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Abstract 23 

 24 

B-cell receptor (BCR) signalling pathway inhibitors such as ibrutinib, idelalisib and 25 

fostamatinib (respective inhibitors of BTK, phosphatidyl inositol-3 kinase δ and SYK) 26 

represent a significant therapeutic advance in B-cell malignancies including chronic 27 

lymphocytic leukaemia (CLL). These drugs are distinctive in increasing blood lymphocytes 28 

whilst simultaneously shrinkage of enlarged lymph nodes, suggesting anatomical 29 

redistribution of CLL cells from lymph nodes into the blood. However, the mechanisms 30 

underlying this phenomenon are incompletely understood. Here, we showed that the egress 31 

receptor, sphingosine-1-phosphate (S1P) receptor 1 (S1PR1), was expressed at low levels in 32 

normal germinal centres and CLL lymph nodes in vivo but became up-regulated on normal B 33 

cells and, to a variable and lesser extent, CLL cells following in-vitro incubation in S1P-free 34 

medium. Spontaneous recovery of S1PR1 expression on normal B and CLL cells was 35 

prevented by BCR cross-linking, whereas treatment of CLL cells with idelalisib increased 36 

S1PR1 expression and migration towards S1P, the greatest increase occurring in cases with 37 

un-mutated IGHV genes. Intriguingly, ibrutinib and fostamatinib had no effect on S1PR1 38 

expression or function. Conversely, chemokine-induced migration, which requires integrin 39 

activation and is essential for the entry of lymphocytes into in lymph nodes as well as their 40 

retention, was blocked by ibrutinib and fostamatinib but not idelalisib. In summary, our 41 

results suggest that different BCR signalling inhibitors redistribute CLL cells from lymph 42 

nodes into the blood through distinct mechanisms: idelalisib actively promotes egress by 43 

up-regulating S1PR1 whereas fostamatinib and ibrutinib may reduce CLL-cell entry and 44 

retention by suppressing chemokine-induced integrin activation. 45 

  46 
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Introduction 47 

Chronic lymphocytic leukaemia (CLL) is a malignancy of mature B cells that can follow 48 

either a progressive or an indolent clinical course. Studies of mutational status and gene usage 49 

of the immunoglobulin heavy chain variable region (IGHV) of the B cell receptor (BCR) on CLL cells 50 

have not only revealed a relationship between IGHV mutation and clinical course, but have also led 51 

to wide acceptance of a key role for BCR engagement in disease pathogenesis and clinical behaviour 52 

(1).  One manifestation of progressive disease in CLL is the development of 53 

lymphadenopathy, which results from entry of malignant cells into lymph nodes where they 54 

receive signals for survival and proliferation. In a normal lymph node, transendothelial 55 

migration (TEM) of B cells from high endothelial venules (HEV) into the interfollicular area is 56 

stimulated by the chemokine CCL21 and  is dependent on cell adhesion mediated by the 57 

integrin L2 (Supplementary Figure 1A) (2-5). Once inside the lymph node, B cells then 58 

migrate to the follicles in a CXCL13-dependent manner in search of antigen (6).  Exit, or 59 

egress, of B cells from lymph nodes depends on migration towards sphingosine-1 phosphate 60 

(S1P) -rich tissues such as the blood and occurs when the S1P receptor-1 (S1PR1; S1P1) is up-61 

regulated (7-11). S1PR1 is not expressed by peripheral blood cells as high levels of its ligand 62 

S1P cause receptor internalisation. However, when lymphocytes enter the S1P-depleted 63 

lymph node environment, the receptor is up regulated and mediates lymphocyte egress 64 

(11). In T cells, this process is prevented by activation of the T-cell receptor which results in 65 

down-regulation of S1PR1 (11). Importantly, the transit time of normal lymphocytes through 66 

lymph nodes is determined by levels of S1PR1 on the cell surface. Thus, lymphocytes that 67 

enter the lymph nodes but do not encounter antigen rapidly up-regulate S1PR1 and transit 68 

through the node without delay. In contrast, T cells that encounter antigen down-regulate 69 

S1PR1 due to repression by TCR signalling and can remain within the lymph node for much 70 
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longer periods of time (8, 10). The regulation of S1PR1 expression on normal B cells is 71 

unclear. However,  normal B cells which have been chronically stimulated through their B-72 

cell receptor (BCR) do not migrate towards S1P (12), suggesting that S1PR1 expression may 73 

be repressed by BCR signalling.  74 

The development of lymphadenopathy in CLL implies either enhanced entry of the 75 

malignant cells into lymph nodes and/or their retention within the node (13). As is the case 76 

with normal B cells, entry of CLL cells into lymph nodes is also driven by CCL21 77 

