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ABSTRACT
Procuring multiple agents with different ability levels to in-
dependently solve the same task is common in labor mar-
kets, crowdsourcing environments and research and devel-
opment projects due to two reasons: some agents may fail
to provide a satisfactory solution, and the redundancy in-
creases the quality of the best solution found. However, in-
centivizing large number of agents to compete for one task
is difficult; agents need fair ex-ante guaranteed payoffs that
consider their ability levels and failure rates to exert efforts.
We model such domains as a cooperative game called the

Max-Game, where each agent has a weight representing its
ability level, and the value of an agent coalition is the max-
imal weight of the agents in the coalition. When agents
may fail, we redefine the value of a coalition as the expected
maximal weight of its surviving members. We analyze the
core, the Shapley value, and the Banzhaf index as methods
of payoff division. Surprisingly, the latter two, which are
usually computationally hard, can be computed in polyno-
mial time. Finally, we initiate the study of a new form of
sabotage where agents may be incentivized to influence the
failure probabilities of their peers, and show that no such
incentive is present in a restricted case of Max-Games.

Categories and Subject Descriptors
I.2.11 [Distributed Artificial Intelligence]: Multiagent
systems; J.4 [Social and Behavioral Sciences]: Eco-
nomics

General Terms
Algorithms, Economics
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1. INTRODUCTION
Consider developing a bank of blood or organ donors. Dif-

ferent donations may be of different quality. For example,
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a donation from an old donor may be usable for less time
than a donation from a young donor, and a donation from a
completely healthy person is more desirable than a donation
from a person with minor illnesses. Further, having a per-
son in the bank does not guarantee with absolute confidence
that a donation could be made successfully when the need
arises. The patient and the potential donor may have blood
type or tissue type incompatibilities, preventing a donation.
Some people, e.g., those with blood type “O negative”, have
a higher probability of being compatible donors than others.
Potential donors can thus be characterized by both their

qualities and their probabilities of being able to successfully
donate when required. In that case, a large centralized donor
bank is very desirable since it increases both the probability
of finding a match, and the quality of the best match found.
However, many people are reluctant to participate due to the
hassle involved. It is essential to put efforts in incentivizing
the right people that are the most beneficial to the bank.
Who are the most important donors? How do we incentivize
them fairly?
Alternatively, consider a firm researching multiple alter-

native solutions for a task, e.g., multiple technologies for
new product development. The firm may hire several teams,
each independently researching a different technology. Re-
search is risky, so a team researching a technology may fail
to develop it. In the end, the firm would choose the best
technology among the ones successfully developed, which
determines the utility to the firm. However, it is not wise to
reward only the team that developed the chosen technology.
Such a reward scheme would deter teams that are research-
ing riskier but highly suited technologies from putting in
effort in the first place, as their efforts may ultimately be in
vain. One approach is to pre-determine the reward to each
team based on the expected contribution of its efforts. Can
we measure such contributions and fairly determine the ex-
ante rewards? Can the teams themselves come to a stable
ex-ante agreement for dividing the final joint payoff?
Viewing each research team as an agent, the crux of the

above hypothetical scenario is that the utility to the princi-
pal is determined by the maximum quality of solutions de-
livered by agents that did not fail. This is commonplace in
the real world. For example, in crowdsourcing marketplaces
such as Amazon’s Mechanical Turk or oDesk, requesters
sometimes hire multiple workers for the same job, since sev-
eral workers may fail to deliver a satisfactory solution, and
also to increase the maximum quality among the received
solutions [16, 14]. It is common to guarantee the workers
a certain payment in advance to incentivize them to exert
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sincere efforts. Once again, fair ex-ante payments should
consider the skill levels of the workers and their success rate
in delivering satisfactory solutions, both of which may be
estimated based on past performance.
Similarly, in all-pay auctions and crowdsourcing contests,

several teams are invited to compete to solve a task. For
instance, the media provider Netflix issued a $1,000,000
prize in a contest to improve its movie recommender sys-
tem [11]. Many teams submitted their recommendation al-
gorithms, and Netflix chose the winner to replace its old
algorithm. A similar business model is employed by Top-
coder and CodeChef, who organize programming contests:
participants submit code for a specified problem, and com-
pete for rewards. While such contests do not offer purely
ex-ante payoffs, they vaguely resemble Max-Games in that
they offer prizes to more than one team to incentivize a
large number of teams to participate, in turn increasing the
quality of the best solution developed.
In the above examples, redundancy compensates for un-

certain agent failures, but highlights the difficulty of incen-
tivizing agents to exert effort. Increasing the number of par-
ticipating agents increases the overall success probability of
the project and the expected utility. On the other hand,
self-interested agents would only exert effort when allocated
a high enough share of the resulting profits. In view of this
inevitable tradeoff, it is essential to find a fair, and hope-
fully stable, reward-sharing scheme that takes into account
both agents’ failure probabilities and the quality levels they
would provide if they succeeded.
Further, suppose that agents agree on a reward sharing

scheme they believe fairly reflects individual contributions.
In various domains, agents possess partial or full power to
sabotage their peers by increasing their failure probabili-
ties. For example, agents can hide information or limit their
support; in a network setting agents may stop some of the
traffic or fail to maintain parts of the network to increase
the risk of communication errors, and in a multi-sensor net-
work agents may withhold some of the readings from their
sensors, making it harder for other agents to detect changes
in the environment. Increasing failure probabilities reduces
the overall expected quality of the joint project, diminish-
ing the total reward, but also changes the agent’s share of
the total reward obtained. Would agents have an incentive
sabotage their peers in order to increase their own reward?
We investigate the above questions by modeling the un-

