
Multi-robotic teamwork in
AgentSpeak

Thesis submitted in accordance with the requirements of the

University of Liverpool for the degree of Master of Philosophy

by

ALI BOJARPOUR

July, 2014

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Liverpool Repository

https://core.ac.uk/display/80772098?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Contents

1 Introduction and Background 4

1.1 Robotics . 7

1.2 Urban Search and Rescue . 8

1.3 Multiagent Programming languages . 8

1.4 Motivation . 9

2 Programming primitives for robotic teamwork 11

2.1 Plans and actions . 12

2.2 Requirements . 13

2.3 Seeking assistance . 13

2.4 Performing the plan . 15

2.5 BDI programming in AgentSpeak using Jason 16

2.6 A framework for multi-robotic teamwork 17

2.7 Recognition . 19

2.8 Team formation . 21

2.8.1 Plan execution cycle . 25

3 Case study 27

3.1 Start . 29

3.2 Rescuer needs help . 31

3.3 Finding the help . 32

3.4 Team to the rescue . 33

4 Implementation 35

4.1 Sensors . 35

4.2 Communication . 37

1

4.3 The robot . 40

4.4 AgentSpeak . 43

4.5 Rescuer agent . 46

4.6 Doctor agents . 52

4.7 Evaluation . 54

5 Conclusion 57

2

Abstract

Within the multiagent community, agent programming languages and theories

of agent teamwork are used together to create teams of cooperative agents to

achieve goals in dynamic environments. Multi-robotic research studies robots

working together in a team to perform a task and achieve a goal. In this thesis

we propose a set of programming constraints for multi-robotic cooperation.

We then use these programming constraints to build a multi-robotic coopera-

tion framework. This framework is a bridge between multiagent programming

languages and multi-robotic teamwork. The framework uses the natural and

intuitive programming style that AgentSpeak provides for multiagent cooper-

ation to create multi-robotic teams. We then use a group of LEGO® NXT 2.0

robots to test the proposed programming constraints, implemented in Agent-

Speak, to operate a search and rescue scenario.

3

1 Introduction and Background

Teamwork has long been studied in the multiagent community. Intention plays

the main role in multiagent teamwork. Agents that are working to complete a

task individually have intention towards that task. For these agents to be con-

sidered as a cooperative team they also need to have a collective intention to-

wards the task. For example when an agent who is not part of a team realises

that his task is completed, he has nothing further to do. However an agent who

is working cooperatively with others in a team is expected to inform his team

members when he realises that the team task is completed. Each agent who is

in a team has a responsibility towards other team members [12]. Cooperative

agents are also committed to the course of action that they are performing. An

agent is expected to be persistent once committed to a plan. This means that

he should not drop this commitment unless the plan becomes redundant. A

plan becomes redundant when it achieves the task, fails to achieve the task or

the motivation for the task is not available any more [4]. In each case it is ex-

pected that the agent who realises this informs the team. Cooperative agents

working as a team have individual commitments towards their part in the plan.

They also have a joint commitment towards the overall course of action.

[12] introduces the concept of joint intention. A group of agents jointly intends

to complete a task if they are jointly committed to completing that task, whilst

mutually believing that they were doing it. Joint commitment is defined as a

joint persistent goal. In a joint persistent goal, a group of agents wants to com-

plete a task based on a motivation. The motivation is the reason that the group

has the commitment. For example the task for a group of minesweepers is to

clear a minefield. The motivation to do so is that the military needs to clear a

4

field that had been laid with land mines. This group of agents believes that it

is possible to achieve the task but it has not yet been achieved. Each agent in

the group has the team task as his own task. He retains this task until he be-

lieves that the termination condition holds: i.e. when the agent believes that

the task is achieved or is impossible to achieve or the motivation to complete

this task has been lost. Meanwhile once any agent realises that the termination

condition has been reached then he has the task of making this known to other

agents and keeps this task until it is mutually known.

[8] uses the above idea to present the concept of joint responsibility. Joint re-

sponsibility requires that all the agents in a group have a joint persistent goal

to achieve the group’s task. They also should remain committed and perform

actions that they have agreed to undertake. This is unless an agent realises him-

self or is told by another agent in the group that the action is not necessary any

more for one of the following reasons: (i) the outcome of the action is already

available (ii) it will not result in the outcome (iii) it cannot be performed or (iv)

has not been performed properly. Agents will communicate this information

to each other.