(Supplementary Figure 1B) (14-16). However, unlike normal B cells, CLL cells additionally 78 

require expression and activation of the integrin 41 in order to undergo TEM (15, 16). 79 

Once inside lymph nodes, CLL cells may respond to CXCL13 because they express high levels 80 

of CXCR5 (17). However, the relevance of CXCL13/CXCR5-dependent migration is uncertain 81 

since the nodal architecture of CLL lymph nodes is effaced. Retention of CLL cells in lymph 82 

nodes may result from enhanced adhesion to extracellular matrices (18) or from reduced 83 

expression of S1PR1 (19).  84 

Recently, new therapeutic agents have been developed that target kinases involved in 85 

the BCR signalling pathway. These include idelalisib (CAL-101; GS-1101), ibrutinib (PCI-86 

32765) and fostamatinib (R406) which inhibit, respectively, phosphoinositol 3-kinase  87 

(PI3K) (20), Bruton’s tyrosine kinase (BTK) (21) and spleen tyrosine kinase (SYK), although 88 

fostamatinib has additional activity against some other kinases (22, 23). All of these kinase 89 

inhibitors induce a rapid lymphocytosis associated with a reduction in lymphadenopathy 90 

when given to patients with CLL (24, 25). This strongly implies that these kinase inhibitors 91 

produce a mobilising effect by redistributing CLL from the lymph nodes into the blood. In 92 

the case of ibrutinib, this effect has been attributed to blockade of BCR- and chemokine-93 

induced integrin activation resulting in reduced adhesion of CLL cells to lymph node stroma 94 
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(26). However, given that CLL cells are chronically stimulated in-vivo through their BCR (27-95 

29) and that antigen receptor stimulation prevents up-regulation of S1PR1 expression on 96 

normal T cells in lymph nodes, another possible explanation for the mobilising effect of BCR 97 

pathway inhibitors presents itself. Namely, we hypothesized that S1PR1 expression is down-98 

regulated on CLL cells as a result of chronic BCR signalling and that this contributes to their 99 

retention within lymph nodes. We further speculated that BCR inhibitors relieve this BCR-100 

mediated repression of S1PR1 expression resulting in the egress of CLL cells from affected 101 

lymph nodes. We reasoned that these effects should be most evident in those cases with 102 

unmutated IGHV where BCR signalling is particularly active (30). 103 

We tested this hypothesis by examining the effects of BCR stimulation and BCR 104 

signalling pathway inhibitors on CLL cells of defined IGHV mutational status cultured in the 105 

absence of S1P. In keeping with our predictions, idelalisib increased the expression of S1PR1 106 

and induced migration towards S1P, the greatest effect being observed in IGHV-unmutated 107 

CLL cells. In contrast, fostamatinib and ibrutinib had no such effect but, unlike idelalisib, 108 

inhibited CCL21-induced migration. Together, our findings suggest that idelalisib induces 109 

CLL-cell mobilisation by actively promoting S1P-directed egress from lymph nodes, whereas 110 

fostamatinib and ibrutinib mobilise CLL cells by releasing adhesive interactions and blocking 111 

chemokine-directed entry into lymph nodes.  112 

  113 
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Materials and Methods 114 

 115 

Patient samples  116 

This study was performed using peripheral blood samples from 20 patients with CLL; 117 

clinical data is shown in Supplementary Table 1. Normal B cells were obtained from healthy 118 

donors (n=6). Lymph node tissue was obtained from 5 patients with CLL and 4 healthy 119 

donors. The IGHV gene usage and extent of somatic hypermutation were determined by 120 

comparison to the nearest germline counterpart sequence in the international 121 

ImMunoGeneTics (IMGT) information system with IMGT/V-QUEST. A cut-off of 2% IGHV 122 

mutation was used to separate cases into mutated (M-CLL) and unmutated (UM-CLL) groups 123 

(31, 32).  HUVEC were purified from umbilical veins. All samples were obtained with 124 

informed consent and with the approval of the Liverpool Research and Ethics Committee, 125 

Royal Liverpool and Broadgreen University Hospitals NHS Trust and the Research and 126 

Development Committee, Liverpool Women’s Hospital NHS Trust. 127 

 128 

Cell preparation and culture 129 

Primary B lymphocytes (normal and CLL) were used in all the experiments described. Cells 130 

were isolated from peripheral blood and buffy coats by centrifugation over Lymphoprep 131 

(Axis-Shield, Oslo, Norway). Normal B cells were purified by negative selection using a B-cell 132 

isolation kit (Miltenyi Biotech, Bisley, UK) (>98% CD19+). All cultures involving primary 133 

lymphocytes employed RPMI medium containing 1% fatty acid-free bovine serum albumin 134 

