
length of time spent on treatment  

 

Quantification of the implementation period is often particularly complicated, as it is 

necessary to compare two time-series: the prescribed drug dosing regimen versus the 

patient’s actual drug dosing history (3). It is common to report within-patient summary 

statistics of this period, but such summary measures cannot fully describe the 

longitudinal implementation period and in isolation, without further information on 

initiation or discontinuation, may be misleading. Patients who take a similar proportion 
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of prescribed drug over the course of a trial, for example, may demonstrate very 

different profiles relating to initiation, discontinuation and implementation (3).  

In the absence of temporal dose data (from electronic monitoring devices), it is not 

possible to supplement these summary measures; if, however, longitudinal dose data are 

available, a rather more informative summary measure which takes into account some 

important properties of the drug is ‘therapeutic coverage’ (defined as the proportion of 

patients who are exposed to a (minimal clinically important) therapeutic dose for a 

minimum percentage of time), but justification for the chosen thresholds of these 

properties may be difficult (37). 

It is not possible or appropriate to define a universal definition of compliance across all 

clinical areas, given the disparate requirements in different clinical settings. The 

assessment of compliance is necessarily disease- and treatment-specific; as such, the 

most appropriate specific definition of non-compliance will depend on clinical features 

(such as the severity, comorbidities and consequences of disease) and the therapeutic 

objective of therapy, as well as (in the case of drug therapy) the duration of action of the 

prescribed drug relative to pattern of non-compliance manifested (known as ‘drug 

forgiveness’) (17).  

2.11. Solutions and initiatives  

Various methods have been implemented in an attempt to improve adherence but with 

only limited success, primarily as they have generally focused only on patient-related 

factors rather than addressing the multiple causes of non-compliance (1, 5). The most 

effective methods have involved a combination of multiple adherence interventions and 

therefore have typically been expensive, complex and labour intensive (14). Generally, 
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however, there has been a marked lack of research into methods to improve adherence 

(38). 

Thus, the prevalence and wide-reaching consequences of nonadherence, along with 

increasing recognition of the need to work with the patient to achieve concordance 

rather than unrealistically expecting the patient to follow whatever is prescribed for 

them, has led to a number of prominent initiatives seeking solutions to the problem. 

The global WHO initiative “Adherence to Long-term Therapies Project” was 

launched in 2001. The resulting report, entitled “Adherence to Long-term Therapies: 

Evidence for Action”, was aimed at health care professionals, managers and policy 

makers, and promotes strategies to improve worldwide adherence rates for chronic 

disease therapies (5). 

The Expert Patient Task Force was set up in 1999 in recognition that patients and 

health care professionals each have their own area of knowledge and expertise with 

respect to treatment of chronic disease (the clinician providing knowledge on diagnosis, 

disease, prognosis, treatment options and probable outcomes, while the patient adds 

expertise on their illness experience, values, preferences and practical considerations), 

suggesting the value of them working together in developing self-management 

programs (or Expert Patient Programs) in order to increase patient’s knowledge, 

confidence and motivation to manage life with a chronic condition. 

The Task Force for Medicines Partnership was created in 2002 by the Department 

of Health to promote the principles of concordance in order to improve health 

outcomes and patient satisfaction in the NHS. Practical initiatives were developed to 

encourage medication adherence, including the introduction of the Motivation for 

Medicines Service (pharmacy based adherence support service to support patients newly 
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prescribed long term medication), Medication Reviews (annual meetings for patients 

taking long term medication with a pharmacist, nurse or doctor in order to discuss 

practical problems or ask medical questions, with the aim of resolving patient’s 

problems with adherence and thus improving effectiveness of medication and reducing 

waste) and other patient adherence support programmes (such as the repeat 

prescription service and the introduction of telephone or online helplines for those 

prescribed certain medicines). Training packages were developed to enable health care 

professionals to develop concordant consultation skills in order to support patients with 

taking medication. 

The ABC (Ascertaining Barriers for Compliance: policies for safe, effective and cost-

effective use of medicines in Europe, http://abcproject.eu/index.php?page=project) 

project was launched in 2009 with the aim of improving patient compliance in Europe. 

Particular aims of the project were to standardise taxonomy of, and identify causes of 

non-compliance, research current compliance management techniques, assess the 

effectiveness of compliance enhancing interventions and develop policy 

recommendations to promote compliance within European health care.  

The ESPACOMP (European Society for Patient Adherence, Compliance, and 

Persistence) association was established in 2009 to promote study into, and ultimately 

provide research information to patients, health care providers, policy makers and 

pharmaceutical researchers on, the reasons for, and clinical and economic 

consequences, of patients’ nonadherence to prescribed medication. 

NICE guidelines (Clinical Guidelines and Evidence Review for Medicines Adherence: 

involving patients in decisions about prescribed medicines and supporting adherence) 

were published in 2009 (21), providing recommendations on increasing patient 

involvement in decisions about medicines and supporting patients in medication 

http://abcproject.eu/index.php?page=project
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adherence: “Patient involvement and adherence are central to medicine-taking yet these 

areas are less well researched than medicines themselves.” The guidelines recognise the 

potential for harm, as well as benefit, from prescribed medication and thus proposed 

initiatives aimed at providing patients with informed choice and supporting them in 

their role as primary decision maker. 

2.12. Summary  

This review of the clinical literature has highlighted that the problem of nonadherence 

with prescribed intervention is widespread and ubiquitous, affecting all areas general 

medical practice, from secondary prevention measures (detecting and treating disease 

that has not yet become symptomatic, for example screening programmes) to 

recommended behavioural interventions and prescribed medical treatments. The wide 

reaching clinical and economic consequences of nonadherence have prompted 

extensive research into its causes, extent and impact spanning more than four decades. 

However, despite these efforts, the prevalence of non-compliance to long term 

treatment has remained stable, with between one third and one half of patients 

demonstrating some form of non-compliance. Recognition that patients are increasingly 

more informed on their illness and medication, often in the case of chronic illness 

becoming experts in their own disease, and are more willing to take responsibility for 

their own health care, has led to a shift in focus from the traditional concept of 

compliance, which implies negative consequences if a patient does not follow the 

prescription of an (assumedly appropriate) intervention by a paternalistic authoritative 

doctor. This assumption makes no allowance for a patient’s circumstances, beliefs, 

values or expert knowledge of their own disease (especially in the case of chronic 

illness), or for the fact that evidence for efficacy of prescribed treatments (e.g. from 

clinical trials) is based on average responses (rather than on individual’s needs) 
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potentially from small, homogenous groups of patients (and thus may not be 

generalisable to general populations) or indeed for the possibility of incorrect or 

harmful treatments or diagnosis. The term “adherence” was therefore introduced, 

aiming to imply more of a shared decision-making relationship with the patient being 

considered an equal partner with the prescribing clinician, but the assumption that the 

patient should follow the determined course of treatment persisted still. As such the 

concept of “concordance” was founded, along with a number of initiatives providing 

guidance to health care providers and policy decision makers on how to improve 

patient’s treatment experience by involving them in the decision making process.  

However, for successful implementation of a concordant relationship, treatment 

providers must have the humility to accept the validity of each patient’s view and make 

the effort to present a more accepting approach to patients, while patients must be 

convinced of the value of moving from passive acceptance (or unspoken rejection) of 

the authority of the clinical profession towards a more active decision-making role 

requiring openness and honesty. In addition, there exist other substantial barriers to 

achieving concordance in practice, in particular limited time in initial and follow up 

consultancy appointments and patients’ reticence to disclose (and lack of perception on 

the part of clinicians to detect) compliance problems. Furthermore, ethical problems are 

introduced when patients’ preferences do not match clinical opinion of the optimal 

course of treatment.  

2.13. Conclusions 

This literature review has highlighted that nonadherence is common across much of 

general clinical practice, most notably in the long term treatment of chronic disease, 

with multifactorial causes and substantial economic and clinical consequences. Inherent 
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difficulties in defining and measuring compliance have historically presented major 

barriers to research into the impact of compliance on patient outcomes. The 

introduction in recent years of a standard taxonomy to describe the multidimensional 

features of compliance has provided a clearer framework on which to base the 

measurement and reporting of compliance, and an increasing appreciation for the need 

to work with patients in achieving concordance in order to lessen the impact of 

nonadherence has led to a number of high profile initiatives. Nevertheless, despite these 

efforts, deviation from prescribed intervention continues to feature heavily in medical 

practice. The next chapter will describe how such issues translate into complications in 

the context of clinical trials.   
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3. Nonadherence in randomised 

controlled trials 

“There could not be worse experimental animals on earth than human beings; they 

complain, they go on vacations, they take things they are not supposed to take, they lead 

incredibly complicated lives, and, sometimes, they do not take their medicine.” (39) 

3.1. Introduction 

The literature review of the previous chapter revealed the widespread and continuing 

problem of nonadherence in general medical practice. In this chapter, focus shifts 

towards the issue of nonadherence to randomised treatment in trials, in particular how 

such nonadherence may be manifested in trials and its impact on design and analysis. 
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3.2. Trial design features 

The randomised controlled trial (RCT) is considered the gold standard study design for 

clinical research, providing the strongest form of evidence available from a single study 

(40, 41). The strengths of the RCT lie in its design features, most notably 

randomisation, blinding and allocation concealment. These design features serve to 

maximise a trial’s internal validity by preventing any biases or confounding, such that 

any differences between treatment arms in terms of outcome can be directly attributed 

to treatments (42).  

Randomisation prevents the introduction of bias which may occur during the 

treatment allocation process if, consciously or unconsciously, recruiting clinicians or 

patients are able to influence choice of treatment, leading to systematic allocation of 

patients with generally poor or good prognoses to the different treatment groups (40). 

In order to protect against such biases, randomisation necessarily involves two 

processes: not only the use of a random allocation sequence (thus preventing any 

predictability of future treatment allocations given knowledge of previous allocations) 

but also the concealment of each treatment allocation until it is actually assigned to the 

trial participant (known as “allocation concealment”).  

Assuming sufficient numbers of recruited patients, randomisation will therefore provide 

baseline comparability between treatment groups, both in terms of known and 

unknown prognostic factors, ensuring fair group comparisons. Additionally, in 

providing an ‘ignorable’ assignment mechanism, randomisation provides a valid 

basis for hypothesis testing (43, 44), allowing the use of probability theory to determine 

the likelihood that the observed differences between treatment groups have arisen 

purely by chance (41). 
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Allocation concealment may, depending on the trial, be extended beyond the point of 

randomisation, such that one or more parties (patients, clinicians, assessors or analysts) 

remain unaware of treatment allocations during the entire trial period, a design feature 

known as “blinding”. Blinding prevents bias occurring when preconceived ideas or 

experience of treatments affect judgment or decisions made during the trial. For 

example, blinding may reduce the probability of co-intervention bias (when additional 

treatment is given to one treatment group only) or diagnostic-suspicion bias (when the 

analysis or interpretation of results is influenced by knowledge of treatment). 

Knowledge of treatment group can also influence decisions made during outcome 

assessment or statistical analysis, for example, on patient withdrawals, outcomes and 

time points to analyse and report. Thus, although patient and/or clinician blinding is 

not always practical, it may be possible to conceal treatment assignment from those 

evaluating and analysing outcomes in order to avoid measurement bias and ensure 

objectivity in statistical analyses (44-46).  

Blinding may be achieved by use of a placebo, an inert substance which appears 

identical to the active treatment under study; in the case of active-controlled trials, 

treatment assignment may be masked using placebos for both treatments, providing a 

“double dummy”. Use of a placebo is necessary to distinguish the placebo effect 

(caused by expectation of treatment) from the true effect of treatment (47). 

These design features which serve to increase internal validity do so, however, at the 

expense of a trial’s external validity. In aiming to ensure robust, valid conclusions, such 

constraints render the trial a somewhat artificial clinical environment, compromising the 

generalisability of its results to the wider population of interest. In particular, features 

(such as the nature of the patient-clinician relationship, and their individual preferences) 



   
   

55 
 

which typically influence a patient’s response to treatment or likelihood of compliance 

may be altered by randomisation and blinding (48). 

Thus, although generalisability (external validity) of trial results is generally based on the 

assumption that the sample is generalisable to the target population, this may not be the 

case. Trial participants may be typically more motivated and interested in the treatment 

than others with the same condition, and this greater medical awareness may mean they 

are more likely to comply with treatment instruction (37). More generally, by influencing 

their behaviour, trial conditions may also impact on a patient’s likelihood of 

nonadherence, altering patterns and rates of nonadherence in the trial compared to 

those that would typically be expected in practice. In general, trial adherence rates are 

usually considered to be higher than those displayed by the general public, despite the 

fact that trial participants may face greater barriers to adherence than those being 

treated in a usual care setting. For example, the trial treatment protocol may be rather 

more involved or demanding, and may be accompanied by more intense follow-up or 

invasive assessments than would be experienced in general practice, all of which can 

hinder participation (11).  

Conversely, the extra contact with health care professionals provided by the trial setting 

may, in itself, provide patients with incentive and encouragement to persevere. Blinding 

may also help to reduce problems with patient drop out, as knowledge of treatment 

allocation may cause disappointment and subsequent patient withdrawal, if they 

perceive their allocation is the inferior treatment. On the other hand, blinding, especially 

by use of placebo, may mean patients are less likely to persevere with treatment, given 

the possibility that they are receiving a dummy drug. Furthermore, patients’ uncertainty 

about the efficacy of a drug being tested in the trial setting may mean that trial 
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participants are less likely to persevere with unpleasant side effects of treatment than 

those who are confident of the efficacy of their treatment.  

Patients may fear embarrassment if they report side effects or withdraw from treatment 

that turns out to be a placebo; indeed, empirical evidence has shown that patients are 

more likely to report side effects or withdraw from treatment if the trial involves an 

active control treatment rather than placebo (49). Similarly, a clinician blinded to 

treatment allocation may proceed more cautiously (for example with dose escalation), 

perhaps monitoring the patient’s response and symptoms more closely than usual (46). 

Thus, unnatural trial conditions may affect a trial participant’s behaviour, which is turn 

may distort their (perceived, reported or actual) trial outcomes, thus potentially limiting 

the reliability and generalisability of the trial’s overall conclusions.  

3.3. Aim of trial 

The impact of such differences from real life presented by the trial setting will depend 

on the aim of the trial. Ultimately the purpose of any trial will be to provide an estimate 

of some aspect of the intervention’s usefulness in achieving its therapeutic goal in the 

population being studied: the estimate of interest may be the treatment effectiveness 

(aiming to mirror how it will be used in practice) or efficacy (use under ideal 

circumstances as prescribed). The importance of a trial’s external validity will therefore 

depend entirely on its research question, which may be broadly classified as either 

pragmatic or explanatory. 

3.3.1. Efficacy trials 

‘Explanatory’, ‘efficacy’ or ‘experimental’ trials aim to determine the biological or 

pharmacological efficacy of an intervention, in order words whether or not it produces 



   
   

57 
 

the expected result under ideal circumstances (48), with the primary purpose of 

furthering scientific knowledge (50). Efficacy, also referred to “proof of principle” (51) 

or “method-effectiveness” (52), measures the effect of the treatment actually 

administered.  

Haynes (11) defines an efficacy trial as one whose aim is to determine whether a 

“treatment does more good than harm to those who take it”, whereas an effectiveness 

trial assesses this in those to whom it is offered. As such, a trial which aims to 

demonstrate the explanatory effect of treatment requires highly controlled conditions; 

thus explanatory trials tend to be designed to prevent blurring of the treatment effect by 

extraneous factors.  

In seeking to determine whether a treatment works in terms of biological processes, an 

explanatory trial will therefore typically restrict patient eligibility criteria to ensure 

recruitment of those thought most likely to respond and adhere to study treatments, 

potentially incorporating pre-randomisation screening using a placebo (thus assuming 

that non-compliance is a general characteristic of the person rather that the drug) to 

weed out non-compliant individuals (32, 44). Thus, such trials typically involve a 

homogeneous population without concomitant medical conditions who have 

demonstrated a degree of compliance prior to recruitment into the trial and are 

therefore likely to remain in the study (42). As such, patients recruited into an 

explanatory trial may not be wholly representative of the general population of interest. 

3.3.2. Effectiveness trials 

The purpose of a “pragmatic” or “effectiveness” trial, on the other hand, is to ascertain 

whether a treatment which has previously been shown to be efficacious actually works 

in real life conditions. Pragmatic trials are therefore said to measure the effectiveness of 
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an intervention and to inform choices between treatments (50). Effectiveness is also 

known as “proof of practice” (51) or “use-effectiveness” (52) because it measures the 

benefit observed under the usual conditions of use. The participants of a pragmatic trial 

will therefore tend to be more representative of the entire intended target population, 

and as such may demonstrate varying degrees of compliance and be taking concomitant 

medications for other medical conditions (42). 

Effectiveness of treatment incorporates not only the true efficacy of treatment but also 

the compliance with the treatment, and thus regardless of the actual efficacy of 

treatment, effectiveness of treatment will decrease as compliance decreases (47). The 

pragmatic estimate inherently includes the effect of the acceptability to the patient, 

which is regarded as an inseparable part of the evaluation of treatment effectiveness 

(53). 

Schwartz and Lellouch (54) were the first to make a “distinction” between explanatory 

and pragmatic trials.  Schwartz explains that treatments are administered within a 

particular context (mode of administration, side effects (and the consequential 

treatments), diet, auxiliary care, associated treatment). An explanatory approach requires 

that these contextual factors are balanced across randomised groups in order that the 

only difference between groups is the exact treatment received. In a pragmatic trial, 

however, optimal levels of these factors are set separately for each treatment group in 

order to inform a choice between two treatment modalities, such that these contextual 

factors become part of the treatment package. 

Although trials may be broadly classified as pragmatic or explanatory, efficacy and 

effectiveness are not discrete, independent quantities, but instead exist on a continuum, 

precluding any sensible dichotomisation (48). Rarely will a trial adopt an entirely 

pragmatic or explanatory approach; for example, even the most pragmatic trial design 
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will typically include collection of more outcome data than in usual practice (55). The 

degree to which a trial demonstrates evidence of efficacy or effectiveness should 

therefore be measured on a sliding scale; there are potential characteristics that help to 

distinguish pragmatic and explanatory elements of a trial and a number of tools exist for 

determining where on this continuum a trial lies. 

Gartlehner et al (48) proposed the use of a simple, validated tool composed of seven 

criteria to distinguish explanatory and pragmatic trials, namely the population and care 

facilities, eligibility criteria, principal outcomes, treatment modality and study duration, 

adverse event assessment, sample size considerations and analysis population. 

Alternatively, the PRECIS (PRagmatic-Explanatory Continuum Indicator Summary) 

wheel is based on ten domains (outcomes, patient adherence, practitioner adherence, 

primary analysis, eligibility criteria, flexibility of experimental/control interventions, 

practitioner expertise with interventions, blinding) and is intended to aid researchers in 

designing trials in line with their purpose (55).  

Trial design features therefore determine the balance between efficacy and effectiveness, 

ideally at a point which provides satisfactory internal and external validity relative to the 

trial aims. However, a satisfactory level of interval validity is required in order to achieve 

external validity (48); thus all trials require at least the basic elements of trial design, 

such as randomisation and allocation concealment, to ensure validity of its conclusions. 

As such, the setting of even the most pragmatic of trials will inevitably be artificial in 

some respects. 

3.4. Manifestations of treatment nonadherence in trials 

One such inevitable difference between a patient’s clinical care in a trial and in practice 

is the requirement to follow the trial protocol, which contains specific details on patient 
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recruitment, treatment regimens, assessment, outcomes, follow up and analysis, 

providing a clear reference to permit accountability and reproducibility of the trial’s 

design, conduct and analysis. Compared with a regular clinical setting, an added 

dimension to the problem of nonadherence arises in clinical trials because of the 

required adherence of both trial participants and treatment providers to the potentially 

stringent trial protocol.  

Thus subjects may never receive their allocated treatment, may receive the intended 

treatment but comply only partially, or may change during the course of treatment from 

one treatment arm to another. As in general clinical care, premature termination of (or 

non-persistence with) treatment is a common problem in trials of long term patient-

administered treatments, potentially exacerbated by overly demanding treatment 

regimens, treatment side effects, deterioration in patient’s condition or lack of perceived 

benefit (56). Similarly, partial non-compliance occurs when patients deviate from 

randomised treatment protocol, for example forgetting to take occasional doses or 

taking drug holidays. Thus trial participant nonadherence may take the form of 

premature participant withdrawal from the study (commonly referred to as withdrawal 

of consent or participant discontinuation of the study) or discontinuation of treatment, 

either permanently (often referred to as withdrawal from treatment) or temporarily 

(treatment interruptions). Other forms of nonadherence include failing to follow 

treatment protocol as regards timing or dosage of randomised treatment, or failing to 

initiate allocated treatment at all.  

Furthermore, in a trial setting, “adherence” comprises more than the patient simply 

following a prescribed treatment regimen or therapeutic intervention; it also includes 

cooperation on the part of treatment providers and assessors in following the 

procedures as specified in the treatment protocol. Clinician nonadherence typically 
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occurs when, based on their own experience and judgement (relating to side effects or 

efficacy of treatments) or in response to changes in the patient’s state or other 

intervening complications, clinicians may make changes to a patient’s prescription from 

those stipulated by the treatment protocol (57). For example, treatment providers may 

deviate from protocol when administering or prescribing treatment, by changing the 

type, dose or schedule of drug prescribed or failing to deliver treatment according to the 

procedure specified in the protocol (for example, during a surgical operation).  

“Crossover” between randomised treatment arms, also known as “contamination” or 

“intrusion” (58), may occur for reasons entirely unrelated to a patient’s prognosis or 

condition (for example, as a result of dispensing errors). More commonly, patient 

preference or interference on the part of the clinician, due to differential expectation of 

treatments, may result in immediate switches to the alternative treatment arm following 

randomisation. However, it may be necessary to permit switches to alternative 

treatment arm immediately following randomisation for practical reasons (for example, 

if the randomised intervention is not feasible). Treatment crossover to the alternative 

trial treatment, or non-trial treatments, during the course of the trial may also be 

permitted or encouraged in the treatment protocol for medical reasons, for example 

following disease progression, intolerable side effects or lack of efficacy. Indeed time to 

treatment withdrawal may well be a primary outcome of interest (53, 59). 

Contamination may occur simply as a result of being recruited into a trial. For example, 

receipt of the extra attention or information about the aim of a trial may induce a 

certain therapeutic effect, especially in behavioural intervention trials; Simon (60) 

describes patients in the placebo arm of a depression trial who experienced benefits 

simply as a result of the extra contact with trial staff. Contamination may also result 
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when active treatment is readily available to those in the control group, for example, 

over the counter at a pharmacy (11). 

The pattern and nature of departures from randomised treatment exhibited in a 

particular trial will depend on the form of randomised treatments being compared. 

Thus, participant compliance may be all-or-nothing (when treatment is given at a single 

time point or when treatment changes only occur prior to initiation of treatment, rather 

than during the course of treatment) or partial, fluctuating in a time-dependent manner 

(for example, when patients occasionally forget to take a dose of medication or take 

longer drug holidays). Levels of adherence may be constant or change quantitatively 

over the course of the trial. Treatment changes may take a variety of forms; treatment 

switches may take place in one treatment arm only (for example, when control patients 

are given the option switch to the experimental treatment on disease progression) or 

may be very complex (for example, when all patients are permitted to switch to the 

alternative trial treatment or external non-trial treatments). 

Furthermore, in a trial setting, adherence is required, not only in relation to the 

provision of treatment but all other aspects of trial design, including the follow up 

assessments necessary to permit outcome determination and appropriate inclusion of 

the patient in the trial analysis. As such, in addition to previously discussed 

manifestations of treatment nonadherence, nonadherence to the follow up protocol in a 

trial setting may also occur if a patient fails to provide or receive outcome assessments. 

Missing outcome data may occur for technical or practical reasons or because of loss to 

follow up. Patient withdrawal from treatment often coincides with premature 

withdrawal from the trial, as outcome data are often collected at the time of treatment 

delivery (for example, when patients receive treatment and provide follow up 

information at the same clinic visit).  
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3.4.1. Deviation from follow up protocol: missing outcome data  

Manifestation of nonadherence in a trial setting therefore generally takes the form of 

deviation from randomised treatment regimen, as defined in the treatment protocol 

(thus referred to herein as “deviation from treatment protocol”) or absence of outcome 

data (or “deviation from follow up protocol”).    

Missing outcome data may be indicative of undetected nonadherence to treatment 

assignment in a trial, because failure to adhere to assigned treatment protocol is often 

associated with subsequent failure to provide follow up information. Therefore 

treatment protocol deviations may also be manifested as (or masked by) absence of 

outcome data, which is generally caused by withdrawal of patient consent, loss to follow 

up (LTFU) or missing assessments. Patients may become unavailable for follow up or 

withdraw their consent to taking part in the trial for reasons related or unrelated to their 

condition or treatment. For example, a patient’s condition may improve (leading to a 

perception that they no longer require treatment) or worsen (such that they believe the 

treatment is detrimental) or they may simply move away for non-medical reasons. 

Outcome data can be assumed to be missing completely at random (MCAR) if the 

reason for missingness is entirely unrelated to the patient’s characteristics or outcome at 

the time of drop out, for example when a patient’s medical notes go missing. In such a 

case, the missing outcomes can be considered as a random selection from all trial 

participants’ outcomes and therefore their exclusion from analysis will not distort trial 

conclusions.  

If, on the other hand, missingness is related to certain factors which have been 

observed and recorded prior to drop out (for example, if the patient’s condition 

improves or deteriorates significantly), the outcome data are said to be missing at 
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random (MAR) for all such patients; the assumed dependence between the missing 

and observed outcome data in patients with these characteristics can be used to predict 

or appropriately account for these missing outcomes. 

When missingness is related to some unobserved event occurring following an individual’s 

final follow up (for example, a sudden unexpected disease relapse), data are said to be 

missing not at random (MNAR). The probability of bias resulting when such data are 

excluded from analysis cannot be assessed or ruled out, because of a lack of information 

on the reason for missingness; as such, the missing outcome data cannot be modelled or 

predicted without risk of bias. 

Access to information on the reasons for missing data is therefore vital in order 

to determine how best to approach the analysis of missing outcomes, because 

without explicit records on the reasons for missingness, it is not possible for analysts to 

test whether data are MAR or MCAR. However, as previously discussed, given that 

outcome determination in a trial setting often occurs at the same time as receipt of 

treatment, discontinuation of treatment typically coincides with loss to follow up; this is 

particularly problematic given that treatment discontinuation is typically related to a 

patient’s clinical condition (60).  

Missing outcome data may therefore cause bias, even in the case of an analysis carried 

out according to randomisation (an intention to treat, ITT) analysis (40). A typical 

complete case (or “respondent-based”) analysis which excludes patients with 

missing outcomes, or censors at the point of termination of follow up, will be unbiased 

only if the reason for missing outcome is unrelated (entirely or within prognostic factor 

group) to the risk of the outcome at the point of loss to follow up (in other words, 

MCAR or MAR respectively), such that the average prognosis of those without follow 

up information does not differ between randomised groups (60). This is typically 
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unlikely to be the case, as loss to follow up is often related to a patient’s state; 

furthermore, it is usually difficult to verify whether or not it is true, given that missing 

outcome determination typically coincides with complete loss to follow up relating to all 

other patient factors. As such, the strict definition of an ITT analysis requires complete 

follow up on all patients (61). 

Thus any exclusions, whether due to poor compliance or lack of missing data will 

potentially put into jeopardy the balance provided by randomisation: even if it is 

possible to demonstrate that groups remain balanced in terms of measured prognostic 

factors following such exclusions, this will not be sufficient to show balance on all 

factors. Even when rules for exclusion of participants are stated in advance (in statistical 

analysis plan or protocol), this does not preclude bias occurring, because no account is 

taken of the possible association between the reason for exclusion and outcome.  

3.5. Complications in analysis  

Nonadherence to any aspect of the trial protocol will present a challenge when 

analysing data. The chosen method of analysis is crucial to the interpretation of results 

from a trial, especially when dealing with deviation from protocol. In particular, 

deviation from treatment protocol will impact on the interpretation of trial analyses 

because the underlying assignment mechanism (randomisation), which forms the basis 

for unbiased hypothesis testing, no longer reflects the actual treatment received in some 

capacity.  

The decision on how to approach analysis in the presence of such deviations is 

therefore crucial to the interpretation of trial results. If analysis is naively carried out 

according to treatment received rather than randomised allocation, the advantages of 

randomisation are lost such that the trial results and conclusions are potentially 
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rendered invalid. However, if all deviations are ignored in analysis and analysis is carried 

out according to randomisation, inference can be made only on the effectiveness of the 

treatment policy or prescription, rather than on the biological efficacy of treatment actually 

received. The most common alternative approaches to analysis are considered in the 

next section.  

3.6. ITT, PP and AT analyses  

Analysis in the face of treatment protocol deviations may therefore take a number of 

forms. 

Analysis according to randomisation, in other words according to how the patient was 

intended to be treated (hence the term “intention to treat”, ITT), ignores any such 

deviations, such that patients are simply analysed according to their randomised 

allocation regardless of whether they received or deviated from this allocation. In 

retaining randomised allocations, an ITT analysis maintains the balance afforded by 

randomisation, thus preventing selection bias and assuring a sound basis for statistical 

hypothesis testing. In the presence of any deviation from assigned treatment, however, 

the interpretation of such an analysis is limited to an assessment only of the 

effectiveness of treatment policy or of the treatment prescription, rather than a causal 

estimate of treatment received. 

When the efficacy of treatment received is also of interest, alternatives to ITT are 

required, as inclusion of non-adherent participants in ITT analysis generally diminishes 

the estimated treatment effect and thereby resulting in a biased assessment of treatment 

efficacy (61). Analysts must however be mindful of the potential for bias resulting when 

analysing according to anything other than randomised allocations. A simple but 

statistically naïve method of analysis may involve analysis of patients in their 
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randomised group only if (or during the period during which) they follow their 

randomised allocation, thus excluding or censoring (terminating the time at which the 

participant was included in the analysis as being “at risk” of the event of interest at the 

point of deviation from the treatment protocol, which is possible when undertaking a 

survival analysis for an outcome which is time to some event) patients who deviate 

from randomised treatment protocol (hence the term “per protocol” (PP) analysis).  

Exclusion of participants from analysis in this way affects both the internal and external 

validity of a trial (62). A patient’s ability or willingness to persevere with treatment is 

highly likely to be correlated with their condition and other lifestyle factors; indeed, 

non-compliant patients have been shown to have worse prognosis than compliers in 

their respective randomised group, even when administered with placebo (9). As such, 

by excluding some definition of “non-compliant” participants, a PP analysis will affect 

the generalisability of a trial, as those who persevere with treatment protocol represent a 

non-random sample of the original group of trial participants.  

Furthermore, such an analysis is likely to introduce selection bias and thus also affect 

the internal validity of a trial, because the various treatment protocols being compared 

will present different challenges to adherence. This is especially likely when the 

definition of “compliance” varies between treatment arms, reflecting the different 

adherence requirements of the treatment packages. As such, the residual compliant 

subgroups of each randomised group are unlikely to be comparable. Therefore, unless it 

can be demonstrated that the average prognosis of those who deviate from treatment 

protocol does not differ between randomised groups, a PP analysis will likely upset the 

balance provided by randomisation, casting doubt on the validity of its conclusions (60).  

However, given that those intermediate confounding factors which influence a patient’s 

compliance status as well as their prognosis (and hence outcome) typically remain 
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unmeasured (and may arguably even be unmeasurable), it is often impossible to 

compare the profiles of these factors between groups. Therefore, even if the baseline 

characteristics, and rates and reasons for treatment withdrawals or changes, appear 

relatively similar between treatment arms, it is not possible to ascertain whether the 

compliant subgroups remain balanced with respect to unmeasured prognostic factors. 

The results of any such PP analysis are therefore highly likely to be unreliable because 

of these hidden confounding or selection effects (63).  

Exclusion of patients due to deviation from treatment protocol reduces the statistical 

power of a study by reducing the sample available for analysis. A variation on (but one 

even more flawed than) PP analysis used to overcome this problem of reduced power is 

analysis according to treatment received (or an “as treated” analysis). As treated (AT) 

analyses, whereby patients are analysed according to the (predominant) treatment 

received, are never likely to be valid as randomisation is disregarded entirely (57).  

3.6.1. Healthy user bias 

This (so called “healthy user”) bias associated with compliance analyses is supported by 

evidence demonstrating that those with better compliance behaviour tend to have better 

clinical prognosis that those with poor compliance, regardless of treatment received (e.g. 

active or placebo treatment). This effect has been demonstrated in varying clinical 

setting with disparate drug regimens, independently of whether or not there is an 

apparent clinical effect of drug (or of a drug/compliance interaction), suggesting 

generalisability of this phenomenon. (64)  For example, in the Coronary Drug Project 

Research Group (65), non-compliers in the placebo group experienced nearly double 

the mortality rate compared to compliers (28% versus 15%, respectively), and in the 

Beta Blocker Heart Attack Trial, poor adherers had an increased risk of death whether 

they were taking active treatment (OR=3.1) or placebo (OR=2.5) (66). 
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Epstein (64) discusses potential reasons for this apparent relationship between 

compliance and outcome: first, the psychological impact of complying with medical 

instruction may actually enhance the wellbeing of the patient, either solely because of 

the placebo effect (expectation that the drug will work leads to improvement in a 

patient’s condition) or because of the mediating effect of patients’ changes in habits or 

actions which result from the positive feelings towards taking treatment (for example, if 

such positivity leads patients to alter other lifestyle habits which in turn influence their 

outcome). Secondly, the relationship between compliance and outcome may be 

spurious: either because of the method in which compliance information is collected 

(for example, if those faring better are more likely to provide compliance data or be 

labelled as “compliant”) or if a patient’s ability or likelihood to comply is determined 

directly by their prognosis (either physically or psychologically) or their innate 

personality traits (which in turn affect their outcome), and thus the apparent 

relationship between compliance and outcome merely reflects the underlying link 

between prognosis and outcome. Finally, the relationship between compliance and 

outcome evident in both treatment and placebo groups may be caused by different 

mechanisms – for example, in the active treatment group, this association may be due to 

the true effect of drug, whereas in the placebo group, other factors (such as those listed 

above) may have improved compliant patients’ outcomes – though it may seem unlikely 

that these different mechanisms would lead to similar results between non/compliers in 

both randomised groups. 

Thus, although it may tempting to base any validity of such a comparison on assessment 

of any differences in baseline factors between compliers and non-compliers, an 

apparent similarity in baseline prognostic factors is not sufficient to justify such an 

assumption. Indeed, analysis exploring the relationship of baseline prognostic factors 
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with compliance in a number of trials demonstrates that adjustment for important 

prognostic factors often fails to explain for the variation in treatment effect attributable 

to compliance features (65, 67, 68). 

3.7. Analysis beyond ITT 

Analysis according to ITT provides an unbiased estimate of treatment effectiveness, but 

only in terms of the conditions under which the trial was conducted and only if 

complete outcome data are collected on all randomised patients. As such, there may be 

may be a number of reasons why it may be necessary to consider analysis methods 

beyond ITT. 

The choice of trial analysis should be determined according to the aim of the study and 

the ultimate research questions of interest. In many trials, the effectiveness of treatment 

will be of interest to ascertain whether the intervention being studied actually works in 

practice. Indeed, analysis according to randomisation is generally regarded as the most 

appropriate for primary trial analyses, as it mirrors the trial design and maintains all the 

advantages of randomisation (69).  

However, it has long been recognised that trial results will inevitably be somewhat 

artificial; Bradford Hill in 11th edition of Principles of Medical Statistics wrote: “at its 

best … a trial shows what can be accomplished with a medicine under careful 

observation and certain restricted conditions. The same results will not invariably or 

necessarily be observed when the medicine passes into general use; but the trial has at 

the least provided background knowledge which the physician can adapt to the 

individual patient.” Furthermore, ITT analysis will only be appropriate if the level of 

acceptability of treatment in a trial is generalisable to its future use in clinical practice: if 

non-acceptability in the trial setting is due to uncertainty about randomisation or 
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consent to trial procedures, then any problems regarding patient acceptability of 

prescribed treatment in the trial will not be relevant to clinical practice (53).  

As such, it could be argued that ITT analyses from even the most pragmatic of trials 

may not even adequately estimate effectiveness, and thus such analyses are not 

providing answers to anyone’s questions. This argument may be extended to suggest 

that instead a trial should provide an estimate of true efficacy, undiluted by the issues 

and complications presented by trial conditions, which can then be adapted to mirror 

alternative and more realistic projected situations. Indeed, it is arguable that efficacy is 

more useful to medical decisions than effectiveness; thus trials should be designed and 

analysed to provide causal estimates to inform clinical judgment (52). As such, it may 

arguably useful to collect and report information on the levels of treatment adherence in 

all trials, in order to facilitate accurate interpretation of the trial results and potentially to 

enable compliance-adjusted analyses. 

Trials designed with explanatory aims tend to impose conditions with the aim of 

minimising adherence problems, for example by recruiting only patients who have 

demonstrated a commitment to compliance (identified perhaps using a pre-

randomisation placebo screening period) and by specifying restrictions on treatment 

changes in the treatment protocol. However, the prevalence of treatment nonadherence 

observed in treatment practice will inevitably be carried into even the strictest 

explanatory trial setting. In addition, some trial features which aim to maximise validity 

of results may in fact impact negatively on adherence. For example, in the case of a 

blinded trial, if a participant thinks there is a chance they may be on control treatment, 

they may be less inclined to persevere, particularly if they have previously received the 

control treatment without success; in practice, however a patient may be more likely to 

persist with a novel treatment, given the associated expectation of their known 
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treatment. Therefore analysis of even the strictest explanatory trial will likely need to 

feature treatment protocol deviations that must be adjusted for in order to accurately 

estimate treatment efficacy. 

Similarly, a trial may necessarily have a pragmatic design for practical, ethical or 

recruitment considerations, but the causal estimate of treatment may nevertheless be of 

primary interest. For example, treatment switches between randomised treatments may 

be permitted or encouraged in the protocol for reasons such as inefficacy (for example, 

on disease progression), toxicity or other adverse effects. Although such treatment 

changes are not technically deviations from treatment protocol, switches from original 

randomised treatment will dilute the ITT treatment effect as an estimate of treatment 

efficacy, because of merged treatment experience of the randomised groups. Therefore, 

depending on the research question, it may well be of interest to factor out such 

treatment changes in a causal analysis. 

3.7.1. Differing research perspectives 

As such, even when ITT is considered the primary analysis, there may be interest in 

secondary causal analyses, especially because of the typical mix of explanatory and 

pragmatic traits within a single trial, thus warranting several different analyses (70). 

Indeed, Godwin et al (42) advocate the collection of compliance information in both 

pragmatic and explanatory trials, but for different reasons: in an explanatory trial, 

compliance may be expected to be high, given the use of a homogenous population 

likely to comply with treatment and particular efforts typically often employed to 

maximise adherence to treatment protocol. If compliance data are collected and a high 

level of compliance is observed, the results of the ITT analysis will closely estimate the 

efficacy of treatment within that patient population. In a pragmatic trial, it is important 

to collect compliance data, in order to ascertain whether an intervention will be adhered 
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to in practice; if not, even a highly efficacious treatment may be rendered ineffective. 

However Godwin suggests that efforts to encourage adherence in a pragmatic trial 

should not exceed what would be given in usual clinical practice, in order to ensure a 

realistic level of compliance among the trial participants and thus externally valid results.   

Therefore, even when ITT is considered the primary analysis, it is often appropriate to 

at least measure and report on, if not adjust for, compliance. The chosen method of 

analysis will depend entirely on the focus of the particular research questions of interest. 

The focus of the research question will in turn depend on the perspective of the party 

interested in the causal estimate. 

Patient perspective 

Adjustment for treatment deviation is important, not least for motivated patients who, 

when offered a new treatment will primarily want to know the long term and 

unadulterated treatment effect of treatment taken as directed, rather than the population 

average distorted by nonadherence. This will be especially important from a patient’s 

point of view if the treatment changes or withdrawals are due to patient choice rather 

than side effects (71). Indeed, such interest in treatment efficacy is becoming 

increasingly important, as patient decisions based on informed choice in health care 

become more widespread (72). 

Public health planning 

The compliance rates or patterns observed in a trial are not guaranteed to reflect those 

in general practice. First, trial participants recruited into a trial may differ from the 

general target population, in obvious and less obvious ways. Recruitment of 

homogeneous patient groups according to strict eligibility criteria makes trial results less 

generalisable, but so too might the subconscious motivation provided by inclusion in 
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the trial. Even when trials participants’ characteristics appear representative of their 

patient group, publication of positive trial results may increase patient’s confidence in 

the drug when the trial is complete, thus impacting positively on compliance rates in 

general medical practice, compared with possible suspicion of trial patients aware of the 

unproven treatment efficacy (73). Indeed, if the treatment is widely publicised as a 

promising treatment, in practice patients may be encouraged and motivated to persevere 

such that the benefit seen in practice mirrors that of the true efficacy, rather than 

effectiveness, of the treatment in the original trial (74). In such cases, it would be of 

interest to adjust for these various compliance rates in order to obtain a more realistic 

estimate of treatment effectiveness in practice. 

Furthermore, the policy of treatment change implemented in a trial (for example, the 

factors determining treatment changes) may differ from that used in practice. Although 

treatment switches will be necessary in clinical practice, the specific standard or non-

trial second-line treatments that patients switch to in the trial setting may be obsolete by 

the time the trial results are published. An ITT treatment effect will relate only to the 

patterns and types of treatments used in the trial, which may be different to those 

expected in practice, adding to the argument for additional efficacy analyses to 

supplement ITT analysis. 

Likewise, results that are generalisable to one community or setting may be less so in 

others with different resources or policies; as such, for the purpose of public health 

planning, it may be of interest to policy makers to obtain adjusted trial treatment 

effects assessing efficacy in a different setting which exhibits different patterns of 

compliance (73). 
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3.7.2. Anticonservative ITT estimation 

Furthermore, although it is generally accepted that ITT provides a conservative estimate 

of treatment effect (by providing an estimate that is potentially closer to the null effect 

than the truth, thereby ensuring the true treatment effect is not exaggerated), this is not 

always true. In the case of the most common trial design, which aims to ascertain 

whether one treatment is superior to another and is thus called a superiority trial, a 

conservative estimate would mean that the treatment effect (e.g. the estimate of the 

difference in the effect of treatments) would be smaller than in truth, and thus is not 

exaggerating the true treatment effect. However depending on the pattern of deviations 

from treatment protocol, this may or may not be the case. For example, if the pattern of 

treatment changes makes the treatment experience of the two randomised treatment 

arms more similar than they would be if everyone had followed the treatment protocol 

(for example, if some patients switched to the alternative trial treatment), then in 

ignoring these treatment departures, the ITT treatment effect estimate would reflect this 

greater similarity in the treatment experience and would indeed provide a conservative 

estimate. However, if the pattern of treatment changes in the trial results in an 

exaggerated difference between the treatment experience of the randomised arms, the 

ITT estimate will be biased away from the null, providing an anticonservative estimate 

of treatment efficacy. This would occur if patients from the more efficacious treatment 

arm were able to switch to a non-trial treatment which was in fact even more 

efficacious, thus making the observed difference between treatment arms even greater 

than it would be if this type of switch had not occurred. The direction of bias may be 

difficult to predict particularly if numerous options are available to patients, for example 

when patients receive second-line treatments on cancer progression. 
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ITT is generally accepted as providing a conservative assessment of treatment efficacy, 

as non-compliance on the whole leads to greater similarity between treatment arms than 

originally intended (for example, when treatment switches occur between trial 

treatments or when premature discontinuations of treatment occur in both treatment 

arms) and as such, the inclusion of non-compliers leads to a diminished treatment effect 

compared to the true efficacy of one treatment relative to the other. However, there are 

a number of analysis scenarios for which this diluted treatment effect renders ITT an 

anti-conservative method of analysis.  

Equivalence trials 

When a trial is designed to demonstrate equivalence between two treatments, or non-

inferiority of a certain treatment (as opposed to the standard superiority trial, designed 

to demonstrate that one treatment is superior than its comparator), the merging of 

treatment experiences of the different randomised treatment arms resulting from the 

inclusion of non-compliers in analysis will lessen the observed difference between 

treatment outcomes, thus increasing the probability that the null hypothesis (of a 

difference between treatments) will be rejected; in other words, ITT increases the 

probability of falsely concluding equivalence (or non-inferiority) between treatments.     

Harms analyses  

For similar reasons, the analysis of harms outcomes using an ITT approach is not 

recommended, as a diminished treatment effect in a harms analysis will be anti-

conservative, making a harmful treatment more likely to be accepted as harmless. As 

stated by Lewis (75), “a pure ITT approach to the analysis of safety simply adds to the 

risk of failing to identify potential safety problems, and is therefore never advocated”. 

Instead, the ICH GCP guidelines (61, 76) suggest that analysis of harms data should be 
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according to treatment received, in other words all participants who received at least 

one dose of a treatment should be included in that treatment group for harms analyses, 

though there is no consensus on this issue (62). 

In particular, ITT analysis may distort the risk of harms that may be expected in 

compliant individuals. By averaging across all patterns of compliance in a trial, an ITT 

analysis will underestimate harms in patients who exhibit certain incorrect dosing 

patterns (for example, when drug holidays cause drug resistance or rebound or 

recurrent first-dose effects) while overestimating risk in the majority of patients who 

take the drug correctly (caused by a minority of patients who seriously deviate from 

treatment prescription) (20). If variable dosing patterns can cause serious harm, then 

disregard of non-compliance when considering the causes of such adverse events may 

lead to an incorrect conclusion regarding the safety of the intervention when taken as 

prescribed.  

3.7.3. Statistical issues 

There are numerous other statistical reasons why compliance information should be 

collected in order to allow analyses beyond ITT. 

Power 

The dilution effect of non-compliance in an ITT analysis affects the power of 

superiority trial analyses to a surprising degree. For example, a trial where only half of 

trial recruits were fully compliant may need up to five times as many to be recruited as 

for a trial with complete compliance (11) to achieve necessary power. As such, 

projections of anticipated compliance rates should be accounted for in sample size 

calculations; likewise, however, the potential role of compliance in diminishing 

power of the ITT analysis should also be investigated: if adherence to treatment 



   
   

78 
 

protocol is assumed to be high and is therefore not measured as part of the trial, the 

lack of an observed treatment benefit may simply be due to the dilution of the true 

treatment effect caused by poor adherence to the randomised treatment rather than due 

to true inefficacy of treatment (11). Adjusting for compliance may provide more realistic 

confidence interval limits for an observed treatment effect (68).  

Meta-analysis  

Another argument for reporting adherence information in trial publications is the need 

to consider variation in adherence rates across trials in a systematic review. Without 

consideration of the degree of compliance expected in a trial, the true efficacy of 

treatment may be masked by incorrect treatment-taking patterns; thus consideration of 

compliance in statistical analyses may also help to explain variations in treatment effects 

over time or between different participant subgroups or indeed between trials in a 

meta-analysis (MA) (73). Differences in compliance rates between trial settings will 

cause heterogeneity between ITT analyses, as ITT estimates mix the true efficacy with a 

measure of patient acceptability and compliance. Therefore, given that undiluted 

estimates of true efficacy are likely to be more constant across trials than ITT results, 

estimation of undiluted treatment efficacy may therefore help to reduce variability 

between trial results in a MA (77). Therefore, even when compliance adjustment is not 

relevant for trial aims, it is nevertheless important for trialists to report on the extent of 

non-compliance in their trial, using clinically relevant measures of compliance, such that 

potential meta-analysts can interpret any heterogeneity with respect to reported levels of 

compliance.   
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3.7.4. Drug development 

Despite the prevalence of adherence problems in practice and the impact of adherence 

on treatment effectiveness, adherence to treatment has largely been ignored in the 

development of new treatments (22). This has been blamed on the unreliability of 

compliance measurements typically used in trials (for example, pill counts and 

biochemical measurements of drug, both of which may give distorted indications of 

longterm adherence) and the suspicion on the part of regulatory bodies regarding bias 

that may be introduced with any causal analyses that do not mirror randomised 

allocation. Indeed, Urquhart (22) argues that trial statisticians’ reliance on ITT has 

fuelled this problem further. In addition, it may not be regarded in the interest of 

pharmaceutical companies to disclose adherence information regarding with their 

products, for fear of highlighting patient non-acceptance of, or difficulties with, 

treatment.  

It is imperative, however, for compliance to be considered when policy makers are 

choosing between treatment options. A treatment found to be efficacious in strict trial 

conditions may not necessarily demonstrate treatment effectiveness under usual 

conditions of care. Thus one treatment may be deemed preferable to an alternative 

simply on account of patient acceptance, for example because of less frequent dosing, 

less invasive administration methods or combinations preparations (reducing the 

number of separate medicines taken) (78). Indeed, Urquhart  (22) discusses how 

modern drug development rarely leads to a first ever treatment for previously 

untreatable conditions, but instead tends to identify treatments that may serve as 

alternatives to already available treatment modalities, increasing the importance of 

considering qualities such as patient acceptability and adherence. 
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Drug labelling 

Adjustment for treatment changes is particularly pertinent as regards drug labelling, 

which is informed primarily from clinical trial data. Given the evidence for drug 

underdosing in general practice among patients with chronic diseases, it is not unlikely 

that drug trials will also suffer from such underdosing, leading to a diluted average ITT 

treatment effect relative to the full-dose effect, known as the ‘dilution effect’ (22). Drug 

labelling based on ITT results from clinical trials may therefore mislead those patients 

who intend to follow the treatment course as prescribed as to the likely drug outcomes 

(15, 22).  

Cost-effectiveness analyses  

Factors relating to adherence are also particularly pertinent for public health planning, 

given their impact on cost of treatment in actual practice. Nonadherence impacts on 

health care economics by its association with various related costs, for example, those 

associated with initial drug acquisition and utilisation of health care resources to deal 

with consequences of nonadherence; indeed, costs resulting from nonadherence may 

outweigh those related directly to the original treatment provision. For example, 

reduced efficacy of a treatment following nonadherence to the prescribed regimen may 

incur substantial additional costs due to requirements for extra clinical consultations, 

monitoring and testing, and hospitalisation; treatment costs may also increase because 

of unnecessary increases in dosage or switching to alternative (usually more expensive) 

drugs. Thus, a more expensive treatment may work out cheaper than its alternatives 

simply because of fewer adherence problems. As such, compliance should always be 

considered in health economic evaluations of drug cost-effectiveness (78), for example 

by exploring the impact of changes in non-compliance rates on trial cost-effectiveness 

analyses (69). 
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Pharmacokinetic and pharmacodynamic modelling  

Compliance data may also be useful in pharmacokinetic and pharmacodynamic 

modelling. Pharmacokinetics (PK) may be simply defined as what the body does to the 

drug (in terms of the extent and rates of absorption, distribution, metabolism and 

excretion) as opposed to pharmacodynamics (PD) which may be defined as what the 

drug does to the body. PK/PD modelling combines these two disciplines to model the 

time course of the drug concentration and action in the body, for example through the 

use of dose-response curves. In providing exact information on both timing and 

quantities of doses, MEMS provide the required input parameters for PK/PD 

modelling, whereby the dosages of drug taken into the body over time are related to the 

drug concentration and action in the body. Availability of MEMS data therefore avoids 

the need to rely on the unrealistic and untestable assumption that all patients necessarily 

followed the treatment schedule according to prescription (22, 37). Furthermore, 

information on when doses were ingested along with biochemical measures of drug 

absorption allows assessment of potential variation between individuals in associations 

between these factors (23). 

Pharmacogenetic modelling 

Compliance information is also relevant for pharmacogenetic (PG) modelling. 

Genetic testing may be used to inform personalised treatment choices for patients by 

determining for a particular individual the appropriate dose of treatment (as in (79)), or 

by predicting the likelihood of treatment efficacy (as in (80)) or the risk of adverse drug 

reactions or toxicity (as in (81, 82)). Information on treatment discontinuations and 

compliance may be input into a PG model to identify patients for whom a certain 

treatment is particular efficacious and who therefore may be encouraged to persevere 

with treatment despite unpleasant side effects. Alternatively, PG modelling may use the 
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genetic profile of patients to identify those more able to tolerate adverse drug reactions, 

thus increasing their benefit-harm ratio and warranting prescription of otherwise overly 

toxic drugs (83).  

3.8. Introduction to causal estimation 

If trials are carried out perfectly, with perfect randomisation and blinding, full follow up 

and complete adherence on the part of all patients and treatment administrators, 

analysis according to randomisation will provide an unbiased estimate of the causal 

effect of treatment as received compared to control. However, as discussed in this 

chapter, complications often arise in trials as a result of nonadherence to treatment or 

follow up protocols, leading to changes to treatment or incomplete data. Before 

considering, in subsequent chapters, some examples of real-life trials exhibiting such 

compliance issues, this chapter will conclude with an explanation of why such 

deviations may cause problems when aiming to estimate efficacy of treatment. 

In particular, this chapter ends with a discussion of the definition and difference 

between associational and causal effects, and how causal effects are most easily defined 

using a potential outcomes (counterfactual) framework. A brief introduction to the use 

of causal diagrams, which provide a pictorial aid to clarify the relationship between the 

treatment, outcome and other covariates associated with the particular causal scenario, 

will help to clarify the issues of confounding and selection bias and reveal how naïve 

methods (such as PP or AT analyses) introduce such biases.  

Initially, therefore, it is necessary to provide an introduction to causal estimation and 

the framework within which such parameters may be estimated, beginning with the 

definition of a cause and an explanation of the difference between associational and 

causal inference.  
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3.8.1. Definition of a cause 

The notion of cause dates back at least as far as Aristotle, who defined four types of 

causes (the material cause (that out of which the thing is made), the formal cause (that into 

which the thing is made), the final cause (that for which the thing is made) and the efficient 

cause (that which makes the thing), the last of these being that most relevant to statistical 

inference, while Locke in 1690 defined both the cause (“that which produces any simple 

or complex idea”) and its effect (“that which is produced”) (84). 

There are two necessary conditions for the definition and estimation of the effects 

produced by a certain cause (logically referred to as “causal effects”).  

Firstly, the effect of a particular cause can only be meaningfully defined in relative terms 

to another cause. In other words, it takes at least two causes (or two versions or levels 

of a cause) to define an effect; thus in experimental studies, the treatment under study 

must always be compared to a relevant control condition, such that “experiments 

without control conditions are simply not experiments”. Indeed, stating that “A causes 

B” inherently implies a comparison of the effect of A on B to some condition not 

involving A (84). 

Secondly, the key notion that distinguishes a “cause” from an attribute or characteristic 

is the potential for all units in the population of interest to be exposed to all levels of the 

cause being compared. In other words, before a unit has been assigned a certain level of 

the cause, it must be technically possible to define and observe, in principle, every level 

𝑎  of the causal factor 𝐴  under consideration; no outcome 𝑌𝑖(𝑎)  can be a priori 

“counterfactual” for any individual 𝑖 (85). Thus Holland (84) explains how statements 

regarding the effect of an individual’s traits (such as sex, race, eye colour) can only 

describe observational associations rather than be given causal interpretation. To 
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understand why this is so, it is necessary to consider the fundamental difference 

between causal and associational analyses.  

3.8.2. Distinction between causal and associational analysis 

In order to understand the difference between associational and causal analyses, it is 

vital to appreciate the difference between the underlying causal model and the process 

of observation (84). Thus consider a comparison of exposure to experimental (𝐴 = 1) 

versus control treatment (𝐴 = 0) on outcome 𝑌. An individual’s observed outcome 𝑌𝐴𝑖 

may differ from their underlying unconfounded potential outcome under each potential 

treatment assignment (𝑌0𝑖  or 𝑌1𝑖 ), as their observed outcome may be influenced by 

factors other than just treatment received. Therefore, the association between treatment 

received and observed outcome may be contaminated by selection and confounding 

factors and thus may not reflect the true underlying causal relationship between 

treatment received and true potential outcome, the observed data (𝐴𝑖 , 𝑌𝐴𝑖) may therefore 

differ from the underlying causal variables (𝐴𝑖, 𝑌0𝑖 , 𝑌1𝑖). 

As such, in providing information only on the observed association between variables, 

results from standard statistical analysis methods (for example, regression or 

stratification methodologies) can only be interpreted in terms of descriptive statistics 

rather than providing any evidence of causality (84).  

Such methods are used to estimate population parameters from which study samples 

are selected, and thus may be used to provide information on the observed relationship 

between variables by considering their joint distribution. For example, if 𝑃(𝑌 = 𝑦, 𝐴 =

𝑎)  denotes the proportion of individuals 𝑖  in the population for which 𝑌𝑖 =  𝑦  and 

𝐴𝑖 =  𝑎, parameters estimated from this joint distribution simply describe the observed 
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relationship between variables at a single point in time; for example, the conditional 

distribution of 𝑌 given 𝐴 

𝑃(𝑌 = 𝑦|𝐴 = 𝑎)  =  
𝑃(𝑌 = 𝑦, 𝐴 = 𝑎)

𝑃(𝐴 = 𝑎)
 

describes how the distribution of 𝑌  changes with 𝐴 . A typical parameter from this 

distribution may be obtained by regressing 𝑌  on 𝐴 , providing the conditional 

expectation (or average) of 𝑌 given 𝐴, 𝐸(𝑌|𝐴 = 𝑎), i.e. the expected value of 𝑌 given a 

specific value of 𝐴.  

In contrast, statements regarding causality cannot be defined from a joint distribution 

alone. This is due to the potential bias arising when comparing different treatment 

effects observed in distinct sections of the population, as underlying inherent 

differences between individuals in each treatment group may distort the comparison.  

The definitions of, and reasons for, these forms of bias are most easily depicted and 

defined through the use of causal diagrams.  

3.9. Causal diagrams 

Causal diagrams are a form of directed acyclic graph providing a visual representation of 

causal or associational relationships between variables, first used by Wright (1921) to 

convey the direction of the causal relationship in equation modelling.  

A directed acyclic graph (DAG) is made up of nodes (indicating measured or 

unmeasured variables) and directed edges (arrows between nodes). A DAG is called a 

causal DAG when the arrows have direct causal interpretation (i.e. arrows represent 

structural rather than merely associational relationships) and all common causes of each 

pair of variables are included on the graph. Causal DAGs (cDAGs) are necessarily 

acyclic (because a cause cannot affect itself, which would be implied from a cyclic 



   
   

86 
 

graph) and directed (because causal effects are by definition directional, from cause to 

effect). 

Wright demonstrated how a causal diagram could be used to clarify the fact that the 

equation Y = βA + c, intended to indicate the strength of the relationship between A 

(exposure or cause) and Y (outcome), could not meaningfully be rearranged to suggest 

that Y influences A i.e. A = (Y − c)/ β, given that the causal diagram accompanying 

such an equation indicates the direction of the causal relationship with an arrow from A 

to Y. 

Hernan (86) summarises the theory underlying cDAGs, summarising the three causal 

structures by which apparent associations may be produced between treatment actually 

received (adopted treatment 𝐴) and outcome (𝑌):  

i) treatment received (𝐴) and outcome (𝑌) may share a common cause (𝑈), 

leading to potential apparent association even when neither 𝐴 causes 𝑌 (or 

vice versa) (common cause) (as per figure below) 

 

ii) treatment received (𝐴) and outcome (𝑌) may have a common effect (𝐶), 

such that they will be conditionally associated when the association measure 

is calculated within levels of the common effect 𝐶  (conditioning on 

common effects) as per figure below, where square around  𝐶  indicates 

conditioning on certain value of 𝐶 . In fact, the conditional association 

between 𝐴  and 𝑌  may occur more generally, within strata of a common 
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effect 𝐶 of two other variables – one of which is either 𝐴 (or a cause of 𝐴) 

and the other which is either 𝑌 (or a cause of 𝑌). 

 

iii) the treatment received (𝐴) may in truth cause outcome 𝑌 (cause and effect), 

thus the apparent association can be attributed entirely to the causal effect 

of 𝐴 on 𝑌. 

 

Note that these three causal structures do not include the arising of association simply 

by chance, because, in contrast to causal associations, such chance associations will 

diminish with increasing sample size. 

Thus evidence of an association between two variables does not necessarily indicate a 

true causal relationship; instead apparent associations may arise due to a common cause 

or conditioning on common effects of the variables. Furthermore, categorisation into 

these three causal structures provides a basis on which to distinguish between the types 

of bias that arise when associational parameters are interpreted as causal measures, in 

particular differentiating between “confounding” and “selection” biases: the term 

“confounding bias” typically arises when exposure and outcome share a common cause 

(structure i), whereas “selection bias” occurs when analysis is conditional on common 

effects of exposure and outcome (structure ii).  

Perfect randomised trial 

In the case of a perfect randomised trial, with no confounding of treatment assignment 

or nonadherence to assigned treatment, successful blinding and complete follow up, an 
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individual’s actual treatment received ( 𝐴 ) perfectly reflects their randomisation 

allocation (𝑍), which is assigned independently of all underlying prognostic factors (𝑈). 

Thus, given that 𝐴 and Y share no common causes and no conditioning is made on 

their common effects, the association measure (∆) between 𝐴 and 𝑌 is not affected by 

bias and can be interpreted as the causal effect measure. 

 

Imperfect adherence to randomised treatment  

However, in the case of a randomised trial with imperfect adherence to treatment 

assignment, analysis according to adopted treatment (𝐴) is confounded if there are 

underlying prognostic factors (𝑈) which influence both an individual’s likelihood of 

taking treatment and their outcome, as 𝐴 and 𝑌 share a common cause (as per structure 

i above).  

 

Missing outcome data 

Furthermore, selection bias may occur if the trial is subject to missing data, even with 

complete adherence to assigned treatment; a so-called “differential loss to follow up” 

bias occurs when missing outcome data typically occur for reasons related to both 

prognosis and treatment (86). For example, side effects associated with treatment may 
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lead to censoring (if patients are too ill to attend follow up visits), as represented by 

arrow from 𝑍(= 𝐴)  to 𝐶  (denoting conditioning on censoring status) in the figure 

below. Furthermore, a patient’s underlying condition and prognosis (𝑈) (mediated by 

their observed symptoms 𝑋) may affect their likelihood of follow up (as demonstrated 

by arrows from 𝑈 to 𝑋, and from 𝑋 to 𝐶). Thus, the association between 𝐴 and 𝑈 via 𝐶 

means that, even when treatment does not affect outcome (evident by the lack of an 

arrow from 𝐴  to 𝑌 ), when analysis is conditional on follow up ( 𝐶 ), an apparent 

association between treatment and outcome may result, arising solely because  𝐶  is a 

common effect of a cause of the outcome (the underlying condition and prognosis, 𝑈) 

and of the treatment received (𝐴). 

 

Therefore, even in the case of full adherence to treatment assignment, trials may still be 

subject to selection bias because of differential loss to follow up. A similar selection bias 

occurs in the case of a per protocol (PP) analysis of a trial with imperfect compliance, 

where selection into the analysis set is determined according to compliance status 

(denoted again by 𝐶  in the diagram above), if such compliance is related to any 

underlying prognostic factors (𝑈) as well as being related to the assigned treatment 

protocol (𝑍 ≠ 𝐴). This selection bias introduces a non-causal association between 𝑍 

and 𝑌 such that the PP analysis cannot be granted causal interpretation. 

An as treated (AT) analysis attempts to deal with the loss of power associated with PP 

analyses, by allocating patients entirely according to their adherence rather than 
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randomisation. Even in the case of purely random nonadherence, this analysis removes 

any balance afforded by randomisation, and therefore reflects an entirely observational 

comparison, given that randomised allocation is ignored entirely. As such, the simple 𝐴-

𝑌 association measure will be confounded in the same way as for observational studies, 

if underlying reasons for exposure to treatment are related in any way to prognosis (i.e. 

if treatment exposure (𝐴) and outcome (𝑌) share common causes). 

PP and AT analyses are therefore only valid under a simplistic exchangeability 

assumption, namely that those who do and do not comply are comparable, such that 

comparison between these groups is not subject to confounding or selection effects; 

only then will exclusion (or censoring) of those who deviate from randomised treatment 

(in the case of PP), or analysis according to treatment receipt (in the case of AT), not 

introduce bias. In other words, without appropriate adjustment for selection bias or 

confounding, PP and AT implicitly assume that non-compliance occurs completely at 

random (87). However, as demonstrated by the cDAG for a trial with imperfect 

compliance, given the likelihood of some unmeasured and unknown confounders, it will 

not be possible to account for the so-called “back-door” path (between 𝑈, 𝐴 and 𝑌) 

when estimating the causal effect (of 𝐴 on 𝑌) without invoking additional assumptions. 

3.9.1. Problems associated with hidden bias or time-dependent 

confounding 

Ten Have (88) distinguishes between two forms of (selection) bias, overt and hidden, 

which are attributed to observed and unobserved confounders, respectively. When 

aiming to estimate causal effects, standard statistical methods such as covariate 

adjustment in a regression model or propensity score analysis may be used to adjust for 

overt bias, given availability of known confounders, but these methods cannot address 

hidden bias.  
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Furthermore, standard adjustment for measured confounders may introduce bias if 

these confounders are time-dependent rather than fixed baseline measures. In the case 

of dynamic treatment regimens, common in epidemiological studies and trials where 

treatment is continuously being reassessed and varied according to evolving patient 

response, time-varying factors such as disease severity and adverse events will not only 

be affected by previous treatment received, but may also influence future treatment 

decisions and patient outcome. As such, these time-dependent confounders act 

simultaneously as confounders and intermediate (mediator) variables and cannot be 

adjusted for unbiasedly using standard methods. The reason for this (as demonstrated in 

the cDAG below) is that, in adjusting for confounding, selection bias is introduced.  

 

By way of explanation, consider the trial scenario indicated in the cDAG above, where 

initial treatment ( 𝐴0 ) impacts on symptoms ( 𝑋1 ) which are used to decide on 

subsequent treatment ( 𝐴1 ). Unbiased estimation of the effect of overall treatment 

(𝐴 = 𝐴0 + 𝐴1) requires adjustment for 𝑋1 to remove confounding bias in estimating 

the effect of 𝐴1 (caused by common cause 𝑈 of 𝐴1and 𝑌), but in doing so, stratification 

(or regression, depending on the functional form of the covariates 𝑋1 ) introduces 

selection bias for the estimation of the effect of 𝐴0 (due to conditioning on 𝑋1, which is 

a common effect of 𝐴0  and 𝑈). Thus, standard methods to adjust for confounding 

factors affecting treatment decisions removes confounding at the expense of 

introducing selection bias (86). 
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Thus, given the inability of standard methods to adjust for unmeasured (hidden) or 

time-dependent confounding likely to be present in both trials and observational 

studies, alternative methods are required to provide unbiased estimation of causal 

contrasts of interest. Furthermore, estimation of treatment effectiveness may be subject 

to selection bias due to missing outcome data, such that the most basic ITT analysis 

(according to randomisation) may be rendered invalid. As such, causal methodology will 

be relevant in both pragmatic and efficacy trials subject to any form of deviation from 

treatment or follow up protocols.  

3.10. Discussion 

The complications introduced by nonadherence in the general medical setting (as 

described in Chapter 2) are compounded further in trials by the added dimension of 

necessary adherence by both the patient and the treatment provider to the treatment 

regimen specified in the trial protocol. Even the most pragmatic of trials require clear 

specification of the treatment practices followed in the trial to allow reproducibility, 

provide transparency and provide a basis for treatment evidence. Thus, the need to 

follow even a relatively flexible treatment protocol will necessarily limit the level of true 

concordance achievable in a trial setting (44). Serebruany (35) suggests that an element 

of concordance can be incorporated into a clinical trial context simply by the doctor 

explaining the possible adverse reactions that the patient may experience, in order to 

minimise treatment discontinuation, but concludes that the “impact of the concordance 

model on clinical trials is unclear and requires further consideration”. Trialists would 

need to give detailed explanation of how ‘concordance’ affected treatment protocol, 

which would require detailed collection and succinct summaries of treatment patterns. 

Incorporating the spirit of concordance, with its evolutionary and particularly 
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unpredictable nature, is therefore even more challenging in a trial setting than in general 

clinical practice.  

In this chapter, it has become evident that the nature and extent of nonadherence 

manifested in a trial will impact on trial conclusions, as a result of complications in 

statistical analysis when patients’ outcome data are excluded or missing due to 

ineligibility, missing assessments or deviations from treatment protocol. However, even 

in trials of a predominantly pragmatic nature, there may be numerous reasons to 

consider the extent, and impact on analysis, of such deviations from protocol. Before 

considering methods to appropriately account for nonadherence, in the next chapter, 

we will consider real-life examples of some such trial scenarios where it may be of 

interest to look beyond ITT for answers to alternative research questions of interest 

beyond the effect of treatment as randomised. 

3.11. Recommendations 

Although ITT analysis is an important part of any trial, there is a potential danger that 

the spirit of ITT could be interpreted as an indication that collecting or reporting data 

on the degree of adherence to treatment protocol is unimportant. However even when 

there is no intention to formally investigate the relationship between treatment uptake 

and outcome, reporting information on the degree of intervention received is arguably 

important in order to assess the degree to which the intervention is even reaching the 

targeted population. Otherwise it may not possible to judge whether an unfavourable 

observed effect of treatment, for example, may be in part due to non-receipt rather than 

ineffectiveness of treatment, and if due to non-receipt of intervention, whether steps 

could be taken to improve uptake of treatment to potentially enhance treatment effect. 

Indeed, an ITT analysis can only provide information on the effectiveness of the 
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intervention as it was implemented in the trial (for example, the trial policies on 

treatment changes) and according to the level of adherence observed in the trial. In 

reality, the implementation of the intervention in clinical practice may differ, and 

adherence rates may improve (or diminish) directly because of dissemination of results 

from the trial itself and resultant changes in expectation of the intervention amongst 

users and clinicians. Thus even the interpretation of the effectiveness of an intervention 

may be limited from an ITT analysis. Collecting information on adherence and 

treatment changes that occurred in the trial could potentially allow subsequent statistical 

investigation into the impact of changes to administration of treatment or adherence 

rates on the treatment effect (89). Even in the case of so-called “large, simple trials” 

where emphasis lies on collection of limited data from a very large number of 

participants (90), collection of adherence information from just a small random 

subsample of patients may add to the clinical interpretation of trial results without 

greatly increasing the burden on participants or trial staff.  
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4. Expository trials 

demonstrating nonadherence  

The previous chapter demonstrated how the problem of nonadherence in general 

clinical practice translates into problems in randomised trials, causing complications for 

analysis and interpretation of trial results. Before future chapters explore in more detail 

how deviation from protocol affects analysis and subsequent interpretation of 

conclusions drawn from trial data, and potential methods to appropriately account for 

such deviations, this chapter will present a number of expository trials demonstrating 

issues relating to various forms of departure from randomised treatment, thus providing 

examples of when it may be appropriate to consider estimation methods beyond ITT.  

Trials will be described in term of their interventions, patient populations and the 

particular forms of treatment deviations that occurred, with a focus on how these 

treatment deviations relate to the trial research question and their subsequent impact on 

trial conduct, data collection and analysis.  A number of these trials will be used later in 
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the thesis to illustrate the application of particular statistical methods to adjust for such 

nonadherence.  

4.1. Introduction  

This exposition includes seven trials from six different clinical areas, including HIV, 

cancer, epilepsy, community infant care, wound care and (two trials in) coronary heart 

disease (CHD). Treatment duration varies; the majority of the trials had a longitudinal 

treatment period, either medium term (wound care and cancer) or long term (epilepsy, 

HIV, hypertension and CHD), but there is also an example of short term treatment 

(community care). There are examples of trials which include treatment changes that 

were necessary and expected and thus were incorporated into the trial protocol (HIV, 

epilepsy, CHD and cancer); in contrast, other trials experienced treatment changes that 

were unplanned and undesirable, either as a result of treatment switches requested by 

patients or administered by external clinical staff (because of a belief that one treatment 

was superior (wound care)), logistical difficulties in distributing treatment (community 

care) or nonadherence to treatment dose or schedule by participating patients (CHD). 

Most of the trials considered analysis that accounted for changes in prescribed treatments 

rather than adherence by randomised participants, as patient adherence data were 

generally not collected.  

The majority of the trials reported primary outcomes that captured time to some event, 

which is not surprising given the longitudinal nature of most of the trial treatments, but 

two trials included binary outcomes (one of which was the original primary outcome 

(community care) and the other which was included as a simplification of the 

complicated primary time to event outcome (epilepsy). All but one (cancer) of the trials 

are complete and have previously been published.  
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4.2. Trials  

4.2.1. Vitamin A 

The simplest trial in terms of both the types of treatment deviation and primary 

outcome is the vitamin A trial, first published by Sommer et al (91). This was a cluster 

randomised trial carried out in 450 villages in rural Indonesia, half of which were 

randomly assigned to the treatment arm and the remaining were designated as control 

villages. Preschool children in the treatment arm villages were given two large oral doses 

of vitamin A six months apart, and children in control villages did not receive any 

treatment. The primary outcome was mortality rate between four and twelve months of 

age. 

Deviation from randomised treatment in the vitamin A trial did not occur as a result of 

a lack of cooperation on the part of the participant; instead non-receipt of trial drug 

occurred as a direct result of the failure of the trial drug distribution system to reach a 

substantial proportion of those randomised to receive treatment: 20% (2419/12,094) of 

those children randomised to the treatment arm did not receive vitamin A.  

Table 2: Table I from (91) 

Study group  Received 
treatment  

Number of 
children 

Number of 
deaths 

Mortality  
(per 1000) 

Control - 11,588 74 6.4 
Treatment  - 12,094 46 3.8 
 Yes 9675 12 1.2 
 No 2419 34 14.1 
 

Information on those who did and did not receive treatment was captured, and thus it 

was possible to calculate the mortality rate among those allocated to treatment who did 

and did not actually receive vitamin A (1.2 per 1000 versus 14.1 per 1000 respectively) 

among those randomised to receive treatment. This initial comparison suggests that the 
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selection of patients in ‘compliant’ and ‘non-compliant’ groups is not simply a random 

process, and the reason why infants did not receive treatment (failure on the part of the 

distribution system) provides an explanation for this: Goetghebeur (92) points out that 

those infants who did not receive the treatment tended to be those living in a more 

difficult environment with less access to health resources. Thus the non-compliant 

subgroup had a higher baseline risk of mortality and were thus more likely to have died, 

irrespective of whether or not they received treatment. 

This propensity for a more successful outcome among those who comply with 

treatment compared with those who don’t comply with treatment does not, in itself, 

lead to a biased comparison between treatment groups. Bias arises only when 

differences between the two treatment groups, in terms of the mechanisms which lead 

to non-compliance, result in differential selection processes for compliant subgroups, 

such that the resultant compliant subgroups in the two treatment arms are not 

comparable (91).  

However, this fact is also evident when one compares the mortality rate among the 

non-compliant subgroup of the vitamin A group to that observed in the group of 

infants who were randomised to not receive vitamin A. As children in the control arm 

were not administered with any placebo treatment, non-compliers in the active 

treatment received the same “intervention” (no treatment) as those in the control arm. 

Thus if one were to suppose that compliance to intervention was entirely random, the 

mortality rates between the control arm and non-compliers in the treatment arm would 

be expected to be broadly similar. However a comparison of these mortality rates 

demonstrates a mortality rate among non-compliant treatment arm infants (1.41%) 

which is more than twice the mortality rate of the overall control arm (0.64%). As 
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Sommer points out, this suggests that simply being able to access the vitamin A 

treatment strongly predicts the risk of mortality.  

A simple ITT analysis, comparing the treatment groups as randomised, regardless of 

compliance with the randomised intervention, provides an estimate of the relative risk 

(RR, defined as the risk of death among the treatment arm divided by the risk of death 

in the control arm) of death, giving an indication of the so-called “programmatic 

effectiveness” of the vitamin A distribution. Using data from Table 2, the estimate of 

this relative risk is 0.38/0.64 = 0.59 (95% CI= 0.41, 0.86), thus implying that the 

vitamin A distribution programme used in the trial resulted in approximately a 40% 

reduction in childhood mortality.  

However, given that a substantial proportion of the treatment arm did not receive 

Vitamin A simply because the trial treatment distribution system failed to reach them, 

causal analysis beyond ITT (such as that carried out by Sommer and Zeger) are 

necessary in order to estimate the biological action of vitamin A in preventing 

childhood mortality. This question of treatment efficacy is of particular interest in this 

case because, if vitamin A was proved to be efficacious, the treatment distribution 

method used in the trial would not be used in practice to provide supplementation to 

the Indonesian population. Instead a completely different method of circulation, such 

as fortification of a common daily food, would be used to reach the general population. 

As such, Sommer argues that by estimating the biologic efficacy of vitamin A 

supplementation, along with a likely rate of successful delivery of the actual method 

chosen for vitamin A distribution, the effectiveness of the chosen program could be 

determined; this would be a more useful measure than the effectiveness of the trial 

distribution program, which would not be used in practice. 
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Thus Sommer and Zeger (47) first proposed a method of analysis to estimate what they 

refer to as the ‘biologic efficacy’ of treatment, as opposed to the ‘programmatic 

effectiveness’ of treatment. As the use of a placebo was not permitted in this trial, it is 

not possible to ascertain which of the control children would have complied with 

placebo intervention. Such information is not, however, necessary for the method of 

analysis proposed by Sommer and Zeger, and the reason for this is that the compliant 

subgroups of the two randomised groups would not necessarily be comparable anyway. 

This is due to the fact that the compliance selection process is likely to differ between 

the two treatment arms, because the difference in treatment protocol between the two 

arms is likely to present a different challenge to adherence, thus resulting in compliant 

subgroups that have been selected by different processes and hence do not provide a 

valid or fair basis for comparison (47).  

Instead Sommer and Zeger propose a comparison of outcomes among those who 

would have complied with active treatment if randomised to receive it. Although such a 

subgroup is directly observed in the vitamin A group, it is not possible to directly 

ascertain which patients would have complied with active treatment in the control arm, 

and thus it is necessary to compare the outcome among those observed to be compliant 

in the active treatment arm with an inferred control subgroup who would have complied 

with active treatment (47). The causal effect estimated using their proposed method (to 

be presented and discussed in the next chapter) was later referred to as the CACE 

estimate (complier average causal effect) and relates to the efficacy only among those 

who would comply with treatment.  

4.2.2. CPD trial 

The Coronary Drug Project (CDP) was a randomised, double-blind, placebo-controlled, 

six-arm trial that was carried out to evaluate the long term efficacy and safety of lipid-
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influencing drugs in the secondary prevention of coronary heart disease (CHD) among 

middle aged males who had experienced a myocardial infarction within the previous 

three months (65). Participants were randomly assigned to the placebo arm (2789 men) 

or to an active treatment arm (each of which contained approximately 1100 men), and 

were followed up at four-monthly visits for a minimum (maximum) of 5 years, or until 

death. This summary of the trial focuses on only one active treatment arm (clofibrate) 

versus placebo. The primary outcome was all-cause five-year mortality rate. 

Nonadherence to treatment protocol in the CDP occurred as a result of patients failing 

to take the correct dosage of their randomised treatment. Following the initial titration 

phase, patients in each treatment arm were required to take nine tablets daily (three 

tablets three times per day). Clinicians recorded any changes to prescribed medication at 

each four-monthly visit, along with their assessment of the patient’s adherence to the 

drug regimen since their previous clinic visit. This assessment was made by counting or 

estimating how many capsules had been returned by the patient at each visit, along with 

information obtained from a discussion with the patient about whether they had 

experienced any problems in remembering to take (or side effects resulting from taking) 

their medication. This information was used to calculate the cumulative percentage 

adherence over the first five years of follow up (or until death, if this occurred before 

the end of five years follow up). Patients were divided into ‘compliant’ and ‘non-

compliant’ subgroups according to whether or not they took at least 80% of their 

prescribed medication. 

The adherence data used here was necessarily determined by clinician from interview 

with patient and pill counts, neither of which are methods that are considered 

particularly reliable (15). The adherence data suggested that one third of the patients 
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(33.5% (357/1065) in the clofibrate group and 32.7% (882/2695) in the placebo group) 

failed to take at least 80% of their prescribed medication.  