derlying key aspect of such domains as a cooperative game
called the Max-Game. First, we propose a base Max-Game
without agent failures, where each agent has a weight rep-
resenting its quality or the utility it can achieve, and the
value of a coalition is the maximal weight of the agents in
it. To model agent failures, we use the reliability extension
model [4], where each agent has a probability of “surviving”,
agent survivals are independent, and the value of a coalition
is the expected value of its surviving sub-coalition.
Our Contribution: We provide results for general relia-

bility extensions of Max-Games, as they subsume the special
case of no agent failures. We show that reliability extensions
of Max-Games are monotonic and submodular. On the neg-
ative side, these games have an empty core, meaning that
stable payoff divisions are not possible. We demonstrate
that failures actually help reduce agents’ resistance to coop-
eration, quantifying it through the Cost of Stability [2]. On
the positive side, we provide polynomial-time algorithms to

compute fair payoff divisions given by the Shapley value and
the Banzhaf index. Finally, we examine incentives to agents
for manipulating failure probabilities of their peers when us-
ing the Shapley value to share the rewards. We show that
although in general every agent is better off increasing the
failure probability of every other agent, in the restricted case
of uniform failure probability no agent is incentivized to in-
crease the common failure probability.

1.1 Preliminaries
A transferable utility cooperative gameG = (N, v) is com-

posed of a set of agents N = {1, 2, . . . , n}, called the grand
coalition, and a characteristic function v : 2N → R map-
ping any coalition (agent subset) into the utility they can
achieve together. By convention, v(∅) = 0. For any agent
i ∈ N and coalition S ⊆ N , we denote S ∪ {i} by S + i
and S \ {i} by S − i. A cooperative game is monotonic if
for any S ⊆ T ⊆ N , we have v(S) ≤ v(T ). A game is sub-
modular if for any i ∈ N and any S ⊆ T ⊆ N − i, we have
v(S+i)−v(S) ≥ v(T +i)−v(T ). An equivalent formulation
of submodularity is that v(S) + v(T ) ≥ v(S ∪ T ) + v(S ∩ T )
for all coalitions S, T ⊆ N . A game is subadditive if
v(S) + v(T ) ≥ v(S ∪ T ) for all coalitions S, T ⊆ N . Sub-
modularity implies subadditivity, since v(S ∩ T ) ≥ 0.
The Core: The characteristic function gives the value that
a coalition achieves, but not how it should be distributed
among its members. For a payment vector p = (p1, . . . , pn),
pi denotes the payoff to agent i and p(C) =

∑
i∈C pi denotes

the joint payoff to a coalition C. The core requirement for
a payoff vector is that the payoffs should be a distribution
of the total gains, and that every coalition must receive at
least as much as it can gain on its own, so no coalition can
gain by defecting from the grand coalition of all agents. The
core [15] is defined as the set of all imputations p such that
p(N) = v(N) and p(S) ≥ v(S) for all S ⊆ N . The core
may be empty, or may contain finitely or infinitely many
imputations.
The Cost of Stability: In games where the core is empty,
it is impossible to distribute the grand coalition’s gains in
a stable way. An external party may incentivize coopera-
tion by offering a supplemental payment if the grand coali-
tion is formed. Bachrach et. al. [2] formalized this as fol-
lows. Given a game G = (N, v) and a supplemental payment
∆ ∈ R+, the adjusted game G(∆) = (N, v′) has characteris-
tic function defined by: v′(N) = v(N)+∆ and v′(S) = v(S)
for S 6= N . The Cost of Stability (CoS) of a game G, de-
noted CoS(G), is the minimum supplemental payment ∆∗
for which the core of the adjusted game G(∆∗) is non-empty.
The CoS quantifies the extent of instability in a game by
measuring the subsidy required to overcome agents’ resis-
tance to cooperation.
Power Indices: While the core focuses on ways to divide
the gains based on stability, power indices analyze the con-
tributions of the agents to different coalitions, proposing
ways to divide the gains based on fairness criteria. The
marginal contribution of an agent i to a coalition S ⊆ N − i
is v(S + i) − v(S). The Banzhaf index βi of agent i is its
average marginal contribution to all coalitions that do not
contain it [9], that is,

βi = 1
2n−1

∑
S⊆N−i

(v(S + i)− v(S)). (1)

Another power index is the Shapley value, which is uniquely



characterized by four important fairness axioms [28]. For
any permutation π of agents, let Γπi = {j|π(j) < π(i)} be
the set of agents before agent i in π. The Shapley value of
agent i, denoted φi, is given by: φ(i) = 1

n!
∑

π∈Sn
(v(Γπi +

i) − v(Γπi )). For any coalition S ⊆ N − i, the number of
permutations π ∈ Sn where Γπi = S is exactly (|S|)! · (n −
|S| − 1)!, since agents in S and N \ S − i can appear before
and after agent i in any of |S|! and (n − |S| − 1)! orders
respectively. Thus, alternatively:

φi = 1
n!