(BSA; Sigma, Poole, UK); HUVEC were cultured in IMDM containing 20% foetal calf serum 135 

(FCS), whereas HS-5 and CD40L-transfected fibroblasts were cultured in DMEM containing 136 

10% FCS.  All culture media were supplemented with 2 mM L-glutamine, 100 U/ml penicillin 137 
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and 100 g/ml streptomycin (Invitrogen, Paisley, Scotland). Ibrutinib, fostamatinib and 138 

idelalisib were all used at 1 M (Selleckchem, Texas). These drug concentrations were 139 

sufficient to maximally inhibit the respective target kinases following BCR ligation (data not 140 

shown); IC50 values and peak plasma concentrations are shown in Supplementary Table 2. 141 

Goat anti-human IgM [F(ab)2 fragments (Jackson Immunoresearch, Pensylvania)] was used 142 

at 20 g/ml. 143 

 144 

Immunohistochemistry 145 

 Tissue staining for S1PR1 was performed using formalin-fixed, paraffin-embedded tissue 146 

sections mounted on glass slides. S1PR1 (Abcam, Cambridge, UK) and IgG1 isotypic control 147 

(R&D systems Abbingdon, UK) antibodies were used at 4g/ml, whereas CD20 and CD23 148 

were supplied ready to use (Dako, Cambridge, UK). As previously described (33), de-waxing 149 

of the sections and antigen retrieval were performed with EnVision™ FLEX target retrieval 150 

solution with the Dako PT-link module.  Slides were stained with an autostainer using the 151 

EnVision™ FLEX convenience kit (Dako) and counterstained in Meyers’ haematoxylin 152 

(Sigma). Isotypic control staining is shown in Supplementary Figure 2A. 153 

 154 

Flow cytometry  155 

Cells were simultaneously stained with directly conjugated MAbs to S1PR1 (Clone 156 

218713; R&D Systems), CCR7, CD49d (4 integrin) and CD19 (all from Becton Dickinson, 157 

Oxford, UK) together with appropriate isotypic control antibodies and analysed by 158 

multicolour flow cytometry. The percentage and mean fluorescence intensity (MFI) for 159 

S1PR1, CCR7 and CD49d were determined on CD19+ cells. In addition, viability of the cells 160 
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after culture was assessed using propidium iodide. None of the drugs used decreased the 161 

viability of CLL cells following culture. Since cells were cultured in conditions to minimise cell 162 

death viability was >75% in the majority of cases.  163 

 164 

Migration assays 165 

 HUVECs were grown to confluence on the inserts of Transwell plates (5 m pore size; 166 

Corning, High Wycombe, UK). S1P (Sigma) or CCL21 (R & D) were added to the bottom wells 167 

at concentrations (100 ng/ml and 1 g/ml, respectively) shown to induce maximum 168 

migration (data not shown).  CLL cells were added to the inserts, and the number of B cells 169 

that had migrated to the bottom wells was counted after 6 h incubation. The migration 170 

index (no. of CD19+ cells transmigrating with chemokine divided by no. of cells 171 

transmigrating in the absence of chemokine) was then calculated. 172 

 173 

Statistical analysis  174 

The Mann-Witney U test was used to analyse differences in continuous measurement 175 

data between treated and untreated samples. Chi squared analysis was used to relate 176 

categorical in-vitro responses to patient characteristics.   177 
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Results 178 

 179 

S1PR1 is under-expressed in normal germinal centres and CLL lymph nodes  180 

Expression of S1PR1 within human lymphoid tissues has hitherto not been described. 181 

We therefore began our study by staining normal lymph nodes for S1PR1. As is shown in 182 

Figures 1A and B, S1PR1 was expressed by all cells within the outer follicle, but not by CD23+ 183 

cells in the germinal centre (GC). In addition, the endothelial cells lining the sinus also 184 

stained for S1PR1, as did cells (presumably lymphocytes) within the sinus itself. We next 185 

examined lymph nodes from 5 different patients with CLL. In contrast to lymph nodes from 186 

healthy individuals, the majority of cells in the CD20+ CLL cells within the lymph nodes, 187 

including those in the proliferation centres, did not express S1PR1, although the sinus-lining 188 

endothelial cells were clearly positive (Figures 1C-F). Thus, the pattern of expression of 189 

S1PR1 is as expected in normal lymph node tissue, but in CLL lymph nodes expression of this 190 

receptor appears to be down-regulated.  191 

 192 

S1PR1 expression on normal B and CLL cells is down-regulated by BCR signalling  193 

