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Summary: The primary aim of the project was to evaluate the epidemiological and genetic 

susceptibility factors associated with lung cancer, in the Liverpool Lung Project (LLP) 

population. The associated datasets available for research with the LLP dataset 

(questionnaire) were: Office of National Statistics (ONS), Health Episode Statistics (HES) 

data with comorbidity data, single nucleotide polymorphism (SNP) data of 570 cases from 

Liverpool, 3000 controls from the 1958 Birth Cohort. 

The epidemiological (HES) data was used to study the effect of Charlson (CCI) and 

Elixhauser comorbidity index (ECI) on the incidence of lung cancer using the Cox 

proportional hazard regression and use the same HES data to design a 5-year sex specific 

incidence model for lung cancer with crucial covariates. The ECI and CCI were significant in 

both univariate and multivariate analyses adjusted for age at the start of the study, sex and 

smoking pack years. The developed models had a good discriminatory power (AUCmale = 

0.73; AUCfemale = 0.77) when internally validated using a 10-fold cross validation.  

The genetic data for the LLP lung cancer cases was used in several contexts: i) to identify 

SNPS associated with lung cancer under a range of allelic models (additive, dominant, 

recessive and genotypic), using the Wellcome trust 1958 Birth Cohort as a control dataset; 

ii) to identify SNPs associated with cause specific and overall survival in lung cancer 

patients, utilising the Cox proportional hazard model with adjustment for various 

covariates; and iii) to identify gene pathways that are associated with lung cancer survival 

using the random forest survival method. 



 
 

SNPs within the genes PRDM11, ZNF382 and HMGA2 were identified in the genome wide 

case-control study when using the additive, dominant or genotypic models, whereas the 

recessive model identified the gene ITIH2. 

Significant SNPs (p≤10-6) associated with cause-specific survival in early stage cases were 

rs10230420 (WIPF3), rs3746619 and rs3827103 (both in MC3R). In advanced stage cases, 

significant SNPs were rs1868110 (NEK10) and rs2206779 (AF357533). For the overall 

survival analysis, significant SNPs were rs10230420 (WIPF3), rs2056533 (ZBTB20) and 

rs6708630 (CYS1) in early stage cases, whereas rs1868110 (NEK10) and rs2206779 

(AF357533) were significantly associated with overall survival in advanced stage NSCLC 

cases. 

The pathway analysis using the random survival forest method was undertaken on 18 

pathways for both cause-specific and overall survival of lung cancer cases. The results were 

consistent with apoptosis, base excision repair and mismatch repair being pathways 

influencing survival. 
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1.1 Lung Cancer Incidence and Mortality 

 

Lung cancer was the most common cancer and the leading cause of cancer deaths in the 

world, in 20081. In the same year, about 1.61 million new lung cancer cases were reported 

worldwide, representing 12.7% of all newly diagnosed cancer cases1. The incidence in 2008 

was higher among males than females, accounting for 16.5% of all cancers in males and 

8.5% of all cancers in females (worldwide figures)1. Within England, there are regional 

differences in lung cancer incidence, with rates of 59.7 per 100,000 for the whole of 

England, but 80.7 per 100,000 for Merseyside and Cheshire (2003-2005 figures) (UK Lung 

Cancer Coalition Commissioning Communications Toolkit - Merseyside and Cheshire Cancer 

Network)2. 

Lung cancer caused 1.38 million deaths worldwide, accounting for 18.2% of total cancer 

deaths (2008 figures); with higher mortality in males1 and in 2010 the number of deaths 

increased to 1.5 million for trachea, bronchus and lung cancer3. Worldwide figures for 2008 

indicate that 22.5% of male cancer deaths and 12.8% of female cancer deaths were due to 

lung cancer1. The standardised mortality ratio (SMR) for lung cancer from 2004-2006 for all 

ages was 186 in Liverpool, compared to 124 for the North West of England (Compendium 

of Clinical & Health Indicators – January 2008 release)4. 

 

1.2 Trends in Histopathological Types of Lung Cancer 

 

The WHO histological typing of lung and pleural tumours (1999) recognises four major 

histological types of lung cancer, divided into two categories: small cell lung cancer (SCLC) 

and non-small cell lung cancer (NSCLC)5-7. The latter is further divided into lung 
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adenocarcinoma; squamous cell carcinoma and large cell carcinoma5-7. The classification of 

lung cancer has been updated in 20138. 

Squamous cell carcinoma, small cell carcinoma and adenocarcinoma are common 

histological types associated with smoking, with adenocarcinoma showing a strong link to 

smoking5, 6. Nonetheless, adenocarcinoma is still the most common histological subtype in 

non-smokers5. Recent data have shown an increase in the incidence of adenocarcinoma 

and a corresponding decrease in the incidence of squamous cell carcinoma, a trend 

postulated to be due to the changes in cigarette composition and design (decreased 

nicotine/tar content and incorporation of cigarette filters)5. 

 

1.3 Causative Mechanisms Underlying Lung Cancer 

 

Understanding biological processes leading to lung cancer is crucial in early detection and 

prevention research9. Aside from tobacco smoking, inflammation arising from various 

factors is an important mechanism and therefore understanding its role with relation to 

various carcinogens will shed light on this field10. Other hypothesized mechanisms are also 

noted. 

 

Inflammation: The role of inflammation in lung cancer was reported in 1863, by Rudolf 

Virchow, who noted increased cell proliferation in inflamed tissue11. It is also seen in 

response to various injuries, infections and chemical or particle exposure11. A minor 

exposure such as an agent triggers an acute inflammatory response, resulting in the 

elimination of the agent and restoration of the affected site to its initial condition while a 

prolonged exposure would give rise to chronic inflammation and tissue damage11. 
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Inflammation results in leukocyte production as a response to damaged tissue, leading to a 

complex process involving macrophages, cytokines such as IL1β and TNF, prostaglandins, 

etc. The inflammatory process results in the production of reactive oxygen or nitrogen that 

binds to DNA, resulting in its alteration. This process can either initiate or promote 

carcinogenesis11. Tobacco smoke and respiratory infections might be two of the 

carcinogenic agents in inflammations11. Furthermore, subsequent tissue repair processes 

linked to cellular proliferation involving DNA replication may lead to further DNA 

variations11. 

 Two studies identified the association of chronic inflammation with lung cancer: one, an 

observational study carried out on 7,081 patients followed up for 10 years, and the other 

on 6,273 patients, for which inflammation was measured by C reactive protein quantity12, 

13. 

 

Field Carcinogenesis theory: Tobacco smoke is the major environmental factor in lung 

cancer causation14. The carcinogens in tobacco smoke may cause multifocal premalignant 

lesions in the respiratory epithelium of the bronchial tree15. This is referred to as the field 

cancerisation effect, and refers to the ability of tobacco smoke to cause mutagenesis within 

respiratory epithelial cells10. 

Genetic changes have been observed at multiple focal points in the respiratory epithelium 

of former and current smokers as well as lung cancer patients10. These variations may last 

for many years after smoking cessation, and may be a cause of lung cancer in former 

smokers10. Studies have indicated that smoking causes field abnormalities in histologically 

normal lung cells, and gene expression studies of these normal cells could serve as a crucial 

biomarker in lung cancer studies10. 
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Epithelial-mesenchyme transition: Developmental alterations leading to a change from an 

epithelial tissue-phenotype to a mesenchymal phenotype is referred to as epithelial 

mesenchymal transition (EMT) and is seen in embryonic development, chronic 

inflammation and fibrosis12. This process is crucial in carcinogenesis and is characterised by 

altered morphology, adhesion and migration capacity, anti-apoptosis, and increased 

expression of N-cadherin and vimentin; these can serve as important biomarkers in cancer 

studies12. 

EMT in tumourigenesis is an unregulated process, distinct from the normal transition10. 

Pathways influencing this process (including TGF-beta, PI3k/AKT, Ras signalling, Wnt) play a 

vital role in many malignancies including lung cancer10.  

EMT is promoted through the induction of Zinc finger transcriptional repressors of E-

cadherin such as Zeb1, Snail and Slug, that not only promote invasion and metastasis, but 

also aid in the elimination of pre-cancerous cells to distant locations even before the actual 

cancer has progressed, suggesting its role in early lung cancer development and 

metastasis10. Tobacco exposure and chronic inflammation are processes that drive EMT, 

leading to malignancies16. For instance, the induction of EMT related genes by benzo-[a]-

pyrene and promotion of EMT by NNK [4-(n-methyl-n-nitroamino)-1-(3-pyridyl)-1-

butanone], in lung cancer cells10. 

Proliferative growth is enabled through a mesenchymal to epithelial transition17. EMT is 

associated with invasion and metastasis, early changes in lung cancer, acquiring stem cell 

like properties, cell death, senescence and conventional chemotherapy resistance17.  
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1.4 Risk Factors for Lung Cancer 

 

Risk factors for lung cancer range from exposure to carcinogens to previous respiratory 

disease9, 18. Other occupational and domestic exposures (eg, chemical compounds and 

solvents, paints, thinners and welding equipment) have been reported to increase lung 

cancer risk19, 20. Detailed occupational, dietary and hormonal factors implicated in lung 

cancer are tabulated below (Table 1). Following are some factors that have a major role in 

contributing to lung cancer risk.
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            Table 1.1: Important literature on lung cancer occupational, dietary and hormonal risk factors.  

AUTHOR  AIM  POPULATION ETHNICITY; 
METHOD  

RESULTS AND SUMMARY CONCLUSION 

Brenner et al., 201020 To evaluate the risk 
factors associated with 
lung cancer in non-
smokers. 

Caucasian; Study conducted on 
445 cases which were 
frequency matched on sex and 
ethnicity to 425 population 
controls and 523 hospital 
controls. Unconditional logistic 
regression was used to 
calculate the OR and the 95% CI 
to establish the association 
between risk factors and lung 
cancer.  

There was a significant association 
between exposure to carcinogenic 
agents and lung cancer risk (OR = 1.6, 
95% CI: 1.4-2.1) in the total population 
and in non-smokers (OR = 2.1, 95% CI: 
1.3- 3.3). In never smokers, exposure to 
solvents, paints or thinners (OR = 2.8, 
95% CI: 1.6-5.0); welding equipment 
(OR = 3.4, % CI: 1.1-10.4); smoke, soot 
or exhaust (OR =2.8, 95% CI: 1.4-5.3) 
were significant but not in the total 
population. Emphysema (OR = 4.8, 95 
% CI: 2.0-11.1) was significantly 
associated with lung cancer risk in the 
total population. Asthma, chronic 
bronchitis, pneumonia, TB did not 
appear significant. Having a relative 
with lung cancer, >50 years of age (OR = 
1.8, 95% CI: 1.0-3.2) was significantly 
associated with increased risk of lung 
cancer in non-smokers. 

Occupational 
exposure 
depicted an 
essential impact 
on the risk of 
lung cancer.  
Family history 
also plays an 
important role 
in defining lung 
cancer risk.  

Hosseini et al., 200919 To evaluate the 
environmental risk 
factors associated with 
the risk of lung cancer 
in Iran. 

Asian; Study conducted on 242 
histologically confirmed cases 
and frequency matched for 
age, sex and place of residence 
to 242 hospital controls and 

In the bivariate analyses, exposure to 
heavy metals (OR = 2.9, 95% CI: 1.4–
5.9) , inorganic dust (OR = 4.2, 95% CI: 
2.9–6.1), chemical weapon exposure 
(OR = 30.9, 95% CI: 1.8–542), chemical 

Occupational 
exposure to 
various chemical 
agents and 
cigarette 
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242 visiting healthy controls. 
Association was evaluated 
using unconditional logistic 
regression.  

compositions ( OR = 4.3, 95% CI: 2.8–
6.6), smoking (OR = 4.7, 95% CI: 3.0–
7.2) and opium (OR = 2.2 , 95% CI: 1.4–
3.6) were significantly associated with 
lung cancer risk. Exposure to inorganic 
dust (OR = 4.9, 95% CI: 1.4–17.4) and 
chemical compositions (OR =5.1, 95% 
CI: 1.4–18.5) were significant in non-
smokers. In the multivariate analyses, 
cigarette smoking (OR= 5.4, 95% CI: 
3.2–8.9), exposure to inorganic dust 
(OR= 4.2, 95% CI:  2.8–6.7), chemical 
compounds (OR= 3.4, 95% CI:  2.1–5.6), 
heavy metals (OR =3.0, 95% CI: 1.3–7.0) 
were independent risk factors. 

smoking are 
important risk 
factors in lung 
cancer. 

Gao et al., 200921 To investigate the role 
of family history and 
non-malignant lung 
diseases in the overall 
lung cancer risk. 

Caucasian (Italian); Family 
history of smoking and 
histology on 1946 cases and 
2116 controls were available. 
OR and 95% CI were calculated 
using the logistic regression 
adjusting for age, gender, 
residence, education and 
cigarette smoking.  

 History of lung cancer in father (OR 
=1.37; 95% CI: 1.01–1.87), mother (OR 
= 2.21; 95% CI: 1.11–4.41) sibling (OR = 
1.53; 95% CI: 1.10–2.12) and overall 
(OR = 1.57; 95% CI: 1.25–1.98) was 
associated with increased risk. The 
association was stronger in younger 
members (OR = 3.26; 95% CI: 1.55–
6.85), never smokers, adenocarcinoma 
(OR = 1.68; 95% CI: 1.28–2.20) and 
squamous cell carcinoma (OR =1.79; 
95% CI: 1.25–2.55) subtypes.  History of 
bronchitis in any family member and 
lung cancer risk was stronger in 
subjects <55 years (OR=1.76; 95% CI: 5 

Family history of 
lung cancer and 
non-malignant 
lung disease 
affect the risk of 
lung cancer 
independently. 
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1.003–3.08) than ≥55 years (OR = 1.48; 
95% CI: 1.21–1.81). Similar results were 
observed for emphysema for subjects 
<55(OR = 1.34, 95% CI: 0.61–2.96) years 
and ≥55 years (OR = 1.18, 95% CI: 0.94–
1.51).Protective effect was seen for the 
association with family history of 
pneumonia, stronger for ≥55 years 
(OR=0.78; 95% CI: 0.45–1.34) than <55 
years (OR =0.71; 95% CI: 0.59–0.87). 

 Mahabir et al., 200822 To assess dietary 
magnesium and DNA 
repair capacity (DRC) as 
risk factors for lung 
cancer.  

Caucasian; Hispanic and 
African American; 1139 cases 
and 1210 matched controls 
were used for this study. 
Multiple logistic regression 
analysis was used to calculate 
ORs and 95% CIs for 
associations between dietary 
Mg and lung cancer, adjusting 
for age, gender, race, smoking 
status, pack-years smoked 
family history of cancer, BMI, 
education, income, total 
calories and DRC. 

The interaction between Mg intake and 
DRC was significant (p<0.0001). Joint 
analysis was carried out that compared 
high dietary intake of Mg  and 
proficient DNA repair capacity with low 
dietary intake of Mg and suboptimal 
DRC produced an OR = 2.36 and 95% CI: 
1.83-3.04. Within the low Mg intake 
and suboptimal DRC group, the risk was 
more pronounced in older subjects 
(OR= 3.0; 95% CI: 2.13–4.23), lower 
BMI(>25) (OR =2.77; 95% CI: 1.82–
4.23), current smokers (OR =3.88; 95% 
CI: 2.46– 6.14), those with longer 
duration of smoking (OR = 2.90; 95% CI: 
2.00–4.20) and heavy smokers (OR = 
2.73; 95% CI: 1.79–4.15), small cell lung 
cancer (OR = 3.30; 95% CI: 1.69–6.46). 

Increased 
dietary intake of 
Mg was 
associated with 
decrease in risk 
of lung cancer 
ranging from 17 
to 53%.  

Mahabir et al., 200823 To evaluate the role of 
dietary boron intake 

Caucasian; Hispanic and 
African American; 763 women 

The OR for lung cancer increased with 
decreasing quartile for boron intake 

Increased 
dietary intake of 
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and hormonal replace 
therapy (HRT) in lung 
cancer risk. 

with lung cancer and 838 
healthy controls matched for 
diet and HRT were recruited. 
Logistic regression was used to 
calculate the OR and 95% CI 
adjusting for age, ethnicity, 
education, BMI, alcohol, years 
of smoking, number of 
cigarettes, use of 
vitamin/mineral supplements 
and family history in first 
degree relatives. 

with a significant trend (p<0.0001). 
Joint analyses, the low dietary boron 
intake and no HRT showed an increased 
risk (OR = 2.07; 95% CI: 1.53-2.81) when 
compared with women with high boron 
intake and used HRT. For the low Boron 
intake and no HRT the risk of lung 
cancer  adjusted for age >60 (OR =2.32; 
95% CI: 1.50- 3.60), ≤60 (OR =1.84 ; 95% 
CI: 1.15-2.94); BMI >25 (OR = 1.99; 95% 
CI: 1.33- 2.98); BMI ≤25 (OR = 2.00; 95% 
CI: 1.24- 3.23) and smoking years >31 
(OR = 2.26 ; 95% CI: 1.39 - 3.66) and 
smoking years ≤31(OR = 1.91; 95% CI: 
1.27- 2.88). 

boron reduced 
the risk of lung 
cancer. 
Furthermore, 
women who 
intake boron 
and used HRT 
are at a lower 
risk than those 
who are on low 
boron intake 
and no HRT.  

Neuberger et al., 200624 To evaluate the risk 
factors associated with 
lung cancer in Iowa 
women with respect to 
smoking habits. 

Caucasian; 413 female lung 
cancer cases and 614 controls 
resident for at least 20 years 
were included in the study. 
Logistic regression was 
conducted to derive the OR and 
95% CI after adjusting for age, 
education and cumulative 
radon exposure. 

For unadjusted logistic analyses, 
association was seen for ever smoked 
(OR= 13.20; 95% CI: 9.50–18.33), 
current smokers compared to never 
smokers (OR = 25.98; 95% CI: 17.72–
38.09), family history of kidney (OR = 
2.95; 95% CI: 1.41–6.20), family history 
of bladder (OR =2.01; 95% CI:  1.04–
3.91) and family history of lung cancer 
(OR =1.71; 95% CI: 1.25–2.35), pre-
existing bronchitis and emphysema(OR 
=3.53; 95% CI: 2.45–5.08). After 
adjusting for radon exposure, age and 
education, current smokers (OR = 
13.92, 95% CI: 7.40–26.18), ex-smokers 

Active cigarette 
smoking is an 
important risk 
factor for lung 
cancer. Family 
history of 
smoking related 
cancers is an 
important factor 
in lung cancer.  
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(OR = 13.47; 95% CI: 5.17–35.12), 
asbestos exposure (OR = 3.39; 95% CI: 
1.18–9.75), family history of bladder 
cancer (OR = 3.08; 95% CI: 1.26–7.57), 
family history of kidney cancer (OR = 
3.04; 95% CI: 1.13–8.18) were 
significant. Among current smokers, 
family history of lung cancer (OR = 
2.43; 95% CI: 1.12–5.28) was significant. 
For ex-smokers, years since quitting (OR 
= 0.93; 95% CI: 0.88–0.98) was 
significantly protective and among 
never smokers, family history of kidney 
cancer (OR = 7.34; 95% CI: 1.91–28.18), 
family history of bladder cancer (OR = 
5.02; 95% CI: 1.64–15.39) and history 
of lung disease (OR = 2.28; 95% CI: 
1.24– 4.18) was significant.  

Kreuzer et al., 200325 To evaluate the role of 
endocrine factors in 
the risk of lung cancer 
accounting for smoking 
status and histology.  

Caucasian (Germany); Study 
conducted on histologically 
confirmed 811 lung cancer 
cases and 912 controls.  Logistic 
regression was used to 
compute the OR and 95% CI 
adjusting for age, region, 
smoking and education. 

The use of oral contraceptives (OR = 
0.69; 95% CI: 0.51–0.92) and use of 
hormonal replacement therapy (OR = 
0.83; 95% CI: 0.64–1.09), especially 
after long term use (≥ 7 years) (OR = 
0.59; 95% CI: 0.37–0.93) depicted a 
decrease in lung cancer risk.  

 

In women who 
smoke, the use 
of exogenous 
hormones 
depicted a 
reduced risk of 
lung cancer 
indicating the 
role of 
hormonal 
factors in the 
aetiology of lung 
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cancer. 

Takezaki et al., 200126 To evaluate the 
influence of diet on 
lung cancer risk. 

Asian (Japan); 367 male and 
240 female cases with 
adenocarcinomas, and 381 
males and 57 females with 
squamous cell and small cell 
carcinomas were recruited. 
Controls were cancer free 
individuals, matched for sex 
and age and comprised of 2964 
male and 1189 female. 
Unconditional logistic 
regression was used to 
compute the OR and 95% CI.  

Raw/cooked fish consumption was 
significantly associated with a 
decreased risk of lung cancer.  The 
association between adenocarcinomas 
and raw/cooked fish consumption in 
males (OR = 0.51; 95% CI: 0.31– 0.84) 
showed a decrease in risk with respect 
to the highest quartile consumption 
with a statistically significant trend (p = 
0.039) while squamous cell and small 
cell carcinoma were also associated 
with lower with a non-significant trend. 
A decreased OR was observed in 
females (OR = 0.48; 95% CI: 0.24 –0.94) 
with the highest quartile consumption 
of raw/cooked fish and 
adenocarcinomas.  

The 
consumption of 
raw or cooked 
fish reduces the 
risk of 
adenocarcinoma
s in the 
Japanese.  

Martin et al., 200027 To study the 
occupational risk 
factors associated with 
French electricity and 
gas industry. 

Caucasian (France); 310 male 
lung cancer cases were 
identified from the company’s 
register and for each case four 
matched controls were 
randomly selected. 
Associations were assessed 
using conditional logistic 
regression from which the OR 
and 95% CI were obtained.  

Exposure to 21 chemical compounds 
were assessed out of which cutting 
fluids (OR = 1.86; 95% CI: 1.14-3.06), 
creosotes (OR = 1.56; 95% CI: 1.08 - 
2.27), and chlorinated solvents (OR = 
1.37; 95% CI: 1.02 - 1.85) were 
significant after adjusting for 
socioeconomic status and asbestos. 
With respect to the level of exposure, 
after adjusting for socioeconomic status 
and asbestos exposure, the highest 
level of exposure of coal gasification 

Emphasises the 
carcinogenic 
property of 
crystalline silica 
and the 
potential role of 
other agents 
like creosotes 
and chlorinated 
solvents.  
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(OR = 3.87; 95% CI:  1.15 - 
12.9),cadmium (OR = 1.69; 95% CI: 
1.00-2.88) and crystalline silica (OR = 
2.37; 95% CI: 1.25 - 4.49) was 
associated with lung cancer risk.  

Straif et al., 199928 To study the 
occupational risk 
factors in rubber 
workers for mortality 
due to stomach and 
lung cancer. 

Caucasian (Germany); to study 
the recent working conditions 
in the rubber the study cohort 
was restricted to recruitment 
after 1 January 1950 resulting 
in 8933 participants (1521 
deaths).Standardised mortality 
ratios(SMR) and  Cox 
proportional  hazard model 
were calculated for each work 
area stratified by age of hire, 
year of employment in the 
specific area.  

Compare to the reference population, 
mortality from lung cancer was 
increased (Observed 154; SMR =123; 
95% CI: 104-144). Significant 
association of lung cancer risk was seen 
preparation of material (RR =2.3; 95% 
CI: 1.2-4.2), production of technical 
rubber goods (RR =  1.5; 95% CI: 1.1-
2.1) and production of tyres (RR= 1.3; 
95% CI: 0.9 -1.8) 

Results depict 
an association 
between 
employment 
during the initial 
stages of rubber 
manufacturing 
process and 
excess mortality 
due to lung 
cancer. 

Droste et al., 199929 To investigate the 
occupational risk 
factors associated with 
lung cancer. 

Caucasian (Belgium); 478 
(male) histologically confirmed 
lung cancer cases and 
536(male) controls were 
recruited from 10 hospitals. 
Logistic regression was used to 
calculate the OR and 95% CI 
adjusting for age, smoking 
history, marital and socio 
economic status.  

Significant association of lung cancer 
risk was seen for industrial categories 
including transport equipment other 
than automobiles (OR= 2.3 95% CI: 1.3 
- 4.0), transport support services (OR = 
1.6; 95% CI: 1.1 to 2.4), and 
manufacturing of metal goods (OR 
=1.6; 95% CI: 1.0 - 2.5). 
Occupational exposure to potential 
carcinogens such as Molybdenum (OR 
= 2.1; 95% CI: 1.2 - 3.7), mineral oils 
(OR = 1.7; 95% CI: 1.1 to 2.7) and 

The associations 
reported were 
independent of 
smoking, 
tobacco 
consumption 
and 
socioeconomic 
factors. This is 
the first study 
reporting the 
association 
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Chromium (OR = 1.4; 95% CI: 1.0 - 1.9) 
were also significantly associated with 
lung cancer risk. 

between 
Molybdenum 
and lung cancer 
risk. 

Jockel et al., 199830 To study the 
carcinogens and 
occupations related to 
lung cancer causation. 

Caucasian (West Germany); 
1004 incident lung cancer cases 
and 1004 controls matched for 
region, gender and age were 
recruited. Conditional logistic 
regression was used to 
compute the OR and the 95% CI 
adjusting for smoking and 
occupational asbestos 
exposure.  

Industries with significant increase in 
OR include manufacturers of grain 
products (OR = 5.84; 95% CI: 1.06- 
32.15), building installation (OR = 1.60; 
95% CI: 1.0-2.56), seaport (OR = 1.63; 
95% CI: 1.04-2.56) and life insurance 
(OR = 5.31; 95% CI: 1.10-25.71). 
Occupations that depicted a significant 
increase include plastic processing 
worker (OR = 3.49; 95% CI: 1.07-11.37), 
welder (OR =1.93 ; 95% CI: 1.03-3.61), 
sheet metal worker (OR = 2.01; 95% CI: 
1.14-3.55), pipe fitter (OR =2.76; 95% 
CI: 1.18-6.42), structural metal worker 
(OR = 2.37;95% CI: 1.13-4.96), grain 
miller and related worker (OR =9.61; 
95% CI: 1.08-85.69), docker and freight 
worker (OR = 1.95; 95% CI: 1.11-3.42). 

Looking into 
various 
occupational 
risks, 
importantly, 
after controlling 
for asbestos 
occupational 
exposure 
indicates the 
possibility of 
prevention and 
future research. 

Ko et al., 199731 To evaluate the risk 
factors for lung cancer 
in non-smoking 
women.  

Asian (Taiwan); 117 (106 non-
smokers) cases of female non-
smokers and 117 matched 
hospital controls were used.  
Unconditional logistic 
regression was used to 
compute the OR and 95% CI, to 
evaluate the association 

For non-smoking women, cooking in a 
kitchen without a fume extractor at the 
age between 20-40 was associated lung 
cancer (OR = 8.3, 95% CI: 3.1-
22.7).Cooking practices, history of 
pulmonary tuberculosis and low 
dietary intake of fresh vegetables 
explained 78% of the risk in non-

Cooking oil 
fumes exposure 
in a room 
without an 
exhaust is an 
important risk 
factor for lung 
cancer.  
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between the various factors 
and the lung cancer risk.  

smokers.  

Benhamou et al., 198832  To study the 
occupational risk 
factors of lung cancer 
in the given population.  

Caucasian (French); 1625 
histologically confirmed lung 
cancer cases and 3091 controls 
matched for age, gender, 
interviewer and hospital of 
admission. Logistic regression 
adjusting for cigarette smoking 
was used to evaluate the 
relationship between various 
occupational categories.  

The risk was lower for professional, 
technical and related workers (RR = 
0.59, p<0.0005) and administrative and 
managerial workers (RR = 0.68, p<0.02). 
The risk was higher for production and 
related workers, transport equipment 
operators and labourers (RR = 1.24, 
p<0.008), agricultural, animal 
husbandry and forestry workers, 
fishermen, and hunters (RR = 1.22, p < 
0.07), farmers (RR = 1.24, p < 0.06), 
miners and quarrymen (RR = 2.14, p < 
0.02), plumbers and pipe fitters (RR = 
1.80, p < 0.04), sheet metal workers 
(RR = 1.51, p < 0.08), and motor vehicle 
drivers (RR = 1.42, p < 0.01).  

Sample size is 
an issue and 
therefore any 
definite 
conclusion 
cannot be 
made. Certain 
cohort studies 
are needed to 
be carried out 
to evaluate the 
risk posed by 
respiratory 
carcinogens. 

Buiatti et al., 198533 To investigate the risk 
of occupational factors  
on lung cancer  

Caucasian (Italian); 376 
histologically confirmed cases 
of lung cancer and 892 controls 
recruited from the same 
hospital  matched for age, 
gender, date of admission, 
smoking status and with 
diagnosis other than lung 
cancer and suicide attempt. 
Logistic regression adjusted for 
age, smoking and place of birth 
was used to calculate the OR 

For men, four different occupational 
classes produced an odds ratio greater 
than 1, including transportation, 
agriculture, construction and metal 
work. However, the category of stone, 
clay and glass produced a significant 
result (OR = 1.8; 95% CI: 1.1-2.9).  
Further elucidating the above category, 
bricklayers using firebrick and other 
refractory material produced a 
significant result (OR = 6.5, 95% CI: 2.1 -
20.9). For women, garment workers 

The number of 
cases for certain 
occupational 
categories was 
small hence 
further 
investigation is 
required.  
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and 95% CI.  was the only category that appeared to 
be significant (OR= 3.5, 95% CI: 1.2-
10.5) and within this category the hat 
makers had a significant risk of lung 
cancer (p=0.01).  
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1.4.1 Age and Gender 

 

Lung cancer mostly occurs in individuals above 65 years, with 70 years being the mean age at 

diagnosis9. Though the smoking prevalence is low among elderly patients, their high rate of 

cancer suggests a heavy smoking history9. The five year survival rate is inversely related to age 

in both genders9. The incidence and mortality for lung cancer in the US have decreased in the 

young (≤50) and increased in the old (≥70), in the past decade9, 34. 

Tobacco smoking is responsible for 80% of lung cancer cases in women35. Cigarette smoking 

increased during World War II, in men born in the 1920s and in women born a decade later9. 

The peak smoking period, for women in the US, was between 1930s-1960s followed by an 

increase in lung cancer around 19609, 36, 37. 

The incidence of lung cancer is higher in men than women38. This gender specific difference 

that exists in lung cancer susceptibility may be due to the differences in metabolism and 

detoxification of carcinogens9. Furthermore, DNA adduct level differences have been noted, 

with higher levels in women than men39. Other factors that may cause gender discrepancies 

include estrogen replacement therapy (ERT) associated with an increased risk (Odds ratio =1.7) 

and early menopause associated with a decreased risk (OR =0.3) for adenocarcinomas40. 

Another reason for gender discrepancies may be due to greater susceptibility to tobacco-

related non-malignant diseases in women than men9.  
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1.4.2 Family History 

 

Familial clustering of lung cancer can be explained by both shared environment and genetic 

factors41. The latter can be investigated using segregation and genome wide association 

analysis41. Familial aggregation of lung cancer, first demonstrated by Tokuhata and Lilienfeld42, 

is associated with increased risk in both smokers and non-smokers41. Genetic contributions to 

lung cancer susceptibility include the capacity to metabolise and eradicate carcinogens9. Lung 

cancer has also been associated with rare Mendelian cancer syndromes such as Bloom’s43 and 

Werners’ 44.  

Many studies have demonstrated an increased risk of lung cancer in relatives41, 45. A meta-

analysis conducted on 41 studies showed that having a family history of lung cancer increased 

the lung cancer risk [OR= 1.63; (95% CI: 1.31-2.01)].The risk was further increased if there are 

two or more affected relatives [OR= 3.60; (95% CI: 1.56-8.31)] 41. The risk was also affected by 

the number of first degree family members affected and age of onset41. Furthermore, a meta-

analysis conducted on 32 studies identified a two fold increase in lung cancer associated with 

familial aggregation45. 

The first familial linkage study in lung cancer was carried out by the Genetic Epidemiology of 

Lung Cancer Consortium (GELCC); this implicated a chromosomal region on 6q23-2546. Fine 

genotyping of this region found associations with three SNPs within the RGS17 gene47. The 

study was conducted using the discovery dataset of 24 cases and 72 controls and validated in 2 

independent datasets47. The validation dataset from the GELCC, containing 154 cases and 325 

controls, produced an OR of 1.76 (95% CI: 1.17-2.68), 1.62 (95% CI: 1.07-2.41) and 1.53 (95% CI: 

1.06-2.26) for SNPs rs6901126, rs4083914 and rs9479510, respectively, while the other 
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validation dataset from the Mayo clinic produced an OR of 1.28 (95% CI: 0.81-2.05), 1.62 (95% 

CI: 1.03-2.58) and 1.60 (95% CI: 1.02-2.55) for rs6901126, rs4083914 and rs9479510, 

respectively47. 

Including smoking history in the inheritance analysis produced a three-fold increased risk for 

lung cancer46. Risk models developed by Spitz48, 49 and Cassidy50, also identified the importance 

of family history in determining the risk of developing lung cancer.  

 

1.4.3 Carcinogens 

 

1.4.3.1 Cigarette smoke 

 

A reduction in smoking in the population would lead to decreased lung cancer incidence9. 

Furthermore, by using smoking history to identify high risk individuals, and target screening to 

this group, early detection will be possible9. Lung cancer is indirectly linked to nicotine 

dependency, as the latter affects smoking behaviour14. To exert their carcinogenic effect, many 

tobacco components need to be activated and subsequently their effect nullified by detoxifying 

pathways14. The interindividual differences that balance the metabolism and detoxifying 

processes, affect lung cancer risk14. Activated carcinogens leads to DNA adduct formation, a 

covalently bonded product of DNA and carcinogenic metabolites9. A permanent mutation 

would result if the DNA adduct evades cellular repair, resulting in miscoding9. DNA damaged 

cells are eradicated by apoptosis, or programmed cell death, however, if such an irreversible 
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mutation occurs in an oncogene, leading to its activation and tumour suppressor gene, leading 

to its inactivation, this would contribute to tumourigenesis9, 14.  

The absolute risk of lung cancer in smokers is affected by duration of smoking and number of 

cigarettes smoked per day9. Other factors that relate lung cancer risk to cigarette smoking 

include age of smoking onset, degree of inhalation, tar and nicotine content as well as the 

competence of the filter9. Twenty percent of cancers worldwide could be prevented if tobacco 

smoking were to be eliminated9. Though 80% of lung cancers occur in tobacco exposed 

individuals, only around 20% of smokers develop lung cancer9. 

Cigarette smoke is an aerosol containing gaseous and particulate compounds9. Smoke is 

classified as mainstream smoke, produced by the smoker, by respiring air through the 

cigarette, and the sidestream smoke, the main source of environmental tobacco smoke, 

produced by cigarette smokes between puffs9. Mainstream tobacco smoke contains 

carcinogens such as polycyclic aromatic hydrocarbons (PAHs), aromatic and N-nitrosamines 

and other organic and inorganic compounds, such as benzene. It also contains vinyl chloride, 

arsenic, chromium and radioactive material like radon and its decayed products9. There are at 

least 50 carcinogens in tobacco smoke51, 52 but the most important ones implicated in lung 

carcinoma are the tobacco specific N-nitrosamines (TSNAs)9.  

NNK-induced DNA mutations are associated with KRAS oncogene activation53, 54, which has 

been detected in 24% of human lung adenocarcinomas55. Its detection in the lung 

adenocarcinomas of former smokers indicates its non-reversion after smoking cessation56. 

Also, benzo[a]pyrene, a constituent of tobacco smoke, can cause many mutations in the TP53 

tumour suppressor gene; such mutations are observed in 60% of primary lung cancer cases57.  
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Chemical compounds such as formaldehyde, acetaldehyde, nitric oxide and free radicals in 

tobacco smoke cause structural alterations including inflammation, permeability, disruption 

and fibrosis of the respiratory system organs, thereby altering the immune response58. The 

immune response to smoking is still not well understood; however there is an observed 

decrease in immunoglobulin count and a reduction in antibody response and phagocyte 

activity58. Furthermore, the compounds in cigarette smoke form antigen antibody complexes, 

bringing about immunological changes, for instance, nicotine present in cigarette smoke is 

shown to be an immunosuppressant, thus predisposing an individual to various other 

respiratory, bacterial and viral infections58. 

 

1.4.1.2 Radiation  

 

The link between lung carcinoma and radiation was first established in 1879 by Harting and 

Hesse, who noted the increased percentage of deaths from neoplasms among miners in the 

Schneeberg area of Europe59. Later in 1926, Rostoski ascertained the bronchial origin of these 

tumours and Evans noted that the average time for tumourigenesis was 17 years based on the 

gamma radiation given off from the inhalation of radon and radon-contaminated dust59. 

Radium 226 decays into radon (radon 222), which is a decay product of Uranium 2389. Uranium 

is naturally present at low levels in outdoor air, and accumulates in homes through fissures in 

floors, walls and foundations9. Uranium mines contain the highest level of radon6. Radon 

decays into polonium 218 and polonium 214, which emits alpha rays9. Radon is a ubiquitous, 
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well established carcinogen, present in soil and rock, causing occupational hazards as well as 

hazards from exposure to the general population9. 

Radon decays into active components that attach themselves to airborne particles which, 

when inhaled, adhere to the cells in the respiratory epithelium6. Further decay of this radon 

particle-cell combination may result in DNA damage6. Studies suggest there is a linear 

relationship between radon exposure and lung cancer risk in underground miners, mining 

being the oldest occupation linked to lung cancer9. German uranium miners, exposed for 15-24 

years, younger than 55 years in age, have an increased risk of lung cancer60. Wagoner reported 

an increased number of pulmonary carcinomas in underground uranium miners of the 

Colorado plateau, and similar neoplastic lesions in Japanese factory workers exposed to 

mustard gas61. 

Lubin and Borce conducted a meta-analysis on 8 studies comprising of 4263 lung cancer cases 

and 6612 controls producing a relative risk of 1.14 for lung cancer62. Radon accounts for 2900 

lung cancer deaths each year in never smokers (from residential exposure)6. Smoking has a 

synergistic effect, with radon further increasing the risk of lung cancer in smokers9.  

The lung cancer risk posed by domestic radon exposure is of increasing concern9. The intensity 

of radon gas depends on the concentration of the source of radium and the ventilation in the 

vicinity of the source9. Thus, environmental and indoor radon is a potential contributing agent 

to lung cancer risk to the public9. The concentration of indoor radon, i.e. in homes, 

concentration depends primarily on the concentration of radium in soils and rocks beneath, 

while building materials, well water and natural gas contribute a small proportion9. Hei and 

colleagues conducted a study to evaluate the exposure of radon in the general population and 
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concluded that environmental radon levels could cause mutations in small numbers of 

bronchial epithelia63. 

 

1.4.3.3 Asbestos  

 

Asbestos exposure is the most common occupational cause of lung cancer with two naturally 

occurring types; serpentine (chrysotile) and amphibole (amosite, crocidolite and tremolite)9. It 

was commercially popular since the late 1800s as an insulating and construction material due 

to its strength and its non-susceptibility to fire9.  

The link between asbestos exposure and lung cancer had initially been suspected in 1934, and 

was first published in 1955 by Dr. Richard Doll 64. Using autopsy data, Doll conducted a 

retrospective study on workers exposed to asbestos, and reported a 10 fold increase in death 

due to lung cancer compared to the overall population64, 65. The relative risk for lung cancer in 

asbestos-exposed individuals was 3.5 after controlling for age, smoking and vitamin intake66. 

Identical exposures of different asbestos fibres produced different risk estimates with 

amphibole exposed individuals having higher risks than chrysolite exposed individuals66. Also, 

amphibole fibres are more carcinogenic then chrysolite67. 

Asbestos-related disease can be manifested in pleura (as effusion, pleurisy or both), and 

pulmonary sites9. Pleural plaques, asbestosis and asbestomas are indicators of lung cancer 

risk9. Asbestos-related lung cancer is seen in asbestos textile workers, miners, millers, and 

asbestos insulation and shipyard workers; and has a dose-dependent relationship68.  
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Parenchymal lung diseases resulting from inhalation of asbestos fibres are known as 

asbestosis9. This mainly occurs in workers exposed to an asbestos fibre dose of above 25 -105 

fibre/mL/year, for example asbestos insulators, miners, millers and textile workers68. 

Interstitial fibrosis develops when an individual is exposed over periods of months to years9. 

The more intense the exposure, the shorter the time period for the presentation of the 

disease9. Lung fibrosis, including idiopathic pulmonary fibrosis and connective tissue associated 

interstitial disease, is linked to an increased risk of lung cancer9, 69. 

Interstitial fibrosis such as asbestosis is associated with an increased risk of lung cancer 

compared to those that are exposed but have no associated fibrosis: asbestosis is therefore a 

better predictor of excess lung cancer risk than asbestos exposure66, 70. Jones and colleagues 

noted that the risk of lung cancer for non-occupational exposure of asbestos is extremely 

low69. Furthermore, tobacco exposure enhances the carcinogenic effect of asbestos and 

increases the risk of lung cancer in asbestos workers9. The risk of lung cancer from exposure to 

asbestos alone, cigarette smoking alone and cigarette smoke and asbestos exposure combined 

is 6 fold, 11 fold and 59 fold, respectively9.  

The biological mechanisms causing lung cancer following asbestos exposure are yet to be 

determined, however, inhalation of asbestos fibres activates macrophage and airway 

epithelium causing inflammation and cell proliferation65. Evidence suggests that asbestos 

exposure induces KRAS mutations, with increased mutation risk after higher exposure65. 
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1.4.3 Respiratory Conditions 

 

Non-malignant diseases, such as pneumonia, tuberculosis and chronic obstructive pulmonary 

disease (COPD) have been extensively studied as risk factors for lung cancer18. In particular, 

COPD, characterised by chronic inflammation, which itself is being evaluated in lung cancer 

research, is considered to be associated with lung cancer9. These infections and lung diseases 

are described below. 

 

Tuberculosis: The relationship between tuberculosis (TB) and lung cancer was first published in 

1810 and has subsequently been elaborated upon12. Two recent studies carried out in China 

and Taiwan demonstrated that the risk of lung cancer increases due to tuberculosis and that 

tuberculosis causes chronic inflammation12, 71, 72. 

The lengthy period between symptom onset and diagnosis of TB and prolonged treatment of 6-

9 months, results in substantial pulmonary inflammatory damage with the production of TNF, 

TGF-β, IL4 and IL1311.  

A retrospective study carried out on 42,422 farmers in rural Xuanwei County in China showed 

an association between tuberculosis and lung cancer mortality: this was more pronounced in 

the first 5 years after TB diagnosis but remained strong in subsequent years72. This study was 

performed using proportional hazard regression modelling and the association did not change 

after adjusting for demographic characteristics, lung disease and tobacco consumption72. 

Another population-based cohort study carried out in Taiwan on 5657 TB patients and 23,984 

controls showed that the occurrence of lung cancer was significantly higher in TB patients than 
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in controls71. This analysis was carried out by calculating incidence rates and hazard ratios of 

lung cancer71. The studies suggest that the persistent risk of lung cancer, years after diagnosis 

of TB could likely be due to chronic pulmonary inflammation and scarring12. 

A 16 study analysis, conducted to study the effect of previous TB, produced a relative risk of 

1.48 (95% CI: 1.17-1.87)18. When the analysis was conducted for ever smokers, the relative risk 

was 1.36 (95% CI: 1.05-1.75) and never smokers was 1.50 (95% CI: 1.03-2.19)18. 

 

Pneumonia: Chlamydophila pneumoniaea, transmitted through respiratory secretions causes 

many acute and chronic respiratory conditions, including pneumonia, and potentially, lung 

cancer73. Other microorganisms that cause pneumonia include Streptococcus pneumoniaea, 

Haemophilus influenzae and Legionella pneumophila11. This illness is time limited and most 

patients recover quickly; the pulmonary inflammation is of short duration, causing less severe 

scarring11. The mechanism by which this infection may elevate lung cancer risk is not 

established, although smoking may enhance the chance of contracting pneumonia73.  

The infection process involves a complex interplay between various inflammatory components 

such as superoxide oxygen radicals, TNF –α, IL1β and IL873. These result in tissue and DNA 

alterations, and may lead to carcinogenesis73. 

A contradictory result is presented by Koshiol et al. (2010), who showed that multiple bouts of 

previously-reported pneumonia (≥3) appear to decrease the risk of lung cancer in an analysis 

conducted on 1846 cases and 2054 controls, producing an OR of 0.35 (95% CI: 0.16-0.75)74. 

Information about previous pneumonia for this study was collected through an interview74. 

Nonetheless, a meta-analysis conducted on 12 studies supports the suggestion that C. 
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pneumoniaea increases lung cancer risk73. This study was carried out using 12 studies 

comprising of 2595 cases and 2585 controls producing an OR of 1.48 (95% CI: of 1.32-1.67)73. 

Another 12 study analysis produced a relative risk of 1.57 (95% CI: 1.22-2.01) associated with 

lung cancer18. When stratified analyses were conducted, smokers produced a relative risk of 

1.55 (95% CI: 1.16-2.06) compared to non-smokers who produced a relative risk of 1.35 (95% 

CI: 1.12-1.63)18. 

 

 COPD: Chronic obstructive pulmonary disease (COPD) is an inflammatory condition of the 

lower airway characterised by emphysema and constriction of bronchi, provoked by inhalation 

of noxious particles or gases12, 13, 75. It is diagnosed in 50-70% of lung cancer patients and it has 

been shown to increase lung cancer risk by 4.5 fold in long term smokers75. 

The link between COPD and lung cancer was identified as early as 193912. Studies carried out 

by Kishi et al. (2002) and Wilson et al. (2008), demonstrate that lung cancer risk increases with 

increasing airflow obstruction76, 77. These studies used spirometry and CT to measure lung 

function and emphysema progression in over 1000 participants76, 77. 

Furthermore, recent studies identified that COPD and lung cancer share a common aetiology12, 

13, 75. Common biological mechanisms in these diseases include inflammation, EMT, oxidative 

stress, matrix degeneration, cell proliferation, anti-apoptosis, abnormal wound repair, 

angiogenesis and other pathways12, 13, 75. 

Potential genetic changes that may increase the susceptibility to both lung cancer and COPD 

include SNPs in genomic DNA (nicotine receptor polymorphisms), copy number variations 

(CNVs), epigenetic alterations, mRNAs and microRNAs13. A 16 study analysis of previous 
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emphysema and lung cancer produced a relative risk of 2.44 (95% CI: 1.64-3.62). Stratified 

analysis produced a relative risk of 2.21 (95% CI: 1.00-4.90) and 2.25 (95% CI: 1.50 -3.37) for 

never and ever smokers, respectively18. 