∑
S⊆N−i

[|S|!(n− |S| − 1)!(v(S + i)− v(S))] . (2)

Reliability Games: A model for agent failures in co-
operative games was proposed in [4]. A reliability game
Gr = (N, v, r) consists of the set of agents N = {1, 2, . . . , n},
the base characteristic function v : 2N → R describing val-
ues in the absence of failures, and the reliability vector r
where ri is the probability of agent i surviving (i.e., not fail-
ing). The characteristic function vr of Gr is the expected
value of the survivors: for any coalition S ⊆ N ,

vr(S) =
∑
S′⊆S

∏
i∈S′

ri ·
∏

j∈S\S′
(1− rj)

 · v(S′). (3)

Here, Pr[S′|S] =
∏
i∈S′ ri ·

∏
j∈S\S′(1−rj) is the probability

that every agent in S′ survives and every agent in S\S′ fails,
so vr(S) is the expected utility S achieves under failures. For
the base game G = (N, v), the game Gr = (N, v, r) is called
the reliability extension of G with reliability vector r.

2. OUR MODEL
We first introduce a new cooperative game called theMax-

Game, where each agent has an associated weight, and the
value of a coalition is the maximal weight of agents in it.

Definition 1 (Max-Game). A Max-Game is denoted
by G = (N,w), where N = {1, 2, . . . , n} is the set of agents,
and w = (w1, w2, . . . , wn) is the vector of agent weights with
wi > 0 for all i ∈ N . The characteristic function v of the
game is given by v(S) = maxi∈S wi, for every S ⊆ N .

Agent weights are assumed to be positive since zero weight
agents do not contribute to any coalition and can be ignored.
WLOG, we also assume that agents are sorted by weight,
so wi ≥ wi+1 for all i ∈ {1, . . . , n − 1}. Ties among equal
weight agents are broken arbitrarily; our results hold irre-
spective of the tie-breaking used. For any coalition S, let
min(S) = min{i ∈ S} denote the agent with the small-
est index in S. Note that agent min(S) has the highest
weight among all agents in S. Max-Game models situa-
tions discussed in Section 1, where a coalition is as strong
as its strongest member. We now give a formal definition of
Max-Games with agent failures using the reliability exten-
sion model [4] (see Section 1.1).

Definition 2 (Max-Game with Failures). A relia-
bility extension of a Max-Game G = (N,w) is denoted by
Gr = (N,w, r), where r = (r1, r2, . . . , rn), and ri is the
probability of agent i surviving.

We discuss Max-Games without failures, but provide re-
sults directly for Max-Games with failures as they subsume
results for the former with reliability vector r = (1, . . . , 1).

Theorem 1 (Section 3) implies that Max-Games without
failures have an empty core, meaning that cooperation does
not arise naturally in such games. This is not surprising.
Indeed, the maximum weight agent in any coalition has no
incentive to collaborate with the rest of the agents in that
coalition, since they do not contribute to the value of the
coalition but share the payoff.
When failures are present, an agent that may fail might

want to collaborate even with a lower weight agent since the
latter can succeed and generate value when the former fails
to do so. Such collaboration still comes at the cost of shar-
ing the resulting payoff. This tradeoff, which was absent in
Max-Games without failures, makes it unclear if coopera-
tion is feasible under failures. We show (Theorem 1) that
the core is still empty in all reliability extensions of Max-
Games. On the positive side, Theorems 2 and 3 imply that
both the Shapley value and the Banzhaf index can be com-
puted in polynomial time. Hence, it is practical to use them
for enforcing cooperation via a fair division of the payoff.

2.1 Value of a Coalition
We begin by showing that the value of a coalition in any

reliability extension Gr of a Max-Game has a simple form.
Let S be a coalition and i∗ = min(S). Now, vr(S) is the
expected value of the surviving sub-coalition of S. Agent i∗
survives with probability ri∗ , and then the value generated is
wi∗ irrespective of the survival of others. Agent i∗ fails with
probability 1 − ri∗ , and then the expected value generated
is vr(S − i∗). Thus, vr(S) = ri∗wi∗ + (1 − ri∗)vr(S − i∗).
Expanding vr(S − i∗) similarly, the coefficient of wi (i ∈ S)
in the expansion is ri ·

∏
j∈S,j<i(1− rj).

For any C ⊆ N and i ∈ N , define Cib = {j ∈ C|j < i}
and Cia = {j ∈ C|j > i}. For any C ⊆ N , also define
D(C) =

∏
j∈C(1 − rj), the probability that no agent in C

survives; D(C) = 1 if C = ∅. Thus, we have the following.

Lemma 1. For any S ⊆ N and i∗ = min(S),

vr(S) = ri∗wi∗ + (1− ri∗)vr(S − i∗) =
∑
i∈S

D(Sib) · riwi.

Corollary 1. For any i ∈ N and S ⊆ N − i,

vr(S + i)− vr(S) = ri ·D(Sib) · (wi − vr(Sia)).
Proof. We apply Lemma 1:

vr(S + i)− vr(S)

=
∑
j∈Si

b

D(Sjb ) · rjwj +D(Sib) · riwi

+
∑
j∈Si

a

(
D(Sib) · (1− ri) ·D((Sia)jb)

)
rjwj

−
∑
j∈Si

b

D(Sjb ) · rjwj −
∑
j∈Si

a

(
D(Sib) ·D((Sia)jb)

)
rjwj

= D(Sib) · riwi +D(Sib) · (1− ri)vr(Sia)−D(Sib) · vr(Sia)
= ri ·D(Sib) · (wi − vr(Sia)).