[17] also expands the notion of joint intention and presents a framework called

STEAM. The novelty of this framework is the concept of team operators. When

agents select a team operator to perform they initiate a team’s joint intention. A

team of minesweepers simultaneously selects the team operator "clean mine-

field". In the service of this team operator they may choose a lower level team

operator "find mines". Finally in the service of this team operator a mine-

sweeper starts scanning for a mine. Using this system a team builds a complex

hierarchical structure of joint intention, individual intentions and beliefs about

the intentions of other team members.

5

Building on the above models, [18] presents a four stage formal model that cov-

ers the whole process of teamwork from beginning to end. The first stage is

when an agent recognises the potential for cooperation. He may come to this

recognition because he cannot complete the task alone or because he prefers

a cooperative solution. In the second stage this agent solicits assistance from

other agents and tries to form a team with them. In the third stage the agents

negotiate a joint plan and in the final stage they perform the agreed joint plan.

Agent-oriented programming [14] proposes a new programming paradigm in

which agents are directly programmed in terms of their beliefs, desires and

intentions. Several multiagent programming languages have been developed

based on this idea [2]. AgentSpeak is among the most successful of these lan-

guages. Originally proposed by Rao [13], the main idea of this language is to

define the know-how of a program in the form of plans. Agents use plans to

achieve their goals. Plans are also used to respond to events. This means that

agents use the know-how provided in the form of the plans in order to achieve

their tasks as well as to respond to the changing environment.

AgentSpeak and in particular its implementation Jason which we used in our

framework is designed with cooperation in mind. Agents can communicate

and coordinate with one another. This communication is in knowledge level

which means that agents can exchange beliefs and delegate goals to each other.

We discus AgentSpeak and Jason in more detail in section 2.5.

Multiagent programming languages such as AgentSpeak have been used to de-

velop teams of cooperative agents that are working together to complete a task.

Multiagent Programming Contest [6][1] is an arena where teams of agents parti-

cipate in simulated cooperative scenarios. These teams have to solve a cooper-

ative task in a dynamic environment. Some example of the scenarios imple-

6

mented in previous years are food gathering, herding and gold mining. Formal

models of agents cooperation and multiagent programming languages have

been used together to create teams of agents that solve these tasks. Multia-

gent programming languages and theories of agent teamwork have proven to

be successful in developing teams of cooperative agents.

1.1 Robotics

Robotics has recently became part of the multiagent community and in recent

years the interest in applying multiagent theories to robotics increased. Inter-

national Conference on Autonomous Agents and Multiagent Systems (AAMAS),

the most prominent venue for multiagent research, hosts a robotics workshop,

Autonomous Robots and Multirobot Systems (ARMS),since 20111. ARMS ad-

dress the significant overlap between robotics research and multiagent systems

and provides a forum for the researchers in these two fields to interact. Robots

are agents which means that agents theories and practices can be applied to

them. This provides us with a different insight into these theories than would

have otherwise been possible [10]. Motors and sensors and their uncertainties

and latencies are now to be considered. Communication is not flawless any

more and robots are living in a three dimensional world. The environment now

follows the laws of physics and needs to be well understood.

Agents that are operating in dynamic environments use their beliefs and goals

to manage their planning process. These environments are often the setting for

robots as well. Multiagent programming languages allow for representation of

beliefs, goals and plans.

The robotic community has taken little notice of these theoretical frame-

1ARMS 2014: http://ii.tudelft.nl/arms2014/

7

works for agents’ teamwork [9].

1.2 Urban Search and Rescue

Urban Search and Rescue (USAR) is a test course designed for measuring and

evaluating the performance of robots [7]. In these environments injured peoples’

location must be found quickly and their condition must be established as soon

as possible. Delays can result in lose of life which means that robots need to

sense and plan accordingly and haste. Search and rescue missions are time

critical and they are performed in dynamic unstructured environments. There

is often very little information available about the environment. The avail-

able information also may be obsolete due to the collapse of buildings. These

conditions make USAR an attractive scenario for measuring the intelligence of

robots. The complexity of scenarios demands sophisticated decision making

skills from the robots.