 

1.4.4 Socioeconomic Status 

 

Socioeconomic status is inversely associated with lung cancer risk78. People from poorer and 

less educated areas of society are more susceptible to lung cancer than those from richer 

areas78. A Canadian study showed that education, income and higher social class analysed 

separately in male and female cancer cases, after adjusting for smoking, are inversely 

associated with lung cancer risk78. Similar results were found in a Netherlands-based study, 

which described a reciprocal relationship between highest level of education and lung cancer 

after adjusting for smoking, age, and dietary intake of vitamin C, beta- carotene and retinol79. 

Study conducted between 1998-2003 using English cancer registries identified lung cancer 

incidence to be associated with poor patients80. The postcode at diagnosis was used to allocate 

socioeconomic status calculated using the income domain of the Index of Multiple Deprivation 

200480. 
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1.5 Molecular Genetics of Lung Cancer  

 

Carcinogens bring about multiple genetic changes, mostly through DNA adduct formation81. 

Genomic integrity is disrupted if proper cell cycle regulation and checkpoints are not 

maintained, resulting in genomic instability and ultimately initiating cancer development81. 

Tumour suppressor genes (TSGs) and oncogenes are two groups of functional genes implicated 

in lung cancer82. Multiple TSGs are inactivated during carcinogenesis and cancer progression. 

Inactivation is usually by a two-step process known as “Knudson’s two-hit hypothesis”83, 

involving the loss of function of both copies of a TSG in the same cell. Inactivation can occur 

through deletion of large chromosomal segments and smaller mutational changes, or 

epigenetic aberrations81. Loss of heterozygosity (LOH) studies has helped to locate tumour 

suppressor genes by identifying the sites of chromosomal deletions81. Many TSGs and 

oncogenes mutated in lung cancer, control cell cycle processes. Structural and numerical 

changes, together with genetic and epigenetic changes in the genome, are also observed in 

lung cancer81. 

Tumour suppressor genes identified in lung cancer as being inactivated via chromosomal 

deletions include SMAD2, SMAD4, PTEN, FHIT, PPP2R1B, p53, RB and p1684. 
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1.5.1 Proto Oncogenes 

 

1.5.1.1 EGFR (Epidermal Growth Factor Receptor) 

 

The EGFR family of proto-oncogenes comprises the EGFR, HER2, HER3 and HER4 genes that 

encode tyrosine kinase receptors85. Over-expression of EGFR and HER2 is seen in 70% and 30% 

of NSCLC, respectively, while in SCLC, they are less often expressed85. EGFR mutations are also 

prevalent in adenocarcinomas, East Asians, women and never smokers, and activate P13K/AKT 

and STAT2/STAT5 pathways17. Mutations in these genes are seen mainly at the TK receptor 

domain and are largely confined to the first four exons85. Various drugs that specifically target 

EGFR or HER2 are now available, including the monoclonal antibodies gefitinib, erlotinib, 

trastuzumab and cetuximab85. 

Activation of mutant EGFR in adenocarcinomas activates STAT3 through increase of IL6 which is 

responsible for activation of STAT3, MAPK and PI3K via activation of JAK family tyrosine 

kinases17. Resistance to EGFR tyrosine kinase inhibitors (TKIs) (such as erlotinib and gefitinib) is 

linked to EGFR exon 20 insertion and T790M mutation, KRAS mutation or amplification of the 

MET proto oncogene. Inhibition of MET signalling can restore sensitivity to TKIs17.  
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1.5.1.2 RAS 

 

The RAS family of proto-oncogenes includes HRAS, KRAS and NRAS, which are involved in 

normal cellular differentiation, proliferation and survival, and regulate important signalling 

pathways85. It is one of the first oncogenes identified, and encodes a protein of molecular 

weight, 21 kDa86. Although RAS mutations are seen in human cancers from diverse tissues, 

including the lung, they are mostly absent in SCLCs, but are detected in 10-15% of NSCLC, 

especially adenocarcinomas85.  

The KRAS oncogene is mutated in 30% of adenocarcinomas, predominantly by G:T 

transversions in codon 1286. KRAS mutations that activate signalling pathways occur at three 

specific codons in 20% of lung cancers, mainly adenocarcinomas17. Ninety percent of lung 

cancer mutations in KRAS occur at three specific codons (80% in codon 12; 10% in codons 13 

and 61)17 and KRAS accounts for 90% of mutations in lung cancers85. Most resectable lung 

cancer cases show RAS mutations and expression associated with decreased survival86. 

Active RAS results in the activation of downstream signalling pathways such as PI3K and 

MAPK17. In a normal functioning cell, the intrinsic GTPase activity of RAS converts it from the 

active GTP–bound state to the inactive GDP–bound state81. A mutation in codon 12, 13 or 61 

causes RAS to exist in a constitutively active GTP-bound state; this activated RAS leads to 

permanent activation of the RAF1/MAPK pathway81. 

RAF kinase and MAPK kinase (MEK1) are two entities targeted in drug trials as they are 

downstream effectors of RAS signalling17. Inhibition of RAF kinase included mRNA RAF1 

degradation and kinase activity inhibition (sorafenib)17. Tipifarnib and Ionafarnib therapies 
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have entered the phase II trial17. Small interfering RNAs (siRNAs) have also been identified that 

specifically target MAPK mutated human lung cancer cells in vitro17. 

 

1.5.1.3 MYC 

 

The MYC oncogenes; c-MYC (cellular), N-MYC and L-MYC, encode transcriptional regulating 

nuclear DNA binding proteins86. Structurally, MYC contains a transactivating domain at its N 

terminus and nuclear localization signal, helix-loop-helix domain and leucine zipper at the C 

terminal86. It regulates transcription by forming homodimers or heterodimers (via the helix 

loop helix and leucine zipper domain) with proteins such as MAX, MAD and MX1186. MAX 

represses transcriptional activation when bound to MYC, while MAD and MX11 promote 

transcriptional activation by releasing MYC from the MAX bound state86. NSCLCs rarely show 

amplification of c-MYC, however in SCLCs this amplification adversely affects survival86.  

In a normal functioning cell, MYC controls cellular proliferation via regulation of downstream 

signalling pathways such as cell proliferation17. The activation of MYC is often through gene 

amplification17. MYC is usually activated in NSCLCs while all three members are activated in 

SCLCs17. 
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1.5.1.4 BCL-2 

 

The BCL-2 gene inhibits apoptosis, increases survival of non-cycling cells and regulates cell 

death86. In a normally functioning cell, BCL-2 forms complexes with BAX, and exists as a 

heterodimer to regulate apoptosis86. Factors such as radiation decrease the transcription of 

BCL-2 and induce transcription of BAX, resulting in BAX homodimer formation and leading to 

apoptosis86. 

 

1.5.2 Tumour Suppressor Genes 

 

1.5.2.1 TP53  

 

TP53 is a tumour suppressor gene on chromosome 17p13.1, which functions by permitting 

DNA repair and initiating apoptosis or cell cycle arrest in response to cellular stress such as 

DNA damage85. It is 20kb long, has 11 exons, and encodes a 53 kDa nuclear protein of 393 

amino acids in length86. An altered TP53 gene is the most common genetic variation involving 

deletions, point mutations and over expression, associated with cancer86. TP53 is inactivated in 

90% and 50% of SCLCs and NSCLCs, respectively85.  

TP53 is a transcription factor for DNA damage and induces expression of p21, MDM2 and BAX, 

which regulate the cell cycle and apoptosis84. TP53 maintains integrity of the genome by 

playing a role in cell cycle checkpoints84. Its inactivation leads to accumulation of mutations, 
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chromosomal rearrangements and abnormal chromosomal segregation84. TP53 is mutated 

early in lung carcinogenesis, demonstrating its role in the progression of malignancies84.  

In a normally functioning cell, the anti-apoptosis proteins BCL-2 and BAX are in homeostasis86. 

When the cell is damaged, p53 levels rise and bind to the BAX promoter, increasing its 

transcription, thus leading to cell apoptosis86. Mutant p53 can lose its tumour suppressor 

properties, promote cell multiplication and prevent apoptosis86.  

 

1.5.2.2 Deletions in 3p Region 

 

More than 90% of SCLC cases and approximately 70% of NSCLC cases display allelic loss of the 

3p chromosomal region81. Such losses have been reported in the 3p25-p26, 3p21-22, 3p14 and 

3p12 chromosomal regions81. LOH has been noted in at least eight distinct sites81. These 

chromosomal regions contain several genes with tumour suppressing properties, and thus the 

disease progresses by inactivating the expression of these crucial tumour suppressors85. 

Normal or partially abnormal tissue of lung cancer patients and healthy smokers shows 3p 

allelic loss81. Furthermore, the frequency and intensity of these changes correlates with the 

severity of histopathological preneoplastic/preinvasive changes81. 

Loss of one copy of chromosome 3p is observed in 96% and 78% of lung tumours and lung 

preneoplastic lesions17. Studying this loss has helped identify several TSGs including FHIT 

(3p14.2), RASSF1A, TUSC2, SEMA3, SEMA3F (all at 3p21.3) and RARβ (3p24)17. 
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Some TSGs located in this region include FHIT at 3p14.2; this gene has been shown to inhibit 

tumour growth by apoptosis and cell cycle arrests in lung cancer cell lines81. All SCLCs, and 

more squamous cell carcinomas than adenocarcinomas, demonstrate a loss of expression, also 

reported to be associated with smoking history in lung cancers81.  

Decreased expression due to epigenetic hypermethylation is seen in genes such as FHIT, 

RASSF1A, SEMA3B and RARβ17. FHIT induces apoptosis while RASSF1A alters cell cycle 

regulation17. TUSC2 exerts its effect by inhibiting protein kinases (EGFR, PDGFR, cAb1, c-kit and 

AKT) and degradation of p53 through MDM2 mediated inhibition17. SEMA3B decreases cell 

proliferation and induces apoptosis, SEMA3F inhibits vascularisation and tumourigenesis while 

RARβ functions by reducing cell growth and differentiation17.  

 

1.5.2.3 RB 

 

RB gene is located at 13q14.11, and was discovered to be a tumour suppressor in a familial 

inheritance study of retinoblastoma86. It encodes a nuclear protein of106 kDa, which is crucial 

in cell cycle regulation during G0/G1 phase86. In its hypophosphorylated state, RB is active, and 

bound to the E2F family of transcription factors86. When RB is phosphorylated by the cyclin 

dependent kinase CDK4, E2F is released; this leads to cell cycle progression through the G1/S 

checkpoint86, 87. 

There is absence of RB protein expression in 70% of SCLC cell lines, as a result of structural 

alterations in RB gene or abnormal mRNA expression, and 10% of NSCLC cell lines show 
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absence of, or abnormal, RB mRNA, while 30% of tumours show absence of or abnormal, RB 

protein86. 

 

1.5.2.4 p16INK4A  

 

The CDKN2A gene, which encodes the p16 protein, is located on chromosome 9p21, an area 

that is deleted in some lung cancers86. Absence of p16INK4A inhibitor is noted in some lung 

cancers86. Variation of p16INK4A is thought to be a late event in lung cancer progression86. p16 

prevents the transition from G1 to S phase by inhibiting CDK4 in the cell cycle86. Inhibition of 

CDK4 by p16 keeps the tumour suppressor gene RB in its active, hypophosphorylated, state, 

thus inhibiting progression through the cell cycle86.  

 

1.5.3 Genetic Susceptibility to Lung Cancer 

 

Following are some candidate genes whose variations may be associated with lung cancer 

susceptibility.  

Xenobiotic Metabolising Enzymes: Candidate gene association studies for genes involved in 

tobacco smoke carcinogen metabolism have been extensively studied14. Cytochrome P450 

(CYP)- related enzymes and Glutathione-S-transferases (GSTs) are metabolic enzymes involved 

in phase I and phase II metabolism, respectively14. Inherited variations in the genes encoding 

these enzymes can affect an individual’s capacity to activate and detoxify foreign compounds 
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(including carcinogens) and hence impact upon susceptibility to a variety of cancers14. SNP 

rs1048943 (Mspl (T3801C)) in the CYP1A1 gene was tested using 17 studies, comprising 1759 

cases. This produced an OR of 2.36 (95% CI: 1.16-4.81) for presence versus absence of the Mspl 

site88. GSTM1 (presence/null) was tested using 130 studies totalling 23,452 cases and 30,397 

controls; this produced an OR of 1.18 (95% CI: 1.14-1.23) in an allelic model89. GSTT1 

(presence/null) was tested using 8 studies including 1364 cases; this produced an OR of 1.28 

(95% CI: 1.10-1.49) in a recessive model88.  

 

DNA Repair Genes: SNPs in DNA repair genes studied include rs1800975 (G-23A) in the XPA 

gene88. This was analysed using 7 studies comprising of 1913 cases, and produced an OR of 

0.73 (95% CI: 0.61-0.89) for the heterozygous versus the non-variant homozygous genotype88. 

The SNP rs2228001 (Lys939Gln) in XPC was analysed using 6 studies comprising 2580 cases, 

and produced an OR of 1.30 (95% CI: 1.11-1.53) in the recessive model88. rs1052550 

(Lys751Gln) in XPD was analysed using 15 studies made up of 5004 cases, and produced an OR 

of 1.30 (95% CI: 1.13-1.49) for variant homozygous Gln versus other homozygous, Lys88. 

rs25487 (Arg399Gln) in XRCC1 was studied using 6 studies containing 1702 cases, and 

produced an OR of 1.34 (95% CI: 1.16-1.54) for variant homozygous Gln versus other 

homozygous, Arg88. rs1052133 (Ser326Cys) in OGG1 produced an OR of 1.32 (95% CI: 1.04-

1.67) for non-smokers tested using a dominant model by using 17 studies comprising of 6375 

cases and 6406 controls90. 

 

Cell cycle genes: SNPs in genes involved in cell cycle regulation such as rs1042522 (Arg72Pro) in 

TP53 and rs2279744 (T309G) in MDM2 were tested in a meta-analysis91, 92. rs2279744 (T309G) 
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in the MDM2 gene was tested using 7 studies comprising of 4276 cases and 5318 controls; this 

produced an OR of 1.27 (95% CI: 1.12-1.44) when the variant homozygote GG was tested 

against the wild type homozygote, TT91. For rs1042522 (Arg72Pro) in TP53, a meta-analysis 

carried on 32 studies comprising of 9046 cases and 10127 controls, was performed using the 

genotypic model92. When comparing heterozygotes versus the Arg homozygotes; this produced 

an OR of 1.21 (95% CI: 1.01-1.23); for variant Pro homozygotes versus wild type Arg 

homozygotes an OR of 1.20 (95% CI: 1.03-1.39) was produced92. For the dominant and 

recessive model the OR was 1.14 (95% CI: 1.03-1.25) and 1.06 (95% CI: 1.01-1.12), 

respectively92. 

 

1.5.4 Epigenetics 

 

Epigenetic mechanisms include DNA methylation and post translational modifications of 

histones17. These alterations are somatically heritable, and cause gene silencing without 

altering the DNA sequence itself12, 75, they are therefore reversible17. An important epigenetic 

change associated with lung cancer is hypermethylation of cytosine residues within CpG 

dinucleotide islands in certain transcriptional promoter regions12, 75, 85. Other important 

epigenetic changes associated with lung cancer include global DNA hypomethylation, post 

translational modification of histones and miRNA silencing by DNA hypermethylation75. 

Genes including TSGs are inactivated by epigenetic changes occurring early in lung 

tumourigenesis17. Other genes include those involved in tissue invasion, DNA repair, 

detoxification of tobacco carcinogens and differentiation17. Lung cancer-associated promoter 



 

39 
 

hypermethylation has been detected in almost 80 genes including RARB, TIMP3, p16INK4a, 

RASSF1A, MGMT, FHIT, DAPK, ECAD, and GSTP1 12, 75, 85. Genes affected by epigenetic changes 

have utility as biomarkers for early detection research and prognosis17.  

 

1.5.5 Micro RNA 

 

Micro RNAs (miRNAs) are non-coding RNA sequences that may exert a negative regulatory 

influence on mRNA’s stability or expression93. They play a role in many cellular processes 

including cell proliferation, differentiation and apoptosis75. They regulate gene expression at 

the post-transcriptional level and play a role in various developmental processes including 

neurogenesis, insulin secretion, cholesterol metabolism and the immune response75, 93, 94. 

MicroRNAs regulate many biological processes and may play a role in the pathogenesis of most 

human cancers (by modulating the expression or function of oncogenes and TSGs); those 

miRNAs that function as tumour suppressors or oncogenes, are referred to as oncomirs93. A 

recent study identified seven miRNAs in an analysis using paired tumour-normal tissues from 

20 patients95. These miRNAs were optimised in a study of 36 cases and 36 controls: four 

miRNAs (miR-21, miR-486, miR-375 and miR-200b) capable of distinguishing lung 

adenocarcinoma patients from controls were identified, with a sensitivity and specificity of 

80.6% and 91.7%, respectively95. Five miRNAs (hsa-let-7a, hsa-miR-221, hsa-miR-137, hsa-miR-

372, and hsa-miR-182∗) were identified in a study carried out on 112 NSCLC patients to predict 

relapse and survival96. MiRNAs could be potential tools influencing prevention, and diagnosis, 

prognosis of lung cancer, and therapy of lung cancer patients97. 
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1.6 Early Detection Research 

 

The overall five-year survival rate for those diagnosed with lung cancer is 16% in the USA while 

in the UK it is as low as 7.8% and 9.1% for men and women, respectively98, 99. This is largely due 

to late presentation of symptoms100. If lung cancer were to be detected at an earlier stage, it 

might be possible to improve the overall survival figures100. Early detection research has helped 

to identify changes that occur before the development of clinically evident lung cancer100. The 

following strategies have shown promise in early detection research. 

 

1.6.1 Sputum  

 

Sputum can be used in a variety of ways in early detection research, by means of DNA, RNA 

and protein analysis, routine cytological examinations and nuclear image analysis101. DNA 

methylation and KRAS mutations are frequently reported in sputum101. 

In previous reviews, average sensitivity for cytological detection of lung cancer was reported to 

be 65%101. To improve the accuracy, other techniques such as fluorescent in situ hybridisation 

(FISH), and studies of promoter hypermethylation and genetic mutations were investigated102. 

A combination of methodologies (sputum cytology with FISH) produced a sensitivity of 76% 

and specificity of 92%102. 
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1.6.2 Computed Tomography  

 

Several trials are underway to study the utilisation of CT screening for early detection of lung 

cancer102. This technology is advantageous due to its feasibility, speed, resolution, ability to 

reconstruct multiple series from a single data acquisition and detect small peripheral lesions102. 

European screening trials such as the UK Lung cancer Screening trial (UKLS)103, Danish 

randomised CT screening trial, NELSON, ITALUNG and LUSI are still acquiring data before 

mortality figures can be calculated102. In 2002, the randomised National Lung Screening Trial 

(NLST) was set up to compare lung cancer mortality in high risk individuals screened with either 

low dose CT or chest radiography104. When the collected data were analysed in 2010, a 20% 

reduction in mortality was observed, thus supporting the use of low dose CT as a screening 

strategy104. 

Whilst CT screening predominantly detects adenocarcinomas, it is unable to detect preinvasive 

lesions and most importantly lesions in the central airway, high grade dysplasia and early stage 

squamous cell carcinomas102. 

 

1.6.3 Bronchoscopy 

 

The most widely used technique for early diagnosis is light induced fluorescence endoscopy 

(LIFE)105. Other existing bronchoscopic imaging techniques include autofluorescence 

bronchoscopy (AFB), high magnification bronchovideoscope, and narrow band imaging (NBI); 
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and more precise techniques like endobronchial ultrasound (EBUS) and optical coherence 

tomography (OCT)105. 

Each technique has its own pros and cons, for instance, AFB is an improvement over LIFE and 

generates a red:green light ratio; NBI provides a higher specificity of 80% without 

compromising its sensitivity while OCT provides a highly resolved cross sectional image of the 

mucosa102. While high cost is the main drawback of this technique, based on real time imaging, 

it can differentiate between inflammation and premalignant lesions102. 

Bronchoscopy, together with CT scanning, was applied to smokers and former smokers with 

mild or moderate COPD, if positive for sputum cytology/cytometry, in a multicentre 

randomised controlled trial called Lung-SEARCH, in the UK106. The aim of this trial was to 

identify lung cancer patients at an earlier stage in the disease, compared to the unscreened 

group106. 

 

1.6.4 Breath Test 

 

Exhaled breath analysis is a non-invasive approach to identify inflammatory and oxidative 

stress markers potentially involved in various respiratory conditions102. A technique called the 

exhaled breath condensate (EBC) is still in its initial stages of experimentation and the markers 

evaluated include 3p microsatellite signature, DNA methylation, angiogenic markers, COX-2, 

endothelin and survivin102.  
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1.7 Novel Technologies in Lung Cancer Research  

 

Completion of the human genome project107 and the development of genomic technologies108 

have led to discoveries that will help improve clinical care for cancer patients109. Some of these 

developments are outlined below. 

 

1.7.1 Gene Expression Profiling Using Microarray 

 

cDNA and oligonucleotide expression microarrays are widely available to study differential 

gene expression in lung cancer, and can be applied to classify cancer types, identify new 

oncogenic markers, and predict prognosis and response to drug treatment85. 

The fundamental principle behind microarray technology is the complementary hybridisation 

of cRNA or cDNA to the sample containing the gene of interest110. Unlike genome wide 

association analysis, this is a “closed” gene expression technology where prior knowledge 

about the sequence of genes under study is required110. Available technologies include spotted 

microarrays that use customised product embedded on a glass slide, and the Affymetrix 

Genechip system that utilises a prefabricated oligonucleotide microarray110. Overall, 

microarray technology is a robust tool, finding its use in tumour classification, prognosis and 

patients’ response to therapy85. 
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1.7.2 Genome Wide Association Analysis 

 

Genome wide association studies (GWAS) are gaining importance in recent years as they have 

enabled identification of genetic variants associated with human diseases111-114. Though such 

studies involve large sample sizes and extensive genotyping, they have the advantage of not 

being based on any prior assumptions about the functional significance of the typed variant115.  

In lung cancer research, three studies recently reported the identification of genetic variants 

on chromosomal regions 15q24-25.1, 5p15.33 and 6p21111-114. These include the IARC study113 

on 1989 lung cancer cases and 2625 controls, a study by the MD Anderson clinic111 including 

1154 cases and 1137 controls and a study from DeCode, Iceland112 including 665 cases and 

more than 10,000 controls115.  

Interestingly, all 3 studies pointed towards a susceptibility region located at 15q25.1 with a 

more or less consistent OR, ranging from 1.30-1.32 across all studies112-114.  

Another SNP located at 6p21 was reported by the IARC study113. Additionally, the IARC 

conducted a GWAS scan by pooling together a larger number of cases (N=3259) and controls 

(N=4159); this study reported another susceptibility locus on chromosome 5p which contains 

the TERT and CLPTM1L gene113. The above result was also replicated in another meta-analysis 

involving more than 5000 cases and 5000 controls115.  
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1.7.3 Next Generation Sequencing 

 

Next generation sequencing (NGS) approaches have the ability to sequence a number of cancer 

genes in one attempt as well as simultaneously detect gene alterations ( base substitutions, 

CNVs, insertions and deletions) making it an improvement over traditional sequencing 

methods108. NGS technology not only provides a thorough and in depth sequencing, but also 

produce more than 1 billion sequences in a 4 day run per instrument at a far cheaper cost per 

base compared to the traditional dye terminator technique108.  

Available technologies for NGS include 454 Pyrosequencing, Ion Torrent, Illumina, SOLiD 

(Supported Oligonucleotide Ligation and Detection) and Helicos108. Though these platforms are 

costly there is a potential for cost reduction in the near future. Some platforms such as 454 

Pyrosequencing and Ion Torrent are faster than Illumina and SOLiD, but limited in their 

capability to carry out parallel deep sequencing108. Some technologies such as Helicos, SOLiD 

and Illumina are better suited for whole genome sequencing, while others, such as 454 

Pyrosequencing and Ion Torrent, are for targeted sequencing108.  

All these technologies generate a large amount of data and therefore there are complexities 

regarding data processing, storage and analysis108. 
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1.9 Risk Models 

 

Risk models have been used in various diseases in deciding whether to opt for a particular 

invasive diagnostic test, and to predict the likelihood of the disease progressing to a later stage 

and the outcome of specific therapies116. Examples are the Gail model for breast cancer that 

computes the lifetime risk for an individual117; prediction via a scoring system from 

questionnaire data for colorectal cancer 118 and the Prostate Cancer Prevention Trial (PCPT) 

model that predicts the probability of prostate cancer119. Additionally, various nomograms are 

available for predicting disease progression in prostate cancer120 and models that use 

biomarkers, like the ovarian cancer model that uses ROCA121 and prostate cancer recurrence 

prediction calculator that utilises the prostate specific antigen (PSA) measurement after 

radiation therapy120. Furthermore, advances have been made in utilising expression data of 21 

genes in breast cancer (Oncotype DX) to predict the recurrence risk122. 

Risk models for lung cancer could potentially have utility in targeting, screening and resources 

towards high risk populations and individuals48, 50, 123. Three prominent risk models used in lung 

cancer research include the Bach model124, Spitz model48 and the LLP risk prediction model50. 

The Bach model, devised to compute the risk for 10 years, was based on a cohort comprising of 

18,172 current or former smokers124. Cox proportional hazard modelling was used to design 

the model including age, sex, prior history of asbestos exposure, smoking duration, average 

amount smoked per day for current smokers, and duration of abstinence from smoking for 

former smokers as significant covariates124. The Spitz model was based on a case control study 

with 1851 cases and 2001 controls, frequency matched for age, sex, ethnicity and smoking 

status48. Multivariate logistic regression was used to develop this one year absolute risk model 
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with age, sex, smoking history variables, environmental tobacco smoke, family history of lung 

cancer, emphysema, exposure to dust and asbestos as significant covariates48. 

The five year LLP risk model was also based on a case-control study comprising of 579 cases 

and 1157 controls, matched for age, sex and smoking status50. Multivariate conditional logistic 

regression was used to design the model, with age, sex, smoking duration, asbestos exposure, 

prior diagnosis of pneumonia, malignancy, and family history of lung cancer being significant 

covariates50.  

A five year absolute risk model for African-Americans was developed using 491 African-

Americans with lung cancer and 497 matched African-American controls123. The existing 

models were not suitable for risk prediction in these minority populations, as they were 

developed and based on Caucasian populations; since there is variation between the risks for 

different ethnic groups, the significant covariates for the models differ123.  

 

 

 

 

 



 

 
 

 

 

 

 

 

 

 

 

 

 

CHAPTER 2 

INFLUENCE OF COMORBIDITY ON THE 

INCIDENCE OF LUNG CANCER AND THE 

DEVELOPMENT OF AN INCIDENCE MODEL 
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 2.1 Aim 

 

The primary aim of this research was to analyse the effect of medical conditions represented in 

the form of the Charlson comorbidity index (CCI) and the Elixhauser comorbidity index (ECI) on 

the incidence of lung cancer. 

The same dataset was used to develop a sex specific risk model to predict the risk of 

developing lung cancer for a definite time period with variables that can be easily collected 

either through questionnaire or a clinical practice using a Cox proportional hazard model. The 

risk score produced using this model is a cost effective way of identifying and referring high risk 

individuals for further clinical examinations.  

 

2.2 Introduction 

 

Lung cancer was the most common and the second most common cancer in males and females 

respectively, and the leading and second most leading cause of cancer death in males and 

females, respectively, in 2008, worldwide38. Female lung cancer death comprise of 11% of the 

total female cancer mortality while the male lung cancer death rate is decreasing in the 

western countries and increasing in countries such as China and other countries in Asia and 

Africa38. 

In the same year, lung cancer comprised 12.7% (1.61 million) of the total incident cancer cases 

(12.7 million) diagnosed in the world. Of these incident lung cancer cases, 16.5% (0.266 million) 

were males and 8.5% (0.137 million), females1. In 2009, the age standardised rate (ASR) for 
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incidence of lung cancer in England was 56.3 per 100,000 for males and 37.5 per 100,000 for 

females (Office of National Statistics)125.  

Feinstein defines comorbidity as any medical condition that pre or co exists with the disease 

under study126. Comorbidity affects patient care and is a major factor in long term survival of 

cancer patients127. Cancer specific research evaluating important comorbidities in the clinical 

trajectory of a patient can shed light on the diagnosis, treatment and long term monitoring of 

patients with comorbidities127. For example, the decreased chances of survival for patients with 

severe chronic obstructive pulmonary disease (COPD) due to unsuitability for lung malignancy 

resection or the presence of a congestive heart failure making the patient unfit for 

treatment127. It is therefore important to evaluate comorbidities in cancer patients as they 

govern the decisions involving prognosis, treatment and care128.  

Comorbidities associated with lung cancer include respiratory conditions such as pneumonia, 

tuberculosis (TB) and COPD (section 1.4.4), asbestosis (section 1.4.3.3), diabetes mellitus 

(DM)129, body weight130 and cardiovascular diseases131, 132. COPD is closely linked to lung cancer 

as they not only have a common environmental risk factor; cigarette smoke exposure, but are 

considered to have shared genetic and epigenetic mechanisms131. The risk of developing lung 

cancer is 4.5 times higher in patients with COPD131. Other diseases linked to COPD also include 

congestive heart failure and ischaemic heart disease132. This link between cardiovascular 

diseases and respiratory impairment may be due to shared risks such as cigarette smoking, 

severe infections and inflammation. Furthermore, respiratory defects cause the development 

and recurrence of cardiovascular disease imminent132. Subjects with respiratory condition and 

normal lung function have an increased risk of cerebrovascular disease equal to GOLD stage 3 
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or 4 for COPD, in magnitude132. Hypertension may be the link between respiratory and 

cardiovascular diseases132.  

Obesity was evaluated as a risk factor for lung cancer in current, former and never smokers, in 

448732 individuals aged between 50-71 years130. The analysis was conducted by using body 

mass index (BMI) as a surrogate for obesity and individuals were recruited between 1995-1996 

from the National Institutes of Health-AARP Diet and Health Study. BMI ( ≥35 vs 22.5–24.99 

kg/m
2) produced a hazard ratio (HR) of 0.81 (95% CI: 0.70 - 0.94) and 0.73 (95% CI: 0.61 -0.87) 

associated with the risk of lung cancer for men and women, respectively, after adjustment for 

age at study entry, detailed smoking status and dose, cigar/pipe smoking, race/ethnicity, 

education level, history of emphysema, physical activity, and alcohol intake130.  

 A study conducted on 1226 lung cancer cases with DM from a total sample of 61777 and 4281 

lung cancer cases without DM produced an odds ratio (OR) of 1.296 (95% CI: 1.214-1.384) after 

adjusting for sex and age. Study subjects were recruited using Taiwan’s National Health 

Research Institute database from 2000-2008133. Another study investigated the incidence of 

lung cancer in post-menopausal women aged between 50-79 years134. An age adjusted model 

indicate a HR of 1.26 (95% CI: 1.02-1.56) for individuals with treated diabetes134. Furthermore, 

overall survival study conducted on 1111 lung cancer cases produced an HR of 1.44 (95% CI: 

1.15-1.80) for diabetes in a multivariable Cox regression model adjusted for gender, age, other 

cancers, TB, COPD, hypertension, and stage, indicating decreased survival129.  

Though comorbidities govern various decisions in a patient’s trajectory, evaluating its effect is 

complex127. There are various sources from which comorbidity data can be obtained. Data from 

epidemiological studies can be obtained from clinical trials, cohorts (retrospective/prospective) 

or admission databases127. No data is perfect but clinical trial databases are considered to be 



 

52 
 

the best for survival related studies including outcome, disease progression and relapse as the 

study design avoids selection bias and collects patient information in detail while 

administrative databases are the weakest127. Administrative data cover large populations 

therefore allowing for generalizability127. Results obtained from cohort (prospective) are also 

generalizable, though they are relatively expensive127. Hospital Episode Statistics (HES) is an 

administrative database that contains patient and clinical details for admitted individuals 

through the National Health Service (NHS) hospitals in England135. Inpatient data from HES was 

used to study the incidence of community acquired lower respiratory tract infections and 

community acquired pneumonia in UK adults between April 1997 and March 2011136. It has 

also been used to assemble the datasets used to study the risk of emergency admissions to 

hospitals, as general practices were linked to HES137. HES was also integrated with the general 

practice research database (GPRD) and Office for National Statistics (ONS) mortality database 

for studying the incidence of cancer by emergency hospital admissions138. 

The reliability of HES was tested by comparing the data derived for vascular disease in women 

with general practice records in England from 1 April 1997 to 31 March 2005139. Ninety three 

percent of the women recorded to have vascular disease in GP records were also recorded to 

have a vascular disease in HES while 97% of the women with no record of vascular disease in 

GP records had no record in HES for vascular diseases, concluding that HES is a reliable source 

of information139. Another study utilised HES together with other clinical databases to 

determine the risk of postoperative death in hospital140. They concluded that the prediction 

model using HES had similar discriminatory power as clinical databases140. When the quality of 

HES was evaluated 2.3% admissions in 2003 had missing or invalid data on age, sex, admission 

method and discharge or admission date140. Furthermore, no secondary diagnosis was present 

for 47.9% and 41.6% of admissions in 1996 and 2003, respectively140. 
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There are various concepts to be considered when using comorbidities in evaluating or 

considering it in clinical decision making127. Different comorbidities will have different effects 

on different cancers with the effect varying during the progression through different cancer 

stages127. For instance, COPD would affect surgical intervention for early stage lung cancer 

while patients having chemotherapy would be affected by renal conditions127. Some 

comorbidity measures do not include a measure for severity of the condition127. Including the 

extent of severity is important because, for instance, mild COPD is not uncommon in lung 

cancer patient whereas severe COPD will make the patient unfit for surgical resection127.  

Comorbidities will only be reported if a patient is medically examined127. Chronic illnesses that 

would initiate regular medical check-ups would indirectly increase the chances of detecting 

cancer127. Certain comorbidities would increase the risk of developing cancer while the same 

condition would not have any impact on the outcome of that cancer127. In other words, cancer 

diagnosis and prognosis is affected by different comorbidities127. Other factors such as age, sex, 

ethnicities and socioeconomic status will affect individuals’ comorbidities in more than one 

way127.  

Comorbidity studies could identify illnesses that could increase the risk of cancer and therefore 

be screened for, as a preventive measure128. This practice could decrease the incidence of 

cancer with certain severe comorbidities encouraging regular and routine screening128. 

Comorbidity profiling could be a cost effective measure as detecting cancer earlier and treating 

it would reduce the cost of patient care128.  

Cancer is a heterogeneous disease and survival of lung cancer patients is not only influenced by 

histology of tumour, stage and age of diagnosis but also comorbidities129. Age has a major 

effect on the diagnosis of cancer and also increased incidence is seen with older age141, 142. 
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Cancer may be complicated with age related ailments and long lasting conditions including 

diabetes, heart disease, hypertension and arthritis142. Comorbidities govern the treatment plan 

of cancer patients leading to a less aggressive treatment choice for cancer patients143. 

Pulmonary and cardiovascular diseases together with diabetes influence cancer survival, 

identified by a lower resection rate143. Furthermore, the morbidity and mortality of resected 

NSCLC cases is associated with poor pulmonary function and cardiovascular disease143, with 

higher prevalence in older cases, while other publications indicated that prevalence of 

cardiovascular conditions, COPD and DM decrease the resection rate144. A comparison of 

NSCLC survival study indicated a 2-fold risk of death for patients with comorbidity129. 

Distribution of comorbidity indicated that 88.3% have ≥1 comorbidity, 54.3% have ≥3 

comorbidities and 22.1% have ≥5 comorbidities in lung cancer patients129. 

 It is necessary to evaluate comorbidities in cancer patients because increased number of 

comorbidities is associated with lower survival145. Studies have also reported that prediction of 

overall survival was linked to comorbidity145. All comorbidities in lung cancer are shown to be 

associated with increased toxicity and total dose reduction of chemotherapy145. Furthermore, 

increased toxicities could affect a patients’ prognosis145.  

Comorbidities can therefore affect the diagnosis and prognosis of cancer128. It can lead to 

diagnosis at an earlier stage or affect diagnosis by affecting the presentation of illness and 

increase complexity during the course of the disease128. It can not only reduce the survival of 

cancer patients but influence all-cause mortality128. It can massively affect cancer treatment 

and vice versa128. Milder treatment is an option for those with increased comorbidity128.  

Adjusting for comorbidities, to allow for general applicability without increasing the risk of the 

patient is required in cancer therapy146. Furthermore, since certain comorbidities prevent the 
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optimal effect of therapy due to toxicity from treatment, they have to be considered in 

treatment management146.  

 

2.2.1 Comorbidity Index 

 

Comorbidities can be studied individually or as a summary measure, which can be generalised 

and used across disease populations or be disease specific127. Disease specific comorbidity 

measures have been created for breast cancer147 and lung cancer148 which were developed and 

tested using a cancer specific patient cohort127.  

Disease specific models are considered to be better than general models as they would explain 

the outcome of interest better than the generalised model that assumes same impact for 

various diseases127.  Furthermore, the choice of comorbidities in a disease specific comorbidity 

measure would consider that certain comorbidities are not independent of the disease i.e. 

manifested as a result of the disease127. For example, the existence of anaemia, weight loss, 

pneumonia and electrolyte disorders before cancer development127.  

Many indices have been formulated to collate comorbidities into a useful measure including 

the BOD index, CIRS, Cornoni-Huntley index, Hallstrom index, Hurwitz index, Incalzi index but 

the most widely used are the Charlson comorbidity index (CCI) and the Elixhauser comorbidity 

index (ECI)126, 149. Comorbidities present us with an opportunity to further refine prognoses and 

improve prediction126. In cancer research, the ECI has been compared to CCI to evaluate 

survival of colorectal cancer patients. The result showed that the ECI can form a superior risk 

adjustment model for predicting survival150.  
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Charlson Comorbidity Index: In 1987, Mary Charlson and colleagues designed the Charlson 

comorbidity index (CCI) by studying the mortality at 1 year as a function of various 

comorbidities by using the internal medicine inpatient service data151. Any medical condition or 

disease that resulted in a relative risk of death greater than 1.2 was included in the index151. 

This resulted in a list of 17 comorbid conditions with different weights including myocardial 

infarction (MI), congestive heart failure (CHF), peripheral vascular disease (PVD), 

cerebrovascular disease (CVD), dementia, chronic pulmonary disease (CPD), connective tissue 

disease (CTD), peptic ulcer disease, mild liver disease and diabetes: 1, Hemiplegia, moderate or 

severe renal disease, diabetes with end organ damage, any tumour excluding lung cancer, 

leukaemia, lymphoma: 2 , moderate or severe liver disease: 3,metastatic solid tumour and 

AIDS: 6151. Depending on the type of disease studied, a slight modification in various 

publications is seen141. The CCI has found its use in various cancers to predict prognosis, 

survival and treatment, mainly because of its simplicity and ease of applicability152-154. 

 

Elixhauser Comorbidity Index: In 1998, Anne Elixhauser, developed a set of comorbidity 

measures to effectively handle and utilise administrative inpatient data149. A detailed set of 30 

comorbidities were developed that could find its use in grouping individuals based on 

comorbidities and utilise them as binary indicators for discrete conditions or convert them into 

a score or index for handling multiple conditions149. These comorbidities were determined 

using inpatient data from 438 hospitals comprising a total of 1,779,167 patients, utilising length 

of stay, hospital charges and in hospital death as outcome variables149. ECI is defined by the 

presence of congestive heart failure, cardiac arrhythmias, valvular disease, pulmonary 



 

57 
 

circulation disorders, peripheral vascular disorders, hypertension (uncomplicated), 

hypertension (complicated), paralysis, neurodegenerative disorders, chronic pulmonary 

disease, diabetes (uncomplicated), diabetes(complicated), hypothyroidism, renal failure, liver 

disease, peptic ulcer disease, AIDS/HIV, lymphoma, metastatic cancer, solid tumour without 

metastasis, rheumatoid arthritis/collagen, coagulopathy, obesity, weight loss, fluid and 

electrolyte disorders, blood loss anaemia, deficiency anaemia, alcohol abuse, drug abuse, 

psychosis and depression149. 

Additionally, the CCI151 has been used to study many cancers (Table 2.1) including survival in 

early stage lung cancer patients after surgical resection154, proton therapy155, and evaluate long 

term survival152 and survival after surgery and radiotherapy156 in NSCLC patients. Additionally, 

also used to analyse survival in bronchial cell carcinoma157, head and neck squamous cell 

carcinoma158, 159, chronic myeloid leukaemia160, colorectal cancer150, colon cancer161, bladder 

cancer162-165, renal cell carcinoma166, ovarian cancer167 and prostate cancer patients168-170. 
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Table 2.1: Use of Charlson comorbidity index (CCI) in various cancers.  

AUTHOR  AIM  
 

METHOD  COMORBIDITY SCORE- 
CHARLSON COMORBIDITIES 

RESULTS AND SUMMARY 

Ganti et al., 
2011146 

αTo evaluate the 
correlation 
between CCI 
and survival in 
lung cancer.  

 

A retrospective study on 617 
lung cancer patients using Cox 
proportional hazard model to 
evaluate the relationship 
between survival and CCI 
adjusting for sex, smoking 
history/pack years, family 
history of 
lung cancer, histopathological 
classification, stage of disease 
at diagnosis and type of initial 
treatment. 

1 - MI, CHF, PVD, CVD, Dementia, 
CPD, CTD, Peptic ulcer disease, 
Mild liver disease, Diabetes 
2- Hemiplegia, Moderate to 
severe renal disease, Diabetes 
with end organ damage 
3- Moderate to severe liver 
disease 
6- AIDS 
1-For each decade over 40 years.  

Multivariate analyses depicted 
that CCI was not associated with 
the death risk and for CCI≥5, the 
HR = 1.37 (95% CI: 0.52-3.62; 
p=0.54). The p value for Charlson 
index with and without age for 
every grading was not significant, 
therefore the prediction of lung 
cancer survival using CCI was not 
valid leading to a need of better 
prognostic models. 

Do et al., 
2010155 

αTo study the 
influence of 
comorbidity on 
survival in early 
stage lung 
cancer patients 
treated with 
proton 
radiotherapy 
using Charlson 
comorbidity 
index. 

 

54 NSCLC patients treated 
prospectively in a phase II 
clinical trial with 
hypofractionated proton 
therapy were analysed for 
comorbidities using the 
Charlson comorbidity index.  

1 - MI, CHF, PVD, CVD, Dementia, 
CPD, CTD, Peptic ulcer disease, 
Mild liver disease, Diabetes 
(without end organ damage). 
2 - Diabetes with end organ 
damage, Hemiplegia, Moderate 
or severe renal disease, 2nd solid 
tumour, Leukaemia, Lymphoma, 
Multiple myeloma. 
3 - Moderate or severe liver 
disease 
6 - 2nd metastatic solid tumour, 
AIDS 

Chronic pulmonary disease was 
the most prevalent comorbid 
condition. The predicted survival 
and the observed comorbidity 
specific survival (CSS) correlated 
well, with the 3 year predicted 
survival based on CCI being 62% 
and the observed 3 year CSS 
being 57% with no statistical 
significance between them. 
Furthermore, correlation was 
seen between the mortality 
predicted by CCI and the 
observed mortality. 
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Pujol et al., 
2008171 

αβ To validate 
the simplified 
comorbidity 
score in a 
population of 
non-small cell 
lung cancer 
patients. 

 

Therapeutic and clinical data 
were available on 301 non-
small cell lung cancer patients  

1 - MI, CHF, PVD, CVD, Dementia, 
CPD, CTD, Peptic ulcer disease, 
Mild liver disease, Diabetes 
(without end organ damage). 
2 - Diabetes with end organ 
damage, Hemiplegia, Moderate 
or severe renal disease, 2nd solid 
tumour, Leukaemia, Lymphoma, 
Multiple myeloma. 
3 - Moderate or severe liver 
disease 
6 - 2nd metastatic solid tumour, 
AIDS 

In the univariate analysis, shorter 
survival was predicted by poor 
PS, advanced stage, weight loss, 
anaemia, hyperleukocytosis, 
lymphopenia, high platelet count, 
high CYFRA 21-1, high NSE, 
hypoprotidemia, 
hypoalbuminemia, high 
LDH(lactate dehydrogenase), high 
alkaline phosphatases, 
hyponatremia, hypercalcaemia, 
high fibrinogen, SCS (simplified 
comorbidity score) >9, CCI ‡3 and 
patient LCSS (lung cancer 
symptom scale) score >22.2 and 
in the multivariable analyses low 
survival was predicted by stage 
grouping(HR= 4.03, 95% CI: 2.40–
6.77); CYFRA 21-1 level (HR= 
2.30,95% CI: 1.52–3.49); low QoL 
(quality of life)(HR = 2.20,95% CI: 
1.48–3.27); SCS (HR=1.78, 95% CI:  
1.21–2.63); anaemia (HR= 1.88, 
95% CI: 1.16–3.07); high NSE level 
(HR= 1.66, 95% CI: 1.12–2.46); 
low sodium level (HR= 1.99, 95% 
CI: 1.04–3.77) and high alkaline 
phosphatases level (HR = 1.53, 
95% CI: 1.01–2.32). SCS is more 
informative than CCI in predicting 
NSCLC.  
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Wang et al., 
2007154 

θηTo determine 
the better 
predictor of 
prognosis in 
patients with 
stage I non-
small cell lung 
cancer 
resection. 

 

Medical records on 426 
patients were used to 
calculate the KPI (Kaplan—
Feinstein index) and the 
Charlson comorbidity index 
(CCI) using both the univariate 
and multivariate analyses.  

1-CAD, CHF, CPD, Peptic ulcer 
disease, PVD, Mild liver disease, 
CVD, CTD, diabetes, dementia 
2- Hemiplegia, Moderate to 
severe renal disease, Any prior 
tumour, Leukaemia, Lymphoma 
3-Moderate to severe liver 
disease 
6-Metastatic solid tumour; AIDS 

In univariate analyses, male 
gender (p= 0.016), patients aged 
≥65 years(p=0.002), 
smokers(p=0.023), CCI score ≥2 
(p=0.003), extensive resection 
and pathological stage 
IB cancer (p=0.007) had poorer 5-
year survival. In 
multivariate logistic regression 
analysis, age ≥65 years (HR= 1.4, 
95% CI: 1.02-1.93) 
pneumonectomy (HR=2.42, 95% 
CI: 1.2-3) CCI score ≥2 ( HR= 
1.74,95% CI: 1.25-2.42) and stage 
IB cancer (HR= 1.49, 95% CI: 1.12-
1.98) were independent 
prognostic factors. 
Patients with CCI ≥2 had higher 
perioperative mortality and non-
cancerous death after resection 
as compared with patients with 
CCI<2 whereas KFI had no impact 
on mortality.  