The first transition breaks the summation in Lemma 1 into
agents before i, after i and i itself. The second transition
uses Lemma 1 for vr(Sia). �

Next, we show some basic properties of reliability exten-
sions of Max-Games.



Lemma 2. Any reliability extension of a Max-Game is
monotonic and submodular, and hence subadditive.

Proof. Let Gr = (N,w, r) be any reliability extension
of a Max-Game, and vr be its characteristic function. For
monotonicity, we prove vr(S + i) ≥ vr(S) for all i ∈ N
and S ⊆ N − i, by induction on k = |S|. Fix any i ∈ N .
The base case k = 0 is trivial. For any k < n, assume
vr(C + i) ≥ vr(C) for every C ⊆ N − i with |C| < k. Take
any S ⊆ N − i with |S| = k. Let i∗ = min(S + i). We
examine two cases:

1. i∗ = i. Using Lemma 1, we have vr(S + i) = riwi +
(1− ri) · vr(S). Now, wi ≥ vr(S) since every agent in
S has weight at most wi, so vr(S + i) ≥ vr(S).

2. i∗ 6= i. Using Lemma 1, we have vr(S + i) = ri∗wi∗ +
(1 − ri∗)vr(S − i∗ + i). Now |S − i∗| = k − 1, and by
the induction hypothesis, vr(S − i∗ + i) ≥ vr(S − i∗).
Thus, vr(S+ i) ≥ ri∗wi∗ +(1−ri∗)vr(S− i∗) = vr(S),
where the last step uses Lemma 1.

Next, we show that any base Max-Game G = (N,w)
(without failures) is submodular. For any S, T ⊆ N ,

v(S∪T ) = max {maxi∈Swi,maxj∈Twj} = max(v(S), v(T )).

Also, v(S∩T ) ≤ v(S) and v(S∩T ) ≤ v(T ) (monotonicity)
imply v(S ∩ T ) ≤ min(v(S), v(T )). Thus,

v(S ∪ T ) + v(S ∩ T ) ≤ max(v(S), v(T )) + min(v(S), v(T ))
= v(S) + v(T ).

Thus, G is submodular. We now use the result in [3] that ev-
ery reliability extension of a convex game is convex. A game
is convex (supermodular) if v(S∪T )+v(S∩T ) ≥ v(S)+v(T )
for all S, T ⊆ N . Their proof, with the directions of inequal-
ities reversed, shows that reliability extensions of submod-
ular games are submodular. Thus, reliability extensions of
Max-Games are submodular, and hence subadditive. �

3. THE CORE & THE CoS
With the results of Section 2.1 at our disposal, we are

ready to analyze the core of Max-Games with failures. We
have v(N) =

∑n

i=1 D(N i
b)·riwi ≤

∑n

i=1 riwi =
∑n

i=1 v({i})
due to Lemma 1. With at least two agents, the inequality
becomes strict, so the value of the grand coalition is not
sufficient to pay every agent at least its value. Thus:

Theorem 1. The core of any reliability extension of a
Max-Game with at least two agents is empty.

As discussed in Section 2, cooperation is clearly infeasible
in Max-Games without failures. Failures present a tradeoff
to high weight agents in cooperating with low weight agents,
as the latter now add value to the coalition but also share
the payoff. While Theorem 1 shows that this tradeoff does
not help eliminate emptiness of the core, we show that it
does reduce agents’ resistance to cooperation, quantifying it
using the Cost of Stability [2], which measures the minimal
subsidy required to achieve stability (see Section 1.1).
Reliability extensions of Max-Games are subadditive

(Lemma 2). Consider any subadditive game G = (N, v),
and any payment vector p. If pi ≥ v({i}) for all i ∈
N , then p(C) =

∑
i∈C pi ≥

∑
i∈C v({i}) ≥ v(C) for

all C ⊆ N , where the last step is due to subadditivity.

Thus, a subsidy ∆ ensures that the core is non-empty if
and only if the increased value of the grand coalition is
sufficient to give each agent at least its value, that is if
v(N) + ∆ ≥

∑
i∈N v({i}). Hence, the Cost of Stability

CoS(G) =
∑

i∈N v({i})− v(N).
For any Max-Game G = (N,w) and its reliability exten-

sion Gr = (N,w, r), CoS(Gr) would equal to
n∑
i=1

vr({i})− vr(N) =
n∑
i=1

(1−D(N i
b)) · riwi ≤

n∑
i=2

wi.

The first step follows by Lemma 1 and since vr({i}) = riwi
for every agent i ∈ N . The last step follows since the coef-
ficient of w1 is zero and that of wi is at most 1 for i ≥ 2.
Further, CoS(G) =

∑n

i=1 v({i})− v(N) =
∑n

i=2 wi. Thus,

Lemma 3. For any Max-Game G and its reliability ex-
tension Gr, we have CoS(Gr) ≤ CoS(G).

Thus, the presence of failures reduces the external sub-
sidy required to induce agent cooperation, that is, it reduces
agents’ resistance to cooperation.