Overall clofibrate did not appear to affect mortality when compared to placebo: five-

year mortality in the clofibrate group was 20.0% compared to 20.9% in the placebo 

group. Given this negative result and the relatively complicated patient-administered 

treatment (3 x 3 tablets daily) and high prevalence of non-compliance (defined as taking 

less than 80% of prescribed medication over the course of the first five years of 

treatment), the study investigators and external parties became interested in whether the 

ITT result may have masked a true effect of treatment among those who received 

clofibrate as intended.  

Table 3 Mortality rates according to adherence level.  

Note that this table only includes those patients for whom cumulative adherence rate was available. 

 Treatment group 
 Clofibrate Placebo 
 Number of 

patients  
% mortality  
(SE) 

Number of 

patients  
% mortality  
(SE) 

Adherence      

<80% 357 24.6 (2.3) 882 28.2 (1.5) 
≥80% 708 15.0 (1.3) 1813 15.1 (0.8) 

Total 1065 18.2 (1.2) 2695 19.4 (0.8) 

 

An initial inspection of the difference in mortality rates between ‘compliers’ and ‘non-

compliers’ in the clofibrate group seems to support this hypothesis: the mortality rate 

among ‘compliers’ (15.0%) was substantially lower than among ‘non-compliers’ (24.6%). 

However a similar examination of the placebo group demonstrates a similar pattern: the 

mortality rate among placebo ‘compliers’ (15.1%) was almost identical to that of 

clofibrate ‘compliers’ and was nearly half that among those who did not comply to their 

placebo medication schedule (28.2%). Bearing in mind that those who did and did not 

comply with their placebo medication schedule were receiving the same “treatment” 
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(assuming that any placebo effect associated with compliance to prescribed treatment 

would have a minimal effect on the objective outcome mortality), this would suggest 

that the behaviour of patients as regards compliance with medication seems to be 

strongly related to their baseline risk of mortality. It would appear that there are 

confounding factors associated with compliance that affect outcome, such that those 

who are able or willing to comply with taking either intervention as prescribed tend to 

be less likely to experience the event.  

These simple summaries according to adherence levels immediately demonstrate the 

dangers of using a patient response factor such as adherence to select patients for 

inclusion in analysis. A number of comparisons between subgroups defined according 

to adherence can be made; for example, comparing the mortality rate of only those with 

good adherence in the two treatment arms (15.0% in the clofibrate arm versus 15.1% in 

the placebo arm), comparing the mortality rate of only those with poor adherence in the 

two treatment arms (24.6% in the clofibrate arm versus 28.2% in the placebo arm),  

comparing the mortality rate for good adherers in the clofibrate group (15.0%) against 

the placebo group as a whole (19.4%), or comparing the outcome among poor adherers 

in the clofibrate group (24.6%) against the placebo group as a whole (19.4%). Indeed 

the investigators conclude that “one can justify almost any conclusion, depending on 

the analysis chosen” (65). 

The CDP investigators assessed whether adjustment for differences in baseline factors 

between those with ‘good’ and ‘poor’ adherence in the placebo group helped to explain 

the difference in mortality rates between these subgroups. Although poor adherers 

tended to have a somewhat higher prevalence of some of the baseline risk factors when 

compared with good adherers, adjustment for 40 of these variables explained only a 

small proportion of the difference between these subgroups: the adjusted five-year 
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mortality rates were 16.4% (compared with 15.1% unadjusted) for good adherers and 

25.8% (28.2% unadjusted) poor adherers.  

Thus it is evident that the available baseline data did not capture the characteristics 

which were both predictive of outcome and associated with adherence. The baseline 

factors that were measured in this trial reflected clinical rather than behavioural or social 

measures, and it is possible that clinical factors may be less useful in explaining 

compliance behaviour. Without knowledge of which factors simultaneously influence 

adherence and outcome, it is not possible to ascertain the selection processes which 

have resulted in the compliant subgroups in each treatment arm and thus whether or 

not these subgroups provide a fair basis for analysis. Thus this trial provides a 

straightforward example of why analysis according to subgroups defined by compliance 

behaviour is not valid. 

4.2.3. MRC hypertension trial 

The MRC hypertension trial (93) was a randomised single-blind placebo-controlled trial 

set up to assess the long term efficacy of two antihypertensive drugs (diuretic or beta-

blocker) compared with placebo in prevention of cardiovascular (CV) events and 

mortality in elderly patients. 

Given the long term nature of the treatment protocol, the need to monitor and control 

each patients’ blood pressure, and the known possible side effects of the prescribed 

active treatments, the trial protocol permitted changes to treatment from that to which 

patients were originally allocated. These protocol-permitted treatment changes reflected 

what would typically occur in clinical practice. 

The nature of the treatment change depended on the underlying cause: if a patient’s 

blood pressure persistently exceeded their target level, the dose of their (active) 



   
   

105 
 

randomised drug would be increased, and if this also did not achieve acceptable blood 

pressure control, the patient would be prescribed an additional drug (initially the 

alternative active trial drug). If this too was unsuccessful, a treatment external to the trial 

would be prescribed. If their blood pressure continued to be unacceptably high, the 

patient was managed outside of the trial protocol, but information on prescribed 

treatment and outcomes continued to be collected.  

If a patient was experiencing unacceptable side effects on active randomised treatment, 

the randomised treatment would cease to be prescribed and an alternative treatment 

(commonly the other active trial drug) may have been given instead.  

Other less common treatment changes included discontinued prescription of the 

randomised treatment when it was felt by the prescribing clinician to be unnecessary, or 

withdrawal from the study by patients for reasons which may have been associated with 

risk (for example, dislike of the trial treatments or assessments) or unrelated to risk (for 

example, if a patient moved away).  

Note that the treatment changes recorded in the MRC hypertension trial relate only to 

changes to prescribed treatment. Information on patient adherence to prescribed 

treatment was not recorded, and thus could not be factored into the analysis. It is 

worthy of note that patient nonadherence may have had a similar magnitude of causal 

effect as changes to prescribed medication, but it was not possible to investigate this 

here. 

When analysing those who were lost to follow up, it was possible to obtain their 

mortality data by Office of National Statistics “flagging”, but it was unknown what 

treatment changes occurred following withdrawal. Such “loss to treatment follow up” 

(so-called by White (68) as these patients were not lost to event follow up, as time and 
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cause of death was ascertainable for all patients through flagging) was not an 

insignificant factor: White states than 21% of person years, and 41% of deaths, 

occurred in subjects who were lost to treatment follow up (defined as the period 

following withdrawal or 190 days after a subjects’ last follow up visit). 

Patients randomised to receive beta-blocker were more often prescribed supplementary 

drugs than those randomised to diuretic treatment, and this group experienced 

significantly more withdrawals than the diuretic group, both for reasons related to side 

effects and because of inadequate blood pressure control. A larger proportion of the 

beta-blocker group also discontinued their randomised treatment: including those who 

were lost to follow up, almost two thirds of the beta-blocker groups stopped their 

randomised treatment compared to approximately half of the diuretic group (cumulative 

percentages of those who stopped their randomised treatment, including those lost to 

follow up, were equal to 63% in the beta-blocker group and 48% in the diuretic group). 

The ITT analysis of the MRC hypertension trial appropriately addressed the primary 

question of interest, namely whether there was any difference in the effectiveness of the 

treatment policies of starting treatment with one randomised intervention, followed by 

any treatment changes that became necessary. The effectiveness of the active treatments 

in preventing stroke and other CV events was apparent from the ITT analysis, as the 

risk of these events was significantly reduced in the active treatment groups compared 

with the placebo groups. When the two active treatment groups were compared directly 

in an ITT analysis, it was unexpectedly found that the rate of coronary events (and of all 

CV events) was significantly lower in the diuretic group compared with the beta-blocker 

group. 

In light of the frequency of treatment changes that occurred in this trial, and the 

relatively high proportion of follow up time that was spent not taking randomised 
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treatment, it was naturally of interest to the trial investigators to investigate whether, 

and how much of, the unexpected ITT difference between the active treatment groups 

was in fact be due to differential rates of treatment changes that occurred in the 

different randomised groups.  

White adjusted for changes in prescribed treatment in this trial using both naïve (68) 

and randomisation-based (89) methods (to be introduced in the next chapter). These 

analyses demonstrate the need for an understanding of the subtleties of the particular 

disease or treatment being studied before one can confidently produce and interpret 

findings from a causal analysis. Effective communication between the statistical analysts 

and the clinical experts for a particular trial is of paramount importance to ensure such 

nuances are not overlooked in the analysis, and to prevent statistical anomalies or biased 

interpretation of trial results. 

4.2.4. Concorde  

The Concorde trial was designed to compare two treatment policies with zidovudine 

(ZDV) among patients with asymptotic HIV disease. ZDV was known to be efficacious 

in delaying death when treating symptomatic HIV disease, but it was unknown whether 

treatment with ZDV earlier in the disease process would delay the onset of AIDS-

related complex (ARC) or AIDS, or whether it could be potentially harmful due to 

increased toxicity. Thus patients were randomised either to start ZDV immediately 

following randomisation (immediate group) or to delay treatment with ZDV until the 

onset of symptomatic HIV disease (ARC or AIDS). The trial was double-blind; patients 

in the deferred group were administered with placebo from randomisation until they 

presented with symptoms of the disease, at which point they started to receive active 

ZDV treatment (94).  
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The treatment protocol intended patients to receive blinded treatment (active ZDV in 

the immediate group or placebo in the deferred group) until the point of disease 

progression, at which point they were to be prescribed open label ZDV without being 

unblinded to their original allocation. However, there were deviations from this 

intended schedule for a number of reasons. Some patients experienced a delay in 

starting their active or placebo treatment (though this was usually a relatively short 

period of delay). Patients could choose to stop taking their blinded medication, and this 

occurred usually because of adverse events or for personal reasons. In these cases of 

early cessation of treatment, patients were not unblinded to their original treatment and 

they were prescribed with open label ZDV if and when they presented with disease 

progression. If patients developed clinical or immunological deterioration (before 

disease progression) they stopped their blinded treatment and usually started open label 

ZDV within a few days. 

Major changes were made to the treatment protocol one year into the recruitment 

phase. Although the original protocol specified that patients in the deferred group 

should not start active ZDV treatment until the onset of ARC or AIDS, the protocol 

amendment permitted subjects in the deferred group to begin taking open label ZDV 

before the onset of ARC or AIDS if they persistently presented with low CD4 cell 

counts. Another change which affected both treatment groups was introduced as part 

of this amendment, namely that patients with low CD4 cell counts were to be treated 

with primary PCP prophylaxis. (PCP is an opportunistic infection that affects AIDS 

patients, and recurring attacks of PCP may be fatal (95).) These changes brought the 

treatment protocol in line with what had become regarded as best clinical practice since 

the protocol had been originally devised.  



   
   

109 
 

A substantial proportion of patients experienced treatment changes in this trial. 

Approximately one third of each group stopped blinded therapy for reasons other than 

clinical deterioration; another one third of patients stopped open label ZDV treatment. 

A higher proportion of deferred group patients (48%) than immediate group patients 

(37%) started open label ZDV and these treatments tended to be started earlier in the 

deferred group. 

There were three related survival outcomes of primary interest: time to disease 

progression (ARC or AIDS) or death, time to AIDS or death, and time to death. The 

ITT results from this trial suggested a potential benefit of early treatment with ZDV in 

preventing disease progression (to ARC, AIDS) or death (HR (95% CI) = 0.89 (0.75, 

1.05), no effect on prolonging time to progression to AIDS or death (HR (95% CI) = 

1.01 (0.82, 1.24), and a possible detrimental effect on overall survival (HR (95% CI) = 

1.26 (0.93, 1.70)), but none of these results were statistically significant. 

However, the amendments to the treatment protocol were a cause for concern: 

although it was recognised that the treatment protocol amendment was necessary to 

update the trial to standards of best clinical practice, the decision to allow 

commencement of treatment in the deferred group to a time point earlier than originally 

intended led to complaints that this had resulted in an unfair assessment and a diluted 

effect estimate of treatment with ZDV. The ITT analysis of the trial appropriately 

assessed the comparison of the treatment policies as implemented in the trial, but given 

the change to original protocol, this did not assess the treatment policies as they were 

originally intended to be implemented in the trial. 

Thus, when the ITT results of the Concorde trial were published, providing no 

statistically significant evidence of a clinical benefit of starting ZDV prior to 

presentation of symptomatic HIV infection, the question arose whether these 



   
   

110 
 

discouraging results could have been caused by a diluted effect of starting ZDV 

treatment early in the asymptomatic phase of HIV disease, as a result of the change of 

treatment protocol leading to earlier starting of ZDV among the deferred group than 

had originally been intended.  

Premature cessation of blinded or open label treatment, whether for clinical or personal 

reasons, would be expected to occur naturally when ZDV treatment was prescribed as 

part of normal clinical care. Thus this aspect of deviation from the randomised course 

of treatment was not considered to distort the interpretation of the trial, and 

accordingly the causal analysis did not attempt to factor out these treatment changes.  

White (94) used this example to demonstrate the need to sensibly decide on the scenario 

that one wishes to simulate when adjusting for treatment changes: this is a clinical issue 

which must be determined in light of which treatment changes are inherently intrinsic 

to the treatment and disease pathway, and which changes would be usefully factored out 

in order to answer certain research questions. Once the relevant research question of 

interest has been carefully specified, this will then logically (if not easily) translate into a 

model that would reflect this adjusted scenario.  

For example, in this trial, White points out that it that it would not be interesting or 

informative to factor out cessation of treatment that occurred when patients 

experienced side effects, as this is an expected course of events. Also, given that it was 

already known that ZDV was efficacious in treating advanced disease, it would not be 

sensible to simulate a comparison between the immediate group as treated against an 

altered deferred group who never received ZDV treatment, as this would not enhance 

clinical knowledge beyond what is already known of ZDV efficacy. 
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Instead the desired alternative treatment scenario of interest is that which would have 

occurred under the original treatment protocol, so that patients in the deferred group 

would not have received treatment prior to disease progression or death, but other 

treatment changes would have been expected as observed in the trial (for example, 

cessation of treatment due to side effects). Thus it was of interest to adjust only for the 

earlier start of ZDV in the deferred group, which could have contributed to the 

observed non-significant results by diluting the difference between randomised groups. 

This was particularly likely given that decisions to start open-label ZDV treatment in 

this trial were very strongly related to prognosis (74). 

Thus this analysis sought to answer a well-defined question: what would the results have 

been if no participant in the deferred treatment arm had started ZDV before 

progression, but other treatment changes (such as stopping an active treatment after a 

side effect) were as observed? 

Following on from an initial naïve analysis of these trial data using time dependent 

treatment covariates to simulate an AT survival analysis (68), White instead advocates 

and demonstrates use of a randomisation-based survival model (to be introduced in the 

next chapter), which also relates the event time to a time-dependent covariate but which 

is based on groups as randomised (rather than on the biased basis of actual treatment 

received) (89).  

4.2.5. PACIFICO 

PACIFICO is a randomised two-arm trial comparing two forms of chemotherapy for 

fitter older patients with follicular lymphoma, in order to assess which treatment is 

optimal in terms of efficacy in controlling the spread of the disease balanced against the 
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toxicity to patients associated with these types of treatment. This trial is currently still 

recruiting patients. 

The PACIFICO treatment protocol specifies that cycles of inpatient chemotherapy be 

delayed, and potentially ceased entirely, if patients experience excessive toxicity. This is 

a pertinent issue in this trial, given the aim of balancing efficacy with tolerability of 

treatment, and detailed instructions are provided in the protocol regarding these 

permitted changes to the treatment. Clinicians are required to record details of the dose 

and time of treatment cycles in the trial case report forms (CRFs) to ensure that they 

follow the treatment protocol in this regard. However any deviations from the 

instructions given in the protocol are likely to reflect differences that will occur in real 

clinical care, and thus are accepted as an integral part of the variation of treatment 

according to patient’s needs and symptoms.  

The trial chemotherapy also involves patient-administered home therapy. Patients are 

asked to record in a daily diary the date, time and doses of self-administered treatment, 

also noting any occurrences when the absorption of the treatment may have been 

compromised (for example, if vomiting occurred soon after treatment was taken), 

though this is not expected to occur often. Patients are generally expected to comply 

closely with the doses and schedule of prescribed home chemotherapy as far as possible 

as they are keen to halt spread of cancer; furthermore, they are a relatively fit and able 

group who would not be expected to experience the typical logistical or memory 

problems that may be associated with self-administered treatment by the elderly. 

The treatment changes that are, however, of particular interest in terms of causal impact 

in this trial are those relating to alternative treatment choices made at the point of 

disease progression; interest in the impact of this pattern of treatment changes at this 

stage of disease is typical of late-stage cancer trials. When patients are being treated for a 
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cancer that may later progress or relapse, it is often an ethical requirement to permit in 

the trial protocol a switch to alternative treatments when their disease worsens, which 

may or may not include the other trial treatment. In PACIFICO, the treatment protocol 

recognises the need to offer and experiment with other treatments if a patient’s disease 

progresses, and thus the date, time and nature of these alternative treatments are 

recorded.  

The primary outcome in trials where such treatment changes are expected is usually 

chosen to be progression-free survival (PFS) or relapse-free survival (RFS), defined as 

the time from randomisation to progression (or relapse) or death, whichever occurs 

first. Such an outcome is not affected by switches at progression or relapse, as the 

switches occur after the event of interest and thus have no causal impact. Determining 

date of progression, however, is potentially complicated and subjective, and may not 

necessarily translate into a survival advantage.  

The traditionally more common outcome of overall survival (OS) would, however, be 

affected by such treatment changes, as merging of the treatment experience in the two 

arms following progression or relapse is likely to cause diminished treatment effects on 

OS. Despite the fact that such treatment changes are often seen in clinical practice, 

there may be a number of reasons for interest in obtaining a clean estimate of overall 

survival (OS). OS is objective and is usually the most important outcome for the 

patient, as well as being of primary interest for health economics and policy decisions.  

Debate regarding PFS versus OS 

Analysis of OS is often confounded by uncontrolled post-progression (or relapse) 

therapy, which is increasingly common thanks to the growing number of active anti-

cancer agents. This has led to the use of PFS as a surrogate outcome for OS, as 
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treatment switches generally occur after the point of progression and, as such, time until 

progression is less heavily affected by changes from randomised treatment. However 

the use of PFS as primary outcome has its own disadvantages. 

Disease progression is a categorical outcome first developed by WHO to describe 

changes that occur to a tumour during therapy, rather than as a measure intended to 

infer meaningful clinical benefit (96). Although potentially useful in early phase trials as 

an indication of potential treatment response, the use of PFS in phase III trials is 

controversial for a number of reasons. 

Sharma (83) highlights how the debate regarding the most appropriate clinical endpoints 

in oncology trials, and in particular whether trials should be allowed to base their 

conclusions on shorter-term outcomes like PFS rather than ultimate long term 

outcomes such as OS, was sparked by the controversial fast track approval of the 

bestselling cancer drug Avastin. The license for sale of this drug was granted by the 

FDA based on trial results which suggested PFS, but not OS, improvement associated 

with the drug; however, following two subsequent trials which demonstrated no such 

improvement and which furthermore suggested a greater side effects profile, the FDA 

later rescinded its approval for the use of Avastin in metastatic cancers because of 

concerns that the drug’s side effects outweighed its benefits, while the European 

Medical Agency reaffirmed its approval. The use of PFS is therefore argued to simply 

provide a means of lowering of the bar for declaring efficacy of new drugs, which in 

turn offers little in the way of meaning for patients.  

Although there are a number of advantages when using PFS in place of OS (as 

progression usually occurs well before death, thus requiring smaller numbers and 

shorter follow up times, and progression is not confounded by effects of subsequent 

follow up therapies), there are a number of limitations associated with PFS.  
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Firstly, the practical implications in defining PFS are not straightforward; the theoretical 

definition of PFS is the time from defined origin (such as date of randomisation) to 

tumour progression or death. However, in practice, progression is usually identified via 

some form of imaging assessment, involving some subjective judgment on the part of 

assessors (often their treating clinician), especially in the case of equivocal or 

uncertainties in interpretation of radiologic assessments. As such, there are a number of 

biases and sources of measurement variability that may arise in obtaining the date of 

progression (for example, when times of evaluation differs between the treatment arms 

or when the knowledge of treatment received in some way affects a patient’s recorded 

response or progression status) (97). 

In particular, given that progression is not as objective an outcome as mortality, there 

are multiple factors which may introduce variability or bias into the assessment of 

progression (97). Thus, in order to make determination of time of progression as 

objective as possible, it is necessary that patients undergo regular and frequent 

assessments, which must be balanced and determined exactly equally for both treatment 

arms, to prevent any biases arising due to timing or prompting for such assessments. In 

order to protect from likely bias that may be introduced when subjective decisions are 

made by assessors or clinicians when determining progression (especially when factors 

such as “clinical deterioration” are included in the definition), blinding of clinicians and 

assessors is of great importance; however, this is not always possible given the disparate 

forms of treatment (for example in terms of treatment schedules and modalities). 

Alternatively the assessment of progression may be made by an independent imaging 

review group.   

There are other potential concerns when using PFS in place of OS as a primary 

outcome. Firstly, it has been demonstrated that PFS is not a reliable surrogate for OS in 
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a number of cancers; only two tumour types have evidence providing support for the 

surrogacy of PFS for OS (96). Indeed Booth provides biological reasons why a certain 

treatment may demonstrate advantages in terms of PFS without impacting on OS. 

Furthermore, PFS is more likely to be affected by missing outcome assessment data and 

informative censoring than OS, as definition of progression relies heavily on the 

availability of the necessary assessment outcome data.  

Change to treatment protocol 

Another potentially interesting aspect of this trial with regards to treatment changes 

involves an important change to treatment protocol that occurred partway through the 

recruitment period. During the course of the trial, concerns regarding excess life-

threatening toxicity due to one component (FC) of the experimental treatment were 

raised as a result of external evidence from another trial. As such, a “lighter” regimen 

(FC-lite) was introduced for all future patients recruited to PACIFICO. This 

amendment to treatment protocol would likely affect the treatment comparison for 

both primary outcomes, as fewer cycles and/or reduced dose of FC treatment will 

impact both on efficacy and tolerability of this treatment. Thus it would be of interest 

to estimate the causal effect of treatment adjusting for this protocol change, in order to 

attempt to answer the original question of interest. 

Thus, causal analyses for the PACIFICO trial would focus on two main questions: first, 

what the treatment efficacy would be if all patients had not received alternative therapies 

on disease progression, and secondly what the treatment effect would have been if all 

patients randomised to receive FC had received the original (rather than the lighter) 

dose as per the original trial protocol.  
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4.2.6. Honey  

Robson et al (98) carried out an open label RCT comparing wound healing rates in 105 

patients randomised to receive either conventional wound dressings or dressings treated 

with a medical grade honey. Treatment and follow up continued until wound healing up 

to a maximum of 24 weeks, and the primary outcome was time to wound healing. The 

aim of the study was to compare a medical grade honey with conventional treatments 

on the rates of wounds healing by secondary intention (rather than by direct 

intervention, such as surgery). 

Despite its relatively straightforward treatment protocol, this trial was subject to a 

number of deviations from treatment protocol and complications in follow up, 

including switches between trial treatments, switches to (known and unknown) non-trial 

treatments, LTFU and death during the course of treatment (a competing risk). 

These treatment changes occurred for a number of reasons. In cases of deterioration of 

the wound, it was ethically necessary to allow patients to receive more extreme forms of 

treatment and as such some trial patients ceased randomised treatment and started 

receiving antibiotics or received surgery or radiotherapy as appropriate. Although 

information on these non-trial treatments were recorded whenever possible, the change 

of patient care often resulted in missing follow up information. When patients withdrew 

from the trial prematurely, or were moved to another hospital, it is likely that they 

continued to receive some form of conventional treatment, but treatment and follow up 

data were not available. 

Expectation about honey treatment also lead to treatment switches from randomised 

conventional arm to honey. There had been considerable amounts of publicity 

regarding the use of honey in wound care by the time the trial was opened, as honey 
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was not at the time available on NHS prescription. This expectation, but lack of 

availability of honey (except in a clinical trial setting such as this one where the honey 

was provided by the manufacturers), initially created a recruitment incentive for both 

patients and clinical staff. However, this anticipated efficacy of honey treatment, 

coupled with the unblinded nature of the trial, frequently lead to disappointment when 

patients were not allocated to receive honey. 

Patients recruited to the trial had typically been unsuccessfully treated with various 

forms of conventional dressings for their offending wound prior to recruitment into the 

trial. As such, given their natural expectation of honey and likely frustration with 

previous conventional treatments, along with the logistical impossibility of blinding 

patients to their randomised allocation (as patients necessarily were able to see and feel 

the applied dressing), patients were prone to disappointment when they were not 

allocated to receive honey. This lead to premature discontinuation of the trial by those 

who could not muster sufficient interest to continue attending the more frequent than 

usual clinic visits required for trial follow up. And occasionally, from the more bold 

discontented patients randomised to conventional treatment, there was the request to 

switch to honey treatment from the outset, which was granted in one case. 

Treatment switches also occurred because of decisions of clinical staff external to the 

trial who were keen for their patients to receive honey, especially those younger fitter 

patients who would be expected to make good progress with honey treatment.  

In contrast, some patients believed that honey treatment was causing additional pain to 

their wound which, as a result of their unblinded treatment, lead to a request to 

discontinue honey treatment and switch to conventional treatment.  
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Death during the course of the trial resulted in irretrievably censored treatment and 

follow up data. Patients requiring care for wounds healing by secondary intention are 

typically relatively elderly and frail, and as such a number of the recruited patients died 

during the course of follow up. Given that death precludes any subsequent occurrence 

of the event and causes of death may be related to deterioration of the wound being 

treated by the randomised treatments (and thus censoring at the time of death would 

potentially be informative), this event is defined as a “competing risk” and introduces 

complications for analysis. 

Missing outcome data often accompanied the treatment changes in this trial. When 

patients withdrew consent from further trial treatment and follow up, either because 

they were discontented with their treatment, progress or with the trial follow up 

requirements, it was not possible to obtain information on the rate of wound healing. 

When the course of treatment was altered because the worsening severity of their 

wound necessitated a more extreme treatment choice, or when the patient moved 

hospital, outcome follow up was not possible on a practical level.   

Although it was ethically necessary to allow patients to receive alternative or more 

powerful treatment if they experience side effects or wound deterioration, the primary 

aim of this trial was to ascertain the biological efficacy of honey treatment when 

compared to the best standard care. As such, it is of interest to estimate the causal effect 

of honey treatment compared with conventional dressings in the absence of any 

treatment changes.  

4.2.7. SANAD 

The SANAD trial was an unblinded randomised comparison of a number of Standard 

And New Antiepileptic Drugs primarily among patients presenting with newly 
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diagnosed epilepsy (although some patients who had unsuccessfully been treated with 

an anti-epileptic drug (AED) previously (not including any of the trial treatments) or 

who had relapsed following withdrawal of treatment after a period of remission were 

also recruited). Patients were enrolled into one of two arms of the SANAD trial: 

Arm A of the SANAD trial was designed to compare the efficacy and safety of five 

antiepileptic drugs (AEDs) (carbamazepine (CBZ), lamotrigine (LTG), gabapentin, 

oxcarbazepine and topiramate) in terms of seizure control, tolerability, quality of life 

(QoL) and health economic outcomes (99), and was intended for patients for whom the 

standard treatment CBZ was considered to be most appropriate (usually presenting with 

focal epilepsy).  

Arm B of the SANAD trial compared (sodium) valproate (VPS), lamotrigine (LTG) and 

topiramate (TPM) (100), and was intended for those for whom the drug valproate was 

considered more appropriate (most of whom had generalised epilepsy).  This multi-way 

randomisation is the first complication affecting both arms of this trial, simply because 

many of the causal methods which can be applied to investigate or adjust for treatment 

changes will struggle to contrast more than two groups.  

The second complication of this trial design was the need to balance efficacy and safety: 

thus if a drug was shown to be superior in terms of tolerability (side effects), it was 

deemed necessary only to demonstrate non-inferiority of the treatment’s efficacy in 

terms of seizure control. The need to employ methods to determine non-inferiority (or 

equivalence) is complicated when treatment deviations occur, because as discussed in 

Chapter 3, ITT analysis is anticonservative in this case. Thus there was a need for 

estimation methods beyond ITT and PP, as neither of these methods are unbiased in 

this setting.  
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The third complication of the SANAD trial was the lack of blinding. As mentioned in 

the discussion of the honey trial, knowledge of which treatment has been prescribed can 

have an impact of the expectations and motivation of patients and clinicians alike. 

AEDs are known to often cause unpleasant side effects; a lack of blinding may mean 

that patients or clinicians are consciously or subconsciously looking for emergence of 

such symptoms and are therefore more likely to act on these side effects than they 

would be if they did not know which treatment was being prescribed. Furthermore, the 

inevitable disappointment if a hoped-for treatment is not prescribed may affect a 

patient’s morale and potentially impact on their general health. Both of these 

consequences of open label prescribing may lead to more frequent decisions to switch 

treatments than if treatment allocation had been masked. 

Changes to prescribed treatment are common in epilepsy, because the clinician must 

tailor the prescription to meet the individual’s needs. The optimum dose of each drug 

varies between individuals, and must provide a balance between maintaining seizure 

control but limiting side effects to a tolerable level. This is achieved by a titration phase, 

in which the dose of the originally prescribed drug is increased or decreased in 

gradations until a balance between efficacy and tolerability is achieved. If a drug is not 

acceptable to a patient following such a titration phase, it may be necessary for an 

additional AED to be prescribed (if, for example, the original drug is not controlling 

seizures) or for the original drug to be dropped entirely and replaced with a different 

AED (if, for example, the original drug is leading to unacceptable side effects even at a 

low dose).  

Thus the treatment protocol in SANAD was chosen to be entirely pragmatic, mirroring 

the ethical requirements for treatment changes that are part of everyday clinical care. 

The treatment protocol did not specify the initial dose of each randomised treatment, or 
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the rate of titration to reach the optimal dose of each trial drug. Instead decisions 

regarding dose and choice of alternative treatments were left to the discretion of the 

treating clinician.  

Treatment changes were further complicated by the typical need for a loading phase 

(when starting a new treatment) or a withdrawal phase (when stopping a treatment) in 

order to slowly increase or reduce prescribed treatment doses, rather than simply 

ceasing treatment straight from, or starting treatment at, a potentially optimum 

maintenance dose. This meant that when a treatment switch took place, there were 

often overlapping periods when two AEDs were taken simultaneously, with the 

duration of this overlap varying considerably between patients. 

Another complication of the SANAD treatment experience was the fact that some 

patients were still taking other treatments at randomisation. These patients were usually 

being withdrawn from a non-trial AED which had failed to prevent seizures, and the 

sometime lengthy withdrawal phase of this drug therefore overlapped with prescription 

of the randomised treatment. 

Thus patients in SANAD could experience a number of different treatment changes 

and complications during their trial follow up, including changes to prescribed 

treatment dose, complete withdrawal from randomised treatment, addition of other trial 

(or less commonly non-trial) treatments to aid seizure control, switching to another trial 

(or non-trial) treatment or a continuing short term prescription of another treatment 

still being taken at randomisation.  

This trial is therefore similar in a number of ways to the MRC hypertension trial 

mentioned previously. As in the MRC trial, the SANAD treatment protocol recognised 

that changes to prescribed treatment would be necessary, with treatment failure (change 
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to prescribed treatment) generally occurring in this clinical area for two competing 

reasons: either as a result of inefficacy of treatment (indicated by inadequate seizure 

control, ISC) or intolerability of treatment (due to unacceptable adverse events, UAE).  

The relevance of the issue of changes to prescribed treatment in epilepsy is borne out 

by the fact that one of the primary outcomes in SANAD was time to treatment failure 

(defined as the time from randomisation to cessation of randomised drug (whether due 

to ISC or UAE or both) or time to addition of a supplementary AED, whichever 

occurred first). ISC typically resulted in addition of an alternative treatment, most 

commonly one of the other trial AEDs, whereas UAEs led to cessation of randomised 

treatment and prescription of an alternative treatment.  

Both of these causes of treatment failures are related to dose but with opposite 

directions of association. Dose is related not only to the efficacy with which a certain 

treatment will prevent further seizures, but also to the likelihood of adverse reactions: as 

dose increases, the efficacy of treatment is expected to increase, but so too will the 

likelihood of unpleasant side effects. Thus it was necessary to analyse time to treatment 

failure using methods allowing for competing risks: a blanket analysis of time to 

treatment failure, without regard for the underlying cause, could lead to a masking of 

treatment effects as a result of cancelling out of the opposite effects of treatment by the 

two competing causes of treatment failure (198). 

The second primary outcome was time to 12 month remission (T12mR), defined as the 

time from randomisation to reaching a 12 month period free of seizures. This outcome 

is of great practical importance to patients, as one year’s remission is required before a 

patient regains the right to their driver’s license. However, as we shall see in future 

chapters, it is a rather complicated non-standard summary of repeated events data. 
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Time to first seizure (TFS) was one of a number of secondary outcomes. Although this 

outcome may initially seem a sensible and obvious choice for a more straightforward 

primary efficacy outcome (than T12mR), it does not necessarily provide a fair 

comparison of treatments, given that seizure control is going to be related to some 

degree to the initial dose of treatment. When clinicians prescribe a drug that is well 

known to them, they are likely to be more confident in increasing the treatment dose as 

part of the titration phase and thus may achieve higher doses of drug more quickly than 

when they are prescribing a newer drug with a less familiar side effect profile. Thus the 

comparison of TFS across treatments may be confounded to some degree with the 

familiarity of the drug, in favour of older treatments, as seizure control depends 

substantially on the initial drug dose.  

Indeed any treatment comparison in terms of seizure control is likely to be influenced 

by this dosing issue; however, dose is likely to have a more direct impact on this 

outcome than on T12mR, which depends more on a sustained delay of seizures and is 

thus less affected by the initial dose. 

Also, as in the MRC hypertension trial, the dose data collected in SANAD related only 

to prescribed treatment rather than patient compliance. Thus, any causal inference from 

these data is necessarily interpreted in terms of the explanatory effect of treatment that 

would be observed if there had been no prescribed changes to randomised treatment. 

Ideally this causal research question would also relate to the effect of compliance with 

randomised treatment schedule; indeed the effect of participant non-compliance with 

prescribed treatment, especially given the side effects associated with treatment, may 

have had a causal impact equal to or greater than that of actual treatment prescribed, 

but without the necessary adherence data, this theory cannot be investigated. 
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In the same way that mortality information was available (via flagging) when a patient 

had incomplete treatment follow up data as a result of premature discontinuation in the 

MRC hypertension trial, and patients in the Concorde had missing treatment 

information despite continuing to be followed up for outcome information, SANAD 

patients for whom treatment follow up data were missing or sparse nevertheless tended 

to be followed up for seizures. In such cases it was necessary to assume, as in the MRC 

trial, that no treatment changes had occurred unless they were specifically recorded. 

When treatment changes occur prior to achieving remission, the assessment of each 

randomised AED is distorted and it becomes unclear which AED should be attributed 

with success or failure in achieving remission. It is therefore of interest to assess the 

impact of uninterrupted use of each AED in achieving remission; thus the causal 

question of interest in terms of estimating treatment efficacy in this trial is as follows: 

What is the relative benefit of each drug in achieving a minimum T12mR, in the 

absence of any changes to prescribed treatment other than changes of dose of 

randomised treatment? Potential analyses investigating this (and variations of this) 

causal research question are explored in more detail in Chapters 8 to 10. 

4.2.8. Magnetic 

In the MAGNETIC trial (101), over 500 children presenting to A&E with a severe 

asthmatic attack were randomised to receive three doses of magnesium or placebo 20 

minutes apart. The primary outcome was asthma severity score at 60 minutes following 

randomisation (ASS60). Treatment deviations occurred in the timing and number of 

doses received: 24 (10%) in the magnesium group and 29 (12%) in the placebo group 

received doses that were more or less than 20 minutes apart (with a maximum margin 

of error of 5 minutes). Such deviations in terms of timing are arguably going to occur in 

clinical practice, given the pressured A&E setting, and thus it would not be sensible to 
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factor out such deviations. It may, however, be reasonable to expect greater control 

over the number of doses given in practice, and thus one could argue that it would be 

of clinical interest to estimate treatment efficacy that adjusts for the cases where less 

than three doses of treatment (as specified by the treatment protocol) were 

administered. There were seven (3%) of such cases in the magnesium arm and 12 (5%) 

in the placebo arms. 

As will be discussed in the next chapter, adjustment for dose deviations could be 

implemented using instrumental variable (IV) regression, with randomisation as the 

exogenous variable; endogenous variables would be actual number of doses of active 

treatment received along with other baseline characteristics that are considered to 

correlate with number of doses received but which do not directly influence the 

outcome. Note that the number of active doses of treatment received would be set as 

zero for all patients in the placebo arm, regardless of their adherence to the treatment 

protocol. Thus the only patients for whom adjustment was required in the case were the 

seven patients in the magnesium arm who received less than three doses.  

Unfortunately six of these seven patients withdrew from the trial prior to collection of 

the primary outcome. The likelihood of missing outcome data among patients who 

deviate from treatment protocol is not unusual. It does however mean that it is not 

possible to use any form of adjustment for deviation from dose protocol without 

imputing values for the missing outcome data (of those who received less than three 

doses in the magnesium arm). 

The authors of the HTA report (102) presented three sensitivity analyses investigating 

the impact of missing outcome data generally (not just among those with treatment 

protocol deviations). The reasons for missing data were recorded, and were most often 
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due to withdrawal from trial or a serious adverse event. The primary ITT analysis 

assumed that the outcome data were missing at random.  

The first sensitivity analysis imputed an ASS60 score of 0 if the recorded reason for 

missing data related to a good clinical status (for example, withdrawal due to 

improvement in condition, as was the case in three children), and imputed a value of 9 

if withdrawal was due to poor clinical status (as was the case for one child). When the 

reason for missingness was unknown or was unlikely to be related to clinical status, the 

outcome data were left as missing. These imputations did not affect the statistical 

significance of the outcome. 

The second sensitivity analysis involved multiple imputation to create five sets of 

imputed values, the average and corresponding variance of which were used to create 

the final data set and adjusted mean differences of ASS60 between the two treatment 

groups. Again the difference in group outcomes remained statistically significant. 

Finally a joint modelling analysis of the time to withdrawal (T0, T20, T40 or T60, with 

those who did not dropout prior to T60 being censored at T60) and the longitudinal 

ASS data was performed to account for the non-ignorable nature of the missing 

outcomes. The results suggest that those who dropped out from the magnesium group 

did so because of an improvement in condition, whereas those who withdrew from the 

placebo were experiencing a worsening of scores prior to dropout.  

Thus an informed adjustment for the reduced dose that was received by seven of the 

magnesium group patients would be likely to further increase the difference between 

the magnesium and placebo groups. However given that these patients are such a small 

percentage (3%) of the magnesium group, it is unlikely that such an adjustment would 

make any appreciable difference to the conclusions. 
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4.3. Discussion 

This exposition of nonadherence in trials has demonstrated how treatment receipt may 

differ from randomised allocation for a number of reasons, including logistics, changes 

to trial protocol and (especially in the case of long term treatment regimens) patient 

and/or clinician choice. Changes to prescribed treatment may be necessary for clinical 

reasons, for example when patients are experiencing toxicity or adverse reactions. 

Furthermore, when faced with chronic disorders, patients themselves will often seek 

their own optimal course of treatment to fit in with their individual practical and 

medical needs. When clinicians are willing to work with patients to find this optimal 

course of treatment, concordance may be achieved between patient and clinician; 

however, this adaptive flexible approach to treatment introduces complications for 

randomised trials, in a similar way to all other treatment deviations from original 

randomised treatment. The potential for very different treatment experiences across 

patients within the same randomised group prompts the question of how any useful 

causal interpretation may be obtained from trials featuring such treatment deviations.  

The approach to causal analysis therefore begins with identification of the particular 

causal research question of interest, which must differentiate treatment deviations or 

characteristics that are accepted as inherent within the treatment process (and thus 

should not be factored out in analysis) from those that do not reflect the intended 

treatment experience (and thus would usefully be adjusted for in analysis). Thus, by 

ignoring those treatment switches which correspond with the intended trial scenario (for 

example, clinically indicated changes in treatment prescription due to side effects) while 

adjusting for other deviations that do not reflect the scenario of interest (such as 

changes to trial protocol, patient nonadherence or logistical difficulties with treatment 

delivery), causal analysis may in fact provide estimation of treatment effects which are 
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conceptually intermediate between efficacy and effectiveness of treatment (73). As will 

be discussed further in future chapters, the approach taken to the causal question will 

therefore vary depending on the perspective of the interested party; for example, highly 

motivated patients’ interpretation of which treatment changes should be accounted for 

(in order to provide a realistic efficacy estimate) may well differ from those of policy 

makers (perhaps interested in pragmatic effectiveness of treatment in a setting that 

varies somewhat from that presented in the trial), and therefore their corresponding 

causal questions will reflect different handling of treatment deviations. Once defined, it 

is then necessary to consider how to translate this question into causal contrasts prior to 

undertaking analysis; this issue will be discussed and demonstrated in future chapters. 

4.4. Conclusion 

The literature review of the previous chapter and description of expository trials in this 

chapter have demonstrated how treatment deviation may manifest itself in a variety of 

clinical trial settings, and that, despite the best efforts of trialists, the problem of 

deviation from treatment protocol is to some extent inevitable and will not be resolved; 

indeed changes to treatment are sometimes necessary features of the protocol.  

Given that it is often important to estimate (some aspect of the) effect of treatment as 

received rather than simply as randomised, there is a need for appropriate alternative 

statistical methods which overcome the inadequacies of commonly employed methods 

such as PP or AT analyses, in order to provide unbiased estimates of such causal 

effects, defined by the causal question of interest. The next chapter therefore 

summarises a review of the statistical literature regarding potential methods to adjust for 

treatment deviations, using a number of the trials described in this chapter to illustrate 

methods. 
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5. Statistical methods to adjust 

for deviation from 

randomised treatment 

protocol  

5.1. Introduction 

Following the brief introduction to causal analysis and causal diagrams provided at the 

end of Chapter 3, this chapter will present an overview of causal methods to estimate 

treatment effects for a range of outcome measures and varying complexity of 

compliance patterns and associated patient-level covariates, with a particular focus on 

methods to analyse time to event (TTE) outcomes, as such outcomes are often 
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particularly relevant in trials with longitudinal treatment and follow up periods which 

are typically most likely to suffer from complications due to nonadherence or loss to 

follow up. 

In keeping with the practical focus of this PhD, this overview of statistical methods is 

written with the intention of being a guide for researchers, directing them to the most 

appropriate causal method to use, according to their particular trial and compliance 

scenario. Thus technical details will be kept to a minimum; instead discussion will focus 

on application, highlighting important issues that researchers should consider as part of 

the causal estimation process. The key statistical methods discussed in this chapter will 

be illustrated in this and following chapters using a number of the expository trials 

introduced in Chapter 4. 

5.2. Potential outcomes framework 

Having considered in Chapter 3 the definition of a causal effect and how biases may be 

introduced using associational statistical methods due to unmeasured or time-varying 

confounding, it may now be apparent that causal effects can in fact only be defined in 

terms of comparing, for each individual, their potential outcomes resulting from each of 

the relevant treatment conditions while holding all other factors constant, such that any 

outcome difference can then be attributed solely to the differential exposures rather 

than to any potential selection or confounding effects. Such a within-patient contrast 

cannot of course ever be directly observed (in other words, it is a latent comparison) 

because only at most one of the conditions can be observed for a given individual at a 

particular time. Even crossover trials (which aim to estimate within-patient effect 

estimates by randomising patients to receive both the treatment and control treatment 

in sequential treatment periods separated by a suitable washout period) are unable to 
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provide true causal contrasts, as time (and thus potentially other factors) differs between 

the different treatment exposures periods.  

5.2.1. Counterfactuals  

When comparing potential outcomes for a given individual, all outcomes except that 

corresponding to the actual treatment received are said to be counterfactual (i.e. they are 

entirely hypothetical and cannot be observed) while that which is observed is said to be 

factual (85). The entire collection of all possible outcomes, both actual and 

counterfactual, for the target population is called the set of potential outcomes (103). 

The notion that a causal relationship is necessarily described in terms of a within-patient 

difference between outcomes under counterfactual conditions (i.e. comparing the effect 

on outcome of one form of treatment with what would have happened under an 

alternative form of treatment) is not new. In 1748, the philosopher Hume stated “we 

may define a cause to be an object followed by another… where, if the first object had 

not been, the second never had existed.”; in hypothesizing about what would have 

occurred under conditions contrary to those that occurred in reality, this statement is 

termed “counterfactual conditional” (103). However, it took another 175 years before 

this idea of comparing actual and counterfactual outcomes for the same individual was 

first formalised by Neyman (in 1923), who introduced the idea of multiple prospective 

outcomes under differing treatment conditions in the context of randomised 

agricultural experiments. His notation (relating to multiple plots and seed varieties) and 

terminology (“potential yield”) has since been applied to randomised trials, providing a 

crucial basis for design, analysis and interpretation of studies investigating causal 

relationships (85).  
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5.2.2. Barriers to the use of causal estimation methods 

Methods based on the potential outcomes (PO) framework are relatively new and 

continue to be developed, with particular methods varying according to (outcome and 

compliance) data and focus of the causal question. However a number of barriers, both 

historically and in present day, have undermined the use and acceptance of causal 

analysis techniques by mainstream statisticians.  

One important proposed reason for the apparent resistance to wider use of causal 

estimation methods based on the PO framework is the requirement of underlying 

additional, but untestable, assumptions to allow inference on a causal rather than merely 

associational basis. This is due to the need to consider multiple, partially latent, 

counterfactual outcomes for each individual, which not only underpins the difference 

between associational and causal estimation, but also, in the words of Holland (84), is 

the “fundamental problem of causal inference”, given that it is impossible to observe 

more than one outcome for each individual at a particular time point. The apparent 

impossibility of this task does not render causal analysis entirely futile, but instead 

requires that additional assumptions are made.   

Causal assumptions are often treated with scepticism, despite often being more 

plausible than the underlying (but perhaps unappreciated) assumptions required for 

valid interpretation of naïve associational analyses according to treatment receipt (for 

example, PP analysis assumes the simplest but least plausible assumption that subjects 

who do and do not comply with their assigned treatment protocol are comparable with 

regard to prognosis). Pearl (104) argues that this reticence to accept causal, in contrast 

to associational, analyses may be due to the fact that assumptions which underlie 

associational analyses, such as those regarding probability density functions or 

conditional independence between variables, are somewhat less transparent than causal 
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assumptions regarding how one variable may cause another, and therefore the latter 

tend to be more open to counterargument.  

Another potential barrier to the use of causal estimation is that, in contrast to those 

relating to associational relationships, assumptions associated with causal relationships 

cannot be expressed using usual statistical notation. Given that all causal analyses are 

conditional on a given set of assumptions beyond those of standard associational 

methods, clear notation is important in order to allow judgment of whether these 

assumptions are credible. For example, statistical dependence between outcome 𝑌 and 

adopted treatment 𝐴  (expressed as 𝑌|𝐴 ) cannot be distinguished from causal 

dependence using standard statistical notation alone. Thus, supplemental explicit 

notation has been developed to facilitate differentiation between associational 

inferences and causal claims or assumptions, as well as to clarify the notion of 

counterfactuals, both in terms of outcomes and treatment receipt.  

Such a causal “language”, however, has developed only relatively recently. Although 

Neyman introduced the concepts relating to causal analysis in the 1920s, half a century 

passed before Rubin (105) and Holland (84) helped to reignite interest in causal 

techniques by clarifying the notation for counterfactual or potential outcomes which 

underlie causal inference. The importance of Neyman’s innovative notation was that it 

allowed causal effects to be expressed independently of any particular probability model 

(85). For example, it became apparent that when carrying out causal analyses, it was 

possible to consider counterfactual outcomes as functions of treatment received and 

counterfactual treatment receipt variables in terms of randomisation assignment. 
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5.2.3. Notation and definition of typical causal estimands 

Using such notation, the causal contrast can be expressed as a relative measure (for 

example, a relative risk or odds ratio for a binary outcome) or absolute difference (for 

example, difference in means of a continuous variable) (103). Assuming a simple 

scenario, where outcome or response (𝑌 ) is to be compared under two conditions 

(experimental (𝐴 = 1) versus control (𝐴 = 0) treatment) without interference between 

units (in other words, the effect of treatment on an individual does not vary according 

to treatment received by other individuals), the causal effect for a given individual 𝑖 can 

be defined in terms of a contrast between their (potentially unobserved or 

counterfactual) responses under the two conditions, for example the absolute difference 

𝑌1𝑖 − 𝑌0𝑖 (106).  

In other words, to describe a causal estimate, one needs not one (𝑌𝑖) but two (𝑌1𝑖, 𝑌0𝑖) 

response variables for each individual, denoting their response had they been assigned 

to treatment or control respectively (84). Note that this notation can be extended to a 

situation where treatment is received repeatedly over time, such that 𝑌�̅�𝑖  denotes the 

(potentially counterfactual) outcome that would have been observed if subject 𝑖  had 

followed treatment regimen 𝑎 for their entire follow up period, say up to time 𝑘 (0 ≤

𝑡 ≤ 𝑘) i.e. �̅� =  {𝑎1, 𝑎2 … 𝑎𝑘: 0 ≤ 𝑡 ≤ 𝑘}. The causal contrast comparing continuous 

treatment to no treatment would then be written as 𝑌(�̅�=1̅)𝑖 − 𝑌(�̅�=0̅)𝑖 = 𝑌1̅𝑖 − 𝑌0̅𝑖  

(107). 

Furthermore, given that the treatment a participant receives is assumed to be influenced 

by their randomised treatment allocation, again assuming binary treatment receipt, the 

two potential treatments that a patient may receive can be indexed according to whether 

they were assigned to experimental (𝑍𝑖 = 1) or control treatment (𝑍𝑖 = 0), i.e. 𝐴𝑖(𝑍𝑖 =
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1) = 𝐴1𝑖;  𝐴𝑖(𝑍𝑖 = 0) = 𝐴0𝑖 . (Note that the subscripts denoting individual 𝑖  can be 

dropped without ambiguity, given that outcomes values are assumed to be 

independently and identically distributed over the entire sample being studied.) 

Given that it is impossible to observe both potential outcomes for a given individual, 

rather than attempting to determine the causal effect of treatment for a particular 

individual 𝑖  (known as the individual causal effect (ICE) and defined by the 

difference Δ𝑖 = 𝑌1𝑖 − 𝑌0𝑖 ), it is instead sensible to estimate some form of average 

causal effect (ACE) for the population of interest. For example, the average within-

patient causal difference 𝐴𝐶𝐸 = 𝐸(𝑌1𝑖 − 𝑌0𝑖) is (by usual laws of probability) equal to 

the difference in averages 𝐸(𝑌1𝑖) − 𝐸(𝑌0𝑖) =  𝐸(𝑌1) − 𝐸(𝑌0) between the treatment 

and control observations for all units in the population of interest. If one can assume a 

constant effect of treatment on all units, the ACE as an estimate of the underlying true 

constant treatment effect is relevant and informative for all individuals (84).  

5.2.4. Underlying assumptions  

However, given that outcome data are available for only a small sample rather than all 

of the population, it is necessary to accept certain assumptions before the ACE, or any 

other causal parameter, can be estimated.  

If treatment assignment is randomised and adhered to perfectly, randomisation provides 

independence between outcome and allocation of treatment; thus, under the 

assumption that the sample is generalisable to the target population, the outcome data 

𝐸(𝑌𝑗) =  𝐸(𝑌|𝑍 = 𝑗)  can be used to estimate this average quantity ACE 

by  𝐸(𝑌|𝑍 = 1) − 𝐸(𝑌|𝑍 = 0) = 𝐸(𝑌1) − 𝐸(𝑌0) , a result first demonstrated by 

Neyman (85). However any selection process which violates the independence between 

allocation of treatment and outcome (such as that typically introduced by deviation 
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from randomised treatment or by observational rather than experimental assignment of 

treatment) invalidates this estimation (84). 

As such, the underlying treatment assignment mechanism is of fundamental 

importance. The causal methods to be discussed presently rely on randomisation to 

provide balance on all baseline variables (including all potential random variables and 

thus counterfactual outcomes) between groups. Methods for observational studies rely 

on the assumption that the randomisation balance can be simulated by conditioning on 

all relevant variables which confound the a priori independence between treatment 

allocation and outcome, invoking the so-called strong ignorability assumption (where 

“strong” implies an unconfounded and therefore causal interpretation), also known as 

the assumption of no unmeasured confounders (NUC), such that the relationship 

between the potential outcomes and received treatment can be assumed to be 

independent, given adjustment for all such confounders. In the case of dynamic 

treatment regimens, the sequential ignorability assumption would be required, 

adjusting for relevant (time-varying) covariates at each time point, to simulate sequential 

randomisation of treatments at each time  𝑘  (107, 108). This assumption can be 

interpreted as, conditional on all pertinent baseline and time-varying confounders, those 

who do and do not change treatment at time 𝑡 have the same probability of outcome, 

such that the decision on whether to change treatment is independent of underlying 

untreated outcome given these variables.  

Formally, randomisation ensures that the probability that an individual with potential 

outcome 𝑌0 and 𝑌1 is assigned a certain treatment is a constant that does not depend on 

their potential outcomes 𝑌0 and 𝑌1, such that 𝑃(𝑍|𝑌0, 𝑌1) = 𝑃(𝑍) ∀ 𝑌0, 𝑌1, whereas the 

NUC assumption states that the probability of assignment is independent of all missing 

( 𝑌𝑚𝑖𝑠)  and observed ( 𝑌𝑜𝑏𝑠 ) outcomes, and can be assumed to be random once 
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conditioned on observed covariates 𝑋 , i.e. 𝑃(𝑍|𝑋, 𝑌𝑜𝑏𝑠, 𝑌𝑚𝑖𝑠) = 𝑃(𝑍|𝑋) ∀  𝑌𝑚𝑖𝑠, 𝑌𝑜𝑏𝑠 

(109). 

Another basic assumption commonly invoked for causal analysis, necessary to allow 

statistical inference based on the assumption that individuals’ observations are 

statistically independent, is the stable-unit-treatment-value assumption (SUTVA), which 

assumes that a full set of potential outcomes exist for each person (even though only 

one is observed) which are independent of outcomes and treatment status of all other 

subjects (110). Note that the SUTVA differs from the usual assumption of identical 

independent distributions of outcomes (i.e. that the outcome of an individual is 

unaffected by outcomes of other participants) required for standard statistical analysis, 

as it relates to stability of treatment received as well as outcome status. This assumption 

is necessary for the notation 𝑌𝑖𝑘 to be sufficient in denoting the outcome of unit 𝑖 with 

treatment 𝑘 ; otherwise, notation would need to include information on treatment 

received by all other units and the basic assumption of statistical independence between 

subjects (necessary for all statistical inference) would also fail (111). The SUTVA means 

that the observed outcome for unit i will equal one of the potential outcomes for that 

unit, no matter how the treatment was received (63). 

This assumption also incorporates the notion of treatment stability, i.e. that each level 

or form of treatment is given to different units in an identical manner (so that there are 

no hidden versions of treatments), or equivalently that even if the treatment delivery 

varies slightly from individual to individual, the effect (i.e. potential outcomes) will be 

consistent. This assumption is required in order that the following equality will always 

hold: 𝑌𝑖 = 𝑌1𝑖 ∗ 𝐴𝑖 + 𝑌0𝑖 ∗ (1 − 𝐴𝑖) (112). 
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The SUTVA may be contravened in studies of infectious disease or when behavioural 

interventions are affected by interaction between individuals (85) or in cluster 

randomised behavioural or educational trials where participants may observe or 

influence each other’s outcomes. Treatment stability may not hold in cases where 

natural variation occurs in the treatment process, for example when the rapport 

between therapist and individual affects the delivery of treatment for psychological 

disorders, or when clinicians’ expertise influences the quality of surgical or medical 

treatment, or when practitioners’ experience with one patient influences their 

subsequent treatment of another patient. In practice, some treatment variation is likely 

to occur, but such heterogeneity is assumed to remain within a reasonable range (113). 

The exclusion restriction (ER) is a commonly employed assumption which implies no 

direct effect of treatment assignment, such that the offer of treatment itself has no 

influence on outcome, but instead any effect of randomisation on outcome is entirely 

due to its effect on treatment receipt. An alternative interpretation is that a patient who 

receives treatment will experience the same outcome whether or not they were 

originally randomised to receive it (114). In a continuous compliance setting, this 

assumption may be considered a “zero dose-response” assumption, such that without 

treatment, assignment will have no effect (115). The exclusion restriction is so called 

because the assignment mechanism is assumed to influence outcome “exclusively” 

through its effect on actual treatment received (112).  

The exclusion restriction is likely to hold in double-blind trials (116) where the 

psychological effect of treatment assignment is (theoretically) negligible, but when 

participants are aware of the treatment they have been allocated to, there is potential for 

a strong placebo effect (or expectation of treatment) and thus this assumption may not 

hold. Unblinded behavioural intervention studies may be particularly prone to 



   
   

140 
 

invalidation of this assumption, given that the impact of being assigned a certain 

behavioural intervention may affect an individual’s outcome for reasons other than the 

intervention itself (for example, due to changes in a patient’s mood or motivation levels, 

or because of an underlying rapport with therapist). Furthermore, the exclusion 

restriction will not hold if additional treatments or extra medical attention tend to be 

given in a certain treatment arm. 

Before moving on to consider various approaches to causal methods which make these 

assumptions, it is worthy to note that, in making explicit the nature of relationships 

between variables and the underlying implicit assumptions regarding these relationships 

required for causal inferences, cDAGs implicitly demonstrate a number of key features 

of the causal techniques to be discussed.  

5.2.5. cDAGs demonstrate underlying features and assumptions of 

causal techniques 

First it is interesting to discover that the graphical representation of a trial with 

imperfect compliance using a cDAG implicitly depicts two such key assumptions that 

are often required in order to allow causal interpretation. 

Pearl (104) points out that the underlying causal assumptions are encoded in a cDAG 

by the missing rather than the indicated links in a causal diagram; the existence of an 

arrow in the diagram suggests the potential for a causal connection (of unknown 

strength) between variables, whereas a missing arrow indicates a definite lack of causal 

link. Therefore, the randomisation (or independence) assumption is demonstrated by 

the lack of any common causes of 𝑍 with any other factor; as such, assignment 𝑍 can be 

assumed to be entirely independent of any underlying prognostic factors 𝑈.   
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Secondly, lack of a direct arrow between randomisation 𝑍 and outcome 𝑌 indicates that 

assignment 𝑍 has no direct influence on outcome 𝑌 except through the actual treatment 

received 𝐴 (or equivalently, the effect of randomisation on outcome is entirely mediated 

by treatment exposure). This depicts the ER assumption, as it excludes the assignment 

mechanism variable Z from being a determining argument of the (𝐴, 𝑌) association.  

Along with these two assumptions (randomisation and ER), this cDAG introduces 

another important feature of causal analysis, namely that of instrumental variables. 

The depiction of an arrow from 𝑍 to 𝐴 indicates that there is a potential correlation 

between 𝑍 and 𝐴; if it can be assumed, not only that the effect of randomisation is 

entirely mediated by treatment receipt (in other words, the ER assumption holds) but 

also that randomisation has a positive effect on treatment exposure (such that 

randomisation to experimental treatment leads to a greater probability of receiving that 

treatment than randomisation to control treatment), randomisation is said to fulfill the 

role of an instrumental variable (IV) in this context.  

Exploitation of randomisation as an IV is a common feature of the various causal 

techniques to be introduced in this chapter. The idea behind IVs is to avoid correlation 

between an endogenous variable (like compliance) and the error terms in a regression 

model, by substituting this endogenous variable (so called because, in a model 

regressing outcome on treatment received, treatment received would be correlated with 

the error terms; such endogeneity would render biased coefficients of the mediator) 
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with another “instrumental” variable (say, randomised treatment) which is correlated 

with the original predictor (compliance) and with outcome, but which does not directly 

affect outcome. Thus, the problem of hidden confounding may be circumvented by 

assuming a priori that randomisation per se has no direct effect on outcome, but rather 

its impact on outcome is entirely via treatment received (as per the ER assumption), 

which then (in conjunction with the assumption of random allocation) leads naturally to 

the use of randomisation allocation as an IV. Typically IV methods use a two-stage least 

squares (2SLS) process to estimate these coefficients, whereby the outcome is regressed 

on the predicted values of the mediator variable (obtained by first regressing this 

endogenous mediator variable (treatment received) on the IV (randomisation)), thus 

providing unbiased estimation coefficients of the effect of the original mediator variable 

on outcome. 

The use of randomisation as an IV is implicit in many causal methods, but is most 

commonly associated with the more traditional method involve structural equation 

modelling.   

5.3. Traditional causal estimation: SEMs 

Traditionally, causal estimation has been approached through the use of structural 

equation modelling (SEM), where “structural” refers to the underlying structure of the 

causal relationship (as opposed to mere association) as demonstrated in a cDAG.  

Introduced by Wright in the 1920s, this method has been developed and used since the 

1960s, primarily by sociologists and economists. SEM is very similar to classical 

simultaneous equation modelling, with features such as an underlying linear structure, 

constant coefficients and reliance on error terms to encompass the effect of missing 

variables (117). The focus of this regression approach is to estimate direct and indirect 
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(for example, through adherence) effects of treatment on outcome using instrumental 

variable (IV) techniques but with implicit reliance on a number of assumptions, firstly 

that the functional forms assumed by the model are correct, and secondly that there are 

no missing influences (𝑈) on the outcome. In other words, conditional on the included 

covariates (𝑋), there remains no confounding between mediator (treatment adherence) 

and outcome (thus invoking the NUC, or strong ignorability, assumption). 

In general, SEM has not been widely accepted by statisticians as a causal estimation 

method because of a number of important inadequacies: first, the lack of transparency 

regarding underlying assumptions (expressed, for example, in terms of correlation 

between error terms) makes it is difficult to interpret, assess or communicate the validity 

of results and implications of the model results. Furthermore, given the likelihood of 

hidden or time-varying confounding bias, SEM is often viewed with suspicion because 

of a lack of confidence that full information has been collected on all confounding 

variables in order to satisfy the NUC assumption.  

More recently, however, newer causal inference methodologies have been developed, 

with explicit underlying assumptions and clearly notated causal contrasts, thus allowing 

researchers to more easily understand the implications of the underlying assumptions 

and how the causal contrasts relate back to the research question of interest. Indeed, the 

most important difference between available approaches to causal estimation lies in 

their transparency with respect to their underlying assumptions, affecting the ability of 

researchers to interpret and evaluate the validity of each method. 

These newer methods, to be discussed in the next section, are based on the PO 

framework but are not entirely unrelated to SEMs; indeed SEMs are actually implicitly 

based on the assumption of POs, although this is not obvious, while the use of 
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common assumptions (such as randomisation, or NUC, and ER) means that modern 

methods often also rely on randomisation as an IV (118).  

5.4. Causal estimation methods 

Having established the notation and assumptions required for causal methods based on 

the PO framework, two approaches to such estimation are now introduced, both of 

which are highly suited to trial data, as they rely on the randomisation assumption of 

balance between groups in terms of underlying untreated (or control) outcomes. The 

first approach employs this assumption to estimate treatment efficacy (i.e. effect of 

actually receiving treatment) for all patients, while the second estimates the effect of 

randomisation (i.e. the ITT effect of being assigned treatment) within a (latent) 

“complier” subgroup. 

Other methods, originally developed for observational studies, rely on the assumption 

that all time-varying confounders between treatment receipt and outcome are known 

and measured, such that appropriate adjustment for these factors removes the selection 

bias associated with analysis by treatment received. Such methodology can be applied to 

randomised trials, and will be introduced following the discussion of the two 

randomisation-based approaches involving comparison of potential outcomes. 

5.4.1. Principal stratification approach (CACE) 

Continuing to assume only (time-fixed) binary (rather than quantitative or time-varying) 

compliance and a binary treatment contrast, the potential outcomes framework 

provides a basis for classifying individuals according to their underlying potential 

compliance status under each randomised treatment.  
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The principal stratification (PS) approach is based on stratifying the population into 

latent subgroups (principal strata) based on this potential compliance behaviour and 

then fitting (unbiased) ITT estimates (known as principal effects) within these 

principal strata.  

A patient’s principal stratum is considered to be a characteristic of the subject, 

effectively representing their underlying willingness to become exposed to the various 

treatments being contrasted. This characteristic is considered a baseline covariate, which 

is therefore unaffected by randomisation allocation, and as such can be used as a 

stratifying variable without introducing bias (unlike for other confounders measured 

after randomisation) (119). As such, methods based on PS can be thought of as latent 

class models, whereby the problem of deviation from randomised assignment is avoided 

by considering the (unconfounded) estimation of effect of treatment assignment (i.e. 

ITT effect estimate) within categories of patients according to their principal 

compliance status. The challenge presented by this approach is that an individual’s 

status is never fully observed (i.e. it is latent) because it refers to their compliance 

behaviour on both possible treatments, whereas it is possible to observe only their 

observed compliance to their assigned treatment. As such, it is necessary to invoke 

additional assumptions in order to categorise patients into one of the possible principal 

compliance classes (119). Hence in this approach, counterfactuals enter with respect to 

definition of compliance class, defined assuming all-or-nothing compliance. 

5.4.2. Compliance classes 

The (latent) compliance classes can be defined by cross-classifying each patient 

according to the treatment that they would receive under each possible randomised 

allocation, in order words cross-classification of 𝐴0 and 𝐴1, where 𝐴0 = 0 (𝐴1 = 1) if a 
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patient, when randomised to control (experimental) treatment, would adhere and 

actually take control (experimental) treatment; 𝐴0 = 1 if instead they would instead take 

experimental treatment when randomised to control and 𝐴1 = 0 if instead they would 

take control treatment despite receiving allocation to experimental treatment. 

The table below shows how this cross-classification provides the definition of the 

underlying compliance classification status (𝐶) of each individual: 

Table 4 Compliance classification 

Treatment received when randomised to control arm  

 
Control treatment 

(𝐴0 = 0) 

Experimental treatment 

(𝐴0 = 1) 
Treatment received when randomised 
to experimental arm 

  

Control treatment (𝐴1 = 0) Never taker (𝑁) Defier (𝐷) 

Experimental treatment (𝐴1 = 1) Principal complier (𝑃𝐶) Always taker (𝐴) 

 

In other words, an always taker (𝐴) takes experimental treatment regardless of their 

randomised allocation ( 𝐴𝑍 = 1 ∀ Z ), a never taker ( 𝑁 ) will always takes control 

treatment (𝐴𝑍 = 0 ∀ Z) and a defier (𝐷) will always take the opposite treatment to that 

which they were randomised (𝐴𝑍 = 1 − 𝑍 ∀ Z). A principal complier (𝑃𝐶) is defined 

as an individual who would always take the treatment to which they were randomised 

(𝐴𝑍 = 𝑍 ∀ Z).  

The term “principal complier” is used in preference to “complier” in order to 

distinguish between those who have simply been observed to comply with their 

randomised allocation only and those who would comply with either randomised 

allocation. Those observed to comply with experimental arm allocation may be always 

takers or principal compliers, whereas those observed to comply when randomised to 

control treatment may be never takers or principal compliers. As such, observed 
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compliance status alone does not provide full information on a patient’s underlying 

principal stratum. More formally, given that, for each individual, we are able to only 

observe their compliance status 𝐴𝑧𝑖
under their randomly assigned treatment 𝑧𝑖 , their 

compliance status  𝐴(1−𝑧𝑖)  is unobserved and therefore their underlying compliance 

class is unknown.  

Once these compliance classes have been identified, unbiased causal estimation is 

thereafter achieved by estimating the (unbiased) effect of assigned treatment (i.e. 

according to randomisation) only in the subgroup of principal compliers who would 

comply with whatever treatment they were randomised to (and thus distinct from 

observed compliers). Given that no deviation from randomisation occurs in this 

subgroup, analysis according to randomisation equates to analysis according to 

treatment received for this subgroup of patients, and thus this effectiveness estimate 

can be granted causal interpretation.  

Thus the PS approach involves estimation of ITT within latent compliance classes 

known as principal strata. The resulting (unbiased) ITT estimate of treatment 

effectiveness calculated within the principal strata of potential compliers can be 

interpreted as a measure of treatment efficacy relating to such patients, known as the 

complier average causal effect (CACE).  This is because, for this universally 

compliant subgroup, treatment received is always equal to randomised treatment; as 

such analysis according to randomised treatment (ITT analysis) within this group of 

patients equates to (unbiased) analysis according to treatment receipt. However, rather 

than relating to the entire population, the CACE is therefore generalisable only to the 

(unobservable) subgroup of patients who would naturally comply with their assigned 

treatment. 
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5.4.3. CACE vs PP vs AT: how PO formulation clarifies deficiencies 

The key to PS methods is using the potential framework to define patients’ potential 

compliance status, thus revealing the distinction between a principal complier 

(compliance under both treatments) and an observed complier (compliance under the 

treatment actually assigned). Little (109) demonstrates how the PS formulation can be 

used to clarify the biases introduced by naïve analysis methods such as PP or AT.  

Using the notation 𝑌(𝑍 = 𝑗) = 𝑌𝑗  to denote a patient’s potential outcome when 

randomised to treatment 𝑗, the CACE estimate is denoted as 

Equation 1 

𝐶𝐴𝐶𝐸 = 𝐸(𝑌1 −  𝑌0|𝐶 = 𝑃𝐶) 

where the conditioning on 𝐶 = 𝑃𝐶 is identical to conditioning on  𝐴1 = 1 and 𝐴0 = 0. 

The CACE is a valid causal effect because it is a summary measure of individual-level 

effects (𝑌1 −  𝑌0) in a subpopulation of interest, namely compliers. 

In contrast, AT analysis, which classifies subjects by the adopted treatment 𝐴(𝑍) = 𝐴𝑍, 

estimates 

𝐴𝑇 = 𝐸(𝑌𝑍|𝐴𝑍 = 1) −  𝐸(𝑌𝑍|𝐴𝑍 = 0) 

This estimate does not carry causal interpretation, as it is not an average of individual-

level causal effects; instead it compares outcome averages for different groups with 

different characteristics. In particular, it compares the average outcome of those 

adopting experimental treatment (namely all always-takers, principal compliers who 

were assigned experimental treatment and defiers who were assigned to the control 

treatment) with the average outcome of those adopting control treatment (namely 

compliers randomised to receive control treatment, defiers randomised to experimental 

treatment and never-takers who were assigned either treatment).  
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Similarly, PP analysis, in estimating 

𝑃𝑃 = 𝐸(𝑌𝑍|𝐴1 = 1) −  𝐸(𝑌𝑍|𝐴0 = 0) 

is not an average of individual-level causal effects. In comparing only those subjects 

who actually adopted their assigned treatments, a PP analysis compares the outcomes of 

those who were assigned and received experimental treatment (compliers and always-

takers assigned to experimental treatment) with the outcomes of those who were 

allocated to and received control treatment (that is, compliers and never-takers 

randomised to control treatment). In order for the PP analysis to be valid, unrealistic 

assumptions are required: the mean outcome for those who comply with experimental 

treatment is assumed to be the same both for compliers in the experimental arm and 

always takers from both treatment arms, and similarly the mean outcome for those who 

comply with control treatment is assumed to be constant, regardless of whether they are 

non-compliers from the experimental arm or never takers from both treatment arms: 

i.e. outcome is unrelated to compliance: 𝑌 ⊥ 𝐶|𝐶 = 𝑁 𝑜𝑟 𝑃𝐶, 𝑍 = 0 and 𝑌 ⊥ 𝐶|𝐶 =

𝐴 𝑜𝑟 𝑃𝐶, 𝑍 = 1 (109). 

5.4.4. Heuristic derivation of CACE: assumptions required  

Although CACE in Equation 1 above is simply the ITT estimate among the class of 

“compliers” and thus a valid causal estimand, it is not immediately apparent how it can 

be estimated, given that underlying principal compliance status (𝐶) of individuals is not 

known (109). The answer lies in being able to assume certain plausible restrictions. 

Indeed, the heuristic derivation of the CACE estimate provides a useful platform for 

demonstrating the relevance and use of the assumptions most commonly applied in 

causal analysis. 
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In particular, in order to estimate the CACE, a number of standard assumptions 

(SUTVA, ER and randomisation) are required, along with two further restrictions 

(monotonicity and non-zero compliance). The following explanation of CACE 

estimation demonstrates how and why these assumptions are implemented. 

First note that, assuming randomised allocation of treatments, the usual ITT estimate is 

equal to  

𝐼𝑇𝑇 = 𝐸(𝑌1 −  𝑌0) 

which, by the usual laws of probability, equates to   

𝐼𝑇𝑇 = 𝐸(𝑌1 −  𝑌0)

= 𝐸((𝑌1 −  𝑌0)|𝐶 = 𝑃𝐶) 𝑃(𝐶 = 𝑃𝐶)

+ 𝐸((𝑌1 −  𝑌0)|𝐶 ≠ 𝑃𝐶) 𝑃(𝐶 ≠ 𝑃𝐶) 

Note next that, if the exclusion restriction holds, the ITT treatment effect (i.e. 

difference in outcome between randomisation to treatment and control arms) in never-

takers and always-takers will always equal zero. This follows because the exclusion 

restriction states that randomisation has no effect beyond that of treatment received; 

thus, given that, in these compliance subgroups, treatment receipt does not vary with 

randomisation, the difference in potential outcomes for never- and always-takers will 

always equal zero; i.e. 𝑌0 = 𝑌1 if 𝐴0 = 𝐴1. 

The next assumption required is that of monotonicity, which implies that there are no 

defiers (subjects who would always take alternative treatment to that randomised) This 

assumption is named ‘monotonicity’ because treatment assignment is assumed to work 

in one direction only, such that 𝐴1𝑖 ≥ 𝐴0𝑖∀𝑖  or equivalently 𝑃(𝐴1𝑖 ≥ 𝐴0𝑖) = 1 . If 
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these two assumptions hold, it can be noted that the second term of the equation above 

is equal to zero, because  

𝐸((𝑌1 − 𝑌0)|𝐶 ≠ 𝑃𝐶) 𝑃(𝐶 ≠ 𝑃𝐶) 

= 𝐸((𝑌1 − 𝑌0)|𝐶 = 𝐴) 𝑃(𝐶 = 𝐴) 

+𝐸((𝑌1 −  𝑌0)|𝐶 = 𝑁) 𝑃(𝐶 = 𝑁) 

+𝐸((𝑌1 −  𝑌0)|𝐶 = 𝐷) 𝑃(𝐶 = 𝐷) 

and 𝐸((𝑌1 −  𝑌0)|𝐶 = 𝑁) = 𝐸((𝑌1 −  𝑌0)|𝐶 = 𝐴) = 0 (by ER) and 𝑃(𝐶 = 𝐷) = 0 

(by monotonicity). Thus  

𝐼𝑇𝑇 = 𝐸(𝑌1 −  𝑌0) = 𝐸((𝑌1 − 𝑌0)|𝐶 = 𝑃𝐶) 𝑃(𝐶 = 𝑃𝐶) = 𝐶𝐴𝐶𝐸 ∗ 𝑃(𝐶 = 𝑃𝐶) 

As such, the CACE estimate is simply the ITT estimate (of the difference in outcome 

between randomised groups) divided by the proportion of principal compliers (which, 

in the final assumption of this analysis (namely, the non-zero compliance assumption), 

is taken to be positive; in other words, it is assumed that there exists at least one 

individual in the trial who would always comply with their randomised treatment 

allocation). Although unknown, this proportion can be estimated very simply and 

unbiasedly if one invokes the randomisation and monotonicity assumptions. In Table 4, 

it may be noted that the observed proportion of patients randomised to the 

experimental treatment arm who actually receive this treatment (denoted here as 𝑝1) is 

an unbiased estimate of the combined (population) proportions of compliers and 

always-takers; similarly the proportion ( 𝑝0 ) of control arm patients who adopt 

experimental treatment is an unbiased estimate of the population proportion of always-

takers (as there are assumed to be no defiers). As such, the true proportion of compliers 

𝑃(𝐶 = 𝑃𝐶)  can be estimated by the difference in the observed proportions of 
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experimental and control arm patients who receive experimental treatment (𝑝1 − 𝑝0), 

which is equal to the ITT difference (i.e. when analysing according to randomisation) of 

experimental treatment receipt.  

Therefore, under the above stated conditions, the CACE estimate is simply a ratio of 

two ITT effects: the ITT effect (of randomisation) on outcome divided by the ITT 

effect (of randomisation) on treatment receipt. For example, with observed mean 

outcomes, �̅�0 and �̅�1, from the control and experimental treatment groups respectively, 

the CACE estimate is given as  

Equation 2 

𝐶𝐴𝐶𝐸 =  
�̅�1 −  �̅�0

𝑝1 −  𝑝0
=

𝐼𝑇𝑇 𝑒𝑓𝑓𝑒𝑐𝑡 𝑜𝑛 𝑜𝑢𝑡𝑐𝑜𝑚𝑒

𝐼𝑇𝑇 𝑒𝑓𝑓𝑒𝑐𝑡 𝑜𝑛 𝑡𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡 𝑟𝑒𝑐𝑒𝑖𝑝𝑡
 

The use of assumptions (namely SUTVA, randomised assignment, exclusion restriction 

and monotonicity) in this derivation of CACE links it to IV estimation, as 

randomisation satisfies the necessary conditions of an IV in this setting. As such, this 

ratio is sometimes called the instrumental variable (IV) estimator and was 

demonstrated by Angrist (117) to be equivalent to the IV estimand.  

Newcombe (53) was the first to describe PS (IV) methods to adjust for non-compliance 

from randomised treatment, demonstrating the equation above for a continuous 

outcome. Newcombe described the link between the explanatory (CACE) and 

pragmatic (ITT) estimates of treatment effect in terms of an attenuation factor 

(difference between the proportions in each randomised group who receive 

experimental treatment, or equivalently the difference between group proportions 

receiving control treatment), and pointed out that counterintuitively, this attenuation 

factor depends, not on the sizes of the selection biases associated with deviation from 

assigned treatment but instead only on the frequency of such deviations.    
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5.4.5. Demonstrate method for binary outcome: Sommer 

Sommer and Zeger (47) then demonstrated a similar idea adjusting for binary non-

compliance with a binary outcome, their methodology having been motivated and 

illustrated by the Vitamin A trial (described in Chapter 4). Given that children in the 

control arm of this trial were not given the option of active treatment (such that only 

two PS exist in this setting: by definition, patients are not able to be always-takers or 

defiers), their method (later referred to CACE) relates to assessing outcome among 

those who would have complied with active treatment if randomised to receive it.  

As such, patients are assumed to either be principal compliers or non-compliers (with 

active treatment). Although such a subgroup is directly observed among those 

randomised to vitamin A, it is not possible to directly ascertain which patients would 

have complied with active treatment in the control arm, and thus it is necessary to 

compare the outcome among those observed to be compliant in the active treatment 

arm with an inferred control subgroup who would have complied with active treatment. 

Thus, as with all causal methods, their analysis relies on a number of untestable but 

potentially plausible assumptions (with the degree of plausibility needing to be assessed 

according to the particular clinical setting).  

The derivation of their CACE estimate, given in terms of the relative risk (𝑅) of death 

among those children who would receive treatment if allocated to it, is demonstrated 

here as an example of how these assumptions are applied in practice, highlighting issues 

that may need similar consideration by researchers wanting to apply such methods. 

(Note that the original article displayed an incorrect formula without derivation – as 

such, these workings have been included here to demonstrate my own work and 

understanding of the concepts).  
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Table 5: Table IIa in (91) 

Control group: principal compliers  Treatment group: principal compliers 
 No Yes Total   No Yes Total 

Alive 𝑚00 𝑚01 𝑚0∙  Alive 𝑛00 𝑛01 𝑛0∙ 
Dead 𝑚10 𝑚11 𝑚1∙  Dead 𝑛10 𝑛11 𝑛1∙ 
Total 𝑚∙0 𝑚∙1 𝑀  Total 𝑛∙0 𝑛∙1 𝑁 
 

Using Sommer’s notation given in Table 5, the relative risk estimate can be expressed as 

Equation 3 

�̂� =  
𝑛11 𝑛01 + 𝑛11⁄

𝑚11 𝑚01 + 𝑚11⁄
 

However, given that we do not know which control patients would have complied with 

active treatment, it is not possible to observe 𝑚01 and 𝑚11, so these values must be 

estimated using the two key assumptions, namely randomisation and ER. 