Birim et al., 
2005152 

αβθηTo validate 
the influence of 
Charlson 
comorbidity 
index on long 
term survival in 
operated non-
small cell lung 

Kaplan Meier was used to 
obtain survival curves and risk 
factors were determined using 
univariate and multivariate 
Cox regression model 

1-CAD, CHF, CPD, Peptic ulcer 
disease, PVD, Mild liver disease, 
CVD, CTD, diabetes, dementia 
2- Hemiplegia, Moderate to 
severe renal disease, Any prior 
tumour, Leukaemia, Lymphoma 
3-Moderate to severe liver 
disease 

Univariate analysis depicted that 
age, male gender, congestive 
heart failure, chronic pulmonary 
disease, Charlson comorbidity 
index, clinical and pathological 
stage, and type of resection were 
significantly associated with 
decreased survival. In the 
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cancer patients 
and determine 
its efficiency as 
a predictor of 
long term 
survival 
compared to 
individual risk 
factors. 

 

6-Metastatic solid tumour; AIDS multivariate analysis age (RR= 
1.02; 95% CI: 1.01–1.03), 
Charlson comorbidity grade 1–2 
(RR= 1.4; 95% CI: 1.0–1.8), 
Charlson comorbidity grade ≥3 
(RR= 2.2; 95% CI: 1.5–3.1), 
bilobectomy (RR= 1.7; 95% CI: 
1.2–2.5), pneumonectomy (RR= 
1.5; 95% CI: 1.1–2.0), pathological 
stage IB (RR= 1.5; 95% CI: 1.1–
2.2), IIB (RR= 1.9; 95% CI: 1.2–
3.0), IIIA (RR= 1.9; 95% CI: 1.1–
3.1), IIIB (RR= 2.8; 95% CI: 1.2–
6.8), and IV (RR=12.4; 95% CI: 
3.2–48.2), were associated with 
an impaired survival. Charlson 
comorbidity index is a better 
predictor than individual risk 
factors. 

Moro-Sibilot et 
al., 2005172 

αTo determine 
the impact of 
comorbidity on 
survival after 
stage I non-
small cell lung 
cancer surgery. 

 

588 patients underwent 
resection for stage 1 NSCLC. 
Comorbidity was assessed 
using the Charlson Index of 
comorbidity (CCI). Cox 
proportional hazards model, 
Kaplan-Meier and the log rank 
test were used for survival and 
forward stepwise logistic 
regression was used with 
survival as response variable. 

1-CAD, CHF, CPD, Peptic ulcer 
disease, PVD, Mild liver disease, 
CVD, CTD, diabetes, dementia 
2- Hemiplegia, Moderate to 
severe renal disease, Any prior 
tumour(within 5 years of 
diagnosis), Leukaemia, 
Lymphoma 
3-Moderate to severe liver 
disease 
6-Metastatic solid tumour; 
AIDS(not only HIV positive) 

No survival differences were seen 
between CCI=0 and CCI grade 1-2 
(p= 0.37), and CCI 3-4 and CCI≥5 
(p=0.96) but significant survival 
differences were detected 
between CCI 1-2 and CCI 3-4 
(p=0.002). Comorbidities after 
surgical resection have an 
important impact on survival in 
stage 1 non small cell lung cancer. 
The use of CCI is recommended. 
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Birim et al., 
2003173 

αTo study the 
influence of 
Charlson 
comorbidity 
index in patients 
with operated 
primary non-
small cell lung 
cancer. 

 

205 patients who underwent 
resection for primary non-
small cell lung cancer were 
evaluated ; univariate and 
multivariate logistic regression 
was used to determine 
individual risk factors 

1-CAD, CHF, CPD, Peptic ulcer 
disease, PVD, Mild liver disease, 
CVD, CTD, Diabetes, Dementia 
2-Hemiplegia, Moderate to 
severe renal disease, Diabetes 
with end organ damage, Any 
prior tumour,  Leukaemia, 
Lymphoma 
3-Moderate to severe liver 
disease 
6-Metastasis solid tumour, AIDS 

Univariate analyses showed that 
gender, prior tumour within 5 
years, CCI grade 3-4 and chronic 
pulmonary disease were 
significant however in the 
multivariate analysis only CCI 
grade 3-4 was significant (OR= 
9.8; 95% CI: 2.1-45.9). CCI is the 
strong predictor of major 
complications of surgery in NSCLC 
and is better than the individual 
risk factors. 

Firat et al., 
2002156 

θTo determine 
the role of 
comorbidity in 
prognosis of 
non-small cell 
lung cancer for 
patients treated 
with surgery 
and 
radiotherapy.  

 

Data on 163 patients with 
stage I non-small cell lung 
cancer was used to estimate 
the overall survival and 
comorbidity. 113 patients 
underwent surgery and 50 
received radiotherapy. 
Charlson comorbidity index, 
Cumulative illness rating scale 
for geriatrics (CIRS-G) and the 
Karnofsky performance score 
(KPS) were used to rate 
comorbidity.  

1 - MI, CHF, PVD, CVD, Dementia, 
CPD, CTD, Peptic ulcer disease, 
Mild liver disease, Diabetes 
(without end organ damage). 
2 - Diabetes with end organ 
damage, Hemiplegia, Moderate 
or severe renal disease, 2nd solid 
tumour, Leukaemia, Lymphoma, 
Multiple myeloma. 
3 - Moderate or severe liver 
disease 
6 - 2nd metastatic solid tumour, 
AIDS 

Significant covariates upon 
univariate analyses, associated 
reduced survival include 
squamous cell histological type (p 
<0.001), clinical Stage T2 (p 
=0.062), tumour size > 4 cm (p = 
0.065), > 40 pack-year tobacco 
use (p <0.001), presence of a 
CIRS-G score of 4 (p  <0.001), 
severity index of >2 (p <0.001), 
Charlson score >2 (p = 0.004), KPS 
<70 (p <0.001),and treatment 
with RT (p <0.001). Multivariate 
analyses of all patients with 
histological features, clinical T 
stage, age, tobacco use, KPS, 
CIRS-G and treatment group 
showed that SCC histological type 
(RR= 2.3, 95% CI: 1.5-3.5), >40 
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pack year tobacco use 
(RR=2.1,95% CI: 1.3–3.4),KPS <70 
(RR=2.7, 95% CI: 1.7–4.2) and 
presence of CIRS-G (RR=3.4, 95% 
CI: 2.1–5.3) were independently 
associated with reduced overall 
survival. 

Sanchez et al., 
2006157 

αηTo study the 
role of 
comorbidities in 
the treatment 
of bronchial 
carcinoma.  

Comorbidity measurement on 
305 bronchial carcinoma cases 
was used. The Torrington-
Henderson scale and the 
Charlson scale were used for 
patient categorisation on risk 
or death. 

1 - MI, CHF, PVD, CVD, Dementia, 
CPD, CTD, Peptic ulcer disease, 
Mild liver disease, Diabetes 
(without end organ damage). 
2 - Diabetes with end organ 
damage, Hemiplegia, Moderate 
or severe renal disease, 2nd solid 
tumour, Leukaemia, Lymphoma, 
Multiple myeloma. 
3 - Moderate or severe liver 
disease 
6 - 2nd metastatic solid tumour, 
AIDS 

Logistic regression revealed that 
the Charlson score (p = 0.001) 
and BMI (p=0.003) score 
significantly correlated with 
complications. In the 
multivariable analyses FEV1(p = 
0.001) and prolonged air leak(p < 
0.001) determined respiratory 
complications. Charlson score of 
3 or 4 and the Torrington-
Henderson score of 3 were 
associated with a greater number 
of postoperative complications in 
patients with bronchial 
carcinoma.  

Liu et al., 
2010158 

αTo study the 
impact of 
comorbidity on 
survival in 
patients with 
head and neck 
squamous cell 
carcinoma. 

 

CCI was calculated for 241 
patients treated with 
radiotherapy or radiotherapy 
and chemotherapy. The 
overall survival and disease 
specific survival were 
calculated. 

1 - MI, CHF, PVD, CVD, Dementia, 
CPD, CTD, Peptic ulcer disease, 
Mild liver disease, Diabetes 
(without end organ damage). 
2 - Diabetes with end organ 
damage, Hemiplegia, Moderate 
or severe renal disease, 2nd solid 
tumour, Leukaemia, Lymphoma, 
Multiple myeloma. 

Higher CCI was associated with 
older age, fewer years of 
education and no CT (p<0.05). CCI 
score ≥ 2(HR= 2.7, 95% CI: 1.7-
4.2), stage IV disease (HR = 2.3, 
95% CI: 1.2-4.7), a RT dose < 70 
Gy (HR = 1.5, 95% CI: 1.1-2.1), 
and no CT (HR = 1.8, 95% CI: 1.3-
2.6) were significant predictors of 
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3 - Moderate or severe liver 
disease 
6 - 2nd metastatic solid tumour, 
AIDS 

poorer overall survival and CCI 
score ≥ 2 (HR= 2.4, 95% CI: 1.5-
3.8), stage IV disease (HR = 
2.2,95% CI: 1.1-4.4), a RT dose < 
70 Gy (HR =1.5, 95% CI: 1.1-2.1) 
and no CT (HR =1.9, 95% CI: 1.3-
2.7) disease specific survival in 
multivariate analyses. 
Comorbidity has a significant 
impact on survival of patients 
with NSCLC treated by 
radiotherapy or radiotherapy and 
chemotherapy. 

Singh et al., 
1997159 

βTo validate the 
Charlson 
comorbidity 
index in head 
and neck cancer 
patients. 

 

Study conducted on 88 
patients. Cox proportional 
hazard model was used to 
determine the relative risk of 
individual risk factors and 
survival 

1-MI, CPD, CHF, Ulcer, PVD, Mild 
liver disease, cerebrovascular 
accident, Diabetes, Dementia 
2-Hemiplegia, Moderate to 
severe renal disease, Diabetes 
with end organ damage, Any 
tumour,  Leukaemia, Lymphoma 
3-Moderate to severe liver 
disease 
6-Metastatic solid tumour, AIDS 

Patients with advanced 
comorbidity had a RR =2.35 (95% 
CI: 1.23-4.46; p=0.009) times 
greater relative risk for cancer 
related death than low grade 
comorbidity. Charlson index 
produced 100% applicability 
compared to the Kaplan Feinstein 
index (80%) (p<0.0001). CCI is a 
valid prognostic indicator of head 
and neck cancer and is better 
suited for retrospective study. 

Breccia et al., 
2011160 

θTo utilise 
Charlson 
comorbid index 
to predict the 
development of 
pleural 

125 elderly patients (>60) with 
chronic myeloid leukaemia 
who received dasatinib after 
imatinib resistance or 
intolerance were 
retrospectively evaluated 

1 - MI, CHF, PVD, CVD, Dementia, 
CPD, CTD, Peptic ulcer disease, 
Mild liver disease, Diabetes 
(without end organ damage). 
2 - Diabetes with end organ 
damage, Hemiplegia, Moderate 

Significant association between 
Charlson index and drug 
reduction or suspension was 
seen. During dasatinib treatment 
49% of score 0 patients saw a 
reduced dose compared to 63% 
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effusions in 
elderly chronic 
myeloid 
leukemia 
patients treated 
with dosatinib 
after resistance 
or intolerance 
with inatinib.  

 

using the Charlson 
comorbidity index and adult 
comorbidity evaluation 
27(ACE27). 

or severe renal disease, 2nd solid 
tumour, Leukaemia, Lymphoma, 
Multiple myeloma. 
3 - Moderate or severe liver 
disease 
6 - 2nd metastatic solid tumour, 
AIDS 

of patients with score 1, 74% of 
patients with score 2 and 100% of 
patients with score 3 or 4 
(p=0.0001). Association between 
the Charlson index and 
development of pleural effusions 
were seen. Stratification by use of 
Charlson index may allow 
identification of patients with 
high rate of having major 
toxicities. 

Lieffers et al., 
2010150 

αηTo compare 
the Charlson 
and Elixhauser 
comorbidity 
measures in 
colorectal 
cancer. 

574 colorectal patients on 
whom administrative data for 
cancer, comorbidity and 
survival (2 and 3 year survival) 
was available were used and 
analyses were conducted 
using robust Poisson 
regression to analyse survival 
for both indices. 

1 - MI, CHF, PVD, CVD, Dementia, 
CPD, CTD, Peptic ulcer disease, 
Mild liver disease, Diabetes 
(without end organ damage). 
2 - Diabetes with end organ 
damage, Hemiplegia, Moderate 
or severe renal disease, 2nd solid 
tumour, Leukaemia, Lymphoma, 
Multiple myeloma. 
3 - Moderate or severe liver 
disease 
6 - 2nd metastatic solid tumour, 
AIDS 

A baseline model with age, sex 
and stage showed a significant 
discrimination for the 2 and 3 
year survival analyses (C 
statistics, >0.8). Adding the 
Charlson comorbidities to this 
baseline model did not show any 
improvement (2-year survival, p 
=0.14; 3-year survival, p = 0.17) 
however adding the Elixhauser 
comorbidities to the baseline 
model showed discrimination (2-
year survival, p = 0.0051; 3-year 
survival, p = 0.0017). For survival 
prediction, Elixhauser method is a 
better comorbidity risk 
adjustment model for colorectal 
cancer. 

Hines et al., 
2009161 

αηTo check for 
association 

496 patients underwent 
surgery for colon cancer. 

1 - MI, CHF, PVD, CVD, Dementia, 
CPD, CTD, Peptic ulcer disease, 

All three methods produced 
similar results (ACE-27: HR = 1.63; 
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between 
comorbidities 
and mortality 
after colon 
cancer surgery 
using three 
different 
methodologies. 

 

Overall and colon cancer 
specific mortality was 
evaluated using the Cox 
proportional hazard for the 
three methods namely Adult 
Comorbidity Evaluation-27 
(ACE-27), the National 
Institute on Aging (NIA) and 
National Cancer Institute (NCI) 
Comorbidity Index, and the 
Charlson Comorbidity Index 
(CCI). 

Mild liver disease, Diabetes 
(without end organ damage). 
2 - Diabetes with end organ 
damage, Hemiplegia, Moderate 
or severe renal disease, 2nd solid 
tumour, Leukaemia, Lymphoma, 
Multiple myeloma. 
3 - Moderate or severe liver 
disease 
6 - 2nd metastatic solid tumour, 
AIDS 

95% CI: 1.24 - 2.15); (NIA/NCI, HR 
= 1.83; 95% CI: 1.29 - 2.61); (CCI: 
HR =1.46; 95% CI: 1.14 - 1.88) 
Shorter survival after colon 
cancer surgery was significantly 
predicted by all three methods 

Gore et al., 
2010164 

αTo compare 
the survival 
outcomes of 
patients with 
bladder cancer. 

 

3262 patients over the age of 
66 years at diagnosis with 
stage II muscle invasive 
bladder cancer were recruited. 
Use of radical cystectomy 
studied.  

1 - MI, CHF, PVD, CVD, Dementia, 
CPD, CTD, Peptic ulcer disease, 
Mild liver disease, Diabetes 
(without end organ damage). 
2 - Diabetes with end organ 
damage, Hemiplegia, Moderate 
or severe renal disease, 2nd solid 
tumour, Leukaemia, Lymphoma, 
Multiple myeloma. 
3 - Moderate or severe liver 
disease 
6 - 2nd metastatic solid tumour, 
AIDS 

21% of study subjects underwent 
radical cystectomy. The overall 
survival for patients who 
underwent cystectomy was 
better than chemotherapy and/or 
radiation (HR = 1.5, 95% CI: 1.3-
1.8) and surveillance (HR = 1.9; 
95%CI: 1.6-2.3). The 5 year 
adjusted survival was 42.2% (95% 
CI: 39.1%-45.4%), for cystectomy 
it was 20.7% (95% CI: 18.7%-
22.8%), for chemotherapy and/or 
radiation it was 14.5% (95% CI: 
13% -16.2%). The overall survival 
was better for patients that had 
cystectomy compared with those 
who underwent alternative 
therapy, concluding that many 
bladder cancer patients might 
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benefit from surgery are receiving 
alternative, less salubrious 
treatments. 

Fisher et al., 
2009165 

αTo study the 
risk factors for 
postoperative 
cardiac 
complications 
after 
cystectomy for 
bladder cancer. 

A retrospective review on 283 
patients who underwent 
cystectomy was carried out by 
considering 12 preoperative 
risk factors including age, CCI, 
type of urinary diversion and 
previous cardiac history. 
Analysis was carried out using 
univariate and multivariate 
analysis 

1-MI, CPD, CHF, Ulcer, PVD, Mild 
liver disease, Cerebrovascular 
accident, Diabetes, Dementia 
2-Hemiplegia, Moderate to 
severe renal disease, Diabetes 
with end organ damage, Any 
tumor, Leukemia, Lymphoma 
3-Moderate to severe liver 
disease 
6-Metastatic solid tumour, AIDS 

POCC risk was associated with 
ileal conduit urinary diversion (OR 
= 5.58, 95% CI: 1.23-25.36, p= 
.026) and Charlson index score 
(OR =1.28, 95% CI: 1.024-1.60, p= 
.030) on multivariate analysis. 
Therefore, patients with a prior 
cardiac history should be 
counselled about the increased 
risk of postoperative cardiac 
complications. 

Koppie et al., 
2008162 

αTo study the 
survival after 
cystectomy in 
bladder cancer 
patients. Age 
adjusted 
Charlson 
comorbidity 
index (ACCI) 
was used to 
characterise the 
impact of 
comorbidity and 
age on disease 
progression and 
analyse its 
association with 

1121 patients underwent 
radical cystectomy for bladder 
cancer. Logistic regression was 
used to study the associations 
of various clinical features. 
Multivariate logistic regression 
model was used for overall 
and progression free survival 
and Cox proportional hazard 
model was used for endpoint 
overall survival analysis. 

1 - MI, CHF, PVD, CVD, Dementia, 
CPD, CTD, Peptic ulcer disease, 
Mild liver disease, Diabetes 
2- Hemiplegia, Moderate to 
severe renal disease, Diabetes 
with end organ damage 
3- Moderate to severe liver 
disease 
6- AIDS 
1 – for each decade over 40 
years. 

For overall survival the patients 
with moderate score had a HR= 
1.46 (95% CI: 1.20–1.78) 
compared to the patients low 
ACCI score and for the patients 
with high ACCI score the HR= 2.66 
(95% CI: 2.00–3.55).There was a 
significant association between 
ACCI score and the disease free 
progression survival (p= 0.03). 
Emphasises the importance of 
age and comorbidity in treatment 
selection and survival and 
therefore its importance in 
treatment.  
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clinicopathologi
c and treatment 
characteristics.  

Miller et al., 
2003163 

αTo study the 
influence of 
comorbidities 
on control and 
survival of 
cancer after 
radical 
cystectomy for 
bladder cancer. 

106 patients with localised 
disease underwent radical 
cystectomy. Charlson index 
was used to assess the 
preoperative co morbidity. 
Logistic regression was used to 
ascertain the relationship 
between the Charlson index 
and pathological stage while 
Cox regression was used to for 
the 2 survival end points 
(disease specific and overall).  

1 - MI, CHF, PVD, CVD, Dementia, 
CPD, CTD, Peptic ulcer disease, 
Mild liver disease, Diabetes 
(without end organ damage). 
2 - Diabetes with end organ 
damage, Hemiplegia, Moderate 
or severe renal disease, 2nd solid 
tumour (last 5 years), Leukaemia, 
Lymphoma. 
3 - Moderate or severe liver 
disease 
6 - 2nd metastatic solid tumour, 
AIDS 

Bivariate analyses depicted a 
decreased association of disease 
specific (HR=1.26; p= 0.049) and 
overall survival (HR= 1.26; p = 
0.016) with Charlson Index. In the 
multivariate analyses, decreased 
cancer survival (HR= 1.257; 95% 
CI: 1.001-1.578; p =0.049) and 
increased extravesical disease 
(OR= 0.659; 95% CI: 0.449-0.968; 
p=0.033) was associated with 
Charlson index. 

Gettman et al., 
2003166 

θTo study 
outcome 
prediction after 
renal cell 
carcinoma 
surgery using 
the Charlson 
comorbidity 
index. 

303 patients underwent 
surgical resection. Kaplan 
Meier was used for survival 
analyses and multivariate Cox 
proportional hazard analyses 
were carried out using 
Charlson index, sex, age, 
tumour level, TNM stage, 
grade, perinephric fat 
invasion, completeness of 
resection and surgical era.  

1 - MI, CHF, PVD, CVD, Dementia, 
CPD, CTD, Peptic ulcer disease, 
Mild liver disease, Diabetes 
(without end organ damage). 
2 - Diabetes with end organ 
damage, Hemiplegia, Moderate 
or severe renal disease, 2nd solid 
tumour (last 5 years), Leukaemia, 
Lymphoma. 
3 - Moderate or severe liver 
disease 
6 - 2nd metastatic solid tumour, 
AIDS 

Significant univariate predictors 
were age at surgery (p = 0.03), 
lymph node status (p = 0.005), 
metastasis (p =0.0001), grade (p = 
0.0001), perinephric fat 
involvement (p = 0.005) and 
tumour levels 0 versus I through 
IV (p = 0.056). The final model 
revealed metastasis (p = 0.0001), 
grade (p = 0.0001), perinephric 
fat involvement (p = 0.02) and 
tumor levels 0 versus I through IV 
(p = 0.048) as multivariate 
predictors of cause specific 
survival. 
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Tetsche et al., 
2008167 

αTo study the 
prevalence of co 
morbidities with 
respect to stage 
of the ovarian 
cancer and to 
evaluate the 
impact of age 
and comorbidity 
on survival by 
stage. 

 

5213 patients with ovarian 
cancer on whom comorbid 
data was available were used 
in this study. Kaplan Meier 
survival curves were 
constructed for every level of 
Charlson index and staging of 
the cancer and hazard ratios 
were computed using the Cox 
proportional hazard 
regression method 

1 - MI, CHF, PVD, CVD, Dementia, 
CPD, CTD, Peptic ulcer disease, 
Mild liver disease, Diabetes 
(without end organ damage). 
2 - Diabetes with end organ 
damage, Hemiplegia, Moderate 
or severe renal disease, 2nd solid 
tumour, Leukaemia, Lymphoma, 
Multiple myeloma. 
3 - Moderate or severe liver 
disease 
6 - 2nd metastatic solid tumour, 
AIDS 

One and five year survival was 
high with patients without 
comorbidities. For patients with 
Charlson mortality score of 1-2 
and 3+, the one year MMR 
(mortality rate ratio) declined 
from 1.8 to 1.4 and from 2.7 to 2, 
respectively, after adjusting for 
age and calendar time and 
furthermore, declined to 1.3 and 
1.8, respectively, after adjusting 
for stage. Similar decline was 
seen for the five year survival 
rate. Mortality was observed in 
patients with prevalence of co 
morbidities and severe 
comorbidities were associated 
with advanced stage of ovarian 
cancer. 

Wahlgren et al., 
2010168 

θTo study the 
impact of pre-
treatment 
comorbidity and 
post treatment 
(radiotherapy) 
health related 
quality of life 
score (HRQoL) 
for prostate 
cancer.  

158 patients 5 years after the 
completion of therapy were 
used. The association between 
CCI and the HRQoL was 
analysed using ANCOVA and 
multivariate regression was 
used with tumour stage, 
tumour grade, diabetes status, 
and cardiovascular status, CCIs 
were included as fixed factors, 
whereas age at treatment, 
pretreatment PSA, and 

1 - MI, CHF, PVD, CVD, Dementia, 
CPD, CTD, Peptic ulcer disease, 
Mild liver disease, Diabetes 
(without end organ damage). 
2 - Diabetes with end organ 
damage, Hemiplegia, Moderate 
or severe renal disease, 2nd solid 
tumour, Leukaemia, Lymphoma, 
Multiple myeloma. 
3 - Moderate or severe liver 
disease 
6 - 2nd metastatic solid tumour, 

For various aspects of HRQoL, a 
statistically significant inverse 
relationship was observed 
between global health (QL) and 
CCI (p<0.01) and between 
physical function (PF) and CCI 
(p<0.01). The Charlson score was 
associated with global health 
status (QL) (p=0.0002), physical 
function (PF) (p=0.015) and 
emotional function (EF) (p=0.04) 
in the univariate analysis. CCI was 
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neoadjuvant hormonal 
treatment were included as 
covariates. 

AIDS valid but mainly useful in long 
term predictive studies. QL, PF 
and EF were negatively 
significantly associated with 
diabetes (p=0.009). Also, diabetes 
had a stronger impact than 
cardiovascular status. Upon 
multivariate analyses, the 
Charlson CCI score and diabetes 
remained statistically significant.  

Alibhai et al., 
2008170 

ηTo define an 
optimal co 
morbidity index 
for prostate 
cancer (the 
Charlson Index, 
the Diagnosis 
Count, the Index 
of Coexistent 
Disease (ICED), 
and the number 
of medications).  

345 men with newly 
diagnosed prostate cancer 
cases with information about 
their comorbidity and 
treatment were available. The 
performance of the 4 indices 
was compared by using it to 
predict the overall survival and 
receipt of curative treatment.  

1 - MI, CHF, PVD, CVD, Dementia, 
CPD, CTD, Peptic ulcer disease, 
Mild liver disease, Diabetes 
(without end organ damage). 
2 - Diabetes with end organ 
damage, Hemiplegia, Moderate 
or severe renal disease, 2nd solid 
tumour, Leukaemia, Lymphoma, 
Multiple myeloma. 
3 - Moderate or severe liver 
disease 
6 - 2nd metastatic solid tumour, 
AIDS 

For the receipt of curative 
treatment, the Gleason score and 
the PSA level predict the receipt 
of curative therapy and all the 4 
indices depict an association in 
the univariate analyses (c 
statistics; p < 0.05) however for 
multivariable models adjusted for 
age, Gleason score and PSA level 
only Charlson score appeared 
significant. For the survival 
analyses, age, local stage of 
disease, Gleason score, PSA level, 
and receipt of curative therapy 
were associated with survival. All 
the 4 models showed an 
association with survival in the 
univariate analyses and 
multivariate analyses. The 
optimal comorbidity index for 
prostate cancer for curative and 
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overall survival analyses still 
remains to be elucidated. 

Kastner et al., 
2006169 

θTo study the 
application of 
Charlson Score 
in planning the 
treatment of 
patients with 
prostate cancer.  

1043 patients were used (37 
with localised prostate cancer 
patients). 10 year survival was 
calculated using the Kaplan 
Meier method for each 
Charlson index group. Cox 
regression analysis was used 
to check for significance.  

1 - MI, CHF, PVD, CVD, Dementia, 
CPD, CTD, Peptic ulcer disease, 
Mild liver disease, Diabetes 
(without end organ damage). 
2 - Diabetes with end organ 
damage, Hemiplegia, Moderate 
or severe renal disease, 2nd solid 
tumour, Leukaemia, Lymphoma, 
Multiple myeloma. 
3 - Moderate or severe liver 
disease 
6 - 2nd metastatic solid tumour, 
AIDS 

Charlson index was a significant 
predictor of survival following 
radical treatment of localised 
prostate cancer (p=0.005). 
Confirms the reliability and 
practicality of the Charlson score 
in prostate cancer patients under 
the age of 75 and recommends its 
use in treatment options for 
localised prostate cancer 
patients.  

Froehner et al., 
2003174 

αTo compare 
the American 
society of 
anaesthesiologis
ts physical 
status (ASA) 
classification 
with the 
Charlson score 
for prediction of 
survival after 
radical 
prostatectomy 
for prostate 
cancer. 

 

444 patients participated in 
the study. The ASA 
categorisation was obtained 
from the anaesthesia charts 
and the Charlson index was 
based on the conditions 
reported during preoperative 
risk assessment for 
cardiopulmonary conditions. 
Kaplan Meier time event 
survival curve and Mantel 
Haenszel HR was calculated 
for comorbid and overall 
survival.  

1 - MI, CHF, PVD, CVD, Dementia, 
CPD, CTD, Peptic ulcer disease, 
Mild liver disease, Diabetes 
(without end organ damage). 
2 - Diabetes with end organ 
damage, Hemiplegia, Moderate 
or severe renal disease, 2nd solid 
tumour, Leukaemia, Lymphoma, 
Multiple myeloma. 
3 - Moderate or severe liver 
disease 
6 - 2nd metastatic solid tumour, 
AIDS 

There was no significant 
difference in the comorbid and 
overall mortality with respect to 
age. However, ASA 3 (Comorbid: 
HR= 17.68; 95% CI: 4.13–75.80; p 
<0.01) and Overall: HR = 7.21; 
95% CI: 2.39–21.76, p <0.01) and 
Charlson score 2+ (Comorbid: 
HR= 17.68, 95% CI: 5.08–61.52; p 
<0.01) and Overall: HR = 2.83; 
95% CI: 1.18–6.82; p=0.02) was 
significant in both the computed 
mortalities. When analysed with 
respect to various age groups, no 
significant difference was seen 
however, increased mortality was 



 

72 
 

seen for a second cancer when 
the age group over 70 years was 
compared to 60-69 years (HR = 
11.54, 95% CI: 1.78-74.95; 
p=0.01) 

 MI-Myocardial infarction; CAD – Coronary artery disease; CHF – Congestive heart failure; PVD – Peripheral vascular disease; CVD – Cerebrovascular disease; CPD – Chronic pulmonary disease; CTD – 

Connective tissue disease; α –Survival/risk factor; β –Validation; η - Methodology comparison; θ – Prediction of prognosis/treatment. 
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 Cox Proportional Hazard Model: 

 

The Cox Proportional Hazard model is given by  

                                                           ( )     ( )    (∑  )                        
175 

 λ(p) is the event rate at time p expressed as the function of risk variables, λ0(p) is the 

baseline event rate and    (∑  ) is the proportionality constant indicator for the risk 

factors175. Since   ( ) is unspecified, the model is semi parametric and is used widely as 

the effect can be estimated without the knowledge of   ( ). The robustness of this model 

makes it popular because it fit the data well175. 

The Cox model survival function is given by  
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   ∑     
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The hazard ratio (HR) is defined as the ratio of hazard for one individual to the hazard for 

another individual175. 
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2.3 Incidence Analysis 

 

2.3.1 Material and Methods 

 

The study population were residents of Liverpool area recruited through the Liverpool lung 

project (LLP). The HES database records every hospital admission in England. Such 

information was available for the 10,808 individuals in the LLP cohort admitted through the 

inpatient, outpatient and accident and emergency. The diagnosis in the HES database were 

recorded using the International Classification of Disease (version 10) introduced by the 

World Health Organisation176. The diagnosis codes were used to calculate the CCI and 

ECI177. 

The distribution of population characteristics between cases and controls were evaluated 

using the Pearson’s Χ2-test and Fisher’s exact test was used for cells with values less than 5. 

The Cox proportional hazard model was used to evaluate the effect of previous medical 

conditions on the development of lung cancer in individuals that were free of lung cancer 

at the start of the study178. The study period spanned from 01 January 1999 to 31 March 

2010 and individuals with the reported ICD-10 code “C34” and “C780” were classified as 

cases. The time variable for the Cox proportional hazard regression was the time spent by 

each individual at risk of developing lung cancer for the duration of the study, unless death 

occurred before the study ended. 

The CCI score (CCIS) was calculated as the sum of the weight of comorbidities reported by 

an individual as defined by the CCI while the ECI score (ECIS) was calculated as the total 

number of comorbidities reported for an individual, defined by the ECI. For both indices, 
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the distribution of comorbidities between cases and controls were evaluated. The indices 

were computed for every individual and were grouped into three categories, 0, 1-2 and 

≥3.The index scores were tested to determine the risk posed by each of them in a 

univariate and multivariate model, after adjusting for age (as on 01 January 1999), smoking 

pack years and gender. All analyses were conducted using Stata version 12179. 

 

2.3.2 Results 

 

The study population comprised of 9533 individuals of which 1389 (14.57%) developed lung 

cancer (cases) and 8144 (85.43%) did not develop lung cancer (controls). The majority of 

the study population (50.2%) were female. The mean age of the cohort at the start of the 

study was 59.30 (standard deviation (SD) = 7.93) and the mean smoking pack years was 

20.81 (SD = 23.83). Two thousand eight hundred and two (32.2%) of individuals were non-

smokers, of these 94 (8.6 %) were cases and 2708 (35.5%) were controls. Table 2.2 

represents the distribution of various covariates, results depict that the distribution of 

gender and groups of smoking pack years, ECIS and CCIS, is significantly different in cases 

and controls. Of the total individuals, 5001 (52.5%) individuals had a CCI score of 0, 2940 

(30.8%) had a CCI score of 1-2, 2784 (8.2%) had a CCI score of 3-4 and 808 (8.5%) 

individuals had a CCI score of ≥5 while 3759 (39.4%) individuals had an ECI score of 0, 3468 

(36.4%) had an ECI score of 1-2 , 1540 (16.2%) had an ECI score of 3-4 and 766 (8%) had an 

ECS score of ≥5.  

Table 2.3 represents the distribution of Charlson comorbidities with chronic pulmonary 

condition (22.7%), any malignancy, including lymphoma and leukaemia, except malignant 

neoplasm of skin and lung cancer (11%) and diabetes (without complications) (10.3%) as 
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the three most reported conditions while Table 2.4 represents the distribution of ECI with 

hypertension (uncomplicated) (33.3%), chronic pulmonary condition (31.2%), and cardiac 

arrhythmias (11.6%) as the three most reported conditions, respectively.  

 

Table 2.2: Patient characteristics for LLP cohort. 

Covariates Cases (N%) Controls (N%) Total (N%) p-value 

Gender 

Female 606 (43.6) 4176 (51.3) 4782 (50.2) 

<0.0001 

Male 783 (56.4) 3968 (48.7) 4751 (49.8) 

Total 1389 (100) 8144 (100) 9533 (100) 

Age (start of study) 

≤60 530 (38.2) 4651 (57.1) 5181 (54.3) 

<0.0001 

>60 859 (61.8) 3493 (42.9) 4352 (45.7) 

Total 1389 (100) 8144 (100) 9533 (100) 

Smoking duration (years) 

0 94 (8.6) 2708 (35.5) 2802 (32.2) 

<0.0001 

1-19 141 (13) 2003 (26.3) 2144 (24.6) 

20-39 350 (32.2) 1698 (22.3) 2048 (23.5) 

40-59 318 (29.2) 847 (11.1) 1165 (13.4) 

60+ 185 (17) 369 (4.8) 554 (6.4) 

Total 1088 (100) 7625 (100) 8713 (100) 

CCI score 

0 502 (36.1) 4499 (55.2) 5001 (52.5) 

<0.0001 

1-2 450 (32.4) 2490 (30.6) 2940 (30.8) 

3-4 83 (6) 701 (8.6) 784 (8.2) 

≥5 354 (25.5) 454 (5.6) 808 (8.5) 

Total 1389 (100) 8144 (100) 9533 (100) 

ECI score 

0 329 (23.7) 3430 (42.1) 3759 (39.4) 

<0.0001 

1-2 691 (49.7) 2777 (34.1) 3468 (36.4) 

3-4 285 (20.5) 1255 (15.4) 1540 (16.2) 

≥5 84 (6) 682 (8.4) 766 (8) 

Total 1389 (100) 8144 (100) 9533 (100) 
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Table 2.3: Frequency distribution of Charlson comorbidities.  

CCI comorbidities Cases (N%) Controls (N%)  p-value 

Myocardial Infarction 81 (5.8) 639 (7.8) 0.009 

Congestive Heart Failure 38 (2.7) 507 (6.2) <0.0001 

Peripheral Vascular Disease 123 (8.9) 463 (5.7) <0.0001 

Cerebrovascular Disease 63 (4.5) 436 (5.4) 0.206 

Dementia* 3 (0.2) 100 (1.2) <0.0001 

Chronic Pulmonary Disease 434 (31.2) 1725 (21.2) <0.0001 

Connective Tissue Disease 37 (2.7) 208 (2.6) 0.811 

Peptic Ulcer Disease 31 (2.2) 172 (2.1) 0.775 

Mild Liver Disease 21 (1.5) 97 (1.2) 0.318 

Diabetes (without complications) 139 (10) 845 (10.4) 0.676 

Diabetes (with end organ damage) 16 (1.2) 119 (1.5) 0.367 

Hemiplegia 13 (0.9) 100 (1.2) 0.353 

Moderate or severe renal disease 25 (1.8) 263 (3.2) 0.004 

Any malignancy, including lymphoma 
and leukaemia, except malignant 
neoplasm of skin and lung cancer 169 (12.2) 873 (10.7) 0.11 

Moderate or severe liver disease 5 (0.4) 21 (0.3) 0.5 

Metastatic solid tumour 334 (24) 187 (2.3) <0.0001 

AIDS _ _ _ 
p values were derived using the chi-square test unless otherwise stated.*Fisher’s exact test was used 
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Table 2.4: Frequency distribution of Elixhauser comorbidities.  

ECI comorbidities Cases (N%) Controls (N%) Χ2 p-value 

Congestive heart failure 38 (2.7) 507 (6.2) <0.0001 

Cardiac arrhythmias 161 (11.6) 1163 (14.3) 0.007 

Valvular disease 39 (2.8) 309 (3.8) 0.07 

Pulmonary circulation disorders 16 (1.2) 155 (1.9) 0.051 

Peripheral vascular disorders 123 (8.9) 463 (5.7) <0.0001 

Hypertension (uncomplicated) 462 (33.3) 2837 (34.8) 0.254 

Hypertension(complicated) 10 (0.7) 164 (2) 0.001 

Paralysis 13 (0.9) 100 (1.2) 0.353 

Neurodegenerative disorders 32 (2.3) 239 (2.9) 0.191 

Chronic pulmonary disease 434 (31.2) 1725 (21.2) <0.0001 

Diabetes (uncomplicated) 139 (10) 839 (10.3) 0.738 

Diabetes(complicated) 16 (1.2) 129 (1.6) 0.224 

Hypothyroidism 52 (3.7) 347 (4.3) 0.374 

Renal failure 25 (1.8) 263 (3.2) 0.004 

Liver disease 23 (1.7) 108 (1.3) 0.329 

Peptic ulcer disease 26 (1.9) 151 (1.9) 0.964 

AIDS/HIV _ _ _ 

Lymphoma* 4 (0.3) 70 (0.9) 0.020 

Metastatic cancer 334 (24) 187 (2.3) <0.0001 

Solid tumour without metastasis 160 (11.5) 799 (9.8) 0.05 

Rheumatoid arthritis/collagen 48 (3.5) 283 (3.5) 0.971 

Coagulopathy 7 (0.5) 40 (0.5) 0.95 

Obesity 29 (2.1) 288 (3.5) 0.005 

Weight loss 87 (6.3) 264 (3.2) <0.0001 

Fluid and electrolyte disorders 43 (3.1) 335 (4.1) 0.072 

Blood loss anaemia _ _ _ 

Deficiency anaemia 37 (2.7) 248 (3) 0.44 

Alcohol abuse 45 (3.2) 248 (3) 0.698 

Drug abuse* 4 (0.3) 9 (0.1) 0.108 

Psychosis 6 (0.4) 28 (0.3) 0.61 

Depression 34 (2.4) 262 (3.2) 0.127 
*Fisher’s exact test was used 

 

The CCIS and ECIS (Table 2.5) were evaluated in a univariate and multivariate analysis after 

adjusting for age, sex and smoking pack years in a Cox proportional hazard regression 

analysis. The hazard ratio (HR) for the univariate analysis was 1.63 (95% CI: 1.43-1.85) for 

CCIS 1-2 and 3.71 (95% CI: 3.26 – 4.22) for CCIS ≥3, and in the multivariate analysis the HR 
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produced were 1.32 (95% CI: 1.14 – 1.53) for CCIS 1-2 and 2.46 (95% CI: 2.11 – 2.88) for 

CCIS ≥3. Similarly, hazard ratio was 2.51 (95% CI: 2.20 – 2.86) for ECIS 1-2 and 2.15 (95% CI: 

1.85 – 2.49) for ECIS ≥3 in the univariate and 2.09 (95% CI: 1.79 – 2.43) for ECIS 1-2 and 

1.41 (95% CI: 1.18- 1.68) for ECIS ≥ 3 in the multivariate analysis.  

 

Table 2.5: Regression analysis of Charlson and Elixhauser comorbidity index. 

Index score 

Univariate analysis    Multivariate analysis* 

HR (95% CI) HR (95% CI) 

CCI 

1-2 1.63 (1.43-1.85) 1.32 (1.14 – 1.53) 

≥3 3.71 (3.26 – 4.22)  2.46 (2.11 – 2.88) 

ECI 

1-2 2.51 (2.20 – 2.86) 2.09 (1.79 – 2.43) 

≥3 2.15 (1.85 – 2.49)  1.41 (1.18- 1.68) 
*Multivariate analysis adjusted for age at study start, sex and smoking pack years 

 

2.3.3 Discussion 

 

The distribution of various comorbidities forming the CCI and ECI have been reported and 

their effect studied using the univariate and multivariate Cox proportional hazard 

regression analysis adjusted for age at study start, sex and smoking pack years.  

Chronic pulmonary condition was the most reported comorbidity among all the CCI 

comorbidities, which has been previously suggested in lung cancer susceptibility18. 

Although the pathogenesis of lung cancer is yet to be elucidated, it has been hypothesized 

that chronic airway inflammation induced by respiratory infections may contribute to the 

alterations in the bronchial epithelium and lung environment, thus provoking a milieu 

conducive to lung carcinogenesis11.  
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The CCI results depict an increased risk of developing lung cancer with increase in score. 

Although to the best of our knowledge no study has investigated the impact of CCI and ECI 

in predicting the incidence of lung cancer, the association of lung cancer and CCI has been 

previously studies145. The study was conducted on 1719 cases and 6876 controls using 

logistic regression that produced an OR of 2.07 (95% CI: 1.78 -2.40) for CCI score 1-2, and 

an OR of 2.12 (95% CI: 1.67 – 2.68) for CCI score ≥ 3, when compared to the baseline of CCI 

score 0145. A similar study was also published by Ording et al. (2012)180 which was a nested 

case-control study that evaluated the impact of using the CCI on the incidence of breast 

cancer. Their study included 46,324 cases and 463,240 population controls of Danish 

women aged 45-85. They concluded that there was no substantial association between 

comorbidity measured with the CCI and breast cancer risk180. 

An increased risk of developing lung cancer with ECI scores 1-2 and ≥ 3 was observed. But 

with the increase in the ECI score the HR for contracting lung cancer decreased. Although 

the ECI identified 30 comorbidities, only six of the identified comorbidities had frequencies 

≥ to 10% among individuals that developed lung cancer.  

The strengths of this study include the population-based design, the large sample size, the 

long follow-up period and the use of HES data, minimising the chances of missing 

information on comorbidities. In addition, detailed information about potential risk factors 

in the LLP was collected using standardised questionnaires. 

In conclusion, CCI and ECI produced significant results in the subgroup analysis indicating 

their use in lung cancer incidence studies. CCI was better than ECI as increased hazards 

were seen as the scores increased for CCI but not for ECI. However, a validation study using 

another comorbidity dataset derived from a different source, for instance clinical, would 

help judge the reliability of the dataset for future use. 
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2.4 Risk Model Development 

 

2.4.1 Introduction 

 

Patient care can be improved if cancer can be diagnosed and treated at an earlier and 

curable stage178. Although smoking is a major risk factor for lung cancer, smoking status 

and history alone cannot predict the risk of developing lung cancer because not every 

individual who smokes or has had a smoking history, develop lung cancer178. Furthermore, 

with the decreasing number of smokers, the incidence of lung cancer is still on the increase 

supporting the fact that other risk factors such as environmental tobacco smoke (ETS), 

asbestos exposure and genetic predisposition may play important role in the pathogenesis 

of lung cancer178. Therefore, a composite measurement or risk estimation using risk models 

that include covariates contributing to a persons’ risk of developing lung cancer is 

warranted178.  

Risk prediction models may find their use in clinical settings to identify individuals at high 

risk or to select individuals that would really benefit from and improve the outcome of 

clinical trials178. Risk prediction models have been developed for many cancers including 

colorectal, melanoma, ovarian, prostate and breast117, 178. For instance, the Gail model 

developed for breast cancer is used to advise women with a high risk score to undergo 

screening or genetic evaluation117. 

Current lung cancer risk prediction model include the Bach model124, the Spitz model48 and 

the LLP model181, that differ from each other by the population used for development, 

covariates, statistical model and time period for which the predictive risk can be 
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estimated178. The Bach model was developed to predict lung cancer incidence and the 

probability of a non-lung cancer mortality using over 14,000 individuals enrolled in the β 

carotene and retinol efficacy trial (CARET)124. Cox proportional hazard regression was used 

to develop a one year risk estimation including age, gender, number of cigarettes smoked 

per day, number of years smoked and exposure to asbestos124. Absolute risk using this 

model is calculated for smokers by running the incidence and mortality models recursively 

for the number of times corresponding to the years of risk estimation124. When validated 

internally, the model produced an area under receiver operative curve (AUC) value of 0.72 

and an AUC of 0.69182 and 0.66183 when validated externally. 

The Spitz model was developed using 1851 cases and 2001 hospital-matched controls from 

the University of Texas MD Anderson cancer centre48. Separate models were developed for 

former, current and never smokers using logistic regression to obtain an absolute risk of 

developing lung cancer48. Covariates in the model included smoking pack years, family 

history of cancer, asbestos and wood dust exposure, previous emphysema and previous 

hay fever48. Absolute risks over a predefined time period was developed using baseline 

relative risks together with age and smoking adjusted gender specific incidence rates48. The 

model was developed using and therefore applicable to Caucasians48. Internal validation of 

this model produced an AUC of 0.59, 0.63 and 0.65 for never, former and current smokers48 

while the external validation produced an AUC of 0.69 for the overall model183. 

