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ABSTRACT 

Fiona Louise Hatton – Hyperbranched polydendrons: a new macromolecular 

architecture 

A novel architecture ‘hyperbranched polydendrons’ (hyp-polydendrons) was produced 

via the synthesis of low generation dendron initiators for ATRP and subsequent 

copolymerisation of vinyl and divinyl monomers, to give large polymeric 

macromolecules containing dendron moieties at the end of each primary chain. 

Subsequent studies of such materials were performed to assess their ability to form 

nanoparticles via a nanoprecipitation approach, utilising organic solvent and aqueous 

nanoparticle formation. It was found that the branched polymers were superior to the 

linear polymer analogues when assessing their nanoprecipitation behaviour.  

Mixed initiator hyp-polydendrons were also synthesised by the statistical incorporation 

of different functionality initiators into the reaction mixture. Here a G2 dendron and 

different PEG macroinitiators were mixed statistically to produce a series of materials 

where the primary chain length of the monomer HPMA was also varied. This led to a 

series of nanoparticles which showed a variation of internal environments when studied 

using different fluorescent dyes (Nile red and pyrene). Initial pharmacological 

experiments were promising, however, the initial set of materials did not show 

prolonged stability in physiologically relevant conditions when using a short PEG 

macroinitiator (750PEG).  

Extending the length of the PEG chain (2000PEG initiator) in the mixed polymerisations 

produced a range of materials with varying solubilities and, therefore, nanoprecipitation 

behaviour. Nanoparticles were formed which were stable under physiologically relevant 

conditions and were studied for their cytotoxicity and transcellular permeability in Caco-

2 cells. These materials showed limited toxicity at the concentrations studied and 

enhanced permeation though the Caco-2 cell monolayer, which is a model of the 

intestinal epithelial cells.  

Further studies of the nanoprecipitation behaviour of different molecular weight 

fractions of the hyp-polydendrons were conducted. This involved separation of 

molecular weight fractions by dialysis of the hyp-polydendrons against two different 

good solvents, leading to two HMW fractions and two LMW fractions. Analysis of the 

nanoprecipitation behaviour of these fractions showed that the HMW fractions produced 

particles with more narrow PdIs, and the mixing of a low amount of a HMW fraction 

(1 wt%) with a linear polymer improved the nanoprecipitation behaviour hugely.   

Encapsulation of two different guest molecules via nanoprecipitation was assessed using 

FRET, which can report on the proximity of two fluorophores. Dual loading of the 

particles with DiO and DiI in a 1:1 ratio gave particles which exhibited a FRET signal, 

therefore indicating that the two fluorophores were located in the same nanoparticle. 

Somewhat unexpectedly it was found that upon mixing of the two singly loaded particles 

the observed FRET ratio increased over time until it reached a similar value obtained 

within the dual loaded nanoparticles. This was possibly due to nanoparticle-nanoparticle 

collisions.  

Therefore hyp-polydendrons were produced and utilised to form nanoparticles via a 

nanoprecipitation approach. Loading of the nanoparticles was achieved and 

pharmacological benefits were observed for some of the nanoparticle samples, 

suggesting future benefits for these polymer architectures in nanomedicine applications. 
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1.1  Dendrimers 

 

Dendritic shapes are commonly found in nature in forms such as trees, neurons, 

lightning flashes and snowflakes. In chemical terms a dendrimer is a symmetrical, 

perfectly branched macromolecule consisting of a core, branching points and surface 

groups.
1
 This general structure of a dendrimer is highlighted in Fig. 1.1 along with 

one fragment of a dendrimer which can be described as a dendron. The dendritic 

architecture allows for high surface functionality and therefore the scope of this type 

of material is huge. 

 

Figure 1.1 Graphical representation of a generation 3 (G3) dendrimer and corresponding dendron 

 

Several well-known dendrimer chemical structures and their corresponding 

generation number (Gx) are highlighted in Fig. 1.2. This type of material was first 

synthesised in the late 1970s and early 1980s by the research groups of Vӧgtle,
2
 

Tomalia
3
 and Newkome.

4
 Since then research interest in the area of dendrimer 

chemistry has increased dramatically, as can be seen by the number of publications 

each year when searching for “dendrimer” as specified by SciFinder (Jan 2014) 

in Fig. 1.3.  



CHAPTER 1 

5 

 

Dendrimers have proved to be useful in many applications over this time,
5
 some of 

which are discussed further below (section 1.1.2). However the major drawback in 

the use of dendrimers is due to the lengthy and costly syntheses required to produce 

them, vide infra. 

 

 

Figure 1.2 Various types of dendrimer chemical structures, including; poly(amidoamine) (PAMAM), 

polypropylenimine (PPI), benzyl aryl ether and 2,2-bis(methylol)propionic acid (bis-MPA) based 

dendrimers. Red groups represent the dendrimer surface groups, and green, the dendrimer cores. 
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Figure 1.3 Number of publications, as of January 2014 on SciFinder; search term “dendrimer” 

1.1.1 Dendrimer synthesis 

Dendrimers can either be synthesised via convergent or divergent routes. Each 

method requires a multi-step synthesis, which becomes more costly and complicated 

as the generation number increases. 

 

Figure 1.4 Divergent and convergent methods for dendrimer synthesis  
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1.1.1.1 Divergent synthesis of dendrimers 

Divergent synthesis of dendrimers starts with the core of the molecule and proceeds 

via sequentially adding branching units (or generations), then finally addition of the 

surface groups. This is shown in Fig. 1.4. This method of producing dendrimers 

usually requires protection of functional groups which, after reacting with the core or 

growing dendrimer, are subsequently deprotected to allow for further reaction and 

dendrimer growth. Divergent dendrimer synthesis was utilised firstly by Vӧgtle and 

coworkers in 1978,
2
 but was described as a „cascade‟ approach. The first reported 

description of these materials as dendrimers was in 1985 by Tomalia et al.
3
 who 

produced a series of poly(amidoamine) (PAMAM) dendrimers. The PAMAM 

dendrimers were synthesised by firstly the exhaustive Michael addition of three 

molecules of methyl acrylate to a molecule of ammonia, the core, followed by 

complete amidation of the esters with a large excess of ethylenediamine to give a 

dendrimer with three primary amine groups at the surface, see Scheme 1.1. This 

process can be repeated to give dendrimers of higher molecular weights, up to 

generation 10 (G10), and increased surface functionality. This type of dendrimer has 

been termed a „Starburst Dendrimer‟ and is commercially available. 

 

Scheme 1.1 Divergent synthesis of PAMAM dendrimers as described by Tomalia et al.
3 

1.1.1.2 Convergent synthesis of dendrimers 

Convergent synthesis starts with the surface groups of the resulting dendrimer, 

coupled together through the branching units and then finally to the core (see 

Fig. 1.4). Convergent dendrimer synthesis was first reported by Hawker and Fréchet 

in 1990.
6
 They synthesised aryl ether dendrons up to G6 which were subsequently 

coupled to a trivalent core to produce the equivalent poly(aryl ether) dendrimers 
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based upon the „monomer‟ 3,5-dihydroxy-benzyl alcohol, see Scheme 1.2. This 

method showed a greater control over the synthesis of dendrimers, less imperfections 

arising and without the need for an excess of reagents. However, during the coupling 

step of the dendrons to the core molecule to form the final dendrimer, the yields 

declined dramatically with increasing the dendrimer generation achieving 76% and 

51% for the G5 and G6 dendrimers respectively. This reduction in yield was due to 

steric hindrance of bulky dendron coupling with a small molecule core.
6
 

 

Scheme 1.2 Convergent synthesis of poly(aryl ether) dendrimer as described by Hawker and Fréchet
6
 

1.1.1.3 Dendrimer applications 

Dendrimers have been utilised for various applications since their discovery such as; 

biomedical applications in therapy and diagnostics,
7-9

 catalysis
10, 11

 and optics
12

. 

Several dendrimers and hyperbranched polymers are commercially available, 

including PAMAM Starburst dendrimers and 2,2-bis(methylol)propionic acid (bis-

MPA) based Boltorn hyperbranched polymers, which has aided greatly the study of 

these materials for many different research areas.  

1.1.2 Dendrimers towards biomedical applications 

Easily the largest area for dendrimer application research has been towards 

biomedical applications. As mentioned briefly this area of research can be 

characterised as having therapeutic and diagnostic applications.  

1.1.2.1 Therapeutic applications of dendrimers 

The use of dendrimers in therapeutics has been achieved through various methods; 

drug delivery,
5, 13, 14

 gene therapy,
5, 13, 15

 boron neutron capture therapy,
5, 16

 anti-
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microbial activity
17

 and in some cases the dendrimer itself has been the cause for a 

therapeutic effect.
18, 19

  

There are numerous examples of dendrimers being evaluated for drug delivery in the 

literature,
13, 14

 which can be distinguished into two categories: physical encapsulation 

of drug molecules inside the dendrimer or chemical conjugation of the drug molecule 

to the surface groups of the dendrimer. Examples of each type of drug delivery 

utilising dendrimer materials are shown in Table 1.1. Dendrimers have been reported 

functionalised with more than one molecule, for example, Scheme 1.3 shows the 

synthesis of a PAMAM dendrimer conjugated to poly(ethylene glycol) PEG, folic 

acid and doxorubicin (DOX), where PEG is a stabilising hydrophilic polymer, folic 

acid is used as a targeting molecule for the folate receptor (which is overexpressed in 

cancerous cells) and DOX is an anti-cancer drug.
20

 

 

Scheme 1.3 Synthesis of DOX and FA conjugated G3.5 PAMAM dendrimer, taken from ref
20

  

The most active research area in dendrimer-based therapeutics has been towards 

gene therapy using dendrimers as non-viral transfection agents.
13, 15

 Gene therapy 

involves the use of DNA as a drug to treat a disease, where the DNA is delivered 

into the cell nucleus to be incorporated into the patient‟s chromosomes, usually to 

replace a mutated gene. Cationic dendrimers have been utilised for gene therapy due 

to the ionic interaction which occurs between the negatively charged DNA (the 

negative charge from the phosphate groups along the backbone) and the positively 

charged dendrimer. Dendrimers utilised for gene therapy include PAMAM
21, 22

 and 

polypropylenimine (PPI)
23, 24

 dendrimers as they form compact polycations under 

physiological conditions. 

Boron neutron capture therapy is based upon the Boron-10 isotope, which when 

irradiated by low-energy neutrons emits high energy α-particles and high energy 
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lithium-7 nuclei, therefore causing fatal cell damage. This approach has been used to 

selectively target cancer cells by using boron containing PAMAM dendrimers.
16, 25

 

One example of the use of a dendrimer as a therapeutic agent is with relation to prion 

research.
18, 26

 A prion is an infectious agent composed of a misfolded protein. Whilst 

they are not living organisms, once infecting an individual, prions can induce the 

misfolding of other proteins into the diseased form. They affect the structure of the 

brain or other neural tissue and are currently untreatable. It has been shown in 

preliminary studies that conversion of the normal protein (PrP
C
) to the infectious 

misfolded protein (PrP
Sc

) can be prevented by a PPI dendrimer functionalised with 

maltose.
26

 Another example where the dendrimer itself is the therapeutic agent is the 

product VivaGel
®
 produced by StarPharma which has been shown to inhibit 

infection by viruses such as HIV and HSV, and has also been shown to prevent the 

growth of bacteria. VivaGel
®
 contains the active ingredient SPL7013 which is a 

dendrimer composed of a divalent core, four successive layers of L-lysine with 

sodium 1-(carboxymethoxy) naphthalene-3,6-disulfonate groups at the dendrimer 

surface.
19, 27

 

Anti-microbial activity has been observed for several different functional 

dendrimers.
17

 Anti-bacterial dendrimers, such as those described by Meyers et al. in 

2008,
28

 were anionic amphiphilic dendrimer materials (see Fig. 1.5) which possessed 

Gram positive anti-bacterial activity whilst remaining non-toxic to eukaryotic cells.  

 

Figure 1.5 Anionic amphiphilic dendrimer with anti-microbial behaviour, reported by Meyers et al.
28

  

Silver-dendrimer complexes have also been utilised as anti-bacterial agents;
29

 

Balogh et al. describe the activity of various silver-PAMAM dendrimers against 

Staphylococcus aureus, Pseudomonas aeruginosa, and Escherichia coli bacteria, 

however the anti-bacterial activity is due to the complexed silver, not directly from 

the dendrimer.  
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Table 1.1 Drug delivery utilising dendrimers 

 Dendrimer Drug(s) Indication Outcome Ref 

Encapsulation Mannosylated PPI dendrimer Rifampicin 
Bactericidal 

antibiotic  
Site-specific delivery to the alveolar macrophages was achieved 

30
 

 Dextran conjugated PPI dendrimers Doxorubicin Anti-cancer drug 
Enhanced uptake was observed in A549 cancer cells when 

compared to free drug 
31

 

 
PEGylated G3 and G4 PAMAM 

dendrimers 

Methotrexate, 

Adriamycin 
Anti-cancer drugs 

Increasing dendrimer generation and PEG length improved the 

drug loading capabilities 
32, 33

 

 PEGylated G4 PAMAM dendrimer 5-fluorouracil Anti-cancer drug 
PEGylation of the dendrimers lead to a higher drug loading, 

slower drug release and reduced hemolytic toxicity 
34

 

 
PEGylated  G3 4,4-bis(49-

hydroxyphenyl) pentanol core 
Indomethacin 

Non-steroidal anti-

inflammatory drug 

An 11 wt% loading of indomethacin was achieved in the G3 

dendrimer which also exhibited a sustained release profile  
35

 

 
G4 PPI dendrimer conjugated with 

mannose/sialic acid  
Zidovudine 

Anti-retroviral 

drug 

High loading, sustained release and good biocompatibility were 

observed. Suggested targeting of zidovudine to HIV reservoirs 
36

 

      

Conjugation 
G3.5 PAMAM dendrimer carboxylate 

surface functional 
Cisplatin Anti-cancer drug 

High loading (20 - 25 wt%) of platinum and selective 

accumulation in tumour tissue was achieved 
37

 

 
G1, G2 polyether dendrimers with 

folate surface functionality 
Methotrexate Anti-cancer drug 

Dendrimers bearing folate surface residues were prepared as 

model drug carriers with potential tumour cell specificity 
38

 

 
G1-5 1,4,7,10-tetraazacyclododecane 

core with -NH2 surface groups 
5-fluoruracil Anti-cancer drug 

Partial acetylation of the G4 and 5 surface groups lead to improved 

solubility. The conjugated drug was released slowly 
39

 

 G4 PAMAM (–OH) dendrimer  Erythromycin 
Antibiotic/anti-

inflammatory 

High loading (~16 wt%) of erythromycin, improved solubility and 

reduced local periprosthetic inflammation in a sustained manner 
40

 

 
G3.5 PEG-PAMAM dendrimer folate 

functional 
Doxorubicin Anti-cancer drug 

Tumour targeting folate PEG-PAMAM dendrimers with DOX 

conjugated and super paramagnetic iron oxide 
20
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1.1.2.2 Diagnostic applications of dendrimers 

The main areas of research for dendrimers in biomedical diagnostics have been as 

magnetic resonance imaging (MRI) contrast agents and in the detection of DNA.
41

 

MRI is a powerful medical imaging technique which is used to investigate soft tissue 

in the human body, for example blood vessels and organs, under healthy and 

diseased states. MRI is based on the environment sensitive 
1
H nuclear magnetic 

resonance (NMR) spectroscopy resonances of water molecules in living systems, 

which requires a paramagnetic contrast agent to enhance visualisation.
42

 The most 

widely used contrast agents contain Gd
III

 complexes and it is desirable to design MRI 

contrast agents to have low toxicity, good biocompatibility, stability in physiological 

conditions as well as good excretion from the body. Dendrimer based Gd
III

 chelates 

have been shown to exhibit all these properties required, utilising low and high 

generation PAMAM dendrimers. Depending upon the generation of the dendrimer, 

and therefore the resulting size of the dendrimer-Gd
III

 chelate, the MRI contrast 

agents formed could be used for various applications.
43

   

DNA dendrimers are comprised of DNA strands,
44, 45

 an example of this type of 

structure is shown in Fig 1.6.  

 

Figure 1.6 Graphical representation of DNA dendrimers: A) two complimentary DNS strands; B) 

assembly of DNA strands to give a DNA dendrimer; C) and D) additional layers of DNA increase the 

complexity of the DNA dendrimer. Taken from Genisphere website
46 

DNA dendrimers have been reported that can detect oligonucleotide sequences and, 

as such, have been developed commercially as 3DNA-technology (Genisphere).
47

 

The 3DNA-technology is currently used in clinical diagnostic tests to improve 

sensitivity without changing the label or detection reagent. pH responsive, size 

tunable DNA dendrimers have also been developed
48

 to high generations and high 

yields without purification, towards applications in drug delivery and biosensors.  
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The Stratus
®
 CS system is an automated clinical diagnostic tool available 

commercially since 1998. It relies upon a dendrimer-antibody complex which is used 

to detect several cardiac markers which can aid in the diagnosis of acute myocardial 

infarction, deep venous thrombosis, pulmonary embolism, congestive heart failure 

and inflammatory disorders due to tissue injury and infection.
49

 The dendrimer 

utilised in this technology is based on a Starburst
®
 PAMAM dendrimer coupled to an 

immunoglobulin (IgG). The use of this dendrimer-antibody complex showed a 

shorter assay time and improved performance characteristics when compared to the 

same antibody employed as a double-antibody immune complex.  

1.1.3 Limitations in the use of dendrimers 

Divergent dendrimer growth is generally limited to structures no larger than 

generation 10, however, the synthesis of a generation 13 dendrimer has recently been 

reported by Simanek and coworkers.
50

 This higher generation is most likely 

achievable due to the length of the branching unit, which is 18 atoms long, whereas 

PAMAM dendrimers have branching units that are only 7 atoms long.  

The limiting generation can be calculated using equation (1), where P represents the 

number of flexible atoms per monomer.
51

 

Limiting generation = 2.88 (ln P + 1.5)   (1) 

This limitation due to steric hindrance is described by de Gennes dense packing,
1, 51

 

whereby as the generation increases, the surface packing of the dendrimer becomes 

more dense. Therefore if the dendrimer growth remained ideal, a generation would 

be reached where the surface of the dendrimer is densely packed and prevents further 

reaction due to steric hindrance. However, in reality as the generation of a dendrimer 

increases, some of the surface groups are hidden and therefore this leads to defects in 

the dendrimer at earlier generations than predicted.  

Another major limitation of dendrimer synthesis is the huge excess of reagents often 

required to reach complete reaction of each generation layer and high generations. 

This is particularly relevant for divergent dendrimer synthesis. Convergent 

dendrimer synthesis struggles to be viable for produce high generation dendrimers as 

the steric hindrance of coupling large dendrons around a small core molecule 

becomes over crowded often leading to incomplete reaction.  
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1.2  Branched polymers to produce dendrimer-like structures 

Hyperbranched polymers have created a great deal of interest in academia and 

industry, as they form large structures in a one-pot synthesis. Traditionally 

hyperbranched polymers are synthesised using ABx monomers, in a 

polycondensation reaction, which is classified as a step-growth polymerisation. Flory 

described this type of polymerisation in 1952,
52

 however it wasn‟t given the term 

„hyperbranched polymerisation‟ until 1988 by Kim and Webster.
53, 54

 This type of 

polymerisation affords macromolecules with structures more closely related to 

networks than dendrimers, see Fig. 1.7. 

 

Figure 1.7 Schematic comparison of a hyperbranched polymer and a dendrimer via an AB2 monomer 

AB2, AB3, AB4 and AB6 polycondensations have been reported and applications for 

hyperbranched polymers include blends and coatings.
55, 56

 

Hyperbranched or highly-branched polymers can also be synthesised via chain-

growth polymerisations, including anionic
57

 and radical polymerisation.
58

 Anionic 

polymerisation was first reported in 1956 by Michael Szwarc,
59

 and is classed as a 

living polymerisation technique. Anionic polymerisation proceeds with the 

nucleophilic attack of a double bond by a carbanion which initiates polymerisation. 

Carbanions that are most commonly used to initiate anionic polymerisation are 

n-butyl, sec-butyl or tert-butyl anions which are liberated when using the respective 

alkyl lithium species. Anionic polymerisation is a true living polymerisation 

technique as the reactive negative charge is almost constantly present at the end of 

the propagating polymer chain. This technique has been used to synthesise various 

complex architectures including star polymers, comb polymers and hyperbranched 

polymers.
57
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Free radical polymerisation is a synthetic technique which has become the most 

widely utilised technique in the production of polymers on an industrial scale. For 

example, poly(styrene) is produced via free radical polymerisation and is used to 

produce common plastic items such as compact disk cases, disposable cutlery, 

disposable razors and expanded polystyrene for packaging materials. Whilst this 

method of polymerisation is facile, cost-effective and commonly used it is not an 

appropriate polymerisation technique when controlled branched polymer 

architectures are desired. The incorporation of even small amounts of a comonomer 

which contains two vinyl groups, a divinyl monomer, in a free radical 

polymerisation can lead to a cross-linked network, macroscopic gelation at high 

concentrations or microscopic gelation under dilute conditions. The 

copolymerisation of styrene and divinylbenzene (DVB) by free radical 

polymerisation was first reported in 1935 by Staudinger and Husemann,
60

 and 

further investigations into this copolymerisation have more recently been reported by 

Antonietti and Rosenauer.
61

 In each case the transition between microscopic and 

macroscopic gelation was studied. When the DVB content was increased from 5 to 

10 %, for example, the corresponding critical weight fraction of the 

micro/macrogelation transition decreased from 0.120 to 0.102. The production of 

high molecular weight soluble branched polymers via this method, therefore, 

requires high dilution which is problematic for producing a scalable method for the 

production of branched polymers. To produce soluble branched polymers by radical 

polymerisation techniques, either a chain transfer agent can be included in the 

reaction or a controlled radical polymerisation method must be employed, this will 

be discussed in more detail below.  

1.2.1 Branched polymers via controlled radical polymerisation techniques 

Branched vinyl polymerisation is a versatile tool which has been utilised to produce 

various branched copolymers with varying compositions. Examples of those 

achieved include; branched homopolymers, branched block copolymers, branched 

statistical copolymers, branched graft-copolymers and more complex structures such 

as shaped branched amphiphilic copolymers.
58, 62

 

The branched radical polymerisation techniques discussed here involve the 

copolymerisation of a monofunctional vinyl monomer and a divinyl monomer. This 

leads to the linking together of two or more linear chains via branching points caused 
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by the inclusion of the divinyl monomer into two different linear chains. The main 

drawback of this method is that the ratio of divinyl monomer to initiator must be 

carefully controlled. The theory of gel formation by statistical copolymerisation of 

vinyl and divinyl monomers was first described by Flory
63-65

 and Stockmayer.
66-68

 

Assuming that no intramolecular cyclisation occurs, and that the reactivities of each 

vinyl group are the same, gelation will occur when the cross-linking index (number 

of cross-links per chain) is equal to one. Therefore usually a ratio of 1:0.95 

initiator:divinyl monomer or less is used to afford high molecular weight soluble 

branched polymers.
69

 However, in practice other factors can affect this theory; for 

example, the concentration of monomer in the polymerisation can influence the 

intermolecular vs. intramolecular reaction of the pendant vinyl groups. At high 

dilutions it has been shown that the intramolecular cyclisation reaction is favoured, 

whereas the intermolecular reaction is dominant at high monomer concentrations.
70, 

71
 The effect of diluting these reactions has been followed by 

1
H NMR

72
 and also by 

modelling.
73

 

Different polymerisation techniques which can be employed to produce branched 

polymers include; chain transfer agent mediated free radical polymerisation 

(Strathclyde approach),
74

 atom transfer radical polymerisation (ATRP),
69

 reversible 

addition-fragmentation chain-transfer (RAFT) polymerisation
75

 and nitroxide 

mediated polymerisation (NMP).
76

  

One polymerisation technique used to prepare branched polymers whilst avoiding 

gelation is self-condensing vinyl polymerisation (SCVP). Scheme 1.4 highlights the 

general mechanism of SCVP, which employs an inimer to introduce branching 

points rather than a divinyl monomer. 

 

Scheme 1.4 General mechanism of SCVP 
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An inimer contains a polymerisable group and also a reactive group capable of 

initiating polymerisation in the same molecule. This method of preparing branched 

polymers was first reported by Grubbs and coworkers in 1995, where they describe 

the polymerisation of a styrenic monomer, 3-(1-chloroethyl)-ethenylbenzene, by 

“living” radical polymerisation.
77

 SCVP has also been reported utilising ATRP and 

RAFT polymerisation techniques, however this technique does not give a polymer 

with the same functionality at every polymer chain end, and the molecular weight of 

resulting polymers is generally lower than those obtained utilising different branched 

polymerisation methods.
78

 The structure of polymers produced by SCVP differs 

greatly from branching polymerisations which utilise a vinyl and divinyl monomer; 

this is highlighted graphically in Fig. 1.8A.  

 

Figure 1.8 Idealised graphical representation of various hyperbranched polymer architectures 

produced via radical polymerisation techniques: A) self-condensing vinyl polymerisation (SCVP); B) 

Strathclyde approach; C) ATRP. 

1.2.1.1 Branched polymers via the Strathclyde method 

The copolymerisation of vinyl and divinyl monomers by free radical polymerisation 

gives rise to insoluble cross-linked polymer networks, as previously described. To 

overcome this problem in 2000 Sherrington and coworkers developed a method, 

termed the „Strathclyde‟ method, to synthesise soluble branched polymers via the 

free radical polymerisation of vinyl and divinyl monomers by incorporating a small 

molecule chain transfer agent (CTA), see Scheme 1.5.
74

 This CTA controls the 

length of the primary polymer chain to a certain extent which prevents every single 

chain from bearing a divinyl monomer, therefore avoiding gelation. This method 

provides branched polymer architectures (Fig. 1.8B) via a relatively facile 

preparation, however, if functionality is required at the end of the polymer chains, it 
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needs to be incorporated into the CTA, or post-functionalisation is required. Another 

disadvantage is that a radical initiator is needed to initiate the polymerisation, such as 

azobisisobutyronitrile (AIBN) for example, therefore some of the polymer chains 

will bear the radical initiator functionality and some the CTA functionality. 

1.2.1.2 Branched polymers via ATRP 

The use of ATRP to produce branched polymers is most relevant to the research 

presented here and the copolymerisation of a vinyl and divinyl monomer utilising 

ATRP was first reported in 2001.
79

 The authors‟ purpose in this report was to study 

the formation of insoluble gels rather than prepare soluble branched polymers. Isaure 

et al. first reported branched soluble polymers by ATRP in 2004,
69

  utilising ethylene 

glycol dimethacrylate (EGDMA) as the divinyl monomer in the polymerisation of 

branched poly(methyl methacrylate) (pMMA).  

 

Scheme 1.5 General mechanisms for the formation of branched polymers via both ATRP and the 

„Strathclyde‟ method 

Utilising ATRP for the formation of branched polymers produces architectures 

similar to those expected via the „Strathclyde‟ approach, however, ATRP allows for 

the incorporation of the initiator functionality at every primary polymer chain end, 

see Fig. 1.8C. The general mechanisms for the formation for branched polymers via 

ATRP and the „Strathclyde‟ approach are highlighted in Scheme 1.5. There have 
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been various reports utilising ATRP in the formation of branched polymers, 

including the polymerisation of branched poly(hydroxypropyl methacrylate) 

(pHPMA)
80

 and poly(styrene) PS.
81

  

This method of preparing branched polymers has been utilised to produce different 

branched polymer architectures, highlighted in Fig. 1.9. The introduction of the 

branching molecule at various stages of the polymerisation gives rise to these 

different branched polymer topologies via ATRP. Incorporation of the divinyl 

monomer within the reaction mixture before the polymerisation is started gives rise 

to structures similar to that described by Fig. 1.9A. The statistical nature of 

branching causes links between linear chains (if the amount of divinyl monomer is 

carefully controlled) to produce branched soluble polymers.  

 

Figure 1.9 Idealised graphical representation of various branched polymer architectures achieved by 

copolymerisation of a vinyl and divinyl monomer via ATRP: A) standard branched polymerisation; 

B) the arm-first approach; C) core-first approach  

Other methods used to produce branched polymers via the copolymerisation of vinyl 

and divinyl monomers include the „arm-first‟ approach and the „core-first‟ 

approach.
82

 The „arm-first‟ approach, Fig. 1.9B, begins with the polymerisation of 

linear polymer chains and the divinyl monomer is added either alone or with a 

comonomer at high conversion. This forms a highly branched or cross-linked core, 

with the linear chains forming a shell or corona with the initiator functionality at the 

periphery. The „core-first‟ approach, Fig. 1.9C, proceeds with the polymerisation of 

divinyl monomer or copolymerisation of vinyl and divinyl monomers to produce a 

highly branched or cross-linked polymer, which then has more mono-functional 

vinyl monomer added to propagate linear chains. This gives a similar final structure 

as the „arm-first‟ approach, with a branched core and linear corona, however, in the 

„core-first‟ approach the initiator functionality is located in the branched core.  



CHAPTER 1 

20 

 

More complex architectures have been reported such as the synthesis of dumbbell 

shaped polymeric nanoparticles by He et al. in 2007.
62

 The „arm-first‟ approach was 

adopted, including small amount of difunctional initiator to cause individual 

branched polymer cores to be joined to give dumbbell shaped particles after dialysis. 

This is shown in Fig. 1.10; the hydrophilic „arms‟ of the structures stabilise the 

hydrophobic core of the particles after dialysis.  

Due to the statistical nature of ATRP, however, not every difunctional initiator will 

cause the linking of two branched cores; it is possible for no linking to occur 

(leading to spherical particles) or the inclusion of multiple difunctional initiators per 

branched core (leading to clover shaped particles). This approach was also utilised 

with a tri-functional initiator, where three branched hydrophobic cores were joined, 

stabilised by the hydrophilic „arms‟, to give „clover-leaf‟ shaped particles after 

dialysis.
83

 

 

Figure 1.10 Dumbbell shaped nanoparticles via the „arm-first‟ approach. Reproduced from ref 
62

 

The effect of monomer concentration on the branching mechanism has been studied 

by Armes and coworkers where they polymerised methyl methacrylate (MMA) via 

ATRP and RAFT, employing a divinyl monomer which contained a disulphide 

linkage that allowed cleavage of the branches between linear chains.
70

 Utilising 

1
H NMR they showed it was possible to distinguish between divinyl monomers 

which had become involved in inter- or intra-molecular reactions (branches or loops, 

respectively).
72

 They found that the more dilute the polymerisation, more loops were 

formed during polymerisation, even to the point at which up to 3 equivalents of 

divinyl monomer to 1 equivalent of initiator could be incorporated (at 10 wt% 
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monomer and via ATRP) without gelation due to the loss of branching points caused 

by the pendant vinyl groups forming loops.  

Matyjaszewski and coworkers have also studied this phenomenon with the 

copolymerisation of methyl acrylate (MA) and a diacrylate brancher molecule via 

ATRP.
71

 They found that at a concentration of 0.5 – 2.4 vol% of monomer that 

10 equivalents of di-acrylate could be used without gelation, and at 2.4 - 5 vol% 

monomer, 15 equivalents of diacrylate to 1 equivalent of initiator could be 

introduced without gelation occurring. The copolymerisation at 0.5 vol% led to 

mostly intramolecular reaction and limited amounts of branched polymers were 

formed. Whilst they report that the polymerisations achieved high conversions 

(90 %) it was not reported how long it took to reach these conversions under dilute 

conditions. 

Branched polymerisation via ATRP has introduced a range of architecturally 

complex materials, and whilst the synthesis may be facile they do not completely 

satisfy the structural nature and surface functionality of dendrimers.   

1.2.2 Dendritic hybrid architectures 

Dendritic-polymer hybrids have complex architectures, usually containing linear 

polymer chains and one or more dendrons. A range of hybrid materials have been 

reported since the early 1990‟s with reviews discussing various combinations of 

polymer and dendritic chemistries.
84-87

 The discussion here focuses on the structures 

highlighted in Fig. 1.11. These include linear-dendritic (LD) hybrids (Fig. 1.11A), 

dendritic-linear-dendritic (DLD) hybrids (Fig. 1.11B), dendronised linear hybrids 

(Fig. 1.11C), dendron functional star hybrids (Fig. 1.11D), dendritic-linearx (DLx) 

hybrids (Fig. 1.11E) and linear-dendritic-linearx (LDLx) hybrids (Fig. 1.11F).  

There have been many examples of LD hybrids reported in the literature, with 

syntheses progressing by either growing a linear chain from the dendron focal point, 

growing a dendron divergently from the end of a linear polymer chain or coupling of 

a pre-formed dendron and linear polymer chain together.
86

 Amphiphilic LD hybrids 

have been developed that self-assemble into micelle type structures in the size range 

below 100 nm.
88
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Figure 1.11 Idealised graphical representation of various dendritic polymer architectures: A) linear-

dendritic (LD) hybrid; B) DLD hybrid; C) dendronised linear polymer; D) dendronised star polymer; 

E) DLx hybrid; F) LDLx hybrid. 

DLD hybrids were first reported in 1992 utilising the focal point of hydrophobic G3 

and G4 dendrons to couple a dendron at each end of hydrophilic polyethylene glycol 

(PEG) chains of various lengths.
89

 Various DLD hybrids have been reported since 

and have been utilised in applications such as self-assembly to form aggregates 

around 200 nm,
90

 cell internalisation for drug delivery
91

 and the formation of 

isoporous films and 3D networks.
92

  

Dendronised polymers have received much attention since their development and 

can be synthesised either via the macromonomer approach or attaching a dendron to 

a preformed polymer chain.
93, 94

  

Dendronised functionalised core cross-linked star polymers (Fig. 1.11D) were 

reported by Hawker and coworkers in 2007.
95

 They utilised bis-MPA based 

dendrons (G1-G5) with an alkyl halide at the focal point which was capable of 

initiating an ATRP polymerisation. The dendron initiators were used to polymerise 
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styrene and at high conversion DVB was added therefore forming dendron 

functional star polymers via the „arm-first‟ approach.
96

  

Similar structures have been synthesised by Hawker and coworkers in 2012, 

consisting of a hybrid dendritic block copolymers based on a four arm star PEG with 

cationic G2 or G4 dendrons tethered at each chain end and the corresponding two 

arm hybrid dendrimers.
97

 These hybrid materials showed an enhanced cell 

internalisation with increasing amino functionality and endosomal escape, and 

efficient binding to DNA for the four arm dendritic hybrid. 

DLx hybrids refer to dendrons with linear polymers attached to the periphery of the 

dendron (Fig.1.11E). An LDLx hybrid refers to a dendron with linear polymer chains 

attached to the periphery and focal point of the dendron (Fig. 1.11F). Techniques to 

synthesise these types of materials include the ring opening polymerisation (ROP) of 

ε-caprolactone initiated from the dendron (PAMAM) periphery, followed by Cu 

catalysed azide-alkyne „click‟ (CuAAC) reaction of a PEG to the focal point.
98

 The 

material properties, such as crystallisation properties and self-assembly in micelles 

or vesicles, were investigated. Bis-MPA based dendrons have also been used to 

produce LDL hybrids in this manner (i.e. the ROP of ε-caprolactone from the 

dendron periphery), however, utilising thiol-ene as well as CuAAC „click‟ reactions 

at the dendron focal point.
99, 100

 The applications of these bis-MPA based 

amphiphilic LDL hybrids were subsequently studied; micelles were prepared with 

successful doxorubicin loading,
99

 and the formation of various honeycomb films was 

shown to be affected by the different combinations of hydrophobic/philic blocks.
100

  

 

1.3  Atom transfer radical polymerisation (ATRP) 

ATRP was first reported independently by Wang and Matyjaszewski,
101

 and 

Sawamoto and co-workers
102

 in 1995. Since then ATRP has become a well-known 

polymerisation technique with a huge scope for initiator, monomer, catalyst and 

ligand chemistries. This polymerisation technique has become extremely useful in 

the preparation of functional polymers.
103-105

 

ATRP involves an initiating species bearing a halogen atom, R-X, a transition metal 

catalyst (e.g. CuCl) and a ligand. The reaction lies in an equilibrium, summarised in 

Scheme 1.6 and described below. 
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Scheme 1.6 Dynamic equilibrium in  ATRP 

 

The transition metal catalyst, Mt
n
/L abstracts the halogen from the initiating species, 

R-X, to form the oxidised species X-Mt
n+1

/L and the initiating radical species R•, 

with a rate constant of activation kact. The initiating radical, R•, reacts with the vinyl 

group of the monomer to give a radical active centre, which is then available for 

propagation by further reaction with monomer units with the rate constant of 

propagation kp. Termination reactions (kt) may also occur, usually as coupling or 

disproportionation, however, they are minimal during the reaction. The 

polymerisation rate is determined by the equilibrium constant Keq (Keq = kact/kdeact) in 

the absence of any side reactions other than radical termination by coupling or 

disproportionation.
106

 The initiation, propagation and termination steps are described 

individually in Scheme 1.7, using Cu
I 
as the transition metal.  

Control over the polymerisation is maintained as long as, firstly, the initiation rate is 

fast so as to provide a constant concentration of propagating polymer chains, and 

secondly, due to the dynamic equilibrium between active and dormant radical 

species. This equilibrium lies heavily towards the dormant species, therefore 

reducing the number of reactive chain ends present at any one time and so reducing 

the possibility of unwanted side reactions, which result in higher molecular weights 

and broader polydispersities. It is the mechanism of the reaction that controls the 

possible side reactions and allows the synthesis of polymers with narrow dispersity 

(Ɖ) whose number average molecular weight depends directly on the amount of 

initiator used in the reaction. Due to the use of a radical polymerisation technique 

and transition metal catalyst, care must be taken to ensure no oxygen is present, 

which would scavange radicals, terminate the polymerisation and oxidise the copper 

catalyst. 
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Scheme 1.7 Mechanism of ATRP 

 

1.3.1 Kinetics for ATRP 

Matyjaszewski et al. described the rate laws for ATRP below using the initiation and 

propagation equations from Scheme 1.7.
107
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The rate law shown in equation (3) is valid assuming a fast pre-equilibrium, that the 

propagation rate (kp) remains constant, and that termination is negligible. The rate of 

propagation (Rp) is first order with respect to the monomer concentration [M], 

initiator concentration [RX] and activator concentration [Cu
I
X]. 

1.4  Drug delivery by encapsulation using polymeric nanomaterials 

Drug delivery utilising polymeric nanomaterials is usually employed for either i) site 

specific targeting or ii) improving the pharmacokinetics of a drug.
108

 These two 

approaches for drug delivery utilising nanomedicine are highlighted in Fig. 1.12. 

Site specific targeting (Fig. 1.12(i)) is mainly used for the targeting of cancerous 

tumours in the case for drug delivery. If the anti-cancer drugs can be delivered only 

to the tumorous tissues specifically, and not accumulate in normal tissues, this would 
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present a much more patient acceptable form of chemotherapy with limited off target 

toxicity. 

Improving drug pharmacokinetics (Fig. 1.12(ii)) is desirable for those drugs that 

have poor bioavailability and/or rapid clearance, and therefore require high doses to 

be given to produce the desired therapeutic effect. This can cause the amount of drug 

in the systemic circulation to become too high and cause toxicity (Fig. 1.12(ii.a)), 

however, if the dosing is incorrect and too little drug enters the systemic circulation 

drug resistance can occur (Fig. 1.12(ii.b)). This is particularly important when 

treating HIV as toxicity causes side-effects which leads to patients being non-

adherent with their therapy regimens and cessation of drug taking, however, if drug 

resistance occurs, a new mixture of anti-retroviral drugs needs to be administered to 

prevent acceleration of the virus. Sustained release over a long period of time would 

also be highly advantageous to reduce the number of tablets needed to be taken by 

patients.  

 

Figure 1.12 Schematic representing two different approaches for using nanomaterials for drug 

delivery 

Various research groups have investigated the use of polymeric materials for drug 

delivery, more specifically nanomaterials. Nanomaterials can be described as a 

material being between 1 – 1000 nm in one dimension.
109

 Polymeric nanomaterials 

which have been reported for drug delivery by encapsulation include micelles, 
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vesicles and nanoparticles (see Fig. 1.13).
109-111

 Some formulations of micelles, 

vesicles and nanoparticles that have been approved for clinical use or are currently in 

clinical trials are shown in Table 1.2. Dendrimers are also a different class of 

nanomaterials which have been utilised for drug delivery by encapsulation, see 

above (section 1.1.3). 

The first requirement of a nanomaterial is that it is biocompatible, therefore the 

nanomaterial is non-toxic, and if oral delivery is being targeted it must also survive 

the stomach and small intestine and be absorbed across the gut epithelium to enter 

the systemic circulation. Biocompatibility is often achieved by incorporating a PEG 

coating around the nanomaterial.
108

 PEG is a well-known biocompatible polymer 

which has been known to give nanomaterials „stealth‟ in the system circulation, 

preventing the binding of proteins which can cause clearance of materials from the 

circulation.  

 

Figure 1.13 Graphical representation of various types of polymeric nanomaterial utilised in the 

encapsulation of drugs for drug delivery purposes (not drawn to scale). Blue sections represent 

hydrophilic polymer chains and red sections represent hydrophobic polymer chains.  
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Table 1.2 Nanomaterials approved or in clinical trials for various therapies 

Nanocarrier type Name Drug/nanomaterial Administration Indication Status 

Nanoparticles 

Abraxane 
Paclitaxel bound albumin 

nanoparticles 
Intravenous 

Advanced breast cancer, advanced non-small cell lung cancer 

and advanced pancreatic cancer patients 
Approved 

Transdrug Doxorubicin Intravenous Hepatocarcinoma Approved 

Amphotec 
Colloidal suspension of lipid 

based amphotericin B 
Subcutaneous 

Invasive aspergillosis patients who are refractory to or 

intolerant of conventional amphotericin B 
Approved 

 Nanoxel Paclitaxel micelles Intravenous Advanced breast cancer Phase I 

Micelles 

Estrasorb 
Estradiol hemihydrate micellar 

nanoparticles (emulsion) 
Transdermal 

Reduction in vasomotor symptoms such as hot flushes and night 

sweats, in menopausal women 
Approved 

Genexol-PM Paclitaxel Intravenous Various breast, lung and pancreatic cancer Phase II-III 

 SP1049C 
Pluronic block-copolymer 

doxorubicin micelle 
Intravenous Oesophageal carcinoma Phase II 

Vesicles 

Myocet 
Vesicle encapsulated 

doxorubicin-citrate complex 
Intravenous 

Cardio-protective formulation of doxorubicin used in late stage 

metastatic breast cancer 
Approved 

Doxil 
PEGylated doxorubicin HCl 

vesicles 
Intravenous Metastatic ovarian cancer and AIDS-related Kaposi‟s sarcoma Approved 

DaunoXome 
Encapsulated-duanorubicin 

citrate vesicles 
Intravenous Advanced HIV related Kaposi‟s sarcoma Approved 

AmBisome Amphotericin B vesicles Intravenous Fungal infections Approved 

Diprivan Propofol vesicles Intravenous Anaesthetic Approved 

Adapted from refs; 
110, 111
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1.4.1 Polymeric micelles 

Polymeric micelles are self-assembled aggregates of amphiphilic polymers in a 

colloidal solution, which can be organic or aqueous, however, here only aqueous 

micelle formulations will be discussed. The critical micelle concentration (CMC) is 

the concentration of the polymer required for micelle formation; below the CMC the 

polymers are dissolved in the aqueous phase, usually as unimers and above the CMC 

they self-assemble into micelles which are in equilibrium with the unimers (see 

Fig. 1.13). Polymeric micelles are usually formed from the self-assembly of an 

amphiphilic diblock or triblock copolymer in a core-shell arrangement.
112

 The core 

consists of the hydrophobic segment of the polymer which allows for encapsulation 

of hydrophobic drugs. The core is stabilised by a corona which is composed of the 

hydrophilic segment of the polymer.  

Polymeric micelles can be used to enhance the solubility of hydrophobic drugs by 

encapsulation within the hydrophobic core.
113

 This is referred to as solubilising the 

hydrophobic drug and can enhance the bioavailability upon oral administration, 

reduce adverse effects and enhance permeation across biological membranes, for 

example the blood-brain barrier when administered intravenously.
113

    

1.4.2 Vesicles 

A vesicle is a spherical structure consisting of a lamellar bilayer and can also be 

described as liposomes, polymersomes or nanocapsules (see Fig. 1.13).
114

 Vesicles 

are promising for drug delivery as they have the capability to solubilise hydrophilic 

and hydrophobic drugs. Hydrophilic drugs can be encapsulated in the internal 

hydrophilic compartment whilst hydrophobic drugs can be incorporated into the 

hydrophobic core of the bilayer. 

1.4.3 Nanoparticles 

Polymeric nanoparticles, sometimes described as nanospheres, are solid colloidal 

particles (Fig. 1.13) in the range 10 - 1000 nm. They consist of a hydrophobic core, 

are static in structure and can be stabilised via charge or steric repulsion.
115

 

Preparation methods include either dispersion of preformed polymers or 

polymerisation of monomers in a mini- or micro-emulsion polymerisation.
116, 117

 

Methods to produce nanoparticle dispersions from preformed polymers include 

solvent evaporation, nanoprecipitation, salting-out, dialysis and supercritical fluid 
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technology.
116

 Nanoprecipitation is the most relevant in the context of this thesis and 

will be discussed further.  

1.4.4 Nanoparticles by nanoprecipitation 

Nanoprecipitation is a solvent exchange method for the dispersion of polymeric 

nanoparticles utilising preformed polymers and was first described by Fessi et al. in 

1989.
118

 The polymer is dissolved in a good solvent (usually a volatile, water 

miscible solvent which is easily removed after the process, e.g. acetone) and added 

to an anti-solvent (usually water) whilst undergoing stirring. This process can be 

reversed; the anti-solvent can be added to the polymer dissolved in the good solvent. 

Various nanoparticle formulations prepared via nanoprecipitations are shown in 

Table 1.3. The basic principle behind the technique involves the rapid diffusion of 

solvent into the anti-solvent phase and subsequent decrease in the interfacial tension 

between the two phases. This, increases surface area and leads to the formation of 

small droplets of organic solvent.
116

 Lince et al. described the process as being 

comprised of three stages; nucleation, growth and aggregation.
119

 

The rate of each of these steps determines the resulting particle size and the driving 

force of these phenomena is the ratio of polymer concentration over the solubility of 

the polymer in the solvent mixture. The separation between the nucleation and the 

growth stages is the key factor for uniform particle formation. Ideally, operating 

conditions should allow a high nucleation rate strongly dependent on supersaturation 

and low growth rate.  
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Table 1.3 Nanoparticle formulations produced via the nanoprecipitation approach 

Polymer Guest molecule Solvent Non-solvent Surfactant Particle diameter (nm) Ref 

PLGA Curcumin Acetone Water PVA 95 - 560 
120

 

PLGA DiI loaded Acetone/ethanol Water Tween 20 63 - 90 
121

 

PLGA - 
Acetone 

Acetonitrile 
Water - 

165 ± 5 

164 ± 4 
122

 

PLGA-PEG Docetaxel 
Acetone, DMF, 

Acetonitrile, THF 
Water - 70 - 250 

123
 

PBCA Chlorambucil Acetone Water 

Pluronic F 68 

Polysorbate 80 

Dextran  

269 ± 4 

210 ± 5 

238 ± 5 

124
 

Allylic starch - Acetone Water - 270 
125

 

PHB Nattokinase Acetone Water Tween 80 100 - 125 
126

 

Dextran ester  Conjugated ibuprofen Acetone Water - 77 
127

 

PCL diol Au nano-rods Chloroform Water Pluronic F 127 17.4 
128

 

Eudragit L100-55 Tacrolimus Acetone/ethanol Water - 120 
129

 

PCA Gemcitabine Ethanol/water Water - 150 
130

 

PLA - THF Water - 100 - 300 
131

 

PLA MTP-Chol Acetone Water Epikuron 170 200 ± 50 
132

 

PCL Griseofulvin Acetone Water Span 80/Tween 80 250 - 400 
133

 

PCL Primidone Acetone Water PE/F68 308 - 352 
134

 

PCL - Acetone Water - 100 - 1200 
119

 

PHPMA - Acetone Water  - 60 - 800 
135

 

PMMA Ketoprofen THF Water Cremophor ELP 70 - 210 
136

 

PS - THF Water or water/NaCl - 50 - 300 
137

 

PS 

PMMA 

PCL 

- Acetone Water - 

105 - 140 

115 - 210 

270 - 315 

138
 

Adapted and edited from ref; 
116
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1.5  Aims of the project 

The aim of this PhD project has been to produce dendrimer-like materials which 

mimic the surface functionality of a dendrimer with much higher molecular weights 

and size than conventional dendrimers, whilst maintaining a facile synthesis. These 

materials have been termed “hyperbranched-polydendrons” (hyp-polydendron), a 

termed coined by the research group. The synthetic aims of this work, subsequent 

aims with regards to nanoparticle formulations utilising these materials and the 

assessment of their suitability towards drug delivery applications are discussed 

below.  

1.5.1 Synthetic aims 

The synthetic aims of this work are summarised in Fig. 1.14; as previously discussed 

the synthesis of dendrimers (Fig. 1.14, 1) has been reported via various synthetic 

methodologies. The combination of dendron chemistry and linear polymers to 

produce hybrid materials is also well studied utilising a dendron as an initiator for 

the linear polymerisation (Fig. 1.14, 2).  The copolymerisation of mono- and bi-

functional monomers to produce high molecular weight soluble branched polymers 

is also an established phenomenon (Fig. 1.14, 3). Therefore the combination of these 

chemistries to produce a high molecular weight branched polymer containing 

dendron functionality at the end of every polymer chain (Fig. 1.14, 4) appears 

feasible. 

 

Figure 1.14 Schematic representation of the synthetic aims of this work; hyp-polydendron, shown 

with idealised structures 
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The impact of varying different features of the hyp-polydendrons would then be 

evaluated, for example using different generation dendron initiators, altering the 

degree of polymerisation (DPn) of the primary chains in the hyp-polydendron core 

and the effect of statistically mixing initiators of different functionalities (dendron 

and non-dendron) in the reaction mixture. 

1.5.2 Materials aims 

These hyp-polydendrons will be utilised for the formulation of nanoparticles via a 

nanoprecipitation approach (see section 1.4.4). It was hypothesised that under 

aqueous conditions the hydrophobic hyp-polydendron core would collapse and 

ultimately precipitate unless stabilising hydrophilic groups were used. Therefore the 

behaviour of hydrophobic materials in various organic solvents was targeted for 

initial investigation, tuning the solvents used depending on the solubility of various 

components of the hydrophobic hyp-polydendrons. Nanoprecipitation of hyp-

polydendrons into water would also be studied, to assess the influence of mixing 

hydrophilic macroinitiators and hydrophobic dendron initiators.  

It was hypothesised that this approach would produce polymeric nanoparticles which 

contained a hydrophobic core for the encapsulation of hydrophobic guest molecules 

and dendron moieties to introduce high surface functionality, therefore emulating a 

dendrimer-like structure on a much larger scale, see Fig. 1.15.  