By the randomisation assumption, we assume that 
𝑚.0

𝑀
=  

𝑛.0

𝑁
 (given that randomisation 

balance allows us to assume that the proportion of patients who would comply with 

active treatment is assumed to be equal between groups), such that  

Equation 4 

𝑚00 + 𝑚10

𝑀
=  

𝑛00 +  𝑛10

𝑁
 

𝑚00 +  𝑚10 =  𝑀[
𝑛00 +  𝑛10

𝑁
] 

By the ER assumption, we assume that 
𝑚10

𝑚00+𝑚10
=  

𝑛10

𝑛00+𝑛10
 (because, in the absence of 

treatment, the probability of outcome is assumed to be independent of randomised 

allocation), such that 
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𝑚10 = [𝑚00 + 𝑚10][
𝑛10

𝑛00 + 𝑛10
] 

Substituting in from Equation 4 

𝑚10 = 𝑀[
𝑛00+ 𝑛10

𝑁
][

𝑛10

𝑛00+𝑛10
] = 𝑛10

𝑀

𝑁
 

Thus Equation 4 becomes  

𝑚00 =  [𝑛00 +  𝑛10]
𝑀

𝑁
−  𝑛10

𝑀

𝑁
=  𝑛00

𝑀

𝑁
 

 

Thus we can calculate estimates of 𝑚01 and 𝑚11 as follows: 

Equation 5 

�̂�01 =  𝑚0. − �̂�00 =  𝑚0. − 𝑛00

𝑀

𝑁
 

Equation 6 

�̂�11 =  𝑚1. − �̂�10 = 𝑚1. − 𝑛10

𝑀

𝑁
 

In order to estimate the relative risk among compliers, given in Equation 3, 

�̂� =  
𝑛11 𝑛01 + 𝑛11⁄

𝑚11 𝑚01 + 𝑚11⁄
 

�̂� =  [
𝑛11

𝑛01 + 𝑛11
] [

𝑚01 + 𝑚11

𝑚11
] 

Using the estimated values of �̂�01 and �̂�11 given in Equation 5 and Equation 6, we 

obtain 

�̃� =  [
𝑛11

𝑛01 + 𝑛11
] [

�̂�01 + �̂�11

�̂�11
] 
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�̃� =  [
𝑛11

𝑛01 + 𝑛11
] [

(𝑚0. − 𝑛00
𝑀
𝑁) + (𝑚1. −  𝑛10

𝑀
𝑁) 

𝑚1. −  𝑛10
𝑀
𝑁

] 

�̃� =  [
𝑛11

𝑛01 + 𝑛11
] [

𝑚0. + 𝑚1. − (𝑛00+ 𝑛10)
𝑀
𝑁 

𝑚1. −  𝑛10
𝑀
𝑁

] 

�̃� =  [
𝑛11

𝑛01 + 𝑛11
] [

𝑚0. + 𝑚1. − (𝑛00+ 𝑛10)
𝑀
𝑁 

𝑚1. −  𝑛10
𝑀
𝑁

] 

�̃� =  [
𝑛11

𝑛01 + 𝑛11
] [

𝑀 − 𝑛.0
𝑀
𝑁 

𝑚1. −  𝑛10
𝑀
𝑁

] 

�̃� =  [
𝑛11

𝑛01 + 𝑛11
] [

𝑀 (1 −
𝑛.0

𝑁 ) 

𝑚1. −  𝑛10
𝑀
𝑁

] 

�̃� =  [
𝑛11

𝑛01 + 𝑛11
] [

𝑀 (
𝑁 − 𝑛.0

𝑁 ) 

𝑚1. −  𝑛10
𝑀
𝑁

] 

�̃� =  [
𝑛11

𝑛.1
] [

𝑀 (
𝑛.1

𝑁 ) 

𝑚1. −  𝑛10
𝑀
𝑁

] 

�̃� =  
𝑛11

[𝑚1.
𝑁
𝑀 − 𝑛10]

 

Note that this (corrected) formula appears in (47). 

A more intuitive set of calculations may be given as follows. First, the compliance 

information in treatment arm and the balance produced by randomisation is used to 

estimate the number of children in the control who would be non-compliant. Given 

that the proportion of non-compliant patients is assumed to be equal in the two 
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randomised groups i.e. 
𝑚.0

𝑀
=  

𝑛.0

𝑁
, the number of children in the control who would be 

non-compliant is assumed to be equal to the proportion of non-compliers in the 

treatment arm multiplied by the number of patients in the control arm, i.e. 𝑚.0 =

𝑀 
𝑛.0

𝑁
. Thus in this example, 𝑚.0 = 11,588 ∗

2419

12,094
=  2317.8.  

The inferred number of control children who would comply with intervention is 

therefore equal to 𝑚.1 = 𝑀 − 𝑚.0 = 11,588 −  2317.8 = 9270.2. 

Under the ER assumption, the mortality risk of the non-compliers in the control groups 

is assumed to be equal to the mortality risk among non-compliers in the treatment arm 

(as neither of these groups receive any treatment) i.e. 
𝑚10

𝑚.0
=  

𝑛10

𝑛.0
 and thus 𝑚10 =

 𝑚.0
𝑛10

𝑛.0
= 2317.8 ∗

34

2419
= 32.6. 

Thus, by definition, the number of non-compliant control children expected to survive 

is equal to 𝑚00 =  𝑚.0 − 𝑚10 = 2317.8 − 32.6 = 2285.2, and thus the number of 

compliant control children expected to die and survive can be calculated by subtracting 

the expected number of non-compliant children who will die and survive, respectively, 

from the known number of control children who died and survived, respectively. 

𝑚01 =  𝑚0. − 𝑚00 = 11,514 − 2285.2 = 9228.8 

𝑚11 =  𝑚1. − 𝑚10 = 74 − 32.6 = 41.4 

Table 6 

 Control compliance    
Treatment 
compliance 

 

 No Yes    No Yes  
Alive 2285.2 9228.8 11,514  Alive 2385 9663 12,048 
Dead 32.6 41.4 74  Dead 34 12 46 
Total 2317.8 9270.2 11,588  Total 2419 9675 12,094 
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Thus the estimated risk reduction among compliers can be calculated as 

�̃� =  
𝑛11 𝑛01 + 𝑛11⁄

𝑚11 𝑚01 + 𝑚11⁄
=  

12 9675⁄

41.4 9270.2⁄
=  0.277 

Thus the causal effect of treatment among compliers can be interpreted as leading to a 

risk of mortality among those who take treatment equal to just 28% of the risk among 

those who do not take treatment, i.e. treatment is estimated to reduce the risk of 

mortality by more than 70%.  

5.4.6. Interpretation of CACE 

The attractive simple nature of PS methods must be weighed against their inherent 

limitations, the first being the implicit restrictions on interpretation of the CACE 

estimate.  

It is imperative to appreciate that the resulting CACE estimate applies only to the 

(theoretical) subgroup of “principal compliers”, the exact interpretation of which must 

be determined in the light of the trial setting. Rather than relating to the entire 

population, the CACE is therefore generalisable only to the (unobservable) subgroup of 

patients who would naturally comply with their assigned treatment.  

As such, the CACE relative risk estimated above must be viewed in light of the barriers 

leading to (principal) non-compliance in the vitamin A trial. This causal effect of 

treatment relates only to those who would have had the ability to receive treatment if 

they were allocated to the treatment arm, and therefore cannot be generalised to those 

who were not able (often for logistic reasons) to receive treatment (principal non-

compliers). Given that it was evident that children who were unable to receive 

treatment tended to have worse baseline health, if the effect of treatment varies 

according to the baseline mortality risk, it may not be appropriate to use the CACE to 
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generalise the treatment effect to the entire population. However, as pointed out by 

Sommer, there are no data available from this trial to test whether such an interaction 

exists. 

Furthermore, Sommer points out that this reduction includes both the biologic impact of 

vitamin A and any placebo effect of having active treatment (compared to no treatment). 

Without a placebo, it is not possible to differentiate between these two effects and thus 

it is not possible to isolate the biological impact of treatment. However, such an effect 

would also be included in the ITT estimate of any trial that does not involve a placebo, 

and given that the outcome is entirely objective, one would expect the placebo effect to 

be minimal. 

Although interpretation of any CACE estimate is limited in that it relates only to the 

(unidentifiable) PS consisting of participants who would “comply” (as defined by trial 

conditions) in future, such an estimate is likely to be of particular interest to motivated 

patients and their treating clinicians. Furthermore, PS estimates from all the different 

compliance classes may be combined as a weighted average, assigning weights to each 

PS estimate, depending on (and assuming availability of) reliable estimates projecting 

the likely compliance profile in the population to which the results are to be generalized, 

thus providing an overall estimate of the likely average treatment effect for the whole 

general population. This weighted average may be of particular interest for policy 

makers who want to determine the benefit if all potential individuals were assigned 

treatment and is likely to be more reliable than the usual ITT effect estimate, which is 

realistic only when the population compliance patterns match those demonstrated in the 

trial (112).  

However, Shrier (113) points out that a patient’s PS membership may differ between 

trial and real-life conditions. For example, if participants in the control arm are not able 
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to receive active treatment in the trial setting, the latent subgroup of always-takers is 

assumed not to exist, whereas in practice the active treatment may be freely available, 

such that, in practice, patients may be categorized into different principal strata to those 

available in the trial. Indeed Shrier (113) describes how the real-life conditions under 

which a treatment is available may alter a patient’s PS: if treatment is free and readily 

available, a patient may be an always-taker, whereas if it is expensive or difficult to 

access, they may be a never-taker; if affordable or available with a small degree of effort, 

they may be a principal complier; as such, if it is plausible that a patient’s underlying 

compliance status may change with conditions (for example, in terms of treatment 

availability and patient motivation), differences between trial and real-life settings may 

render even the basic (rather than overall weighted) CACE ungeneralisable.  

5.4.7. Limitation to PS methods 

The other, most notable, limitation of PS methods is the requirement for binary 

compliance classification. Although, in theory, PS estimation embraces a broad class of 

models which includes general forms of non-compliance (such as time-dependent, 

continuous or multivariate), they are unbiased generally only for binary non-compliance 

and binary treatment comparisons, and thus at most four latent compliance classes 

(depending on the restrictions imposed by the trial design on whether control (or 

experimental) arm patients are able to receive the alternative treatment). For example, as 

in the vitamin A trial, if the trial treatment protocol prevents control patients from 

receiving experimental treatment (such that non-compliance only occurs among 

experimental arm patients who either do or do not receive experimental treatment), 

only two compliance classes actually exist, as patients do not have the opportunity, 

within the trial setting, to be always-takers or defiers. 
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Any extension to PS methods, for example to allow for partial compliance or 

comparison of (compliance with) more than two treatments, add to the complexity of 

models by requiring more principal compliance categories (for example, where 

compliance-type is defined by the time at which an individual would stop treatment if 

randomised to treatment) and more complicated assumptions in order to ensure 

identifiability of the causal estimates (69). For example, Sommer suggests that their 

method could be extended to allow more than two categories of compliance or 

continuous compliance by imposing some parametric structure on how the probability 

of outcome depends on compliance in the control group (for example, by assuming a 

logistic regression model that expresses likelihood of outcome for the control group as 

a function of compliance). Goetghebeur (115) demonstrates this by estimating causal 

effect for ordered binary categories (ordinal) under the assumption of a monotone 

dose-response relationship between treatment received and outcome. However, in 

general, methods to accommodate partial or time-varying treatment adherence require 

complex assumptions and are not fully developed (113). 

Furthermore, although model-based extensions to PS methodology are possible (for 

example, allowing for missing outcome data ((120-123) or including covariates for 

model-based estimation (124) using maximum likelihood (125) or Bayesian techniques 

(126, 127), inference using such models tends to be particularly sensitive to 

distributional assumptions, and still necessarily rely on classification of compliance into 

discrete (usually binary) compliance categories. 

This is a major limitation, given that trials most likely to be subject to treatment 

nonadherence are often those with long-term treatment and follow up schedules, 

adherence to which may not be adequately summarised using binary compliance classes. 

A further disadvantage is that in such trials, interest typically lies in assessing TTE 
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outcomes (thus capturing more information on the temporal aspect of treatment effect 

on outcome) rather than simpler binary or continuous outcomes; however, PS 

methodology has not been extended to analysis of such survival outcomes.  

These limitations lead us to now consider the second approach to estimation of causal 

effects using the PO framework, which was not only developed originally for use with 

TTE outcomes but also which can adjust for more flexible measures other than simply 

binary compliance.  

5.5. Efficacy-based: structural modelling 

The alternative causal methodology to PS based on the PO framework is that of 

structural modelling. Models for the distribution of potential outcomes are called 

structural (meaning causal) because of the underlying structure (as depicted in a 

cDAG) in a causal relationship, rather than mere association between variables.  

Structural models (SMs) make no assumption regarding the relationship between 

compliance and outcome, but instead model the relationship between observed and 

underlying untreated outcomes in terms of the relevant compliance measure (for 

example, cumulative dose of drug taken or time to treatment deviation) with estimation 

based on the assumed balance between randomised groups in terms of baseline 

(untreated) outcomes. As such, the concept of POs facilitates causal estimation using 

these models by defining the (potentially latent) subject-specific untreated outcome as 

the reference, against which the observed (treated) data may be modelled with explicit 

estimation of the causal parameter (73). 

Thus in contrast to the CACE estimate, which relates only to those patients who would 

naturally comply with their assigned treatment, a structural model provides a causal 

estimate relating to the entire population. However, the validity of such an estimate may 
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be equally questionable, if it is not feasible to believe that everyone in the population 

could be induced to comply. 

Compared to PS methods, this more general modelling approach to causal estimation 

means that SMs are able not only to incorporate more flexible measures of compliance 

but also to accommodate survival outcomes. Indeed after the concept of structural 

modelling was first introduced by Robins (128), SMs were developed by Robins and 

Tsiatis (129) specifically for TTE outcomes, in order to address the problems associated 

with adjustment for time-varying treatments using standard methods of survival analysis 

when treatment changes are typically indicative of patient prognosis. 

5.5.1. Standard survival methods 

Analysis of survival outcomes, which record the time from randomisation to the 

outcome event of interest (for example, time to disease progression or death) is 

complicated by the need to allow for censoring when follow up occurs prior to 

observation of the endpoint of interest, such that individuals are included in analysis 

only until the time at which their follow up ceases.  

Standard survival analysis methods assume uninformative censoring (i.e. censoring 

occurs completely at random), such that those who prematurely cease follow up can be 

considered a random sample of those remaining in the trial and thus censored at the 

point of loss to follow up without introduction of bias. One such method is the Cox 

proportional hazards (PH) model, the most commonly used model for survival 

outcomes which avoids the need for any distributional assumptions of underlying 

survival times by simply estimating the relative hazard (or hazard ratio, HR) between 

treatment groups, which is assumed to remain constant over the trial follow up period 

(under the proportional hazards (PH) assumption).  
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For example, in order to investigate the effect of a binary treatment 𝑍, the basic Cox 

model ℎ(𝑡) = eβZℎ0(𝑡) relates a patient’s (unspecified) underlying hazard ℎ0(𝑡) with 

their observed hazard ℎ(𝑡) at time 𝑡 through an estimated treatment HR eβ (expressed 

in terms of an exponential variable, given that such a ratio is necessarily positive). 

However, given that changes to treatment are unlikely to occur randomly with respect 

to a patient’s prognosis, censoring patient’s analysis at the point at which deviation from 

randomised treatment occurs (as in an “on treatment” (OT) version of a PP analysis) 

will not appropriately protect against bias. 

Similarly, an AT adjustment for a time-varying treatment covariate �̅�(𝑡) (a summary 

measure such as cumulative dose or time spent on treatment until time 𝑡, or actual 

treatment received at time 𝑡 ) in a time-varying Cox model will reflect only the 

associational rather than causal relationship between treatment and outcome, given that 

the estimated HR eα  fails to distinguish between causal and potential selection (or 

confounding) effects (130). 

ℎ(𝑡) = eαA̅(𝑡)ℎ0(𝑡) 

Furthermore, attempts to adjust for time-varying confounders 𝑋(𝑡) (which are not only 

affected by prior treatment but which also influence future treatment choices as well as 

outcome) will not help to remove such biases, given that, in removing some of the 

effect of treatment received, the resulting treatment effect estimates would reflect 

neither the overall (unadjusted) nor direct (causal) effect of treatment on outcome (130). 

Indeed, in adjusting for such time-varying confounders (TVCs) which are also affected 

by prior treatment, further bias is introduced, as the TVC lies on the causal pathway 

between treatment exposure and outcome (at a particular time 𝑡); therefore explicit 
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control for this confounder will distort the treatment effect estimate, as the effect of 

treatment on the outcome acting via the confounder will be removed (131, 132). 

5.5.2. Accelerated failure time model 

An alternative standard survival model which is less common, but may be especially 

useful when the PH assumption does not hold, is the accelerated failure time model 

(AFTM). In contrast to the Cox PH model in which factors are assumed to affect the 

likelihood of the outcome occurring at a particular time point, the explanatory variables 

in an AFTM are assumed to act multiplicatively on the time scale, thus instead affecting 

the rate at which an individual proceeds along the time axis (133). If 𝑆0(𝑡) and 𝑆1(𝑡) 

denote a patient’s probability of surviving beyond time 𝑡 on control and experimental 

treatments, respectively, the relationship between these times, assuming an AFTM with 

(again necessarily positive) acceleration factor (so-called because of its effect on the rate 

at which lifespan is used up), 𝑒𝛽, would be denoted 𝑆1(𝑡) = 𝑆0(𝑡/𝑒𝛽). Thus 𝑒𝛽 < 1 

(i.e. 𝛽 < 0) would imply an acceleration in time to event with experimental treatment 

compared to control, such that, with a positive (negative) event, such as healing (death), 

𝑒𝛽 < 1 implies the experimental (control) treatment is preferable (74). 

5.5.3. Rank-preserving structural failure time model 

The structural version of the AFTM was introduced by Robins (129); this model is 

structural in the sense that it makes a direct within-patient (rather than between patient) 

comparison of their observed (𝑌𝑖) and (potentially latent) untreated survival times (𝑌0𝑖). 

The structural AFTM is also known as the rank-preserving structural failure time model 

(RPSFTM), “rank-preserving” because, if the untreated event time for individual 𝑖 is 

less than that for individual 𝑗, the predicted treated event time for individual 𝑖 would 
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also be less than that for individual 𝑗 (thereby implying an assumption of no treatment-

covariate interactions)(74). 

The acceleration factor (AF) is estimated using a process called G-estimation, based on 

the assumption of balance produced by randomisation between treatment groups in 

terms of patients’ (potential) untreated survival times 𝑈0𝑖. The model assumes that an 

individual’s observed survival time 𝑌𝑖 is related to their underlying baseline survival time 

𝑈0𝑖 through an AF 𝑒𝛽 assumed to vary with treatment received 𝐴𝑖(𝑡) (130).  

𝑈0𝑖(𝛽) = ∫ 𝑒𝛽𝐴𝑖(𝑡)  
𝑌𝑖

0

𝑑𝑡 

Thus the RPSFTM relates observed outcome 𝑌𝑖  to 𝑌0𝑖  (counterfactual or potential 

outcome that would have been observed without treatment) through treatment effect 

𝑒𝛽 (hence structural as it relates potential outcomes on the same individual). 

Assuming discrete intervals of time, and binary treatment receipt (i.e. 𝐴𝑖(𝑡) is a binary 

time-dependent variable denoting receipt of experimental ( 𝐴𝑖(𝑡) = 1 ) or control 

(𝐴𝑖(𝑡) = 0) treatments over time), where a patient’s observed survival time 𝑇𝑖 can be 

expressed in terms of the amount of time spent on experimental (𝑇1𝑖) and control (𝑇0𝑖) 

treatments, where 𝑇𝑖 = 𝑇0𝑖 + 𝑇1𝑖  (134), the relation between treatment receipt and 

underlying untreated outcome can then be simplified as 

𝑈0𝑖(𝛽) = 𝑇0𝑖 + 𝑒𝛽𝑇1𝑖 

such that the counterfactual (untreated) survival time 𝑈0𝑖 can be interpreted as the sum 

of time spent on control treatment and the time spent on experimental treatment 

multiplied by the AF 𝑒𝛽 (135). Thus, an AF equal to 𝑒𝛽 implies that every unit of time 

spent on experimental treatment would equate to 𝑒𝛽 units of time on control treatment. 
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Thus 𝑒𝛽 < 1  (i.e. 𝛽 < 0 ) would imply an acceleration in time to event with 

experimental treatment compared to control (treatment decreases event time), whereas 

𝑒𝛽 > 1  (i.e. 𝛽 > 0 ) would imply deceleration in time to event with experimental 

treatment compared to control (treatment extends event time). The optimal value of  𝛽 

is determined using an unusual test procedure known as G-estimation.  

5.5.4. G-estimation 

Given the reliance on unobserved counterfactuals, the acceleration factor 𝑒𝛽 cannot be 

estimated using usual methods for associational models. Instead, a method known as G-

estimation is employed, based on the assumption that the untreated survival times 𝑈0𝑖 

can be considered a baseline feature unaffected by post-randomisation treatment or 

confounding, which on average will differ only randomly between the randomised 

groups, i.e. 𝑈0 ⊥ 𝑍 . Thus, in exploiting the expected independence between the 

underlying untreated outcome and randomisation (the IV) under the randomisation and 

ER assumptions, G-estimation is the general version of IV estimation for time-varying 

treatments.  

Causal estimation is based on finding a value of the treatment effect parameter (𝛽) that 

attains baseline balance in terms of potential untreated outcome 𝑈0𝑖  between 

randomised groups (69).  

In practice, G-estimation is carried out on a trial and error basis, testing a range of 

proposed values of the acceleration 𝑒�̂�  factor to determine which achieves the best 

balance between randomised groups in terms of their (estimated) values of 𝑈0𝑖(�̂�). By 

specifying a plausible range of values for 𝛽, and intervals within this range, the user 

defines a grid over which to carry out a search for the optimal value of �̂� (134). 
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Balance between randomised groups is assessed, for each �̂� , according to the test 

statistic 𝑍(�̂�) corresponding to the hypothesis that �̂� = 𝛽, whereby the point estimate 

of �̂�  is chosen as that for which 𝑍(�̂�)  is closest to 0 (indicating equality between 

treatment arms in terms of 𝑈0𝑖(�̂�)).  The hypothesis test used for this procedure is 

usually the same as that used for the original ITT analysis, for example the log rank test, 

Wilcoxon or Cox model; given the nonparametric nature of these tests, 𝑍(�̂�) is a step 

function; thus in practice, values of  �̂� are plotted against corresponding 𝑍(�̂�) values in 

order to identify �̂� for which 𝑍(�̂�) is equal to 0. Similarly, the 95% CI for �̂� consists of 

all values which fail to reject the null hypothesis at 5% (i.e. CI limits for  �̂� are those for 

which the hypothesis test p-value is equal to 0.05) (136). It may be useful to consult 

graphical displays of 𝑍(�̂�) against �̂� to check that a unique value of �̂� exists, and its 

associated confidence limits are estimable (134). For example, if no values of 𝑒�̂�rejects 

the null hypothesis at the 5% level, the upper CI limit will not be estimable. 

In order to check whether the estimation procedure has worked well, it is useful to 

compare the HR estimated between control group and experimental group 

counterfactual survival times (in other words, the HR between the groups adjusted as if 

none of the patients had received experimental treatment): if the estimation procedure 

has worked well, this value should be very close to 1. This can be further investigated by 

checking that the KM graphs of these modelled counterfactual event times for each 

group are similar. 

G-estimation preserves ITT p-value 

Given that 𝑈0𝑖(0) = 𝑇𝑖 , the hypothesis 𝛽 = 0  simply corresponds to the null 

hypothesis of the ITT analysis, as by definition the test of 𝛽 = 0 is the straightforward 



   
   

169 
 

test of 𝑇 ⊥ 𝑍, thus demonstrating how G-estimation preserves the p-value associated 

with ITT analysis (leading to the term “randomisation-based efficacy estimator” 

(RBEE) (69). This in turn means that the 95% CI for 𝛽 will include 0 if and only if the 

ITT analysis is not significant at the 5% level. 

5.5.5. Assumptions  

It is generally not possible to identify the RPSFTM causal parameter without making 

some assumptions that are themselves non-identifiable (129). Firstly, use of a RPSFTM 

implies the (untestable) assumption that the underlying acceleration model is correct.  

Assumptions underlying G-estimation are that randomisation must have adequately 

balanced the alternative treatment arms with respect to prognostic characteristics, and 

that the effect of randomisation is mediated entirely by treatment receipt (such that 

those who receive a given duration of treatment will experience the same treatment 

effect, regardless of whether or not they were randomised to receive that treatment), i.e. 

the ER assumption. Given that, despite randomisation, the potential remains for 

important differences at baseline in small and larger trial, it is possible to adjust for 

baseline covariates within an RPSFTM analysis, in order to improve baseline balance 

and increase power (135). 

Furthermore, the treatment effect (relative to the duration of treatment) is assumed to 

be constant regardless of the point at which treatment is received (known as the 

“common treatment effect” assumption). For example, in a trial where treatment 

switches occur for clinical reasons, the treatment effect is assumed to be the same for 

those who were randomised to receive treatment (and thus received treatment from 

randomisation) as for those who only began treatment when switching was clinically 

indicated (for example, from time of disease progression). This may be unlikely in 
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reality, given that the treatment effect for those receiving treatment at a more advanced 

stage in their disease may vary from that experienced when treatment is given earlier 

(137). 

Similarly, the constant treatment effect (which gives rise to the title “rank-

preserving”) implies that the effect of treatment is constant between individuals.  

Although it is possible to use multiple parameter versions of the RPSFTM in order to 

relax the assumption of a constant treatment effect by incorporating more than one 

treatment covariate, these models typically suffer from a lack of power and do not 

deliver meaningful causal estimands (94, 95, 138). For example, inclusion of 𝑝 >

1 covariates as in the equation below would require a 𝑝-dimensional test statistic 𝑍(𝜓), 

so that, if 𝑝 = 2, the point estimate could be determined as the value at which both the 

logrank and Wilcoxon tests are zero. However these estimates are likely to be unstable 

and unreliable (89).  

𝑈𝑖(𝜓) =  ∫ exp [∑ 𝛽𝑗𝑋𝑖𝑗(𝑡)

𝑝

𝑗=1

] 𝑑𝑡
𝑇𝑖

0

 

It is also possible to adjust for baseline covariates in order to allow more precise 

estimation of causal effects, but given that each selection of included predictors will 

alter the resulting causal estimand, it is important to consider this choice carefully. 

Goetghebeur (139) demonstrates methods to check (both graphically and quantitatively) 

whether a baseline covariate can be omitted from a model. 

White (94) demonstrates how parameter estimates can be used to construct the data sets 

which, according to the accelerated life model, would have been observed under an 

alternative treatment scenario, and how this ‘counterfactual’ dataset can be used to 

estimate a ‘corrected’ hazard ratio. The causal AF estimand can be used to construct 
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the corresponding counterfactual dataset that, under the assumption of accelerated life 

model, would have been observed under the “corrected” treatment scenario. These 

counterfactual data can then be used to estimate the “corrected” HR, if it can be 

assumed that the survival times follow a Weibull distribution ℎ(𝑡) = 𝜙𝛾𝑡𝛾−1 (where 𝜙 

denotes the scale parameter and 𝛾 the shape parameter) (140), as this model provides 

direct correspondence between the accelerated lifetime model and Cox model, such that 

the RPSFTM estimand 𝛽 can be expressed in terms of the Cox parameter 𝜃, as 𝛽 =

𝜃
𝛾⁄ . Therefore if one can assume the exponential distribution (𝛾 = 1), the HR (𝑒𝜃) and 

AF (𝑒𝛽) will be equal.  

Rank preserving 

When analysing RPSFTMs, it is generally necessary to apply certain key assumptions, 

namely the randomisation, SUTVA and exclusion restriction assumptions. Additional, 

(or variations of these) assumptions may be required for a particular analysis, depending 

on the degree of extrapolation required (for example, if one is interested in estimating 

the causal effect not only in those who received treatment but also to those who do not 

receive the treatment) or complexities presented by the nonadherence scenario.  

For example, when the exclusion restriction assumption is not plausible, it is not 

possible to estimate the causal treatment effect using SMs without invoking alternative 

no interaction assumptions, which differ subtly from the exclusion restriction in terms 

of the use and definition of “randomisation allocation”. For the no interaction 

assumption, 𝑍 defines different but observed groups of subjects (i.e. as a conditioning 

argument) whereas for the exclusion restriction, 𝑍  defines different (potential) 

randomisation conditions for the same individual (112). Again, this assumption may not 

be realistic: for example, if switches occurs early on for those who, due to underlying 
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disease state or psychological reasons, are unable to tolerate side effects or perceive 

treatment inefficacy, these underlying traits may lead to different treatment effects from 

those who were originally randomised to receive treatment. 

5.5.6. Censoring 

A major limitation of the RPSFTM is that censoring that is non-informative (on the 

original T-scale) may become informative on the U-scale through its inherent 

association with treatment received (89). Consider the uninformative censoring time 𝐶𝑖 

for individual 𝑖 (which is assumed to be known for all individuals whether or not their 

event time was censored; for example, a fixed maximum follow up time for all patients, 

or an individual maximum follow up time for each patient based on the difference 

between their date of entry and the final date of follow up, i.e. when censoring occurs 

for administrative purposes). The censoring time (𝐷𝑖) for 𝑈0𝑖(𝛽) is therefore  

𝐷𝑖(𝛽) = ∫ 𝑒𝛽𝐴𝑖(𝑡)  
𝐶𝑖

0

𝑑𝑡 

which, through its dependence on treatment received 𝐴𝑖(𝑡), may in turn depend on 

prognosis.  

White (141) explains how this censoring introduces selection bias on the counterfactual 

scale: in restricting analysis to subjects with known death times, analysis becomes 

conditional on having an observed survival time less than time 𝐶𝑖, and this survival time 

(and hence the probability that it is less than 𝐶𝑖  and hence observed rather than 

censored) is assumed to be affected by treatment; a positive or negative treatment effect 

may increase or decrease the probability that the survival time of an individual is 

censored, and where treatment crossover occurs, treatment received is likely to be 

associated with prognosis (142). Thus for those individuals who had an unfavourable 
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treatment history (for example, control group patients who did not cross over onto a 

beneficial new treatment, or control group patients that did crossover onto a 

detrimental new treatment) and experienced events a short time before 𝐶𝑖 , a more 

optimal treatment path may have delayed their event such that it was not observed (i.e. 

if event had been delayed until after 𝐶𝑖) and as such it would not have been included in 

analysis. White’s proposed solution to remove the dependence of censoring time 𝐷𝑖(𝛽) 

on 𝐴𝑖(𝑡), in order to allow unbiased estimation of the causal parameter, is to restrict 

analysis to those whose survival time would have been observed whether they had been 

treated or untreated, in other words by recensoring at the minimum of all possible 

censoring time over all possible evolutions of 𝐴𝑖(𝑡)  in participant 𝒊 ’s allocated 

treatment group: 

𝐷𝑖
∗(𝛽) = min

𝐴
𝐷𝑖(𝛽) 

In particular, if 𝐴𝑖(𝑡) could have been always 0 and could have been always 1, then  

𝐷𝑖
∗(𝛽) = min(𝐶𝑖, 𝐶𝑖𝑒

𝛽) 

such that if 𝑌0𝑖 > 𝐷𝑖
∗(𝛽), then 𝑌0𝑖 is replaced by 𝐷𝑖

∗(𝛽) and its censoring indicator is 

replaced by 0. This method requires therefore that a potential recensoring time 𝐶𝑖  is 

provided for each individual (for example, as a fixed maximum follow up time for all 

individuals or a maximum follow up time for each individual based on the difference 

between their date of entry and the final date of follow up).  

The disadvantage to this recensoring approach is the obvious need to ignore some 

follow up data, with the impact of recensoring depending on the magnitude of the 

acceleration factor and the distribution of event times (141). Recensoring will be 

particularly problematic if the treatment effect is not constant over time; in the case of a 
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treatment-time interaction, recensoring of events that occur late in follow up will distort 

the overall estimated treatment effect, due to over-representation of earlier compared to 

later events. As such, White (89) warns that recensoring can lead to distorted 

conclusions if results are taken at face value without further consideration of the 

plausibility of the proposed causal effects, especially if the effect of treatment is not 

constant over time. Furthermore, the changes to original data due to recensoring 

introduce a undesirable difference between the RPSFTM and original ITT analysis (74). 

Alternative solutions to the problem of recensoring include specifying a relationship 

between 𝑈0  and 𝐴𝑡  (but this may well lead to bias if this parametric model is 

misspecified) or using a method based on inverse probability weighting (89), to be 

introduced in the next section. Generally, the need to recensor observations is one of a 

number of limitations associated with SMs; in the next section, the advantages and 

disadvantages of this methodology will be discussed in relation to the alternative 

randomisation-based PS techniques. 

5.5.7. Limitations of SM/advantages over PS techniques 

SM offer greater flexibility than PS methods in terms of the compliance measure or 

summary of treatment received included in the model, which in turn means a more 

accurate reflection of the causal contrast of interest. Thus binary, ordinal and 

continuous measures of compliance can be accommodated in SM via an appropriate 

functional form for the treatment received variable in the model.  

Furthermore, the flexibility of structural models allows extensions to include covariates 

and investigation of potential interactions between treatment group and baseline 

covariates (as demonstrated by Robins (143)); therefore these models are useful for 

assessing whether or not the effect of received treatment is modified by baseline 
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covariates. Inclusion of baseline covariates can also reduce the variance associated with 

the causal parameter, as long as the covariates are correlated with both the outcome and 

treatment compliance (144). 

However, SM is generally limited to valid estimation of only one causal parameter, 

which limits the scope of investigation especially for trials with multiple forms of 

treatment deviation. When aiming to estimate more than one structural parameter, it 

would be theoretically possible to include baseline predictors of compliance in order to 

ensure identifiability; in particular (𝑘 − 1) baseline covariates are required in order to 

identify 𝑘 parameters but these parameter must be good predictors of both compliance 

and outcome (144); in practice such estimation is not stable or reliable (94). 

Additionally, given the reliance on an underlying model structure, SM requires 

assumptions that once again cannot be empirically validated (114). In particular, a 

structural model for the effect of treatment received on outcome (for example, in terms 

of a linear function of duration or cumulative dose of treatment) requires the correct 

specification of dose-response relationship. Robins (145) demonstrated however, that 

although these models require specification of such assumptions, they are relatively 

robust to model misspecification and will provide unbiased model estimates and 

standard errors even if the functional relationship between outcome and covariates 

differs to that assumed by the model. Goetghebeur (139) demonstrates graphical 

methods to assess the appropriateness of the assumed structural model. 

Finally, in respecting randomisation (as demonstrated in section 5.5.5), estimated causal 

effects using SMs will, by definition, have the same significance level as original ITT 

effect. Even with incorrect model specification, this approach guarantees valid tests of 

the null hypothesis (of no effect of treatment) (112). This may be considered an 

advantage (given that interpretation may be unclear if the compliance-adjusted analysis 
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suggested greater statistical significance than the original ITT analysis) or a limitation (if 

there is a need to regain the power lost due to deviation from randomised treatments) 

(94).  

Limitations of the RPSFTM in particular, such as the need for recensoring to overcome 

the problem of informative censoring on the counterfactual survival time scale and the 

implications of the common treatment effect, will be addressed in detail by considering 

application of this method to a number of the expository trials introduced in Chapter 4.  

However the RPSFTM is only one of a whole class of structural models developed for a 

variety of outcomes and compliance scenarios in both trial and observational settings. 

5.5.8. History of SM for alternative outcomes  

An alternative structural AFTM proposed by Robins (131), for observational data, 

adjusts for time-varying covariates (rather than confounders) as an alternative to the 

Cox PH model with time-dependent covariates, both of which may be applied, for 

example, in the case of changing exposure to environmental factors over time. Robins 

and Greenland (95) extended these methods for a trial setting, thus making use of 

randomisation as the IV through G-estimation and therefore circumventing the reliance 

on the assumption of NUC for identification of the causal parameter. 

Robins (145) then presented the theory behind the general class of structural nested 

mean models (SNMMs) for causal estimation in the setting of a repeated continuous 

outcome, where nested structural models are necessary when treatment exposure and 

confounders vary over time (118). With repeated outcomes (or survival times split into 

discrete time periods and analysed sequentially using pooled logistic regression, PLR), 

the basis of structural nested models is that patients contribute to each discrete follow 

up period for which they remain under follow up (i.e. prior to censoring or event 
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occurring in the case of survival outcome), such that the trial is considered as a 

sequential randomised trial, each ‘trial’ comprising of subjects who remained ‘at risk’ 

(uncensored) at the end of the previous ‘trial’, each of which is nested within the 

previous trial (130). This approach addresses the bias introduced by time-varying 

confounders, as each nested ‘trial’ can be treated independently to all previous ‘trial’ 

periods.  

Robins (145) proposed general methods (for various outcome types) to estimate effect 

of treatment received using structural mean models (SMMs). SMMs are a special case of 

SNMMs for single measure rather than repeated measure outcomes; in the case of a 

singly measured linear outcome, it is possible to estimate the causal parameter using 

linear regression rather than through the iterative process proposed by Robins for the 

general form of SNMM with repeated outcome measures (144).  

Robins described additive (and multiplicative) SMMs to adjust for treatment deviations, 

where the causal parameter is expressed as the difference (ratio) of the expected 

observed and untreated (relevant control condition) outcome as a linear (exponential) 

function of unknown parameters, potentially adjusting for baseline covariates. Examples 

of additive (multiplicative) SMMs include linear (log-linear or logistic) SMMs which 

contrast linear models for the difference in means (log-ratio of means or log-odds-ratio 

of success in exposed subsets of the population) of observed and untreated (potential) 

outcomes (146). These methods were investigated further by Fischer-Lapp (144) and 

Ten Have (147) for situations where control group patients are and are not 

(respectively) allowed to switch to experimental treatment, focusing on the effect 

estimate for those who actually took treatment. Without a constraint ensuring that the 

probability of treatment success is bounded between 0 and 1, valid estimation of the 

causal parameter in logistic SMM was not achievable until Vansteelandt (148) 
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introduced the idea of generalised SMMs, allowing generalisation to incorporate any 

monotone, continuously differentiable link function (thus allowing for non-linearities by 

replacing the linear or log-linear links) and incorporating an associational model to 

appropriately constrain the predicted probability from logistic SMMs. 

Robins (149) introduced analogous structural nested models (SNMs) for estimating 

causal effects of time-dependent treatment in observational settings, which without the 

advantage of randomisation are identifiable only under the assumption that all relevant 

confounders have been accounted for (via NUC assumption), once again addressing the 

problem of time-varying confounding via the use of ‘nested’ observation periods. SNMs 

estimate the magnitude of causal effect of a final brief exposure of a time-dependent 

treatment given in an observational setting at time 𝑡  as a function of past time-

dependent treatment and prognostic factor history. 

In a trial setting, however, the balance provided by randomisation can be exploited such 

that the causal parameters for linear or log-linear SMMs, as well as RPSFTM, can be 

estimated by G-estimation.  

As with this structural modelling approach, which may be applied to observational 

settings under the assumption of NUC (in place of randomisation), the next causal 

estimation method to be discussed can be used in both observational and trial settings. 

Indeed, it was originally developed for use in observational studies, but has since been 

adapted and applied to randomised data as an alternative method to adjust for treatment 

deviations. In contrast to the nested approach of SNM, these observational-based 

methods allow for time-dependent confounders by indirectly adjusting for such 

variables via the use of inverse probability weighting. 
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5.6. Observational methods 

The basis of the previous two approaches for randomised trial data is that potential 

outcomes and compliance are independent of randomisation; this independence may in 

fact be true only after conditioning on covariates, in other words by the NUC 

assumption (110). Furthermore, the randomisation-based methods discussed in the 

previous section are generally only useful when adjusting for limited forms of treatment 

deviations in order to estimate a single treatment effect (for example, experimental 

versus control therapy) for trials with only two randomised arms. When the causal 

research question requires estimation of multiple treatment effects (for example, in an 

active-controlled trial with several randomised treatment arms, or in the case of an 

equivalence trial where patients may terminate treatment altogether rather than simply 

switch between treatments, requiring independent estimation of both treatment effects), 

these randomisation-based estimation procedures tend to be imprecise and unreliable 

(73). In such cases, it may be helpful to employ alternative methods, developed 

originally for use in observational studies which rely on the NUC assumption. 

Indeed, the distinction between randomised and observational settings tends to blur as 

follow up lengthens and hence potential for treatment deviations increases (87). It is 

therefore natural to consider methods originally intended for observational settings for 

application in trial settings, while remembering that trial data have the advantage of 

randomisation as an IV (although the strength of this IV weakens with increased 

treatment deviations over time). Thus the final approach to be considered for causal 

estimation is an observational approach based on the concept of propensity score 

weighting.  
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5.6.1. Inverse probability weighting 

An individual’s propensity score is their probability of receiving treatment (at a 

particular time) conditional on pertinent measured confounding variables, usually 

estimated by regressing treatment received (usually a binary measure, therefore using 

logistic regression) on all such confounders. This propensity score can then be used as a 

covariate in a regression model or to stratify or match treatment and control subjects, 

thereby eliminating bias caused by this set of confounding covariates, when assignment 

mechanism can be assumed to be unconfounded after conditioning on these observed 

confounders (119).  

However, as demonstrated by the cDAG in section 3.9.1, when covariates vary over 

time and are affected by previous treatment, as well as influencing future treatment and 

outcome, they are known as time-dependent confounders and cannot be adjusted for 

using usual methods (such as regression or standard methods involving propensity 

score matching). Instead unbiased estimation may be achieved a method known as 

inverse probability weighting (IPW), which uses propensity scores to simulate a pseudo-

population where causal association between treatment received and outcome can be 

inferred, by excluding or artificially censoring follow up when patients deviate from 

treatment conditions being assessed. The selection bias introduced by this artificial 

exclusion or censoring is addressed by weighting the remaining (uncensored) patients by 

the inverse of their probability of remaining uncensored. These probabilities are 

determined conditional on all factors that jointly predict outcome and treatment change, 

thus removing dependence between outcome and censoring. Thus the assumption of 

NUC (or of sequential randomisation) is key, as is that of positivity (that the 

probability of remaining on treatment is above zero for all possible covariate 

combinations at each time point) in order to ensure weights (inverse of these 
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probabilities) are estimable throughout follow up. Under these assumptions, in this 

simulated pseudo-population, treatment can be considered to be randomly assigned 

conditional on past covariate history and the treatment effect on outcome is the same as 

it would be in the original (unweighted) study population (111). This indirect adjustment 

for time-dependent confounders through their effect on an individual’s probability of 

receiving treatment at any particular time point avoids the confounding and selection 

biases that result when time-dependent confounders are included directly as variables or 

via propensity scores in the model. 

The reasoning behind this methodology is that, if one is able to determine all factors 

that jointly predict treatment change and outcome, weighting up the analysis of time to 

outcome (by the probability of remaining uncensored), while censoring at the point of 

any treatment change, assigns appropriate weight to individuals with the same 

characteristics of those previously censored. Given the assumption that all predictors of 

the outcome have been included in the weight-determining model, this weighting provides 

a pseudo-population that mimics the same likelihood of occurrence of outcome events 

that would have been observed if none of the patients’ follow up had been censored 

due to treatment changes. 

5.6.2. Model type 

Like SM, IPW methods are flexible and vary according to whether the compliance 

measure is binary (i.e. all-or-nothing, as required for PS methods), quantitative (for 

example, a summary continuous measure such as dose) or time-varying (such as time to 

withdrawal from randomised treatment). The exact method used will depend, not only 

on the compliance measure, but also on the outcome type. 
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In a trial setting where compliance is recorded using a binary variable (receipt/non-

receipt of randomised intervention), IPW methods can be used to adjust for selection 

bias that would be introduced in PP analyses due to informative exclusion of patients 

who did not receive their assigned treatment. With binary compliance, an individual’s 

propensity score reflects the impact of an individual’s time-invariant (i.e. baseline) 

covariates on their probability of receiving assigned treatment, which is estimated by 

logistic regression (of the binary treatment receipt variable) on all such confounding 

baseline variables. The corresponding inverse weights, known as inverse-probability-of-

treatment weights (IPTW), are then applied on a patient-specific basis in the outcome 

model. 

When treatment receipt and outcome are time-varying (for example, in a trial with a 

survival outcome where compliance is defined by time to withdrawal from randomised 

treatment), time-varying weights (indicating inverse probability of remaining on 

randomised treatment, and thus uncensored, at each time point) may be calculated using 

a time-varying Cox (or pooled logistic regression, PLR) weight-determining model; the 

inverse of these patient-specific time-varying probabilities (known as inverse-

probability-of-censoring weights, IPCW) are then applied as time-varying weights for 

each individual’s contribution (while they remain uncensored) in the Cox (or PLR) 

outcome model.   

Similarly, if outcome is recorded at the end of follow up as a binary or continuous 

response to treatment, and time-varying (binary) treatment is recorded at discrete time 

intervals, the overall weight for each individual can be calculated by multiplying the 

probability of receiving treatment at each discrete time point (estimated by logistic 

regression, regressing on all important baseline and time-varying covariates). Under the 

assumption of conditional independence, it is unnecessary to allow for correlation from 
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observations on the same subject, because of full conditioning on treatment history; in 

other words, all patients included in analysis at time 𝑡  are known not to have 

experienced treatment change prior to this point, such that their history is 

uninformative (and therefore there is no need for clustered standard errors). These 

patient-specific overall IPTW are then applied to each individual’s observations when 

carrying out logistic or normal linear regression (of binary or continuous response 

variables, respectively) including in the estimation sample only those patients who fully 

complied with their randomised assignment.  

When compliance is recorded using a continuous measure (such as cumulative dose 

received), however, the more general approach of IPW estimation using MSMs is 

required to accommodate the underlying dose-response relationship. 

5.6.3. MSMs 

The class of marginal structural models (MSMs), originally developed by Robins (111) 

for observational studies, uses the PO framework to estimate causal effects while 

simulating ignorable treatment assignment mechanisms using inverse probability 

weighting (IPW) techniques. Similarly to SNMs, MSMs are based on regression 

modelling using the PO framework, for example employing linear or logistic regression 

for continuous or binary outcome data (respectively) to model the relationship between 

treatment and outcome, in terms of the within-patient difference between a patient’s 

observed and (potentially latent) untreated baseline outcome. However, in contrast to 

the nested approach of SNM, MSMs (and associated IPW) methods allow for time-

dependent confounders by indirectly adjusting for such variables via the use of IPW, 

thus rendering the treatment receipt exogenous (which, in the context of cDAGs, 

would be demonstrated by a lack of any arrows into the (potentially time-varying) 
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treatment variable, except potentially from previous treatment); this is achieved by 

creating a pseudo-population in which treatment history has the same causal effect of 

treatment history as in the original population but prognostic factors do not predict 

treatment. Valid causal estimation is then achieved by simply applying standard 

regression models to the weighted population (111). Thus these models are both 

structural and marginal, as they model the structural (or causal) effect of treatment on the 

marginal distributions of the counterfactual outcomes, 𝑌�̅�  (rather than their joint 

distribution, as no account is taken for correlation between different potential 

outcomes).  

The IPCW method is therefore a special case of MSM which can be applied with 

randomised trial data where compliance to randomised treatment is measured as time to 

“deviation” from randomised treatment (with “deviation” defined according to the 

research question of interest). Both MSMs and IPCW methods relate to individual-

based treatment contrasts, but IPCW methods compare only two potential treatment 

histories; for example, in the case of a randomised two-arm trial (experimental versus 

control treatment) subject to treatment changes, the IPCW would compare treatment 

with experimental (identified from the weighted experimental treatment arm, censored 

at treatment change) versus treatment with control (identified from the weighted 

control treatment arm, censored at treatment change).  

Alternatively, MSMs can be used when binary treatment receipt varies over the course 

of the trial, such that the time following first treatment change is not ignored in analysis; 

instead the observed time-varying treatment covariate is included in the model (as in a 

standard time-varying treatment model). However, the bias introduced by use of this 

time-varying treatment covariate is countered again by the use of inverse probability 

weights. However, in this case, weights are calculated equal to the inverse probability of 



   
   

185 
 

receiving actual observed treatment at time 𝑘, known as inverse probability of treatment 

weights (IPTW). Thus, if at each time point 𝑘 , patient may receive experimental 

treatment (𝐴 = 1) or control treatment (𝐴 = 0) and estimated probabilities (𝑝𝑖𝑘) reflect 

the chance that individual 𝑖 receives experimental treatment, at any time point at which 

they receive control treatment, the IPTW would be equal to 1/(1 − 𝑝𝑖𝑘) rather than 

1/𝑝𝑖𝑘. 

Furthermore, MSMs are able to compare a wider range of potential treatment histories 

(for example, the effect of being treated for 𝑑 days) by modelling causal effects across 

potential treatment histories; in other words, by making a comparison of counterfactual 

outcomes resulting from different potential treatment histories in the same individual 

(for example, assuming a causal effect of 𝑑 days of treatment equates to 𝛽𝑑), where 

estimation of outcomes under each potential treatment history is obtained by weighting 

the data according to each patient’s corresponding IPTW. Thus, in an MSM, it is 

necessary to specify an appropriate functional form of relationship between dose and 

outcome, which again must reflect the causal question.  

Different versions of MSM can be applied, depending on the form of the outcome 

variable, such as linear or log-linear (or logistic) models for continuous or binary (with 

log or logit links, respectively) outcomes. In assuming a certain functional form (for 

example, linear) for the relationship between treatment received and outcome, 

information from those who did not fully comply with treatment is utilised to provide 

an estimation of the dose-response relationship.  

5.6.4. IPW method in practice 

The use of IPW methods in practice requires a number of analysis steps, which, given 

the pertinence of TTE outcomes when considering causal estimation techniques, will be 
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described below for survival outcomes, under the assumption that compliance is 

recorded as a time-vaying binary measure (or as time to deviation from randomised 

assignment), thus requiring IPTW (or IPCW) estimation respectively. 

It is necessary first to define the exact treatment regimens to be contrasted, in particular 

identifying the point at which deviation from these treatment regimens is considered to 

have taken place. In the case of IPCW, this definition of “treatment deviation” is then 

used to artificially censor individuals when they deviate from their original regimen. For 

IPTW models, this definition distinguishes between time spent on experimental and 

control treatment, thus informing the binary treatment receipt variable. It is then 

necessary to identify all important baseline and time-varying confounders that are 

considered to impact, not only outcome, but also the likelihood that an individual will 

“deviate” in this way from their assigned treatment allocation.  

In order to adjust for bias associated with this artificial censoring (in the case of IPCW 

modelling) or use of time-varying treatment covariate (in the case of an MSM with 

IPTW modelling), a weight-determining (WD) Cox (or logistic) model is used to 

calculate the time-varying (or time-fixed) probability that each patient is censored (or 

excluded), adjusting for all identified important predictors of treatment deviation. The 

estimated probabilities derived from the WD model are then used to calculate IPCW (or 

IPTW) for each patient at each time point. The time to event outcome is then assessed 

(using a relevant model corresponding to type of outcome data) in the population of 

patients weighted by their IPCW (or IPTW) until the time they were artificially censored 

due to treatment deviation (or, in the case of binary compliance, only in those who 

received randomised treatment).  
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5.6.5. Qualities of weighted pseudo-population  

This pseudo-population with 𝑤𝑖𝑘 copies for each “compliant” patient 𝑖 at time 𝑘, has 

two important properties which allow valid estimation of causal estimate: first, covariate 

history does not predict the status of treatment change at time 𝑘  and secondly the 

causal effect in this pseudo-population is the same as that of the original population 

(111). Thus it is valid to use standard regression techniques (such as ordinary time-

dependent Cox or linear regression) in this population to obtain unbiased causal 

estimates (136). 

Heuristically, it may be appreciated that weighting the observation for (uncensored) 

individual 𝑖 by 𝑊𝑖𝑘 at time 𝑘 essentially allows for the loss at or before time 𝑘 of the 

(𝑊𝑖𝑘 − 1) individuals who shared the same values of all confounding factors (𝑋𝑖0, �̅�𝑖𝑘) 

as individual 𝑖 at time 𝑘) but who were artificially censored at time 𝑘. Given that, under 

the assumption of NUC, these (𝑊𝑖𝑘 − 1) individuals are also assumed to share the 

same (time to event) outcome as individual 𝑖, the estimated parameter in the weighted 

population is equivalent to that which would have been observed in the original 

population but without treatment deviation, and as such may be granted causal 

interpretation.  

In other words, the causal effect of treatment estimated from the pseudo-population is 

equal to that in the original population if no-one had been informatively censored, 

under the assumption that censoring occurs at random given covariate history. Thus 

when exclusion or artificial censoring of patients is applied to those who (or at the times 

when patients) deviate from their assigned treatment, weighting of the remaining 

patients creates a pseudo-population of patients who exhibit the same causal risk of 

event but who did not undergo changes to their treatment. 
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5.6.6. Need for stabilised weights 

Weights are referred to as inverse probability weights because the denominator of the 

weight is essentially the probability that the individual complies with their randomised 

treatment (at time 𝑘, in the case of time-varying compliance).  

However, given that the chance of treatment deviation increases over time, and as such 

the probability that a patient remains (artificially) uncensored decreases over time, the 

inverse of this probability can become very large, leading to very high weights for 

certain patients with prolonged follow up and extreme values of time-dependent 

prognostic factors strongly associated with outcome. These patients will dominate the 

weighting analysis by contributing large number of copies to the pseudo-population, 

leading to unstable parameter estimates with large variability. Using large samples of 

patients helps to cut down on occurrence of such sampling fluctuations, but in addition 

Robins and Finkelstein (150) recommend using a “dampening” numerator to stabilize 

the weights, equal to the probability of being censored at time 𝑘 dependent on baseline 

covariates only.  

Whereas unstabilised weights are simply the inverse of the conditional probability of 

having remained uncensored until time 𝑡 conditional on baseline and time-dependent 

covariates, stabilised weights are the conditional probability of having remained 

uncensored until time 𝑡 given baseline covariates, divided by the conditional probability 

of having remained uncensored until time 𝑡  given baseline and time-dependent 

covariates. The stabilised weight will be equal to 1 for all 𝑡 if the history of the included 

prognostic factors for failure does not impact upon the hazard of censoring at 𝑡, such 

that there would be no informative censoring and treatment switching would be at 

random.  
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Thus, in an IPCW model, the stabilised weight for individual 𝑖, 𝑊𝑖𝑘 = 0 at the time at 

which patient deviates from their assigned treatment (i.e. such that they are then 

dropped from analysis); otherwise their (stabilised) weight is denoted  

𝑊𝑖𝑘 =
Pr(𝐶𝑖𝑘 = 0|𝑋𝑖0)

Pr(𝐶𝑖𝑘 = 0|𝑋𝑖0, �̅�𝑖𝑘)
 

where 𝐶𝑖𝑘 indicate whether individual 𝑖 has been artificially censored (due to treatment 

deviation) (𝐶𝑖𝑘 = 1) or remains under observation (𝐶𝑖𝑘 = 0) at time 𝑘, 𝑋𝑖0 are fixed 

baseline covariates, 𝑋𝑖𝑘  are time-varying covariates at follow up time 𝑘 , assumed to 

influence both treatment crossover and final outcome and �̅�𝑖𝑘 is the history of these 

relevant time-varying covariates up to follow up time 𝑘. 

5.6.7. IPW methods to adjust for LTFU  

As well as adjusting for treatment deviation, IPW methodology may be used to account 

for bias introduced by informative loss to follow up; for example, when (complete case) 

pseudo-ITT analyses are carried out, the bias caused by missing outcome determination 

can be removed using IPW methods, assuming that data are available on all time-

varying determinants of loss to follow up. Furthermore, it is possible to adjust for 

treatment deviation as well as loss to follow up in the same analysis, by simply 

multiplying a patient’s time-varying “treatment deviation” weights by the corresponding 

“loss to follow up” weights to obtain overall weights (based on assumption of 

conditional independence) (151). 

5.6.8. Considerations regarding use of IPW methods 

There are a number of important limitations that must be considered when using IPW 

techniques.  
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First, the correlation introduced by the use of IPWs renders normal standard errors 

invalid; as such, robust variance estimation or bootstrapping is required for confidence 

interval estimation.  

IPWs are unestimable if there are levels of any covariates that ensure (in order, where 

the probability equals one) that treatment switching will occur (152). Indeed, IPW 

methods require that there remains a reliable pool of uncensored patients on which to 

base weight estimation at each time point and for each combination of confounding 

covariates. If the probability of treatment deviation for any such combination is 

especially high (or low), the stabilised weights will be subject to wild fluctuations, in turn 

leading to unreliable causal estimates.  

And finally, but perhaps most importantly, especially in the context of randomised 

trials, is the assumption of NUC. In order for IPW methods to be implementable, it is 

vital for data to be available on all potential confounders (in other words, those baseline 

or post-randomisation, potentially time-varying, variables that both predict treatment 

change and outcome). It is never possible to be entirely confident that all data on all 

confounders have been collected and correctly allowed for; indeed it is highly unlikely 

for the NUC assumption to be entirely true, but IPW methods will work well even 

when this assumption is only approximately true (142), provided no important 

confounders have been omitted from the model.  

However, the NUC assumption may represent a key limitation of the IPCW, 

particularly in a trial context. IPW methods were developed for observational studies 

which are typically more suited to the longitudinal data collection process required to 

meet this assumption. In contrast, datasets collected for trials are typically much smaller 

than those for observational studies, and key (time-varying) predictors of treatment 

switching are often not collected in trials (for example, reasons for patient switching 
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preferences). Personal or psychological traits which affect a patient’s ability to comply 

(and in turn affects their outcome) may be very difficult to record reliably longitudinally, 

especially in the strict setting of a randomised trial (while observational studies may 

provide more scope for long term follow up of such factors). Moreover, data collection 

on such indicators is often stopped during follow up for practical reasons (for example, 

upon treatment discontinuation or disease progression), thus further hampering the 

applicability of the IPCW method. Overall, when data on predictors are sparse, the 

NUC becomes less plausible and the IPCW method becomes less stable (142). 

5.7.  Considerations regarding choice of adjustment method 

Having introduced the reader briefly to the field of causal analysis, it is useful to reflect 

briefly on the requirements and limitations of each method, in order to ensure 

appropriate application and interpretation, as well as to guide researchers in their choice 

of causal methodology.  

Table 7 Main differences between causal analysis approaches 

1. Key to causal analysis is appreciation of the PO framework, which underlies most 

causal estimation techniques.  

2. Traditional SEMs are disadvantaged by lack of transparency regarding underlying 

assumptions and the likely problem of hidden bias and time-varying confounding.  

3. Principal stratification techniques are straightforward to apply in simple, all-or-

nothing compliance scenarios but cannot be extended easily to allow for (more 

usual) time-varying treatment deviation or survival outcomes.  

4. Structural models provide a more flexible approach to causal analysis, 

accommodating more general compliance measures and using a nested approach to 
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adjust for time-dependent confounding, but are restricted to causal estimation of 

single causal effects and thus cannot be used to adjust for more than one form of 

treatment deviation.  

5. The assumption of NUC underlies the observational-based approach of MSMs 

(and associated IPCW methods), which account for time-dependent confounding 

by the use of inverse probability weighting; thus the key requirement for unbiased 

IPW estimation is availability of data on all relevant confounders, which may 

present a particular challenge in trial settings.  

5.8. Conclusion  

The overview of statistical methods to adjust for deviation from treatment protocol in 

randomised trials and observational studies summarised in this chapter has revealed a 

number of available approaches to causal estimation, with a particular focus on survival 

analysis methodologies, given that settings typically associated with treatment deviations 

(such as the necessarily dynamic treatment regimens in the treatment of cancer or 

longterm treatment for chronic disease) often use TTE outcomes to assess treatment 

efficacy. Having determined that such methodologies exist, a review of recently 

published trials is summarised in the next chapter, in order to determine the extent to 

which such treatment deviations actually occur in trials and whether trialists are aware 

of the available causal analysis methods in order to appropriately adjust for such 

treatment changes. The thesis will then move on to explore in more detail the 

practicalities and challenges arising from the application of the two key methods 

identified in this review of causal methods for adjustment for deviations to randomised 

trials when analysing survival outcomes, namely the IPCW and RPSFTM. 
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6. Review of nonadherence in 

published RCTs  

6.1. Introduction 

In previous chapters, it has been demonstrated that nonadherence is a problem in 

general clinical practice as well as trials, with specific examples given of departure from 

randomised treatment in (a select group of) trials and a discussion of the resultant 

complications in trial conduct and analysis and potential statistical methods to 

appropriately handle such departures in analysis. This chapter now describes a review of 

recently published RCTs carried out with the aim of determining the extent to which 

nonadherence occurs in randomised trials, as well as the degree to which trialists 

appreciate the importance of the issue of nonadherence, in terms of the quality of both 

their reporting of nonadherence and use of appropriate methods to adjust for such 

treatment deviations.   
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6.1.1. Reporting of adherence information  

It is well recognised that clinical trials often fail to report important features of design 

and analysis that are necessary to ascertain the methodological quality of the trial (153-

159). Lack of adequate trial reporting led to the development (and two further updates) 

of the CONSORT (Consolidated Standards of Reporting Trials) statement (41, 160, 

161), which aimed to improve reporting of trial methodology and results by providing 

authors with a checklist of items recommended for inclusion in trial publications. 

CONSORT recommends reporting “for each group the numbers of participants who 

were randomly assigned, received intended treatment and were analysed for the primary 

outcome.... Knowing the number of participants who did not receive the intervention as 

allocated or did not complete treatment permits the reader to assess to what extent the 

estimated efficacy of therapy might be underestimated in comparison with ideal 

circumstances.” Use of CONSORT flow diagrams to illustrate patient flow through the 

trial has become increasingly common (162), but the information presented in the flow 

diagram may not be detailed enough to ascertain the true extent and nature of any 

nonadherence to treatment protocol that have occurred in a trial. 

6.1.2. Aims 

As such, this review aimed to ascertain  

1) the extent and nature of nonadherence to randomised treatment reported in 

published trials, 2) how such nonadherence is handled in statistical analyses of benefit 

and harms outcomes, and 3) how well such nonadherence, and the statistical methods 

to deal with it, are reported in published RCTs. 
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6.2. Methods 

6.2.1. Terminology 

In this review, the term “nonadherence to randomised treatment” is used to indicate 

any deviation on the part of patient or treatment provider to the trial treatment 

protocol, or any treatment change agreed with medical staff but not permitted by the 

trial protocol. Protocol-permitted treatment changes can also present problems of 

interpretation but these were not considered here. For example, discontinuation of 

randomised treatment for safety reasons as specified in the protocol, or premature 

stopping of a trial according to a predefined stopping rule, were not be considered as 

examples of deviations from treatment protocol in this review. 

For the purposes of assessing adequacy of trial reporting, the definitions given by 

Vrijens (3) for the three quantifiable phases of patient adherence to prescribed 

medication (initiation, discontinuation and implementation) were extended for use in a 

clinical trial setting, where the intervention could be nonpharmacological and where 

adherence to treatment protocol can be influenced by treatment providers when 

administering or prescribing treatment as well as by participants, because of the required 

adherence to the trial treatment protocol. 

Thus adherence is defined as the degree of correspondence between a participants’ 

intended randomised treatment prescription and their actual history of treatment 

received over the course of the protocol-specified treatment period, and is split into the 

following phases: initiation of randomised treatment occurs when the participant begins 

their randomised intervention and discontinuation is defined as the permanent cessation 

of randomised intervention, with the intervening time being defined as the implementation 
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period. Persistence is defined as perseverance with randomised treatment as per the trial 

protocol until the end of the protocol-defined treatment period.   

Given that adequacy of trial reporting on adherence to treatment protocol depends on 

the duration and complexity of trial specific interventions, trials were classified 

according to whether the trial interventions were given at a single or multiple time 

points. Trials with treatment given at multiple time points (referred to as “longitudinal 

treatment periods”) were divided into “short term intervention trials” involving 

treatment given at a few discrete time points (for example, single daily dose over the 

course of a week) or continuously over a short period of time (for example, infusion 

given for one hour), and “long term intervention trials”. 

6.2.2. Benefits versus harms outcomes 

Analyses of harms data are particularly affected by departures from treatment protocol 

because of the anticonservative nature of ITT analyses for harms outcomes. Therefore 

it was of interest to investigate the handling of benefit and harms outcomes separately 

in this review; as such, outcomes were categorised according to whether they were 

assessing benefits or harms.  

Outcomes related to harms (for example, mortality or a composite cardiovascular 

outcome – including events such as stroke, myocardial infarction and death) but which 

were likely to be caused by the disease itself rather than side effects of the treatment 

(and therefore the purpose of the drug was to prevent such events) were categorised as 

benefit outcomes. 
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6.2.3. Key points to be reported  

In order to judge the quality of trial reporting, and statistical handling of treatment 

protocol nonadherence, it was important to identify key points that should be explicitly 

reported in each publication. Table 8 presents recommendations for explicit reporting 

of information relating to adherence to treatment protocol.  

All trials should report the number of randomised participants and the number of 

participants who initiated their randomised intervention. Longitudinal treatment period 

trials were also expected to have reported on treatment persistence: in the interest of 

conservative assessment of adequacy of reporting, short term intervention trials were 

required only to have reported on the number of patients who completed intervention 

(or the number who discontinued randomised intervention prematurely). Long term 

interventions are, however, more likely to result in treatment interruptions or 

deviations, so patients who were still taking treatment at the end of the protocol-

determined treatment period may not have been fully adherent to the treatment 

schedule for the whole duration of treatment. Thus publications of trials with long term 

interventions were judged according to whether they had supplemented their reporting 

of the number of participants who persisted with intervention according to the 

treatment protocol (or conversely the number of participants who prematurely 

discontinued randomised intervention) with some measure of participant and/or 

treatment provider adherence to treatment protocol (as appropriate, depending on 

whether administration of treatment was by the participant or the treatment provider) 

over the implementation period.  
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Table 8 Recommendations for explicit reporting of information relating to adherence to treatment protocol 

Quoted justification is taken from CONSORT 2010 elaboration document (41) unless stated otherwise. 

 Report for all trials          Report according to treatment duration Report reasons for Justification 

  Single (one-off) 
intervention 

Short term 
intervention 

Long term 
intervention 

  

1. Randomisation 1 Randomised     “Crucial count for defining trial size and assessing whether a 
trial has been analysed by intention to treat”; necessary to 
determine whether all trial participants received treatment and 
were included in analysis. 

2. Adherence to treatment protocol      
a. Initiation  1 Initiated (or 

received) 
randomised  
intervention 

1 Initiated 
randomised 
intervention 

1 Initiated 
randomised  
intervention 

Those not initiating 
randomised 
intervention 

“Knowing the number of participants who did not receive the 
intervention as allocated or did not complete treatment 
permits the reader to assess to what extent the estimated 
efficacy of therapy might be underestimated in comparison 
with ideal circumstances.” b. Completion/ 

Persistence2 
  1 Completed 

randomised 
intervention  

1 Persisted with 
randomised  
intervention as 
required by 
treatment protocol  

Those who did not 
complete / persist 
with randomised 
intervention 

c. Adherence 
over treatment 
period 3 

      

i) Method  Description of method used to measure 
adherence over treatment period (and of an 
additional method to check reliability if trial 
involves participant-administered 
intervention) 4 

 If participant compliance data are collected, the reliability of 
the method used to record compliance should ideally be 
checked by use of another method (for example, treatment 
diaries backed up by counts of remaining tablets at the end of 
each course of treatment) (14) 

ii) Justification for 
definition  

 Justification for any reported definition of 
adherence (for example, if a threshold is used 
to define adequate adherence) 4 

 “If patients are to be divided into “compliant” and 
“noncompliant” groups, the division should ideally be made 
on the grounds of the relationship of the compliance level to 
the therapeutic response or outcome” (11)  

iii) Results  Measure of participant and/or treatment 
provider adherence with  randomised 
intervention (as appropriate) 4  

Any participant or 
treatment provider  
nonadherence 4   

 

       
       
3. Analysis       

a. Analysed 1 Analysed     Any exclusion of 
participants from 
analysis  

“Attrition as a result of loss to follow up, which is often 
unavoidable, needs to be distinguished from investigator-
determined exclusion for such reasons as ineligibility, 
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 Report for all trials          Report according to treatment duration Report reasons for Justification 

withdrawal from treatment, and poor adherence to the trial 
protocol... Participants who were excluded after allocation are 
unlikely to be representative of all participants in the study.” 

b. Analysis set 
composition 

How analysis sets 
differ from 
randomised groups 

   Any difference 
between analysis sets 
and randomisation 
groups 

“Erroneous conclusions can be reached if participants are 
excluded from analysis, and imbalances in such omissions 
between groups may be especially indicative of bias.” 

1 Report numbers of participants in each randomised intervention group satisfying condition listed in each cell. 
2 Persistence is defined as perseverance with prescribed treatment until the end of the treatment period. 
3 Adherence is defined as a measure of the degree of correspondence between prescribed treatment and actual treatment received by participant. 
4 Note that, depending on the complexity of treatment, it may not be necessary for trials with short term intervention to report on adherence over the treatment period. 
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Methods used to assess participant or health care provider adherence to treatment 

protocol should be described, and clinical justification given for any definition used to 

define adherence. Ideally clinical trials involving participant-administered intervention 

should use a reliable measure, and ideally a combination of measures, to accurately 

record participants’ adherence data (14). Therefore, publications of such trials with a 

long term intervention period in this review were judged according to whether they 

collected and reported details of the methods used to assess, and check reliability of, 

participant adherence.  

It was also recorded whether any explanation was given regarding the use of any 

adherence threshold to split participants into “good” and “poor” compliers. Although 

such dichotomisation is not recommended (20), any threshold used to create such 

groups should be specified in the protocol; otherwise, there may be suspicion that an 

optimal adherence cut-off has been selected on the basis of the results to allow the most 

favourable adherence rates to be reported, as the “definition of non-compliance is 

malleable and could be inadvertently manipulated for benefit of investigators” (35).    

Analysis sets for both benefits and harms outcomes should be defined explicitly, with 

reasons given for the exclusion of any patients from analysis. If there is any difference 

between the defined analysis sets and the intervention groups as randomised, this 

should be stated clearly and any potential resultant bias should be discussed. 

6.2.4. Missing data 

The issue of missing outcome data is related to non-compliance, as the reason for 

missing data may well be related to nonadherence to treatment: those who withdraw 

from treatment may also withdraw from follow up (68). Thus when trialists apply 

methods to overcome the problem of missing data, this may be viewed as an attempt to 
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also deal with the issue of non-compliance, especially if outcome data are missing 

entirely as a result of treatment cessation. Thus it was noted, as part of this review, 

whether trialists reported missing outcome data and any methods used to adjust for this 

missingness.  

In particular, it was noted whether sensitivity analyses were performed, whereby missing 

outcome values are imputed assuming various missingness patterns (for example, 

MCAR or MAR, i.e. dependent on cofactors), recommended as a method to assess the 

robustness of conclusions from complete case analyses (163).  

6.2.5. Selection of reports 

A search of Medline (using terms randomi$ed controlled trial$ or controlled trial$ or 

controlled clinical trial$ or RCT$) was carried out in order to identify trial reports 

published in the British Medical Journal (BMJ), Journal of the American Medical 

Association (JAMA), Lancet and New England Journal of Medicine (NEJM) during 

2008. Of the 698 articles obtained from the initial search, 281 (49 from BMJ, 53 from 

JAMA, 84 from Lancet and 95 from NEJM) remained following deletion of duplicates, 

comments, systematic reviews and meta-analyses. A sample of 100 trial reports were 

randomly selected from these articles, 16 of which were from the BMJ, 20 from the 

Lancet, and 32 each from the Lancet and NEJM. 

6.2.6. Secondary publications 

Five of the selected studies were secondary publications of recent trials (original 

publications were in NEJM, American Journal of Medicine and Neurology). In these 

cases, for the purposes of reporting adherence data, the combination of both the 

primary and secondary publications of the same trial were considered as the unit of 

analysis. 
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6.2.7. Data extraction 

Characteristics of the trial publications were recorded using a piloted, standardised 

form. In cases of any doubt or ambiguity, the paper was reviewed by a second reader. 

Scrutiny of each trial publication allowed determination of 

 whether a CONSORT flow diagram was presented, and if so, what level of 

detail regarding deviation from treatment protocol was provided 

 whether procedures were put in place to ascertain and improve patient 

compliance with the treatment protocol 

 whether patient-related adherence data were collected and whether any attempt 

was made to check on the reliability of methods used to record compliance (for 

example, treatment diaries backed up by counts of remaining tablets at the end 

of each course of treatment)  

 the extent and nature of nonadherence to treatment protocol that was reported 

in the trial 

 method of benefit analysis used (for example, ITT or PP) and its 

appropriateness, given the aims, design and hypothesis of the trial 

 whether harms analyses appropriately allow for departures from treatment 

protocol (for example, when patients did not receive their allocated treatment or 

switched treatments) 

 any methods used to specifically adjust for, or examine effects of, departures 

from treatment protocol  

 extent of missing outcome data and methods to deal with missing data  
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6.3. Results  

6.3.1. Characteristics of RCTs 

The characteristics of the 100 randomly selected randomised controlled trials are shown 

in Table 9. The vast majority (92%) of the studies in the sample included a superiority 

hypothesis only. Ten trials were randomised at a cluster, rather than individual, level. 

Only one of these was a drug trial; the remaining involved nonpharmacological 

interventions. Sixty nine trials involved a drug treatment; the majority of which were 

labelled as (or characteristic of) phase III trials, and 44 (63.7%) of these drug trials used 

a placebo for the control arm. Only one nonpharmacological trial (which aimed to 

investigate various aspects of the placebo effect using placebo acupuncture) involved a 

placebo. 
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Table 9   Characteristics of 100 randomly selected RCT articles 

Characteristic Number (=%) 

Journal  
BMJ 16 

JAMA 20 
Lancet 32 
NEJM 32 

Hypothesis  
Equivalence 1 

Non-inferiority 7 
Superiority 92 

Design  
Cluster 10 
Parallel  90 

(of which factorial) (11) 
Blinding  

None 29 
Single 16 

 Investigator only                           1 
 Assessor only                                13 
 Laboratory staff only                     2 

Double 55 
 Patient and investigators1          26 
 Patient and assessors                   2 
 Investigator and assessors                    1 
 Statistician and assessors                                    1 
 Laboratory staff and assessors                       1 
 Patients, investigator and assessors2                 22 
 Patients, statistician and assessors             2 

Prespecified statistical analysis plan  
Stated 15 

Not stated 85 
Intervention type3  

Nonpharmacological intervention 35 
 Surgical     3 
 Behavioural    14 
 Device    7 
 Model of care/guidelines       7 
 Other        4 

Drug 69 
 Phase I or II                             4 
 Phase III4                                  65 

Control intervention  
Active intervention 55 

Placebo 45 
1 Note that this includes 12 placebo trials which were described as “double-blind” but did not explicitly state that the patient and 
investigators were blinded. 
2 Note that this includes two placebo trials which were described as “double-blind” but did not explicitly state that the patient and 
investigators were blinded. 
3 Four trials involved two types of intervention. 
4 Forty-nine of these did not specifically state “phase III” but were powered and controlled comparisons indicative of phase III. 
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6.3.2. Extent and nature of reported nonadherence to treatment 

protocol  

Ninety-eight publications reported at least one form of departure from treatment 

protocol (see Table 10). Direct comparison of the extent of departure from treatment 

protocol across trials is not straightforward, as trials differed greatly in terms of type and 

duration of intervention, definitions used to define nonadherence and level of reporting. 

However the distribution of percentage of patients displaying some form of deviation 

from treatment protocol (or the average degree of nonadherence in a single trial), based 

on information reported in the trial publications, can also be seen in Table 10. 

Table 10 Reported forms of nonadherence from protocol 

Number (=%) 

Reported some form of nonadherence to treatment protocol1 98 
Participants who did not initiate allocated treatment 39 

Participants with incomplete treatment (among those who initiated allocated treatment) 78 
Participants who switched trial treatments 12 

Participants who started open label treatment (not as per protocol) 7 
Participants who started disallowed/non-trial treatment 4 

Evidence of contamination between treatment groups 3 
Other forms of nonadherence to treatment dose/schedule 23 

Nonadherence on the part of treatment providers  12 
Did not report any nonadherence to treatment protocol 2 
  
Percentage of patients experiencing/displaying some form of nonadherence to 
treatment protocol  

 

None reported 2 
0-5% 23 

5-10% 10 
10-20% 22 
20-30% 11 
30-50% 12 

>50% 9 
>0% but unclear2 11 

1 Trial publications may have reported the number of participants in more than one of the categories 
listed. 
2 For example, trial report states only that the treatment providers were not adherent to some degree, or 
unable to distinguish withdrawal from treatment for legitimate reasons (for example, death or treatment 
changes permitted by protocol following adverse events) from withdrawal due to nonadherence. 
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6.3.3. Quality of reporting on departures from treatment protocol  

The vast majority of trial reports (96%) included a CONSORT flow diagram. Table 11 

summarises the quality and completeness of reporting on randomisation, adherence to 

treatment protocol and analysis in the CONSORT flow diagrams and the text. All 100 

trials stated the numbers randomised, but only 58 publications stated how many 

patients actually initiated their allocated treatment. All trials provided some information 

on the number of participants included in analysis of the primary outcome, but this 

information was not always provided for secondary outcomes, particularly when a large 

number of outcomes were analysed. Forty-three trial reports included an explicit 

explanation of the composition of the analysis sets used for benefit outcomes, 48 trials 

labelled the analysis sets (47 “ITT” and 1 “PP”) without further explanation of how the 

analysis sets were composed, and no details on the composition of benefit outcome 

analysis sets were given in the remaining nine trials. 

Table 12 provides a breakdown of persistence and adherence information reported in 

the 88 studies with longitudinal treatment periods. The majority (81, 92%) provided 

some information on treatment completeness, but this was sometimes incomplete or 

vague.  

Overall, reporting of treatment initiation and completeness was judged to be adequate 

in only 7 (11%) of 66 trials with long term interventions (requiring reporting of 

treatment initiation, persistence and some measure of adherence over the 

implementation period) and 8 (36%) of 22 trials with short term interventions (requiring 

reporting of treatment initiation and completion). Reporting of treatment receipt was 

judged to be sufficient in 10 (83%) of 12 trials with a one-off treatment. 
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Table 11 Reporting of key points in 100 trial reports 

 Report for all 
trials 

Report according to treatment duration 

  Single (one-off) 
intervention 

(n=12) 

Short term 
intervention 

(n=22) 

Long term 
intervention 

(n=66) 
1. Randomisation 100 (100%) - - - 
2. Adherence to treatment protocol 

a. Initiation - 10 (83%) 15 (68%) 
 

33 (50%) 
 

b. Completion/ 
Persistence 

- - 12 (55%) [17 
(77%)]1 

 

31 (47%) [51 
(77%)]1 

c. Adherence over implementation period 
i) Method - - 1 (50%)2 21 (47%)2 
ii) Justification for 
definition 

- - 0 (0%)3 0 (0%)3 

iii) Results - - 5 (23%)4 
 

22 (33%) [28 
(42%)]4 

3. Analysis     
a. Number analysed  100 (100%)5 - - - 
b. Analysis set 
composition 

43 (43%) [91 
(91%)]6 

- - - 

1 Number (%) of trials that fully reported [partially reported] on persistence or completion of randomised treatment. 
 2 Number of short term (2) or long term (45) intervention trials with patient-administered treatment (2) is used as 
denominator for %.  
3 Number of short term (1) or long term (18) intervention trials with patient- administered treatment that reported 
adherence definition is used as denominator for %.  
4 Number (%) of trials that fully reported [partially reported] some measure of nonadherence on the part of patient or 
treatment provider. 
5 Number (%) of trials that reported the number included in analysis of primary outcome.  
6 Number (%) of trials that fully reported [partially reported] analysis set composition; partially reporting trials stated 
that analysis was by “intention to treat” (n=47) or “per protocol” (n=1) but did not explicitly explain composition of 
analysis sets. 