Finally, the LLP model was developed using 579 lung cancer cases and 1157 controls 

recruited from Liverpool, UK181. Significant covariates included in this model are number of 

years smoked, family history of lung cancer, occupational exposure to asbestos, prior non-

malignant tumour and prior pneumonia181. Relative risks obtained using logistic regression 

model together with population incidence rates for different combination of age and 

gender was used to estimate the 5-year absolute risk of developing lung cancer181. The 
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model produced an AUC of 0.70181 when validated internally and 0.69183 when validated 

externally, in the overall model. The model also produced an AUC of 0.76 (95% CI: 0.75-

0.78) in the Harvard population and AUC of 0.82 (95% CI: 0.80-0.85) in the LLP population 

based prospective cohort (LLPC) study184. The model was developed in Caucasians and 

therefore can only be applied to Caucasians181.  

Another study included the prostate lung colorectal ovary (PLCO) screening trial to design a 

model for the general population (N=70,962) and for ever-smokers (N=38,254) using age, 

education, BMI, family history of lung cancer, COPD, recent chest X-rays, smoking status 

(never, former or ever), pack-years smoked and smoking duration185. For the smokers’ only 

model, time of quitting smoking was included185. Logistic regression was used to develop 

the model185. The model for the general population produced an AUC of 0.57 and 0.841 for 

the internal and external validation, respectively while for the smokers only model, the 

AUC was 0.805 and 0.784 for the internal and external validation, respectively185.  

Lung cancer risk models have also found their use in CT screening trials178. Identifying 

individuals having high risk and considering them for a CT trial would reduce the incidence 

of lung cancer and aid early detection and treatment of lung cancer178. Application of CT 

screening in lung cancer would be possible only if the current CT trials are designed 

appropriately178. That includes enrolling individuals with high risk in the trial with the hope 

of obtaining positive results, increasing efficiency, improving healthcare by reducing lung 

cancer morbidity and mortality178. Risk models can also be used by clinicians to decide on 

interventions and encourage high risk individuals to adopt healthier habits178. 
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2.4.2 Material and Methods 

 

Sex specific Cox proportional hazard regression models were used to design the incidence 

model using data collected over a period of 11.25 years from 01 January 1999 to 31 March 

2010. Covariates used were age at study start, chronic pulmonary disease and smoking 

pack years. Comorbidity information was extracted using the HES database and participants 

were filtered to keep individuals aged between 45-79 and filter out individuals that had less 

than 5 years of incidence time. Participants were confirmed as cases if a recorded ICD code 

of “C34” or “C780” was reported while a case of chronic pulmonary condition was 

identified under the ICD code I27.8, I27.9, J40–J47, J60–J67, J68.4, J70.1 and J70.3177. 

 

 Model and Point System Development:  

 

Covariates were tested in a univariate Cox proportional hazard model and only the 

significant covariates (p < 0.05) were included in the multivariate Cox proportional hazard 

model. The method described in Sullivan et al. (2004)186 was used in the developing this 

model. There are various steps involved in the development of a point based system of risk 

prediction186. The point based system is also supplemented with corresponding risk 

estimates, to extract the risk associated with the presence of a particular comorbidity, for 

being of a particular age and gender,  and for smoking, adjusted as smoking pack years186. 

The process begins with selecting covariates that would be included in the sex specific risk 

prediction model. Covariates significant in the univariate analysis were selected to be 

included in the risk model186. This is followed by the determination of categories and 

selecting baseline value for the base category for each covariate186. The age inclusion 
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criteria for participating in LLP are between 45-79 years. Therefore, individuals between 45 

and 79, inclusive, on the first day of the study were included. The age categories were 

developed using an interval of 4.99 years. The reference age for this covariate was 47.5, the 

mid-point of the base category. The reference age for each of the remaining categories was 

considered to be the mid-point of the category, calculated as the average of the extreme 

values of the range representing that category186.  

For smoking pack years, the base category was non-smokers. The categories for smoking 

pack years include, minimum value to 20.99, 21-40.99; 41-60.99, and 61 to the maximum 

value. Smoking pack years categories were treated as a factor in the prediction model using 

non-smokers as baseline, producing a regression coefficient for the remaining categories.  

Chronic pulmonary condition is an important comorbidity in lung cancer incidence48, 124, 181. 

Retaining individuals with more than 5-year worth of comorbid information in the study 

ensures that the chronic pulmonary condition was diagnosed within a minimum of 5 years 

of lung cancer diagnosis and that the analysis does not suffer due to the lack of 

information. Every category is then presented in terms of baseline values186. If   is the 

regression coefficient, Wc is the reference value for one category and Wf the reference 

value from the base category, the above process is carried out by subtracting Wf from Wc 

and multiplying this difference by β. i.e. β (Wc - Wf)
186.To determine the risk of developing 

lung cancer in 5 years, a constant C is required186. It is calculated by multiplying the 

regression coefficient  for age by 5 i.e. C = 5 * (regression coefficient for age)186. Dividing β 

(Wc - Wf) by C gives the point associated with each category186. For each risk profile 

available, the risk score is calculated by summing the points associated with each 

covariate186. To estimate the probability of developing lung cancer associated with the 

point total, the following formula is used186. 

        ( )
   (∑      ∑  

 
    ̅ 

 
   ) 
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where   ( ) is the baseline hazard function at time 11.25 years calculated using the mean 

value of the risk factors by the “survival”274,275 library in R229. ∑  
 
    ̅  is the sum of the 

product of regression coefficients and means or proportions of the covariates and 

∑     
 
    is calculated by multiplying the regression coefficient for age with the reference 

age of the baseline category and adding the product of C with the point total186. The model 

was developed in R229. 

 

Model Performance:  

 

The sex specific Cox proportional hazard models were tested for its ability to discriminate 

between cases and controls by using the concordance statistics (C-statistics)187, 188. The test 

demonstrates the probability that, if two observations are picked at random, the one with 

the shortest survival will have the largest risk. The measure is similar to area under the 

receiver operating characteristic curve (AUC) for logistic regression model187, 188. Since the 

discrimination statistics are performed on the same dataset, a 10 fold cross validation was 

conducted using the original incidence dataset to obtain the C-statistics189 as described 

below.  

The lung cancer incidence indicator was used to subset the data into training and testing 

dataset. The lung cancer cases and controls were randomly sampled and divided into 10 

equal parts. A part of cases and controls were combined to form the testing set while the 

rest was used as the training set. This is repeated 10 times with each group of cases and 

controls appearing exactly once for validation. R229 package “cvAUC”357 was used for 

obtaining area under the receiver operating curve (AUC) estimate for both the sex specific 

risk predictor models. 
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2.4.2 Results 

 

The study developed sex specific Cox proportional hazard regression models to predict the 

risk of developing lung cancer for 5 years using males 4112 and 4306 females. Table 2.6 

describes the distribution of covariates for males and females for various covariate 

categories. The distribution was statistically significant between cases and controls for 

various categorical groups of smoking pack years, chronic pulmonary condition and age.  

 

Table2.6: Distribution of population characteristics for both genders 

Covariates cases controls Χ2 p-value 

Males 

Age     

≤60 200 2008 

<0.0001 > 60 277 1627 

Smoking pack year  

Non-smoker 39 1063 

<0.0001 

0.05-20.99 62 1053 

21-40.99 139 814 

41-60.99 145 438 

61-114.86 82 246 

Chronic pulmonary disease 

Absent 325 2932 

<0.0001 Present 152 703 

Females 

Age  

≤60 169 2362 

<0.0001 > 60 235 1540 

Smoking pack year  

Non-smoker 47 1624 

<0.0001 

0.05-20.99 69 1031 

21-40.99 146 831 

41-60.99 102 335 

61-114.86 36 81 

Chronic pulmonary disease 

Absent 270 3144 

<0.0001 Present 134 758 
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The sex specific Cox proportional hazard models produced significant results for age, 

smoking pack years and chronic pulmonary condition for the univariate analysis in both 

genders and only in men, for the multivariate analysis (Table 2.7). For men, the 11.25-year 

baseline survival was 0.89 and 0.93 for women. The univariate and multivariate HR for age 

was 1.05 (95% CI: 1.04-1.06) and 1.05 (95% CI: 1.04-1.06), smoking pack years was 1.02 

(95% CI: 1.02-1.02) and 1.02 (95% CI: 1.01-1.02) and chronic pulmonary condition was  1.95 

(95% CI: 1.61-2.36) and  1.27 (95% CI: 1.03-1.56) in men while in women the univariate and 

multivariate HR for age was 1.06 (95% CI: 1.04-1.07)and 1.06 (95% CI:  1.04-1.07), smoking 

pack years was  1.03 (95% CI: 1.03-1.04) and 1.03 (95% CI: 1.03-1.04) and chronic 

pulmonary condition was 2.05 (95% CI: 1.67-2.53) and 1.22 (95% CI: 0.98-1.52), 

respectively. 

 

Table2.7: Sex specific Cox proportional hazard regression model 

Covariates HR(95% CI)$ HR(95% CI)* 

Men [S0(11.25) = 0.89] 

Age  1.05 (1.04-1.06) 1.05 (1.04-1.06) 

Smoking pack years 1.02 (1.02-1.02) 1.02 (1.01-1.02) 

Chronic pulmonary 
disease 1.95 (1.61-2.36) 1.27 (1.03-1.56) 

 

Women [S0(11.25) = 0.93] 

Age  1.06 (1.04-1.07) 1.06 (1.04-1.07) 

Smoking pack years 1.03 (1.03-1.04) 1.03 (1.03-1.04) 

Chronic pulmonary 
disease 2.05 (1.67-2.53) 1.22 (0.98-1.52) 

  $univariate; * multivariate 

 

Table 2.8 display the proportion or means of covariates used in the risk prediction model. 

These are needed later when the point based system is compared to the Cox proportion 

model risk estimate, for two case studies. 
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   Table2.8: Mean/Proportion distribution of model covariates for males and females 

Covariates 

Means or proportions 

Female Male 

Age 58.45 59.38 

Smoking pack years 
  
  
  

Non-smoker 0.39 0.27 

Minimum -20.99 0.26 0.27 

21-40.99 0.23 0.23 

41-60.99 0.1 0.14 

≥61 0.03 0.09 

 Chronic pulmonary 
disease 

Present  0.21 0.21 

Absent 0.79 0.79 

 

Table 2.9 shows the male Cox proportional hazard model   coefficient and the point value 

for covariate subgroups for men. The points ranged from 0-6 for various age categories 

with 47.5 years as the baseline value, 0 – 8.78 for various smoking pack years categories 

and 0 – 0.81 for categories of chronic pulmonary condition.  
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Table2.9: Male Cox proportional hazard model beta coefficient and point value for 
covariate subgroups  

Covariate Categories Reference Beta 
Beta (Reference - 
Wf) Points 

Age  

  45-49.99 47.5 

0.047 
  
  
  
  

0 0 

  50-54.99 52.5 0.235 1 

  55-59.99 57.5 0.47 2 

  60-64.99 62.49 0.70453 3 

  65-69.99 67.5 0.94 4 

  70-74.99 72.5 1.175 5 

  75-79.99 77.5 1.41 6 

Smoking pack years 

Non-
smoker No 0 

Baseline 

0 0 

 Yes  1     

     

0.05-20.99 No 0 

0.392 

    

  Yes 1 0.392 1.67 

           

21-40.99 No 0   
1.404 

    

  Yes 1 1.404 5.97 

           

41-60.99 No 0   
2.009 

    

  Yes 1 2.009 8.55 

           

61-256 No 0   
2.064 

    

 Yes 1 2.064 8.78 

Chronic pulmonary disease 

  Absent 0 

0.19 

0 0 

  Present 1 0.19 0.81 

 

Table 2.10 shows the Cox proportional hazard model beta coefficient and point value for 

covariate subgroups in women. The points ranged from 0-6 for various age categories with 

47.5 years as the baseline value, 0 – 9.32 for various smoking pack years categories and 0 –

0.73 for categories of chronic pulmonary condition for men and for women the points 

ranged from 0 - 6 for various age categories, 0 - 8.5 for various smoking pack years 

categories and 0-0.73 for categories of chronic pulmonary condition (Table 2.10). 
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Table2.10: Female Cox proportional hazard model beta coefficient and point value for 
covariate subgroups  

Covariate Categories Reference Beta 
Beta (Reference - 
Wf) Points 

Age 

  45-49.99 47.5 

0.058 
  
  
  
  
  

0 0 

  50-54.99 52.5 0.29 1 

  55-59.99 57.5 0.58 2 

  60-64.99 62.49 0.86942 3 

  65-69.99 67.5 1.16 4 

  70-74.99 72.5 1.45 5 

  75-79.99 77.5 1.74 6 

Smoking pack years 

Non-
smoker No 0 

Baseline 

0 0 

  Yes  1     

      

0.05-20.99 No 0   
0.834 

    

  Yes 1 0.834 2.88 

           

21-40.99 No 0   
1.763 

    

  Yes 1 1.763 6.08 

           

41-60.99 No 0   
2.208 

    

  Yes 1 2.208 7.61 

           

61-136 No 0   
2.703  

    

  Yes 1 2.703 9.32 

Chronic pulmonary disease 

  Absent 0 

0.212 

0 0 

  Present 1 0.212 0.73 

 

These models were tested for its discriminatory ability using C statistics in a 10 fold cross 

validation. The c-statistics was 0.77 (95% CI: 0.74-0.79; standard error = 0.012) for women 

and 0.73 (95% CI: 0.71 - 0.75, standard error = 0.0113) for men. 
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2.4.3 Discussion 

 

Given that the lung cancer cases are diagnosed at an advanced stage where no treatment is 

available to revert the condition, early detection or prevention is the only option190. 

Previous lung cancer risk prediction models used logistic regression to develop risk 

models50, 123, 124, 185 for different populations and validated using other population184. Bach 

et al. (2003)124 and Park et al. (2013)191 are the only incidence model that used a Cox 

proportional hazard regression model. Bach124 developed a 10 year risk prediction model 

(refer above) using individuals of a carotene trial while Park et al. (2013)191 used 1,324,804 

Korean men to develop a model using smoking exposure, age at smoking initiation, BMI, 

physical activity and fasting glucose level, and produced a performance statistics of 0.871 

(95% CI: 0.867-0.876). The drawback of the Bach model was that it was developed using all 

smokers from a high risk population in a trial with mixed ethnicities124. Furthermore, this 

model was developed for males and females, separately, while Bach developed a general 

model. The 5 year sex specific incidence model was developed using data collected over a 

period of 11.25 years and important covariates like age and smoking pack years, implicated 

in lung cancer. The C statistics for the sex specific models suggests that the model has a 

good discriminatory power.  

The developed model was converted into a point based system where given the 

measurement for a particular covariate, it can be converted into points and the 

corresponding risk estimate can be obtained (Table 2.11). For instance (Appendix) a 60 year 

old male with a reported chronic pulmonary condition and a smoking pack year value of 24 

has a point based risk estimate of 19.87% while the Cox proportional regression model 

produces a risk estimate of 20.68%. For a 50 year old female with no reported history of 

chronic pulmonary condition and a smoking pack year value of 34 produced a point based 
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risk estimate of 10.12% and a Cox proportional hazard risk estimate of 9.48%. This is the 

first lung cancer risk prediction model that has developed a point based system and the 

close risk values by the two system further validates that the point based system is a valid 

tool applicable in a clinical practice.  

 

 
Table 2.11: Lung cancer points with corresponding risk estimate 

Male 
 

Female 
 

Points  Risk (%) Points Risk (%) 

0 2.1 0 1.36 

1 2.65 1 1.81 

2 3.35 2 2.41 

3 4.21 3 3.22 

4 5.3 4 4.27 

5 6.66 5 5.67 

6 8.34 6 7.5 

6.97 10.37 7.08 10.12 

7.97 12.93 8.08 13.29 

8.97 16.06 9.08 17.35 

9.97 19.87 10.08 22.48 

10.97 24.43 11.05 28.64 

11.97 29.84 12.05 36.3 

13.36 38.82 13.05 45.26 

14.36 46.28 14.05 55.31 

15.36 54.44 15.06 65.91 

  
16.05 76.27 

 

 

Although the information about chronic pulmonary condition was collected using HES 

dataset, the information about smoking pack years is subjected to recall bias. This model is 

specifically designed using Caucasian populations, though it still needs to be validated, it 

should also be tested for its applicability in other populations. In conclusion, this is a first 
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sex specific 5-year Cox proportional absolute risk prediction model in lung cancer designed 

using both smokers and non-smokers forming a part of the general population. 

 

2.5 Appendix 

 

The following are 2 cases depicting how the risk calculated using the point system relates 

to the actual risk using the Cox proportional hazard regression model. 

Case 1: risk factor for a LLP male 
 

 

 

 

 

        ( )
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    ̅ 

 
   )  

          (    )          

      20.67605 

     

The risk estimated by the point based system (Table 2.11) for the above male case is 

19.87% and by the Cox regression model is 20.67605%. 

 

 

 

 

Risk factor Value  Point 

Age 60 3 

Smoking pack years 24 5.97 

Chronic pulmonary condition 1 0.81 
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  Case 2: risk factor for a LLP female  
 

 

 

 

        ( )
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    ̅ 

 
   )  

          (    )          

         1  0.905241 

         0.094759 

 

The risk estimated by the point based system for the above female case is 10.12% and by 

the Cox regression model is 9.48%.

Risk factors Value  Point 

Age 50 1 

Smoking pack years 34 6.08 

Chronic pulmonary condition 0 0 
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3.1 Aim 

 

In 2008, lung cancer was the leading cause of death due to cancer in males and the second 

highest cause of death in females, worldwide38 and therefore evaluating factors leading to 

its causation is important in its prevention178. Tobacco smoking is a crucial environmental 

factor responsible for 75% of lung cancer cases, and therefore studying genes involved in 

tobacco-induced lung cancer, such as those involved in carcinogen metabolism and 

repairing the damage caused by, carcinogens in tobacco smoke have been under extensive 

evaluation14. 

With the availability of commercial SNP arrays and a dense human genome reference 

map107, conducting a genome wide association study (GWAS) to evaluate complex 

polygenic diseases, including cancers, where several genes with modest effect sizes may 

have a contributing role, is feasible192.  

5p15.33, 6p21 and 15q24-25.1 chromosomal regions in smokers and 6q23-25 and 13q31.3 

chromosomal regions in non-smokers were identified in a GWAS of lung cancer14, 47, 112, 113, 

193, however, the contribution of these loci towards lung cancer susceptibility is moderate. 

Furthermore, lung cancer is not only affected by genetic changes but also geographical 

differences14. Therefore, the aim of the present study is to identify SNPs associated with 

lung cancer susceptibility in Liverpool using cases from the Liverpool Lung Project (LLP) and 

the 1958 Birth Cohort194 as controls for whom, a genome-wide single nucleotide 

polymorphism (SNP) dataset is available. Furthermore, information of significant SNPs from 

this study will be integrated with functional annotations for associated genes. 
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3.2 Introduction 

 

Tobacco smoking is the major environmental factor for lung cancer causation and therefore 

genes influenced by cigarette smoke induced genetic changes have been extensively 

studied by candidate gene association studies14. The only direct evidence of familial 

aggregation of lung cancer is related to the rare Mendelian cancer syndromes such as 

retinoblastoma gene mutation carriers195, and xeroderma pigmentosum196, Bloom’s43 and 

Werner’s44 syndrome patients and in constitutional carriers of TP53197. 

 There is a two-fold increase in risk of lung cancer for individuals with a family history of 

lung cancer45. This risk of lung cancer for an individual is associated with the relatives’ early 

age of onset and number of family members affected45. However, these studies may be 

confounded by unadjusted environmental factors such as smoking45.  

Studies conducted on never smokers to eradicate the complications due to common 

familial smoking habits indicate that genetic or environmental factors may affect the 

familial aggregation of lung cancer45. 

Studies have also been conducted on monozygotic and dizygotic twins to dissect the 

genetic and environmental factors influencing familial aggregation of lung cancer45. Twin 

studies conducted on a female population, where the incidence of lung cancer is low, are 

supportive of a genetic predisposition to lung cancer with lung cancer incidence being more 

in monozygotic than dizygotic twins45. However, other twin studies suggest that 

environmental factors such as smoking, may be confounded by genetic factors (i.e cancer in 

twins may be due to genetic factor and not influenced by smoking)45. 
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Familial linkage analysis identified a gene RGS1747 following an initial identification of 6q25-

23 chromosomal region in a study by the Genetic Epidemiology of Lung Cancer Consortium 

(GELCC) on 52 families with at least three or more, lung or larynx cancer cases46. 

Dependence on nicotine, a component of cigarette smoke, and susceptibility to lung cancer 

differ from individual to individual and this forms the basis of lung cancer studies14. The 

interindividual differences in nicotine dependence is quantitatively associated with tobacco 

smoke carcinogen intake and the interindividual discrepancies in the metabolism of 

tobacco smoke carcinogens as well as DNA repair activity (which counteracts the mutagenic 

changes) play a vital role in smoking related cancer14. 

Lung cancer is divided into small cell lung cancer (SCLC) and non-small cell lung cancer 

(NSCLC), which is further divided into adenocarcinoma (ADC), squamous cell carcinoma 

(SQC) and large cell carcinoma (LCC)14. LCC is more heterogeneous than the other cancer 

types, with limited information14. Basal cells in bronchi, neuroendocrine cells in bronchi and 

Clara cells in bronchioles and/or type II pneumocytes in the alveoli are the precursor cells 

for SQC, SCLC and ADC, respectively14. SQC and SCLC are more strongly associated with 

smoking compared to ADC14. A unique property of lung cancer cells caused by tobacco 

smoking is the excess G:C to T:A transversions and therefore the main focus of genetic 

susceptibility study has been the metabolic enzyme and DNA repair activity that causes or 

prevents these transversions14. For instance, benzopyrene-diol-epoxide, a metabolite of 

tobacco smoke component, benzo[a]pyrene198, causes DNA adducts and induces the above 

transversions in the TP53 gene199. An Arg72Pro SNP also located in the TP53 DNA repair 

gene improves the survival of DNA damaged cells for the 72Pro allele than the 72Arg 

allele92. 
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 Another example is the Ile462Val SNP located in the CYP1A1 gene14, 92, 200. CYP1A1 encodes 

a protein that bioactivates polyaromatic hydrocarbons (PAHs) and this SNP causes a 

difference in enzyme activity, with individuals having the 462Val allele showing a higher risk 

of lung cancer than those with the 462Ile allele92, 200. With the feasibility of GWAS, the 

research focus of lung cancer susceptibility studies has shifted from a candidate gene to a 

whole genome approach201, 202. Several GWAS have been conducted in lung cancer 

research113, 193, 203, but due to disease complexity, it is anticipated that many markers are 

yet to be uncovered. 

 

3.2.1 Genetic Variation in Lung Cancer 

 

Lung cancer results from a complex interplay of genetic changes that occur in a sequence 

involving multiple biological pathways87. Some of the important developments in lung 

cancer are the loss of heterozygosity, activation of proto-oncogenes, inactivation of tumour 

suppressor genes (TSGs) and epigenetic modification87. 

DNA amplification and loss of heterozygosity are indicators of the modified function of 

oncogenes and TSGs, respectively82. Oncogenes identified in lung cancer research include 

KRAS, MYC, Cyclin D1 and EGFR82. Copy number amplifications on chromosomal region 8q 

activate the proto-oncogene MYC87 while amplification of 14q13.3 lead to the identification 

of NKX2-1 proto-oncogene82. 

Two mutations are required for the inactivation of some TSGs, this process is called the 

“two hit hypothesis“83, 204. Loss of heterozygosity, one of the two hits for TSG inactivation, 

has been reported for chromosomal region 17p, 13q14 and multiple loci on 3p, 



 

101 
 

corresponding to the genes TP53, RB and FHIT, respectively87. The TP53 gene located on 

chromosome 17p13 is an important protein for maintaining the integrity of the human 

genome and is frequently mutated in human cancers87. This mutation may be related to 

tobacco smoking which usually causes G-T transversions by the tobacco smoke 

carcinogens87. 

 A major lung cancer-associated epigenetic modification is the hypermethylation of CpG 

islands found at the 5’ promoter region of many genes87. Genes silenced in lung cancer by 

methylation include DAP kinase, GSTP1, MGMT and CDH1387. Aberrant promoter 

hypermethylation can be detected in lung cancer patients, in lung tissue devoid of cancer 

and in high risk individuals and are a promising candidate for use in early detection 

biomarker research87.  

Changes involved in lung cancer include 9p allele loss, 8p allele loss, 17p allele loss and 

TP53 mutations in squamous cell carcinoma and 5q, 9p, 11q and 13q deletions frequent in 

adenocarcinomas while frequent deletions in 17p, 18q and 22q are observed during lung 

cancer progression87. These genetic changes are seen in the ‘field cancerisation’ effect 

where repeated exposure to a carcinogen (eg, in tobacco smoke) can cause neoplasia in the 

aerodigestive region87. 

 

3.2.2 Single Nucleotide Polymorphisms 

 

The true extent of interindividual and interpopulation genomic variability has only been 

revealed since the publication of the initial draft human genome in 2001202, 205. Subsequent 
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to these publications, projects such as HapMap107 and the 1000 genomes206 have 

documented genomic variability both within and between diverse populations. 

The structural and sequence variations observed range from large chromosomal regions, 

such as segmental duplications, inversions and translocations, to smaller regions, such as 

microsatellites and minisatellites, and finally to the most extensively studied source of 

variability, single nucleotide polymorphisms (SNPs) and indels207. SNPs, which we define 

here to include both coding and non-coding single base variations, and indels, defined as a 

single or short string of nucleotides that may be inserted or deleted at a given position207. 

Consequently, a minority of the SNPs and indels in the genome may have coding effects207. 

It is estimated that the genomes from any given pair of individuals from a population may 

differ from each other by < 0.5%207. 

The SNP is the most common variation in the germline genome207, 208. An estimated 11 

million SNPs exists in the genome for a given human208. Of these, around 7 million occur at 

a minor allele frequency (MAF) greater than 5% while the rest occur between 1%-5%208, 

where for a SNP at a given locus, we define the MAF to be the frequency of the second 

most common of the biallele in the population of interest207. The allelic distribution, for a 

given site, may differ from population to population due to various evolutionary forces 

such as the effects of natural selection209. A selective sweep may result in extreme 

frequencies of SNPs located near the selected sites while negative selection would result in 

a low frequency of the SNP209. Common SNPs taken to be those with a MAF > 5%, typically 

occur in all populations but their distribution may vary across populations with less than 

10% of all SNPs being specific to a particular population207. 
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3.2.3 Types of Associations 

 

Association studies aim to identify polymorphisms associated with a continuous or discrete 

trait or disease210. Alleles identified through GWAS, may be associated with a disease-

causative locus for all the individuals comprising the study group while in linkage studies 

different loci may be associated with the same trait in different families210. Association 

studies are feasible because humans share common ancestry and although these 

approaches provide a powerful method to detect smaller effects, association studies do 

require more markers and a larger study population than are required in linkage analysis210. 

Associations where the polymorphism under study can be considered a disease-causative 

variant are referred to as “direct associations”210, 211. Such an allele may be expected to be a 

non-synonymous variant in an exon of some gene, or may affect the expression, regulation, 

splicing and/or function of the associated gene210. For example, many putative disease-

causative SNPs have been localized to non-coding regions210. For instance, SNP rs2522833 

in the intron of gene PLCO was associated with major depressive disorder suggesting PLCO  

as a causal factor212
.Ten to fifteen thousand non-synonymous SNPs with a MAF of >1% in 

Europeans, that can be screened in GWAS, have been identified210. 

Conversely, an indirect association can occur when a SNP is strongly associated with a 

disease, but the disease-causing effect is mediated by a neighbouring causal-SNP210, 211. In 

such a case the indirectly associated SNP is referred to as the “tag SNP” 210, 211. Identifying 

the causal variant in indirect association studies requires identifying other SNPs in linkage 

disequilibrium (LD) with the tag SNP, for example, by densely genotyping the surrounding 

area of the tag SNP210, 211. 
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Identifying SNPs in indirect association would require genotyping several SNPs in the 

vicinity of the tag SNP, thus making it a less powerful technique than direct association 

since the exact SNPs to be genotyped is not known210. Furthermore, there exists the 

possibility that indirect association studies may not identify a genuine causal variant, even 

when one exists210. Therefore, such studies should be supplemented by candidate gene 

studies allowing for finer genotyping of the region, leading to the identification of the true 

causal variant210. 

 

3.2.4 Association versus Linkage Studies 

 

Detection of genetic regions associated with human diseases can be broadly classified into 

linkage and association analysis192. 

SNPs can be directly or indirectly (by being in LD with the causal SNP and co-segregating) 

associated with disease variant (section 3.2.3). This same principle of LD is used in linkage 

studies where familial aggregation of markers can be detected over a large genetic distance 

if the number of familial generations (and thus the number of possible recombinational 

events) is limited and consequently, increase in familial generations can destroy the 

intermarker association (via increased number of recombinations over time) leading to 

short distance LD213. 

Family based linkage studies have been successful in identifying genes associated with 

Mendelian disorders192. In linkage analysis, a pedigree of individuals with multiple members 

affected with a disease is used to identify chromosomal regions that are common to 

diseased individuals192. Such individuals will share a high proportion of the markers from 
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along specific regions of the genome192. In lung cancer, linkage analysis conducted on 52 

high risk pedigrees led to the identification of the 6q23-25 lung cancer susceptibility 

locus46. Fine mapping of this region identified the gene RGS17, which is overexpressed in 

lung tumours and induces cell proliferation in lung tumours47. The gene was identified using 

24 6q linked cases and 72 unrelated controls in an association analysis, genotyped using 

Affymetrix 500K chipset, while the validation dataset was made up of 226 familial cases and 

313 controls from the GELCC and 154 familial cases and 325 controls from the Mayo 

clinic47. 

Unfortunately, for complex traits, linkage type analysis is of limited use as the 

polymorphisms that bring about the disease may only be slightly higher in frequency when 

compared with unaffected controls213. The extensive familial nature of complex diseases, 

indicate a strong genetic component213. However, this heritability may be the result from 

many genes with small effects, and genetic heterogeneity, where the same phenotype 

arises as a result of the combinations of different genetic variations213. 

The linkage method is suited for high penetrance familial aggregation of genetic variants 

but for complex diseases that are caused by multiple genes with small effects, this method 

is unsuitable192. For such complex traits and diseases, a case-control study design is best 

suited192. 

Association studies aim to detect a relationship between a genotypic polymorphism and a 

phenotype210. Ideally, such a phenotype would be quantitative, such as a trait 

measurement, or qualitative, such as a disease status210. Such studies are based on 

comparing allelic distributions between cases and controls to identify markers that are 

significantly more common in cases than would be expected based on their frequency in 

control subjects214. 
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Unlike the linkage approach, which is based on the assumption of a familial aggregation of 

a disease-causing variant, an association study is conducted on unrelated individuals207, 210. 

Hence, recruitment of large numbers of individuals for analysis is more feasible in the 

GWAS setting207.  

Association studies had been previously carried out on selected number of candidate genes 

that were assumed to be involved in the biological processes of lung cancer192. However, 

with the commercial availability of high throughput genotyping technology and the 

reference map of the human genome107, genome wide analysis is now possible192.  

 In studies where the two approaches have been combined, linkage typically precedes 

association studies46, 47. In the latter, finer details about a trait-associated locus can be 

revealed than is possible in linkage studies, which have relatively low resolution210. 

Candidate gene association studies have identified disease-associated regions that span 

over several megabases of DNA but association studies conducted on these regions can 

identify markers associated with disease, thus identifying the marker of interest192. 

 

3.2.5 Genome Wide Association Studies in Lung Cancer 

 

Three prominent GWAS have been carried out in lung cancer to identify SNPs associated 

with lung cancer in Caucasians112, 113, 193. Hung et al. (2008) conducted a GWA study on 1989 

lung cancer cases and 2625 controls in the discovery phase and 2513 lung cancer cases and 

4752 controls in the replication phase113. The Illumina Sentrix HumanHap 300 bead chip 

array, containing 317,139 SNPs, was used to genotype the above individuals113. SNPs were 
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analysed in a multivariate unconditional logistic regression model standardised using age, 

sex and country to identify significant SNPs113.  

The study identified chromosomal region 15q25 as conferring an association with the risk 

of lung cancer113. This region contains the CHRNA5, CHRNA3 and CHRNB4 genes113. Two 

SNPs were strongly associated with the disease rs1051730 (p =3x10-9) and rs8034191 (p= 9 

x 10-10)113. For rs8034191, the odds ratio (OR) was 1.27 (95% CI: 1.11-1.44) for carrying 1 

copy and for carrying 2 copies it was 1.80 (95% CI: 1.49-2.18); and for the allelic model it 

was 1.32 (95% CI: 1.21-1.45) in the central European population of 1922 cases and 2520 

controls113. While in the combined analysis of 4435 cases and 7272 controls an OR of 1.21 

(95% CI: 1.11-1.31) for one copy; 1.77 (95% CI: 1.58-2.00) for two copies and 1.30 (95% CI: 

1.23-1.37) for the allelic model standardised using age, sex and country was observed113. 

 Thorgeirsson et al. (2008) carried out a study to identify variants associated with smoking 

dependence (using smoking related measurements)112. SNPs identified using the 10,995 

Icelandic smokers in a genome wide study was used to study their risk of both lung cancer 

and peripheral arterial disease112. Lung cancer analysis was carried out using 1024 lung 

cancer cases and 32,244 controls, whereas peripheral arterial disease analysis was 

performed using 2738 cases and 29,964 controls112. 

Individuals were genotyped using the Illumina Human Hap300 and Human Hap300-duo+ 

Bead arrays112. The T allele of the SNP rs1051730, within the CHRNA3 gene located on 

chromosome 15q24, was associated with smoking quantity (β =0.095; 95% CI: 0.075–0.115; 

p=6x10-20), nicotine dependence (OR= 1.40; 95% CI: 1.29–1.52, p=7x10-15), lung cancer risk 

(OR =1.31; 95% CI: 1.19–1.44, p=1.5x10-8) and peripheral arterial disease (OR = 1.19; 95% 

CI: 1.12–1.27, p= 1.4x10-7)112. 



 

108 
 

Finally, McKay et al. (2008), conducted a GWAS on 2971 lung cancer cases and 3746 

controls and discovered two significant SNPs, rs402710 and rs2736100, with OR of 1.22 

(95% CI: 1.13-1.32) and 1.18 (95% CI: 1.10-1.26)193. These SNPs were replicated in 2899 lung 

cancer cases and 5573 controls and produced an OR of 1.15 (95% CI: 1.07-1.24) and 1.09 

(95% CI: 1.02-1.17) for rs402710 and rs2736100, respectively193. For the combined analysis 

of 5870 cases and 9319 controls, the allelic model  and the genotypic model for carrying 

one and two copies of the minor allele of rs402710 produced an OR of 1.18 (95% CI: 1.12-

1.24), 1.18 (95% CI: 1.05-1.33) and 1.40 (95% CI: 1.24-1.57), respectively193. For SNP 

rs2736100, the OR for allelic and genotypic model for carrying one and two copies of the 

minor allele was 1.14 (95% CI: 1.08-1.20), 1.07 (95% CI: 0.98-1.17) and 1.29 (95% CI: 1.17-

1.43), respectively193. The statistical model was adjusted for age, sex and country and the 

individuals were genotyped using the Illumina Sentrix HumanHap300 BeadChip193. The 

susceptibility region on 5p15.33 carries two potential candidate genes TERT and CLPTM1L 

193. 

Genome wide association studies revealed three chromosomal regions associated with 

lung cancer namely, 15q24-25.1, 5p15.33 and 6p21 in European, Americans and Asians14. 

The 15q24-25.1 region harbours the gene, CHRNA3 and CHRNA5, whose function has been 

associated with nicotine dependence14. The 5p15.33 region contains the TERT gene 

involved in telomerase replication, maintenance and cell proliferation14 and the CLPTM1L 

gene, which is associated with apoptosis193, 215. The 6p21 MHC216 region contains the BAT3 

gene whose product binds to p300 and MSH5 which are, respectively, involved in the DNA 

damage response and mismatch repair14. 
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3.2.6 Factors Affecting Genome Wide Association Studies 

 

3.2.6.1 Power 

 

The power of a statistical test is defined as follows, 

Power = 1 – β 

where β, the type II error rate, is the probability of accepting a false null hypothesis217. The 

power of detecting a true significant association depends on the effect size and the sample 

size of the genome wide association study218. Making sure that the studies are well 

powered is a crucial point to reduce the number of false positive associations, also called 

the ”False Positive Report Probability” (FPRP), determined by the magnitude of the p value 

and the proportion of the tested hypotheses that are true219.  

 

3.2.6.2 Hardy Weinberg Equilibrium 

 

In a large randomly mating population devoid of selection, mutation, or migration, the 

expected frequency of diploid genotypes at a locus can be predicted as a simple function of 

the allele frequency220, 221. This phenomenon was independently described by Hardy & 

Weinberg in 1908, and hence called the “Hardy Weinberg Equilibrium” 220, 221. For instance, 

given a biallelic locus, with genotypes AA, Aa and aa, the expected frequency of these 
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genotypes within the population are respectively, (1-q)2, 2q(1-q), and q2, with respect to 

the minor allele frequency q220, 221. 

Deviations from the Hardy Weinberg equilibrium amongst a GWAS study population may 

indicate population stratification, admixture, cryptic relatedness, inbreeding, selection, 

genotyping error and, where observed, this may alter the association of a genetic marker 

with the disease221. 

Inbreeding, mating between closely-related individuals leads to a decrease in 

heterozygosity across the genome, increasing the number of homozygotes221. Similarly, 

small population sizes increase homozygosity through genetic drift until the population is 

fixed for homozygotes221. 

A close kinship in a sample of unrelated individuals may lead to increased homozygosity, 

this is known as “Cryptic Relatedness” and the presence of such cryptic relatedness may 

increase false positive results in genetic association studies221. Similarly, an admixed 

population, made up of many sub populations, each of which may be in Hardy Weinberg 

equilibrium, may display Hardy Weinberg disequilibrium221.  

Other causes for deviation from the Hardy Weinberg equilibrium at the genotyping level 

may be, mutations in PCR primer sites, contaminated DNA leading to a wrong allelic call, 

low quality or quantity of DNA leading to uncalled alleles or to genotyping calling errors221. 

Such errors can lead to inflated type I and II error rates in association studies221. 
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Detecting Hardy Weinberg proportions:  

 

Hardy Weinberg proportions are tested on the null hypothesis that there is no significant 

difference between the observed and the expected genotypic counts, the alternative 

hypothesis being that there is a significant difference between the observed and the 

expected genotypic counts221. The common tests used for the Hardy Weinberg proportions 

are the Pearson’s Χ2goodness- of-fit test and the Monte Carlo Markov Chain (MCMC) exact 

test221. 

 

Pearson’s Χ2 goodness-of-fit: 

 

Consider a sample with N individuals and the observed count for the genotypes AA, AB, BB 

at a single locus being nAA, nAB and nBB, respectively than the chi square test statistic is given 

by  
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Where    is the allele frequency given by,      
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Hardy Weinberg Exact test: 

 

Consider a sample with N diploid individuals and the observed count for the genotypes AA, 

AB and BB at a single locus being nAA, nAB and nBB  
221. The expected number of individuals 

with each genotype would be    
  ,     (    ) and  (    )

  respectively, where 

   is the allele frequency of A221. Then the conditional probability can be expressed as the 

probability of heterozygous genotype     determined by the observed count of A allele 

given as 

 

  (         )   
         

   

[(      )  ]     [  (      )  ] (  ) 
                            221 

 

Where              is the observed count for allele A, N the sample size and    = 2N 

-      221. 

Complete enumeration is not practical when it comes to dealing with a large sample size of 

multiple alleles therefore a permutation or resampling based method has been 

developed221. This includes the Markov chain Monte Carlo (MCMC) method that was 

proposed by Guo and Thompson222. This method functions by generating a large number of 

independent genotypes depending on the observed allele count and sample size221. 

 

3.2.6.3 Linkage Disequilibrium 

 

The non-random association of alleles is referred to as linkage disequilibrium (LD) and can 

be detected using two measurement, r2 and D’ 214, 223.  
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Considering that not all polymorphisms are genotyped, LD allows the detection of non-

genotyped causal variants214. Consider two SNPs, A and B at a biallelic locus with 

frequencies AA/Aa/aa and BB/Bb/bb at different positions on a strand of a chromosome, 

then primarily, LD, is the measurement of the difference between the observed number of 

AB pairs and product of the expected frequency of A and B224.  

             D’ = D / Dmax                                 
224 

where Dmax  =  min(p(A)p(b),p(a)p(B))  if D≥0,or,  if D < 0, then 

       Dmax  =  min(p(A)p(B), p(a)p(b))            224 

                                                    and D = PABPab-PAbPaB 

 where PAB, Pab, PAb and PaB are frequencies of haplotype AB, ab, Ab and aB, while 

p(A),p(a),p(B) and p(b) are frequencies of alleles A, a, B and b224.  

 

3.2.6.4 Population Stratification 

 

Population stratification arises when the allele frequency between cases and controls are 

different due to ancestry rather than the disease in question223, 225. Therefore, a case 

control study should be designed to obtain cases and controls from populations with 

common ancestry223, 225.  

The effect of population stratification can be eliminated or decreased by identifying and 

excluding individuals of divergent ancestry, correcting the association statistics for genomic 

inflation and controlling by using Principal component Analysis (PCA) or Multidimensional 

Scaling (MDS)223, 225. 
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3.2.6.4.1 Genomic Control 

 

Population stratification can be detected and controlled for by calculating the genomic 

control parameter, λ, computed as the median Χ2statistic divided by the constant, 0.456  

225. It corrects by adjusting the deviation from the null hypothesis of homogeneity225, 226. If 

the genomic parameter is large, the association statistics can be corrected by dividing it 

with λ225, 226.  

 

3.2.6.4.2 Multidimensional Scaling 

 

Implementing the multidimensional scaling (MDS) method requires constructing the 

pairwise identity-by-descent (IBD) matrix, which is calculated using identity-by-state (IBS) 

223. Given the genotypes for a pair of individuals, the pairwise IBS is calculated by summing 

up the total number of alleles they share in common at individual loci divided by the total 

number of non-missing, common SNPs under study223.  

The IBD matrix is calculated using a Hidden Markov Model (HMM) that utilizes the 

observed IBS sharing and the genome wide level of relatedness between pairs227. For any 

two individuals from a random mating homogenous population, a method of moments is 

used to infer the probability of sharing 0, 1, or 2 alleles by IBD227. 

 IBD is used to detect sample and genotyping error like duplicates, contamination and 

mislabeling, or relatives. Samples contaminated with other DNA may result in false 

heterozygote calls which would inflate the IBD estimates227. 
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3.2.7 Quality Control 

 

Quality control in a GWAS is essential to eliminate the risk of false positive or negative 

results223. Several quality controls have to be carried out to identify and remove 

participants and/or individual markers that may result in a spurious association223.  

 

Discordant gender: Sex checks should be carried out to identify discrepancies between the 

reported sex of an individual versus those derived from the genotypes223. The X 

chromosome is used to determine the gender of an individual and this can be checked 

against the reported sex in the data223. Gender discrepancies can be ascertained by 

calculating the homozygosity rate across the X chromosome for every individual, where, if 

male, the homozygosity rate should be 1 and for females, it should be <0.2223.  

 

Missing genotypes: Poor quality samples or low concentrations of DNA can be reflected in 

the genotypic failure and heterozygosity rate223. Heterozygosity rate is calculated as, the 

difference between the number of non-missing genotypes and the observed number of 

homozygous genotypes divided by the number of non-missing genotypes223. Individuals 

with poor genotyping call rate (<95%) and low heterozygosity rate should be removed from 

a study223.  

 

Related individuals: Over representations of genotypes due to familial relations or 

duplicates within the sample may introduce a bias to a study, through over-representation 

of a specific family, relative to the study population223. To identify duplicate or related 
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individuals an IBS matrix is calculated223. To reduce computational complexity, regions of 

high LD may be excluded for IBS matrix calculation223. 

Recent shared ancestry is inferred from the Identity-by-descent (IBD) score for a pair of 

individuals223. This is determined from the genome wide IBS data. An IBD of 1 corresponds 

to duplicated individuals or monozygotic twins223. An IBD of 0.5, 0.25 and 0.125 

corresponds to first, second and third degree relatives, respectively223. There is of course 

some degree of discrepancy around these theoretical values but essentially removing one 

individual from any pair that produces an IBD > 0.1875, a value between second and third 

degree relative, is considered an acceptable means to reduce this bias223.  

 

Ethnic outliers: Confounding due to population stratification may arise due to different 

origins or ancestries223. This can be controlled if the cases and controls are sampled from a 

common ancestral population or the analysis is adjusted for population substructure223. 

Population substructure arises as a result of different allele frequencies in the case and 

control population223. 

As discussed in Section 3.4.4, allele frequencies can differ considerably between 

subpopulations (for example, between geographic regions). Correspondingly, population 

stratification either within or between the arms of a case-control GWA study may confound 

the identification of disease-associated loci223. The simplest means to control for 

population stratification is to ensure that individuals are randomly sampled from a 

homogeneous population, although, even here, unexpected population substructure may 

be revealed at a molecular level223. Alternatively, outliers (individuals with a vastly different 

allele complement across multiple SNPs) may be identified and removed from a dataset223. 
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SNP-level quality controls: Apart from individual-based quality control, SNP based tests are 

crucial to avoid any spurious associations223. These tests include testing for Hardy Weinberg 

equilibrium in control population, testing for missingness rate between cases and controls 

and excluding SNPs that have a minor allele frequency or a genotyping call rate below a 

specified threshold223. The latter thresholds are typically between 0.01 to 0.05% and <95% 

to <97%, respectively223. 

 

3.2.8 Genetic Models in Association Studies 

 

3.2.8.1 Additive Model 

 

Usually while detecting significant SNPs associated with a disease condition the mode of 

inheritance is usually not known 226. In such cases the additive model is preferred 226. This 

can be tested using the Χ2 and the Cochran-Armitage Trend test 226. Consider a case control 

set up of N biallelic loci and the genotype and allelic distribution for a locus is of the 

following form 226 

 
Table 3.1: Genotype and allele distribution for additive model 

 3x2 Genotype Distribution  2x2 Allele Distribution  

A1 alleles 

0 1 2 Total A1 A2 Total 

Case a0 a1 a2 A a1+2a2 a1+2a0 2A 

Control b0 b1 b2 B b1+2b2 b1+2b0 2B 

Total c0 c1 c2 C c1+ 2c2 c1 +2c0 2C 
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The Χ2 statistic with 1 degree of freedom is given by  

  
  

  [  (      )   (      )]
 

(  ) (   )[  (      ) (      )
 ]

                    226 

and the Cochran-Armitage Trend statistic under the null hypothesis of no association, with 

one degree of freedom is given by  

   
 [ (      )  (      )]

 

 (   )[ (       )  (       )
 ]

                           226 

The odds ratio for the additive models is calculated by the formula 

             
(      ) (      )⁄

(      ) (      )⁄
                       221, 227 

3.2.8.2 Dominant Model 

The genotype and allele distribution for the dominant model is as follows226, 227. 