USAR scenarios also provide an interesting environment for robotics’ coopera-

tion. A team of robots can start with an initial strategy. While performing their

plans they communicate with each other and adapt further plans based on the

information exchanged. Robots in the same team can have different capabilit-

ies. Therefore they are required to cooperate and coordinate to perform their

plans.

1.3 Multiagent Programming languages

Multiagent programming was first introduced by Yoav Shoham in his paper

titled Agent-oriented programming in 1993. In this paper, he presented the

8

concept of agent-oriented programming and a sample language, called AGENT0.

This language embodied some of the ideas that he felt would be central to

this new programming paradigm. Since those days, Shoham’s ideas have been

modified, refined and taken up in mutiagent community research. After that

many multiagent programming languages were born. For example Jason 2 which

is the interpreter for an extended version of AgentSpeak. It implements the op-

erational semantics of AgentSpeak. Another example of multiagent program-

ming languages is 2APL3. This language is intended for practical development

of multiagent systems. This language provides programming constraints to

specify a multi-agent system in terms of a set of individual agents and a set

of environments in which they can perform actions. 2APL provides BDI archi-

tecture.This means an agent can be implemented using beliefs, plans, goals,

actions, events and rules. The agent can use these rules to decide which action

to perform. 2APL supports the implementation of both reactive and pro-active

agents.

1.4 Motivation

In this thesis we present a pragmatic and comprehensive framework for robotic

teamwork. This framework, which is built upon AgentSpeak, covers the entire

process of robotic teamwork from recognition stage in which a robot realises

that he cannot achieve a task alone, to finding other robots and forming a team

with them and finally performing a joint plan and completing the task together.

Chapter 2 discusses each stage of robotic teamwork. It looks at the program-

ming primitives for each of these stages and presents then in AgentSpeak. It

2http://jason.sourceforge.net/
3http://apapl.sourceforge.net/

9

then uses these programming primitives to create a framework for multi-robotic

teamwork.

We evaluate this framework in a case study in Chapter 3. This case study looks

at the well known domain of search and rescue. We use our framework to create

a team of LEGO® NXT 2.0 robots that save injured people affected by an earth-

quake. Chapter 4 explains the implementation of multi-robotic framework in

AgentSpeak and on LEGO NXT robots. Chapter 5 provides a conclusion to the

thesis and our plans for the future of this research.

10

2 Programming primitives for robotic teamwork

In this section we look at robots that cannot achieve tasks in isolation. We will

see the steps they take from realising this to accomplishing the task in a team.

Robots are programmed to achieve tasks. They are the duties that are assigned

to robots. For example a team of minesweeper robots has the task of clearing a

minefield of land mines. This requires the team to detect, disarm and remove

mines from the minefield. To achieve a task a robot normally needs to move,

observe and make changes to the environment. To detect a mine, minesweeper

robots move in the field whilst scanning for land mines. When they find one

they attempt to disarm and remove the mine from the field. Minesweepers use

actuators to move, sensors to scan and detect land mines and a combination

of sensors and robotic arms to disarm and remove mines. By doing so they are

moving toward achieving their task: to clear the minefield. Clearing the mine-

field is a complicated task. Robots often face tasks that are complicated and

cannot be achieved alone. These tasks often require robots with many different

capabilities. These robots can vary in shape, size and in the types of sensors

and actuators they have. Each of these robots performs certain parts of the task

based on his capabilities. To clear a minefield a team of minesweepers needs

to work together. A robot in this team with the right sensor scans for mines.

When he finds a mine he communicate this with the other robots. A second

robot then disarms the mine. After the mine is disarmed a third robot removes

it from the field. The robots use teamwork to clear the minefield from mines.

When these robots work in a team they can achieve their task.

Heterogeneous robots with complementary skills work together in a team to

accomplish a task. Some of these skills can be unique to one robot and other

11

skills may be common amongst the team. In the minesweeper example, the

first robot has the skill of finding land mines, the second robot can disarm them

and the third one removes them from the field. These three robots, when work-

ing together, have all the abilities needed to clear a minefield and achieve their

task.