 

Thirty-three trials with intervention given at multiple time points reported information 

on treatment interruptions (two trials) or a measure of average adherence over the 

treatment period, on the part of the participant (28 trials) and/or treatment provider 

(four trials; one trial reported on adherence of both the participant and treatment 

provider), but six of these reported this information for the whole trial or combinations 

of intervention groups rather than by individual intervention group. Reported measures 

included the percentage of patients who achieved a particular arbitrary level of 

adherence in terms of the proportion of doses received or the proportion of time 

patients were supplied with randomised drug over the course of the trial.  
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Table 12 Breakdown of persistence and adherence reporting in 88 trials with longitudinal intervention periods 

  Short term intervention 
(n=22)  

Long term intervention 
(n=66)  

Total 

Persistence      
Fully reported1  12 31 43 
Partially reported only2  5 20 25 

Partially reported, including reporting the number of participants who:    
 Withdrew 1 3 4 
 Withdrew consent 1 2 3 
 Lost to follow up (during treatment) - 3 3 
 Lost to follow up (unclear whether during treatment) 1 1 2 
 Discontinued due to certain event(s)3 - 6 6 
 Completed study 3 8 11 
 Discontinued study - 2 2 
 Completed different aspects of treatment protocol (reported separately)4 - 2 2 
 Completed treatment in trial overall (not by treatment group) 1 1 2 
     

Not reported  5 15 20 
    
Adherence over implementation period    
Fully or partially reported, including reporting2 5 

 
22 (6) 

 
27 (6) 

 
 Average measure of participant adherence 5  2 20 (6) 22 (6) 
 Average measure of adherence on part of treatment provider 3 1 4 
 Treatment interruptions - 2 2 
     

Not reported  17 38 55 
     
     
Overall reporting     
Some reporting x 19 

 
62 81 

 Persistence reported only (fully or partially) 14 34 48 
 Adherence reported only (fully or partially) 2 11 13 
 Both persistence and adherence reported (fully or partially)  3 17 20 
     

Not reported   3 4 7 
1 Reported the number of participants still taking treatment at end of treatment period, or the number who “completed” treatment, or who discontinued or withdrew from randomised intervention 
prematurely 
2 Trial publications may have reported on one more than one of the categories listed. 
3 Reported numbers discontinuing only for one reason (e.g. adverse events). 
4 Unable to discern how many participants received entire intervention.  
5 Figure in brackets indicates number of publications reporting adherence measure for overall trial or combinations of intervention groups, not by individual intervention group. 
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6.3.4. Ambiguities in trial reports 

Commonly used terms in CONSORT flow diagrams alluding to nonadherence (or 

adherence) to treatment protocol such as “discontinued”, “completed study protocol”, 

“withdrew”, “protocol deviations” and “loss to follow up” do not provide explicit 

information on completeness of treatment unless accompanied by clarification on 

timing or treatment actually received. For example, the term “withdrew” can indicate 

withdrawal from treatment only, withdrawal from further follow up or withdrawal of 

consent regarding inclusion of a patient’s data in the study. In 13 (62%) of the 21 trials 

that included the term “withdrew” in the flow diagram, it was not possible to ascertain 

whether the participants who “withdrew” had actually initiated treatment before 

withdrawing. Similarly, the timing of withdrawal was not clear in 8 (38%) of the 21 trials 

that described participants who “withdrew consent” in the flow diagram.  

Fifteen (18%) of the 85 trials with a longitudinal treatment which presented a flow 

diagram referred to the number of participants who “received” when they meant 

“initiated” treatment; this could potentially mislead readers as use of the word 

“received” may be incorrectly interpreted as receipt of the entire intervention.  

Three trials with a long term intervention period referred in the CONSORT diagram 

(and 4 more referred in the text) to the number of patients who “completed” treatment 

when it would have been more accurate to report this figure as the number “still on 

treatment at end of treatment period/trial follow up”, as completion of treatment may 

imply complete adherence to, as well as persistence with, randomised intervention 

throughout the treatment period. 
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6.3.5. Methods to check adherence 

Less than half (22, 47%) of the 47 trials with participant-administered treatment 

mentioned checking adherence, and only 5 of these assessed reliability of the adherence 

data using a second method. The most common methods to ascertain participant 

adherence involved counting (or weighing) pills (11 trials) or participant self-reporting 

(10), even though these methods are not considered to be reliable (14). More accurate 

methods such as medication events monitoring systems (MEMS) or measurement of 

drug metabolite or marker in bodily fluids were not used, except in one trial (which used 

blood tests and laboratory assays).  

As shown in Table 13, of the 69 trials that included a drug intervention, 17 (24.6%) 

included a definition of compliance (or non-compliance). All but three of these 

definitions were based on the percentage of prescribed medication received by the 

individual. Four trials simply described these as average percentages for the treatment 

groups separately (three trials) or for the entire trial population overall (one trial), while 

ten other trials specified a percentage cut-off rate indicating good compliance. The most 

common cut-offs were two thirds (three trials) or 80% (three trials) of treatment 

received, but other cut-offs included 50%, 60%, 75% and 100%. Three drug trials based 

their definition of compliance on factors other than simply the percentage of 

medication taken.  

Trials of nonpharmacological interventions also reported on compliance, but the 

complex nature of the interventions and pragmatic trial designs meant that less 

straightforward and potentially ambiguous definitions of compliance were more 

commonly reported than in drug trials. Definitions of compliance on the part of the 

participant in nonpharmacological trials were much less common than in drug trials: 

only two (5.7%) of the 35 trials that involved nonpharmacological interventions defined 
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compliance on the part of the participant. One defined good compliance as attendance 

of at least five out of six possible therapy sessions, and the other defined adherence as 

having undertaken at least 80% of the required blood monitoring.  

Nonadherence is not only an issue at the participant level, as treatment providers may 

also be unable or unwilling to adhere to treatment protocol. Twelve trials which 

involved administration of treatment by personnel other than just the participant 

mentioned an assessment of whether the treatment providers were adherent to the 

protocol. Most of these twelve trials simply discussed the fact that aspects of delivered 

treatment had been recorded (for example, using case report forms or program content 

checklists, videotaping treatment sessions, or recording information on a study web 

server) and thus it was determined that treatment providers had deviated from 

randomised treatment protocol in some manner. Two cluster trials discussed the rate of 

acceptance, participation or implementation of treatment guidelines by site staff. 

Table 13   Definition of compliance in drug trials 

 Number (% of 69 drug trials) 
  
Reported definition of compliance 17 (24.6) 
Based on percentage of medication received                           14 
 Reported percentage of medication consumed 4 
 By treatment group  3 
 For trial overall 1 
 Cut-off used to define good/poor compliance  10 
 50%  1 
 60% 1 
 2/3 3 
 75% 1 
 80% 3 
 100% 1 
  
Based on discontinuation of medication                                 3 
 Non-compliance defined as discontinuation of medication for any time period1 1 
 Percentage of time at risk that the participant spent in receipt of trial drug 

(<75%, 75-90%, >90%)2 

1 

 Split into full/partial/total non- compliance based on timing of multiple 
courses of drugs3 

1 

1 Documented discontinuation of trial drug for specific reasons rather than sporadic failure to 
take treatment. 
2 Based on evidence of collection of trial drug rather than actual consumption 
3 Dependent not only on the cooperation of the participant but also of the treatment provider, as 
the drugs were administered during outpatient visits. 
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6.3.6. Analysis populations 

A benefit analysis was carried out in all trials.  Nine trials did not define any benefit 

analysis populations, and two additional trials defined analysis populations but did not 

label them as ITT or PP.   

Of the 91 trials that defined some benefit analysis population, 73 carried out analysis on 

one population set only (67 ITT, two modified ITT, two PP and two unlabelled 

populations), 15 analysed two populations (12 ITT/PP combinations, one 

ITT/modified ITT and two modified ITT/PP combinations) and three analysed three 

populations (one ITT/modified ITT/PP and two ITT/PP/PP compliant 

combinations). 

Eight-seven trials included what was referred to as an ITT or “modified” ITT analysis. 

Of the 83 “ITT” analyses presented, 15 excluded patients if they did not initiate 

randomised treatment (and an additional three excluded treatment protocol violators), 

four included only eligible participants, and seven specifically stated that they only 

included those with a certain amount of follow up. In the six trial reports which stated 

that a “modified” ITT population would be analysed, specified requirements included 

receipt of treatment (five reports), availability of a certain amount of follow up data 

(four reports), complete follow up (one report) and eligibility of participants (one 

report). 

Of the 19 trials that specified a PP population, only one did not specify any details of 

the composition of the population, while one specified that participants would be 

analysed “as treated”. Fourteen of these 19 trials included a requirement of some degree 

of compliance with treatment protocol, but none provided any clinical justification for 

the threshold of received treatment used to define “compliance”.  



   
   

213 
 

Table 14 Analysis populations 

Benefit analysis 
population1 

Number (=%) 

“ITT”  83 
 No details        47 
 “Included all randomised individuals”                                   11 
 “Analysed as randomised, irrespective of adherence”             10 
 Other2      15 
      Included requirement of "≥1 dose/received  

     treatment”                                          
12 

 Included requirement of "at least one 
assessment/were followed up/                           

      excluded those who died" 

5 
 

 Included only eligible patients                        1 
 Included only those with complete follow up 1 

  
“Modified ITT” 63 

 Included requirement of "≥1 dose/received treatment"                                
Included requirement of “at least one assessment/ 
primary outcome data available”                                                           
Included only eligible patients 
Included requirement of complete follow up        
 

5 
4 
 
1 
1 

“PP” 193 
 No details 1 
 “As treated” 1 
 Included compliance with treatment: 14 
 ≥1 dose 2 
 complete adherence 6 
 taking some proportion of the drug 6 
 Included only eligible patients                       3 
 Included requirement of “compliance with protocol”  7 
 Included requirement of data available/complete 

follow up 
 

5 

“PP compliant” 2 
 Included only those who used intervention, did not 

violate treatment protocol and had outcome data 
available; censored follow up when interruption in 
treatment 
 

1 
 

 

 Censored follow up when proportion of drug taken fell 
below 60%, or stopped trial medication and started 
non-trial medication to treat condition 
 

1 

Unlabelled 2 

 Included those who received ≥1 dose of assigned 
study drug 

1 

 Included those who completed all follow up      
 

1 
 

No details of population 9 
1 Some trials defined more than one efficacy analysis population. 
2 Some of these trials fitted more than one of the “other” categories.       
3 Some of these trials fitted more than one of the listed categories.     
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6.3.7. Handling of departure from treatment protocol in statistical 

analyses 

Of the 98 trials that reported some form of nonadherence to treatment protocol, 51 

(52%) reported some form of analysis method to handle such nonadherence in the 

analysis of benefit outcomes (see Table 15). Forty-six trials adjusted for treatment 

protocol deviations by carrying out analysis based on PP analysis (total not shown in 

Table 15), by censoring or excluding participants who had violated the treatment 

protocol in some way, but half of these analyses were labelled as ITT or modified ITT 

analyses. Only one trial (164) aimed to address the bias introduced from potentially 

informative censoring of patients at the point of deviation from treatment protocol, by 

weighting their censoring by the inverse of their estimated probability of adhering, as 

advocated by Robins (150). Other analysis methods that dealt with departures from 

randomised treatment included treating discontinuation of treatment (or starting 

disallowed or rescue medication) as a treatment failure in analysis (three trials), AT 

analyses (analysing participants according to the actual treatment received regardless of 

randomisation allocation) (three trials) and analysing outcomes concerned with time to 

discontinuation of trial drug (four trials). 

Of the 20 trials where adjustment for nonadherence was explicitly compared to other 

analyses, four trials reported that adjustment for nonadherence resulted in more 

extreme treatment effects; in the remaining 16 trials it was not reported to have made a 

substantial difference to conclusions. 
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Table 15 Statistical methods addressing nonadherence to treatment protocol 

 
                                               Number (%2)  Definition of analysis se Number 

  
Reported a statistical method addressing nonadherence to treatment protocol1                                       51 (52)  

Variant of PP  
 Primary PP analysis described as “PP”                      18 
 Included only those participants who received full randomised intervention  8 

Included only those participants who received at least one dose of randomised intervention 2 
 Minimum degree of adherence required 53 
 Included only those taking treatment at particular time during trial 1 
 Excluded participants if they started disallowed medication 1 
 Censored participants at time of stopping treatment  1 

 
 Primary PP analysis described as “ITT” or “modified ITT” analysis 23 
 Included only those participants who received full randomised intervention 1 

Included only those participants who received at least one dose of randomised intervention 16 
 Included only those participants who received the single treatment  3 
 Excluded participants if they deviated from treatment protocol 3 

 
 Sensitivity analysis                       12 
 Included only those participants who received full randomised intervention 4 
 Excluded participants if they received disallowed treatments 2 
 Minimum degree of adherence required 24 
 Censored participants at the point of deviation from treatment protocol  45 

 
 IPCW6 method 16 
 Subgroup analysis 27 

 Unlabelled analysis  18 
AT analysis  3 

Discontinuation of treatment analysed as treatment failure  3 
Time to treatment discontinuation included as trial outcome  4 

  
Did not report a statistical method to address nonadherence to treatment protocol                     47 (48)  
1 Nine trials carried out two methods of analysis, two trials carried out three methods and one trial carried out four methods. 
2 Number of trials reporting some form of nonadherence (98) is used as denominator for %. 
3 Adherence thresholds used were 60%, 2/3, 75%, 80%, and 90%. 
4 Adherence thresholds used were 2/3 and 5/6. 
5 Censoring times: time of starting disallowed intervention, when participants reported taking less than 2/3 of their medication in the past year, when received treatment out of trial, or censored following 6 month 
lag after receiving less than 80% of drug. 
6 Censored when received <80% of drug, weighted by the inverse probability of each participant’s estimated adherence probability. 
7 Analysis split into two groups (according to whether participants had taken more or less than 50% of the prescribed medication) in one trial and into three groups (according to the proportion (>90%, 75-90% 
or <75%) of their time at risk that they were supplied with drug) in other trial. 
8 Included if received at least one dose of treatment.  
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6.3.8. Harms outcomes 

Of the 69 trials that presented a harms analysis, 43 (62%) did not define the specific 

population set that was used in this analysis (see Table 16). Of the 26 trials that 

specifically defined a harms analysis population, the majority (18, 69%) specified that 

analysis was based on actual treatment received and included all patients who had 

received at least one administration of study agent, but only one study specifically stated 

that participants who received the alternative treatment rather than that allocated to 

them would be included in the alternative treatment group for this analysis. The 

remaining 43 trials that did not define a specific harms analysis population most 

commonly appeared to analyse the harms outcomes according to the specified benefit 

analysis population (31 ITT, two PP). 

Table 16 Harms analysis populations in 69 trials that presented harms analyses 

 Number (%1) 

Harms analysis population specifically defined in 
methods 

26 (38) 

Defined harms 
analysis population 

Based on actual treatment received (i.e. including all 
patients who had received at least one administration 
of treatment) 

18 

 ITT 5 
 All who started allocated treatment 2 
 All who completed allocated treatment 1 

 
Harms analysis population not specifically defined in 
methods 

43 (62) 

Inferred harms 
analysis population 

Stated “safety population” without further definition 1 

 Apparently analysed as per efficacy outcomes 33 
 ITT definition 31 
 PP definition  2 
 No details given of harms or benefit analysis population 9 
   
1 The number of trials with harms analyses presented (69) is used as the denominator for %. 
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6.3.9. Missing data 

The distribution of the percentage of patients with missing primary outcome data 

(excluding 26 trials with a time to event primary outcome, where censoring was applied 

when follow up was terminated prematurely) can be seen in Table 17. In 12 trials, there 

did not appear to be any missing primary outcome data. In a further three trials there 

was mention of how the trialists dealt with missing data, but it was not clear what 

percentage of participants did not have primary outcome data available. 

Table 17   Percentage of participants with missing primary outcome data 
(excluding 26 trials with time to event primary outcome) 

 Number (=%) 

Percentage of participants with missing primary outcome data  
None 12 
0-5% 15 

5-10% 16 
10-20% 20 

20% 8 
Unclear but >0% 3 

 

Of the 62 trials that reported missing primary outcome data, 29 (46.8%) trials did not 

attempt to account for the missing data and carried out complete case analyses only; 

simple imputation techniques were used in 26 trials (41.9%) of trials (either in the 

principal or sensitivity analyses) and more complicated techniques, such as maximum 

likelihood or multiple imputation, were implemented in 10 (16.1%) trials (see Table 18). 

Of the methods implemented to account for missing data, the most common were last 

observation carried forward (LOCF) and assignment of the worst possible outcome to 

all participants with missing outcome data (for example, assuming treatment failure or 

non-response). Other methods included multiple imputation and maximum likelihood 

methods, pattern-mixture models, Markov chain Monte Carlo imputation, assuming no 

change from baseline and repeated measures analysis of covariance. 
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Nineteen trials described the profile of the missing outcome data either by comparing 

characteristics of those who did or did not have missing outcome data or by comparing 

rates of missing outcomes between treatment arms.  

Table 18   Methods to adjust for missing outcome data 

 Number (=% unless otherwise stated) 

Adjustment for missing primary outcome 
data 

 

Not applicable 38 
 No missing data 12 

 Time to event outcome 26 

Complete case analysis only1 29 (46.7) 
   

Principal analysis1 25 (40.3)2,3 
 LOCF 10 

 Assumed worst possible outcome4 9 

 Assumed no change from baseline 2 

 Multiple imputation 3 

 Maximum likelihood  2 

 Markov chain Monte Carlo imputation 1 
 

Sensitivity analysis1 9 (14.5)3,5 
 LOCF 2 

 Assumed worst possible outcome4 3 

 Assumed best possible outcome 1 

 Pattern-mixture model 2 

 Multiple imputation 3 

 No details given 1 

 Other6 1 

Adjustment for missing secondary outcome 
data  

Principal analysis 19 
 LOCF 10 

 Assumed worst possible outcome2 4 

 No change from baseline 1 

 Multiple imputation 1 

 Maximum likelihood  1 

 Markov chain Monte Carlo imputation 1 

 Repeated measures analysis of covariance 
 

1 

Sensitivity analysis 27 
 Assumed worst possible outcome 1 
 Assumed best possible outcome 1 
 Multiple imputation 1 

1 Number of trials with missing primary outcome data (where primary outcome is not time to event) (62) is used as 
denominator for %. 
2 Two trials used two methods to adjust for missing data in principal analyses of primary outcome. 
3 One trial adjusted for missing data in principal and sensitivity analyses of the primary outcome.  
4 For example, assumed to be a treatment failure/non-response.  
5 Four trials carried out two sensitivity analyses of the primary outcome. 
6 Estimated total number of events that would have occurred if follow up had been complete for all participants, and 
then assigned half of the extra events to each treatment group. 
7 Two sensitivity analyses of secondary outcomes were carried out in the same trial. 
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6.3.11. Protocol permitted changes to treatment 

Protocol permitted changes to treatment were not considered as treatment deviations 

for this review. However, given that it may be necessary to factor out such treatment 

changes when considering certain causal research questions, it was of interest to note 

that the treatment protocols of 15 trials in this review permitted modifications to the 

dose of trial treatments or temporary or permanent cessation of treatment (in the event 

of certain adverse effects), which lead to necessary deviations from the optimal 

treatment dose. Six other trials introduced changes to the treatment protocols during 

the course of the trial. These included the introduction of additional concomitant 

treatments to both arms of the trial, dropping of a treatment arm (in a three arm trial), 

dropping of a lead-in treatment phase, replacing one treatment with another and 

modifications of the specified treatment dose as a result of external evidence. Two 

cancer trials permitted patients in the control arm to switch to the intervention 

treatment on disease progression or relapse, and one trial permitted participants to 

begin taking open-label treatment.  

Only three of these 15 trial reports investigated the effect that the change, or permitted 

modifications, to treatment protocol had on the observed efficacy of the treatment. For 

example, in one trial (165), the protocol was amended part way through the study 

permitting a lower initial treatment dose (at the discretion of the investigator) because 

of safety concerns. A sensitivity analysis was carried out excluding those participants 

who received an initial dose lower than was originally permitted in treatment protocol. 
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6.4. Discussion  

6.4.1. Reporting of adherence information  

In this review of published trials, although the vast majority of RCTs were subject to at 

least one form of nonadherence to treatment protocol (most commonly incomplete 

treatment or non-receipt of allocated treatment), often even the most basic adherence 

information on initiation, completion and premature discontinuation of treatment was 

not presented in some trials. Perhaps most remarkable was the fact that forty-two 

percent of the publications did not explicitly state how many patients actually initiated 

their randomised treatment. The template for the CONSORT flow diagram suggests 

that, in the treatment allocation box, trialists should report the number of participants 

who “received” allocated intervention, and in the follow up box, they should then 

report the number who “discontinued” intervention. However, except in the case of 

trials with treatment given at a single time point (only 12% of the trials in this review), it 

would be less misleading and more accurate to ask trialists to report the number of 

participants who “initiated” rather than “received” intervention, as “initiated” is 

unambiguous but “received” may be interpreted either as initiation or as receipt of the 

entire study treatment. Indeed, in the 2010 CONSORT elaboration document, the table 

which details the information required in the flow diagram (table 3) states that the 

treatment allocation box should include the number of participants who “completed” 

treatment as allocated, rather than “initiated” or at least “received”.  

The absence of any explicit reporting of the number of participants who initiated 

intervention may lead readers to assume that all randomised participants at least started 

their randomised intervention. Indeed Vrijens (3) states that, in the context of clinical 

trials of prescribed medication, given that the first dose of a randomised medication is 

usually administered on site following informed consent, “it is often assumed that 
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initiation is implicit for all included patients”. However more than one third (26, 38%) 

of the 69 drug trials in our review included participants who did not initiate their 

randomised intervention. 

Other inadequacies in reporting (related to departures from treatment protocol) were 

evident in this review. For example, none of the 13 trial reports that specified a cut-off 

to define adequate adherence included an explanation for the choice of threshold. As 

discussed by Vrijens (20), the use of “ad hoc” threshold values, such as the “often-used 

but never pharmacometrically justified” adherence criterion of taking at least 80% of 

prescribed doses to define sufficient and insufficient exposure to drugs needed to 

achieve satisfactory therapeutic results, is unacceptable as such a threshold will depend 

on a wide range of underlying drug-, disease- and formulation-specific 

pharmacodynamics. 

In the case of pragmatic trials with nonpharmacological interventions, especially those 

randomised at the cluster level with intervention administered by health care providers 

rather than by the patient, it was often difficult to determine which participants received 

the full intervention as per protocol. For example, some trial reports implied that 

treatment providers were either unwilling or unable to follow the treatment protocols 

fully, but it was not possible to ascertain the extent to which this affected the treatment 

of individual patients. Also, with some complex interventions, it was sometimes difficult 

to define when patients were “on” or “off” treatment, especially when use of, and the 

level of use, of the intervention was optional. Indeed, of the eight trials that failed to 

provide any information on treatment persistence or adherence, all had pragmatic 

designs and all but three were cluster trials with nonpharmacological interventions. 



   
   

222 
 

6.4.2. Incomplete reporting of exclusions from analysis  

The reporting of methodological features of RCTs has historically been shown to be 

less than optimal, with numerous reviews providing evidence that authors of trial 

publications often fail to include details on the important features of design and analysis 

(154, 158, 159). In particular there is increasing evidence that trialists provide inadequate 

information on the exclusion of participants from analysis (153, 155, 157, 166, 167).   

Schulz et al (166) investigated the association between methodological quality and 

evidence of biased treatment estimates in 250 RCTs (published between 1955 and 1992) 

from 33 meta-analyses from the Cochrane Database, and found that inadequate 

methodological approaches to trial design are associated with bias, particularly with 

respect to poor allocation concealment. They unexpectedly found, however, that those 

trials that reported excluding participants after randomisation did not yield exaggerated 

treatment effect estimates compared with trials that explicitly reported, or “gave the 

impression”, of no exclusions (the vast majority of which were not explicit). They noted, 

however, that of those trials report that gave the impression that no exclusions had 

occurred, few explicitly stated that no exclusions had occurred. Thus they conjectured 

that this phenomenon may have be resulted simply because those trials demonstrating 

higher methodological quality (for example, using adequately concealed allocation) were 

similarly likely to demonstrate better reporting quality (by clearly reporting on the 

exclusion of randomised participants), whereas those involving poorer methodology 

were less likely to openly report excluding participants.  

A similar review by Schulz (167) of obstetric and gynaecology trials published in 

1990/1991 provided more evidence of this “exclusion paradox”. Schulz categorised 

trials according to whether the trial publication explicitly stated that there were some or 

no exclusions or where there were “no apparent exclusions” (when they simply reported 
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analysing the same number of participants as were randomised, thus implying that no 

exclusions had occurred). They found that those trials with reported exclusions and 

those which explicitly reported no exclusions were more likely to have implemented 

adequate methods of allocation concealment than those with no apparent exclusions, 

and thus “paradoxically, trials that reported exclusions seemed generally of a higher 

methodological standard than those that had no apparent exclusions”. Thus Schulz 

suggests that when there is a no mention of exclusions (or a lack of exclusions) in a trial 

publication, exclusions may nevertheless have taken place, leading to an “unsettling 

irony… some of the more biased trials might be mistakenly interpreted as unbiased, 

while many of the less biased trials may be interpreted as biased” (168).  

Although the trials in both of Schulz’s review are not current, and it is hoped that 

reporting of trials has improved in recent years following acceptance of the CONSORT 

statement (160, 169), the finding in our review that only 58% of studies explicitly report 

how many patients initiated randomised treatment suggests reporting could be 

improved further. Furthermore, although the number randomised and analysed (at least 

for the primary outcome) was reported in all of the trials in our review, given the 

findings by Schulz, without explicit mention of exclusions, this does not guarantee that 

the number analysed was equal to the total number initially randomised. 

For example, the wording in the text of a few trial reports in our review regarding the 

number of randomised participants was slightly ambiguous and may be suggestive of 

the exclusion of certain participants from the trial report. This seemed especially likely 

when the description of the number randomised was conjoined with another descriptive 

characteristic of the participants, for example “883 HIV-infected, treatment-naive 

patients were randomised and analysed for efficacy” (170) or “A total of 579 people 

were randomised and completed the baseline questionnaires” (171).  
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6.4.3. Assessment of participant adherence in drug trials 

Despite the fact that collection of participants’ adherence data is now considered to be 

an important aspect of clinical trials and use of a combination of measures is 

recommended to improve accuracy of adherence data (14), less than half of the trials 

involving participant-administered treatment mentioned checking adherence, and less 

than one third of these assessed reliability of the adherence data. The most common 

methods to ascertain adherence involved counting pills (either directly or by weighing 

medication bottles) (11 trials) or questioning the participant (in person or through 

questionnaires or diaries) (11 trials), even though these methods are not considered to 

be particularly reliable (14). It is of interest to note that more accurate methods such as 

medication events monitoring systems (MEMS) or measurement of drug metabolite or 

marker in bodily fluids are not typically used (only one trial used blood tests and 

laboratory assays to assess adherence), even in the large scale and high quality trials 

which are published in the four journals included in this review. 

Trial-specific definitions of compliance or adherence were common, especially in the 

case of drug trials with long term intervention periods, where compliance was usually 

defined as the proportion of prescribed drugs that were actually taken by the 

participant. One quarter of drug trials (17/69) in this review defined compliance, based 

most commonly on the percentage of medication received (14) but also on 

discontinuation of medication (3). Ten trials defined good or poor compliance based on 

cut-offs on the percentage of medication received, but none of these thresholds were 

justified.  
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6.4.4. Trials of nonpharmacological interventions 

Trials of nonpharmacological interventions reported on participant compliance far less 

commonly than in drug trials, and the complex nature of the interventions and 

pragmatic trial designs meant that less straightforward and potentially ambiguous 

definitions of compliance were more commonly reported than in drug trials.  

Checking compliance with treatment protocol on the part of treatment provider (rather 

than just the participant) is especially important in trials of nonpharmacological 

interventions. This is particularly true for those which are randomised at the level of the 

treatment provider (cluster trials), and this was evident in this review, as proportionally 

more of those randomised at a cluster level specifically mentioned that adherence of 

treatment providers was monitored compared to those randomised at the individual 

level (55.6% versus 26.9% respectively).  

The compliance data reported regarding adherence by treatment providers to the trial 

protocol on administration of nonpharmacological interventions were not, however, 

always very clear or transparent, and it was not easy to determine the degree of impact 

that the reported nonadherence would have had on trial participants. Most of these 

twelve trials simply discussed the fact that aspects of delivered treatment had been 

recorded (for example, using case report forms or program content checklists, 

videotaping treatment sessions, or recording information on a study web server) and 

thus it was determined that treatment providers had deviated from randomised 

treatment protocol in some manner. Two cluster trials discussed the rate of acceptance, 

participation or implementation of treatment guidelines by site staff. 
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6.4.5. Statistical methods to deal with departures from treatment 

protocol  

Although more than half (51/98, 52%) of the trials that were subject to nonadherence 

to treatment protocol implemented a statistical analysis method to deal with such 

nonadherence when analysing benefit outcomes, these were most commonly based on 

variations of PP analysis (46) and very few recognised, or sought to address, the 

potential for bias introduced when excluding or censoring patients at the point of 

deviation from treatment protocol. Only one trial (164) addressed the potential bias 

caused by censoring of patients at the point of deviation from treatment protocol, using 

the IPCW method (150), while another trial (172) provided justification for the decision 

to exclude participants who had not received the allocated intervention, citing 

Fergusson (173) and stating that the “omission [of such patients] would be equally 

distributed between groups, would be unrelated to treatment assignment, and would not 

bias outcome ascertainment”. Trial publications commonly presented insufficient detail 

or explanation on the analysis sets used for benefit and harms outcomes. Fifty-seven 

percent of trials did not explain the composition of analysis sets for their benefit 

outcomes, and 62% of trials that presented harms analyses did not specifically define 

harms analysis populations. This common lack of discussion regarding whether, and if 

so why, patients were excluded from analysis and the potential biases which may result 

from such exclusions, indicates a low priority given to the issue of nonadherence to 

treatment protocol in the analysis of published trials.  

6.4.6. “ITT” analysis to handle nonadherence to treatment protocol 

Eighteen trials in this review carried out what were referred to as “ITT” analyses but the 

ITT analysis set excluded participants if they did not adhere to the treatment protocol in 
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some manner. This mislabelling of ITT analyses has been noted in previous reviews of 

ITT analyses in recent trial publications (174-177).  

It is potentially interesting to compare the results of these four surveys of trial 

publications with those from our review, in order to investigate whether the reporting 

of trials and the use of ITT analysis has improved over time. Indeed, such comparison 

(summarised in Table 19) suggests that the use of the phrase “ITT” to describe analyses 

of RCTs is becoming more common (48% in 1999 (176), 71% in 2007 (174) and 83% in 

2008), at least in these four leading medical journals, but that the correct definition of 

ITT analysis is being followed less commonly: 13% of “ITT” trials published in 1999 

excluded participants who did not receive the randomised treatment (176) compared to 

22% of such trials in our review (p=0.086, Pearson’s 2 statistic = 2.95).  
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Table 19   Reviews of ITT analyses in RCTs 

 Hollis (1999) Kruse (2002)1 Gravel (2007) Herman (2009) Dodd 

Journals 
BMJ, JAMA, Lancet, NEJM Multiple English 10  

(including BMJ, JAMA, Lancet, 
NEJM) 

8 
(surgical) 

BMJ, JAMA, Lancet, NEJM 

Publication year 1997 1999 2002 2005-Aug 2008 2008 
Number of trial publications  
[number in BMJ, JAMA, Lancet, 
NEJM] 

249  
 

[249] 

100 (random selection) 403  
 

[283] 

274 100 (random selection) 
 

[100] 
ITT reported: number (% of trials)  
 
[number (% of trials) reporting ITT 
in BMJ, JAMA, Lancet, NEJM] 

119 (48%) 
 
 

[119 (48%)] 

100  
(by definition of search) 

 

249 (62%) 
(ITT for primary analysis)  

(including 23 (9%) “modified ITT”) 
[201 (71%)] 

96 (35%) 83 (83%)  
 

(plus additional 6 “modified ITT”)  

[83 (83%)] 

Assessment of appropriateness of 
ITT analysis:  

number (% of trials reporting ITT)  

     

 

Analysis as 
randomised (solely 
with respect to 
deviation from 
treatment protocol) 

104 (87%) 
 
 
 

Analysis as 
randomised 
 
 

 

42 
 
 

 

Analysis as 
randomised  
(without 
consideration of 
eligibility) 
 

97 (39%) 
 
 
 

Analysis as 
randomised  

No missing data  
Imputed missing data 

 

45 (47%) 
17 (18%) 
28 (29%) 

Analysis as 
randomised (solely 
with respect to 
deviation from 
treatment protocol)  

65 
(78%) 

Explicitly stated 34 (29%)      
 

Explicitly stated 
21 

(25%) 

Appeared to 65 (55%)      
 

Appeared to 
40 

(48%) 

Stated no deviations 5 (4%)       Stated no deviations 4 (5%) 

 
Excluded participants 
from analysis due to  

 
15 (13%) 

 
Excluded participants 
from analysis 

 
58 
 

 
Excluded participants 
from analysis  

 
152 (61%) 

 
Excluded participants 
from analysis 

 
51 (53%) 

 

 
Excluded participants 
from analysis due to  

 
18 
(22%) 

 
deviation from   Missing follow up 

data 
17 Missing follow up 

data 
95 (39%) Missing follow up 

data 
44 (46%) deviation from  

 

 
treatment protocol  Treatment non-

receipt 
15 Treatment non-

receipt 
10 (4%) Treatment non-

receipt 
6 (6%) treatment protocol3 

 

 
[specifically non- [12 

(10%)] 
Ineligible 12 “Modified ITT”2  23 (9%)    [specifically non- 

[15 

 
initiation of 
treatment] 

 Drop out 4 Disease 
exacerbation/  

4 (2%)   initiation of trt3] 
(18%)] 

   Protocol violations 4 adverse effects      

   Unclear 13 Unclear 17 (7%) Unclear 1 (1%)   

   Other 9 Other 3 (1%)     
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 Hollis (1999) Kruse (2002)1 Gravel (2007) Herman (2009) Dodd 

Missing outcome data:  
number (% of ITT trials) 

     

Stated none missing 30 (25%) 42 97 (39%) 17 (18%) 8 (10%) 
<10% missing 60 (50%) 47 100 (40%)  46 (55%) 

>=10% missing 29 (24%) 11 52 (21%)  26 (31%) 
Unclear (but >0%)     3 (4%) 

Missing data techniques:  
number of trials (% of ITT trials 
with missing outcome data) 

     

Complete case analysis only 44 (49%)  89 (59%) 44 (46%) 21 (28%) 
All available information4  29 (33%)    25 (33%) 

Imputation technique 
[of which conducted sensitivity 

analysis5] 

16 (18%) 
[1 (exact methods unstated)] 

 36 (24%) 28 (29%) 
[6] 

29 (39%)  
[7] 

LOCF 7  12 18 11 

Explicit assignment of good/poor 
outcome 

3  2 3 3 

Implicit assumption of good/poor 
outcome (included in denominator) 

4  18  8 

Group average 1   4  

Complex6   1 2 10 

Unspecified    1  

Unclear handling of missing data 

  

27 (18%) 

6 (6%) (only mentioned 
exclusion of participants who 

did not receive allocated 
treatment) 

 

Flow diagram included:  
number (% of trials) 

 41   96 (96%) 

ITT method mentioned in one 
place only: number (% of ITT trials) 

    
 

 
 

Methods section   132 (33%)  81 (98%) 
Results section   15 (3%)  2 (2%) 

Abstract    18 (4%)   
Discussion   1 (0.4%)   

Effect of CONSORT 
 Journals adhering to 

CONSORT more likely to 
display flow diagram 

Journals adhering to CONSORT 
more likely to perform ITT analysis 

  

1 % of trials reporting ITT is equal to number of trials in all cells, as 100 trials reporting an ITT analysis were selected in this review 
2 Made exclusions due to ineligibility or non-receipt of treatment 
3 Note that this figure includes two trials that explicitly stated that participants who did not initiate randomised treatment would be excluded from the ITT analysis but which did not report any such 
deviations. 
4 For example, censoring participants at end of follow up.  
5 Note that some of these trials compared a single imputation technique against complete case analysis. 
6 Includes regression and multiple imputation, maximum likelihood, Markov chain Monte Carlo imputation, repeated measures analysis of covariance 
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6.4.7. Missing data 

Missing outcome data may be linked to treatment nonadherence, and thus this review 

assessed the prevalence and statistical handling of missing primary outcome data. The 

majority (84%) of trials (excluding those with a time to event primary outcome) had 

some missing primary outcome data, but nearly half of these (46.8%) ignored these 

missing data in analysis and carried out complete case analyses only.  

Wood et al (163) also reviewed how trialists report and adjust for missing outcome data 

in RCTs published in July-December 2001 in the same four medical journals as used in 

our review. Wood highlighted the need for multiple sensitivity analyses in the presence 

of missing outcome data, in order to assess robustness of the assumptions made in the 

principal analysis, and that sensitivity analyses should make different assumptions to the 

principal analysis. For example, extreme case analyses (whereby patients in the 

respective treatment groups are assumed to have the most and least favourable 

outcomes, and vice versa) may be performed to demonstrate extreme case scenarios; if 

conclusions from such analyses are not substantially different to complete case analyses, 

it may be concluded that the conclusions are not heavily affected by loss to follow up. 

Of the 62 trials in our review that reported missing primary outcome data excluding 

those that censored participants at final follow up, 33 (53%) implemented methods to 

handle the missing data, including 9 (14.5%) that tested the assumptions of the principal 

analysis with sensitivity analyses or secondary analyses of the primary outcome. This 

compares to 32% and 21% of such trials, respectively, reported in the review by Wood 

et al, suggesting that although trialists seem to be increasingly likely to implement 

missing data methods, the practice of testing the robustness of the assumptions made in 

these analyses through sensitivity analyses is not becoming more common. 
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It is important to report the reason that outcome data are missing, in order to inform 

missing data assumptions (163); for example, only if data are missing completely at 

random will complete case analysis will be appropriate. Only one trial in this review 

explicitly stated the assumptions behind the missing data analysis, namely that the 

multiple imputation of missing data was carried out assuming the data were missing at 

random. It is also important to describe the missing data in each treatment group 

separately, as recommended in the CONSORT diagram. All studies did this, but reasons 

for discontinuation of treatment or missing outcome data were not given in 22 of the 96 

trials that provided a CONSORT diagram; 13 of these stated only that participants were 

lost to follow up. Reporting reasons for missing data allows the reader to assess whether 

the missingness is likely to be random or not, as well as informing analysis assumptions. 

In particular, rather than simply reporting “withdrawal rates”, it is important to 

differentiate withdrawal from treatment (failure to complete treatment protocol) from 

withdrawal from study (failure to complete follow up). 

6.4.8. Harms analyses 

A variety of analysis sets were used for the analysis of harms data in this cohort of trials, 

and this may be a consequence of the lack of consensus in the research literature on the 

most appropriate harms analysis population to be used in the event of departures from 

treatment protocol. The 2001 version of the CONSORT statement (160) supports the 

view of Lewis (75) that ITT is not appropriate for analysis of harms outcomes, stating 

that that “a pure ITT approach to the analysis of safety simply adds to the risk of failing 

to identify potential safety problems, and is therefore never advocated”.  Similarly, the 

ICH GCP guidelines (61) suggest that analysis of harms data should be according to 

treatment received (in other words, all participants who received at least one dose of a 

treatment should be included in that treatment group for harms analyses), and this was 
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the most common analysis set specifically defined for harms outcomes in this review. 

Furthermore, although only one quarter (18/69) of the trials that presented a harms 

analysis specified this analysis population for their harms outcomes, in fact over half 

(37/69) carried out analysis according to treatment received (including, for example, 

trials which specified an ITT analysis where no treatment switches occurred). 

However the 2004 CONSORT extension for reporting harms (49) conversely states 

that ITT is usually preferred for both benefit and harms outcomes because it reflects 

the original trial design. The CONSORT 2010 statement has removed any reference to 

the appropriateness or otherwise of ITT analysis populations for harms outcomes.  

The observed variation in the analysis populations chosen for harms outcomes in the 

presence of treatment protocol nonadherence (in this review of trials) suggests that 

explicit guidance is needed on how harms data from patients who deviate from 

treatment protocol should be analysed, for example what to do if a patient receives both 

or none of the trial treatments, or if they receive a treatment to which they were not 

randomised. 

6.4.9. Trial report discussions relating to treatment nonadherence 

Twelve reports specifically discussed the potential influence of treatment nonadherence 

on the observed treatment effect (but only seven of these trials actually carried out 

analyses that in some way handled departure from treatment protocol). Four trials 

discussed the fact that the observed results may be an underestimate of the true 

treatment effect because of non-acceptance of the intervention (two trials), crossover 

from placebo to active therapy (one trial) or discontinuation of active drug and 

commencement of rescue medication (one trial). Another trial concluded that 

decreasing compliance had not significantly influenced the results of the trial, as the 
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results of the sensitivity analysis assessing whether diminishing compliance had caused 

the treatment effect to wane over time did not differ greatly from those of the main 

analysis. Three trials reported contamination between treatment groups, and two of 

these commented that contamination from the intervention to control group may well 

have contributed to the discouraging observed treatment effects. Two of these trials 

also noted an unexpected improvement in the control arm, and they discussed the fact 

that those who had opted to take part in these behavioural intervention studies may well 

have been more motivated than the general target population, and that simply taking 

part in the trial may have improved their performance (because of increased awareness 

of the issues or increased time spent with research nurses). In addition, two cancer trials 

discussed the related problem of how to interpret ITT analysis in the face of substantial 

switching from placebo to active treatment, or from standard to new intervention, when 

patients’ disease progressed, and they commented on the fact that this crossover was 

likely to have caused a diminished treatment effect on overall survival. Such treatment 

changes, rather than being caused by nonadherence to treatment protocol, were actually 

permitted by the protocol.  

6.4.10. Limitations 

This review is limited by a sample size of 100 trial publications taken from only four 

high impact general medical journals, and thus the generalisation of our results to other 

less widely read or more subject-specific journals may be limited. However it is 

therefore arguable that, for this reason, the findings evident from this review should be 

regarded as an estimate of the upper limit of the quality of reporting and analysis of 

nonadherence to treatment protocol.  

As regards the critique of analysis methods, because trial authors were not contacted 

directly, it cannot be verified that the details reported in the trial publications were 
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complete and accurate accounts of how analysis proceeded. Additionally, it would have 

been of interest to ascertain, via discussion with authors, whether any ambiguity or 

absence of results on nonadherence analyses may simply have been due to poor (or 

restricted) reporting rather than poor practice. Furthermore, without access to the 

protocols or statistical analysis plans for the trials in this review, it was not possible to 

ascertain whether the analyses carried out to examine the effect of treatment protocol 

deviations were decided on prior to data collection or were post-hoc decisions. Two 

trials in this review admitted that the statistical method to deal with departures from 

treatment protocol were post hoc analyses. 

The main limitation of this review was the use of a single reviewer for data extraction. 

However this reviewer was able to consult the opinion of a second reviewer whenever 

there was doubt as to appropriate classifications. This was necessary, however, in less 

than 5% of the articles reviewed, as systematic data extraction from all trial reports was 

undertaken using clear definitions for classification of results. 

6.5. Recommendations  

This chapter has highlighted numerous limitations relating to the measurement, 

reporting and adjustment for treatment adherence in published trials. In particular, 

trialists rarely employ reliable methods to measure adherence and fail to provide 

justification for thresholds used to determine good or poor compliance. Reporting on 

adherence to treatment is poor, particularly relating to treatment initiation and treatment 

adherence with long term treatment protocols. Causal methodology is rarely employed 

to handle treatment deviations; instead trialists typically employ simple naïve analysis 

methods. Investigations regarding the impact of missing outcome data are often basic, 

generally without regard for the impact of assumptions made in such analyses. 
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Thus the work carried out for this chapter has led to a number of recommendations. 

Firstly, recommendations were made to the CONSORT steering group to improve the 

wording regarding the reporting of treatment receipt in the CONSORT flow diagram. 

In particular, the suggestion was made that it would be more meaningful to ask trialists 

to report the number of participants who “initiated” rather than “received” 

intervention, as “received” may be interpreted either as initiation or as receipt of the 

entire study treatment. Furthermore, the error included in the 2010 CONSORT 

elaboration document (in table 3, which states that the treatment allocation box should 

include the number of participants who “completed” treatment as allocated, rather than 

“initiated” or at least “received”) was brought to the attention of the steering 

committee, who subsequently acknowledged this error and stated that it would be 

corrected in the next revision of this document. 

Secondly, specific recommendations were developed (see Table 8) for trialists regarding 

explicit reporting (in trial reports) of information relating to adherence to treatment 

protocol, providing a clear template for authors to ensure transparency and 

unambiguous interpretation of trial results.  

Finally, in Table 20, more general recommendations are provided in order to improve 

trial conduct, reporting and analysis on issues relating to adherence to treatment 

protocol. 
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Table 20 Recommendations for trial conduct, reporting and analysis 

1. Trialists should document in the trial protocol how they plan to measure and 
report nonadherence to treatment protocol, with explanation in protocol and 
publication of why the chosen adherence measure is clinically the most 
important and relevant.  

2. The decision on whether, and how, to examine the effect of nonadherence to 
treatment protocol should be made prior to data collection, and details of the 
planned analyses should be documented in the protocol (and statistical analysis 
plan) with explanation for proposed methods. Trial publications should include 
a discussion of potential bias introduced by any such analyses, and efforts 
should be made in the statistical analysis to reduce any bias introduced by 
excluding participants from analysis.  

3. Composition of analysis sets used for benefit and harms outcomes should be 
defined explicitly, rather than merely labelled as “ITT” or “PP”. 

4. The total numbers of participants who were randomised, excluded (with 
reasons) and analysed for each outcome should be reported as recommended in 
the CONSORT statement (41). 

5. Potentially ambiguous phrases such as “protocol deviations”, “completed 
study/treatment  protocol”, “withdrawal”, “intention to treat”, “modified 
intention to treat”, and “per protocol” should be carefully defined in terms of 
the treatment protocol if used in trial reports.  

6. Trial reports should clearly distinguish between withdrawal from treatment and 
withdrawal from study: i.e. clarify whether participants withdrew from treatment 
but agreed to continuing to provide follow up data or whether participants also 
withdrew from further follow up, and if the latter, whether or not they 
consented for the data collected up to the point of withdrawal to be included in 
the analysis. 

7. Reasons for treatment changes and withdrawal from study should be recorded 
in order to inform causal analyses (adjusting for treatment deviations) and 
sensitivity analyses (assessing the impact of missing outcome data on trial 
conclusions).  

8. Reporting of treatment receipt and completeness should reflect the duration of 
trial intervention(s): 

a. Trials with intervention given at a single time point should report the 
number of participants who received allocated intervention in each 
randomised group. 

b. Trials with short term intervention should report the number of 
participants initiating and completing allocated treatment as specified in 
the protocol in each randomised group. 

c. Trials with long term intervention should report the number of 
participants initiating and persisting with allocated treatment as specified 
in the protocol, along with a measure of participant and/or treatment 
provider adherence over the treatment period, in each randomised 
group. 

9. Participant adherence should usually be assessed in at least a random subsample 
of individuals in trials involving participant-administered treatment using a 
reliable method or, if necessary, using more than one method to gauge reliability 
of the assessment.  

10. Biological or medical explanation should be provided for any thresholds used to 
define adequate adherence, and these should be specified in the trial protocol. 
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6.6. Conclusions 

The results of the review suggest that nonadherence with randomised treatment occurs 

in the vast majority of trials but is poorly considered and poorly reported in trial 

publications. Nonadherence information presented in trial reports can be ambiguous or 

scant, particularly relating to treatment initiation and completeness. Despite availability 

of appropriate adjustment methods (as summarised in the previous chapter), this review 

has demonstrated that trialists rarely consider approaches beyond simple biased 

methods such as PP or AT analysis to adjust for nonadherence, thus typically excluding 

or censoring participants who deviate from treatment protocol without discussion of 

the potential bias introduced in such analyses.  

This suggests a need to explore potential barriers that prevent routine use of 

appropriate adjustment methods, with particular emphasis on the analysis of survival 

outcomes, given that these are most commonly associated with long term treatments 

and dynamic treatment regimens which are typically subject to treatment deviations. As 

such, subsequent chapters of this thesis will demonstrate the challenges and 

complications arising in the application of two contrasting causal techniques for survival 

analysis in a selection of the expository trials described in Chapter 4. Prior to these 

practical demonstrations of analysis methods, the next chapter aims to clarify the causal 

estimation process by considering the practical steps that are necessary to carry out such 

analyses, presenting two pictograms intended as research aids to simplify the process for 

non-specialist analysts. 
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7. Causal estimation process and 

considerations 

7.1. Introduction 

The results of the review of reporting and analysis of nonadherence in published trials, 

summarised in Chapter 5, demonstrate clearly that nonadherence to randomised 

treatment is a common problem affecting virtually all trials, but that appropriate 

methods of statistical analysis to adjust for this nonadherence are rarely applied. Instead 

naïve and statistically biased methods, such as PP or AT analyses, are frequently used.  

There is therefore a pressing need to explore and address the barriers that prevent trial 

statisticians from applying appropriate methods to estimate efficacy of treatment when 

faced with treatment deviations. 
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Firstly, trialists and trial statisticians may simply be unaware, not only of the bias that 

may be introduced when methods that destroy the balance of randomisation are 

implemented, but also of alternative methods that more effectively prevent selection 

bias when accounting for departure from randomised treatment. Even when analysts 

are familiar with such methods, they are likely to face financial and time constraints at 

the point of trial analysis, as funding bodies may themselves be relatively unaware of the 

value of causal analysis methodology. Statistical analysis plans may already be 

substantial, covering analysis of numerous secondary outcomes as well as potentially 

addressing issues relating to missing data. Trial analysts and funding bodies may 

therefore question the value of spending time, resources and money on analyses beyond 

those that are usually carried out, and it may be difficult to persuade funders to cover 

additional costs that are required to ensure that compliance analyses can be carried out 

with sufficient rigour and attention. This suggests that there is a need to promote 

awareness of the usefulness of considering compliance methodology to complement the 

accepted ITT and PP analyses, both within trial and clinical communities as well as 

among funding and regulatory bodies. 

Furthermore, the culture of acceptance of ITT as the standard method of analysis, 

along with a reluctance on the part of trialists to consider alternative methods of 

analysis out of fear of potentially introducing selection bias has meant that trials have 

typically been carried out with a strong focus on pragmatic aims, thus deterring 

statisticians from investigating or promoting alternatives methods of causal analysis. 

This may be particularly true for trials carried out in general medical practice, where the 

effectiveness of treatment is generally considered of greater importance than biological 

efficacy. However, as has been discussed in previous chapters, causal methodology is 

useful for demonstrating effectiveness of treatment, for example in alternative clinical 
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settings with different patient populations. Thus trials may benefit from additional 

analyses investigating the impact of adherence issues regardless of the ultimate trial aim. 

However, when such methods are introduced, their sheer complexity, along with a lack 

of experience of how to apply such methods in practice to what may be a complex 

compliance trial scenario, may hinder their use further. As such, in accordance with the 

remit of this PhD to facilitate use of appropriate but potentially complex and unfamiliar 

causal estimation techniques by non-specialist trial statisticians, this chapter presents a 

discussion of the issues that must be considered as part of the causal estimation process, 

not simply in terms of modelling and interpretation of results, but also with 

consideration for the necessary planning (of data collection and statistical analysis 

methods) to ensure transparency and applicability of chosen statistical methods.  

A pair of pictograms are presented, intended as analysis aids, the first presenting a clear 

depiction of the necessary considerations that must be addressed prior to undertaking 

causal analysis of trial data and the second summarising the statistical issues and 

methodologies according to the particular trial traits. In subsequent chapters, these 

pictograms are put to use with demonstration of how theoretical methodologies may be 

applied, as an example for analysts who may be interested in carrying out similar 

adjustments for nonadherence. 

7.2. Causal analysis considerations  

Causal analysis estimation necessitates consideration, not only of the choice of statistical 

methodology, but also of the clinical requirements and data limitations. As such, before 

causal estimation is possible, it is necessary to consider the whole trial scenario relating 

to the causal estimands of interest.  
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The process of causal estimation necessarily involves a complicated, and potentially 

compromising, marriage between a number of factors. First, the causal research 

question of interest must be translated into appropriate causal contrasts (of treatment 

received) forming the basis for the causal modelling estimation. Secondly, it is necessary 

to decide on how to collect and convert available data on compliance (or treatment 

received) into appropriate formats to inform the causal contrasts of interest. Then it will 

be necessary to select the most appropriate method of statistical analysis, taking into 

consideration relevant compliance issues, necessary covariate adjustments and outcome 

type. Finally, the results from this analysis must be interpreted in light of the limitations 

presented by the data and methodology, with potential use of sensitivity analyses to 

investigate the robustness of conclusions to underlying assumptions.  

Each of these key elements of the causal estimation process will be explored in this 

chapter. 

7.3. Define research questions and causal contrasts of interest  

First and foremost, (as introduced in Chapter 4) it is necessary to decide on a clear 

research question of interest, which will in turn allow identification of the causal 

estimand of interest. In order to estimate any effect beyond that of treatment 

assignment, it will be necessary to consider how the treatment patterns in the trial 

setting relate to this causal estimand. This will determine which of these deviations 

would be usefully factored out of analysis because they contravene the treatment path 

of interest, and which are inherently part of the treatment path that is of interest, such 

that their occurrence is not problematic for that particular causal estimation. As such, it 

is necessary to consider how deviations from treatment assignment are likely to 
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manifest themselves, both within the trial setting and the particular (potentially 

hypothetical) setting to which the trial results are to be applied.  

The focus of this research question, and its subsequent implications on analysis, will 

vary according to the perspective of interested parties. For example, as discussed in 

Chapter 3, a motivated patient interested in the likely benefit of treatment if they 

comply with doctors’ prescription of said treatment may be interested in the causal 

effect of treatment taken as prescribed while allowing for the potential for necessary 

changes to their prescription if they experience side effects or the treatment fails to be 

efficacious. Alternatively a policy maker may be interested in applying trial results to a 

general community setting where treatment changes such as those which occurred in 

the trial are likely but perhaps to different degrees to those observed in the trial. 

Differently again, funding decisions by regulatory bodies such as NICE often require 

full cost-effectiveness analysis which typically relate to the effect of treatment taken for 

life, particularly for drugs which impact on survival; as such, they require estimation of 

causal effects which factor out all changes from originally randomised treatment that do 

not reflect typical real-life availability of treatments.   

As such, the treatment deviations to be factored out of analysis for a particular causal 

analysis will not necessarily contravene the treatment protocol. It may, for example, be 

necessary for recruitment or ethical reasons to permit trial patients to switch treatments 

on disease progression, but nevertheless the causal research question of interest may 

relate to the effect of treatment on survival in the absence of all switches. 

On the other hand, deviations may also occur that are unexpected or undesired, for 

example when patients (or clinicians) have pre-existing ideas about the efficacy of the 

randomised treatments, and thus may request (or prescribe or administer) different 

treatments to those which have been allocated by randomisation. Patients may not 
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honour the agreement made at randomisation when they consented to receiving and 

complying with either of the potential randomised treatments, and may request to have 

their treatment changed or may simply cease taking their randomised treatments, 

possibly withdrawing from follow up altogether. Or clinicians external to the trial may 

overrule and allocate what they perceive to be the best treatment for their patient. 

Although such treatment changes may also be expected to occur as part of clinical 

practice, and thus some may argue that the ITT analysis reflects a true assessment of the 

policy of assigning treatment, this will only hold if the patterns of deviation from 

treatment protocol that occur in practice are the same as those occurring in the trial. 

This may be unlikely: with the passage of time, new treatments will emerge as the “most 

promising”, and thus alternative treatments switched to in the trial may well differ from 

those that are experimented with in years following the trial. Also the conclusions and 

dissemination of results from the trial may in fact alter the pattern of compliance with 

the drug: if the results of the trial are seen as positive by the clinical community or the 

media, patients’ likelihood and willingness to persist with treatment may be increased 

and thus fewer deviations from treatment protocol may occur in practice than in the 

trial. Thus a simple ITT analysis may not answer any question of interest reflecting 

everyday clinical practice.  

If instead one is able to estimate a true causal effect of treatment from a trial, this can 

then be used to answer a patient’s enquiry as to what treatment effect they could expect 

if they were able to persevere with treatment. This causal estimate may also be used to 

estimate the treatment’s effectiveness in clinical practice assuming various levels of 

acceptability by patients and clinical staff. Thus regardless of whether deviation from 

treatment protocol is expected in the trial setting or in clinical practice, there is a strong 
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argument for estimating a true causal effect of treatment, to accompany the necessary 

primary ITT analysis (91).  

Thus, the definition of the exact efficacy question of interest should depend on the 

types of deviations from treatment protocol that are accepted as integral to the course 

of treatment or the disease, and which deviations would be usefully factored out as 

“noise”. Once the particular clinical question to be answered has been defined in terms 

of treatment deviations to be factored out of analysis, it is then necessary to consider 

how the corresponding treatment effect of interest can be estimated, taking into 

account availability of the appropriate data in order to inform the relevant statistical 

methodology. 

The causal analysis method will in some way transform data from the experimental and 

control patients’ outcome data back to what would have been observed if they had 

followed exactly that course of treatment corresponding to the research question. 

Therefore, prior to undertaking any such analysis, it is necessary to firstly identify and 

specify these (potentially counterfactually) contrasting states of treatment. 

Thus, as for PP and AT analyses, where it was necessary to define when patients were 

considered to be “on” and “off” treatment, these definitions must be considered when 

defining the causal contrasts between control and experimental conditions (relevant to 

the causal research question). These definitions of treatment receipt will vary according 

to whether the relevant measure of treatment receipt was constant or time-varying, and 

whether it was recorded using a binary (for example, all-or-nothing compliance or 

repeated binary measures over time) or quantitative measurement (such as dose, 

recorded as a single summary measure (for example, cumulative dose) or changing dose 

over time), or as a time to event variable (such as time to treatment withdrawal). It may 

also be necessary to consider wider forms of nonadherence, for example switching to 
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the alternative trial treatment; switching to, or supplementing randomised treatment 

with, non-trial treatments; premature withdrawal from all treatment or intermittent 

nonadherence.  

7.3.1. Data collection 

Thus, having identified the relevant forms of nonadherence which will impact on the 

estimation of the treatment outcome of interest, it is necessary to ensure that relevant 

data on treatment receipt have been recorded in order to appropriately inform this 

estimation. The precise collection of data should be determined by the trial 

interventions and type of nonadherence that need to be reported and adjusted for. 

Gross (178) discusses the difficulties in accurate measurement of adherence information 

(with respect to preventive intervention trials, but with relevance to other forms of 

intervention) which stem from the ambiguities and subtleties surrounding compliance 

issues. In particular, prior to collection of any compliance data is the need to explicitly 

define the meaning of compliance relevant to the study. “Nonadherence” may be 

manifested in a number of ways relating to both treatment and follow up. For example, 

with a long term intervention, participants may fail initiate any part of their allocated 

intervention or attend any follow up; engage in some but not all of the intervention; 

start but then prematurely terminate participation or attend clinical follow up but not 

follow allocated intervention.  

It may be possible to capture the most important features of treatment receipt using a 

binary factor; for example, as a simple all-or-nothing treatment receipt indicator in the 

case of a one-off treatment, or when treatment switches occur immediately following 

randomisation only. When partial compliance is of interest, treatment receipt may be 

recorded as a continuous measurement which potential changes over time; for example, 
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patients may vary their dose intake or may intermittently take prolonged drug holidays. 

Even with a one-off treatment, time to (rather than simply occurrence of) treatment 

receipt may be particularly relevant, when timing of treatment is related to prognosis as 

well as outcome (for example, in the case of surgery trials). 

Compliance information may need to be recorded for both treatment arms, though the 

relevance of both control and experimental treatment deviations will again be 

determined by the causal estimand of interest (and in particular whether treatment 

deviations should be factored out from both or just one of the treatment arms). 

Similarly it may be necessary to supplement data on how well the patient adhere to their 

original randomised prescription with information on whether the patient sought 

alternative treatments or counter indications.  

Thus, it is necessary to implement appropriate measurement techniques in order to 

capture information on the particular manifestations of nonadherence that are relevant 

to the clinical setting, in particular to the disease, treatment and patient population being 

studied, and the research questions of interest. Furthermore, the measures used to 

record compliance should be described in sufficient detail to allow assessment of the 

reliability of the measurements (76). 

7.3.2. Validity of compliance measurements 

Until relatively recently, trialists have necessarily measured patient compliance using 

techniques which provide only basic and unreliable compliance information, such as pill 

counts, treatment diaries and patient interviews. The emergence of methods such as 

internal monitoring of patients’ drug levels and MEMS technology have facilitated the 

collection of more comprehensive compliance data, but even these methods are not 

without their disadvantages, most notably cost (a single MEMS device currently costs 
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approximately £50) or invasiveness, and may be equally unreliable. For example, it is 

known that patients will improve their treatment adherence in the days leading up to a 

clinic visit, thus inflating apparent levels of compliance measured at their follow up 

appointments (known as ‘white coat compliance’) (20). Measurement of compliance and 

assessment of its impact become even more complicated when patients take multiple 

potentially interacting treatments, especially if the poor adherence to one prescribed 

treatment impacts on the efficacy or toxicity of others. 

The validity and suitability of each adherence measurement method must be assessed in 

light of the particular clinical setting being studied, as variations in the definition of 

compliance across research or medical settings may render even the most reliable or 

accurate techniques unusable in a particular trial.  

Given that none of the available methods provide entirely unbiased or accurate 

accounts of compliance, a multi-method approach combining objective and self-

reporting methods has been recommended to provide the most reliable information (5). 

For example, it may be noted that, in contrast to the indirect account of treatment 

timing rather than a direct measure of treatment ingestion provided by MEMS, 

measurement of chemical markers in the blood provides an indication of drug ingestion 

but not actual timing. Thus use of both electronic and chemical monitoring methods 

may be necessary to obtain optimal drug compliance information (15).  

Pocock (71) discusses the need to question the validity of trial compliance data rather 

than accepting its reliability at face value, in particular with respect to whether the 

compliance data are sufficiently detailed and reliable. For example, it is important to 

assess whether individual patient compliance data have been measured using reliable 

methods along with reasons for non-compliance, and that these data have been 

collected using the same process for each randomised group. Furthermore, trialists 



   
   

248 
 

should endeavour to collect outcome data on non-compliers, to avoid the bias 

introduced when non-compliance is associated with missing outcome data. Ultimately it 

is necessary to decide whether the trial demonstrates sufficient quality in design and 

conduct to warrant any further complicated compliance analyses. 

7.3.3. Reporting of compliance data 

It is important to consider not only how the compliance data will be analysed, but also 

how it will be summarised and reported, in order to usefully and accurately convey the 

compliance profile within the trial. Indeed, even when trial aims do not include 

adjustment for non-compliance, it is important for trialists to report on compliance 

levels, in order that readers (and potentially meta-analysts) can assess the similarity of 

the trial setting to their own clinical setting. Thus, in the same way that the appropriate 

measurement technique will depend on the clinical setting being studied, so too will the 

precise reporting or definition of compliance or adherence. 

When addressing the issue of how to summarise potentially complicated compliance 

data (for example, time series data available from MEMS), trialists should consider the 

consequences of potential forms of nonadherence on the course of disease. Compliance 

information recorded in the trial should be sufficiently detailed and accurate to allow 

reporting of relevant features of non-compliance which are likely to impact on the 

course of disease and associated AEs (for example, allowing estimation of the incidence 

of drug holidays when they are likely to cause disease exacerbation, drug resistance or 

rebound effects). 

In the case of medication adherence, measurement and reporting of adherence data 

should differentiate between the three phases of drug taking, namely initiation, 

implementation and persistence, thus distinguishing between primary non-compliance 
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(when patients fail to initiate randomised treatment), non-compliance with the assigned 

drug regimen during the implementation phase and non-persistence (when patients 

prematurely discontinue randomised treatment). The tool used for collecting 

nonadherence information will impact not only on the accuracy and reliability, but also 

on the level of detail, provided by any reported measure.  

Initiation rates are straightforward in their calculation and interpretation, but without 

MEMS data (potentially corroborated with chemical monitoring), unwillingness on the 

part of patients to admit failing to even start their randomised treatment may lead to 

exaggerated initiation rates. Non-persistence rates may be equally easy to calculate but 

unreliable, particularly as withdrawal from treatment is typically associated with 

complete withdrawal from the trial. Furthermore non-persistence is unlikely to be 

constant over trial follow up (for example, more patients are likely to discontinue 

treatment early on) and as such, non-persistence should be reported per unit time (for 

example, as an annual treatment withdrawal rate) (78). The choice of summary measures 

to describe adherence during the implementation stage must relate to those features of 

nonadherence that impact on patient health or treatment efficacy, but will be limited 

according to the level of detail provided by the chosen method of adherence 

measurement.  

In failing to provide any precise information on dose timings, pill counts can inform 

only on very broad patterns of treatment taking, and are commonly summarised as the 

average proportion of prescribed doses taken by patients in each randomised group 

perhaps broken down into temporal intervals (for example, annual rates). However, 

given that adherence is likely to fluctuate over the course of the treatment 

implementation period, such a single summary measure is unlikely to adequately capture 

important differences between patients’ prescribed and observed patterns of treatment 
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taking. For example, a high proportion of doses taken may mask features such as drug 

holidays or incorrect timing, which may have a greater impact on the course of disease 

or side effects. 

The recognised flaws in using pill counts to assess adherence are compounded when 

these data are used to dichotomise patients into “good” or “poor” compliers defined by 

a certain threshold of drug taking, most commonly according to whether patients 

receive at least 80% of their prescribed intervention (or between 80 and 120%, allowing 

for overdose toxicity). Such categorisations not only disregard the continuous nature of 

the relationship between compliance and response, but are often based on arbitrary 

criteria without any pharmacological justification, despite the fact that the required 

amount of treatment exposure for therapeutic benefit will vary according to the 

particular disease or condition, drug and its formulation (20).  

Availability of more detailed information on dose timings and quantities from MEMS 

allows estimation of more informative summary measures quantifying more precisely 

the fluctuations in patient adherence over time. Variations in dose quantities and 

timings may be informatively combined in a single summary measure known as 

therapeutic coverage, defined as the proportion of patients exposed to a (predefined) 

minimum clinically relevant level of drug exposure, required to provide a clinically 

beneficial therapeutic effect, for (at least) a specified percentage of time. It may be 

difficult to provide clinical justification for the chosen lower (and upper, if over-dosing 

on treatment can cause toxicity) limit of treatment exposure required to ensure validity 

of this measure. Other commonly reported summary measures from MEMS data are 

the proportion of doses taken at the correct daily dose or the correct interval, or the 

average number of drug holidays taken per patient within a certain time period (19).  
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In differentiating between temporary and permanent discontinuation of treatment, 

without use of MEMS, temporary deviations (for example, occasional missed doses or 

longer drug holidays) are more difficult to record accurately, as are temporary deviations 

(such as incorrect conditions or timings of treatment-taking). On the other hand, 

although permanent discontinuation of treatment is more obvious and concrete, it is 

typically associated with end of follow up, such that important details relating to the 

reasons for, or the patient’s clinical state at the time of discontinuation may be 

inaccurate or incomplete (179). 

The relative importance of collecting information on temporary versus permanent 

discontinuations depends not only on the impact of such deviations on the drug’s 

action and the course of disease, but also on the potential for bias resulting from each 

different form of nonadherence. Vrijens (20) argues that nonadherence to the treatment 

schedule during the treatment implementation period (in other words, temporary 

deviations to treatment schedule), rather than being associated with the treatment or 

patients’ prognosis, is more likely to be caused by patient forgetfulness or suboptimal 

organisation. Such deviations are therefore likely to occur in a random fashion rather 

than being associated with a certain treatment or particular types of patients, and as 

such are unlikely to introduce bias if unaccounted for.  

In contrast, patients who prematurely and permanently discontinue treatment are likely 

to do so for reasons related to their condition, difficulties in taking treatment or 

apparent efficacy of treatment; as such, this subgroup are likely to differ systematically 

from those who persist with treatment and their exclusion from analysis will likely 

introduce bias. Thus, although challenging, it is vital to collect information on the 

reasons for, and patient outcomes following non-persistence. 
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Reporting of adherence must also relate to the types of treatment changes expected or 

encouraged in the trial setting. For example, when treatment switches or additions are 

likely, it may be relevant to record information not only on patients’ compliance with 

their original randomised treatment but also with any alternative treatments received, as 

well as the timing of, and reasons for, such changes (68). It may also be of relevance to 

determine who or what was responsible for the decision or request to change treatment 

prescription (be that the patient, treating clinician or potentially the protocol itself) and 

whether this decision was made in a blinded fashion (179).  

7.3.4. Planning requirements 

The need for relevant compliance data collection highlights the importance of 

considering causal estimation during the planning stage of a trial, rather than simply at 

the point of statistical analysis. Given that compliance is typically a multifaceted feature 

of patient behaviour which is difficult to measure and quantify, considerations must be 

made during the planning stage of which data should be collected, and how, such that 

analysis adjusts for clinically relevant measures of treatment received. The method used 

to collect compliance data will determine the format of these data and how the data may 

be included in the model; thus it will be necessary to consider how to collect this 

information accurately (considering the potential for measurement errors) and 

unbiasedly (recognising the typical associated biases as discussed in Chapter 3). In 

particular, forethought of the likely missingness mechanisms may allow procedures to 

be employed in order to counter such biases. Furthermore, the complexities associated 

with recording compliance data mean that it may be useful to pilot any CRFs prior to 

trial recruitment, in order to ensure sufficient clarity for treatment providers, assessors 

and patients.  
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7.3.5. Statistical analysis plan 

Consideration of the statistical methods that will be applied to adjust for nonadherence 

must also take place during a trial’s design stage, not only to demonstrate transparency 

with respect to the planned analyses but also to ensure collection of all necessary 

information required to facilitate the chosen methods of analysis. This is especially 

important when considering how to adjust for nonadherence, as adherence is rarely a 

simple dichotomous measure and may fluctuate within individual over the course of the 

trial, providing opportunities for manipulation of the particular definition of 

“nonadherence” in a certain trial in order to produce the most favourable results, for 

example by excluding certain patients with particularly good or poor prognoses (35, 71). 

As such, in order to avoid accusations of bias, a specific analysis plan should accompany 

every trial protocol, providing technical details of planned statistical analyses (61). 

Ideally, this plan should include definitions of “nonadherence” and whether, and if so 

how, the efficacy analysis will be adjusted for any nonadherence. These analyses should 

be linked to the research questions of interest, which then determine the corresponding 

forms of nonadherence which need to be factored out in order to investigate these 

questions. This may be a challenging exercise, given the difficulty in predicting all forms 

of participant or clinician nonadherence that will occur in a trial and therefore in 

defining precisely how particular patients’ data will be analysed (which may explain why, 

despite the argument for upfront transparency, decisions regarding compliance analyses 

are often made post hoc) (71).  

Cox (70) argues, however, that although it is necessary to provide a general plan of 

statistical analysis, it may be unrealistic to require analysts to stick rigidly to specific 

analysis plans, and that, following analyses carried out according to the original plan, 
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there may be justifiable reasons for making amendments to specific analyses. This will 

be demonstrated in practice in the next chapters of this thesis. 

7.4. Use of compliance data in statistical methods 

Collection of compliance information must reflect, not only the clinically relevant 

aspect of adherence defined by the causal question, but also how this compliance 

information will be used in the modelling process. Thus it is necessary to consider how 

the data that can be collected in practice (with all their likely limitations) can then be 

manipulated into useable forms for the modelling exercise.  

The statistical methodology chosen to estimate particular causal estimand of interest will 

rely on availability of (compliance, covariate and outcome) data in the appropriate 

format. Collected data may therefore need to be transformed into a usable format for 

the chosen method of statistical analysis, in order to simplify modelling and its 

subsequent interpretation. For example, continuous dose data may be reduced to a 

single summary quantity, for example as the proportion of prescribed treatment 

received over the whole treatment period, or longitudinal treatment withdrawal data 

may be summarised as a time to event variable. 

Similarly it is necessary to identify which covariates will likely be related to the 

occurrence of treatment changes and outcome, and whether these are likely to be 

recorded as baseline or time-varying covariates or confounders (which, as well as 

affecting future treatment, may furthermore be affected by prior treatment). It is vital 

therefore to consider what information clinicians (or patients) actually use when 

deciding to change treatment. Once it has been determined which of these factors are 

likely to be important, again it will be necessary to consider how to collect this 
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information to provide reliable (accurate and unbiased) data, again considering the likely 

mechanisms which will lead to missing data.   

The chosen statistical methodology must of course also depend on the form of the 

outcome data of interest (typically either binary or continuous) and on the frequency 

and nature of the measurement of the outcome, which may be taken at a single time 

point or repeatedly over time, or may be recorded as a time to event variable. 

Furthermore, the missingness mechanism for each type of data included in the trial will 

impact on the modelling limitations and capabilities and its subsequent interpretation. 

Available data will then need to be incorporated into appropriate models, taking into 

consideration modelling aims (research question and corresponding causal estimand of 

interest), inherent data limitations and statistical capabilities and limitations of the 

model. In particular, one should consider the assumptions implied by the model, and 

check the robustness of the results to these assumptions using sensitivity analyses 

(varying parameters or assumptions) or alternative models. 

Therefore, prior to investing resources and time in the potentially challenging task of 

collecting compliance data, trialists should consider how these data are likely to be used 

in adjustment methods, in a manner which directly relates to the causal question of 

interest. It may be necessary to manipulate the collected raw compliance data into a 

format usable by the chosen model, such that the original compliance data recorded in 

patient CRFs can be transformed into a summary measure for inclusion in the model. 

However, the clinically relevant features of compliance must also be captured in these 

measures, for example it may be relevant to model time to treatment compliance rather 

than a simple summary measure of average compliance over the whole treatment period 

(180). 
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7.4.1. Manipulation of compliance data for modelling 

Adherence data may take the form of (or may need to be transformed into) a constant 

or time-varying quantity, summarised as a binary, ordinal, continuous or time to event 

measure. 

The form taken by the adherence data will determine the interpretation of the model. 

This may be most easily observed in the case of naïve models: for example, a time-fixed 

measure of compliance (or treatment received) may be included in a naïve model in 

place of the original randomised treatment group indicator. The simplest example of all-

or-nothing compliance (for a one-off treatment, say) can be easily summarised as a 

binary factor; the corresponding naïve PP analysis would include only those patients 

whose randomised treatment indicator (𝑍) was equal to their received treatment (𝐴), 

whereas an AT analyses would replace the randomised treatment indicator (𝑍) with the 

treatment received (𝐴) for all patients. If more complicated data are collected, for 

example, when patient dose data are summarised into the proportion of total 

randomised drug actually taken by the patient, a dose-response model may be used to 

estimate the treatment effect, allowing for cumulative dose received. When treatment is 

time-varying, an AT analysis may feature a time-varying treatment covariate, for 

example a time-dependent treatment covariate in a standard Cox model. 

7.4.2. Binary compliance  

If treatment is a one-off event (for example, in the case of a single application or 

administration of treatment, such as a vaccine), compliance is naturally summarised as a 

binary factor and the associated causal effect may simply be defined as contrast between 

receiving experimental treatment versus standard (or no) treatment, as appropriate. This 

“all-or-nothing” compliance is the most straight forward form of compliance data to 
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analyse, as it provides a natural dichotomisation of patients into compliers and non-

compliers and resulting binary contrasts to be included in the model.  

Furthermore, analysis is simplified further if non-compliance only occurs in one, rather 

than both, treatment arms. For example, if trial design is such that control patients 

receive standard care as usual and are not given the option of beginning the novel 

experimental treatment (such that contamination is not possible) but those randomised 

to experimental treatment are able to refuse initiating this treatment, the only type of 

non-compliance that may be of interest is the simplest type of binary compliance 

categorization, all-or-nothing compliance in one treatment arm only, such that 

experimental patients either start and continue with allocated treatment or do not 

receive any of their allocated treatment.  

However it is rare in practice for compliance to be a purely dichotomous feature. 

Instead, the typical multifaceted nature of treatment protocol compliance means that 

patients usually demonstrate various degrees of partial compliance, rather than full or 

no compliance. Furthermore, rather than being fixed over time, compliance may 

fluctuate according to patient’s conditional or other external factors. Thus data collected 

on compliance is often continuous in nature, and may be time-dependent.  

However, partial or time-varying compliance data are more complicated to analyse, 

requiring more identifiability assumptions. Complex compliance information requires 

definition of multiple potential outcomes and treatment contrasts, and in the case of PS 

methods, additional principal compliance categories (119). Thus, even when clinical 

scenarios are complex, compliance data may need to be categorised in order to simplify 

modelling.  
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For example, continuous or time-varying measures of compliance may need to be 

dichotomised in order to allow methods to be carried out which can accommodate only 

binary compliance categorisation. Whenever compliance data have been reduced, 

however, it is necessary to consider the sensitivity of results to the (potentially arbitrary) 

cut-off level used to define the dichotomy, as it may distort the resultant treatment 

effect by including disparate types of patients within each category (71). 

7.4.3. Time-varying treatment  

The more complex the prescribed treatment schedule, the more complicated the 

definition of regime “compliance” becomes and the more consideration is required 

regarding collection of data to inform compliance-adjusted analyses. These 

considerations must all be taken in light of the particular causal effect of interest. 

When treatment is longitudinal in nature, the associated definition of causal treatment 

effect in the case of longitudinal treatment is therefore likely to demand greater 

consideration than for all-or-nothing compliance. The causal effect may simply take the 

form of a comparison between “continuous treatment with experimental treatment 

during trial treatment period” versus “continuous treatment with standard treatment 

during trial treatment period”. The clinical scenario or research question of interest may, 

however, demand a more precisely defined causal effect estimate. For example, in a 

pragmatic trial reflecting a clinical setting where side effects or drug inefficacy may lead 

to alterations to prescribed treatment in practice, it may not be appropriate to factor out 

all changes to initial randomised treatment, as some treatment changes will necessarily 

occur in practice; for example, it may instead be of interest to estimate causal effects of 

treatment taken continuously but only until the point of toxicity or other counter-

indications (87).  
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Thus information collected on compliance in a trial setting must relate directly to the 

causal effect of interest, in order to inform the associated causal analyses.  

7.4.4. Sensitivity analysis  

Given that it is not possible to estimate causal effects without invoking untestable 

assumptions, it follows that sensitivity analyses to investigate robustness of results to 

each analysis’ particular assumptions should be a matter of course. Analyses may be 

repeated considering a wider range of assumptions, as demonstrated for example by 

Vansteelandt (116) and Dunn (181).  

Furthermore, it may be necessary to check sensitivity of results when compliance data 

have necessarily been simplified; for example, it may be important to check whether 

conclusions alter when changes are made to (potentially arbitrary) dichotomising 

definitions of continuous measures of compliance, or if multiple aspects of exposure to 

treatment (for example, frequency and dose) have been combined into a single summary 

(116). 

When undertaking causal analyses, it is also important to appreciate the particular 

nuances of the clinical setting, in order to ensure that these contrasts are clinically as 

well as statistically relevant. For example, White’s analyses of the MRC hypertension 

trial (68, 89) demonstrate the need for an understanding of the subtleties of the 

particular disease or treatment being studied before one can confidently produce and 

interpret causal findings from an analysis. Effective communication between the 

statistical analysts and the clinical experts for a particular trial is therefore of paramount 

importance to ensure such nuances are not overlooked in the analysis, and to prevent 

statistical anomalies or biased interpretation of trial results. 
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7.4.5. Summary 

Thus, despite the greater control afforded by a research setting, barriers to accurate 

collection of trial compliance data are many, often mirroring those arising in general 

practice. The methods typically used in trials have been discredited, as they are so often 

easy to falsify (pill counts), rely on unrealistic or biased recall by patients (patient 

interviews), or may be resisted by patients because of the daily reminder of their disease 

presented by the recording method (treatment diaries). Similarly health care providers 

who (in their opinion, justifiably) deviate from randomised treatment regimens when 

prescribing or administering patients’ treatment may prefer not to disclose such 

treatment protocol deviations. An added dimension of complexity arises if therapeutic 

action of medication is provided only under certain conditions, for example when 

swallowed whole or chewed, with or without food. Assessing whether patients 

consistently followed such instructions when taking long term treatment is particularly 

difficult to ascertain. 