Table 3.2: Genotype and allele distribution for dominant model 

 3x2 Genotype Distribution  2x2 distribution for 
dominant model A1 alleles 

0 1 2 Total A1 A2 Total 

Case a0 a1 a2 A a1+a2 a0 A 

Control b0 b1 b2 B b1+b2 b0 B 

Total c0 c1 c2 C c1+ c2 c0 C 

 

The Χ2 statistic and odds ratio under the dominant model is calculated using the following 

expressions: 

  
  

 [ (     )  (     )]
 

( )(   )[ (     ) (     )
 ]

                   226, 227 
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(     ) (    )⁄

    ⁄
                      221, 227 

 

3.2.8.3 Recessive Model 

 

The genotype and allele distribution for the recessive model is as follows226, 227. 

 
Table 3.3: Genotype and allele distribution for recessive model 

 3x2 Genotype Distribution  2x2 distribution for recessive 
model A1 alleles 

0 1 2 Total A1 A2 Total 

Case a0 a1 a2 A a2 a1+a0 A 

Control b0 b1 b2 B b2 b1+b0 B 

Total c0 c1 c2 C c2 c1 +c0 C 

 

The Χ2 statistic and odds ratio for the recessive model is calculated using the following 

expressions: 

  
  

 [ (  )  (  )]
 

( )(   )[ (  ) (  )
 ]

                                        226, 227 
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(     ) (    )⁄
                                221, 227 
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3.2.8.4 Genotypic Model 

 

The genotype and allele distribution for the genotypic model is as follows226, 227. 

 
Table 3.4: Genotype and allele distribution for genotypic model 

 3x2 Genotype Distribution  

A1 alleles 

0 1 2 Total 

Case a0 a1 a2 A 

Control b0 b1 b2 B 

Total c0 c1 c2 C 

 

The Χ2 statistic and odds ratio for the genotypic model is calculated using the following 

expressions. 

  
  

(    (    ⁄ ))
 
 

    ⁄
  

(    (    ⁄ ))
 
 

    ⁄
                              

226, 227
 

                                               
    ⁄

    ⁄
             221, 227 

                                                  
    ⁄

    ⁄
         221, 227 

 

3.2.9 Multiple Testing 

 

The testing of multiple SNPs for association studies requires the reduction of false positive 

associations through correction techniques like the Bonferroni correction214. Testing for n 

SNPs results in a Bonferroni correction level of α/n where α is the type I error rate which, if 

set at 0.05, the Bonferroni correction level for 1 million SNPs is (5 x 10-8)    214. 
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3.3 Materials and Methods 

 

3.3.1 DNA Extraction, Genotyping and Quality Control  

 

Lung cancer cases from Liverpool were consented to participate in the study according to 

the LLP protocol228. They were histologically or cytologically confirmed. DNA from blood 

was extracted using Qiagen kits (Qiagen, Valencia, CA) using established protocols113 and 

genotyped on the Illumina 300K bead chip array 

(http://www.illumina.com/downloads/HUMAN HAP300Datasheet.pdf).  

Genotype data from the Illumina1.2M SNP platform for 3000 controls was downloaded 

from the Wellcome Trust Case-Control Consortium for the 1958 British birth cohort194. No 

other phenotypic information was available for the control dataset, hence limiting it to the 

univariate analyses. Due to imperfect overlap between the genotypes assayed on the 

Illumina 300K array and the Illumina1.2M SNPs arrays, analysis was restricted to those SNPs 

present on both arrays.  

Quality control filters as available within the PLINK program227 were applied to the dataset 

and are described presently. Individuals with discordant gender were removed from the 

dataset and not considered any further. For a pair of individuals with IBD > 0.1875, an 

individual was selected at random and removed from the dataset223. Any outliers in the 

study defined as individuals that outwith the sample heterozygosity mean ± 3sd and 

genotyping rate of < 0.95% were removed from further analysis223. Individuals that 

represented population outliers were identified using multidimensional scaling223. This was 

done by using the genotypes of SNPs that are not correlated (r2 < 0.2) and the HapMap3 
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data for the European (Utah residents with Northern and Western European ancestry from 

the CEPH collection (CEU)), Asian (Japanese in Tokyo, Japan (JPT) and Han Chinese in 

Beijing, China (CHB)) and African (Yoruba in Ibadan, Nigeria (YRI)) populations. The case-

control genotype data was merged with the HapMap3 data for which the MDS matrix was 

calculated using the uncorrelated SNPs223. Cluster plots were produced for the first two 

clusters or components and any outliers were removed from further analyses. 

 Also, SNPs with significant (p<0.00001) missing rate between cases and controls, depicting 

genotyping discrepancies, SNPs with MAF < 1%, genotype call rate of < 97% and a Hardy-

Weinberg p-value < 0.001, were removed from the study.      

 

3.3.2 Statistical Analysis 

 

The allelic model compares the frequencies of the minor allele, the dominant model 

compares the  presence or absence of the minor allele, the recessive model models the 

effect of carrying two copies of the minor allele while the genotypic model treats each, the 

homozygous and the heterozygous genotype containing the minor allele as a factor (Table 

3.5)226. The models that were used to identify significant SNPs, were run using PLINK227. The 

odds ratio (OR) and 95% confidence interval (95% CI) for the allelic model were presented 

by PLINK227, but for the dominant, recessive and genotypic model, the OR and 95% CI was 

calculated using STATAv12179, after extracting the genotypes using PLINK227. For the 

genotypic model, the heterozygous and homozygous carrier of the minor allele were 

studied with the other homozygous allele as the baseline in a stratified analysis, while for 

the dominant, the carriers of the minor allele were compared to the other homozygote and 
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in the recessive model, the homozygote for the minor allele was compared to the other 

two forms of genotype using logistic regression.    

                                                                                                                                                            
Table 3.5: Different models tested in the genome wide association study 

MODEL AA AB BB Degrees of 
freedom 

Allelic 0 1 2 1 

Dominant 0 1 1 1 

Recessive 0 0 1 1 

Genotypic 0 1 2 2 
*B(minor allele) 

 

Manhattan plots were drawn for every model by using packages in R statistical software229 

such as “calibrate”230 and significant SNPs obtained were queried for gene location, 

cytogenic position and function using package “NCBI2R”231 in R229. The Bonferroni 

correction level was calculated for every model, by dividing 0.05 by the total number of 

tests conducted. The Venn diagrams were plotted in R229 using package “Vennerable”232. 

 

3.4 Results 

 

The study comprised of 570 LLP cases and 3000 1958 Birth Cohort controls. The case 

population comprised of 58.26% males and 41.74% females with a mean of 42.62 (standard 

deviation = 26.85) and 67.19 (standard deviation = 9.09) for smoking pack years and age at 

diagnosis, respectively. Each SNP was tested individually for the allelic, dominant, recessive 

and the genotypic model. The allelic model was applied to 277471 SNPs while the 

dominant, recessive and genotypic SNP was applied to 239757 SNPs. This is because 

PLINK227 disregards SNPs that have a frequency of less than 5 in the 2x3 table for the 
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dominant, recessive and genotypic model but it conducts association analysis for all SNPs 

when using the allelic model. In the allelic model, 277461 were included, since 10 were 

dropped for having a value of less than 5, in the 2x2 table. The genomic inflation factor for 

the allelic association study generated by PLINK227 was 1.17, indicating that there is no 

confounding due to population stratification113, 226. The genotypic rate for all of the 

individuals in the study was 99.88%.  

 

Figure 3.1: Distribution of SNPs with missing genotypes. This was carried out in PLINK 
(Purcell, Neale et al., 2007) by steps provided by Anderson et al.,2010.  

 

Most of the loci were genotyped in all individuals, with majority of the individuals having 

minimal missing SNP information (Figure 3.1). Individuals were excluded from further 

analysis if the displayed a missing call rate of > 3% or a rate of heterozygosity beyond ±3 
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standard deviations from the mean heterozygosity rate of the case-control population 

(Figure 3.2).  

Figure 3.2: Plot of heterozygosity rate versus missing genotypes. 

 

 

Figure 3.2 is a plot of heterozygosity rate against the proportion of missing genotypes. The 

vertical red broken line is plotted at a x axis value of 0.03 while the parallel red broken lines 

drawn horizontal to the x axis are at 3 standard deviations above and below the mean 

heterozygosity rate. Individuals, depicted as blue dots, contained in the enclosed area 

formed by the y axis and the red broken lined were included for further analyses.  
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Figure 3.3: Cluster plot of cases, controls and HapMap3 populations. 

 

Figure 3.3 is the cluster plots for LLP cases, 1958 Birth Cohort controls and HapMap3 

dataset made up of European, Asian and African population, for the first two components. 

The blue cluster, which is superimposed by the green and black cluster are the LLP cases. 

The green cluster is the 1958 Birth Cohort used as controls and the black cluster, on the 

green cluster is the HapMap3 European population. The other two black clusters are Asians 

and Africans from the HapMap3 population. The common European ancestry of the cases 

and controls is shown by them, clustering together with the Hapmap3 European 

population.  
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Figure 3.4: Cluster of cases and controls 

 

Further enlarging on the European cluster and excluding the HapMap3 population from 

Figure 3.3, the rectangle formed by the parallel lines drawn from either axis in Figure 3.4 

are individuals included for further analyses. These individuals were chosen because they 

form a tight cluster indicating common ancestry, while the rest are scattered. 
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Figure 3.5: Manhattan plots of -log10(p) versus base pair position, for the allelic, dominant, 
recessive and genotypic model.  
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Figure 3.5 shows Manhattan plots for the various models tested using the case-control 

dataset. It is a plot of the negative of the log to the base of 10 of the p values versus the 

base pair position for every SNP within a chromosome, for every chromosome. The red 

horizontal line is the Bonferroni correction level while the blue line is the suggested 10-5 

level.  

Three SNPs reached the Bonferroni significance level of 1.80 ×10-07 in the allelic model 

while 6, 4 and 4 SNPs reached the Bonferroni significance level of 2.09 ×10-07 in the 

genotypic, dominant and recessive model, respectively. 
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Table 3.6: SNPs (p≤10-5) showing a significant evidence of allelic association. 

Chr SNP 
Minor 
allele 

Case 
MAF 

Control 
MAF OR (95% CI) p-value 

11 rs10838427 A 0.21 0.35 0.51 (0.43 - 0.6) 1.56E-17 

19 rs2162296 A 0.11 0.21 0.45 (0.36 - 0.55) 6.3E-15 

12 rs1563834 A 0.06 0.15 0.4 (0.31 - 0.52) 5.48E-13 

1 rs16857239 C 0.16 0.11 1.62 (1.35 - 1.95) 2.35E-07 

2 rs2888881 A 0.3 0.23 1.45 (1.25 - 1.68) 4.96E-07 

6 rs3130564 A 0.32 0.25 1.43 (1.24 - 1.65) 7.44E-07 

6 rs3868542 G 0.28 0.36 0.69 (0.6 - 0.8) 7.62E-07 

7 rs7787541 A 0.1 0.06 1.76 (1.4 -2.2) 8.54E-07 

2 rs4851692 A 0.24 0.17 1.48 (1.27 - 1.74) 9.47E-07 

5 rs4410655 A 0.53 0.44 1.39 (1.22 - 1.58) 1.06E-06 

10 rs10509535 G 0.11 0.06 1.73 (1.38 - 2.16) 1.16E-06 

6 rs9405681 A 0.16 0.23 0.66 (0.55 - 0.78) 2.04E-06 

2 rs6735530 G 0.08 0.14 0.58 (0.46 - 0.73) 2.55E-06 

19 rs2304214 A 0.4 0.32 1.38 (1.21 - 1.58) 3.02E-06 

20 rs2232081 A 0.17 0.12 1.53 (1.28 - 1.84) 3.39E-06 

2 rs6739713 G 0.13 0.18 0.63 (0.52 - 0.77) 4.22E-06 

10 rs2096285 G 0.26 0.33 0.71 (0.61 - 0.82) 4.91E-06 

22 rs4822112 C 0.21 0.15 1.47 (1.25 -1.74) 5.12E-06 

5 rs7709656 A 0.12 0.17 0.63 (0.52 - 0.77) 5.37E-06 

6 rs17062322 A 0.08 0.13 0.58 (0.46 - 0.74) 5.92E-06 

9 rs953715 A 0.09 0.14 0.6 (0.47 - 0.75) 6.04E-06 

10 rs10994443 A 0.06 0.11 0.55 (0.42 - 0.71) 6.13E-06 

6 rs9366778 A 0.29 0.36 0.72 (0.62 - 0.83) 6.57E-06 

9 rs12683609 C 0.38 0.46 0.73 (0.64 - 0.84) 7.18E-06 

6 rs3130977 G 0.42 0.35 1.36 (1.19 - 1.55) 7.73E-06 

6 rs4713175 A 0.06 0.11 0.55 (0.42 - 0.72) 9.18E-06 

 

The above table lists the results obtained for the association analysis using allelic model. 

Twenty six significant SNPs were identified at p ≤ 10-5, of which 3 were significant at 

Bonferroni correction level. The description of genes that harbour or are in the vicinity of 

these SNPs are described in Table 3.10. 
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Table 3.7: SNPs (p≤10-5) significant in the dominant model. 

Chr SNP Minor allele 

Case 

MAF 

Control 

MAF 

Odds ratio            

(95% CI) p-value 

11 rs10838427 A 0.21 0.35 0.33 (0.27 - 0.40) 1.86E-29 

19 rs2162296 A 0.11 0.21 0.41 (0.33 - 0.51) 3.71E-15 

12 rs1563834 A 0.06 0.15 0.35 (0.26 - 0.46) 2.96E-14 

1 rs634899 A 0.29 0.35 0.59 (0.49 - 0.71) 3.38E-08 

10 rs10994443 A 0.06 0.11 0.47 (0.35 - 0.63) 2.82E-07 

1 rs16857239 C 0.16 0.11 1.71 (1.38 - 2.10) 4.39E-07 

2 rs2888881 A 0.3 0.23 1.60 (1.32 - 1.93) 8.44E-07 

2 rs932206 G 0.28 0.35 0.63 (0.52 - 0.76) 9.95E-07 

2 rs6735530 G 0.08 0.14 0.54 (0.42 - 0.70) 1.21E-06 

6 rs3868542 G 0.28 0.36 0.63 (0.53 - 0.76) 1.59E-06 

7 rs7787541 A 0.1 0.06 1.79 (1.40 - 2.28) 2.64E-06 

2 rs2056202 A 0.18 0.13 1.60 (1.31 - 1.96) 3.35E-06 

9 rs1932649 G 0.21 0.16 1.57 (1.29 - 1.90) 4.98E-06 

11 rs3802785 A 0.26 0.2 1.54 (1.28 - 1.86) 5.36E-06 

2 rs6757680 A 0.18 0.13 1.59 (1.30 - 1.94) 5.6E-06 

10 rs2096285 G 0.26 0.33 0.65 (0.54 - 0.78) 5.77E-06 

9 rs960957 A 0.32 0.38 0.65 (0.54 - 0.78) 6.05E-06 

18 rs1551821 C 0.12 0.17 0.60 (0.48 - 0.75) 6.68E-06 

2 rs7580232 A 0.18 0.13 1.58 (1.29 - 1.93) 7.26E-06 

6 rs9405681 A 0.16 0.23 0.63 (0.52 - 0.78) 7.83E-06 

1 rs650635 C 0.19 0.14 1.56 (1.28 - 1.91) 9.41E-06 

16 rs6564872 A 0.43 0.5 0.64 (0.52 - 0.78) 9.71E-06 

 

Table 3.6 lists the results obtained for the association analysis using the allelic model. 

Twenty six significant SNPs were identified at p ≤ 10-5, of which 4 were significant at 

Bonferroni correction level. The description of genes that harbour or are in the vicinity of 

these SNPs are described in Table 3.10. 
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Table 3.8 : SNPs (p≤10-5) significant in the recessive model. 

  Chr   SNP 

  Minor    

   allele                 Case MAF   Control MAF   Odds ratio (95% CI)   p-value 

  10   rs7912419   A   0.2   0.16   3.49 (2.19 - 5.56)    2.4E-08 

  22   rs2050143   G   0.32   0.3   2.09 (1.59 - 2.74)   6.07E-08 

  19   rs4807664   C   0.17   0.13   3.56 (2.16 - 5.87)   1.22E-07 

  6   rs9493355   G   0.24   0.19   2.55 (1.78 - 3.66)   1.58E-07 

  *23   rs5910340   G   0.11   0.09   1.32 (0.92 - 1.88)   2.49E-07 

  *23   rs5910338   G   0.12   0.09   1.33 (0.93 - 1.90)   2.7E-07 

  1   rs6697552   A   0.28   0.32   0.31 (0.19 - 0.50)   4.3E-07 

  10   rs4146727   A   0.15   0.12   4.19 (2.29 - 7.67)   4.65E-07 

  3   rs9828404   A   0.16   0.12   3.54 (2.08 - 6.02)   7.35E-07 

  14   rs2225271   A   0.12   0.11   4.18 (2.25 - 7.76)   8.94E-07 

  6   rs3130564   A   0.32   0.25   2.09 (1.55 - 2.82)   9.73E-07 

   8    rs6470588   C   0.51   0.45   1.68 (1.36 - 2.07)   1.32E-06 

  22   rs2858344   C   0.1   0.08   5.95 (2.61 - 13.56)   1.47E-06 

  5   rs4410655   A   0.53   0.44   1.65 (1.34 - 2.04)   2.41E-06 

  15   rs8023560   C   0.12   0.09   5.46 (2.44 - 12.23)   3.64E-06 

  6   rs204993   A   0.3   0.27   1.80 (1.39 - 2.33)   5.94E-06 

  10   rs3781564   G    0.1   0.06   6.98 (2.59 - 18.83)   8.22E-06 

  15   rs2007084   A   0.09   0.08   5.04 (2.29 - 11.10)   8.63E-06 

  8   rs1372452   A   0.15   0.13   3.35 (1.90 - 5.88)   8.7E-06 

 

 

Table 3.7 lists the results obtained using dominant model. Twenty two significant SNPs 

were identified at p ≤ 10-5, of which 4 were significant at Bonferroni correction level. Genes 

associated with these SNPs are described in Table 3.10. 

 

 

 

 

 

 

 

 

 



 

133 
 

Table 3.9: SNPs (p≤10-5) significant in the genotypic model. 

Chr SNP Minor 
allele 

Case 
MAF 

Control 
MAF 

Heterozygous           
OR  (95% CI) 

Homozygous         
OR   ( 95% CI) 

p-value 

11 rs10838427 A 0.21 0.35 0.26  (0.21-0.33) 0.60 (0.44-0.81) 1.7E-31 

19 rs2162296 A 0.11 0.21 0.43  (0.34-0.55) 0.22 (0.10-0.51) 1.7E-14 

12 rs1563834 A 0.06 0.15 0.34  (0.25-0.45) 0.48 (0.22-1.05) 2.4E-13 

22 rs2050143 G 0.32 0.3 0.69  (0.56-0.85) 1.79 (1.35-2.38) 1.4E-09 

1 rs634899 A 0.29 0.35 0.53  (0.43-0.65) 0.80 (0.60-1.08) 1.3E-08 

10 rs7912419 A 0.2 0.16 1.14  (0.92-1.40) 3.63 (2.27-5.81) 8.4E-08 

10 rs10994443 A 0.06 0.11 0.42  (0.31-0.58) 1.08 (0.54-2.17) 2.5E-07 

1 rs6697552 A 0.28 0.32 1.19  (0.98-1.45) 0.33 (0.20-0.55) 5.3E-07 

19 rs4807664 C 0.17 0.13 1.12  (0.89-1.39) 3.65 (2.21-6.05) 5.3E-07 

6 rs3130564 A 0.32 0.25 1.26  (1.03-1.54) 2.31 (1.68-3.15) 5.4E-07 

6 rs9493355 G 0.24 0.19 1.09  (0.89-1.34) 2.62 (1.82-3.79) 7.8E-07 

*23 rs5910340 G 0.11 0.09 0.67  (0.46-1.00) 1.28 (0.90-1.83) 9.4E-07 

*23 rs5910338 G 0.12 0.09 0.70  (0.48-1.04) 1.30 (0.91-1.85) 1.2E-06 

3 rs9828404 A 0.16 0.12 1.20  (0.96-1.49) 3.69 (2.16-6.30) 1.4E-06 

1 rs16857239 C 0.16 0.11 1.67  (1.35-2.07) 2.14 (1.15-3.96) 2E-06 

2 rs2888881 A 0.3 0.23 1.55  (1.27-1.88) 1.97 (1.36-2.86) 2.1E-06 

10 rs3781564 G 0.1 0.06 1.39  (1.07-1.79) 7.32 (2.71-19.75) 2.2E-06 

10 rs4146727 A 0.15 0.12 1.06  (0.85-1.33) 4.25 (2.32-7.79) 2.7E-06 

2 rs4851692 A 0.24 0.17 1.43  (1.17-1.74) 2.47 (1.60-3.82) 2.7E-06 

5 rs4410655 A 0.53 0.44 1.25  (0.99-1.58) 1.91 (1.47-2.48) 2.8E-06 

6 rs3868542 G 0.28 0.36 0.67  (0.55-0.82) 0.50 (0.35-0.70) 3E-06 

7 rs7787541 A 0.1 0.06 1.73  (1.35-2.22) 3.57 (1.29-9.88) 4.3E-06 

14 rs2225271 A 0.12 0.11 0.94  (0.74-1.20) 4.13 (2.22-7.69) 5.1E-06 

10 rs4918735 A 0.29 0.33 0.61  (0.49-0.74) 0.93 (0.69-1.26) 5.6E-06 

2 rs932206 G 0.28 0.35 0.62  (0.51-0.76) 0.66 (0.48-0.90) 6.1E-06 

20 rs2232081 A 0.17 0.12 1.44  (1.16-1.79) 2.99 (1.68-5.33) 6.5E-06 

15 rs8023560 C 0.12 0.09 1.21  (0.95-1.53) 5.66 (2.52-12.68) 6.7E-06 

13 rs9522264 G 0.39 0.41 0.62  (0.50-0.76) 0.99 (0.76-1.28) 6.9E-06 

22 rs2858344 C 0.1 0.08 1.10  (0.85-1.43) 6.04 (2.65-13.78) 7.1E-06 

2 rs6735530 G 0.08 0.14 0.54 (0.42-0.70) 0.54 (0.23-1.25) 7.6E-06 

8 rs6470588 C 0.51 0.45 1.03 (0.82-1.29) 1.71 (1.32-2.20) 8.1E-06 

14 rs8022758 G 0.19 0.21 0.63 (0.51-0.78) 1.41 (0.95-2.08) 8.1E-06 

11 rs10501590 G 0.14 0.17 0.63 (0.50-0.80) 1.79 (1.10-2.92) 8.7E-06 

 

Table 3.9 lists the results obtained using the dominant model. Thirty three significant SNPs 

were identified at p ≤ 10-5, of which 6 were significant at Bonferroni correction level. Genes 

associated with these SNPs are described in Table 3.10. 
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Figure 3.6: Venn diagram representing SNPs (p<10-5) common to the four models. 

 

The Venn diagram represents the overlap of SNPs between various models. The allelic, 

recessive, genotypic and dominant models identified 11, 3, 4 and 9 SNPs, respectively, 

specific only to these models while the rest of the SNPs significant at p ≤ 10-5 were common 

to more than one genetic model. None of the SNPs were common to all models. The 

overlap may indicate a number of possibilities, for instance if a SNP is significant in both the 

allelic and dominant model, it would suggest that just carrying the minor allele, regardless 

of the genotype being homozygous or heterozygous, can increase the susceptibility. For a 

SNP significant in both the allelic and genotypic model, indicate that heterozygous and 

homozygous carriers of minor allele have different but significant risks, while SNPs that are 

significant in both the allelic and recessive model indicate that homozygous carriers of the 

minor allele have a higher risk than any of the other carriers. 



 

135 
 

The three most significant SNPs in the GWAS analysis were rs10838427, rs2162296 and 

rs1563834.  

rs10838427, located in the PRDM11 gene, was significant in the allelic (OR= 0.51; 95% CI: 

0.43 – 0.6 ; p = 1.56 ×10-17), dominant model (OR= 0.33; 95% CI: 0.27 - 0.40 ; p = 1.86 ×10 -

29) and genotypic model (ORhet= 0.26; 95% CIhet: 0.21-0.33 and ORhom = 0.60; 95% CIhom :0.44-

0.81; p = 1.7 × 10-31). rs2162296, located in gene ZNF382, also appeared significant in the 

allelic (OR = 0.45; 95% CI: 0.36 –0.55; p = 6.30 ×10-15), dominant (OR = 0.41 ; 95% CI: 0.33 - 

0.51; p = 3.71 ×10-15) and genotypic (ORhet= 0.43 ; 95% CIhet: 0.34-0.55 and ORhom= 0.22 ; 

95% CIhom: 0.10-0.51; p = 1.7 × 10-14) models. SNP rs1563834 located in gene HMGA2 also 

appeared significant in the allelic (OR = 0.4; 95% CI: 0.31 - 0.52; p = 5.48 × 10-13),dominant 

(OR = 0.35 ; 95% CI: 0.26 - 0.46; p = 2.96 × 10-14) and genotypic (ORhet= 0.34 ; 95% CIhet: 

0.25-0.45 and ORhom= 0.48 ; 95% CIhom: 0.22-1.05; p = 2.4 ×10 -13) models. 

The most significant SNP in the recessive model after Bonferroni correction was rs7912419 

(OR =3.49; 95% CI: 2.19 - 5.56; p = 2.4 × 10-8) located in gene ITIH2. This SNP was also 

significant in the genotypic (ORhet= 1.14; 95% CIhet: 0.92-1.40 and ORhom= 3.63; 95% CIhom: 

2.27-5.81; p = 8.4 × 10-8) model. rs2050143 located near gene PDGFB was significant in the 

recessive (OR =2.09; 95% CI: 1.59 - 2.74; p = 6.07 × 10-8) as well as the genotypic (ORhet = 

0.69 ; 95% CIhet: 0.56-0.85 and ORhom = 1.79; 95% CIhom: 1.35-2.3; p = 1.4 × 10-9) model. 

SNPs that appeared significant in the dominant model after Bonferroni correction level 

included rs634899 (OR =0.59; 95% CI: 0.49 - 0.71; p =3.38 ×10-8), located in gene RP11-

563D10.1.1, which also appeared significant in the genotypic model (ORhet = 0.53; 95% CIhet: 

0.43-0.65 and ORhom = 0.80; 95% CIhom: 0.60-1.08; p =1.3 × 10-8).  
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Table 3.10: Description of genes harbouring or located near significant SNPs (p≤10-5) 
extracted using the NCBI2R231 package in R229. Models that identified significant SNPs and 
the least p value obtained by these models is shown. 

MarkersModel/s 

p-value Type 
Cytogenetic 
location Gene Gene summary 

rs10501590G 
8.70E-06 intronic 11q14.1 DLG2 

Encodes a member of the 
membrane-associated 
guanylate kinase (MAGUK) 
family which may bind to a 
related family member and 
interact at postsynaptic sites 
to form a multimeric scaffold 
for the clustering of 
receptors, ion channels, and 
associated signaling proteins. 

rs10507935A 
2.60E-10 intergenic 13q31.3 RNU6-67 

 rs10509535A 
1.16E-06 intergenic 10q23.2 

RP11-
380G5.4.1 

 rs10838427AGD 
1.70E-31 intronic 11p11 PRDM11 

 

rs10994443AGD 
2.50E-07 intronic 10q21 ANK3 

Ankyrins are a family of 
proteins that play a role in 
cell motility, activation, 
proliferation, contact, and 
the maintenance of 
specialized membrane 
domains.  
*Developmental Biology 

rs12683609A   

7.18E-06 intergenic 9p22.3 C9ORF92 
 rs1372452R   

 8.70E-06 intergenic 8q24.21 AC068570.1 
 

rs1551821D   

6.68E-06 intronic 
18q12.1-
q21.1 SLC14A2 

Encodes a protein that 
belongs to the urea 
transporter family and plays 
an important role in the 
urinary concentration 
mechanism. 
*Transmembrane transport 
of small molecules 

rs1563834AGD  
2.96E-14 intronic  12q15 HMGA2 

Encodes a protein that 
belongs to the non-histone 
chromosomal high mobility 
group (HMG) which function 
as a architectural and 
transcriptional regulating 
factor, and contains 
structural DNA-binding 
domain. Gene may be 
involved in diet-induced 
obesity. $ Transcriptional 
misregulation in cancer 

rs16857239AGD 

 2.35E-07 
upstream 
(5kb) 1q25.3 CACNA1E 

These calcium channels 
regulate the entry of calcium 
ions into excitable cells, and 
participate in a variety of 
calcium-dependent 
processes, including muscle 
contraction, hormone or 
neurotransmitter release, 
gene expression, cell 
motility, cell division, cell 
death and modulation of 
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firing patterns of neurons 
important for information 
processing. $MAPK signalling 
pathway, $Calcium signalling 
pathway, $Type II diabetes 
mellitus  

rs17062322A  

5.92E-06 intronic 6q23 EYA4 

Encodes a member of the 
eyes absent (EYA) family of 
proteins. It finds its 
importance in eye 
development, and for 
continued function of the 
mature organ of Corti. 
Mutations in this gene are 
associated with postlingual, 
progressive, autosomal 
dominant hearing loss at the 
deafness, autosomal 
dominant nonsyndromic 
sensorineural 10 locus. Gene 
defect also causes dilated 
cardiomyopathy 1J. 

rs1932649D   
4.98E-06 intergenic 9q22.2 SLC28A3 

Regulates vascular tone, 
neurotransmission, 
adenosine concentration in 
the vicinity of cell surface 
receptors, and transport and 
metabolism of nucleoside 
drugs. *Transmembrane 
transport of small molecules 

rs2007084R  

8.63E-06 intronic 15q25-q26 ANPEP 

 Plays a role in the final 
digestion of peptides 
generated from hydrolysis of 
proteins by gastric and 
pancreatic proteases. 
Defects lead to various types 
of leukemia or lymphoma. 
Hematopoietic cell lineage, $ 
Glutathione metabolism, $ 
Renin-angiotensin system, $ 
Metabolic pathways 

rs204993R    
5.94E-06 intronic 6p21.3 PBX2 

Encodes a ubiquitously 
expressed member of the 
TALE/PBX homeobox family, 
the protein of which binds to 
the TLX1 promoter and is a 
transcriptional activator.  

rs2050143GR 

 1.40E-09 intergenic 22q13.1 PDGFB 

Encodes a member of the 
platelet-derived growth 
factor family. Polymorphisms 
are associated with 
meningioma. $ Prostate 
cancer, $ Glioma, $ 
Melanoma, $ Renal cell 
carcinoma, $ Transcriptional 
misregulation in cancer, $ 
Pathways in cancer, $ 
Regulation of actin 
cytoskeleton, $ HTLV-I 
infection, $ Focal adhesion, $ 
Gap junction, $ Cytokine-
cytokine receptor interaction, 
$ MAPK signalling pathway, 
*Hemostasis, *Signal 
Transduction 

rs2056202D 
3.35E-06 intronic 2q24 SLC25A12 

Encodes a calcium-binding 
mitochondrial carrier 
protein. Polymorphisms may 
be associated with autism, 
and global cerebral 
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hypomyelination. 
*Metabolism, *Metabolism 
of proteins 

rs2096285AD 
4.91E-06 intronic 10q26 PTPRE 

Encodes a member of the 
protein tyrosine 
phosphatase (PTP) family 
that regulate a variety of 
cellular processes including 
cell growth, differentiation, 
mitotic cycle, and oncogenic 
transformation.  

rs2162296AGD 
3.71E-15 intronic 19q13.12 ZNF382 

Encodes a KRAB domain zinc 
finger transcription factor 
(KZNF) that may play a 
critical role in the regulation 
of many cellular processes 
including differentiation, 
proliferation and apoptosis, 
inhibition of activating 
protein 1 (AP-1) and nuclear 
factor kappa-B (NF-kB) 
signalling and may function 
as a tumour suppressor in 
multiple carcinomas.  
*Gene Expression 

rs2225271GR 

 8.94E-07 intergenic 14q31.2 
RP11-
22K10.1.1 

 

rs2232081AG 

 3.39E-06 intronic 20p12.3 FERMT1 

Encodes a protein belonging 
to the fermitin family which 
is involved in integrin 
signalling and linkage of the 
actin cytoskeleton to the 
extracellular matrix.  

rs2304214A  

  3.02E-06 synonymous 19q13 DLL3 

Encodes a protein belonging 
to the delta protein ligand 
family that functions as 
Notch ligands. $ Notch 
signalling pathway 

rs2858344GR 

 1.47E-06 intronic 22q12.3 SYN3 

Belongs to the synapsin gene 
family and may have a role in 
several neuropsychiatric 
diseases like schizophrenia. 
Another gene, TIMP3 is 
located within an intron of 
this gene and is transcribed 
in the opposite direction. 
*Neuronal System 

rs2888881AGD  

4.96E-07 intronic 2p21 PLEKHH2 
 

rs3130564AGR 

 5.40E-07 intronic 6p21.3 PSORS1C1 

Confers susceptibility to 
psoriasis and systemic 
sclerosis. 

rs3130977A    

7.73E-06 
upstream 
(2kb) 6p21.3 C6orf15 

 

rs3781564GR  

2.20E-06 intronic 10q25.3 PNLIPRP1 

$ Fat digestion and 
absorption, $ Pancreatic 
secretion, $ Metabolic 
pathways, $ Glycerolipid 
metabolism 

rs3802785D  

 5.36E-06 upstream 11p11.2 LOC221122 
 rs3868542AGD  

7.62E-07 upstream (2kb) 6p21.33 PSORS1C3 
 rs4146727GR 

 4.65E-07 intronic 10q24.1 PIK3AP1 
$ B cell receptor signalling 
pathway, *Immune System 

rs4410655AGR 

 1.06E-06 
Non coding 
transcript 5q35.3 AACSP1 

 rs4713175A  

  9.18E-06 intergenic 6 TRNAA40 
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rs4807664GR  

1.22E-07 intronic 19p13.3 UHRF1 

The protein binds to specific 
DNA sequences, recruits a 
histone deacetylase to 
regulate gene expression, 
functions in the p53-
dependent DNA damage 
checkpoint and plays a major 
role in the G1/S transition 
and retinoblastoma gene 
expression. 

rs4822112A   

5.12E-06 downstream 22q13.2 NFAM1 

Encodes a type I membrane 
receptor that activates 
cytokine gene promoters 
and contains an 
immunoreceptor tyrosine-
based activation motif 
(ITAM). It regulates the 
signaling and development 
of B-cells. 

rs4851692AG 

 9.47E-07 
Non coding 
transcript 2q12.1 

LOC10028701
0 

 

rs4918735G   

 5.60E-06 intronic 10q25-q26 TECTB 

Encodes the major non-
collagenous proteins of the 
tectorial membrane of the 
cochlea. 

rs5910338GR 

 2.70E-07 

 
intergenic 

 
Xq24 

 
WDR44 

 Alternate splicing results in 
multiple transcript variants 
and the encoded protein 
may play a role in endosome 
recycling. 

rs5910340GR  

2.49E-07 

rs634899GD    

1.30E-08 intergenic 1q31.3 
RP11-
563D10.1.1  

rs6470588GR 

 1.32E-06 intronic 8q24 PVT1 
 

rs650635D    

 9.41E-06 intronic 1q25.3 CACNA1E 

These calcium channels 
regulate the entry of calcium 
ions into excitable cells, and 
participate in a variety of 
calcium-dependent 
processes, including muscle 
contraction, hormone or 
neurotransmitter release, 
gene expression, cell 
motility, cell division, cell 
death and modulation of 
firing patterns of neurons 
important for information 
processing. $MAPK signalling 
pathway, $Calcium signalling 
pathway, $Type II diabetes 
mellitus  

rs6564872D    

9.71E-06 intronic 16q24.1 GAN 

 Defects in this gene are a 
cause of giant axonal 
neuropathy (GAN). Encoded 
protein regulates 
neurofilament architecture 
and mediate the 
ubiquitination and 
degradation of some 
proteins. *Immune System 

rs6697552GR  

4.30E-07 intergenic 1q43 
RP11-
331N16.1.1  

rs6735530AGD  

1.21E-06 intronic 2p21 CRIPT 
 rs6739713A  

4.22E-06 intergenic 2q21.3 R3HDM1 
 

rs6757680D 
5.60E-06 intronic 2q31.2-q33.1 HAT1 

Encodes protein involved in 
the rapid acetylation of 
newly synthesized 
cytoplasmic histones which 
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plays an important role in 
replication-dependent 
chromatin assembly. $ 
Alcoholism 

rs7580232D 
7.26E-06 intronic 2q24 SLC25A12 

Encodes a calcium-binding 
mitochondrial carrier 
protein. Mutations may 
cause autism and global 
cerebral hypomyelination. 
*Metabolism, *Metabolism 
of proteins 

rs7709656A 
5.37E-06 intronic 5q32 GLRA1 

Defected gene causes startle 
disease (STHE), also known 
as hereditary hyperekplexia 
or congenital stiff-person 
syndrome. Encodes a protein 
that forms a part of the 
pentameric inhibitory glycine 
receptor that mediates 
postsynaptic inhibition in the 
central nervous system. $ 
Neuroactive ligand-receptor 
interaction, 
*Transmembrane transport 
of small molecules 

rs7787541AGD 
8.54E-07 intronic 7p21.1 AC007091.1.1 

 

rs7912419GR 
2.40E-08 intronic 10p15 ITIH2 

Associated with prevention 
of tumour metastasis and 
extracellular matrix 
stabilization. 

rs8022758G 
8.10E-06 

Non coding 
transcript, 3-
prime-utr 14q21 ATXN3 

Mutation causes an 
autosomal dominant 
neurologic disorder called 
the Machado-Joseph 
disease, also known as 
spinocerebellar ataxia-3.  
$ Protein processing in 
endoplasmic reticulum 

rs8023560GR 
3.64E-06 regulatory 15q21.1 TRIM69 

Encodes a member of the 
RING-B-box-coiled-coil 
(RBCC) family. 

rs932206GD 
9.95E-07 intergenic 2q22.1 AC068492.1.1 

 

rs9366778A 
6.57E-06 intergenic 6p21.33 WASF5P 

Is a pseudogene belonging to 
the family of genes encoding 
Wiskott-Aldrich syndrome 
(WAS) causing Wiskott-
Aldrich syndrome (immune 
system). The proteins 
encoded bring about 
transmission of signals to the 
actin cytoskeleton. 

rs9405681AD 
2.04E-06 intergenic 6p25.3 EXOC2 

Exocyst complex formation, 
Diabetes pathways, Insulin 
Synthesis and Processing 

rs9493355GR 
1.58E-07 intergenic 6q23.2 RPL21P66 

 rs9522264G 
6.90E-06 intergenic 13q34 

RP11-
65D24.2.1 

 rs953715A 
6.04E-06 intronic 9q22.33 HIATL2 

 rs960957D 
6.05E-06 intergenic 9q32 

RP11-
18B16.1.1 

 rs9828404GR 
7.35E-07 upstream (5kb) 3p26.1 AC090955.3.1 

  pathways are italicised.*- Reactome Event;$ - KEGG pathway; Pathway  names  are   italicised.  
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3.5 Discussion 

This study identified SNPs associated with lung cancer using 526 cases and 2816 control 

individuals that passed quality control, using the allelic, dominant, recessive and genotypic 

model. Varying number of SNPs were identified in different models (Table 3.6-3.9) and an 

overlap of SNPs was seen between models (Figure 3.6). 

The results of the allelic model were compared to other significant publications that 

conducted a GWAS using similar models. One of the reasons why significant SNPs in this 

study were not reported in these previous publications, may be due to the various 

significance cut off values chosen113, 114, 193, 203, 233. The most prominent SNPs in these 

publications include rs402710 on chromosome 5p15.33 and rs1051730 on chromosome 

15q25.1113, 114, 193, 203, 233. The former SNP was not present in this study, however the SNP 

rs2736100 on chromosome 5p15.33, which lies in the same chromosomal region as 

rs402710 was present and produced an OR of 0.98 (95% CI: 0.86-1.11; p = 0.73), whereas 

rs1051730 produced an OR of 1.14 (95% CI: 1.00-1.31; p = 0.054) in the allelic model (Table 

3.11).  

Furthermore, significant SNPs within chromosomal regions 5, 6 and 15, from significant 

publications113, 193, 203, 233 were compared to the present LLP study using Venn diagrams 

(Figure 3.7 and Figure3.8). P values and odds ratios, where available, were extracted from 

the supplementary sections of these publications and merged with comparable SNPs from 

the LLP study (Table 3.11), leaving out those that were not significant (p >0.05) or not 

genotyped in the LLP population for the Venn diagram. 
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Figure 3.7: Venn diagram comparing LLP SNPs (p < 0.05) in chromosome 5, 6 and 15 to 
Wang et al., 2008 (p < 10-4). 

*unadjusted ~fixed ^random 

Wang et al. (2008) 233 reported SNPs significant at p < 10-4 in an univariate model using only 

the UK population and in a meta-analysis using a fixed and random model for the UK, Texas 

and IARC populations. Thirty two SNPs were common to the LLP study and the unadjusted, 

fixed and random effect model from Wang et al. (2008)233 while 38 SNPs which are specific 

to the LLP study, were extracted because they were present in the following significant 

studies113, 193, 203, 233 (Figure 3.7). The unadjusted model in Wang et al. (2008)233 was similar 

to the present study. 
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Figure 3.8: Venn diagram comparing LLP SNPs (p < 0.05) in chromosome 5, 6 and 15 to 
Hung et al., 2008 (p < 10-5), Landi et al., 2009 (p < 10-4) and McKay et al., 2008 (p < 10-5). 

 

 

Hung et al. (2008)113 reported SNPs significant at p (trend) < 5×10-5 in a multivariate model 

adjusted for age, sex and country with the variant coded in the log additive mode. Also, 

significant SNPs (p < 10-5) in the 15q25.1 region, following fine genotyping, were also 

included. McKay et al. (2008)193 reported SNPs significant at p <10-4 using two models, one, 

adjusted for age, sex and country and the other adjusted for age, sex, country and eigen 

values. The model without eigen values was used when comparing it to the present study. 

Landi et al. (2009)203 reported significant SNPs (p <10-4) in a meta-analysis of 11 studies 

using an unadjusted model. Eight SNPs were common to all studies (Figure 3.8). None of 

the SNPs were exclusive to the LLP study. 
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 For important chromosome regions in lung cancer, when compared to the previously 

published significant SNPs in GWAS, the most significant SNP in chromosome 5 in this 

study, rs401681 (OR=0.77; 95% CI: 0.67-0.88; p = 0.00014) was also significant in the 

unadjusted analysis carried out by Landi et al. (2009)203 (OR=0.89; 95% CI: 0.86-0.92; p 

=6.65 x 10-11) and Wang et al. (2008)233  on the UK population (p = 0.00558) and in the 

multivariate analysis by McKay et al. (2008)193 adjusting for age, sex, country without 

(OR=1.19; 95% CI: 1.11-1.28; p =2.00 x 10-06) and with (OR=1.19; 95% CI: 1.11-1.28; p =3.00 

x 10-06) eigen values (Table 3.11). 

rs3130564 (OR= 1.43; 95% CI: 1.24-1.65; p =7.44 x 10-07) was the most significant SNP 

reported in this study for chromosome 6, and was also significant in the unadjusted 

analysis by Landi et al. (2009)234 (OR=1.10; 95% CI: 1.06-1.15; p =1.21 x 10-05) while 

rs4887077 (OR=1.16; 95% CI: 1.02-1.33; p =0.025) was also significant in unadjusted 

analysis of the UK population by Wang et al. (2008)233 (p = 6.10 x 10-05) and the multivariate 

models adjusted for age, sex and country without (OR=1.20; 95% CI: 1.12-1.29; p =3.00 x 

10-07) and with (OR=1.20; 95% CI: 1.12-1.29; p =6.00 x 10-07) eigen values by McKay et al. 

(2008)193 for chromosome 15. While these studies only look at the additive mode of 

inheritance, our study also covers dominant, recessive and genotypic models (Table 3.11). 

The most significant SNP identified in this study lies within the PRDM11 gene. The PRDM 

family of genes have recently gained interest as they have been associated with several 

human disease and cancers235, 236. Not much published information is available on PRDM11, 

although members of the gene family are found to be deregulated in several solid tumours, 

where they function as both tumour suppressors and drivers of oncogenic events235.  

The PRDM gene family have a PR domain and differing number of Zn finger repeats, except 

PRDM11, which does not have any Zn finger236. They play a key role in regulating 

expression, cell proliferation and differentiation through signal transduction236. Members 
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of the PRDM family are homologous to catalytic SET (Suppressor of variegation 3-9, 

Enhancer of zeste and Trithorax) domains that are histone methyltrasferases236. An 

interesting property of this group is that different molecular forms can result due to 

alternative splicing or by different promoters236. 

Potential tumour suppressors include PRDM1, PRDM2, PRDM5 and PRDM12, inactivated in 

many cancers237. Inactivation of PRDM1 and PRDM2, not necessarily together, is common 

in diffuse large B cell lymphoma (DLBCL)237. PRDM1 is also silenced in natural killer cell 

lymphoma and PRDM12 in chronic myeloid leukaemia237. 

Oncogenic properties are observed in PRDM3, PRDM13, PRDM14 and PRDM16. Acute 

myeloid leukemia results if PRDM3 or PRDM16 devoid of PRDI-BF1-RIZ1 homologous 

domain are expressed237. PRDM14 is associated with breast cancer and lymphoid 

leukaemia while, PRDM3 and PRDM13 is linked to nasopharyngeal carcinoma and 

medulloblastoma, respectively237. 

It is hypothesized that tumourigenesis for the PR genes occurs in a yin-yang mechanism 

where an imbalance of PR-plus product (product with the PR domain) that is tumour 

suppressing and PR-minus product (product without the PR domain) that is oncogenic, 

leads to cell transformation238. The imbalance is caused by activation and inactivation of 

PR-minus and PR-plus product, respectively, or both238. The instability and altered state of 

these genes in cancers may be due to its location at the end of the chromosome. 