4. POWER INDICES
We now show that two popular power indices, the Banzhaf

index and the Shapley value, can be computed in polynomial
time for any reliability extension of a Max-Game.

Theorem 2. The Banzhaf index can be computed in poly-
nomial time for any reliability extension of a Max-Game.

Proof. Let G = (N,w) be a Max-Game and Gr =
(N,w, r) its reliability extension. Let v and vr be the char-
acteristic functions of G and Gr, respectively. Consider a
survival process where each agent i ∈ N survives with prob-
ability ri and fails with probability 1−ri. LetX ⊆ N denote
the set of all surviving agents, and let X ∼ 2N denote that
X is picked according to the survival process. The value
of a coalition S in Gr is the expected value of its surviving
sub-coalition:

vr(S) = EX∼2N [v(S ∩X)]. (4)

Recall that the Banzhaf index βi is the average marginal
contribution of agent i to all coalitions. Alternatively, con-
sider a selection process where we pick a coalition S by se-
lecting every agent in N − i with an equal probability of
1/2. Let S ∼ 2N−i denote the coalition S picked this way
(uniformly at random). Now, βi is the expected marginal
contribution of i to S, i.e., βi = ES∼2N−i [vr(S+ i)− vr(S)].
Using (4) and the linearity of expectation,

βi = ES∼2N−i,X∼2N [v((S + i) ∩X)− v(S ∩X)].

Consider the following cases.

1. i /∈ X (i.e., i fails). Then, v((S+ i)∩X)− v(S ∩X) is
always 0.

2. i ∈ X (i.e., i survives). Then, v((S + i) ∩X) − v(S ∩
X) = v((S ∩X) + i)− v(S ∩X). Consider three sub-
cases: a) If S ∩X = φ, then the marginal contribution
is wi; b) If min(S ∩ X) = j > i, then the marginal
contribution is wi−wj ; c) If min(S∩X) = j < i, then
the marginal contribution is 0.



Let pi and pij denote the probabilities of cases a) and b)
respectively. Then,

βi = piwi+
∑
j>i

pij(wi−wj) =

(
pi +

∑
j>i

pij

)
wi−

∑
j>i

pijwj .

(5)
The coefficient of wi is pi +

∑
j>i

pij , which is the total
probability of case a) and b) (for any j > i). This occurs
when agent i survives and no agent from {1, . . . , i − 1} is
present in S ∩X. An agent t ∈ N − i is present in S with
probability 1/2, and present in X independently with prob-
ability rt, so present in S ∩X with probability rt/2. Thus,
the probability that t is not present in S ∩ X is 1 − rt/2.
Hence, the coefficient of wi is ri ·

∏
t<i

(1− rt/2).
Consider an agent j where j > i. The coefficient of wj in

βi is −pij , where pij is the probability that i survives and
min(S ∩X) = j. The latter requires that agents 1 through
i − 1 and i + 1 through j − 1 be absent from S ∩ X and
agent j be present in S ∩ X. The total probability is ri ·(∏

t<j,t 6=i(1− rt/2)
)
· rj/2. Substituting these coefficients

in (5) gives the explicit formula that allows computing the
Banzhaf index in polynomial time. �

Similarly, the Shapley value can also be computed in poly-
nomial time for any Max-Game with failures. However, we
were not able to use the elegant probabilistic technique due
to the formula’s dependence on the size of the coalition.

Theorem 3. The Shapley value can be computed in poly-
nomial time for any reliability extension of a Max-Game.

Proof. Let G = (N,w) be a Max-Game, Gr = (N,w, r)
be its reliability extension, and v and vr be the charac-
teristic functions of G and Gr, respectively. Fix an agent
i ∈ N . Substituting the formula for marginal contribution
from Corollary 1 into the Shapley equation (2), we get

φi = 1
n!

∑
S⊆N−i

|S|!(n− |S| − 1)! · ri ·D(Sib) ·
(
wi − vr(Sia)

)
.

After breaking the summation over Sib and Sia, and letting
k = |Sib| and l = |Sia|, we get

φi = ri
n!

i−1∑
k=0

n−i∑
l=0

∑
Si

b
⊆Ni

b

|Si
b
|=k

∑
Si

a⊆N
i
a

|Si
a|=l

(k + l)!(n− k − l − 1)!×

D(Sib)
(
wi − vr(Sia)

)
.

Note that N i
b = {1, . . . , i− 1} and N i

a = {i+ 1, . . . , n}. For
all l, t ≤ n, define T (l, t) =

∑
C⊆{t,...,n},|C|=l v

r(C). Taking
the summation over Sia inside,

φi = ri
n!

i−1∑
k=0

n−i∑
l=0

∑
Si

b
⊆Ni

b

|Si
b
|=k

[
(k + l)!(n− k − l − 1)! ·D(Sib)×

((
n− i
l

)
wi − T (l, i+ 1)

)]
.