Most of the research describing S1PR1 expression and function in lymphocytes has 194 

been performed on mouse T cells. We therefore continued our characterisation of this 195 

receptor on human cells by examining normal B cells cultured in the presence and absence 196 

of S1P, the presence of which is known to cause S1PR1 internalisation (11). We found that 197 

S1PR1 expression spontaneously increased on normal B cells cultured in the absence of S1P 198 

(Figure 2A; Supplementary Figure 2B), an effect that is inhibited when S1P is present 199 

(Supplementary Figure 2C). Consistent with the results of others studying the effects of 200 

antigen receptor engagement on S1PR1 expression in mouse T cells (11), we found that 201 
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spontaneous up-regulation of S1PR1 on human B cells cultured in the absence of S1P is 202 

similarly repressed by BCR crosslinking (Figure 2B). Importantly, repression of S1PR1 203 

expression by BCR crosslinking is reversed by pre-treatment of normal B cells with idelalisib 204 

(Figure 2B), suggesting a key role of PI3K within the mechanism of this repression. Taken 205 

together, our culture and BCR stimulation experiments involving normal B cells are entirely 206 

in keeping with the observed distribution of S1PR1 expression in normal lymph node tissues 207 

(Figure 1A), and support the notion that S1PR1 is internalised by its ligand in blood but re-208 

expressed in the lymph node where the levels of S1P are low unless it is down-regulated by 209 

BCR signalling in the GC.  210 

We next examined the effect of S1P withdrawal and BCR crosslinking on CLL cells. 211 

Similar to our findings in normal B cells, S1PR1 expression increased spontaneously on CLL 212 

cells when they were cultured in the absence of S1P (Figure 2C). However, although the 213 

changes in S1PR1 expression reached statistical significance within the group of 20 cases 214 

tested (P<0.002), the observed increase was delayed (no increase was seen at 4 h and 215 

maximal levels were observed after 16 h) and variable, being of significantly smaller 216 

magnitude than the increase observed in normal B cells (P<0.001; Figure 2D). This variability 217 

could not be explained by IGVH mutational status since spontaneous up-regulation of S1PR1 218 

was similar in mutated and un-mutated cases (P=0.387; Supplementary Figure 2D). Since the 219 

greatest increase in S1PR1 expression on CLL cells was seen at 16 h, we used this time point 220 

for all subsequent experiments.  221 

We next sought to establish whether spontaneous S1PR1 up-regulation expression 222 

was repressed by BCR signalling in CLL cells. To do this, the 7 samples displaying the greatest 223 

spontaneous up-regulation of S1PR1 at 16 h were cultured in the presence or absence of 224 

anti-IgM. In keeping with our observations in normal B cells, the spontaneous increase in 225 
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S1PR1 was prevented in all 7 cases of CLL by BCR cross-linking (P=0.018; Figures 2E and F). 226 

Collectively, these findings strongly support a role for BCR signalling in repressing the 227 

spontaneous up-regulation of S1PR1 that is observed in the absence of S1P in both normal 228 

and CLL B cells. 229 

 230 

S1PR1 expression on CLL cells is increased by idelalisib but not fostamatinib or ibrutinib  231 

We next addressed the question of whether BCR signalling could modulate S1PR1 232 

expression in cases of CLL that displayed little or no spontaneous up-regulation of S1PR1 233 

during cell culture. We reasoned that failure of S1PR1 to up-regulate in these cases likely 234 

resulted from repression by constitutive BCR signalling. To test this idea, cells from the 20 235 

CLL cases shown in Figure 2C were cultured in S1P-free medium in the absence or presence 236 

of idelalisib at a concentration (1 M) known to specifically inhibit PI3K (34). In keeping 237 

with our hypothesis, we found that treatment of CLL cells with idelalisib resulted in a 238 

significant enhancement of spontaneous S1PR1 expression (Figure 3A; Supplementary 239 

Figure 2E). This result was in keeping with our observations in BCR-stimulated normal B cells 240 

where idelalisib restored spontaneous expression of S1PR1 (Figure 2B). The magnitude of 241 

S1PR1 up-regulation induced by idelalisib varied between CLL cases, as did the time required 242 

for the maximum increase in S1PR1 expression to be observed. Nevertheless, the increase 243 

reached overall statistical significance at both 8 h (P=0.002) and 16 h (P<0.0001).  In contrast 244 

to spontaneous up-regulation of S1PR1, up-regulation induced by idelalisib correlated with 245 

IGVH status, being higher in cases with un-mutated IGHV genes (Figure 3B; P=0.0397). 246 