Inactivation of this gene is mostly through loss of expression238. 

PRDM11 is associated with thyroid function regulation239 and in near-haploid 

lymphoblastoid leukaemia240. A SNP in PRDM11 was identified by NGS, in near haploid 

lymphoblastoid leukaemia and was reported to be associated with epigenetic gene240. 
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The second most significant gene ZNF382 is a functional tumour suppressor in multiple 

carcinomas that may contribute to the initiation of apoptosis and inhibition of cell 

proliferation241. The antitumourigenic activity of this gene is caused by suppressing both 

NF-κB and the AP-1 signalling pathways while the epigenetic silencing of ZNF382 may 

activate cancer signalling pathways during tumourigenesis241. 

PRDM genes and ZNF382 are tumour suppressors that are inactivated in cancer. Mutations 

in such genes, unlike the present study, should show an increased risk of cancer. The 

protective nature of these mutations can be explained by two reasons.  

The first reason may be that this variation is age related242. Low methylation of a tumour 

suppressor gene THBS4, was observed in tumour tissue, in a comparison between 

colorectal adenomas and normal colonoscopies of colorectal cancer patients, concluding 

that it was not associated with promoting colorectal neoplasia242. The study considers the 

behaviour to be linked to age, referred to as “type A”242. “Type A” genes are methylated in 

both normal and tumour tissue but the extent of methylation is proportional to the normal 

tissue age as oppose to “type C” which is specific to tumour tissue242. This study shows that 

though the gene is a tumour suppressor its methylation is higher in normal compared to 

tumour tissue242. 

The second reason may be that there was no adjustment for important confounding 

variables like age, sex and smoking pack years. For instance SNP rs401681 in chromosome 5 

showed an significant increased risk when adjusted for age, sex, country and eigen values 

in the multivariate analysis193 but a significant decreased risk in the univariate analysis203, 

233. Controlling for covariates might have produced an increased risk for these significant 

SNPs. 
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The third significant SNP is located in gene HMGA2. HMGA2 is an oncogene that functions 

by binding and inactivating pRB in lung carcinogenesis243. Its protein is reported to be 

overexpressed in non-small cell lung cancer244. The detection of overexpressed levels of 

HMGA2 can be used as a prognostic factor for early detection of lung cancer as the 

overexpression has also been seen in non-cancerous cells244. Furthermore, HMGA2 

overexpression can be used as a molecular factor for non-small cell lung cancer244. The 

significance of this gene in NSCLC can be tested using knocked out mice245. 

Similar results were seen by Quaye et al. (2009)246 that carried a logistic regression to 

assess the association of tag SNPs in oncogenes with ovarian cancer246. SNP rs11683487 in 

gene NMI, produced a decreased risk of ovarian cancer with heterozygous OR = 0.80 (95% 

CI: 0.69-0.93) and homozygous OR = 0.87 (95% CI: 0.71-1.02) (ptrend = 0.038)246. Dominant 

model was the best model for this SNP with OR = 0.81 (95% CI: 0.71-0.94; p=0.004)246. 

Furthermore, as mentioned above the odds could have increased if the model was adjusted 

for age, smoking pack years and sex. 

Other genes that appeared to be significant in the various models include ITIH2, PDGFB, 

DIAPH2, UHRF1, RPL21P66, RNU6-67 and RP11-563D10.1.1247. ITIH2 is reported to be 

downregulated in solid tumours of the breast, colon and lung, which may be associated 

with carcinogenesis and or progression of these malignancies247. 

UHRF1 is reported to be overexpressed in lung cancer and causes epigenetic changes of 

tumour suppressor genes by maintaining their promoters in a hypermethylated state248. 

The PDGFB gene is a growth factor and mutations in this gene is associated with 

meningioma and dermatofibrosarcoma protuberans249.  It is involved in functions such as 

transcriptional misregulation in cancer, regulation of actin cytoskeleton, focal adhesion, 

gap junction, cytokine-cytokine receptor interaction and MAPK signalling pathway while 

DIAPH2 is involved in cytokinesis249. There is no published information available for gene 
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RPL21P66, RNU6-67 and RP11-563D10.1.1. Genes significant at the p < 1 x 10-05 level in this 

study are described in Table 3.10.  

The next steps, to extend this genome wide association study, would be to replicate the 

results in another population of cases and controls using all three models and to evaluate 

the significance of these SNPs after controlling for important covariates like age, sex and 

tobacco smoking, since these measurements were unavailable for the 1958 Birth Cohort 

controls194. If significant it would indicate that these polymorphisms are directly associated 

with lung cancer and unaffected by the adjusted confounders112, 113.  

The SNPs that have been identified could be evaluated to see whether they influence the 

gene expression of neighbouring genes, and linkage disequilibrium analysis could be 

performed to more accurately define the SNP, or SNPs, that influence cancer 

susceptibility245. If neighbouring genes are influenced by the identified SNPs, the role of 

these genes in cancer-associated pathways, including cell cycle progression, cellular 

growth, apoptosis or DNA repair, could be tested in cell lines and in knock out studies245. 

Furthermore, mapping these genes to various known pathways, carrying out SNPs 

interaction studies and connecting expression profiles of these genes may not only help 

identify crucial pathways but also help discover new ones (Chapter  5).
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Table 3.11: Significant SNPs from chromosome 5, 6 and 15, identified in published genome wide association analysis. 

 
Hung et al., 
2008* Landi et al., 2009£ Wang et al., 2008£ McKay et al., 2008 

SNP Chr p-value OR(95% CI) OR(95% CI) OR(95% CI) 
OR(95% CI) 
fixed 

OR(95% CI) 
random 

UKGWA     
p-value 

OR(95% CI)     
Model 1* 

OR(95% CI)    
Model 2δ 

rs11950678 5 0.3321 0.90(0.72-1.12) 0.78(0.69-0.88)             

rs10072467 5 
  

1.25(1.13-1.38) 
      

rs1366625 5 
  

1.21(1.11-1.33) 
      

rs9291949 5 
   

1.09(1.04-1.13) 
     

rs402710 5 
       

1.22(1.13-1.32) 1.22(1.13-1.32) 

rs2736100 5 0.7276 0.98(0.86-1.11) 
 

1.12(1.08-1.16) 
   

1.18(1.10-1.26) 1.19(1.11-1.27) 

rs31489 5 0.0002317 0.77(0.67-0.89) 
 

0.89(0.86-0.92) 0.88(0.84-0.94) 0.88(0.84-0.94) 0.02351822 1.20(1.12-1.29) 1.20(1.11-1.29) 

rs329122 5 0.4869 0.95(0.83-1.09) 
 

0.93(0.90-0.96) 
     

rs401681 5 0.0001402 0.77(0.67-0.88) 
 

0.89(0.86-0.92) 0.88(0.83-0.93) 0.88(0.83-0.93) 0.00558291 1.19(1.11-1.28) 1.19(1.11-1.28) 

rs4635969 5 0.0006673 0.73(0.61-0.88) 
 

0.88(0.84-0.92) 
     

rs4975616 5 0.0002789 0.78(0.68-0.89) 
 

0.90(0.87-0.93) 0.88(0.83-0.93) 0.88(0.83-0.93) 0.00272402 1.17(1.09-1.26) 1.17(1.09-1.26) 

rs3130564 6 7.44E-07 1.43(1.24-1.65)   1.10(1.06-1.15)           

rs3132610 6 2.17E-05 1.43(1.21-1.70)   1.18(1.12-1.25) 1.2(1.1-1.31) 1.2(1.06-1.35) 0.01528174 1.26(1.13-1.41) 1.25(1.12-1.40) 

rs3094694 6 2.26E-05 1.39(1.19-1.62)   1.12(1.07-1.17)           

rs3130544 6 3.69E-05 1.42(1.20-1.68)   1.17(1.11-1.23)           

rs3132580 6 4.79E-05 1.40(1.19-1.65)   1.15(1.10-1.21)           

rs2187668 6 6.44E-05 1.42(1.19-1.68)   1.18(1.12-1.24) 1.22(1.12-1.33) 1.21(1.07-1.37) 0.00364272     

rs3094054 6 6.76E-05 1.41(1.19-1.68)   1.20(1.13-1.27)           

rs4122189 6 7.62E-05 0.71(0.60-0.84)   0.92(0.89-0.96)           

rs3132622 6 8.38E-05 1.30(1.14-1.49)   1.07(1.04-1.11) 
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Hung et al., 
2008* Landi et al., 2009£ Wang et al., 2008£ McKay et al., 2008 

SNP Chr p-value OR(95% CI) OR(95% CI) OR(95% CI) 
OR(95% CI) 
fixed 

OR(95% CI) 
random 

UKGWA   
p-value 

OR(95% CI)     
Model 1* 

OR(95% CI)    
Model 2δ 

rs630379 6 9.58E-05 1.31(1.15-1.51)   1.08(1.04-1.13)           

rs2844773 6 0.0001384 1.37(1.16-1.61)   1.11(1.06-1.17)           

rs7750641 6 0.0001689 1.38(1.17-1.64)   1.17(1.11-1.24) 1.23(1.13-1.34) 1.22(1.08-1.38) 0.00160221 1.25(1.12-1.40) 1.24(1.11-1.39) 

rs389884 6 0.0001956 1.41(1.18-1.68)   1.19(1.13-1.26) 1.24(1.13-1.35) 1.21(1.03-1.43) 0.00128195 1.29(1.15-1.44) 1.28(1.14-1.43) 

rs2734986 6 0.0002206 1.34(1.15-1.57)   1.15(1.09-1.20) 1.17(1.09-1.26) 1.17(1.09-1.26) 0.04663749 1.22(1.11-1.34) 1.21(1.10-1.33) 

rs3130380 6 0.0002255 1.39(1.17-1.66)   1.20(1.13-1.27) 1.22(1.12-1.34) 1.22(1.12-1.34) 0.00242865     

rs659445 6 0.0002665 1.28(1.12-1.47)   1.08(1.04-1.12)           

rs3130350 6 0.0002805 1.39(1.16-1.66)   1.21(1.14-1.28)       1.28(1.14-1.43) 1.27(1.12-1.42) 

rs3094073 6 0.0002997 1.34(1.14-1.58)   1.11(1.06-1.17)           

rs886424 6 0.0003218 1.36(1.15-1.60)   1.16(1.10-1.22)           

rs1794282 6 0.0004289 1.38(1.15-1.66)   1.20(1.13-1.26) 1.2(1.1-1.31) 1.18(0.99-1.4) 0.0085809 1.26(1.13-1.41) 1.25(1.12-1.40) 

rs9261290 6 0.0005052 1.37(1.15-1.63)   1.20(1.13-1.27) 1.22(1.11-1.33) 1.21(1.11-1.33) 0.00677158 1.28(1.14-1.44) 1.28(1.13-1.44) 

rs2517861 6 0.0005246 1.29(1.12-1.49)   1.10(1.05-1.14)           

rs535586 6 0.0005315 1.27(1.11-1.45)   1.08(1.04-1.12)           

rs8321 6 0.0006476 1.36(1.14-1.62)   1.20(1.14-1.28) 1.23(1.12-1.35) 1.23(1.12-1.35) 0.00421701 1.29(1.15-1.45) 1.29(1.14-1.45) 

rs3099844 6 0.0007861 1.35(1.13-1.61)   1.15(1.09-1.21) 1.2(1.1-1.31) 1.19(1.04-1.36) 0.00326065     

rs2233956 6 0.001188 1.28(1.10-1.49)   1.12(1.07-1.17)           

rs259919 6 0.001372 1.25(1.09-1.43)   1.10(1.06-1.14)           

rs3132685 6 0.00163 1.33(1.11-1.58)   1.19(1.12-1.25)       1.28(1.14-1.43) 1.27(1.14-1.42) 

rs3131379 6 0.001684 1.34(1.12-1.61)   1.20(1.14-1.27) 1.26(1.16-1.38) 1.24(1.05-1.47) 0.00020471 1.30(1.16-1.45) 1.29(1.15-1.45) 

rs1233487 6 0.001945 1.25(1.09-1.44)   1.09(1.05-1.13)           

rs3094127 6 0.002014 1.27(1.09-1.47)   1.11(1.06-1.16)           
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Hung et al., 
2008* Landi et al., 2009£ Wang et al., 2008£ McKay et al., 2008 

SNP Chr p-value OR(95% CI) OR(95% CI) OR(95% CI) 
OR(95% CI) 
fixed 

OR(95% CI) 
random 

UKGWA 
p-value 

OR(95% CI)     
Model 1* 

OR(95% CI)    
Model 2δ 

rs2535319 6 0.00202 1.23(1.08-1.41)   1.08(1.04-1.12)           

rs806977 6 0.002427 0.81(0.71-0.93)   1.08(1.04-1.12)           

rs2523987 6 0.002638 1.29(1.09-1.52)   1.14(1.08-1.20)           

rs2746150 6 0.002665 1.32(1.10-1.59) 1.41(1.21-1.65) 1.19(1.11-1.26) 1.23(1.12-1.35) 1.2(0.98-1.48) 0.01795292 1.31(1.16-1.47) 1.30(1.15-1.46) 

rs2517598 6 0.00296 1.28(1.09-1.50)   1.12(1.06-1.17)           

rs1235162 6 0.003002 1.31(1.10-1.58)   1.20(1.13-1.28) 1.24(1.13-1.36) 1.23(1.09-1.39) 0.00868927 1.30(1.15-1.46) 1.29(1.15-1.46) 

rs7775397 6 0.004471 1.30(1.09-1.57)   1.20(1.14-1.27) 1.23(1.12-1.34) 1.2(0.97-1.47) 0.00113253 1.30(1.16-1.46) 1.29(1.15-1.45) 

rs3134942 6 0.004632 1.29(1.08-1.53)   1.15(1.09-1.21)           

rs2524005 6 0.004852 1.24(1.07-1.44)   1.11(1.07-1.16) 1.15(1.07-1.23) 1.15(1.07-1.23) 0.02974593 1.20(1.10-1.31) 1.20(1.10-1.31) 

rs3129073 6 0.005119 1.24(1.07-1.45)   1.10(1.05-1.14)           

rs7762279 6 0.006519 1.30(1.08-1.57)   1.15(1.08-1.22)           

rs4324798 6 0.01095 1.28(1.06-1.54) 1.45(1.23-1.69) 1.16(1.09-1.24) 1.24(1.13-1.36) 1.21(0.97-1.52) 0.02099102 1.30(1.15-1.47) 1.29(1.14-1.46) 

rs3131093 6 0.01101 1.28(1.06-1.54) 1.41(1.21-1.65) 1.16(1.09-1.24) 1.23(1.12-1.35) 1.2(0.97-1.49) 0.02094826     

rs13194504 6 0.01174 1.28(1.06-1.54) 1.43(1.22-1.68) 1.15(1.08-1.23) 1.21(1.1-1.33) 1.19(0.94-1.5) 0.05454524 1.29(1.14-1.46) 1.28(1.13-1.45) 

rs3096697 6 0.01183 1.21(1.04-1.41)   1.10(1.05-1.15)           

rs1150735 6 0.01196 1.19(1.04-1.36)   1.08(1.05-1.12)           

rs10484399 6 0.01217 1.27(1.05-1.54)   1.14(1.07-1.22)           

rs2535238 6 0.01313 1.21(1.04-1.40)   1.10(1.05-1.15)           

rs3749971 6 0.01624 1.26(1.04-1.51) 1.39(1.2-1.62) 1.16(1.09-1.23) 1.21(1.11-1.33) 1.19(0.96-1.46) 0.02462257 1.28(1.14-1.44) 1.27(1.13-1.43) 

rs3129791 6 0.01815 1.26(1.04-1.52) 1.42(1.21-1.66) 1.17(1.10-1.24) 1.23(1.12-1.35) 1.2(0.96-1.5) 0.02167858 1.29(1.14-1.45) 1.28(1.13-1.45) 

rs3130893 6 0.01894 1.25(1.04-1.51) 1.41(1.21-1.65) 1.17(1.10-1.24) 1.23(1.12-1.36) 1.21(0.98-1.49) 0.01480863 1.29(1.14-1.45) 1.28(1.13-1.45) 

rs2747457 6 0.02401 1.19(1.02-1.37)   1.10(1.06-1.15)           
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Hung et al., 
2008* Landi et al., 2009£ Wang et al., 2008£ McKay et al., 2008 

SNP Chr p-value OR(95% CI) OR(95% CI) OR(95% CI) 
OR(95% CI) 
fixed 

OR(95% CI) 
random 

UKGWA  
p-value 

OR(95% CI)     
Model 1* 

OR(95% CI)    
Model 2δ 

rs175597 6 0.02824 1.22(1.02-1.46)   1.12(1.06-1.19) 1.19(1.09-1.3) 1.19(1.07-1.33) 0.08584685     

rs13211507 6 0.02937 1.24(1.02-1.49)   1.15(1.08-1.23) 1.21(1.1-1.33) 1.2(0.99-1.44) 0.11024779 1.29(1.14-1.46) 1.28(1.13-1.45) 

rs13194781 6 0.03445 1.23(1.02-1.49)   1.14(1.07-1.21)           

rs3095089 6 0.03484 1.19(1.01-1.39)   1.11(1.06-1.16)           

rs3135353 6 0.03605 1.20(1.01-1.43)   1.12(1.06-1.17)           

rs3129939 6 0.04396 1.18(1.00-1.38)   1.10(1.05-1.15)           

rs9267522 6 0.05083 1.17(1.00-1.38)   1.11(1.06-1.16)           

rs2844659 6 0.06016 1.16(0.99-1.35)   1.10(1.05-1.15)           

rs259940 6 0.05119 1.15(1.00-1.33)   1.10(1.06-1.14) 1.13(1.07-1.21) 1.13(1.07-1.21) 0.00700774 1.17(1.08-1.27) 1.17(1.08-1.26) 

rs3115663 6 0.05347 1.17(1.00-1.37)   1.11(1.07-1.16)           

rs3129763 6 0.06113 1.16(0.99-1.35)   1.11(1.06-1.15)           

rs3130618 6 0.06881 1.16(0.99-1.36)   1.11(1.07-1.16)           

rs1245371 6 0.07475 1.14(0.99-1.31)   1.10(1.06-1.14)       1.16(1.08-1.26) 1.16(1.08-1.26) 

rs3893464 6 0.08414 1.12(0.98-1.28)   1.07(1.04-1.11)           

rs3806033 6 0.08796 1.12(0.98-1.28)   1.08(1.04-1.11)           

rs3129055 6 0.1033 1.13(0.98-1.30)   1.09(1.05-1.13)           

rs3117292 6 0.1231 0.90(0.78-1.03)   0.93(0.90-0.96)           

rs9393692 6 0.135 1.11(0.97-1.26)   1.08(1.04-1.12)           

rs2523554 6 0.1403 1.11(0.97-1.26)   1.08(1.05-1.12)       1.19(1.11-1.28) 1.19(1.10-1.28) 

rs2256543 6 0.1409 1.10(0.97-1.26)   1.09(1.06-1.13) 1.14(1.08-1.21) 1.14(1.08-1.21) 0.00850992 1.17(1.09-1.26) 1.17(1.09-1.26) 

rs2523946 6 0.146 0.91(0.79-1.04)   0.93(0.90-0.96)           

rs9295663 6 0.1898 1.10(0.95-1.28)   1.10(1.05-1.14)           
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Hung et al., 
2008* Landi et al., 2009£ Wang et al., 2008£ McKay et al., 2008 

SNP Chr p-value OR(95% CI) OR(95% CI) OR(95% CI) 
OR(95% CI) 
fixed 

OR(95% CI) 
random 

UKGWA  
p-value 

OR(95% CI)     
Model 1* 

OR(95% CI)    
Model 2δ 

rs9505900 6 0.2747 0.93(0.81-1.06)           1.17(1.09-1.25) 1.17(1.09-1.25) 

rs6917441 6 0.5986 1.04(0.89-1.22)           1.17(1.08-1.27) 1.17(1.08-1.27) 

rs1007475 6 0.6192 0.96(0.84-1.11) 1.22(1.11-1.34)             

rs3129054 6 0.6404 0.97(0.84-1.12)   0.92(0.89-0.96)           

rs429083 6 0.6504 0.97(0.85-1.11)   1.08(1.04-1.11)           

rs1545092 6 0.6781 0.97(0.85-1.11)     1.12(1.06-1.19) 1.12(1.06-1.19) 0.02920815 1.16(1.08-1.25) 1.15(1.07-1.24) 

rs1925439 6 0.9332 1.01(0.81-1.25)   1.12(1.06-1.19)           

rs4286803 6 0.9425 1.00(0.87-1.14)           1.16(1.08-1.25) 1.17(1.09-1.26) 

rs3117143 6     1.43(1.21-1.68) 1.17(1.10-1.25)       1.31(1.15-1.48) 1.30(1.15-1.47) 

rs3117582 6       1.22(1.15-1.29) 1.3(1.19-1.42) 1.28(1.07-1.52) 6.24E-06 1.30(1.16-1.46) 1.29(1.15-1.45) 

rs1270942 6       1.19(1.13-1.26) 1.24(1.13-1.35) 1.22(1.04-1.43) 0.00067162 1.28(1.14-1.43) 1.27(1.13-1.42) 

rs9262143 6       1.19(1.13-1.26) 1.24(1.14-1.35) 1.23(1.1-1.38) 0.00158545 1.26(1.13-1.41) 1.25(1.12-1.40) 

rs3130805 6               1.25(1.13-1.39) 1.23(1.11-1.37) 

rs7452888 6               1.18(1.10-1.27) 1.18(1.10-1.27) 

rs1150752 6       1.19(1.12-1.27)           

rs3132631 6       1.18(1.10-1.26)           

rs3132630 6       1.17(1.10-1.25)           

rs1233579 6     1.4(1.19-1.64) 1.16(1.09-1.23) 1.22(1.11-1.34) 1.19(0.96-1.48) 0.02981285     

rs3129962 6       1.15(1.08-1.23)           

rs9379494 6       1.15(1.08-1.23)           

rs2734583 6       1.15(1.08-1.22)           

rs3094061 6       1.14(1.07-1.22)           
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Hung et al., 
2008* Landi et al., 2009£ Wang et al., 2008£ McKay et al., 2008 

SNP Chr p-value OR(95% CI) OR(95% CI) OR(95% CI) 
OR(95% CI) 
fixed 

OR(95% CI) 
random 

UKGWA  
p-value 

OR(95% CI)     
Model 1* 

OR(95% CI)    
Model 2δ 

rs209181 6       1.11(1.06-1.17)           

rs4678 6       1.11(1.06-1.16)           

rs2734985 6       1.11(1.06-1.15)           

rs2844657 6       1.10(1.05-1.14)           

rs6457374 6       1.10(1.05-1.14)           

rs422331 6     1.21(1.11-1.33)   1.14(1.07-1.2) 1.12(1.02-1.24) 0.04563638     

rs4887077 15 0.02482 1.16(1.02-1.33)     1.18(1.12-1.25) 1.18(1.12-1.25) 6.10E-05 1.20(1.12-1.29) 1.20(1.12-1.29) 

rs11638372 15 0.02622 1.16(1.02-1.33)   1.19(1.15-1.23) 1.18(1.12-1.25) 1.18(1.12-1.25) 5.29E-05 1.20(1.12-1.29) 1.19(1.11-1.28) 

rs6495314 15 0.03045 1.16(1.01-1.32)   1.19(1.15-1.24) 1.18(1.12-1.25) 1.18(1.12-1.25) 0.00014268 1.21(1.13-1.30) 1.21(1.13-1.30) 

rs8034191 15 0.03494 1.16(1.01-1.33) 1.32(1.21-1.45) 1.29(1.25-1.34) 1.3(1.23-1.38) 1.3(1.23-1.38) 1.35E-06 1.34(1.25-1.44) 1.34(1.25-1.44) 

rs6495309 15 0.05308 0.85(0.72-1.00)   0.78(0.75-0.82) 0.77(0.72-0.82) 0.77(0.67-0.87) 1.80E-10 1.23(1.12-1.34) 
1.23(1.13-1.34) 
 

rs1051730 15 0.05376 1.14(1.00-1.31) 1.3(1.19-1.43) 1.31(1.27-1.36) 1.3(1.23-1.38) 1.3(1.23-1.38) 4.00E-07 1.35(1.25-1.45) 1.35(1.26-1.45) 

rs13180 15 0.05922 0.88(0.76-1.01)   0.86(0.83-0.89)       1.20(1.12-1.29) 1.20(1.11-1.29) 

rs4887053 15 0.0665 0.85(0.72-1.01)   0.84(0.80-0.88) 0.8(0.75-0.86) 0.8(0.72-0.9) 8.38E-08 1.19(1.09-1.29) 1.18(1.08-1.29) 

rs1394371 15 0.0693 1.14(0.99-1.31)   1.20(1.16-1.25) 1.21(1.14-1.29) 1.21(1.14-1.29) 0.00013006 1.24(1.15-1.33)  

rs1002941 15 0.4946 0.95(0.82-1.10) 1.23(1.11-1.36)             

rs2036534 15       0.79(0.76-0.82) 0.77(0.71-0.82) 0.77(0.68-0.87) 1.92E-10 1.23(1.12-1.34) 1.23(1.12-1.34) 

rs1996371 15         1.18(1.12-1.25) 1.18(1.12-1.25) 0.00014124 1.21(1.13-1.30) 1.21(1.13-1.30) 

rs10519203    0.76(0.7-0.84)       

rs1317286    1.34(1.23-1.47)       

rs1504550    1.29(1.18-1.42)       

rs16969968    1.32(1.2-1.44)       
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Hung et al., 
2008* Landi et al., 2009£ Wang et al., 2008£ McKay et al., 2008 

SNP Chr p-value OR(95% CI) OR(95% CI) OR(95% CI) 
OR(95% CI) 
fixed 

OR(95% CI) 
random 

UKGWA  
p-value 

OR(95% CI)     
Model 1* 

OR(95% CI)    
Model 2δ 

rs17405217    1.29(1.18-1.42)       

rs17483548    1.3(1.18-1.42)       

rs17483721    1.27(1.16-1.40)       

rs17483929    1.29(1.18-1.42)       

rs17484235    1.32(1.21-1.45)       

rs17484524    1.3(1.19-1.43)       

rs17486278    1.3(1.19-1.42)       

rs17487223    1.28(1.17-1.40)       

rs2009746    1.3(1.18-1.42)       

rs2036527    1.36(1.24-1.49)       

rs2568494    1.33(1.21-1.46)       

rs2656052    1.35(1.23-1.49)       

rs2656065    1.29(1.18-1.41)       

rs7180002    1.3(1.18-1.42)       

rs7181486    1.3(1.18-1.42)       

rs8031948    1.36(1.24-1.49)       

rs931794    0.77(0.7-0.84)       

rs951266    1.31(1.19-1.43)       

rs9788721    0.76(0.7-0.84)       

SNP significant in all studies, including LLP are highlighted in bold; *adjusted for age, sex and country; £unadjusted; δadjusted for age, sex, country and eigen value
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4.1 Aim 

 

Lung cancer is the leading cause of death due to cancer in males and the second most 

prominent cause of death in females, worldwide, in 2008 38. The five-year overall survival 

for lung cancer is 16% in the USA and 7.8% and 9.1% in men and women, respectively in 

the UK99. In England and Wales, 20% of lung cancers are small cell (SCLC) while 80% are 

non-small cell (NSCLC) where squamous cell carcinoma represent 43.75%, 27% are 

adenocarcinomas and 10% are large cell carcinomas250. 

The aim of this study was to identify Single Nucleotide Polymorphisms (SNPs) associated 

with the survival of non-small cell lung cancer (NSCLC) patients and, separately, with the 

survival of patients with either early- or advanced-stage NSCLC. To this end, survival was 

analysed using Cox Proportional Hazard regression after controlling for the effect of age at 

diagnosis, cell type, stage and smoking pack years. A further aim was to investigate the 

cumulative effect of significant SNPs on patient survival. The study considered the overall 

survival and cause-specific survival (i.e. lung cancer-associated) of NSCLC patients 

separately. 

 

4.2 Introduction 

 

Survival studies have been carried out in various cancers to identify factors associated with 

shorter survival251-255. Multivariate Cox proportional hazard regression analysis identified 

that liver metastasis and total number of all chemotherapy cycles were significant in 

extensive small cell lung cancer patients256; non-curative resection and tumour location on 

the gallbladder neck were significant in gallbladder cancer patients with resection with 
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curative intent257; age, tumour stage and nodal status, number of lymph nodes retrieved, 

operative method, lymphovascular invasion, perineural invasion, postoperative 

chemotherapy, and preoperative serum CEA level >/= 2.4 ng/mL were independent 

predictors for 5-year overall survival in colorectal cancer258; pathological lymph node pN2 

status was associated with overall survival in breast cancer (stage I to III) after treatment 

with surgery and adjuvant therapy259; and age, pathological stage and tumour size were 

significant in the overall survival analysis of gastric cancer patients260. Similar survival 

studies were also conducted in lung cancer using clinical factors (Table 4.1a). 

These factors could be integrated into statistical models, for example to predict 

responsiveness to specific treatments, thereby improving patient outcome and clinical 

management251, 253. In addition to the clinical and epidemiological factors described above, 

it may be possible to identify inherited SNPs that are associated with post-diagnosis cancer 

survival, similarly to the identification of SNPs associated with cancer incidence113, 114, 193, 203. 

Such SNPs may enable physicians to devise treatment based on an individuals’ 

requirement251 and survival-GWAS studies may also shed some light on the limited 

knowledge available on various biological processes involved in survival of lung cancer 

patients. 

 

4.2.1 Genome Wide Survival Analysis in Lung Cancer 

 

Advances in genotyping technologies have permitted the detection of disease-associated 

loci on a genome wide scale107, 202. Most of the genome wide association studies (GWAS) 

published in lung cancer research have concentrated on disease incidence, identifying SNPs 

that increase lung cancer susceptibility rather than analysing SNPs associated with the 
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survival of diagnosed patients113, 114, 193, 203. The SNPs previously identified in lung cancer 

GWAS include rs402710 within gene CLPTM1L (5p15.33), rs2736100 within gene TERT 

(5p15.33) and rs1051730 within gene CHRNA3 (15q25.1)113, 114, 193, 203.  

Of those studies which have addressed the association between SNP inheritance and lung 

cancer survival, many have been performed in the context of a therapy with the aim of 

identifying SNPs for subsequent patient stratification251-255 (Table 1a). For instance, Hu et al. 

(2012)252 identified survival-associated SNPs in Chinese patients with advanced stage NSCLC 

receiving first line platinum based chemotherapy; Sato et al. (2011)251 identified SNPs 

associated with the survival of advanced NSCLC Japanese patients treated with Carboplatin 

and Paclitaxel; Lee et al. (2012)255 identified polymorphisms in Korean advanced NSCLC 

patients receiving systemic chemotherapy; and Tan et al. (2011)254 evaluated survival in 

both SCLC and NSCLC Caucasian cases receiving platinum-based chemotherapy. Other 

studies that have addressed survival in Caucasians include Wu et al. (2011)253 and Huang et 

al. (2009)261. Wu et al. 2011253 considered the survival of advanced stage NSCLC patients 

treated with first line platinum-based chemotherapy using germline variants while Huang 

et al. (2009)261 used SNPs from tumour-derived DNA to evaluate survival in early stage 

NSCLC cases.  

 Limitations of the Huang et al. (2009) study261 include the following: i) the datasets used in 

the discovery and validation phases were incomparable because the discovery dataset was 

made up of samples from different ethnicities while the ethnicity of samples from the 

validation cohort is not reported; ii) although study populations of the size used are not 

unfounded (for example, similar sized studies are common in comparative mRNA 

expression-GWAS studies), these sample sizes are still relatively modest (discovery set: n= 

100; validation set: n = 89); iii) minimal confidence can be ascribed to the accuracy of the 

called genotypes, since the SNPs were assessed in tumour-derived DNA and lung tumours 
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are subject to frequent mutations and genomic instability261. In contrast, in the Wu et al. 

(2011) study253, blood was extracted for genotyping after treatment of the patients with a 

chemotherapeutic agent (which will reduce the stability of the genomic markers) and the 

authors failed to correct for multiple comparisons, and therefore a high number of false-

positive associations are expected within this study253. 

Although there are large differences in the design and study populations used in the above 

papers, it is notable that SNPs identified in one study have not yet been identified by any 

other (Table 4. 1a). SNPs identified so far lie within genes involved in tumour suppression, 

the initiation and regulation of translation, development, apoptosis, inflammation, 

adipogenesis, osteoblastosis, cell adhesion and regulation (Table 4.1b).
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Table 4.1a: Publications on lung cancer survival  

Author  Cases Inclusion criteria statistical model Significant SNPs 

Hu et al., 
2012252 

Discovery - (Chinese 
cohort 1 - 303; Chinese 
cohort 2 - 225; total - 
528); replication 1 - 340 
Chinese patients; 
replication 2 - 409 
Caucasian patients 

Aim - Identify SNPs influencing 
the overall survival of patients 
receiving platinum based 
chemotherapy. Inclusion criteria 
- Stage III/IV NSCLC treated with 
first line platinum based 
chemotherapy without surgery. 

Multivariate Cox proportional 
hazard regression model 
adjusted for age, gender, 
histology, stage and smoking 
status. SNPs treated in the 
additive mode. 

12 SNPs were identified in the meta 
analysis of the 2 Chinese discovery 
cohorts. The HRs presented are for 
SNPs that were significant in the 
pooled analysis of Chinese populations 
(3 cohorts) in the study. rs7629386 
(HR=1.65; 95% CI: 1.30-2.09 ;p-value: 
3.63 × 10-5); rs969088 (HR=1.43; 95% 
CI: 1.24-1.66 ;p-value:1.75 × 10-6); 
rs3850370 (HR=1.38; 95% CI: 1.19-1.60 
;p-value: 2.92 × 10-5); rs41997 
(HR=0.66; 95% CI: 0.56-0.78 ;p-value: 
4.19 × 10-7); rs12000445 (HR=0.67; 95% 
CI: 0.57-0.80 ;p-value: 7.12 × 10-6). 

Huang et al., 
2009261 

Discovery -100 patients 
from Massachusetts 
general hospital. 
Validation - 89 patients 
from National Institute of 
Occupational Health, 
Norway.  

Aim - To identify SNPs in tumour 
tissue associated overall survival 
of early stage NSCLC cases. 
Inclusion criteria - Early stage (IA, 
IB, IIA and IIB) NSCLC patients. 

SNPs were identified in an 
univariate model and 
validated in a multivariate 
model adjusted for age, sex, 
clinical stage (IA,IB,IIA and 
IIB),cell type(squamous cell 
carcinoma vs 
adenocarcinoma), smoking 
pack years and FDR 

Univariate analysis identified 50 SNPs 
significant at the 2.5 × 10-4 significance 
levels. Pooled analysis of the two 
cohorts produced the following hazard 
ratio for the SNPs that were significant 
in the validation cohort. Significant 
SNPs include rs10176669(HR=2.40; 
95% CI: 1.65-3.49 ;p-value: 1.74 × 10 -6); 
rs4438452(HR=2.25; 95% CI: 1.54 - 
3.28; p-value: 9.97 × 10 -6); rs12446308 
(HR=2.90; 95% CI: 1.93- 4.36 ;p-
value:2.88 × 10-8); rs13041757 
(HR=2.04; 95% CI: 1.48 - 2.81; p-value: 
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6.08 × 10-6); rs10517215 (HR=2.44; 95% 
CI: 1.61 - 3.71; p-value: 2.45 × 10 -5). 

Sato et al., 
2011251 

Discovery only - 105 
Japanese patients 

Aim - Identify SNPs associated 
with OS in Japanese patients 
treated with Carboplatin and 
Paclitaxel. Inclusion criteria - 
Stage III/IV, no prior 
chemotherapy, surgery and/or 
radiotherapy, patient older than 
20 years and Eastern 
Cooperative Oncology Group 
performance status between 0-
2. 

Univariate and multivariate 
Cox proportional hazard 
regression after adjusting for 
performance status and 
gender. Adjusted for Holm's 
correction for multiple testing. 

The significant SNPs in the multivariate 
analysis were rs1656402 (p-value: 4.5 × 
10-7); rs1209950 (p-value: 6.5 × 10-5); 
rs9981861 (p-value: 9.2 × 10-7) 

Tan et al., 
2011254 

Discovery - 1183 
Caucasian patients (222 
SCLC and 961 NSCLC) 

Aim - To identify germline 
variants selected using 
lymphoblastic cell lines (LCL) that 
influence the overall survival of 
patients receiving platinum 
based chemotherapy. Inclusion 
criteria - Pathologically 
confirmed primary lung cancer 
cases treated with platinum 
based chemotherapy. 

Multivariate Cox proportional 
regression model adjusted for 
disease stage was used to 
identify SNPs in 1183 lung 
cancer patients, which were 
initially identified by 
conducting a SNP versus 
cisplatin IC50 and SNP versus 
expression of 283 (91 African-
Americans; 96 Caucasian-
Americans and 96 Han 
Chinese-American unrelated 
subjects) lymphoblastoid cell 
lines (LCL).  

168 SNPs were selected for genotyping 
in the lung cancer patients. The most 
significant SNPs were rs11169748 (HR= 
1.75; 95% CI: 1.03-2.97; p value: 0.039) 
and rs2440915 (HR= 1.41; 95% CI: 1.08-
1.83; p value: 0.012) in NSCLC. Of the 
19 genes tested in a knockdown 
experiment, significant genes include 
DAPK3 and METTL6, whose expression 
level was correlated with rs11169748 
and rs2440915, respectively. 
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Lee et al., 
2012255 

Discovery - 384 Korean 
NSCLC patients 

Aim - Identify SNPs of prognostic 
significance in advanced NSCLC 
Korean patients treated with 
systemic chemotherapy. 
Inclusion criteria - Stage IV 
patients receiving systemic 
chemotherapy, without any prior 
therapy or surgery on whom 
follow up data is available were 
selected. 

SNPs in the dominant or 
additive inheritance mode 
were tested using a Cox 
proportional regression model 
in a 1000 datasets generated 
by bootstrap resampling to 
evaluate the overall survival 
after adjusting for age, ECOG 
performance status, smoking 
history, histology type, 
number of metastatic sites at 
diagnosis, use of platinum-
based chemotherapy and use 
of EGFR-TKIs. Significant SNPs 
were further evaluated in a 
subgroup analyses of patients 
treated with platinum based 
chemotherapy (n = 254), 
never smokers with 
adenocarcinoma histology 
with (n=178) or without EGFR-
TKIs therapy (n=215). 

17 SNPs were significant in the overall 
and sub group analysis. The most 
significant SNP in the overall survival 
analysis was rs1571228 in the 
dominant model [AG+GG to AA], (HR= 
0.53; 95% CI: 0.42 - 0.67; p-value = 
2.025 × 10-7). 

Niu et al., 
2012262 

 Discovery - A total of 874 
(76 SCLC and 798 NSCLC) 
lung cancer cases were 
analysed. 

Aim - To identify SNPs associated 
with overall survival in lung 
cancer patients treated with 
taxanes, wherein the SNPs were 
discovered using a genome wide 
association analysis of 276 IC50 

cytotoxicity values for taxanes 
using lymphoblastoid cell lines 

Disease stage among age at 
diagnosis, gender, smoking 
status and treatment was the 
only variable selected via a 
backward regression to be 
included in the final 
multivariate Cox regression 
model. 

153 candidate SNPs were genotyped in 
874 lung cancer cases. 4 SNPs were 
significant in the NSCLC cases and 2 
SNP were significant in the SCLC cases 
in the survival analysis. The most 
significant SNP in NSCLC was rs1106697 
(HR: 1.237; p value: 0.007). None of the 
significant genes from NSCLC cases 
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and 1.3 million SNPs.  were significant in the knockdown 
experiment. 

Wu et al., 
2011253 

Discovery -213 MD 
Anderson Discovery 
Population;  Validation 1 - 
945 Mayo clinic validation 
population;  Validation 2 - 
420 PLATAX validation 
population. 

Aim - To evaluate SNPs 
associated with decreased 
overall survival in advanced 
NSCLC patients receiving 
Platinum based chemotherapy. 
Inclusion criteria -White ever 
smoker, stage III/IV NSCLC 
without surgery, treated with 
first line platinum based 
chemotherapy with or without 
radiotherapy 

SNPs were identified using 
dominant, recessive and 
additive model in a 
multivariate Cox proportional 
hazard regression after 
adjusting for age, sex, pack 
years, clinical 
stage(IIIA,IIIB[dry],IIIB[wet],IV) 
and pre-treatment 
performance status(0,1, or 2-
4).Genetic model with the 
least P value was considered. 

60 SNPs were selected for validation. 
Significant SNPs include rs1878022 

pooled (HR=1.33; 95% CI: 1.19-1.48;p-
value: 5.13 × 10-7); rs10937823MD Anderson 

+ Mayo clinic(HR=1.82; 95% CI: 1.42-2.33 ;p-
value: 1.73 × 10-6). 
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Table 4.1b: Gene/ closest gene for SNPs identified by various publications of survival in 
NSCLC cases. 

Marker 
BP 
position Gene 

Cytogenetic 
position of 
gene gene summary 

rs7629386a 40966907 RPS27P4 3p22.1 - 

rs969088a 26389262 LOC100131678 5p14.1 - 

rs3850370a 78534906 FRDAP 14q24.3 - 

rs41997a 117991895 ANKRD7 7q31 
Reported in alcohol drinking 
behaviour263. 

rs12000445a 23426271 SUMO2P2 9p21.3 - 

rs10176669b 169084859 

 
STK39 2q24.3 

Functions in cellular 
responses and p38 mitogen 
activated protein kinase 
signalling pathway. 
Inactivation increases cell 
apoptosis264. rs4438452b 169071348 

rs13041757b 45600280 EYA2 20q13.1 

Involved in apoptosis and 
its upregulation promotes 
tumour growth261. 

rs10517215b 30774083 PCDH7 4p15 

Encodes a protein involved 
in intercellular recognition 
and adhesion261. 

rs12446308b 6417933 RBFOX1 16p13.3 

Involved in 
neurodegenerative 
diseases265. 

rs1571228c 18930222 FAM154A 9p22.1 

Identified as a variant 
associated with height in a 
Korean population that may 
suggest a possible function 
in cell growth255. 

rs1106697d 155672944 LOC100996445 7 - 

rs1656402e 233426526 EIF4E2 2q37.1 

Plays a crucial role in the 
initiation and regulation of 
translation, and is 
upregulated in NSCLC251. 

rs1209950e 40173528 ETS2 21q22.2 

Regulates development and 
apoptosis. 
The encoded protein is a 
proto-oncogene and 
regulates telomerase. 
[provided by RefSeq, Jan 
2012]249 

rs9981861e 41415044 DSCAM 21q22.2 

Encodes a Down syndrome 
cell adhesion molecule of 
the immunoglobulin family 
and its expression increased 
in small cell than NSCLC 
cases251. 
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rs11169748f 51579171 POU6F1 12q13.13 

Involved in the proliferation 
of ovarian adenocarcinoma 
(clear cell)266. 

rs2440915f 61673772 CCDC6 10q21 

Encodes a protein that 
function as a tumour 
suppressor.[provided by 
RefSeq, Sep 2010]249 

rs1878022g 108699032 CMKLR1 12q24.1 

Involved in inflammation, 
adipogenesis and 
osteoblastogenesis253. 

rs10937823g 7480422 SORCS2 4p16.1 

 Contains a domain named 
VPS10 that functions in 
intracellular trafficking and 
lysosomal processing253. 

a-Hu et al., 2012; b-Huang et al.,2009; c-Lee et al.,2012; d-Niu et al., 2012; e-Sato et al., 2011; f-Tan et al., 2011; 

g-Wu et al.,2011 

 

4.3 Statistical Concepts Underlying Survival Analysis 

 

Analysis of lifetime, survival time or failure time, defined as the time to the occurrence of 

an event of interest for individuals in a population, is an important concept in various fields, 

for example, to investigate the survival probability of diseased individuals or the warranty 

of a product267. In the case of the lung cancer study developed here, lifetime refers to the 

lifespan from a particular time point (i.e. from the time of diagnosis till death or censoring) 

267. The relevant statistics for an individual / study are the time scale, time origin and time 

to an event of interest (death or censoring)267.  

Consider T to be a non-negative variable representing the time to an event267. In terms of 

lung cancer this would be the survival time of a patient267. Depending on the study design, 

it would be the time from diagnosis till death or time till the end of the study or if the 

patient is lost to follow up, the date last seen267.  
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For a continuous T, the probability density function is given by 

                                                             ( )      (   )    ∫  ( )  
 

 
               267 

and the probability of an individual surviving until time t is given by the survivor function 

                                                               ( )      (   )    ∫  ( )  
 

 
             267                                                                

 

At any given time t, the rate of death or failure is given by the hazard function 

    ( )         
  (              )

  
 

                                                                            
   ( )

   ( )
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In terms of lung cancer survival time, the hazard function (or the hazard rate) up to time t, 

is the probability of death or failure during the time interval [      ) and the cumulative 

hazard function is given by 

                                                                  ( )   ∫  ( )  
 

 
                                     267 

The above set of equations cover the various functions used in studying the survival 

analyses when the time variable is continuous267.  

 

4.4 Method for Analysing Survival Data 

 

4.4.1 Censoring  

 

Unlike other statistical datasets, survival data is rarely complete267. A major constraint is 

censoring, where it is not possible to obtain the exact survival times for every individual in 
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the study, although the fact that an individual survived beyond a certain time point may be 

documented268. 

An individual’s survival data may be censored due to i) loss of the patient to follow up; ii) 

the patient dropping out of the study; or iii) it is end of the study and the patient has not 

observed the event268, 269. Three types of censoring include left censoring, right censoring 

and interval censoring269. Left censoring occurs when the event of interest is already 

observed before recruiting the individual into the study269. Right censoring occurs when the 

exact event time is not known but is only known to exceed or be equal a certain time 

point268. Interval censoring is when the exact time of the event is not known but it is known 

to occur within a certain interval269.  