 

Figure 1.15 Idealised graphical representation of the materials aims of the project 
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1.5.3 Overview of subsequent experimental chapters 

1.5.3.1 Chapter 2 

Chapter 2 highlights the initial study of novel hyp-polydendrons by comparing G1 

and G2 dendron ATRP initiators with a commercially available initiator, ethyl 

bromo isobutyrate (EBiB), for the homopolymerisation of 2-hydroxypropyl 

methacrylate (HPMA) to afford linear dendritic and linear polymers with varying 

degrees of polymerisation (DPn = 20, 50 and 100). The copolymerisation of HPMA 

with a divinyl monomer, EGDMA, led to the formation of high molecular weight 

branched polymers bearing the initiator functionality at the end of each chain, 

therefore in the case of a dendron initiator, forming hyp-polydendrons. The library of 

polymers synthesised were studied for their self-assembly behaviour in organic 

solvents (acetone and hexane mixtures) and water via an aqueous nanoprecipitation 

approach. These two methods lead to the formation of spherical polymeric 

nanoparticles which had narrow polydispersities when the branched polymers and 

hyp-polydendrons were utilised, when compared with the equivalent linear polymers 

broader polydispersities were observed. 

1.5.3.2 Monomer choice 

It is worth noting that the monomer HPMA was chosen for this project as although it 

is actually water soluble in the monomeric form, when polymerised pHPMA is more 

hydrophobic and becomes insoluble in water. The aqueous nanoprecipitation of 

linear and branched pHPMA has also been previously reported,
135

 initiated with the 

commercially available EBiB initiator. Therefore it is hypothesised that the 

hydrophobic pHPMA would be suitable for the encapsulation of hydrophobic 

molecules in the core of the nanoparticles.  

1.5.3.3 Chapter 3 

Chapter 3 focuses on the copolymerisation of HPMA and EGDMA using mixed 

initiator systems, where the statistical incorporation of a G2 dendron initiator and a 

PEG macroinitiator at various ratios produced a series of hyp-polydendrons with 

varying amphiphilicity. The aqueous nanoprecipitations performed using these 

materials showed that generally nanoparticle size increases with the initial and final 

concentration of polymer used.  The series of nanoparticles formed contained 

varying internal environments, due to the ratio of initiators used, which were probed 
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with two different hydrophobic fluorescent dyes (Nile red and pyrene). These dye 

loaded particles were also assessed for their cytotoxicity to cells. The particles 

showed no toxicity to Caco-2 cells, and also showed permeability through a Caco-2 

cell transwell plate assay, designed to model the permeability of compounds through 

the small intestine into the systemic circulation. Further evaluation of these materials 

was halted due to stability issues in model physiological conditions. 

1.5.3.4 Chapter 4 

Chapter 4 also assesses the copolymerisation of HPMA and EGDMA using a mixed 

initiator system, however, a new G2 dendron initiator was used (now labelled G2’ 

due to a different synthetic route) with a longer PEG macroinitiator. The longer PEG 

macroinitiator was chosen to impart more steric stabilisation upon the nanoparticles 

formed via nanoprecipitation of these materials. The composition of the hyp-

polydendrons in this chapter was not only altered by varying the ratio of the two 

initiators, but also by varying the targeted degree of polymerisation of the HPMA. 

This altered hydrophobic/hydrophilic content of the hyp-polydendrons quite 

dramatically and resulted in a variation of results upon aqueous nanoprecipitation. 

Pharmacological analysis of the hyp-polydendrons highlighted specific properties of 

the nanoparticles required to give a pharmacologically beneficial outcome, i.e. 

permeability through the intestinal epithelium model experiment. A lead candidate 

was chosen for further pharmacological assessment, still ongoing at the time of 

writing.  

1.5.3.5 Chapter 5 

Chapter 5 discusses in further detail the effects of varying the hydrophobic and 

hydrophilic content of the hyp-polydendrons when studying their nanoprecipitation 

behaviour. Tuning the amount of hydrophobic HPMA to hydrophilic PEG is 

required to produce the hyp-polydendrons with the desired properties upon 

nanoprecipitations.  

This chapter also highlights some fundamental nanoprecipitation experiments where 

the lower molecular weight fractions of select hyp-polydendron samples were 

removed via dialysis in organic solvents (IPA and MeOH were chosen). The 

subsequent nanoprecipitation of the high and low molecular weight fractions showed 

that the high molecular weight fractions produce nanoparticles with more desirable 
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properties (ie. low polydispersities) than the low molecular weight fractions. The 

mixing of the equivalent linear dendritic polymer with the high molecular weight 

fraction revealed that the amount of highly branched material needed to form 

nanoparticles with these desirable properties is very low (1 wt% or less).  

The final piece of experimental work highlighted in this chapter is the encapsulation 

of two different fluorescent dyes within the nanoparticles analysed by Förster 

resonance energy transfer (FRET). The two dyes used are described as a FRET pair 

and one is a donor and the other an acceptor fluorophore. When in close proximity 

(< 10 nm) energy transfer is observed from the donor to the acceptor and this change 

in fluorescence can determine whether the two fluorophores are indeed encapsulated 

within the same nanoparticle. Upon mixing the two individually loaded nanoparticle 

samples an increase in FRET was observed overtime, suggesting the movement of 

the fluorophores between nanoparticles. 

 

Overall, the research presented within this thesis represents the formation of a new 

polymeric material class and the subsequent study of the materials within a 

pharmacological relevant manner.  The behaviour of the materials is investigated 

with respect to the impact of variation within their structural components and the 

goal is to assess their toxicity to cells and the permeation across the Caco-2 in vitro 

model of the human small intestinal mucosa to predict the absorption of orally 

administered drugs or materials. As such, proof-of-concept will be developed for the 

synthesis and potential application of these novel systems. 
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2.1 Introduction to Chapter 2 

 

The synthesis of high generation dendrimers continues to be a non-cost effective and 

difficult process, as previously discussed, although the possibility of producing larger 

materials whilst maintaining such high surface functionality as present in dendrimers 

is highly desirable. 

The aim of this work was to synthesise first and second generation dendron initiators 

for ATRP, investigate whether these dendron initiators would polymerise under 

ATRP conditions and to assess how this new functionality might affect the behaviour 

of branched polymers produced using a simple divinyl monomer incorporation 

strategy. Three ATRP initiators were chosen for this study, shown in Fig. 2.1. The 

first and second generation dendron initiators, G1 and G2 respectively, were 

synthesised and compared to a commercially available non-dendron initiator, ethyl 

bromo isobutyrate, EBiB.  

 

Figure 2.1 ATRP initiators chosen for the study 

These initiators were used to polymerise the monomer 2-hydroxypropyl methacrylate 

(HPMA) to give linear and branched poly(2-hydroxypropyl methacrylate) (pHPMA), 

targeting three different number average degrees of polymerisation (DPn); 20, 50 and 

100 monomer units. 
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The subsequent linear and branched polymers, bearing each initiating group at one 

end of every polymer chain were to be studied, to assess their behaviour in solvent 

and aqueous environments to ascertain their ability to form nanoparticles. The ability 

to form nanoparticles from such materials could give polymeric nanoparticles which 

contain a high level of functionality introduced via the dendron moieties at one 

polymer chain end, which has important implications in various applications such as 

developing biological systems toward drug delivery.
1, 2

 

 

2.2 Hydrophobic dendron initiator synthesis 

The target surface group for the two dendron initiators was 1,3-dibenzyloxy-2-

propanol (DBOP), 1, shown in Scheme 2.1. This surface group was targeted as it 

provides a hydrophobic surface functionality which provides a good control for 

comparison with hydrophilic surface functionalities. The benzyl groups were also 

useful as they are easily distinguished by 
1
H NMR spectroscopy as the shifts 

corresponding to the aromatic protons on the benzyl groups have significantly 

different chemical shifts to any others present in the targeted polymers. 

2.2.1 Generation 1 DBOP dendron (G1) 

Due to the structure of the parent alcohol, 1, a simple esterification reaction with α-

bromoisobutyryl bromide yielded the G1 dendron initiator, 2, outlined in 

Scheme 2.1. This esterification reaction is well reported in the literature for the 

preparation of various functional initiators for ATRP.
3-5

 

 

Scheme 2.1 Synthesis of the G1 DBOP dendron initiator, 2 

 

The 4-dimethylaminopyridine (DMAP) acted as a catalyst, whereby the nitrogen in 

the pyridine ring attacks the acyl bromide giving a brief pyridinium intermediate, 

which is more reactive than the initial acyl bromide therefore aiding the reaction. 

Triethylamine (TEA) was used to neutralise HBr (a side product of the reaction), this 
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could be seen as a white precipitate which was observed showing formation of the 

Et3NH
+
Br

- 
salt, indicative of reaction. The G1 dendron initiator, 2, was analysed by 

1
H and 

13
C NMR spectroscopy, electrospray (ES) mass spectrometry and elemental 

microanalysis, all of which are in agreement with the desired product. Fig. 2.2 shows 

the 
1
H NMR spectrum with each peak assigned. The residual solvent peak for CHCl3, 

which appears at 7.26 ppm, is overlaid by the aromatic proton peaks (7.20 – 

7.35 ppm) present in the molecule therefore the integration for the aromatic protons 

is slightly higher than expected by theory. 

The 
13

C NMR spectrum is shown in Fig. 2.3 with peaks assigned; the peak 

corresponding to C9 in the molecule has the same chemical shift as the solvent, and 

cannot be identified amongst the CDCl3 peaks. The mass spectrum is shown in 

Fig. 2.4 with important peaks highlighted. It is worth noting that those peaks 

corresponding to the molecular ion exemplify the isotope pattern expected for 

bromine perfectly.  

 

Figure 2.2 
1
H NMR (CDCl3, 400 MHz) of G1 DBOP initiator, 2 
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Figure 2.3 
13

C NMR (CDCl3, 100 MHz) of G1 DBOP initiator, 2 

 

 

Figure 2.4 Mass spectrum (ES-MS) of G1 DBOP initiator, 2 
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2.2.2 Generation 2 DBOP dendron (G2) 

The second generation initiator, 6, was synthesised via a convergent strategy utilising 

the selectivity of 1,1’-carbonyldiimidazole (CDI) chemistry,
6, 7

 shown in Scheme 2.2.  

 

Scheme 2.2 Synthesis of G2 dendron initiator, 6 

The intermediary products from each step (3, 4 and 5) were purified and analysed by 

1
H and 

13
C NMR spectroscopy, mass spectrometry and elemental microanalysis (see 

Appendix, Fig. A1 - A9). The first step involved reaction of the parent alcohol, 

DBOP, which bears the functionality of the resulting dendron surface group, with 

CDI. This generated the DBOP imidazole carboxylic ester, 3, in high yields (97 %). 

The 
1
H NMR spectrum of 3 (see Appendix, Fig. A1) shows clearly that the imidazole 

ring is present, as 3 resonances were observed for the attached imidazole ring, 

whereas free imidazole would give only 2 resonances in the aromatic region. The 

13
C NMR spectrum, see Appendix Fig. A2, also confirms the correct structure due to 

the peak at 148.8 ppm, corresponding to the carbonyl carbon (C8) which is not 

present in the initial alcohol. 

This imidazole carboxylic ester intermediate, 3, was subsequently reacted with 

diethylenetriamine (DETA).
8
 Due to the selective nature of CDI chemistry only the 

primary amine functionalities of DETA reacted with 3, whereas the secondary amine 
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remained intact, leaving a reactive functional group on the molecule allowing for 

further reaction.
6
 This coupling of two 1

st
 generation dendrons, 3, gave rise to the 

second generation dendron or G2 dendron, 4. The 
1
H NMR spectrum (Appendix 

Fig. A4) shows new proton environments corresponding to the CH2s between the 

urethane bond and secondary amine at 2.60 and 3.15 ppm, with the integrations of 

the other protons being concordant with the rest of the molecule. 
13

C NMR spectrum 

and ES mass spectrometry analysis (Appendix Fig. A5 and A6) also confirm the 

structure of 4. 

The ring-opening reaction of 4 with β-butyrolactone
9
 afforded molecule 5 after 

purification by column chromatography. One side product of the reaction was the 

ring opening of β-butyrolactone with the urethane nitrogen, which had the same 

molecular weight as the desired product, 5, therefore indistinguishable by mass 

spectrometry, however, the 
1
H NMR spectroscopy analysis elucidated each structure. 

The 
1
H NMR spectrum (Appendix Fig. A7), 

13
C NMR spectrum (Appendix Fig. A8) 

and ES mass spectrometry analysis (Appendix Fig. A9) all support the proposed 

structure of 5. The yield of 5 was relatively low (45 %) this was believed to be due to 

the side product formed that reduced the yield of the desired product.  

The G2 dendron, 5, was converted to the G2 dendron initiator, 6, by esterification of 

the secondary alcohol with α-bromoisobutyryl bromide,
3-5

 to give the target second 

generation dendron initiator (G2 dendron initiator), 6, in good yields (81 %). The 

1
H NMR spectrum, shown in Fig. 2.5 with peaks assigned, is strongly indicative of 

the correct product. It is worth noting however, that as the generation number 

increases, and therefore the number of protons in the same or similar environment 

increases, the peaks corresponding to those protons become broader and less well 

defined. This is due to the peak in the NMR spectrum being a representation of the 

average of those protons, and so as the number of protons in such environments 

increases, each of their environments becomes slightly different. This is more evident 

in higher generation dendrons and dendrimers. 
13

C NMR spectroscopy (Fig. 2.6) and 

ES mass spectrometry (Fig. 2.7) also confirm the structure of the G2 DBOP initiator, 

6. The expected bromine isotope pattern is also observed for this molecule again 

confirming the correct structure.   
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Figure 2.5 
1
H NMR (CDCl3, 400 MHz) of G2 DBOP initiator, 6 

 

 

Figure 2.6 
13

C NMR (CDCl3, 100 MHz) of G2 DBOP initiator, 6 
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Figure 2.7 Mass spectrum (ES-MS) of G2 dendron initiator, 6, including the [M+Na]
+
 peak enlarged 

to see the bromine isotope pattern 

 

2.3 Polymer synthesis 

EBiB, G1 and G2 initiators were then used to synthesise either linear or branched 

pHPMA via ATRP.
10, 11

 For the linear polymers, the initiator functionality was 

present at one chain end. When a divinyl monomer, ethylene glycol dimethacrylate 

(EGDMA), was introduced highly branched polymer architectures were formed,
12-14

 

as illustrated in Scheme 2.3. 

The globular structures of the branched polymers were composed of a core of 

pHPMA with the initiator decorating the surface and, when a dendron initiator was 

used, termed a “hyperbranched polydendron” - a hyp-polydendron. This term was 

chosen to represent the hyperbranched structure which contained multiple dendrons 

in one macromolecule, therefore a polydendron. When the initiator used was a non-

dendron initiator the resulting hyperbranched polymers were termed hyp-polymers. 

Three different number average degrees of polymerisation (DPn) were targeted (20, 

50 and 100 monomer units) for each polymer. Analysis by gel permeation 

chromatography (GPC) and 
1
H NMR spectroscopy analysis for each polymer is 

collated in Table 2.1. 
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Scheme 2.3 Idealised schematic representation of initiators, monomer and brancher used, and their corresponding branched polymers (both of HPMA’s isomers have been 

depicted) 
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2.3.1 Linear polymers 

The polymerisations of HPMA with targeted DP20, DP50 and DP100 were carried out 

at 30 ºC in methanol with CuCl:bipyridyl (bpy) (1:2), as the catalytic system.
15, 16

 

Each linear chain bore the functionality of the initiator only once. The DPn calculated 

by 
1
H NMR spectroscopy was less than the value obtained by GPC for all linear 

polymers. This discrepancy was probably due to the initiator efficiency being less 

than 100 % for each dendron.  The DPn by 
1
H NMR includes the unreacted initiator 

as well as the polymer chain end groups, therefore leading to calculations of polymer 

chains that are shorter than the GPC analysis, and this effect of reduced initiator 

efficiency has been previously reported.
17, 18

 The DPn of the EBiB initiated polymers 

could not be calculated as the initiator peaks overlapped with the polymer peaks and 

could not be adequately distinguished.  

 

Table 2.1 
1
H NMR and GPC data for all polymers synthesised 

Initiator 
Target Polymer 

Composition 

GPC (THF) 
1
H 

NMR
b
 

Mn  

(gmol
-1

) 

Mw  

(gmol
-1

) 
Ð DPn DPn 

E HPMA20 5 900
a
 8 000

a
 1.37

a
 39

 
 - 

E HPMA50 11 300 14 000 1.24 77 - 

E HPMA100 20 700 25 800 1.25 142 - 

E HPMA20-EGDMA0.8 24 800 165 900 6.70 - - 

E HPMA50-EGDMA0.8 147 000 928 500 6.31 - - 

E HPMA100-EGDMA0.8 214 200 2 328 000 10.9 - - 

G1 HPMA20 5 900 7 800 1.32 38 24 

G1 HPMA50 9 800 13 000 1.33 65 55 

G1 HPMA100 20 400 25 600 1.26 138 120 

G1 HPMA20-EGDMA0.8 52 800 545 000 10.3 - 21 

G1 HPMA50-EGDMA0.8 47 200 1 169 000 24.7 - 57 

G1 HPMA100-EGDMA0.8 69 300 1 354 500 19.5 - 119 

G2 HPMA20 5 700 7 300 1.28 33 21 

G2 HPMA50 14 400 20 300 1.41 94 49 

G2 HPMA100 23 300 32 700 1.40 155 101 

G2 HPMA20-EGDMA0.8 153 000 1 565 000 10.2 - 21 

G2 HPMA50-EGDMA0.8 68 400 661 000 9.67 - 55 

G2 HPMA100-EGDMA0.8 164 200 2 227 500 13.6 - 107 
aCalculated using a different GPC (DMF eluent at 60°C) bDetermined by 1H NMR analysis in d6-DMSO 
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In all polymerisations, unreacted initiator remained in the reaction medium after the 

polymerisations had achieved complete conversion. This could be seen in the 

refractive index (RI) GPC chromatograms as a small peak corresponding to the 

initiator eluting just before the solvent front, shown in Fig. 2.8A.  

The GPC RI overlays for each linear polymer (DP20, DP50 and DP100) synthesised 

with each initiator are shown in Fig. 2.8B for the EBiB initiated, Fig. 2.8C for G1 

dendron initiated and Fig. 2.8D for G2 dendron initiated. The GPC chromatograms 

show in each case that the linear and linear-dendritic polymers have a monomodal 

distribution, and the higher the targeted DPn the lower the retention volume, 

indicating that the higher the targeted DPn the higher the molecular weights obtained. 

In some of the linear samples a slight shoulder is visible on the high molecular 

weight side of the peak. This could either be due to coupling of chain ends at high 

conversions
19

 or the fact that the HPMA monomer contains a small amount of a 

dimethacrylate impurity as a result of the synthetic route utilised in the production of 

the monomer,
20

 which can also result in the coupling of chains.   

 

Figure 2.8 GPC RI chromatogram overlays of A) G2 dendron initiator with G2-pHPMA20 and G2-

pHPMA50, B) EBiB-pHPMA20, EBiB-pHPMA50 and EBiB-pHPMA100, C) G1-pHPMA20, G1-

pHPMA50 and G1-pHPMA100 and D) G2-pHPMA20, G2-pHPMA50 and G2-pHPMA100 
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2.3.2 Hyp-polymer and hyp-polydendron synthesis 

Incorporation of a difunctional monomer into the polymerisation allows for large 

branched polymer structures to be obtained.
10

 The ratio of initiator to brancher was 

crucial to the polymerisation success as, in theory, a molar ratio of 1:1 or more will 

cause cross-linking of polymer chains and ultimately macroscopic gelation.
21, 22

 

Although theoretically a ratio of 1:0.95, initiator:brancher, would give the large 

branched structures desired, it was found that due to the initiator efficiencies being 

lower than 100 %, at this level of brancher the polymers formed a cross-linked 

insoluble network, therefore the ratio of initiator to brancher was kept lower at 1:0.8. 

This was also affected by the concentration of the polymerisation, as the more dilute 

the polymerisation the more likely intramolecular looping will occur rather than the 

desired intermolecular branching. Therefore concentrations were maintained constant 

across all polymerisations at 50 v/v% with respect to the monomer.   

The GPC overlays of EBiB initiated polymers (Fig. 2.9A and B) highlight the 

difference between the linear and hyp-polymer samples via the RI (Fig. 2.9A) and 

right angle light scattering (RALS) (Fig. 2.9B) detector chromatograms. The GPC 

chromatograms indicate that introduction of the difunctional monomer, EGDMA, 

affords high molecular weight branched polymers, eluting at lower retention 

volumes. Due to the statistical nature of branching in ATRP there is a broad 

distribution of materials present, ranging from linear chains to highly branched 

macromolecules.
10

 The RI detector response is dependent upon the concentration of 

the polymer species present, whereas the RALS detector response is dependent upon 

the size of the polymeric species present. Therefore, although a small RI response is 

detected for the hyp-polymers around an elution volume of 12 mL (for EBiB-

pHPMA100-EGDMA0.8), there is a huge RALS detector response due to the presence 

of highly branched polymeric species which scatter considerably more light than the 

small polymeric species. It is worth noting, however, that in Fig. 2.8 and Fig. 2.9 the 

height of each peak has been normalised so this does not reflect the true differences 

in detector response, however, if the differences in detector responses needed to be 

compared it would be the area under the curve which would allow a true comparison.  

Fig. 2.9 shows the GPC overlays for the G1 dendron initiated (Fig. 2.9C and D) and 

G2 dendron initiated (Fig. 2.9E and F) linear-dendritic and hyp-polydendrons, with 

RI (Fig. 2.9C and 2.9E) and RALS (Fig. 2.9D and 2.9F) detector chromatograms.
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Figure 2.9 GPC chromatograms overlays of A) RI chromatograms and B) RALS chromatograms for EBiB-pHPMA20-EGDMA0.8, EBiB-pHPMA50-EGDMA0.8, EBiB-

pHPMA100-EGDMA0.8 and the linear equivalents with dotted lines. C) RI chromatograms and D) RALS chromatograms for G1-pHPMA20-EGDMA0.8, G1-pHPMA50-

EGDMA0.8, G1-pHPMA100-EGDMA0.8 and the linear equivalents with dotted lines. E) RI chromatograms and F) RALS chromatograms for G2-pHPMA20-EGDMA0.8, G2-

pHPMA50-EGDMA0.8, G2-pHPMA100-EGDMA0.8 and the linear equivalents with dotted lines 
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These linear dendritic and hyp-polydendron samples follow the same trend as the 

EBiB initiated polymers; those with the inclusion of EGDMA all elute at a much 

lower retention volume than their linear equivalents. For example, the G1-pHPMA50-

EGDMA0.8 sample begins to elute at an approximate retention volume of 11 mL, 

whilst the G1-pHPMA50 only begins to elute at approximately 17.5 mL. Each of the 

G2 initiated hyp-polydendrons elute between 10 - 12 mL, whilst their linear-dendritic 

equivalents elute between 16 - 18 mL. 

The linear polymers and branched polymers were analysed by 
1
H NMR 

spectroscopy, as discussed previously, Fig. 2.10 shows each linear DP50 polymer 
1
H 

NMR spectrum overlaid, with the major peaks present in each polymer assigned. The 

aromatic protons attributed to the two dendron initiators are also highlighted. The 

DP20 and DP100 linear polymer 
1
H NMR spectra are shown in the Appendix; Fig. 

A10 and  Fig. A12 respectively.  

 

Figure 2.10 
1
H NMR (d6-DMSO, 400 MHz) spectra overlay for EBiB-pHPMA50, G1-pHPMA50 and 

G2-pHPMA50 with major peaks assigned 

 

The DP50 hyp-polymer and hyp-polydendrons’ 
1
H NMR spectra are overlaid in 

Fig. 2.11 with major peaks assigned. It is worth noting that the only difference 

between the linear and branched equivalent polymers is the presence of EGDMA in 
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the branched polymers, which contains protons with similar environments to the 

HPMA monomer and therefore cannot be distinguished in the 
1
H NMR spectra. The 

DP20 and DP100 hyp-polymer and hyp-polydendron 
1
H NMR spectra are shown in the 

Appendix in Fig. A11 and A13.  

 

Figure 2.11 
1
H NMR (d6-DMSO, 400 MHz) spectra overlay for EBiB-pHPMA50-EGDMA0.8, G1-

pHPMA50-EGDMA0.8 and G2-pHPMA50-EGDMA0.8with major peaks assigned 

 

2.4 Kinetic experiments 

Kinetic experiments were undertaken for each of the linear and branched 

polymerisations that targeted a DPn of 50 monomer units to confirm that each 

polymerisation followed first order kinetics with respect to the monomer 

concentration, and to follow the evolution of molecular weight with respect to 

monomer conversion.  

2.4.1 Linear polymerisation kinetics 

The kinetic plots for each linear polymerisation, Fig. 2.12, show that each 

polymerisation reached high conversion within 6 - 7 hours (Fig. 2.12A, C and E) and 

followed first order kinetics as expected.
17

 The evolution of Mn with conversion was 

linear and was close to that expected from the targeted Mn (Fig. 2.12B, D and F). 
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Fig. 2.13 shows the 
1
H NMR spectra of the G1-pHPMA50 polymerisation at various 

time points throughout the polymerisation. As the reaction proceeds, the vinyl peaks 

at 5.65 and 6.05 ppm decrease as the monomer is consumed. The aromatic peaks 

attributed to the initiator are observed at 7.26 - 7.38 ppm which remain constant 

throughout the polymerisation and were therefore used as a reference to calculate 

conversion. The conversion for the EBiB initiated polymerisations used the pendant 

CH3 of the monomer as a reference at 1.2 ppm as this signal remains constant in the 

monomeric and polymeric form of HPMA, when compared to the vinyl peaks (5.65 

and 6.05 ppm). 

 

Figure 2.12 Kinetic plots for linear DP50 polymers. A) and B) EBiB-pHPMA50, C) and D) G1-

pHPMA50, E) and F) G2-pHPMA50. Conversion (black squares), ln([M]0/[M]) (green down triangles), 

Mn (red up triangles), Ð (blue circles) and theoretical Mn (black dotted lines) 
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Figure 2.13 
1
H NMR (d6-DMSO, 400 MHz) overlay of kinetic samples for G1-pHPMA50 

polymerisation 

 

 

2.4.2 Branched polymerisation kinetics 

The kinetic plots for each branched polymerisation with targeted DP50, shown in 

Fig. 2.14, also show that these polymerisations followed first order kinetics, and 

reached high conversion within 8 - 9 hours (Fig. 2.14A, C and E). The Mn and Mw 

increased linearly at the beginning of the polymerisations, until the conversion 

reached 80 - 90 %, where the Mw increases steeply indicating large branched 

polymers are being formed at high conversion. (Fig. 2.14B, D and F) This steep 

increase in Mw is indicative of the linear chains joining to form a high Mw branched 

structure via intermolecular reaction. 
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Figure 2.14 Kinetic plots for linear DP50 polymers. A) and B) EBiB-pHPMA50-EGDMA0.8, C) and D) 

G1-pHPMA50-EGDMA0.8, E) and F) G2-pHPMA50-EGDMA0.8. Conversion (black squares), 

ln([M]0/[M]) (green down triangles), Mn (red filled up triangles) Mw (red open up triangles), Ð (blue 

circles) 

 

 

2.5 Solvent driven self-assembly of hydrophobic polymers 

In order to assess whether these hyp-polydendrons could be used to produce 

nanoparticles, a nanoprecipitation approach was utilised.
23

 While conventional 

nanoprecipitation typically uses water as the anti-solvent,
24, 25

 here the hydrophobic 

nature of both the initiator and polymer warranted use of two organic solvents. This 

approach is highlighted in Fig. 2.15. It is worth noting that the vials used were kept 

sealed at all times except when anti-solvent addition was occurring. Anti-solvent was 
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added using a syringe pump set at 0.5 mL/min through the inlet needle, an outlet 

needle was used to prevent a build-up of pressure.  

 

 

Figure 2.15 Graphical representation of how organic nanoparticles are formed via the use of addition 

of an anti-solvent to polymer dissolved in a good solvent 

 

Acetone was used as the good solvent for both the pHPMA core and the initiator 

groups at the end of each polymer chain. Nanoprecipitation was induced by dropwise 

addition of hexane (an anti-solvent for the pHPMA core but a good solvent for the 

initiator groups, henceforth described as an anti-solvent). Therefore theoretically, the 

initiator groups around the surface of each branched macromolecule should stabilise 

the particle with increased amounts of anti-solvent introduced into the system. A 

further reason for using acetone/hexane was that their refractive indices and 

viscosities are both very similar.  An initial concentration of 5 mg/mL polymer in 

acetone was used, unless stated otherwise, therefore depending upon how much 

hexane has been added (hexane fraction, Φhex) the final polymer concentration would 

vary.  

 

2.5.1 Nanoparticle formation utilising hyp-polymers and hyp-polydendrons 

The formation of nanoparticles was followed primarily by dynamic light scattering 

(DLS). A clear trend was observed for the branched polymers (Fig. 2.16A, 2.18A 

and 2.20A): with the addition of a low fraction of hexane, the solvated branched 

polymers appear to decrease in z-average diameter (Dz) slightly, until enough hexane 
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was added to force the branched dendritic polymers to aggregate into larger spherical 

particles. These particles have low polydispersities (PdI), below 0.2, and appear to 

shrink slightly with the addition of more anti-solvent until they increase in size due 

to precipitation. Fig. 2.16B, 2.18B and 2.20B each highlights various stages of 

nanoparticle formation in the acetone/hexane solvent mixtures of EBiB-pHPMA50-

EGDMA0.8, G1-pHPMA50-EGDMA0.8 and G2-pHPMA50-EGDMA0.8 respectively 

via scanning electron microscopy (SEM). 

Fig. 2.16A shows the trend of formation for each of the EBiB initiated hyp-polymers 

(see Table 2.2 for the Dz and PdI values). At low hexane fractions the polymers were 

fully solvated by the good solvent, acetone, and may be described as individual 

objects. This is why in some cases (EBiB-pHPMA50-EGMDA0.8 at Φhex = 0.09 and 

EBiB-pHPMA100-EGDMA0.8 at Φhex = 0 and 0.09) the samples were not suitable for 

measurement by DLS as the sample was too polydisperse (therefore there are no 

values in Table 2.2 for these measurements), and in other case the PdI is quite high 

(EBiB-pHPMA20-EGDMA0.8 at Φhex = 0, 0.09 and 0.17 have PdI values of 0.493, 

0.496 and 0.408). This is due to the fact that when fully solvated the DLS is 

measuring the distribution of polymeric species present in the sample – ranging from 

linear chains to highly branched materials. The polymers self-assembled into 

nanoparticles at Φhex = 0.17 (for DP50 and DP100) or 0.23 (DP20 sample) which were 

of a uniform size and had low polydispersities (< 0.1). Upon further addition of 

hexane the Dz of these nanoparticles decreased until a hexane fraction around 0.5, 

most probably due to the nanoparticles being highly swollen with good solvent at 

low hexane fractions. The addition of hexane lowers the good solvent fraction 

causing the nanoparticles to de-swell or compress. The EBiB-pHPMA20-EGDMA0.8 

sample showed a decrease in Dz from 196 nm to 132 nm between Φhex 0.23 – 0.50, 

the EBiB-pHPMA50-EGDMA0.8 nanoparticles showed a decrease in Dz from 181 nm 

to 128 nm between Φhex 0.17 – 0.67 and the EBiB-pHPMA100-EGDMA0.8 sample 

showed a decrease in Dz from 160 nm to 111 nm between Φhex 0.17 – 0.43. When the 

hexane fraction was increased above those hexane fractions, up to 0.80, the 

nanoparticles increased in size, then ultimately precipitated after an excess of hexane 

was added. After self-assembly, the corresponding nanoparticle Dz followed a 

general trend of DP20 > DP50 > DP100.  
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Figure 2.16 The formation of nanoparticles followed via A) DLS of each EBiB initiated branched 

polymer DP20 (red circles) DP50 (blue triangles) DP100 (green diamonds) and B) SEM images of the 

formation of nanoparticles with EBiB-pHPMA50-EGDMA0.8 at various hexane solvent fractions; i) 

0.09, II) 0.29, iii) 0.50 and iv) 0.80 

 

The formation of nanoparticles using EBiB-pHPMA50-EGDMA0.8 was followed by 

SEM (Fig. 2.16B) by taking a sample at various hexane fractions (0.09, 0.29, 0.50 

and 0.80) and dropping the samples onto an SEM stub, whereby rapid solvent 

evaporation occurred leaving a dry nanoparticulate polymer sample. At the lowest 

hexane fraction of 0.09 (Fig. 2.16B i) the polymer was still fully solvated by the 

good solvent and no self-assembly has occurred, therefore it was expected that upon 
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drying a polymer film would form, the SEM shows no hierarchical structure and 

small deposits of polymer are barely distinguishable. Once self-assembly had 

occurred (Φhex = 0.29) it was expected that some structure would be seen by SEM, 

however, possibly due to the effect of drying none could be seen (Fig. 2.16B ii). It 

was proposed that upon drying, due to the larger fraction of good solvent that the 

nanoparticles became aggregated upon drying to form uneven polymer deposits on 

the surface of the stub. When hexane fractions of 0.50 and 0.80 were imaged via 

SEM (Fig. 2.16B iii and iv) it was clear that a level of anti-solvent had been reached 

that allowed the nanoparticle to retain their structure upon solvent evaporation. Both 

SEM images show spherical nanoparticles which have diameters that are in 

accordance with the Dz by DLS. The SEM images for the EBiB-pHPMA50-

EGDMA0.8 sample with Φhex = 0.80 (Fig. 2.16B iv) were studied in more detail by 

measuring the particle size from the SEM images and calculating a number average 

from the SEM analysis which could be compared to the number average as measured 

by DLS. Fig. 2.17 shows the histogram analysis of two SEM images, totalling 784 

particles. The number average diameter (Dn) measured by DLS for this sample was 

179 nm, whilst the Dz was 195 nm. The estimated mean calculated from the 

histogram was 156 nm. This was slightly lower than observed via DLS 

measurements, however, DLS was measuring the diameter of the particles dispersed 

in the organic solvent mixture, whilst SEM imaging was conducted on a dry sample. 

Therefore some shrinkage upon solvent evaporation was to be expected.  

 

Figure 2.17 Histogram analysis of nanoparticles via SEM imaging (784 particles from 2 images) 

overlaid with the DLS size distribution by intensity and number traces for EBiB-pHPMA50-

EGDMA0.8, Φhex = 0.80 
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The same experiment was conducted with the G1 dendron initiated hyp-polydendron 

materials (see Fig. 2.18A and Table 2.2). When there was only good solvent present 

DLS analysis was of solvated polymer samples which contained a distribution of 

linear to highly branched materials and therefore had high PdI values. For example, 

the PdI values for the G1-pHPMA50-EGDMA0.8 sample at hexane fractions of 0, 0.09 

and 0.17 were 0.369, 0.361 and 0.325 respectively. This was indicative of multiple 

populations of sizes being present in the sample measured via DLS. There are no 

values present in the table for G1-pHPMA100-EGDMA0.8 with Φ = 0 and 0.09 due to 

the samples being too polydisperse for measurement, which predominantly occurred 

with low hexane fractions, as with the EBiB series.  Once a hexane fraction of 0.23 

had been reached the solvated polymers underwent self-assembly to produce 

nanoparticles of uniform size and low polydispersities (< 0.1). After self-assembly 

had occurred, further addition of hexane caused the nanoparticles to decrease in size 

until a hexane fraction around 0.50 - 0.67 was reached. G1-pHPMA20-EGDMA0.8 

decreased in Dz from 204 nm to 167 nm (from Φhex = 0.23 to 0.50), G1-pHPMA50-

EGDMA0.8 decreased in Dz from 162 nm to 133 nm (from Φhex = 0.23 to 0.67) and 

G1-pHPMA100-EGDMA0.8 decreased in Dz from 180 nm to 130 nm (from 

Φhex = 0.17 to 0.67).  This series of materials also followed the trend observed with 

the EBiB series of branched polymers whereby the nanoparticles formed with the 

DP20 sample were larger than those with the DP50, and the nanoparticle formed with 

the DP50 sample were larger than those with the DP100 sample (DP20 > DP50 > DP100). 

SEM investigations of the formation of nanoparticles using the G1-pHPMA50-

EGDMA0.8 hyp-polydendron were also studied at hexane fractions 0.09, 0.29, 0.5 and 

0.8 (Fig. 2.18B). It was immediately obvious that at the two lowest hexane fractions 

(0.09 and 0.29, Fig. 2.18B i and ii) no hierarchical structure was observed, even 

though self-assembly was measured by DLS at a hexane fraction of 0.23. The cause 

for this at Φhex = 0.09 (Fig. 2.18B i) was again most probably due to the fact that the 

polymer was well solvated by the good solvent, acetone, and therefore upon drying 

an uneven polymer film was formed. At Φhex = 0.29 there was still a large good 

solvent fraction present, therefore, possibly the nanoparticle structure was lost upon 

solvent evaporation. Fig. 2.18B iii shows the sample at a hexane fraction of 0.5, 

where spherical particles were observed, however, they appear to have dried in a 

manner to suggest that they adhere to one another and appear slightly different from 



CHAPTER 2 

74 

 

those observed at the same solvent fraction for the equivalent EBiB initiated 

branched polymer (Fig. 2.16B iii). This may be due to the fact that the dendron 

moiety at the chain end is in fact soluble in the anti-solvent, hexane, for the polymer 

core, therefore this may affect the properties of the nanoparticles upon drying.  

 

 

Figure 2.18 The formation of nanoparticles followed via A) DLS of each G1 dendron initiated hyp-

polydendron DP20 (red circles) DP50 (blue triangles) DP100 (green diamonds) and B) SEM images of 

the formation of nanoparticles with G1-pHPMA50-EGDMA0.8 at various hexane solvent fractions; 

i) 0.09, ii) 0.29, iii) 0.50 and iv) 0.80 
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This was not the case for the corresponding G2 sample (Fig. 2.20B iii) which could 

suggest that it is dependent upon which area of the stub is being imaged. This 

phenomena was not observed for the sample taken at Φhex = 0.80 where discreet 

spherical nanoparticles are observed (Fig. 2.18B iv). SEM analysis of three images of 

the G1-pHPMA50-EGDMA0.8 samples at Φhex = 0.80 (Fig. 2.18B iv) was conducted 

totalling 462 particles. Fig. 2.19 shows the histogram analysis of measuring the 

diameters of these nanoparticles via SEM and DLS. The Dn and Dz of this sample as 

measured by DLS were 186 and 201 nm respectively. The mean diameter calculated 

from the SEM images was 182 nm, which is incredibly close to the number mean 

diameter calculated via DLS.  

 

Figure 2.19 Histogram analysis of nanoparticles via SEM imaging (462 particles from 3 images) 

overlaid with the DLS size distribution by intensity and number traces for G1-pHPMA50-EGDMA0.8, 
Φhex = 0.80 

The formation of nanoparticles using the G2 dendron initiated hyp-polydendrons, 

followed by DLS, (see Fig. 2.20A and Table 2.2) also followed the same trends as 

the EBiB hyp-polymers and the G1 hyp-polydendron materials. As mentioned 

previously, at low hexane fractions the DLS measurements gave smaller Dz and 

higher PdI values. For example, at Φhex = 0 and 0.09 all of the samples, and at 

Φhex = 0.17 the DP20 and DP50 samples had Dz less than 65 nm and high PdI values 

(> 0.34). Interestingly, in the case of both the DP20 and DP50 hyp-polydendron 

samples when the hexane fraction was increased from 0 to 0.17 the corresponding 

PdI values decreased, as did the Dz. This suggests that as more anti-solvent is added 

the fully solvated polymer chains are minimising their interactions with the hexane 
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by collapsing slightly and subsequently reducing in size and polydispersity. Once a 

hexane fraction of 0.17 (DP100) or 0.23 (DP20 and DP50) was reached the hyp-

polydendrons self-assembled into nanoparticles with low PdI values (< 0.1). As the 

hexane fraction increased to around 0.50 the resulting nanoparticle decreased in Dz 

(from 209 nm to 150 nm, from Φhex = 0.23 to 0.5 for G2-pHPMA20-EGDMA0.8, from 

178 nm to 142 nm, from Φhex = 0.23 to 0.5 for G2-pHPMA50-EGDMA0.8 and from 

146 nm to 116 nm, from Φhex = 0.17 to 0.67 for G2-pHPMA100-EGDMA0.8).  

 

Figure 2.20 The formation of nanoparticles followed via A) DLS of each G2 dendron initiated hyp-

polydendron DP20 (red circles) DP50 (blue triangles) DP100 (green diamonds) and B) SEM images of 

the formation of nanoparticles with G2-pHPMA50-EGDMA0.8 at various hexane solvent fractions; 

i) 0.09, ii) 0.29, iii) 0.50 and iv) 0.80 
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With increasing hexane fraction after this point the Dz increased in size further to 

317 nm, 233 nm and 201 nm for the DP20, DP50 and DP100 hyp-polydendrons, 

respectively. This was thought to be due to the nanoparticles aggregating, and with 

an excess of hexane, the samples would ultimately precipitate. It is worth noting that 

once again the order of size of the nanoparticles formed followed the same trend as 

the EBiB hyp-polymers and G1 hyp-polydendrons, where DP20 > DP50 > DP100.  

SEM images for various hexane fractions corresponding to the G2-pHPMA50-

EGDMA0.8 sample are shown in Fig. 2.20B. Here the lowest hexane fraction studied 

(Φhex = 0.09, Fig. 2.20B i) showed only polymer deposits on the SEM stub due to the 

polymer being solvated by the good solvent, therefore upon drying an uneven 

polymer film was formed. Although self-assembly was observed at Φhex = 0.23, there 

was minimal structure present in the corresponding SEM image (Fig. 2.20B ii), again 

most probably due to the large good solvent fraction present affecting the drying of 

the sample on the SEM stub. At hexane fractions of 0.50 and 0.80 (Fig. 2.20 iii 

and iv) discreet spherical polymeric nanoparticles were observed with diameters that 

closely correlated with the Dz measured by DLS. Analysis of the SEM images for the 

G2-pHPMA50-EGDMA0.8 nanoparticle sample with Φhex = 0.80 was conducted by 

measuring the diameter of nanoparticles from two images, totalling 314 particles, 

see Fig. 2.21.  

 

Figure 2.21 Histogram analysis of nanoparticles via SEM imaging (314 particles from 2 images) 

overlaid with the DLS size distribution by intensity and number traces for G2-pHPMA50-EGDMA0.8, 
Φhex = 0.80 
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The Dz measured by DLS was 234 nm, whilst the Dn was 203 nm. The mean 

diameter calculated from the histogram analysis was 190 nm, which was smaller than 

that measured via DLS most likely due to the SEM analysis performed on dry 

particles whilst DLS measurements occur when the particles are in the organic 

solvent mixture.  

This mechanism of hyp-polymer or hyp-polydendron self-assembly is outlined 

graphically in Fig. 2.22, and has only been observed when using the branched 

polymers. When the linear polymers and linear-dendritic polymers are subjected to 

the same treatment the results were quite different. 

 

 

Figure 2.22 Proposed mechanism of nanoparticle formation in organic solvent mixtures
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Table 2.2 Dz and PdI measurements by DLS corresponding to Fig 2.16, Fig. 2.18 and Fig. 2.20 of each hyp-polymer or hyp-polydendron at various hexane fractions 

Fraction 

of 

hexane 

present 

(Φhex) 

EBiB (Fig. 2.16) G1 (Fig. 2.18) G2 (Fig. 2.20) 

pHPMA20-

EGDMA0.80 

pHPMA50-

EGDMA0.80 

pHPMA100-

EGDMA0.80 

pHPMA20-

EGDMA0.80 

pHPMA50-

EGDMA0.80 

pHPMA100-

EGDMA0.80 

pHPMA20-

EGDMA0.80 

pHPMA50-

EGDMA0.80 

pHPMA100-

EGDMA0.80 

Dz 

(nm) 
PdI 

Dz 

(nm) 
PdI 

Dz 

(nm) 
PdI 

Dz 

(nm) 
PdI 

Dz 

(nm) 
PdI 

Dz 

(nm) 
PdI 

Dz 

(nm) 
PdI 

Dz 

(nm) 
PdI 

Dz 

(nm) 
PdI 

0 76 0.493 42 0.396 - - 35 0.271 46 0.369 - - 59 0.404 37 0.382 64 0.400 

0.09 75 0.469 - - - - 32 0.309 42 0.361 - - 54 0.384 35 0.371 58 0.426 

0.17 74 0.408 181 0.055 160 0.02 30 0.294 40 0.325 180 0.227 53 0.367 33 0.349 146 0.217 

0.23 196 0.003 148 0.005 131 0.036 204 0.094 163 0.021 146 0.031 209 0.043 178 0.018 140 0.020 

0.29 161 0.008 137 0.014 112 0.066 169 0.012 141 0.027 140 0.049 166 0.014 155 0.017 129 0.031 

0.33 146 0.018 135 0.038 118 0.083 173 0.032 149 0.075 135 0.084 156 0.019 155 0.036 135 0.031 

0.43 133 0.038 134 0.058 111 0.091 168 0.067 140 0.056 129 0.054 157 0.027 152 0.050 127 0.068 

0.50 132 0.037 129 0.043 - - 167 0.016 136 0.072 135 0.093 150 0.057 142 0.056 123 0.058 

0.67 207 0.016 128 0.037 114 0.043 172 0.073 133 0.060 129 0.055 385 0.014 145 0.054 116 0.061 

0.75 * * 151 0.020 147 0.011 176 0.010 161 0.033 171 0.052 211 0.033 170 0.007 153 0.026 

0.80 * * 195 0.019 183 0.019 210 0.025 201 0.013 190 0.014 317 0.077 233 0.097 201 0.039 

Sample not suitable for measurement by DLS due to – lack of scattering or *sample precipitated. Dz = z-average diameter 
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2.5.2 Nanoparticle formation utilising linear polymers and linear-dendritic 

polymers 

DLS investigations of the self-assembly of the linear and linear-dendritic polymer 

analogues of those discussed in section 2.5.1 showed that they did not follow the 

same trend. In fact it was difficult to find a trend which was applicable to all the 

linear polymers when they are subjected to the same treatment (dissolving the 

polymers in acetone (5 mg/mL) and adding various volumes of hexane in an attempt 

to induce self-assembly). They required a larger fraction of anti-solvent to be added 

before any form of nanoprecipitation was observed and thus be measured by DLS. 

Once formed these particles were larger in size (between 500 - 900 nm in diameter, 

Dz) and had broader polydispersities (approx. 0.5).  

The DLS measurements of nanoparticles formed by addition of hexane to polymers 

dissolved in acetone for each of the EBiB initiated linear polymers is shown in 

Fig. 2.23A and Table 2.3. The DLS measurements at hexane fractions lower than 

Φhex = 0.29 all failed on the DLS quality control criteria due to very high 

polydispersity, or the linear chains which are solvated were too small to be detected 

accurately. Once enough hexane had been added, nanoprecipitates were formed. This 

was Φhex = 0.5 for EBiB-pHPMA20 (719 nm), Φhex = 0.33 for EBiB-pHPMA50 

(352 nm) and Φhex = 0.29 for EBiB-pHPMA100 (447 nm), which were larger in size 

than the branched equivalents (see section 2.5.1). The nanoparticles formed were 

between 350–720 nm in Dz and their formation did not appear to follow a trend. The 

DP20 polymer sample decreased in size with increasing hexane fraction (to 522 nm at 

Φhex = 0.80), whilst the DP50 increased in size up to Φhex = 0.50 where it reached a 

plateau to Φhex = 0.80 (568 nm). The DP100 appeared to vary with increasing hexane 

fraction but is the same size at Φhex = 0.80 (448 nm) as at Φhex = 0.29 (447 nm). 

The G1 dendron initiated linear-dendritic polymers (Fig. 2.23B and Table 2.4) also 

formed nanoparticles at hexane fractions above Φhex = 0.29. The G1-pHPMA20 

sample did not give a reliable DLS measurement until Φhex = 0.50 (827 nm), G1-

pHPMA50 formed nanoparticles at Φhex = 0.33 (408 nm) and the G1-pHPMA100 at 

Φhex = 0.29 (660 nm). The increasing hexane fractions appears to have similar effects 

upon G1-pHPMA20 and G1-pHPMA50 whereby with increasing hexane fraction, the 

nanoprecipitates increased in size then subsequently decreased in size. G1-pHPMA20 
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reached a maximum Dz at Φhex = 0.67 of 1066 nm, then decreased to 761 nm at 

Φhex = 0.80. G1-pHPMA50 reached a maximum Dz at Φhex = 0.50 of 977 nm, then 

decreased to 394 nm at Φhex = 0.80. This trend was not observed with the G1-

pHPMA100 sample which instead varied slightly with increasing hexane fraction and 

at Φhex = 0.80 was 552 nm.  

 

Figure 2.23 Solvent manipulation as followed by DLS of A) EBiB linear polymers B) G1 linear-

dendritic polymers, C) G2 linear-dendritic polymers. DP20 (red open circles), DP50 (blue open 

triangles) DP100 (green open diamonds). D) SEM images of nanoparticle samples with a hexane 

fraction Φhex = 0.80 for i) EBiB-pHPMA50, ii) G1-pHPMA50, iii) G2-pHPMA50 and iv) G1-pHPMA100 

 

Fig. 2.23C and Table 2.5 show the resulting DLS measurements for the same 

experiment using the G2 dendron initiated linear dendritic polymers. In this case 

again the DLS readings were not reliable until solvent fractions of Φhex = 0.43 was 

reached for G2-pHPMA20 (255 nm) and Φhex = 0.29 for G2-pHPMA50 (454 nm) and 

G2-pHPMA100 (504 nm). The DP20 linear-dendritic polymer samples increased in Dz 

between solvent fractions 0.43 - 0.67 (from 255 to 581 nm) then, at higher hexane 

fractions, precipitate was observed in the sample, which therefore could not be 

measured by DLS as the result would be inaccurate due to the sedimentation of 
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material. The G2-pHPMA50 polymer sample followed a similar trend as that 

observed for G1-pHPMA20 and G1-pHPMA50, where the nanoparticles formed 

initially increased in size up to 1001 nm (Φhex = 0.33) then decreased to 493 nm 

(Φhex = 0.67). For this polymer at a hexane fraction of 0.75 the DLS measurement 

appeared reliable, however, the size obtained (1754 nm) is usually not reliably 

measured using this technique and with increasing the hexane fraction again to 0.80 

the sample precipitated, therefore the size measured at Φhex = 0.75 must have been at 

the onset of aggregation. The G2-pHPMA100 linear-dendritic polymer remained 

around the same Dz throughout the experiment and the final size at Φhex = 0.80 was 

525 nm.  

In each case the DP20 polymers required a much higher hexane fraction (Φhex = 0.5 

for the EBiB-pHPMA20 and G1-pHPMA20 polymers and Φhex = 0.43 for the G2-

pHPMA20 sample). The DP50 polymers required a lower hexane fraction to induce 

self-assembly; Φhex = 0.33 for the EBiB-pHPMA50 and G1-pHPMA50 polymers and 

Φhex = 0.29 for the G2-pHPMA50 sample, and then all the DP100 required a hexane 

fraction of 0.29 to self-assemble.  