2.1 Plans and actions

A robot involved in the clearing of a minefield needs to carry out several activit-

ies. For example he uses a metal detector to scan for mines a few inches in front

of him before any movement or lifting a disarmed mine from the minefield. A

robot uses these actions to accomplish his task. An action is a basic operation

that the robot performs in order to update his beliefs or to change the environ-

ment [3]. By scanning a few inches a head of him the robot updates his belief

about the safety of the path. By lifting the mine the robot changes the environ-

ment and clears that area from mines.

A plan is a series of these actions that defines a way in which robots can act to

accomplish the task [3]. A team of minesweepers may have a plan to: (i) scan

a path every few inches to detect a mine; (ii) to stop when the sensor detects

a mine; (iii) cut the right wire in order to defuse the mine, etc. Minesweepers

that are performing the series of these actions, the plan, are moving towards

accomplishing their task.

Normally more than one plan is associated with a task. This is because there

are many ways to complete a task. If one of these plans fails the team can use

another plan to complete the task. Having more than one plan to achieve a task

gives the robotic team a second chance when the first plan fails.

12

2.2 Requirements

A robot normally needs some requirements to perform an action successfully.

Requirements are the capabilities or resources that a robots who wishes to per-

form an action needs to have. For example a metal detector is a resource re-

quired to scan for mines. The robot who wants to find mines needs to have a

metal detector. Another example is a robot who wants to remove mines. He

needs to have the capability of removing mines. He needs to be able to use his

arm to grab and pull the mine from the ground.

A robot can only perform an action when he has all the requirements for that

action. Thus prior to performing an action the robot needs to check the re-

quirements. If he does not have the requirements then he cannot perform the

action. However if there are other robots who do have those requirements then

they can perform that action instead. A minesweeper that does not have the

capability of removing a mine can ask another robot with this capability to re-

move the mine for him. We can see that the lack of requirements motivates a

robot to seek help from others.

2.3 Seeking assistance

A robot that requires assistance broadcasts a message to other robots and seeks

help. This help request message contains the task he wants to accomplish, the

plan that the team – if it forms – will perform to complete the task and the re-

quirements for this plan. Robots who receive this message, check their beliefs

to see if they know the plan and if they can provide some of the requirements.

If so, they reply with their name, the plan they want to commit to and the re-

quirements they can provide.

13

A minesweeper needs to disarm mines, among other things, in the process of

cleaning a minefield. To disarm a mine a voltage sensor is needed to detect

the right wire to cut. If he cannot disarm mines because he does not have the

voltage sensor then he sends a message to other robots. In this help seeking

message he states his task, which is to clean the minefield, the plan he has to

achieve this task, and the requirements that are missing. The requirement he

asks for is the voltage sensor. A robot nearby that receives this message wants

to help. He starts by checking his beliefs to see if he knows the plan proposed

for this task. He can only help if he is aware of plan that completes this task. He

then checks to see if he has the voltage sensor. If so he replies with his name,

the plan he will participate in, and that he is providing a voltage sensor. By this

reply he volunteers to join the team that is about to be formed.

When the robot who was seeking help finds other robots that are willing to

provide what he needs then he starts to form a team with them. This basic-

ally means that they will all be committed to performing the plan to complete

the task. They will work together in a team to accomplish what has now be-

come the team’s task. The team also collectively have the resources which are

required to perform the plan. A minesweeper team is a team that is committed

to the plan for clearing the minefield and collectively has the resources required

for this job (e.g. metal detection sensors to find mines, voltage sensors to dis-

arm them, robotic arms to remove mines from the field, etc). Team members

need to know each other and the requirements each member is providing for

the plan. They also need to be able to communicate with each other.

14

2.4 Performing the plan

A team with a plan is expected to perform actions and move towards attain-

ing its task. Each robot chooses an appropriate action and performs it. They

choose actions based on the requirements that actions may have. Some actions

can start only after another action is finished. The outcome of the finished ac-

tion normally determines how the next action should be performed. A robot

needs to consider this outcome when choosing an action. A mine can only be

removed from a minefield after it has been disarmed. A robot that wants to re-

move a mine that has not yet been disarmed, needs to wait for another robot to

disarm the mine first. A robot that chooses to remove a mine needs to consider

the requirements which is disarming the mine. After he has been informed that

the mine is now disarmed then he can start removing the mine.