Importantly, inhibitors of other isoforms of PI3K [PI3K (A66) and PI3K (TGX-221)] used at 247 

the same concentration (1 M), did not promote spontaneous S1PR1 expression in any of 248 
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the cases examined (Supplementary Figure 2F; P>0.14), indicating that the effect was 249 

isoform specific. Similarly, when we compared the effects of idelalisib with those of either 250 

fostamatinib or ibrutinib (all at 1M), we found that treatment of CLL cells with either of the 251 

latter two compounds had no effect on spontaneous S1PR1 expression (Supplementary 252 

Figures 2G and H, respectively). Finally, co-culture of CLL cells on endothelial cells (HUVEC), 253 

stromal cells (HS-5) or CD40L-expressing fibroblasts to mimic cell interactions in the lymph 254 

node microenvironment showed that none of these accessory cells had any effect on the 255 

expression of S1PR1 or its up-regulation by idelalisib, nor did they render CLL cells 256 

responsive to S1PR1 modulation by fostamatinib or ibrutinib (Figure 3C and Supplementary 257 

Figures 2G-2I). Taken together, these results indicate a specific role for PI3K in the in-vivo 258 

regulation of S1PR1 in both normal and CLL B cells that have been stimulated via the BCR. 259 

 260 

Migration of CLL cells towards S1P is enhanced by idelalisib but not fostamatinib or 261 

ibrutinib  262 

Having shown that idelalisib increases S1PR1 expression, we next sought to examine 263 

its effect on S1PR1 function.  To do this, we examined the effect of the 3 BCR signalling 264 

inhibitors on CLL-cell transendothelial migration (TEM) towards S1P using a transwell 265 

system. As is shown in Figure 4A, untreated CLL cells did not migrate towards S1P. When 266 

CLL-cells were treated with idelalisib for 16 h before the assay they displayed marked TEM 267 

towards S1P (P=0.043); the amount of TEM observed correlating with the level of S1PR1 268 

expression at the end of the pre-incubation period. In keeping with the inability of ibrutinib 269 

or fostamatinib to up-regulate S1PR1, pre-incubation of CLL cells with either of these drugs 270 

did not enhance migration towards S1P (Supplementary Figure 3A). These results 271 
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demonstrate that the S1PR1 induced by idelalisib is functional and suggest that the CLL-cell 272 

mobilising effect of idelalisib observed in vivo results at least in part from enhanced S1PR1-273 

dependent egress of CLL cells from lymph nodes.  274 

 275 

Migration of CLL cells towards CCL21 is inhibited by ibrutinib and fostamatinib but not 276 

idelalisib  277 

Having elucidated the differential effects of idelalisib and fostamatinib/ibrutinib on 278 

S1PR1 expression and function, we next investigated the effects of these BCR signalling 279 

inhibitors on the processes responsible for entry of CLL cells into lymph nodes. Our previous 280 

work has shown that the latter process is dependent on 41 and CCL21 (15).  We therefore 281 

examined the effect of the 3 inhibitors on CLL-cell TEM towards CCL21. In keeping with the 282 

findings of other groups (35, 36), migration was blocked by pre-incubation of CLL cells with 283 

either fostamatinib or ibrutinib (Figure 4B). This inhibitory effect did not result from altered 284 

expression of either 41 or CCR7 since no such change was observed (Supplementary 285 

Figure 3B and C). In contrast to fostamatinib and ibrutinib, idelalisib had no effect on 286 

migration towards CCL21. Taken together with the experiments examining the effects of the 287 

3 BCR signalling inhibitors on S1P migration, it can be deduced that the CLL-cell mobilising 288 

effects of these drugs are mediated by different mechanisms; fostamatinib and ibrutinib 289 

inhibit signals required for entry and retention of CLL cells into lymph nodes, whereas 290 

idelalisib promotes egress by facilitating the up-regulation of functional S1PR1.   291 
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Discussion 292 

The aim of this study was to elucidate the possible role of impaired egress as a 293 

determinant of lymphadenopathy in CLL, and relief of impaired egress as an explanation for 294 

the mobilising effect of BCR signalling pathway inhibitors. We hypothesized that retention of 295 

CLL cells in the lymph nodes results at least in part from an inability to exit due to repression 296 

of S1PR1 expression by chronic BCR signalling, and that the CLL-cell mobilising effects of BCR 297 

signalling inhibitors results from the reversal of such repression. To test this hypothesis, we 298 

first sought to confirm previous reports that that S1PR1 expression is reduced in CLL as 299 

compared with normal B cells (19, 37, 38) and in addition demonstrate that S1PR1 300 

expression is regulated by BCR signalling. To do this, we cultured the normal B and CLL cells 301 

in the absence of S1P to prevent receptor internalisation and showed that spontaneous up-302 

regulation of S1PR1 could be prevented by BCR stimulation. These results are in keeping 303 

with a recent report which demonstrated that after long-term culture S1PR1 expression by 304 