 

4.4.2 Semi Parametric Models 

 

4.4.2.1 Kaplan Meier Method 

 

The Kaplan Meier method is an empirical method for survival analysis that may be applied 

when there are varying survival times and not all individuals in the study experience the 

event of interest270, 271. For a given individuals, the method requires the survival time, the 

status of the individual at the end of the study period (or at censoring) and the 

observational groups to which they belong270. Assumptions of the method include that the 

likely survival time for any individual in the study is the same whether they are censored or 

not, whether recruited early or late during the study and whether the event of interest 

occurred on the date detected271. 
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The Kaplan Meier curve is plotted with the survival time on the X axis and the cumulative 

probability of survival on the Y axis270. It displays the proportion of participants 

experiencing an event over the course of study272. The estimated cumulative survival and 

the Greenwood standard error is given by 

                                                           ̂( )   ∏ (  
  

  
)              

                                                    [ ̂ ( )]   √[ ̂ ( ) ] ∑
  

  (     )
       

 ̂ is the survival at time t  and, di  and ni  are the number of events (failures) and number of 

individuals at risk, at time ti
273. 

 

4.4.2.2 Cox Proportional Hazard Model 

 

The Cox Proportional Hazard model (also in Chapter 2) is given by  

                                                           ( )     ( )    (∑  )       
175 

 

 λ(t) is the event rate at time t expressed as the function of risk variables, λ0(t) is the event 

rate at baseline; i.e. measurements at the beginning of the study and    (∑  ) is the 

proportionality constant indicator for the specified risk factors175. This model is semi 

parametric as   ( ) is unspecified and is used widely as the effect can be estimated 

without the knowledge of   ( ) 
175.  
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The Cox model survival function is given by  

                                                             ( )     ( )
   ∑     

 
         175 

The hazard ratio (HR) is given as the ratio of hazard for one individual to the hazard for 

another individual175. 

                                                               HR =  
 ( )∗

 ( )
 

  
  ̂ ( )    (∑  

∗)

  ̂ ( )    (∑  )
 

                                                                       ∑   (  
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4.4.2.2.1 Proportionality Hazard Assumption 

 

An important assumption of the Cox model is that of ‘proportional hazards’, i.e. that the 

hazard for one individual is proportional to the hazard for another individual175. For time 

independent covariates, the relative hazard for two individuals, i and j, is given by  

                                           
   ( )   (   )

   ( )    (   )
  

    (   )

    (   )
                  274 

while for time dependent variable, the relationship is given by 

    (   ( ))

    (   ( ))
                               274 

Proportionality hazard assumptions can be tested by visual inspection of the survival curve 

for time independent variable while for time dependent variable Schoenfeld residuals can 

be used274. 
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The proportionality hazard assumption test using Schoenfeld residuals provides a test 

statistics (measurement) making it the most feasible test, with larger global statistics 

depicting non-proportionality274.  

 

4.5 Materials and Methods 

 

One hundred and eighty five NSCLC cases from Liverpool were identified. Blood DNA was 

extracted using Qiagen kits and genotyped using the 300K HumanHap Illumina bead chip 

array. The genotype data were quality controlled to include single nucleotide 

polymorphisms (SNPs) with i) a minor allele frequency >1%; ii) a genotypic call rate of > 

95%; iii) to exclude SNPs with a Hardy Weinberg equilibrium of p < 0.001 and iv) to identify 

population outliers. The data was also checked to remove any duplicates, related 

individuals and individuals with a gender discrepancy between SNP calls and 

epidemiological data. Every individual had a genotype call rate of > 95%.  

The survival status for each case was determined using the ONS (Office for National 

Statistics) registry data, the last ONS update being in February 2012. Cause specific death 

was identified if the cause of death was reported with ICD-10 codes “C34” (‘Malignant 

neoplasm of lung and bronchus’) or “C780 “(‘Secondary malignant neoplasm of lung’) while 

the survival status for overall analysis was death due to any cause. The survival time was 

calculated using the date of diagnosis and either the date of death or the date last reported 

alive.  

SNPs were coded in an additive mode (0, 1, 2) referring to the number of minor alleles 

carried by an individual261. Significant SNPs were identified using Cox proportional hazard 
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analysis to evaluate cause-specific and overall survival for all, early and advanced stage 

NSCLC cases. The regression analysis was adjusted for age at diagnosis, histological type 

(adenocarcinoma or squamous cell carcinoma), smoking pack years, sex and stage (as 

ordered variable): I, II, III and IV for all, IA, IB, IIA and IIB for early and IIIA, IIIB and IV for 

advanced stage cases. 

 Kaplan Meier curves were plotted for significant SNPs (p ≤ 10-6) and the difference 

between allele groups were tested using the log rank test. The proportional hazard 

assumption was assessed using the Schoenfeld residual (log transformed) for each of the 

models. The cumulative effect of the alleles (p ≤ 10-6) associated with shorter survival was 

tested for all, early and advanced stage NSCLC cases for both cause specific and overall 

survival. All quality controls were conducted in PLINK227 and analyses were carried out 

using the “survival”274, 275 package in R229. Manhattan and Kaplan Meier plots, and 

Schoenfeld residuals were obtained using packages such as “calibrate”230 and 

“survival”274,275, respectively, in R229. 

 

4.6 Results 

 

Survival information and genotype data were available for 185 individuals. The association 

between genotype and survival after lung cancer diagnosis was addressed within this 

group. As such, overall and cause-specific (ie, lung cancer-associated) survival analysis was 

performed for the 185 NSCLC cases, and then the same analyses were performed for early 

stage (stages I and II, N = 107) and advanced stage (stages III and IV, N = 78) cases, 

separately (tumour staging was defined at diagnosis). Characteristics of the study 

population are shown in Table 2.2. There are fewer female patients with advanced stage 
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cancer but otherwise the population characteristics are comparable between early and 

advanced stage cases. 

 

Table 4.2: Population characteristics of NSCLC cases 

Population Characteristics All NSCLC cases  Early stage cases 
Advanced 
stage cases 

Total patients 185 107 78 

Sex, No. (%)    

Male 109 (58.92) 55 (51.40) 54 (69.23) 

Female 76 (41.08) 52 (48.60) 24 (30.77) 

Age at diagnosis,   
 mean (standard 
deviation) 67.08 (8.19) 67.06 (8.10) 67.12 (8.37) 

Smoking pack years, mean 
(standard deviation)  41.59 (21.55) 38.97 (20.55) 45.19 (22.48) 

Clinical stage, No (%)    

Stage IA 

77 (41.62) 

26 (24.30)  

Stage IB 51 (47.66)  

Stage IIA 

30 (16.22) 

3 (2.80)  

Stage IIB 27 (25.23)  

Stage IIIA 

51 (27.57) 

 28 (35.90) 

Stage IIIB  23 (29.49) 

Stage IV 27 (14.59)  27 (34.62) 

Histological type    

Adenocarcinoma 88 54 34 

Squamous cell carcinoma 97 53 44 

 

 

The median survival time for the lung cancer cases is shown in Table 4.3 (including 

stratification for early and advanced stage cases). A higher proportion of the advanced-

stage cases died within the study than did early-stage cases (93.59% versus 65.42%) and 

the median survival time for advanced stage cases is correspondingly lower (11.7 versus 

41.2). 
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Table 4.3: Median survival time distribution in the NSCLC cases 

Population Total cases Events Median survival time (95% CI) 

Cause specific survival 

All 185 129 27.1 (20.2-37.0) 

Early 107 58 57 (38.8-89.8) 

Advanced 78 71 11.7 (10.3-18.9) 

Overall survival 

All 185 143 25.2 (19.5-34.8) 

Early 107 70 41.2 (37.0-65.2) 

Advanced 78 73 11.7 (10.3-18.9) 

 

 

Figure 4.1: Manhattan plots for allelic association with cause-specific (panels a, c and e) and 

overall (panels b, d and f) survival in the NSCLC cases. The plotted portion of each SNP 

corresponds to the genomic location and negative log of the observed p-value. The red and 

blue lines correspond to the Bonferroni correction and p = 10-5 levels, respectively. All 

NSCLC cases (panels a-b), early-stage cases (panels c-d) and advanced-stage cases (panels 

e-f) are shown. 
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d) 
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f) 

 

 

 

  The 185 cases were tested for 307002 SNPs that passed quality control in a Cox 

proportional hazard regression model after adjusting for age at diagnosis, sex, smoking 

pack years, stage (I, II, III, IV) and histological type (adenocarcinoma or squamous cell 

carcinoma). For the early stage cases, 306097 SNPs that passed the quality control criteria 

were tested using the Cox proportional hazard regression model after adjusting for age at 

diagnosis, sex, smoking pack years, stage (IA, IIA, IB, IIB) and histological types while for the 

advanced stage cases 302703 SNPs that passed the quality control criteria using the Cox 

proportional hazard regression model after adjusting for age at diagnosis, sex, smoking 

pack years, stage (IIIA, IIIB, IV) and histological type. P-values for the association with 

survival in each analysis are depicted in Figure 4.1 and the results for cause-specific and 

overall survival are described in the following two subsections. 
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4.6.1 Cause Specific Survival 

 

Figure 4.2, Figure 4.3 and Figure 4.4 depict survival curves for patients with the three 

possible genotypes for SNPs found to be significant (p < 10-6) in all, early and advanced 

stage cause-specific survival analysis. The KM estimator for right censoring computes an 

estimated survival function, the jump in value corresponds to the cumulative survival 

probability observed at that particular time (y-axis) and the markings on the survival curves 

represent censoring times 276. The survival curves are supplemented with the Log-rank test 

p values that indicate whether the survival curves for the allele groups are different 276. In 

the cause specific survival (Table 4.4) analysis, rs10230420 was significant in all NSCLC cases 

and early stage NSCLC cases while for the advanced stage cases no SNPs were significant at 

the Bonferroni correction level. The Bonferroni correction level for all, early and advanced 

NSCLC cases were 1.629E-07, 1.633E-07 and 1.652E-07, respectively. Since this correction 

level is very conservative and could lead to the loss of important survival associated SNPs, a 

cut off level of p ≤ 10-6 was chosen. Three SNPs for all NSCLC and early stage NSCLC cases 

while 2 SNPs for advanced stage NSCLC cases were significant at the p ≤ 10-6 level.  

The multivariate Cox proportional hazard regression model that discovered significant SNPs 

(p ≤ 10-6) rs10230420, rs9949512 and rs2139133 in all NSCLC cases, rs3746619 and 

rs3827103 in early NSCLC cases and rs1868110 and rs2206779 in advanced NSCLC cases 

were significant when tested for proportionality hazard assumption seen by the global p 

value (Table 4.4). Cox proportional hazard being a semi parametric test, requires the testing 

of the proportionality hazard assumption which is obtained using the Schoenfeld residuals 

in R. The proportionality hazard assumption is met if the p-value produced for the model 

was not significant (p > 0.05). 
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SNPs rs3746619 and rs3827103 have identical survival curves and are located on the same 

chromosomal arm. They have the same minor allele frequencies and produced the same 

hazard ratios in the cause specific analysis of the early stage NSCLC cases. Since they are 

located in close proximity and have produced same survival hazard ratios they could be in 

linkage disequilibrium (Table 4.4). When allelic association with cause-specific survival was 

assessed in all of the NSCLC cases, 84 SNPs were found to be significant at the p ≤ 10-4 level. 

The corresponding analysis identified 153 and 128 SNPs when restricted to early- and late-

stage cases, respectively. 
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Table 4.4: SNPs significant in the cause specific survival analysis at p ≤ 10-6. Non-significant 
p-value for Schoenfeld residual indicate fulfilment proportionality hazard assumption 

SNP 

Genotype 
(alive/dead 
due to lung 
cancer) MAF HR(95% CI) p-value$ p-value* 

All NSCLC 

rs10230420 

TT (55/112); 
TC (1/17);  
CC (-/-) 0.05 6.2 (3.46-11.11) 0.0745 8.80E-10 

rs9949512 

CC (19/68); 
CT (28/51); 
TT (9/10) 0.28 1.85 (1.45-2.37) 0.1929 7.91E-07 

rs2139133 

TT (34/50); 
TC (17/57); 
CC (5/22) 0.35 1.87 (1.46-2.41) 0.3235 8.54E-07 

Early stage NSCLC cases 

rs10230420 

TT (48/45); 
TC (1/13);  
CC (-/-) 0.07 10.06 (4.82-21) 0.0310 7.74E-10 

rs3746619 

AA (47/48); 
AC (2/10); 
CC (-/-) 0.06 8.62 (3.77-19.75) 0.0521 3.46E-07 

rs3827103 

AA (47/48); 
AG (2/10); 
GG (-/-) 0.06 8.62 (3.77-19.75) 0.0521 3.46E-07 

Advanced stage NSCLC cases 

rs1868110 

GG (6/46); 
GT (1/21);  
TT (0/3) 0.18 3.36 (2.13-5.31) 0.3103 1.84E-07 

rs2206779 

TT (6/49);  
TC (1/15);  
CC (0/7) 0.19 3.09 (1.98-4.82) 0.4256 7.06E-07 

*Cox proportional hazard model after adjusting for age, sex, smoking pack years, stage and histological type. 
$ 

Schoenfeld residual p-value for the Cox proportional hazard model. Bold entries depict proportional hazard 

assumption satisfaction. 
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Figure 4.2: Kaplan-Meier plots for SNPs that were significant at the p < 10-6 level in cause-

specific survival analysis for all NSCLC cases. Major-allele homozygotes and heterozygous 

individuals are shown in red and blue, respectively; minor-allele homozygotes are shown in 

green, where possible. Vertical ticks on survival curves denote censoring while differences 

between survival curves is tested using log rank test.  
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c) 

 

 

Figure 4.3: Kaplan-Meier plots for SNPs that were significant at the p < 10-6 level in cause-

specific survival analysis for early NSCLC cases (refer to Fig 4.2’s legend). 
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Figure 4.4: Kaplan-Meier plots for SNPs that were significant at the p < 10-6 level in cause-

specific survival analysis for advanced NSCLC cases (refer to Fig 4.2’s legend). 
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4.6.2 Overall Survival 

 

Figure 4.5, Figure 4.6 and Figure 4.7 depict the SNPs significant in all, early and advanced 

stages overall survival analysis. In the overall survival analyses (Table4. 5), rs10230420 was 

identified significant at the Bonferroni correction level in all NSCLC cases and early stage 

NSCLC cases, while for the advanced stage NSCLC cases no SNPs were significant at the 

Bonferroni correction level. The figures of KM survival curves for allele categories of SNPs 

also have the log rank p value printed 276. The vertical ticks indicate censoring on the 

survival curves plotted with the survival probability on the y axis and time on the x axis 276. 

The Bonferroni correction level for all, early and advanced NSCLC cases were 1.629E-07, 

1.633E-07 and 1.652E-07, respectively. Since this correction level is very conservative and 

could lead to the loss of important survival associated SNPs, a cut off level of p ≤ 10-6 was 

chosen. One SNP for all NSCLC, 3 SNPs for early stage NSCLC cases while 2 SNPs for 

advanced stage NSCLC cases were significant at the p ≤ 10-6 level. 

Multivariate Cox proportional hazard model that identified SNPs (p ≤ 10-6) rs1868110 and 

rs2206779 in advanced stage NSCLC cases were significant when tested for proportionality 

hazard assumption depicted by the non-significant “ global” p-value while all SNPs (p ≤ 10-6) 

depicted non-proportionality in the total and early stage NSCLC cases (Table 4.5).  

For the total NSCLC cases, 90 SNPs for the overall survival analysis were significant at p ≤ 

10-4 level while for the early stage and advanced stage NSCLC cases, 118 SNPs and 125 SNPs 

were significant at p ≤ 10-4. 
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Table 4.5: SNPs significant in the overall survival analysis at p ≤ 10-6. Non-significant p-value 
for Schoenfeld residual indicate fulfilment proportionality hazard assumption. 

SNP 
Genotype 
(alive/dead) MAF HR(95% CI) p-value$ p-value* 

All NSCLC 

rs10230420 

TT (41/126); 
CT (1/17);     
CC (-/-)  0.05 5.65 (3.18-10.05) 0.0104 3.76E-09 

Early stage NSCLC cases  

rs10230420 

TT (36/57);   
CT (1/13);     
CC (-/-) 0.07 8.93 (4.36-18.28) 0.0038 2.07E-09 

rs2056533 

CC (37/61);   
TC (0/9);  
TT (-/-) 0.04 9.03 (3.9-20.92) 0.0249 2.84E-07 

rs6708630 

TT (33/53); 
CT (4/15);   
CC (0/2) 0.11 4.02 (2.33-6.95) 0.0030 5.73E-07 

Advanced stage NSCLC cases 

rs1868110 

GG (4/48);   
TG (1/21);      
TT (0/3) 0.18 3.35 (2.12-5.29) 0.3233    2.01E-07 

rs2206779 

TT (4/51);     
CT (1/15);     
CC (0/7) 0.19 3.08 (1.97-4.81) 0.4768    7.71E-07 

* 
Cox proportional hazard model after adjusting for age, sex, smoking pack years, stage and histological type. 

$ 

Schoenfeld residual p-value for the Cox proportional hazard model. Bold entries depict proportional hazard 

assumption satisfaction. 
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Figure 4.5: Kaplan-Meier plots for SNPs that were significant at the p < 10-6 level in overall 

survival analysis for all NSCLC cases (refer to Fig 4.2’s legend). 

 

a) 

 

 

 

Figure 4.6 Kaplan-Meier plots for SNPs that were significant at the p < 10-6 level in overall 

survival analysis for early NSCLC cases (refer to Fig 4.2’s legend).  
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Figure 4.7: Kaplan-Meier plots for SNPs that were significant at the p < 10-6 level in overall 

survival analysis for advanced NSCLC cases (refer to Fig 4.2’s legend). 

 

a) 

 

 

 

b) 

 

 

 



 

190 
 

The SNPs identified in the overall-survival analysis (Table 4.5 and Figures 4.5-4.7) are 

broadly consistent with those identified in cause-specific analysis (Table 4.4 and Figures 

4.2-4.4): rs10230420, rs1868110, rs2206779 were each significant at the p < 10-6 level for 

the corresponding stage-group (rs10230420 for all cases and early stage analysis; 

rs1868110 and rs2206779 for advanced stage cases). However, two SNPs (rs2056533 and 

rs6708630) that were significant in the early-stage overall survival analysis were not 

significant in cause-specific analysis (wherein their p-values were 3.58E-06 and 4.43E-06). 

Similarly, the linked SNPs rs3746619 and rs3827103 were significant in the cause-specific 

analysis but not in the overall survival analysis (where their p-values were both 1.32E-06). 
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4.6.3 Genes Identified in the Survival Analysis 

Table 4.6: Description of genes harbouring significant SNPs. 

SNP 
Chromosome 
position 

Gene/ 
Closest gene Gene summary 

Cytogenic 
position 

rs6708630 10225807 CYS1 
Involved in foetal kidney 
development277. 2p25.1 

rs1868110 27010197 NEK10 

Involved in processes like 
mitosis, cell cycle, DNA 
repair, check point control, 
genotoxic stress. Also 
associated with breast and 
lung cancer278.  3p24.1 

rs10230420 29949780 WIPF3 

Regulates cytoskeletal 
organisation playing a role in 
cell differentiation and 
spermatogenesis279 7p14.3 

rs3746619 54823805 
 
MC3R 

Polymorphism in this gene is 
associated with obesity in 
humans249.  

20q13.2-
q13.3  rs3827103 54824029 

rs2206779 69118705 AF357533 - 1q31.3 

rs9949512 76641845 SALL3 

Mutations in this gene may 
be associated with 
congenital disorder. Gene 
silencing is associated with 
oncogenesis through 
accelerated methylation249.  18q23 

rs2056533 114485145 ZBTB20 

Involved in oncogenesis, 
haematopoiesis and immune 
responses280 3q13.2 

rs2139133 171193917 MYO3B 

Involved in protein kinase 
activity, motor activity and 
ATP binding279. Somatic 
mutation (nonsense) in this 
gene was identified in lung 
adenocarcinomas281. 

2q31.1-
q31.2 

 

 

The functional annotations of genes in which significant SNPs were located are tabulated in 

Table 4.6 (annotations obtained from NCBI for genes lying closest to a significant SNP). 

Genes involved in cytoskeletal organisation, gene expression, protein kinase, motor and 

ATP binding activity and oncogenesis were identified in the comparison for all NSCLC cases 

(MYO3B, SALL3, WIPF3). For the early stage NSCLC cases gene involved in obesity and 
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oncogenesis were identified (ZBTB20, MC3R, CYS1, WIPF3), while for advanced stage NSCLC 

cases, genes involved in various cellular functions were identified (NEK10, AF357533). 

 

4.6.4 Joint Survival Analysis 

 

The joint survival analysis was carried out by summing the total number of minor alleles 

identified at the p < 10-6 level to assess the level of risk for carrying significant risk alleles. 

Separate cumulative analysis was carried out for all, early and advanced stage NSCLC cases 

using a Cox proportional hazard regression model adjusted for age at diagnosis, smoking 

pack years, stage and histological cell type, using the same dataset. A similar analysis was 

carried out by Huang et al. (2009)261, to test the cumulative effect of the 5 SNPs that were 

discovered and validated by this study.  

The number of risk alleles in the model was treated as categorical variable to study the risk 

associated with the effect of carrying a particular number of risk alleles. This model is 

similar to the genotypic model where risk estimates are obtained for the homozygous and 

heterozygous risk alleles using the major allele homozygote as the baseline variable. 

For the early stage cause-specific survival analysis, one of the two SNPs: rs3746619 and 

rs3827103, were dropped from the joint analysis because they produced the same hazard 

ratios and minor allele frequencies, suggesting linkage disequilibrium.  

For joint analyses (Table 4.7) for every model tested for the cause specific survival satisfied 

the proportionality hazard assumption detected by Schoenfeld residuals while for the 

overall survival analysis, the all and early stage model produced test statistics detecting 
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non-proportionality. For each of the model a trend of increased hazard ratio with 

increasing number of risk alleles was observed. 

 

Table 4.7: Joint effect of significant SNPs decreasing survival at p ≤ 10-6 for both cause 
specific and overall survival analysis. 

Cause Specific survival Overall survival 

All NSCLC cases 

No. of risk 
allele frequency HR(95% CI) 

No. of risk 
allele frequency HR(95% CI) 

0 50 Referent 0 167 Referent 

1 58 2.1 (1.26-3.50) 1 18 5.65 (3.18-10.05) 

2 51 3.22 (1.92-5.39) 
   3 14 8.27 (3.99-17.13) 
   ≥4 12 10.49 (4.97-22.14) 
   Schoenfeld p-value - 0.155 Schoenfeld p-value - 0.01036 

Early stage NSCLC cases 

0 86 Referent 0 72 Referent 

1 16 8.83 (4.10-19.01) 1 24 9.73 (4.89-19.37) 

2 5 36.03 (10.83-119.94) 2 11 20.82 (8.7-49.83) 

Schoenfeld p-value - 0.0954 Schoenfeld p-value - 0.0037 

Advanced stage NSCLC cases 

0 41 Referent 0 41 Referent 

1 19 3.31 (1.75-6.26) 1 19 3.27 (1.73-6.19) 

2 12 8.59 (3.6-20.52) 2 12 8.45 (3.55-20.15) 

3 5 50.07 (14.37-174.54) 3 5 51.23 (14.69-178.66) 

Schoenfeld p-value - 0.337219 Schoenfeld p-value - 0.41013 
 Cox proportional hazard model after adjusting for age, sex, smoking pack years, stage and histological type.  
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4.7 Discussion 

 

This study investigated the association of SNPs with the survival of NSCLC patients. 

Additionally, subgroup-specific SNPs were identified for both early and advanced-stage 

NSCLC cases. Survival analysis for all NSCLC cases identified three distinct SNPs (one 

associated with both cause-specific and overall survival; the other two being specific for 

overall survival) at the p ≤ 10-6 significance level. There was evidence that the proportional 

hazards assumption failed for the SNP rs10230420 in the overall survival study (p = 0.010), 

although there was little evidence to doubt this assumption for this SNP in the cause-

specific survival study (p = 0.075) or for either of the other SNPs identified when 

considering all NSCLC cases. Proportional hazards are a fundamental assumption of the 

multivariate Cox regression models used here (as detailed in the introduction to this 

chapter) and elsewhere175, 274. Nonetheless, for rs10230420 in both cause specific and 

overall survival analysis of all NSCLC cases, the KM curves are well separated with a 

significant p-value for the log rank test (Figure 4.1a and Figure 4.2a). 

For the survival of early-stage lung cancer cases, five SNPs were identified (rs10230420, 

rs3746619, rs3827103, rs2056533 and rs6708630, discussed above, in both cause-specific 

and overall survival analyses; the neighbouring SNPs rs3746619 and rs3827103 in cause-

specific; rs2056533 and rs6708630 in overall survival analyses).Two of these SNPs, 

produced a non-significant tests statistics, satisfying the proportionality hazard assumption. 

Finally, for the advanced-stage lung cancer cases, two SNPs were identified in both the 

cause-specific and overall survival analysis. Neither of these SNPs showed evidence to 

dispute the proportional hazards assumption. The overlap in results for the advanced stage 

cases could be due to the number of events being close (71/78 for cause specific and 73/78 

for overall) (Table 4.3, Table 4.4 and Table 4.5). 
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In the previously carried lung cancer research (Table 4.1a), only Wu et al. (2011)253 tested 

for the proportionality hazard assumption. Since all the research involves identifying SNPs 

associated with lung cancer testing for proportionality hazard assumption is crucial, as the 

Cox proportional hazard model depends on it. 

 

Functions of SNP-associated genes: SNP rs10230420 is located in the intron of WIPF3 and 

was found to be associated with decreased overall and cause specific survival in all NSCLC 

cases. WIPF3 is a member of the Wiskott–Aldrich syndrome protein (WASP)- interacting 

protein (WIP) family made up of the WIP, WIPF3, and the WIP- and CR16-homologous 

protein (WICH/WIRE) gene and is regulated by corticosteroids 282. It is expressed in both the 

brain and testis and plays a role in spermatogenesis282. No role of this gene is reported in 

lung cancer and therefore needs evaluation. 

SNP rs1868110 is located near genes NEK10 (27,080,151 bp), LOC101929642 (27,151,574 

bp), LRRC3B (26,664,300 bp) and MINOS1P3 (245,856 bp)249. No information is available for 

gene MINOS1P3 while LOC101929642 is a protein coding gene with no information. NEK10 

belongs to the NEK (NIMA-related kinase) serine threonine protein kinase family whose 

members function during mitosis, cell cycle, check point control, DNA damage repair and 

genotoxic (ultra violet, ionising radiation ,etoposide) stress278, 283. NEK10 was found to be 

associated with breast cancer identified by a large GWAS association study278, 283. A kinome 

analysis depicted that this gene was the only kinase tested in a group of 20 primary lung 

neoplasms and 7 lung cancer cell lines with multiple non-synonymous somatic mutations 

whose frequency matches that to the BRAF and STK11/ LKB1 genes associated with lung 

cancer278, 284. Copy number deletion for 1 sample was observed for this gene, out of 17 

samples, in a genomic study of smokers and non-smokers with NSCLC285. Mutational 

frequency analysis was the initial step but further research on its mechanism, including 
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expression and sequencing studies need to be carried out to improve the understanding of 

its role in lung cancer. 

LRRC3B is a tumour suppressor gene expressed in normal brain, kidney and lung tissue286, 

287. Its protein is located in the nucleus and functions in interaction, recombination, 

transcription, development, immune response, DNA repair, signal transduction, cell 

adhesion, expression and apoptosis286, 287. The gene’s downregulation is associated with 

acute leukaemia, its promoter hypermethylation is significantly higher in colorectal 

tissue286 and is epigenetically silenced in gastric cancer287. Other cancers that have reported 

the downregulation of LRRC3B include brain, breast, colon, prostate and testis287. LRRC3B is 

a tumour suppressor implicated in many cancers286, 287 but has not yet been identified in 

lung cancer. Since it’s published in many cancers it may have a common mechanism leading 

to oncogenesis and could serve as a potential biomarker.  

SNP rs2056533 is located in intron of gene ZBTB20 identified to be linked to decreased 

overall survival in early stage NSCLC patients288. ZBTB20 belongs to a class of transcription 

factors associated with biological functions including transcription, proliferation, cell 

morphogenesis and death288. Expressed by hippocampal progenitor, it is known to play a 

crucial role in hippocampal development and its expression is associated with poor 

prognosis in hepatocellular carcinoma288. Downregulation of ZBTB20 expression is involved 

in oncogenesis and also plays a role in haematopoiesis and immune responses280. Further 

work is necessary to identify the mechanisms involving this gene that may have implication 

in the pathogenesis of lung cancer.  

SNPs rs3746619 and rs3827103, located in the 5’-UTR and exon of the MCR3 gene, 

respectively were associated with the decreased cause specific survival of early stage 

NSCLC cases. They produced the same hazard ratios in the cause specific survival analysis 

and may be in linkage disequilibrium. MC3R is a 7-transmembrane G-protein coupled 
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receptor expressed in hypothalamic nuclei that control human weight by modulating the 

body mass index (BMI), subcutaneous fat mass and insulin levels suggesting its association 

with human obesity289. Copy number deletion was observed for 1 sample out of 17, for this 

gene in a genomic study of smokers and non-smokers with NSCLC285. Though it’s associated 

with obesity its role in lung cancer is still to be discovered.  

SNP rs2139133 located in the intron of MYO3B was linked to decreased overall and cause 

specific survival in all NSCLC cases. MYO3B is expressed in the retina, kidney and testis and 

is associated with Bardet-Biedl syndrome characterised by dysmorphic extremities, retinal 

dystrophy, weight gain, renal deformities and malfunction, male hypogenitalism, mental 

retardation and diabetes mellitus290. Screening of lung cancer samples have identified 

missense germline and nonsense somatic mutations in a study conducted on coding exons 

of 518 protein kinases281. Expression and sequencing analysis of this gene will further 

increase the information available on its role in lung cancer. 

SNP rs9949512 is located close to SALL3 (76,829,394bp) and LOC645321 (76,740,275bp)249, 

and was found to be associated with decreased cause specific survival in all NSCLC cases. 

SALL3 is a member of the sal-like (sall) gene family associated with embryonic development 

and consists of sall1, sall2, sall3 and sall4. Loss of the sall3 gene leads to palate deficiency, 

abnormalities in cranial nerves, and perinatal lethality and is also one of the genes whose 

deletion leads to the 18q deletion syndrome resulting in hearing loss, mental retardation, 

midfacial hypoplasia, late growth and limb deformities291. SALL3 inhibits methylation and 

its decreased mRNA transcription is reported to be due to promoter hypermethylation, in 

hepatocellular carcinoma while its methylation levels are increased in bladder cancer291. 

Copy number deletion for 1 sample out of 17, was observed for this gene in a genomic 

study of smokers and non-smokers with NSCLC285. Though it’s implicated in bladder and 



 

198 
 

hepatocellular carcinoma, no studies have been reported on its role in lung cancer and 

therefore research to understand its mechanism in lung cancer is necessary. 

 

Design issues for lung cancer GWA survival studies: Previously published GWA survival 

studies (Table 4.1a) and this study, used Cox proportional hazard regression analysis to 

identify SNPs associated with survival in lung cancer cases251-255, 261, 262. While all the 

published studies (Table 4.1a) evaluated only overall survival, this study looked at both 

overall and cause specific survival in NSCLC patients251-255, 261, 262. Furthermore, while most 

studies looked at either early stage or advanced stage lung cancer populations (Table 4.1a), 

this study evaluated all NSCLC cases collectively, together with subgroup analysis only of 

early and advanced NSCLCs251-255, 261, 262. 

Most studies evaluated survival using the additive model but Wu et al. (2011)253 was the 

only publication that evaluated all three; additive, dominant and recessive model while Lee 

et al. (2012)255 used dominant and additive model. While Sato et al. (2011)251, Huang et al. 

(2009), 261 and this study adjusted for multiple testing the rest of the publications252-255, 262 

did not. Niu et al. (2012)262, Lee et al. (2012)255, Sato et al. (2011)251 and Tan et al. (2011)254 

were the only studies that did not validate their study using another population while 

Huang et al. (2009)261, Wu et al. (2011)253 and Hu et al. (2012)252 validated their study using 

another population.    

This study has identified genes not previously reported in lung cancer survival studies 

adding more potential genes to the list that needs further functional evaluation. This study 

also needs to be replicated to validate the findings. This can be done by carrying out the 

same statistical procedure in a different but ethnically same population and checking to see 

whether the same SNPs from the discovery population are significant253, 261. Another 
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drawback may be the smaller sample size of the study, though similar sample sizes have 

been used by other lung cancer survival studies251, 264. Genes identified by this study do not 

act singly but their action regulate the function of other genes, hence pathway analysis to 

evaluate molecular networks292 in disease causation is necessary. This study has also looked 

at the joint analysis of SNPs significant at p ≤ 10-6 associated with decreased survival with 

all NSCLC cases together with subgroup analysis for early and advanced NSCLC cases. 

This study identified various SNPs associated with NSCLC together with early and advanced 

stage NSCLC subgroup analysis. SNPs identified through such analysis can serve as crucial 

biomarkers for clinical purposes and personal treatment though they still need to be 

validated using a different dataset.  
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  5.1 Aim  

 

 

The aim of this project was to identify biologically-related gene sets that form survival-

associated molecular pathways in lung cancer patients.  Both overall and cause-specific 

lung cancer survival analysis were considered. Genotypes for all assayed SNPs that are 

linked to at least one member of a given gene pathway were analysed using the random 

forest technique for different split rules, concurrently using data from the genome-wide 

dataset for non-small cell lung cancer (NSCLC) cases, as used in chapter 4. Pathway 

annotations for human genes were obtained from the Homo sapiens subset of the Kyoto 

Encyclopaedia of Genes and Genomes (KEGG) database and associated SNPs were 

identified using National Centre for Biotechnology Information (NCBI) database. 

 

5.2 Introduction 

 

Although highly penetrant disease-risk alleles can be identified by pedigree analysis, a large 

number of common diseases, including lung cancer, are influenced by interactions between 

multiple risk loci  (and non-genetic contributions from environmental, occupational and 

lifestyle factors)(as discussed in Chapter 1). Genome-wide association studies provide the 

standard method for identifying these low penetrance risk loci111, 233, 234, 293, 294. The large 

number of suggested loci, the uncertain functional effects of inheriting a risk allele and the 

poor reproducibility of disease-association for individual loci across different studies means 

that insight into the disease mechanism rarely follows directly from GWA studies (Chapter 

3). An alternative to the single locus approach is to analyse SNPs associated with sets of 
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biologically-connected genes (for example, genes encoding proteins that function in the 

same signalling pathway), leading to an increased power to identify whether there is a 

pathway-level association of SNP inheritance with a given trait295. Pathway analysis of 

survival data would help understand the various biological mechanisms from lung 

carcinogenesis till death, potentially leading to reduced disease mortality and improving 

patient care253, 296, 297. 

 

5.2.1 Annotation Databases 

 

A variety of gene annotation databases have been developed that are used to provide 

functional insights into the results of genome-scale analyses298-300. The databases provide 

varying levels of data access and differ in the methods of gene annotation and their 

relevance to disease biology. 

 

Gene Ontology: Gene Ontology (GO) comprises three hierarchies of biological information 

relating, respectively, to the cellular components, molecular functions and biological 

processes occurring in organisms 298, 299. The database is hierarchical in that more specific 

terms are nested within more general terms: for example, the nucleolus is subordinate to 

the nucleus in the cellular component ontology298.  In addition, GO provides mappings 

between genes and terms within the GO hierarchy if a given gene (or its product) is known 

or predicted to play a role in the cellular component, pathway or activity to which a GO 

term refers298. Despite many annotations being based on electronic prediction, the 

annotations are reasonably accurate 301 and GO is frequently used in pathway analysis 
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because of the breadth of processes and functions covered by its approximately 30000 

terms 302. 

 

Kyoto Encyclopaedia of Genes and Genomes:  Whereas GO documents the relations 

between different biological pathways and cellular components, the Kyoto Encyclopaedia 

of Genes and Genomes (KEGG) was initiated to document the relations between different 

biomolecules, both within and between species300. Three main components of KEGG are 

databases containing, respectively, information about genes (the KEGG ‘Gene Universe’), 

biochemicals (the ‘Chemical Universe’) and functional annotations of proteins (the ‘Protein 

Network’)300. Although the ‘gene’ and ‘chemical’ databases can be used to identify sets of 

genes or proteins that share sequence similarity or perform similar enzymatic reactions300, 

it is the KEGG protein network that is most relevant to the pathway-level analyses 

described here.  

KEGG ‘PATHWAY’ is the main database within the KEGG protein network and comprises a 

series of pathway maps303. A pathway map is a molecular network that is relevant to a 

specific biological process or function and consists of nodes (which mainly represent 

proteins, but may also include genes or small molecules) and edges that connect relevant 

nodes (edges may document pairs of proteins/genes that function in the same reaction or 

which exhibit a physical or regulatory interaction)303. Hence, KEGG provides some 

information regarding the possible role of a protein in a given biological pathway303. Unlike 

GO, the pathway maps within KEGG include annotations relevant to non-physiological 

processes, such as disease pathways and networks relevant to drug development298, 299, 303-

306. The systems level information in the KEGG PATHWAY database has largely been 

manually curated providing another benefit over GO307-309.  
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5.2.2 Annotational and Methodological Challenges 

 

Genomic and proteomic studies are generating high volumes of data that are relevant to 

specific biological processes310. For any given study, large number of variables (SNPs, mRNA 

/ protein expression levels) may show an association with a disease process or respond to a 

particular stimulus310. Analysing this data in a pathway context provides a means to obtain 

biological insight but requires appropriate analytical methods that have a secure statistical 

basis and annotation databases that are unbiased, up to date and relevant to the disease / 

biological phenomenon under study310. Notably, the initial pathway analysis tools were 

developed for gene expression microarray studies and may not be directly relevant to 

GWAS studies and also, the quality of databases depends on the accuracy of gene 

prediction, the degree of automated curation, the pathways selected for curation and on 

publication bias within the literature310. 

To directly ascertain a biological role for a human gene requires experimental evidence310. 

As a consequence, functional annotation lags behind genomic identification for most genes 

and, in a given database, the level of support for the stored annotations may vary quite 

widely310. Indeed, GO, and some other databases, employ automated gene annotation 

systems to predict functional roles using a variety of data sources (for example, 

functionally-characterised orthologues, coexpression studies, protein-protein interactions, 

literature mining)298, 310. In October 2007, >95% of the annotations in GO were not manually 

curated, and the removal of these electronically-sourced associations reduced the number 

of annotated genes from 18,587 to 11,890310. 

The pathway knowledge databases typically lack information regarding the biological 

context under which the supporting experimental evidence was obtained310. As a result, 
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context-specific pathway associations that may be irrelevant to a study (for example, genes 

that function in a pathway in a tissue-specific manner) cannot be filtered out prior to 

performing a pathway analysis310. Moreover, databases such as GO only store associations 

between genes and pathways, rather than including the biological connections between 

the genes within that pathway (for example, kinase-substrate relations and protein-protein 

interactions, as included in KEGG pathway maps)310. Inclusion of dynamic and contextual 

information in the functional annotations of genes may enhance the possibilities of 

pathway analysis310. However, to capitalise on such fine-grained information may require 

considerably more advanced statistical tools than are currently available. 

In addition to the choice of statistical methodology, the choice of annotation database to 

use and the pathways within that database to consider have a large impact on the outcome 

of a pathway analysis study311. Seemingly identical pathways may have different levels of 

definition within distinct databases311. For example, apoptosis is a single pathway in KEGG, 

but in GO, apoptosis can be further divided into inductive, regulatory and tissue-specific 

pathway components311. Allied to this, there is an ill-defined boundary between the 

pathway components and those molecules that regulate or are regulated by it311. Due to 

differences in the associated gene lists for related pathways between databases, results of 

a pathway analysis can be inconsistent across different databases311.  

The number of comparisons performed must be controlled for when testing multiple null 

hypotheses, such as for example, when testing a large collection of pathways for 

association with a disease state312. Bonferroni correction is based on the assumption that 

the tested hypotheses are independent, which is false in many pathway studies since the 

included gene lists may overlap between any pair of pathways312. Such stringent multiple 

testing methods reduce the power to detect true associations with a pathway312. 

Bonferroni or Sidak methods are therefore conservative312, while procedures that control 
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the proportion of false positive significant pathways, such as that developed by Benjamini 

and Hochberg313 may be more appropriate. A limitation of all of these approaches is that, 

depending on the pathway selection procedure, they assume the independence of all 

pathways that are nominally significant prior to controlling for multiple comparisons312. 

Bootstrapping methods, whereby datasets are generated by sampling with replacement, 

can be used to bypass the latter issue, but are computationally demanding312. 

Assigning SNPs to genes is an important step in determining the SNP complement of a 

pathway312. The most common method is to consider any SNP that lies within a gene-

proximal region as a SNP associated with that gene312. The region typically includes the 

gene and a window of between 5kb314 and 500kb308 of surrounding sequence. Other issues 

that arise include the set of genes to include from the genome build (i.e. whether non-

coding, pseudogenes or predicted genes should be included), the size of the sequence 

window and how to deal with SNPs that are attributed to more than one gene312. 

Depending on the choice of pathway analysis method, the number of SNPs and/or genes 

annotated to a pathway can influence the likelihood of a type-I error for that pathway312. 

This occurs, for example, when the method is based on taking the mean or the least of the 

SNP-level p-values as a representative gene-level p-value (discussed in Holmans et al. 

(2010)312). Since genes are of non-uniform size, larger genes will tend to have more 

associated SNPs than smaller genes312. Additionally, a larger choice for the sequence 

window will lead to more SNPs being assigned to a gene312. For a given gene, this both 

increases the possibility of finding a functional association, if one exists, and also leads to 

the consideration of many SNPs that may have no functional relationship with the gene312. 

Large windows also increase the overlap between neighbouring genes, thus increasing the 

number of shared SNPs312. Some studies have chosen to disregard SNPs that lie in these 
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regions of overlap315, although an alternative is to perform permutation methods for these 

overlapping SNPs312. 

The high correlation seen between SNPs that lie in linkage disequilibrium may affect any 

pathway level analysis that considers SNP-level data independently312. Similar effects occur 

in gene expression data (due to cross reactivity of microarray probes and co-regulation of 

gene expression) where this interdependence is corrected for by permutation of 

phenotype labels amongst the samples312. An identical method has been proposed to deal 

with the interdependence between SNPs in pathway analysis however this method is 

computationally intensive312. 

 

5.2.3 Pathway Analysis 

 

Pathway analysis tests for an association between a trait and a set of genes: the 

pathway295. The pathway tests employed are either self-contained or competitive295. In the 

former case, the association of a trait with a pathway is determined independently of its 

association with all other pathways; whereas in the latter case, summary statistics 

computed for each of a set of pathways are compared (perhaps controlled for pathway 

size, etc.) with those pathways having extreme values of the summary statistic considered 

to be trait-associated (under the assumption that most pathways are not associated with 

the trait)295. 

Design choices must be made prior to pathway-level analysis of genotypic data to ensure 

that both the statistical approach and the biological question are appropriate and, 

importantly, to ensure that the computing requirements of the method (processing, 
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memory, storage) can be met by the available resources on a reasonable timescale295.  If 

the volume of genotypic data is large, it may be necessary to analyse only a restricted 

number of pathways295. Self-contained tests must be applied when using this candidate 

pathway approach, since pathway selection may bias the results of competitive pathway 

analysis295. 

There are good reasons to consider genome-wide pathway analysis for all pathways if it is 

computationally feasible to do so295. The hypothesis-free nature of such an approach 

means that novel aspects of disease aetiology may be revealed, thus potentially improving 

our knowledge of disease biology295. However, such approaches require adjustment for the 

analysis of multiple testing, and so have lower power to detect genuine associations of a 

pathway with a trait than do candidate-pathway approaches295. 

 

5.2.4 Pathway Analysis in Lung Cancer 

 

Although pathway analysis to compare lung cancer cases against control subjects has been 

performed using genotype data113, 193, 203, 233, no studies have addressed the association of 

pathways with lung cancer survival. This may be due to the unavailability of data for 

survival type analysis or the methodological challenge in modifying the existing case-

control analysis methods, to analyse lifetime data. 

Pathway analysis has been performed using gene set enrichment analysis (GSEA) for 

expression data of lung adenocarcinomas with “good” and “poor” as outcome variables316. 

The correlation of gene expression with group label (good or poor) was used to rank genes 

representing a defined set (based on either pathway or location)316. The pathway-
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associated genes were checked to see whether they occur at random with respect to an 

ordered list of all analysed genes316. If the position of the genes was non-random, the 

pathway may be phenotypically related and its over-representation was determined using 

an enrichment score316. The significance of the score was determined by a phenotype-

based permutation method316. This study identified 17 gene sets associated with amino 

acid and nucleotide acid metabolism, immune modulation and mTOR signalling316. 

Another study carried out a comparison of pathway analysis methods using Caucasian case-

control SNP datasets317. Two datasets were used. Each dataset was generated by 

combining two existing studies, a ‘Central European and Toronto’ dataset (CETO; 

cases=2258/controls=3027) and a ‘Germany and Texas’ dataset (GRMD; 

cases=1639/controls =1618) to achieve similar sample sizes and power to detect an 

association317. Individuals were genotyped using the Illumina platform on either the 

HumanHap 300 or HumanHap 550 chip arrays317. Four methods (EASE, GenGen, SLAT and 

mSUMSTAT) were used to identify important lung cancer pathways317. The methods range 

from simple (EASE) to the more complex (GenGen, SLAT and SUMSTAT), developed to 

handle various issues associated with linkage disequilibrium and gene size317. 

SNPs were included if the minor allele frequency (MAF) was >0.01, Hardy Weinberg 

equilibrium (HWE) p-value was ≥0.001 in controls and a >95% genotyping rate was 

observed317. Additionally, individuals with misreported gender and >10% missing genotype 

were excluded317.  SNPs within 20kb around the gene were included, including only 

pathways with a minimum of 15 genes and maximum of 200 genes317. Χ2 test statistics from 

unconditional logistic regression adjusted for sex, age and country of origin were used in 

EASE, GenGen and mSUMSTAT, while unadjusted regression Χ2 test statistics were used for 

SLAT317. For GenGen and mSUMSTAT, one thousand permuted logistic regressions were 

conducted by shuffling the case/control status for every run317. The SNP with the most 
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significant Χ2 test statistic obtained from the above methods, was used to represent each 

gene317. Test statistics (p ≤ 0.05) obtained for each SNP were used in EASE317. EASE score for 

enrichment representation was calculated using a modified Fisher Exact probability and 

FDR was calculated to control for multiple testing317. 

GenGen was conducted by calculating a Kolmogorov-Smirnov-like running sum statistic on 

the ranked Χ2 test statistics (obtained through logistic regression), in descending order317. 