To sum over Sib, let F (k, a, b) =
∑

C⊆{a,...,b},|C|=kD(C)
for all a, b ∈ N such that a < b and all k ≤ b− a+ 1. Then,

the term D(Sib) is replaced by F (k, 1, i − 1). Now, taking
the summation over l inside and rearranging terms gives the
formula for the Shapley value in Table 1. Next, we simplify
functions T and F . Let us examine the coefficient of wj for
j ≥ t in T (l, t). Using Lemma 1, it is easy to verify that the
coefficient is rj ·

∑
C⊆{t,...,n},j∈C,|C|=lD(Cjb ). Let l′ = |Cjb |,

so |Cja| = l − l′ − 1. Note that l′ ≤ min(l − 1, j − t). The
coefficient simplifies to

rj ·
min(l−1,j−t)∑

l′=0


∑

C
j
b
⊆{t,...,j−1}

|Cj
b
|=l′

D(Cjb )

 ·
 ∑
C

j
a⊆{j+1,...,n}
|Cj

a|=l−l
′−1

1

 .
It is easy to verify that the summation over Cja is

(
n−j
l−l′−1

)
,

and the summation over Cjb is F (l′, t, j − 1). Substituting
these gives the formula for T (l, t) in Table 1.
Next, note F (k, a, b) is exactly the kth elementary sym-

metric polynomial [18] for the set {1− ra, . . . , 1− rb}. The
formula for F (k, a, b) given in Table 1 is known as Newton’s
identity [19]. Finally, observe that a direct implementation
of the formulae in Table 1 finds the Shapley value in poly-
nomial time. �

5. INCENTIVES FOR SABOTAGE AND
MANIPULATING RELIABILITY

In some domains, an agent may sabotage others or in-
fluence the failure probabilities of itself and its peers. For
example, consider an agent that controls the time of per-
forming a task at hand; a time slot may be good for some
agents and bad for others, affecting agents’ failure probabil-
ities. The time slot should be chosen optimally to maximize
the value of the grand coalition. If the agents decide to
distribute the gains using the Shapley value, could the con-
trolling agent benefit from choosing a different time slot,
thus manipulating reliabilities of its peers? We answer such
questions in the context of Max-Games.
Consider a reliability extension of a Max-Game with two

agents, w1 = w2 = 1, and r1 = r2 = 0.5. The grand coali-
tion’s value is v(N) = 0.75, and the Shapley values are
φ1 = φ2 = 0.375. Suppose agent 1 reduces the reliability
of agent 2, changing r2 to 0.1. The grand coalition’s value
drops to v′(N) = 0.55, and the Shapley values change to
φ′1 = 0.475, φ′2 = 0.075. Thus, the sabotage is beneficial to
agent 1, even though the grand coalition’s value drops.
Such manipulations were not previously studied in co-

operative games. We analyze them in reliability exten-
sions of Max-Games. Consider any Max-Game with failures
Gr = (N,w, r). Fix agents i, j ∈ N . Consider a sabotage
where agent i decreases the reliability of agent j. Due to
Corollary 1, the marginal contribution of i to a coalition
S is vr(S + i) − vr(S) = ri · D(Sib) · (wi − vr(Sia)). Now,
D(Sib), the probability that every agent in Sib fails, can only
increase by the sabotage, and the value vr(Sia) can only de-
crease by the sabotage.1 Thus, sabotage can only increase
the marginal contribution of agent i to every coalition S.
Also, due to Corollary 1, an agent’s Shapley value is directly
proportional to its own reliability. Thus, we have:
1It is easy to show that the value of any coalition is mono-
tonically increasing in the reliability of every agent in it.



φi = ri
n! ·

i−1∑
k=1

[
F (k, 1, i− 1) ·

n−i∑
l=0

(
(k + l)! · (n− k − l − 1)! ·

[(
n− i
l

)
· wi − T (l, i+ 1)

])]

T (l, t) =
n∑
j=t

[
rj · wj ·

min(l−1,j−t)∑
l′=0

((
n− j

l − l′ − 1

)
· F (l′, t, j − 1)

)]
, T (0, t) = 0, ∀t

F (k, a, b) = 1
k
·
k∑
t=1

[
(−1)t−1 · F (k − t, a, b) · P (t, a, b)

]
, F (0, a, b) = 1, ∀a, b

P (k, a, b) =
b∑
j=a

(1− rj)k

Table 1: Shapley value in reliability extensions of Max-Games

Theorem 4. In any reliability extension of a Max-Game,
every agent is better off, in terms of its Shapley value, by
increasing its own, and decreasing everyone else’s reliability.

Now consider a Max-Game where failures are caused by
a common factor, which applies equally to all agents, so all
failures probabilities are equal. For example, all agents may
be similarly affected by the choice of time slot, so the agent
that controls the time slot can choose the uniform failure
probability, but cannot affect any agent’s failure probability
individually. If agent i increases the common failure prob-
ability, the rise in others’ failure probabilities is beneficial
to i, but the rise in its own failure probability is harmful.
Could increasing the common failure probability, and thus
harming the entire project’s reward, be beneficial to i over-
all? We answer this negatively.

Theorem 5. In any reliability extension of a Max-Game
where all failure probabilities are equal, no agent is better
off, in terms of its Shapley value, by increasing the common
failure probability.

To show this, consider any Max-Game G = (N,w). Let
φi(x) be the Shapley value of agent i in the reliability exten-
sion Gr = (N,w, r), where rj = x for all j ∈ N . Then, we
want to show that for every agent i and all p, p′ such that
0 ≤ p < p′ ≤ 1, φi(p) < φi(p′). One way to obtain φi(x) is
to substitute all ri’s equal to x in the Shapley value formula
for the non-uniform case given in Table 1. However, we can
derive the following simple formula through the probabilistic
technique used in the proof of Theorem 2.