SEM images of some linear samples are shown in Fig. 2.23D; i) EBiB-pHPMA50, ii) 

G1-pHPMA50, iii) G1-pHPMA100 and iv) G2-pHPMA50. They show that spherical 

discreet particles are formed, although the sizes observed by SEM would vary 

somewhat with those observed by DLS. This could be due to the linear 

nanoprecipitates aggregating as the solvent evaporated when being prepared on the 

SEM stub.  

 

Table 2.3 Dz and PdI measurements by DLS corresponding to Fig. 2.23A for EBiB linear polymers 

Fraction  

of hexane  

added (Φhex) 

EBiB-pHPMA20 
EBiB-

pHPMA50 
EBiB-pHPMA100 

Dz (nm) PdI Dz (nm) PdI Dz (nm) PdI 

0.29 - - - - 447 0.224 

0.33 - - 352 0.210 534 0.331 

0.43 - - 529 0.173 361 0.117 

0.50 719 0.519 590 0.075 443 0.051 

0.67 665 0.095 559 0.046 416 0.053 

0.75 622 0.139 566 0.091 405 0.067 

0.80 522 0.076 568 0.076 448 0.103 
Dz = z-average diameter 
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Table 2.4 Dz and PdI measurements by DLS corresponding to Fig. 2.23B for G1 linear-dendritic 

polymers 

Fraction  

of hexane  

added (Φhex) 

G1-pHPMA20 G1-pHPMA50 G1-pHPMA100 

Dz (nm) PdI Dz (nm) PdI Dz (nm) PdI 

0.29 - - - - 660 0.511 

0.33 - - 408 0.212 517 0.258 

0.43 - - 658 0.25 618 0.116 

0.50 827 0.226 977 0.228 560 0.073 

0.67 1066 0.203 581 0.148 543 0.11 

0.75 814 0.186 460 0.136 522 0.09 

0.80 761 0.167 394 0.048 552 0.207 
Dz = z-average diameter 

 

 

Table 2.5 Dz and PdI measurements by DLS corresponding to Fig. 2.23C for G2 linear-dendritic 

polymers 

Fraction  

of hexane  

added (Φhex) 

G2-pHPMA20 G2-pHPMA50 G2-pHPMA100 

Dz (nm) PdI Dz (nm) PdI Dz (nm) PdI 

0.29 - - 454 0.203 504 0.315 

0.33 - - 1001 0.438 575 0.148 

0.43 255 0.233 540 0.119 490 0.052 

0.50 451 0.401 666 0.165 525 0.083 

0.67 581 0.138 493 0.104 592 0.208 

0.75 - - 1754
a
 0.294 489 0.077 

0.80 - - - - 525 0.179 
a
Too high for accurate measurement by DLS. Dz = z-average diameter 

 

 

2.5.3 Comparison of nanoparticle formation of linear vs. branched  

A comparison of the linear and branched nanoparticles formed via this organic 

solvent nanoprecipitation approach showed a huge difference in the mechanism of 

formation and the characteristics of the nanoparticles. Whilst all the branched 

samples follow the same trend with addition of an anti-solvent to the polymer 

dissolved in a good solvent, the behaviour of the linear equivalents was quite erratic. 

These trends have been discussed in detail previously (see sections 2.5.1 and 2.5.2), 

however, it is the differences between the linear and branched samples which were 

most interesting. Fig. 2.24 exemplifies the huge difference in nanoparticles size and 

shows the DP100 branched and linear polymers plotted on the same graph. The linear 
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equivalents were approximately 3 - 4 times larger than the branched polymers and 

generally had higher polydispersities.  

Variables which may affect the sizes of the resulting nanoparticles such as the rate of 

anti-solvent addition, the temperature and the age of the sample were investigated. 

The rate of hexane addition of 0.5 mL/min was chosen, a temperature difference 

between 16 and 20 °C had no significant effects on nanoparticle sizes or PdIs. The 

only factor affecting the samples was the age of the sample; the nanoparticles 

appeared to precipitate over time. This was probably due to solvent evaporation even 

though the samples were sealed, as the acetone evaporates the polymers aggregate 

more, this is observed by the increase of nanoparticle size and eventually the 

precipitation of the polymers. 

2.5.4 Controlling nanoparticle size 

To determine whether particle size could be tailored to a certain degree, 

nanoparticles of G1-pHPMA50-EGDMA0.8 were studied by DLS at various initial 

concentrations; 0.5, 5.0 and 20 mg/mL. Fig. 2.25 shows that at each concentration 

studied the same trend was observed, as previously discussed, suggesting that the 

mechanism of nanoparticle formation remains the same.  

Increasing the initial concentration of polymer dissolved in acetone increased the 

subsequent size of the nanoparticles formed. This suggests the self-assembly of 

numerous branched molecules into a nanoparticle, as at higher concentrations, more 

molecules are available in a confined area to form the nanoparticle. In the more 

dilute system there were fewer molecules available in the same area to form the 

nanoparticle, resulting in smaller sizes. The Dz and PdI values for these samples are 

shown in the Appendix, Table A1.  
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Figure 2.24 DLS measurements of nanoparticles formed using DP100 polymers, highlighting the 

difference between linear polymers (open symbols) and branched polymers (closed symbols) 

 

 

Figure 2.25 Formation of nanoparticles with varying the initial concentration of G1-pHPMA50-

EGDMA0.8 in acetone at 20 mg/mL (red circles), 5.0 mg/mL (blue triangles) and 0.5 mg/mL (green 

diamonds) 
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2.5.5 Dilution Experiments 

To understand the formation of the nanoparticles dilution experiments were 

performed. The first, where a nanoparticle formulation was diluted with acetone (a 

good solvent for both the initiator surface groups and the polymer core) and the 

second was the dilution of a nanoparticle formulation without altering the solvent 

system. 

 

2.5.5.1 Dilution with good solvent, acetone 

The nanoparticle formulation used for this dilution experiment was G1-pHPMA50-

EGDMA0.8 nanoparticles at Φhex = 0.67 with an initial concentration of 5 mg/mL. 

Fig. 2.26 shows the DLS measurements of the formation of the corresponding 

nanoparticles (red dotted line) and with increasing the solvent fraction of acetone 

present (blue dotted line). With addition of acetone the nanoparticles become slightly 

more solvated by a slight increase in size at the anti-solvent fraction of Φhex = 0.5, 

then decreased in size due to complete solvation, returning to their original state of 

freely dissolved molecules. The Dz and PdI values corresponding to Fig. 2.26 are 

shown in the Appendix in Table A2.  

 

Figure 2.26 Formation of G1-pHPMA50-EGDMA0.8 nanoparticles (red up triangles) and dilution with 

good solvent, acetone (blue down triangles). Trend lines added for ease of viewing only. 
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2.5.5.2 Dilution with the same solvent system 

To investigate the nanoparticles’ stability, a nanoparticle sample of  G1-pHPMA50-

EGDMA0.80 at an initial concentration 5.0 mg/mL and solvent fraction of hexane 

Φhex = 0.80 was diluted with the same solvent system (Φhex = 0.8, Φace = 0.20). 

Fig. 2.27 shows with increasing dilution the size of the nanoparticles is stable until 

the sample is too dilute for accurate DLS measurement. Therefore once formed the 

nanoparticles are stable to dilution. The Dz and PdI values corresponding to Fig. 2.27 

are shown in Table A3, in the Appendix.  

 

 

Figure 2.27 Dilution experiment of G1-pHPMA50-EGDMA0.8 nanoparticles at a hexane fraction of 

0.80 and initial concentration of 5 mg/mL, diluting with the same solvent system. Dz (red triangles) 

and PdI (blue circles) 

 

2.6 Aqueous nanoprecipitation of hydrophobic polymers 

The overall aim of the project was to produce aqueous nanoparticles for drug 

delivery, therefore, even though at this stage of the project each polymer synthesised 

was hydrophobic, they were nanoprecipitated into water, firstly to see if they would 

produce stable nanoparticles, and secondly, if so, to study their properties. 

Nanoprecipitation of hydrophobic polymers into water has been reported and is a 

facile method of producing polymeric nanoparticles.
26-28

 The polymers were 

dissolved in a good solvent, tetrahydrofuran (THF), at two different initial 
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concentrations (5 and 10 mg/mL) and underwent rapid addition to water.
11

 The THF 

was allowed to evaporate overnight to give a final concentration of polymer in water. 

The final concentration could be altered by either changing the initial polymer 

concentration within the good solvent, changing the volume of polymer/THF added 

or by changing the volume of water used. The relationship between initial 

concentration, final concentration and dilution factor can be described by equation 

(1). Throughout this thesis the initial and final concentration of samples prepared by 

aqueous nanoprecipitation will be described as ix-fy, where x represents the initial 

concentration and y the final concentration in mg/mL, whilst the dilution factor will 

be referred to as df. 

 

initial concentration (ix) x dilution factor (df) = final concentration (fy)  (1) 

    

2.6.1 Aqueous nanoprecipitations with hyp-polymers and hyp-polydendrons 

The aqueous nanoprecipitation process is represented graphically in Fig. 2.28 below 

with a hyp-polydendron depicted. Table 2.6 highlights the different concentrations 

and dilution factors used and the resulting nanoparticle Dz, PdI and zeta potential 

values after evaporation of the volatile good solvent (THF). The zeta potential is a 

measure of the surface charge of the particles and is quoted in mV. 

 

 

Figure 2.28 Graphical representation of aqueous nanoparticle formation via a nanoprecipitation 

approach 
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Table 2.6 Dz, PdI and zeta potential measurements for all hyp-polymer and hyp-polydendron aqueous 

nanoprecipitations at various initial and final concentrations  

Nanoprecipitation conditions DP20 DP50 DP100 

 
ix 

(mg/mL) 
fy 

(mg/mL) 
df 

Dz 

(nm) 
PdI 

Zeta 

potential 

(mV) 

Dz 

(nm) 
PdI 

Zeta 

potential 

(mV) 

Dz 

(nm) 
PdI 

Zeta 

potential 

(mV) 

EBiB 

10 2 0.2 91 0.127 -51.7 83 0.111 -60.6 101 0.121 -43.2 

10 0.1 0.01 81 0.135 -38.5 76 0.114 -34.8 103 0.112 -28.1 

5 1 0.2 71 0.278 -71.6 66 0.190 -57.0 78 0.125 -44.5 

5 0.05 0.01 65 0.182 -31.3 62 0.216 -30.2 79 0.140 -23.7 

      
 

  
 

  
 

G1  

10 2 0.2 87 0.108 -61.3 86 0.110 -42.1 96 0.079 -47.3 

10 0.1 0.01 112 0.112 -47.4 91 0.101 -37.8 110 0.106 -41.0 

5 1 0.2 62 0.117 -59.6 64 0.130 -64.5 70 0.070 -54.3 

5 0.05 0.01 69 0.108 -37.1 67 0.160 -24.6 73 0.114 -26.1 

      
 

  
 

  
 

G2  

10 2 0.2 124 0.080 -46.4 106 0.083 -38.0 109 0.113 -50.2 

10 0.1 0.01 128 0.086 -46.1 134 0.064 -34.3 111 0.127 -41.3 

5 1 0.2 81 0.076 -42.6 81 0.083 -52.5 81 0.119 -62.1 

5 0.05 0.01 82 0.084 -30.0 93 0.071 -37.6 83 0.172 -31.0 

Dz = z-average diameter, ix = initial concentration, fy = final concentration, df = dilution factor 

 

The data in Table 2.6 shows that when the initial concentration was increased in 

conjunction with a constant dilution factor (df), hence an increase in the final 

concentration, the resultant nanoparticle size increased. This effect is evident when 

analysing the size distribution by intensity traces for each sample. Fig. 2.29A, B and 

C show these traces for the nanoparticle dispersions formulated using polymers 

EBiB-pHPMA20-EGDMA0.8, EBiB-pHPMA50-EGDMA0.8 and EBiB-pHPMA100-

EGDMA0.8 respectively. When the initial concentration was increased but the df 

remains constant (e.g. i10-f2 and i5-f1), the size of the nanoparticle formed was 

increased. In Fig. 2.29A, B and C those sample pairs which show this are i10-f2 vs. i5-

f1 (black solid line vs. blue dotted line) and i10-f0.1 vs. i5-f0.05 (red dashed line vs. 

green long-dashed line). Compared to when the same initial concentration but 

different dilution factors were used (e.g. i10-f2 and i10-f0.1), the sizes observed were 

very similar in this case, even though the final concentration produced varied by 20-

fold. The samples which matched this trend in Fig. 2.29A, B and C were i10-f2 and 
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i10-f0.1 (black solid line vs. red dashed line) and i5-f1 and i5-f0.05 (blue dotted line vs. 

green long-dashed line).  

 

 

Figure 2.29 DLS size distribution by intensity traces of aqueous nanoparticle dispersions of; A) 

EBiB-pHPMA20-EGDMA0.8, B) EBiB-pHPMA50-EGDMA0.8 and C) EBiB-pHPMA100-EGDMA0.8 

with various initial and final concentrations, indicated in the legends, and D) SEM image of the EBiB-

pHPMA50-EGDMA0.8 (i5-f1) diluted to 0.1 mg/mL for imaging 

 

These described trends were also observed with the G1 dendron (Fig. 2.30) and G2 

dendron (Fig. 2.31) initiated hyp-polydendrons to varying degrees. For example, 

nanoparticle dispersions formed using G1-pHPMA50-EGDMA0.8 (Fig. 2.30B, 

Table 2.6)  have very similar sizes for the same initial concentrations; i10-f2 and i10-

f0.1 (86 and 91 nm) and i5-f1 and i5-f0.05 samples (64 and 67 nm). Whilst the samples 

which have the same dilution factor but different initial and final concentrations (i10-

f2 and i5-f1; 86 and 64 nm, and i10-f0.1 and i5-f0.05; 91 and 67 nm) show that with a 

higher initial concentration the resulting nanoparticle Dz was larger.  
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Figure 2.30 DLS size distribution by intensity traces of aqueous nanoparticle dispersions of; A) G1-

pHPMA20-EGDMA0.8, B) G1-pHPMA50-EGDMA0.8 and C) G1-pHPMA100-EGDMA0.8 with various 

initial and final concentrations, indicated in the legends, and D) SEM image of the G1-pHPMA50-

EGDMA0.8 (i5-f1) diluted to 0.1 mg/mL for imaging  

 

Again these trends are well exemplified by both G2-pHPMA20-EGDMA0.8 (Fig. 

2.31A, Table 2.6) and G2-pHPMA100-EGDMA0.8 (Fig. 2.31C, Table 2.6). The G2-

pHPMA50-EGDMA0.8 nanoparticles (Fig. 2.31B, Table 2.6) produced show an 

increase in size with increasing the initial concentration and maintaining df, however, 

when using the same initial concentration and different df the resulting particle also 

vary in size.  

The presence of spherical nanoparticles was confirmed by the SEM images of 

nanoparticles formed using an initial concentration of 5 mg/mL in THF and a final 

concentration of 1 mg/mL in water with; EBiB-pHPMA50-EGDMA0.8 (Fig. 2.29D), 

G1-pHPMA50-EGDMA0.8 (Fig. 2.30D) and G2-pHPMA50-EGDMA0.8 (Fig. 2.31D). 
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Figure 2.31 DLS size distribution by intensity traces of aqueous nanoparticle dispersions of; A) G2-

pHPMA20-EGDMA0.8, B) G2-pHPMA50-EGDMA0.8 and C) G2-pHPMA100-EGDMA0.8 with various 

initial and final concentrations, indicated in the legends, and D) SEM image of the G2-pHPMA50-

EGDMA0.8 (i5-f1) diluted to 0.1 mg/mL for imaging 

 

2.6.2 Aqueous nanoprecipitations with linear and linear-dendritic polymers  

The linear and linear-dendritic polymers were subjected to a similar aqueous 

nanoprecipitation approach using the EBiB-pHPMA50, G1-pHPMA50 and G2-

pHPMA50. DLS measurements of the linear nanoprecipitates are shown in Table 2.7, 

whilst the DLS size by intensity plots are shown in Fig. 2.32A, B and C. 

Table 2.7 DLS measurements for linear DP50 polymers  

Sample name 

Nanoprecipitation conditions 

Dz (nm) PdI 
Zeta potential 

(mV) ix  

(mg/mL) 
fy  

(mg/mL) 
df 

EBiB-pHPMA50 
5 1 0.2 331 0.166 -56.7 
5 0.05 0.01 186 0.077 -50.2 

G1-pHPMA50 
5 1 0.2 228 0.147 -62.6 
5 0.05 0.01 193 0.156 -57 

G2-pHPMA50 
5 1 0.2 142 0.107 -62 
5 0.05 0.01 138 0.123 -54.6 

Dz = z-average diameter, ix = initial concentration, fy = final concentration, df = dilution factor 
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The nanoprecipitates formed from the equivalent linear polymers to the previously 

discussed branched polymers are generally larger in size. For example, the i5-f1 

sample for EBiB-pHPMA50 was 331 nm in diameter, whilst the EBiB-pHPMA50-

EGDMA0.8 had a diameter of 66 nm.  The G1-pHPMA50 and G1-pHPMA50-

EGDMA0.8 nanoprecipitates formed were 228 and 64 nm in diameter, respectively, 

with the i5-f1 samples. This is also true for the G2 dendron initiated polymers; G2-

pHPMA50 had a diameter of 142 nm and the G1-pHPMA50-EGDMA0.8 equivalent 

had a diameter of 81 nm.  

Fig. 2.32D, E and F show SEM images of the EBiB-pHPMA50, G1-pHPMA50 and 

G2-pHPMA50, for each i5-f1 sample which show spherical particles that correlate 

with the Dz measured by DLS.  

 

Figure 2.32 DLS size distribution by intensity traces of aqueous nanoparticle dispersions (i5-f1) and 

SEM images of; EBiB-pHPMA50 (A and D), G1-pHPMA50 (B and E) and G2-pHPMA50 (C and F) 
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2.6.3 Colloidal stability of aqueous nanoparticles 

The nanoprecipitates produced in this chapter were originally not expected to be 

stable when dispersed in water due to the fact that every component of the polymeric 

materials were hydrophobic in nature. The stability of the particles was studied over 

time by storing the samples at ambient temperature out of the light. Samples 

prepared at i5-f1 were used for the study and a separate batch was prepared using the 

linear and branched DP50 polymers (EBiB-pHPMA50, EBiB-pHPMA50-EGDMA0.8, 

G1-pHPMA50, G1-pHPMA50-EGDMA0.8, G2-pHPMA50 and G2-pHPMA50-

EGDMA0.8). Table 2.8 shows the Dz and PdIs for the original sample and repeat 

measurement after 23 months. Fig. 2.33 shows the DLS size distribution by intensity 

traces for the original measurement and repeat measurement after 23 months.  

 

Table 2.8 Nanoprecipitation samples prepared (i5-f1) for stability over time study with EBiB, G1 and 

G2 initiated linear and branched DP50 polymers 

Sample name 

Original 

measurement 

+23 months 

Dz (nm) PdI Dz (nm) PdI 

EBiB-pHPMA50 844 0.238 - - 

G1-pHPMA50 562 0.278 612 0.517 

G2-pHPMA50 315 0.322 - - 

EBiB-pHPMA50-EGDMA0.8 68 0.125 88 0.438 

G1-pHPMA50-EGDMA0.8 84 0.063 83 0.105 

G2-pHPMA50-EGDMA0.8 63 0.076 72 0.251 

- Not suitable for measurement by DLS due to precipitation, Dz = z-average diameter 

 

It is evident from these measurements that the hyp-polymer and hyp-polydendrons 

were much more stable over time than their linear polymer equivalents. Two of the 

linear nanoparticle samples had fully precipitated; EBiB-pHPMA50 and G2-

pHPMA50. The only linear sample which could be measured by DLS after 23 months 

was the G1-pHPMA50 sample (see. Fig. 2.33A), which had increased in size from 

562 nm to 612 nm and the PdI had almost doubled, from 0.278 to 0.517. All of the 

branched polymer samples were suitable for DLS measurement and had not 

increased in size significantly over 23 months. The EBiB-pHPMA50-EGDMA0.8 had 

increased the most from 68 to 88 nm, with an increase in PdI from 0.125 to 0.438. 

This was attributed to aggregation of the nanoparticles, which is evident from the 

two new populations present in the size distribution by intensity traces (see 
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Fig. 2.33B). The G1-pHPMA50-EGDMA0.8 sample remained the same size over 

23 months of storage and the PdI only increased slightly from 0.063 to 0.105, see 

Fig. 2.33C for the DLS size distribution by intensity traces. The G2-pHPMA50-

EGDMA0.8 nanoparticle dispersion had only increased from 63 nm to 72 nm, 

however an increase in PdI from 0.076 to 0.251 was observed and an extra 

population was observed in the size distribution by intensity trace after 23 months 

indicating some aggregation had occurred.  

 

Figure 2.33 DLS size by intensity traces for A) G1-pHPMA50, B) EBiB-pHPMA50-EGDMA0.8, C) 

G1-pHPMA50-EGDMA0.8 and D) G2-pHPMA50-EGDMA0.8 original measurements and 

measurements after 23 months 

Although the nanoparticles formed using the hyp-polymer and hyp-polydendron 

remained stable over time, the zeta potentials measured for each sample were very 

negative (< -20 mV) which indicates that the nanoparticles were charge stabilised. 

The negative charges at the surface of each particle repel one another therefore 

preventing flocculation or aggregation which can lead to sedimentation and 

precipitation. Charge stabilised colloids can easily be de-stabilised by addition of 

electrolytes, such as NaCl, due to the screening of colloidal charges by the ions 
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present.
29

 This screening of charges stops the negatively charged particles from 

repelling one another and they can aggregate and ultimately precipitate. Therefore it 

is desirable to produce sterically stabilised nanoparticles when designing them for 

use in biological systems due to the presence of various salts present in the human 

body.
30

  

2.7 Conclusion 

The synthesis of dendron initiators for ATRP was achieved, with successful 

synthesis of linear and branched vinyl polymers using the monomer HPMA and 

divinyl monomer EGDMA. These polymerisations proceeded via 1
st
 order kinetics, 

as expected, and produced monomodal distributions of polymer chains when a linear 

polymer was targeted and a much more broad disperse polymer species when the 

divinyl monomer was incorporated and a branched polymer was targeted. The 

resulting branched polymers and hyp-polydendrons were exposed to two different 

nanoprecipitation approaches to produce nanoparticles. Solvent manipulation to form 

nanoparticles in mixtures of good and anti-solvents (acetone and hexane) showed a 

huge difference in the formation of particles when comparing the hyp-polymers and 

hyp-polydendrons to their linear polymer equivalents. When aqueous 

nanoprecipitation was conducted, surprisingly these hydrophobic polymers produced 

nanoparticles which were stable over time due to charge stabilisation. The hyp-

polymers and hyp-polydendrons were much more stable over time than their linear 

polymer equivalents.  
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3.1  Introduction to Chapter 3 

 

To further investigate the scope of the novel hyp-polydendron material class, a 

mixed initiator approach was utilised. This would allow for a new functionality to be 

incorporated with the dendron functionality. Varying the ratio of two different 

initiators (A and B) for a branched polymerisation via ATRP should generate 

macromolecules which contain chain ends containing either functionality A or 

functionality B, tethered by the branching unit between linear chains, to produce a 

high molecular weight branched polymer with multi-functional chain ends.   

In this case it was thought that facile incorporation of a poly(ethylene glycol) (PEG) 

chain could be exploited by using a PEG macroinitiator for the polymerisation of 

branched pHPMA. To maintain the dendron functionality of the branched materials 

(termed hyp-polydendrons, discussed in Chapter 2) the G2 dendron initiator and the 

PEG macroinitiator were mixed in a statistical manner in the polymerisation mixture. 

A range of hyp-polydendrons were synthesised with varying ratios of G2 dendron 

initiator:PEG macroinitiator, (100:0, 90:10, 75:25, 50:50, 25:75, 10:90 and 0:100). A 

graphical representation of this type of mixed initiator hyp-polydendron materials is 

shown in Fig. 3.1. When a PEG macroinitiator is present the branched polymers 

have been described as hyp-block copolymers. 

 

Figure 3.1 Graphical representation of the type of hyp-polydendron materials targeted in this Chapter 



CHAPTER 3 

104 

 

 

3.2  Initiator synthesis 

3.2.1 G2 dendron initiator 

The synthesis of the G2 dendron initiator, 6, is highlighted below in Scheme 3.1. It is 

discussed in more detail in Chapter 2 section 2.2.2. 

 

Scheme 3.1 Synthesis of the G2 DBOP dendron initiator 

 

3.2.2 750PEG macroinitiator  

The 750PEG macroinitiator, 8, was synthesised as previously reported
1
 from 

monomethoxy PEG with an average molecular weight of 750 gmol
-1 

via an 

esterification reaction with α-bromoisobutyryl bromide, shown below in Scheme 3.2.  

 

Scheme 3.2 Synthesis of 750PEG initiator 
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The formation of 8 could be observed by 
1
H NMR spectroscopy, shown in Fig. 3.2. 

The ratio of the integration of peaks corresponding to protons a and h (Fig. 3.2) fit 

the proposed structure of 8 being 3:6. The 
13

C NMR spectrum for the 750PEG 

initiator shown in Fig. 3.3, also indicates the correct structure due to the appearance 

of new peaks at 174, 57 and 30 ppm which correspond to carbons C8, C9 and C10 

respectively, which represent the new functional group added to the PEG chain. The 

matrix-assisted laser desorption/ionisation time of flight (MALDI-TOF) mass 

spectrometry analysis of the 750PEG initiator can be seen in the appendices 

(Appendix, Fig. A14). 

 

Figure 3.2 
1
H NMR (D2O, 400 MHz) of 750PEG OH and 750PEG initiator, theoretical n = 14 

 

Figure 3.3 
13

C NMR (D2O, 100 MHz) of 750PEG initiator, theoretical n = 14 



CHAPTER 3 

106 

 

3.3  Polymer synthesis 

The G2 dendron initiator and 750PEG initiator were used to polymerise linear and 

branched (through the introduction of EGDMA) pHPMA via ATRP, targeting a DPn 

of 50 monomer units. The use of the G2 dendron initiator had already been 

extensively studied via kinetic experiments for linear and branched polymerisation, 

see Chapter 2 (section 2.3 and 2.4), and the use of PEG macroinitiators is well 

documented.
2-5

 Therefore, combining the two initiators within the same 

polymerisation was studied to see the various effects that the different chain end 

functionality may have. Ratios of the G2:750PEG initiators were as follows; 100:0, 

90:10, 75:25, 50:50, 25:75, 10:90 and 0:100 %. Obviously when mixing the initiators 

for a linear polymerisation some chains will bear the G2 dendron and some the 

750PEG functionality, this study was aimed at the branched polymerisation, where 

due to the mechanism of branching in ATRP, the two different chain end 

functionalities are likely to be statistically incorporated into the same branched 

macromolecule.  

3.3.1 Linear polymers 

Linear polymers were synthesised using either 100 % G2 dendron initiator or 100 % 

750PEG initiator and the kinetics of these two polymerisations were also studied. To 

confirm a lack of complications when conducting ATRP in the presence of both 

initiators, a linear polymerisation was conducted using the 50:50 G2:750PEG 

initiator mixture. If dramatically different initiation or polymerisation rates were 

evident there would be two distinct populations present when the samples were 

analysed by GPC. The molecular weights determined for the samples derived from 

100:0, 50:50 and 0:100 G2:750PEG initiators are shown in Table 3.1 and the RI 

GPC chromatograms are shown in Fig. 3.4.  

Table 3.1 Linear polymers; molecular weights and dispersity data  

Sample name 

Initiator (%) GPC Data (THF) 

G2 
dendron 

750PEG 
Mn 

(gmol
-1

) 

Mw 

(gmol
-1

) 
Ð 

G2-pHPMA50 100 0 15 300 20 700 1.35 

G2:750PEG 50:50-pHPMA50 50 50 13 000 16 900 1.30 

750PEG-pHPMA50 0 100 11 700 15 900 1.37 

 



CHAPTER 3 

107 

 

Interestingly, the molecular weights (see Table 3.1) of these linear polymers 

appeared to be increasing when more G2 dendron initiator is present. This would 

lead to the conclusion that the 750PEG initiator has higher initiator efficiency than 

the G2 dendron initiator, therefore allowing more polymer chains to grow and 

decreasing the overall average molecular weight of the sample. The G2 dendron 

initiator, with a lower initiator efficiency, appears to initiate fewer polymer chains 

during the polymerisation and therefore, at any given conversion, the molecular 

weights will be higher than an initiator with a higher initiating efficiency. The mixed 

initiator polymer sample has a molecular weight between the two single initiator 

polymerisations, and this can be easily seen in the GPC chromatogram overlay in 

Fig. 3.4. 

 

Figure 3.4 Refractive index GPC chromatogram overlay of 750PEG-pHPMA50, G2:750PEG 50:50-

pHPMA50 and G2-pHPMA50 

 

The 
1
H NMR spectrum for the G2-pHPMA50 linear-dendritic polymer is shown in 

Chapter 2, Fig. 2.10, with major peaks assigned. The 750PEG-pHPMA50 
1
H NMR 

spectrum is shown in the Appendix, Fig. A15.  

3.3.2 750PEG initiator kinetic experiments 

The polymerisation kinetics studies of linear and branched DP50 polymerisations 

initiated with 750PEG were conducted at 30 °C in methanol with a catalytic system 

of CuCl:bpy (1:2),
6, 7

 and a monomer concentration of 50 wt% with respect to the 

solvent. First order kinetics were observed for both the 750PEG-pHPMA50 and 

750PEG-pHPMA50-EGDMA0.8 polymerisations due to the linear semi-logarithmic 
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plot (green triangles) in Fig. 3.5A and C, respectively. High conversions (> 95 %) 

were achieved within 6 hours for the linear, and 8 hours for the branched, 

polymerisation. The molecular weight (Mn) evolution with conversion occurs 

linearly for the linear polymerisation (Fig. 3.5B), which was expected, and the 

dispersities (Ð) remain below 1.4 throughout the polymerisation, decreasing slightly 

with increasing conversion (from 1.42 at 29.9 % conversion to 1.29 at 98.1 % 

conversion). The evolution of molecular weight is considerably different when 

compared to a branched polymerisation (Fig. 3.5D), which includes a divinyl 

monomer in the polymerisation (EGDMA), whereby the Mn and Mw increase almost 

linearly up to about 60-70% conversion then, due to the intermolecular coupling of 

polymer chains, the Mw increases steeply and the Mn also increases. This occurs at 

high conversions as the majority of the monomer has been consumed, and the 

relative concentration of pendant vinyl groups (with respect to the monomer) has 

increased, therefore the reaction of a reactive chain ends with a pendant vinyl group 

is much more likely at high conversions.
2, 8, 9

 

 

Figure 3.5 Kinetic experiment data for the 750PEG initiated polymerisations. 750PEG-pHPMA50: A 

and B, 750PEG-pHPMA50-EGDMA0.8: C and D. Conversion (black squares) and ln([M]0/[M]) (green 

down triangles), Mn (red up triangles), Mw (red empty up triangles) theoretical Mn (black dotted line) 

and Ð (blue circles) 
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3.3.3 Mixed initiator hyp-block copolymers and hyp-polydendrons 

A series of branched pHPMA polymers were synthesised, varying only the ratios of 

G2 dendron initiator and 750PEG macroinitiator; 100:0, 90:10, 75:25, 50:50, 25:75, 

10:90 and 0:100 %. The targeted DPn of HPMA was kept constant (DPn = 50 

monomer units), as was the ratio of total initiator:EGDMA used (1:0.8). Table 3.2 

highlights the molecular weights and Ð for each polymer in the series. Entries 1-3 

correspond to the linear polymers discussed previously and are repeated here for 

comparison. 

Table 3.2 Molecular weights and dispersity data for linear, linear-dendritic, hyp-block copolymers 

and hyp-polydendrons 

Entry 

no.  

Initiator (%) 
Target Polymer 

Composition 

GPC (THF) 

G2 
dendron 

750PEG 
Mn 

(gmol
-1

) 

Mw  

(gmol
-1

) 
Ð 

1 100 0 pHPMA50 15 300 20 700 1.35 

2 50 50 pHPMA50 13 000 16 900 1.30 

3 0 100 pHPMA50 11 700 15 900 1.37 

 
      

4 100 0 pHPMA50-EGDMA0.8 90 500 1 304 000 14.4 

5 90 10 pHPMA50-EGDMA0.8 68 500 1 495 000 21.8 

6 75 25 pHPMA50-EGDMA0.8 52 400 987 800 18.9 

7 50 50 pHPMA50-EGDMA0.8 39 400 480 700 12.2 

8 25 75 pHPMA50-EGDMA0.8 36 200 315 300 8.73 

9 10 90 pHPMA50-EGDMA0.8 37 700 286 000 7.61 

10 0 100 pHPMA50-EGDMA0.8 68 100 296 200 4.35 

 
      

11 25 75 pHPMA50-EGDMA0.9 60 700 675 100 11.1 

12 100 0 pHPMA50-EGDMA0.95 -gelled- 

13 50 50 pHPMA50-EGDMA0.95 121 900 1 779 000 14.6 

14 0 100 pHPMA50-EGDMA0.95 74 700 642 700 8.60 

 

A general trend can be observed from the GPC data; when increasing the amount of 

750PEG initiator the molecular weights of the resulting polymers decreased (Table 

3.2, entries 4-10) consistently. This can be attributed to the individual initiator 

efficiency of the two initiators. It is important to take the initiator efficiency into 

consideration when introducing a divinyl monomer, or brancher, into the 
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polymerisation. As previously discussed, a ratio of initiator to brancher greater than 

or equal to 1, by theory, will yield an insoluble cross-linked network or gel. An 

initiator:brancher ratio of 1:0.95 should give the branched, high molecular weight, 

soluble polymer without forming a gel. However, if the initiator has an initiator 

efficiency which is lower than 100 % the effective initiator to brancher ratio will 

decrease and gelation is possible.  The G2 dendron initiator has a lower initiator 

efficiency than the 750PEG initiator and therefore when introducing EGDMA into 

the polymerisation the more G2 dendron initiator present the higher the resulting 

molecular weights of the polymers produced. This trend can also be observed when 

looking at the GPC chromatograms obtained, shown here in Fig. 3.6. Fig. 3.6A 

shows the RI trace overlays for each G2:750PEG-pHPMA50EGDMA0.8 polymer 

with each polymer indicated, whilst Fig. 3.6B shows the RALS detector overlays. 

The RI overlay shows that for the polymers with a higher amount of G2 dendron 

initiator present, polymer species are eluting at a much lower retention volume than 

the branched polymers containing less G2 dendron initiator and therefore more 

750PEG initiator. This is also true for the RALS overlay, where there is light 

scattering occurring at much lower retention volumes for the high G2 dendron 

materials when compared to the low G2 dendron materials, indicating larger 

molecular species at high G2 initiator concentrations. 

To further highlight the difference of initiator efficiency between the G2 dendron 

and 750PEG initiators three of the series were chosen (100:0, 50:50, and 0:100) and 

the same polymerisations were conducted but with a higher ratio of EGDMA, 

(initiator:EGDMA 1:0.95), see Table 3.2, entries 12-14. The 100 % G2 dendron 

initiated polymerisation at 1:0.95 initiator:EGDMA formed an insoluble cross-linked 

network or gel, however the 50:50 and 100 % 750PEG initiated polymerisations 

gave rise to polymers with higher molecular weights than the corresponding 

polymers with a ratio of 1:0.8 initiator:EGDMA present which was as predicted (see 

Appendix, Fig. A16, for GPC chromatograms, RI and RALS, of 50:50 and 0:100–

pHPMA50-EGDMA0.95). The 25:75 hyp-polydendron was also polymerised with an 

increased initiator:EGDMA ratio of 1:0.9, see entry 11, Table 3.2. This 

polymerisation gave rise to a hyp-polydendron with higher molecular weights and a 

broader dispersity than when the ratio used was 1:0.8. The GPC chromatogram RI 

and RALS overlay can be seen in the Appendix Fig. A17. 
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Figure 3.6 GPC chromatogram overlays of A) refractive index detector, and B) right angle light 

scattering detector for the G2:750PEG-pHPMA50-EGDMA0.8  series ranging from 100 % G2 dendron 

(100:0) to 100 % 750PEG (0:100) initiators 
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The set of hyp-polydendrons and hyp-block copolymer were analysed by 
1
H NMR 

spectroscopy to ascertain whether the G2 dendron initiator and 750PEG initiators 

had been included in the ratios which were targeted. The aromatic protons attributed 

to the four benzyl groups in the G2 dendron initiator were used (7.3 ppm) and 

integrated with respect to the –CH3 group at the end of the 750PEG initiator. These 

signals could be compared to the two -CH3 groups present in the repeat monomer 

unit along polymer chain (-CH3 along the backbone and the pendant -CH3 of the 

monomer). The 
1
H NMR spectrum for the 25:75-pHPMA50-EGDMA0.8 hyp-

polydendron is shown in Fig. 3.7 with major peaks assigned. Fig. 3.8 shows an 

overlay of several 
1
H NMR spectra for the hyp-polydendrons and the hyp-block 

copolymer, with varying G2:750PEG content. The other hyp-polydendrons 
1
H NMR 

spectra not shown (90:10, 50:50 and 10:90-pHPMA50-EGDMA0.8) here are shown in 

the Appendix, Fig. A18. 

 

Figure 3.7 
1
H NMR spectrum (400 MHz, d6-DMSO) of G2:750PEG-25:75-pHPMA50-EGDMA0.8 

with major peaks assigned 
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As can be seen from Fig. 3.7, the aromatic protons (k) on the G2 dendron initiator 

can be clearly distinguished from the other proton environments present in the hyp-

polydendron, however the –CH3 group at the end of the 750PEG initiator (j) is less 

easily distinguished. This peak does not quite reach the baseline on either side, 

therefore there will be errors when integrating this peak. Hence the ratio of initiators 

calculated by 
1
H NMR spectroscopy is an estimate.  

 

Figure 3.8 
1
H NMR (d6-DMSO, 400 MHz) spectra overlay for 100:0, 75:25, 25:75 and 0:100 –

pHPMA50-EGDMA0.8 polymers 

 

Figure 3.9 Initiator mol% vs. HPMA mol% for each hyp-polydendron observed by 
1
H NMR 

spectroscopy (blue and red crosses) and the theoretical values (blue and red lines) 
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The ratio of each initiator was calculated with respect to the monomer present by 

analysis of the 
1
H NMR spectra. Fig. 3.9 shows the mol% of each initiator with 

respect to the HPMA.  The G2 dendron content was observed to lower than targeted, 

probably due to a lower initiation efficiency then the 750PEG initiator.  

3.4  Nanoprecipitation of hyp-polydendrons 

As previously reported, the formation of polymeric nanoparticles via 

nanoprecipitation is a facile and reproducible technique.
10-13

 Nanoprecipitation of 

hyp-polydendrons and linear polymers was achieved by dissolving the polymers in a 

good solvent, tetrahydrofuran (THF), then adding the polymer in good solvent to an 

excess of anti-solvent, water. The volatile good solvent was allowed to evaporate, 

leaving the nanoparticles in water. This process is highlighted in Fig. 3.10, below, 

and has been discussed in Chapter 2, section 2.6. 

 

Figure 3.10 Schematic representation of aqueous nanoparticle formation via nanoprecipitation 

The resulting size of nanoparticles formed could be tuned by altering the 

concentration of polymer in good solvent, or initial concentration, and also the final 

concentration, how much anti-solvent (water) it was added to. The relationship 

between the initial and final concentrations and the dilution factor (df) can be 

described as is shown in equation (1) below. 

 

initial concentration (ix) x dilution factor (df) = final concentration (fy)          (1) 
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These nanoprecipitations have been labelled throughout this thesis as described in 

the format ix-fy mg/mL where ix is the initial concentration and fy is the final 

concentration. Nanoparticle dispersions were analysed via DLS to measure the Dz of 

the particles and polydispersity index (PdI). Increasing the initial concentration, 

whilst maintaining the same df, gave rise to a series of nanoparticles which increased 

in size (Dz). This is highlighted in Fig. 3.11 with samples varying from a starting 

concentration of 5, 10 and 25 mg/mL with df = 0.2, therefore giving resultant 

nanoparticles with final concentrations of 1, 2 and 5 mg/mL respectively (i5-f1, i10-f2 

and i25-f5). Those nanoprecipitates with a final concentration of 5 mg/mL are larger 

than those at 2 mg/mL which are larger than those with a final concentration of 

1 mg/mL. This trend is also observed in Fig. 3.12 which shows nanoprecipitations 

with starting concentrations of 5, 10 and 25 mg/mL also, however, with df = 0.01, 

resulting in final concentrations of 0.05, 0.1 and 0.25 mg/mL (i5-f0.05, i10-f0.1 and i25-

f0.25). Again those samples with a final concentration of 0.25 mg/mL are generally 

larger in size than those with a final concentration of 0.1 mg/mL which in turn are 

larger than those at 0.05 mg/mL. These two figures also highlight that the trend of 

sizes across the range of polymeric materials (from 100:0 to 0:100-pHPMA50-

EGDMA0.8). Although no specific trend is followed across the materials, the same 

trend is observed at different concentrations.  

Interestingly when the same initial concentration was used, but the df was changed, 

for example i10-f2 and i10-f0.1, the resultant nanoparticles were very similar in size. 

This is more clearly seen when examining the Dz in Table 3.3 which also includes 

the PdI values for each measurement and the zeta potential, which gives an 

indication of surface charge. Generally the nanoparticles formed have low 

polydispersity indexes (< 0.1) and have a negative zeta potential (> -20 mV) 

suggesting that these nanoparticles are charge stabilised. It is worth noting for 

samples i25-f5 the final concentration of 5 mg/mL was too high to measure an 

accurate zeta potential. 

The DLS size distribution by intensity traces obtained for each sample described in 

Fig. 3.11, Fig. 3.12 and Table 3.3 are shown in the Appendix, Fig. A19. 
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Figure 3.11 Resulting Dz of nanoparticles formed via nanoprecipitation of the G2:750PEG hyp-

polydendrons. Samples; i25-f5 (green crosses), i10-f2 (red crosses) and i5-f1 (blue crosses) 

 

 

Figure 3.12 Resulting Dz of nanoparticles formed via nanoprecipitation of the G2:750 PEG hyp-

polydendrons. Samples i25-f0.25 (green crosses), i10-f0.1 (red crosses) and i5-f0.05 (blue crosses) 
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Table 3.3 Dz, PdI and zeta potential measurements for G2:750PEG-pHPMA50-EGDMA0.8 nanoparticles prepared with various nanoprecipitation conditions 

G2:750PEG-pHPMA50-

EGDMA0.8 

i25-f5 i10-f2 i5-f1 

Dz (nm) PdI 

Zeta 

potential 

(mV) 

Dz (nm) PdI 

Zeta 

potential 

(mV) 

Dz (nm) PdI 

Zeta 

potential 

(mV) 

100:0 171 0.194 * 106 0.083 -38.0 81 0.083 -38.2 

90:10 212 0.197 * 173 0.076 -30.4 116 0.069 -25.9 

75:25 174 0.136 * 155 0.086 -25.6 110 0.074 -26.5 

50:50 176 0.076 * 148 0.061 -29.3 115 0.067 -28.2 

25:75 158 0.101 * 121 0.072 -28.7 93 0.078 -30.4 

10:90 156 0.107 * 129 0.058 -31.3 94 0.091 -29.9 

0:100 179 0.038 * 129 0.083 -39.8 88 0.083 -39.7 

          

G2:750PEG-pHPMA50-

EGDMA0.8 

i25-f0.25 i10-f0.1 i5-f0.05 

Dz (nm) PdI 

Zeta 

potential 

(mV) 

Dz (nm) PdI 

Zeta 

potential 

(mV) 

Dz (nm) PdI 

Zeta 

potential 

(mV) 

100:0 184 0.279 -56.9 134 0.064 -34.3 93 0.071 -20.4 

90:10 245 0.370 -61.4 205 0.087 -33.1 110 0.087 -17.6 

75:25 204 0.258 -58.0 190 0.097 -39.0 135 0.092 -30.2 

50:50 147 0.185 -60.6 150 0.073 -29.6 104 0.072 -20.7 

25:75 146 0.112 -56.9 110 0.104 -24.0 77 0.140 -16.5 

10:90 132 0.068 -49.7 108 0.073 -23.2 78 0.090 -28.9 

0:100 159 0.078 -46.5 108 0.083 -30.0 89 0.160 -27.8 

*Not suitable for measurement – too concentrated. Dz = z-average diameter 
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Figure 3.13 SEM images for each G2:750PEG-pHPMA50-EGDMA0.8 polymer prepared from i5-f1 nanoprecipitation. Scale bars are 200 nm 
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SEM images of nanoparticles prepared at i5-f1 (Fig. 3.13) show that spherical 

particles are formed; however as the content of PEG increases the resulting particles 

appear to become more aggregated. This could be because PEG is hydrophilic and, 

as the aqueous samples dry on the SEM stub (silicon wafer), the presence of more 

PEG may lead to film formation when drying. This could also be caused by the glass 

transition temperature (Tg) of the polymers. The increasing mol% of PEG could be 

reducing the Tg of the resulting polymers which would cause them to „flow‟ more at 

room temperature than a higher Tg polymer. Therefore this „flow‟ could result in the 

nanoparticles losing their spherical structures. However, the Tg of these polymers 

was not measured during this work; it would be interesting to see if there is a trend in 

Tg with varying PEG:pHPMA content.  

3.4.1 Factors affecting nanoprecipitation 

Factors that might affect the formation of nanoparticles and their resultant sizes were 

considered such as the molecular weights of the hyp-polydendrons and hyp-block 

copolymer. The Dz of the polymers dissolved in a good solvent, THF, were measured 

via DLS. The correlation between the Dz in THF and molecular weights are shown in 

Fig. 3.14, with the R
2
 values included to highlight the positive correlation observed. 

The best correlation between Dz in THF and molecular weight was with the Mw. This 

is probably because Mw takes into account the higher molecular weight species 

present than the Mn and the Dz being measured will be mainly representative of the 

higher molecular weights species in the sample, as lower molecular weight polymer 

species scatter less light.  

 

Figure 3.14 Correlation between molecular weights of polymers and their Dz in THF, Mn (red closed 

triangles) and Mw (red open triangles) 
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Figure 3.15 Molecular weights of polymers vs. the corresponding nanoparticle Dz, formed via 

nanoprecipitation using i5-f1; A) Mn (closed triangles) and B) Mw (open triangles) 

 

To ascertain whether the molecular weight had an influence on the Dz of 

nanoparticles formed via nanoprecipitation dispersed in water, the Dz of particles 

formed from each polymer with i5-f1 were plotted with the Mn and Mw of the 

corresponding polymers, see Fig. 3.15. It was immediately obvious that unlike the Dz 

of the polymers in THF, the Dz of the aqueous nanoparticles had no correlation with 

the corresponding polymer molecular weights. This is true for both the Mn 

(Fig. 3.15A) and Mw (Fig. 3.15B) where the R
2
 values are 0.1416 and 0.0624 

respectively, indicating no correlation.  

As discussed previously, for various ratios of G2:750PEG initiated hyp-

polydendrons higher ratios of initiator:EGDMA were used, which resulted in 

polymers with higher molecular weights and broader dispersities. Two examples of 

these were the 25:75 hyp-polydendron and 0:100 hyp-block copolymer. The 25:75-

pHPMA50-EGDMA0.8 (entry 8, Table 3.2) had a Mn and Mw of 36 200 gmol
-1

 and 

315 300 gmol
-1

 respectively with Ð = 8.73, whilst 25:75-pHPMA50-EGDMA0.9 

(entry 11, Table 3.2) had a Mn and Mw of 60 700 gmol
-1

 and 675 100 gmol
-1

 

respectively with Ð = 11.12. These two polymers underwent the same 

nanoprecipitations conditions (i10-f2, i10-f0.2, i5-f1 and i5-f0.05) and despite having very 

different molecular weights, both samples gave nanoparticles with very similar Dz, 

see Fig. 3.16A. The filled bars show the Dz for the 25:75-pHPMA50-EGDMA0.8 hyp-
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polydendron, whilst the unfilled bars show the Dz for the 25:75-pHPMA50-

EGDMA0.9.  

The same experiment was conducted with 0:100-pHPMA50-EGDMA0.8 (entry 10, 

Table 3.2, Mn = 68 100 gmol
-1

, Mw = 296 200 gmol
-1

 and Ð = 4.35) and 0:100-

pHPMA50-EGDMA0.95 (entry 14, Table 3.2, Mn = 74 700 gmol
-1

, Mw = 642 700 

gmol
-1

 and Ð = 8.60). Fig. 3.16B shows the Dz of the nanoparticles formed using 

four different nanoprecipitation conditions. Again the Dz are very similar for the 

nanoparticles formed from two hyp-block copolymers with very different molecular 

weights, filled bars and open bars show the 0:100-pHPMA50-EGDMA0.8 and 0:100-

pHPMA50-EGDMA0.95 nanoparticle dispersions. 

 

Figure 3.16 Nanoparticle sizes, measured by DLS, of A) 25:75-pHPMA50-EGDMA0.8 and 25:75-

pHPMA50-EGDMA0.9 and B) 0:100-pHPMA50-EGDMA0.8 and 0:100-pHPMA50-EGDMA0.95 

 

3.4.2 Mechanism of nanoparticle formation 

Each polymer showed an increase in size with an increase in the initial and final 

concentrations, however, when increasing the df the resulting effect on nanoparticle 

size is relatively small, giving similar sizes for the samples made from the same 

initial concentration but with different df. This suggests that the nanoparticle 

formation occurs instantaneously upon addition to the water (anti-solvent) to give 

colloidally stable nanoparticles. This is in agreement with one suggested mechanism 

of nanoparticle formation via nucleation and aggregation,
14, 15

 discussed in more 

depth in Chapter 1 (section 1.4.3). 
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3.4.3 Stability of nanoparticles 

The colloidal stability of the nanoparticles was studied over time and to dilution with 

good solvent and anti-solvent.  

The stability of the nanoparticles was studied by measuring the Dz and PdI over time, 

as in Chapter 2 (section 2.6.3) aqueous nanoparticles showed stability over extended 

periods of time (>20 months). New samples were prepared for the study with the 

G2:750PEG-pHPMA50-EGDMA0.8 series of hyp-polydendrons and hyp-block 

copolymer using a formulation of i5-f1. After 11 months of storage at ambient 

temperature, out of direct light, the Dz and PdI values remain similar to those 

originally measured, see Table 3.4. The largest difference in size measure was with 

the 25:75-pHPMA50-EGDMA0.8 samples which was originally 82 nm (PdI = 0.060) 

and after 11 months of storage the Dz measured was 91 nm (PdI = 0.190), which was 

an increase of <10 nm in diameter. Therefore it can be inferred that these particles 

are stable over time as the variation in size and polydispersity was not significant.  