The compliance measure actually used for analysis will depend on a number of factors. 

First, the clinical setting and research question will determine the measure of 

compliance that would be most clinically relevant. However, the complexity and detail 

of available data will depend on the compliance measurement method used to measure 

compliance during the course of the trial (for example, pill counts, treatment diaries or 

MEMS). Finally, the chosen statistical model may impose restrictions on the compliance 

measurement that can be included in the model (for example, the method may be 

restricted to handling a time-invariant (for example, single binary or continuous 

measure) rather than a time-varying measure of compliance). 

In order that suitable chosen methods of analysis can be implemented in practice, it is 

therefore necessary for researchers to consider certain issues at the design stage of the 
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trial. Appropriate planning is required to ensure the necessary data are collected, not 

only regarding treatment receipt and outcome, but also on all potential confounding 

factors that may need to be accounted for. Furthermore, statistical analysis plans should 

be developed a priori to ensure that trialists are not accused of altering analysis 

techniques once outcome data have been collected and observed in order to obtain 

optimal results. 

7.5. Pictogram 

Two pictograms are presented intended as a research aid to simplify the causal 

estimation process, first by guiding researchers through the necessary considerations for 

each step of the causal analysis process and then by summarising which statistical 

method would be most appropriate depending on the trial scenario.  

The first pictogram (Figure 2) can be used to clarify how relatively complex trial 

compliance scenarios can be converted into answerable research questions and 

estimable causal effects, while also highlighting the need to consider the limitations and 

assumptions underlying the chosen analysis. For example, trialists may feel 

overwhelmed when faced with the likelihood of numerous forms of deviation from 

randomised treatment which typically occur with prescription of long term medication 

in trials and in clinical practice (for example, treatment switches, additions, withdrawals 

(permanent and/or intermittent) and incorrect treatment administration) potentially in 

both treatment arms and involving trial and non-trial treatments. In such cases, rather 

than attempting to collect (potentially unreliable) data on all sources of nonadherence to 

randomised treatment, it will be simpler to identify which features of nonadherence will 

impact on the outcome, and then focus on how to obtain accurate data on these 

features alone, which can meaningfully be used to inform relevant analysis techniques. 
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Once data collection and manipulation issues have been considered, it is necessary for 

the researcher to then determine the most appropriate statistical methodology to apply.  

Thus, the second pictogram (Figure 3) is also intended as an aid to the researcher, who 

must consider the requirements and implications of each option available. The statistical 

literature review summarised in Chapter 5 demonstrated that the available methods of 

adjustment varied in their underlying assumptions and data requirements, not only 

regarding the outcome but also the compliance and covariate information. To a non-

specialist statistician or trialists, the choice may be somewhat confusing. As such, the 

pictogram provides a reminder of the statistical issues and appropriate methods to use 

when faced with a certain trial scenario.  

As such, this pictogram aims to guide analysts in their thought processes regarding the 

underlying statistical complications of their particular trial, relating not only to the 

confounders which will may need to be allowed for in the chosen statistical method, but 

also regarding the choice of method, depending on the available data, assumptions and 

outcome type. 
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Figure 2 Causal estimation process 
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For example, the pictogram reminds the user that standard statistical methods can be 

used to adjust for confounding in the absence of any time-varying confounders, 

assuming all baseline confounders are known, measured and can be accounted for. 

However, in the absence of information on all confounders or if time-varying 

confounders are likely to affect both treatment received and outcome, alternative 

methods should be considered. 

Alternatively, if a particularly appropriate method of analysis requires compliance or 

covariate data to take a certain format, the chosen method of analysis may determine 

the format necessary for the data being used in the model. 

Furthermore the pictogram reminds the user that the interpretation of these methods 

varied depending on the underlying assumptions and causal estimation framework. 

Observational-based IPW methods assume that all confounders have been measured 

and adjusted for in the calculation of weights. The two forms of randomisation-based 

methodologies differ in their interpretation, which in turn relate to their relevance in 

answering a particular causal research question: PS (intervention-based) methods 

estimate treatment effects amongst the (latent) subgroup who would comply with 

whichever of the two treatments being contrasted they were assigned, whereas (efficacy-

based) structural models estimate causal treatment effects for the entire population, thus 

assuming that all patients would be able to (or could be persuaded to) comply with their 

randomised assignment.  
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Figure 3 Statistical methods and considerations for causal analysis 

 

  



   
   

266 
 

7.6. Causal diagrams 

A further aid to researchers when undertaking causal analyses may be to create a causal 

diagram relating to the causal scenario being considered. Causal diagrams help to 

qualitatively convey the nature of relationships between variables and the underlying 

implicit assumptions being made when making causal inferences regarding these 

relationships. In demanding explicit expression (and underlying assumptions) of 

relationships between causes, effects, confounders and selection variables, causal 

diagrams may help to identify potential forms of bias due to confounding and selection, 

as well as guiding plans on data collection (for example, regarding which variables will 

need to be included in analysis) and methods of analysis (182).  

All statistical methods depend on underlying (often unverifiable) assumptions, and 

causal inferences from such models require even more assumptions than those required 

for associational inferences. Causal diagrams help to convey these additional 

assumptions in a manner that cannot be portrayed using standard statistical notation, 

thus highlighting whether these assumptions are reasonable, and the extent to which 

any variations in these assumptions may affect conclusions. Furthermore, causal graphs 

are useful in helping investigator to think about what causal relationships may be 

missing from the graph and whether the proposed analysis methods will appropriately 

adjust for these underlying relationships (182). 

Thus, although causal diagrams are usually associated with more traditional methods 

(SEMs), they can be useful in guiding analysts, regardless of the exact method employed 

for causal estimation, by clarifying the likely causal links in their particular trial scenario 

as well as highlighting the underlying assumptions and relationships which must be 

appreciated when undertaking their analysis.  
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7.7. Conclusion  

In order to address potential barriers for the obvious lack of wider appreciation by the 

trial community of the importance of adjusting for departure from randomised 

treatment in a manner that will not introduce selection or confounding bias, this chapter 

has presented recommendations and guidelines to trial analysts in order to simplify and 

facilitate wider use of available causal estimation techniques. In the subsequent chapters 

of this thesis, this aim will be further realised through the presentation of practical 

demonstrations of adjusting for treatment deviations, thereby illustrating not only some 

typical challenges arising during the causal estimation process but also how potential 

solutions to these problems may be developed. 
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8. Demonstration of novel 

applications of the RPSFTM 

The review of statistical methods in Chapter 5 introduced a number of methods to 

adjust for treatment deviation in trials, but it became apparent from the review of 

published trials summarised in Chapter 6 that these methods are rarely employed, 

potentially because of their complexity or simply a general lack of awareness that such 

methods exist. Thus in Chapter 7, the range of available methods were presented 

pictorially with the aim of guiding researchers on the most appropriate methodology to 

use, along with a pictogram highlighting the pertinent practical issues relating to model 

requirements and interpretation. In this and the remaining chapters of this thesis, these 

recommendations are demonstrated in practice; in particular, the use of these 

pictograms are put into practice, demonstrating how a relatively complicated trial 
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scenario can be simplified into a feasible research question setting to facilitate analysis, 

as well as helping to highlight the limitations and assumptions associated with the 

application of the chosen analysis techniques.  

Thus, in this and the following chapters, the aim of this thesis is achieved with novel 

application of two methodologies appropriate for survival outcomes in contrasting trial 

settings, demonstrating necessary considerations and practical solutions to the 

challenges arising when applying these methods, and providing an example to future 

researchers on implications and interpretation of important causal methods. The general 

format of these chapters is designed, not simply to aid the reader in understanding the 

analysis process required for the purposes of these particular trials, but also as to 

demonstrate to other researchers the level of thought and detail required prior to, and 

during, application of these methodologies. 

8.1. Introduction 

The review of statistical methods for adjusting for nonadherence to randomised 

treatment, summarised in Chapter 5, revealed the most appropriate methods to adjust 

for departure from randomised treatment when analysing survival outcomes, namely the 

RPSFTM and the IPCW modelling techniques. In this chapter, the first of these 

methods will be applied to three trials introduced in Chapter 4: the honey trial, SANAD 

arm A and SANAD arm B. These trials present issues and scenarios of increasing 

complexity with respect to adjustment for nonadherence. In particular, the SANAD 

trial provides numerous analysis issues and challenges, due to the nature of the trial 

design and treatment changes that occurred. These challenges are likely to be common 

in other chronic disease areas, where treatment changes occur for a number of reasons 
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and interest lies in achieving remission of symptoms. As such, this trial provides a useful 

illustration for discussion of the analysis issues and methods.   

8.1.1. Model considerations 

This chapter will demonstrate the RPSFTM and compare the results and conclusions 

with those of standard methods (using ITT and PP analysis populations).  

As with any causal estimation, it is necessary to match the causal research question with 

the model treatment parameters; furthermore, given that the RPSFTM only reliably 

adjusts for one causal contrast (between experimental and control treatments), it is 

necessary to determine which single form of treatment deviation should be accounted 

for. As introduced in Chapter 5, a simple version of the RPSFTM can be presented as 

follows 

𝑈0𝑖(𝛽) = 𝑇0𝑖 + 𝑒𝛽𝑇1𝑖 

which demonstrates the first key property of the RPSFTM, namely that it assumes that 

there are only two exposures within the clinical trial. For example, 𝑇0𝑖 may be defined as 

time spent on control intervention and 𝑇1𝑖 as time spent on experimental intervention, 

such that 𝑒𝛽  reflects the expansion (or contraction) in survival time attributable to 

treatment (130).  

In practical terms, this means it is possible to adjust for only one form of treatment 

change, that which is most easily accommodated being direct switches between 

randomised treatments, such that each patient’s follow up time is comprised solely of 

time spent on either control or experimental treatment (rather than alternative non-trial 

treatments or withdrawal from treatment altogether). This in turn implies that follow up 

is necessarily censored at the point of any other form of treatment change.  
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Therefore, as will be demonstrated in this chapter, it is necessary to define “on” and 

“off” treatment times ( 𝑇0𝑖 and 𝑇1𝑖 ) relating to the particular research question of 

interest. 

Furthermore, as discussed in Chapter 5, given the need to recensor individuals to 

remove the dependence (on the 𝑈0  scale) between censoring time and treatment 

received, it is necessary to define each individual’s maximum censoring time.  

These model requirements will be addressed in each application of the RPSFTM 

demonstrated in turn for each of the trials using the “strbee” code in Stata (134). Stata 

software is particularly user-friendly, making it ideal for this demonstration of the 

RPSFTM for non-specialist statisticians.  

8.2. Honey trial 

Departure from randomised treatment in the honey trial occurred in the form of 

withdrawal from randomised treatment, switches to the alternative treatment (honey or 

conventional treatment) or to a different course of treatment altogether (surgery, 

radiotherapy or antibiotics) or loss to follow up.  

Although it is ethically necessary to allow patients to receive alternative or more 

powerful treatment if they experience side effects or wound deterioration, the aim of 

this trial was to ascertain the biological efficacy of honey treatment when compared to 

the best standard care. As such, it was of interest to estimate the causal effect of honey 

treatment compared with conventional dressings in the absence of any treatment changes.  

However, given that the RPSFTM can only handle one treatment contrast, which here 

is taken to be the comparison between conventional and honey dressings, any time 
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spent receiving alternative treatment is necessarily discounted. Thus, in the model 

below,  

𝑈0𝑖(𝛽) = 𝑇0𝑖 + 𝑒𝛽𝑇1𝑖 

𝑇0𝑖  is time spent with conventional wound dressing, 𝑇1𝑖  is time spent with honey 

applied to wound and any time spent in receipt of other forms of treatment is ignored. 

Follow up continued until a potential maximum of 24 weeks from randomisation 

(which thus defines the maximum censoring time).  

The RPSFTM is compared here for the primary outcome (time to healing) and 

secondary outcome (time to 50% reduction in wound size) against the results obtained 

using three other analysis sets, namely an intention-to-treat (ITT) analysis set, a per 

protocol (PP) analysis set and an as treated (AT) analysis set.  

In the ITT analysis, patients were analysed in the group to which they were originally 

randomised, and thus treatment switches were ignored. However, given that the trial 

comparison was intended for wounds healing by secondary intention (rather than due to 

direct invention on the wound), when patients were given more extreme forms of 

treatment (radiotherapy, surgery or antibiotics) or were lost to follow up, their follow up 

was censored (98). This censoring is potentially highly informative, given that the need 

for more radical treatment indicates a poor wound prognosis, and loss to follow up 

often occurred for reasons related to the satisfaction or motivation of the patient, which 

again are not likely to be independent of their prognosis. Death introduced a competing 

risk but for the sake of simplicity, this was ignored here and censored in the usual 

manner.  

The PP analysis set only included patients who received the treatment to which they 

had been randomised, and censoring was introduced at the point of any deviation from 
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this treatment (thus excluding patients altogether when they switched to the alternative 

trial treatment at the start of the trial). 

The AT analysis used a time-invariant binary measure of treatment received by 

categorising patients according to the treatment received from the start of the treatment 

period, and again censored follow up at the point of any deviation from the starting 

treatment. Thus AT analysis differed from the PP analysis set by including patients who 

switched treatment at randomisation in the group to which they switched (thus ignoring 

randomisation completely). 

These variations of analysis were compared with the results from a RPSFTM which 

adjusted for treatment switches to the alternative trial treatment, but in which censoring 

was again necessary when patients received more extreme (non-trial) interventions or 

were lost to follow up. Thus the four analyses differed only in their handling of patients 

who switched to the alternative trial treatment; all other deviations from treatment 

protocol were necessarily censored.  

8.2.1. Analysis 

The strbee program in Stata requires that the user creates additional variables 

capturing information on whether (and if so, when) the patient switched between 

treatment arms. These variables are treatment arm specific (for example 

honey_switch_t, honey_switch, conv_switch_t, conv_switch) and equal to 

zero if patients did not experience treatment switches. For example, a patient who 

switched from honey to conventional treatment 20 days following randomisation would 

be assigned values equal to (20, 1, 0, 0) for these four variables respectively, whereas a 

patient randomised to receive honey who did not switch would be assigned a value of 0 
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for each of these variables. The strbee program can analyse only binary treatment 

comparisons and requires that treatments are defined as 0 (control) or 1 (experimental). 

Prior to using the strbee program, it is necessary to specify the event time 

(t_healing) and indicator  (h_status) variables using stset: 

stset t_healing, failure(h_status) 

The user then must indicate the switch timing and indicator variables (in that order) for 

the control and experimental arms separately within the brackets preceeded by xo0() 

and xo1() respectively. For example, the code with randomised treatment indicator 

rand_trt would simply be  

strbee rand_trt, xo0(conv_switch_t conv_switch) xo1(honey_switch_t 

honey_switch)  

Options include hr (to display results in terms of HR rather than AF), kmgraph to 

display KM curves and trace for a list of recensoring times. 

8.2.2. Sensitivity analysis  

The censoring of patients at the point of deviation from treatment protocol for reasons 

related to severe wound deterioration (when more radical clinical intervention was given 

in the form of antibiotics, radiotherapy or surgery, or when the patient was unable to 

attend clinic because the wound was so debilitating) is likely to be especially biased, 

given that the state of their wounds is not likely to be typical of all wounds in their 

randomised group at this time point; the prognosis for the healing of these wounds at 

the point of censoring is very poor. Thus a sensitivity analysis was carried out in the 

ITT, AT and RPSFTM analyses, reflecting the likelihood that such wounds would likely 

not have healed in the follow up time even if treatment and follow up had continued as 

per the protocol. Thus, when clinical intervention occurred due to concern over the 
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poor progress in healing process (for example, when a patient began taking antibiotics 

or was referred for radiotherapy or surgery) or when the patient was unable to attend 

clinic because the wound was so debilitating, instead of censoring follow up at these 

points of treatment change or loss to follow up, follow up was censored at the longest 

possible follow up (24 weeks) for the sensitivity analyses (in other words, assuming that 

the outcome event did not occur during this follow up period). 

The results from these analyses, and the corresponding sensitivity analyses, are given in 

Table 22 to Table 25 below.  

8.2.3. Results 

105 patients were randomised to receive medical grade honey or conventional treatment 

for treatment of wounds. The number of treatment changes that occurred in each 

treatment group are presented in Table 21. There were only four (11.5%) switches from 

honey to conventional treatment (two immediately following randomisation) and six 

(11.3%) from conventional to honey treatment (all immediately following 

randomisation). Ten (19%) other patients from each treatment arm experienced another 

form of deviation from treatment (or follow up) protocol; these patients’ follow up time 

was extended to the maximum (24 weeks) for the sensitivity analysis to reflect their 

poor prognosis at the time of treatment change or loss to follow up.  

The results in Table 22 and Table 23 demonstrate that the RPSFTM did not have a 

large impact on trial conclusions, not surprisingly given that only a small proportion of 

treatment deviations were accounted for (four out of 14 (28.6%) in the honey arm and 

six out of 16 (37.5%) in the conventional arm). In fact, the impact of censoring at the 

maximum censoring time rather than at the point of receiving extreme treatment (in the 

sensitivity analysis) was generally similar to that of the adjustment for between-arm 
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treatment switches using the RPSFTM; both the RPSFTM and sensitivity analysis 

tended to increase the acceleration factor (AF = 𝑒𝛽), implying that these adjustments 

both increased the effect of honey on healing compared with standard dressings.  

The AF is interpreted in terms of the rate at which time to healing is “used up” when 

honey is applied in comparison to standard conventional dressing. Thus the AF (95% 

CI) from the ITT equivalent of the SFTM (with no adjustment for treatment changes) 

suggest that healing is achieved sooner with honey, on average 1.27 times faster than 

with conventional dressing, though this relative effect may extend between 0.80 and 

2.33 times; in other words, the result is not statistically significant. When the sensitivity 

analysis is applied (when censoring for alternative (extreme) treatment changes occurs at 

the maximum follow up time (24 weeks) but again without adjustment for any such 

treatment switches), healing time is “used up” even faster with honey (AF 1.31) and the 

upper confidence limit increases.  

This difference in AF attributable to the sensitivity analysis (i.e. between the ITT 

version of the SFTM with and without the sensitivity analysis applied) is exactly the 

same as that observed when the RPSFTM correction is applied. Application of the 

sensitivity analysis in the RPSFTM adjustment further increases the AF (to 1.4 and 1.38 

with and without recensoring respectively). 

Recensoring in the main RPSFTM analyses did therefore not drastically influence 

results, as very few observed events were recensored (only two patients, both from the 

honey arm, had their event times censored). However, in the sensitivity analyses for 

both time to healing and 50% reduction, recensoring survival times reduced the 

estimated AF (1.38) compared to no recensoring (1.4); this is expected, given that 

follow up time was greatly extended for these patients (to the maximum of 24 weeks), 

increasing the probability that recensoring would alter this survival time. 



   
   

277 
 

Similar results are observed in Table 23 for the secondary outcome, time to 50% 

reduction in wound size. 

As described in Chapter 5, the AF obtained from RPSFTM can be converted to HRs if 

one assumes a constant hazard ratio (i.e. according to a Weibull distribution). Thus, the 

corrected HRs obtained from the conversion of the RPSFTM AF are given in Table 24 

and Table 25 below, to allow comparison with the results from the other (ITT, PP and 

AT) analysis sets. It can be seen that the effect of RPSFTM (and corresponding 

sensitivity analyses) is intermediary between the ITT and PP/AT analyses. This is 

intuitive, given that the RPSFTM in fact censors for many of the treatment deviations in 

a manner identical to that of the PP analysis, with only one third of the treatment 

switches being accounted for in the model. This demonstrates the main limitation of the 

RPSFTM in this context – an inability to handle more than one type of treatment 

change.  

The results in Table 24 and Table 25 also demonstrate the effect of analysing according 

to treatment received, as the HRs from the PP and AT analyses are more extreme in 

favour of honey, even approaching statistical significance (0.085 for time to healing 

from AT analysis and 0.068 for time to 50% reduction in wound size from PP analysis). 

The bias in favour of honey is expected, given that the majority of switches between 

treatments occurred when clinicians transferred young fit patients to receive honey 

despite randomisation to control. Thus, by censoring their follow up in conventional 

arm (in PP analysis) or attributing their healing to honey (in AT analysis), the effect of 

honey was enhanced as demonstrated by the increase in HR. 
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Table 21 Compliance information  

All values are number (% of randomised treatment group). 

 Randomised treatment 

Conventional 
treatment (n=53) 

Honey 
treatment  

(n=52) 
Withdrawal from trial   

Death 2 (3.8) 1 (1.9) 
Lost to follow up 0 1 (1.9) 

Wanted honey 1 (1.9) 0 
Did not want to attend clinic 1 (1.9) 1 (1.9) 

Dissatisfied with progress 0 1 (1.9) 
   
Clinical intervention during the course of the trial 
due to severity of wound1 

  

Antibiotics 1 (1.9) 1 (1.9) 
Radiotherapy 0 1 (1.9) 

Too ill to attend clinic4 0 1 (1.9) 
Surgery 3 (5.7)  1 (1.9) 

   
Switched to other treatment during the course of 
treatment  

  

Pain 0 1 (1.9) 
Deterioration of ulcer 0 1 (1.9) 

   
Switched to other treatment immediately following 
randomisation 

  

Patient choice 1 (1.9) 1 (1.9) 
Clinician choice 5 (9.4) 1 (1.9) 

   
Withdrawal from trial immediately following 
randomisation 

  

Surgery 0 1 (1.9) 
Radiotherapy 0 1 (1.9) 

Disappointed with allocation 1 (1.9) 0 
Transferred to other hospital 1 (1.9) 0 
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Table 22 RPSFTM for time to healing 

 𝒆𝜷 (95% CI) 

  
No RPSFTM adjustment (equivalent to ITT) 1.27 (0.80, 2.33) 

  
Sensitivity analysis1 1.31 (0.80, 2.57) 

  
RPSFTM adjustment  

No recensoring 1.31 (0.75, 2.52) 
Recensoring2 1.31 (0.75, 3.29) 

  
Sensitivity analysis1  

No recensoring 1.40 (0.75, 3.07) 

Recensoring3 1.38 (0.75, 3.44) 

 
1 Sensitivity analysis censors patients with changes to alternative treatment at the maximum 
follow up time (24 weeks) rather than at the observed time of treatment change. 
2 Number of patients (events) recensored: conventional: 0 (0), honey: 9 (2) 
3 Number of patients (events) recensored: conventional: 1 (0), honey: 12 (2) 

 

 

Table 23 RPSFTM for time to 50% reduction in wound size 

 𝒆𝜷 (95% CI) 

  
No RPSFTM adjustment (equivalent to ITT) 1.33 (0.75, 2.27) 

  
Sensitivity analysis1 1.33 (0.68, 2.67) 

  
RPSFTM adjustment  

No recensoring 1.38 (0.67, 2.81) 
Recensoring2 1.38 (0.69, 2.81) 

  
Sensitivity analysis1  

No recensoring 1.42 (0.59, 3.50) 

Recensoring3 1.38 (0.62, 3.23) 
1 Sensitivity analysis censors patients with changes to alternative treatment at the maximum 
follow up time (24 weeks) rather than at the observed time of treatment change. 
2 Number of patients (events) recensored: conventional: 0 (0), honey: 9 (2) 
3 Number of patients (events) recensored: conventional: 1 (0), honey: 12 (2) 
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Table 24 Comparison of analyses for time to healing 

 Median time (IQR) [range] HR (95% CI) p-value 

 Conventional (n=51) Honey (n=50)   
     
ITT 140 (91, - ) [59, - ]  100 (51, 142) [42, - ]  1.30 (0.77, 2.19) 0.316 

Sensitivity analysis 140 (91, - ) [59, - ] 100 (54, 162) [42, - ] 1.32 (0.79, 2.23)  0.289 
     
RPSFTM  

No recensoring 
Recensoring 

 
140 (98, - ) [59, - ]  
140 (98, - ) [59, - ]  

 
100 (54, 142) [42, - ] 
100 (54, 142) [42, - ]  

 
1.37 (0.74, 2.56)  
1.27 (0.80, 2.03)  

 
0.316 
0.316 

     
Sensitivity analysis 

No recensoring 
Recensoring 

 
147 (98, - ) [59, - ] 
145 (98, - ) [59, - ] 

 
114 (54, 162) [42, - ] 
114 (54, 162) [42, - ] 

 
1.42 (0.74, 2.73)  
1.45 (0.73, 2.86)  

 
0.289 
0.289 

     
PP 140 (84,-) [49, - ]  91 (51, 142) [42, 163]  1.48 (0.86, 2.55)  0.161 
     
AT 140 (84,-) [59, - ]  100 (54, 132) [42, 163]  1.60 (0.94, 2.72)  0.085 

Sensitivity analysis 154 (84, - ) [59, - ] 105 (55, 133) [42, - ] 1.54 (0.91, 2.62)  0.111 
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Table 25 Comparison of analyses for time to 50% reduction in wound size 

 Median time (IQR) [range] HR (95% CI) p-value 

 Conventional (n=51) Honey (n=50)   
     
ITT 46 (23, 61) [16, 159] 32 (20, 48) [16, 101] 1.29 (0.82, 2.03)  0.266 

Sensitivity analysis 46 (28, 68) [16, - ] 32 (20, 48) ([16, 120] 1.24 (0.79, 1.96)  0.355 
     
RPSFTM  

Not re-censored 
Re-censored 

 
46 (23, 68) [18, 159] 
46 (23, 68) [18, 159] 

 
32 (20, 48) [16, 101] 
32 (20, 48) [16, 101] 

 
1.36 (0.80, 2.33)  
1.31 (0.84, 2.06)  

 
0.260 
0.237 

Sensitivity analysis 
Not re-censored 

Re-censored 

 
46 (28, 70) [20, - ] 

46 (28, 69.1) [19, - ] 

 
32 (20, 48) [16, 120] 
32 (20, 48) [16, 120] 

 
1.30 (0.75, 2.24)  
1.25 (0.78, 1.99)  

 
0.350 
0.350 

     
PP 46 (23, 68) [18, 165] 29 (20, 48) [15, 95] 1.54 (0.97, 2.43)  0.068 
     
AT 47 (28, 70) [20, - ] 29 (20, 48) [15, 105] 1.40 (0.88, 2.22)  0.157 

Sensitivity analysis 46 (20, 61) [18, 159] 29 (20, 48) [15, 95] 1.45 (0.91, 2.32)  0.119 
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8.2.4. Conclusion 

The application of the RPSFTM to these honey trial data suggest that adjusting for 

switches tends to increase the treatment effect in favour of honey to an intermediate 

degree to that observed from PP or AT analyses. However this analysis was limited due 

to very small numbers of direct switches between treatment arms, and the need to 

censor follow up at the point of any other change in treatment. Furthermore, as well as 

being unable to adjust for switches to non-trial treatments, the RPSFTM was subject to 

bias due to an inability to appropriately handle competing risk events such as death. As 

will be discussed in the next chapter, it is potentially possible to adjust for such 

competing events using the RPSFTM in conjunction with IPW methods. However, 

prior to considering this alternative method, the RPSFTM will now be demonstrated in 

the larger, more complex scenario present in the SANAD trial. 

8.3.   SANAD  

Despite the overtly pragmatic nature of the SANAD trial, involving inevitable treatment 

changes when patients experienced UAEs or ISC, there was interest in the efficacy of 

treatments in the absence of such treatment changes. Prior to considering RPSFTM 

specifications, however, it is necessary to discuss a number of complications in this trial 

which make any causal analysis somewhat challenging. 

8.3.1. Data issues 

First the treatment receipt data available in SANAD relate only to the drugs and doses 

prescribed by clinicians rather than actual adherence of patients to these prescriptions. 
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The only compliance data compromises a single general question on an annual quality 

of life questionnaire asking patients to estimate how often they miss doses. The 

distribution of answers is given in Figure 4 (where NR refers to non-response); 

although less than 5% of patients who returned the questionnaire each year reported 

missing medication more than once a week, at least one third of patients did not return 

questionnaire each year.  

 

Figure 4 Adherence to medication from annual questionnaire 

 

Thus, the data used in the analysis reflect prescribed drugs and doses, rather than actual 

treatment taken. Changes to randomised treatment prescribed by clinicians could take a 

variety of forms (including changes to prescribed dose, switching to other trial (or non-
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trial) treatments and the addition of other trial (or non-trial) treatments) for reasons 

usually related to ISC or UAEs. Often patients experienced multiple treatment changes 

(up to three changes were recorded in the dataset).  

Given the complicated treatment changes that occurred during patient follow up in 

SANAD, and the need to prepare data for a number of different types of analysis, as 

well as for comprehensive descriptions of the treatment changes that occurred, it was 

necessary to think carefully about how to code the data, in order to prevent time 

wasting with unnecessary data management prior to each analysis. However, these 

complications presented a challenge for data coding. First, it was necessary to consider 

carefully how best to code the treatment changes, to ensure a useful record of the time, 

type and reason for each treatment change in order to facilitate various potential 

subsequent analyses addressing different causal questions. Although the SANAD case 

report forms (CRFs) endeavoured to reliably capture information on treatment changes, 

inconsistencies in the interpretation of treatment information questions on the CRFs by 

different clinicians meant that the data on treatment changes needed to be extracted by 

hand from the dataset. This exercise demonstrated the need to appreciate the 

importance of careful consideration of data collection issues which must be undertaken 

during the trial planning stage, in order to ensure that the data required for any 

proposed statistical methods of adjustment are ultimately available and readily 

accessible. 

It was necessary to classify changes to prescription, for each patient at each follow up 

visit, as either treatment switches (from randomised drug to alternative trial/non-trial 
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drug), additions or withdrawals. Furthermore, it was recorded when patients were still 

taking previous monotherapy at the time of randomisation.  

Treatment changes in epilepsy rarely occur quickly; instead a withdrawal (from current 

treatment) and loading (increasing dose of new treatment) phase is required to prevent 

reactions to sudden treatment changes. Though SANAD CRFs recorded dates of (start 

and end of) treatment withdrawals and additions, it was necessary to decide on how to 

distinguish treatment switches (which necessarily involve an overlap period) from 

treatment additions. The overlap between starting a new AED and withdrawing from the 

randomised AED varied widely between patients (as demonstrated in Table 26, which 

summarises the withdrawal process and treatment overlap periods among SANAD A 

patients who switched between CBZ and LTG). Reasons for this depended on the 

patient’s clinical condition; for example, the prescribing clinician may have wanted the 

patient to get established on their new drug before starting to withdraw from 

randomised drug. 

Table 26 Withdrawal process details 

 CBZ (n=20/21) LTG (n=6/8) 

Duration between starting/completing randomised 
AED 

19.5 (0, 154) 15 (0, 21) 

Duration between starting withdrawal from 
randomised AED and starting new AED 

0 (-28, 42) 1 0 (0, 7) 

Overlap between starting new AED and finishing 
randomised AED 

19.5 (-42, 155) 2 13.5 (-1, 21)3 

All values are median (range) number of days. 
1 Negative value means that patient started new drug before starting withdrawal from randomised drug: 3 patients 
with -28, -14 and -1 
2 Negative value means that patient finished taking randomised drug before starting new drug: 3 patients with -42, -7 
and -2 
3 Negative value means that patient finished taking randomised drug before starting new drug: 1 patient with -1 
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The wide variety of treatment changes meant that it was necessary to code each 

treatment change according to the type (switch, addition, addition before switch (when 

a new treatment was added prior to the initiation of withdrawal of the randomised 

drug), withdrawal of randomised drug and subsequent reintroduction of randomised 

drug), timing (since randomisation), order (in the sequence of treatment changes 

experienced by that patient) and drug(s) involved in each treatment change.  

The decision was made that, in the case of treatment switches or additions, the date of 

switch (or addition) was taken to be that on which the new treatment was added, 

regardless of how long the withdrawal period (in the case of treatment switches) or 

loading phase lasted. 

The data available from GP records were not always complete, and some patients had 

extensive gaps between recorded visits. Prescribed dose data were missing on a number 

of patients, and it was unlikely that these data were missing completely at random: 

indeed, these patients were more likely to withdraw due to UAE and typically had 

shorter time to withdrawal than those with regular dose data. 

Furthermore, following scrutiny of the data set and consultation with neurology experts, 

it became obvious that GPs often followed irregular prescribing patterns reflecting the 

uncertainty of the efficacy and safety of AEDs; for example, a new drug may have been 

recorded once only without an accompanying dose, demonstrating an underlying doubt 

on the part of the patient or clinician regarding whether the drug was suitable for the 

patient; given the lack of precise adherence information, it was not possible to 

determine in these cases whether the patient even started taking these additional drugs.  
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Thus, before carrying out the RPSFTM, it was necessary to decide how these vagaries 

would be handled. First, as in the case of White’s analysis (89), it was decided that a lack 

of follow up or treatment data indicated no change in seizure or prescription. Given the 

evidence suggesting informative missingness, it would have been interesting to carry out 

a sensitivity analysis to investigate such effects. However, for this analysis, those with 

sparse follow up or treatment data (for example, 7 patients had their first treatment 

information recorded more than 365 days since randomisation, ranging from 428 to 919 

days since randomisation) were assumed not to have experienced unrecorded treatment 

change or seizures between visits. 

After consulting expert opinion, it was decided that a treatment switch (as opposed to 

addition) required less than one month (30 days) between the dates of the start of the 

withdrawal phase and the first prescription of alternative treatment. When short term 

drugs were prescribed (for example, in preparation for surgery, as surgery may induce 

seizures) it was decided not, for the pragmatic purposes of the trial, to consider these as 

treatment switches or additions. 

8.3.2. Complications of the SANAD trial 

The SANAD trial presented numerous other complications beyond that of the 

treatment data. First, both arm A and arm B involved multiple randomisation, with 

patients randomised to one of five treatment groups (in arm A) and three treatment 

groups (in arm B).  

The solution to the problem of these multiple randomised groups was provided by 

considering the causal research question of greatest clinical interest, namely the 
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comparison between CBZ versus LTG. For patients with focal epilepsy (recruited in the 

main to arm A of SANAD), CBZ was the standard treatment most familiar to clinicians 

at the time of the trial, while LTG was the new drug of greatest interest to clinicians. 

Thus the CBZ arm of the trial presented a sensible baseline comparator for a two-way 

comparison with LTG for patients in arm A of SANAD. This decision was supported 

not only by clinical interest but also because the most common switches were between 

the CBZ and LTG arms; for example, more than half  (31 (and 20) respectively) of the 

60 (36) patients who changed treatment prior to achieving 12 month remission in the 

CBZ (LTG) treatment groups had switched to the alternative LTG (CBZ) treatment. As 

such, this treatment switching scenario appeared to lend itself quite well to the 

RPSTFM in practical as well as clinical respects. 

Another complication in SANAD relates to the primary efficacy outcome, time to 12 

month remission (T12mR). As will be discussed in section 8.4, although very important 

from a practical perspective, analysis of T12mR is a complicated non-standard summary 

of repeat events data which introduces problems when applying RPSFTM for two main 

reasons. First, analysis of time to 12 month remission using the RPSTFM is complicated 

by the fact that the event cannot happen prior to 12 months. The assumption of a 

constant acceleration factor is thus violated, given the necessary truncation of its effect 

prior to 12 months (without which the model will incorrectly predict remission times of 

less than 12 months). Secondly, a significant proportion of patients (in the region of 

30%) are expected to achieve immediate 12 month remission (I12mR), such that there 

will be a peak of events at this time point. The RPSTFM is not able to recognise either 
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of these characteristics of the data (peak at 12 months and no events prior to this time) 

and is likely to incorrectly predict event times prior to 12 months.  

Thus it was decided, as an initial investigation, the RPSFTM would be used to adjust the 

simpler secondary outcome, time to first seizure (TFS), for treatment switches occurring 

between those randomised to CBZ and LTG in arm A of SANAD, and would be 

compared against ITT and PP analyses. 

Similarly to the RPSFTM analysis of the honey trial, the difficulty presented by the 

numerous types of treatment changes (withdrawal from randomised treatment, still 

taking other treatment at randomisation, switching to other (trial or non-trial) 

treatments or addition of other treatments) was addressed, although somewhat 

inadequately, by simply censoring those with any treatment changes other than switches 

to the alternative treatment arm (CBZ/LTG) at the point of the ‘illegal’ treatment 

change (including those who were still taking a drug at randomisation).  

Finally, it was decided (as per the original analysis (99)) that those patients who were 

later found not to have epilepsy would be excluded from the analysis, the justification 

being that diagnostic methods have improved markedly since the SANAD began 

recruiting, and that receipt of AEDs by non-epileptics can be especially harmful. 

Thus, all analysis sets excluded those patients found not to be epileptic, the PP analysis 

set censored patients at the point of any treatment change that occurred prior to first 

seizure, and the RPSFTM analyses censored at the point of any treatment changes that 

occurred prior to first seizure except switches between CBZ and LTG. (These 

treatment changes are referred to here as “illegalities”, and include switches to other 
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trial/non-trial treatments, starting additional treatment (including starting LTG (or 

CBZ) without withdrawing from randomised CBZ (or LTG) treatment) or still taking 

an additional drug at randomisation). In order for a patient to be eligible for the analysis 

of the outcome TFS, any illegality must have occurred after the time of first seizure (or 

the end of follow up for first seizure, whichever occurred first). In order for a switch to 

be eligible for the analysis of the outcome TFS, the switch must have occurred prior to 

first seizure (or the end of follow up for first seizure, whichever occurred first). In other 

words, in order for a patient to be included in the RPSFTM analysis as a treatment switch, 

the following had to be true: time of legal switch to alternative (CBZ/LTG) < time of 

first seizure < time of any illegality. “Switch” therefore refers to switch from 

randomised treatment CBZ to LTG or from randomised treatment LTG to CBZ. 

8.3.3. Model  

As set out in section 8.1.1, it is necessary to define the “on” and “off” treatment times 

(𝑇0𝑖 and 𝑇1𝑖 ) relating to the particular research question of interest, as well as the 

maximum censoring time. Thus for this comparison, the model  

𝑈0𝑖(𝛽) = 𝑇0𝑖 + 𝑒𝛽𝑇1𝑖 

relates the underlying remission time 𝑈0𝑖 (if patient had remained on CBZ throughout)  

to 𝑇0𝑖 (the time spent on CBZ) and 𝑇1𝑖 (the time spent on LTG). The maximum follow 

up time (necessary for recensoring) was calculated for each patient as the difference 

between their date of randomisation and known final date of follow up.  
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8.3.4. Results 

Table 27 sets out how data and treatment changes were handled in each (ITT, PP and 

RPSFTM) analysis, with a summary of the number and timing of eligible and ineligible 

treatment switches for the RPSFTM analysis given in Table 28. The “eligible” switches 

between CBZ and LTG arms made up a small proportion of total treatment changes; of 

those treatment changes occurring prior to TFS, only 19 (43% of 44 treatment changes 

among patients randomised to CBZ) and 9 (26% of 35 treatment changes among LTG 

patients) were direct switches between treatment arms. 

Table 27 Definition of ITT, PP and RPSFTM analysis sets 

 Number of patients ITT PP RPSFTM 

 CBZ LTG  
Originally 
randomised 

378 378 

No dose data 24 20 Excluded Excluded Excluded 
Not epileptic1 10 8 Excluded Excluded Excluded 

    
Potential for 
inclusion in analysis  

346 352  

Treatment changes2   
Switch to alternative 

CBZ/LTG3 

19 9 Ignored Censored5 Switch6  

Switch to other AED 14 6 Censored5 Censored5 Censored5 
Start additional AED 0 3 Censored5 Censored5 Censored5 

Still on AED at 
randomisation4 

11 17 Censored5 Censored5 Censored5 

1 Note that dose data are missing for two patients from each group who were found not to be epileptic 
2 Only relates to changes occurring prior to first seizure; those occurring after first seizure are ignored 
3 Switch from randomised CBZ to LTG, or from randomised LTG to CBZ, prior to any other treatment 
changes 

4 Those still on an AED at randomisation were censored at time 0.1 days. 
5 Those with any changes in treatment that occurred prior to first seizure (switches, additions or those 
already taking an AED at time of randomisation) were censored at the time of the first occurring 
treatment change 
6 Switches from randomised CBZ to LTG or vice versa were accounted for in this analysis. 
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Table 28 Summary of the number and timing of eligible and ineligible switches  

 CBZ arm (n=346) LTG arm (n=352) 
 Number 

(%) 
Time from 

randomisation to switch   
Number 

(%) 
Time from randomisation 

to switch   
 Median 

(IQR) 
Range Median 

(IQR) 
Range 

Eligible switch1  19 (5.5) 84  
(25, 112) 

(1, 213) 8 (2.3) 56  
(21.5, 110.5) 

(14, 794) 

Ineligible 
switch2 

40 
(11.6) 

180  
(49.5, 370)  

(3, 1498) 48 
(13.6) 

283.5 
(87, 479) 

(4, 2043) 

1 Switch occurred prior to first seizure and any illegality occurred after first seizure. 
2 Switch occurred after first seizure, or switch and illegality occurred prior to first seizure. 

 

Table 28 demonstrates that similar proportion of each treatment group experienced a 

switch to the alternative group (CBZ/LTG) (CBZ arm: 59 (17%); LTG arm: 56 (16%)) 

but many more of these switches in the CBZ group were eligible (19/59, 34%) 

compared to the LTG group (8/56, 14%). This was primarily because, in the LTG 

group, switches tended to occur due to ISC (and therefore after the first seizure) because 

clinicians were less familiar with this novel drug and therefore less adept at prescribing 

the correct dose to prevent seizures. In contrast, clinicians were more familiar with CBZ 

and therefore more likely to prescribe higher initial doses to ensure good seizure 

control, potentially at the expense of tolerability, thus increasing the likelihood of 

switches due to UAEs before the first seizure.  

The results (for the relative effect of LTG vs CBZ) are given in Table 29. Comparison 

of the treatment effects obtained using these different analysis sets demonstrates that 

PP, ITT and RPSFTM analyses increasingly suggest that TFS is earlier with LTG than 

with CBZ (acceleration factors 1.87, 1.92 and 2.00 and hazard ratios of 1.20, 1.21 and 

1.22 respectively), as was concluded in the original HTA report. Thus adjustment for 
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direct switches between treatments using the RPSFTM implies a slightly greater 

advantage of LTG over CBZ than that demonstrated by ITT or PP analyses. 

Table 29 ITT, PP and RPSFTM analyses for SANAD A  

 𝒆𝜷 (95% CI) HR (95% CI)  
LTG:CBZ 

p-value 

    
ITT 1.92 (1.03, 3.41) 1.21 (1.01, 1.44) 0.034 
    
RPSFTM  

No recensoring 
Recensoring1 

 
2.00 (1.03, 3.94) 
2.00 (1.02, 3.70) 

 
1.23 (1.02, 1.48) 
1.22 (1.01, 1.46) 

 
0.034 
0.037 

    
PP 1.87 (1.001, 3.33) 1.20 (1.005, 1.44) 0.042 
1 Number of patients (events) recensored: CBZ: 27 (2), LTG: 82 (16) 

 

The considerable difference between AF and HR suggest that, if approximating the data 

using a Weibull distribution, the shape parameter would not be equal to 1 (in other 

words, the TFS data do not follow an exponential distribution). This would occur, for 

example, if the hazard rate was initially steep and then flattened out, perhaps due to an 

initial peak in the number of events due to early seizures in a subset of patients for 

whom treatment was inefficacious, followed by a more stable period of seizures among 

remaining trial participants. 

8.3.5. Limitations of time to first seizure CBZ/LTG RPSTFM 

There are a number of limitations of this analysis. Firstly, this analysis compares only 

two of the five treatment arms. Although more treatment contrasts could in theory be 

included in the RPSTFM, estimation is likely to be unreliable due to model instability 

(94).  
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Because only those treatment changes occurring up to the time of first seizure are 

considered in this analysis, analysis of TFS by definition considers only those changes 

due to UAE and thus does not relate to problems related to seizure control. Analysis of 

TFS is further disadvantaged because it is likely to be influenced by initial dose: 

standard AEDs are more familiar to the prescribing clinicians, and hence are likely to be 

introduced at higher doses than those drugs which are newer and less familiar. Given 

that seizure control is directly correlated with dose, this familiarity and subsequent 

higher dosing with the standard drugs is expected to bias the treatment comparison of 

TFS in their favour.  

In addition, as the RPSTFM can only reliably adjust for one type of treatment change, if 

patients experience changes other than pure treatment switches between the 

comparator drugs (for example, those who add on another AED or those who 

withdraw from their randomised drug without switching to the alternative AED of 

interest), their follow up is necessarily artificially censored at this point. This censoring 

is likely to introduce bias, as those who undergo treatment changes may well have a 

particularly poor prognosis (for example, in the case of adding further AEDs) or good 

prognosis (if, say, they have decided to stop taking randomised treatment because they 

have not experienced seizures for some time) at the point of their treatment change. 

Thus, the most notable limitation of this analysis is that the majority of treatment 

changes are necessarily discounted in the RPSFTM, because of the need to censor any 

patients experiencing (prior to their first seizure) any treatment changes other than 

direct switches between CBZ and LTG. Of the potential 59 switches that occurred 

from randomised drug CBZ to LTG, and 56 that occurred from randomised drug LTG 
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to CBZ, only 19 and 8 respectively were included in the RPSFTM analysis, either 

because of some ineligibility that occurred prior to the first seizure (for example, when 

the patient started an additional drug or switched to a different drug) or because the 

switch (between CBZ and LTG) occurred after the first seizure. Indeed, it is of interest 

to note that these direct switches (after the first seizure) occurred more often in the 

randomised LTG group, given that patients tended to switch from LTG to CBZ due to 

ISC (i.e. after first seizure) whereas patients were more likely to switch from CBZ to 

LTG because of UAEs (i.e. potentially before first seizure). The omission of these 

treatment changes from analysis not only reduces the power of the RPSFTM analysis, 

but is also likely to introduce selection bias, given that censoring at the time of such 

treatment changes is likely to be informative (related to the patients’ prognosis). 

Thus, these RPSFTM results do not relate to patients who experienced treatment 

changes other than switches between CBZ and LTG, and the choice of outcome (TFS) 

means that only switches primarily due to UAE (rather than ISC) were accounted for. It 

is therefore of interest to therefore consider a more relevant outcome reflecting long 

term remission of seizures, as demonstrated in the next analysis. 

8.4. SANAD B 

The third version of the RPSFTM relates to adjustment for treatment changes when 

analysing the primary outcome of the SANAD trial, time to 12 month remission 

(T12mR). T12mR is of greater interest to patients and clinicians alike than TFS, not 

only because of its significance for regaining the right to a driver’s licence but also 

because it is less dependent on initial dose (as it requires a sustained effect of treatment 
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on preventing seizures). However, as will become evident, it is a complicated summary 

of repeated events data that introduces complications for analysis. 

Given that the primary explanatory effect of interest for SANAD investigators was the 

causal effect of treatment in patients with generalised, rather than focal, epilepsy, this 

final evaluation of causal effects using the RPSFTM is applied among those randomised 

to arm B, rather than arm A, of the SANAD trial. At the time of recruitment, clinicians 

recorded whether patients had generalised or focal epilepsy (or if unclear at the time, the 

patient was recorded as having “unclassified” epilepsy). In the case of focal epilepsy, the 

drug of choice is CBZ, and such patients should have been recruited into arm A of 

SANAD (where the standard comparator treatment was CBZ). VPS is the drug of 

choice for generalised epilepsy, and such patients were intended to be recruited into arm 

B (where the standard treatment was VPS). However this did not always occur: some 

clinicians entered patients into arm B despite there being focal elements to their 

epilepsy, where VPS is definitely not a recommended treatment. Given that this 

inclusion of patients with focal type epilepsy is likely to blur the true difference between 

the treatments, it was decided that these patients should be excluded from the 

explanatory analysis. Although it may have been more statistically valid to avoid 

excluding patients and instead include an interaction term for the type of epilepsy in the 

causal model, this would have added to the complexity of the model; furthermore, this 

exclusion affected only 39 (9%) of those randomised to arm B. 

The choice of treatment comparison was once again guided by clinical factors. The 

standard treatment for patients with generalised epilepsy at the time of SANAD was 

VPS, and, as for arm A, the newest most promising alternative drug was LTG; as such, 
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treatment switches most commonly occurred between these treatment arms, and it was 

considered of greatest clinical interest to compare efficacy of LTG versus VPS.  

Thus in this analysis, only those arm B patients with generalised (or unclassified) 

epilepsy were evaluated to determine the causal effect of LTG versus VPS on the 

primary outcome T12mR. Although treatment switches occurred relatively commonly 

between these two treatment arms, other treatment changes also occurred. Thus it was 

necessary (as for the previous two RPSFTM applications) to consider how to handle 

these other treatment changes in the analysis, particularly in relation to the causal 

contrast from the model as defined by the research question. A reminder of the 

RPSFTM  

𝑈0𝑖(𝛽) = 𝑇0𝑖 + 𝑒𝛽𝑇1𝑖 

highlights the need to determine the “on” and “off” treatment states, which relate 

directly to this research question (and thus, in turn, to the handling of changes other 

than direct switches between treatments).  

8.4.1. Clinical question of interest 

In the arm A analysis presented earlier in this chapter, the inputted times (𝑇0𝑖 and 𝑇1𝑖) 

related only to time spent on CBZ or LTG monotherapy (respectively); thus censoring 

was introduced at the point of any changes to treatment prescription excluding direct 

switches between these treatments, in an attempt to estimate a purely explanatory 

relative treatment effect (by adjusting for “true” switches between randomised 

treatments).  
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However, in reality, the main research question of interest for SANAD clinicians is not 

purely explanatory, but rather exists on the explanatory/pragmatic continuum: although 

interest lies in the biological effects of certain treatments, it is acknowledged that AED 

treatment is given in a pragmatic setting, where patients may experiment with doses or 

new drugs before finally settling on a treatment of choice, or where patients may begin 

randomised treatment while still taking a previous monotherapy, or where switches 

between treatments may involve an extensive overlapping period to allow for necessary 

loading or withdrawal phases.  

Thus, a more realistic analysis would adjust for situations where patients end up on the 

alternative treatment, perhaps first having tried other treatments or combinations, rather 

than automatically censoring such patients at the point at which they try other 

treatments. This pragmatic take on the causal analysis allows for the fact that patients 

may have been offered treatments and may have tried them for a short period before 

deciding whether to take them as long term treatment, and assumes that these short 

dalliances with other treatments do not overly influence the effect on sustained freedom 

from seizures. 

Thus, one may make a comparison between two pragmatic treatment regimes, namely 

“VPS plus any treatment changes that occur (except those involving LTG)” versus 

“LTG plus any treatment changes that occur (except those involving VPS)”. In such an 

analysis, no artificial censoring would be necessary, as any treatment changes not 

involving the alternative treatment of interest are considered to be part of the pragmatic 

treatment regimens being compared.  
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In the case of the SANAD trial, the question of interest for clinicians may well lie 

somewhere in between these “true” and “pragmatic” treatment switch scenarios. 

Discussion with neurology consultants suggests that interest lies primarily in adjusting 

for switches which result in the patient “ending up on” the alternative treatment; thus 

they are willing to accept the pragmatic situation that patients may well try other 

treatments or combinations of treatment prior to ending up on the alternative treatment 

of interest. However, if a patient then ceases to take this alternative monotherapy (for 

example, if they subsequently add on alternative treatments or withdraw from all 

treatment), it is more clinically appropriate to censor the patient’s follow up at this point 

of treatment change. Thus all such treatment changes are ignored prior to the occurrence 

of a direct switch (between the randomised treatments of interest), but following a direct 

switch, any such treatment changes are considered to blur the comparison and thus 

would need to be censored.  

8.4.2. Causal contrasts 

The chosen definition of switch (either true, pragmatic or clinically relevant) translates 

directly to the causal research question and causal contrast, defined by 𝑇0𝑖 and 𝑇1𝑖, in 

the RPSFTM.  

First consider the pragmatic question “what are the relative effects of LTG (with any 

treatment changes that ensue with this treatment policy, excluding adding or switching 

to VPS) and VPS (with any treatment changes that ensue with this treatment policy, 

excluding adding or switching to LTG)?”  
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For such a pragmatic analysis, 𝑇0𝑖 would be calculated as the total time spent on VPS 

(including time following any other additions or switches to subsequent treatments, but 

excluding addition with, or switching to, LTG); similarly 𝑇1𝑖 would be calculated as the 

total time spent on LTG (including any other additions or switches to subsequent 

treatments, but excluding addition with, or switching to, VPS). Thus, in evaluating the 

effect of “ending up on” the alternative treatment, this analysis considers any other 

changes to treatment as a pragmatic continuation of randomised (or switched) 

treatment, thus removing the need to censor follow up at the point of these alternative 

treatment changes.  

Note, however, that this pragmatic assessment of treatment switches is somewhat 

inconsistent, as the addition of VPS to (randomised) LTG would be recorded as 𝑇0𝑖 and 

thus is considered the opposite (in terms of treatment contrasts) to when LTG is added 

to (randomised) VPS (recorded as 𝑇1𝑖), despite these scenarios being identical in terms 

of treatment received.  

In practical terms, this approach meant that any changes to randomised drug (VPS or 

LTG) such as withdrawal, addition and switches of AEDs were ignored, except those 

which involve the alternative drug of interest (LTG or VPS): any addition or switch to 

alternative (LTG or VPS) was considered to be a “switch”. Subsequent changes 

following such a “switch” were also ignored, as they too were considered to be part of 

the pragmatic treatment on the alternative treatment (as shown in Figure 5, where 

different coloured lines indicate different treatments).  
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In contrast, the explanatory approach to this analysis adjusted only for “true” switches 

(direct switches between LTG and VPS) which occurred prior to any other treatment 

changes (as demonstrated by Figure 6 below), thus answering the research question 

“what are the relative treatment effects of LTG versus VPS?” Thus in this scenario (as 

for arm A comparison), follow up is censored at the point of any treatment changes 

(including additions of the alternative drug (LTG or VPS)) other than direct switch to 

alternative (LTG or VPS). 

Finally, of greatest clinical interest would be adjustment for those pragmatic switches in 

which the patient ends up on alternative treatment but any subsequent deviation from that 

treatment would then be censored, thus assessing the research question of interest 

“what is the effect of LTG versus VPS, when any treatment changes prior to the 

treatment switch are considered to be part of the treatment experience on each 

randomised drug?” (shown in Figure 7). 

This analysis, although clinically sensible, is neither consistent nor statistically valid 

(even beyond that of the “pragmatic” analysis mentioned above), as a certain treatment 

change would be handled differently depending on whether it occurred before or after 

the treatment switch of interest. Thus this example demonstrates how careful discussion 

between statistician and clinician is necessary to reach a decision on how to analyse the 

data in a manner which is both statistically and clinically appropriate. 
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Figure 5 Pragmatic scenario 

 

Figure 6 Explanatory scenario 

 

Figure 7 Clinically relevant scenario 

8.4.3. Methods 

Thus, given that the intermediary (though most clinically relevant) scenario was not 

statistically valid, the two remaining versions of the analysis of time to 12 month 

remission were carried out, allowing for switching between LTG and VPS; the first 

adjusted for “true” switches, thus censoring at the time of any other treatment changes, 

while the second “pragmatic” switches analysis considered other treatment changes to 

be part of the pragmatic treatment regimens being compared and thus no artificial 

censoring was introduced. Each patient’s maximum censoring was calculated as the 
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difference between their date of randomisation and the known universal final date of 

trial follow up.  

Individuals’ treatment times 𝑇0𝑖  and 𝑇1𝑖  were calculated according to the adjustment 

scenario: when considering the effect of “true” switches, 𝑇0𝑖 (𝑇1𝑖) were calculated as the 

times patients spent receiving VPS (LTG) prior to censoring due to any “illegalities”. 

For the “pragmatic” switches adjustment, 𝑇0𝑖 (𝑇1𝑖) were calculated as the times patients 

spent receiving VPS (LTG) including any time spent receiving additional treatments to,  

or switches from, these drugs (except switches to or additions of the alternative LTG 

(VPS) drug). 

8.4.4. Results 

The frequency of these switches in the VPS and LTG randomised arms is described in 

Table 30, with further detail given in Table 31 and Table 32 regarding the relationship 

between these pragmatic and true switches, and differences between the (censored) 

remission times between the true and pragmatic switches in each treatment arm (due to 

the differential censoring patterns implicit in the definitions of these two types of 

switch). It can be seen that only 60% of the 59 (and 53% of the 34) “pragmatic” 

switches that occurred in the LTG (VPS) arm were eligible to be analysed as “true” 

switches; furthermore 2 (5) of these were censored earlier for the “true” switch analysis 

than for the “pragmatic” switch analysis, because of another treatment change that 

occurred following the “true” switch. Thus these tables describe the effect of artificial 

censoring (due to disallowed events referred to as “illegalities”) necessary for the “true” 

switch comparison.  
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Table 30 True and pragmatic switches between VPS and LTG  

Values indicate number (% of treatment group).  

 LTG (n=218) VPS (n=217) Total (n=435) 

Pragmatic switch  59 (27.1) 34 (15.7) 93 (21.4) 
True switch  36 (16.5) 18 (8.3) 54 (12.4) 

 

Table 33 (Table 34) provides detail on the timing and reason for true (pragmatic) 

treatment changes, broken down according to whether or not patients achieved 

remission. These tables demonstrate that true switches were twice as common (and 

pragmatic switches were nearly twice as common) in LTG compared with VPS patients; 

true (and pragmatic) switches tended to occur earlier in the VPS arm, and these true 

switches were most likely to be triggered by ISC in the LTG arm. 
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Table 31 Summary of switches for LTG arm 

LTG arm (n=218) Total Remission time1 
 Remission time 

(true) = remission 
time (pragmatic)2 

 
Remission/follow up time (true) < remission time (pragmatic) 

i.e. censored early because of other treatment change (not switch) 
 

 Total Remission  
time (true) < 
(pragmatic) switch 
time3 
i.e. treatment change 
occurred prior to 
pragmatic switch 

Remission time (true) = 
(pragmatic) switch time4 
i.e. censoring at 
pragmatic switch time 
(as pragmatic “switch” 
involved adding 
alternative AED) 

Remission time 
(true) > (true and 
pragmatic) switch 
time5 i.e. treatment 
change occurred 
after pragmatic 
switch  

No pragmatic switch 
 

159 132 27 0 0 0 
Withdrew  18    
Added AED 3    
Switched AED 6    

Pragmatic switch 
 

59  34 25 9 14 2 

No true switch 23 0 23 9 14 0 
  Withdrew  4   
  Added AED 5 Added 

AED 
14 (14 VPS)  

True switch  36 34 2 0 0 2 
   Switched AED 2 

1 Note that “remission time” refers to length of follow up for remission (i.e. minimum of time to remission or censoring) 
2 No censoring event occurs before remission time 
3 Censoring event occurs prior to pragmatic switch 
4 Pragmatic switch is censoring event (i.e. involves addition of, rather than switch to, VPS) 
5 Censoring event occurs after (true and pragmatic) switch 
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Table 32 Summary of switches for VPS arm 

VPS arm (n=217) Total Remission time1 
Remission time 
(true) = 
remission time 
(pragmatic)2 

 
Remission time (true) < remission time (pragmatic) 

i.e. censored early because of treatment change after switch  
 

Total Remission 
time (true) < 
(pragmatic) switch 
time3 

Remission time (true) 
= (pragmatic) switch 
time4 

Remission time (true) 
> (true and 
pragmatic) switch 
time5 

No pragmatic switch 183 154 29 0 0 0 
Withdrew  18    
Added AED 6    

(VPS, CNZ, ETH, LVT, 2 
TPM) 

   

Switched AED 5    
(3 VPS, VPS/TPM, ETH)     

Pragmatic switch 34 13 21 8 8 5 
       

No true switch 16 0 16 8 8 0 
  Withdrew  7   
  Switched VPS 1 Added 

VPS 
8 (8 VPS)  

 (LVT)   
True switch  18 13 5 0 0 5 

   Switched AED 2 

      Added AED 2 

     Reintroduced 
randomised AED 

1 
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Table 33 Summary of (time to) remission or censoring according to true switch status 

 LTG  VPS 
 Number (% within 

treatment or 
treatment/switch 

group) 

Time to event 
(median, range) 

Reason for (first) 
treatment change 

Number (% 
within 
switch 
group) 

Time to event 
(median, range) 

Reason for (first) 
treatment change 

       
True switch  36 (16.5) 174.5 (1, 1245)  18 (8.3) 136 (14, 734)  

         
Remission 27 (75.0)  ISC 16 10 (55.6)  ISC 2 

  UAE 7   UAE 5 
  ISC/UAE 4   ISC/UAE 2 
      Pregnancy 1 

Time to switch   182 (20, 790)   135.5 (14, 570)  
Time from switch to remission    373 (244, 1066)   326.5 (162, 1704)  

Time to remission   617 (365, 1819)   475 (365, 1934)  
       

Censoring 9 (25.0)  ISC 5 8 (44.4)  ISC 3 
   UAE 3   UAE 1 
   Other 1   ISC/UAE 2 
       Pregnancy 1 
       No seizures  1 

Time to switch   32 (1, 1245)   158.5 (56, 734)  
       

Time from switch to censoring   449 (55, 1900)   294 (3, 508)  
Time from switch to censoring due to 

other treatment change* 
 

(n=2) 
 

55, 145 
  

(n=5) 
 

335 (40, 508) 
 

       
Time to censoring   1387 (76, 1932)   442 (168, 1063)  

Time to censoring due to other 
treatment change* 

 
(n=2) 

 
76, 150 

  
(n=5) 

 
429 (168, 610) 
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 LTG  VPS 

 Number (% within 
treatment or 

treatment/switch 
group) 

Time to event 
(median, range) 

Reason for (first) 
treatment change 

Number (% 
within 
switch 
group) 

Time to event 
(median, range) 

Reason for (first) 
treatment change 

No switch  182 (83.5)   199 (91.7)   
       

Remission 101 (55.5) 379 (365, 2192)  132 (66.3) 365 (365, 1718)  
       

Censoring 81 (44.5)   67 (33.7)   
Time to censoring   344 (5, 1735)   225 (1, 1840)  

       
Time to censoring due to other  (n=50) 188 (5, 1280) ISC 27 (n=45) 147 (1, 1036) ISC 15 

treatment change*   UAE 13   UAE 17 
   ISC/UAE 3   ISC/UAE 5 
   Pregnancy  1   Pregnancy 6 
   No seizures 4   Patient 

decision  
1 

   Non-
compliance 

1   Non-
compliance  

1 

   Unknown 1     

* i.e. includes only patients whose censoring time was brought forward because of other treatment change. 
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Table 34 Summary of (time to) remission or censoring according to pragmatic switch status 

 LTG  VPS 
 Number (% within 

treatment or 
treatment/switch 

group) 

Time to event 
(median, range) 

Reason for 
(first) 

treatment 
change 

Number (% 
within switch 

group) 

Time to event 
(median, range) 

Reason for 
(first) 

treatment 
change 

       
Pragmatic switch  60 (27.1) 229 (1, 1523)  34 (15.7) 164.5 (14, 1036)  

       
Remission 40 (67.8)   22 (64.7)   

Time to switch  218 (5, 958)   142 (14, 570)  
Time from switch to remission  418.5 (169, 1070)   394 (162, 1704)  

Time from randomisation to remission  686.5 (365, 1819)   724 (365, 1934)  
       

Censoring 19 (32.2)   12 (35.3)   
Time to switch  252 (1, 1523)   225 (39, 1036)  

Time from switch to censoring   960 (151, 1900)   545.5 (3, 1700)  
Time from randomisation to censoring   1539 (678, 2010)   1087.5 (328, 1802)  

       
No switch  159 (72.9)   183 (84.3)   

       
Remission 117 (73.6) 380 (365, 2192)  147 (80.3) 365 (365, 1753)  
Censoring 42 (26.4) 739 (71, 1899)  36 (19.7) 644 (13, 1932)  

       

* i.e. includes only patients whose censoring time was brought forward because of other treatment change. 
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Table 35 demonstrates the degree to which artificial censoring in PP analysis and the 

“true” switches RPSFTM curtail analysis times, as the median (and IQR) of survival 

times drop considerably in the PP analysis (due to censoring at the time of each 

patient’s initial treatment change) and to a lesser degree, as expected, in the “true” 

switches RPSFTM (given that all treatment changes except the “true” switches are 

censored). 

Table 35 Summary of T12mR 

 Treatment 
LTG (n=218) VPS (n=217) 

 No. 
switches 

Median (IQR) No. 
switches 

Median (IQR) 

PP - 488 (365,960) - 370 (365,677) 
ITT - 570 (365, 1162) - 438 (365, 906) 
RPSFTM (true switches) 36 540 (365, 912) 18 371 (365, 733) 
RPSFTM (pragmatic switches) 59 570 (365, 1162) 34 438 (365, 906) 

 

 

Table 36 ITT, PP and RPSFTM analyses for SANAD B VPS vs LTG  

 𝒆𝜷 (95% CI) HR (95% CI)  p-value 

 (LTG:VPS)  
    
ITT 0.88 (0.74, 0.9993) 0.76 (0.63, 0.93) 0.008 
    
RPSFTM  

True switches  
Pragmatic switches  

 
0.85 (0.69, 0.9994) 
0.81 (0.58, 0.9993) 

 
0.70 (0.54, 0.91) 
0.63 (0.44, 0.89) 

 
0.007* 
0.008 

    
PP 0.90 (0.78, 0.9995) 0.74 (0.59, 0.93) 0.009 
* P-value differs from ITT due to censoring at the time of other treatment changes in the “true” switch analysis. 

 

It is interesting to note (in Table 36), first that the AF (𝑒𝛽) and HR differ within the 

same analyses, indicating again that the shape parameter is unlikely to be close to 1; this 

is because the hazard is initially steep (with approximately 30% of patients achieving 

I12mR) and then flattens off. Also, it is noted that the AF for the PP analysis is closer 
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to 1 than the AF for the ITT analysis, whereas the HR for the ITT analysis is closer to 1 

than that for the PP analysis. This apparent anomaly would arise if the baseline hazard 

functions have different shapes in the PP and ITT analyses, thus providing an 

explanation of why the relationship between HR and AF differ between analyses.  

Adjustment for pragmatic (and true) switches in this trial causes the estimated AF (and 

HR) to fall further away from one compared to ITT and PP analyses. The AF is 

interpreted in terms of rate of “using up” survival time; hence these results suggest that 

T12mR is “used up” increasingly slowly (with LTG compared to VPS) from PP to ITT 

to true switch adjustment and finally to pragmatic switch adjustment. In other words, as 

more switches are accounted for, the benefit of VPS becomes increasingly apparent.  

Thus, in summary, although it is important to consider clinical opinion when deciding 

on how to approach causal estimation, the clinically relevant causal scenario in this trial 

did not provide a valid basis on which to perform statistical assessment, thus requiring a 

compromise in approach. Although the “pragmatic” switch scenario requires less 

artificial censoring (and hence is less biased than the PP or “true” switch equivalent), it 

addresses a less clear cut clinical question, distinguishing only between randomised 

(VPS and LTG) treatments, rather than accounting for any the impact of any other trial 

(or non-trial) treatments. The “true” switch scenario is more precise but results in a 

large amount of censoring (due to other treatment changes occurring before legitimate 

treatment switches or end of event follow up).  
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8.5. Discussion 

8.5.1. Honey trial 

When interpreting results from the RPSFTM, it is necessary to consider the suitability 

of the assumptions underlying use of the acceleration factor in the RPSFTM; first, it is 

assumed that the effect of treatment is immediate and there is no carryover effect from 

previous treatment received. This is likely to be true in the honey trial; although it may 

be possible that treatment effects extend for a short while beyond the time of treatment, 

and that treatments take some time before becoming clinically effective, the extent of 

delayed or extended treatment effects is not likely to be substantial in this context. The 

model also assumes that the causal effect is attributable directly to the actual treatment 

received, rather than to any effect caused by switching treatments. However, in this 

clinical area, it is not likely that the act of switching treatments will cause a biological 

reaction beyond the actual effect of treatment. The constant treatment effect implied by 

a single acceleration factor may however be contravened in this setting; although 

switches do not occur solely at a fixed clinically defined point (such as disease 

progression), they are most likely to occur when prognosis with randomised treatment 

appears poor. As such, the effect of treatment received at randomisation may differ 

from that of treatment received at the point of switch (when wounds are likely to have 

deteriorated). 

Thus, in theory, the ability to assess the impact of time-dependent treatment changes on 

the time to the event of interest without needing to make any assumptions about the 

relationship between a patient’s baseline prognosis and their actual treatment would 

suggest that the RPSFTM would be especially useful in the honey trial, as the treatment 

switches in this trial were often informative and related to prognosis. Patients who 
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discontinued treatment because they were disappointed not to have received honey 

were unlikely to have been experiencing healing success with their conventional 

treatment. Conversely patients randomised to conventional treatment who were 

switched to receive honey by external clinicians were often younger, fitter patients who 

were expected to do well with honey, and thus these switches were related to prognosis 

also.  

However, the restriction of the RPSFTM to a single causal contrast (comparing 

conventional and honey dressings only) meant that, in the same way as for the other 

analysis sets, all treatment changes other than direct switches between randomised 

treatment arms needed to be censored in the RPSFTM analysis, even though such 

censoring is likely to be informative and may therefore introduce selection bias. For 

example, censoring patient follow up when wound deterioration necessitated more 

extreme treatment options (such as surgery, radiotherapy or antibiotics) introduces bias, 

as these wounds are not typical of all the wounds in the trial at the point of censoring.  

The need for such censoring would be removed if the time spent on alternative 

treatments (to conventional or honey dressings) could be incorporated into the causal 

contrasts (𝑇0𝑖  and 𝑇1𝑖 ), but this would then change the interpretation of the causal 

research question being addressed by the RPSFTM. For example, if the time 𝑇0𝑖 instead 

included all the time spent on all alternative treatments (including the more extreme 

options such as surgery), this (at least in theory) would remove the need to censor 

follow up at these alternative treatment changes; however the interpretation of the 

causal estimand would change, as the RPSFTM would instead compare honey to all 

other (minor and major extremes of) treatment, ranging from conventional wound 

dressings to surgery, which is not likely to be a clinically sensible contrast.  



   
   
 

314 
 

Furthermore, given that the trial staff were often unable for practical reasons to 

continue following up patients who experienced treatment changes other than simple 

switches to the alternative trial treatment, corresponding healing times were typically 

unavailable following such switches; as such, the lack of follow up data due to practical 

reasons meant that it would not have been possible to account for the causal effect of 

such deviations from treatment protocol even if this alternative causal question (or 

indeed a more complex RPSFTM model involving more than one causal contrast) was 

practicable. 

The extent of this bias is demonstrated by the use of a sensitivity analysis censoring 

patients at the longest possible follow up time when they received extreme forms of 

treatment due to severity of their condition, reflecting the fact that they would 

otherwise have been unlikely to experience healing during the trial follow up. This 

sensitivity analysis had a similar impact on the treatment effect estimates as the 

RPSFTM adjustment, demonstrating the impact of this informative censoring is similar 

to that introduced by switches between randomised treatments.  

8.5.2. SANAD 

Similar considerations are necessary for the evaluation of the use of RPSFTM in 

SANAD as for the honey trial, in particular concerning the underlying assumptions 

regarding the effect of treatment as specified by the model. For example, the simple 

RPSFTM implies that the impact of treatment is immediate and constant, without any 

carryover effect or inherent effect attributable to (the act of) switching.  

The validity of these assumptions again depends on the clinical scenario. Thus, in 

SANAD B, it may be more appropriate to introduce lagged coefficients to allow for the 
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likely reduced effect of treatment during the titration phase, or a coefficient that 

decreases with time from the start of the withdrawal phase (as discussed for the MRC 

trial by White (89). It may be necessary to allow for the overlapping phases of treatment 

withdrawal (from randomised drug) and loading (of alternative drug) when patients are 

receiving two treatments (even though they are technically experiencing a treatment 

switch). Also the very act of switching treatment, regardless of the actual treatments 

involved, could potentially be a trigger for seizures, such that the switch is having a 

causal effect independently of treatment. To investigate whether this was the case, it 

would be necessary to test the significance of an indicator variable for treatment 

switches in the causal model. Furthermore, it is important to consider the impact of 

recensoring, in particular whether recensoring is likely to influence overall estimated 

treatment effects (if, for example, there is a treatment-time interaction, such that 

recensoring of late events causes a distortion in the estimated overall treatment effect). 

However the greatest concern regarding the use of the RPSFTM in the context of 

SANAD B relates to the complexities introduced by the T12mR outcome. In particular, 

as introduced briefly earlier, the RPSFTM fails to recognise two key features of T12mR. 

 

Figure 8 SANAD outcomes 
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First, by definition, 12 month remission cannot occur before 12 months, representing a 

discontinuity when modelling the effect of treatment. Secondly, a substantial proportion 

of patients are expected achieve I12mR, resulting in a large peak of events occurring at 

12 months (for example, in SANAD B, 28.4% (41%) of LTG (VPS) patients achieved 

I12mR). In order to accurately represent these data, the estimated AF from the 

RPSFTM would therefore need to be able to predict a very high event rate at 12 months 

with truncation of this treatment effect immediately prior to 12 months, which is not 

possible given the assumption of constant treatment effect. 

One solution to this would be to simply bring the event time forward by 12 months and 

instead analyse the time to the start of 12 months remission, equivalent to 𝑡 − 12. This 

simple transformation of event times would mean that the event could then occur at 

any time from randomisation onwards. However, this may introduce problems from a 

philosophical point of view, as one is technically analysing an outcome that occurs in 

the future: at the start of a period of 12 months remission, one does not actually know 

that, during this period, the patient will be seizure free. 

The RPSTFM would be used to adjust for the effect of treatment switches on time to 

start of achieving delayed 12 month remission (in other words, time to start of achieving 

12 month remission, conditional on not having achieved it by 12 months), estimated in 

only those patients who did not achieve I12mR. However, this model would also be 

complicated by the shift along the time axis (𝑡 − 12), given that the first 12 months of 

follow up not only regarding outcome but also treatment would no longer be considered 

in the model; in other words, the clock would start at 12 months for the time-

dependent treatment covariate as well as outcome.  
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It would not be appropriate to simply disregard the treatment received during the first 

12 months following randomisation, as this period importantly reflects the short- to 

medium-term tolerability of AEDs, during which treatment changes are common: for 

example, in the LTG arm, 45/59 (76.3%) of treatment switches (to VPS) occurred 

within the first 365 days, of which 40 occurred in patients with remission (or censoring 

time) beyond 1 year, whereas in the VPS arm, 25/34 (73.5%) of treatment switches (to 

LTG) occurred within the first 365 days, of which 18 occurred in patients with 

remission/censoring time beyond 1 year. 

It may at first seem possible to address this problem by including a summary measure 

of compliance until first seizure (or until 12 months, if the patient achieved I12mR) as a 

time-fixed rather than time-varying covariate (for example, by including a baseline 

variable “proportion of first 12 months spent on randomised treatment”) and then use 

a time-varying binary treatment covariate from 12 months onwards. However, this 

would introduce bias, given that this post-randomisation summary compliance variable 

is very likely to be related to prognosis. Instead, a time-varying summary measure of 

treatment receipt (such as the proportion of the previous 12 months that the patient 

was on randomised treatment) could be included in the RPSFTM as a time-varying 

indicator of treatment, thus capturing treatment information from the time of 

randomization. However, this introduces practical problems, as the RPSFTM software 

(in Stata) currently can only utilise binary treatment factors (although there are plans to 

extend the program to accommodate other forms of treatment variable in the near 

future).  

Furthermore, bringing forward the analysis time by 12 months would introduce another 

complication, namely that those with an I12mR (as well as those patients who were 
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censored with less than 12 months of follow up) would be excluded from the analysis 

(as their 𝑡 − 12   analysis time would be less than or equal to 0). Given that 

approximately 30% of newly diagnosed epilepsy patients achieve I12mR, this would 

result in a considerable loss of information and the model results would provide no 

information on this important class of patients. Although it would be possible to add on 

a small fraction of time (say 0.5 days) to these “0” event times to ensure that these 

patients are included in the analysis, this would reintroduce the problem concerning the 

peak in the number of events at this time, which cannot be accurately represented by 

the RPSFTM.  

An alternative solution would be to consider a mixture modelling approach, excluding 

those patients with I12mR from the RPSTFM and instead including them (along with 

all of the other patients) in an appropriate (causal) version of logistic regression to 

assess the effect of treatment on achieving I12mR.  

However, causal analysis of the simplified binary outcome I12mR is not 

straightforward, as compliance remains time-dependent despite the simplification to a 

binary outcome; therefore it is not appropriate, for example, to use the method of 

Sommer and Zeger (91), which instead assumes all-or-nothing compliance. Instead the 

method must in some way account for different treatments received within the first 12 

months of follow up (if immediate remission was achieved) or until the time of the first 

seizure (if a seizure occurred within 12 months of randomisation); treatment 

information following the first seizure (or 12 months, whichever occurs first) is 

irrelevant as it has no causal impact on achieving (immediate 12 month) remission.   

There is, however, no obviously appropriate method to assess binary outcome (I12mR) 

with a time-dependent treatment covariate that reflects treatment receipt only up to 
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time of time seizure. For example, the general structural mean model (GSMM) 

proposed by Vansteelandt (146) accommodates time-dependent compliance with binary 

outcomes, but this method assumes no switches from the control to experimental arm, 

which is invalid in this setting. Thus, although it would have been interesting to 

consider mixture modelling, given that the treatment switch variable is time dependent, 

it is likely to be overly complicated to implement such a method for these data.  

8.5.3. Conclusion 

The exploration of the RPSFTM in this chapter has highlighted its limitations when 

applied to complex trial scenarios, most notably the problems associated with multi-way 

randomisation and numerous forms of treatment deviation, given that the model is 

likely to become unstable with inclusion of more than one treatment covariate. 

Furthermore, the assumptions relating to the estimated AF do not match the 

characteristics of the remission outcome. Given that these complicating features are 

likely to be typical of trials in clinical areas subject to deviations from long term 

treatment of chronic disease, it would be useful to consider alternative methods of 

analysis for adjusting for such deviations when analysing survival outcomes. 

In particular, for the SANAD trial, the main problems with the application of RPSFTM 

related to the irregular distribution of event times at 12 months (the discontinuity of 

events before 12 months coupled with a peak of events at 12 months) and bias 

introduced by censoring of treatment changes other than direct switches between 

randomised treatments. As such, in light of these limitations in applying RPSFTM in 

these two trials, the next chapter will consider the use of an alternative approach to 

causal estimation for this complicated trial scenario, based on observational 
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methodology of inverse probability weighting rather than the counterfactual framework 

employed by the RPSFTM.  
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9. Novel application of IPCW 

methodology  

9.1. Introduction 

As seen in the previous chapter, the RPSFTM suffers from a number of major 

limitations when applied to analysis of T12mR in the complex SANAD trial scenario. In 

this chapter, an alternative method suitable for survival outcomes, but based on 

observational techniques rather than randomisation, will be considered, namely the 

IPCW method.  

The IPCW has the advantage over the RPSFTM in being more able to handle a variety 

of types of treatment changes, rather than simply dealing with a single type of treatment 

change. We will see how this added scope means that the IPCW is able to differentiate 
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between different reasons for treatment change, and more readily answer clinical 

questions of interest. 

The IPCW overcomes problems of a standard time-dependent treatment Cox model by 

adjusting for TVCs externally to the outcome model through their impact on treatment 

probability weights. In this chapter we will consider the fundamental issues of IPCW, 

the assumption of NUC in the presence of numerous potential confounders, of which 

some are complicated TVCs changing on a daily basis for some patients.   