Pathway p-values were obtained through permuted normalised enrichment score (NER) 

derived using the SNP test statistics317. The genes from pathways were represented by their 

most significant SNPs317. 

The modified-SUMSTAT is similar to GenGen except that pathway-level significance is 

determined by averaging the Χ2 test statistics317. The normalised test statistics and 

permutation of phenotype is what makes it different from the original SUMSTAT 

methods317. Unlike the other methods used by Fehringer et al. (2012) all SNP test statistics 

defining a gene are used for pathway analysis. The observed and permuted data for 

phenotype is used to determine pathways with test statistics reaching a specific 

threshold317. For all methods, multiple testing was controlled by the FDR method317. The 

SLAT program computes its own association statistics with the response variable, without 

adjusting for any covariates; and the pathway level test statistics are obtained by using the 

p-values that meet a specific threshold317. 

Nerve impulse, Ras-GEF and LDL binding pathways were significant in both the populations 

when using the EASE method; acetylcholine receptor, heme metabolic, porphyrin 

metabolic, pigment biosynthetic and the 4 iron,4 sulphur cluster-binding pathways were 

significant  in both populations for the mSUMSTAT method while regulation of cell 

migration was significant in both populations for the SLAT method317. Pathways that were 

significant when using multiple tools on a single dataset included chloride ion binding, 
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interleukin-2 biosynthetic, regulation of cell migration, acetylcholine receptor, heme 

metabolic, complement activation, chromatin assembly and regulation of cell migration317. 

A two staged, random forest technique devised by Chung et al. (2012), was applied to a 

lung cancer GWAS data set of 663 cases and 642 controls genotyped at 496,761 loci using 

the Illumina 550K platform318. 

Training and testing sets were created in a random forest (RF) method whereby, in a given 

iteration, samples were assigned to a training set (with replacement) and the rest to a 

testing set, to develop SNP-based classification trees318.  The above process was repeated, 

to create a forest composed of classification trees318. The random forest was then used to 

classify each sample (in the testing set) based on how frequently the sample was classified 

to each category across those classification trees, where the sample was present in the 

testing dataset318. Classification error rate and the variable importance are also 

calculated318.  

For the two-stage RF-based (TRF) pathway method, the above RF steps are carried out with 

SNPs in a pathway and the process is repeated for SNPs whose variable importance 

exceeds a pre-specified threshold318. The pathway is scored based on the prediction error 

rate (of the former step)318. The process is repeated by permuting the case-control status, a 

predefined number of times to calculate the p value for the pathway318. Significant 

pathways identified include cyanoamine acid metabolism, Fc gamma R-mediated 

phagocytosis, p53 signalling and pentose phosphate pathway318.  

Lee et al. (2013), conducted a pathway-based analysis on Korean lung cancer patients 

consisting of 869 cases and 1533 controls319. Eight hundred and eighty pathways were 

analysed using GSEA and validated by ARTP319. Pathways were filtered from the discovery 

dataset using GSEA if the p-value ≤ 0.025 and FDRs ≤ 25% and considered if the ARTP p-
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value ≤ 0.01319. The majority of the subjects were genotyped using Affymetrix Genome-

Wide Human SNP Array 5.0 (Affymetrix, Santa Clara, CA, USA) 319. SNPs were filtered (MAF, 

HWE, genotyping call rate) for various quality control methods319. Pathways containing 

between 20 and 200 genes were included from pathway databases such as BioCarta, KEGG, 

Reactome and other curated pathway sets319. SNPs that were within 20 kb of a gene were 

included in the analysis319. Multivariate logistic regression was conducted using age, sex 

and smoking status from which p-values were derived for SNPs, for use in GSEA319. Each 

gene was represented by its most significant SNP and one thousand permutations of 

phenotype were conducted to calculate the test statistics for each gene319. An enrichment 

score was calculated for every pathway using the ranked gene list, and normalised to make 

comparisons between different sized pathways319. Multiple testing was controlled for by 

FDR (false discovery rate)319. The validation was carried out using ARTP, as described below, 

with the same number of permutations319. 

For the ARTP method, a truncation point (numeric value) is predefined, where the total 

numbers of p-values, arranged in ascending order; equal to the truncation point 

(predefined), are multiplied to obtain the p-value for the pathway319. The former arranged 

p-values are obtained from the significant SNPs in genes that are associated with a given 

pathway319. This method (ARTP) employs a combined statistics method that does not 

depend on pathway size319.  

Eleven of the 880 pathways were significant in the GSEA and subsequent ARTP pathway 

analysis for the additive and dominant model, namely, G1/S transition, cell cycle, G1/S 

check point, ABC transporters and signalling pathways (VEGF, phosphatidylinositol , Inositol 

phosphate metabolism, NRAGE (JNK), cell death (NRAGE, NRIF and NADE) and p75 NTR 

receptor mediated)319. Activation of the pre-replicative complex was significant in the 

dominant but not additive model when tested using ARTP319. 
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A study on Han Chinese individuals was carried out to identify significant lung cancer 

pathways using 1473 cases and 1962 controls in the discovery stage and 858 cases and 

1115 controls in the validation stage320. Candidates were genotyped using the Affymetrix 

genome wide human SNP Array 6.0. Misreported gender, familial relationship, extreme 

heterozygosity and genotype call (<95%) rate and outliers were a part of the individual 

based quality control exclusion criteria, together with the regular SNP based quality control 

(MAF, HWE, genotype call rate (<95%)) including only autosomal SNPs in the analysis320.  

One hundred and ninety one pathways from Biocarta and 177 pathways from KEGG were 

used, only considering those with a minimum of 10 and a maximum of 200 genes320. The 

gene boundary for SNP allocation was taken to be 50kb downstream or upstream320. 

Statistics associated for each SNP were obtained through logistic regression, after adjusting 

for age, sex, pack years of smoking and four principal components obtained from 

EIGENSTRAT 3.0320. Each gene was represented by its most significant SNP and the pathway 

was evaluated using GenGen320.  

Kolmogorov-Smirnov-like running sum statistics were used to obtain pathway-level 

enrichment scores (GenGen software308)320. The case-control status was shuffled 1000 

times and used to obtain permuted pathway associations, giving the normalised 

enrichment score adjusted for gene sizes320. The significance was set at p ≤ 0.05 and FDR ≤ 

0.5320. Twenty two pathways were identified in the discovery phase but only four 

(“achPathway“ – the role of nicotine acetylcholine receptors in the regulation of apoptosis; 

“At1rPathway” – angiotensin II mediated activation of JNK pathway via Pyk2 dependent 

signalling; “metPathway” – signalling of hepatocyte growth factor receptor; and 

“rac1Pathway” – Rac1 cell motility signalling pathway) of them were significant in the 

replication and combined study320. 
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Though little has been published using SNP data in survival analysis296 the case-control 

studies mentioned above gives us various statistical approaches that may be altered to 

form the basis of survival data analysis. The case-control pathway studies have used various 

methodologies (GSEA, GenGen, SLAT, mSUMSTAT, TRF) and identified various pathways 

associated in ethnically different populations (Caucasian, Chinese, Korean)317-320. They have 

also compared different methods across two different study populations and results from 

different methods within a single population317. One study validated their results using a 

different method rather than a different population for both the dominant and additive 

model319 while another conducted the analysis, separately, by population and also a 

combined analysis320. The results of these published case-control pathway studies are 

poorly reproduced between studies which may be due to the use of different 

methodologies and populations of different ethnicities. 

 

5.2.5 Imputation 

 

Genotype imputation increases the power of pathway analysis by detecting additional 

associations321. Missing genotypes may be inferred using haplotype Hidden Markov Models 

(HMMs). The HapMap CEU panel release 27 (NCBI build 36) can be used as the reference 

panel for Caucasians201. Haplotype HMMs are developed using phased genotype data, 

alternating between the sampling and model building processes322. The genotypes are 

sampled for every individual depending on the genotypic data and the current haplotype 

HMM built using phased haplotypes322. The phased haplotype for the first iteration is 

obtained by using HapMap allele frequencies to impute genotypes and then phasing 

heterozygous genotypes randomly322. For biallelic markers, the ungenotyped markers are 
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imputed by averaging the posterior allelic probability for that site322. This is obtained by 

summing the probability of the HMM states obtained using a reference panel with 

repeated iterations tending to improve the accuracy of imputation322. HMM-based 

imputation can be carried out using the programs BEAGLE, IMPUTE MACH and fast-phase 

from BIMBAM321. 

 

5.2.6 Random Forest Method 

 

Random forest is a classification algorithm, where a set of random vectors are sampled 

independently to form a tree and many trees, collectively form a forest323.  All trees 

forming the forest have the same distribution323. This approach is closely allied to random 

survival forest wherein randomisation is introduced while initiating a tree and splitting 

nodes to grow the trees323.  It is a simple procedure requiring only the number of randomly 

selected predictors, the number of trees grown in the forest and the splitting rule323. 

Figure 5.1 explains the generation of a forest with reference to the SNP based random 

survival forest for pathways296, 323. The first step involves bootstrapping the sample (lung 

cancer patients) in such a way that two thirds of the sample is bagged leaving one third of it 

out-of-bag (OOB)296, 323. A survival tree is grown using the SNPs that are bagged296, 323.  The 

tree is grown by splitting at each node, using √m randomly selected predictors where m is 

the number of bagged predictors296, 323. Of these √m predictors, the one that maximises the 

difference is used to split the node into daughter nodes using the survival split criteria296, 

323. This process ends when terminal nodes contain no more than 0.632 times the number 

of events296, 323. The OOB samples are used to determine the variable importance and the 

predictive error rate296, 323.  
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The expected number of events and times obtained through a 10 fold cross validation 

where 90% is used to train the data while the rest (10%) is used for predicting the event 

and survival time323. Individuals are grouped into high and low risk, and a log rank test is 

used to determine the significance of the pathway296, 323. The discriminatory ability of the 

prediction technique was also evaluated using an area under the receiver operating 

characteristic curve296, 323.
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Figure 5.1: Random survival forest for pathway SNP data 

 

 

 

 

 

 

 

Bootstrap the patient sample so that 

2/3 is bagged and 1/3 remain out-of-

bag (OOB). 

Randomly select √m variables (SNPs and clinical 

measurements) from the bagged sample (m) and 

split on the best variable (forming the node) using 

various split techniques. 

 

Split rules include “Log-

rank”, ”Log-rank 

score”, “Conserve” and 

“Bivariate split with 

Log-rank”. 

 

The process continues until there is no more 

than 0.632 times the event in the terminal node. 

The final product is called a tree. 

 

This process continues 

ntree number of times, 

equal to the number of 

trees (preselected). 

 

Once ntree trees are produced, a forest is formed 

through the ensemble cumulative hazard function (CHF) 

which is an average of the CHF across the trees.  
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Splitting rules for random forests 

 

Splitting rules are applied to split nodes into daughter nodes in such a way that it 

maximises the difference between the two sets of data323. Consider n individuals at node h 

which will be divided into two nodes on a predictor x that maximise the difference between 

the daughter nodes323. The following are the splitting rules used in the random forest 

technique. 

 

Log-rank: 

 

For a predictor x (here, the genotype at a specific locus or phenotype measurements) at 

value c, the LR statistic is defined as  
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Where Xi is the number of individuals at risk (Xi = Xi,1 +Xi,2, where Xi,1  and Xi,2  are the 

respective values for the two daughter nodes) and di is the number of deaths at time ti  
323. 

The output obtained using the above equation is the measure of node separation, the 

value being directly proportional to the extent of the difference between the two 

groups323. 
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Conserve: 

 

The Nelson-Aalen cumulative hazard estimator for daughter j is  

 ̂ ( )   ∑
    

    
⁄

       

 

Where      and      are the number of deaths and the number of individuals at time ti in 

daughter node j323.  The Nelson Aalen estimator can be written to fit the survival data in the 

daughter node j in the form 
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where Tl,j and  l,j  are the time and censoring indicator pairs for  l=1,…nj. Let the T(1),j ≤ T(2),j ≤ 

··· ≤ T(nj),j  be the ordered time intervals for daughter j and   (l),j be the censoring indicator for  

T(l),j. For k=1,...,nj   
323 
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         323 

Conserve test for x at value c (Converse(x,c)) produces a small value if the nodes are well 

separated and therefore the magnitude of node separation is represented as 

1/(1+Conserve(x,c))323. 

 

Log-rank score: 

 

Let x1 ≤ x2 ≤ ··· ≤ xn be a set of ordered predictor variable x, and    the indicator variable, 1 

if the event is observed and 0 otherwise323.  
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    which is the formula for computing the ranks for 

each survival time Tl and     = #[t : Tt ≤ Tk] represents the total number of events 

(death/censor) observed at or before Tt . The absolute value of LRS for x at value c (LRS 

(x,c)) is the measure of node separation323. 

As depicted in Figure 5.1, the variables (SNPs and clinical measurements) in the bagged 

sample are used to select the best variable that can maximise the difference in the 

daughter nodes296, 323.  This variable splits the bagged sample of patients using the different 

split rules to form the tree. Many trees thus form the random forest296, 323. 

 

Bivariate random survival forest with log-rank split rule: 

 

When the random survival forest method is used with the above split criteria, (m) 0.5 

predictors are randomly sampled for splitting and the node is generated using a single 

predictor296.  However for the bivariate random survival forest with log-rank split (bRSF LR) 

method, LR split is used for the node split using pair of predictors that determine the best 

split that maximises the survival difference between daughter nodes296. 

These are some of the used split-criteria for random forest techniques, each employing a 

different method to calculate the extent of node separation296. Of all the above split criteria 

available, the bivariate random survival forest with LR splitting criteria, which takes into 

account the correlation between SNPs and unlike other methods that use a single variable 
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during the splitting procedure, uses two variables, was the best according to Pang et al. 

(2010)296. This was because it produced a small type I error relative to the other methods 

when tested using simulated datasets296. It was also the best in terms of power for a 

sample size of as small as 50 using simulated datasets296. 

Though pathway analysis using the random forest technique this method is recently being 

tested for survival analysis of SNP data296, it has made the analysis of pathway-based 

survival data possible.  

 

5.3 Material and Methods 

 

One hundred and eighty five NSCLC cases from Liverpool were identified. Blood DNA was 

extracted using Qiagen kits and genotyped using the 300K HumanHap Illumina bead chip 

array. The CEU HapMap3 dataset was utilised to carry out imputation of missing genotypes 

in every chromosome201. Outliers from the case dataset, identified using the nearest 

neighbour technique for outlier detection in PLINK227 were removed and the remaining 

data was merged with the HapMap 3 CEU population. The genotype dataset was quality 

controlled to include single nucleotide polymorphisms (SNPs) with a minor allele frequency 

>1% and genotypic call rate of >95% and to exclude SNPs with a Hardy Weinberg 

equilibrium p-value < 0.001. The data were checked to remove any duplicates, related 

individuals and discordant sex. Every individual had a genotype call rate of >95%. 

Imputation was carried out using BEAGLE 3.3.2322 by first phasing the reference (CEU 

HapMap3) dataset. 
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The survival status for each case was determined using the ONS (Office for National 

Statistics)125 registry data, the most recent ONS update being in February 2012.  Cause 

specific death was identified if the cause of death was reported as ”C34” (‘Malignant 

neoplasm of lung and bronchus’) or “C780” (‘Secondary malignant neoplasm of lung’)  (ICD-

10) while the survival status for overall analysis was death due to any cause. The survival 

time was calculated using the date of diagnosis and date of death or date last reported 

alive. 

SNPs were coded in an additive mode (0, 1, 2) with reference to the number of minor 

alleles carried by an individual261. A selection of 18 pathways from the KEGG website for 

species Homo sapiens were utilised to run this analysis 

(http://rest.kegg.jp/list/pathway/hsa)324, 325. A perl script was written to extract the genes 

using the KEGG link http://rest.kegg.jp/link/genes/a where “a” was replaced by the 

relevant pathway reference number324, 325. Those genes that were extracted for each KEGG 

pathway were used to extract pathway-associated SNPs using two files downloaded from 

dbSNP in July 2012 (Build 132, https://cgsmd.isi.edu/dbsnpq/downloads.php)326. The first 

file, a table titled “GeneToName”, contained the Entrez gene ID, gene symbol, gene name, 

gene type and taxonomy id for each gene, and the other, titled "_loc_snp_gene_ref”, 

contained the SNP id, contig id, numeric NCBI Entrez gene ID, gene symbol, start and stop 

position of the genes and accession of RefSeq mRNA associated with the Entrez ID, the 

functional properties of the SNP, base position, allele and codon position and type 

(whether coding or non-coding)326. A perl script was written to extract genes from 

pathways in KEGG and SNPs from genes using the above two files. The SNPs were filtered 

to include only those that were not in high LD (section 3.2.7) (r2>0.8)297. This was done by 

identifying SNP pairs in LD (r2>0.8) within a distance 250Kb and removing one of them and 

was performed using scripts written in R229 and PLINK227. Hence, the final dataset contained 

SNPs that were not in high LD (r2>0.8). 

http://rest.kegg.jp/link/genes/a
https://cgsmd.isi.edu/dbsnpq/downloads.php
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The survival pathway analysis was run to identify pathways associated with cause-specific 

and overall survival analysis included age at diagnosis, histological types (adenocarcinoma 

versus squamous cell carcinoma), smoking pack years, sex and stage (I, II, III and IV) and the 

LD-filtered SNPs. 

‘Pwayrfsurvival’, a script developed in R229 by Pang et al. (2010), was modified for use with 

the dataset296. It was applied to identify pathways associated with overall and cause-

specific survival using various split algorithms including log-rank, log-rank score, conserve 

and bivariate with log-rank. It depends on other R packages such as “brsf”327, ”survival”328, 

329 and “survivalROC”330. FDR-adjusted p-values were calculated using R229. This was done 

by first ranking the p-values in ascending order and choosing the minimum of either the 

corresponding p-value or the value obtained by multiplying the rank number of the p-value 

with the nominal p-value (0.05) and dividing it by the total number of tests331. All analysis 

were conducted using BEAGLE322 , perl, R229 and PLINK227. 

 

5.4 Results 

 

The population characteristics of the 185 NSCLC cases from Liverpool are tabulated in the 

previous chapter (Table 4.2 and Table 4.3). A set of 18 pathways were selected to test for 

significance in the random forest survival pathway analysis in both cause-specific and 

overall survival analysis using the log-rank, log-rank score, conserve and bivariate random 

survival forest with log-rank split rule. The number of pathways was preselected due to 

time restrictions, though the methods could have been applied to all pathways from the 

KEGG database. The KEGG pathways that were included because of their association with 

lung cancer were alcoholism332, apoptosis333, base excision repair (BER)334, cell cycle335 , 
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Chemical carcinogenesis336, ECM receptor interaction337, Erbβ signalling pathway338, Insulin 

secretion339, Mismatch repair (MMR)340, NF-κβ signalling pathway341 , nicotine addiction342, 

NSCLC, Notch signalling pathway343, Nucleotide excision repair (NER)344, p53 signalling 

pathway345, Small cell lung cancer, TGF-β signalling pathway346 and VEGF signalling 

pathway347. 

The output of the Pwayrfsurvival script is a p-value and an area under the receiver 

operative characteristic curve (AUC) value for each pathway that was considered; these are 

computed by comparing the predicted events and times to those observed in the original 

dataset296. 

Important pathways were identified via a log rank test computed by grouping individuals 

into high and low risk groups of approximately equal sizes296. This grouping depends on the 

expected survival times and events computed using a ten-fold cross validation in which 

90% of the sample was trained to be tested in the remaining 10% at each fold296. A small p-

value of the log rank test was indicative of the importance of a given pathway in lung 

cancer survival296. 

The predictive accuracy of this pathway-based method for determining patient survival, 

was evaluated by using AUC employing the expected survival times and events to evaluate 

how these SNPs predict a lung cancer free survival296. A large AUC value indicates a good 

prediction. This analysis is a function of the time t and proceeds through estimating the 

sensitivity and specificity at different cut offs296.
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Table 5.1: Results for cause specific and overall random forest pathway survival analysis using log-rank split rule 

Pathway 
No. of 
SNPs 

Log-rank 

Cause specific Overall 

p value FDR adjusted AUC p value FDR adjusted AUC 

Alcoholism 870 0.0313 0.0332 0.61 0.3547 0.3547 0.57 

Apoptosis 372 4.26E-08 1.92E-07 0.75 3.28E-08 1.97E-07 0.76 

Base excision repair 81 3.39E-09 2.08E-08 0.77 1.48E-08 1.33E-07 0.77 

Cell cycle 397 1.99E-09 2.08E-08 0.72 1.96E-09 3.53E-08 0.72 

Chemical carcinogenesis 178 8.67E-08 3.12E-07 0.67 2.81E-06 8.43E-06 0.69 

ECM receptor interaction 1097 0.0007 0.0009 0.60 0.0041 0.0053 0.65 

Erbβ signalling pathway 1078 0.0437 0.0437 0.60 0.0087 0.0097 0.57 

Insulin secretion 1439 0.0001 0.0002 0.63 0.0020 0.0035 0.58 

Mismatch repair 103 2.20E-07 6.60E-07 0.72 1.01E-06 3.64E-06 0.71 

NF kappa β signalling pathway 471 7.47E-06 1.68E-05 0.67 0.0025 0.0038 0.64 

Nicotine addiction 574 0.0005 0.0007 0.71 0.0022 0.0036 0.70 

Non-small cell lung cancer 730 0.0047 0.0053 0.57 0.0036 0.0049 0.54 

Notch signalling pathway 347 0.0012 0.0015 0.62 0.0061 0.0073 0.65 

Nucleotide excision repair 130 3.46E-09 2.08E-08 0.70 6.38E-06 1.64E-05 0.69 

p53 signalling pathway 228 4.86E-06 1.25E-05 0.67 3.99E-07 1.80E-06 0.70 

Small cell lung cancer 911 0.0002 0.0003 0.62 0.0016 0.0031 0.65 

TGF beta signalling pathway 412 1.02E-05 2.04E-05 0.56 9.31E-05 0.0002 0.59 

VEGF signalling pathway 455 0.0002 0.0003 0.56 0.0143 0.0151 0.48 

Italics -AUC≥0.70; bold - p≤0.05 
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Table 5.2: Results for cause specific and overall random forest pathway survival analysis using bivariate random survival forest with log-rank split 

Pathway 
No. of 
SNPs 

Bivariate random survival forest with log-rank  

Cause specific Overall 

p value FDR adjusted AUC p value FDR adjusted AUC 

Alcoholism 870 0.7274 0.7274 0.50 0.6504 0.8362 0.51 

Apoptosis 372 4.19E-06 1.51E-05 0.77 0.0074 0.0166 0.73 

Base excision repair 81 2.68E-07 4.02E-06 0.78 8.90E-08 1.60E-06 0.79 

Cell cycle 397 4.18E-06 1.51E-05 0.71 0.0021 0.0083 0.70 

Chemical carcinogenesis 178 4.23E-05 0.0001 0.66 0.0029 0.0086 0.71 

ECM receptor interaction 1097 0.1066 0.1599 0.61 0.1949 0.2923 0.64 

Erbβ signalling pathway 1078 0.5642 0.5974 0.59 0.9987 0.9987 0.52 

Insulin secretion 1439 0.4887 0.5498 0.46 0.8024 0.9576 0.43 

Mismatch repair 103 6.70E-07 4.02E-06 0.73 7.01E-05 0.0006 0.72 

NF kappa β signalling pathway 471 0.0015 0.0034 0.52 0.0035 0.0089 0.53 

Nicotine addiction 574 0.1057 0.1599 0.64 0.4166 0.5768 0.66 

Non-small cell lung cancer 730 0.2307 0.2768 0.49 0.8938 0.9576 0.49 

Notch signalling pathway 347 0.0364 0.0655 0.59 0.0815 0.1466 0.62 

Nucleotide excision repair 130 2.19E-05 6.57E-05 0.67 0.0001 0.0008 0.68 

p53 signalling pathway 228 5.18E-07 4.02E-06 0.67 0.0023 0.0083 0.67 

Small cell lung cancer 911 0.2046 0.2630 0.61 0.1897 0.2923 0.63 

TGF beta signalling pathway 412 0.0051 0.0103 0.49 0.0790 0.1466 0.49 

VEGF signalling pathway 455 0.1487 0.2059 0.38 0.9044 0.9576 0.38 

Italics -AUC≥0.70; bold - p≤0.05 
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Table 5.3: Results for cause specific and overall random forest pathway survival analysis using conserve split rule 

Pathway 
No. of 
SNPs 

Conserve 

Cause specific Overall 

p value FDR adjusted AUC p value FDR adjusted AUC 

Alcoholism 870 0.4226 0.4226 0.56 9.35E-01 0.935 0.56 

Apoptosis 372 1.05E-05 3.78E-05 0.78 4.47E-05 0.0001 0.78 

Base excision repair 81 3.51E-11 6.32E-10 0.81 1.74E-09 2.93E-08 0.81 

Cell cycle 397 2.90E-06 1.31E-05 0.71 3.04E-07 1.82E-06 0.71 

Chemical carcinogenesis 178 6.41E-07 3.85E-06 0.66 6.00E-05 0.0002 0.66 

ECM receptor interaction 1097 0.0250 0.0322 0.62 0.4761 0.5041 0.62 

Erbβ signalling pathway 1078 0.0018 0.0028 0.60 9.39E-02 0.1207 0.60 

Insulin secretion 1439 2.14E-04 0.0004 0.50 0.0197 0.0273 0.50 

Mismatch repair 103 8.75E-05 0.0002 0.78 3.26E-09 2.93E-08 0.78 

NF kappa β signalling pathway 471 0.0001 0.0002 0.57 0.0009 0.0016 0.57 

Nicotine addiction 574 0.0851 0.0958 0.68 4.65E-03 0.0070 0.68 

Non-small cell lung cancer 730 3.62E-02 0.0434 0.51 0.3173 0.3570 0.51 

Notch signalling pathway 347 1.76E-02 0.0244 0.65 2.03E-03 0.0033 0.65 

Nucleotide excision repair 130 7.21E-09 6.49E-08 0.76 1.25E-05 4.50E-05 0.76 

p53 signalling pathway 228 5.89E-05 0.0002 0.63 4.76E-07 2.14E-06 0.63 

Small cell lung cancer 911 0.3077 0.3258 0.75 0.2098 0.2518 0.75 

TGF beta signalling pathway 412 0.0004 0.0006 0.51 7.11E-05 0.0002 0.51 

VEGF signalling pathway 455 1.31E-04 0.0003 0.51 0.0007 0.0015 0.51 

Italics -AUC≥0.70; bold - p≤0.05 
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Table 5.4: Results for cause specific and overall random forest pathway survival analysis using log-rank score split rule 

Pathway 
No. of 
SNPs 

Log-rank score 

Cause specific Overall 

p value FDR adjusted AUC p value FDR adjusted AUC 

Alcoholism 870 0.9492 0.9492 0.56 0.3178 0.3575 0.60 

Apoptosis 372 9.98E-05 0.0003 0.70 2.00E-06 1.20E-05 0.70 

Base excision repair 81 3.71E-09 6.68E-08 0.76 5.42E-08 9.76E-07 0.76 

Cell cycle 397 5.36E-06 1.93E-05 0.66 0.0003 0.0008 0.63 

Chemical carcinogenesis 178 3.94E-05 0.0001 0.66 8.87E-05 0.0003 0.69 

ECM receptor interaction 1097 0.0116 0.0161 0.57 0.02860 0.0468 0.68 

Erbβ signalling pathway 1078 0.3932 0.4163 0.62 0.10934 0.1514 0.64 

Insulin secretion 1439 2.49E-03 0.0045 0.58 0.15246 0.1830 0.55 

Mismatch repair 103 7.86E-07 3.64E-06 0.69 2.13E-07 1.92E-06 0.71 

NF kappa β signalling pathway 471 0.0050 0.0074 0.55 0.00053 0.00120 0.54 

Nicotine addiction 574 6.09E-02 0.0685 0.68 0.14427 0.18295 0.61 

Non-small cell lung cancer 730 4.78E-02 0.0574 0.47 0.43797 0.46374 0.49 

Notch signalling pathway 347 3.44E-03 0.0056 0.58 0.03260 0.04890 0.61 

Nucleotide excision repair 130 5.19E-07 3.64E-06 0.72 6.20E-06 2.79E-05 0.68 

p53 signalling pathway 228 8.08E-07 3.64E-06 0.60 3.77E-05 0.00014 0.60 

Small cell lung cancer 911 2.89E-02 0.0372 0.55 0.63497 0.63497 0.59 

TGF beta signalling pathway 412 1.67E-03 0.0038 0.55 0.00144 0.00287 0.56 

VEGF signalling pathway 455 2.08E-03 0.0042 0.54 0.00984 0.01772 0.50 

Italics -AUC≥0.70; bold - p≤0.05 
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Table 5.5: Outcome summary of the results for the four split rules 

Pathway 

Cause specific survival Overall survival 

Log-rank 

bivariate RSF 
with log-rank 
split Conserve 

Log-rank 
score Log-rank 

bivariate RSF 
with log-rank 
split Conserve 

Log-rank 
score 

Alcoholism ++ -- -- -- -- -- +- -- 

Apoptosis ++ ++ ++ ++ ++ ++ ++ ++ 

Base excision repair ++ ++ ++ ++ ++ ++ ++ ++ 

Cell cycle ++ ++ ++ ++ ++ ++ ++ ++ 

Chemical carcinogenesis ++ ++ ++ ++ ++ ++ ++ ++ 

ECM receptor interaction ++ -- ++ ++ ++ -- -- ++ 

Erbβ signalling pathway ++ -- ++ -- ++ -- -- -- 

Insulin secretion ++ -- ++ ++ ++ -- ++ -- 

Mismatch repair ++ ++ ++ ++ ++ ++ ++ ++ 

NF kappa β signalling pathway ++ ++ ++ ++ ++ ++ -- ++ 

Nicotine addiction ++ -- -- +- ++ -- -- -- 

Non-small cell lung cancer ++ -- ++ +- ++ -- -- -- 

Notch signalling pathway ++ +- ++ ++ ++ -- -- ++ 

Nucleotide excision repair ++ ++ ++ ++ ++ ++ ++ ++ 

p53 signalling pathway ++ ++ ++ ++ ++ ++ -- ++ 

Small cell lung cancer ++ -- ++ ++ ++ -- -- -- 

TGF beta signalling pathway ++ ++ ++ ++ ++ -- -- ++ 

VEGF signalling pathway ++ -- ++ ++ ++ -- -- ++ 
++=significant (p<0.05) after FDR correction; +-= significant (p<0.05) before FDR correction; -- = not significant (p<0.05) before and after FDR correction  
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The most significant pathway for random survival forest (RSF) with log-rank split was ‘cell 

cycle’ in the cause specific and overall survival while ‘BER’ was the most significant for the 

cause specific and overall RSF analysis using bivariate RSF with log-rank split, log-rank score 

split rule and the conserve split rule. 

The pathways that were both significant (p ≤ 0.05) and produced an AUC of ≥ 0.7 included 

‘BER’, ‘MMR’, ‘NER’, ‘cell cycle’, ‘apoptosis’ and ‘nicotine addiction’ for cause-specific RSF 

using log-rank split while ‘BER’, ‘MMR’, ‘cell cycle’, ‘apoptosis’, ‘nicotine addiction’ and ‘p53 

signalling pathway’ were pathways significant for the overall RSF using log-rank split (Table 

5.1). 

For the cause specific bivariate RSF with log-rank split, the significant pathways (p ≤ 0.05) 

with AUC ≥ 0.7 were ‘apoptosis’, ‘BER’, ‘MMR’ and ‘apoptosis’, while ‘BER’, ’MMR’, 

‘apoptosis’, ‘cell cycle’ and ‘chemical carcinogenesis’ were significant (p ≤0.05; AUC ≥0.7) 

for the overall bivariate RSF with log-rank split (Table 5.2).  

For the cause specific and overall RSF with conserve split rule, ‘apoptosis’, ‘cell cycle’,  

‘NER’, ‘BER’ and ‘MMR’ were significant (p ≤ 0.05; AUC ≥ 0.7) pathways (Table 5.3),  while 

for the log-rank score split rule (Table 5.4) ‘apoptosis’, ‘BER’ and ‘MMR’ were significant in 

the overall RSF pathway analysis while ‘BER’, ‘NER’ and ’apoptosis’ were significant in the 

cause specific RSF pathway analysis.  

Table 5.5 displays the result for the pathway outcome using the four split rules. ‘Apoptosis’, 

‘BER’, ‘cell cycle’, ‘chemical carcinogenesis’, ‘MMR’ and ‘NER’ were significant after 

controlling for FDR in all of the RSF methods, for both the cause-specific and overall-

survival approaches. These pathways could be analysed further in lung cancer survival 

research.  There were more significant pathways in the cause-specific analysis compared to 

the overall survival analysis, for the four split rules. ‘Erbβ signalling’, ‘nicotine addiction’, 
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‘NSCLC’ and ‘SCLC’ pathways were not significant in any of the overall survival analysis for 

the different split rules except log-rank while alcoholism is the only pathway that was not 

significant for any of the cause specific analysis for the different split rules except log-rank.  

For the pathways that were significant in all of the analyses for the different split rules, the 

number of SNPs ranged from 81 to 397. There were other pathways with a larger 

complement of SNPs but which were insignificant in some of the analyses suggesting that 

the significance of the pathway in the random survival technique may not depend on the 

number of SNPs.  

The results also show that the log rank split analysis was significant for almost all analysed 

pathways. A high level of similarity in the p-values for pathways was observed across the 

overall-survival and cause-specific survival analyses using the bivariate split with log rank. 

Additionally, a different distribution of results was observed for the conserve and the log 

rank score split rule between the cause specific and overall survival analyses. The nature of 

these results for the same pathways using different split rules suggests that some may be 

overly conservative while others may have a tendency to produce false positive results. 

 

5.5 Discussion 

 

Cancer is a complex process involving multiple pathways of genes that act in synergy348. 

These pathways may be studied to understand their role in tumour biology and knowledge 

gained from such studies may ultimately aid in early detection and improve patient 

outcome348. Pathways are a better option than a single gene or SNP analysis as identifying a 

single variable does not explain its role in the disease but a pathway is already a set of 

linked variables, thus a better option for future research113, 193, 203, 233, 317-320. 
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This study conducted a pathway analysis using variations on the random forest algorithm 

with different split techniques and identified a series of pathways that significantly 

associated with survival (Table 5.1 to Table 5.4). A selection of 18 pathways were analysed 

for their association with lung cancer, within this set, pathways that were both significantly 

associated with lung cancer survival (p ≤ 0.05) and had an AUC of ≥ 0.7 were identified. The 

identified pathways collectively included  ‘BER’, ‘MMR’, ‘NER’, ‘cell cycle’, ‘apoptosis’ and 

‘chemical carcinogenesis’. An interesting point to note here is that only ‘cell cycle’ pathway 

from the above list was significant in the genome wide incidence (case-control) pathway 

analysis (discussed in section 5.2.4) published by Lee et al. (2013)319. 

Another interesting observation to note is that ‘NSCLC’ and ‘SCLC’ pathway were not 

significant in all analyses. This may be due to the incomplete dataset regarding the pathway 

elements comprising the NSCLC and SCLC, as a pathway for cancer is a complex interplay of 

many pathways.  

 Generally, gene families involved in lung cancer tumour growth and metastasis include 

growth factor signalling, second messengers, cell cycle regulation, apoptosis/senescence, 

adhesion, migration, DNA repair and differentiation348. Epidermal growth factor receptors 

(EGFRs) are overexpressed and frequently are subject to activating mutations in NSCLCs 

where they stimulate cell proliferation, while second messengers transmit cell proliferation 

signals within cells348. Cell cycle regulatory genes participate in various phases of the cell 

cycle, controlling the proliferation of the dividing cell348. The cell cycle pathway, for 

instance, could be deregulated when genes like TP53 and RB mutate348. TP53, referred to as 

the “guardian of the genome”, is activated during genotoxic stress348. Its many roles include 

halting the cell cycle at the G1-S check-point (through reduction of RB phosphorylation), 

stimulating DNA repair and initiating cellular apoptosis (through regulating BAX/BCL2 gene 

expression)348. The main agents in the apoptotic pathway include TP53 and BCL2 proto-
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oncogene that protects against apoptosis349. In cancer, however, inactivation of TP53 

causes uncontrollable growth through bypassing apoptosis348. BCL2 expression is more 

frequently elevated in SCLCs (75-95%) than NSCLCs349. There are various carcinogenic 

agents including chemicals such as aromatic amines, aldehydes and benzene350 that may 

bring about the above mentioned changes. These changes would continue to remain or 

progress if not treated and therefore would influence not only the incidence but survival of 

the cancer. Furthermore, incidence analysis may detect polymorphisms that increase the 

likelihood of developing cancer (see section 5.2.4), whereas survival analysis may identify 

polymorphisms that increase the aggressiveness of cancer and that would lead to shorter 

survival. 

Apoptosis or programmed cell death is a characteristic of normal cells while the key 

features of cancer cells include immortality, potential to replicate incessantly and 

resistance to anti-growth signals349. They may also initiate angiogenesis and metastasise, 

that spread beyond the primary tumour and survive in distant tissues349. This occurs 

through DNA alterations349. The major risk factor for causing such alteration in lung cancer 

is the interindividual differences in metabolising tobacco smoke carcinogens and its active 

compounds, and repairing the DNA damage caused by it349. Cigarette smoking causes 

changes in DNA resulting in mutagenesis, therefore several DNA repair pathway play their 

crucial role in eliminating DNA adducts and restoring the genetic stability of the genome351. 

A 14-fold increase in lung cancer risk is associated with an average smoker349. DNA repair 

pathways include base excision repair (BER), nucleotide excision repair (NER) and mismatch 

repair (MMR) that function on small lesions, bulk lesions and replication errors, 

respectively351. The other DNA repair pathways include single and double strand DNA break 

repair351. 
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The MMR system is activated at the post-replicative phase, rectifying errors that have 

evaded the DNA checks by DNA polymerase352. Therefore, an alteration in the system may 

lead to genetic instability and make the cell susceptible to mutagenic transformation352. 

The system involves interaction between proteins including hMSH2, hMSH3, hMSH6, 

hMLH1, hPMS2 and hMLH3352. DNA repair by MMR is carried out by the complex interplay 

of the above components352. Various combinations of these components bind to 

mismatched nucleotides; single and larger insertion/deletion variants and loops, to allow 

for DNA repair352. 

The NER repair mechanism takes place in the following way. XPC and hHR23B form a 

complex to initiate the repair353. The damaged site is excised by a TFIIH complex that 

includes the helicases XPB and XPD353. These helicases also regulate strand separation at 

the damaged site 353. In the NER reaction, damage is confirmed by XPA, which senses an 

open DNA conformation that is crucial for the repair mechanism353. The opened DNA 

complex is stabilised by replication protein A (RPA) and permits the positioning of XPG353. 

Excision of DNA at the 5’ end of the lesion is carried out by an endonuclease complex 

formed by ERCC1 and XPF353. The damaged site is removed and the void filled by replication 

factor, thus completing the repair process353. 

The BER pathways occurs through the participation of DNA glycolases, 

apurinic/apyrimidinic endonuclease (APE1), polymerase β (polβ), DNA ligase-III – XRCC1 

complex which are involved in cleaving the bond to the damaged nucleotide, cleaving the 

sugar phosphate at the 5’ side and adds nucleotides from the 3’ side, interact with polβ and 

completes the repair process by repair patch, respectively354. But for longer repairs, the 

above pathway changes following the action of polβ354. Polδ/ε adds a few more bases at 

the 3’ end producing a flap, which is removed by flap endonuclease 1 (FEN1) added by 

proliferating cell nuclear antigen (PCNA)354. Finally, DNA ligase I completes the repair354. 
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In lung cancer cells however, polymorphisms in the above pathway components (‘MMR’, 

‘NER’, ‘BER’) causes the repair mechanisms to falter thus leading to the proliferative growth 

of cancer cells351. Hence, the result that SNPs within these pathways may contribute to lung 

cancer survival is not unfounded. 

The above analysis could be continued to identify the important variables (may it be SNPs 

or clinical variables) that contribute to lung cancer survival296. To obtain the above 

information the samples in the OOB are used and the most important variable is obtained 

from a measure called the VIMP (variable importance) by subtracting the value of the 

prediction error of the new ensemble from the old296. Therefore, variables that have a high 

VIMP measure across the sampled survival trees could be studied and used to further 

evaluate and improve survival of lung cancer patients. 

Though the significant pathways from this analysis are explained in terms of their role in 

carcinogenesis, their significance in survival analysis indicate that the extent of alteration 

may have an effect on survival. The significant pathways can be used to develop targeted 

therapy. For instance, there are drugs available that are directed towards signalling 

pathways355. Other drugs that are designed around processes in cancer such as 

angiogenesis and anti-apoptosis are also available356. 

To the best of our knowledge, this was the first survival pathway analysis conducted in lung 

cancer. Due to it being computationally intensive and time consuming, it has only been 

applied to 18 pathways, but could have been used to identify significant pathways 

associated with lung cancer from all the pathways deposited in the KEGG database. Though 

KEGG database has been manually curated, other pathway databases such as GO could be 

used to collate information towards forming a more complete and accurate pathway 

(section 5.2.1).   
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The next step would therefore not only be to test all the KEGG and pathways from other 

databases for significance in lung cancer survival for all split rules, but also to replicate and 

validate the results using different datasets. 

 

 

 

 

 

 

 

 

 

 

 

 



 

 
 

 

 

 

 

 

 

CHAPTER 6 

CONCLUSION
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The primary aim of the project was to evaluate the epidemiological and biological (genetic) 

factors associated with lung cancer, in the Liverpool population. Epidemiological analyses 

were conducted to identify significant comorbidity indices (Charlson comorbidity index 

(CCI) and Elixhauser Comorbidity Index (ECI)), affecting the incidence of lung cancer 

patients. Pertinent data were obtained from the Hospital Episode Statistics (HES) database, 

and both univariate and multivariate analyses using the Cox proportional hazard model 

were conducted. CCI and ECI were significant in the incidence analysis, suggesting that their 

use may contribute towards the identification of high-risk individuals. This is the first study 

to have used ECI and CCI indices to study the incidence of lung cancer.  

As part of this study, a 5-year sex-specific incidence prediction model was developed and 

internally validated using a 10 fold cross validation (AUCmale = 0.73; AUCfemale = 0.77). The 

model was developed using the Cox proportional hazard regression model using age at the 

start of the study, chronic pulmonary conditions and smoking pack years as covariates. A 

point-based risk estimate system was developed; this is the first of its kind for lung cancer. 

The model, though internally validated, requires further validation in another dataset. 

SNPs that could increase the susceptibility of lung cancer were identified using a genome 

wide association analysis (GWAS) of lung cancer cases from Liverpool and a control dataset 

from the 1958 Birth Cohort (Chapter 3). Different genetic models were used to identify 

SNPs associated with lung cancer in the Liverpool population. Additive, dominant and 

genotypic inheritance models consistently identified SNPs within the genes PRDM11, 

ZNF382 and HMGA2, whereas a recessive model identified SNPs in ITIH2. 

This study was limited by the unavailability for adjustment in the model of important 

covariates (such as age and smoking pack years) for the control dataset. Therefore, the 

identified SNPs require validation and testing in a multivariate model after adjusting for 

important covariates. Also, this analysis could be taken forward by conducting pathway 
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analysis to identify significant biological pathways associated with lung cancer 

susceptibility. 

Genome wide survival analysis was conducted on 185 LLP NSCLC cases (Chapter 4). 

Multivariable Cox proportional hazard regression analysis identified single nucleotide 

polymorphisms (SNPs) associated with cause-specific and overall analysis. These were 

rs10230420 (WIPF3), rs9949512 (SALL3) and rs2139133 (MYO3B) for cause specific analysis, 

and rs10230420 (WIPF3) for overall survival analysis. 

Genome wide survival analyses were also carried out on early stage and advanced stage 

NSCLCs, separately. Multivariable Cox proportional regression analysis after adjusting for 

age at diagnosis, stage, cell type and smoking pack years identified SNPs associated with 

cause-specific and overall survival. Significant SNPs associated with cause-specific analysis 

of early stage cases were rs10230420 (WIPF3), rs3746619 (MC3R) and rs3827103 (MC3R). 

In advanced stage cases, significant SNPs were rs1868110 (NEK10) and rs2206779 

(AF357533). For the overall survival analysis, significant SNPs were rs10230420 (WIPF3), 

rs2056533 (ZBTB20) and rs6708630 (CYS1) in early stage cases; and while rs1868110 

(NEK10) and rs2206779 (AF357533) in advanced stage NSCLC cases. The identified SNPs 

require replication and validation in another dataset. 

These SNPs will add to the currently known SNPs associated with lung cancer survival. The 

previously identified SNPs were not identified in more than one publication (Table 4.1a and 

Table 4.1b), suggesting little overlap, and therefore much potential for further discoveries 

about the genetics of survival in lung cancer. 

This dataset (185 NSCLC cases) was also used to carry out a pathway analysis using the 

random survival forest technique with various split rules such as log-rank, log-rank with 

bivariate, conserve and log-rank score (Chapter 5). Eighteen pathways closely related to 
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lung cancer were selected to test their importance for lung cancer survival, for both cause-

specific and overall survival outcomes.  

This analysis identified pathways such as apoptosis, cell cycle, BER, NER and MMR for both 

cause specific ad overall survival analysis that were significant ( p ≤ 0.05) and accurate in 

outcome prediction (AUC ≥ 0.7). The flexibility of this analysis with regard to the various 

methodologies employing the different split rules makes it a robust technique in survival 

pathway analysis. 

This research is the first pathway-based survival analysis in lung cancer. Though the analysis 

was conducted on 18 pathways, this technique of identifying significant pathways could be 

applied to all pathways in the KEGG database. The pathways identified have to be 

replicated and validated in a separate lung cancer population. Significant SNPs, genes and 

pathways identified through survival analysis have potential application in cancer therapy. 

As such, genetic profiling could be used in the development of personalised therapy and 

also to improve patient management, though much work still needs to be done in this field. 

This PhD project has contributed to lung cancer research in more than one way. It has 

evaluated comorbidity indices in incidence and survival, developed and internally validated 

a 5-year sex-specific incidence model and developed a point based risk estimation system. 

Through GWAS, it has identified plausible SNPs that could increase the lung cancer risk and 

those that can predict the occurrence of lung cancer and overall survival of lung cancer 

patients. Significant pathways associated with cause-specific and overall survival in lung 

cancer were also identified, using different split rules within the random survival forest 

framework.
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