 

Table 3.4 Dz and PdI measured by DLS for various ratios of G2:750PEG-pHPMA50-EGDMA0.8 i5-f1 

samples stored over 11 months 

G2:750PEG-(pHPMA50-

EGDMA0.8) 

i5-f1 i5-f1 + 11 months 

Dz (nm) PdI Dz (nm) PdI 

100:0 58 0.096 60 0.108 

90:10 90 0.030 89 0.030 

75:25 71 0.082 69 0.037 

50:50 68 0.056 68 0.050 

25:75 82 0.060 91 0.190 

10:90 63 0.103 68 0.118 

0:100 140 0.058 145 0.051 
Dz = z-average diameter 
 

The hyp-polydendrons nanoparticles were also studied for their stability to dilution 

with the anti-solvent and the addition of a good solvent for the polymer core. The 

G2:750PEG-50:50-pHPMA50-EGDMA0.8 hyp-polydendron was used for these 

studies formulated using a sample prepared with i5-f1. Fig. 3.17 shows the Dz and PdI 

for the dilution of this sample with distilled water (anti-solvent). As the sample was 

diluted the Dz varied slight from 75 nm at 1 mg/mL to 72 nm at 0.0156 mg/mL and 

the corresponding PdI values were 0.064 and 0.074. These Dz and PdI values are 

shown in the Appendix, Table A4.  
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Figure 3.17 Dilution experiment using G2:750PEG-50:50-pHPMA50-EGDMA0.8 hyp-polydendron 

formulated at i5-f1 and diluted to 0.0156 mg/mL with distilled water 

 

The addition of a good solvent for the hydrophobic polymer core of the nanoparticles 

was also studied by adding THF to a sample of G2:750PEG-50:50-pHPMA50-

EGDMA0.8 hyp-polydendron formulated using i5-f1. This was performed by using 

1 mL of the nanoparticle dispersion and adding increasing volumes of THF. The Dz 

and PdI was measured via DLS between each addition, see Fig. 3.18. The Dz 

increased with increasing volumes of THF added, suggesting that with addition of 

good solvent the nanoparticles swell and therefore increase in diameter. When 

varying the composition of the dispersant media the refractive index and viscosity of 

the solution may vary. This should be accounted for when measuring the size and 

PdI of nanoparticles dispersed in mixed media. Therefore the refractive index of 

each different water:THF mixture was measured and entered into the DLS software 

to account for the change in refractive index. The refractive index of water was 

measured using a refractometer and was found to be 1.3334 which is in accordance 

with literature values. When at the highest volume of THF added the refractive index 

had increased to 1.3722. The Dz, PdI values and refractive indices of the solvent 

mixtures are shown in Table A5 in the Appendix. The viscosity of the dispersant 

media was not accounted for as an accurate measurement of the viscosity of the 

varying water:THF ratios was unsuccessful.  
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Figure 3.18 Swelling experiment using G2:750PEG-50:50-pHPMA50-EGDMA0.8 hyp-polydendron 

formulated at i5-f1 with addition of THF 

 

 

3.4.4 Linear polymers for nanoprecipitation 

The linear polymers synthesised using the G2 dendron initiator and the 750PEG 

macroinitiator were also subjected to the nanoprecipitation conditions described for 

the hyp-polydendrons, using an initial concentration of 5 mg/mL and final 

concentration of 1 mg/mL (i5-f1). The G2-pHPMA50 discussed here is also discussed 

in Chapter 2, where the i5-f1 nanoprecipitation gave Dz of 142 nm (PdI = 0.107) 

which is very close to that of the repeat discussed in this chapter (Fig. 3.19A and 

Table 3.5); Dz = 157 nm and PdI = 0.111. This linear nanoprecipitate is also much 

larger than the branched polymer equivalent (nanoprecipitates of G2-pHPMA50-

EGDMA0.8 had a Dz of 81 nm and PdI = 0.083 at i5-f1) which was also observed for 

the linear and branched equivalent nanoprecipitates discussed in Chapter 2. 

The G2-pHPMA50 linear nanoprecipitates had quite a narrow polydispersity, 

however, over time the PdI increased (from 0.111 to 0.156 after 30 days and to 0.178 

after 60 days) as did the Dz from 157 nm to 190 nm after 30 days and to 208 nm after 

60 days.  This is apparent also from the DLS traces in Fig. 3.19A. This would appear 

to be due to aggregation over time which ultimately leads to precipitation. This 

aggregation of polymeric nanoparticles does not occur with the branched polymer 
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equivalents over time, as discussed in Chapter 2, therefore the nanoparticles formed 

from the hyp-block copolymer or hyp-polydendrons are colloidally more stable than 

those made using linear polymers. What is unclear is whether or not this is due to the 

topology of the polymer or the molecular weight of the polymer. 

 

 

Figure 3.19 DLS traces overlays for A) G2-pHPMA50 and B) 750PEG-pHPMA50 nanoprecipitates at 

t = 0, t = 30 and t = 60 days 

 

The 750PEG-pHPMA50 linear polymer nanoprecipitates (see Fig. 3.19B and 

Table 3.5) at i5-f1 (342 nm with a PdI value of 0.197) were much larger in diameter 

and had a broader polydispersity than the equivalent branched polymer 

nanoprecipitate (750PEG-pHPMA50-EGDMA0.8; 88 nm, PdI = 0.083). 

Nanoprecipitates from this linear sample increased in size and polydispersity after 30 

days (827 nm and PdI = 0.251); however, after 60 days it then decreased in size and 

polydispersity (657 nm, PdI = 0.144) probably due to precipitation of the larger 

species present. 

 

 

 

 

 

 



CHAPTER 3 

126 

 

Table 3.5 Table of DLS measurements of nanoprecipitates of linear polymers at t = 0 and under 

ambient storage for t = 30 and t = 60 days (corresponding to Fig. 3.19) 

Linear polymer Time (days) 
Dz (nm) PdI 

G2-pHPMA50 

1 157 0.111 

30 190 0.156 

60 208 0.178 

750PEG-pHPMA50 

1 342 0.197 

30 827 0.251 

60 657 0.144 

Dz = z-average diameter 

 

3.4.5 Encapsulation of fluorescent molecules 

The encapsulation of guest molecules inside the nanoparticles can be achieved by 

incorporating the guest molecule with the polymer when dissolving into the good 

solvent (THF). Depending upon the nature of the desired guest molecule the good 

solvent may be varied, however, the two fluorescent guest molecules chosen for this 

study, Nile red and pyrene, were both soluble in THF. Their chemical structures are 

shown in Fig. 3.20. 

 

Figure 3.20 Chemical structures of the two fluorescent dyes used; Nile red and Pyrene 

 

3.4.5.1 Nile red encapsulation 

Nile red is a lipophilic dye which can be used to stain intracellular lipid droplets.
16

 It 

fluoresces strongly in lipophilic environments, and does not fluoresce at all in 

hydrophilic, polar solvents.
17

 It was chosen due to this fluorescence dependence 

upon the solvent environment as it allowed investigation into the interior 

hydrophobicity/lipophilicity of the nanoparticles cores. When excited at 552 nm an 
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emission maxima is observed at 630 nm; the intensity of this peak gives information 

about the internal environment of nanoparticles.  

The nanoparticle formulation chosen for this study was i5-f1. Two different weight 

percentages of Nile red incorporation were attempted; 1 w/w% and 0.1 w/w% with 

respect to the final mass of polymer. The 0.1 w/w% formulation was chosen as the 

1 w/w% formulation showed some Nile red that had crystallised from solution (see 

Appendix Fig. A20). It was imperative that the presence of encapsulated Nile red did 

not change the size of the resulting nanoparticles, and as Fig. 3.21 shows, this was 

not the case. The PdI values also remained very similar to the nanoparticles formed 

in the absence of Nile red, all being below 0.11, see Table A6 in the Appendix for Dz 

and PdI values.  

 

Figure 3.21 Nanoparticle sizes for G2:750PEG-pHPMA50-EGDMA0.8 blank nanoparticles (blue 

crosses) and with 0.1 w/w% Nile Red encapsulated (red crosses) prepared at  i5-f1 

The fluorescence emission spectra showed that over the series of hyp-polydendrons, 

ranging from 100 % hydrophobic G2 dendron initiator to 100 % hydrophilic 

750PEG macroinitiator, each with the same hydrophobic pHPMA core, there was a 

trend, from the 100 % G2 dendron initiated having a higher fluorescence intensity at 

630 nm, which generally decreased across the series as more 750PEG initiator was 

introduced. This can be seen in Fig. 3.22, where Fig. 3.22A shows the fluorescence 

spectra with the emission at 630 nm, and Fig. 3.22B shows the intensity maxima 

plotted against G2 dendron initiator %.  
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Figure 3.22 A) Fluorescence emission spectra for G2:750PEG-pHPMA50-EGDMA0.8 nanoparticles 

with encapsulated Nile red and blank nanoparticles (i5-f1). B) The relationship between maximum 

intensity at 630 nm and G2 dendron initiator (%) 

There was a clear trend across the nanoparticle series; this can also be observed 

visually as seen in Fig. 3.23, below. The 100 % G2 dendron initiated nanoparticles 

had a more hydrophobic interior as the fluorescence intensity was higher than the 
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100 % 750PEG initiated nanoparticles, which had a lower fluorescence intensity for 

Nile red. This was due to the manner in which the nanoparticles form, as it has been 

described previously (see Fig. 3.10 and Chapter 2, section 2.6.1) it was hypothesised 

that the particles form from an aggregation of polymer species present in the good 

solvent, as the sizes of the nanoparticles are much larger than an individual hyp-

polydendron macromolecule. Therefore there was a possibility for the G2 dendron 

and 750PEG functionality to be present in the core of the nanoparticles as well as at 

the surface. Hence, if the internal environment of the particles was altered by varying 

the ratios of G2 dendron initiator and 750PEG initiator, the environment in which 

the Nile red was located would also be varied, therefore, a variation in Nile red 

fluorescence would be expected. This also shows that the Nile red is being held 

within the core of the nanoparticles as otherwise the Nile red would not fluoresce. 

The main disadvantage of evaluating the interior environment of the nanoparticles 

using Nile red as a fluorescent probe is that the fluorescence intensity at 630 nm is 

also dependent upon the concentration of Nile red present. This brings in errors with 

weighing out the Nile red, creating a stock solution in THF which may evaporate 

over time and also when pipetting out the desired amount. Therefore a different 

fluorescent probe (pyrene) which gave information independent of concentration was 

used. 

 

Figure 3.23 Photographs of the nanoparticulate G2:750PEG-pHPMA50-EGDMA0.8 series prepared at 

i5-f1 with 0.1 w/w% Nile red encapsulated; A) under normal light and B) short wavelength UV lamp 
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3.4.5.2 Pyrene encapsulation 

Pyrene was also used as a probe for the internal environment as its fluorescence 

emission spectrum is highly sensitive to solvent polarity. Pyrene has various vibronic 

bands, five predominate bands, whereby the intensity of band 0-0 is strongly 

enhanced in polar solvents at the expense of other vibronic bands.
18

 The ratio of this 

0-0 band or peak 1 in the fluorescence emission spectra to the third predominant 

peak, peak 3, gives rise to the reported use of the I1/I3 ratio. In non-polar solvents 

such as hexane this value is around 0.61, whereas in polar solvents this value can be 

dramatically higher; for example the I1/I3 ratio in water is 1.58.
19

 

To probe the internal environment of each polymeric nanoparticle species, samples 

were prepared via nanoprecipitations using i5-f1, with 0.1 w/w% pyrene added to the 

good solvent with respect to the final polymer concentration. Pyrene was dissolved 

in THF to make a stock solution of a known concentration and the mass of pyrene 

needed was taken using a pipette. The nanoprecipitates showed only slight deviations 

from the sizes of blank nanoparticles; this can be seen in Fig. 3.24. The Dz and PdI 

values are shown in Table A6 in the Appendix.  

 

 

Figure 3.24 Nanoparticle sizes for G2:750PEG-pHPMA50-EGDMA0.8 blank nanoparticles (blue 

crosses) and with 0.1 w/w% Nile Red encapsulated (green crosses) prepared at i5-f1 
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The five predominant vibronic bands can be seen in Figure 3.25, with the I1 and I3 

bands highlighted. It is the ratio between these two peaks which indicates the 

polarity of the solvent environment. Plotting this ratio against G2 dendron 

initiator % shows a clear trend across the hyp-polydendron series, as shown in 

Fig. 3.26. 

 

Figure 3.25 Fluorescence emission spectra for G2:750PEG polymeric nanoparticles with 

encapsulation of 0.1 w/w% Pyrene 

 
Figure 3.26 I1/I3 ratio for G2:750PEG-pHPMA50-EGDMA0.8 series of nanoparticles with pyrene 

encapsulated (blue circles) and common solvents as a reference (black triangles) 
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The fluorescence results for the Nile red and pyrene loaded nanoparticles across the 

series suggests that the internal environment of the nanoparticles varies from being 

more hydrophobic and less polar using the 100:0 hyp-polydendron, to being less 

hydrophobic and more polar to the 0:100 hyp-block copolymer. This trend is 

highlighted graphically in Fig. 3.27. To ascertain whether the varying environments 

present in the series of nanoparticles affected the pharmacological studies, 

nanoparticles across the range of G2:750PEG 100:0 to 0:100 were investigated 

further.  

 

 

Figure 3.27 Graphical representation of the varying environments present in the nanoparticles when 

using hyp-polydendrons and hyp-block copolymers with varying ratios of initiators 
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3.5  Pharmacological evaluation of materials 

When designing polymeric drug carriers two main routes of administration are 

usually targeted; intravenous and oral. Treatment of infectious diseases such as the 

human immunodeficiency virus (HIV), which is a life-long condition where any 

break in therapy results in viral re-bound with potential damage to the immune 

system, is typically administered intravenously. Frequent dosing via intravenous 

administration is not viable, although recently, long-acting antiretroviral 

formulations have been developed which require infrequent dosing (every 1 to 3 

months) intravenously.
20

 However until these therapies are widely available it 

remains desirable to dose drug delivery vehicles orally, to achieve permeation 

through the intestinal epithelial cells into the systemic circulation to allow for drug 

accumulation in macrophage cells, for example, as macrophages are a sanctuary sites 

for HIV in the human body.  

To assess whether hyp-polydendron nanoparticles would be able to act as drug 

carriers, targeting oral dosing, several initial pharmacological experiments were 

performed. These pharmacological experiments were conducted by researchers in the 

Molecular and Clinical Pharmacology department at the University of Liverpool, 

through collaboration between the Owen and Rannard research groups. Initially 

toxicology assays were performed
21

 to ascertain whether the hyp-polydendron 

nanoparticles were toxic to the intestinal epithelial cells. An in vitro transwell plate 

experiment
22

 was also conducted to investigate the ability of the hyp-polydendron 

nanoparticles to permeate the intestinal epithelial cells. These types of 

pharmacological assays are discussed in more detail below. 

3.5.1 Cytotoxicity assays 

Typical toxicity assays include the 3-[4,5-dimethylthiazol-2-yl]-2,5 diphenyl 

tetrazolium bromide (MTT) assay and adenosine triphosphate (ATP) assay. The 

MTT assay is based on the conversion of MTT to formazan crystals by living cells to 

determine mitochondrial activity. The mitochondrial activity is related to the number 

of viable living cells, therefore this assay can be used to assess a drug or material‟s 

cytotoxic effects.
21

 

The ATP assay method starts with either the extraction of cells in suspension from 

continuous cell culture when using the THP-1 cell line, or for Caco-2 and ATHP-1 
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cell lines they firstly need to be „trypsinised‟ to remove the cells from a substrate to 

suspend them. The assay uses a serum free medium and polypropylene plates to 

prevent the growth of non-neoplastic cells over a 6-day incubation period followed 

by detergent based extraction of cellular ATP. The cell production of ATP is a 

measure of the cell viability as viable cells produce ATP whereas dead cells do not. 

ATP is measured by luciferin-luciferase assay in a luminometer which measure the 

presence of a single cell up to 10
8
 cells.

23
 

3.5.2 Caco-2 cell transwell plate assay 

The Caco-2 transwell plate assay is a model of the intestinal epithelium and is widely 

used to predict the adsorption of materials across the „gut wall‟. The Caco-2 cell line 

is a continuous line of heterogeneous human epithelial colorectal adenocarcinoma 

cells, which can be cultured to differentiate and become polarised to resemble the 

enterocytes lining the small intestine.
22

 The cells express the same enzymes and 

transporters which are characteristic of enterocytes, such as; peptidases, esterases 

and P-glycoprotein. The cells are grown as a confluent monolayer with tight 

junctions between cells, so that movement of drug across this monolayer is 

predominantly restricted to permeation or active transport through the cell. Fig. 3.28 

shows a graphical representation of the transwell plate experiment. In Fig. 3.28-1 the 

apical (A) and basolateral (B) chambers are represented with the monolayer and 

membrane in the transwell plate experiment.  

 

Figure 3.28 Graphical representation of the Caco-2 monolayer in the epithelial model 

 

The apical chamber (A) represents the gut side of the epithelium whilst the 

basolateral chamber (B) represents the blood side of the epithelium. The experiment 

is conducted incubating the monolayer with sample deposited in the apical 
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compartment measuring the amount of movement across the monolayer over a 4 

hour period from the apical to basolateral compartment (A>B), Fig. 3.28-2, and 

deposited in the basolateral compartment measuring the movement from the 

basolateral to apical compartment (B>A), Fig. 3.28-3.  

The movement of sample across the membrane is typically reported as apparent 

permeability (Papp) which describes the flux at which the material traverses per unit 

area of the cell barrier.
24

 Papp is estimated using equation (4): where Papp is apparent 

permeability (x 10
-6

 cms
-1

); dQ/dt is the rate of transport (nMmin
-1

); v is the volume 

of the receiver compartment; A is the surface area of the membrane (cm
2
); and C0 is 

the initial donor concentration (nM). 

      
(     )   

     
 (4) 

Several assumptions are made for an accurate measure of permeability. These are 

that the drug accumulated in the receiver compartment is proportional to time, the 

system complies with „sink conditions‟ and that cellular accumulation, metabolism 

and non-specific binding to plasticware are absent.
22

 „Sink conditions‟ implies that 

once the material has traversed the monolayer it does not pass back across, however 

this is not always the case with permeable materials. Once permeability is achieved 

further studies may be conducted to assess the mechanism of transport across the 

Caco-2 cell monolayer. Transcellular movement describes the movement of the 

material through the cells, whereas paracellular movement the movement of material 

between the cells. Paracellular permeation is possible and has been shown for several 

nanoparticle systems.
25

  

To conduct this experiment the cells are grown to a confluent monolayer over 21 

days, where the integrity of the monolayer is checked by measuring the 

transepithelial electrical resistance (TEER) before experiments commence. The 

apical (A) and basolateral (B) compartments were treated with the materials to assess 

movement from A>B and B>A, which can also be described as the apparent 

permeability (Papp) of the material, over an incubation period of 4 hours. Therefore if 

this assay is being used to assess the permeation of materials across the monolayer, it 

is important to ensure those materials are not toxic to the cells, which would 

compromise the monolayer and lead to inaccurate results. Cytotoxicity assays 

conducted using Caco-2 cells include the ATP and MTT assays (see section 3.5.1). 
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When conducting the pharmacological experiments an aqueous preparation of the 

dye (Nile red) is also assessed in the same manner as the loaded nanoparticles to 

ascertain the toxicity and/or permeability of the free dye. The free dye treatment was 

prepared by solubilising it in DMSO prior to being spiked into transport buffer, the 

final volume of DMSO was < 0.1 % of the final volume. 

 

3.5.3 Hyp-polydendron nanoparticles for pharmacological assays 

The hyp-polydendron nanoparticle samples loaded with Nile red were readily 

detectable by fluorescence spectroscopy for quantification methods. The 

formulations used were i5-f1 with 0.1 w/w% Nile red (therefore 1 mg/mL polymer, 

1 µg/mL Nile red). To ensure the variation between different batches of Nile red 

loaded nanoparticles prepared was not significant, six batches were prepared and 

analysed by DLS, see Table 3.6. The Nile red loaded nanoparticles from batch 2 

were studied over time to assess the colloidal stability over seven weeks, see 

Fig. 3.29 for the Dz measurements over time.  

 

 

Figure 3.29 Dz by DLS over time for Nile red loaded G2:750PEG-pHPMA50-EGDMA0.8 

nanoparticles from batch 2 in Table 3.6
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Table 3.6 Dz and PdI measurements by DLS for various batches of Nile red loaded G2:750PEG-

pHPMA50-EGDMA0.8 nanoparticle samples 

G2:750PEG-

(pHPMA50-

EGDMA0.8) 

Batch 1 Batch 2 Batch 3 

Dz 

(nm) 
PdI 

Dz 

(nm) 
PdI 

Dz 

(nm) 
PdI 

100:0 76 0.109 70 0.064 69 0.081 

90:10 119 0.061 128 0.052 118 0.071 

75:25 108 0.067 102 0.062 98 0.056 

50:50 98 0.069 100 0.053 104 0.049 

25:75 92 0.081 93 0.058 91 0.071 

10:90 101 0.075 84 0.089 81 0.117 

0:100 97 0.095 89 0.106 91 0.094 

       

G2:750PEG-

(pHPMA50-

EGDMA0.8) 

Batch 4 Batch 5 Batch 6 

Dz 

(nm) 
PdI 

Dz 

(nm) 
PdI 

Dz 

(nm) 
PdI 

100:0 75 0.087 70 0.108 67 0.233 

90:10 106 0.057 118 0.060 93 0.116 

75:25 89 0.086 86 0.080 77 0.216 

50:50 87 0.083 85 0.120 69 0.166 

25:75 85 0.093 88 0.113 82 0.250 

10:90 82 0.130 94 0.235 87 0.259 

0:100 84 0.155 102 0.225 101 0.252 

Dz = z-average diameter 

 

 

3.5.4 Cytotoxicity assay results 

Toxicity experiments were conducted to assess whether the materials were toxic to 

the Caco-2 cells used for the model intestinal epithelial transwell plate experiment. 

ATP and MTT assays were conducted with incubation periods of 1 and 5 days across 

a range of concentrations (1 - 1000 nM Nile red).  

3.5.4.1 MTT assays 

Following 24 hour incubation of Caco-2 cells with each hyp-polydendron, analysis 

of cytotoxicity by MTT assay (Appendix, Fig. A21) showed that aqueous Nile red 

and each hyp-polydendron did not affect metabolic turnover of Caco-2 cells 

compared to untreated cells at the range of concentrations investigated. It can be 

inferred that metabolic turnover correlates to cell viability in which case each 

material was not cytotoxic. 
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Following 120 hour incubation of Caco-2 cells with each hyp-polydendron, analysis 

of cytotoxicity by an MTT assay (see Fig. 3.30) also showed that aqueous Nile red 

and each hyp-polydendron at the range of concentrations investigated did not affect 

the viability of Caco-2 cells.  

3.5.4.2 ATP assays 

Following 24 hour incubation of Caco-2 cells with each hyp-polydendron, analysis 

of cytotoxicity by an ATP assay using a CellTiter-Glo
®
 kit, (Promega, UK) (see 

Appendix, Fig. A22) indicated that ATP presence was not affected in cells treated 

with aqueous Nile red solution and hyp-polydendron formulated Nile red at the range 

of concentrations investigated compared to untreated cells. It can be inferred that the 

presence of ATP correlates to cell viability in which case each material was not 

cytotoxic. 

Following 120 hour incubation of Caco-2 cells with each hyp-polydendron, analysis 

of cytotoxicity by ATP assay using a CellTiter-Glo
®
 kit, (Promega, UK) (see 

Fig. 3.31) also indicated viability was not affected in cells treated with aqueous Nile 

red solution and each hyp-polydendron material at the range of concentrations 

investigated compared to untreated cells. 
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Figure 3.30 MTT assay of Caco-2 cells following 5 day incubation with aqueous Nile red and each 

G2:750PEG-pHPMA50-EGDMA0.8 hyp-polydendron.  A) 100:0, B) 90:10, C) 75:25, D) 50:50 E) 

25:75 F) 10:90 G) 0:100 and H) Aqueous. Error = standard deviation. 
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Figure 3.31 ATP assay of Caco-2 cells following 5 day incubation with aqueous Nile Red and each 

G2:750PEG-pHPMA50-EGDMA0.8 hyp-polydendron.  A) 100:0, B) 90:10, C) 75:25, D) 50:50 E) 

25:75 F) 10:90 G) 0:100 and H) Aqueous. Error = standard deviation. 
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3.5.5 Caco-2 cell transwell plate assay results 

The use of the Caco-2 monolayer in the prediction of the absorption of drugs is well 

documented
22

 and was discussed in Chapter 1 (section 1.5.3.2). 

Transcellular permeability of Nile red through Caco-2 cell monolayers (to model the 

intestinal epithelium) was assessed over a 4 hour period, see Fig. 3.32. The 

transcellular permeation of the G2:750PEG-10:90 Nile red hyp-polydendron 

preparation was significantly higher in the apical to basolateral (A>B, gut to blood) 

direction compared to an aqueous solution of Nile red. Some of the formulations 

(75:25, 50:50, 25:75) showed a slightly higher permeability of Nile red from the 

apical to basolateral (A>B) whereas as the 100:0 and 0:100 were comparable to the 

aqueous Nile red sample. For one of the formulations (90:10) there was no A>B or 

B>A movement as there was no Nile red detectable in the acceptor compartment. 

The reason for this was not clear – possibly due to the poor colloidal stability of the 

particles under physiological conditions.  

All the hyp-polydendron materials produced a greater Papp ratio than an aqueous 

preparation of Nile red following 1 hour incubation (Fig. 3.33). A statistically 

significant correlation (P ≤ 0.05) between the ratio of G2 dendron initiator and 

750PEG macroinitiator used in the hyp-polydendron formulation and the ratio of 

apical to basolateral (A>B, gut to blood), basolateral to apical (B>A, blood to gut) 

movement of Nile red across the Caco-2 monolayer was observed. 

Therefore the pharmacological experiments showed that the hyp-polydendron and 

hyp-block copolymer nanoparticles were not toxic to Caco-2 cells, they showed an 

increase in Nile red apparent permeability across the Caco-2 cell monolayer 

compared to the aqueous Nile red and also had a trend in the Papp ratio across the 

G2:750PEG series.  
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Figure 3.32 The transcellular permeation across Caco-2 cell monolayers of hyp-polydendron 

formulated Nile red relative to an aqueous solution of Nile red. Data are given as the mean of 

experiments conducted in biological triplicate. G2:750PEG; A) 100:0, B) 75:25, C) 50:50, D) 25:75, 

E) 10:90 and F) 0:100, A>B (closed blue squares) and B>A (open blue squares). Aqueous Nile red 

alone; A>B (closed red circles) and B>A (open red circles) 
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Figure 3.33 Correlation between G2:750PEG-pHPMA50-EGDMA0.8 hyp-polydendron formulation 

and the ratio of Nile red transported (A>B/B>A) across Caco-2 cell monolayers (R
2 
0.784) 

 

3.5.6 Nanoparticle stability in salt and transport buffer 

The hyp-polydendron and hyp-block copolymer nanoparticles had negative zeta-

potentials which indicated charge stabilisation of the particles. As discussed briefly 

in Chapter 2 section 2.6.3, it is desirable for nanoparticle to have steric stabilisation 

when biological applications are targeted. This is due to the presence of various salts 

in physiological conditions, which causes screening of charges in charge stabilised 

nanoparticles. As the charge on the particles repel one another, when the charges are 

screened in a salt solution the nanoparticles aggregate and ultimately precipitate.  

Investigations into the stability of particles under physiological conditions are 

commonly conducted using buffered solutions which contain a concentration of salts 

to mimic the physiological ionic strength (~0.15 M). Therefore to assess how stable 

these G2:750PEG nanoparticles would be in physiologically relevant conditions, 

firstly, a solution of 0.14M NaCl was used, to assess the stability of particles to 

dilution with a salt solution, and secondly, transport buffer (TB). TB consists of 

Hank‟s balanced salt solution, 25 mM of 4-(2-hydroxyethyl)-1-piperazineethane 

sulfonic acid and 0.1 % bovine serum albumin, which is commonly used for in vitro 

assays such as the Caco-2 transwell plate experiment (see Chapter 1, section 1.5.3.2). 

Therefore each sample prepared with Nile red was diluted with 0.14 M NaCl and TB 

to assess how stable they were in physiologically relevant conditions. Unfortunately 
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aggregation was observed after dilution with either salt solution or TB, indicating 

that the nanoparticles were indeed charge stabilised and did not shows stability in 

physiologically relevant conditions. This was interesting as although the 

nanoparticles were aggregated, they still showed movement across the Caco-2 cell 

monolayer experiment, suggesting that the polymer enhanced the permeation of Nile 

red across the Caco-2 cell. 

 

3.6  Conclusion 

To conclude, a series of hyperbranched polymers were produced via a mixed 

initiator approach to ATRP. The initiators employed included a G2 dendron initiator 

and a 750PEG macroinitiator. This series of materials included six hyp-polydendron 

materials and one hyp-block copolymer (0:100-pHPMA50-EGDMA0.8, not 

containing any dendrons). These materials were subjected to a nanoprecipitation 

approach to produce nanoparticles with varying internal and external environments. 

The corresponding sizes of these nanoparticles were controllable via tuning either 

the initial concentration of polymer in the good solvent or the final concentration in 

water. They were also utilised in the encapsulation of hydrophobic fluorescent dye 

molecules to probe the interior environment, and also to act as a model drug 

molecule demonstrating the possibility of drug loading in these materials. Even 

though the loading described in this chapter was low (0.1 w/w%) encapsulation is 

possible and could be improved. The applicability of these materials to 

nanomedicine was investigated, utilising an intestinal epithelium model to predict 

transcellular permeability of the nanoparticles. These results are promising, showing 

that these materials show an enhanced apparent permeability of encapsulated Nile 

red across the Caco-2 cell monolayer when compared to free Nile red. Due to the 

instability in physiologically relevant conditions, further work was needed to 

improve the stability of the nanoparticles to achieve steric stabilisation.  
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4.1.  Introduction to Chapter 4 

 

Due to the observed precipitation of the hyp-polydendron nanoparticles formed via 

nanoprecipitation, discussed in Chapter 3, in physiologically relevant conditions, it 

was desirable to produce nanoparticles which were sterically stabilised rather than 

charge stabilised. Steric stabilisation can be achieved through the incorporation of a 

hydrophilic moiety to the nanoparticle – usually a hydrophilic polymer.
1
 Hydrophilic 

polymers which have been used as such to stabilise hydrophobic nanoparticles in 

aqueous environments include; PEG, pluronics, polycyclodextrin, polyglutamate, 

PLA/PGA/PLGA.
2
  

To improve the stability of nanoparticles formed via nanoprecipitation a longer PEG 

chain was used in order to generate additional steric stability as the short PEG16 

chain was not able to provide enough hindrance to prevent aggregation as discussed 

in Chapter 3. 

 

4.2.  Initiator synthesis 

The initiators chosen for this study were the generation 2 (G2) hydrophobic benzyl 

dendron and a PEG (~ 2 000 gmol
-1

) macroinitiator. A more facile synthesis was 

achieved for the G2 benzyl dendron which is discussed below. This new G2 dendron 

initiator was very similar in structure to the G2 dendron initiator described in 

Chapters 2 and 3, therefore throughout this chapter the new G2 dendron will be 

termed as the G2ʹ dendron initiator.  

4.2.1.  G2ʹ DBOP dendron initiator – alternative synthesis 

The method for the G2ʹ dendron synthesis is shown below in Scheme 4.1. Rather 

than coupling two molecules of 1,3-dibenzyloxy-2-propanol, then subsequent ring 

opening of β-butyrolactone to give a reactive focal point for esterification to give the 

final ATRP initiator, instead molecule 9 (AB2 brancher) was used. This removes the 

need for purification by column chromatography before the final step. 
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Scheme 4.1 Synthesis of new G2’ dendron initiator via AB2 brancher 

As discussed in Chapter 2 (section 2.2.2) the reaction of 1,3-dibenzyloxy-2-propanol 

and 1,1’-carbonyldiimidazole gave 3, (see Appendix Fig. A1, A2 and A3 for 
1
H and 

13
C NMR spectra analysis and ES mass spectrometry analysis respectively). The 

reaction of two equivalents of 3 with one equivalent of 9 (AB2 brancher) gave a 

generation 2 dendron, 10, with a free hydroxyl group at the focal point for further 

reaction. The AB2 brancher, 9, was developed within the research group and the 

synthesis is discussed in the Appendix (section 3.1, p303, see Scheme A1 and 

Fig. A23-A25). The two primary amines on the AB2 brancher selectively react with 

the imidazole carboxylic ester, 3, to give 10 in good yields (94 %). The 
1
H NMR 

spectrum and 
13

C NMR spectrum of 10 can be seen in the Appendix, Fig. A26 and 

A27, respectively. The ES mass spectrometry analysis, Fig. A28 in the Appendix 

shows the correct [M+H]
+
 molecular ion peak at 756.4 m/z.  

The hydroxyl group at the focal point of 10 was subsequently reacted with α-bromo 

isobutyryl bromide to give the new G2ʹ dendron initiator, 11, which was purified by 

column chromatography and analysed by 
1
H NMR and 

13
C NMR spectroscopy 

which confirmed the correct structure; the 
1
H NMR spectrum (Fig. 4.1) and 

13
C NMR spectrum (Fig. 4.2) show all assigned peaks. Analysis by ES mass 

spectrometry, Fig. 4.3, shows the correct molecular ion peak, [M+H]
+ 

at 936 m/z, 
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and also [M+Na]
+
 and [M+K]

+ 
at 958 and 974 m/z; the bromine isotope pattern is 

also visible. 

 

Figure 4.1 
1
H NMR (CDCl3, 400 MHz) of G2ʹ dendron initiator, 11 

 

Figure 4.2 
13

C NMR (CDCl3, 100 MHz) of G2ʹ dendron, 11 
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Figure 4.3 Mass spectrum (ES-MS) of G2ʹ dendron initiator, 11, including the [M+H]
+
 peak enlarged 

to see the bromine isotope pattern 

 

 

4.2.2.  2000PEG macroinitiator synthesis 

The PEG macroinitiator used in this chapter was synthesised via the esterification of 

monomethoxy PEG (average molecular weight 2 000 gmol
-1

) with α-bromo 

isobutyryl bromide.
6
 The same method was used as discussed in Chapter 3 for the 

synthesis of the 750PEG macroinitiator. Scheme 4.2 shows the synthesis of this 

2000PEG macroinitiator.  

 

Scheme 4.2 2000PEG macroinitiator synthesis 

The monomethoxy PEG (~2 000 gmol
-1

) was dissolved in THF which required 

warming (~40 °C) for full dissolution. This was then degassed with dry N2 for 

approximately 20 minutes, placed in an ice bath and DMAP and TEA were added. 

The α-bromoisobutyryl bromide was added dropwise over 20 minutes. A precipitate 

was observed immediately which indicated reaction as the salt formed is NEt3H
+
Br

-
. 
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The reaction was allowed to warm to room temperature and left stirring and sealed 

under dry N2 for 24 hours. The precipitate was filtered, solvent removed in vacuo to 

give the crude product which was dissolved in acetone and precipitated into cold 

petroleum ether (30 - 40 °C).  The 
1
H NMR spectrum can be seen in Fig. 4.4 below 

and mass spectrometric analysis by MALDI-TOF is shown in the Appendix, 

Fig. A29. 

 

 

Figure 4.4 
1
H NMR (D2O, 400 MHz) of 2000PEG macroinitiator with major peaks assigned (n = 43) 

 

4.3.  Polymer synthesis 

The new G2ʹ dendron initiator and 2000PEG macroinitiator were used to initiate the 

polymerisation of pHPMA via ATRP with a targeted number average degree of 

polymerisation (DPn) of 20, 50 and 100 monomer units. The reactions were carried 

out in methanol at 30 ºC at 50 wt%, with respect to monomer, employing the 

CuCl:bpy catalytic system (1:2). Kinetic experiments were conducted to ensure that 

the behaviour of this new G2ʹ dendron initiator was consistent with that of the 

previous G2 dendron initiator (used in Chapter 2 and 3), and that the 2000PEG 

macroinitiator was also suitable as an initiator for the polymerisation. The inclusion 

of a divinyl monomer, EGDMA, afforded branched polymers with high molecular 

weights and broad polydispersities as previously reported in the literature
7, 8

 and 
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previous chapters (see Chapter 2 and 3). It is worth noting that due to the increased 

PEG length present in the polymers synthesised in this Chapter, analysis by GPC 

was conducted using a GPC with a different eluent from Chapters 2 and 3 (used THF 

GPC). Here the GPC eluent used was dimethylformamide (DMF) at 60 °C with 

0.01M LiBr, utilising triple detection. 

4.3.1.  Linear polymer synthesis 

Linear polymers were produced using both the initiators described with targeted DPn 

of 20, 50 and 100 monomer units. The molecular weights and dispersities of these 

polymers are shown in Table 4.1, with the reaction times and monomer conversions 

reached. 

  

Table 4.1 Molecular weights and dispersities of G2’ dendron initiated linear-dendritic polymers and 

2000PEG initiated diblock copolymers 

Target Polymer 

Composition 

Reaction 

time (hrs) 
Conv (%)

a
 

GPC
b
 

Mn (gmol
-1

) Mw (gmol
-1

) Ð 

G2ʹ-pHPMA20 6 99.5 7 000 8 900 1.26 

G2ʹ-pHPMA50 7 93.6 12 300 15 500 1.26 

G2ʹ-pHPMA100 24 96.5 28 500 40 400 1.42 

2000PEG-pHPMA20 6 99.4 5 900 7 900 1.34 

2000PEG-pHPMA50 21 99.6 13 000 17 800 1.37 

2000PEG-pHPMA100
c
 22 99.2 22 400 27 800 1.24 

a
Determined by 

1
H NMR analysis in d6-DMSO. 

b
Analysed using triple detection with the DMF GPC. 

c
Synthesised using purified HPMA. 

 

The RI GPC chromatogram overlays for each G2ʹ dendron initiated linear-dendritic 

polymer synthesised are shown in Fig. 4.5A. The GPC analysis shows that each 

linear-dendritic polymer was monomodal as expected, however, a slight shoulder at 

higher molecular weight was observed. This shoulder could be due to either 

termination by combination or disproportionation which can occur in radical 

polymerisations,
9
 or due to a dimethacrylate impurity which is present in low 

amounts in the HPMA monomer as supplied.
10

 Fig. 4.5B shows the linear polymers 

produced by the linear polymerisations of HPMA utilising the 2000PEG 

macroinitiator. These polymers can be described as amphiphilic block copolymers
11
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due to the 2000PEG macroinitiator being a hydrophilic polymer and the pHPMA 

block being hydrophobic. For each amphiphilic block copolymer produced a 

monomodal peak is observed, however, a slight shoulder at high molecular weight is 

also observed, and most pronounced in the 2000PEG-pHPMA50 sample.  

 

 

Figure 4.5 GPC chromatogram overlays of the refractive index (RI) traces of A) G2ʹ-pHPMA20, G2ʹ-

pHPMA50, G2ʹ-pHPMA100 and B) 2000PEG-pHPMA20, 2000PEG-pHPMA50, 2000PEG-pHPMA100 

 

4.3.2.  Branched polymer synthesis 

The two initiators chosen for study in this chapter were used to synthesise branched 

pHPMA to produce three hyp-polydendrons when the G2ʹ dendron was used and 

three amphiphilic branched block copolymers (hyp-block copolymers) when the 

2000PEG initiator was used. The molecular weights and dispersities of these 

polymers are shown in Table 4.2, with the linear equivalent polymers included for 

easy comparison.  

Analysis of each of the hyp-polydendrons and hyp-block copolymers by GPC shows 

that with the inclusion of EGDMA, high molecular weight polymeric species were 

formed with broader dispersities than the linear polymer equivalents. Fig. 4.6 

highlights each targeted DPn linear and branched polymer chromatograms shown in 

Table 4.2. Fig. 4.6A shows the RI chromatogram overlays for the G2’ initiated 

linear-dendritic polymers and hyp-polydendrons, with the RALS chromatograms 

shown in Fig. 4.6B. The hyp-polydendrons elute at much lower retention volumes 

(between 12 - 13 mL) than the linear equivalents, which do not elute until around 16 
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- 18 mL. The hyp-polydendron peaks in both the RI and RALS chromatograms are 

much broader than the linear-dendritic polymers.  

The RI and RALS chromatogram overlays of the 2000PEG initiated linear and 

branched block copolymers are shown in Fig. 4.6C and Fig. 4.6D respectively. The 

hyp-block copolymers eluted at a much lower retention volumes (13 - 15 mL) than 

the linear block copolymers (17 - 19 mL), indicating high molecular weight polymer 

species are present. The branched polymers also have much broader dispersities than 

the linear equivalents. 

 

Table 4.2 Molecular weights and dispersities of G2’ dendron initiated and 2000PEG initiated linear 

and branched polymers 

Target Polymer 

Composition 

Reaction 

time (hrs) 

Conv 

(%)
a
 

GPC
b
 

Mn (gmol
-1

) Mw (gmol
-1

) Ɖ 

G2ʹ-pHPMA20 6 99.5 7 000 8 900 1.26 

G2ʹ-pHPMA50 7 93.6 12 300 15 500 1.26 

G2ʹ-pHPMA100 24 96.5 28 500 40 400 1.42 

G2ʹ-pHPMA20-EGDMA0.8 18 >99 66 544 1 296 000 19.5 

G2ʹ-pHPMA50-EGDMA0.8 20 99.4 193 600 2 225 000 11.5 

G2ʹ-pHPMA100-EGDMA0.8 30 96.1 124 650 1 936 000 15.5 

2000PEG-pHPMA20 6 99.4 5 873 7 842 1.34 

2000PEG-pHPMA50 21 99.6 13 000 17 800 1.37 

2000PEG-pHPMA100
c
 22 99.2 22 400 27 800 1.24 

2000PEG-pHPMA20-EGDMA0.8 6 >99 14 483 138 437 9.56 

2000PEG-pHPMA50-EGDMA0.95 20 99.5 32 200 477 000 14.8 

2000PEG-pHPMA100-EGDMA0.8 24 98.2 53 850 335 300 6.23 
a
Determined by 

1
H NMR analysis in d6-DMSO, 

b
Analysed using triple detection with the DMF GPC. 

c
Synthesised using purified HPMA.  
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Figure 4.6 GPC chromatogram overlays of G2’ initiated polymers: A) RI traces and B) RALS traces. 2000PEG initiated polymers: C) RI traces and D) RALS traces
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4.3.3. Kinetic experiments 

Initially kinetic studies were conducted utilising the 2000PEG initiator for both 

linear and branched polymerisations with targeted DPn of 20, 50 and 100 monomer 

units. As expected, and previously reported,
12

 when targeting lower DPn the time 

required to reach 100 % conversion is reduced. The DP20 polymerisations (Fig. 4.7) 

reached 99 % conversion within 4 hours reaction time, whereas the DP50 

polymerisations (Fig. 4.8) had reached 87 - 88 % (the linear was 87 % and branched 

was 88%) and the DP100 polymerisations (Fig. 4.9) had only reached 73 % for the 

linear and 62 % conversion for the branched polymerisation after 4 hours reaction 

time.  

 

Figure 4.7 Kinetic plots for the 2000PEG initiated linear and branched DP20 polymerisations. A) and 

B) 2000PEG-pHPMA20, C) and D) 2000PEG-pHPMA20-EGDMA0.95. Conversion (black squares) 

and ln([M]0/[M]) (green down triangles), Mn (red up triangles), Mw (red empty up triangles) and Ð 

(blue circles) 

 

The linear and branched DP20 kinetic studies (Fig. 4.7) both show that the 

polymerisations proceed with first order kinetics, with respect to the monomer, as the 

ln([M]0/[M]) vs. time plots for both the linear (Fig. 4.7A) and the branched 
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(Fig. 4.7C) follow a linear relationship. Comparing the evolution of molecular 

weight, the Mn increased linearly with conversion for the linear polymerisation 

(Fig. 4.7B), whereas with the incorporation of divinyl monomer in the branched 

polymerisation (Fig. 4.7D) the Mn and Mw increased rapidly over ~80 % conversion. 

The dispersity observed for the linear experiment showed initially a value of 1.26 at 

67 % conversion which reduced to 1.14 at high conversion (> 99 %). Ð was 

measured as 1.6 at 65 % conversion for the branched polymerisation and increased 

up to 9.7 at high conversion (> 99 %). 

 

Figure 4.8 Kinetic plots for the 2000PEG initiated linear and branched DP50 polymerisations. A) and 

B) 2000PEG-pHPMA50, C) and D) 2000PEG-pHPMA50-EGDMA0.95. Conversion (black squares) 

and ln([M]0/[M]) (green down triangles), Mn (red up triangles), Mw (red empty up triangles) and Ð 

(blue circles) 

 

Similar results were also observed when the DP50 linear and branched 

polymerisation kinetics were studied. The conversion vs. time and ln([M]0/[M]) vs. 

time plots (Fig. 4.8A for linear and Fig. 4.8C for the branched) are both very similar, 

showing that first order kinetics were observed. The Mn of the linear polymer 

increased in a linear fashion with increasing conversion (see Fig. 4.8B) and the 
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dispersities remained below 1.5 throughout. The branched polymerisation showed a 

steep increase in Mn, Mw and Ð when conversion reached > 80 % conversion (see 

Fig. 4.8D).  

 

Figure 4.9 Kinetic plots for the 2000PEG initiated linear and branched DP100 polymerisations. A) 

and B) 2000PEG-pHPMA100, C) and D) 2000PEG-pHPMA100-EGDMA0.8. Conversion (black 

squares) and ln([M]0/[M]) (green down triangles), Mn (red up triangles), Mw (red empty up triangles) 

and Ð (blue circles). The 2000PEG-pHPMA100-EGDMA0.8 repeat experiment C); conversion (black 

empty squares), ln([M]0/[M]) (green empty triangles), and D); Mn (red diamonds), Mw (red empty 

diamonds) and Ð (blue crosses) 

 

The linear DP100 polymerisation showed a possible decrease in propagating radical 

concentration over the course of the reaction. This is indicated by the ln([M]0/[M]) 

vs. time plots deviating from linearity as time progressed, see Fig. 4.9A. This loss of 

propagating radicals did not appear to affect the control of the polymerisation as the 

dispersities remained low, between 1.12 - 1.22 throughout the experiment, and the 

increase in Mn was relatively linear with increasing conversion (Fig. 4.9B). The 

branched DP100 also showed a possible decrease in propagating radicals due to the 

non-linear semi-logarithmic plot, Fig. 4.10C. The Mn and Mw increased relatively 

linearly up to ~80 % conversion, where they increased steeply, which was also 
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observed for the dispersity. Two different reactions which were set up for the 

polymerisation of the 2000PEG-pHPMA100-EGDMA0.8 branched polymer (see 

Fig. 4.9C and D) so as to collect complete data between 90 - 98 % conversion. The 

two experiments were prepared under the same conditions and as the data points fit 

well between the two experiments it was deemed appropriate to plots the data sets on 

the same graphs. The apparent loss in propagating radicals in both DP100 

polymerisations was probably due to the rate of propagation being lower than for the 

DP50 and DP20 polymerisations and, therefore, the rate of termination was not 

negligible as is required for first order kinetics in ATRP. The termination may be 

caused by unwanted side reactions of propagating radicals with other radical species 

(radical-radical coupling), impurities in the reaction such as oxygen or the solvent.  

To ensure that the new G2’ dendron initiator would yield similar kinetic profiles as 

the previously discussed G2 dendron (see Chapter 2, section 2.4), firstly kinetic 

studies were conducted on the DP20 linear and branched polymerisations, Fig. 4.10.  

 

Figure 4.10 Kinetic plots for the G2’ initiated linear and branched DP20 polymerisations. A) and B) 

G2’-pHPMA20, C) and D) G2’-pHPMA20-EGDMA0.8. Conversion (black squares) and ln([M]0/[M]) 

(green down triangles), Mn (red up triangles), Mw (red empty up triangles) and Ð (blue circles) 
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The conversion vs. time and semi-logarithmic plots for the linear (Fig. 4.10A) and 

branched (Fig. 4.10C) polymerisation show that high conversion (> 97 %) was 

reached within 6 hours of reaction and that the polymerisations both followed first 

order kinetics. The linear polymerisation showed a linear increase in Mn with 

increasing conversion, as expected, and dispersities below 1.13. The Mn and Mw for 

the branched polymerisation increased linearly up to approximately 70 % conversion 

where a moderate increase in Mn was observed and a steep increase in Mw and Ð was 

observed.  

These kinetic experiments indicated that the new G2’ dendron initiator was indeed 

suitable for use in polymerisations, however, in Chapter 2 the kinetic experiments 

conducted were with DP50 polymerisations and, therefore, to draw a direct 

comparison of the kinetics a DP50 polymerisation was conducted with the G2’ 

dendron initiator for the linear polymerisation, see Fig. 4.12.  

 

Figure 4.11 Kinetic plots for G2’-pHPMA50 polymerisation. Conversion (black squares) and 

ln([M]0/[M]) (green down triangles), Mn (red up triangles), and Ð (blue circles) 

 

The ln([M]0/[M]) vs. time plots shows that the polymerisation followed first order 

kinetics, as previously observed. The evolution of Mn with conversion was linear and 

the dispersity remained low throughout the reaction, between 1.21-1.27. Therefore 

the G2’ dendron initiator was used in further polymerisations.  

The kinetic evaluation of the G2’ dendron initiator was sufficient to warrant the use 

of it in place of the previously described G2 dendron initiator. Further kinetic studies 

were not required, and were not conducted to preserve the G2’ dendron initiator for 

subsequent mixed initiator polymerisations. 
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4.3.4.  Mixed initiator polymerisations 

Similar to the series of hyp-polydendrons described in Chapter 3 (G2 dendron and 

750PEG mixed initiator system), this chapter describes the mixed initiator system 

utilising the new G2ʹ dendron initiator and 2000PEG macroinitiator in various 

ratios. This approach was utilised to produce a series of DP20, DP50 and DP100 

polymers, ranging from 100:0, 90:10, 75:25, 50:50, 25:75, 10:90 and 0:100 % 

G2ʹ:2000PEG initiators. The molecular weights and dispersities of all these hyp-

polydendrons, and in the case of 100 % 2000PEG initiated; hyp-block copolymers, 

are shown in Table 4.3 with the reaction times and monomer conversion reached. 

The final polymer GPC chromatogram overlays are shown in Fig. 4.12 for selected 

entries in Table 4.3. 

Various ratios of EGDMA were used with each initiator ratio in the DP50 series 

(Table 4.3, entries 10 - 20) initially to determine the highest amount of EGDMA that 

could be used to produce high molecular weight soluble branched polymers. 

Therefore the DP50 series of mixed initiator hyp-polydendrons contained varying 

amounts of EGDMA. The 100 % G2’ initiated hyp-polydendron contained an 

initiator:brancher ratio of 1:0.8, whereas the 100 % 2000PEG initiated branched 

polymer contained 1:0.95 initiator:brancher. Therefore, with increasing 2000PEG 

content, more EGDMA could be incorporated into the polymerisation before 

gelation would occur. This trend agrees with the observation in Chapter 3 that with 

increasing the percentage of the 750PEG macroinitiator to G2 dendron initiator, and 

maintaining the same level of EGDMA, the molecular weights obtained decreased. 