CLL cells was down-regulated by factors present in the microenvironment, including BCR 305 

signalling (37). For those cases of CLL that displayed little or no spontaneous recovery of 306 

S1PR1 expression during cell culture, we adopted a complementary approach involving 307 

treatment with BCR signalling inhibitors to block presumed endogenous BCR signalling. We 308 

tested the effects of 3 different BCR signalling inhibitors, all of which are in clinical 309 

development and have a potent CLL-cell mobilising activity. We provide evidence that the 310 

mechanisms through which these inhibitors mediate their mobilising effects is profoundly 311 

different: idelalisib (targets PI3K) increased expression of S1PR1 and stimulated S1P-312 

mediated migration, a process required for exit from lymph nodes; in contrast, fostamatinib 313 

(targets SYK) and ibrutinib (targets BTK) blocked chemotaxis towards chemokine, a process 314 

required for entry into lymph nodes and subsequent retention. This study therefore 315 
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provides novel insight into the mobilising effects of BCR signalling inhibitors, and, in 316 

particular, allows us to propose that the CLL-cell mobilising effect of idelalisib results, at 317 

least in part, from reversal of BCR-mediated repression of S1PR1 expression on the 318 

malignant cells leading to enhanced egress from affected lymph nodes, whereas the 319 

mobilising effect of ibrutinib is mediated by blockade of integrin-mediated signals required 320 

for tissue entry and retention.  Our proposal is supported by clinical trial data demonstrating 321 

that the blood lymphocytosis observed in patients treated with idelalisib (39) reaches peak 322 

levels more rapidly than that induced by ibrutinib (40).  323 

The BCR signalling pathway is central to the pathogenesis of CLL not only by providing 324 

pro-survival and proliferation signals (27, 28, 41) but also in maintaining malignant-cell 325 

residency within lymph nodes (26, 42, 43).  For example, BTK lies within the pathway 326 

controlling 41-mediated adhesion in BCR-stimulated cells (44) and can also mediate 327 

chemokine-induced migration and homing of normal B, mantle-cell lymphoma and CLL cells 328 

(26, 42, 45). Similarly, SYK is necessary for chemokine-induced migration and BCR-mediated 329 

adhesion of CLL cells (43, 46). Our demonstration that inhibition of SYK or BTK blocks the 330 

TEM of CLL cells towards chemokine is in agreement with these previous studies and 331 

supports the notion that the mobilising effects of fostamatinib and ibrutinib result partly 332 

from enhanced exit from lymph nodes due to release of α4β1-dependent adhesive 333 

interactions and partly from reduced lymph node entry due to blockade of CCL21-directed 334 

TEM across the HEV. 335 

In contrast to the effects seen with fostamatinib and ibrutinib, treatment of CLL cells 336 

with idelalisib had no effect on chemokine-induced migration in our experiments. Instead, 337 

we found that this compound strongly up-regulated S1PR1 expression on CLL cells and 338 

significantly enhanced their migration towards S1P. Importantly, the increase in S1PR1 339 
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expression and function induced by idelalisib was still observed in the presence of accessory 340 

cells similar to those found in the micro-environmental niches where CLL cells reside in vivo. 341 

The in-vivo relevance of our findings is further supported by evidence from normal B and T 342 

lymphocytes suggesting that S1PR1-dependent egress overrides the pro-adhesive effects of 343 

antigen receptor engagement and chemokines. Thus, lymphocytes are retained in lymphoid 344 

and thymic tissues in the absence of functional S1PR1 expression (8, 47). Conversely, B-cell 345 

responsiveness to chemokines in lymph nodes is reduced by enforced expression of S1PR1 346 

(48). In summary, our results strongly suggest that idelalisib actively promotes S1P-directed 347 

egress by up-regulating S1PR1. 348 

Our study also provides insight into the mechanisms through which BCR signalling 349 

suppresses S1PR1 expression on CLL cells, and by extension, also on normal B cells. In 350 

particular, the differential effects of  idelalisib and fostamatinib/ibrutinib on S1PR1 351 

expression on CLL cells suggests that expression of the latter receptor is regulated by 352 

proximal BCR signals mediated by PI3K but not distal BCR signals mediated by SYK and BTK. 353 

Our data also indicate that the regulation of S1PR1 by PI3K is isoform specific and mediated 354 

by the  isoform specifically. These observations are in alignment with the specific role of 355 