9.2. Methods 

The IPCW method recognises the fact that any change from randomised treatment will 

likely lead to distorted event times which do not accurately reflect the experience of 

patients without such treatment changes. Thus, in the context of a randomised 

controlled trial with a survival outcome, the IPCW can be used to adjust for changes 

from randomised treatment by artificially censoring patients at the point of the first of 

any (relevant) treatment change. The potential bias introduced by this censoring is 

removed if one is able to make the assumption of NUCs, in other words, all variables 

which predict both the occurrence of treatment change and of the outcome event of 

interest, in this case 12 month remission, have been accurately recorded and are 

available for analysis. The time to treatment change is typically modelled separately for 

each treatment arm, as the effect of each confounder may differ according to treatment. 

The probability of remaining uncensored (i.e. not experiencing a treatment change) at 

each time point and for each patient is estimated from this treatment-specific model, 

dependent on their values of the variables included in the model. The inverse of these 

probabilities are then used to weight the analysis of the time to outcome event, which 
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must also be adjusted for all the baseline covariates. The reasoning behind this 

methodology is that, if one is able to determine all factors that jointly predict treatment 

change and outcome, weighting up the analysis of time to outcome (by the probability 

of remaining uncensored), while censoring at the point of any treatment change, assigns 

appropriate weight to individuals who remain uncensored to account for loss of those 

previously censored who share their same characteristics. Given the assumption that all 

predictors of the outcome have been included in the model, this weighting provides a 

pseudo-population that mimics the same likelihood of occurrence of outcome events 

that would have been observed if none of the patients’ follow up had been censored 

due to treatment changes.  

The IPCW analysis procedure therefore involves three main stages, to be described 

here, before considering their practical application in the SANAD arm B comparison of 

LTG versus VPS comparison on T12mR. 

9.2.1. Step 1: Fitting the weight determining (WD) model 

First, it is necessary to identify the important baseline and time-varying covariates that 

predict both switching and outcome. If the pool of potential confounders is large, it 

may be necessary to use some form of variable selection process, to avoid the 

possibility of overfitting the model (leading to model instability due to a low event per 

variable (EPV) ratio) and including variables that are correlated with each other. 

With time-varying covariates, it may be helpful to set up panel data, for example (as in 

SANAD) if the covariates are updated on a daily basis for some patients (for example, 

for those with multiple daily seizures) and it would be too complicated to adjust for 

covariates changing on a daily basis. These panel data are created by partitioning each 
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patient’s follow up data into intervals of fixed length, with TVCs which are valid at the 

start of each interval (e.g. seizure counts for month 𝑛 equal the total up to the end of 

month 𝑛 − 1). 

The probability of remaining uncensored (in other words, not experiencing treatment 

change) at each follow up time point, given these covariates, is then estimated for each 

patient using the weight determining (WD) model, either a Cox model for time to 

(first) treatment change or pooled logistic regression (PLR) for the discretised interval 

data with treatment change as the dependent variable.  

It may be more practical to use a discrete time model (based on logistic regression) 

rather than a model assuming continuous event follow up (survival model) to estimate 

the probability of remaining uncensored, not only when the TVCs are necessarily 

discretised into intervals (and therefore naturally lend themselves to discrete time 

analysis) but also because weight determination analysis with TVCs result in weights 

that vary within individual over time. Unless the statistical software can allow for 

within-individual time-varying weights in Cox regression, normal standard errors (SEs) 

from the Cox model (ignoring the patient identifier in the analysis) will be inaccurate 

and it will be necessary to implement bootstrapping (BS) for valid confidence interval 

(CI) estimation.  

Pooled logistic regression  

Therefore, as an alternative to the Cox model (using BS CIs), it may be helpful to 

instead consider applying the variety of logistic regression known as pooled logistic 

regression (PLR), in which follow up time is split into uniform short time intervals such 

that LR can be performed independently in each interval (183). If follow up time is 
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discretised into sufficiently short time periods such that the probability of event within 

each interval remains low (less than 10%), logistic regression (LR) approximates Cox 

model well, so that the estimated HR within each interval can be estimated from the 

odds ratio (OR) obtained from LR (184). Each observation interval (of equal length) is 

in essence a mini follow up study in which the current risk factor measurements are 

used to predict the probability (𝑝) of event of interest in the interval among patients at 

risk of the event at the start of the interval; thus the probability of not experiencing the 

event (1 − 𝑝) can be calculated for each interval. The cumulative probability of not 

experiencing the event by each time point (mimicking the estimated survival 

probabilities at each follow up time obtained from the Cox model) are obtained by 

simply multiplying the (1 − 𝑝) estimated for the current and all previous intervals, 

leading to the term pooled logistic regression (PLR). 

Therefore, if PLR is used, the cumulative probability of remaining on assigned 

treatment is calculated by multiplying a patient’s predicted probability of remaining 

uncensored in the current time interval by all their previous time intervals’ estimated 

probabilities of remaining uncensored. These probabilities are then used to determine, 

for each patient 𝑖 at each time point 𝑘, their probability of remaining under randomised 

treatment (in other words, their probability of not experiencing a treatment change and 

therefore remaining uncensored).  

Note that, regardless of choice of WD model, it is advisable to calculate the 

probabilities of censoring separately for each randomised treatment group, as the 

influence of covariates on the probability of treatment changes are likely to differ 

according to treatment. As such, separate WD models should be created for each of the 

randomised treatment groups separately.  
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Bootstrapped CIs 

The incorporation of weights has been shown to reduce SEs (185) (186). Thus bias 

results when standard methods as used for CI estimation as they regard the weights as 

fixed, whereas non-standard methods (such as bootstrapping) can explicitly allow for 

the estimation of the weights, reflecting more accurately the associated reduction in 

variability. Thus, it may be advantageous to use bootstrapping for CI estimation 

regardless of the choice (between Cox or PLR) of WD model, in order to appropriately 

account for the reduction in SE estimates as a result of the weight estimation process. 

Splines necessary for PLR  

When using PLR in place of a Cox model, one needs to consider how best to model the 

underlying baseline event rate. In order to mimic the underlying hazard function of Cox 

regression, while avoiding the need for a separate intercept term for each interval in 

PLR, spline variables can be used to allow the underlying risk of the event to vary from 

interval to interval (187). (Although penalised splines are another popular choice that 

would have been suitable in this context, these were not considered here, as they require 

specialised software and are thus less generally applicable for wider use by non-experts.)  

The simplest example of a spline function is a linear spline function, such that each 

section between each pair of knots consists of a linear function. For example, with three 

knots at positions a, b and c, the linear spline function would be defined as 

𝑓(𝑋) = 𝛽0 + 𝛽1𝑋 + 𝛽2(𝑋 − 𝑎)+ + 𝛽3(𝑋 − 𝑏)+ + 𝛽4(𝑋 − 𝑐)+ 

where (𝑢)+ = {
𝑢, 𝑢 > 0,
0, 𝑢 ≤ 0.
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In practice, linear splines are overly simple and are not smooth; instead, cubic 

polynomials are more suited to modelling curving distributions. In order to ensure that 

such splines are smooth at the joining positions (i.e. at each knot), the first and second 

derivatives of these functions are forced to agree at each knot position. Furthermore, in 

order to overcome the potential problem of irregular behaviour of such splines in the 

tails of the distribution (i.e. preceding the first knot and following the last knot) due to 

sparse data, restricted cubic splines which constrain the function to be linear in these tails, 

are recommended, with the additional advantage of requiring estimation of only (𝑘 − 1) 

parameters (instead of the usual 𝑘 + 3  parameters required for unrestricted cubic 

splines) (187). A restricted cubic spline with 𝑘 knots 𝑡1, 𝑡2, . . , 𝑡𝑘 is defined by 𝑓(𝑋) =

𝛽0 + 𝛽1𝑋1 + 𝛽2𝑋2 + ⋯ + 𝛽𝑘𝑋𝑘−1, where 𝑋1 = 𝑋 and for 𝑗 = 1,2 … , 𝑘 − 1, 

𝑋𝑗+1 = (𝑋 − 𝑡𝑗)
+

3
− (𝑋 − 𝑡𝑘−1)+

3
(𝑡𝑘 − 𝑡𝑗)

(𝑡𝑘 − 𝑡𝑘−1)
+ (𝑋 − 𝑡𝑘−2)+

3
(𝑡𝑘−1 − 𝑡𝑗)

(𝑡𝑘−1 − 𝑡𝑘−2)
 

In order words, for restricted cubic splines, variables are created equal to the positive 

part of (𝑥 − 𝑘1)3 , (𝑥 − 𝑘2)3 , (𝑥 − 𝑘3)3  but with restrictions imposed to ensure 

linearity in the tails (i.e. for 𝑥 < 𝑘1 and 𝑥 > 𝑘3). 

Placing knots at fixed percentiles of each covariate is recommended, thus ensuring 

sufficient data points within each interval and preventing undue influence from outliers 

on the choice of knot location. For example, for 𝑘 = 3, knots may be placed at the 10th, 

50th and 90th percentiles; for 𝑘 = 4, knots may be placed at the 5th, 35th, 65th and 95th 

percentiles; and for 𝑘 = 5, knots may be placed at the 5th, 27.5th, 50th, 72.5th and 95th 

percentiles. Durrleman (188) demonstrated that results are generally insensitive to the 

location of knots unless they are placed in particularly non-uniform locations (for 
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example at 25th, 75th, 90th, 95th and 99th percentiles). However, if the hazard is likely to 

change shape or be particularly changeable at a certain time, one or more knots may 

need to be placed near these change points (187). 

The number of knots can impact on the EPV ratio, as a spline with 𝑘 knots will require 

(𝑘 − 1) parameters, in addition to the coefficient for the linear time variable (which 

necessarily accompanies the spline variable) (thus adding 𝑘 knots in all). When choosing 

the number of knots to be used when fitting a spline, one should aim for balance 

between allowing sufficient flexibility without overfitting the model to the data, which 

leads to loss of precision (189). Stone suggests that between three and five knots will 

usually be adequate, depending on number of events (in the case of logistic or Cox 

regression).  

The number of knots to use for the time spline variables must therefore be considered 

in light of the number of other variables included in the WD model and relative to the 

number of treatment change events, in order to avoid overfitting the model. If data are 

available on numerous potential confounders, some of which may be correlated, it may 

be necessary to impose some form of selection procedure in order to cut down the 

number of variables in the model. 

These spline variables are created in Stata using the command spbase: 

centile m if treat_num==0, centile(5(45)95) 

spbase m if treat_num==0, gen(m_spline_LTG) knots(1, 9, 34) 

 
centile m if treat_num==1, centile(5(45)95) 

spbase m if treat_num==1, gen(m_spline_VPS) knots(1, 9, 30) 

 

* combine splines into one variable 

forvalues i = 1(1)3 { 

 gen m_spline_`i' = m_spline_LTG`i' if treat_num == 0 

 replace m_spline_`i' = m_spline_VPS`i' if treat_num == 1 

} 
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forvalues i = 1(1)3 { 

 rename m_spline_LTG`i' original_m_spline_LTG`i' 

 rename m_spline_VPS`i' original_m_spline_VPS`i' 

} 

 
Selection of variables 

Some advocate not using any selection procedure to determine which covariates to 

include as confounders in the models of time to treatment change and time to event, 

but instead to include all covariates that are considered to be clinically important (151). 

The justification for this approach is to ensure that no important confounders are 

excluded on the basis of the chosen selection procedure, especially if the selection of 

variables depends on their statistical significance in predicting these events, as there may 

be insufficient power in the dataset to demonstrate such significance.  

However there is a danger that including too many covariates which are not correlated 

with outcome may introduce more uncertainty into the analysis results (specifically very 

variable weights), rather than the intended opposite of reducing variability. Thus, 

although it may therefore be tempting simply to adjust for all known baseline and time-

varying covariates, the inclusion of variables that do not predict both outcome and 

remission will lead to spurious results. Furthermore, there is a danger of overfitting the 

model if too many variables are included, leading to model instability (manifested by 

very large coefficients and SEs) due to low EPV ratios (190).  

Therefore, in aiming for the most parsimonious model that still explains treatment 

changes, it may be deemed necessary to use a variable selection process to determine 

which of the many measured covariates should be adjusted for in this model. The 

selection of variables for inclusion in a model is usually determined by p-values of 

potential variables in the model. There are, however, a number of reasons why this 

would not be an appropriate selection method for this model. 
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Although both time-varying covariates and baseline variables need to be included in the 

WD model, the WO model only includes baseline variables that predict remission, in 

order to increase power. Confounding due to TVCs has been eliminated via weights, 

simulating a balanced RCT, and explicitly adjusting for the TVCs in the model would 

introduce bias. As such, there are no p-values generated for the TVCs in the WO 

model. 

Furthermore, as discussed above, the SEs (and hence the p-values) from the weighted 

PLR model of time to remission and from the Cox model (in particular) are invalid; 

thus bootstrapped SEs must be constructed. If the selection procedure relied on p-

values, it would be necessary to bootstrap the entire selection procedure, adding to the 

complexity of the selection procedure beyond what would be feasible.  

Therefore it is advisable to use an alternative method, which assesses the change in 

treatment effect HR from WO Cox model (or odds ratio (OR) if using PLR) when each 

potentially confounding variable is included (if using forward selection) or excluded (if 

using backward selection) from the IPCW model, using a relatively small threshold 

(suggested maximum of 10%) to determine whether each variable should be included. 

For example, when using backward selection, if exclusion of the variable (from the WD 

model) causes the treatment effect HR (in the WO model) to change by more than 10% 

(also known as the CHEST (CHange in ESTimate) criterion), the variable would be 

retained (191).  

Practical considerations for this selection process include the choice of threshold for 

inclusion of covariates, choice of whether to use forward or backward selection 

procedures and the inherent reliability of the selection procedure, in terms of EPV 

ratios. 
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9.2.2. Step 3: Creating stabilised weights  

The WD model is then used to provide time-dependent stabilised weights, which are 

created for each patient 𝑖 at each time point 𝑘  during which they remain under 

randomised treatment, derived from the inverse of their estimated probabilities (of 

remaining uncensored). As described in Chapter 5, two separate WD models are in fact 

required in order to generate these stabilised weights: the first WD model adjusts for 

baseline characteristics only, whereas the second WD model adjusts for both 

baseline and time-dependent covariates. Stabilised weights for each time interval are 

calculated as the ratio of the cumulative probability of remaining uncensored (due to 

treatment change) from randomisation until (the end of) that interval given only 

baseline covariates (in other words, using estimated probabilities from the first WD 

model) divided by the corresponding probability given both baseline and time-

dependent covariates (using estimated probabilities from the second WD model).  

For example, the numerator of the censoring weights 𝑊𝑘  at time point 𝑘  (where 

subscript 𝑖 denoting individual is dropped for simplicity) could be estimated, using a 

PLR model applied separately for each treatment arm (𝑍) to determine the likelihood of 

remaining uncensored at time 𝑘  dependent on baseline covariates 𝑋0 :  Pr [𝐶𝑘 =

0|𝐶�̅�−1 = 0, 𝑋0 = 𝑥0, 𝑍 = 𝑧]. Similarly, the denominator of the censoring weights 𝑊𝑘 

would be estimated, again separately for each treatment arm, using a PLR model to 

determine the likelihood of remaining uncensored at time 𝑘 dependent on baseline and 

time-varying covariates valid at the start of time period 𝑘 (i.e. �̅�𝑘−1): Pr [𝐶𝑘 = 0|𝐶�̅�−1 =

0, �̅�𝑘−1 = �̅�𝑘−1, 𝑍 = 𝑧].   

These estimated probabilities are then used to produce the following stabilised weights  
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𝑊𝑘 =
Pr [𝐶𝑘 = 0|𝐶�̅�−1 = 0, 𝑋0 = 𝑥0, 𝑍 = 𝑧]

Pr [𝐶𝑘 = 0|𝐶�̅�−1 = 0, �̅�𝑘 = �̅�𝑘, 𝑍 = 𝑧]
 

Therefore each individual only contributes observations for the time points during 

which they remain under their assigned treatment protocol (after which 𝐶𝑘 = 1). 

Once these weights have been created, it is necessary to check their distribution to 

identify any extreme weights, which may occur for a number of reasons. Firstly, if the 

majority of patients in a given subgroup (defined by the cross-classification of the 

baseline and time-varying covariates included in the WD model) change treatment, the 

remaining patients will be assigned very large weights to account for the huge loss of 

information from all other patients in this subgroup. Extreme weights will also result if 

an incorrect functional form for covariates is specified in the WD model, as predictions 

of probabilities are then based on an incorrect relationship between each covariate and 

the outcome.  

9.2.3. Step 3: Fitting the weighted outcome (WO) model  

Once any problems regarding weights have been addressed, the stabilised weights are 

applied to the WO model of time to outcome event, regressed on randomised treatment 

group and baseline covariates only and artificially censoring patients when they deviate 

from their assigned treatment.  Thus this weighted outcome (WO) model (Cox 

model or PLR) is fit to the randomised group data, applying the time-dependent 

patient- and interval-specific stabilised weights to the outcome data, with patients who 

change treatment being assigned a weight equal to 0 (i.e. inducing censoring) in all 

intervals after treatment change.  
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As for the WD model, when the probability of the outcome event in each time interval 

is relatively small, the cumulative probability of remaining uncensored (obtained by 

multiplying each person’s estimated probabilities for each successive month of follow 

up) estimated using PLR will be approximately equal to the probability obtained using a 

Cox model (183). 

The randomised treatment indicator and baseline covariates included in the WD model 

are included as covariates in the WO model, but the time-dependent covariates are not 

included, given that their influence has been removed via the weighting process; indeed 

adjusting for TVCs in the WO model would introduce bias as would any standard 

analysis regressing on TVCs. Note that, if the analysis plan specified that no baseline 

variables were to be adjusted for in analysis, the first “baseline only” WD model 

(providing the numerator of the stabilised weights) would include no covariates; in 

other words, for such an unadjusted WO model, it would be necessary to simply apply 

the unstabilised weights = 
1

Pr [𝐶𝑘+1=0|�̅�𝑘=0,�̅�𝑘=�̅�𝑘,𝑍=𝑧]
 . 

9.3. Application of IPCW to SANAD B 

SANAD is an example of a trial with dynamic treatment regimens, in which, following 

random assignment of initial treatment, a patient’s prescribed treatment over the course 

of the trial may vary depending on the patient’s evolving prognosis (118). When 

defining the causal research question for such a trial, it may not be clinically sensible to 

ignore the underlying reasons for these changes, for example, as for a simple 

comparison of “always treated” versus “no treatment” contrasts, which adjusts for all 

observed treatment changes. Instead a more precise causal contrast may be more 
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appropriate, given that some treatment changes are inevitable and therefore it may not 

be relevant to factor them out of causal estimation.  

The ability to account for all treatment changes in the IPCW model (rather than simply 

treatment switches, as in the RPSFTM) provides added scope to extend investigation to 

consider the underlying reasons for treatment changes, and thus more adequately address 

the clinical question of interest.  

Thus, it was necessary to consider how the treatment effect estimated by the IPCW 

model is directly linked to causal question of interest through the adjustment of relevant 

competing forms of treatment change. 

9.3.1. Reasons for treatment changes  

When considering the reasons for treatment change in SANAD, in contrast to the 

RPSTFM, which was only able to adjust for treatment switches between randomised 

treatments, the IPCW is able to adjust for all varieties of treatment changes, of which 

there are many. Adjustment for all types of treatment changes answers a slightly 

different research question from that which was answered by the RPSTFM, by 

providing an estimate of the relative treatment effect between treatments that would 

occur in the absence of any departure from randomised AED. 

Furthermore, in contrast to treatment changes which occur prior to the TFS (which are 

primarily due to unacceptable adverse events (UAEs) associated with randomised drug), 

treatment changes prior to a period of 12 month remission may occur for a number of 

competing reasons, most commonly UAEs or ISC. These events are inversely related 

via dose: as dose increases, seizure control is likely to improve but adverse effects may 

well increase. Withdrawal due to UAE was largely limited to early post-randomisation 
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period, and withdrawal due to ISC was generally later because upward titration of dose 

took place before clinicians decided to withdraw patients due to ISC. 

Although there is interest in the causal efficacy of treatment generally (obtained by  

adjusting for all treatment changes), clinicians are primarily interested in adjusting for 

switches that occurred due to ISC rather than because of UAEs. The argument follows 

that it may be possible to reduce the incidence of treatment changes due to ISC by 

persevering with the treatment and applying more appropriate dosing (incrementally 

increasing dose until seizure control is achieved) whereas the issue of UAEs is less easily 

solved without appropriately ameliorating drugs. Thus, given that it is unlikely that 

genetic testing will develop sufficiently to allow identification of patients who will be 

able to tolerate such AEs, adjustment for this cause alone isn’t a relevant clinical 

question. Instead the causal treatment effect estimate of primary interest to clinicians is 

that which adjusts for switches occurring due to ISC alone (private discussion with 

Marson, Smith 2012).  

Competing risks approach 

Given the medical interest in the competing reasons for treatment change, it may seem 

natural to consider adjustment for multiple causes of treatment change using a standard 

competing risks approach (as demonstrated by (151)), whereby each patient’s follow up 

is censored at the time of the first treatment change, with separate weights being 

calculated for each of the (first occurring) different competing reasons for treatment 

change. These weights can then be applied in separate analyses (to adjust for each type 

of treatment change independently of the others) or combined into overall weights by 

simple multiplication (under the assumption that the covariates in the model remove 

any association between these weights) (151).  
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Indeed, in the analysis of time to treatment withdrawal, it is relevant to consider 

competing reasons for treatment change, as the effect of ISC and UAE may compete, 

cancelling out the effect of a certain treatment on outcome (192). However when 

considering adjustment for treatment change, the question of whether to adjust for 

treatment changes occurring for different reasons instead directly relates to the 

relevance of these treatment changes to the causal research question. Thus, rather than 

applying standard competing risks methodology to the context of IPCW modelling 

(151), it was deemed more appropriate to approach this investigation into the effect of 

different reasons for treatment change using a sequence of IPCW analyses, determined 

according to the relative clinical importance of each reason.  

This alternative approach was possible primarily due to the luxury provided by this data 

set, such that follow up generally continues beyond the point of each treatment change; 

therefore, it was not automatically necessary to censor patient follow up at the point of 

the first treatment change. As such, if a particular form of treatment change was not 

relevant to the causal research question being investigated, the treatment change could 

simply be ignored without introducing any informative censoring; for example, if 

considering what the causal effect of treatment would be in the absence of treatment 

changes due to ISC alone, none of the other treatment changes would be adjusted for in 

the weighting or outcome model. 

Sequential analyses according to reasons for treatment changes 

Thus, an alternative, more appropriate approach to adjusting for different reasons for 

treatment changes in this context was to consider a sequence of analyses, adding 

different reasons for treatment changes sequentially according to clinical importance. 

Therefore, as adjustment for reasons related to ISC was of primary interest in SANAD, 
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this was the first reason for treatment change included in the hierarchy. Then, assuming 

that it would be easier to persuade a patient to remain on treatment when they are 

considering changing treatment for reasons of personal choice (for example, due to 

non-compliance or potential to become pregnant), this was the second reason added to 

the hierarchy, with the final analysis including all treatment changes (in other words, 

including UAEs also, which is considered the least easily or ethically altered treatment 

change).  

Analysis mimicking ITT was also possible, in other words, one that adjusts for no 

treatment changes at all and thus requires no weight estimation. Furthermore, the 

possibility of carrying out an additional analysis, similar to an ITT analysis but which 

allows for the possibility of informative censoring due to LTFU, was considered. The 

probability of such censoring can be modelled in a similar way to the probability of 

treatment change, using the appropriate baseline and time-varying covariates in a PLR 

or Cox model; the inverse probability of censoring weights can be multiplied by the 

inverse probability of treatment change weights in order to obtain an overall weight to be 

used in the model of time to 12 month remission. (The validity of simply multiplying 

these weights to obtain an overall weight holds if one is able to assume that inclusion of 

the baseline and time-varying covariates in the model removes the dependence between 

these two events, censoring and treatment change.) This analysis would provide an 

estimate of the expected treatment effect if no informative censoring had occurred. 

In the context of SANAD, however, although it would have been interesting to 

investigate the effect of censoring (of time to remission) that occurred as a result of 

LTFU, non-epilepsy-related death or withdrawal of consent (collectively referred to as 

LTFU), such an analysis was not possible, as there were very few patients who were 
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censored prior to remission or treatment change. Thus it was not feasible to reliably 

model separate weights for the probability of treatment change versus censoring. 

However, as there were very few censoring events, any associated bias due to this 

censoring is unlikely to unduly influence the overall results. Instead, therefore, given 

that the ITT analysis assumes that censoring is non-informative, this assumption was 

applied to all censored observations throughout the hierarchy of analyses (even when 

patients were LTFU, withdrew consent or died for reasons not related to epilepsy), 

implying that such weights (to reduce bias due to early censoring) were not necessary.  

Thus the sequential structure to the investigation of the effect of covariates on 

treatment change and remission took the following format, with interpretation of the 

corresponding causal research question given in Table 37. 

Table 37 Sequence of IPCW analyses, relating to reason for treatment changes 

 Artificial censoring Interpretation 

ITT (no treatment 
changes) 

No artificial censoring Observed treatment effect demonstrating 
effectiveness of treatment assignment  

ISC alone Artificial censoring at the 
time of treatment changes 
occurring due to ISC  

Treatment effect estimate that would have 
been observed if it had been possible to 
prevent treatment changes occurring due to 
ISC (of primary interest to clinicians) 

ISC/personal 
choice 

Artificial censoring at the 
time of treatment changes 
occurring due to ISC or 
personal choice  

Treatment effect estimate that would have 
been observed if it had been possible to 
prevent treatment changes occurring due to 
ISC or for reasons of personal choice 

All (ISC/personal 
choice/UAEs) 

Artificial censoring at the 
time of (the first of) any 
treatment change 

Treatment effect estimate that would have 
been observed if it had been possible to 
prevent all treatment changes occurring 

   

In practice, this artificial censoring affects analysis only if the (relevant) treatment 

change occurred prior to the remission time. If the treatment change occurred before 

the patient achieved remission (or before their follow up for remission was censored), 

their remission time 𝑇𝑖 would be brought forward to the time of their (first) treatment 
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change 𝐹𝑖 and the corresponding remission indicator 𝑅𝑖 (denoting whether or not the 

patient had experienced remission (𝑅𝑖 = 1) or had simply been censored (𝑅𝑖 = 0)) 

would be changed to indicate censoring (𝑅𝑖 = 0). If the treatment change occurred 

post-remission, however, the remission time remains unchanged. Furthermore, 

outcome analysis is affected only if the reason for the patient’s first treatment change 

corresponds with the causal question; for example, when adjusting only for treatment 

changes due to ISC or personal choice, a patient’s remission time would not be 

artificially censored if their first treatment change occurred because of UAE.  

9.3.2. Causal diagram 

In applying this method to the SANAD B (VPS versus LTG) data, there were a number 

of factors requiring careful consideration. Prior to making decisions regarding analysis, 

it was helpful to sketch a causal diagram, such as the one in Figure 9, to clarify the 

causal scenario and summarise the interplay between (initial and updated) treatments, 

prognosis (in terms of baseline and time-varying factors related to the patients’ 

condition) and remission. In this simplified diagram, 𝑍 denotes randomisation, 𝐴0 initial 

prescribed (i.e. randomised) AED, 𝐴1 first change in treatment determined by patient’s 

state at time 1 (denoted by time-varying prognostic factors 𝑋1 such as UAE or seizure 

occurrence), 𝑈  underlying baseline prognosis and 𝑌  refers to outcome (time to 

remission). 
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Figure 9 Simplified causal diagram for SANAD T12mR 

A causal diagram is particularly helpful when applying IPCW methodology to complex 

scenarios such as SANAD. First, the diagram may help when deciding which causal 

effect is of interest, for example, perhaps that corresponding to the effect of initial 

treatment (only up to the point of a certain clinical event, such as UAEs) (∆1) or to the 

whole treatment experience (∆). Furthermore, the diagrams prompt one to identify all 

baseline and time-varying factors that are likely to confound the relationship between 

treatment received and outcome, such as dose, seizure control and AE occurrence. 

Indeed this was one of the main challenges when applying the IPCW methodology in 

SANAD, as data were collected on a large number of such potential confounders.  

Thus one of the main complication of this modelling exercise was in determining which 

of the numerous (time-dependent and baseline) variables should be included in the WD 

models. In SANAD there were a number of important baseline characteristics that 

conceivably influence the occurrence of both treatment changes and remission, 

including eight categorical variables (gender, febrile seizure history, first degree relative 

with epilepsy, treatment history, neurological insult, EEG result at randomisation, 

seizure type and epilepsy type) and three continuous variables (age, time interval 

between first ever seizure and randomisation, and total number of tonic clonic seizures 
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prior to randomisation). Additionally the three time-varying covariates (TVCs) 

(prescribed dose of randomised drug, and the number of AEs and seizures since 

randomisation) were all conceivably influential on the occurrence of changes from 

randomised treatment and on time to remission. 

Prior to deciding which of these covariates should be included in the WD and WO 

models, by way of a selection procedure, it was necessary to decide how to model the 

TVCs in a manner that was clinically meaningful and statistically viable; this was extra 

challenging in SANAD given the highly skewed nature of these variables due to extreme 

values of these covariates experienced by a minority of patients. 

9.3.3. Time varying covariates 

The first obvious TVC was (cumulative) seizure count (since randomisation), as seizure 

occurrence impacts on the likelihood of treatment change as well as remission. 

Although seizure count is in fact structurally related to the remission outcome, its 

adjustment in this setting is nevertheless valid (and indeed essential), given that (as a 

TVC) it is included only in the treatment change (WD), rather than the remission (WO), 

model. 

Data on seizures were collected in line with the pragmatic nature of trial; given that it 

would have been too difficult to collect date of each individual seizure, patient CRFs 

simply collected dates of first and last seizures and total seizure count since last visit. 

This imprecise record of seizure times, coupled with the potential for multiple daily 

seizures for some patients (such that their value of this TVC changed on a daily basis) 

suggested that instead of using individual estimated seizure times to calculate daily 
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updated records of cumulative seizure counts, a sensible compromise would instead be 

to use interval data.  

In order to calculate such interval data, the date of individual seizures were first 

estimated based on the assumption of regular intervals between seizures (by subtracting 

date of first seizure from date of last seizure, and dividing by the total number of 

seizures to get an estimate of the interval between each seizure, and then working out 

approximate dates of seizures based on this interval). These estimated seizure dates 

were then used to create cumulative interval-based counts of seizures, leading to a step 

function that changed on an interval (for example, monthly or weekly) basis. 

The second obvious confounder, being related to both remission and treatment 

changes, was the occurrence of AEs. Unlike seizure dates, the date of onset of each type 

of AE was recorded precisely in patient CRFs, along with information on whether the 

patient was hospitalised and the length of their stay in hospital. In order to account for 

the severity of the AE, the occurrence of any AE which resulted in hospitalisation was 

weighted by the number of nights spent in hospital. Hence the cumulative AE variable 

increased by a value of one on the date that each AE occurs, except when the AE 

required hospitalisation, in which case the variable increased by a value equal to the 

number of nights spent in hospital.  

The third potential confounder was dose of randomised treatment, which was recorded 

at each clinic visit (and was assumed to be unchanged and adhered to between visits). 

When these TVCs were discretised into interval values, the value assigned to each 

interval was that which was valid at the start of each interval, such that this value was 

then assumed to stay constant for that entire time period (to ensure that the values were 
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not affected by any event occurring within that interval). For example, the cumulative 

AE (or seizure) counts for time interval 𝑛 equaled the total up to the end of interval 

𝑛 − 1. Similarly, the interval value for dose at a particular interval was the last recorded 

dose from within the previous interval.  

Width of time interval 

Prior to modelling using these TVCs, it was therefore necessary to decide on the 

optimal length of time interval, in order to strike the balance between greater accuracy 

(which increases as interval length decreases) and computational intensity (which 

increases with interval length). Taking into account the frequency and duration of 

follow up information in this analysis, it appeared sensible to use fortnightly intervals; 

however, in order to check whether this choice of interval length was overly influential 

on the results, repeat analyses using weekly and monthly intervals for these time-varying 

cumulative counts were also planned.  

9.3.4. Covariate issues relating to stability of model  

The next feature of the model that required investigation related to the impact of 

covariate profiles on the stability of the model, firstly with regard to the highly skewed 

distribution of all of the continuous baseline and time-varying covariates. It was 

necessary to consider how reduce the influence of these outlying values in the 

regression modelling. Royston (193) advocates truncating continuous variables at their 

1% and 99% centiles, in order to prevent unstable modelling due to overly influential 

extreme values; thus this truncation was applied to these variables. 

The next issue regarding covariate distributions related to the small number of patients 

in some categories of the baseline categorical variables; for example, an uneven split of 
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patients among treatment history and seizure types meant that some categories 

contained very patients or events, which would lead to unstable modelling. As such, 

clinical guidance was sought on how to collapse categories within these variables to 

increase statistical stability whilst preserving clinical relevance. For example, the two 

“previously treated” categories of the treatment history variable (current monotherapy 

(M) and relapse following previous remission and withdrawal from therapy (R), in 

which there was no variation in the occurrence of events for certain treatment/history 

combinations (as shown in Table 38) such that these patients were in effect excluded 

from PLR analysis) were combined so that patients were instead simply classified as 

either previously treated or untreated.  

Additionally, given its high correlation with the binary variable epilepsy type (generalised 

or unclassified), it was decided that the seizure type variable (with five different 

categories, some of which contained very few patients) would not be considered for 

potential inclusion in the model. In reducing the number of potential (categories of) 

variables available for inclusion in the model, these considerations also helped to 

address the problem of low EPV ratios. 

 

Table 38 Number of patients with treatment withdrawal out of total number of 
months of follow up (out of total number of patients) 

Treatment change due 
to 

Treatment 
group  

Monotherapy Relapse after 
remission  

Untreated 

ISC LTG 5/268 (5/13) 1/184 (1/6) 44/2941 (44/178) 
VPS 4/190 (4/14) 0/110 (0/7) 22/2881 (22/175) 

ISC/choice LTG 5/168 (5/13) 2/167 (2/6) 46/2926 (46/178) 
VPS 4/190 (4/14) 0/110 (0/7) 25/2885 (25/175) 

All treatment changes  LTG 6/242 (6/13) 3/90 (3/5) 56/2502 (56/166) 
VPS 4/178 (4/13) 2/79 (2/7) 50/2355 (50/169) 
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9.3.5. Low power 

As already mentioned, there were too few patients who experienced LTFU (prior to 

their first treatment change or remission outcome) to allow independent investigation 

into the effect of LTFU on remission. However, as each analysis proceeded in the series 

of treatment change scenarios, it similarly became apparent that there were low 

numbers of treatment changes in each treatment group on which to base the treatment-

specific WD models for the “restricted” treatment change scenarios. Thus, as can be 

seen in Table 39, treatment changes were especially low in the VPS arm, in particular 

those occurring due to ISC alone (26) or ISC/choice (29). Thus the corresponding 

analyses had little power to determine which confounders were influential on the 

treatment effect (HRs or ORs from Cox or PLR WO models, respectively) for these 

scenarios. 

Table 39 Number of events 

 Withdrawal  Remission  
 VPS LTG VPS LTG 

None (ITT) - - 154 143 
ISC only 26 50 141 110 
ISC/choice  29 53 139 108 

All (ISC/choice/UAEs) 56 64 114 90 
 

To put this into context, allowing for (𝑘 − 1) dummy variables required for a 

categorical variable with 𝑘 categories, there were 20 variables being considered for each 

FS and BE selection process: three time-varying covariates (dose, cumulative seizure 

count, cumulative AE count), three baseline continuous variables (age, time between 

first ever seizure and randomisation, total number of tonic clonic seizures ever before 

randomisation), four binary variables (sex, neurological insult, febrile seizures, first 

degree relative with epilepsy) and three categorical variables with more than two 
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categories (treatment history: untreated, taking (non-trial) monotherapy at 

randomisation, relapsed after previously achieving remission following treatment; EEG 

result: epileptic abnormality, nonspecific abnormality, normal, not done; seizure type: 

generalised tonic-clonic seizures only, absence seizures, myoclonic or absence seizures 

with tonic-clonic seizures, tonic-clonic seizures uncertain if focal or generalised, focal 

seizures with or without tonic-clonic seizures, and other unclassified).  

Thus, given the rule of thumb that a stable model requires at least 10 events per variable 

considered in a model selection process (180), the validity of using a FS or BE selection 

processes was called into question, especially in the restricted withdrawal scenarios (ISC 

or ISC/choice) in the VPS arm.  

There were a number of options to prevent model overfitting and instability: either 

reducing the number of variables considered for selection; carrying out only FS (as the 

full models (including all variables) in BE would exhibit extreme overfitting); or only 

fitting models for the “all treatment changes” scenario. The last of these would be the 

least favourable option, as clinicians are primarily interested in the “ISC” scenario. It 

was decided, therefore, to cut down the initial pool of potential variables before FS or 

BE were carried out, by applying a cut-off of at least 1% change in HR; in other words, 

when the inclusion of the variable in the WD model caused the treatment effect 

estimated in the WO model to vary by more than 1% compared to the estimated 

treatment effect when the variable was excluded (and therefore the WD contained only 

the time spline variables). The likelihood of overfitting would also be checked by 

explicit reference to the EPV ratio for each model, relating to the maximum model size 

for each (considering in particular the full initial model for BE).  
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This consideration of EPV ratio relates directly to the next issue that required 

consideration for this modelling exercise. 

9.3.6. Knots for spline variables  

The next major consideration for analysis regarded the number and positioning of the 

knots required for spline variables in the PLR analyses. These spline variables are 

intended to mimic the underlying probability of treatment change (in the WD model) or 

remission (in the WO model) over time.  

In order to determine the optimal number and position of knots for the spline variables, 

a comparison of PLR results using 3, 4 and 5 knots were made against those obtained 

from a Cox model. As this analysis progressed, there were a number of key 

observations that are worthy of note relating to the choice of number of knots and their 

positioning. 

Initially it was decided that the splines would be generated using the number (and 

position) of spline knot positions as recommended by Stone (189); hence, for 𝑘 = 3, 

knots were be placed at the 10th, 50th and 90th percentiles of the observed follow up time 

intervals (weeks, fortnights or months); for 𝑘 = 4, knots were placed at the 5th, 35th, 65th 

and 95th percentiles; and for 𝑘 = 5, knots were placed at the 5th, 27.5th, 50th, 72.5th and 

95th percentiles.  

First, it is important for users to appreciate that different spline variables must be 

created for the WD and WO models, according to the (chosen) percentiles of the 

follow up times for the treatment change and outcome events respectively. The spline 

variables for the WD model should be treatment-specific, based on the centiles of 

observed treatment change times in each treatment group separately, whereas the WO 
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spline variables are positioned according to centiles of the observed outcome times for 

the overall trial.  

If, instead, the same spline variables are used (for the WD and WO models), the PLR 

model becomes unreliable and unstable. This instability results because the use of the 

treatment-specific splines (generated for the WD models) in the WO (remission) 

models in turn means that separate baseline odds are estimated for each treatment 

group in the WO models, implying a complex underlying time-treatment interaction (as 

opposed to the overall baseline hazard estimated by the Cox model). For example, in 

Table 45 of Appendix A, it can be seen that, if the (treatment-specific) splines generated 

for the WD model are applied to the WO, the PLR results become highly sensitive to 

the number of knots, demonstrating highly variable treatment estimates across time 

intervals and treatment change scenarios compared to the corresponding Cox model 

estimates. Given that this occurs even under the ITT scenario and without weights (in 

other words, when no TVCs were adjusted for), this model instability is obviously due 

to mis-modelling of the main time effect; otherwise, with correct specification of the 

time effect, the PLR model (including no baseline or TVCs) would have more closely 

mirrored the Cox model.  

Thus it was necessary to create separate spline variables for the WD and WO models, 

the former being treatment-specific and the latter overall for the whole trial. When 

considering the positioning of knots for the WO model, in the particular case of 

SANAD, it was important to recognise that the remission outcome could not (by 

definition) occur prior to 12 months. However, at 12 months, there is then a peak in the 

number of events occurring, due to a high proportion (approximately 30%) of patients 

achieving I12mR. Thus a major non-linearity (a spike) of the underlying hazard occurs 
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at this time point, presenting a challenge for the spline variable to adequately fit the 

data.  

Investigation into the empirical distribution of the probability of treatment change and 

remission over time demonstrated the obvious nonlinearity in remission at 12 months 

(for example, see plots in Figure 10 of these empirical probabilities when all treatment 

changes are accounted for).  

  

Figure 10 Empirical remission and treatment change probabilities, adjusting for 
all treatment changes 

It was therefore necessary to consider how best to construct the (WO) spline variable 

around the 12 month point in order to ensure the model fit the data well at this point, 

for example by fixing one or more knots around 12 months and dropping observation 

times less than 12 months when calculating percentiles. Note that in the case of the 

latter, the effect of TVCs and baseline covariates on the probability of withdrawal prior 

to 12 months would still be modelled in the WD (treatment change) models, but their 

(cumulative) effect up to 12 months would only be included as weights in the WO 

(remission) model from 12 months onwards. 

An investigation into model fit (assessed by stability of treatment effect and baseline 

hazard (odds) fit between Cox (and pooled) LR models) was therefore undertaken to 
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assess the effect of the number and position (particularly in relation to the 12 month 

time point) of splines on the simple (covariate- and weight-free) remission model, using 

overall spline variables for each of the following four scenarios:  

1) All follow up times were modelled, with centiles (for knot positions) 

calculated from all follow up times. 

2) All follow up times were modelled, with centiles (for knot positions) 

calculated for all follow up times and 1 (for 3 knots scenario) or 2 (for 4-5 

knots scenario) knots fixed at (or clustered around) 12 months. 

3) All follow up times were modelled, with centiles (for knot positions) 

calculated only for follow up times ≥ 12 months and spline variables for 

time < 12 months were forced to be 0. 

4) Only follow up time ≥12 months were modelled, with centiles (for knot 

positions) calculated only for follow up times ≥ 12 months. 

Remission models were assessed using pseudo log likelihood (pll) and AIC measures 

(where a lower AIC demonstrates better model fit) and by comparing treatment effects  

across scenarios, as well as baseline hazards and odds plots from Cox and PLR models 

respectively (see Table 46 to Table 48 in Appendix B). Assessment of the effect of 

number of knots on these unweighted remission models demonstrated a problem of 

non-convergence most particularly for scenarios 1-3. As would be expected, given that 

there is no chance of the event occurring prior to 12 months, the relative stability of 

results from scenario 4 suggested that it would be sensible to exclude follow up prior to 

12 months (for centile estimation as well as outcome modelling).  

Indeed, the baseline hazards and odds plots from the comparison between the Cox and 

pooled LR models (with 3 to 5 knots) demonstrate an (expected) high hazard at 12 
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months followed by a rapid decline and subsequent little variation over time. As such, it 

was decided that this pattern would be best fit by dropping any time at which there 

are no events occurring (which automatically included times less than 12 months) and 

fixing one or more knots around 12 months. Given that the outcome is rare, it would 

also be advantageous to fix knot positions at centiles of the distribution of observed 

event times, rather than all observation times. Note that dropping times at which there 

are no events occurring does not affect modelling (as event probability at such times are 

perfectly predicted by the model, given that there is no variation in outcome at this 

point, and are therefore automatically dropped at this point); the only effect would be to 

reduce the range of data used to construct the splines, leading to greater stability in the 

model. 

Applying these restrictions reduced the problems of non-convergence, but there was 

still evidence of overfitting in those scenarios with fewer observations (with longer time 

intervals) and fewer events (more restrictive treatment change scenarios). However the 

results were not definitive regarding the most appropriate choice for the number of 

knots to use for each scenario; although non-convergence was an issue as the number 

of knots increased in scenarios with fewer observations or events, the AIC (and 

loglikelihood) measures tended to favour models with more knots. As such, it was 

decided that the variable selection procedure would be carried out using both 3 and 5 

knots for each scenario in the proposed analysis plan, with due attention being paid to 

the stability of the estimated coefficients and their SEs, as well as to the EPV ratio (as 

an indicator of the reliability of the model).  

Given that a maximum threshold of 10% is recommended when applying a selection 

procedure according to the CHEST criterion (191), a threshold of 5% was chosen for 
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the main selection procedure, with sensitivity analyses using 2 and 10% to assess 

whether the conclusions of the analysis varies according to threshold. Furthermore, it 

was decided that both forward selection (FS) and backward elimination (BE) would be 

employed, in order to provide insight into the impact of the selection procedure on the 

choice of covariates, with consideration for the stability of each model assessed using 

the maximum EPV ratios for each selection process (for example, the EPV 

corresponding to the full initial model when undertaking BE).  

9.3.7. Analysis plan 

Given the uncertainty surrounding these modelling issues, an analysis plan was 

developed to facilitate an organised and structured approach in order to investigate the 

relative impact of each of the variable factors on the model results. For each of the 

treatment change analyses (namely adjusting for no treatment changes (ITT); treatment 

changes due to ISC alone; treatment changes due to ISC or personal choice; and finally 

all treatment changes) there were four factors to consider: model type (Cox regression 

(with bootstrapping) or PLR (with and without bootstrapping)), time intervals for 

discretised TVCs (weekly, fortnightly or monthly), selection procedure (FS or BE) and 

variable selection threshold (2%, 5% or 10%). Thus the IPCW modelling procedure was 

applied using a factorial design, allowing the impact of each of the following model 

features on estimated treatment effects to be assessed, described in Table 40.  

The analysis plan therefore consisted of a comparison of three versions of the IPCW 

model for the SANAD comparison: Cox regression (with bootstrapping), PLR (with 

bootstrapping) and PLR (without bootstrapping). Comparison of PLR with and without 

bootstrapping would assess the validity of the SEs produced by the model in 
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comparison to bootstrapped SEs. Comparison of PLR and Cox regression (both with 

bootstrapping) would assess how similar the models are, both in terms of the variables 

that are selected for inclusion in the model and in the estimated treatment effect 

estimates (bearing in mind, however, that the models will not be directly comparable as 

the logistic regression model estimates ORs, and the Cox model estimates HRs). In 

particular it was of interest to determine whether the use of smaller time intervals (for 

example, weekly or fortnightly intervals compared with monthly intervals) would lead to 

more similar results between the logistic and Cox regression, as would be expected 

(given that event rates decrease with decreasing time intervals, and therefore the 

estimated ORs should more closely match the corresponding HR estimates). 

Table 40 Analysis plan 

 Levels of analysis  

  
Reason for treatment 
change 

ITT (no treatment changes) 
ISC alone 

 ISC/personal choice 
 All (ISC/personal choice/UAEs) 
  
Model Cox regression (with bootstrapping)  
 PLR (with bootstrapping) 
 PLR (without bootstrapping) 
  
Time interval Weekly 
 Fortnightly 
 Monthly 
  
Selection procedure Forward selection (FS) 
 Backward elimination (BE) 
  
Selection threshold 2% 

5% 
 10% 
  

Bootstrapping was carried out using by drawing (200 repeat) samples at the patient level 

(in other words, selecting the entire record for that patient) rather than at an individual 
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record level (in other words, restricted to a particular time interval for that patient) to 

ensure correct allowance for clustering. 

In linking with the causal question of interest, the estimation sample for the IPCW 

modelling excluded patients with focal epilepsy (as for the RPSFTM) as these patients 

were not intended to receive VPS or LTG treatment; the estimation population thus 

consisted only of those with generalised or unclassified epilepsy.  

Research questions  

This analysis plan sought to provide answers to the following pertinent questions:  

1. Which baseline and time-varying covariates are identified as confounders 

between treatment changes and remission? 

2. Regression models 

a. How does bootstrapping compare with normal CI estimation? 

b. Are the same variables selected using Cox and PLR (with three and five 

knots)? 

c. Do treatment effect estimates differ greatly between regression 

models? 

3. Time intervals (for logistic regression) 

a. How does the time interval affect selection of variables and subsequent 

treatment effects? 

b. Are treatment effects from Cox and PLR models more similar with 

smaller (weekly) intervals? 

4. Reasons for treatment change 
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a. What are the general differences in the selection of variables and 

subsequent treatment effects when different treatment changes are 

adjusted for?  

b. What is the overall treatment effect adjusting for specified treatment 

changes? 

9.3.8. Data preparation 

In order to carry out this modelling, the data needed to be prepared appropriately, 

which was not a trivial exercise. In particular, determination of the cumulative seizure 

counts, whether at monthly, fortnightly or weekly intervals, required careful 

programming in Stata. 

Seizure counts 

First, it was necessary to create a total seizure count for each patient across multiple 

visits 

bysort trialid: gen cum_total_seizures = sum(totsez_num) 

It was then necessary to generate individual seizure dates (which were assumed to lie 

equally between the first and last date of seizure recorded for each visit) 

forvalues i = 1(1)1000 { 

 gen date_sez_raw_`i' = . 

 gen date_sez_`i' = .        

 } 

 

in order to convert these into monthly (or fortnightly or weekly) interval counts. For 

example, monthly counts were calculated using the following code: 

forvalues i = 1(1)30 { 

  gen cum_sez_m`i' = . 

  } 
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forvalues i = 1(1)30 { 

 local j 1 

  while `j' <=1000 { 

   bysort trial: replace cum_sez_m`i' = `j' if 

((date_sez_`j' -  rand) > 30*(`i'-1)) & ((date_sez_`j' -  rand) <= 

30*(`i')) & _n==1  

   local j = `j'+1 

  } 

} 

 

forvalues i = 1(1)30 { 

 forvalues j = 1(1)1000 { 

  bysort trial: replace cum_sez_m`i' = `j' + 

cum_total_seizures[_n-1] if ((date_sez_`j' -  rand) > 30*(`i'-1)) & 

((date_sez_`j' -  rand) <= 30*`i') & _n > 1   

 } 

} 

replace cum_sez_m1 = 0 if cum_sez_m1 == . 

 

forvalues i = 2(1)30 { 

 local j = `i'-1   

 sort trial visit 

 bysort trial: replace cum_sez_m`i' = cum_sez_m`j' if 

cum_sez_m`i' == . 

 local i = `i'+1 

} 
 

 
Adverse event counts 

AE counts were weighted according to the number of nights spent in hospital 

gen AE_num = 1 if hosp =="N" 

replace AE_num = nights if hosp=="Y" 

 

gen date_AE = datons 

gen month_AE_fraction = (date_AE - rand)/30 

gen month_AE_fornextmonth = ceil(month_AE_fraction) 

 

* cumulative AE at the end of one month counts towards next month 

gen month_AE = month_AE_fornextmonth + 1 

note month_AE: total AEs up to start of previous month (ie 

corrected) 

 

sort trialno month_AE date_AE 

* keep only one entry per month 

bysort trialno month_AE: keep if _n==_N 

 

Dose data 

Dose data were recorded whenever a patients’ prescription (treatment or dose) changed, 

and these data needed to be converted into monthly (or fortnightly or weekly) values.  
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forvalues i = 1(1)63 { 

 gen dose_prelim_m`i' = . 

} 

* dose is carried forward from anytime in the previous month 

forvalues i = 1(1)63 { 

 replace dose_prelim_m`i' = dose if ((date_pres_fup -  rand) > 

30*(`i'-1)) & ((date_pres_fup -  rand) <= 30*`i') 

} 

 

* if more than one entry for a given month, use the last entry 

forvalues i = 1(1)63 { 

 replace dose_prelim_m`i' = . if dose_prelim_m`i'[_n+1]~=. & 

trial==trial[_n+1] 

} 

* create single line per patient 

forvalues i = 1(1)63 { 

 bysort trial: egen dose_m`i' = total(dose_prelim_m`i'), 

missing 

} 

bysort trial: keep if _n==1 

drop dose_prelim* 

forvalues i = 2(1)63 { 

 local j = `i'-1   

 replace dose_m`i' = dose_m`j' if dose_m`i' == . 

} 

forvalues i = 1(1)63 { 

 count if dose_m`i' == . 

} 

 

local i = 23  

while `i' <= 23 & `i'>0 { 

 local j = `i'+1   

 replace dose_m`i' = dose_m`j' if dose_m`i' == . 

 local i = `i' - 1 

 } 

 

reshape long dose_m, i(trialno) j(m) 

 

 

Merging time-varying covariates 

It was then necessary to merge the three time-varying covariates appropriately according 

to time interval. 

gen month_AE_sez = m if include_AE==1 

replace month_AE_sez = m if include_sez==1 

sort trial month_AE_sez 

 

* check only one entry per month for AE/sez 

sort trial m 

assert m > m[_n-1] if trial==trial[_n-1] & m~=. & m[_n-1]~=. 

 

sort trial m 

assert m > m[_n-1] if trial==trial[_n-1] & m ~=. & m[_n-1]~=. 
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sort trial month_AE_sez include_sez 

gen cum_AE_month_withsezdata = cum_AEnum  

bysort trial: replace cum_AE_month_withsezdata = 0 if 

cum_AE_month_withsezdata==. & _n==1  

 

* if no cumulative AE total for sez month, copy from previous 

cumulative AE total 

bysort trial: replace cum_AE_month_withsezdata = 

cum_AE_month_withsezdata[_n-1] if month_AE_sez < month_AE_sez[_n+1] 

& include_sez==1 & cum_AE_month_withsezdata==. & _n>1 

* if cumulative AE total for sez month (ie more than one entry for 

that month - one relating to AEs, one relating to seizures), copy 

from following cumulative AE total (from that month) 

bysort trial: replace cum_AE_month_withsezdata = 

cum_AE_month_withsezdata[_n+1] if month_AE_sez == month_AE_sez[_n+1] 

& include_sez==1 & cum_AE_month_withsezdata==. & _n>1 

 

sort trial month_AE_sez include_AE 

gen cum_sez_month_withAEdata = cum_sez_m 

bysort trial: replace cum_sez_month_withAEdata = 0 if 

cum_sez_month_withAEdata==. & _n==1  

bysort trial: replace cum_sez_month_withAEdata = 

cum_sez_month_withAEdata[_n-1] if month_AE_sez < month_AE_sez[_n+1] 

& include_AE==1 & cum_sez_month_withAEdata==. & _n>1  

bysort trial: replace cum_sez_month_withAEdata = 

cum_sez_month_withAEdata[_n+1] if month_AE_sez == month_AE_sez[_n+1] 

& include_AE==1 & cum_sez_month_withAEdata==. & _n>1 

 

* fill down cum_AEnum values now that we have full months up to 62 

months 

sort trial m 

by trial: replace cum_AEnum = 0 if _n==1 

by trial: replace cum_AEnum = cum_AEnum[_n-1] if cum_AEnum==. & _n>1 

 

It was also necessary to create time-varying treatment change and remission (indicator 

and time) variables corresponding to each analysis in the sequence of analyses 

investigating reasons for treatment change.  

* create reason for dropout or withdrawal 

gen w_reason = 0 if wclass=="C"|wclass=="D"|wclass=="L"|wclass=="RE" 

* note that there is one patient who was censored because of "RE" at 

< 365 days (trialno B1092009 withtime 255, wcens 0 but remtime 365, 

rcens 1) 

* ? consider sensitivity analysis treating this patient as having 

event (withdrawal of treatment) at 225 days 

replace w_reason = 1 if 

wclass=="ISC"|wclass=="DISC"|wclass=="ISCUAE" 

replace w_reason = 2 if wclass=="PAE"|wclass=="PRE"|wclass=="UAE" 

replace w_reason = 3 if 

wclass=="NC"|wclass=="O"|wclass=="P"|wclass=="PD"|wclass=="U" 

replace w_reason = 4 if wclass=="NA" 

label variable w_reason "Reason for withdrawal from drug or study" 



   
   
 

359 
 

label define w_reason 0 "Ltfu, death or consent withdrawn" 1 "ISC" 2 

"UAE" 3 "Personal reasons" 4 "NA" 

label values w_reason w_reason 

 

* Changing for any reason: w_reason = 1/2/3; or censoring: w_reason 

= 0; hence wr0123 

 

gen rem_with_wr0123_min_date = min(withdate, remdate, 

totsez_censdate)  

label variable rem_with_wr0123_min_date "Minimum of trt withdrawal 

(for any reason, including end of fup and lftu (both have wcens==0)) 

or remission dates" 

 

For example, time of treatment change was brought forward to the time of remission 

and censored, if the time of treatment change was greater than the remission time; 

alternatively it was necessary to bring the remission time forward to the time of 

treatment change and to censor (if the time of treatment change was less than the 

remission time).  

gen min_cens_withdate = min(totsez_censdate, withdate) 

gen rcens_wcens_wr0123 = rcens 

replace rcens_wcens_wr0123 = 0 if rem_with_wr0123_min_date < remdate 

label variable rcens_wcens_wr0123 "Remission indicator censored at 

first treatment change (for any reason)" 

 

* create rem_with_min_month/biweek/bimonth: so that any event during 

the present month/biweek/bimonth counts towards the end of the 

previous month/biweek/bimonth 

* note that the (n-1)th values of tvcs are aligned with nth values 

of outcome (see bottom of p413 in Fewell) as we have brought the (n-

1)th values forward to the nth:  

* need cumulative sum up to m`i' to count towards next m (`i' + 1) 

* sort trial m 

* bysort trial: gen cum_sez_m = final_cum_sez_m[_n-1] if _n>1 

* bysort trial: replace cum_sez_m = 0 if _n==1  

gen rem_with_wr0123_min_month = floor((rem_with_wr0123_min_date - 

rand_date)/30) 

* gen rem_with_wr0123_min_biweek = floor((rem_with_wr0123_min_date - 

rand_date)/14) 

* gen rem_with_wr0123_min_week = ceil((rem_with_wr0123_min_date - 

rand_date)/7) 

 

These times and indicators variables varied according to the particular reason for 

treatment change; for example, changes occurring due to ISC would be adjusted in this 

manner for all analyses except the ITT analysis, whereas changes due to UAEs were 

only adjusted for in the final overall adjustment for all treatment changes.  
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Once these analysis-specific variables were created, they were converted into time-

varying event indicator variables in order to allow them to be linked with the TVCs.  

The ITT version of the models (for both survival and PLR) required no WD model, as 

there were by definition no treatment changes to account for, and thus there were no 

weights applied to the WO (remission) model; as such, TVCs were not required for ITT 

analysis (as they enter only through their influence in the WD model). 

9.3.9. Selection process 

The forward and backward selection processes required manual programming in Stata, 

which increased in complexity as the number of variables were added to (or included in) 

the model (in FS and BE respectively). For example, the simplest stage in analysis 

(determining the “significance” of individual baseline variables in initial models for the 

ITT outcome, in other words adjusting for no treatment changes and thus requiring no 

weights) was programmed as follows: 

* trt only model:  

* fit logistic model for remission outcome 

xi: logistic rcens_ITT_AE_sez_m_tv treat_num m m_spline_*, 

cluster(trial) 

gen hr_trt_ITT = exp(_b[treat_num]) 

 

* baseline only models: 

foreach var in age_t fi_t t_t { 

 * fit logistic model for remission outcome 

 xi: logistic rcens_ITT_AE_sez_m_tv treat_num `var' m 

m_spline_*, cluster(trial) 

 gen hr_trt_ITT_`var' = exp(_b[treat_num]) 

 * determine ratio of HR with and without variables  

 gen r_hr_trt_ITT_`var' = hr_trt_ITT_`var'/hr_trt_ITT  

 } 

foreach var in sex ni feb rels hist type eeg stype { 

 * fit logistic model for remission outcome 

 * NOTE: no need for weights as no time-dependent variables 

included in model 

 xi: logistic rcens_ITT_AE_sez_m_tv treat_num i.`var' m 

m_spline_*, cluster(trial) 

 gen hr_trt_ITT_`var' = exp(_b[treat_num]) 

 * determine ratio of HR with and without variables  

 gen r_hr_trt_ITT_`var' = hr_trt_ITT_`var'/hr_trt_ITT 
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} 

foreach var in age_t fi_t t_t sex ni feb rels hist type eeg stype { 

 di "`var'" " " r_hr_trt_ITT_`var' 

} 

 

foreach var in age_t fi_t t_t sex ni feb rels hist type eeg stype { 

 gen hr_diff_trt_ITT_`var' = abs(1-r_hr_trt_ITT_`var')  

 di "`var'" " " hr_diff_trt_ITT_`var' 

} 

 

Much more complex programming was required when it was necessary to include 

weights, as in the excerpt below using FS to determine “significant” variables when 

adjusting for all treatment changes: 

* baseline only models: 

foreach var in age_t fi_t t_t { 

 * NOTE: calculating weights for future use only 

 * fit logistic model for wcens outcome, separate for each 

treatment (as causes of withdrawal differ between treatments) to 

determine weights for logistic model for remission outcome 

 xi: logistic wcens_rcens_wr0123_AE_sez_m_tv `var' m 

original_m_spline4_VPS* if treat_num==0 

 predict p_wr0123_VPS_trt_`var' if e(sample)  

 gen p_nwr0123_VPS_trt_`var' = 1 - p_wr0123_VPS_trt_`var' 

 sort trial m 

 by trial: replace p_nwr0123_VPS_trt_`var' = 

p_nwr0123_VPS_trt_`var'*p_nwr0123_VPS_trt_`var'[_n-1] if _n>1 

 * p_nwr0123_ are weights (probability of remaining uncensored 

at each time point) 

 xi: logistic wcens_rcens_wr0123_AE_sez_m_tv `var' m 

original_m_spline4_LTG* if treat_num==1 

 predict p_wr0123_LTG_trt_`var' if e(sample)  

 gen p_nwr0123_LTG_trt_`var' = 1 - p_wr0123_LTG_trt_`var' 

 sort trial m 

 by trial: replace p_nwr0123_LTG_trt_`var' = 

p_nwr0123_LTG_trt_`var'*p_nwr0123_LTG_trt_`var'[_n-1] if _n>1  

 * create weight variable including both treatment arms 

 gen p_nwr0123_trt_`var' = p_nwr0123_VPS_trt_`var' if treat_num 

== 0 

 replace p_nwr0123_trt_`var' = p_nwr0123_LTG_trt_`var' if 

treat_num == 1 

 gen ip_nwr0123_trt_`var' = 1/p_nwr0123_trt_`var' 

 * fit logistic model for remission outcome 

 * NOTE: no need for weights as no time-dependent variables 

included in model 

 xi: logistic rcens_wcens_wr0123_AE_sez_m_tv treat_num `var' m 

m_spline4_*, cluster(trial) 

 gen hr_trt_wr0123_`var' = exp(_b[treat_num]) 

 * determine ratio of HR with and without variables  

 gen r_hr_trt_wr0123_`var' = hr_trt_wr0123_`var'/hr_trt_wr0123

  } 

 

foreach var in sex ni feb rels hist hist2 type eeg stype { 

 * NOTE: calculating weights for future use only 
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 * fit logistic model for wcens outcome, separate for each 

treatment (as causes of withdrawal differ between treatments) to 

determine weights for logistic model for remission outcome 

 xi: logistic wcens_rcens_wr0123_AE_sez_m_tv i.`var' m 

original_m_spline4_VPS* if treat_num==0 

 predict p_wr0123_VPS_trt_`var' if e(sample)  

 gen p_nwr0123_VPS_trt_`var' = 1 - p_wr0123_VPS_trt_`var' 

 sort trial m 

 by trial: replace p_nwr0123_VPS_trt_`var' = 

p_nwr0123_VPS_trt_`var'*p_nwr0123_VPS_trt_`var'[_n-1] if _n>1 

 * p_nwr0123_ are weights (probability of remaining uncensored 

at each time point) 

 xi: logistic wcens_rcens_wr0123_AE_sez_m_tv i.`var' m 

original_m_spline4_LTG* if treat_num==1 

 predict p_wr0123_LTG_trt_`var' if e(sample)  

 gen p_nwr0123_LTG_trt_`var' = 1 - p_wr0123_LTG_trt_`var' 

 sort trial m 

 by trial: replace p_nwr0123_LTG_trt_`var' = 

p_nwr0123_LTG_trt_`var'*p_nwr0123_LTG_trt_`var'[_n-1] if _n>1  

 * create weight variable including both treatment arms 

 gen p_nwr0123_trt_`var' = p_nwr0123_VPS_trt_`var' if treat_num 

== 0 

 replace p_nwr0123_trt_`var' = p_nwr0123_LTG_trt_`var' if 

treat_num == 1 

 gen ip_nwr0123_trt_`var' = 1/p_nwr0123_trt_`var' 

 * fit logistic model for remission outcome 

 * NOTE: no need for weights as no time-dependent variables 

included in model 

 xi: logistic rcens_wcens_wr0123_AE_sez_m_tv treat_num i.`var' 

m m_spline4_*, cluster(trial) 

 gen hr_trt_wr0123_`var' = exp(_b[treat_num]) 

 * determine ratio of HR with and without variables  

 gen r_hr_trt_wr0123_`var' = hr_trt_wr0123_`var'/hr_trt_wr0123 

} 

foreach var in age_t fi_t t_t sex ni feb rels hist hist2 type eeg 

stype { 

 di "`var'" " " r_hr_trt_wr0123_`var' 

} 

 

* tvcs: AE/seizure variables 

* need to stabilise weights: rename p_nwr0123_ p_nwr0123_denom; 

refit without tvcs: rename p_nwr0123_ p_nwr0123_num; gen 

stab_wgt_AE/sez = p_nwr0123_num/p_nwr0123_denom 

 

* fit logistic model for wcens outcome, separate for each treatment 

(as causes of withdrawal differ between treatments) to determine 

weights for logistic model for remission outcome 

xi: logistic wcens_rcens_wr0123_AE_sez_m_tv cum_sez_t m 

original_m_spline4_VPS* if treat_num==0 

predict p_wr0123_VPS_trt_sez if e(sample)  

gen p_nwr0123_VPS_trt_sez = 1 - p_wr0123_VPS_trt_sez 

sort trial m 

by trial: replace p_nwr0123_VPS_trt_sez = 

p_nwr0123_VPS_trt_sez*p_nwr0123_VPS_trt_sez[_n-1] if _n>1 

* p_nwr0123_ are weights (probability of remaining uncensored at 

each time point) but need to be stabilised 

xi: logistic wcens_rcens_wr0123_AE_sez_m_tv cum_sez_t m 

original_m_spline4_LTG* if treat_num==1 

predict p_wr0123_LTG_trt_sez if e(sample)  
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gen p_nwr0123_LTG_trt_sez = 1 - p_wr0123_LTG_trt_sez 

sort trial m 

by trial: replace p_nwr0123_LTG_trt_sez = 

p_nwr0123_LTG_trt_sez*p_nwr0123_LTG_trt_sez[_n-1] if _n>1  

* create weight variable including both treatment arms 

gen p_nwr0123_trt_sez = p_nwr0123_VPS_trt_sez if treat_num == 0 

replace p_nwr0123_trt_sez = p_nwr0123_LTG_trt_sez if treat_num == 1 

* create stabilised weight: use for numerator the weights from a 

model without same baseline vars but no tvcs 

gen ip_nwr0123_trt_sez_stab = p_nwr0123_trt/p_nwr0123_trt_sez 

* fit weighted logistic model for remission outcome 

logistic rcens_wcens_wr0123_AE_sez_m_tv treat_num cum_sez_t m 

m_spline4_* [pw=ip_nwr0123_trt_sez_stab], cluster(trial) 

gen hr_trt_wr0123_sez = exp(_b[treat_num]) 

* determine ratio of HR with and without variables  

gen r_hr_trt_wr0123_sez = hr_trt_wr0123_sez/hr_trt_wr0123  

di r_hr_trt_wr0123_sez 

 

* tvcs: AE/seizure variables 

* need to stabilise weights: rename p_nwr0123_ p_nwr0123_denom; 

refit without tvcs: rename p_nwr0123_ p_nwr0123_num; gen 

stab_wgt_AE/sez = p_nwr0123_num/p_nwr0123_denom 

 

* fit logistic model for wcens outcome, separate for each treatment 

(as causes of withdrawal differ between treatments) to determine 

weights for logistic model for remission outcome 

xi: logistic wcens_rcens_wr0123_AE_sez_m_tv cum_AE_t m 

original_m_spline4_VPS* if treat_num==0 

predict p_wr0123_VPS_trt_AE if e(sample)  

gen p_nwr0123_VPS_trt_AE = 1 - p_wr0123_VPS_trt_AE 

sort trial m 

by trial: replace p_nwr0123_VPS_trt_AE = 

p_nwr0123_VPS_trt_AE*p_nwr0123_VPS_trt_AE[_n-1] if _n>1 

* p_nwr0123_ are weights (probability of remaining uncensored at 

each time point) but need to be stabilised 

xi: logistic wcens_rcens_wr0123_AE_sez_m_tv cum_AE_t m 

original_m_spline4_LTG* if treat_num==1 

predict p_wr0123_LTG_trt_AE if e(sample)  

gen p_nwr0123_LTG_trt_AE = 1 - p_wr0123_LTG_trt_AE 

sort trial m 

by trial: replace p_nwr0123_LTG_trt_AE = 

p_nwr0123_LTG_trt_AE*p_nwr0123_LTG_trt_AE[_n-1] if _n>1  

* create weight variable including both treatment arms 

gen p_nwr0123_trt_AE = p_nwr0123_VPS_trt_AE if treat_num == 0 

replace p_nwr0123_trt_AE = p_nwr0123_LTG_trt_AE if treat_num == 1 

* create stabilised weight: use for numerator the weights from a 

model without same baseline vars but no tvcs 

gen ip_nwr0123_trt_AE_stab = p_nwr0123_trt/p_nwr0123_trt_AE 

* fit weighted logistic model for remission outcome 

xi: logistic rcens_wcens_wr0123_AE_sez_m_tv treat_num cum_AE_t m 

m_spline4_* [pw=ip_nwr0123_trt_AE_stab], cluster(trial) 

gen hr_trt_wr0123_AE = exp(_b[treat_num]) 

* determine ratio of HR with and without variables  

gen r_hr_trt_wr0123_AE = hr_trt_wr0123_AE/hr_trt_wr0123  

di r_hr_trt_wr0123_AE 

 

* fit logistic model for wcens outcome, separate for each treatment 

(as causes of withdrawal differ between treatments) to determine 

weights for logistic model for remission outcome 
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xi: logistic wcens_rcens_wr0123_AE_sez_m_tv dose_m m 

original_m_spline4_VPS* if treat_num==0 

predict p_wr0123_VPS_trt_dose if e(sample)  

gen p_nwr0123_VPS_trt_dose = 1 - p_wr0123_VPS_trt_dose 

sort trial m 

by trial: replace p_nwr0123_VPS_trt_dose = 

p_nwr0123_VPS_trt_dose*p_nwr0123_VPS_trt_dose[_n-1] if _n>1 

* p_nwr0123_ are weights (probability of remaining uncensored at 

each time point) but need to be stabilised 

xi: logistic wcens_rcens_wr0123_AE_sez_m_tv dose_m m 

original_m_spline4_LTG* if treat_num==1 

predict p_wr0123_LTG_trt_dose if e(sample)  

gen p_nwr0123_LTG_trt_dose = 1 - p_wr0123_LTG_trt_dose 

sort trial m 

by trial: replace p_nwr0123_LTG_trt_dose = 

p_nwr0123_LTG_trt_dose*p_nwr0123_LTG_trt_dose[_n-1] if _n>1  

* create weight variable including both treatment arms 

gen p_nwr0123_trt_dose = p_nwr0123_VPS_trt_dose if treat_num == 0 

replace p_nwr0123_trt_dose = p_nwr0123_LTG_trt_dose if treat_num == 

1 

* create stabilised weight: use for numerator the weights from a 

model without same baseline vars but no tvcs 

gen ip_nwr0123_trt_dose_stab = p_nwr0123_trt/p_nwr0123_trt_dose 

* fit weighted logistic model for remission outcome 

xi: logistic rcens_wcens_wr0123_AE_sez_m_tv treat_num m m_spline4_* 

[pw=ip_nwr0123_trt_dose_stab], cluster(trial) 

gen hr_trt_wr0123_dose = exp(_b[treat_num]) 

* determine ratio of HR with and without variables  

gen r_hr_trt_wr0123_dose = hr_trt_wr0123_dose/hr_trt_wr0123  

di r_hr_trt_wr0123_dose 

 

foreach var in age_t fi_t t_t sex ni feb rels hist hist2 type eeg 

stype AE sez dose { 

 gen hr_diff_trt_wr0123_`var' = abs(1-r_hr_trt_wr0123_`var')  

 di "`var'" " " hr_diff_trt_wr0123_`var' 

} 
 

These commands demonstrate the need for careful labelling in order to facilitate easy 

iterative programming. This is especially true in the case of BE, as demonstrated in the 

excerpt below. This extract considers only the effect of baseline variable age, adjusting 

for all treatment changes: 

* only baseline variables included (for stabilised weights) 

* predict probability of treatment failure 

(wcens_rcens_wr0123_AE_sez_m_tv) 

xi: logistic wcens_rcens_wr0123_AE_sez_m_tv age_t fi_t t_t i.sex 

i.ni i.feb i.rels i.hist i.eeg i.stype m original_m_spline_LTG* if 

treat_num==0 

predict p_wr0123_L_bl if e(sample) 

gen p_nwr0123_L_bl = 1 - p_wr0123_L_bl 

sort trial m 
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by trial: replace p_nwr0123_L_bl = p_nwr0123_L_bl*p_nwr0123_L_bl[_n-

1] if _n>1 

* p_nwr0123_ are weights (probability of remaining uncensored at 

each time point) 

xi: logistic wcens_rcens_wr0123_AE_sez_m_tv age_t fi_t t_t i.sex 

i.ni i.feb i.rels i.hist i.eeg i.stype m original_m_spline_VPS* if 

treat_num==1 

predict p_wr0123_V_bl if e(sample) 

gen p_nwr0123_V_bl = 1 - p_wr0123_V_bl 

sort trial m 

by trial: replace p_nwr0123_V_bl = p_nwr0123_V_bl*p_nwr0123_V_bl[_n-

1] if _n>1 

* create weight variable including both treatment arms 

gen p_nwr0123_bl = p_nwr0123_L_bl if treat_num == 0 

replace p_nwr0123_bl = p_nwr0123_V_bl if treat_num == 1 

 

* all variables included 

* predict probability of treatment failure 

(wcens_rcens_wr0123_AE_sez_m_tv) 

xi: logistic wcens_rcens_wr0123_AE_sez_m_tv age_t fi_t t_t i.sex 

i.ni i.feb i.rels i.hist i.eeg i.stype cum_sez_t cum_AE_t m 

original_m_spline_LTG* if treat_num==0 

predict p_wr0123_L_all if e(sample) 

gen p_nwr0123_L_all = 1 - p_wr0123_L_all 

sort trial m 

by trial: replace p_nwr0123_L_all = 

p_nwr0123_L_all*p_nwr0123_L_all[_n-1] if _n>1 

* p_nwr0123_ are weights (probability of remaining uncensored at 

each time point) 

xi: logistic wcens_rcens_wr0123_AE_sez_m_tv age_t fi_t t_t i.sex 

i.ni i.feb i.rels i.hist i.eeg i.stype cum_sez_t cum_AE_t m 

original_m_spline_VPS* if treat_num==1 

predict p_wr0123_V_all if e(sample) 

gen p_nwr0123_V_all = 1 - p_wr0123_V_all 

sort trial m 

by trial: replace p_nwr0123_V_all = 

p_nwr0123_V_all*p_nwr0123_V_all[_n-1] if _n>1 

* create weight variable including both treatment arms 

gen p_nwr0123_all = p_nwr0123_L_all if treat_num == 0 

replace p_nwr0123_all = p_nwr0123_V_all if treat_num == 1 

* create stabilised weight: use for numerator the weights from a 

model without same baseline vars but no tvcs 

gen p_nwr0123_all_stab = p_nwr0123_bl/p_nwr0123_all 

* fit weighted logistic model for remission outcome 

xi: logistic rcens_wcens_wr0123_AE_sez_m_tv treat_num age_t fi_t t_t 

i.sex i.ni i.feb i.rels i.hist i.eeg i.stype cum_sez_t cum_AE_t m 

m_spline_* [pw=p_nwr0123_all_stab], cluster(trial) 

gen hr_wr0123_all = exp(_b[treat_num]) 

 

* remove each variable in turn 

 

* remove age_t 

* only baseline variables included (for stabilised weights) 

excluding age_t 

* predict probability of treatment failure 

(wcens_rcens_wr0123_AE_sez_m_tv) 

xi: logistic wcens_rcens_wr0123_AE_sez_m_tv fi_t t_t i.sex i.ni 

i.feb i.rels i.hist i.eeg i.stype m original_m_spline_LTG* if 

treat_num==0 
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predict p_wr0123_L_bl_eag if e(sample) 

gen p_nwr0123_L_bl_eag = 1 - p_wr0123_L_bl_eag 

sort trial m 

by trial: replace p_nwr0123_L_bl_eag = 

p_nwr0123_L_bl_eag*p_nwr0123_L_bl_eag[_n-1] if _n>1 

* p_nwr0123_ are weights (probability of remaining uncensored at 

each time point) 

xi: logistic wcens_rcens_wr0123_AE_sez_m_tv fi_t t_t i.sex i.ni 

i.feb i.rels i.hist i.eeg i.stype m original_m_spline_VPS* if 

treat_num==1 

predict p_wr0123_V_bl_eag if e(sample) 

gen p_nwr0123_V_bl_eag = 1 - p_wr0123_V_bl_eag 

sort trial m 

by trial: replace p_nwr0123_V_bl_eag = 

p_nwr0123_V_bl_eag*p_nwr0123_V_bl_eag[_n-1] if _n>1 

* create weight variable including both treatment arms 

gen p_nwr0123_bl_eag = p_nwr0123_L_bl_eag if treat_num == 0 

replace p_nwr0123_bl_eag = p_nwr0123_V_bl_eag if treat_num == 1 

 

* predict probability of treatment failure 

(wcens_rcens_wr0123_AE_sez_m_tv) 

xi: logistic wcens_rcens_wr0123_AE_sez_m_tv fi_t t_t i.sex i.ni 

i.feb i.rels i.hist i.eeg i.stype cum_sez_t cum_AE_t m 

original_m_spline_LTG* if treat_num==0 

predict p_wr0123_L_all_eag if e(sample) 

gen p_nwr0123_L_all_eag = 1 - p_wr0123_L_all_eag 

sort trial m 

by trial: replace p_nwr0123_L_all_eag = 

p_nwr0123_L_all_eag*p_nwr0123_L_all_eag[_n-1] if _n>1 

* p_nwr0123_ are weights (probability of remaining uncensored at 

each time point) 

xi: logistic wcens_rcens_wr0123_AE_sez_m_tv fi_t t_t i.sex i.ni 

i.feb i.rels i.hist i.eeg i.stype cum_sez_t cum_AE_t m 

original_m_spline_VPS* if treat_num==1 

predict p_wr0123_V_all_eag if e(sample) 

gen p_nwr0123_V_all_eag = 1 - p_wr0123_V_all_eag 

sort trial m 

by trial: replace p_nwr0123_V_all_eag = 

p_nwr0123_V_all_eag*p_nwr0123_V_all_eag[_n-1] if _n>1 

* create weight variable including both treatment arms 

gen p_nwr0123_all_eag = p_nwr0123_L_all_eag if treat_num == 0 

replace p_nwr0123_all_eag = p_nwr0123_V_all_eag if treat_num == 1 

* create stabilised weight: use for numerator the weights from a 

model without same baseline vars but no tvcs 

gen ip_nwr0123_all_eag_stab = p_nwr0123_bl_eag/p_nwr0123_all_eag 

* fit weighted logistic model for remission outcome 

xi: logistic rcens_wcens_wr0123_AE_sez_m_tv treat_num fi_t t_t i.sex 

i.ni i.feb i.rels i.hist i.eeg i.stype cum_sez_t cum_AE_t m 

m_spline_* [pw=ip_nwr0123_all_eag_stab], cluster(trial) 

gen hr_wr0123_all_eag = exp(_b[treat_num]) 

* determine ratio of HR with and without variables 

gen r_hr_wr0123_all_eag = hr_wr0123_all_eag/hr_wr0123_all 

di r_hr_wr0123_all_eag 
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9.4. Key considerations as part of IPCW modelling process 

There were a number of further modelling complications which arose during the 

somewhat evolutionary process of carrying out this sequential investigation. Thus this 

analysis demonstrates how an initial causal analysis plan may need to change when 

practical problems or limitations arise while undertaking such analyses due to features 

of the data or modelling techniques. The first issue related to missing TVC data.  