This was thought to be due to the initiator efficiency of the 750PEG initiator being 

higher than the G2 dendron initiator. As various ratios of EGDMA were used in the 

polymerisation, samples were selected for further study based on the molecular 

weights and a preliminary study of their nanoprecipitation (see below, section 4.4). 

Therefore entry numbers 10 - 16 in Table 4.3 were used for further studies in this 

Chapter, and the GPC chromatograms for these polymers are shown in Fig. 4.12; 

Fig. 4.12C shows the RI chromatogram overlays and Fig. 4.12D shows the RALS 

chromatogram overlays. The hyp-polydendrons from the DP50 series which were not 

used for further study include entries 17 - 20. The RI and RALS GPC 

chromatograms for each of these samples are shown in the Appendix (Fig. A30C-F).  
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Table 4.3 Molecular weights and dispersities of G2’:2000PEG hyp-polydendron and hyp-block 

copolymers produced  

Entry 

no. 

Initiator (%) 
Target Polymer 

Composition 

Reaction 

time (hrs) 

Conv 

(%)
a
 

GPC
b
 

G2ʹ 

dendron 
2000PEG Mn Mw Ɖ 

1 100 0 pHPMA20-EGDMA0.8 18 >99 66 500 1 296 000 19.5 

2 90 10 pHPMA20-EGDMA0.8 5 98.2 25 800 557 600 21.6 

3 75 25 pHPMA20-EGDMA0.8 5 98.6 22 200 364 600 16.4 

4 50 50 pHPMA20-EGDMA0.8 6 99.7 13 700 190 700 14.0 

5 25 75 pHPMA20-EGDMA0.8 24 >99 24 800 263 000 10.6 

6 10 90 pHPMA20-EGDMA0.8 24 >99 15 300 115 600 7.54 

7 0 100 pHPMA20-EGDMA0.8 6 >99 14 500 138 400 9.56 

8 50 50 pHPMA20-EGDMA0.85 6 >99 141 700 3 236 000 22.8 

9 0 100 pHPMA20-EGDMA0.95 18 >99 81 700 1 607 000 19.7 

 

10 100 0 pHPMA50-EGDMA0.80 20 99.4 193 600 2 225 000 11.5 

11 90 10 pHPMA50-EGDMA0.80 17 98.8 348 000 2 464 000 7.08 

12 75 25 pHPMA50-EGDMA0.80 17 99.4 55 000 1 067 000 19.4 

13 50 50 pHPMA50-EGDMA0.85 19 99.7 29 400 709 200 24.2 

14 25 75 pHPMA50-EGDMA0.95 20 99.7 141 300 1 862 000 13.2 

15 10 90 pHPMA50-EGDMA0.95 20 99.7 40 200 795 300 19.8 

16 0 100 pHPMA50-EGDMA0.95 20 99.5 32 200 477 000 14.8 

17 75 25 pHPMA50-EGDMA0.85 19 99.2 129 500 1 809 000 14.0 

18 50 50 pHPMA50-EGDMA0.90 19 99.5 70 800 1 135 000 16.0 

19 25 75 pHPMA50-EGDMA0.90 20 99.9 78 800 1 211 000 15.4 

20 10 90 pHPMA50-EGDMA0.90 20 99.8 26 100 428 800 16.4 

 

21 100 0 pHPMA100-EGDMA0.8 30 96.1 124 650 1 936 000 15.5 

22 75 25 pHPMA100-EGDMA0.8 29 95.9 71 800 838 700 11.7 

23 50 50 pHPMA100-EGDMA0.8 28 98.0 58 300 511 050 8.77 

24 25 75 pHPMA100-EGDMA0.8 24 97.5 54 800 443 150 8.09 

25 0 100 pHPMA100-EGDMA0.8 24 98.2 53 850 335 300 6.23 

a
Determined by 

1
H NMR analysis in d6-DMSO. 

b
Analysed using triple detection with the DMF GPC 

 

When the DP20 and DP100 series were synthesised, the ratio of initiator:brancher was 

maintained at 1:0.8 to ascertain whether or not the previous trend, described above, 

was still applicable in the G2’:2000PEG series of hyp-polydendrons. In the case of 

the DP20 series with an initiator:brancher ratio 1:0.8 (Table 4.3, entries 1-7), the 

same general trend is observed, with increasing the percentage of 2000PEG initiator 
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the molecular weights and dispersities decrease, from: Mn = 66 500 gmol
-1

, 

Mw = 1 296 000 gmol
-1 

and Ð = 19.48 with the G2’-pHPMA20-EGDMA0.8, to: 

Mn = 14 500 gmol
-1

, Mw = 138 400 gmol
-1

 and Ð = 9.56 for the 2000PEG-

pHPMA20-EGDMA0.8.  The GPC chromatograms for these samples are shown in 

Fig. 4.12A and B. The RI chromatogram overlays are shown in Fig. 4.12A and the 

RALS chromatogram overlays in Fig. 4.12B. Two further polymerisations were 

conducted with higher levels of EGDMA to show that this would increase the 

resultant molecular weights of the polymers. G2’:2000PEG-50:50-pHPMA20-

EGDMA0.85 (Table 4.3, entry 8) and G2’:2000PEG-0:100-pHPMA20-EGDMA0.95 

(Table 4.3, entry 9) were also synthesised and both showed much higher molecular 

weights and dispersities than the equivalent polymer with an initiator:brancher ratio 

of 1:0.8. The RI and RALS GPC chromatogram overlays for these two polymers are 

shown in the Appendix Fig. 30A and B.  

The DP100 series (Table 4.3, entries 21-25) was synthesised with only the 100:0, 

75:25, 50:50, 25:75 and 0:100 ratios of initiators, the 90:10 and 10:90 were not 

synthesised to conserve G2’ dendron material. Again the molecular weights and 

dispersities decrease with increasing levels of 2000PEG initiator. As the reaction 

times required for high conversion (> 98 %) were much longer for the targeted DP100 

polymers, they were polymerised ensuring that a conversion > 95 % was achieved in 

each case. The GPC chromatograms for these polymers are shown in Fig. 4.12E and 

F, with the RI chromatogram overlays (Fig. 4.12E) and RALS chromatogram 

overlays (Fig. 4.12F).  

It was clear from the GPC chromatograms that high molecular weight polymer 

species had been synthesised due to the elution of polymeric species at low retention 

volumes (between 12 - 15 mL) whereas, even in the case of the DP100 linear 

polymers, elution was not observed until after a retention volume of 16 mL. Entries 

1 - 7, 10 - 16 and 22 - 26 of Table 4.3 were investigated further for their behaviour 

under nanoprecipitation conditions.  

Analysis of the G2’:2000PEG series of hyp-polydendrons by 
1
H NMR spectroscopy 

is discussed in Chapter 5 (see section 5.2.2).  



CHAPTER 4 

170 

 

 

Figure 4.12 GPC chromatogram overlays of mixed initiator branched polymers. G2’:2000PEG-pHPMA20-EGDMA0.8: A) RI traces and B) RALS traces. G2’:2000PEG-

pHPMA50-EGDMAx: C) RI traces and D) RALS traces. G2’:2000PEG-pHPMA100-EGDMA0.8: E) RI traces and F) RALS traces 



CHAPTER 4 

171 

 

4.4.  Nanoprecipitation of G2’ and 2000PEG initiated polymers 

As previously described, nanoprecipitation is a facile method of preparing polymeric 

nanoparticles
13, 14

 and has been employed here to produce nanoparticles with various 

dendron content. The nanoprecipitation of linear polymers and hyp-polydendrons 

synthesised in this chapter were studied and discussed below. The primary technique 

used for nanoparticle characterisation was DLS, as in Chapters 2 and 3, to measure 

the Dz and PdI values of nanoparticle samples. SEM characterisation of selected 

nanoparticle samples was also conducted. 

4.4.1. Linear polymers for nanoprecipitation 

The linear polymers synthesised; G2’-pHPMA20, G2’-pHPMA50, G2’-pHPMA100, 

2000PEG-pHPMA20, 2000PEG-pHPMA50 and 2000PEG-pHPMA100 were 

subjected to nanoprecipitation from a good solvent (THF) into an anti-solvent for the 

G2’ dendron and pHPMA chain (water). Starting concentrations of 25, 10, 5 and 

1 mg/mL were chosen for the study using two different df (0.2 and 0.01), see 

Table 4.4.  

When using the linear-dendritic polymers (G2’ initiated) for nanoprecipitations, 

nanoparticles were generally formed, except for the i10-f2 for both the DP50 and DP100 

polymers, as they precipitated out of the solution and no DLS measurement could be 

taken. With each of the linear-dendritic polymers, generally, narrower dispersities 

were observed at lower concentration and under more dilute nanoprecipitation 

conditions. DLS size distribution by intensity traces for selected nanoprecipitations 

are shown in Fig. 4.13. Fig. 4.13A, C and E show the DLS traces for the linear-

dendritic nanoprecipitations with i5-f1, i25-f5 and i5-f0.05 respectively. Most of the 

samples contained a monomodal distribution of particles, however, most of the PdI 

values were higher than 0.1 (see Table 4.4) except for the i5-f0.05 nanoprecipitations 

which produced nanoparticles with a narrow polydispersities: 0.090, 0.036 and 0.038 

for G2’-pHPMA20 (160 nm), G2’-pHPMA50 (228 nm) and G2’-pHPMA100 (208 nm) 

respectively.  
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Table 4.4 DLS measurements for the linear polymer nanoprecipitations; G2’-pHPMA20, G2’-pHPMA50, G2’-pHPMA100, 2000PEG-pHPMA20, 2000PEG-pHPMA50 and 

2000PEG-pHPMA100 

Initiator 

Nanoprecipitation conditions DP20 DP50 DP100 

ix  
(mg/mL) 

fy 

(mg/mL) 
df Dz (nm) PdI Dz (nm) PdI Dz (nm) PdI 

G2ʹ dendron 

25 5 0.2 354 0.192 280 0.222 151 0.153 

10 2 0.2 540 0.392 - - - - 

5 1 0.2 204 0.164 882 0.241 250 0.035 

1 0.2 0.2 151 0.116 170 0.187 870 0.625 

25 0.25 0.01 191 0.097 496 0.224 310 0.154 

10 0.1 0.01 406 0.185 238 0.036 257 0.128 

5 0.05 0.01 161 0.090 228 0.036 208 0.038 

1 0.01 0.01 179 0.035 179 0.061 282 0.156 

 

2K PEG 

25 5 0.2 * * 32 0.123 712 0.221 

10 2 0.2 47 0.396 48 0.286 336 0.130 

5 1 0.2 * * 56 0.423 267 0.112 

1 0.2 0.2 * * 96 0.491 179 0.190 

25 0.25 0.01 * * 42 0.389 139 0.183 

10 0.1 0.01 * * * * 101 0.127 

5 0.05 0.01 * * * * 79 0.135 

1 0.01 0.01 * * * * 130 0.276 

Not suitable for measurement by DLS due to – precipitation or *lack of scattering/high polydispersity, ix = initial concentration, fy = final concentration, df = dilution factor 
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The nanoprecipitations of the 2000PEG-pHPMAn polymers were expected to differ 

from the linear-dendritic polymers as they were amphiphilic diblock copolymers and 

the opportunity for micelle formation is present.
15

 When the hydrophobic polymer 

chain was pHPMA20 only one of the samples prepared could be analysed via DLS. 

This was probably because the polymer was too water-soluble and, therefore, 

produced very little light scattering for detection by DLS. Only with the sample 

prepared at i10-f2 was analysis by DLS possible which gave a Dz of 47 nm and a PdI 

of 0.396, which suggests micelles were present. The more dilute samples which 

failed measurement showed a high attenuator value and a lower count rate, implying 

that they were below the CMC of the polymer and present only as unimers. 

However, it was unclear why the more concentrated sample (i25-f5) could not be 

accurately analysed as it did have an acceptable count rate; the sample may have had 

micelles present but was too polydisperse for adequate data collection and 

correlation to the DLS scattering model.  

The 2000PEG-pHPMA50 polymers did form structures upon nanoprecipitation, 

possibly micelles, at final concentrations higher than 0.2 mg/mL, with Dz ranging 

from 32 - 96 nm and PdI values between 0.123 - 0.491. Interestingly, with increasing 

concentration and maintaining the df at 0.2, the Dz of the particles decreased, as did 

the dispersity. The 2000PEG-pHPMA100 polymer produced nanoparticles ranging 

from 79 nm to 712 nm with PdI values between 0.130 - 0.276.  This huge range in 

particle diameters could possibly be due to different morphologies formed, for 

example, micelles and vesicles; however, possible vesicle formation was not 

investigated further.  

Fig. 4.13 highlights the DLS traces for some of the nanoprecipitations performed 

with the 2000PEG block copolymers. Fig. 4.13B, D and F show DLS traces for the 

block copolymer samples prepared using i5-f1, i25-f5 and i10-f2 respectively. 
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Figure 4.13 DLS size distribution by intensity traces for nanoprecipitations; i5-f1: A) G2’ linear-

dendritic polymers, B) 2000PEG block copolymers, i25-f5: C) G2’ linear-dendritic polymers, D) 

2000PEG block copolymers and E) i5-f0.05 G2’ linear-dendritic polymers and F) i10-f2 2000PEG 

block copolymers 
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4.4.2.  Study of G2’:2000PEG-pHPMA50-EGDMAx materials 

Following the nanoprecipitation studies performed in Chapter 3, the G2’:2000PEG 

DP50 series was investigated utilising nanoprecipitation to assess whether the 

introduction of a longer stabilising hydrophilic PEG chain would achieve stability 

under physiologically relevant conditions, and if so, which combination of initiators 

within the mixed polymerisations would achieve such stability.  

Firstly, two different good solvents for the nanoprecipitations were assessed 

maintaining one initial and final concentration, i5-f1. THF and acetone were both 

chosen for the nanoprecipitations as THF had previously been used in Chapters 2 

and 3, whilst acetone was also a good solvent for the hyp-polydendrons and volatile, 

which is desirable for use in the nanoprecipitation technique. Fig. 4.14 shows the Dz 

and PdI values observed for the i5-f1 nanoprecipitations using THF and acetone as 

the good solvent (see Appendix, Table A8). The diameters of the resulting 

nanoparticles formulated using acetone were generally larger than the corresponding 

from THF and had higher PdI values. The nanoprecipitation using the G2’-

pHPMA50-EGDMA0.8 hyp-polydendron from acetone was not stable and precipitate 

was present in the sample. Therefore, THF was used as the solvent of choice for the 

nanoprecipitations. The hyp-polydendrons with high 2000PEG content (> 75 %) 

showed the least variation between the two solvents.   

 

Figure 4.14 Dz and PdI values for G2’:2000PEG-pHPMA50-EGDMAx samples prepared with i5-f1 

from THF and acetone as a function of G2’ dendron content (%) 
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Further nanoprecipitations were performed using THF to study the scope of the 

nanoprecipitation methodology with these materials. Initial concentrations in THF 

studied were 50, 25, 10, 5 and 1 mg/mL with two different df (0.2 and 0.01) giving a 

series of nanoparticles with varying concentration and varying G2’:2000PEG 

functionality, see Table 4.5 for DLS measurements. 

The data shows that perhaps the best nanoprecipitation conditions were those 

utilising i5-f1, i1-f0.2 and i50-f0.5 as the PdI values for these samples were generally 

lower than for other initial and final concentrations studied. The DLS size 

distribution by intensity traces for each polymer prepared under these 

nanoprecipitation conditions are shown in Fig. 4.15. 

 

Figure 4.15 DLS size distribution by intensity trace overlays for the G2’:2000PEG-pHPMA50-

EGDMAx series with initial and final concentrations: A) i1-f0.2, B) i5-f1 and C) i50-f0.05 

 

Each of the i5-f1 samples was prepared for imaging by SEM by dropping the sample 

on a silicon wafer mounted on an aluminium SEM stub with a carbon tab, and 

allowed to dry overnight at ambient temperature. Sputter coating was needed for 

imaging with Au at 20 mA for 2 min. SEM images are shown in Fig. 4.16.  
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Table 4.5 DLS measurements for various nanoprecipitations utilising the G2’:2000PEG-pHPMA50-EGDMAx series of hyp-polydendrons 

G2’:2000PEG-

pHPMA50-

EGDMAx 

i50-f10 i25-f5 i10-f2 i5-f1 i1-f0.2 

Dz (nm) PdI Dz (nm) PdI Dz (nm) PdI Dz (nm) PdI Dz (nm) PdI 

100:0 x = 0.8 111 0.335 77 0.383 96 0.481 64 0.211 132 0.042 

90:10 x = 0.8 165 0.207 693 0.191 459 0.217 158 0.020 125 0.014 

75:25 x = 0.8 65 0.342 73 0.389 93 0.085 215 0.085 165 0.030 

50:50 x = 0.85 27 0.318 42 0.163 105 0.138 106 0.058 82 0.032 

25:75 x = 0.95 35 0.370 60 0.198 63 0.200 60 0.223 75 0.262 

10:90 x = 0.95 35 0.196 37 0.175 38 0.194 38 0.207 39 0.301 

0:100 x = 0.95 34 0.210 33 0.248 32 0.269 33 0.304 30 0.294 

           

G2’:2000PEG-

pHPMA50-

EGDMAx 

i50-f0.5 i25-f0.25 i10-f0.1 i5-f0.05 i1-f0.01 

Dz (nm) PdI Dz (nm) PdI Dz (nm) PdI Dz (nm) PdI Dz (nm) PdI 

100:0 x = 0.8 - - - - - - 136 0.044 289 0.152 

90:10 x = 0.8 246 0.290 390 0.395 197 0.128 156 0.086 300 0.196 

75:25 x = 0.8 184 0.121 217 0.161 104 0.099 84 0.043 103 0.079 

50:50 x = 0.85 84 0.106 63 0.059 81 0.344 91 0.391 64 0.236 

25:75 x = 0.95 76 0.169 74 0.175 61 0.339 62 0.217 * * 

10:90 x = 0.95 35 0.190 35 0.237 * * * * * * 

0:100 x = 0.95 29 0.232 * * * * * * * * 
*DLS measurements failed due to insufficient scattering. – Precipitation had occurred so the sample could not be measured by DLS. x = amount of EGDMA present in the 

hyp-polydendron 
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Figure 4.16 SEM images of nanoprecipitations with i5-f1 for the G2’:2000PEG-pHPMA50-EGDMAx hyp-polydendron series: A) 100:0, B) 90:10, C) 75:25, D) 50:50, 

E) 25:75, F) 10:90 and G) 0:100 
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It became apparent that for the 10:90 and 0:100 sample the resulting Dz and PdI of 

the particles were independent of the initial or final concentration. Across all the 

various nanoprecipitations the 10:90 particles were between 34 - 39 nm (Dz) with 

PdIs ranging from 0.175 to 0.301. The 0:100 particles had Dz of 29 - 34 nm and PdI 

values between 0.210 and 0.304. These observations did not agree with the 

nanoprecipitations previously studied (Chapter 2 and 3) whereby the z-average 

diameter of nanoparticles usually increased with increasing the concentration of the 

initial polymer dissolved in good solvent. It was also observed that at low final 

concentrations (0.01 - 0.25 mg/mL, see Table 4.5) the resulting nanoparticle samples 

were not suitable for measurement by DLS. This was because of insufficient 

scattering for an accurate measurement, which is usually due to the sample being too 

dilute, or not being dense enough or large enough to scatter enough light. The SEM 

images for these samples (Fig. 4.16F and G) prepared at i5-f1 show no hierarchical 

structure and appear to resemble dried polymer deposits.  

It was proposed that due to the high hydrophilic PEG content of these polymers that 

they were actually water-soluble in spite of the hydrophobic pHPMA branched core 

within each of these polymers. Therefore the water-solubility of each DP50 hyp-

polydendron was studied by weighing out 20 mg of polymer and adding 1 mL of 

distilled water and leaving the samples rolling overnight. Fig. 4.17 shows the results 

of this simple experiment, showing that 100:0, 90:10 and 75:25 were not water-

soluble, whilst the other hyp-polydendrons (50:50, 25:75, 10:90 and 0:100) were all 

fully water-soluble under these conditions.  

 

Figure 4.17 Photograph highlighting the variation in aqueous solubility of each G2’:2000PEG-

pHPMA50-EGDMAx sample, 20 mg in 1 mL water: A) before and B) after addition of water 
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Therefore the non-nanoprecipitation behaviour of the 10:90 and 0:100 polymers 

discussed above was explained; the polymer was dissolved in a good solvent (THF) 

and added to a good solvent (water), therefore nanoprecipitation would not be 

expected. However, due to the fact that light scattering was sufficient to achieve 

accurate DLS measurement in many cases, it was proposed that the hydrophobic 

pHPMA core of the macromolecules was still collapsing into a dense particle. 

Although with a high content of PEG to stabilise the particles these collapsed 

macromolecules did not aggregate (or self-assemble) as previously observed for 

nanoprecipitation of more hydrophobic polymers.  

The water-insoluble polymers (100:0, 90:10 and 75:25) generally followed the 

previously observed nanoprecipitation mechanism, where the Dz of the particles 

increased with increasing initial concentration in good solvent. The SEM images of 

these samples, prepared at i5-f1, (Fig. 4.16A, B and C) show individual particles that 

appear slightly aggregated, probably due to drying of the samples. When the initial 

concentrations of the nanoparticle formulations exceeded 5 mg/mL, the PdI values 

observed were higher than those usually observed via nanoprecipitation. The DLS 

size distribution by intensity traces for these samples were usually multi-modal and 

therefore contained more than one population of nanoprecipitate species. Therefore, 

one limitation of the nanoprecipitation of these hydrophobic hyp-polydendrons 

appears to be the concentrations that may be achievable: further work is required to 

confirm this.  

Perhaps most unexpected was the behaviour of the 25:75 and 50:50 samples. They 

usually gave larger nanoparticles than the other two water-soluble polymers (10:90 

and 0:100), and with a broader range of sizes, which was expected for water-

insoluble polymers. The 25:75 hyp-polydendron gave particles in the range 34 - 

76 nm with PdI values 0.169 - 0.370. It appeared that although water-soluble, larger 

particles could be obtained. However, the polydispersity of those samples was larger 

(> 0.100) than those expected for normal nanoprecipitation (generally < 0.100). 

Interestingly, when comparing each sample with the df of 0.2, increasing the initial 

and final concentrations resulted on a decrease in Dz, which is opposite to the general 

trend observed with previously nanoprecipitated hydrophobic polymers. The SEM 

image of the 25:75 sample (Fig. 4.16E) prepared at i5-f1 shows similarly to the 10:90 

and 0:100 no hierarchical structure, and appears to resemble dried polymer deposits. 
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The 50:50 sample gave particles between 26 and 106 nm and PdI values from 0.032 

to 0.391. This particular polymer appeared to exhibit PdI values consistent with 

nanoprecipitation under certain conditions (i25-f0.25; Dz = 63.15 nm, PdI = 0.059, i5-

f1; Dz = 105.5 nm, PdI = 0.058 and i1-f0.2; Dz = 81.88, PdI = 0.032). However, it also 

exhibits the same behaviour as the other water-soluble polymers (25:75, 10:90 and 

0:100) under other conditions (i50-f10; Dz = 26.52 nm, PdI = 0.318 and i25-f5; Dz = 

42.47, PdI = 0.163). The SEM images of this particular sample (prepared at i5-f1) 

appeared to show spherical particles and much larger species that seem to look like 

vesicle type structures dried on the SEM stub. This was unexpected as the DLS 

measurement indicates that only one size distribution of nanoparticles was present in 

this sample before preparation for SEM imaging. To determine whether or not 

vesicles were formed upon the drying of the sample, TEM imaging would be 

necessary; however this was not investigated further.  

The variation of nanoparticle sizes across the DP50 hyp-polydendron series with 

different nanoprecipitation conditions can be seen in Fig. 4.18, where the Dz of 

samples have been plotted against the G2’ dendron content for different initial and 

final concentrations. Fig. 4.18A shows those nanoprecipitations with a df of 0.2, and 

Fig. 4.18B shows those with a df of 0.01. 

 

Figure 4.18 Nanoparticle sizes vs. G2’ dendron content for nanoprecipitations with A) df = 0.2 and 

B) df = 0.01 

 

Due to the differences observed when nanoprecipitating the DP50 series of hyp-

polydendrons with varying G2’:2000PEG content, the water insoluble polymers 

which exhibited classical nanoprecipitation behaviour (i.e. narrow polydispersities 

with Dz > 50 nm) have been described as ‘nanoprecipitates’ throughout this Chapter, 
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whilst the water soluble hyp-polydendrons which do not conform to the typical 

nanoprecipitation behaviour have been described as ‘individual objects’ throughout 

this Chapter. Therefore DP50 samples with G2’:2000PEG 100:0, 90:10 and 75:25 

were described as nanoprecipitates and the 50:50, 25:75, 10:90 and 0:100 samples 

were described as individual objects. This variation across the range of DP50 hyp-

polydendrons is shown graphically in Fig. 4.19. Further investigations of these 

materials included the stability under physiologically relevant conditions to ascertain 

whether the longer PEG chain used afforded increased stability compared to the 

materials studied in Chapter 3 (G2:750PEG materials). 

 

Figure 4.19 Graphical representation of the difference in nanoprecipitation behaviour across the DP50 

hyp-polydendron series 

 

4.4.2.1. Stability of G2’:2000PEG DP50 series under physiologically relevant 

conditions 

Drug delivery vehicles need to be stable under physiologically relevant conditions to 

be considered for drug encapsulation. The ionic strength of buffer solutions used in 

pharmacological experiments is approximately 0.15 M; therefore the samples were 

diluted with 0.14M NaCl and transport buffer (TB). TB consists of Hank’s balanced 

salt solution, 25mM of 4-(2-hydroxyethyl)-1-piperazine ethane sulfonic acid and 

0.1 % bovine serum albumin, which is commonly used for in vitro assays such as the 

Caco-2 transwell plate experiment (see Chapter 1, section 1.5.3.2).
16

 The stability of 

these materials under physiologically relevant conditions was assessed by diluting 
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1 mL of each sample with 1 mL of either 0.14 M NaCl or TB. Table 4.6 shows the 

DLS data of the samples prepared at i5-f1 before and immediately after dilution to 

0.25 mg/mL with either 0.14 M NaCl or TB. Whilst the 90:10 and 75:25 

nanoparticles showed salt stability when immediately measured, the samples showed 

some aggregation after three days. The most stable samples were the 50:50, 25:75, 

10:90 and 0:100, which remained stable with no aggregation for over a week. The 

100:0 sample was not stable under physiologically relevant conditions and 

precipitated out of solution almost instantaneously after addition of either 0.14M 

NaCl or TB.  

 

Table 4.6 DLS data for the G2’:2000PEG-pHPMA50-EGDMAx i5-f1 samples with NaCl and TB 

stability 

G2’:2000PEG-pHPMA50-

EGDMAx 

i5-f1 + 0.14M NaCl + TB 

Dz (nm) PdI Dz (nm) PdI Dz (nm) PdI 

100:0 x = 0.8 64 0.211 - - - - 

90:10 x = 0.8 
a
 176 0.034 179 0.032 176 0.029 

75:25 x = 0.8
 a
 174 0.026 177 0.021 177 0.049 

50:50 x = 0.85
 a
 116 0.038 114 0.032 112 0.060 

25:75 x = 0.95
 a
 53 0.238 53 0.255 55 0.271 

10:90 x = 0.95
 a
 35 0.178 38 0.229 36 0.244 

0:100 x = 0.95 33 0.304 34 0.287 30 0.279 
a
New samples were prepared for the stability testing 

 

4.4.3. Pharmacological studies of G2’:2000PEG-pHPMA50-EGDMAx 

materials 

In order to assess the suitability of hyp-polydendron materials in drug delivery, 

toxicity assays and studies of transport across the Caco-2 gut wall model were 

conducted, as discussed previously (Chapter 1, section 1.5.3 and Chapter 3, section 

3.5). In order to perform these assays the most stable samples (50:50, 25:75, 10:90 

and 0:100) were used to encapsulate Nile red, by dissolution of the Nile red in the 

good solvent (THF) with the polymer, to give each formulation with a final 

concentration of 10 mg/mL polymer and 0.02 mg/mL Nile red. The Nile red loaded 

samples could not be measured by the same DLS instrument as the blank samples – 

the samples failed on the measurement criteria possibly because wavelength of the 

laser was 633 nm and the Nile red excitation and emission wavelengths are 552 and 

630nm respectively; it was proposed that this was affecting the measurement. 
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Therefore a different DLS machine was used which had a laser wavelength of 

830 nm. The DLS results for the Nile red loaded particles are shown in Table 4.7 and 

Fig. 4.20.  

Table 4.7 DLS data for the blank and Nile red loaded particles used for pharmacological assessment 

G2’:2000PEG-

pHPMA50-

EGDMAx 

Blank Samples Nile red loaded 

Dz (nm) PdI Dz (nm) PdI 
Standard 

deviation 

50:50 x = 0.85
 a
 106 0.058 187 0.356 3.47 

25:75 x = 0.95
 b
 60 0.223 49 -

c
 5.13 

10:90 x = 0.95
 b
 38 0.207 34 -

c
 6.71 

0:100 x = 0.95
b
 33 0.304 28 -

c
 10.2 

a
Ran on the DLS with laser at 633 nm. 

b
Ran on DLS with laser at 830 nm. 

c
The software for the DLS 

machine (830 nm) for these measurements only reported the standard deviation for the measurements 

and not PdI values.  

 

Nile red can give an indication of the environment it is in, as discussed in Chapter 3, 

due to the nature of fluorescence from the molecule. Nile red fluoresces with 

increased intensity in a hydrophobic environment when compared to a more 

hydrophilic environment. Fluorescence spectra of the Nile red loaded samples are 

shown in Fig. 4.21, which shows that at the same concentration of Nile red with 

increasing the 2000PEG content of the formulations the intensity observed at 630 

nm (when excited at 552 nm) decreased systematically. 

 

 

Figure 4.20 DLS size distribution by intensity trace overlays for the Nile red loaded samples: 

G2’:2000PEG 50:50, 25:75, 10:90 and 0:100-pHPMA50-EGDMAx 
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Figure 4.21 Fluorescence spectroscopy overlays for the Nile red loaded samples: G2’:2000PEG 

50:50, 25:75, 10:90 and 0:100-pHPMA50-EGDMAx 

 

 

4.4.3.1. Cytotoxicity assays 

The four Nile red containing hyp-polydendron samples were assessed by ATP and 

MTT toxicology assays using the Caco-2 cell line. Cells were incubated for 1 day 

and 5 days to ascertain whether the Nile red loaded samples were toxic. Fig. 4.22 

shows the ATP assay results after a 5 day incubation period.  

None of the samples showed an increase in toxicity compared to the aqueous 

formulation. Each sample shows a slight decrease in luminescence at higher 

concentrations of Nile red (above 2500 nM) , however, the aqueous preparation of 

Nile red also shows this decrease of luminescence, therefore it can be concluded that 

the toxicity at higher Nile red concentrations is due to the Nile red concentration and 

not a necessary effect arising from the polymer.  The 1 day incubation for the ATP 

assay is shown in the Appendix (Fig. A31) and shows that there is no observable 

toxicity to the Caco-2 cells over a 24 hour period as the measured luminescence 

remains the same (within experimental error) across each concentration of Nile red.  
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Figure 4.22 ATP assay of Caco-2 cells following 5 day incubation with aqueous Nile Red and each 

hyp-polydendron.  A) Aqueous Nile red. B) 50:50. C) 25:75. D) 10:90. E) 0:100. Error calculated 

using the standard deviation. 

The MTT toxicity assay over an incubation period of 5 days is shown in Fig. 4.23. 

Again, none of the samples showed an increase in toxicity compared to the aqueous 

Nile red formulation. The 50:50-pHPMA50-EGDMA0.85 shows an increase in 

absorbance above a Nile red concentration of 1000 nM with significant error arising. 

The reasons for this behaviour are not fully understood and may be due to possible 

interference from the assay. The MTT toxicity assays over a 24 hour incubation 

period are shown in the Appendix, Fig. A32, also showing that the materials caused 

no toxicity to the cells at the concentration studied.  
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Figure 4.23 MTT assay of Caco-2 cells following 5 day incubation with aqueous Nile Red and each 

hyp-polydendron.  A) Aqueous Nile Red. B) 50:50. C) 25:75. D) 10:90. E) 0:100. Error calculated 

using the standard deviation. 

 

4.4.3.2. Transcellular permeability assay 

The transcellular permeability of the Nile red loaded hyp-polydendrons was also 

studied, utilising the Caco-2 polarised monolayer previously discussed (see 

Chapter 1, section 1.5.3.2). The Papp for each Nile red loaded hyp-polydendron was 
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compared to the Papp measured for the aqueous preparation of Nile red, shown here 

in Fig. 4.24. 

 

 

Figure 4.24 Apparent permeability (Papp) of aqueous preparation of Nile red across Caco-2cell 

monolayers over a 4 hour incubation period. A>B red bars, B>A blue bars. Error is from the standard 

deviation 

 

Movement of the aqueous preparation of Nile red from the apical to basolateral 

(A>B) compartments was ~75 % of the total Nile red whilst the basolateral to apical 

movement (B>A) was 12 % after 4 hours. However, the Nile red loaded hyp-

polydendron materials studied showed poor transcellular permeability as very little 

Nile red movement was observed across the Caco-2 cell monolayer when compared 

to the aqueous preparation, see Fig. 4.25.  

Therefore whilst these samples (0:100, 10:90, 25:75 and 50:50-pHPMA50-EGDMAx) 

were stable under physiologically relevant conditions they appeared to offer few 

pharmacological benefits. These results suggested that the hyp-polydendrons 

containing high levels of PEG which did not nanoprecipitate showed no promise as 

drug delivery vehicles, therefore it was proposed that by increasing the ratio of 

hydrophobic:hydrophilic content of the hyp-polydendrons, the resulting polymers 

would form hydrophobic nanoparticles rather than individual objects.  
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Figure 4.25 Apparent permeability (Papp) of G2’:2000PEG-pHPMA50-EGDMAx hyp-polydendron 

formulated Nile Red across caco-2 cell monolayers over a 4 hour incubation period. A) 50:50; B) 

25:75; C) 10:90; D) 0:100. A>B red bars, B>A blue bars. Error bars are using the standard deviation. 

 

4.4.4. Study of G2’:2000PEG-pHPMA100-EGDMA0.8 materials 

The G2’:2000PEG-pHPMA100-EGDMA0.8 series was subjected to the same 

nanoprecipitation conditions as the G2’:2000PEG-pHPMA50-EGDMAx series 

discussed previously. Firstly, the aqueous solubility of these DP100 polymers was 

investigated as previously discussed, the DP50 polymers which were water soluble 

did not produce nanoprecipitates and were less uniform than those which were not 

water soluble. Fig. 4.26 shows that although the higher PEG content polymers 

appear to swell and indicate a level of solvation, none of the G2’:2000PEG-

pHPMA100-EGDMA0.8 polymers were soluble in water. This was due to the 

increased hydrophobicity of the polymers, achieved by doubling the primary 

pHPMA chain length, and therefore decreasing the overall hydrophilic PEG content.  
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Figure 4.26 Photograph highlighting the variation in aqueous solubility of each G2’:2000PEG-

pHPMA100-EGDMA0.8 sample, 20 mg in 1 mL water: A) before and B) after addition of water 

The nanoprecipitations were conducted from THF and acetone to ascertain which 

solvent would provide the most uniform particle sizes. Fig. 4.27 shows the Dz and 

PdI values from the nanoprecipitations of the DP100 hyp-polydendrons using initial 

and final concentrations i5-f1, (also see Appendix, Table A9). The nanoparticles 

prepared using acetone as the good solvent generally possessed larger Dz and broader 

dispersities, however, the 25:75-pHPMA100-EGDMA0.8 sample exhibited different 

behaviour. Therefore THF was the solvent of choice when nanoprecipitating this 

series of polymers, as with the DP50 series.  

 

Figure 4.27 Dz and PdI values for G2’:2000PEG-pHPMA100-EGDMA0.8 samples prepared with i5-f1 

from THF and acetone 
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The G2’:2000PEG-pHPMA100-EGDMA0.8 hyp-polydendrons were also subjected to 

nanoprecipitations with initial concentrations; 50, 25, 10, 5 and 1 mg/mL with df 0.2 

and 0.01, see Table 4.8. The nanoprecipitation conditions which gave the narrowest 

polydispersity indices for this series of nanoprecipitations were i5-f1 and i1-f0.2. DLS 

size distribution by intensity traces for selected samples with various 

nanoprecipitation conditions are shown in Fig. 4.29.  

As observed for the DP50 series the nanoparticles prepared from a minimum initial 

concentration of 10 mg/mL had higher PdI values than those from an initial 

concentration of 1 or 5 mg/mL. However, each of these DP100 hyp-polydendrons 

exhibited the classical nanoprecipitation behaviour expected from hydrophobic 

polymers. Generally when increasing the initial and final concentrations of the 

nanoprecipitations whilst maintaining the df, the resulting nanoparticles increased in 

size. This trend is observed across all the nanoprecipitations which were conducted 

for the 75:25, 25:75 and 0:100-pHPMA100-EGDMA0.8; the DLS traces overlays for 

these samples are shown in Fig. 4.30. The other two hyp-polydendrons in this series 

(100:0 and 50:50) generally fit this trend, however, there are notable exceptions. It is 

also exemplified by plotting the Dz vs. the G2’ dendron initiator content as a function 

of the nanoprecipitation conditions (ix-fy), which highlights this trend, see Fig. 4.28.  

 

 

Figure 4.28 Nanoparticle sizes vs. G2’ dendron content for nanoprecipitations with A) df = 0.2 and 

B) df = 0.01 
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Table 4.8 DLS data for various nanoprecipitations utilising the G2’:2000PEG-pHPMA100-EGDMA0.8 series of hyp-polydendrons 

G2’:2000PEG-

pHPMA100-

EGDMA0.8 

i50-f10 i25-f5 i10-f2 i5-f1 i1-f0.2 

Dz (nm) PdI Dz (nm) PdI Dz (nm) PdI Dz (nm) PdI Dz (nm) PdI 

100:0 166.8 0.241 136.8 0.276 - - 329.4 0.022 139.2 0.009 

75:25 181.3 0.246 100.0 0.155 175.0 0.051 143.2 0.073 83.60 0.032 

50:50 141.1 0.240 129.3 0.434 144.8 0.168 160.1 0.034 88.09 0.030 

25:75 766.1 0.406 415.2 0.183 174.8 0.126 136.8 0.047 108.7 0.020 

0:100 1401 0.277 362.5 0.267 176.1 0.173 128.2 0.074 87.09 0.052 

           

G2’:2000PEG-

pHPMA100-

EGDMA0.8 

i50-f0.5 i25-f0.25 i10-f0.1 i5-f0.05 i1-f0.01 

Dz (nm) PdI Dz (nm) PdI Dz (nm) PdI Dz (nm) PdI Dz (nm) PdI 

100:0 - - 121.7 0.135 181.0 0.090 143.9 0.076 152.0 0.063 

75:25 173.6 0.420 134.9 0.192 114.0 0.080 113.2 0.089 78.98 0.147 

50:50 145.0 0.275 241.6 0.193 159.0 0.117 136.1 0.114 74.31 0.155 

25:75 282.0 0.612 178.7 0.150 138.9 0.092 109.8 0.092 65.93 0.185 

0:100 154.1 0.402 154.8 0.228 106.8 0.136 84.98 0.133 51.88 0.250 

- Not suitable for DLS measurement due to precipitation of the sample. Dz = z-average diameter 
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Figure 4.29 DLS trace overlays for nanoprecipitations of G2’:2000PEG-pHPMA100-EGDMA0.8 with 

various different initial and final concentrations for two dilution factors: A) 75:25 df = 0.2, B) 75:25 

df = 0.01, C) 25:75 df = 0.2, D) 75:25 df = 0.01, E) 0:100 df = 0.2, F) 0:100 df = 0.01. 

 

The samples were also studied by SEM, Fig. 4.30, each sample prepared at i5-f1 were 

prepared in the same manner as the DP50 samples. The samples were initially imaged 

at 1 mg/mL, however, the 25:75 and 0:100-pHPMA100-EGDMA0.8 samples required 

diluting to 0.1 mg/mL to achieve the images in Fig. 4.30, as at 1 mg/mL the particles 

appeared aggregated. The 100:0, 75:25 and 50:50 samples (Fig. 4.30A, B and C) 
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show spherical discreet particles which agree with the Dz measured by DLS. 

However, the 25:75 and 0:100 samples (Fig. 4.30D and E) appear to have dried on 

the SEM stub surfaces as flat, compressed particles, and look vesicle-like, as 

observed in the 50:50 DP50 SEM image (see Fig. 4.16D). This may be due to the 

drying of the nanoparticles on the SEM surface. To assess whether vesicles are 

present in the samples TEM investigations would be needed. This may also be due to 

drying effects or to the Tg of the polymers (also refer to Chapter 3, section 3.4 and 

Fig. 3.13). The corresponding DLS size distribution by intensity traces for the SEM 

images are shown in Fig. 4.30F.  

 

Figure 4.30 SEM images of A) 100:0, B) 75:25, C) 50:50, D) 25:75, E) 0:100 - G2’:2000PEG-

pHPMA100-EGDMA0.8 series of hyp-polydendrons at i5-f1 and F) corresponding DLS traces  
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4.4.4.1. Stability of G2’:2000PEG DP100 series under physiologically relevant 

conditions 

The stability of the nanoparticles formulated from i5-f1 were studied under 

physiologically relevant conditions: diluted from 1 mg/mL to 0.25 mg/mL with 

0.14M NaCl solution.  All of the samples were stable under these conditions except 

for the 100:0-pHPMA100-EGDMA0.8, which is to be expected due to the lack of the 

sterically stabilising hydrophilic PEG chains. Table 4.9 shows the measurements via 

DLS for the samples before and after the salt addition over time.  

 

Table 4.9 DLS data for the i5-f1 samples with 0.14M NaCl stability over time 

G2’:2000PEG-

pHPMA100-

EGDMA0.8 

i5-f1 + 0.14M NaCl, 18hrs + 0.14M NaCl, 5 days 

Dz (nm) PdI Dz (nm) PdI Dz (nm) PdI 

100:0 329 0.022 - - - - 

75:25 143 0.073 199 0.058 284 0.190 

50:50 160 0.034 168 0.039 218 0.087 

25:75 137 0.047 153 0.074 247 0.100 

0:100 128 0.074 131 0.094 232 0.149 

 

Whilst the 75:25, 50:50, 25:75 and 0:100 samples remained stable and no 

aggregation was observed, the Dz of the nanoparticles did increase in size. This was 

observed when the DLS measurement was performed 18 hours and 5 days after salt 

addition. The Dz increase is approximately double after 5 days and in most cases, 

with a subsequent increase in PdI. 

To study this in more detail one of the samples (75:25-pHPMA100-EGDMA0.8 

prepared with i5-f1) was measured at 20 minute intervals over 65 hours. Fig. 4.31 

shows the evolution of Dz, PdI and the mean count rate over time. 

The Dz appeared to plateau after about 40 hours, with the PdI increasing very slightly 

over time. This increase in size could be attributed to either aggregation of 

nanoparticles or swelling of the existing particles; due to the decreasing mean count 

rate, it was assumed that a small degree of aggregation was most likely.  
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Figure 4.31 DLS measurements over time after 0.14M NaCl addition to a sample of G2’:2000PEG 

75:25-pHPMA100-EGDMA0.8 (i5-f1) 

The aim of this work was to study the pharmacological behaviour of the particles; 

the nanoparticles would be encapsulating a hydrophobic drug or dye molecule. As 

this increase in size with salt addition was observed for the unloaded or blank 

nanoparticles it was not investigated further. The stability of dye loaded 

nanoparticles is discussed in detail below.  

 

4.4.5. Pharmacological studies of G2’:2000PEG-pHPMA100-EGDMA0.8 

materials 

Due to developments within the research group a new model drug molecule was 

chosen for further pharmacological assays. Fluoresceinamine (FA) is a hydrophobic 

dye with limited water solubility; the chemical structure is shown in Fig. 4.32. FA 

was encapsulated in the nanoprecipitates at various weight percents (w/w%) to 

assess the loading capacity of the hyp-polydendron nanoprecipitates (Table 4.10). 

 

Figure 4.32 Chemical structure of fluoresceinamine (isomer I) 
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Table 4.10 Fluoresceinamine formulated nanoparticles using the G2’:2000PEG DP100 samples stable 

under physiologically relevant conditions, utilising either THF or acetone as the good solvent 

G2’:2000PEG-

pHPMA100-

EGDMA0.8 

Blank 1 w/w% FA 2.5 w/w% FA 5 w/w% FA 10 w/w% FA 

Dz 

(nm) 
PdI 

Dz 

(nm) 
PdI 

Dz 

(nm) 
PdI 

Dz 

(nm) 
PdI 

Dz 

(nm) 
PdI 

THF 

75:25 143 0.073 167 0.024 - - - - - - 

50:50 160 0.034 216 0.006 614 0.548 * * 475 0.235 

25:75 137 0.047 181 0.162 471 0.509 945 0.492 * * 

0:100 128 0.074 146 0.097 438 0.216 702 0.248 * * 

Acetone 

75:25 289 0.146 * * - - * * 490 0.208 

50:50 168 0.065 1087 0.542 - - 1559 0.568 585 0.314 

25:75 139 0.044 * * - - * * 328 0.227 

0:100 143 0.179 * * - - 798 0.160 168 0.035 

Not suitable for measurement by DLS due to  *high polydispersity or – precipitation of the sample  

 

The optimum loading achieved across all the DP100 materials was using 1 w/w% dye 

with respect to the mass of polymer used, and nanoprecipitating from THF. 

Therefore as the samples had a final concentration of 1 mg/mL of polymer, the 

amount of FA present within each aqueous dispersion was 0.01 mg/mL. This is not a 

particularly high loading of a material for drug delivery applications, however the 

pharmacological benefits, if any, of these materials were to be assessed before 

further loading studies were conducted. 

Sample preparations were repeated for pharmacology testing and their stability over 

time was conducted on the samples as formulated in distilled water and with the 

addition of 0.14M NaCl and TB to determine the material’s stability in 

physiologically relevant conditions and, therefore, suitability for further 

pharmacological assessment. 
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Table 4.11 DLS data for various batches of G2’:2000PEG-pHPMA100-EGDMA0.8 FA loaded nanoparticles 

G2’:2000PEG-pHPMA100-EGDMA0.8 

Batch 1 Batch 2 Batch 3 Batch 4 Batch 5 

Dz (nm) PdI Dz (nm) PdI Dz (nm) PdI Dz (nm) PdI 

Zeta 

potential 

(mV) 

Dz (nm) PdI 

Zeta 

potential 

(mV) 

75:25 160 0.033 175 0.045 169 0.024 173 0.041 -23.9 160 0.032 -32.5 

50:50 203 0.062 255 0.149 260 0.081 250 0.073 -15.8 212 0.034 -18.9 

25:75 153 0.124 153 0.080 157 0.098 153 0.090 -13.4 192 0.135 -17.1 

0:100 118 0.073 118 0.064 120 0.075 117 0.141 -12.0 - - - 
 

 

Table 4.12 Stability under physiologically relevant conditions studied for G2’:2000PEG-pHPMA100-EGDMA0.8 FA loaded nanoparticles 

 Batch 4 - Diluted to 0.25 mg/mL with 0.14M NaCl 

G2’:2000PEG-pHPMA100-

EGDMA0.8 

Original Day 0 Day 1 Day 7 

Dz (nm) PdI Dz (nm) PdI Dz (nm) PdI Dz (nm) PdI 

75:25 173 0.041 176 0.021 176 0.032 195 0.030 

50:50 250 0.073 271 0.179 245 0.048 259 0.132 

25:75 153 0.090 153 0.088 150 0.073 159 0.073 

0:100 117 0.141 127 0.129 122 0.087 125 0.096 

 Batch 4 - Diluted to 0.25 mg/mL with TB 

75:25 173 0.041 177 0.020 180 0.021 221 0.065 

50:50 250 0.073 256 0.100 244 0.098 252 0.060 

25:75 153 0.090 151 0.095 150 0.087 186 0.233 

0:100 117 0.141 129 0.166 131 0.108 133 0.159 
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Repeats of these preparations are shown in Table 4.11, showing slight but not 

significant variation of Dz and PdI when the samples were repeated. Batch 4 was 

used to study the stability over time (80 days), see Fig. 4.33, where the 75:25, 50:50 

and 25:75 FA loaded formulations remain stable with no significant alteration in size 

or dispersity, whereas the 0:100 decreases in size from 117 nm (PdI = 0.141) to 

65 nm (PdI = 0.093). The Dz and PdI values for these samples can be found in the 

Appendix, Table A10.  

 

Figure 4.33 DLS measurements of FA loaded samples over time – batch 4 from Table 4.11 

Batch 4 was also used for studying the stability of the FA loaded nanoparticles under 

physiologically relevant conditions, see Table 4.12. The samples were diluted from 

1 mg/mL to 0.25 mg/mL (concentration of polymer) with either 0.14M NaCl or TB 

and DLS measurements were performed immediately after dilution, at 1 day and at 

7 days. These time scales were chosen to check the stability of the particles at 

timescales appropriate for pharmacological experiments. The Dz of the particles 

remain quite similar with no significant differences over time. Therefore the loading 

of a hydrophobic molecule in these nanoparticles has improved the stability to 

0.14M NaCl solution and TB.  

Batch 5 was studied via DLS over time and with the dilution in TB which gave 

similar results to that of batch 4; no aggregation or precipitation of particles was 

observed and the Dz and PdI values remain similar over time and with the addition of 

TB (see Appendix, Table A11). 
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Whilst preparing these materials for pharmacological assessment it was also thought 

that two of the previously discussed DP50 materials could also be prepared and 

studied to assess any potential pharmacological benefit. Hyp-polydendrons 90:10-

pHPMA50-EGDMA0.8 and 75:25-pHPMA50-EGDMA0.8 were both insoluble in water 

and exhibited nanoprecipitation behaviour (as opposed to individual objects) and 

although their stability under physiologically relevant conditions was limited, they 

were stable for a long enough period of time to assess their transcellular permeability 

(a typical study is conducted over 4 hours). Therefore these two materials were 

prepared in the same manner as the DP100 FA loaded samples, previously discussed, 

and their stability over time and in physiologically relevant conditions was 

investigated. Table 4.13 shows the DLS measurements for various batches, which 

shows that whilst the samples appear reproducible there was some variability in size. 

Table 4.14 shows the nanoparticles stability in physiologically relevant conditions, 

which shows a slight initial increase in size for the 90:10 samples, whereas the 75:25 

only shows increase in size over 7 days, however, these changes in size were not 

considered to be significant. Table 4.15 shows the DLS measurements over time for 

these two FA loaded samples stored at room temperature in distilled water which 

showed no significant variation in size or dispersity over 11 weeks of storage. 

Therefore the samples chosen for further pharmacological assessment were 90:10 

and 75:25 DP50, 75:25, 50:50, 25:75 and 0:100 DP100. A photograph of each of these 

samples, before and after dilution with 0.14M NaCl is shown in Fig. 4.34. 