Lemma 4. The value of φi(p) is given by

wi

[
1− (1− p)i

i

]
−

n∑
j=i+1

wj

[
1− (1− p)j−1

j − 1 − 1− (1− p)j

j

]
.

Proof. Fix any p ∈ [0, 1]. We denote φi(p) by φi in
the remainder of the proof. The Shapley value of agent i is
its average marginal contribution to its predecessors over all
agent permutations. Let Sn be the set of all permutations of
{1, . . . , n} and let π ∼ Sn denote that π is chosen uniformly
at random from Sn. Now, the Shapley value of agent i is the
expected marginal contribution of i to Γπi when π ∼ Sn, i.e.,
φi = Eπ∼Sn [vr(Γπi + i) − vr(Γπi )]. As in the proof of Theo-
rem 2, let X denote the set of surviving agents. Using (4),
we have φi = Eπ∼Sn,X∼2N [v ((Γπi + i) ∩X)− v(Γπi ∩X)] .

We now examine the same cases as considered in the proof
of Theorem 2, but the coalition S is now replaced by Γπi . Let
pi and pij be the corresponding probabilities as defined in
the proof of Theorem 2. We have φi =

(
pi +

∑n

j=i+1 pij

)
·

wi −
∑n

j=i+1 pij · wj .
The coefficient of wi is pi +

∑
j>i

pij , which is the to-
tal probability of case a) and case b) (for any j > i). It
is the probability that agent i survives and no agent from
{1, . . . , i− 1} is present in Γπi ∩X. That is, all agents from
{1, . . . , i− 1} that are before agent i in π fail. Let σ be the
permutation denoting the order of agents {1, . . . , i} in π.2
Let Fσk denote the event that agent σ−1(k) fails. By inde-
pendence, the probability that agent i survives and agents
from {1, . . . , i− 1} before agent i in π fail is:

p ·
i∑

k=1

Pr[(σ(i) = k) ∧ Fσ1 ∧ . . . ∧ Fσk−1]

= p ·
i∑

k=1

1
i
· (1− p)k−1 = 1− (1− p)i

i
.

This is because σ(i) takes each value 1 ≤ k ≤ i with proba-
bility 1/i, and survival of agents in positions 1 to k− 1 in σ
is independent of agent i’s position.
Next, for any j > i, the coefficient of wj is −pij , where

pij is the probability of case b) with min(Γπi ∩X) = j. Let
τ be the sub-permutation of π over agents {1, . . . , j}.Then
τ(j) < τ(i), and every agent from {1, . . . , j − 1} before i in
τ must fail (or min(Γπi ∩X) 6= j). Also, both agents i and j
must survive. Let F τk be the event that agent τ−1(k) fails.
Denoting positions of j and i by k1 and k2,

pij =
j−1∑
k1=1

j∑
k2=k1+1

Pr

[
(i, j survive) ∧ (τ(j) = k1)∧

(τ(i) = k2) ∧
k2−1∧
t=1

s.t.t 6=k1

F τt

]

= p2 ·
j−1∑
k1=1

j∑
k2=k1+1

(
Pr[τ(j) = k1]×

Pr[τ(i) = k2|τ(j) = k1] · (1− p)k2−2
)

2Formally, σ(l) = |{t ∈ {1, . . . , i}|π(t) ≤ π(l)}|, for l ≤ i.



= p2

j · (j − 1) ·
j−1∑
k1=1

j∑
k2=k1+1

(1− p)k2−2

= p2

j · (j − 1) ·
j∑

k2=2

(k2 − 1) · (1− p)k2−2. (6)

The second transition follows since agent failures are in-
dependent each other and of agent positions. So given τ(j),
there are j − 1 equiprobable values for τ(i). The fourth
transition follows by reversing the order of summations and
subsequent simplification. Multiplying by 1− p:

(1− p)pij = p2

j(j − 1)

j∑
k2=2

(k2 − 1)(1− p)k2−1

= p2

j(j − 1)

j+1∑
k2=3

(k2 − 2)(1− p)k2−2. (7)

Now, subtracting (7) from (6), and then dividing by p:

pij = p

j(j − 1)

(
1− (j − 1)(1− p)j−1 +

j∑
k2=3

(1− p)k2−2

)

= p

j(j − 1) ·

(
−(j − 1)(1− p)j−1 +

j−2∑
t=0

(1− p)t
)

= 1− (1− p)j−1

j − 1 − 1− (1− p)j

j
.

Substituting these coefficients in the Shapley formula com-
pletes the proof. �

Note that Lemma 4 gives a simple formula for the Shapley
value in Max-Games without failures (p = 1), namely, φi =
wi/i −

∑n

j=i+1 wj/(j · (j − 1)). Again, it is easy to verify
that the Shapley value thus obtained is independent of the
tie-breaking used among the equal weight agents. We now
prove Theorem 5.

Proof. To prove that φi(p) is strictly increasing for p ∈
[0, 1], we show that its derivative φ′i(p) > 0 for p ∈ (0, 1).
By Lemma 4,

φ′i(p) = wi · (1−p)i−1−
n∑

j=i+1

wj ·
(
(1− p)j−2 − (1− p)j−1) .