PI3K in transducing BCR-mediated signals that has been described elsewhere (49, 50) but 356 

do not illuminate the process any further. The mechanism through which active PI3K 357 

regulates S1PR1 expression on lymphocytes is unclear. However, it could potentially involve 358 

guanine nucleotide-binding protein-coupled receptor kinase-2 (GRK2) which has been 359 

reported to desensitize S1PR1 (51).  360 

Our results with idelalisib differ from those obtained in previous in-vitro studies which 361 

have suggested that the compound is cytotoxic to CLL cells and blocks chemotaxis (20, 52). 362 

This discrepancy can be explained by the higher concentrations of idelalisib (5 M and 10 363 
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M respectively) that were used in these other studies, with the potential for off-target 364 

effects.  In contrast, the concentration of idelalisib selected for our study (1 M) was the 365 

lowest required to block BCR-induced activation of Akt. It is also close to the peak plasma 366 

concentration of 2 μM predicted from a simplistic one-compartment model of drug 367 

disposition involving the administration of a standard dose of idelalisib (150 mg) to a patient 368 

of average size (75 kg)(34). Consequently, we believe that our observations with 1 µM 369 

idelalisib result exclusively from inhibition of PI3Kδ and are therefore more physiologically 370 

relevant than those resulting from higher drug concentrations. 371 

Our findings with fostamatinib were only partially in keeping with those of Borge et al 372 

(37). Thus, although the latter study showed that 1 M fostamatinib had no effect on S1PR1 373 

expression in CLL cells after 24 h culture, incubation with 5 M fostamatinib resulted in 374 

increased S1PR1 expression. These findings need to be interpreted in the context of two 375 

important facts: first, our own findings (data not shown) and those of others (53) indicate 376 

that 1 µM fostamatinib can induce total blockade of  BCR-induced signalling downstream of 377 

SYK (BTK and BLNK) in intact cells; second, the standard therapeutic dose of fostamatinib 378 

(500mg) achieves a peak plasma concentration of 1.6 M (21). Consequently, we believe 379 

that observations obtained with 1 µM fostamatinib are more physiologically relevant than 380 

those obtained with the 5 µM concentration.   381 

By showing that the spontaneous up-regulation of S1PR1 that was observed in a 382 

proportion of CLL cases could be reversed by BCR cross-linking and that idelalisib had the 383 

greatest effect on CLL cells that did not spontaneously up-regulate S1PR1 in culture, the 384 

present study adds further weight to the growing idea that the BCR of CLL cells is chronically 385 

stimulated in vivo. The notion that CLL cells are subjected to on-going in-vivo antigenic 386 

stimulation is supported by studies of BCR glycosylation. Thus, the BCR expressed in CLL 387 
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samples experiencing in-vivo BCR engagement contains mannosyl residues consistent with 388 

receptor recycling (30). Our demonstration that the up-regulation of S1PR1 by idelalisib is 389 

greater in UM- CLL cells compared with M-CLL cells is in keeping the notion that UM CLL 390 

cells have greater in-vivo BCR signalling activity (30). It also provides an explanation for the 391 

particular clinical benefit of idelalisib that is observed in UM CLL (54).  392 

In summary, our study is the first to show that BCR signalling represses S1PR1 393 

expression and function on CLL cells, potentially leading to delayed egress from lymphoid 394 

tissues. It is also the first study to suggest that different inhibitors of BCR signalling induce 395 

CLL-cell mobilisation through different mechanisms. In particular, by specifically blocking 396 

BCR-induced activation of PI3K, we propose that idelalisib activity promotes S1P-mediated 397 

egress of CLL cells by relieving BCR-mediated repression of S1PR1 expression. Further work 398 

is now required to characterise the underlying mechanisms in the expectation that this may 399 

lead to the elucidation of new therapeutic targets.   400 
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Figure legends 596 

Figure 1. Expression of S1PR1 in normal and CLL node. A and B. Normal lymph node. The 597 

cells of the germinal centre (GC) are identified by staining for CD23 which is mainly 598 

expressed on activated B cells. Staining of the adjacent section for S1PR1 shows that CD23+ 599 

cells do not express S1PR1, whereas the cells within the outer follicle (OF) stain positively. C-600 

F. Sequential section of CLL lymph nodes stained for S1PR1 and CD20. In C and D, it can be 601 

clearly seen that the endothelial cells lining the sinus (S) and other endothelial cells express 602 

S1PR1, whereas CD20+ CLL cells lack the receptor. E and F show a representative 603 

proliferation centre in a CLL lymph node. CD20+ CLL cells do not express S1PR1. Parallel 604 

staining with the relevant isotypic control antibody is shown in Supplementary Figure 2A. 605 

Bar 50M; original magnification x20. 606 

Figure 2. S1PR1 expression on normal and CLL B cells cultured in the absence of S1P. A. 607 