 

Figure 4.34 Photograph of A) FA loaded particles (1 mg/mL) and B) after dilution to 0.25 mg/mL 

with 0.14M NaCl  
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Table 4.13 DLS data for various batches of G2’:2000PEG-pHPMA50-EGDMA0.8 FA loaded nanoparticles 

G2’:2000PEG-pHPMA50-EGDMA0.8 

Batch 1 Batch 2 Batch 3 Batch 4 Batch 5 

Dz (nm) PdI Dz (nm) PdI Dz (nm) PdI Dz (nm) PdI 

Zeta 

potential 

(mV) 

Dz (nm) PdI 

Zeta 

potential 

(mV) 

90:10 193 0.045 247 0.049 230 0.063 236 0.031 -16.0 178 0.036 -24.8 

75:25 256 0.151 213 0.188 230 0.093 225 0.116 -14.5 176 0.091 -6.47 

 

Table 4.14 Stability under physiologically relevant conditions studied for G2’:2000PEG-pHPMA50-EGDMA0.8 FA loaded nanoparticles 

 Batch 4 - Diluted to 0.25 mg/mL with 0.14M NaCl 

G2’:2000PEG-pHPMA50-

EGDMA0.8 

Original Day 0 Day 1 Day 7 

Dz (nm) PdI Dz (nm) PdI Dz (nm) PdI Dz (nm) PdI 

90:10 236 0.031 283 0.176 241 0.053 253 0.047 

75:25 225 0.116 243 0.226 215 0.045 313 0.250 

 Batch 4 - Diluted to 0.25 mg/mL with TB 

90:10 236 0.031 248 0.111 239 0.034 261 0.044 

75:25 225 0.116 232 0.135 216 0.067 214 0.041 
 

Table 4.15 Stability over time measured via DLS for G2’:2000PEG-pHPMA50-EGDMA0.8 FA loaded nanoparticles – from batch 4 

G2’:2000PEG-pHPMA50-EGDMA0.8 
Day 0 Day 7 Day 14 Day 21 Day 80 

Dz (nm) PdI Dz (nm) PdI Dz (nm) PdI Dz (nm) PdI Dz (nm) PdI 

75:25 236 0.031 267 0.178 247 0.132 233 0.064 243 0.092 

50:50 225 0.116 218 0.123 224 0.113 215 0.094 219 0.132 
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Figure 4.35 DLS traces for FA loaded G2’:2000PEG hyp-polydendron materials; A) 90:10-

pHPMA50-EGDMA0.8, B) 75:25-pHPMA50-EGDMA0.8, C) 75:25-pHPMA100-EGDMA0.8, D) 50:50-

pHPMA100-EGDMA0.8, E) 25:75-pHPMA100-EGDMA0.8 and F) 0:100-pHPMA100-EGDMA0.8, and 

addition of TB at 1 and 7 days 

The DLS size distribution by intensity traces for each of these samples (from batch 

4) which were used for pharmacological experiments are shown in Fig. 4.35. The 

original samples and stability over time in TB are highlighted, showing very little 

change after 1 day, and a slight change after 7 days in the 50:50 DP100 and 25:75 

DP100 samples to a larger diameter and slightly broader PdI values.    
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Figure 4.36 SEM images of G2’:2000PEG FA loaded samples; A) 90:10 DP50, B) 75:25 DP50, C) 75:25 DP100, D)50:50 DP100 and E) 25:75 DP100. Scale bars are 400 nm.  
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SEM analysis of the FA loaded particles, see Fig. 4.36, shows that the nanoparticles 

retain a similar morphology as observed for the unloaded particles (Fig. 4.16 for the 

DP50 and Fig. 4.30 for the DP100 samples). The samples imaged were from batch 5 

(Tables 4.11 and 4.13) which does not include a 0:100 DP100 sample; due to 

preliminary pharmacology testing this sample was eliminated from further studies 

which is discussed in more detail below. The 90:10 DP50, 75:25 DP50 and 75:25 

DP100 FA loaded particles (Fig. 4.36A, B and C) all appear as individual spherical 

particles, with no crystallised FA observable, indicating that the FA is encapsulated 

within the polymeric nanoparticles. Whereas the 50:50 DP100 FA loaded particles 

(Fig. 4.36D) appear to have a different morphology, as misshapen particles, which 

may be due to particles drying out upon preparation for SEM imaging. The 0:100 

DP100 FA loaded particles (Fig. 4.36E) dried in a similar manner to the unloaded 

particles, where they look slightly vesicle-like.  

 

4.4.5.1. Transcellular permeability  

As discussed previously, these materials were targeting oral dosing and therefore 

transcellular permeability must be assessed. The relative toxicity of the materials to 

gut epithelial cells was also investigated to determine suitability for therapeutic 

delivery. To determine an appropriate lead candidate from the FA loaded hyp-

polydendron nanoparticle preparations, the transcellular permeability of the 

nanoparticles was first ascertained. As previously described (section 1.5.3.2), a 

Caco-2 cell monolayer was utilised in transwell plate experiments. 10 µM of FA 

loaded hyp-polydendron or 10 µM aqueous FA was added to the apical or basolateral 

chamber of the wells to quantify transport in both Apical>Basolateral (A>B) and 

Basolateral>Apical (B>A) direction and the plates were sampled 4 hours after 

incubation. To assess monolayer integrity following incubation, 250 µl of TB 

containing 2 µl/mL 
14

C mannitol was added to the apical compartment and incubated 

for 1 hour. Scintillation fluid (4 mL) was added to 100 µl of both apical and 

basolateral sampled contents and quantified on the scintillation counter. Fig. 4.37 

shows the 
14

C mannitol Papp.  
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Figure 4.37 Papp of 
14

C mannitol following 1 hour incubation, after monolayer was exposed to each 

FA treatment  

 

The monolayer was considered compromised (breaks within the monolayer that 

would allow spurious permeation values) if the apparent permeability observed for 

the 
14

C mannitol was > 0.953 x 10
-6

 cm s
-1

.
17

 Therefore the 0:100-pHPMA100-

EGDMA0.8 material was removed from further pharmacological studies, as it 

appeared to compromise the integrity of the Caco-2 cell monolayer and therefore 

results from this experiment may not have been accurate.  

The Papp of the FA loaded materials is shown in Fig. 4.38, with movement from the 

apical to basolateral compartment (A>B) shown in red and movement from 

basolateral to apical compartment in blue.  Each FA loaded G2’:2000PEG material 

showed a statistically significant increase in both A>B and B>A movement of FA 

across the Caco-2 cell monolayer compared to the aqueous preparation. Therefore 

the encapsulation of FA into these specific hyp-polydendrons appears to enhance the 

permeation across the Caco-2 cell monolayer, suggesting that these nanoparticles are 

permeating the membrane. 
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Figure 4.38 Apparent permeability (Papp) of FA across the Caco-2 cell monolayer following a 4 hour 

incubation period with aqueous and loaded hyp-polydendron materials. (*, P <0.05; **, P <0.01; and 

***, P <0.001 (ANOVA) (n=3) 

 

       

 

Figure 4.39 A) Papp ratio A>B/B>A and B) efflux ratio B>A/A>B for FA loaded materials compared 

to the aqueous preparation of FA 
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The Papp ratio A>B/B>A gives an indication of the permeability of the materials from 

the apical to the basolateral side of the monolayer and is shown in Fig. 4.39A for 

these materials. All of the hyp-polydendron FA loaded materials show a much higher 

A>B/B>A ratio than the aqueous FA. Fig. 4.39B shows the efflux ratio for the 

materials which is calculated from B>A/A>B and gives an indication of movement 

of material from the basolateral chamber to the apical chamber. All of the 

G2’:2000PEG FA loaded materials studied give a favourable efflux ratio when 

compared to the aqueous FA preparation. Therefore comparatively less FA is 

transported B>A when formulated with a hyp-polydendron. The lead candidate from 

the hyp-polydendron materials tested was chosen to be the 75:25 DP100 sample as it 

showed the highest Papp ratio and one of the lowest efflux ratios, which suggests that 

this sample had the highest permeability through the Caco-2 monolayer.  

 

4.4.5.2. Cytotoxicity assays  

Toxicity experiments were conducted to assess whether the materials were toxic to 

the Caco-2 cells used for the model intestinal epithelial transwell plate experiment. 

ATP and MTT assays were conducted with an incubation period of 1 and 5 days 

across a range of FA concentrations (0.1 - 15 µM). Fig. 4.40 shows the ATP assay 

performed with an incubation period of 5 days, the 1 day incubation plots are shown 

in the Appendix (Fig. A33). At the higher concentration of FA there appears to be 

some toxicity to the cells as a drop in luminescence is observed for both incubation 

over 1 and 5 days. A drop in luminescence indicates that cells were producing less 

ATP and therefore the drop in ATP production is a marker for cell death. This drop 

in luminescence was more prominent for the FA loaded hyp-polydendron particles 

than the aqueous preparation, however, they were not toxic at the concentration used 

for the Caco-2 transcellular permeation experiments which were performed at 10 µM 

FA.  
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Figure 4.40 Caco-2 cell ATP assay 5 day incubation: A) 90:10 DP50, B) 75:25 DP50, C) 75:25 DP100, 

D) 50:50 DP100, E) 25:75 DP100, F) Aqueous. Error = standard deviation. 

 

The MTT assays conducted with an incubation period of 5 days are shown in 

Fig. 4.41. The corresponding 1 day incubation period data is shown in the Appendix 

(Fig. A34). Again toxicity is observed for the highest concentrations studied due to a 

drop in the absorbance measured at 560 nm for both 1 and 5 day incubation periods. 

This indicates that the mitochondrial activity of cells is reduced and therefore cell 

death has occurred. The concentration used for the Caco-2 transcellular permeation 

assays did not cause toxicity here either.  
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Figure 4.41 Caco-2 cell MTT assay 5 day incubation: A) 90:10 DP50, B) 75:25 DP50, C) 75:25 DP100, 

D) 50:50 DP100, E) 25:75 DP100, F) Aqueous. Error = standard deviation. 

 

Although each FA loaded hyp-polydendron material studied did show toxicity, they 

did not show toxicity at the concentration the transcellular permeation experiments 

were conducted.  

Further toxicity testing was performed on the lead candidate, 75:25 DP100 using 

ATHP-1 cells (monocyte-derived macrophages), as further experiments were to be 

conducted to assess the accumulation of this sample in both Caco-2 and ATHP-1 

cells.  
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Figure 4.42 ATHP-1 cell ATP assay 5 day incubation period; A) aqueous preparation, B) 75:25 DP100 

Error = standard deviation 

 

Figure 4.43 ATHP-1 cell MTT assay 5 day incubation period; A) aqueous preparation, B) 75:25 

DP100 Error = standard deviation 

The FA loaded 75:25 DP100 sample shows increased toxicity to ATHP-1 cells when 

compared with the aqueous preparation of FA when both ATP (Fig. 4.42) and MTT 

(Fig. 4.43) assays were conducted over a 5 day incubation period. The corresponding 

1 day incubation data is shown in the Appendix (Fig. A35 and A36). 

 

4.4.5.3. Accumulation in Caco-2 and ATHP-1 cells 

The cellular accumulation ratio (CAR) for the FA loaded 75:25 DP100 sample in 

Caco-2 and ATHP-1 cells was investigated. This was conducted with the Caco-2 cell 

line to ascertain whether the FA loaded nanoparticles were crossing the Caco-2 

monolayer via a transcellular or paracellular pathway. Transcellular permeation 

involves the passage of the material through the Caco-2 cell, whereas paracellular 

permeation is the passage of the material through the tight junctions present between 

cells. If material accumulates in the Caco-2 cell it is an indication that permeation 
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occurs through the cell. The CAR of the FA loaded 75:25 DP100 sample is shown in 

Fig. 4.44A with respect to the aqueous preparation. The CAR of the 75:25 DP100  

sample was larger than that observed for the aqueous preparation, showing that by 

encapsulating FA in the hyp-polydendron nanoparticle the CAR of FA increased by 

approximately 4-fold. This result suggests that the material is entering the Caco-2 

cell when moving from the apical to the basolateral compartments in the transcellular 

permeation experiments with the Caco-2 cell monolayer.  

 

Figure 4.44 Cellular accumulation ratios of the 75:25-pHPMA100-EGDMA0.8 FA formulation in A) 

Caco-2 cells and B) ATHP-1 cells 

The CAR was also assessed for the aqueous and the 75:25 DP100 hyp-polydendron 

formulated FA in ATHP-1 cells. ATHP-1 cells are monocyte derived macrophage 

cells which are used to ascertain the accumulation of materials in macrophages and 

can be indicative of phagocytic uptake mechanisms. Accumulation in macrophages 

can be advantageous in the treatment of certain infectious diseases such as HIV, 

where macrophages act as a cellular sanctuary site for the virus. The FA loaded 

75:25 DP100 material showed a slightly increased CAR in the ATHP-1 cells when 

compared to the aqueous FA preparation, however, the increase was not statistically 

significant and therefore does not suggest a selective accumulation in macrophage 

cells.  

The FA loaded hyp-polydendron materials studied showed promising results in the 

transcellular permeation through the Caco-2 monolayer experiment in all cases, and 

low toxicity to the Caco-2 cells at the concentration used. This is necessary when 

considering oral dosing of nanoparticles. The cellular accumulation experiment using 
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Caco-2 cells highlights that the 75:25 DP100 sample studied does accumulate in the 

Caco-2 cells, indicating possible transcellular permeation as opposed to paracellular 

permeation. However, this material did not accumulate in macrophages at a high 

level which would be a desirable property in the treatment of infectious diseases 

such as HIV, where macrophage cells are a sanctuary site for the HIV virus.  

 

4.4.6. Dialysis of FA loaded nanoparticles 

The pharmacological assessment of these materials gave promising results; therefore 

the ability of the nanoparticles to release the encapsulated dye was investigated as an 

ideal drug delivery candidate must ultimately have the ability to release an 

encapsulated drug.  

Nanoparticle formulations were taken from batch 4, and 5 mL of each sample was 

dialysed against distilled water (200 mL) using a dialysis membrane with a 

molecular weight cut off (MWCO) of 2 000 g/mol. Samples were periodically taken 

from the outside compartment of the membrane and measured by UV-Vis 

spectroscopy before being returned to the outside compartment of the dialysis to 

maintain a constant total volume of water of 205 mL during the dialysis experiment. 

Calibration curves were determined using FA dissolved in water, see Appendix 

Fig. 37. The absorbance at 485 nm was used as this absorbance was the most 

distinguishable from the samples measured. Fig. 4.45 shows the release of FA over 

time.  As the FA concentration of each sample was 10 µg/mL and 5 mL of each 

sample was dialysed against 200 mL distilled water, when the FA had reached 

equilibrium on both sides of the dialysis membrane the concentration should have 

been 0.24 µg/mL. Each sample showed a plateau of FA release after 150 hours and 

in each case the final concentration of FA reached at 168 hours was between 0.22-

0.26 µg/mL.  

Therefore each FA loaded hyp-polydendron studied showed a release of FA over 

time, however, there did not appear to be any particular trend across the 

G2’:2000PEG content and the rate of release. 
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Figure 4.45 Dialysis experiment with FA loaded nanoparticle samples – absorbance at 485 nm 

 

 

4.5.  Conclusion 

To conclude, an increase in the length of the hydrophilic PEG macroinitiator did lead 

to the formation of nanoparticles stable under physiologically relevant conditions. It 

was found that by varying the length of the hydrophobic pHPMA primary chain in 

the branched polymer core that various types of nanoparticulate objects could be 

formed with dramatic differences in their nanoprecipitation behaviours. Individual 

objects did not show any particular pharmacological benefits, however, when the 

hydrophobic segment of the polymers was large enough to afford nanoprecipitate 

particles the pharmacological data collected was much more promising. Hyp-

polydendrons were used in the formation of nanoparticles which could permeate a 

well-known Caco-2 cell monolayer model experiment which mimicked the intestinal 

epithelial cells to predict the transcellular permeability of the materials. The 

permeation of FA across the Caco-2 monolayer was enhanced when encapsulated in 

the hyp-polydendron materials studied over non-encapsulated FA. Accumulation of 

the lead FA loaded hyp-polydendron formulation (75:25-pHPMA100-EGDMA0.8) 

was also demonstrated, suggesting a transcellular pathway across the Caco-2 

monolayer. Further studies are required to determine the exact method of transport 

across the Caco-2 cell monolayer. 
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5.1.  Introduction to Chapter 5 

 

Various studies were performed on previously discussed materials to investigate the 

properties and behaviour of hyp-polydendron materials and the nanoparticles formed 

via nanoprecipitation. Compositional analysis of the G2’:2000PEG hyp-

polydendrons and hyp-block copolymers is discussed in more detail, with respect to 

the nanoprecipitation behaviour of the materials. Other questions that arose whilst 

research was conducted that needed further study included; 1) whether the high 

molecular weight branched polymer species present in the hyp-polydendron 

materials dictated the positive nanoprecipitation behaviour observed when compared 

to linear materials, and 2) the ability to encapsulate more than one hydrophobic 

molecule within the nanoprecipitates. 

 

5.2.  Nanoprecipitation behaviour of G2’:2000PEG materials 

Chapter 4 discussed the synthesis and characterisation of a range of mixed initiator 

G2’:2000PEG polymers ranging from 100:0 – 0:100, containing pHPMA primary 

chains with a DPn of 20, 50 and 100 monomer units. Interestingly, across the range 

of hyp-polydendrons and hyp-block copolymers synthesised, different water 

solubilities were observed and different nanoprecipitation behaviour was observed.  

5.2.1.  Nanoprecipitation study of G2’:2000PEG DP20 materials 

As discussed previously, the nanoprecipitation behaviour of the various materials 

appeared to relate to the water-solubility of the branched polymers. Therefore, a 

water-solubility test was conducted with the materials containing a branched DP20 

core. Fig. 5.1 shows 20 mg of each material within this series before (Fig. 5.1A) and 

after addition of 1 mL of distilled water and overnight mixing using a roller mixer 

(Fig. 5.1B). In this series of G2’:2000PEG materials, the 100:0 and 90:10 polymers 

were insoluble in water, as expected due to the low levels of hydrophilic 2000PEG 

macroinitiator, whilst all of the remaining samples were water-soluble under these 

conditions (75:25 – 0:100; pHPMA20-EGDMA0.8).  
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Figure 5.1 Photograph highlighting the solubility of each G2’:2000PEG-pHPMA20-EGDMA0.8 

sample, 20 mg in 1 mL water: A) before and B) after addition of water 

The nanoprecipitation behaviour of these samples was assessed at initial 

concentrations of 5 and 10 mg/mL with two different dilution factors (df). Table 5.1 

shows the measurements of the resulting dispersions by DLS.  

 

Table 5.1 DLS Dz and PdI values for the nanoprecipitations performed using the G2’:2000PEG-

pHPMA20-EGDMA0.8 hyp-polydendrons and hyp-block copolymer 

G2’:2000PEG 

pHPMA20-

EGDMA0.8 

i10-f2 i5-f1 i10-f0.1 i5-f0.05 

Dz (nm) PdI Dz (nm) PdI Dz (nm) PdI Dz (nm) PdI 

100:0 87 0.129 62 0.099 108 0.112 72 0.113 

90:10 83 0.590 168 0.584 525 0.245 -
a
 -

a
 

75:25 -
a
 -

a
 272 0.466 278 0.318 -

a
 -

a
 

50:50 38 0.451 34 0.310 * * * * 

25:75 62 0.447 63 0.479 * * * * 

10:90 * * * * * * * * 

0:100 * * * * * * * * 
Many samples were not suitable for DLS measurement due to *lack of scattering, and  

a
very high 

polydispersity. Dz = z-average diameter 

 

Due to the water-solubility of the majority of the polymers prepared with a chain 

length of 20 monomer units, many samples were unsuitable for measurement via 

DLS due to the insufficient light scattering. The 25:75 and 50:50 samples were 

suitable for measurement by DLS at the higher final concentrations, however, below 
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1 mg/mL no accurate measurement could be taken. Under two nanoprecipitation 

conditions these samples were measurable (i10-f2 and i5-f1); the 25:75 DP20 gave Dz 

of 62 and 63 nm with PdI values of 0.447 and 0.479 respectively whilst  the 50:50 

DP20 had a Dz of 38 nm and PdI 0.451 under the i10-f2 conditions, and with a i5-f1 

dilution the Dz was 34 nm and PdI was 0.310. The two water-insoluble polymers 

were expected to nanoprecipitate in a similar manner to the previously discussed 

water-insoluble DP50 and DP100 polymers (Chapter 4, see section 4.4). However, 

only the 100:0 DP20 hyp-polydendron appeared to nanoprecipitate in the same 

manner; Dz increased with increasing initial and final concentrations within the same 

df. This can also be seen in Fig. 5.2 where the size distribution by intensity traces for 

each 100:0 DP20 nanoparticle sample prepared via nanoprecipitation are shown.  

 

Figure 5.2 DLS size distribution by intensity traces for each G2’:2000PEG-100:0-pHPMA20-

EGDMA0.8 nanoprecipitation A) df = 0.2 and B) df = 0.01 

 

5.2.2.  Hydrophilic vs. hydrophobic content of G2’:2000PEG polymers 

The targeted compositions of the various G2’:2000PEG branched polymers were 

compared to the composition observed by 
1
H NMR spectroscopy. The final 

1
H NMR 

spectra for each polymer was analysed and peaks could be distinguished that 

corresponded to the aromatic peaks present in the G2’ dendron initiator at 7.3 ppm, 

the methyl group at the end of the PEG chain at 3.24 ppm, and the two methyl 

groups present in the HPMA monomer between 0.6 - 1.3 ppm. Fig. 5.3 shows the 

1
H NMR spectrum for the G2’:2000PEG-50:50-pHPMA50-EGDMA0.85 hyp-

polydendron with major peaks assigned. The linear polymers synthesised were also 

analysed by 
1
H NMR spectroscopy, and the spectra for each can be seen in the 

Appendix in Fig. A38 and A39. 
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Figure 5.3 
1
H NMR (d6-DMSO, 400 MHz) spectrum of the G2’:2000PEG 50:50-pHPMA50-EGDMA0.85 hyp-polydendron with major peaks assigned



CHAPTER 5 

225 

 

The various series of G2’:2000PEG-pHPMAn-EGDMAx polymers synthesised in 

Chapter 4 all contained the same chemical structures, with varying ratios of initiators 

and monomers. The variation in G2’:2000PEG functionality can be observed via 

1
H NMR spectroscopy and is shown in Fig. 5.4 for the DP20 hyp-polydendrons and 

hyp-polymer containing ratios of G2’:2000PEG initiators of 100:0, 75:25, 25:75 and 

0:100. The aromatic peaks attributed to the G2’ dendron initiator are easily 

distinguishable and can be seen decreasing as the amount of G2’ dendron 

incorporation decreases.  

Fig. 5.5 shows the same 
1
H NMR spectra overlays for the DP50 series and Fig. 5.6 

highlights the 
1
H NMR spectra overlays for the DP100 series. In each series the peaks 

have been normalised to the HPMA monomer peaks, 0.6 - 1.2 ppm, to give a true 

representation of the varying initiator contents. The other hyp-polydendrons in each 

DPn series not shown in Fig. 5.4 - 5.6 are shown in the Appendix in Fig. A40 – A42.  

 

 

 

Figure 5.4 
1
H NMR (d6-DMSO, 400 MHz) spectra overlays for various G2’:2000PEG DP20 hyp-

polydendrons 
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Figure 5.5 
1
H NMR (d6-DMSO, 400 MHz) spectra overlays for various G2’:2000PEG DP50 hyp-

polydendrons 

 

Figure 5.6 
1
H NMR (d6-DMSO, 400 MHz) spectra overlays for various G2’:2000PEG DP100 hyp-

polydendrons 
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Whilst the aromatic protons corresponding to the G2’ dendron initiator are clearly 

distinguishable and easily integrated in the 
1
H NMR spectra, the methyl peak at the 

end of the 2000PEG chain is discernible (3.2 ppm), however, the peak does not 

always reach the baseline. This is especially true for the hyp-polydendrons 

containing lower ratios of the 2000PEG initiator. Therefore, when analysing these 

1
H NMR spectra a certain amount of error was assumed when integrating this peak 

and it was only used to estimate the 2000PEG content. Bearing this in mind, the 

ratios of G2’ dendron and 2000PEG initiator to the pHPMA core were calculated 

via 
1
H NMR spectroscopy. Fig. 5.7 shows the content of each initiator as a ratio to 

the HPMA monomer units, with the theoretical values targeted added as dotted lines. 

In each set of targeted core primary chain DPn values, the G2’ dendron initiator 

content was lower than targeted, which was probably due to a lower initiator 

efficiency of the G2’ dendron initiator, as discussed in previous chapters. The 

2000PEG initiator content was generally higher than targeted by theory, which could 

be due to experimental errors and error when integrating 
1
H NMR spectra. 

 

Figure 5.7 G2’ and 2000PEG initiator content in A) DP20, B) DP50 and C) DP100 series of hyp-

polydendrons and hyp-polymers calculated by 
1
H NMR spectroscopy 
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To have a practical comparison of hydrophilic vs. hydrophobic content of the 

polymers, the number of ethylene oxide (EO) repeat units (from the 2000PEG 

macroinitiator) was compared to the hydrophobic pHPMA repeat unit content, see 

Fig. 5.8. This was calculated from the 
1
H NMR spectroscopy analysis, therefore a 

certain error should be assumed, as previously discussed, due to errors involved with 

1
H NMR spectra integration. However, even when taking error into consideration, 

the data in Fig. 5.8 could be split into two distinct sections, where the polymers were 

water-soluble or water-insoluble. This provides a targetable ratio of EO to HPMA 

that can be tuned to give hyp-polydendrons which are suitable for nanoprecipitation 

and could also be used to target those polymers which will nanoprecipitate to 

produce nanoparticles which are stable in physiologically relevant conditions. The 

lowest EO mol% of a hyp-polydendron that produced nanoparticles stable in 

physiologically relevant conditions was the 75:25 DP100 sample, which contained 

11.5 mol% EO. To elucidate the minimum level of EO needed to introduce stability 

in physiologically relevant conditions more experiments would be needed in the 

region between 0 - 11.5 mol% EO. The values for the theoretical mol% and observed 

mol% via 
1
H NMR of EO and HPMA are shown in the Appendix, Table A12.  

 

Figure 5.8 The mol% of EO vs. the HPMA mol% content of hyp-polydendrons and hyp-block 

copolymers from the DP20, DP50 and DP100 series 
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The HPMA and EO mol% calculated via 
1
H NMR spectroscopy analysis were used 

to calculate the HPMA and EO wt% present in each hyp-polydendron and hyp-block 

copolymer material. These observed values were compared to the theoretical values 

from the targeted composition. Fig. 5.9 shows the observed and theoretical EO and 

HPMA wt% of the G2’:2000PEG materials. Some of the observed wt% values 

deviate from those calculated by theory somewhat. Therefore, when considering the 

water solubility of the materials, the observed EO and HPMA wt% and mol% values 

were more appropriate to understand and predict behaviour. The actual values for the 

theoretical wt% and observed wt% of EO and HPMA are shown in the Appendix, 

Table A13.  

 

Figure 5.9 The observed and theoretical EO wt% vs. the HPMA wt% content of hyp-polydendrons 

and hyp-block copolymers from the DP20, DP50 and DP100 series 

 

The behaviour of the G2’:2000PEG hyp-polydendrons and hyp-block copolymers 

can also be described using a pseudo-phase diagram shown in Fig. 5.10, which 

shows the water solubility and insolubility as a function of the targeted mol% of EO 

monomer units vs. the targeted DPn of HPMA. The samples were classified in one of 

three ways; (a) being water insoluble and therefore nanoprecipitate, (b) being water 

soluble but measurable via DLS and (c) being water soluble but immeasurable via 

DLS. The dotted lines are used as this area of the plot is relatively undefined and 

therefore the exact placement of these lines is not known. Fig. 5.11 classifies the 
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samples in the same manner, however, showing the targeted DPn of HPMA as a 

function of the G2’ dendron initiator content highlighting how much dendron can be 

incorporated in to the hyp-polydendrons to fit various criteria.  

 

Figure 5.10 Pseudo-phase diagram elucidated for the various G2’:2000PEG hyp-polydendrons and 

hyp-block copolymers, using targeted DPn of HPMA vs. targeted mol% of EO. Phase regions where 

the polymers are insoluble in water (a), water soluble but are detectable via DLS (b), and water 

soluble and undetectable via DLS (c) 

 

Figure 5.11 Phase diagram elucidated for the various G2’:2000PEG hyp-polydendrons and hyp-

polymers synthesised, using the targeted DPn of HPMA vs. G2’ dendron content (%). Phase regions 

where the polymers are insoluble in water (a), water soluble but are detectable via DLS (b), and water 

soluble and undetectable via DLS (c) 



CHAPTER 5 

231 

 

5.3.  Dialysis of hyp-polydendrons 

To investigate the effect of various molecular weight fractions in the 

nanoprecipitation of hyp-polydendrons, fractionation was conducted using dialysis in 

a good solvent for the polymer. Therefore, by studying the different molecular 

weight fractions from dialysis, conclusions may be drawn regarding the mechanism 

of nanoprecipitation and the role of the very high molecular weight material present 

within these samples. The two hyp-polydendron samples chosen for the dialysis 

experiment had already shown good nanoprecipitation behaviour and contained a 

broad range of molecular weight species when analysed by GPC. G2’-pHPMA50-

EGDMA0.8 and G2’-pHPMA100-EGDMA0.8 (see Chapter 4, section 4.3.2) were, 

therefore, dialysed against IPA utilising two different molecular weight cut off 

(MWCO) dialysis membranes, 100 000 gmol
-1

 (100K) and 300 000 gmol
-1

 (300K). 

Each dialysis experiment was conducted over 3 days, with collection of the reservoir 

solvent at 24, 48 and 72 hours which were combined. The polymer remaining inside 

the dialysis membrane was recovered and analysed by GPC, see Table 5.2. The 

dialysed polymer, within the dialysis membrane, is referred to as the high molecular 

weight (HMW) fraction below, and the polymer collected outside the dialysis 

membrane is referred to as the low molecular weight (LMW) fraction. 

 

Table 5.2 Molecular weights and Ð of G2’-pHPMA50-EGDMA0.8 and G2’-pHPMA100-EGDMA0.8  

hyp-polydendrons, HMW and LMW fractions after dialysis in IPA and the equivalent linear-dendritic 

polymers G2’-pHPMA50 and G2’-pHPMA100 

Sample 

100K MWCO  300K MWCO 

Mn  

(gmol
-1

) 

Mw  

(gmol
-1

) 
Ð 

Mn 

(gmol
-1

) 

Mw  

(gmol
-1

) 
Ð 

G2’-pHPMA50 Linear 12 300 15 500 1.26 12 300 15 500 1.26 

G2’-

pHPMA50-

EGDMA0.8 

Original  115 700 1 538 000 13.3 115 700 1 538 000 13.3 

HMW 178 500 1 148 000 6.44 136 400 955 800 7.01 

LMW 13 300 23 400 1.75 14 000 21 700 1.55 

G2’-pHPMA100 Linear 28 500 40 400 1.42 28 500 40 400 1.42 

G2’-

pHPMA100-

EGDMA0.8 

Original  123 100 1 656 000 13.5 123 100 1 656 000 13.5 

HMW 267  300 1 934 000 7.24 236 200 1 739 000 7.37 

LMW 21 700 35 600 1.64 21 600 37 900 1.75 

 



CHAPTER 5 

232 

 

Perhaps somewhat surprisingly there appeared to be little to no difference in the 

polymer fractions collected from the 100K MWCO membrane vs. the 300K MWCO 

membrane. The RI GPC overlays shown in Fig. 5.12 and Fig. 5.13 confirm this 

observation for the G2’-pHPMA50-EGDMA0.8 and G2’-pHPMA100-EGDMA0.8 

polymers respectively. The traces observed for the 100K and 300K HMW fractions 

almost overlay exactly, as do the 100K and 300K LMW fractions. The LMW 

fractions were quite similar to the linear polymer equivalents reported in Chapter 4 

(section 4.3.1), see Table 5.2. This suggests that dialysing these polymers in IPA has 

mainly removed the linear chains from the original samples to give a HMW fraction 

which contains a broad range of polymeric species with dispersities from 6.4 - 7.4. 

The removal of the predominantly linear species has also had a noticeable effect of 

the Mn and Mw values of the HMW fraction, as would be expected. 

 

 

Figure 5.12 GPC RI overlays for the G2’-pHPMA50-EGDMA0.8 hyp-polydendron, HMW and LMW 

fractions from dialysis experiments in IPA using 100K and 300K MWCO dialysis membranes 
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Figure 5.13 GPC RI overlays for the G2’-pHPMA100-EGDMA0.8 hyp-polydendron, HMW and LMW 

fractions from dialysis experiments in IPA using 100K and 300K MWCO dialysis membranes 

 

As the HMW fractions from the dialysis experiments in IPA afforded polymer 

fractions which were relatively similar in molecular weight to the original polymer 

samples a different solvent was chosen for the dialysis, to study the effect of the 

solvent, if any, on the resulting molecular weights of LMW and HMW fractions. 

G2’-pHPMA50-EGDMA0.8 was therefore dialysed against MeOH using the same 

100K and 300K MWCO dialysis membranes. Table 5.3 shows the molecular weights 

and dispersities for the LMW and HMW fractions form the dialysis in MeOH.  

 

Table 5.3 Molecular weights and Ð of G2’-pHPMA50-EGDMA0.8 hyp-polydendron, HMW and LMW 

fractions after dialysis in MeOH and the equivalent linear-dendritic polymer G2’-pHPMA50 

Sample 

100K MWCO 300K MWCO 

Mn 

(gmol
-1

)  

Mw  

(gmol
-1

) 
Ð 

Mn 

(gmol
-1

)  

Mw  

(gmol
-1

) 
Ð 

G2’-pHPMA50 Linear 12 300 15 500 1.26 12 300 15 500 1.26 

G2’-pHPMA50-

EGDMA0.8 

Original 115 700 1 538 000 13.3 115 700 1 538 000 13.3 

HMW 761 200 2 326 000 3.06 615 800 1 990 000 3.23 

LMW 28 293 192 100 2.74 25 400 99 480 3.92 
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Figure 5.14 GPC RI overlays for the G2’-pHPMA50-EGDMA0.8 hyp-polydendron, HMW and LMW 

fractions from dialysis experiments in MeOH using 100K and 300K MWCO dialysis membranes 

 

The GPC chromatogram overlays for the G2’-pHPMA50-EGDMA0.8 dialysis 

experiments in MeOH are shown in Fig. 5.14. Again, there was no significant 

difference between the 100K and 300K MWCO dialysis membranes used, as 

molecular weights are similar and the GPC chromatograms overlay almost perfectly.  

Evidently, when using MeOH as the dialysis solvent, higher molecular weight 

polymer species were able to cross the dialysis membrane, therefore the polymer 

sample collected from the outside of the dialysis membrane in this experiment had 

higher molecular weights and a higher Ð than the equivalent sample when dialysed 

using IPA. The polymer sample collected from inside the dialysis membrane also 

had higher molecular weights and a much smaller Ð than the original sample. This 

effect may be due to either a variation in pore size within the dialysis membrane 

when solvated with the different solvents or a significant variation in solvated radius 

of the polymers in IPA and MeOH.  Neither of these factors has been investigated in 

detail.  
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5.3.1.  Nanoprecipitations using various molecular weight fractions 

The various molecular weight fractions obtained from the dialysis experiments were 

investigated for their behaviour under nanoprecipitation conditions (see sections 2.6, 

3.4 and 4.4 in Chapters 2, 3 and 4 respectively for previous nanoprecipitation 

experiments). Each sample collected in the dialysis experiments was 

nanoprecipitated using i5-f1, dissolving the polymers in THF as the volatile, good 

solvent and using water as the anti-solvent (see Chapter 4 section 4.4.2 and 4.4.4 for 

previous nanoprecipitations conducted with the original polymer samples described 

here). Table 5.4 shows the Dz and PdI values for each as measured via DLS. In each 

case the HMW fractions formed nanoparticles with narrow PdIs, whereas the LMW 

fractions formed much larger particles with broader PdIs.  

The size distribution by intensity traces for the LMW and HMW samples from the 

dialysis experiment conducted with the G2’-pHPMA50-EGDMA0.8 in IPA are shown 

in Fig. 5.15 for the 100K and 300K MWCO dialysis membranes. Both of the HMW 

fractions had similar Dz (188 nm and 204 nm) and narrow polydispersities (0.070 

and 0.095), whilst the LMW fractions gave nanoprecipitates with much larger Dz 

(620 nm and 767 nm) and broader PdIs (0.214 and 0.424).  

 

Table 5.4 DLS measurements for the nanoprecipitations performed using the dialysed G2’-

pHPMA50-EGDMA0.8 and G2’-pHPMA100-EGDMA0.8 hyp-polydendrons 

Samples prepared (i5-f1) 
100K MWCO  300K MWCO 

Dz (nm) PdI Dz (nm) PdI 

G2’-pHPMA50 Linear 882 0.241 882 0.241 

G2’-pHPMA50-

EGDMA0.8 

Original – before dialysis: 64 0.211 

HMWIPA 188 0.070 204 0.095 

LMWIPA 620 0.214 767 0.424 

HMWMeOH 158 0.041 136 0.068 

LMWMeOH -
a
 -

a
 -

a
 -

a
 

G2’-pHPMA100 Linear 250 0.035 250 0.035 

G2’-pHPMA100-

EGDMA0.8 

Original – before dialysis: 329 0.022 

HMWIPA 164 0.041 166 0.047 

LMWIPA 506 0.111 727 0.248 
a
Samples could not be measured by DLS as they had precipitated out of solution. Dz = z-average 

diameter 
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Figure 5.15 DLS size distribution by intensity traces for the nanoprecipitations (i5-f1) of the HMW 

and LMW fractions of G2’-pHPMA50-EGDMA0.8 dialysed in IPA with the 100K and 300K MWCO 

dialysis membranes 

 

These LMW nanoprecipitations had given Dz and PdIs that were much closer to the 

linear polymer equivalent when nanoprecipitated (see section 4.4.1). The G2’-

PHPMA50 nanoprecipitation at i5-f1 gave a Dz of 882 nm and PdI of 0.241.  

The size distribution by intensity traces for the nanoparticle samples prepared from 

the dialysed fractions of G2’-pHPMA100-EGDMA0.8 in IPA are shown in Fig. 5.16. 

The HMW nanoprecipitates have almost identical Dz from both the 100K (164 nm) 

and 300K (166 nm) MWCO dialysis membranes, and narrow polydispersities (0.041 

and 0.047). Again both of the LMW fractions gave nanoparticles that were much 

larger in Dz with broader polydispersities (100K MWCO - 506 nm, PdI = 0.111; 

300K MWCO - 727 nm, PdI = 0.248). The linear-dendritic polymer equivalent 

nanoprecipitation using G2’-pHPMA100 gave a Dz of 250 nm and PdI of 0.035. 

Therefore the LMW fraction nanoprecipitations did not give as similar results with 

the DP100 hyp-polydendron as with the DP50.  
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Figure 5.16 DLS size distribution by intensity traces for the nanoprecipitations of the HMW and 

LMW fractions of G2’-pHPMA100-EGDMA0.8 dialysed in IPA with the 100K and 300K MWCO 

dialysis membranes 

 

 

Figure 5.17 DLS size distribution by intensity traces for the nanoprecipitations of the HMW and 

LMW fractions of G2’-pHPMA50-EGDMA0.8 dialysed in MeOH with the 100K and 300K MWCO 

dialysis membranes 

 

The nanoprecipitations using the dialysed G2’-pHPMA50-EGDMA0.8 hyp-

polydendron in MeOH also gave nanoparticles with narrow polydispersities when 

the HMW fractions were used. Fig. 5.17 shows the size distribution by intensity 
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traces for these samples. The 100K MWCO HMW fraction had a Dz of 158 nm and 

PdI of 0.014, whilst the 300K MWCO HMW fractions was 136 nm in diameter with 

a polydispersity of 0.068. When the LMW fractions were nanoprecipitated under the 

same conditions, they both precipitated out of solution and therefore were not 

suitable for measurement via DLS. 

Therefore from the various nanoprecipitations conducted using different molecular 

weight fractions of the original hyp-polydendron samples, it can be proposed that the 

highly branched high molecular weight fractions of the samples gave better 

nanoparticles than when the lower molecular weight fractions were used. This 

suggests that the presence of the higher molecular weight polymer species could 

improve the nanoprecipitation of linear polymer samples, as in all the original hyp-

polydendron samples the full range of various molecular weight species is present 

and the high molecular weight material may be acting as the nucleation points for 

successful nanoprecipitation. The ATRP branching mechanism, as discussed 

previously,
1
 does not lead to a fully branched sample and, despite the presence of 

linear polymers within the hyp-polydendron and hyp-polymer samples, near 

monodisperse and stable nanoprecipitates are formed. The material directing the 

nanoprecipitation mechanism is probably not the linear fraction, and is more likely to 

be the higher molecular weight branched polymer species within the distribution. To 

determine the validity of this hypothesis, an experiment was conducted where the 

highest molecular weight fraction from the dialysis experiments was mixed with the 

linear equivalent polymer in varying ratios prior to nanoprecipitation. It was hoped 

that this would determine the impact of the HMW polymer and the amount of such 

material that would be required to induce the stable nanoprecipitation observed with 

many of the hyp-polydendron and hyp-polymer samples discussed in this thesis.   

 

5.3.2.  Co-nanoprecipitation of linear and high molecular weight polymer 

fractions 

The HMW fraction chosen for blending with linear polymer samples was the 

HMWMeOH collected from the 100K MWCO membrane during dialysis of the G2’-

pHPMA50-EGDMA0.8 hyp-polydendron (Mn =  761 200 gmol
-1

, Mw =  

2 326 000 gmol
-1

, Ð = 3.06). This fraction had the highest molecular weight and was 
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shown to nanoprecipitate to form nanoparticles with narrow polydispersities. This 

was mixed at various wt% values with the G2’-pHPMA50 linear-dendritic polymer, 

utilising THF as the good solvent, which has been studied under various 

nanoprecipitation conditions (see Chapter 4, section 4.4.1); under i5-f1 conditions 

nanoprecipitates with a Dz of 882 nm and PdI of 0.241 were previously seen. 

Addition of the mixed hyp-polydendron and the linear-dendritic hybrid polymers to 

an anti-solvent can be described as co-nanoprecipitation and Table 5.5 shows the 

results of the co-nanoprecipitations as measured via DLS. 

 

Table 5.5 DLS measurements of samples with varying ratios of linear:HMW polymer wt% using 

nanoprecipitation conditions i5-f1 

Linear 

G2’-pHPMA50 

(wt%) 

HMWMeOH  

G2’-pHPMA50-

EGDMA0.8 (wt%) 

Dz (nm) PdI 

100 0 672 0.215 

99 1 198 0.034 

97.5 2.5 191 0.034 

95 5 346 0.110 

92.5 7.5 177 0.072 

90 10 182 0.089 

80 20 166 0.062 

70 30 167 0.101 

60 40 150 0.045 

50 50 157 0.110 

0 100 145 0.075 
Dz = z-average diameter 

 

There is a general trend observed from the co-nanoprecipitations; increasing the wt% 

of HMW polymer within the experiment led to a considerable decrease in the Dz 

observed, with the exception of the 95:5 Linear:HMW wt% sample. This can also be 

seen in Fig. 5.18 where the Dz is plotted with increasing the HMW wt% present. 

There does not appear to be trend in the PdI across the series, however, when HMW 

polymer was introduced to the linear the PdI values were lower and remained below 

0.11, showing the impact of the presence of the high molecular weight material on 

directing and controlling the nanoprecipitation to produce near monodisperse, 

uniform nanoparticles. 

 



CHAPTER 5 

240 

 

 

Figure 5.18 Variation in Dz with varying the ratio of Linear:HMW polymer co-nanoprecipitations; 

see Table 5.5 

 

 

Figure 5.19 DLS size distribution by intensity traces for various mixtures of Linear:HMW polymer 

co-nanoprecipitations, see Table 5.5 and Fig. 5.18 

A selection of the DLS size distribution by intensity traces for the Linear:HMW co-

nanoprecipitations are shown in Fig. 5.19, showing the decrease in size with 

increasing HMW fraction wt%. This suggests that the HMW fraction does have an 

influence on the formation of nanoparticles via nanoprecipitation, even at very low 

concentrations. The huge difference in nanoprecipitation behaviour with the 

inclusion of just 1 wt% of HMW hyp-polydendron also supports the previous 
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discussion about the similarity of nanoprecipitation behaviour of hyp-polydendrons 

with the same ratio of initiators but with different molecular weights (see Chapter 3, 

section 3.4.1). It is proposed that the actual molecular weight of the polymer sample 

does not affect the resulting nanoprecipitate size. This may be due to a very low, but 

critical concentration of HMW highly branched polymer required to direct the 

nanoprecipitation process (< 1 wt%).  Therefore, even though lower molecular 

weight samples contain less HMW polymer, the presence of the small fraction of 

highly branched material lead to an unaffected nanoprecipitation. This is 

corroborated by the results discuss here, as the variation of HMW material from 1 to 

100 wt% leads to Dz variations of only 198 - 145 nm. Therefore as long as a 

minimum amount is used, it would appear that the nanoparticles formed would be 

smaller and more monodisperse than the corresponding linear nanoprecipitations.  

It was worth noting that separate dialysis experiments were conducted using a 

different G2’-pHPMA100-EGDMA0.8 and the mass of each molecular weight fraction 

collected was recorded. When IPA was used as the dialysis solvent the HMW 

fraction constituted 92 % of the total mass dialysed, whilst the LMW fraction was 

only 8 % of the total mass. When MeOH was used as the dialysis solvent the HMW 

fraction was 30 % of the total mass dialysed, whilst the LMW was 70 %. 

 

5.4.  Nanoprecipitation of linear vs. branched hyp-block 

copolymers 

When the 2000PEG-pHPMA100 linear A-B block copolymer was initially 

synthesised the resulting molecular weights were higher than expected and the GPC 

chromatograms indicated that low levels of branching had occurred due to higher 

molecular weight species observed in the RALS chromatograms. Therefore the 

HPMA monomer was purified via column chromatography to remove any potential 

dimethacrylate impurity, and the purified monomer was used to re-synthesise the 

2000PEG-pHPMA100 sample discussed in Chapter 4. The molecular weights (GPC) 

of the two 2000PEG-pHPMA100 polymers, synthesised with purified and unpurified 

monomer, are shown in Table 5.6, with the molecular weights of the corresponding 

2000PEG-pHPMA100-EGDMA0.8 hyp-block copolymer. The 2000PEG-pHPMA100 

polymer synthesised with the purified HPMA will be described as the ‘linear’ 
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sample, the 2000PEG-pHPMA100 synthesised using the unpurified HPMA will be 

described as ‘slightly branched’ and the 2000PEG-pHPMA100-EGDMA0.8 as the 

‘branched’ sample.  

The RI and RALS GPC chromatogram overlays are shown in Fig. 5.20 for these 

2000PEG initiated DP100 linear, slightly branched and branched polymers. It is clear 

from the GPC overlays that the slightly branched sample does not just contain linear 

chains due to the broad peak visible on the RALS chromatogram (Fig. 5.20B). 

  

Table 5.6 GPC molecular weights and Ð for the 2000PEG initiated DP100 linear, slightly branched 

and branched polymers 

Sample Name 
GPC (DMF) 

Mn (gmol
-1

) Mw (gmol
-1

) Ð 

2000PEG-pHPMA100
a
 Linear 22 400 27 800 1.24 

2000PEG-pHPMA100 
Slightly 

branched 
29 700 75 500 2.54 

2000PEG-pHPMA100-

EGDMA0.8 
Branched 53 900 335 300 6.23 

a
purified HPMA used 

 

 

Figure 5.20 GPC chromatogram overlays of A) RI and B) RALS detectors for the 2000PEG DP100 

linear, slightly branched and branched samples 

 

These three samples were subjected to the same nanoprecipitation techniques 

described previously; by dissolving the polymers in THF, a good solvent, and adding 

them to an anti-solvent for the pHPMA polymer chain. As the 2000PEG initiator is 

hydrophilic, any resulting nanoparticles are provided with a degree of steric 
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stabilisation. The nanoprecipitations were performed with initial concentrations of 

25, 10, 5 and 1 mg/mL and two df; 0.2 and 0.01; see Table 5.7 for the Dz and PdIs. 

 

Table 5.7 DLS measurements for the nanoprecipitations of the 2000PEG DP100 linear, slightly 

branched and branched polymers 

Nanoprecipitation conditions Linear 
Slightly 

branched 
Branched 

ix 
(mg/mL) 

fy 
(mg/mL) 

df 
Dz 

(nm) 
PdI 

Dz 

(nm) 
PdI 

Dz 

(nm) 
PdI 

25 5 0.2 712 0.221 260 0.250 363 0.267 

10 2 0.2 336 0.130 142 0.098 176 0.173 

5 1 0.2 276 0.112 115 0.055 128 0.074 

1 0.2 0.2 179 0.190 106 0.101 87 0.052 

25 0.25 0.01 139 0.183 146 0.209 155 0.228 

10 0.1 0.01 101 0.127 98 0.105 107 0.136 

5 0.05 0.01 79 0.135 78 0.124 85 0.133 

1 0.01 0.01 * * 62 0.329 52 0.250 

Dz = z-average diameter 

 

The Dz were plotted against increasing initial nanoprecipitate concentration (ix) for 

each df to study differences between each sample, see Fig. 5.21. For 

nanoprecipitations with a df of 0.2 the variation in Dz between the linear, slightly 

branched and branched samples is large, showing that the linear sample has larger Dz 

across all concentrations, whilst the slightly branched and branched samples are 

much more similar in Dz. This suggests with only a low amount of branching present 

in the polymer sample the nanoprecipitation behaviour is similar to polymers with 

higher molecular weights and more branching present.  

However, when comparing the 2000PEG initiated DP100 linear, slightly branched 

and branched samples with df = 0.01, the resulting nanoparticle sizes observed are 

very similar for each of these samples. This suggests that the final concentration or 

df also has an effect on the formation of nanoparticles irrespective of polymer 

morphology.  
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Figure 5.21 Dz of 2000PEG initiated DP100 linear, slightly branched and branched nanoprecipitation 

samples with varying final concentrations with df = 0.2; linear (black filled circles) , slightly branched 

(red filled triangles), branched (blue filled squares) and df = 0.01; linear (black open circles), slightly 

branched (red open triangles), branched (blue open squares) 

 

 

 

5.5.  FRET experiments 

The nanoprecipitations performed using the hydrophobic hyp-polydendrons have 

been shown to encapsulate various hydrophobic molecules, such as pyrene, Nile red 

and fluoresceinamine (see Chapter 3, section 3.4.5 for pyrene and Nile red. See 

Chapter 4, section 4.4.5 for fluoresceinamine). It was hypothesised that more than 

one type of molecule could be encapsulated in the nanoparticles via 

nanoprecipitation, therefore a fluorescence spectroscopy technique was employed to 

assess whether two different molecules could be encapsulated in the same 

nanoparticle. 