Robots may need to perform an action many times. For example normally

several mines are concealed in a minefield. The minesweeper team will cycle

through detecting, disarming, and removing every mine. They repeat each ac-

tion and the the whole cycle several times.

When a robot from this team realises that the entire field has been cleaned and

all the mines are removed then he is expected to inform others that the task is

achieved. A robot which realises that the task is finished is expected to inform

other team members [5].

In summary a robot with a task that cannot be achieved in isolation follows

the following steps [18]:

• Recognition: realising that he does not have sufficient capabilities to achieve

the task in isolation

15

• Cooperative solution: finding others committed to his course of action

toward the task

• Team formation: forming a functional team to achieve the task

• Team plan execution: performing actions accordingly in the team

2.5 BDI programming in AgentSpeak using Jason

AgentSpeak introduced in [13] is a multiagent programming language based

on the Belief-Desire-Intention model. Jason [3] is an implementation of an ex-

tended version of AgentSpeak. Agents in Jason have three main components:

Belief, Plan and Goal. Beliefs represent the information available to an agent.

colour(box1, blue) means that the agent believes that the colour of box1 is

blue. Goals represent states of affairs the agent wants to bring about. They are

denoted by a “!” operator. !find(box1) means that the agent has the goal of

achieving a certain state of affairs in which he believes that box1 is found. Ad-

dition of a belief or a goal is denoted by a “+” operator.

Agents use plans to react to events. Events happen as a consequence of changes

in an agent’s beliefs or goals. A Plan consists of three distinct parts: the trigger-

ing event, the context and the body. Each part is syntactically separated by “:”

and “<-” as follows:

triggering_event: context <- body.

The triggering event denotes the events that the plan is meant to handle. The

context represents the circumstances in which the plan can be used. Finally

the body is the course of action to be used to handle the event if the context

16

is believed true at the time a plan is being chosen to handle the event. For

example an agent can use the following plan to achieve the goal !open(door):

+!open(X): close(X) <- !move_to(X);

!push(X).

This plan means that for a triggering event that matches !open(X) for example

!open(door), if the condition close(X) holds meaning that the agent believes

close(door) then perform the body of the plan. In this example the body itself

consists of two sub-goals. They are !move_to(X) and !push(X), each of which

will trigger other plans.

2.6 A framework for multi-robotic teamwork

We start with a number of heterogeneous robots with complementary skills.

To clear a minefield every mine needs to be detected, disarmed and removed.

Some robots can detect mines while others can disarm and remove them. These

robots have complementary skills for the task of cleaning a minefield. Those

who can detect mines start finding them and informing others who disarm and

remove them from the field. As a team they have all the skills required to clear

the minefield.

The robot who has a task starts the process of robotic teamwork. Later when

the team is formed this task will become the task of the team. Team members

will work together to complete this task. In the minesweeper example, the ro-

bot who has the task of clearing the minefield stars the process. In his initial

beliefs he has a set of plans associated with this task. These are a series of ba-

sic actions which define the way that the robot can act to accomplish the task.

All of the plans can potentially complete the task. They are different ways to

17

approach the task. There are many ways to clean a minefield. Each of these

ways is a plan for clearing the minefield. If the team fails while performing one

of these plans, then they may be able to use another plan to achieve their task.

For now the robot selects the first one of these plans for his task. He now has

a mission; that is the task and a plan to accomplish it. He is now to perform

the plan to complete the task. If the robot has the task t and the plan p then he

believes:

mission(t,p).

This basically means that the robot has a mission to achieve task t for which

he will be using plan p. A plan is a series of actions. A plan to clear a minefield

consists of actions such as scanning five inches in front of the robot using a

metal detector, checking for the voltage passing though a fuse and sending the

coordinates of a mine to another robot. The robot has these actions in his initial

beliefs. A robot with plan p which is a series of atomic actions from a1 to an

believes:

plan(p,[a1,...,an]).