Putting wj ≤ wi for j > i (agents are sorted by weight) and
simplifying, we get

φ′i(p) ≥ wi

(
(1− p)i−1 − p

∑
j>i

(1− p)j−2

)
= (1−p)n−1 > 0,

which is the required result. �

6. RELATED WORK
Agent failures were investigated in non-cooperative

games, such as congestion games [23, 21] and in network
domains [8, 17]. In contrast, we focus on cooperation be-
tween selfish agents, using a cooperative game [22] and its
reliability extension [4]. Cooperative games were used to
study negotiation, reward sharing and team formation [25,
29]. We use solutions such as the core [15], the Shapley

value [28], and the Banzhaf index [9]. We used the Cost of
Stability to quantify resistance to cooperation, similarly to
earlier work dealing with other games [24, 20, 6].
Our model bears some similarity to Combinatorial

Agency [1, 7] and all-pay auctions [10]. In Combinatorial
Agency, a principal has to reward agents based only on the
final outcome without observing their exerted efforts, while
in Max-Games with agent failures, one rewards the agents
ex-ante, without observing if they participated or not. In
all-pay auctions, the principal solicits multiple submissions
from agents, and incentivizes sincere efforts by promising a
reward to the agent whose submission was of the highest
quality. Hence, they are similar to Max-Games in that they
use redundancy to improve the overall quality, but the key
difference is that in Max-Games we reward all agents rather
than just one in order to incentivize a large number of par-
ticipants. The model of crowdsourcing contests proposed
in [12] is fundamentally different than ours (maximizing ef-
ficiency in a non-cooperative game), but shares the idea of
rewarding agents besides the one with the highest value.
Max-Games also differ from both these models since in our
case agent failures are not the result of strategic decisions
of the agents about how much effort to exert; rather, they
stem from the potential of failures due to external reasons.
Finally, agent weights in Max-Games are reminiscent of

weighted voting games (WVGs). In WVGs, the value of
a coalition is an additive aggregation of agent weights. In
contrast, Max-Games model situations where a coalition’s
value depends on the maximal weight in the coalition. Max-
Games are also reminiscent of skill games [5] since agent
weights in Max-Games represent agents’ ability levels, but
contrary to skill games, Max-Games do not rely on a set
cover combinatorial structure. Also, the polynomial time
algorithms presented in this paper for computing power in-
dices in Max-Games (even under failures) sharply contrast
the NP-hardness or even #P-hardness of computing power
indices in WVGs [13] and skill games [5], respectively.

7. DISCUSSION
We proposed Max-Games where the value of a coalition is

determined by the maximal quality of the agents in it, and
examined the impact of agent failures in such games. We
analyzed solutions to the game, and provided polynomial-
time algorithms for computing power indices. An important
conceptual contribution of this paper is the analysis of in-
centives introduced by agent failures in cooperative games,
where an agent wants to sabotage its peers by increasing
their failure probabilities. We initiated the study of such
incentives, analyzed them for Max-Games, and provided a
positive result for the case of uniform failure probabilities.
We showed that the core of a Max-Game is always empty,

with or without failures. Several relaxations of the core have
been proposed in the literature. The ε-core is the set of
“reasonably-stable” payoff allocations [27], and the nucleolus
is the “most-stable” payoff allocation [26]. When payments
are non-negative, it can be shown that checking emptiness of
the ε-core and finding the nucleolus of Max-Games without
failures can be done in polynomial time. However, we were
unable to settle these questions for Max-Games with fail-
ures. We showed that resistance to cooperation diminishes
when failures are introduced, using the Cost of Stability.
Agent failures have been shown to increase stability in other
games using qualitative measures such as non-emptiness of



the core, and quantitative measures such as the least core
value and the Cost of Stability [4, 3, 6]. It would be interest-
ing to perform a similar detailed analysis for Max-Games.
Our model is based on a revenue sharing cooperative

game, where the agents share the gains from cooperating.
A natural extension of this work is examining cost sharing
cooperative games, where each agent must accomplish a goal
associated with a certain cost, and where agents may col-
laborate so as to share the cost. A cost sharing model in
the same spirit as our Max-Game is one where each agent
has a weight (reflecting the cost of achieving the goal), and
the cost of a coalition is the minimal weight of any agent
in the coalition. More generally, the cost of a coalition can
be any reasonable function of the weights of the agents in
the coalition. It would be interesting to study this cost-
sharing game, and to find the relation between its solutions
and solutions to our Max-Game.
Finally, we remark that our analysis of incentives for sab-

otaging peers, i.e., perturbing their failure probabilities, is
presented for Max-Games (and its restricted forms), but its
scope extends to all cooperative games. It would be inter-
esting to study these incentives in other important classes of
cooperative games such as weighted voting games. Consider
the “no sabotage” result of Theorem 5 for restricted Max-
Games. Such a result also depends on the payoff scheme
used, which is the Shapley value in our case. So, we ask:
For what other classes of cooperative games and under what
payoff schemes can we obtain “no sabotage”? Also, in games
that do have incentives for sabotage, which agents would a
given agent wish to make more (or less) reliable? When
such sabotage is costly and the saboteur has a limited bud-
get, how can it find the optimal manipulation?
One can imagine the “no sabotage” property as a new ax-

iom for payoff division, and study its interactions with the
four axioms of the Shapley value. We believe that such inter-
actions may give rise to fundamentally new payoff schemes
for cooperative games which are both fair and robust.
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