9.4.1. Missing seizure dates 

Forty-two patients (at 58 visits) had missing values for their total number of seizures 

experienced between current and previous visit, despite recoded valid dates of first and 

most recent seizures entered for the corresponding visit. This missing data field suggests 

that the clinician was not able to estimate the number of seizures experienced by the 

patient since the previous visit but that seizures did occur between the given dates. 

Given the potential importance of cumulative seizure count as a TVC, it was necessary 

to decide how to address this missing data problem.  

There were a number of options available, the simplest being to simply exclude these 

patients from the analysis, or to assume that in fact no seizures had occurred. 

Alternatively, it may seem more plausible to assume that two seizures had in fact 

occurred (one each on the first and last dates of seizures given) or just one seizure (if 

the first and last dates of seizures were the same). More sophisticated imputation 

methods could have been employed, for example by estimating the missing total 

number of seizures based on the patient’s seizure rates for previous (and potentially 

future) visits, perhaps using only those visits at which the patient was taking the 

randomised drug. This approach could be extended further using multiple imputation 
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regression techniques to more accurately predict missing seizures rates based on factors 

such as dose, treatment and patient characteristics, potentially considering the relative 

importance of within- compared to between-patient variability, the distribution of 

seizure counts over time and the potential for carryover treatment effects affecting 

seizure rates even after the patient stopped taking their randomised treatment. 

Each of these imputation approaches were deemed either to be unrealistically simplistic 

or overly complicated in this setting, relying on assumptions that could not be easily or 

accurately verified. As such, it was decided that the approach used in the original 

analysis (194) would be employed here, namely that patients with missing seizure counts 

would simply be censored at the date of the first seizure recorded for this interval, as 

this was the last point at which the cumulative seizure count was known. The only 

exception to this was when the dates of first and last seizure were equal, and the 

patient’s seizure history suggested that the patient typically experienced very few 

seizures; in this case, it was assumed that the patient experienced only one seizure on 

that date (so that a count of one was assumed for the missing total number of seizures). 

This censoring (and simple imputation) resulted in eight patients’ remission (or 

censoring) time being brought forward, changing the event status of three (and one) 

patients who had achieved remission (or a treatment change) but were instead censored. 

It is acknowledged that this censoring could introduce bias if the unknown seizure 

counts were correlated with the frequency of seizures. However, given that seizure 

intervals varied considerably among those patients with missing seizure counts, this bias 

was not overtly obvious.  
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9.4.2. Extreme weights 

The other major problem that was encountered during this modelling exercise was that 

of extreme weights. In order to address this issue, it was necessary to understand the 

underlying reasons; on inspection of the data, it became obvious that this problem was 

related to two features of the data.  

As mentioned in section 9.2.2, a potential cause for extreme weights is when an 

incorrect functional form for covariates is specified in the PLR model, thus implying an 

incorrect relationship between each covariate and the outcome. In particular, if the 

model wrongly assumes linearity (in other words, the untransformed covariates are 

included in the model), patients with extreme values of TVCs will be disproportionately 

influential. Thus, alternative models with log or inverse links (that asymptote rather than 

increase linearly as the TVC increases) were explored. 

Martingale residuals are useful in determining the most appropriate functional form of 

covariates to be included in the model. As such, in order to decide on the best model fit 

between linear, log and inverse fit of continuous variables, a locally weighted smoothing 

(lowess) curve of the martingale residuals from the (constant only) Cox model was 

plotted against each transformation of each TVC in turn, namely untransformed values 

( 𝑋 ), logged values ( log(1 + 𝑋) ) and inverse values ( 1/(1 + 𝑋) ). An appropriate 

transformation would exhibit an approximately linear lowess smooth; thus, on visual 

inspection of these smoothing curves, it became apparent that the logarithmic 

transformation was appropriate for the TVC seizure count and three baseline 

continuous variables (interval between first ever seizure and randomisation, total 

number of tonic clonic seizures prior to randomisation and age). 
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Although this transformation helped to reduce the problem somewhat, extreme weights 

occurred, though to a lesser extent, particularly as more covariates were added to the 

model. This disproportionate influence of certain individuals had a large effect on 

estimated treatment effects and hence the selection process as a whole. For example, 

censoring one patient’s follow up 15 months early made a large difference to the 

treatment effect (and range of weights), which changed from 0.05 (0.6, 2888.7) to 0.35 

(0.6, 27.0).  

Secondly, as expected, these extreme weights tended to occur in patients with large 

values of TVCs (particularly seizure counts and dose) late on in follow up, whose data 

were overly influential because there remained few other similar patients on which to 

base weight estimation. For example, one patient’s prolonged follow up data was 

leading to extreme weights because of their high treatment dose received late on in 

follow up, when few patient-months of follow up remained in their treatment group. 

Thus, the available options to counter the extreme weights that continued to dominate 

the analysis were either to truncate continuous variables at the 95th (instead of just the 

99th) centile; to censor patient’s follow up when their weights exceeded a predefined cut-

off level; or to categorise continuous variables in order to reduce the influence of 

outlying values. The last option is not ideal, as it would lead to a great loss of 

information. Thus, firstly the effect of truncation at the 95th centile was investigated.  

Extreme weights still occurred in a small number of cases despite truncation at the 95th 

(rather than 99th) centile of continuous variables. Thus, although it is acknowledged that 

censoring patient’s follow up when their weights become problematically high is likely 

to introduce a certain amount of bias, it is also recognised that simply ignoring the 

problem of extreme weights is likely to lead to a grossly incorrect model, given the 
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influence that extreme weights have on the resultant treatment effects. Thus it was 

decided that an individual’s follow up would be censored when their weight exceeded 

30; this cut-off level was approximately equal to one tenth of each treatment group size, 

a level at which it seemed reasonable to restrict a single individual’s contribution. 

Although such censoring may introduce bias, it is worth noting that this censoring 

affected only approximately 0.01% of patient-time intervals in each analysis. 

9.4.3. Revised plan  

Thus, following these model considerations and investigations, the FS and BE selection 

procedures were carried out according to a slightly revised analysis plan. Cox regression 

was compared to PLR (using three and five knots); all continuous variables were 

analysed following logarithmic transformation and truncation at the 95% centile, and 

certain categorical variables were collapsed to remove the problem of small event 

numbers within combinations of factors. Patients’ follow up was censored if they had 

missing seizure count data or if their weight exceeded 30 for a given time interval 

(month, fortnight or week). Variables were included in the initial pool of baseline and 

time-varying covariates only if their inclusion in the treatment-only WD model altered 

the WO treatment effect by at least 1%. 

9.5. Summary of initial results 

In order to determine which of the baseline and TVCs should be adjusted for in this 

IPCW analysis (thus addressing the first research question listed in 9.3.7), the Cox and 

PLR IPCW models were completed for the sequence of treatment change scenarios 

(none (ITT), ISC alone, ISC/personal choice and all changes) for each of time intervals 

(weekly, fortnightly and monthly) used for the creation of time-updated covariates 
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(seizures, AEs and dose). Both forward and backward selection (based on an initial pool 

of explanatory variables which alter the treatment hazard (or odds) ratio by at least 1%) 

were used to determine final models which included variables affecting the HR (or OR) 

by at least 2%, 5% or 10%. The corresponding bootstrapped CIs were also calculated, 

as the usual SEs for the Cox regression could not be calculated accurately due to time-

varying weights within individual. These results have been summarised in forest plots of 

treatment effects and BS CIs (Figure 11 to Figure 14) as well as tables (Table 49 to 

Table 54) to allow easy comparison across treatment change scenarios and model types 

(see Appendix B). 

Generally, the results show that baseline covariates were not usually selected into the 

WD model, but time-varying covariates are often selected, most commonly seizures but 

also dose and occasionally AE counts.  

The forward and backward selection procedures were not always consistent in their 

selection of different variables; this is not surprising, however, given that the selection 

criterion was defined in terms of the change in treatment effect relative to that from the 

previous model, which differed when using FS (which, for example, starts with an initial 

treatment-only model) compared to BE (which begins with the full model containing all 

potential variables). 

The PLR bootstrap confidence intervals (CIs) were generally wider than the usual CIs, 

due to the added uncertainty associated with bootstrapping. Indeed, initially, the 

bootstrap procedure for the PLR models resulted in very high sample failure rates due 

to lack of convergence (using both three and five knots), especially for the month spline 

variable. Investigation into the problems relating to knot positions and extreme weights 

(discussed above) helped to address this problem to a certain extent; however, this 
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model instability continued to affect the PLR five knot models in particular, leading to a 

continued problem of non-convergence of some bootstrap samples, extreme estimated 

covariate coefficients (typically >107) and artifactual peaks in the underlying baseline 

odds plots towards the end of follow up, suggesting instability of splines beyond the 

95th centile. Further evidence of overfitting was provided by the coefficients for the 

spline variables (which were often very close to zero) and low EPV ratios (especially for 

the VPS treatment change model) as more variables were added to the models, 

suggesting that it may be more appropriate to use fewer knots for the PLR spline 

variables.  

One potential consequence of this overfitting was that the number of variables selected 

into each PLR model was consistently smaller than for the corresponding Cox model, 

perhaps due to lack of power. These problems suggest that it may have been more 

appropriate to fit the model with fewer knots, potentially even with no knots (which 

equates to an underlying linear function of time).  

In general, more covariates were selected into the model as more treatment changes 

were adjusted for (from none (ITT) to ISC alone to ISC/choice to all treatment 

changes), because of the increased power in the treatment change model as more events 

are available for model estimation. The number of covariates selected into the model 

also tended to increase as the frequency of follow up information increased (in other 

words, as the length of time intervals decreased, from month to fortnight to week), 

again because the amount of information available (from time-varying covariates) is 

increased. 

As more variables were selected into the model, the treatment effect also tended to 

move away from one (towards zero, in other words further in favour of the control arm 
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VPS). However, given the fact that the number of variables selected into the model 

increased as more treatment changes were adjusted for, this variable selection process 

did not clearly reveal whether the reduction of the treatment effect (away from one) was 

due to the increased number of (and type of) treatment changes being considered or 

because of the increased number of variables being adjusted for. 

9.6. Conclusions  

As such, although this investigation into the selection of variables across the whole 

range of model features (model type (including the effect of bootstrapping on CIs), time 

interval, variable selection threshold and procedure, and the treatment changes 

accounted for) provides guidance on which (of the many) baseline and TVCs should be 

adjusted for in order to adequately satisfy the assumption of NUC, there are a number 

of questions of interest which remain to be answered, most notably whether the 

treatment effect is affected most by model type, reasons for treatment change or time 

interval. 

Thus, in order to allow direct comparisons to be made between each scenario and thus 

an assessment of the independent effect of each of these sources of variation on the 

resultant treatment effect, it became apparent that it would be necessary to fit a 

standard set of models which adjust for the same covariates for each of the model 

type/treatment change/time interval combinations.  

To this end, it was necessary to choose a standard set of covariates in order to 

investigate the influence of other factors (choice of model type and time interval, 

selection threshold and procedure, and the validity of normal or bootstrapped CIs for 

the PLR). Given that baseline covariates were not often selected into the ITT version of 
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each model, it seemed sensible to consider including a variety of combinations of only 

TVCs in the IPCW models. The results of this variable selection procedure across 

different modelling scenarios demonstrated that, on the whole, seizure count was 

selected most often into the IPCW models, followed by dose and then AEs. Thus it 

seemed appropriate that the following sequence of models should be considered: 

adjusting for time alone; adjusting for time and seizures; adjusting for time, seizures and 

dose; and finally adjusting for time, seizures, dose and AEs.  

Furthermore, given the evidence of overfitting with three and five knots for the PLR 

spline variables (with spline coefficients close to zero and frequent non-convergence of 

bootstrapped CIs), it was decided that a series of PLR models with only a linear time 

variable (in other words, without any splines) should be compared to those with three 

and five knots, in order to assess any subsequent effect on treatment effect estimates 

and evidence of overfitting. 

This proposed analysis using a standard set of covariates, the choice of which has been 

informed by the general trends of variable selection observed in this chapter’s 

investigational analysis, will be described in the next chapter. Furthermore, the use of a 

standard set of IPCW models will allow direct comparison with the corresponding 

RPSFTM analysis to determine the effect on inferences drawn using these contrasting 

methods.  
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10.      Comparison of IPCW and 

RPSFTM 

 

In Chapter 9, IPCW models were fit using forward and backward selection procedures 

with a range of selection thresholds in order to determine which of the numerous 

available covariates would most usefully be adjusted for in the IPCW analysis of the 

VPS vs LTG comparison of SANAD arm B. The results of this investigation suggested 

that the three TVCs (dose and cumulative seizure and AE counts) were all (to varying 

degrees) important confounders of the relationship between treatment received and 

remission, while the baseline covariates were less important.  

Thus, in this chapter, the IPCW and RPSFTM will be compared in the context of the 

SANAD arm B, using this standard set of TVCs determined by investigations described 
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in Chapter 9. The  use of a standard set of covariates allows the impact of various 

statistical factors on IPCW modelling to be investigated, including the choice of 

regression model (PLR or Cox), time interval for determining time-varying covariates 

(month, fortnight or week) and competing reasons for treatment changes. PLR 

modelling required further consideration of the method of confidence interval (CI) 

estimation (normal versus bootstrapped CIs) and number of knots for the spline time 

variable.  

10.1. Final standardised analysis  

For this standardised analysis, the IPCW analyses were conducted using Cox and PLR 

models, adjusting for an increasing number of TVCs (none; seizures alone; seizures and 

dose; seizures, dose and AEs) for each set of treatment changes (none (mimicking ITT); 

ISC only; ISC or choice; all treatment changes) and each time interval (month; fortnight; 

week). Normal and bootstrapped CIs were compared for the PLR models, fitted using 

zero, three and five knots for the time spline variable in order to evaluate the likelihood 

of overfitting in these models. This comparison allows a clear assessment to be made of 

the relative importance and influence of each of these factors on the treatment effect. 

Furthermore, the RPSFTM introduced in Chapter 8 was adapted in order to allow 

direct comparison with these IPCW models, thus only adjusting for those switches that 

relate to each particular treatment change scenario; therefore a series of RPSFTMs 

(adjusting only for “true” switches, as defined in Chapter 8) were fit according to the 

hierarchical structure of the causal research questions defined for the IPCW models. 

Note that it is possible to adjust the RPSFTM for any baseline factors that may be 

imbalanced between groups; however, given that no such covariates were identified as 
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particularly important in the IPCW selection procedure, this was not necessary. In 

contrast, it is inappropriate to adjust the RPSFTM for the TVCs that were selected for 

inclusion in the RPSFTM, as such adjustment would introduce selection bias. 

10.1.1. Causal questions of interest 

When faced with modelling decisions, it is important to keep focused on the clinical 

questions of interest, which in this case related to the treatment effect of LTG 

compared to VPS allowing for various reasons for treatment change. In addition to 

facilitating the comparison between the RPSFTM and IPCW in this trial, the use of a 

standard set of covariates in the IPCW models helps to answer the following 

(unanswered) questions from Chapter 9 regarding the impact of model type, reasons for 

treatment change or time interval on IPCW treatment effects: 

1. Do IPCW treatment effect estimates differ between Cox and PLR (and according 

to number of knots in PLR)? 

2. Do IPCW treatment effects change as more TVCs are adjusted for in the weight 

estimation model? 

3. How does the choice of time interval impact on IPCW treatment effects? In 

particular, does the use of smaller intervals (weekly intervals) for IPCW analysis 

make Cox and PLR models more similar?  

4. What are the general differences in IPCW treatment effects when different 

treatment changes are considered? 

5. How do IPCW and RPSFTM treatment effects compare for each of these 

treatment change scenarios? 
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Treatment change scenarios 

Table 41 demonstrates the practical differences between each of the modelling 

scenarios, in particular according to which treatment changes are adjusted for (which 

relates to the causal question of interest) and which TVCs are included in the WD 

model (which relates to the NUC assumption). When no treatment changes are 

accounted for, the results across all sets of TVC models are identical, given that no 

weights are generated. Artificial censoring is introduced at the time of a patient’s first 

treatment change (𝐹𝑖) if the reason for this change corresponds to the treatment change 

scenario under consideration; therefore, for each treatment change scenario, models 

vary only according to the number of TVCs that are used to generate time-varying 

weights in the WD models (in other words, according to the underlying NUC 

assumption).   

Bootstrap CIs compared with normal CIs 

Furthermore, these standardised analyses allow comparisons to be made between 

normal and bootstrapped CIs, as outlined in Table 42. As described in Chapter 5, 

normal SEs estimated from the Cox model are invalid, given that no allowance can be 

made for patient identity when applying their time-varying weights. Although such 

within-patient time-varying weights do not present a problem for PLR models, the 

actual process of estimating weights is known to artificially reduce the estimated SEs, 

suggesting the need for bootstrapped CI estimation for PLR models also. 

However, in scenarios requiring no artificial censoring (and hence no weights), namely 

those ITT scenarios where no treatment changes are adjusted for or for the treatment 

only models which do not adjust for any TVCs, the standardised analyses described in 
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this chapter allow direct assessment of the effect of bootstrapping compared to normal 

CI estimation methods. Without the complication of within-patient time-varying 

weights, the normal CIs for these Cox models are valid, thus providing an opportunity 

to directly compare the usual and bootstrapped CIs, such that any general observed 

differences between CIs can be attributed to the impact of bootstrapping (in order to 

verify the (generally accepted) validity of bootstrapping in this context).  

Furthermore, comparison between normal and bootstrapped CIs from PLR models 

which do require weight estimation will provide evidence of whether the process of 

estimating weights impacts on CI estimation. Although it is recognised that any such 

differences between these two CIs will reflect the impact of bootstrapping as well as 

weight estimation, the general effect of bootstrapping (alone) on PLR models is evident 

from the comparison between CIs for models that do not require weights (namely the 

ITT (or treatment only) models). Therefore, the difference in general trends seen 

between these two forms of CIs in models with and without weights give an indication of 

the effect of weight estimation on CI estimation over and above that of bootstrapping.  

These models were also assessed for evidence of overfitting, by considering EPV ratios 

for each model, as well as any non-convergence of bootstrapped samples or extreme 

model coefficients (as displayed in Table 42).  

EPV ratios 

As discussed in Chapter 9, a restricted cubic spline variable with 𝑘 knots introduces 

(𝑘 − 1) extra terms into the model; however given that a linear term is also required to 

accompany the spline variable, the total number of estimated coefficients required to 

model the underlying time effect for a restricted spline variable with 𝑘 knots is equal to 
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𝑘. A PLR model that includes no spline variables simply assumes a linear effect of 

treatment (and is indeed equivalent to a restricted cubic spline with one knot, given that 

such a spline restricts the tails (in other words, the whole spline) to be linear) and thus 

requires estimation of a single coefficient (for the linear term). The EPV ratios are 

interpreted in light of the recommendation that at least ten events (treatment change or 

remission, as appropriate) are required per variable included in the model, in order to 

ensure model stability (180). 
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Table 41 Artificial censoring and weighting, according to treatment changes (determined by causal question) and TVCs in WD 
model 

 TVCs adjusted for in analysis (relating to underlying NUC) 
  
 Treatment only Treatment + seizures Treatment, seizures + dose Treatment, seizures, dose + 

AEs 
     

Treatment change 
scenario 

    

None (ITT) 
 

No artificial censoring, therefore no weights required 
 

ISC 
 

Artificial censoring at 𝑭𝒊 (if first treatment change is due to ISC) 
 

No weights  
(as no TVCs are accounted 

for) 

Weights allowing for seizure 
count 

Weights allowing for seizure 
count and dose 

Weights allowing for seizure 
count, dose, AEs 

  
ISC/choice 

 
Artificial censoring at 𝑭𝒊 (if first treatment change is due to ISC or personal choice) 

 
No weights  

(as no TVCs are accounted 
for) 

Weights allowing for seizure 
count 

Weights allowing for seizure 
count and dose 

Weights allowing for seizure 
count, dose, AEs 

  
All 

 
Artificial censoring at 𝑭𝒊  

 
No weights  

(as no TVCs are accounted 
for) 

Weights allowing for seizure 
count 

Weights allowing for seizure 
count and dose 

Weights allowing for seizure 
count, dose, AEs 
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Table 42 Assessment of BS results, according to treatment changes and TVCs in WD model 

 Treatment alone Treatment + seizures Treatment, seizures + dose Treatment, seizures, dose 
+ AEs 

ITT 

 

 
No treatment changes (and hence no weights used) in ITT analysis: 

normal CI is valid; thus assess validity of BS by comparison with normal CI* 

ISC 

 

 

No TVCs and hence no 
weights: therefore 
normal CI is valid; 
assess validity of BS by 
comparison with 
normal CI* 

 

TVCs and treatment changes are both present; hence weights due to treatment changes are 
necessary:  

1) Cox:  
a. Normal CI is invalid (with no account made for multiple (time interval) 

observations for each patient) 
2) PLR (3 or 5 knots):  

a. Normal CI may be affected by weight estimation process: compare normal/BS CI 
to assess effect of weighting on SE (taking into account validity of BS from *) 

b. Overfitting of PLR models (especially with 5 knots) may lead to extreme 
coefficients and non-convergence of BS samples  

i. Typically very small coefficients (~0, i.e. OR~1) for spline variables, 
demonstrating little variation over time, but occasionally very large (>107) 
coefficients for 5th spline (leading to non-convergence of the 
bootstrapping model) indicating instability of model when fitting peak at 
the end of the range of time intervals.  

ii. Thus investigate PLR models with no spline variables (i.e. linear time 
effect only) 

ISC/choice 

 

All 

 

 

 



   
   
 

384 
 

10.2. Results 

In order to interpret this relatively complex analysis, it is helpful to focus, in turn, on 

each of the main research questions of interest listed in 10.1.1, while bearing in mind 

that the main purpose of the modelling exercise is ultimately to determine the treatment 

effect according to different reasons for treatment change. 

1. Do IPCW treatment effect estimates differ between Cox and PLR (and 

according to number of knots in PLR)? 

First, the results of the PLR and Cox models need to be assessed in terms of the effect 

of time interval, spline knots (for PLR models) and bootstrapping on model estimation 

and stability. 

The results in Table 58 to Table 59 (in Appendix C) demonstrate that spline variables 

(with 3 or 5 knots) cause low EPV, especially for withdrawal models. These low EPV 

ratios lead to overfitting of the treatment change models, evident by extreme 

coefficients for the tails of the spline distribution and non-convergence of the 

bootstrapped samples (indicated by subscripts in Table 60 to Table 63 (in Appendix C) 

as the number of bootstrapped samples (out of a total of 200) for which the model 

failed to converge). This is a particular problem for models where the number of 

observations on which to base the PLR is low (in other words, when using the month 

interval). This problem worsened as the number of events (treatment changes) on 

which to base this estimation fell (in other words, with more restricted treatment change 

scenarios) and as more variables were added to the treatment change model (either in 

the form of TVCs or due to the increasing number of knots in the spline variables). 

Thus non-convergence is a particular problem for the PLR models with five spline 
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knots assessing restricted treatment change scenarios with a monthly time interval, 

where more than half of the bootstrapped samples fail to reach convergence. 

However, despite this evidence of overfitting with increasing number of spline knots, 

the variation in terms of the treatment effect (OR) according to the number of spline 

knots is minimal. Interestingly, the difference between PLR treatment effects with 

different numbers of spline knots is greater for scenarios without adjustment for any 

treatment changes (ITT); otherwise the variation between OR estimates (between 

models with zero, three and five knots) tends to be at most 0.02.  

In contrast, the difference between treatment effects is far greater between model types 

(in other words between PLR and Cox models), as the Cox model seems to be more 

susceptible to changes in experimental factors (such as time interval and choice of 

TVCs).  

CI estimation 

The independent effects on CI estimation of weight estimation, bootstrapping and 

failing to account for patient identity (when Cox estimation involves within-patient 

time-varying weights) need to be investigated by considering three separate 

comparisons, summarised in Table 42.  

First, the comparison between usual and BS CIs for the models not involving any 

weight estimation (in other words, when no treatment changes or TVCs are adjusted 

for) will give an indication of the effect of bootstrapping on CI estimation. The PLR 

models without weights demonstrate the expected result that BS CIs tend to be wider 

than normal CIs (though not usually by more than 0.1) with the usual CI contained 

entirely within the BS CI (in other words, the upper (lower) limit from BS estimation 
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tends to be higher (lower) than the corresponding usual CI limit), but this is not true in 

all cases. In contrast the BS CIs from the corresponding Cox models (without weight 

estimation) tend to be narrower than the normal CIs. 

The effect of failing to account for patient identity in weighted Cox estimation is 

evident from the comparison between the normal and BS CIs for Cox models which 

adjust for TVCs (and which hence involve weights). Standard CIs are much narrower 

than BS CIs in these cases, because they fail to account for correlation between within-

patient time-varying weights. However, given the above result (that BS CIs tend in fact 

to be narrower than the corresponding (valid) normal CIs), this observation demonstrates 

just how misleading these invalid CIs are. 

Finally, the effect of weight estimation can be observed by comparing normal and BS 

CIs obtained for those PLR models involving weight estimation. The difference 

between these CIs comprises the effect of both weight estimation and bootstrapping; 

however given the finding above (that PLR BS CIs tend to be wider than their 

corresponding standard CIs but not usually by more than 0.1), the independent effect of 

weight estimation can be inferred by comparing this finding with the observation that 

normal CIs from weighted PLR models were consistently narrower (and tended to be 

contained within) the corresponding BS CIs, with a width difference in the region of at 

least 0.3.  

Thus, this informal analysis of the general trends across scenarios supports the theory 

that weight estimation does in fact lead to smaller SEs, and that standard Cox CIs 

estimated without regard for correlation for each patient’s time-varying weights are 

grossly inaccurate. In settings where normal CIs for PLR treatment effects can be 

validly estimated (not involving weight estimation), BS CIs tend to be marginally wider 
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than the corresponding normal CIs; surprisingly, however, BS CIs from corresponding 

Cox models in these analyses tend to be narrower than the normal CIs. 

The Cox models seem to be more affected than PLR by the need for a reliable pool of 

patients on which to base weight estimation; in the ISC treatment change scenarios, the 

Cox model CIs are particularly wide, reflecting the uncertainty with which the weights 

are estimated. 

For both the PLR and Cox models, as more treatment changes and TVCs are 

accounted for, the treatment effects move away from the null towards zero (in favour 

of VPS); this is especially true for Cox models; for example in Table 67, the HR fell 

from 0.77 (adjusting for no treatment changes) to 0.16 (adjusting for all treatment 

changes) for the monthly interval version of the Cox model. 

This meant that, without adjustment for any treatment changes (ITT), Cox treatment 

effect estimates were higher (closer to one) than the corresponding estimates from PLR 

regression. However, as Cox estimates were affected more markedly than PLR by 

changing model factors, once treatment changes were adjusted for, Cox treatment effect 

estimates fell and were lower (closer to zero) than their corresponding PLR estimates. 

2. Do IPCW treatment effects change as more TVCs are adjusted for in the 

weight estimation model? 

As more TVCs are added to the model, the treatment effects tend to move further 

towards zero; although this is true for both the PLR and Cox models, it is especially 

obvious in the Cox model. Furthermore, as the number of TVCs increases, the resulting 

treatment effect CIs widen, reflecting the uncertainty with which the weights are 
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estimated within each pool of participants with each covariate combination at each 

time. 

3. How does the choice of time interval impact on IPCW treatment effects? In 

particular, does the use of smaller intervals (weekly intervals) for IPCW analysis 

make Cox and PLR models more similar?  

Generally, it can be seen in Table 64 to Table 67 (in Appendix C) that varying time 

interval width does not greatly impact on treatment effects estimated by PLR, though 

BS CIs do vary between time intervals (though showing no systematic or obvious 

pattern, thus potentially simply due to Monte Carlo error, which would be overcome 

with a higher number of repeat samples). In contrast, treatment effects tend to fluctuate 

more markedly across time intervals when using Cox regression, with the HR tending to 

decrease (in favour of VPS) as the time interval lengthens (from week to fortnight to 

month). Furthermore, as would be expected, the difference between Cox and PLR 

treatment effect estimates generally (but not always) increases with time interval.  

4. What are the general differences in IPCW treatment effects when different 

treatment changes are considered? 

As more reasons for treatment change are adjusted for, treatment effects tend to drop 

further away from one, in favour of VPS. This effect is again observed much more 

markedly for Cox rather than PLR models.  

When weight estimation is based on few treatment changes (for example, when only 

adjusting for changes due to ISC), treatment effect CIs tend to be wide, especially for 

the Cox model. As more treatment changes are adjusted for, the CIs become narrower 
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due to increased stability of model weights because of the larger pool of patients on 

which the weights have been modelled.    

Generally, although susceptible to overfitting (due to spline variables and TVCs added 

to weight estimation models), PLR models appeared more stable than corresponding 

Cox models. Cox models seemed to be more susceptible to changes to modelling 

factors (BS CI estimation, time interval and TVC adjustment) and displayed greater 

fluctuations in treatment effect than PLR models. This apparent greater stability of 

PLR, even when subject to severe overfitting, suggests an advantage of PLR modelling 

in this context, which counter the inevitable complications in modelling relating to the 

fitting of spline variables.  

5. How do IPCW and RPSFTM treatment effects compare for each of these 

treatment change scenarios? 

In order to allow direct comparison between the IPCW and RPSFTM analyses, it is 

now of interest to approach the RPSFTM analysis using the same specific research 

questions as carried out for the IPCW; as such, the same hierarchical series of analyses 

allowing for different reasons for treatment changes were carried out using the 

RPSFTM, the results of which are shown in Table 68. Given that no baseline covariates 

were included in the IPCW models (and it would be inappropriate to include any TVCs 

in the RPSFTM), no extra covariates are added to the RPSFTM here. However, it 

should be noted that these results differ slightly from those in Chapter 8, as this analysis 

relates only to those patients who were included in the IPCW analysis, namely those 

with available data on dose, seizure and AE counts. 
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As with the IPCW, the main disadvantage of focusing on more specific reasons for 

treatment changes is the resulting reduction in power due to the reduced number of 

treatment change events on which to base the analysis. This issue is all the more 

problematic in the RPSFTM setting, as it compounds the existing limitation that all 

treatment changes other than direct switches between trial treatments are necessarily 

censored in the analysis. Therefore, even when adjusting for all treatment switches (due 

to ISC, choice or UAEs), these direct switches between trial treatments make up only 

one sixth (one third) of all treatment changes occurring prior to remission time in the 

VPS (LTG) group; the remaining five sixths (two thirds) of treatment changes are 

necessarily censored. Thus when analysis is restricted to adjust for treatment switches 

due to ISC alone, this proportion (of treatment changes that are appropriately 

accounted for in the analysis) drops to less than one tenth (one quarter) of the VPS 

(LTG) arm.   

Bearing in mind these limitations, it is however interesting to note that adjustment for 

treatment switches due to ISC alone causes the HR to move closer towards one, 

suggesting a smaller advantage of VPS compared to the result reflecting no adjustment 

for any treatment switches. (Note that this scenario does not entirely reflect the original 

ITT analysis, given that censoring is applied at the time of all treatment changes (other 

than just direct switches between LTG and VPS) as for the other sequential analyses.) 

This implies that if, rather than switching from VPS to LTG and vice versa, patients 

were treated with more appropriate dosing to tackle poor seizure control, the longer 

term beneficial effect of LTG in terms of providing seizure control, and ultimately 

remission, would be enhanced, although VPS would continue to be the treatment of 

choice.  
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However, it is equally important to note the relatively dramatic fall in HR (from 0.877 

to 0.772) when treatment switches occurring for reasons of personal choice (as well as 

ISC) are adjusted for. This change in treatment effect is especially surprising, given that 

the ISC/choice analysis adjustment differs from the ISC analysis adjustment only with 

respect to data from two VPS patients who switched out of choice, suggesting that the 

RPSFTM is relatively sensitive to small changes in the data. However, this trend 

continues as more treatment switches are adjusted for; the HR falls further (to 0.756) 

when treatment switches due to UAEs are also accounted for. 

In comparison to the IPCW analyses, adjustment for treatment switches using RPSFTM 

has a less dramatic effect on treatment effect estimates. This is expected, given that 

these treatment switches between LTG and VPS make up only one sixth (one third) of 

the treatment changes accounted for in the IPCW methods.  

Overall, this investigation into more specific, clinically relevant causal research questions 

demonstrated that (across all model variations), as more treatment changes were 

accounted for, the advantage of VPS over LTG increased; in other words, without 

deviation from randomised assignment, the observed (ITT) treatment effect would have 

indicated a further advantage of VPS over LTG.  

10.3. Conclusions 

There were a number of reasons why the IPCW was likely to perform better than the 

RPSFTM in this trial: first, in contrast to the RPSFTM, the IPCW is easily able to 

handle multiple randomisation arms (although for the sake of comparison, the same 

two-way comparison will be presented here as in the previous chapter). Furthermore, 

unlike for most other models, the initial 12 month period being devoid of events will 
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not violate the assumptions of the underlying Cox model used in IPCW, as this model 

makes use only of the ranking of events, rather than actual event times. 

The explicit allowance for time-varying confounders (under the NUC assumption) is a 

particular advantage of the IPCW, given that this form of confounding is especially 

relevant in the SANAD trial, where variables such as prescribed dose, and cumulative 

seizure and AE counts are likely to influence the probability not only of remission but 

also of treatment changes. For example, a high dose of treatment increases the chance 

of seizure control while simultaneously increasing the probability of adverse drug 

reactions, which in turn may trigger treatment changes. Indeed, it may be particularly 

important to consider adjustment for treatment doses in this trial, given the pragmatic 

trial design (where prescribed dose was completely at the discretion of clinician, and 

even the initial dose of randomised drug was not standardised) and lack of blinding. 

The greatest advantage of the IPCW analysis over the RPSFTM, however, is its ability 

to deal with any form of treatment change, without the need to bias analysis by 

exclusion or censoring of patients. This is because an IPCW analysis handles all types of 

(relevant) treatment change identically: namely by artificially introducing censoring of 

patients at the point of treatment change while appropriately accounting for this 

censoring using weighting, under the NUC assumption. Thus, in adjusting for all forms 

of treatment changes, the application of the IPCW method to the SANAD data 

addresses a slightly different research question from that to which the RPSTFM related, 

by providing an estimate of the relative treatment effect between treatments that would 

occur in the absence of any departure from randomised AED. 

Indeed, a direct comparison between IPCW and RPSFTM methods was not possible, as 

RPSFTM can only reliably account for a specific type of treatment change (in this case, 

direct switches between trial treatments); in order to allow a direct comparison between 
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these methodologies, adjustment in the IPCW analysis would have need to have been 

restricted to treatment switches alone. However, a further reduction in the number of 

treatment changes (on which weight estimation is based) to treatment switches alone 

would compound the existing problem of model instability due to low EPV ratios in the 

IPCW analysis. Unsurprisingly, therefore, the effect of RPSFTM on treatment effect 

reduction was less pronounced than with IPCW methods, as the majority of treatment 

changes were necessarily ignored (and in fact introduced censoring) in the RPSFTM. 

10.4. IPCW 

This chapter has demonstrated how a complex trial scenario can be translated into 

relevant causal contrasts to enable estimation using different approaches to survival 

analysis. However, there were a number of complications in the IPCW leading to 

necessary compromises and simplifications in the modelling exercise. It is now 

necessary to consider the conclusions in light of the inevitable limitations of this 

simplification process. 

10.4.1. Limitations 

There were a number of limitations relating to the application of IPCW methods in this 

context. Firstly, although the PLR version of the WD model seemed in general to be 

the most reliable and appropriate method to apply in this context, this model was 

complicated by the issue of how many knots to include in the spline variables. In this 

analysis, the same number of knots was used for the spline variables in both the 

remission and treatment change models. However, given the less complex pattern of 

probability of treatment change (compared to remission, which is complicated by the 

zero probability of event occurring prior to 12 months coupled with the peak of events 

at 12 months) and fewer treatment change events (compared to remission), it may have 
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been more appropriate to use a smaller number of knots (perhaps two or three) in the 

treatment change model, while using more knots in the remission model (clustered 

around the 12 month point to more accurately reproduce the evident non-linearity). 

Additionally, PLR modelling was developed originally for a large study (with over 5000 

subjects) (183), which provided many more treatment changes on which to base the 

WD model than in SANAD; thus, given the potential bias which increases as the 

number of (treatment change) events decreases when modelling is implemented without 

conditioning (187), it would have been interesting to investigate use of conditional (rather 

than pooled) logistic regression in this context.  

Furthermore, PLR is known to approximate well to the Cox model only when the 

probability of event within each discretised time interval is small (for example, <10%) 

(183). This was generally the case for all time intervals in the SANAD study apart from 

one major exception: given the large number of remission events occurring at 12 

months (with approximately 30% of patients achieving I12mR), this approximation is 

unlikely to hold at this time point. The magnitude of the bias introduced by this peak in 

event rates at the very start of the follow up period is unknown; thus it may have been 

useful to consider a simulation study (with known true HR and varying degree of peaks 

in event rates) in order to investigate the impact of this peak of event rates on PLR 

estimates.  

However, despite complications in PLR modelling due to necessary considerations 

regarding time interval, CI estimation and spline variables (and evidence of severe 

overfitting in some cases), PLR models were more stable than corresponding Cox 

models, which were highly susceptible to fluctuations in treatment effect with changes 

to modelling factors. For example, the effect of time interval (week, fortnight or month) 

was observed in the Cox model when all other factors were held constant, suggesting 
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that the differences in TVC values (held fixed at the start of each interval) between the 

different time interval analyses impacted on treatment effect estimation.  

The differences between the Cox and PLR models may have arisen because of the 

different way in which these models estimate the baseline hazard (or risk of event): PLR 

modelling explicitly introduces extra parameters (by way of spline variables) in the 

model to describe the hazard, while Cox models condition the baseline hazard out of 

the model likelihood.  

A further limitation of the application of the IPCW method in SANAD was the fact 

that the reason for treatment change was provided only for the first observed treatment 

change (as the first deviation from randomised treatment related to the primary 

outcome, time to treatment withdrawal). Although drug and dose data were available 

regarding each patient’s first three treatment changes, the reasons for these subsequent 

treatment changes were not collected. As such, when considering analyses adjusting 

only for certain reasons for treatment change, treatment changes occurring for other 

reasons were ignored without introducing artificial censoring; however, ignoring these 

changes (due to other reasons) invoked the implicit assumption that no further 

treatment changes relating to the reason of interest occurred subsequently in that 

patient. This demonstrates that, when considering the design of studies, trialists should 

consider carefully how data collection relating to treatment changes beyond the initial 

changes may impact on analysis limitations. 

Another drawback of the IPCW was the reliance on patient-reported information for 

the TVCs relating to seizure and AE counts. Chronic disease, because of their long term 

nature, cannot be as closely assessed as acute conditions; as such, follow up information 

in trials of diseases such as epilepsy often rely on patient self-reports for information on 

covariates such as adherence, adverse events or clinical events such as seizures. As 
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previously discussed, it is well known that patients may over-exaggerate their adherence 

in order to avoid disapproval from their health care provider; however there is also 

evidence to suggest that patients may under-report the occurrence of symptoms of their 

disease, particularly if their occurrence will lead to unwanted measures being taken.  

In the case of epilepsy, patients may not want to disclose the occurrence of seizures, 

especially if they have been seizure free for some time and are aiming to achieve a 

period of remission in order to regain their driver’s license. Previous (unpublished) 

analysis suggests a difference in the proportion of males and females achieving 

remission in SANAD, despite there being no clinical reason for the apparent 

disadvantage in females with respect to this outcome. It is hypothesized that males may 

have a greater incentive to regain their license (for example, when their job relies on 

their ability to drive) and thus may under-report their seizures. As such, given the 

importance of accurate data on all relevant TVCs in order to meet the NUC 

assumption, the potential for biased under-reporting of seizures may limit the value of 

the IPCW analysis in this setting. 

10.4.2. Assumptions 

Having discussed the practical application of the IPCW and RPSFTM methods in detail, 

it is useful to provide a reminder of the more general key factors for consideration when 

deciding whether to apply each of these methods. Given that these methods differ in 

terms of their assumptions and data requirements, their relative appropriateness 

depends on the circumstances to which they are applied; thus, it is necessary to consider 

the plausibility of their assumptions with each application. However, given that these 

assumptions are on the whole untestable, it is more realistic to consider whether these 

assumptions are generally reasonable rather than necessarily wholly satisfied in the given 

context (142). 
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IPCW is based on the fundamental assumption that groups are appropriately rebalanced 

after reweighting each (uncensored) individual’s contribution to analysis (195). However 

this in factor relies on two separate assumptions, not only that all factors used to match 

those who did and did not crossover (but who otherwise had identical prognosis) are 

known and measured, and therefore able to be accounted for when calculating weights 

(NUC assumption), but also that the trial setting provides a pool of exchangeable 

patients for each combination of prognostic factor, such that for each patient who 

change treatment, there are sufficient patients with equal prognosis and similar 

likelihood of changing treatment who did not switch treatments (positivity). If too few 

patients of each prognostic profile level either did or did not change treatment at a 

particular time point, the weight generation model will be unstable and extreme weights 

will result for the corresponding patients. These patients would then receive undue 

influence in the model, which will increase the chance of spurious model results (often 

manifested as extreme coefficients or large SEs). 

Rather than sample size per se, therefore, it is the number of events on which to base 

weight estimation that is important (along with NUC) in order to ensure that the 

exchangeability assumption is met. Indeed the IPCW method has been shown to be 

prone to high levels of bias in relatively large sample sizes (500) when a high proportion 

(>90%) of control patients switch to experimental treatment, even when the NUC 

assumption holds (142). Therefore, as expected, in smaller sample sizes where very few 

events have been observed, the IPCW method is likely to perform poorly (196).  

However, the NUC assumption represents a key limitation of the IPCW method 

(which, unlike the positivity assumption, cannot be overcome by increasing sample size) 

and may be particularly problematic in an RCT context. Typically RCT datasets are 

much smaller than observational datasets and when fewer data are available, the IPCW 
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method may become less stable and CIs may become wide. In addition, key predictors 

of treatment switching are not always collected in RCTs (such as patient switching 

preferences) and often data collection on key indicators is stopped at some point (for 

example, upon treatment discontinuation or disease progression) which hampers the 

applicability of the IPCW method (142).  

With time-varying confounders, the exchangeability assumption (dependent on the 

NUC and positivity assumptions) is particularly unlikely to be true throughout follow 

up, especially as number of remaining patients receiving treatment as randomised falls. 

Furthermore, as observed in this analysis, large values of time-dependent confounders 

strongly associated with treatment change may lead to extreme weights (even after 

stabilising) and subsequent invalid causal estimands. 

The NUC assumption as part of the IPW method introduces further conundrums. 

Although the probability of treatment change is assumed to depend on known 

confounders alone, in order to allow valid IPW estimation, it is necessary that not all 

patients with these confounding features actually do change treatment. Thus it must be 

considered why these patients did not experience a treatment change; it may simply be a 

random occurrence, or it may be that these patients differ systematically from those 

who did change treatment, indicating that an additional selection effect has been missed 

(and the NUC assumption is therefore invalid) (111). 

Thus Robins (111) stipulates that the IPTW method should be accompanied by 

sensitivity analyses to assess the degree to which violations of the NUC assumption may 

change analysis conclusions. Robins demonstrates how such sensitivity analyses may be 

carried out, first by defining a measure that quantifies the degree of confounding due to 

unmeasured factors and then assessing whether conclusions alter materially when this 

measure is allowed to vary over a range of non-zero values. 
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10.4.3. Further investigations 

As demonstrated in this chapter, even in a large trial like SANAD with common 

treatment changes and excellent follow up (without the usual problems when deviation 

from treatment protocol leads to deviation from follow up protocol), there remained 

uncertainty regarding the most appropriate method to use, with obvious major 

limitations and assumption violations with each method. In particular, the limited 

number of events relating to the most important clinical question (of adjusting for 

treatment changes due to ISC alone) meant there was very little scope for further 

extensions to the model in this context.  This is unfortunate, given that there were a 

number of issues that warranted further investigation in this trial.  

Firstly, given that loss to follow up is often related to prognosis, it would have been 

interesting to assess the impact of (potentially informative) loss to follow up (when 

patients’ outcome data are censored prior to the administrative censoring date of the 

trial or to achieving remission) on conclusions, for example using IPCW methods to 

calculate weights relating to the probability of loss to follow up (rather than treatment 

change). However, there were insufficient numbers of patients who experienced 

censoring prior to remission or treatment change to allow valid estimation of such 

weights.  

Furthermore, it would have been useful to investigate the impact of assumptions 

regarding those 42 patients with missing seizure data for at least one of their clinic visits, 

comparing simple and multiple imputation techniques (with estimation of missing 

values  based on predictive patient characteristics) as described in Chapter 9. 

The IPCW model could have been extended to compare all three randomised arms in 

arm B of the SANAD trial. However, this three-way comparison was not attempted, 
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not only because of the additional complexity that would be introduced by such an 

analysis, but also because the clinical question of interest related particularly to the two-

way comparison between VPS and LTG alone. 

A further data quality issue affecting the IPCW model was the assumption that long 

periods without follow up data indicated no change in outcome or treatment 

prescription. Given that the occurrence of any missed clinic visits may well be related to 

a patient’s condition, it would have been interesting to carry out a sensitivity analysis 

where patients’ data were censored if the interval since their previous follow up 

information exceeded a certain (clinically informed) time period (for example, six or 

twelve months), with adjustment for potential bias introduced by such censoring 

accounted for using IPW (adjusting for all confounding factors predicting loss to follow 

up and outcome). If the overall conclusions of the IPCW were affected greatly by 

varying the time before follow up was censored, this would demonstrate the sensitivity 

of the analysis to the assumption that all follow up data were accurately accounted for. 

A further consideration regarding data accuracy is that of measurement error. For 

example, it is known that patients with extreme numbers of seizures (some with 

multiple seizures per day) were only able to provide approximations of the number of 

seizures experienced between clinic visits. The impact of this inevitable measurement 

error is likely to be inflated due to the increased influence of extreme values of TVCs in 

determining time-varying weights. Although this issue would be addressed to a certain 

degree through the use of truncation of seizure counts (at the 95th centile), it would have 

been useful to assess the sensitivity of conclusions drawn when extreme seizure counts 

were varied systematically (for example, increased or decreased by a certain amount). 

It would also be interesting to investigate further the impact of extreme weights on 

analysis, as were observed in this application, potentially using simulation studies. 
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Indeed, the practical and statistical problems associated with weight estimation that 

were encountered during this analysis are not unusual, and research into improving 

methods for weight estimation is a continuing area of debate (197). 

Adherence to treatment prescription 

However, perhaps of greatest interest and impact would be the consideration of 

adherence to treatment prescription. Given that there were no detailed compliance 

information collected as part of the SANAD trial, it was not possible to assess the effect 

of treatment adherence, rather than simply treatment prescription on remission. Given 

that AEDs can lead to unpleasant side effects, it is likely that a substantial proportion of 

patients do not always adhere to their daily dose. It is quite plausible that the effect of 

nonadherence to treatment prescription on outcome could be of a similar magnitude to 

that of changes in treatment prescription; however, without any adherence data, it was 

not possible to investigate this in the causal analyses presented in these chapters. 

In order to explore the likely impact of adherence on causal estimation, it would be 

useful to carry out a simulation study, assessing the effect on outcome of various levels 

of compliance and various degrees of association between a patient’s compliance and 

their prognosis. The parameters used to simulate these compliance data would be 

informed by the small amount of compliance information collected in the annual quality 

of life questionnaire in SANAD. In estimating the impact of (ignoring) adherence 

information on clinical interpretation of results, this simulation study would differ from 

that previously suggested, which instead would assess the statistical validity of applying 

this methodology in this setting. 

An additional simulation study assessing impact would also be useful to investigate 

adjustment for particular reasons for treatment change. In particular, although clinicians 
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were primarily interested in the question of treatment effect adjusted for treatment 

changes caused by ISC, there was inadequate power in the SANAD data to estimate this 

treatment effect with any confidence. The reason for this is that patients are likely to 

experience treatment changes due to other events before making changes due to ISC. If 

seizures persist, rather than giving up and changing treatment immediately, clinicians 

often initially increase the dose of randomised drug to see if seizure control can be 

achieved through more appropriate dosing (198). However given that increasing dose 

increases the likelihood of adverse reactions, patients may then be censored for reasons 

related to UAEs prior to switching treatment (because of ISC) or achieving remission. 

Alternatively, treatment changes for other indications may well occur (prior to remission 

or treatment changes due to ISC), such as the patient requesting to change treatment 

(for example, because they believe themselves to be in a state of remission (even though 

they have not yet achieved 12 months of remission from seizures) or because of a desire 

to become pregnant, which is contraindicated with some AEDs). In providing more 

power than the original SANAD data, a simulation study based on observed treatment 

change profiles in SANAD would allow valid and independent estimation of specific 

weights for each cause of treatment change (ISC, personal choice or UAEs); thus it 

would be possible to use IPCW methods to obtain individual’s weights (and hence 

adjust) for each (relevant) cause of treatment change.  

Furthermore, it would then be possible to use results from such analyses to adjust for 

multiple reasons for treatment change, with patients’ overall weights obtained simply by 

multiplication of their individual (relevant) reason-specific weights. The resulting 

treatment effects, adjusted for each combination of reason for treatment change, could 

then be compared to those obtained using the sequential approach demonstrated in this 

chapter; if broadly similar, this would validate and support the use of the hierarchical 
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approach in model scenarios with low power (given that weight estimation for 

individual reasons for treatment change is compromised when there are insufficient 

treatment changes for each individual reason within each treatment group). 

10.4.4. Alternative methods 

In censoring follow up at the point of each patient’s first treatment change, IPCW 

methods may present an advantage, if follow up data post-change are considered 

misleading or unhelpful, and hence may be more powerful than ITT. If, instead, the 

follow up data after first treatment change are believed to contain potentially useful 

information, it may be advantageous to fit a MSM, which uses information from all 

periods of treatment, in other words, after as well as before the change from randomised 

treatment.  

For example, IPTW weighting could have been applied to the SANAD data, where 

these weights are estimated from the inverse probability of observed (rather than simply 

randomised) treatment. Rather than artificially censoring at the time of treatment 

change, an IPTW model regresses the outcome on a suitable summary of treatment 

history (such as a time-varying binary treatment indicator) throughout follow up, 

adjusting for each individual’s estimated probability of receiving their observed 

treatment. The difference between IPTW (MSM) and IPCW methods may best be 

understood by considering their interpretation in the absence of any relevant TVCs: is 

such a case, an IPTW model would reduce to a simple (unweighted, baseline covariate-

adjusted) AT analysis (with a time-varying treatment indicator); in contrast, without 

TVCs, the IPCW method reduces to an (unweighted, baseline covariate-adjusted) PP 

analysis (censored at the point of first relevant treatment change). 
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Such a method would also have been feasible for the honey trial, in which factors likely 

to confound the relationship between treatment and outcome included a patient’s age 

and their (time-varying) wound size. Clinicians were inclined to treat younger, fitter 

patients with honey as they believed it to be a promising treatment for such patients; 

this is evident when comparing the median (IQR) age of the five patients who were 

switched from conventional to honey treatment by their clinician [44 (38, 53) years] to 

that of the remaining patients [72 (56.5, 79) years]. Conversely, treatment of large 

wounds with a poor prognosis was likely to be switched to more extreme modalities, 

such as surgery. Thus, in theory, it would have been feasible to fit an IPTW model to 

this trial data, by first using a Cox or PLR model to predict each patient’s probability of 

receiving their actual observed treatment for each time interval, dependent on their age 

at randomisation and (time-varying) wound size. The inverse of these predicted 

probabilities could then be used to weight analysis of time to healing (or time to 50% 

reduction in wound size) regressed on treatment received, thus providing a treatment 

effect estimate free from selection bias. Furthermore, it would have been interesting to 

account for LTFU (for example, when patients moved wards or hospitals) using 

separate IPCW (where censoring is due to LTFU rather than artificial censoring at the 

time of treatment changes). However, the validity of this model would rest on the 

questionable assumption that these two prognostic factors wholly account for the 

association between treatment changes and prognosis. Unfortunately there were 

insufficient numbers of treatment changes to allow the IPCW method to be performed 

with any confidence. 
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10.5. RPSFTM  

10.5.1. Limitations 

As discussed in Chapter 8, there were a number of severe limitations when the 

RPSFTM was applied to analysis of time to 12 month remission in the SANAD B trial; 

in particular, the model is unable to accurately represent the peak in remission events at 

12 months or the lack of events prior to 12 months, resulting in model predictions of 

remission event times prior to 12 months.  

Furthermore, in handling only one form of treatment change (direct switches between 

randomised treatments), patients’ follow up was necessarily censored at the time of all 

other treatment changes (thus introducing bias in a similar manner to that of PP 

analyses). The application to the RPSFTM of the hierarchical structure (adjusting for 

certain reasons for treatment change) in this chapter presents a further challenge, due to 

the reduction in power as fewer numbers of relevant treatment switches are adjusted for 

in the restricted treatment change scenarios. 

10.5.2. Further investigations 

As such, given the severity of these fundamental limitations of the RPSFTM in this 

context relating to violations of basic necessary assumptions and limited power, a 

discussion of potential refinements or extensions to the model may seem somewhat 

redundant. However, for the sake of completeness, these will be presented here, 

particularly as a number of these model variations would, in theory at least, provide 

partial solutions to some of these major flaws. 
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10.5.3. Assumptions  

The first of these potential solutions relate to the likely violation of the common 

treatment effect in SANAD, given that the treatment effect may vary according to 

whether treatment is received on diagnosis (which was the time of randomisation for 

the majority (87%) of recruited patients in these treatment groups) or following 

treatment failure of the alternative (randomised) treatment. Although in theory it would 

be possible to extend the RPSFTM to include more than one treatment effect (perhaps 

with a different treatment covariate for treatment received prior to and after treatment 

failure (of randomised drug), thus differentiating between treatment received from 

randomisation or following treatment switch), the resulting complexity of the model 

would mean that, in practice, the additional parameter would be not be estimable with 

any degree of certainty. 

The RPSFTM assumes the treatment effect is multiplicative, immediate and constant 

(which may not be true, as a patient’s response to treatment may change as patient 

progresses through disease); therefore the acceleration factor is interpreted as an 

average effect over time, across patients and disease stages (195). 

Thus it is important to consider whether the assumptions underlying the modelled 

treatment effect are likely to reflect the true treatment effect. For example, if the 

common treatment effect assumption does not hold (such that the treatment effect 

differs according to when treatment is initiated), the RPSFTM will produced biased 

results (as demonstrated by Morden (137)). 

Given that treatment switches are likely to be associated with prognosis, it is not 

possible to confirm the validity of the common treatment effect assumption using 

observed data alone; instead it is important to seek expert clinical guidance in order to 
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back up claims regarding the plausibility of this assumption. In particular, it is useful to 

ascertain the likely variation in effectiveness of treatment as disease progresses (142). 

For example, the plausibility of the common treatment effect may be questionable if 

treatment switches only occur when clinically indicated, such as on disease progression, 

at which time the capacity for a patient to benefit may be different compared to pre-

progression because of their advanced disease. 

Although it would be of interest in many clinical scenarios, therefore, to estimate 

multiple treatment effects, the RPSFTM is limited in that it becomes increasingly 

unstable when trying to estimate more than one such parameter. As such, alternative 

methods are required to address this issue. 

10.5.4. Alternative methods 

One such method, an alternative two-stage version of the RPSFTM, was proposed and 

demonstrated by Robins (95) and Yamaguchi (199) respectively, in an attempt to 

overcome the problem of violations of the common treatment effect assumption. These 

methods are appropriate when there is a definitive secondary baseline (for example, date 

of disease progression) at which point alone switching may occur, such that 

randomisation is assumed to be adhered to until this point. These methods effectively 

recognise that the clinical trial is randomised up until the point of disease progression, 

for example, but beyond that point, essentially becomes an observational study.  

This two-stage approach first uses a counterfactual SNM (which, as described in 

Chapter 5, is similar to the RPSFTM but relies on the assumption of NUC rather than 

randomisation for g-estimation) to obtain estimates of the treatment effect specific to 

control patients in order to allow estimation of their counterfactual event times (in 

other words, as if they had not switched to receive experimental treatment); these 
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“shrunk” survival times then form a counterfactual dataset unaffected by switching, 

thus providing an inferred “uncontaminated” control arm against which the treatment 

effect specific to experimental group patients can be estimated. However, given that the 

SNM is essentially an observational version of the RPSFTM and attempts to account 

for time-dependent confounding using the NUC assumption, this method has similar 

limitations to the IPCW (135). In particular, when very high switching proportions are 

combined with small sample sizes, these two-stage methods are likely to be prone to 

error and bias. 

Latimer (142) proposes that these methods can be simplified to remove dependence on 

g-estimation, if it is plausible to assume no time-dependent confounding between time 

of disease progression and time of treatment switch, such that only those factors 

collected at the point of treatment switch which determine treatment switch are adjusted 

for, rather than requiring data on all time-dependent confounders (as required by the 

more general two-stage approaches).  

Such two-stage methods remove the need to rely on the potentially implausible 

common treatment effect assumption, but they do depend on identifiability of a suitable 

secondary baseline (at which point (alone) switches occur and at which all patients are 

assumed to be at a similar stage of disease) and on the NUC assumption to hold at this 

secondary baseline time point. When switching occurs soon after the secondary 

baseline, the scope for such time-dependent confounding is limited, but this is not the 

case if switching happens substantially after the secondary baseline, in which case the 

potential for such bias becomes substantial (142). 

In summary, this simplified two-stage model removes the dependence on the common 

treatment effect assumption, and does not require data to be collected on confounders 

at time points other than at the time of the treatment switch. However, such a method 
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may be prone to time-dependent confounding if switches occur beyond this time point. 

Furthermore, it may not be generalisable to all disease areas, given its reliance on the 

ability to identify a secondary baseline at which point all switches occur. 

These methods may be particularly relevant for cancer clinical trials, where the decision 

when and whether to initiate second-line treatment on disease progression is often left 

largely at the discretion of the treating clinician, though the protocol may provide brief 

or broad guidance on this. Factors which influence this decision include the patient’s 

clinical condition, abnormal laboratory markers or adverse drug reactions; as such, the 

effect of second line therapies may be viewed as arising from observational studies 

(136). The argument against the common treatment effect in this clinical setting stems 

from the fact that a constant AF essentially consider first-line and second-line patients 

equally, whereas in clinical practice they are considered to be different patient 

populations.  

However, in disease areas such as epilepsy with less clearly defined points of treatment 

change (as a clinician’s decision to alter treatment prescription varies on an individual 

patient basis, depending on their own tolerability and priorities), such a secondary 

baseline is less obvious, therefore rendering such methods less useful. 

A further potential refinement to the RPSFTM in this setting relates to the typical 

lengthy withdrawal periods when patients switch AEDs; in theory it would therefore be 

relevant to consider allowing for lagged effects of treatment, whereby the treatment 

effect is extended by a certain time period beyond the recorded date when withdrawal 

began, either up to the recorded date when the drug was taken for a final time, or by 

assuming a general withdrawal period (informed by clinical opinion) for all patients 

coming off each treatment.  
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As discussed in Chapter 8, mixture modelling may be applied in order to get around the 

problem of necessary truncation of AF prior to 12 months (as 12 month remission 

cannot, by definition, occur before this time) and the peak of events at 12 months. 

Mixture modelling involves fitting separate models for immediate and delayed 

remission, where the immediate remission model needs to reflect treatment over 12 

months but is complicated by the fact that a basic time-varying treatment covariate is 

appropriate only until the time at which first seizure occurs.  

An alternative approach to adjustment for treatment changes would be to consider 

adjustment for changes to prescribed treatment using joint modelling of survival 

outcome and longitudinal dose data (under an NUC identifying assumption), as 

demonstrated by Williamson et al (198) for the CBZ versus LTG comparison among 

arm A SANAD patients. Given that dose titration differed between these treatment 

arms (as clinicians were more familiar with the standard CBZ drug and hence tended to 

prescribe higher doses more quickly, whereas they were more cautious with newer 

LTG), there was a concern that UAEs would be more likely in patients randomised to 

the more well-known standard drugs. Hence analysis was carried out, adjusting for 

standardised dose levels between treatment groups (calculated by dividing patients’ 

doses by their treatment-group-specific median initial doses) in joint modelling of dose 

and survival. This analysis demonstrated that the observed benefit of LTG in terms of 

preventing AEs was maintained even allowing for the difference in titration rates 

between arms, and that the two arms remained similar in terms of seizure control once 

doses had been accounted for. 

Although useful in adjusting for differential rate titration between groups, this joint 

modelling analysis did not, however, account for treatment changes or switches 

between arms: supplementation with additional drugs was ignored, and once 
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randomised treatment was withdrawn (in other words, the dose of randomised 

treatment dropped to zero), analysis was censored. Given that such censoring is likely to 

introduce bias, it would be desirable to extend the joint model to allow for between-

group switches using RPSFTM methods. However, given the complexity of both the 

joint modelling and RPSFTM models, extensions to allow for between-arm switches as 

well as dose titration would be overly complicated and beyond the scope of this PhD. 

Alternatively, it would be possible to combine the methodology of the RPSTFM (to 

model the effect of direct switches between randomised treatments of interest) with that 

of the IPCW (to remove the bias caused by the necessary censoring of events that occur 

prior to or after the “true” switches of interest and also to potentially allow for 

competing events). However, any benefit gained by reduction in bias when undertaking 

such an analysis would be unlikely to outweigh the problems caused by the additional 

model complexity or underlying flaws associated with the use of the RPSFTM in this 

context. 

Thus, in applying the hierarchical structure regarding reasons for treatment change to 

the analysis of T12mR in this chapter, it is apparent that the severe limitations of the 

RPSFTM, discussed in Chapter 8, are compounded further. In adjusting only for those 

switches occurring for particular reasons, the usefulness of this model is reduced, while 

the bias is increased (because of additional necessary censoring when patients 

experience treatment switches for other reasons). 

10.6. Conclusions 

This comparatory analysis has demonstrated a number of key conclusions regarding the 

use of IPCW and RPSFTM methods in a context such as SANAD.  
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In particular, as regards IPCW modelling, analysts must consider whether the 

underlying assumption of NUC is convincing, and whether accurate data are available 

on all relevant confounders between treatment changes and outcome (for example, 

information used by clinicians when deciding to change a patient’s treatment 

prescription or when recommending a treatment switch, as this clinical information will 

often also relate to outcome). Furthermore, it is necessary to determine whether there is 

a sufficiently large pool of those who did (and did not) change treatment at each 

particular time point within each category (defined by cross-classification of all 

confounders in the model) to allow reliable weight estimation; in practical terms, this 

requires assessment of the proportion changing treatment in relation to the sample size 

at each time point for each combination of patient factors; analysts must also be vigilant 

regarding evidence of extreme weights or coefficients. 

Technically speaking, when applying IPCW methods, it is not necessary to continue 

outcome follow up beyond the time of the first relevant treatment change. However, 

given that it may be of interest to apply sensitivity analyses (for example, adjusting for 

other forms of treatment change) or to compare IPCW methods with those obtained 

using the RPSFTM, it is wise to collect survival information on patients beyond the 

time of treatment changes until the outcome (or censoring) event occurs.  

In contrast to the IPCW, which accommodates all types of treatment changes (indeed, 

treatment changes are not differentiated in the analysis; they are all treated identically, by 

artificial censoring at the point of the first treatment change), the RPSTFM cannot 

easily handle more than one type of treatment change. Although the RPSFTM could in 

theory be extended to adjust for multiple forms of treatment change, in practice such 

complexity leads to model instability (94). Generally, the RPSFTM will be most 

appropriate when the treatment deviations mostly take the form of switches between 
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trial treatments and when it is plausible to assume that the effect of treatment is 

constant (regardless of when treatment is received).  

Thus, the main considerations when applying RPSFTM relate to the assumption of a 

common treatment effect and limitations regarding adjustment for only a single form of 

treatment deviation. Thus, analysts may need to consider whether the treatment effect 

may continue after discontinuing treatment (in which case it may be appropriate to 

introduce a lagged treatment effect; for example, this may have been particularly 

important in SANAD given the long withdrawal phases following the date when 

treatment was officially stopped) or whether the impact of treatment may differ 

according to the clinical state of the patient (in which case the common treatment effect 

assumption is violated). Although these assumptions are untestable with empirical data, 

it is possible to evaluate the performance of the RPSFTM by examining the model 

results; for example, analysts should consider the extent of recensoring (and its potential 

impact on treatment effects, if a treatment-time interaction is clinically plausible) and 

judge the success of G-estimation (by assessing the similarity of the distribution of the 

adjusted counterfactual (“untreated” or “control” state, as appropriate) event times 

between randomised groups). 

10.7. Summary 

As demonstrated in this chapter, even in a large trial like SANAD with common 

treatment changes and excellent follow up (without the usual problems when deviation 

from treatment protocol leads to deviation from follow up protocol), there remained 

uncertainty regarding the most appropriate method to use, with obvious major 

limitations with each available method. In particular, the limited number of events 

relating to the most important clinical question (of adjusting for treatment changes due 
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to ISC alone) meant there was very little scope for further extensions to the model in 

this context.   

In the next chapter, general guidelines will be presented for trialists facing similar 

decisions on how best to adjust for treatment changes in order to estimate causal effects 

in a randomised trial with survival outcomes, taking into account the modelling 

requirements and practical limitations of the alternative methods. 
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11.       Discussion 

The aim of this thesis has been to explore, explain, demonstrate and compare the use of 

causal methodologies in the analysis of RCTs, in order to make the available (but 

somewhat technical) statistical methods more readily accessible and comprehensible by 

non-specialist analysts. 

The thesis began with an overview of the impact of treatment nonadherence in general 

practice as well as in trials, highlighting that nonadherence to medical advice has been 

recognised as a widespread problem since the 1970s but its impact on clinical trial 

analyses is less well appreciated. Increased understanding of the reasons for deviation 

from prescribed treatment and recognition of the expertise patients often have 

regarding their own disease state have led to a move away from the traditional 

paternalistic, authoritative relationship of a doctor with their patients, towards a more 

shared decision-making model of concordance. However this notion of concordance 

does not easily translate into the world of RCTs, because of the need for inferences to 
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be made based on a known treatment structure, required for even the most pragmatic 

of trial protocols.  

Any deviation from assigned treatment renders ITT analysis (the only analysis that 

properly mirrors the randomisation process) defective in estimation of any effect except 

effectiveness of treatment as implemented in the trial. Examples of real life trials 

featuring different patterns of nonadherence and various research questions of interest 

demonstrated the need for methods beyond ITT to answer such questions.  

Thus an overview of statistical methods was presented, intended as an aid to researchers 

who are new to the field of causal inference, thus presented with an emphasis on 

practical considerations necessary to ensure appropriate implementation of techniques 

and a particular focus on interpretation of methods, rather than technical detail. This 

background research and consideration of the wider issues (for example, when it is 

appropriate to use different methods, and how to approach such analyses with 

necessary consideration of both the clinical and statistical issues) has been usefully 

summarised in a number of guidance tools, complemented by demonstration of 

analyses, intended to provide guidance for trialists and statisticians on how to approach 

causal analysis.  

In particular, this statistical literature review demonstrated the bias inherent in naïve 

methods which fail to respect randomisation, and presented various statistical methods 

to more appropriately estimate causal effects, with a particular focus on survival 

methods, as these are often relevant in settings typically associated with nonadherence 

(featuring long term treatment and follow up). 

A review of published trials then demonstrated that, despite the fact that deviation from 

allocated treatment occurs in the vast majority of trials, issues relating to bias caused by 
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deviation from treatment are rarely considered or addressed appropriately by trial 

analysts, suggesting the need for wider appreciation of the availability of other causal 

methods. 

Following a description of the necessary practical and statistical considerations required 

for such causal analyses, two methods to account for treatment deviation were 

presented and applied in the analysis of survival outcomes, in trials of contrasting 

complexity. In particular, the SANAD trial provided numerous analysis issues and 

challenges, due to the complexities of the trial design and nature of treatment changes 

that occurred. These challenges are likely to be common in other chronic disease areas, 

where treatment changes may occur for a number of competing reasons and interest lies 

in achieving remission of symptoms. As such, this novel application of complex 

methods in this complicated trial scenario provided a useful example for discussion of 

the analysis issues and methods, striking a balance between simplifications of 

compliance scenarios and associated assumptions in order to make the methods 

sufficiently easy to apply, and yet without compromising on the necessary detail on 

nature of and reasons for non-compliance which importantly inform analysis.   

This application of methods has provided a transparent discussion of issues, potential 

biases and limitations, as well as how to interpret results obtained from causal methods 

for analysis of survival outcomes. In particular, these analyses demonstrated a number 

of issues which are likely to be common among trials with long term treatments and 

deviation from protocol, for example, when difficulties arise when trying to account for 

numerous forms of treatment deviation (in RPSFTM) or problems relating to extreme 

weights (in IPCW modelling). These issues were addressed using various approaches, 

for example, truncation and transformation of skewed covariates in order to reduce the 

impact of the resulting extreme weights in IPCW modelling. Other complications in 
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IPCW modelling included the need to apply variable selection processes independently 

of (invalid) p-values, the use of bootstrapping to address the problem of deflated SEs 

resulting from weight estimation, data preparation and modelling complexities 

associated with time-varying covariates, issues of low power when investigating 

competing reasons for treatment change, and the need to consider knot positions for 

underlying time spline variables necessary for PLR modelling. 

The analyses demonstrated in these final chapters have demonstrated how the two 

pictograms presented in Chapter 7 can be used, first to clarify the compliance scenario 

such that a relatively complicated compliance situation, such as that in the SANAD trial, 

can be simplified into a feasible scenario for analysis, and secondly to guide the analyst 

when choosing which appropriate method of analysis to employ. Sketching a cDAG 

may also help to clarify the causal scenario, for example in helping researchers to 

determine whether factors are likely to be time-dependent confounders affected by 

prior treatment (and thus appropriate for adjustment using IPCW methods) or simply 

time-dependent covariates.  

A final reference tool for researchers is now provided, presenting general guidelines for 

trialists when faced with the decision of whether to use RPSFTM or IPCW 

methodology to adjust for treatment deviations when analysing survival outcomes. 

11.1. Choice of survival analysis methods 

When planning to carry out adjustment for treatment changes in trials with survival 

outcomes, analysts need to consider which of the available methods would be most 

appropriate, while recognising that no one method will be appropriate for all 

circumstances; instead the performance of each method will depend on the particular 

trial setting to which they are applied. Table 43 and Table 44 provide a reminder for 
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trialists of the modelling assumptions and practical limitations of the alternative 

methods. 

Table 43 RPSFTM considerations 

Model feature Consideration required 

Common treatment 

effect 

Consider whether treatment effect is likely to be constant regardless of 

when treatment commenced. 

  

Secondary baseline  If treatment switches tend to occur at a common “secondary baseline” 

(for example, on progression), at which point treatment effect is likely 

to differ from treatment started at randomisation (for example, on 

diagnosis) thus violating common treatment effect, consider instead 

using two-stage RPSFTM. 

  

Various forms of 

treatment change 

Consider how to address treatment changes (other than those 

directly accounted for by definition of “on” and “off” treatment in 

model) in relation to causal research question of interest: substantial 

numbers of treatment changes (which are not relevant to the causal 

scenario in question) will undermine validity of analysis, due to 

necessary censoring at the time of such changes.  

  

Impact of 

recensoring 

Assess effect of recensoring by checking the number of event times 

(and events) that were recensored, considering the potential impact on 

treatment effect estimation (if a treatment-time interaction is possible). 

  

Test model 

performance 

Assess success of G-estimation by comparing the counterfactual 

distributions (the control state event times estimated by applying the 

optimal AF to the RPSFTM) for the treatment and control arms; these 

should be similar under the randomisation assumption. 
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Table 44 IPCW modelling considerations 

Model feature Consideration required 

Selection of TVCs Consider how best to determine which TVCs are important in 

predicting treatment change and outcome: consult clinical opinion; 

may be necessary to apply selection procedure (if numerous TVCs) 

Functional form of 

covariates  

Check optimal functional form using lowess curve of martingale 

residuals (from Cox model) 

Extreme covariate 

values 

Truncate at the 99th centile to avoid extreme weights (which in 

turn distort treatment effect estimate) due to influential outlying 

values of important predictors of treatment change/outcome  

Time intervals (for 

discretised TVCs) 

Strike the balance between greater accuracy (increases as interval 

length decreases) and computational intensity (increases with 

interval length) 

Model type:  

Cox or PLR 

PLR is useful if using lagged variables or if TVCs change frequently 

(and therefore are too complicated to be analysed without 

discretising) 

 Cox modelling avoids the need to consider splines to mirror 

underlying risk function in PLR model 

Splines                   

(for PLR only) 

Create and use treatment-specific spline variables for WD model, 

but use overall splines for the WO model 

 Consider shape of underlying risk, in order to identify times where 

risk changes, in order to inform positioning of knots 

CI estimation Estimate CIs using bootstrapping to overcome correlation due to 

within-patient time-varying weights (in Cox model) and the reduction 

in SEs due to the weight estimation procedure 

EPV ratio  Consider ratio of number of variables in model to number of 

treatment change events, in particular when considering the number 

of knots to use for spline variables (spline with 𝒌 knots requires 𝒌 

variables) 

Model assumptions  Consider plausibility of NUC assumption (whether all confounding 

variables have been accounted for) by seeking clinical expert opinion  

 Examine model weights for evidence of violation of positivity 

assumption: extreme weights may indicate unreliable pool of patients 

who do (or do not) change treatment at a particular time (within a 

given subgroup of patients defined by cross-classification of model 

covariates) 
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Given their differing assumptions and data requirements, neither IPCW nor RPSFTM 

methods will be directly applicable in every trial setting. It may be useful to apply both 

(or alternative variations of these) methods, as a means of assessing the sensitivity of 

results to the associated assumptions (200, 201). Furthermore, although it is good 

practice to decide on an analysis plan before undertaking analysis, the application 

presented in the previous chapters demonstrate that the analysis plan may need to be 

altered as analysis proceeds. However, in order to avoid accusation of selective 

reporting, it is important to be transparent and report fully on all modifications of 

analyses that take place. Thus, if several methods have been applied, it is important to 

provide a discussion of the limitations and potential biases associated with each method 

when presenting results, as an aid for interpretation. 

11.2. Economic evaluation 

These two causal methods for survival outcomes are important, not only from a patient 

or clinician perspective, but also for economic evaluations of drugs by regulatory 

authorities. This is a particular problem in cancer trials, given that patients are often 

permitted (or indeed encouraged) to switch treatments on disease progression or relapse 

(142), leading to distortion of OS results. Furthermore, licensing bodies such as the 

United States Food and Drug Administration and the European Medicines Agency may 

accept PFS as a primary endpoint for drug approval, reducing the incentives to maintain 

trial randomisation beyond disease progression. However, although showing an OS 

advantage may not be essential for obtaining marketing authorisation, a lifetime horizon 

is generally advocated in economic evaluations, especially for interventions that impact 

upon survival (as recommended, for example, in the NICE Guide to the Methods of 

Technology Appraisal). Thus interest is growing in how to address the issue of 

treatment switches in order to provide unbiased and clear treatment OS comparisons 
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which are not available from ITT, PP or AT analyses. Causal effect modelling 

techniques are receiving attention as a potential solution to the problem, and there have 

been a number of submissions made to NICE and the Scottish Medicines Consortium 

which have applied IPCW or RPSFTM when considering cost-effectiveness of a 

number of cancer drugs (202-204).  

However these applications tend to be post hoc, secondary analyses devised to cope 

with problems arising with the interpretation and use of ITT estimates. In order to 

increase their credence, more thought needs to be given to the use of such methods at 

the protocol development stage, considering the degree to which treatment changes are 

likely to occur, what information is likely to be used in making the decision to change 

treatment and which methods of statistical analysis are likely to be the most appropriate. 

Lack of available compliance data provide further barriers to reliable assessment of non-

compliance in CE assessments. As such, despite the significant impact of non-

compliance on clinical and economic factors, the impact of non-compliance on drug 

therapeutics is rarely considered. Reporting of the extent and nature of clinically 

relevant compliance measures by trialists would facilitate assessment of non-compliance 

in CE assessments, an area of potential further research. 

11.3. Future work 

In addition to the proposed extensions to RPSFTM and IPCW modelling discussed in 

Chapter 10, it would be interesting to use qualitative research methods to explore 

factors relating to the reasons for non-compliance, either on the part of the patient or 

treatment provider. Greater understanding of the reasons why patients do not adhere 

could usefully inform compliance analyses, in a manner analogous to using data on 

reasons for missing outcome data to inform sensitivity analyses. Furthermore, 
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knowledge regarding typical barriers to adherence could be used to improve likelihood 

of participant adherence by introducing relevant adherence-enhancing measures in 

treatment protocols.   

Following on from the review of adherence information reported in published 

randomised, it would also be interesting to examine the nature and quality of such data 

typically obtained from routine clinical records, as these records may provide a useful 

source of adherence information to inform analysis of observational studies. 

11.4. Statistical analysis plan 

In order to ensure availability of necessary data and protect against selective reporting, 

trialists need to consider at the design stage the statistical analysis methods that will be 

employed to adjust for non-compliance. First, it is necessary to consider the trial aims 

and likely directions of bias introduced by any anticipated adherence problems, in order 

to determine whether analysis by ITT is likely to be appropriate or sufficient (135). 

Regardless of trial aims, however, reporting information on the uptake and acceptance 

of treatment is important for the interpretation of the success of the trial treatments, 

even when analysis does not aim to adjust for nonadherence to treatment protocol. 

Even when clinicians are not interested in an explanatory analysis per se (but instead are 

interested in the effectiveness of the policy of starting with a certain treatment, for 

example), it is nevertheless important for clinicians to be aware of what changes did 

occur; otherwise, without an understanding of what the trial treatment policy entailed or 

how it panned out, it is not possible to fully appreciate or interpret the effectiveness of 

the trial treatment policy. Even when a trial does not involve many treatment changes, 

this fact should be communicated so that those interpreting the results are aware that 

the ITT result is likely to closely mirror the explanatory effect of treatment. Thus, 
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regardless of whether a trial is designed and analysed to demonstrate effectiveness or 

efficacy of treatment, or any measure in between, it is important to provide a clear 

description of the degree and nature of treatment changes. 

To this end, it may be helpful to create a monitoring plan which specifies how all 

relevant compliance data will be collected, recorded and reported during the course of 

the trial. Data should be collected in order to ensure clinically relevant summaries of 

compliance can be created (3). Reporting missing data is as important as disclosure of 

treatment deviations, given that the two are often related and interlinked (121). In 

particular, trial reports should distinguish withdrawal due to LTFU from active 

decisions to exclude patients from analysis (for example, due to withdrawal or deviation 

from treatment protocol) (41). 

Furthermore, without the collection of required data, any necessary statistical methods 

will never be realized; thus it is important to plan which variables should be collected, 

relevant to the chosen statistical methods (for example, which baseline and post-

randomisation time-varying covariates will predict treatment change, to facilitate IPCW 

estimation), with details given on how these compliance and covariate measures will be 

measured in practice. The choice of statistical methods should be discussed and justified 

in a detailed statistical analysis plan, given that each method has its own different 

advantages and disadvantages and relies on different assumptions, considering the use 

of sensitivity analyses to assess departures from identifying assumptions.  

Likewise, investigators must interpret the results of analyses presented in trial reports in 

light of (lack of) information regarding (or adjustment for) treatment adherence 

changes, critically appraising the trial design, conduct and analysis (50). 
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11.5. Power and sample size 

Analysts should also consider the effect of nonadherence or treatment changes on the 

power of trial analyses. Non-compliance in a trial typically reduces the power of ITT 

analyses because the treatment experiences of randomised groups are in fact more 

similar than intended. Although it may seem natural to aim to recover this lost power, it 

is often impossible to do so using the methods discussed above without making 

additional unverifiable assumptions regarding the comparability of those who do and do 

not comply, such as those underlying PP and AT analyses (69).  

For this reason, potential loss of power caused by compliance should also be considered 

when planning the sample size of a trial which aims to demonstrate treatment efficacy. 

Given that it will rarely be possible to regain the associated lost power, the initial sample 

size of a trial should incorporate an inflation factor based on realistic projections of 

relevant forms of treatment non-compliance (53).  