A robot needs to have the requirements for an action if he is to perform it suc-

cessfully. For example the action of scanning the path for mines requires a

metal detector sensor and the action of pulling a mine from the ground requires

a robotic arm that can grab the mine. Actions need to be atomic which means

that they are basic and simple enough to be performed by a single robot. Ac-

tions that are complex and may require more than a robot to perform should be

divided to smaller and simpler actions that can be performed by a single robot.

A robot with action a that needs requirements r1 to rm believes:

18

action(a,[r1,...,rm]).

In order to perform action a successfully, a robot or a team of robots needs to

have requirements r1 to rm.

Often a single robot does not have all the requirements he needs to perform

all the actions. As said above the group of robots we are talking about have

complementary skills. A single robot may not have all the requirements but to-

gether they have all that is needed to perform all the actions successfully. For

example a robot may have a metal detector sensor to find mines but not a ro-

botic arm that can grab and pull them from the ground. The robot that has the

requirements r1, r2, etc, believes:

available_requirements([r1, r2, ...]).

Later we will see that when a robot want to perform an action he uses the above

beliefs to infer whether or not he has the requirements needed to successfully

perform the action. We have seen that a robot starts with a set of initial beliefs.

They are: (i) the task he may have, (ii) a set of plans and the actions that form

these plans and (iii) the requirements that are available to him for these actions.

2.7 Recognition

The process of robotic teamwork starts with a robot having a task and realising

that he cannot achieve it in isolation. He needs to perform actions to complete

his task. If he does not have all the requirements for the actions then he will

not be able to achieve the task alone. If a minesweeper does not have a metal

detector he cannot complete the task of clearing the minefield. He cannot per-

form the action of scanning for mines because he does not have the require-

ment which is the metal detector. However if there exists a group of robots with

19

+task

!check_capabilities !solve

!cooperate_to_solve

!form_team !execute_team_plan

!solicit_resource !find_volunteers !build_team

!team_with !inform

+team

!choose_action !execute !inform

Cycle

1 2

1

1
2

3

1 2

1
2

3

2

Figure 1: Robotic teamwork process

whom he can team, then they can perform the actions together and achieve

the task. If there are other robots who can perform the actions he cannot, for

example detect the mine for him, then they can work in a team and clear the

minefield.

This means that the robot first needs to check the requirements which are avail-

able to him to know if he has all that is needed for his plan. He starts by checking

the available requirement against the requirements of the plan.

Pseudocode 1: Mission

1+mission(Task ,Plan) <-

2+check_requirements (Task ,Plan ,Requirements ,

Missing_requirements);

3!cooperate_to_solve (Task ,Plan ,Requirements ,

20

Missing_requirements).

When the robot believes that he has a mission, that is when he chooses a plan

for his task, then he needs to know the requirements for this Plan. When he find

out the requirements then he can check them against his available_requirements

to know which are available to him and which are missing. As we said above

some of the requirements for this plan are available to him and some are not.

!check_requirementsunifies the requirements for thePlanwithRequirements

and the requirements he is missing for this plan with Missing_requirements.

It is important to node that pseudocode 1, as the name suggested is a Jason style

pseudocode and not a Jason application code. It is intended to capture and dis-

play the idea we are discussing in a similar style of code that AgentSpeak used.

The robot is now ready to solve the task. He has a plan for this task and knows

what the requirements for this plan are. He also knows what requirements are

available to him and what he should seek from other robots. If he can find

other robots who have these missing requirements then he can form a team

with them to perform the joint plan. This is when the robot recognises the

potential for a cooperative solution. Cooperative solution requires a team of

robots committed to a plan. The robot who seeks a cooperative solution is ex-

pected to start forming a team.

2.8 Team formation

The robot that chooses a cooperative solution starts forming a team. A cooper-

ative solution is when a group of robots work together to achieve a task. This

means that the first step is to find other robots with whom to form a team. If the

robot with the task manages to form a team successfully then they can continue

21

to perform the plan together.

Pseudocode 2: Cooperative solution

1+! cooperate_to_solve (Task ,Plan ,Requirements ,

Missing_requirements) <-

2!form_team(Task ,Plan ,Missing_requirements ,Team);

3! execute_team_plan (Plan ,Team).

When the robot chooses !cooperate_to_solve he knows what requirements

are missing for his plan, i.e. Missing_requirements. He uses this to form a

team, to find others who can provide him with these missing requirements and

are also committed to his plan.