Förster resonance energy transfer (FRET) is the transfer of energy from a donor 

fluorophore in the excited state to an acceptor fluorophore through non-radiative 

dipole-dipole coupling. The efficiency of the energy transfer is inversely 
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proportional to the sixth power of the distance between the donor and the acceptor, 

therefore FRET is extremely sensitive to variations in distance between the 

fluorophores.
2, 3

 This is represented graphically in Fig. 5.22, showing (A) FRET 

when the donor and acceptor fluorophores are within 10 nm of each other and (B) 

when they are more than 10 nm apart no FRET is observed.
4
 When FRET is highly 

efficient only emission from the acceptor fluorophore is observed and no emission is 

observed from the donor fluorophore. One pair of FRET dyes commonly used is 

3,3’-dioctadecyloxacarbocyanine perchlorate (DiO) and 1,1’-dioctadecyl-3,3,3’,3’-

tetramethylindocarbocyanine perchlorate (DiI), where DiO is the donor fluorophore 

and DiI is the acceptor fluorophore.
5
 The chemical structures of these two dyes are 

shown in Fig. 5.22C.  

 

 

Figure 5.22 Graphical representation of FRET, with DiO as the donor and DiI as the acceptor 

fluorophore showing A) with FRET, B) no FRET and C) the DiO and DiI chemical structures 

 

FRET has wide range of applications in biological systems; it has been used to 

elucidate molecular interactions in membranes, to study protein structure and 

protein-protein interactions in solution and to investigate nucleic acids and nucleic 

acid-protein complexes, as well as enhancing microscopy studies.
3, 4

 More recently 
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FRET has been applied to systems involving polymeric micelles to detect the cellular 

uptake of the micelles and stability as the FRET signal is lost upon breakdown of the 

micelles.
6
 FRET has also been applied in the study of multi-component organic 

nanoparticles to assess cellular uptake of whole particles, as a loss of FRET signal 

implies the dissolution or breakdown of mixed nanoparticles.
5
 

Here the DiO/DiI FRET pair has been used to ascertain whether more than one 

molecule can be loaded into the nanoparticles produced by nanoprecipitation of hyp-

polydendrons, as FRET will be observed if the fluorophores are indeed located 

within the same particle. The hyp-polydendron chosen for this study was the 

G2:750PEG-50:50-pHPMA50-EGDMA0.8 (see Chapter 3) as it has previously been 

shown to nanoprecipitate with successful loading of both Nile red and pyrene. 

The G2:750PEG-50:50-pHPMA50-EGDMA0.8 was nanoprecipitated with an initial 

concentration of 5 mg/mL and a final concentration of 1 mg/mL (i5-f1). This was 

repeated with encapsulation of either DiO, DiI or a 1:1 mixture of DiO:DiI. Three 

different levels of loading of the dye molecules were prepared with the Dz and PdI 

values for these samples shown in Table 5.8. The highest loading achieved in each 

case was 2 w/w%, the size distribution by intensity DLS traces for each sample are 

shown in Fig. 5.23. Loading of the nanoparticles with DiO, DiI and a 1:1 mixture of 

the two dyes was achieved by dissolving the dyes in the organic solvent (THF) with 

the hyp-polydendron before nanoprecipitation into water. 

 

Table 5.8 Dz, PdI and zeta potential for various dye loaded nanoparticles using the G2:750PEG-

50:50-pHPMA50-EGDMA0.8 hyp-polydendron 

G2:750PEG 

(50:50) 

1 mg/mL 

1 w/w%  

(0.01 mg/mL)  

2 w/w% 

(0.02 mg/mL) 

5 w/w%  

(0.05 mg/mL) 

Dz (nm) PdI Dz (nm) PdI 

Zeta 

Potential 

(mV) 

Dz (nm) PdI 

Blank 115 0.067 115 0.067 -28.2 115 0.067 

DiO 128 0.066 193 0.024 -48.3 476 0.101 

DiI 101 0.086 143 0.048 -47.6 - - 

Dual (1:1) 109 0.077 156 0.040 -47.4 - - 

Dz = z-average diameter 
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Figure 5.23 DLS size distribution by intensity traces for the blank and DiO, DiI and dual loaded 

nanoparticles formulated with i5-f1 with G2:750PEG-50:50-pHPMA50-EGDMA0.8 hyp-polydendron 

 

Loading the samples with each dye resulted in an increase in Dz from 115 nm for the 

blank sample, to 193 nm for the DiO loaded, 143 nm for the DiI loaded and 156 nm 

for the dual loaded nanoparticles. The PdI values remained low (< 0.050; blank 

sample PdI = 0.067) and the zeta potentials of each nanoprecipitates were very 

similar and negative, indicating charge stabilisation as discussed previously.  

These samples were analysed by fluorescence spectroscopy, see Fig. 5.24. The 

individual DiO and DiI loaded nanoparticles were excited at 420 nm, as was the dual 

loaded nanoparticles. Each sample was diluted with distilled water so that the final 

concentration of each dye was 0.005 mg/mL. The DiO loaded particles had an 

emission maxima at 509 nm, when excited at 420 nm, whilst the DiI loaded particles 

only showed very small emission maxima at 570 nm. Ideally, the excitation 

wavelength should only excite the donor fluorophore (DiO) and not the acceptor 

(DiI), allowing acceptor emission wavelength to be solely attributed to FRET. 

However, the most suitable excitation wavelength for this experiment was found to 

be 420 nm; at lower wavelengths the donor (DiO) did not show sufficient emission 

and higher wavelengths led to unacceptably high acceptor emission (DiI). Under 

these conditions, FRET is considered to occur if an increase in emission at 570 nm is 

seen. 
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Figure 5.24 Fluorescence spectra for the DiO, DiI and dual loaded G2:750PEG-pHPMA50-

EGDMA0.8 nanoparticles and a 1:1 mixture of DiO and DiI loaded nanoparticles at t = 0 of mixing, 

diluted to a concentration of 0.005 mg/mL for each dye, exciting at 420 nm 

 

The fluorescence spectrum for the nanoprecipitate sample containing both 

fluorophores (dual sample) clearly shows a FRET signal as no emission was 

observed from DiO (509 nm) and only emission at 570 nm (for the DiI) was seen. 

Energy transfer from the DiO in the excited state to the DiI, within the 

nanoprecipitates, was obviously efficient and the dyes clearly in close proximity (< 

10nm). This strongly indicates that the two dye molecules were located within the 

same nanoparticle. A mixture of the DiO loaded and DiI loaded nanoparticles, in a 

ratio of 1:1 (mixed sample; 1 mL of each sample), was measured immediately after 

mixing, and a strong emission peak at 509 nm was observed with a smaller peak at 

570 nm. This indicates that some FRET may be occurring, however, as the dyes are 

located in different nanoparticles the distance between them would be expected to be 

> 10 nm on average and only a poor energy transfer was observed.  

FRET can be quantified by calculating the FRET ratio, as described in equation (1) 

below, where IDiO and IDiI are the fluorescence intensities at 509 and 570 nm 

respectively when exciting the samples at 420 nm.  

            
    

           
   (1) 



CHAPTER 5 

249 

 

Therefore if energy transfer is 100 % efficient, the FRET ratio has a maximum value 

of 1; conversely, if no FRET is observed the observed FRET ratio will be 0. The 

FRET ratios corresponding to Fig. 5.24 for each sample were: DiO = 0.127, DiI = 

0.894, the dual sample = 0.947 and mixed sample = 0.188. The DiO sample had a 

low FRET ratio and did not show FRET as there was only donor present and no 

acceptor. The DiI sample did not show FRET; the FRET ratio appears high as a 

consequence of the absent signal from the donor. The dual sample showed the 

highest FRET ratio, which was expected as the two dyes were mixed before 

nanoprecipitation and therefore were encapsulated inside the nanoparticles. The 

mixed sample had a low FRET ratio (immediately after mixing) as the two dyes are 

located within separate nanoparticles as they were prepared as individually loaded 

nanoparticles; this figure may be artificially high due to the inherent emission from 

DiI when excited at this wavelength.  

 

5.5.1.  Study of FRET over time in mixed DiO and DiI samples  

The FRET ratio of the mixed sample was studied at ambient temperature over time 

to assess whether the dyes could pass between particles or whether aggregation of 

nanoprecipitates would lead to the induction of a FRET signal. It was predicted that 

as the dyes were hydrophobic and had very limited water solubility, they would 

remain in the nanoparticle cores and the FRET ratio would not change over time. 

Fig. 5.25 shows the fluorescence emission spectra for this experiment; mixing the 

samples at t = 0 and taking measurements every 30 min for the first 4 hours, then 

every hour for 18 hours, then two further measurements were made at 24 and 48 

hours. The experiment did show a dramatic change in the fluorescence spectra, 

which was unexpected; the emission observed for the donor (DiO) at 509 nm 

decreased and the emission observed at 570 nm for the acceptor (DiI) increased.  

This suggested that the two fluorophores were moving between nanoparticles to 

change the fluorescence spectra observed. The FRET ratio for each measurement 

was calculated and the change in the FRET ratio over time can be seen in Fig. 5.26.  
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Figure 5.25 Fluorescence spectra overlays over time after mixing equal volumes of the DiO and DiI 

loaded G2:750PEG-pHPMA50-EGDMA0.8 samples, to give a final concentration of 0.005 mg/mL of 

each fluorophore, exciting at 420 nm. 

 

 

Figure 5.26 FRET ratio over time after mixing equal volumes of the DiO and DiI loaded 

G2:750PEG-pHPMA50-EGDMA0.8 samples, to give a final concentration of 0.005 mg/mL of each 

fluorophore. Filled circles represent time points when the sample was also measured by DLS 
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Figure 5.27 DLS size distribution by intensity traces for the mixed DiI and DiO loaded G2:750PEG-

pHPMA50-EGDMA0.8 samples over time  

 

The FRET ratio at t = 0 was 0.188, which increased to 0.768 after 48 hours of 

mixing the samples. Another measurement was performed after a further 7 days, 

where the FRET ratio had increased to 0.931, almost as high as the dual component 

sample prepared by incorporating both dyes into the solution with the polymer. DLS 

measurements were performed on the mixed sample at various time points; t = 0, 

t = 48 hours and t = 9 days. The DLS size distribution by intensity traces for each of 

these samples can be seen in Fig. 5.27. The Dz and PdI values remained extremely 

similar over the course of the experiment, therefore, the FRET ratio is probably not 

increasing due to aggregation of particles. The appearance of the sample had 

changed over time, see Fig. 5.28 for photographs of each sample. Fig. 5.28A and B 

show the DiO loaded nanoparticles and DiI loaded nanoparticles respectively, 

diluted to 0.005 mg/mL fluorophore concentration. Fig. 5.28C shows the dual loaded 

sample diluted to a final concentration of 0.005 mg/mL of DiO and DiI (i.e. overall 

0.01 mg/mL total concentration of fluorophores). The mixed sample at t = 0 (Fig. 

5.28D) and after 9 days (Fig. 5.28E) had slightly different shades of pink, perhaps 

indicating the movement of the fluorophores.   
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Figure 5.28 Photographs of various DiO and DiI loaded nanoparticles; A) DiO loaded, B) DiI loaded, 

C) dual loaded, D) mixed sample t = 0 and E) mixed sample at t = 9 days 

 

To rule out the possibility of movement of dye between particles by dissolution into 

the water, a dialysis experiment was conducted where the donor (DiO) loaded 

particles were placed inside the dialysis membrane and the acceptor (DiI) loaded 

particles were placed outside of the dialysis membrane. The dialysis membrane used 

had a MWCO of 2 000 gmol
-1

, therefore it can be assumed that only small molecules 

would be able to cross the membrane, and not the nanoparticles. This would either 

confirm or deny the possibility of the dye molecules moving between particles by 

transport through the water. Samples were taken at various time points from outside 

of the dialysis membrane and measured by DLS to ensure the nanoparticles were still 

intact and by fluorescence spectroscopy to monitor any change in the emission at 

570 nm, corresponding to the DiI emission. As the emission at 570 nm was low 

when exciting the DiI loaded nanoparticles at 420 nm, if the DiO was diffusing out 

of the dialysis membrane and entering the DiI loaded particles outside of the 

membrane, an increase in the emission at 570 nm would be observed due to an 

increase in FRET.  
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Figure 5.29 Fluorescence spectra for DiI and DiO loaded G2:750PEG-pHPMA50-EGDMA0.8 samples 

taken over time during dialysis experiment 

 

The fluorescence spectra for the dialysis experiment are shown in Fig. 5.29. There 

appears to be no increase in emission at 570 nm over time, therefore suggesting that 

there is no movement of dye across the dialysis membrane. The decrease in intensity 

observed for the DiO sample after 6 days could be attributed to loss of material due 

to adherence of the nanoprecipitates to the dialysis tubing and therefore a loss in 

fluorescence emission, or the effect of bleaching of the fluorophore. 

The water insolubility of the two dyes was also shown by attempting to dissolve 

each dye in water at the same concentration present in the nanoparticles 

(0.02 mg/mL). The samples were rolled for 7 days and analysed by fluorescence 

spectroscopy, exciting at 420 nm, and very little emission was observed due to the 

minimal water solubility of DiO and DiI (see Appendix Fig. A43).  

The mechanism of the dye movement between nanoparticles was not clear and 

requires further investigation. One possible explanation could be the movement of 

polymer macromolecules between nanoparticles in a dynamic manner with 

encapsulated dye molecules, which would therefore facilitate the movement of dye 

molecules from one nanoparticle to another. 
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5.6.  Conclusions 

In this chapter the varying G2’:2000PEG initiator content in the previously 

described series of hyp-polydendrons and hyp-block copolymers was further studied, 

with the samples showing defined separation when water solubility was investigated. 

The pseudo-phase diagrams show the three different categories of materials that have 

been synthesised; water-insoluble, water-soluble and detectable by DLS and 

water-soluble and undetectable by DLS. This would aid in future investigations of 

the ratio of 2000PEG needed to introduce salt stability into the subsequently 

formulated particles, without introducing too much to inhibit nanoprecipitation.  

The separation of various molecular weight hyp-polydendrons was also investigated, 

showing that, via a dialysis technique, the molecular weights could be tuned 

somewhat by using different dialysis solvents. The subsequently isolated high 

molecular weight hyp-polydendron fractions were further investigated in the 

production of co-nanoparticles formulated via the co-nanoprecipitation of the linear-

dendritic polymer equivalent and high molecular weight branched polymers. These 

results suggested that the HMW fraction considerably influences the 

nanoprecipitation behaviour of the polymers.  

The FRET experiments showed that the encapsulation of two different hydrophobic 

molecules was successful with an increase in FRET observed with dual loaded 

nanoparticles, over that observed when simply mixing the two singly loaded DiO 

and DiI particles. However, further study of the mixture of the two singly loaded 

nanoparticles showed that the FRET ratio increased over time, indicating the 

movement of DiO and or DiI between nanoparticles. Dialysis and water solubility 

experiments ruled out the movement of dye between particles via the water the 

particles were dispersed in, therefore suggesting movement of dye molecules via 

collisions of nanoparticles.  
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6.1.  Chapter 2 

Chapter 2 demonstrated the synthesis of G1 and G2 dendrons which were 

subsequently transformed into initiators for ATRP. These G1 and G2 dendron 

initiators and a commercially available initiator (EBiB) were used in the methanolic 

homopolymerisation of HPMA to produce linear and linear-dendritic polymers with 

varying degrees of polymerisation (20, 50 and 100 monomer units). The kinetic 

evaluation of these polymerisations (for DP50) showed that the polymerisations 

adhered to the expected first order kinetics reported for ATRP, with a linear increase 

of molecular weight with increasing conversion. The incorporation of a divinyl 

monomer (EGDMA) into the polymerisation afforded high molecular weight 

branched polymers (up to Mw = 2.3 x 10
6
 gmol

-1
), bearing the initiator functionality 

at one end of every chain. The initiator:EGDMA molar ratio was kept constant at 

1:0.8 to prevent gelation. The branched polymers containing the G1 or G2 dendron 

moiety at the end of every chain were termed hyperbranched polydendrons (hyp-

polydendrons) due to the hyperbranched pHPMA core, containing multiple dendron 

functionalities in one highly branched macromolecule. The hyperbranched polymers 

containing no dendron functionality (EBiB initiated branched polymers) were 

described as hyp-polymers. Kinetic evaluation of the branched polymerisations also 

revealed first order kinetics as expected, however the molecular weights increased 

dramatically at high conversions (> 80 %) due to the intermolecular branching of 

chains owing to the incorporation of the divinyl monomer in the polymer chains.  

The linear, linear-dendritic, hyp-polymers and hyp-polydendrons of various DPn 

values were subsequently investigated for their ability to form nanoparticles via a 

nanoprecipitation approach. Initially, a study was conducted where the polymers 

were dissolved in a good solvent (acetone) and nanoparticle formation was induced 

by adding an anti-solvent (hexane) for the pHPMA polymer chains. The formation of 

nanoparticles was followed by DLS and showed a huge difference between the 

formation of particles from the linear and linear dendritic polymers when compared 

the equivalent hyp-polymers and hyp-polydendrons. The nanoparticles formed using 

the hyp-polymers and hyp-polydendrons were much smaller and had smaller 

polydispersity indices than the linear and linear-dendritic polymer analogues.  

Further investigation of nanoparticle formation using these materials was conducted 

using water as the anti-solvent. This produced near monodisperse nanoparticles 
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which were stable over an extended period of time (> 23 months) when the hyp-

polymer and hyp-polydendron materials were used. However, the linear and linear-

dendritic polymer analogues were generally larger in size and polydispersity, and 

showed aggregation over time and ultimately precipitation. The nanoparticles were 

also analysed by SEM, showing discreet spherical nanoparticles, with the number 

average diameter calculated by SEM agreeing with the number average diameter as 

observed via DLS measurements. 

 

6.2.  Chapter 3 

The concept of introducing mixed functionality to the hyp-polydendrons was 

investigated in Chapter 3 by statistically blending two different ATRP initiators in 

the copolymerisation of HPMA and EGDMA. This produced highly branched 

macromolecules containing the two different initiator functionalities which would 

not be achievable via a homopolymerisation approach. The G2 dendron synthesised 

in Chapter 2 was mixed with a 750PEG macroinitiator at various ratios (100:0, 

90:10, 75:25, 50:50, 25:75, 10:90 and 0:100) with a targeted DPn of 50 monomer 

units to produce six hyp-polydendrons and one hyp-block copolymer. Maintaining 

the initiator:EGDMA molar ratio at 1:0.8 the materials produced showed a decrease 

in molecular weights and dispersities with increasing 750PEG content. This 

indicated that the 750PEG initiator had a higher initiator efficiency than the G2 

dendron initiator. To ensure the 750PEG initiator was suitable for ATRP, kinetic 

experiments were conducted showing first order kinetics, with a linear increase in 

molecular weights for the homopolymerisation of HPMA and a large increase in 

molecular weights and dispersities when the copolymerisation of HPMA and 

EGDMA was studied. 

Aqueous nanoprecipitation of these materials was conducted to produce a range of 

nanoparticles with varying G2 dendron and 750PEG initiator content. The 

mechanism of nanoprecipitation suggested that upon nucleation and aggregation of 

nanoparticles, the G2 dendron and 750PEG functionalities could reside either at the 

surface of the nanoparticles or inside the nanoparticles. This was ascertained by 

encapsulation of two different fluorescent dyes; Nile red and pyrene, which both 

report on the surrounding environment. Nile red exhibits an increased fluorescence 
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intensity in hydrophobic environments than in hydrophilic environments. The 

fluorescence intensity observed was higher when the Nile red was encapsulated in 

hyp-polydendron nanoparticles with a higher G2 dendron initiator content. Pyrene 

has five predominant vibronic bands when excited at 335 nm, the ratio of peak 1 in 

the fluorescence emission spectra to the third predominant peak, peak 3, gives rise to 

the I1/I3 ratio. The I1/I3 ratio varied across the series of hyp-polydendrons and hyp-

block copolymer, from 1.42 for the 100:0 hyp-polydendron to 1.53 for the 0:100 

hyp-block copolymer, indicating that with increasing 750PEG content the polarity of 

the nanoparticles internal environment is increasing. 

To assess the hyp-polydendron and hyp-block copolymer nanoparticles potential to 

act as drug delivery vehicles, preliminary pharmacological experiments were 

conducted. Cytotoxicity assays were performed using the Caco-2 cell line which 

represents the first barrier to orally dosed materials, the intestinal epithelial cells. The 

materials did not cause toxicity to Caco-2 cells across a range of concentrations. The 

transcellular permeability of the materials was also assessed, using the Caco-2 cell 

monolayer which is a model experiment to predict absorption of materials across the 

intestinal epithelial cells into the systemic circulation. These materials show at trend 

in the apparent permeability (Papp) across the membrane, where the Papp increased 

with increasing G2 dendron content of the hyp-polydendron formulated nanoparticle 

samples. Whilst showing pharmacological benefits, the nanoparticles were not stable 

to salt or transport buffer solutions. This was due to the particles being charge 

stabilised, where addition of salt screens the charges on the nanoparticles’ surface 

leading to aggregation. Therefore it was desirable to produce nanoparticles which 

would be sterically stabilised, rather than charge stabilised, to afford stability in 

physiological conditions.  

 

6.3.  Chapter 4 

Following the work conducted in Chapter 3, the main aim of Chapter 4 was to 

produce hyp-polydendron nanoparticles which would be stable to salt and buffer 

solutions, and show potential for drug delivery. Therefore, a mixed initiator approach 

was once again utilised, with a longer PEG chain macroinitiator; 2000PEG. The G2 

dendron synthesis was improved by using an AB2 molecule developed in the 



CHAPTER 6 

260 

 

research group. Therefore the structure of the G2 dendron in Chapter 4 was slightly 

different to that used in Chapter 3 and was termed the G2’ dendron initiator. The 

G2’ dendron initiator and 2000PEG macroinitiator homopolymerisations of HPMA 

were conducted with targeted DPn of 20, 50 and 100 monomer units, and kinetic 

evaluation of selected polymerisations showed expected ATRP behaviour with a 

linear increase in molecular weights and low dispersities (< 1.4). The initiators were 

also used in the copolymerisation of HPMA and EGDMA to afford high molecular 

weight branched polymers, hyp-polydendrons for the G2’ dendron initiated branched 

polymers and hyp-block copolymers when the 2000PEG macroinitiator was utilised. 

The branched polymerisations were also assessed via kinetic experiments, again 

showing expected ATRP behaviour of first order kinetics, with a steep increase in 

molecular weight and dispersity when conversion had reached > 70 - 80 %.  

The G2’ dendron initiator and 2000PEG macroinitiator were subsequently mixed in 

a statistical manner at various ratios (G2’:2000PEG: 100:0, 90:10, 75:25, 50:50, 

25:75, 10:90 and 0:100) for the copolymerisation of HPMA and EGDMA, targeting 

three DPn of HPMA (20, 50 and 100 monomer units). The ratio of initiator:EGDMA 

utilised in the DP50 was varied for each ratio to find the highest level possible before 

gelation occurred. This showed that with increasing the 2000PEG content, the ratio 

could be increased from 1:0.8, for 100:0, to 1:0.95 for 0:100 G2’:2000PEG. The 

DP20 and DP100 series were polymerised using an initiator:EGDMA ratio of 1:0.8, 

which showed a similar trend of molecular weights and dispersity as observed in 

Chapter 3 for the G2:750PEG branched polymer synthesis. When the 2000PEG 

content was increased the molecular weights and dispersities decreased across the 

series, suggesting that the 2000PEG initiator had a higher initiator efficiency than 

the G2’ dendron initiator.  

The subsequent hyp-polydendrons were investigated for their nanoprecipitation 

behaviour. Firstly, the DP50 series was subjected to nanoprecipitation conditions at 

various initial and final concentrations. The results, as measured via DLS, showed 

that at the higher level of 2000PEG macroinitiator incorporation, the resulting 

nanoparticle sizes obtained were independent of the concentration of the polymers 

used, whilst with higher G2’ dendron initiator content the hyp-polydendrons 

exhibited the same nanoprecipitation behaviour that had been observed for the 

branched polymers studied in Chapter 2 and 3. It was found that this was due to the 
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water-solubility of the polymers. With increasing 2000PEG macroinitiator (from 50-

100 %) the resulting hyp-polydendrons and hyp-block copolymer were actually 

water-soluble, therefore when being nanoprecipitated they were dissolved in a good 

solvent and added to another good solvent, rather than an anti-solvent. This resulted 

in what was described as ‘individual object’ formation, rather than nanoprecipitates 

as previously observed with hydrophobic polymer nanoprecipitations.  

The stability of the resulting nanoparticles was assessed under physiologically 

relevant conditions, using salt solution (0.14 M NaCl) and transport buffer. The 

incorporation of even the lowest amount of 2000PEG (10 %) afforded salt stability 

to the resulting nanoparticles, therefore, each sample was investigated for any 

pharmacological benefits as drug delivery vehicles. The pharmacological evaluation 

of the DP50 materials gave an indication that the hyp-polydendron and hyp-block 

copolymer materials which did not display classical nanoprecipitation behaviour 

(G2’:2000PEG; 50:50, 25:75, 10:90 and 0:100) whilst showing no toxicity to Caco-

2 cells, showed no enhancement of transcellular permeability of the model drug 

encapsulated and therefore no pharmacological benefits. However, the samples 

showing classical nanoprecipitation behaviour and larger Dz (G2’:2000PEG; 90:10 

and 75:25) were also non-toxic to Caco-2 cells and showed an enhanced transcellular 

permeation of a model drug across the Caco-2 cell monolayer when compared to the 

aqueous model drug preparation. 

Therefore a study of the DP100 hyp-polydendrons and hyp-block copolymer was 

conducted; increasing the length of the hydrophobic pHPMA primary chain length 

was expected to result in branched polymers that were more hydrophobic than the 

DP50 series. It was found that none of the DP100 materials were water-soluble and all 

materials demonstrated classical nanoprecipitation behaviour, identical to the 

hydrophobic branched polymers studied in the DP50 series and previous Chapters. 

These nanoparticles were assessed for their cytotoxicity and transcellular permeation 

across the Caco-2 cell monolayer. Materials which showed pharmacological benefit 

were the G2’:2000PEG 75:25, 50:50 and 25:75 DP100 hyp-polydendron 

nanoparticles, with the 75:25 material showing the highest transcellular permeation 

across the Caco-2 cell monolayer, therefore this sample was used for subsequent cell 

accumulation studies. The cellular accumulation ratio (CAR) was calculated for the 

75:25 hyp-polydendron nanoparticles in Caco-2 cells, to elucidate whether the 
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transport across the monolayer occurred via a transcellular or paracellular pathway. 

Increased accumulation in the Caco-2 cells was seen (over the free model drug), 

indicating a transcellular pathway for the observed permeation. Accumulation in 

ATHP-1 cells (monocyte derived macrophage cells) was also investigated to 

ascertain whether the nanoparticles could be used to target macrophages cells, which 

is one of many cellular sanctuary sites for the HIV virus. The 75:25 hyp-polydendron 

nanoparticles did not show any increase in accumulation in the ATHP-1 cells when 

compared to the free model drug and further pharmacological evaluation of the ‘lead 

material’, 75:25 DP100 formulated nanoparticles, are required to undertake 

mechanistic studies to assess the permeation pathway across the Caco-2 cell 

monolayer.  

 

6.4.  Chapter 5  

The water solubility and nanoprecipitation behaviour of the G2’:2000PEG DP20 

series was discussed in Chapter 5. The 75:25, 50:50, 25:75, 10:90 hyp-polydendrons 

and 0:100 hyp-block copolymer were all water-soluble and therefore did not exhibit 

classical nanoprecipitation behaviour. The 100:0 DP20 hyp-polydendron did form 

nanoprecipitates that increased in size with increasing starting solution, and final 

dispersion, concentrations. However, although the 90:10 DP20 sample was not water–

soluble, it did not form nanoparticles as expected.  

The G2’:2000PEG DP20, DP50 and DP100 series of hyp-polydendrons and hyp-block 

copolymers were analysed by 
1
H NMR spectroscopy where the ratio of G2’ dendron 

to the HPMA content was calculated by comparing the integrals of chemical shifts in 

the 
1
H NMR spectra corresponding to protons in the G2’ dendron and HPMA 

monomer residues. The observed ratio of G2’ dendron initiator:HPMA was lower 

than expected by theory and was attributed to the lower initiator efficiency of the 

G2’ dendron initiator. The 2000PEG macroinitiator:HPMA ratio was estimated by 

1
H NMR spectroscopy, where the observed ratio was close to that calculated by 

theory. The integration of the peak corresponding to the 2000PEG was not as 

accurate as the G2’dendron initiator, as the peak corresponding to the methyl group 

at the end of the PEG chain did not always reach the baseline, therefore the error 

associated with this integration was higher than with the G2’ dendron.  
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The mol% content of each component (G2’ dendron initiator, 2000PEG 

macroinitiator and HPMA) was estimated using the 
1
H NMR spectroscopy analysis. 

The mol% of the PEG repeat unit, ethylene oxide (EO), was calculated from the 

2000PEG mol%. The various EO mol% and HPMA mol% of the materials could be 

separated into two distinct domains, where the polymers were soluble or insoluble in 

water. This was also represented by a phase diagram of the targeted DPn of EO and 

HPMA, where three distinct domains were characterised; water insoluble polymers 

which generally nanoprecipitated as expected, water soluble polymers which were 

measurable via DLS and water insoluble polymers that could not be measured via 

DLS due to a lack of light scattering. 

To investigate the importance of the high molecular weight branched polymer 

fraction of the molecular weight distribution on nanoprecipitation, organic solvent 

dialysis experiments were conducted using the G2’-pHPMA50-EGDMA0.8 and G2’-

pHPMA100-EGDMA0.8 hyp-polydendrons. The dialysis experiments were performed 

in good solvents for the hyp-polydendrons to separate out the low molecular weight 

(LMW) and high molecular weight (HMW) polymer fractions present in the hyp-

polydendron samples. These HMW and LMW fractions were subsequently studied 

for their nanoprecipitation behaviours. It was found that by changing the dialysis 

solvent, different molecular weight polymers could be isolated. Using IPA the LMW 

fractions that dialysed out of the membrane for both hyp-polydendrons had similar 

molecular weights to the linear-dendritic polymer equivalents. However, when 

MeOH was used for the dialysis of the G2’-pHPMA50-EGDMA0.8 the LMW fraction 

had higher molecular weights, therefore, either the size of the pores in the dialysis 

membranes were affected by the solvent, or the hydrodynamic diameter of the 

polymer chains was different in IPA and MeOH; higher molecular weight polymer 

chains could diffuse through the dialysis membrane pores when using MeOH.  

The nanoprecipitation of the various HMW and LMW fractions showed that in 

general the HMW fractions produced nanoparticles with smaller diameters and lower 

PdIs than the LMW fractions. The mixture of the G2’-pHPMA50-EGDMA0.8 

HMWMeOH fraction with the linear dendritic equivalent polymer, G2’-pHPMA50, 

showed that the size of the resulting nanoparticles and PdI was decreased with an 

inclusion of only 1 wt% of HMWMeOH hyp-polydendron. With increasing the wt% of 

the HMWMeOH fraction from 1 - 100 wt% the size of the nanoparticles decreased 
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slightly and the PdIs remained low. This infers that incorporation of even a low 

amount of HMW fraction of polymer improves the nanoprecipitation when 

compared to the linear-dendritic polymer nanoprecipitations.  

The study of the hyp-polydendrons was concluded by investigating the ability to 

encapsulate two different molecules within an individual nanoparticle by utilising 

FRET. It was shown that when a donor fluorophore (DiO) and an acceptor 

fluorophore (DiI) were formulated in separate nanoparticles FRET was not observed, 

however, when they were dual loaded into the nanoparticles a FRET signal was 

observed which was quantified using the FRET ratio. The mixture of the two singly 

loaded nanoparticle samples did not shown any FRET immediately after mixing, 

however, a study of the mixture over time showed that the FRET ratio increased, 

indicating that one or both of the fluorophores were moving between the 

nanoparticles. The movement of the fluorophores via dissolution in the water was 

ruled out by a dialysis experiment where the donor (DiO) nanoparticles were placed 

inside the membrane and the acceptor (DiI) nanoparticles were outside the 

membrane. The fluorescence spectra was measured from the acceptor nanoparticles 

outside of the membrane, which showed no increase at the acceptor (DiI) emission 

wavelength over time, indicating that the movement of the fluorophores between 

particles was not occurring. Therefore when the nanoparticles were not coming into 

contact with one another, there was no increase in the observed FRET ratio. This 

suggested that dye movement was occurring through collisions of the nanoparticles, 

however, further investigations would be required to elucidate the exact mechanism.  

 

6.5.  Future work 

The introduction of hyp-polydendrons throughout this research study has opened a 

new area of materials chemistry which provides opportunities across many potential 

fields. The materials offer new nanomedicine materials and the numerous structural 

and chemical options that are available for future variation, have been studied 

through this preliminary report. Future research directions with specific focus on 

nanomedicine applications include;  

 Synthesis of different functional dendron initiators 
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o Investigations will provide the potential for targeting of drug delivery 

and modification of solution behaviour. 

 Fluorescent initiator incorporation  

o Bound fluorescent molecules may be used to report on the 

environment/location of the nanoparticles and the position of the 

polymer chain ends within nanoprecipitates. 

 Drug encapsulation 

o The nanoprecipitates may be loaded with drug compounds to target 

disease (e.g. efavirenz, lopinavir and ritonavir for the treatment of 

HIV). 

 Internal chemistry variation 

o Varying the internal hydrophobicity of the nanoparticles may be 

achieved through copolymerisation of different monomers into the 

core structures. 

 Encapsulation of inorganic nanoparticles 

o Materials such as Fe3O4 (SPIONs) may be used to impart magnetic 

properties to the nanoparticles 

 Thermal behaviour studies 

o The lower critical solution temperature (LCST) of the water-soluble 

hyp-polydendrons and hyp-block copolymers may be studied to 

provide useful triggers. Comparison to linear polymers will yield 

architectural importance 

 Nanoprecipitation mechanistic studies 

o The multiple nanoprecipitation of hyp-polydendrons into single 

volumes of water would explore the nanoprecipitation mechanism and 

produce options for scale up 

 Layer-by-layer studies 

o To sterically stabilise the charges nanoprecipitates, a layer-by-layer 

approach could be utilised with linear polyelectrolytes 
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7.1.  Experimental techniques 

Two important experimental techniques used throughout this thesis were gel 

permeation chromatography (GPC) and dynamic light scattering (DLS), therefore, 

each technique is discussed in detail below.  

7.1.1. Gel permeation chromatography (GPC) 

GPC can also be referred to as size exclusion chromatography and relies upon the 

separation of polymeric materials by their size in an appropriate eluent. The 

separation of the different chain lengths within a polymer molecular weight 

distribution is performed by utilising columns containing porous beads with various 

pore sizes. Larger polymeric materials cannot enter the smaller pores and therefore 

have a shorter path-length through the columns, eluting at earlier retention volumes. 

Smaller polymeric materials, which can enter a percentage of the pores, have a long 

path-length through the columns and elute at later retention volumes.  

Triple detection systems use refractive index (RI), differential viscometry and light 

scattering detectors to calculate the absolute molecular weight of the polymer. Each 

detector can be used to calculate different parameters which collectively elucidate 

the molecular weights of the different fractions within the polymer sample. 

Equations (1), (2) and (3) show the calculations conducted with the data collected by 

each detector, where KRI, KV and KLS are instrument calibration constants, conc is the 

concentration, and dn/dc is the change in refractive index (the refractive index 

increment) with the change in concentration.  

                  
  

  
           (1) 

                                             (2) 

                                         (
  

  
)
 

        (3) 

The differential refractometer calculates the dn/dc from the concentration entered 

when injecting the sample, whilst the viscometer also calculates the intrinsic 

viscosity of the sample based on this entered concentration. The absolute molecular 

weight calculated by light scattering is also dependant on the concentration and the 

square of the dn/dc. Therefore when using triple detection it is important to 

determine  the concentration of the sample accurately; any errors in the concentration 

can result in inaccurate calculation of molecular weights. Alternatively if the 
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concentration of the sample is not known, but the dn/dc for the polymer is, a known 

value can be used to calculate the concentration of the sample and therefore the 

molecular weights and dispersity.   

7.1.2. Dynamic light scattering (DLS) 

DLS relies on the calculation of particle size using Brownian motion and the 

correlation between the Brownian motion of a particle suspended in a liquid and its 

hydrodynamic diameter. An autocorrelation function is used to assess the correlation 

in scattering over time which can be used to calculate the size of the particles. The 

correlation will be high over a very short time period as the particle has not moved 

very far, whilst over a long time period the correlation will be low due to the 

Brownian motion of the particle away from its original position. Therefore, an 

exponential decay of correlation function over time is observed. The method of 

cumulants analysis is then used to calculate the z-average diameter (Dz), which is the 

preferred DLS size parameter as the Dz result is insensitive to experimental noise.  

The Dz is calculated from the translational diffusion coefficient by using the Stokes-

Einstein equation, shown in equation (4). Where Dz is the hydrodynamic diameter, k 

is Boltzmann’s constant, T is the absolute temperature, η is viscosity and Dt is the 

intensity weighted average translational diffusion coefficient calculated by the 

method of cumulants analysis. 

           ⁄     (4) 

Therefore the temperature (T) of the sample must be stable, the viscocity (η) of the 

dispersant medium at that temperature must be known and the refractive index of the 

dispersant medium is required to calculate the Dt from the cumulants method. The 

polydispersity index (PdI) is a measure of the width of the size distribution and is 

calculated using the method of cumulants.  

The Dz is not the only size parameter derived from the DLS analysis. The number 

average and volume average may also be calculated and can give information about 

the particle population(s) present in a sample. The size distribution by intensity is 

weighted towards larger particles, as the intensity in light scattered is proportional to 

the diameter to the power of 6. Therefore if an equal mixture of 5 and 50 nm 

particles are measured, the size distribution by number would be equal for both 

populations as they are present in a ratio of 1:1. The size distribution by volume 
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would be 10
3
 higher for the 50 nm compared to the 5 nm particle (the volume of a 

sphere is described as 4/3π(d/2)
3
).  The size distribution by intensity will be even 

more weighted towards the 50 nm population as the 50 nm particles will scatter 10
6

 

as much light as the 5 nm particle.  

This needs to be taken into consideration when multi-modal distributions are 

observed as even though a larger population may appear predominant in a sample, it 

is possible that a smaller particle size actually dominates in terms of the number of 

particles present 

 

7.2.  Experimental techniques used throughout the thesis 

 

7.2.1. Materials 

All starting materials, 1,3-dibenzyloxy-2-propanol (97 %), 1,1’-carbonyldiimidazole 

(≥ 97%), diethylenetriamine (99 %), β-butyrolactone (98 %), α-bromoisobutyryl 

bromide (98 %), 4-(dimethylamino)pyridine (≥ 99 %), triethylamine (≥ 99 %), 

hydroxypropyl methacrylate (97 %), ethylene glycol dimethacrylate (98 %) Cu(I)Cl 

(≥ 99 %), 2,2’-bipyridyl (≥ 99 %), poly(ethylene glycol) monomethyl ether (average 

Mn 750 gmol
-1

), poly(ethylene glycol) monomethyl ether (average Mn 2 000 gmol
-1

), 

tert-butanol (≥ 99.5 %), BAPA (98 %), propylene oxide (≥ 99 %), Nile red (≥ 98 %), 

Pyrene (98 %) were purchased from Aldrich and used as received. 1,1’-dioctadecyl-

3,3,3’,3’-tetramethylindocarbocyanine perchlorate (DiI) and 3,3’-

dioctadecyloxacarbocyanine perchlorate (DiO) were purchased from Life 

Technologies and used as received. Anhydrous toluene and methanol, silica gel used 

for column chromatography, Dowex® MarathonTM MSC (hydrogen form) ion 

exchange resin beads and potassium hydroxide (KOH) were purchased from Aldrich 

and used as received. All other solvents were analytical grade and purchased from 

Fisher.  

7.2.2. Characterisation 

Molecular weights and molecular weight distributions (i.e. polydispersity index; Ð) 

were measured using a Malvern Viscotek instrument equipped with a GPCmax 

VE2001 auto-sampler, two Viscotek T6000 columns (and a guard column), a 
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refractive index (RI) detector VE3580 and a 270 Dual Detector (light scattering and 

viscometer) with a mobile phase of THF at 35ºC and a flow rate of 1.0 mLmin
-1

.  

NMR spectra were recorded using a Bruker DPX-400 spectrometer operating at 400 

MHz for 
1
H NMR and 100 MHz for 

13
C, in CDCl3, MeOD, D2O or DMSO.  

Chemical ionisation (CI) and electrospray (ES) mass spectrometry data was recorded 

in the Mass Spectrometry Laboratory at the University of Liverpool. The CI mass 

spectrometry data was obtained using a Agilent GCQTOF 7200 instrument, using 

methane CI gas. The ES mass spectrometry data was obtained using a MicroMass 

LCT mass spectrometer using electron ionisation and direct infusion syringe pump 

sampling. All materials were diluted with methanol.  

MALDI-TOF mass spectrometry data was recorded in the EPSRC National Mass 

Spectrometry Facility, Swansea, using a Voyager DE-STR instrument. 

Elemental analyses were obtained from a Thermo FlashEA 1112 series CHNSO 

elemental analyser.  

Dynamic light scattering (DLS) measurements were performed using a Malvern 

Zetasizer Nano ZS instrument (laser wavelength; 630 nm), ran at 25 °C. 

Alternatively it was carried out using a Viscotek 802-100 Dynamic Light Scattering 

Analyzer (laser wavelength; 830 nm), ran at 20 °C.  

Scanning electron microscopy (SEM) images of nanoparticles were obtained using a 

Hitachi S-4800 FE-SEM. Samples were dropped directly onto various SEM stub 

surfaces (specified in each specific chapter below) and left to dry over several hours 

or overnight.  

Refractive indices of solvents were measured on a Refracto 30 PX on a portable 

refractometer at ambient temperature. 

Fluorescence spectra (for Chapter 3 and 4) were obtained on a PerkinElmer 

Luminescence spectrofluorophotometer LS55. Emission spectra for Nile red 

containing samples were recorded between 550 nm and 700 nm, exciting at 552 nm. 

The slit widths for emission and excitation were 5 nm and 10 nm, respectively, with 

a scan rate of 100 nm/min. Emission spectra for pyrene labelled samples were 

recorded between 330 nm and 500 nm, exciting at 335 nm. The slit widths for 
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emission and excitation were 5 nm and 5 nm, respectively, with a scan rate of 

100 nm/min. 

Fluorescence spectra (for Chapter 5) were obtained on a Shimadzu RF-5301PC 

spectrofluorophotometer. Emission spectra for DiO and DiI containing samples were 

recorded between 400 and 700 nm, exciting at 420 nm. The slit widths for emission 

and excitation were 3 and 5 nm respectively, with a fast scan rate.  

7.2.3. Linear polymerisations via ATRP 

In a typical experiment, G2 dendron initiator (0.648 g, 0.69 mmol) and HPMA 

(targeted DPn = 50) (5.0 g, 34.7 mmol) were weighed into a round bottom flask. The 

flask was equipped with magnetic stirrer bar, sealed and degassed by bubbling with 

N2 for 20 minutes and maintained under N2 at 30 °C. Anhydrous methanol was 

degassed separately and subsequently added to the monomer/initiator mixture via 

syringe to give a 50 vol% or 50 wt% mixture with respect to the monomer. The 

catalytic system; Cu(I)Cl (0.069 g, 0.69 mmol) and 2,2’-bipyridyl (bpy) (0.217 g, 

1.39 mmol), were added under a positive nitrogen flow in order to initiate the 

reaction. The polymerisations were stopped when conversions had reached over 

98 % determined by 
1
H NMR using the vinyl CH2 peaks and protons of the polymer 

backbone. The polymerisation was stopped by diluting with a large excess of 

tetrahydrofuran (THF), which caused a colour change from dark brown to a bright 

green colour. The catalytic system was removed using Dowex
®
 Marathon

TM
 MSC 

(hydrogen form) ion exchange resin beads and basic alumina. The resulting polymer 

was isolated by precipitation from the minimum amount of acetone or THF  into 

cold hexane. The [initiator]:[CuCl]:[bpy] molar ratios in all polymerizations were 

1:1:2. 

7.2.4. Branched polymerisations via ATRP 

The synthesis of branched polymers was conducted in the same manner as the linear 

polymerizations with the addition of EGDMA (e.g. 105µL, 0.55 mmol for 

initiator:EGDMA 1:0.8). Various ratios of initiator:EGDMA were used; between 

1:0.8 – 1:0.95, each chapter describes how much was used and why.  

7.2.5. Kinetic experiments 

Kinetics experiments were conducted at 30 °C. To determine the kinetic parameters 

of polymerisations samples (~0.1 mL) was taken at regular intervals and analysed by 
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1
H NMR and gel permeation chromatography (GPC). Approximately one third of 

each sample taken was diluted into 1 mL of deuterated DMSO (for 
1
H NMR 

analysis) and the other two thirds was diluted into 4 mL THF (for GPC analysis). 

Oxidation of Cu(I) to Cu(II) was observed by a colour change from brown to 

turquoise in DMSO and from brown to green in THF indicating termination of the 

reaction. Conversion of monomer to polymer was determined by 
1
H NMR as 

previously discussed. The samples diluted in THF were prepared for GPC analysis 

by removal of the catalytic system with Dowex
®
 Marathon

TM
 MSC (hydrogen form) 

ion exchange resin beads, transferred into a pre-weighed vial, removal of THF from 

the polymer solution by evaporation to give dry polymer residue of a known weight. 

The dry polymer residues of known weights were then diluted with HPLC grade 

THF to give polymer solutions with concentrations around 5.0 mg/mL. These were 

analysed by triple detection GPC consisting of refractive index (RI), light scattering 

(LS) and viscometer detectors. 

7.2.6. Mixed initiator branched polymerisations via ATRP 

In a typical reaction, G2 dendron initiator (0.324 g, 0.35 mmol) and 2K PEG initiator 

(0.745 g, 0.35 mmol) (for a targeted ratio of G2 dendron:2000PEG of 50:50 mol%) 

were weighed into a round bottom flask, followed by HPMA (5.0 g, 34.7 mmol, 

targeted DP=50). EGDMA (112 μL, 0.59 mmol, 0.85 mol%) was added and the flask 

was equipped with magnetic stirrer bar, sealed and degassed by bubbling with N2 for 

20 minutes and maintained under N2 at 30 °C. Anhydrous methanol was degassed 

separately and subsequently added to the monomer/initiator/brancher mixture via 

syringe to give a 50 % v/v mixture with respect to the monomer. The catalytic 

system; Cu(I)Cl (0.069 g, 0.69 mmol) and 2,2’-bipyridyl (bpy) (0.217 g, 1.39 mmol), 

were added under a positive nitrogen flow in order to initiate the reaction. The 

polymerisations were stopped when conversions had reached over 98 %. The 

polymerisations were stopped by diluting with a large excess of tetrahydrofuran 

(THF), which caused a colour change from dark brown to a bright green colour. The 

catalytic system was removed using Dowex
®
 Marathon

TM
 MSC (hydrogen form) ion 

exchange resin beads and basic alumina. The resulting polymer was isolated by 

precipitation from the minimum amount of THF into cold hexane. The 

[initiator]:[CuCl]:[bpy] molar ratios in all polymerizations were 1:1:2. 
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7.2.7. Aqueous nanoparticle formation 

Polymers were dissolved in THF at various concentrations. Once fully dissolved, 

polymer in THF (0.1 or 1 mL, 1, 5, 10, 25 or 50 mg/mL) was added quickly to a vial 

of water (5 or 10 mL) stirring at ambient temperature. The solvent was allowed to 

evaporate overnight in a fume cupboard to give a final concentration between 0.01 -

 10 mg/mL polymer in water. By adjusting the starting concentration and the volume 

of water used, the size of the corresponding nanoparticles were controlled. 

7.2.8. Encapsulation of guest molecules in nanoparticles 

Polymers were dissolved in THF at various concentrations. The fluorescent dyes, 

Nile red and pyrene, were dissolved in THF to give a stock solution (0.1 mg/mL). 

The stock solution (50 µL, 0.1 mg/mL) was added to an empty vial and the THF was 

allowed to evaporate to leave 5 µg of dye. The polymer dissolved in THF (1 mL, 

5 mg/mL) was added to the dry Nile red or pyrene to give a mixture containing 5 mg 

polymer, 5 µg dye dissolved in 1 mL of THF. This was then added quickly to a vial 

of water (5 mL) stirring at ambient temperature. The solvent was allowed to 

evaporate overnight in a fume cupboard to give a final concentration of 1 mg/mL 

polymer and 1 µg/mL Nile red or pyrene (0.1 w/w%) in water. 

 

7.3. Chapter 2  

For materials and characterisation see section 7.2.1 and 7.2.2 respectively 

7.3.1. Initiator synthesis 

7.3.1.1. G1 dendron initiator (see section 2.2.1, p52) 

 

Scheme 7.1 G1 dendron initiator synthesis 

 

1,3-Dibenzyloxy-2-propanol, 1, (9.80 g, 36.0 mmol) was weighed into a 2-neck 
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round bottom flask which was equipped with magnetic stirrer and dry N2 inlet. 

Dichloromethane (DCM) (100 mL) was added followed by 4-

(dimethylamino)pyridine (DMAP) (0.44 g, 3.6 mmol) and triethylamine (TEA) 

(7.53 mL, 54.0 mmol). The reaction was cooled to 0 °C in an ice-bath and α-

bromoisobutyryl bromide (5.34 mL, 43.2 mmol) was added dropwise over 20 

minutes. After complete addition the reaction was warmed to room temperature and 

left stirring overnight. Reaction could be observed by the formation of a white 

precipitate. After 24 hours the precipitate was removed by filtration, the resulting 

crude reaction medium was washed first with a saturated solution of NaHCO3 (3 x 

100 mL) followed by distilled water (3 x 100 mL). The organic layer was dried over 

Na2SO4 and concentrated in vacuo to give a pale yellow oil (81 %). Found, C, 59.55; 

H, 6.02 %. C21H25BrO4 requires, C, 59.86; H, 5.98; Br, 18.96; O, 15.19 %. ¹H NMR 

(400 MHz, CDCl₃) δ ppm 7.35-7.20 (m, 10H), 5.26 (m, 1H), 4.55 (m, 4H), 3.69 (d, 

4H), 1.93 (s, 6H). ¹³C NMR (100 MHz, CDCl₃) δ ppm 171.2, 138.0, 128.4, 127.7, 

127.6, 73.3, 68.5, 55.8, 30.7. m/z (ES MS) 443.1 [M+Na]
+
, 461.1 [M+K]

+
, m/z 

required 420.1 [M]
+
. 

 

7.3.1.2. G2 dendron initiator (see section 2.2.2, p55) 

 

Scheme 7.2 G2 dendron initiator synthesis 
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1,1’-Carbonyldiimidazole (CDI) (9.73 g, 60.0 mmol) was weighed into a 2-neck 

round bottom flask and equipped with magnetic stirring, condenser and dry N2 inlet.  