Normal B cells from 6 healthy individuals were cultured for 16 h in medium lacking S1P and 608 

examined for S1PR1 expression by flow cytometry. An increase in S1PR1 was observed 609 

between 2 and 4 h and reached a peak at 8-16 h. B. Normal B cells from 6 donors were 610 

cultured in S1P-free medium for 16 h in the presence or absence of anti-IgM and/or 611 

idelalisib (1 M). S1PR1 expression was measured by flow cytometry. IgM cross-linking 612 

prevented the spontaneous increase in S1PR1 expression (P=0.0039). Idelalisib had little 613 

effect on S1PR1 expression on normal B cells in the absence of IgM (P=0.177), however 614 

treatment reversed the anti-IgM-mediated suppression of S1PR1 expression (P=0.014) with 615 

levels returning to those of untreated cells at 16 h (P=0.177). C. CLL cells from 20 patients 616 

were cultured for 16 h in S1P-free medium and examined for S1PR1 levels by flow 617 

cytometry. There was an overall increase in S1PR1 expression (P <0.002) but the increase 618 
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was variable, delayed and generally of lower magnitude compared to that observed in 619 

normal B cells. D. Comparison of S1PR1 up-regulation in normal and CLL B cells at 8 and 16 620 

h. The increase in expression was significantly greater in normal B cells at both time points. 621 

In the box-and-whisker plot, the bar indicates the median of the MFI values for S1PR1 622 

expression, whereas an asterisk (*) identifies outlying data points which do not fall within 623 

the interquartile range.   E. 7 of the CLL samples showing most spontaneous increase in 624 

S1PR1 expression (highlighted in grey in C) were cultured in S1P-free medium in the 625 

presence or absence of anti-IgM and examined for S1PR1 expression by flow cytometry. Up-626 

regulation of S1PR1 was prevented by BCR cross-linking in all cases.  F. Pooled analysis of the 627 

7 cases of CLL described in E showing near-complete abrogation of spontaneous up-628 

regulation of S1PR1 expression (P=0.73).  629 

Figure 3. Effect of idelalisib on S1PR1 expression in CLL cells. A. CLL cells from 20 cases 630 

were cultured in the presence or absence of idelalisib (1 M) and examined by flow 631 

cytometry for S1PR1 levels. The chart shows the fold increase in MFI compared with cells 632 

cultured for the same amount of time in the absence of idelalisib. The increase in S1PR1 633 

expression was statistically significant at both time points (P<0.002). B. Box and whiskers 634 

plot of idelalisib-induced up-regulation of S1PR1 at 16hrs. Idelalisib induced an increase in 635 

S1PR1 expression in both IGHV mutated (n=11) and un-mutated (n=8) CLL samples but the 636 

effect was greater in the latter cases (P=0.0397). The bar represents the grand median of all 637 

samples. C. CLL cells displaying little or no spontaneous recovery of S1PR1 expression (n=4) 638 

were cultured in the presence or absence of idelalisib on different cell monolayers and 639 

examined by flow cytometry for S1PR1 levels. A representative example (patient 2141) is 640 

shown (data from individual cases are shown in Supplementary Figure 2H). Idelalisib (1 M) 641 

produced a marked increase in S1PR1 expression at 8 h irrespective of whether the CLL cells 642 
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were cultured on endothelial cells (HUVEC), stromal cells (HS-5) or CD154-expressing 643 

fibroblasts. 644 

Figure 4. Effect of BCR inhibitors on TEM towards S1P and CCL21. A. CLL cells from 5 645 

patients were incubated for 16 h in the presence or absence of idelalisib (1M) and then 646 

examined for migration towards S1P using HUVEC-coated transwells. The numbers above 647 

bars indicate MFI values for S1PR1 staining at the end of the incubation period. Idelalisib 648 

increased TEM towards S1P in all cases, the amount of migration correlating with levels of 649 

S1PR1.  Untreated CLL cells underwent little or no migration. B. CLL cells from 3 patients 650 

were cultured in the absence or presence of idelalisib, fostamatinib or ibrutinib (all at 1M) 651 

and examined for migration towards CCL21 using HUVEC-coated transwells. Untreated CLL 652 

cells underwent TEM towards CCL21. Migration was reduced by fostamatinib and ibrutinib 653 

but not idelalisib.  654 
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Figure 1. Expression of S1PR1 in CLL and normal lymph nodes.  
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Figure 2. S1PR1 expression on normal and CLL B cells cultured in the absence of S1P.  
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Figure 3. Effect of idelalisib on S1PR1 expression in CLL cells.  
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Figure 4. Effect of BCR inhibitors on TEM towards S1P and CCL21.  
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