Therefore the first step to form a team is to solicit for the missing requirements.

Pseudocode 3: Team formation

1+!form_team(Task ,Plan ,Missing_requirements ,Team) <-

2! solicit_requirements (Plan ,Missing_requirements)

;

3! find_volunteers (Plan ,Missing_requirements ,

Volunteers);

4!build_team(Plan ,Volunteers ,Team).

The !solicit_requirements uses a modification of the Contract Net protocol

[16] to find volunteers for the team. The robot announces his Plan and the

requirements he needs, Missing_requirements. Other robots who know this

Plan and can provide some of the Missing_requirements reply and become

Volunteers for the team. Volunteers are robots that are willing to participate

in this plan by providing the requirements needed. When a possible volunteer

22

receives a request for requirements, he checks if he knows the plan mentioned

in this request and has the requirements that are asked for. If he knows the plan

and has any of those requirements then he will reply to the robot who is asking

for assistance. The reply consist of his name, the plan he is committing to and

the requirements he is providing.

After a deadline the robot who is seeking for help finds those who became vo-

lunteers (!find_volunteers) and continues to build a team with them (!build_team).

The deadline is certain amount of time that agent waits for others to reply.

Based on the environment that the agents or robots are implemented and the

communication media they use, this deadline time can be adjusted. When

finding volunteers the robot checks the requirements they are providing. He

is looking for the missing requirements for his plan.

Volunteers share the same plan. This means that they are all committed to the

same course of action that is to be carried out to achieve the task. The team is

built upon a plan to which the team members are committed. When a robot

sends a request for help using !solicit_resource he informs other robots of

the plan he has chosen for this task. When the volunteers reply they show their

commitment to this plan. Later when the team is formed this will be the plan

they will perform together.

One might expect a team of robots to negotiate a plan after they have agreed

to join the team. This however is not feasible in practice. When working with a

small group of robots (about 3 to 6 robots) it is necessary to have all the robots

engaged in the performing of the plan. We would like all the robots to particip-

ate in the teamwork. In a virtual agent environment it is easy and straightfor-

ward to create and remove agents, where as in a robotic environment, robots

are scarce and valuable to the mission. The operator does not want to add and

23

remove robots manually. The early commitment to the plan, whilst the team is

being formed, is a pragmatic approach that eliminates the need for later nego-

tiation. This removes the chance of failure in negotiation which may result in

some robots not participating in the plan. When the team is formed the mem-

bers already know the plan to perform and therefore they continue to perform

this plan.

A team consists of team members — formerly volunteers — A, B,..., Q, and the re-

quirements LA, LB,..., LQ they are providing, where, for each robot R, LR is a list of

requirements r1, r2,..., rR. It also includes the task t they are trying to complete

and the plan p they are using for this. Pseudocode 4 gives our representation of

a team.

Pseudocode 4: Team

1+team(t,p,[A, LA],[B, LB],. . .,[Q, LQ]).

This team is working towards accomplishing task t using plan p. Task t which

originally belonged to the robot who initiated cooperative solution is now the

task of the team. Team members are working together to accomplish this task.

The robot who initiated the teamwork process uses !build_team to build a

team with volunteers. He will then inform team members of this new team.

The team knows the task they are trying to complete and the plan they are us-

ing for this. They know who else is in the team and what resources they are

providing. The volunteers are called team members from now on.

In summary the robot who has chosen a cooperative solution starts forming

a team by soliciting the missing requirements from other robots. Those who

know the plan and can provide requirements will reply and become volunteers

which will then form a team. The members will be informed, by the robot who

24

originally had the task, of this new team after it is formed. Robots are now ready

to start performing team actions and move toward accomplishing the task.

2.8.1 Plan execution cycle

We now have a team of robots committed to a joint plan. The next stage is to

start performing this plan. A team plan is a series of actions that will be per-

formed by team members based on the requirements available to them. The

plan execution cycle starts by a robot choosing an action. Before choosing an

action the robot needs to consider certain elements. First and foremost are the

requirements for that action. Only the robot who has the necessary require-

ments can perform an action successfully.