Anhydrous toluene (100 mL) was added, followed by KOH (0.34 g, 6.0 mmol) and 1 

(12.35 mL, 50.0 mmol).  The reaction was heated to 60 °C for 6 hours.  Toluene was 

removed in vacuo, the crude mixture was dissolved in DCM (50 mL) and washed 

with distilled water (3 x 50 mL).  The organic layer was dried over Na2SO4 and 

concentrated in vacuo to give 3, a pale yellow oil (97 %).  Found C, 68.64; H, 6.10; 

N, 7.85 %.  C21H22N2O4 requires C, 68.84; H, 6.05; N, 7.65; O, 17.47 %.  ¹H NMR 

(400 MHz, CDCl₃) δ ppm 8.11 (s, 1H), 7.41 (s, 1H), 7.33-7.23 (m, 10H), 7.06 (s, 

1H), 5.36 (qn, 1H), 4.53 (m, 4H), 3.75 (m, 4H).  ¹³C NMR (100 MHz, CDCl₃) δ ppm 

148.3, 137.5, 137.2, 130.6, 128.4, 127.9, 127.6, 117.2, 76.1, 73.3, 68.1.  m/z (ES 

MS) 367.2 [M+H]
+
, 389.2 [M+Na]

+
, 405.1 [M+K]

+
, m/z required 366.2 [M]

+
. 

 3 (16.84 g, 46.0 mmol) was weighed into a 2-neck round bottom flask which was 

equipped with magnetic stirring, condenser and dry N2 inlet. Anhydrous toluene 

(120 mL) was added followed by diethylenetriamine (DETA) (2.48 mL, 23.0 mmol). 

The reaction was heated to 60 °C for 48 hours. Toluene was removed in vacuo, the 

resulting crude mixture was dissolved in DCM (100 mL) and washed with distilled 

water (3 x 100 mL). The organic layer was dried over Na2SO4 and concentrated in 

vacuo to give 4, a yellow oil (93 %). Found C, 68.50; H, 7.13; N, 6.00 %. 

C40H49N3O8 requires, C, 68.65; H, 7.06; N, 6.00; O, 18.29 %. ¹H NMR (400 MHz, 

CDCl₃) δ ppm   7.27-7.16 (m, 20H), 5.23 (s, br, NH), 5.03 (qn, 2H), 4.44 (m, 8H), 

3.57 (d, 8H), 3.12 (m, 4H), 2.58 (m, 4H). ¹³C NMR (100 MHz, CDCl₃) δ ppm 156.6, 

138.4, 128.8, 128.1, 73.7, 72.1, 69.4, 49.0, 41.2. m/z (ES MS) 700.4 [M+H]
+
, 722.3 

[M+Na]
+
, 738.3 [M+K]

+
, m/z required 699.4 [M]

+
. 

 4 (15.01 g, 21.4 mmol) was weighed into a 2-neck round bottom flask, equipped 

with magnetic stirrer, condenser and dry N2 inlet. Anhydrous toluene (90 mL) was 

added followed by dropwise addition of β-butyrolactone (2.62 mL, 32.2 mmol). The 

reaction was heated at reflux for 16 hours. Toluene was removed in vacuo, the 

resulting crude mixture was dissolved in DCM (50 mL) and washed with distilled 

water (3 x 50 mL). The organic layer was dried over Na2SO4 and concentrated in 

vacuo to give a yellow oil. The crude product was purified by silica gel column 

chromatography with a mobile phase gradient of DCM:MeOH (100:0 - 95:5 - 90:10) 

to give 5, a pale yellow oil (45 %). Found C, 65.35; H, 6.72; N, 5.10 %. C44H55N3O10 
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requires, C, 67.24; H, 7.05; N, 5.35; O, 20.36 %. ¹H NMR (400 MHz, CDCl₃) δ ppm 

7.34-7.25 (m, 20H), 5.35 (br, NH), 5.31 (br, NH), 5.11 (m, 2H), 4.50 (m, 8H), 4.14 

(s, 1H), 3.62 (m, 8H), 3.46-3.18 (m, br, 8H), 2.45-2.22 (m, 2H), 1.18-1.05 (m, 3H). 

¹³C NMR (100 MHz, CDCl₃) δ ppm 174.4, 156.8, 156.6, 138.4, 138.3, 128.8, 128.1, 

128.0, 73.7, 73.6, 72.6, 72.4, 69.5, 69.3, 65.1, 48.5, 46.5, 41.2, 40.3, 39.9, 22.9. m/z 

(ES MS) 808.4 [M+Na]
+
, m/z required 785.4 [M]

+
. 

 5 (9.31 g, 11.85 mmol) was dissolved in DCM (100 mL) and transferred to a round 

bottom flask which was equipped with magnetic stirring and a dry N2 inlet. DMAP 

(0.14 g, 1.19 mmol), TEA (3.30 mL, 23.7 mmol) were added and the reaction 

mixture was cooled to 0 °C in an ice bath followed by dropwise addition of α-

bromoisobutyryl bromide (2.19 mL, 17.78 mmol). The reaction was warmed to room 

temperature for 24 hours. A colour change from pale orange to a dark orange/brown 

colour was observed over time. No precipitate was observed, the crude reaction 

mixture was washed with a saturated NaHCO3 solution (3 x 100 mL) and distilled 

water (3 x 100 mL). The organic layer was dried over Na2SO4 and concentrated in 

vacuo to give 6, an orange oil (81 %). Found C, 59.50; H, 6.31; N, 4.39 %. 

C48H60BrN3O11 requires, C, 61.67; H, 6.47; Br, 8.55; N, 4.49; O, 18.82 %. ¹H NMR 

(400 MHz, CDCl₃) δ ppm 7.35-7.23 (m, 20H), 5.33 (s, br, NH), 5.10 (m, 2H), 4.52 

(m, 8H), 3.71-3.53 (s, 8H), 3.52-3.12 (m, br, 8H), 2.76 (d of d, 1H), 2.47 (d of d, 

1H), 1.87 (s, 6H), 1.29 (d, 3H). ¹³C NMR (100 MHz, CDCl₃) δ ppm 192.5, 170.8, 

156.3, 156.1, 137.9, 134.5, 128.4, 127.7, 127.6, 73.2, 73.1, 72.2, 71.8, 70.2, 69.1, 

69.0, 68.8, 56.1, 48.3, 46.3, 39.6, 39.4, 38.9, 30.8, 30.7, 30.6, 19.7. m/z (ES MS) 

958.3 [M+Na]
+
, 974.3 [M+K]

+
, m/z required 933.3 [M]

+
. 

7.3.2. Nanoparticle formation using organic solvents 

Nanoparticle formation followed a nanoprecipitation method. Each polymer was 

dissolved in acetone at 5.0 mg/mL unless stated otherwise. 1 mL of polymer in 

acetone was added to a vial with magnetic stirrer bar and sealed to prevent solvent 

evaporation. Various volumes of hexane (0.1 – 4.0 mL) were added at a rate of 

0.5 mL/min by a syringe pump. Throughout this paper samples are referred to by 

their solvent fraction of hexane, for example, 1 mL of hexane added to 1 mL of 

polymer in acetone leads to a solvent fraction of hexane of 0.5.  The resulting 

samples were kept sealed to prevent solvent evaporation and were characterised 

within 48 hours. 
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7.3.3. SEM preparation 

Samples in organic solvents were prepared for SEM by dropping the sample directly 

onto the aluminium stub which dried rapidly. These samples did not need Au sputter 

coating for imaging. The aqueous nanoparticle samples were dropped on a glass 

cover slide mounted on an aluminium stub with a carbon tab and left to dry over 

several hours or overnight. They were Au sputter coated at 20 mA for 2 min prior to 

imaging. 

 

7.4.  Chapter 3 

For materials and characterisation see section 7.2.1 and 7.2.2 respectively.  

7.4.1. 750PEG macroinitiator synthesis (see section 3.2.2, p104) 

 

Scheme 7.3 Synthesis of 750PEG macroinitiator 

Monomethoxy poly(ethylene glycol) (7, Mw ≈ 750 g/mol) (23.0 g, 30.7 mmol) was 

dissolved in warm THF (~40 °C), and the reaction was degassed with dry N2. DMAP 

(37.5 mg, 0.3 mmol) and TEA (7.48 mL, 53.7 mmol) were added and the reaction 

was cooled to 0 °C in an ice bath. α-bromo isobutyryl bromide (5.69 mL, 

46.0 mmol) was added dropwise over 30 minutes and a white precipitate appeared 

immediately; the Et3NH
+
Br

- 
salt. After 24 hours the precipitate was filtered, THF 

removed in vacuo and the resulting crude product was precipitated from acetone into 

petroleum ether (30 - 40 °C) twice to give 8 (72 %). ¹H NMR (400 MHz, D2O) δ 

ppm 4.31 (m, 2H), 3.77 (m, 2H), 3.70-3.59 (m, 60H), 3.55 (m, 2H), 3.31 (s, 3H) and 

1.89 (s, 6H). 
13

C NMR (100 MHz, D2O) δ ppm 174.0, 71.5, 70.4, 70.1, 70.0, 68.8, 

58.6, 30.5. 
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7.4.2. SEM preparation  

The aqueous nanoparticle samples were dropped on a glass cover slide mounted on 

an aluminium stub with a carbon tab and left to dry over several hours or overnight. 

They were Au sputter coated at 20 mA for 2 min prior to imaging. 

7.5.  Chapter 4 

For general materials and characterisation see section 7.2.1 and 7.2.2 respectively.  

7.5.1. G2’ dendron synthesis (see section 4.2.1, p153) 

Scheme 7.4 G2’ dendron initiator synthesis 

 

3 (14.03 g, 38.3 mmol) was added to a 2-neck round bottom flask, which was 

equipped with magnetic stirring, condenser and a N2 inlet. Anhydrous toluene 

(100 mL) was added and the reaction was heated to 60 °C. The AB2 brancher, 9, 

(3.627 g, 19.2 mmol) was dissolved in anhydrous toluene (5 mL) was added 

dropwise. After 18 hours the reaction was stopped, the toluene removed in vacuo, the 

crude mixture was dissolved in dichloromethane (100 mL) and washed with water 

(3 x 100 mL). The organic phase was dried over Na2SO4 the solvent removed in 

vacuo and the resulting yellow oil was dried further under high vacuum to give 10, 

as a pale yellow oil, (94 %). ¹H NMR (400 MHz, CDCl₃) δ ppm 7.33-7.23 (m, 20H), 
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5.30 (s, br, NH), 5.09 (m, 2H), 4.51 (m, 8H), 3.73 (m, 1H), 3.64 (d, 8H), 3.16 (m, 

4H), 2.53 (m, 2H), 2.32 (m, 2H), 2.24 (m, 2H), 1.59 (m, 4H), 1.06 (d, 3H). m/z (ES 

MS) 786.4 [M+H]
+
, 808.4 [M+Na]

+
, m/z required 785.43 [M]

+
.  

 

10, (13.381 g, 17.0 mmol) was dissolved in DCM (100 mL) and bubbled with N2 for 

20 minutes. 4-(Dimethylamino)pyridine (DMAP) (21 mg, 0.17 mmol) and 

triethylamine (TEA) (3.56 mL, 26.0 mmol) were added and the reaction vessel was 

cooled to 0 °C. α-Bromoisobutyryl bromide (2.53 mL, 20.0 mmol) was added 

dropwise, then the reaction was warmed to room temperature for 24 hours. The 

organic phase was washed with a saturated solution of NaHCO3 (3 x 150 mL) and 

distilled water (3 x 150 mL), dried over Na2SO4 and the solvent removed in vacuo to 

give an orange oil as the crude product. This was purified by column 

chromatography with a silica stationary phase and mobile phase of ethyl 

acetate:hexane (4:1), to give 11 a yellow oil, (73 %). Found C, 63.24; H, 6.88; N, 

4.44 %. C49H64BrN3O10 requires, C, 62.95; H, 6.90; N, 4.49 %. ¹H NMR (400 MHz, 

CDCl₃) δ ppm 7.33-7.24 (m, 20H), 5.36 (s, br, NH), 5.09 (m, 2H), 5.03 (m, 1H), 

4.51 (m, 8H), 3.64 (d, 8H), 3.16 (m, 4H), 2.64-2.35 (m, 6H), 1.89 (s, 6H), 1.60 (m, 

4H), 1.22 (d, 3H). ¹³C NMR (100 MHz, CDCl₃) δ ppm 171.2, 156.0, 138.1, 128.3, 

127.60, 127.62, 73.2, 71.6, 70.4, 68.9, 59.1, 56.1, 52.2, 39.4, 30.6, 30.7, 27.2, 18.0. 

m/z (ES MS) 936.4 [M+H]
+
, 959.4 [M+Na]

+
, m/z required 935.4 [M]

+
. 
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7.5.1.1. AB2 brancher synthesis 

 

Scheme 7.5 Synthesis of the AB2 brancher molecule, 9 

CDI (39.137 g, 0.241 mol) was added to a 2-neck RBF fitted with a reflux 

condenser, magnetic stirrer and a dry N2 inlet. Dry toluene (350 mL) was added 

followed by 12 (t-butanol) (46 mL, 0.483 mol) via syringe and the mixture was left 

stirring at 60 °C under nitrogen. After 6 hours BAPA (17.14 mL, 0.121 mol) was 

added dropwise. The reaction was left stirring for a further 18 hours at 60 °C then 

allowed to cool to room temperature. The pale yellow solution was filtered to 

remove any solid imidazole, and concentrated in vacuo. The remaining oil was 

dissolved in dichloromethane (250 mL) washed with distilled water (3 x 250 mL) 

and brine (150 mL). The organic layer was dried over Na2SO4, filtered and 

concentrated in vacuo to give 13 as a white waxy solid, 95 %. Found C, 57.84; H, 

10.45; N, 12.91%. C16H33N3O4 requires, C, 57.98; H, 10.04; N, 12.68%. 
1
H NMR 

(400MHz, CDCl3) 5.19 (s, br, NH), 3.21 (t, 4H), 2.65 (t, 4H), 1.65 (q, 4H), 1.44 (s, 

18H) 
13

C NMR (100MHz, CDCl3) 156.48, 79.34, 47.77, 39.29, 30.11, 28.79. m/z 

(ES MS) 332.3 [M+H]
+
 

13 (20 g, 0.06 mol) was added to a 2-necked RBF fitted with a reflux condenser, 

magnetic stirrer and a dry N2 inlet. Ethanol (200 mL) which had been dried over 

Na2SO4 was added and the reaction was warmed to 30 °C. Propylene oxide 
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(11.21 mL, 0.181 mol) was added dropwise over a period of 10 minutes and the 

reaction was left stirring for 18 hours. After this time, the solvent and excess 

propylene oxide were removed in vacuo. The crude product was purified by liquid 

chromatography on silica gel, eluting with EtOAc:MeOH, 4:1, the solvent was 

removed in vacuo to give 14 as a pale yellow viscous oil, 85 %. Found C, 58.50; H, 

10.23; N, 10.82%. C19H39N3O5 requires, C, 58.58; H, 10.09; N, 10.79%. 
1
H NMR 

(400MHz, CDCl3) 4.93 (s, br, NH), 3.76 (m, 1H), 3.15 (m, 4H), 2.61-2.88 (m, 6H), 

1.62 (m, 4H), 1.44 (s, 18H), 1.11 (d, 3H).
13

C NMR (100MHz, CDCl3) 156.08, 79.18, 

63.45, 62.55, 51.77, 38.75, 27.48, 20.14. m/z (ES MS) 390.3 [M+H]
+
 

14 (33.70 g, 0.087 mol) was dissolved in ethyl acetate (300 mL) and concentrated 

HCl (35.03 g, 30 mL, d=1.18 36% active) was added very slowly. CO2 began to 

evolve. The reaction vessel was left with an outlet, stirring at 50 °C for 6 hours. 
1
H 

NMR (D2O) of a crude sample confirmed complete decarboxylation. The solvent 

was removed in vacuo and the crude oil was dissolved in 4M NaOH (300 mL). The 

volume was reduced down by half (approx.) on the rotary evaporator (60 °C). 

Following this, the oily mixture was extracted with CHCl3 (2 x 300 mL). The 

organic layers were then combined, dried with anhydrous Na2SO4, filtered and 

concentrated in vacuo to give the 9 the AB2 brancher as a pale yellow oil, 94 %. 

Found C, 55.71; H, 12.25; N, 21.29 %. C9H23N3O requires, C, 57.10; H, 12.25; N, 

22.20%.  
1
H NMR (400MHz, CDCl3) 3.79 (m, 1H), 2.68-2.40 (ddd, 2H), 2.31 (m, 

4H), 1.89 (s, br, OH), 1.60 (m, 4H), 1.11 (d, 3H). 
 13

C NMR (100MHz, CDCl3) 

63.95, 62.56, 52.10, 40.31, 30.80, 20.03. m/z (CI MS) 190.19 [M+H]
+
 

7.5.2. 2000PEG macroinitiator synthesis (see section 4.2.2, p156) 

Monomethoxy poly(ethylene glycol) (Mw ≈ 2000 gmol
-1

) (20.5 g, 10.25 mmol) was 

dissolved in warm THF (~40 °C), and the reaction was degassed with dry N2. DMAP 

(12.5 mg, 0.1 mmol) and TEA (3.14 mL, 22.5 mmol) were added and the reaction 

was cooled to 0 °C in an ice bath. α-bromo isobutyryl bromide (2.53 mL, 20.5 

mmol) was added dropwise over 20 minutes and a white precipitate appeared 

immediately; the Et3NH
+
Br

- 
salt. After 24 hours the precipitate was filtered, THF 

removed in vacuo and the resulting crude product was precipitated from acetone into 

petroleum ether (30 - 40 °C) twice (89 %). ¹H NMR (400 MHz, D2O) δ ppm 4.34 

(m, 2H), 3.80-3.59 (m, 186H), 3.35 (s, 3H) and 1.93 (s, 6H). 
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7.5.3. SEM preparation 

The aqueous nanoparticle samples were dropped on a silicon wafer mounted on an 

aluminium stub with a carbon tab and left to dry over several hours or overnight. 

They were Au sputter coated at 20 mA for 2 min prior to imaging. 

 

7.6 Pharmacology studies 

As discussed throughout this thesis, pharmacology assessment of various hyp-

polydendron nanoparticle materials was conducted and is described in Chapters 3 

and 4. Materials were loaded with either Nile red or fluoresceinamine (FA) and 

studied for their cytotoxicity to Caco-2 cells, permeation through Caco-2 cell 

monolayers and cellular accumulation. Table 7.1 gives a summary of all the 

materials studied, their concentrations and which assay have been performed with 

each sample.  

Table 7.1 Summary of all materials which had been studied for any pharmacological benefits 

Formulation 
Polymer 

(mg/mL) 

Nile red 

(µg/mL) 

FA 

(µg/mL) 

Cytotoxicity 

assays 

(Caco-2 cells) 

Caco-2 

permeation 

assay 

G2:750PEG (Chapter 3)      

100:0-pHPMA50-EGDMA0.8 1 1 -   
90:10-pHPMA50-EGDMA0.8 1 1 -   
75:25-pHPMA50-EGDMA0.8 1 1 -   
50:50-pHPMA50-EGDMA0.8 1 1 -   
25:75-pHPMA50-EGDMA0.8 1 1 -   
10:90-pHPMA50-EGDMA0.8 1 1 -   
0:100-pHPMA50-EGDMA0.8 1 1 -   

G2’:2000PEG (Chapter 4)      

50:50-pHPMA50-EGDMA0.85 10 20 -   
25:75-pHPMA50-EGDMA0.95 10 20 -   
10:90-pHPMA50-EGDMA0.95 10 20 -   
0:100-pHPMA50-EGDMA0.95 10 20 -   
75:25-pHPMA50-EGDMA0.8 1 - 10   
50:50-pHPMA50-EGDMA0.8 1 - 10   

75:25-pHPMA100-EGDMA0.8
a
 1 - 10   

50:50-pHPMA100-EGDMA0.8 1 - 10   
25:75-pHPMA100-EGDMA0.8 1 - 10   
0:100-pHPMA100-EGDMA0.8 1 - 10   

a
Cellular accumulation studies in Caco-2 and ATHP-1 cells were also conducted using this material 
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7.6.1 Materials  

Dulbecco’s Modified Eagles Medium (DMEM), Hanks buffered saline solution 

(HBSS), Trypsin-EDTA, bovine serum albumin (BSA), Nile red, 3-(4,5-

Dimethylthiazol-2-yl)-2,5—diphenyltetrazolium bromide (MTT reagent), 

acetonitrile (ACN) and all general laboratory reagents were purchased from Sigma 

(Poole, UK). Foetal bovine serum (FBS) was purchased from Gibco (Paisley, UK). 

The CellTiter-Glo® Luminescent Cell Viability Assay kit was from Promega (UK). 

The 24-well HTS transwell plates were obtained from Corning (New York, USA). 

The 96-well black walled, flat bottomed plates were from Sterilin (Newport, UK). 

7.6.2 Characterisation 

Cell count and viability was determined using a Countess automated cell counter 

(Invitrogen).  

Absorbance was read using a Tecan Genosis plate reader at 560 nm (Tecan 

Magellan, Austria). 

Luminescence was then measured using a Tecan Genios plate reader (Tecan 

Magellan, Austria). 

Fluoresceinamine loaded samples were run on a Dionex HPLC using a Fortis C18 

column (100 mm x 4.6 mm i.d., 3 µm). The mobile phase consisted of: (A) 95% 

H2O; 5% ACN; 5 mM NH4FA (B) 95% ACN; 5% H2O; 5 mM NH4FA. Elution 

peaks were monitored with a fluorescence detector at; 490 (ex), 530 (em) (Thermo 

Spectrasystem FL3000) and subsequently analysed using Chromeleon v.6.8. 

software. 

7.6.3 Routine cell culture/cell maintenance 

Caco-2 cells were purchased from American Type Culture Collection (ATCC, USA) 

and maintained in Dulbecco’s Modified Eagles Medium (DMEM) supplemented 

with 15 % filtered sterile foetal bovine serum. Cells were incubated at 37 °C and 5 % 

CO2 and were routinely sub-cultured every 4 days when 90 % confluent. Cell count 

and viability was determined using a Countess automated cell counter (Invitrogen). 

7.6.4 Cytotoxicity studies (Nile red) 

Caco-2 cells were seeded at a density of 1.0 x 10
4
 cells / 100 µL in DMEM 

supplemented with 15 % FBS into each well of a 96 well plate (Nunclon, Denmark) 
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and incubated at 37 °C and 5 % CO2. Cells from 4 separate flasks of biological 

replicates of each cell type were used (N1-4) to improve statistical power. Media was 

then aspirated from column 1 and replaced with media containing each hyp-

polydendron or aqueous Nile red solution at an equivalent 1 µM Nile red 

concentration then diluted 1:1 in media across the plate up to column 11. Column 12 

served as a negative control and consisted of media and untreated cells. Following 

hyp-polydendron addition, the plates were incubated for 24 hours or 120 hours at 

37 °C, 5 % CO2 prior to assessment of cytotoxicity. 

MTT assay - Following incubation of treated plates for 24 hours or 120 h, 20 µL of 

5 mg/mL MTT reagent was added to each well and incubated for 2 hours. 

Subsequently, 100 µL MTT lysis buffer (50 % N-N-Dimethylformamide in water 

containing 20 % SDS, 2.5 % glacial acetic acid and 2.5 % hydrochloric acid, pH 4.7) 

was added to each well to lyse overnight at 37 °C, 5 % CO2. Following incubation 

the absorbance of each well was read using a Tecan Genosis plate reader at 560 nm 

(Tecan Magellan, Austria). 

ATP assay - Following incubation of treated plates for 24 hours or 120 hours, cells 

were equilibrated to room temperature for approximately 30 minutes. All but 20 µL 

of media was removed from each well and 20 µL CellTiter-Glo® (Promega, UK) 

reagent was added. All reagents were made fresh and in accordance with the 

manufacturer’s instructions. Plates were put on an orbital shaker for 10 minutes to 

mix contents and allow for stabilisation of luminescence signal. Luminescence was 

then measured using a Tecan Genios plate reader (Tecan Magellan, Austria). 

7.6.5 Caco-2 permeation studies (Nile red) 

Transwells were seeded with 3.5 x 10
4
 cells per well and propagated to a monolayer 

over a 21 day period, during which media in the apical and basolateral wells was 

changed every other day. Trans-epithelial electrical resistance (TEER) values were 

monitored until they were >800 Ω. 1 µM of Nile red hyp-polydendron or 1 µM 

aqueous Nile red was added to the apical chamber of 4 wells and the basolateral 

chamber of 4 wells to quantify transport in both Apical to Basolateral (A>B) and 

Basolateral to Apical (B>A) direction and sampled on an hourly basis over a 4 h 

time period. Apparent permeability coefficient (Papp) was then determined by the 

amount of compound transported over time using equation (5) below. 



CHAPTER 7 

285 

 

Papp = (dQ/dt) (1/AC0)    (5) 

Where (dQ/dt) is the amount per time (nmol/sec), A is the surface area of the filter 

and C0 is the starting concentration of the donor chamber (1 µM). 

7.6.6 Aqueous Nile red solution for cellular studies 

An aqueous Nile red solution was prepared in dimethyl sulfoxide (DMSO) at 

1 mg/mL final concentration and used to spike either complete growth media or 

transport buffer. The resulting 1 µM final concentration Nile red solution was 

subsequently used in cytotoxicity assays or for transcellular permeability assessment 

respectively. Transport buffer consisted of; Hanks buffered Saline Solution (HBSS), 

25 mM 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid (HEPES), and 1 mg/mL 

Bovine Serum Albumin (BSA), adjusted to pH 7.4.    

7.6.7 Extraction and quantification of Nile red 

100 µl of each collected sample was mixed with 900 µL acetone, vortexed, sonicated 

for 6 minutes and centrifuged at 13300 rpm for 3 minutes. The supernatant was 

completely dried in a vacuum centrifuge at 30 °C until the dry solid sample was left. 

This was reconstituted in 150 µL acetonitrile, transferred to a 96-well black walled, 

flat bottomed plate and measured for fluorescence intensity excitation wavelength 

480 nm, emission wavelength 560 nm using a Tecan Genios plate reader (Tecan 

Magellan, Austria). 

7.6.8 Cytotoxicity studies (fluoresceinamine) 

Caco-2 cells were seeded at a density of 1.0 x 10
4
 cells / 100 µL in DMEM 

supplemented with 15 % FBS into each well of a 96 well plate (Nunclon, Denmark) 

and incubated at 37 °C and 5 % CO2. Cells from 4 separate flasks of biological 

replicates of each cell type were used (N1-4) to improve statistical power. Media was 

then aspirated from column 1 and replaced with media containing each hyp-

polydendron or aqueous FA solution at an equivalent 10 µM FA concentration then 

diluted 1:1 in media across the plate up to column 11. Column 12 served as a 

negative control and consisted of media and untreated cells. Following hyp-

polydendron addition, the plates were incubated for 24 hours or 120 hours at 37 °C, 

5 % CO2 prior to assessment of cytotoxicity. 

MTT assay – same as the MTT assay experimental described in section 7.6.4. 
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ATP assay – same as the ATP assay experimental described as section 7.6.4. 

7.6.9 Caco-2 permeation studies (fluoresceinamine) 

Transwells were set up and propagated to a monolayer over a 21 day period as 

previously described. Only wells with TEER values >800 Ω were used.   

10 µM of fluoresceinamine hyp-polydendron or 10 µM aqueous fluoresceinamine 

(transport buffer spiked with DMSO dissolved fluoresceinamine, DMSO final 

volume <1 % of total volume), was added to the apical or basolateral compartment 

of the wells to quantify transport in both Apical>Basolateral (A>B) and 

Basolateral>Apical (B>A) directions (n=3). 

Plates were sampled following 4 hours incubation at 37 
o
C, 5 % CO2, apical and 

basolateral contents were stored at -30 
o
C prior to analysis. 

To assess monolayer integrity following incubation, 250 µL of transport buffer 

containing 2 µL mL
-1

 
14

C mannitol was added to the apical compartment and 

incubated for 1 hour. 4 mL of scintillation fluid was added to 100 µL of the sampled 

contents and quantified on the scintillation counter (Packard 3100 TR). 

7.6.10 Aqueous fluoresceinamine solution for cellular studies 

An aqueous FA solution was prepared in dimethyl sulfoxide (DMSO) at 1 mg/mL 

final concentration and used to spike either complete growth media or transport 

buffer. The resulting 1 µM final concentration FA solution was subsequently used in 

cytotoxicity assays or for transcellular permeability assessment respectively. 

Transport buffer consisted of; Hanks buffered Saline Solution (HBSS), 25 mM 4-(2-

hydroxyethyl)-1-piperazineethanesulfonic acid (HEPES), and 1 mg/mL Bovine 

Serum Albumin (BSA), adjusted to pH 7.4.    

7.6.11 Extraction and quantification of fluoresceinamine 

150 µL of sample and prepared calibration for each hyp-polydendron material, were 

extracted using 9 volumes of acetone, sonicated for 6 min and centrifuged for 3 min 

prior to drying at 30 
o
C on a vacuum centrifuge. Each sample was reconstituted 

using 150 µL of 25 % DMSO. 

Samples were run on a Dionex HPLC using a Fortis C18 column (100 mm x 4.6 mm 

i.d., 3 µm). The mobile phase consisted of: (A) 95% H2O; 5% ACN; 5 mM NH4FA 

(B) 95% ACN; 5% H2O; 5 mM NH4FA. Elution peaks were monitored with a 
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fluorescence detector at; 490 (ex), 530 (em) (Thermo Spectrasystem FL3000) and 

subsequently analysed using Chromeleon v.6.8. software. 

7.6.12 Cellular accumulation of fluoresceinamine in Caco-2 and ATHP-1 

cells 

Caco-2 cells were seeded into 6 well plates (Nunclon
TM

) at a density of 4 x 10
6
 per 

well and incubated at 37 
o
C 5 % CO2 for 24 hours. THP-1 cells were seeded at a 

density of 4 x 10
6
 cells per well in a 6 well plate and allowed to differentiate to 

ATHP-1 cells for 7 days in 10 nM PMA supplemented RPMI-1640 10% FBS prior 

to use. Following incubation, the media was aspirated and cells washed twice with 

HBSS (37 
o
C) and subsequently replaced with pre-warmed (37 

o
C) Transport Buffer 

containing either 10 µM (final concentration) aqueous fluoresceinamine or 10 µM 

(final concentration) hyp-polydendron formulated fluoresceinamine. Following 24 

hours incubation at 37 
o
C 5 % CO2, 150 µL of the extracellular media was sampled. 

The remaining media was aspirated and cells were washed twice with ice cold 

HBSS. The ice cold HBSS was aspirated and replaced with 500 µL of a 50% acetone 

50% water solution and incubated for 24 hours at -20 
o
C, 150 µL of the lysate was 

subsequently sampled. Finally, 9 volumes of acetone was added to each intracellular 

and extracellular sample to extract fluoresceinamine for quantification on the HPLC 

as previously described, see section 7.6.11. Average cell volumes were previously 

determined using a Scepter 2.0 Automated Cell Counter (Millipore) and used to 

calculate Cellular Accumulation Ratios (CAR); (Intracellular 

concentration/Volume)/(Extracellular concentration/Volume).  
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APPENDIX 

1. CHAPTER  2 

 

 

Figure A1 
1
H NMR (CDCl3, 400 MHz) of G1 DBOP carboxy ester imidazole, 3 

 

Figure A2 
13

C NMR (CDCl3, 125 MHz) of G1 DBOP carboxy ester imidazole, 3 
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Figure A3 Mass spectrum (ES-MS) of G1 DBOP CI, 3 

 

 

Figure A4 
1
H NMR (CDCl3, 400 MHz) of G2 DBOP NH, 4 
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Figure A5 
13

C NMR (CDCl3, 100 MHz) of G2 DBOP NH, 4 

 

 

Figure A6 Mass spectrum (ES-MS) of G2 DBOP NH, 4 
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Figure A7 
1
H NMR (CDCl3, 400 MHz) of G2 DBOP OH, 5 

 

Figure A8 
13

C NMR (CDCl3, 100 MHz) of G2 DBOP OH, 5 
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Figure A9 Mass spectrum (ES-MS) of G2 DBOP OH, 5 

 

 

Figure A10 
1
H NMR (d6-DMSO, 400 MHz) spectra overlay for EBiB-pHPMA20, G1-pHPMA20 and 

G2-pHPMA20 
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Figure A11 
1
H NMR (d6-DMSO, 400 MHz) spectra overlay for EBiB-pHPMA20-EGDMA0.8, G1-

pHPMA20-EGDMA0.8 and G2-pHPMA20-EGDMA0.8 

 

 

 

Figure A12 1H NMR (d6-DMSO, 400 MHz) spectra overlay for EBiB-pHPMA100, G1-pHPMA100 

and G2-pHPMA100 
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Figure A13 
1
H NMR (d6-DMSO, 400 MHz) spectra overlay for EBiB-pHPMA100-EGDMA0.8, G1-

pHPMA100-EGDMA0.8 and G2-pHPMA100-EGDMA0.8 

 

 

Table A1  Different initial concentrations used in the formation of nanoparticles with G1-pHPMA50-

EGDMA0.8 (see Fig. 2.25) 

 
G1-pHPMA50-EGDMA0.8 

Initial 

concentration: 
20 mg/mL 5 mg/mL 0.5 mg/mL 

Fraction of 

hexane added 

(Φhex) 

Dz (nm) PdI Dz (nm) PdI Dz (nm) PdI 

0 - - 46 0.369 58 0.342 

0.09 - - 42 0.361 - - 

0.17 27 0.268 40 0.325 - - 

0.23 396 0.288 162 0.021 156 0.339 

0.29 294 0.164 141 0.027 84 0.217 

0.33 313 0.137 149 0.075 90 0.144 

0.43 230 0.106 140 0.056 92 0.142 

0.5 217 0.094 136 0.072 84 0.115 

0.67 247 0.173 133 0.06 85 0.067 

0.75 - - 161 0.033 94 0.027 

0.8 - - 201 0.013 117 0.004 
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Table A2 DLS values for the formation and dilution with acetone of G1-pHPMA50-EGDMA0.8 with 

Φhex = 0.67 and an initial concentration of 5 mg/ml (see Fig. 2.26)  

 Formation of sample 
Dilution of sample 

with Acetone 

Fraction of 

hexane added 

(Φhex) 

Dz (nm) PdI Dz (nm) PdI 

0.09 42 0.361 51 0.297 

0.17 40 0.325 44 0.275 

0.23 162 0.021 125 0.116 

0.29 141 0.027 151 0.080 

0.33 149 0.075 157 0.073 

0.43 140 0.056 161 0.066 

0.5 136 0.072 165 0.082 

0.67 133 0.06 157 0.064 

 

Table A3 DLS values for the dilution of a G1-pHPMA50-EGDMA0.8 sample at Φhex = 0.80, and 

concentration of 1 mg/ml with the same solvent system; Φhex = 0.80 and Φace = 0.20 (see Fig. 2.27) 

Concentration  

(mg/ml) 
Dz (nm) PdI 

1 398 0.077 

0.5 372 0.023 

0.25 369 0.060 

0.125 375 0.058 

0.0625 341 0.082 
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2. CHAPTER 3 

 

Figure A14 Mass spectrometry analysis of 750PEG initiator (MALDI-TOF) 

 

Figure A15 1H NMR (d6-DMSO, 400 MHz) spectrum for the 750PEG-pHPMA50 linear block 

copolymer 
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Figure A16 GPC chromatogram overlays of A) G2:750PEG-50:50-pHPMA50-EGMDA0.95 and B) 

750PEG-pHPMA50-EGDMA0.95 with refractive index (RI) traces (solid line) and right angle light 

scattering (RALS) traces (dashed line) 

 

 

Figure A17 GPC chromatogram overlay of G2:750PEG 25:75-pHPMA50-EGMDA0.9 with refractive 

index (RI) trace (solid line) and right angle light scattering (RALS) trace (dashed line) 
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Figure A18 
1
H NMR (d6-DMSO, 400 MHz) spectra overlay for G2:750PEG 90:10, 50:50 and 10:90-

pHPMA50-EGDMA0.8 

 

 

Table A4 DLS measurements for the dilution experiment conducted with the G2:750PEG-50:50-

pHPMA50-EGDMA0.8 hyp-polydendron formulated using i5-f1 

Concentration 

(mg/mL) 

G2:750PEG-50:50-pHPMA50-EGDMA0.8 

Z-Ave diameter (nm) PdI 

1.0 75 0.064 

0.5 74 0.056 

0.25 72 0.066 

0.125 73 0.057 

0.0625 72 0.063 

0.0313 72 0.081 

0.0156 72 0.074 
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Figure A19 DLS size distribution by intensity traces for the G2:750PEG-pHPMA50-EGDMA0.8 

nanoprecipitations; A) i5-f1, B) i10-f2, C) i25-f5, D) i5-f0.05, E) i10-f0.1 and F) i25-f0.25 
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Table A5 DLS measurements of the swelling experiment conducted with the G2:750PEG-50:50-

pHPMA50-EGDMA0.8 hyp-polydendron formulated using i5-f1 adding various volumes of THF, with 

the refractive index of the dispersant media for each sample 

Volume of 

THF added 

(µL) 

G2:750PEG-50:50-pHPMA50-EGDMA0.8 Refractive index of 

dispersant media Z-Ave diameter (nm) PdI 

0 74 0.082 1.3334 

13 77 0.069 1.3338 

40 84 0.078 1.3359 

80 92 0.105 1.3380 

133 106 0.092 1.3418 

200 126 0.076 1.3463 

333 168 0.186 1.3538 

466 162 0.062 1.3597 

600 211 0.071 1.3648 

 

 

 

 

Figure A20 Photographs of Nile Red loaded nanoparticles using G2:750PEG-pHPMA50-

EGDMA0.8 series from 100:0 (left) to 0:100 (right) with A) 0.1 w/w% and B) 1 w/w% Nile red with 

respect to the mass of polymer 
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Table A6 DLS data of blank, nile red and pyrene loaded nanoparticle samples (i5-f1) 0.1 w/w% dye 

with respect to the mass of polymer 

Hyp-

polydendron 

G2:750PEG 

Blank samples Nile Red loaded Pyrene loaded 

Z-Ave 

diameter  

(nm) 

PdI 

Z-Ave 

Diameter 

(nm) 

PdI 

Z-Ave 

Diameter 

(nm) 

PdI 

100:0 81 0.083 76 0.109 69 0.061 

90:10 116 0.069 119 0.061 134 0.046 

75:25 110 0.073 108 0.067 98 0.067 

50:50 115 0.067 98 0.069 97 0.060 

25:75 93 0.078 93 0.081 83 0.079 

10:90 94 0.091 101 0.075 88 0.074 

0:100 88 0.076 97 0.095 90 0.074 
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Figure A21 MTT assay of Caco-2 cells following 1 day incubation with aqueous Nile Red and each 

hyp-polydendron.  A) 100:0. B) 90:10. C) 75:25. D) 50:50. E) 25:75. F) 10:90. G) 0:100. H) Aqueous. 

Error = standard deviation. 
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Figure A22 ATP assay of Caco-2 cells following 1 day incubation with aqueous Nile Red and each 

hyp-polydendron.  A) 100:0. B) 90:10. C) 75:25. D) 50:50. E) 25:75. F) 10:90. G) 0:100. H) Aqueous. 

Error = standard deviation. 
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Table A7 Apparent permeability (Papp) of Nile Red polydendrons and aqueous Nile Red across 

Caco2 cell monolayers following 1 hour incubation. Data are given as the mean of experiments 

conducted in biological triplicate.    

Papp (cm s
-1

) 
Polydendron 

Formulation 

(G2:750PEG ratio) 

Apical>Basolateral Basolateral>Apical 
A>B/B>A 

ratio 

1.00:0.00 1.763 x 10
-5

 1.538 x 10
-6

 11.4605 

0.75:0.25 2.613 x 10
-5

 2.056 x 10
-6

 12.7123 

0.50:0.50 5.271 x 10
-5

 5.555 x 10
-6

 9.4872 

0.25:0.75 4.135 x 10
-5

 4.684 x 10
-6

 8.8279 

0.10:0.90 4.042 x 10
-4

 4.580 x 10
-5

 8.8255 

0.00:1.00 2.060 x 10
-5

 3.188 x 10
-6

 6.4626 

Aqueous Nile Red 2.371 x 10
-5

 6.384 x 10
-6

 3.7140 
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3.1.  AB2 brancher synthesis 

The AB2 brancher synthesis was developed in the research group and the reaction 

scheme is shown in Scheme 4.2.  

 

Scheme A1 AB2 Brancher synthesis 
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tert-Butanol was reacted with CDI to give an imidazole carboxylic ester intermediate 

in situ with subsequent reaction with bis(3-aminopropyl)amine (BAPA), where the 

primary amines selectively react with the in situ intermediate to give 13, see 

Appendix Fig. A25 for 
1
H NMR spectrum of 13. This reaction has been previously 

reported
4
 and  the selectivity of the reaction allows coupling of molecules whilst 

retaining the functionality of the secondary amine for further reaction. The secondary 

amine was utilised for the ring opening reaction with propylene oxide to give 14, see 

Appendix Fig. A26 for the 
1
H NMR spectrum of 14. The conditions for the 

propylene oxide ring opening were tuned to ensure the product was the ring opened 

adduct which gave a secondary alcohol rather than a primary alcohol.
5
 Deprotection 

of 14 afforded 9, the AB2 brancher and was achieved by reaction with conc. HCl 

before addition of 4M NaOH, which was used to break the intermediary salt which is 

formed after deprotection, to give the two free primary amines. The 
1
H NMR 

spectrum of 9 is shown in Fig. 4.4. 

 

 

Figure A23 
1
H NMR (CDCl3, 400 MHz) of 13, intermediate in the AB2 synthesis 
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Figure A24 
1
H NMR (CDCl3, 400 MHz) of 14, intermediate in the AB2 synthesis 

 

 

Figure A25 
1
H NMR (400 MHz, CDCl3) spectrum for the AB2 brancher, 9 
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Figure A26 
1
H NMR (CDCl3, 400 MHz) of G2 dendron, 10 

 

Figure A27 
13

C NMR (CDCl3, 100 MHz) of G2 dendron, 10 
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Figure A28 Mass spectrum (ES-MS) of G2 dendron, 10 
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Figure A29 MALDI-TOF for 2000PEG initiator 
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Figure A30 GPC chromatogram overlays for G2’:2000PEG initiated polymers; RI chromatogram 

(black solid lines), RALS chromatogram (red dotted lines) 

 

Table A8 DLS data for the i5-f1 nanoprecipitations performed using G2’:2KPEG-pHPMA50-

EGDMAx using THF and acetone as a good solvent 

G2’:2KPEG-pHPMA50-EGDMAx 
THF Acetone 

Dz (nm) PdI Dz (nm) PdI 

100:0 68 0.386 - - 

90:10 176 0.034 258 0.192 

75:25 215 0.085 261 0.137 

50:50 116 0.038 170 0.224 

25:75 53 0.238 54 0.240 

10:90 35 0.178 36 0.248 

0:100 33 0.304 39 0.462 
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Figure A31 ATP assay of Caco-2 cells following 24 hour incubation with aqueous Nile Red and each 

polydendron.  A) aqueous Nile Red. B) 50:50. C) 25:75. D) 10:90. E) 0:100. Error calculated using 

the standard deviation. 
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Figure A32 MTT assay of Caco-2 cells following 24 hour incubation with aqueous Nile Red and 

each polydendron.  A) aqueous Nile Red. B) 50:50. C) 25:75. D) 10:90. E) 0:100. Error calculated 

using the standard deviation. 
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Table A9 DLS data for the i5-f1 nanoprecipitations performed using G2’:2KPEG-pHPMA100-

EGDMA0.8 using THF and acetone as a good solvent 

G2’:2KPEG-pHPMA100-EGDMA0.8 
THF Acetone 

Dz PdI Dz PdI 

100:0 329 0.022 438 0.255 

75:25 143 0.073 289 0.146 

50:50 160 0.034 168 0.065 

25:75 137 0.047 139 0.044 

0:100 128 0.074 143 0.179 

 

Table A10 DLS measurements of FA loaded G2’:2KPEG-pHPMA100-EGDMA0.8 nanoparticles 

1 mg/mL polymer and 0.01 mg/mL FA over time (batch 4) 

G2’:2KPEG-

pHPMA100-

EGDMA0.8 

Day 0 Day 7 Day 14 Day 21 Day 80 

Dz PdI Dz PdI Dz PdI Dz PdI Dz PdI 

75:25 173 0.041 171 0.028 174 0.022 173 0.045 171 0.041 

50:50 250 0.073 248 0.077 256 0.052 246 0.05 252 0.064 

25:75 153 0.09 173 0.21 156 0.072 151 0.06 152 0.079 

0:100 117 0.141 110 0.093 116 0.058 111 0.072 65 0.093 

 

Table A11 FA loaded G2’:2000PEG-pHPMA100-EGDMA0.8 nanoparticles 1 mg/mL polymer and 

0.01 mg/mL FA (batch 5) DLS measurements over time and diluted with transport buffer 

G2’:2KPEG-

pHPMA100-EGDMA0.8 

Day 0 Day 21 Day 42 
After dilution with transport 

buffer to 0.25 mg/mL 

Dz PdI Dz PdI Dz PdI Dz PdI 

75:25 160 0.032 153 0.043 156 0.037 158 0.050 

50:50 212 0.034 210 0.019 212 0.028 209 0.020 

25:75 192 0.135 194 0.196 193 0.166 211 0.260 
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Figure A33 Caco-2 cell ATP assay 1 day incubation: A) 90:10 50 B, B) 75:25 50 B, C) 75:25 100 B, 

D) 50:50 100 B, E) 25:75 100 B, F) Aqueous. Error bars from standard deviation.  
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Figure A34 Caco-2 cell MTT assay 1 day incubation: A) 90:10 50 B, B) 75:25 50 B, C) 75:25 100 B, 

D) 50:50 100 B, E) 25:75 100 B, F) Aqueous. Error bars from standard deviation.  
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Figure A35 ATHP-1 cell ATP assay 1 day incubation period – A) aqueous preparation, B) 75:25 

DP100 Error  = standard deviation. 

 

Figure A36 ATHP-1 cell MTT assay 1 day incubation period – A) aqueous preparation, B) 75:25 

DP100 Error  = standard deviation. 

 

Figure A37 UV-Vis spectroscopy calibration curves for fluoresceinamine in water 
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4. CHAPTER 5 

 

Figure A38 
1
H NMR (d6-DMSO, 400 MHz) spectra overlay for G2’-pHPMA20, G2’-pHPMA50 and 

G2’-pHPMA100 

 

 

Figure A39 
1
H NMR (d6-DMSO, 400 MHz) spectra overlay for 2000PEG-pHPMA20, 2000PEG-

pHPMA50 and 2000PEG-pHPMA100 
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Figure A40 
1
H NMR (d6-DMSO, 400 MHz) spectra overlay for G2’:2000PEG 10:90-pHPMA20-

EGDMA0.8, 50:50-pHPMA20-EGDMA0.8 and 90:10-pHPMA20-EGDMA0.8 

 

 

Figure A41
1
H NMR (d6-DMSO, 400 MHz) spectra overlay for G2’:2000PEG 10:90-pHPMA50-

EGDMA0.95, 50:50-pHPMA50-EGDMA0.85 and 90:10-pHPMA50-EGDMA0.8 
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Figure A42 
1
H NMR (d6-DMSO, 400 MHz) spectra overlay for G2’:2000PEG 50:50-pHPMA100-

EGDMA0.8 
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Table A12 Theoretical mol% and calculated mol% via 
1
H NMR spectroscopy of the G2’dendron 

initiator, EO repeat unit in the 2000PEG initiator and HPMA repeat unit along the pHPMA chain for 

each G2’:2000PEG branched polymer synthesised 

G2 dendron 

(%) 

2000PEG 

(%) 

pHPMA 

targeted 

Theoretical mol% Calculated mol% 

G2 EO HPMA G2 EO HPMA 

100 0 20 4.76 0.00 95.24 4.44 0.00 95.56 

90 10 20 3.54 17.88 78.59 2.58 25.19 72.22 

75 25 20 2.33 35.41 62.26 1.54 38.87 59.59 

50 50 20 1.16 52.60 46.24 0.95 54.04 45.01 

25 75 20 0.46 62.76 36.78 0.38 61.58 38.04 

10 90 20 0.16 67.08 32.76 0.19 65.16 34.65 

0 100 20 0.00 69.47 30.53 0.00 68.95 31.05 

  
    

   

100 0 50 1.96 0.00 98.04 1.76 0.00 98.24 

90 10 50 1.62 8.21 90.17 1.10 14.13 84.77 

75 25 50 1.21 18.31 80.48 0.88 27.84 71.28 

50 50 50 0.68 31.06 68.26 0.50 35.14 64.36 

25 75 50 0.30 40.44 59.26 0.18 47.55 52.27 

10 90 50 0.11 44.98 54.91 0.07 50.29 49.64 

0 100 50 0.00 47.64 52.36 0.00 49.98 50.02 

  
    

   

100 0 100 0.99 0.00 99.01 0.77 0.00 99.23 

75 25 100 0.67 10.14 89.19 0.45 11.54 88.01 

50 50 100 0.41 18.46 81.14 0.29 26.08 73.64 

25 75 100 0.19 25.40 74.42 0.11 29.48 70.41 

0 100 100 0.00 31.27 68.73 0.00 31.02 68.98 
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Table A13 Theoretical wt% and calculated wt% via 
1
H NMR spectroscopy of the G2’dendron 

initiator, EO repeat unit in the 2000PEG initiator and HPMA repeat unit along the pHPMA chain for 

each G2’:2000PEG branched polymer synthesised 

G2 dendron 

(%) 

2000PEG 

(%) 

pHPMA 

targeted 

Theoretical wt% Calculated wt% 

G2 EO HPMA G2 EO HPMA 

100 0 20 24.48 0.00 75.52 23.17 0.00 76.83 

90 10 20 21.44 5.10 73.46 17.33 7.95 74.72 

75 25 20 17.16 12.25 70.59 12.24 14.57 73.19 

50 50 20 10.74 23.00 66.26 9.12 24.37 66.51 

25 75 20 5.06 32.51 62.43 4.19 31.68 64.13 

10 90 20 1.96 37.70 60.34 2.18 35.66 62.15 

0 100 20 0.00 40.97 59.03 0.00 40.39 59.61 

  
 

      

100 0 50 11.48 0.00 88.52 10.38 0.00 89.62 

90 10 50 10.20 2.43 87.38 7.41 4.48 88.11 

75 25 50 8.34 5.95 85.71 6.64 9.94 83.41 

50 50 50 5.39 11.53 83.08 4.13 13.69 82.18 

25 75 50 2.61 16.79 80.60 1.70 21.35 76.94 

10 90 50 1.03 19.79 79.18 0.71 23.45 75.85 

0 100 50 0.00 21.73 78.27 0.00 23.37 76.63 

  
 

      

100 0 100 6.09 0.00 93.91 4.80 0.00 95.20 

75 25 100 4.49 3.20 92.31 3.12 3.73 93.15 

50 50 100 2.94 6.30 90.76 2.22 9.53 88.24 

25 75 100 1.45 9.29 89.26 0.88 11.23 87.89 

0 100 100 0.00 12.19 87.81 0.00 12.07 87.93 

 

 

Figure A43 Fluorescence spectra from DiI and DiO in water 
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