Snapinn (179) demonstrates how informative non-compliance impacts on sample size 

and power, discussing different methods developed to allow for likely non-compliance 

rates when planning trial sample sizes. Snapinn describes how the majority of the 

sample size methods available assume only treatment switches to the alternative 

treatment and all assume that such discontinuation is independent of outcome (i.e. 

uninformative). Snapinn argues that this (latter) assumption can lead to greatly 

underestimated sample sizes, because it is not the rate of non-compliance per se, but 

rather the proportion of endpoints occurring in non-compliant patients, that impacts on 

power; Snapinn goes on to demonstrate an alternative method of determining sample 

size which allows for informative dropout (205). 
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White (69) considers whether it is possible to regain the lost power in an ITT analysis 

caused by departures from randomised treatment without making assumptions about 

selection effects (which are implied, for example, when using PP or AT analyses in an 

attempt to regain power), and discusses two possible ways to achieve this: firstly by 

using a modelling approach to impute missing compliance-types using the observed 

outcomes (206, 207) rather than simple ITT analyses; White notes, however, that the 

gain in power stems from distributional assumptions, and as such these methods may 

be highly sensitive to departures from the distributional assumptions. Secondly, 

covariates that predict compliance may be used to regain power (for example, in CACE 

analyses or structural mean models) (144). 

In survival analysis, a related idea of weighted analysis, where earlier event times are 

assigned more weight, may provide extra power; however, in practice, this gain in power 

is unlikely to be substantial. Lagakos (208) investigated this issue when a constant HR 

among compliers yields a non-constant ITT HR (because of early termination of 

treatment among non-compliers); although the inefficiency of the ordinary log rank test 

can be improved in these situations (with weights dependent on the amount and pattern 

of early termination), the efficiency gains were small in many of the scenarios 

investigated.  

11.6. Trial designs to address deviation from randomised treatment    

Dunn (58) points out that nonadherence is not always due to a lack of cooperation on 

the part of the patient or a flaw in the design or methodology of a trial; indeed, 

nonadherence issues may be inherent to the disease and treatment process, and if 

foreseen, may be incorporated into the design of a trial during the planning stage, for 
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example in the case of encouragement or Zelen’s RCD trials, both of which incorporate 

the possibility of all-or-nothing compliance by patients in the experimental arm. 

In Zelen’s randomised consent design (209), introduced to improve trial recruitment, 

the usual order of consent followed by randomisation is reversed, so that eligible 

patients are first randomised into one of the treatment arms, and then their consent is 

sought regarding their willingness to receive this randomised treatment.  

Similarly, encouragement designs may be employed if the consent process is likely to 

lead to adherence problems, either because patients may not accept idea of 

randomisation in the given setting or if informing patients about treatment may then 

affect adherence of patients who end up in control arm. For example, if it is considered 

unethical to withhold treatment from one treatment arm, it may be possible to instead 

randomise incentives for treatment, such that one group receives no incentive different to 

usual (introducing no ethical problem) while the other group receives a treatment 

incentive (for example, in (127)).  

Other simple design features may be incorporated to aid adherence analyses; for 

example, compliance measurements may be taken during a baseline placebo run in 

phase to obtain information on baseline predictors of compliance (noting that such a 

placebo run in phase will be useful in determining which of these variables should be 

recorded because, although the magnitude of relationship between such variables and 

placebo/treatment compliance may differ, the actual variables which correlate with 

placebo and treatment compliance are likely to be the same (144)), or it may be possible 

to seek out patient preferences before they are randomised, in order to obtain 

information on preference effects for better prediction of underlying compliance (210).  
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Likewise, if a trial is likely to involve numerous forms of treatment changes (for 

example, if a variety of treatment options are available on disease progression) or if 

extreme degrees of nonadherence are expected (for example, when randomisation is 

unlikely to be acceptable to most patients), it may be helpful to pre-empt the problem 

by trying to design the trial such that specific sequences of treatment are assigned from 

randomisation, or repeat randomisations take place as and when patients require 

different treatment lines. However, such designs may themselves be subject to 

nonadherence (when clinicians prescribe alternatives to the randomised treatment 

sequences) and may be overly complex or lengthy. 

SMART designs 

Sequential multiple assignment randomised trials (SMART) for the estimation of 

dynamic treatment regimens, in order to better estimate the optimal treatment package 

(sequence of treatments) for individuals rather than for diagnosis, are of particular 

importance in chronic conditions where individual patient’s response may change over 

time, thus seeking out personalised medicine tailored to suit patients (for example, 

according to their genetic profile or at a more macro level of characteristics, such as side 

effect profiles) (211). Using functions with covariates, treatment and response history as 

arguments, with outputs of which actions should be taken (in other words, the decision 

rule on how to choose treatments rather than an “optimal” actual treatment) these 

designs assume, in a similar manner to IPCW and SMMs, that one has access to all 

known covariates which predict outcome and treatment changes (for example, patient 

and clinician preferences). 

SMART designs are particularly appropriate for diseases where sequential phases of 

treatment are common, for example chronic conditions like asthma, epilepsy and cancer 

(requiring different first- and second-line treatments following diagnosis and 



   
   

429 
 

progression, respectively) and behavioural or psychological interventions. For example, 

the efficacy of warfarin (in treating thrombosis) is highly dependent on individual 

patient factors (diet, genetic variants and interactions with other medication), with 

serious side effects if inappropriate dosing; as such dose needs to be monitored 

regularly. Use of SMART designs in such settings is complicated, however, by the need 

to take account of repeated continuous dose data.  

Depending on the particular trial characteristics, SMART designs may therefore result in 

better retention of patients (given the availability of multiple treatment options for 

patients while in the trial) and greater generalisability to clinical care (as the adaptive 

design and treatment flexibility allows for wider recruitment than in general) but 

typically involve long term follow up and large sample sizes, with associated high costs. 

Furthermore this relatively new and unfamiliar trial design is often met with reticence 

from funders and statisticians; thus it will be important for this growing area of research 

into study design to continue to be explained and explored more fully, in order to 

maximise its potential use in addressing adherence issues. 

11.7. Software  

Finally, it is important for analysts to consider whether software is available for their 

chosen analysis methods or whether specialist help and programming will be required. 

Certain methods (such as RPSFTM “strbee” code in Stata for survival outcomes 

adjusting for switching between trial treatments) are available as statistical programs that 

are user-friendly and easy to implement without specialist statistical knowledge or 

programming.  IPCW methods are also becoming increasingly incorporated into 

statistical programs (for example, IPCW methods have been included in the latest 

update of Stata); however, there may be extra coding requirements required for 
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implementation of these methods depending on the complexity presented by the trial 

data (as in the case of these applications in SANAD).  

11.8. Conclusion 

This thesis has demonstrated how an ITT effect estimate in the presence of treatment 

deviations will be biased as an estimate of treatment efficacy or effectiveness in a setting 

different from that in the trial. There is therefore often a need for other causal analysis 

methods to supplement or replace ITT analysis, depending on the research question, 

pattern of treatment deviations, trial design and particular outcome of interest. 

Despite the importance and increasing pertinence of causal analysis estimation in RCTs, 

however, whenever causal methodology is employed, analysts must remember that such 

analyses are not intended to replace or overrule analysis according to ITT; instead causal 

methodology seeks to complement analysis by randomisation, by providing greater 

insight and additional evidence regarding treatment efficacy. As encapsulated by Efron 

(39), “None of this spells the end of intent-to-treat analysis. It is and will remain a 

steadfast beacon in the foggy vistas of biomedical experimentation, but old friends need 

not feel abandoned when exciting new possibilities are explored”. 
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Appendix A: Effect of knots on treatment effect from PLR and Cox models 

Table 45 Effect of number of knots on treatment effect from PLR and Cox models 

Time 

interval 

Treatment 

changes 

Number of 

observations 

(patients) 

Number of withdrawals 

(remissions) 

Cox PH regression  

treatment effect  

(log likelihood) 

for treatment only model 

PLR treatment effect (log pseudolikelihood) 

for treatment + time only model 

LTG VPS Total 3 knots 4 knots 5 knots 

Monthly  ITT 8315  - - - 0.774  0.246 0.824 0.155 

  (395) (143) (154) (297) (-1587.9) (-1135.2) (-1152.4) (-1110.7) 

 ISC 6544  50 26 76 0.773 1.018 0.602 1.947 

  (392) (110) (141) (251) (-1318.8) (-882.4) (-915.4) (-863.0) 

 ISC/choice 6494  53 29 82 0.774 1.019 0.592 1.933 

  (392) (108) (139) (247) (-1295.1) (-869.3) (-901.6) (-850.3) 

 All 5405  64 56 120 0.736 0.889 3.897 0.005 

  (373) (90) (114) (204) (-1039.9) (-699.5) (-681.8) (-637.5) 

Biweekly  ITT 17985  - - - 0.770 0.839 1.031 0.316 

  (395) (143) (154) (297) (-1582.7) (-1349.9) (-1351.5) (-1327.6) 

 ISC 14196  52 26 78 0.769 1.017 1.274 0.923 

  (395) (110) (141) (251) (-1313.4) (-1071.4) (-1080.4) (-1068.5) 

 ISC/choice 14087  55 29 84 0.770 1.018 1.264 0.917 

  (395) (108) (139) (247) (-1289.7) (-1055.1) (-1063.8) (-1052.3) 

 All 11766  74 59 133 0.731 0.298 0.772 0.058 

  (387) (90) (114) (204) (-1035.4) (-851.8) (-865.1) (-845.1) 

Weekly  ITT 36256  - - - 0.762  0.701 1.034 0.156 

  (396) (144) (155) (299) (-1582.2) (-1628.8) (-1583.2) (-1543.8) 

 ISC 28606  52 26 78 0.767 1.021 1.176 0.086 

  (396) (111) (141) (252) (-1311.0) (-1259.1) (-1270.6) (-1223.1) 

 ISC/choice 28389  55 29 84 0.768 0.431 1.135 0.203 

  (396) (109) (139) (248) (-1287.4) (-1237.0) (-1251.5) (-1218.4) 

 All 23721  77 60 137 0.728 0.153 0.003 0.587 

  (392) (91) (114) (205) (-1033.0) (-1003.2) (-1004.3) (-993.2) 
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Table 46 Effect of knots on unweighted remission model (monthly intervals) 

Treatment 

changes 

Number of 

observations 

(patients) 

[range] 

Number of 

treatment 

changes 

(remission) 

Cox PH 

treatment 

 effect (ll) 

 

Pooled logistic regression 1. 3 knots 2. 4 knots 3. 5 knots 
Knot values Treatment effect 

(pll) 

Knot values Treatment effect 

(pll) 

Knot values Treatment effect 

(pll) 

1. ITT 

8315  

(395) 

[1,63] 

- 

(297) 

0.774 

(-1587.9) 

All follow up (knots at 

usual centiles) 3, 11, 36 NC 2,8,16,45 NC 2,6,11,20,45 NC 

All follow up (knots 

clustered at ~1yr) 3, 12, 36 NC 2,11,13,45 NC 2,6,11,13,45 NC 

All follow up (knots from 

time > 1 year; splines 0 < 

1 year) 
13, 22, 45 

0.702 (-1115.8) 

12,18,28,51 

0.713 (-892.0) 

12,16,22,32,51 

0.715 (-879.6) 

Only >=1yr included 
0.717 (-873.6) 0.713 (-892.0) 0.715 (-879.6) 

2. ISC 

4011  

(379) 

[1,62] 

76 

(251) 

0.772  

(-1318.8) 

All follow up (knots at 

usual centiles) 2, 9, 28 NC 1,7,12,37 NC 1,5,9,15,37 0.699 (-742.0) 

All follow up (knots 

clustered at ~1yr) 2, 12, 28 NC 1,7,12,37 NC 1,5,11,13,37 0.694 (-682.4) 

All follow up (knots from 

time > 1 year; splines 0 < 

1 year) 
12, 20, 40 

0.694 (-968.0) 

12,16,24,48 

0.697 (-652.0) 

12,15,20,27,48 

0.693 (-644.7) 

Only >=1yr included 
0.693 (-669.8) 0.697 (-652.0) 0.693 (-644.7) 

3.ISC or 

choice 

6494  

(392) 

[1,62] 

82 

(247) 

0.774 

(-1295.1) 

All follow up (knots at 

usual centiles) 2, 9, 28 NC 1,6,12,37 NC 1,5,9,15,37 0.705 (-731.8) 

All follow up (knots 

clustered at ~1yr) 2, 12, 28 NC 1,11,13,37 0.699 (-672.7) 1,5,11,13,37 0.699 (-672.7) 

All follow up (knots from 

time > 1 year; splines 0 < 

1 year) 

12, 20, 40 0.694 (-953.3) 12,16,24,48 0.700 (-642.4) 

12,15,20,27,48 

0.695 (-634.6) 

Only >=1yr included 
12, 20, 40 0.699 (-660.1) 12,16,24,48 0.700 (-642.4) 0.695 (-634.6) 

4. All 

5405  

(373) 

[1,62] 

120 

(204) 

0.736  

(-1039.9) 

All follow up (knots at 

usual centiles) 2, 9, 24 NC 1,6,11,31 NC 1,5,9,13,31 NC 

All follow up (knots 

clustered at ~1yr) 2, 12, 24 NC 1,11,13,31 0.651 (-525.7) 1,5,11,13,31 NC 

All follow up (knots from 

time > 1 year; splines 0 < 

1 year) 
12, 18, 34 

0.632 (-757.8) 

12,15,22,42 

NC 

12,14,18,25,42 

NC 

Only >=1yr included 
0.650 (-516.1) NC NC 
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 Table 47 Effect of knots on unweighted remission model (fortnightly intervals) 

Treatment 

changes 

Number of 

observations 

(patients) 

[range] 

Number of 

treatment 

changes 

(remission) 

Cox PH 

treatment  

effect (ll) 

 

Pooled logistic regression 3 knots 4 knots 5 knots 
Knot values Treatment effect 

(pll) 

Knot values Treatment effect 

(pll) 

Knot values Treatment effect 

(pll) 

1. ITT 

17985 

(395) 

[1,130] 

- 

(297) 

0.770  

(-1582.7) 

All follow up (knots at 

usual centiles) 5, 23, 76 NC 3,16,34,95 0.709 (-1239.7) 3,13,23,42,95 NC 

All follow up (knots 

clustered at ~1yr) 5, 26, 76 NC 3,25,27,95 0.699 (-1134.4) 3,13,25,27,95 NC 

All follow up (knots from 

time > 1 year; splines 0 < 

1 year) 
28, 49, 97 

0.705 (-1346.9) 

27,40,61,109 

0.713 (-1026.4) 

27,36,49,69,109 

0.714 (-1012.7) 

Only >=1yr included 
0.712 (-1045.0) 0.713 (-1026.4) 0.714 (-1012.7) 

2. ISC 

14196 

(395) 

[1,130] 

78 

(251) 

0.769 

(-1313.4) 

All follow up (knots at 

usual centiles) 4, 20, 60 NC 2,14,26,78 NC 2,11,20,32,78 0.706 (-934.9) 

All follow up (knots 

clustered at ~1yr) 4, 26, 60 NC 2,25,27,78 NC 2,11,25,27,78 NC 

All follow up (knots from 

time > 1 year; splines 0 < 

1 year) 
28, 44, 86 

0.706 (-1053.1) 

26,36,54,103 

0.699 (-796.4) 

26,33,44,60,103 

0.694 (-781.4) 

Only >=1yr included 
0.697 (-772.9) 0.699 (-796.4) 0.694 (-781.4) 

3.ISC or 

choice 

14087 

(395) 

[1,130] 

84 

(247) 

0.770 

(-1289.7) 

All follow up (knots at 

usual centiles) 4, 19, 60 NC 2,13,26,78 NC 2,11,19,32,78 0.712 (-921.1) 

All follow up (knots 

clustered at ~1yr) 4, 26, 60 NC 2,25,27,78 NC 2,11,25,27,78 NC 

All follow up (knots from 

time > 1 year; splines 0 < 

1 year) 
28, 44, 87 

0.711 (-1037.9) 

26,36,54,103 

0.702 (-784.4) 

26,33,44,60,103 

0.695 (-768.6) 

Only >=1yr included 
0.698 (-760.4) 0.702 (-784.4) 0.695 (-768.6) 

4. All 

11766 

(387) 

[1,130] 

133 

(204) 

0.731  

(-1035.4) 

All follow up (knots at 

usual centiles) 4, 18, 51 NC 2,12,24,65 NC 2,10,18,28,65 NC 

All follow up (knots 

clustered at ~1yr) 4, 26, 51 NC 2,25,27,65 NC 2,10,25,27,65 NC 

All follow up (knots from 

time > 1 year; splines 0 < 

1 year) 
27, 41, 75 

0.662 (-816.7) 

26,35,49,91 

NC 

26,32,41,54,91 

NC 

Only >=1yr included 
0.646 (-597.1) NC NC 
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Table 48 Effect of knots on unweighted remission model (weekly intervals) 

Treatment 

changes 

Number of 

observations 

(patients) 

[range] 

Number of 

treatment 

changes 

(remission) 

Cox PH 

treatment  

effect (ll) 

 

Pooled logistic regression 3 knots 4 knots 5 knots 
Knot values Treatment effect 

(pll) 

Knot values Treatment effect 

(pll) 

Knot values Treatment effect 

(pll) 

1. ITT 

36122 

(396) 

[1,263] 

- 

(297) 

0.768 

(-1580.6) 

All follow up (knots at 

usual centiles) 10, 47, 152 NC 5,33,68,191 NC 5,26,47,85,191 NC 

All follow up (knots 

clustered at ~1yr) 10, 52, 152 NC 5,51,53,191 NC 5,26,51,53,191 NC 

All follow up (knots from 

time > 1 year; splines 0 < 

1 year) 
58, 98, 196 

0.707 (-1559.7) 

54,81,123,219.65 

0.708 (-1192.7) 
54,73,98,139, 

219.65 

0.711 (-1170.2) 

Only >=1yr included 
0.708 (-1223.6) 0.708 (-1192.7) 0.711 (-1170.2) 

2. ISC 

28535 

(396) 

[1,263] 

78 

(251) 

0.767  

(-1311.0) 

All follow up (knots at 

usual centiles) 8, 39, 119 NC 4,27,51,155 NC 4,21,39,63,155 NC 

All follow up (knots 

clustered at ~1yr) 8, 52, 119 NC 4,51,53,155 NC 4,21,51,53,155 NC 

All follow up (knots from 

time > 1 year; splines 0 < 

1 year) 
56, 88, 174 

0.710 (-1229.9) 

53,74,109,207 

0.696 (-879.6) 

53,68,88,122,207 

0.702 (-854.5) 

Only >=1yr included 
0.698 (-910.7) 0.696 (-879.6) 0.702 (-854.5) 

3.ISC or 

choice 

28318 

(396) 

[1,263] 

84 

(247) 

0.768  

(-1287.4) 

All follow up (knots at 

usual centiles) 8, 39, 120 NC 4,26,51,156 NC 4,21,39,63,156 NC 

All follow up (knots 

clustered at ~1yr) 8, 52, 120 NC 4,51,53,156 NC 4,21,51,53,156 NC 

All follow up (knots from 

time > 1 year; splines 0 < 

1 year) 
56, 88, 175 

0.715 (-1211.7) 

53,74,109,208 

0.696 (-864.2) 

53,68,88,122,208 

0.703 (-839.9) 

Only >=1yr included 
0.699 (-895.9) 0.696 (-864.2) 0.703 (-839.9) 

4. All 

23671 

(392) 

[1,263] 

137 

(204) 

0.728  

(-1033.0) 

All follow up (knots at 

usual centiles) 7, 35, 102 NC 4,24,48,131 NC 4,19,35,55,131 NC 

All follow up (knots 

clustered at ~1yr) 7, 52, 102 NC 4,51,53,131 0.657 (-763.0) 4,19,51,53,131 NC 

All follow up (knots from 

time > 1 year; splines 0 < 

1 year) 
56, 83, 151.3 

0.666 (-969.5) 

53,70,99,183 

0.645 (-675.4) 

53,65,83,110,183 

0.652 (-661.3) 

Only >=1yr included 
0.647 (-706.4) 0.645 (-675.4) 0.652 (-661.3) 
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Appendix B: IPCW modelling results 

The treatment effect (CI) in the cell nearest to the left is valid for empty cells.  

[] denotes the usual normal 95% CI for comparison with the bootstrapped CI for PLR.  

Subscripts following CIs denote the number of bootstrap samples for which the model did not 
converge. 

Key for tables demonstrating variables selected into model: 

  Addition (or removal) of variable alters treatment effect by less than 1%, and variable is 
therefore not included in pool of potential variables for selection into model  

.  Variable is included in initial pool of potential variables for selection into model (i.e. 
addition of variable alters treatment effect by more than 1%) but fails to be included in the 2%, 
5% or 10% models (as its addition (or removal) of variable alters treatment effect by less than 
2%) 

 Addition (or removal) of variable alters treatment effect between 2 and 5% 

  Addition (or removal) of variable alters treatment effect between 5 and 10% 

        Addition (or removal) of variable alters treatment effect by more than 10% 
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Table 49 Treatment effect (95% BS CI) [standard CI] with monthly intervals 

 Treatment  
alone 

Variable selection threshold  
 10% 5% 2% 

No treatment changes     
PLR – 3 knots 0.71 [0.55, 0.92]    

FS  0.71 (0.57, 0.95) 
[0.55, 0.92] 

  

BE  0.71 (0.57, 0.95) 
[0.55, 0.92] 

  

PLR – 5 knots 0.72 (0.55, 0.93)    
FS  0.72 (0.57, 0.95) 

[0.55, 0.93] 
  

BE  0.72 (0.57, 0.95) 
[0.55, 0.93] 

  

Survival analysis  0.77 (0.62, 0.97)    
FS  0.77 (0.64, 0.94)   
BE  0.77 (0.64, 0.94)   

     
ISC changes only     

PLR – 3 knots 0.70 (0.52, 0.94)    
FS  0.70 (0.52, 0.996) 

[0.52, 0.94] 
 0.68 (0.41, 1.09)1 

[0.51, 0.91] 
BE  0.70 (0.52, 0.996) 

[0.52, 0.94] 
 0.68 (0.50, 0.97) 

[0.51, 0.92] 
PLR – 5 knots 0.70 (0.52, 0.93)    

FS  0.70 (0.51, 0.99) 
[0.52, 0.93] 

 0.68 (0.39, 1.11)127 

[0.50, 0.91] 
BE  0.70 (0.51, 0.99) 

[0.52, 0.93] 
 

  

Survival analysis  0.77 (0.60, 0.99)    
FS  0.65 (0.29, 0.98) 0.71 (0.47, 1.62) 0.68 (0.43, 1.26) 
BE  0.77 (0.62, 0.99) 0.74 (0.53, 1.00) 0.68 (0.43, 1.26) 

     
ISC/choice changes only     

PLR – 3 knots 0.70 (0.52, 0.94)    
FS  0.70 (0.52, 0.99) 

[0.52, 0.94] 
 0.68 (0.45, 1.42) 

[0.51, 0.92] 
BE  0.70 (0.52, 0.99) 

[0.52, 0.94] 
  

PLR – 5 knots 0.70 (0.52, 0.94)    
FS  0.70 (0.51, 0.996) 

[0.52, 0.94] 
 0.68 (0.37, 1.11)104 

[0.50, 0.93] 
BE  0.70 (0.51, 0.996) 

[0.52, 0.94] 
  

Survival analysis  0.77 (0.60, 0.97)    
FS  0.63 (0.22, 0.92) 0.69 (0.42, 1.40) 0.63 (0.39, 1.34) 
BE  0.63 (0.24, 0.92)  0.63 (0.37, 1.17) 

     
All treatment changes     

PLR – 3 knots 0.65 (0.47, 0.90)    
FS  0.65 (0.48, 0.90) 

[0.47, 0.90] 
0.60 (0.41, 1.34)4 

[0.43, 0.85] 
0.63 (0.45, 0.75)4 

[0.44, 0.89] 
BE  0.65 (0.48, 0.90) 

[0.47, 0.90] 
0.58 (0.42, 1.02) 

[0.42, 1.02] 
0.62 (0.45, 1.10)4 

[0.44, 0.88] 
PLR – 5 knots 0.64 (0.46, 0.90)    

FS  0.64 (0.48, 0.90) 

[0.46, 0.90] 
0.60 (0.39, 1.36)23 

[0.43, 0.84] 
0.60 (0.38, 1.33)25 

[0.43, 0.86] 
BE  0.64 (0.48, 0.90) 

[0.46, 0.90] 
0.58 (0.41, 1.03)23 

[0.40, 0.82] 
0.62 (0.45, 1.13)22 

[0.44, 0.88] 
Survival analysis  0.74 (0.56, 0.97)    

FS  0.51 (0.31, 0.84) 0.55 (0.33, 0.92)  
BE  0.58 (0.34, 0.92) 0.58 (0.34, 0.99) 0.60 (0.34, 1.05) 
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Table 50 Variable selection (using 2%, 5% and 10% thresholds) with monthly 
intervals 

 Variables considered for selection (bold indicates time-varying covariates) 
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No treatment changes              

PLR – 3 knots              
FS   ·  ·  · · ·  - - - 
BE   ·  ·  · · ·  - - - 

PLR – 5 knots              
FS   ·  ·  · · ·  - - - 
BE   ·  ·  · · ·  - - - 

Survival analysis              
FS        ·   - - - 
BE        ·   - - - 

              
ISC changes only              

PLR – 3 knots              
FS ·   ·   · ·  ·   · 
BE    ·   · ·  · ·  · 

PLR – 5 knots              
FS ·      · ·  ·   · 
BE ·      · ·  · ·  · 

Survival analysis               
FS ·             
BE ·             

              
ISC/choice changes only              

PLR – 3 knots              
FS ·   ·   · ·      
BE ·   ·   · ·  · ·  · 

PLR – 5 knots              
FS ·   ·   · ·      
BE ·   ·   · ·  · ·  · 

Survival analysis               
FS              
BE       ·   ·    

              
All treatment changes              

PLR – 3 knots              
FS ·             
BE    ·     ·  · ·  

PLR – 5 knots              
FS ·   ·     ·     
BE    ·     ·  · ·  

Survival analysis               
FS      ·      ·  
BE              
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Table 51 Treatment effect (95% BS CI) [standard CI] with fortnightly intervals 

 Treatment alone Variable selection threshold 
 10% 5% 2% 

No treatment changes     
PLR – 3 knots 0.71 (0.55, 0.91)    

FS 
 

 0.71 (0.56, 0.94) 
[0.55, 0.91] 

  

BE  0.71 (0.56, 0.94) 
[0.55, 0.91] 

 0.73 (0.59, 0.97) 
[0.56, 0.95] 

PLR – 5 knots 0.72 (0.56, 0.93)    
FS  0.72 (0.57, 0.94) 

[0.56, 0.93] 
  

BE  0.72 (0.57, 0.94) 
[0.56, 0.93] 

  

Survival analysis  0.77 (0.61, 0.97)    
FS  0.77 (0.63, 0.96)   
BE  0.77 (0.63, 0.96)   

     
ISC changes only     

PLR – 3 knots 0.70 (0.53, 0.93)    
FS  0.70 (0.55, 1.04) 

[0.53, 0.93] 
 0.70 (0.41, 1.22) 

[0.52, 0.94] 
BE  0.70 (0.55, 1.04) 

[0.53, 0.93] 
  

PLR – 5 knots 0.70 (0.52, 0.94)    
FS  0.70 (0.54, 0.998) 

[0.52, 0.94] 
  

BE  0.70 (0.54, 0.998) 
[0.52, 0.94] 

 0.71 (0.41, 1.26) 
[0.53, 0.96] 

Survival analysis  0.77 (0.60, 0.99)    
FS  0.59 (0.28, 0.87)  0.58 (0.28, 0.84) 
BE  0.59 (0.28, 0.87)   

     
ISC/choice changes only     

PLR – 3 knots 0.70 (0.53, 0.94)    
FS  0.70 (0.57, 1.07) 

[0.53, 0.94] 
 0.70 (0.41, 1.18) 

[0.52, 0.94] 
BE  0.70 (0.57, 1.07) 

[0.53, 0.94] 
  

PLR – 5 knots 0.70 (0.52, 0.94)    
FS  0.70 (0.55, 0.99) 

[0.52, 0.94] 
 0.71 (0.39, 1.24) 

[0.52, 0.96] 
BE  0.70 (0.55, 0.99) 

[0.52, 0.94] 
  

Survival analysis  0.77 (0.60, 0.99)    
FS  0.52 (0.32, 0.75) 0.57 (0.30, 0.81) 0.54 (0.30, 0.76) 
BE  0.52 (0.32, 0.75) 0.57 (0.30, 0.81) 0.54 (0.30, 0.76) 

     
All treatment changes     

PLR – 3 knots 0.65 (0.47, 0.89)    
FS  0.65 (0.48, 0.91) 

[0.47, 0.89] 
0.61 (0.44, 1.07)1 

[0.44, 0.84] 
0.66 (0.41, 1.11) 

[0.48, 0.92] 
BE  0.65 (0.48, 0.91) 

[0.47, 0.89] 
 0.67 (0.45, 1.20)1 

[0.49, 0.93] 
PLR – 5 knots 0.65 (0.47, 0.90)    

FS  0.65 (0.47, 0.88) 
[0.47, 0.90] 

0.57 (0.32, 1.24) 
[0.40, 0.82] 

0.62 (0.37, 1.05) 
[0.44, 0.87] 

BE  0.65 (0.47, 0.88) 
[0.47, 0.90] 

 0.64 (0.46, 1.10) 
[0.46, 0.90] 

Survival analysis  0.73 (0.55, 0.97)    
FS  0.56 (0.33, 0.97) 0.57 (0.31, 1.01) 0.59 (0.35, 1.04) 
BE  0.58 (0.30, 0.83) 0.55 (0.26, 0.81) 0.58 (0.32, 0.87) 
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Table 52 Variable selection (using 2%, 5% and 10% thresholds) with fortnightly 
intervals 

 Variables considered for selection (bold indicates time-varying covariates) 
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No treatment changes              

PLR – 3 knots              
FS   ·  ·  · · ·  - - - 
BE   ·        - - - 

PLR – 5 knots              
FS   ·  ·  · · ·  - - - 
BE   ·  ·  · · ·  - - - 

Survival analysis              
FS        ·   - - - 
BE        ·   - - - 

              
ISC changes only              

PLR – 3 knots              
FS ·      · ·  ·   · 
BE ·   ·   · ·  · ·  · 

PLR – 5 knots              
FS ·      · ·  · ·  · 
BE       ·   ·   · 

Survival analysis               
FS              
BE ·      ·       

              
ISC/choice changes only              

PLR – 3 knots              
FS    ·   ·   ·    
BE ·   ·   · ·  · ·  · 

PLR – 5 knots              
FS    ·   ·   ·    
BE ·   ·   · ·  · ·  · 

Survival analysis               
FS ·             
BE ·             

              
All treatment changes              

PLR – 3 knots              
FS ·            · 
BE ·   ·  · ·  ·  · · · 

PLR – 5 knots              
FS    ·  ·       · 
BE    ·     ·  · ·  

Survival analysis               
FS    ·          
BE       ·    ·   
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Table 53 Treatment effect (95% BS CI) [standard CI] with weekly intervals 

 Treatment alone Variable selection threshold 
 10% 5% 2% 

No treatment changes     
PLR – 3 knots 0.70 (0.55, 0.91)    

FS  0.70 (0.55, 0.91) 
[0.55, 0.91] 

  

BE  0.70 (0.55, 0.91) 
[0.55, 0.91] 

  

PLR – 5 knots 0.72 (0.56, 0.93)    
FS  0.72 (0.54, 0.93) 

[0.56, 0.93] 
  

BE  0.72 (0.54, 0.93) 
[0.56, 0.93] 

  

Survival analysis  0.76 (0.61, 0.96)    
FS  0.76 (0.60, 0.93)   
BE  0.76 (0.60, 0.93)   

     
ISC changes only     

PLR – 3 knots 0.70 (0.53, 0.93)    
FS  0.70 (0.55, 0.97) 

[0.53, 0.93] 
 0.71 (0.45, 1.15) 

[0.53, 0.96] 
BE  0.70 (0.55, 0.97) 

[0.53, 0.93] 
 0.67 (0.49, 0.98) 

[0.50, 0.90] 
PLR – 5 knots 0.70 (0.53, 0.94)    

FS  0.70 (0.54, 0.96) 
[0.53, 0.94] 

 0.67 (0.42, 1.30) 
[0.50, 0.91] 

BE  0.70 (0.54, 0.96) 
[0.53, 0.94] 

 0.67 (0.47, 1.02) 
[0.50, 0.90] 

Survival analysis  0.77 (0.60, 0.99)    
FS  0.60 (0.31, 1.12)  0.56 (0.32, 0.90) 
BE  0.53 (0.30, 0.85) 0.58 (0.33, 1.07) 0.56 (0.32, 0.90) 

     
ISC/choice changes only     

PLR – 3 knots 0.70 (0.53, 0.94)    
FS  0.70 (0.54, 0.96) 

[0.53, 0.94] 
 0.70 (0.45, 1.14) 

[0.52, 0.94] 
BE  0.70 (0.54, 0.96) 

[0.53, 0.94] 
 0.70 (0.44, 1.15) 

[0.52, 0.94] 
PLR – 5 knots 0.70 (0.52, 0.94)    

FS  0.70 (0.53, 0.94) 
[0.52, 0.94] 

 0.68 (0.44, 1.29) 
[0.51, 0.92] 

BE  0.70 (0.53, 0.94) 
[0.52, 0.94] 

 0.68 (0.44, 0.97) 
[0.51, 0.92] 

Survival analysis  0.77 (0.60, 0.99)    
FS  0.59 (0.33, 1.02) 0.59 (0.32, 1.03) 0.56 (0.36, 0.90) 
BE  0.53 (0.29, 0.89)  0.56 (0.27, 0.91) 

     
All treatment changes     

PLR – 3 knots 0.65 (0.47, 0.89)    
FS  0.65 (0.47, 0.87) 

[0.47, 0.89] 
0.56 (0.36, 1.23) 

[0.39, 0.80] 
0.61 (0.40, 1.01) 

[0.43, 0.86] 
BE  0.65 (0.47, 0.87) 

[0.47, 0.89] 
0.59 (0.38, 0.99) 

[0.43, 0.82] 
0.61 (0.40, 1.01) 

[0.43, 0.86] 
PLR – 5 knots 0.65 (0.47, 0.90)    

FS  0.65 (0.47, 0.88) 
[0.47, 0.90] 

0.55 (0.37, 1.14) 
[0.38, 0.80] 

0.57 (0.40, 1.15) 
[0.41, 0.81] 

BE  0.65 (0.47, 0.88) 
[0.47, 0.90] 

0.58 (0.34, 1.57) 
[0.41, 0.81] 

0.62 (0.36, 1.31) 
[0.44, 0.87] 

Survival analysis  0.73 (0.55, 0.96)    
FS  0.54 (0.27, 0.93) 0.50 (0.25, 0.85) 0.60 (0.35, 1.05) 
BE  0.55 (0.29, 0.82)  0.60 (0.35, 1.05) 
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Table 54 Variable selection (using 2%, 5% and 10% thresholds) with weekly 
intervals 

 Variables considered for selection (bold indicates time-varying covariates) 
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No treatment changes              
PLR – 3 knots              

FS   · · ·  · · ·  - - - 
BE   · · ·  · · ·  - - - 

PLR – 5 knots              
FS   ·  ·  · · ·  - - - 
BE   ·  ·  · · ·  - - - 

Survival analysis              
FS        ·   - - - 
BE        ·   - - - 

              
ISC changes only              

PLR – 3 knots              
FS ·         ·    
BE ·   ·    · · · ·   

PLR – 5 knots              
FS       ·   ·    
BE ·      ·   · ·   

Survival analysis               
FS              
BE              

              
ISC/choice changes only              

PLR – 3 knots              
FS ·      ·   ·    
BE ·      ·   ·    

PLR – 5 knots              
FS    ·      ·    
BE ·   ·   · ·  · · ·  

Survival analysis               
FS              
BE          ·    

              
All treatment changes              

PLR – 3 knots              
FS ·      ·      · 
BE ·      ·      · 

PLR – 5 knots              
FS ·   ·  · ·      · 
BE ·      ·  ·  ·   

Survival analysis               
FS      ·        
BE      ·        
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Table 55  Withdrawal (VPS): Number of variables in model (EPV, including spline variables (3 with 3 knots (2 spline variables + 
linear time variable), 5 with 5 knots (4 spline variables + linear time variable)) 

Treatment  
changes 
 

Time interval / Variable selection threshold 
Month Fortnight Week 

10% 5% 2% Full model  10% 5% 2% Full model  10% 5% 2% Full model  

ITT (none)             
PLR3             

FS             

BE             

PLR5             
FS             
BE             

Survival             
FS             
BE             

ISC only             
PLR3             

FS 0 (8.7) 0 (8.7) 1 (6.5)  0 (8.7) 0 (8.7) 2 (5.2)  0 (8.7) 0 (8.7) 8 (2.4)  

BE 0 (8.7) 0 (8.7) 1 (6.5) 7 (2.6) 0 (8.7) 0 (8.7) 0 (8.7) 7 (2.6) 0 (8.7) 0 (8.7) 3 (4.3) 10 (2.0) 

PLR5             
FS 0 (5.2) 0 (5.2) 1 (4.3)  0 (5.2) 0 (5.2) 0 (5.2)   0 (5.2) 0 (5.2) 5 (2.6)   
BE 0 (5.2) 0 (5.2) 0 (5.2) 6 (2.4) 0 (5.2) 0 (5.2) 3 (3.3) 6 (2.4) 0 (5.2) 0 (5.2) 3 (3.3) 7 (2.2) 

Survival             
FS 2 (13) 3 (8.7) 4 (6.5)   3 (8.7) 3 (8.7) 5 (5.2)   4 (6.5) 4 (6.5) 6 (4.3)   
BE 0 (NA) 1 (26) 4 (6.5) 5 (5.2) 3 (8.7) 3 (8.7) 3 (8.7) 5 (5.2) 2 (13) 3 (8.7) 6 (4.3) 6 (4.3) 

ISC/choice             
PLR3             

FS 0 (9.7) 0 (9.7) 3 (4.8)   0 (9.7) 0 (9.7) 4 (4.1)  0 (9.7) 0 (9.7) 7 (2.9)  

BE 0 (9.7) 0 (9.7) 0 (9.7) 7 (2.9) 0 (9.7) 0 (9.7) 0 (9.7) 7 (2.9) 0 (9.7) 0 (9.7) 7 (2.9) 10 (2.2) 

PLR5             
FS 0 (5.8) 0 (5.8) 3 (3.6)   0 (5.8) 0 (5.8) 4 (3.2)  0 (5.8) 0 (5.8) 6 (2.6)  
BE 0 (5.8) 0 (5.8) 0 (5.8) 7 (2.4) 0 (5.8) 0 (5.8) 0 (5.8) 7 (2.4) 0 (5.8) 0 (5.8) 1 (4.8) 8 (2.2) 

Survival             
FS 1 (29) 3 (9.7) 5 (5.8)   2 (14.5) 3 (9.7) 4 (7.3)  3 (9.7) 5 (5.8) 6 (4.8)  
BE 1 (29) 1 (29) 3 (9.7) 5 (5.8) 2 (14.5) 3 (9.7) 4 (7.3) 5 (5.8) 2 (14.5) 2 (14.5) 5 (5.8) 6 (4.8) 

All              
PLR3             

FS 0 (18.7) 1 (14) 8 (5.1)    0 (18.7) 1 (14) 7 (5.6)  0 (18.7) 2 (11.2) 6 (6.2)  

BE 0 (18.7) 2 (11.2) 4 (8) 9 (4.7) 0 (18.7) 0 (18.7) 6 (6.2) 9 (4.7) 0 (18.7) 1 (14) 6 (6.2) 9 (4.7) 

PLR5             
FS 0 (11.2) 1 (9.3) 5 (5.6)   0 (11.2) 2 (8) 6 (5.1)   0 (11.2) 2 (8) 4 (6.2)  
BE 0 (11.2) 2 (8) 4 (6.2) 9 (4) 0 (11.2) 0 (11.2) 4 (6.2) 9 (4) 0 (11.2) 2 (8) 4 (6.2) 9 (4) 

Survival             
FS 2 (28) 2 (28) 7 (8)   4 (14) 6 (9.3) 8 (7)   4 (14) 5 (11.2) 8 (7)  
BE 1 (56) 5 (11.2) 9 (6.2) 9 (6.2) 2 (28) 3 (19.7) 7 (8) 9 (6.2) 1 (56) 1 (56) 8 (7) 9 (6.2) 
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Table 56 Withdrawal (LTG): Number of variables in model (EPV, including spline variables (3 with 3 knots (2 spline variables + 
linear time variable), 5 with 5 knots (4 spline variables + linear time variable)) 

Treatment  
changes 
 

Time interval / Variable selection threshold 
Month Fortnight Week 

10% 5% 2% Full model  10% 5% 2% Full model  10% 5% 2% Full model  

ITT (none)             
PLR3             

FS             

BE             

PLR5             
FS             
BE             

Survival             
FS             
BE             

ISC only             
PLR3             

FS 0 (16.7) 0 (16.7) 1 (12.5)   0 (16.7) 0 (16.7) 2 (10)   0 (16.7) 0 (16.7) 8 (4.5)   

BE 0 (16.7) 0 (16.7) 1 (12.5) 7 (5) 0 (16.7) 0 (16.7) 0 (16.7) 7 (5) 0 (16.7) 0 (16.7) 3 (8.3) 10 (3.8) 

PLR5                         
FS 0 (10) 0 (10) 1 (8.3)   0 (10) 0 (10) 0 (10)  0 (10) 0 (10) 5 (5)   
BE 0 (10) 0 (10) 0 (10) 6 (4.5) 0 (10) 0 (10) 3 (6.3) 6 (4.5) 0 (10) 0 (10) 3 (6.3) 7 (4.2) 

Survival                         
FS 2 (25) 3 (16.7) 4 (12.5)   3 (16.7) 3 (16.7) 5 (10)   4 (12.5) 4 (12.5) 6 (8.3)   
BE 0 (NA) 1 (50) 4 (12.5) 5 (10) 3 (16.7) 3 (16.7) 3 (16.7) 5 (10) 2 (25) 3 (16.7) 6 (8.3) 6 (8.3) 

ISC/choice                         
PLR3                         

FS 0 (17.7) 0 (17.7) 3 (8.8)   0 (17.7) 0 (17.7) 4 (7.6)   0 (17.7) 0 (17.7) 7 (5.3)   

BE 0 (17.7) 0 (17.7) 0 (17.7) 7 (5.3) 0 (17.7) 0 (17.7) 0 (17.7) 7 (5.3) 0 (17.7) 0 (17.7) 7 (5.3) 10 (4.1) 

PLR5                          
FS 0 (10.6) 0 (10.6) 3 (6.6)  0 (10.6) 0 (10.6) 4 (5.9)   0 (10.6) 0 (10.6) 6 (4.8)   
BE 0 (10.6) 0 (10.6) 0 (10.6) 7 (4.4) 0 (10.6) 0 (10.6) 0 (10.6) 7 (4.4) 0 (10.6) 0 (10.6) 1 (8.8) 8 (4.1) 

Survival                          
FS 1 (53) 3 (17.7) 5 (10.6)   2 (26.5) 3 (17.7) 4 (13.3)  3 (17.7) 5 (10.6) 6 (8.8)  
BE 1 (53) 1 (53) 3 (17.7) 5 (10.6) 2 (26.5) 3 (17.7) 4 (13.3) 5 (10.6) 2 (26.5) 2 (26.5) 5 (10.6) 6 (8.8) 

All                          
PLR3                         

FS 0 (21.3) 1 (16) 8 (5.8)   0 (21.3) 1 (16) 7 (6.4)   0 (21.3) 2 (12.8) 6 (7.1)   

BE 0 (21.3) 2 (12.8) 4 (9.1) 9 (5.3) 0 (21.3) 0 (21.3) 6 (7.1) 9 (5.3) 0 (21.3) 1 (16) 6 (7.1) 9 (5.3) 

PLR5                          
FS 0 (12.8) 1 (10.7) 5 (6.4)   0 (12.8) 2 (9.1) 6 (5.8)   0 (12.8) 2 (9.1) 4 (7.1)   
BE 0 (12.8) 2 (9.1) 4 (7.1) 9 (4.6) 0 (12.8) 0 (12.8) 4 (7.1) 9 (4.6) 0 (12.8) 2 (9.1) 4 (7.1) 9 (4.6) 

Survival                         
FS 2 (32) 2 (32) 7 (9.1)  4 (16) 6 (10.7) 8 (8)  4 (16) 5 (12.8) 8 (8)   
BE 1 (64) 5 (12.8) 9 (7.1) 9 (7.1) 2 (32) 3 (21.3) 7 (9.1) 9 (7.1) 1 (64) 1 (64) 8 (8) 9 (7.1) 
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Table 57 Remission: Number of variables in model (EPV, including spline variables (3 with 3 knots (2 spline variables + linear 
time variable), 5 with 5 knots (4 spline variables + linear time variable)) 

Treatment  
changes 
 

Time interval / Variable selection threshold 
Month Fortnight Week 

10% 5% 2% Full model  10% 5% 2% Full model  10% 5% 2% Full model  

ITT (none)             
PLR3             

FS 1 (74.3) 1 (74.3) 1 (74.3)   1 (74.3) 1 (74.3) 1 (74.3)  1 (74.3) 1 (74.3) 1 (74.3)   

BE 1 (74.3) 1 (74.3) 2 (59.4) 6 (33) 1 (74.3) 1 (74.3) 6 (33) 7 (29.7) 1 (74.3) 1 (74.3) 1 (74.3) 8 (27) 

PLR5                         
FS 1 (49.5) 1 (49.5) 1 (49.5)  1 (49.5) 1 (49.5) 1 (49.5)  1 (49.5) 1 (49.5) 1 (49.5)  
BE 1 (49.5) 1 (49.5) 1 (49.5) 7 (24.8) 1 (49.5) 1 (49.5) 1 (49.5) 7 (24.8) 1 (49.5) 1 (49.5) 1 (49.5) 7 (24.8) 

Survival                          
FS 1 (297) 1 (297) 1 (297)   1 (297) 1 (297) 1 (297)  1 (297) 1 (297) 1 (297)   
BE 1 (297) 1 (297) 1 (297) 2 (148.5) 1 (297) 1 (297) 1 (297) 2 (148.5) 1 (297) 1 (297) 1 (297) 2 (148.5) 

ISC only             
PLR3             

FS 1 (62.8) 1 (62.8) 1 (62.8)   1 (62.8) 1 (62.8) 2 (50.2)  1 (62.8) 1 (62.8) 6 (27.9)   

BE 1 (62.8) 1 (62.8) 2 (50.2) 6 (27.9) 1 (62.8) 1 (62.8) 1 (62.8) 6 (27.9) 1 (62.8) 1 (62.8) 2 (50.2) 8 (22.8) 

PLR5                         
FS 1 (41.8) 1 (41.8) 1 (41.8)  1 (41.8) 1 (41.8) 1 (41.8)  1 (41.8) 1 (41.8) 3 (31.4)  
BE 1 (41.8) 1 (41.8) 1 (41.8) 5 (25.1) 1 (41.8) 1 (41.8) 3 (31.4) 5 (25.1) 1 (41.8) 1 (41.8) 2 (35.9) 5 (25.1) 

Survival                         
FS 2 (125.5) 2 (125.5) 3 (83.7)   2 (125.5) 2 (125.5) 4 (62.8)  2 (125.5) 2 (125.5) 4 (62.8)  
BE 1 (251) 1 (251) 3 (83.7) 4 (62.8) 2 (125.5) 2 (125.5) 2 (125.5) 4 (62.8) 1 (251) 1 (251) 4 (62.8) 4 (62.8) 

ISC/choice             
PLR3             

FS 1 (61.8) 1 (61.8) 2 (49.4)   1 (61.8) 1 (61.8) 3 (41.2)   1 (61.8) 1 (61.8) 5 (30.9)   

BE 1 (61.8) 1 (61.8) 2 (49.4) 6 (27.4) 1 (61.8) 1 (61.8) 1 (61.8) 6 (27.4) 1 (61.8) 1 (61.8) 5 (30.9) 8 (22.5) 

PLR5                           
FS 1 (41.2) 1 (41.2) 2 (35.3)  1 (41.8) 1 (41.8) 3 (30.9)  1 (41.2) 1 (41.2) 4 (27.4)   
BE 1 (41.2) 1 (41.2) 1 (41.2) 6 (22.5) 1 (41.8) 1 (41.8) 1 (41.2) 6 (22.5) 1 (41.2) 1 (41.2) 1 (41.2) 6 (22.5) 

Survival                         
FS 1 (247) 2 (123.5) 4 (61.8)  1 (247) 2 (123.5) 3 (82.3)  2 (123.5) 3 (82.3) 4 (61.8)   
BE 1 (247) 1 (247) 2 (123.5) 4 (61.8) 1 (247) 2 (123.5) 3 (82.3) 4 (61.8) 1 (247) 1 (247) 3 (82.3) 4 (61.8) 

All              
PLR3             

FS 1 (51) 1 (51) 6 (22.7)  1 (51) 1 (51) 6 (22.7)   1 (51) 1 (51) 5 (25.5)   

BE 1 (51) 1 (51) 6 (22.7) 7 (20.4) 1 (51) 1 (51) 6 (22.7) 7 (20.4) 1 (51) 1 (51) 5 (25.5) 7 (20.4) 

PLR5                         
FS 1 (34) 1 (34) 3 (25.5)   1 (34) 1 (34) 5 (20.4)   1 (34) 1 (34) 3 (25.5)  
BE 1 (34) 2 (29.1) 4 (22.7) 7 (17) 1 (34) 1 (34) 4 (22.7) 7 (17) 1 (34) 1 (34) 3 (25.5) 7 (17) 

Survival                         
FS 1 (204) 6 (34) 6 (34)   3 (68) 4 (51) 6 (34)  3 (68) 3 (68) 6 (34)   
BE 1 (204) 4 (51) 7 (29.1) 7 (29.1) 1 (204) 2 (102) 6 (34) 7 (29.1) 1 (204) 1 (204) 6 (34) 7 (29.1) 
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Figure 11 Treatment effects (95% BS CIs) from PLR and Cox models without 
adjustment for treatment changes (ITT) 
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Figure 12 Treatment effects (95% BS CIs) from PLR and Cox models, with 
adjustment for treatment changes due to ISC alone 
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Figure 13 Treatment effects (95% BS CIs) from PLR and Cox models, with 
adjustment for treatment changes due to ISC or personal choice 
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Figure 14 Treatment effects (95% BS CIs) from PLR and Cox models, with 
adjustment for all treatment changes 
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Appendix C: Comparison of IPCW and RPSFTM 

Table 58 EPV ratios of WD model, according to treatment change scenarios and TVCs 

WD 
models 

 PLR (0 knots) PLR (3 knots) PLR (5 knots) Cox 

  VPS LTG VPS LTG VPS LTG VPS LTG 
Seizure only model         
 Number of variables  2 2 4 4 6 6 1 1 
 Treatment changes: EPV 

ratio 
        

 None (ITT) - - - - - - - - 
 ISC only 13 25 6.5 12.5 4.3 8.3 26 50 
 ISC/choice  14.5 26.5 7.3 13.3 4.8 8.8 29 53 
 All 28 32 14 16 9.3 10.7 56 64 

          
Seizures and dose model         
 Number of variables  3 3 5 5 7 7 2 2 
 Treatment changes: EPV 

ratio         
 None (ITT) - - - - - - - - 
 ISC only 8.7 16.7 5.2 10 3.7 7.1 13 25 
 ISC/choice  9.7 17.7 5.8 10.6 4.1 7.6 14.5 26.5 
 All 18.7 21.3 11.2 12.8 8 9.1 28 32 
          
Seizures, dose and AEs model         
 Number of variables  4 4 6 6 8 8 3 3 
 Treatment changes: EPV 

ratio         
 None (ITT) - - - - - - - - 
 ISC only 6.5 12.5 4.3 8.3 3.3 6.3 8.7 16.7 
 ISC/choice  7.3 13.3 4.8 8.8 3.6 6.6 9.7 17.7 
 All 14 16 9.3 10.7 7 8 18.7 21.3 
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Table 59 EPV ratios of WO model, according to treatment change scenarios 

WO 
models 

 PLR (0 knots) PLR (3 knots) PLR (5 knots) Cox 

  VPS LTG VPS LTG VPS LTG VPS LTG 
         
 Number of variables  2 2 4 4 6 6 1 1 
 Treatment changes: EPV 

ratio 
        

 None (ITT) 148.5 74.3 49.5 297 148.5 74.3 49.5 297 
 ISC only 125.5 62.8 41.8 251 125.5 62.8 41.8 251 
 ISC/choice  123.5 61.8 41.2 247 123.5 61.8 41.2 247 
 All 102 51 34 204 102 51 34 204 
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Table 60 Treatment only models 

Treatment only 
models: 

Month Fortnight Week 
Treatment effect 95% CI 95% CI (BS) Treatment effect 95% CI 95% CI (BS) Treatment 

effect 
95% CI 95% CI (BS) 

       

No adjustment for treatment changes (ITT)       
PLR (0) 0.679 (0.516, 0.894) (0.527, 0.906) 0.673  (0.512, 0.887) (0.524, 0.901) 0.673 (0.512, 0.885) (0.516, 0.916) 
PLR (3) 0.714  (0.551, 0.924) (0.565, 0.945) 0.707  (0.548, 0.912) (0.561, 0.943) 0.704 (0.545, 0.908) (0.547, 0.909) 
PLR (5) 0.717  (0.553, 0.931) (0.567, 0.950) 0.719  (0.556, 0.929) (0.569, 0.944) 0.721 (0.559, 0.930) (0.544, 0.928) 

Cox 0.774  (0.616, 0.973) (0.637, 0.944) 0.770 (0.613, 0.968) (0.632, 0.956) 0.768 (0.611, 0.966) (0.616, 0.940) 

       
Adjusted for treatment changes due to ISC only       

PLR (0) 0.699 (0.513, 0.953) (0.522, 0.989) 0.668 (0.491, 0.909) (0.403, 1.111) 0.699 (0.513, 0.952) (0.532, 0.985) 
PLR (3) 0.699 (0.521, 0.936) (0.522, 0.996) 0.701 (0.527, 0.934) (0.546, 1.035) 0.702 (0.527, 0.934) (0.549, 0.968) 
PLR (5) 0.695 (0.517, 0.934) (0.514, 0.994) 0.700 (0.523, 0.936) (0.536, 0.998) 0.701 (0.525, 0.935) (0.535, 0.960) 

Cox 0.773 (0.602, 0.992) (0.621, 0.993) 0.769 (0.598, 0.987) (0.642, 1.000) 0.767 (0.597, 0.986) (0.618, 0.962) 

       
Adjusted for treatment changes due to ISC/choice only       

PLR (0) 0.703 (0.515, 0.961) (0.514, 1.007) 0.673 (0.493, 0.919) (0.397, 1.206) 0.703 (0.515, 0.961) (0.537, 0.961) 
PLR (3)  0.702 (0.522, 0.942)  (0.518, 0.990) 0.704 (0.527, 0.939) (0.568, 1.070) 0.704 (0.527, 0.939) (0.539, 0.957) 
PLR (5) 0.696 (0.516, 0.938) (0.510, 0.996) 0.701 (0.523, 0.940) (0.548, 0.992) 0.701 (0.524, 0.938) (0.532, 0.939) 

Cox 0.774 (0.601, 0.990) (0.623, 0.990) 0.770 (0.598, 0.991) (0.638, 0.996) 0.768 (0.597, 0.989) (0.624, 0.956) 

       
Adjusted for all treatment changes (ISC/choice and UAEs)       

PLR (0) 0.644 (0.457, 0.909) (0.456, 0.886) 0.602 (0.427, 0.849) (0.412, 1.232) 0.641 (0.455, 0.905) (0.449, 0.881) 
PLR (3)  0.646 (0.465, 0.899) (0.477, 0.899) 0.647 (0.469, 0.891) (0.480, 0.911) 0.646 (0.470, 0.890) (0.471, 0.867) 
PLR (5) 0.644 (0.462, 0.899) (0.476, 0.904) 0.649 (0.468, 0.900) (0.474, 0.881) 0.648 (0.469, 0.897) (0.471, 0.876) 

Cox 0.736 (0.577, 0.973) (0.590, 0.929) 0.731 (0.553, 0.965) (0.581, 0.887) 0.728 (0.551, 0.962) (0.552, 0.905) 
 

Note that none of these models contain time-varying covariates and therefore no weighting is applied. 
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Table 61 Treatment and seizure models 

Treatment + seizures 
models: 

Month Fortnight Week 
Treatment effect 95% CI 95% CI (BS) Treatment effect 95% CI 95% CI (BS) Treatment effect 95% CI 95% CI (BS) 

       
No adjustment for treatment changes (ITT)*        

PLR (0) 0.679 (0.516, 0.894) (0.527, 0.906) 0.673  (0.512, 0.887) (0.524, 0.901) 0.673 (0.512, 0.885) (0.516, 0.916) 
PLR (3) 0.714  (0.551, 0.924) (0.565, 0.945) 0.707  (0.548, 0.912) (0.561, 0.943) 0.704 (0.545, 0.908) (0.547, 0.909) 
PLR (5) 0.717  (0.553, 0.931) (0.567, 0.950) 0.719  (0.556, 0.929) (0.569, 0.944) 0.721 (0.559, 0.930) (0.544, 0.928) 

Cox 0.774  (0.616, 0.973) (0.637, 0.944) 0.770 (0.613, 0.968) (0.632, 0.956) 0.768 (0.611, 0.966) (0.616, 0.940) 

       
Adjusted for treatment changes due to ISC only       

PLR (0) 0.662  (0.486, 0.902) (0.453, 1.256) 0.668 (0.491, 0.909) (0.403, 1.111) 0.665 (0.490, 0.904) (0.384, 1.349) 
PLR (3) 0.678  (0.505, 0.909) (0.411, 1.089) 0.681 (0.511, 0.908) (0.406, 1.250) 0.676 (0.507, 0.900) (0.413, 1.170 
PLR (5) 0.676  (0.501, 0.911) (0.386, 1.112)127 0.687 (0.511, 0.923) (0.387, 1.256) 0.689 (0.514, 0.925) (0.376, 1.122)1 

Cox 0.610  (0.458, 0.814) (0.187, 0.916) 0.609 (0.456, 0.814) (0.139, 0.907) 0.658 (0.502, 0.862) (0.392, 1.146) 

       
Adjusted for treatment changes due to ISC/choice only       

PLR (0) 0.669 (0.490, 0.914) (0.477, 1.386) 0.673 (0.493, 0.919) (0.397, 1.206) 0.673 (0.494, 0.916) (0.364, 1.076) 
PLR (3)  0.684 (0.509, 0.919) (0.399, 1.155) 0.686 (0.514, 0.916) (0.419, 1.485) 0.680  (0.510, 0.907) (0.376, 1.209) 
PLR (5) 0.681  (0.504, 0.920) (0.372, 1.111)104 0.691  (0.513, 0.930) (0.378, 1.248) 0.692 (0.515, 0.931) (0.376, 1.219) 

Cox 0.628  (0.474, 0.831) (0.222, 0.917) 0.627 (0.473, 0.831) (0.265, 0.907) 0.663 (0.507, 0.868) (0.396, 1.083) 

       
Adjusted for all treatment changes (ISC/choice and UAEs)       

PLR (0) 0.605 (0.428, 0.854) (0.417, 1.141) 0.602 (0.427, 0.849) (0.412, 1.232) 0.592 (0.420, 0.832) (0.367, 1.107) 
PLR (3)  0.604 (0.431, 0.847) (0.406, 1.343) 0.609 (0.440, 0.843) (0.437, 1.072) 0.591 (0.427, 0.820) (0.379, 0.989)1 
PLR (5) 0.599  (0.426, 0.844) (0.385, 1.362)23 0.605  (0.433, 0.846) (0.402, 1.089) 0.596 (0.426, 0.834) (0.371, 1.066) 

Cox 0.581  (0.441, 0.767) (0.340, 0.921) 0.529 (0.395, 0.710) (0.161, 0.892) 0.552 (0.416, 0.732) (0.286, 0.819) 
 

* Note that none of these models contain time-varying covariates and therefore no weighting is applied; therefore these models correspond with those presented in Table 60. 
 

CIs in italics indicate invalid normal Cox regression CIs, while subscripts indicate the number of bootstrapped samples (out of a total of 200) which failed to converge due to overfitting. 
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Table 62 Treatment, seizure count and dose models 

Treatment + seizures 
+ dose models: 

Month Fortnight Week 
Treatment effect 95% CI 95% CI (BS) Treatment effect 95% CI 95% CI (BS) Treatment 

effect 
95% CI 95% CI (BS) 

       
No adjustment for treatment changes (ITT)*        

PLR (0) 0.679 (0.516, 0.894) (0.527, 0.906) 0.673  (0.512, 0.887) (0.524, 0.901) 0.673 (0.512, 0.885) (0.516, 0.916) 
PLR (3) 0.714  (0.551, 0.924) (0.565, 0.945) 0.707  (0.548, 0.912) (0.561, 0.943) 0.704 (0.545, 0.908) (0.547, 0.909) 
PLR (5) 0.717  (0.553, 0.931) (0.567, 0.950) 0.719  (0.556, 0.929) (0.569, 0.944) 0.721 (0.559, 0.930) (0.544, 0.928) 

Cox 0.774  (0.616, 0.973) (0.637, 0.944) 0.770 (0.613, 0.968) (0.632, 0.956) 0.768 (0.611, 0.966) (0.616, 0.940) 

       
Adjusted for treatment changes due to ISC only       

PLR (0) 0.665 (0.488, 0.907) (0.471, 1.267) 0.665 (0.490, 0.904) (0.417, 1.172) 0.666 (0.491, 0.902) (0.421, 1.278) 
PLR (3) 0.673 (0.500, 0.906) (0.431, 1.374)2 0.677 (0.508, 0.903) (0.432, 1.207) 0.674 (0.505, 0.898) (0.391, 1.189) 
PLR (5) 0.673 (0.497, 0.911) (0.391, 1.280)127 0.681 (0.506, 0.916) (0.421, 1.260)1 0.686 (0.510, 0.922) (0.398, 1.298)3 

Cox 0.491 (0.246, 0.981) (0.021, 1.930) 0.527 (0.333, 0.833) (0.021, 0.909) 0.605 (0.400, 0.915) (0.196, 17.318) 

       
Adjusted for treatment changes due to ISC/choice only       

PLR (0) 0.668 (0.488, 0.913) (0.450, 1.396) 0.667 (0.490, 0.909) (0.409, 1.197) 0.671 (0.493, 0.912) (0.409, 1.246) 
PLR (3)  0.677 (0.501, 0.915) (0.420, 1.331)1 0.681 (0.509, 0.910) (0.403, 1.302) 0.677 (0.507, 0.905) (0.380, 1.332) 
PLR (5) 0.676 (0.498, 0.919) (0.408, 1.263)106 0.683 (0.507,0.921) (0.408, 1.323)1 0.687 (0.510, 0.926) (0.382, 1.420)2 

Cox 0.492 (0.259, 0.933) (0.008, 1.206) 0.543 (0.350, 0.844) (0.026, 0.930) 0.603 (0.400, 0.908) (0.245, 5.652) 

       
Adjusted for all treatment changes (ISC/choice and UAEs)       

PLR (0) 0.599 (0.423, 0.850) (0.387, 1.224) 0.600 (0.424, 0.848) (0.404, 1.197) 0.588 (0.417, 0.829) (0.374, 1.182) 
PLR (3)  0.593 (0.420, 0.838) (0.409, 1.422)4 0.603 (0.435, 0.836) (0.429, 1.575)1 0.584 (0.421, 0.810) (0.402, 1.261)1 

PLR (5) 0.583 (0.408, 0.833) (0.415, 1.466)22 0.598 (0.426, 0.838) (0.417, 1.385) 0.587 (0.419, 0.822) (0.376, 1.567) 
Cox 0.388 (0.272, 0.552) (0.022, 0.690) 0.497 (0.370, 0.669) (0.163, 0.934) 0.529 (0.399, 0.700) (0.260, 0.809) 

 

* Note that none of these models contain time-varying covariates and therefore no weighting is applied; therefore these models correspond with those presented in Table 60. 
CIs in italics indicate invalid normal Cox regression CIs, while subscripts indicate the number of bootstrapped samples (out of a total of 200) which failed to converge due to overfitting. 
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Table 63 Treatment, seizure count, dose and AE models 

Treatment + seizures 
+ dose + AEs 
models: 

Month Fortnight Week 
Treatment 

effect 
95% CI 95% CI (BS) Treatment 

effect 
95% CI 95% CI (BS) Treatment 

effect 
95% CI 95% CI (BS) 

       
No adjustment for treatment changes (ITT)*        

PLR (0) 0.679 (0.516, 0.894) (0.527, 0.906) 0.673  (0.512, 0.887) (0.524, 0.901) 0.673 (0.512, 0.885) (0.516, 0.916) 
PLR (3) 0.714  (0.551, 0.924) (0.565, 0.945) 0.707  (0.548, 0.912) (0.561, 0.943) 0.704 (0.545, 0.908) (0.547, 0.909) 
PLR (5) 0.717  (0.553, 0.931) (0.567, 0.950) 0.719  (0.556, 0.929) (0.569, 0.944) 0.721 (0.559, 0.930) (0.544, 0.928) 

Cox 0.774  (0.616, 0.973) (0.637, 0.944) 0.770 (0.613, 0.968) (0.632, 0.956) 0.768 (0.611, 0.966) (0.616, 0.940) 

       
Adjusted for treatment changes due to ISC only       

PLR (0) 0.657 (0.482, 0.895) (0.455, 1.264) 0.658 (0.485, 0.895) (0.411, 1.068) 0.638 (0.470, 0.867) (0.410, 1.139) 
PLR (3) 0.661 (0.491, 0.890) (0.429, 1.253)2 0.668 (0.501, 0.891) (0.407, 1.054) 0.644 (0.482, 0.860) (0.415, 1.182) 
PLR (5) 0.658 (0.486, 0.892) (0.389, 1.323)126 0.669 (0.497, 0.900) (0.405, 1.077) 0.648 (0.482, 0.873) (0.416, 1.278)3 

Cox 0.386 (0.168, 0.884) (0.002, 1.661) 0.389 (0.222, 0.681) (0.0007, 0.886) 0.417 (0.249, 0.699) (0.003, 1.750)1 

       
Adjusted for treatment changes due to ISC/choice only       

PLR (0) 0.661 (0.483, 0.904) (0.445, 1.433) 0.661 (0.485, 0.901) (0.384, 1.146) 0.645 (0.474, 0.879) (0.446, 1.112) 
PLR (3)  0.667 (0.494, 0.902) (0.435, 1.343)1 0.672 (0.502, 0.899) (0.428, 1.176) 0.650 (0.486, 0.871) (0.432, 1.166)1 
PLR (5) 0.664 (0.488, 0.903) (0.441, 1.470)104 0.672 (0.498, 0.907) (0.395, 1.097) 0.654 (0.484, 0.882) (0.421, 1.269)3 

Cox 0.386 (0.187, 0.796) (0.002, 1.131) 0.414 (0.248, 0.692) (0.001, 0.964) 0.429 (0.267, 0.689) (0.014, 2.316) 

       
Adjusted for all treatment changes (ISC/choice and UAEs)       

PLR (0) 0.584 (0.410, 0.834) (0.375, 1.094) 0.592 (0.414, 0.846) (0.357, 1.160) 0.570 (0.398, 0.816) (0.298, 1.514) 
PLR (3)  0.576 (0.407, 0.816) (0.401, 1.204)4 0.584 (0.414, 0.823) (0.383, 1.128)1 0.551 (0.386, 0.786) (0.342, 1.155) 
PLR (5) 0.564 (0.394, 0.808)  0.570 (0.398, 0.817) (0.357, 1.154) 0.541 (0.374, 0.783) (0.326, 1.172) 

Cox 0.161 (0.077, 0.334) (0.0002, 0.414) 0.226 (0.140, 0.367) (0.000002, 0.619) 0.315 (0.214, 0.464) (0.008. 0.706) 
 

* Note that none of these models contain time-varying covariates and therefore no weighting is applied; therefore these models correspond with those presented in Table 60. 
CIs in italics indicate invalid normal Cox regression CIs, while subscripts indicate the number of bootstrapped samples (out of a total of 200) which failed to converge due to overfitting. 
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Table 64 Treatment only models 

  PLR (no splines) PLR (3 knots) PLR (5 knots) Cox RPSFTM  

No adjustment for treatment changes (ITT) 
 Month 0.68 (0.53, 0.91) 0.71 (0.57, 0.95) 0.72 (0.57, 0.95) 0.77 (0.64, 0.94)  
 Fortnight 0.67 (0.52, 0.90) 0.71 (0.56, 0.94) 0.72 (0.57, 0.94) 0.77 (0.63, 0.96) 0.79 (0.64, 0.98) 
 Week 0.67 (0.52, 0.92) 0.70 (0.55, 0.91) 0.72 (0.54, 0.93) 0.77 (0.62, 0.94)  
Adjusted for ISC treatment changes only      
 Month 0.70 (0.52, 0.99) 0.70 (0.52, 0.996) 0.70 (0.51, 0.99) 0.77 (0.62, 0.99)  
 Fortnight 0.67 (0.40, 1.11) 0.70 (0.55, 1.04) 0.70 (0.54, 0.998) 0.77 (0.64, 1.00) 0.88 (0.78, 0.99) 
 Week 0.70 (0.53, 0.99) 0.70 (0.55, 0.97) 0.70 (0.54, 0.96) 0.77 (0.62, 0.96)  
Adjusted for ISC/choice treatment changes only      
 Month 0.70 (0.51, 1.01) 0.70 (0.52, 0.99) 0.70 (0.51, 0.996) 0.77 (0.62, 0.99)  
 Fortnight 0.67 (0.40, 1.21) 0.70 (0.57, 1.07) 0.70 (0.55, 0.99) 0.77 (0.64, 0.996) 0.77 (0.61, 0.98) 
 Week 0.70 (0.54, 0.96) 0.70 (0.54, 0.96) 0.70 (0.53, 0.94) 0.77 (0.62, 0.96)  
Adjusted for all treatment changes       
 Month 0.64 (0.46, 0.89) 0.65 (0.48, 0.90) 0.64 (0.48, 0.90) 0.74 (0.59, 0.93)  
 Fortnight 0.60 (0.41, 1.23) 0.65 (0.48, 0.91) 0.65 (0.47, 0.88) 0.73 (0.58, 0.89) 0.76 (0.58, 0.98) 
 Week 0.64 (0.45, 0.88) 0.65 (0.47, 0.87) 0.65 (0.47, 0.88) 0.73 (0.55, 0.91)  

 

Table 65 Treatment and seizure models 

  PLR (no splines) PLR (3 knots) PLR (5 knots) Cox RPSFTM  

No adjustment for treatment changes (ITT)      
 Month 0.68 (0.53, 0.91) 0.71 (0.57, 0.95) 0.72 (0.57, 0.95) 0.77 (0.64, 0.94)  
 Fortnight 0.67 (0.52, 0.90) 0.71 (0.56, 0.94) 0.72 (0.57, 0.94) 0.77 (0.63, 0.96) 0.79 (0.64, 0.98) 
 Week 0.67 (0.52, 0.92) 0.70 (0.55, 0.91) 0.72 (0.54, 0.93) 0.77 (0.62, 0.94)  
Adjusted for ISC treatment changes only      
 Month 0.66 (0.45, 1.26) 0.68 (0.41, 1.09) 0.68 (0.39, 1.11) 0.61 (0.19, 0.92)  
 Fortnight 0.67 (0.40, 1.11) 0.68 (0.41, 1.25) 0.69 (0.39, 1.26) 0.61 (0.14, 0.91) 0.88 (0.78, 0.99) 
 Week 0.67 (0.38, 1.35) 0.68 (0.51, 0.90) 0.69 (0.38, 1.12) 0.66 (0.39, 1.15)  
Adjusted for ISC/choice treatment changes only      
 Month 0.67 (0.48, 1.39) 0.68 (0.40, 1.16) 0.68 (0.37, 1.11) 0.63 (0.22, 0.92)  
 Fortnight 0.67 (0.40, 1.21) 0.69 (0.42, 1.49) 0.69 (0.38, 1.25) 0.63 (0.27, 0.91) 0.77 (0.61, 0.98) 
 Week 0.67 (0.36, 1.08) 0.68 (0.38, 1.21) 0.69 (0.38, 1.22) 0.66 (0.40, 1.08)  
Adjusted for all treatment changes       
 Month 0.61 (0.42, 1.14) 0.60 (0.41, 1.34) 0.60 (0.39, 1.36) 0.58 (0.34, 0.92)  
 Fortnight 0.60 (0.41, 1.23) 0.61 (0.44, 1.07) 0.61 (0.40, 1.09) 0.53 (0.16, 0.89) 0.76 (0.58, 0.98) 
 Week 0.59 (0.37, 1.02) 0.60 (0.38, 0.99) 0.60 (0.37, 1.07)  0.55 (0.29, 0.82)  
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Table 66 Treatment, seizures and dose models 

  PLR (no splines) PLR (3 knots) PLR (5 knots) Cox RPSFTM  

No adjustment for treatment changes (ITT)      
 Month 0.68 (0.53, 0.91) 0.71 (0.57, 0.95) 0.72 (0.57, 0.95) 0.77 (0.64, 0.94)  
 Fortnight 0.67 (0.52, 0.90) 0.71 (0.56, 0.94) 0.72 (0.57, 0.94) 0.77 (0.63, 0.96) 0.79 (0.64, 0.98) 
 Week 0.67 (0.52, 0.92) 0.70 (0.55, 0.91) 0.72 (0.54, 0.93) 0.77 (0.62, 0.94)  
Adjusted for ISC treatment changes only      
 Month 0.67 (0.47, 1.27) 0.67 (0.43, 1.37) 0.67 (0.39, 1.28) 0.49 (0.02, 1.93)  
 Fortnight 0.67 (0.42, 1.17) 0.68 (0.43, 1.21) 0.68 (0.42, 1.26) 0.53 (0.02, 0.91) 0.88 (0.78, 0.99) 
 Week 0.67 (0.42, 1.28) 0.67 (0.39, 1.19) 0.69 (0.40, 1.30) 0.61 (0.20, 17.32)  
Adjusted for ISC/choice treatment changes only      
 Month 0.67 (0.45, 1.40) 0.68 (0.42, 1.33) 0.68 (0.41, 1.26) 0.49 (0.01, 1.21)  
 Fortnight 0.67 (0.41, 1.20) 0.68 (0.40, 1.30) 0.68 (0.41, 1.32) 0.54 (0.03, 0.93) 0.77 (0.61, 0.98) 
 Week 0.67 (0.41, 1.25) 0.68 (0.38, 1.33) 0.69 (0.38, 1.42) 0.60 (0.25, 5.65)  
Adjusted for all treatment changes       
 Month 0.60 (0.39, 1.22) 0.59 (0.41, 1.42) 0.58 (0.42, 1.47) 0.39 (0.02, 0.69)  
 Fortnight 0.60 (0.40, 1.20) 0.60 (0.43, 1.58) 0.60 (0.42, 1.39) 0.50 (0.16, 0.93) 0.76 (0.58, 0.98) 
 Week 0.59 (0.37, 1.18) 0.58 (0.40, 1.26) 0.59 (0.38, 1.57) 0.53 (0.26, 0.81)  

 

Table 67 Treatment, seizures, dose and AEs models 

 PLR (no splines) PLR (3 knots) PLR (5 knots) Cox RPSFTM  

No adjustment for treatment changes (ITT)      
 Month 0.68 (0.53, 0.91) 0.71 (0.57, 0.95) 0.72 (0.57, 0.95) 0.77 (0.64, 0.94)  
 Fortnight 0.67 (0.52, 0.90) 0.71 (0.56, 0.94) 0.72 (0.57, 0.94) 0.77 (0.63, 0.96) 0.79 (0.64, 0.98) 
 Week 0.67 (0.52, 0.92) 0.70 (0.55, 0.91) 0.72 (0.54, 0.93) 0.77 (0.62, 0.94)  
Adjusted for ISC treatment changes only      
 Month 0.66 (0.46, 1.26) 0.66 (0.43, 1.25) 0.66  (0.39, 1.32) 0.39 (0.002, 1.66)  
 Fortnight 0.66 (0.41, 1.07) 0.67 (0.41, 1.05) 0.67 (0.41, 1.08) 0.39 (0.0007, 0.89) 0.88 (0.78, 0.99) 
 Week 0.64 (0.41, 1.14) 0.64 (0.42, 1.18) 0.65 (0.42, 1.28) 0.42 (0.003, 1.75)  
Adjusted for ISC/choice treatment changes only      
 Month 0.66 (0.45, 1.43) 0.67 (0.44, 1.34) 0.66 (0.44, 1.47) 0.39 (0.002, 1.13)  
 Fortnight 0.66 (0.38, 1.15) 0.67 (0.43, 1.18) 0.67 (0.40, 1.10) 0.41 (0.001, 0.96) 0.77 (0.61, 0.98) 
 Week 0.65 (0.45, 1.11) 0.65 (0.43, 1.17) 0.65 (0.42, 1.27) 0.43 (0.01, 2.32)  
Adjusted for all treatment changes       
 Month 0.58 (0.38, 1.09) 0.58 (0.40, 1.20) 0.56 (NA) 0.16 (0.0002, 0.41)  
 Fortnight 0.59 (0.36, 1.16) 0.58 (0.38, 1.13) 0.57 (0.36, 1.15) 0.23 (0.000002, 0.62) 0.76 (0.58, 0.98) 
 Week 0.57 (0.30, 1.51) 0.55 (0.34, 1.16) 0.54 (0.33, 1.17) 0.32 (0.008, 0.706)  
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Figure 15 Treatment only models (BS CIs) 
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Figure 16  Treatment and seizures models (BS CIs) 
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Figure 17 Treatment, seizures and dose models (BS CIs) 
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Figure 18 Treatment, seizures, dose and AE models (BS CIs) 
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Table 68 Accounting for reasons for treatment changes in RPSFTM 

 HR (95% CI) Number (%) of treatment 
changes adjusted for  
[% of treatment arm] 

Number of ignored (censored) treatment changes  
(% of total number of IPCW treatment changes, m) 

  VPS (n=235) LTG (n=217) 
 

 VPS (m=108) LTG (m=105) 

No adjustment for 
switches  

0.794 (0.641, 0.983) 0 0 Switches between VPS and LTG 
(due to ISC, UAEs or choice) 

18 (16.7) 35 (33.3) 

Switch to other AED 8 (7.4) 8 (7.6) 
Additions 18 (16.7) 24 (22.9) 
Withdrawals 64 (59.3) 38 (36.2) 
   

        
Adjusted for switches due 
to ISC only 

0.877 (0.777, 0.990) 9 (8.3) 
[3.8] 

25 (23.8)  
[11.5] 

Switches between VPS and LTG 
(due to UAEs or choice) 

9 (8.3) 10 (9.5) 

Switch to other AED 8 (7.4) 8 (7.6) 
Additions 18 (16.7) 24 (22.9) 
Withdrawals 64 (59.3) 38 (36.2) 
   

       
Adjusted for switches due 
to ISC or choice only 

0.772 (0.608, 0.981) 11 (10.2)  
[4.7] 

25 (23.8)  
[11.5] 

Switches between VPS and LTG 
(due to UAEs) 

7 (6.5) 10 (9.5) 

Switch to other AED 8 (7.4) 8 (7.6) 
Additions 18 (16.7) 24 (22.9) 
Withdrawals 64 (59.3) 38 (36.2) 
   

       
Adjusted for all switches 
(due to ISC, choice or 
UAEs) 

0.756 (0.584, 0.980) 
 

18 (16.7) 
[7.7] 

35 (33.3)  
[16.1] 

Switch to other AED 8 (7.4) 8 (7.6) 
Additions 18 (16.7) 24 (22.9) 
Withdrawals 64 (59.3) 38 (36.2) 

 

 