Different actions can be performed simultaneously by different robots. For ex-

ample disarming a mine and searching for another mine can be performed

simultaneously by two different robots. While the first robot is disarming a

mine the second robot can search to find another mine. Other actions, how-

ever, may have prerequisites. This means that they can only be performed

when another action has been completed. Prerequisites of an action are other

actions that need to be complete before this particular action can start. Nor-

mally this is because to perform this action the robot needs to use the outcome

of another action. After a minesweeper completes actions that disarm a mine,

he will communicate the outcome to the team members. In this case he an-

nounces that he managed to disarm a particular mine successfully. Another

robot who wants to perform the action of grabbing and pulling a mine from the

ground, now knows that this particular mine is safe to be removed. Therefore

to perform the action of grabbing and pulling a mine from the ground the pre-

requisites, which are actions that disarm the mine, need to be completed. A

25

robot needs to make sure that the prerequisites of an action are complete be-

fore he starts performing that action.

A robot selects an action, performs it and communicates the outcome to the

team. He then chooses the next action and the plan execution cycle continues.

Pseudocode 5: Execution cycle

1+! execute_team_plan (Plan ,Team)<-

2!choose_action (Plan ,Action ,Requirements);

3!execute(Action ,Outcome).

4!inform(Team ,Action ,Outcome).

The robotic team cycles through the !execute_team_plan to complete the

Plan. They repeatedly choose an action to perform, execute the action and in-

form the outcome to other team members. This cycle starts by!choose_action.

A robot, based on the requirements, selects an action. He then uses !execute to

perform the action. Actions normally have outcomes. The robot uses !inform

to communicate this outcome to the team.

Robots may need to repeat actions and the plan execution cycle multiple times

to achieve the task.

When all of the actions are performed and the task is achieved then the plan ex-

ecution cycle ends. The robot that realises this is expected to inform the team.

The team will then believe that the team task is accomplished. A robot may

also realise that the task cannot be achieved or may not be relevant any more.

In both cases the plan execution cycle ends. The robot needs to inform the

team if the task cannot be completed. A team of robots that cannot achieve

their task may need to choose a different plan. In consequence that may need

a new team to be formed. We are planning to study these situations in more

26

detail in future.

Robots start the plan execution phase by selecting suitable actions, executing

them and informing the team. This cycle continues until the task is achieved,

found irrelevant or impossible to complete.

3 Case study

Section 2 described a framework for multi-robotic teamwork. This sections ex-

plain how this framework is used in a multi-robotic search and rescue scenario.

For this example we use LEGO® NXT 2.0 robots running LeJOS4 Java virtual ma-

chine. These robots are programmed using NXJ which is a modified version of

Java for LeJOS. The robots use Bluetooth to communicate with a PC that is run-

ning Jason. Locomotion and sensory data collection is programmed in NXJ. For

example moving in a random path, avoiding obstacles including other robots

and detecting the change in colour of the surface of the table is programmed in

NXJ. Higher level operations such as choosing the appropriate plan to perform

are programmed in Jason.

Search and rescue has long been studied in multi-robotic teamwork [11]. A

search and rescue team consists of a group of robots that are working in an

area dangerous or inaccessible to humans. For example in an area affected by

an earthquake, robots find and save injured people. Robots in these cases are

often heterogeneous. Some may specialise in finding injured people and oth-

ers in providing basic medical care. Later the injured person will be moved to a

hospital for further medical attention. In this case study we are looking at two

types of robots; rescuers who finds injured people and doctors who provide

4http://lejos.sourceforge.net/

27

Dcotor1 has informed Rescuer that he is free which means that when Rescuer

finds an injured person he will inform Doctor1 first.

Figure 2: Multi-robot search and rescue

medical care.

Scenario 1. Three robots, a Rescuer and two doctors, are placed in an area af-

fected by an earthquake. Four people are injured in this area, some with more

severe injuries than others. Rescuer has the task of saving the injured people.

Rescuer finds them and the doctors provide medical care. Rescuer and the doc-

tors need to work in a team to save people injured by the earthquake.

These three robots are placed in a 240 by 200 centimetres (94.4 by 78.7

inches) table as shown in figure 2. The injured people are represented by sheets

of A4 coloured paper. The colour indicates the severity of their injury. A red

sheet represents a person with a more severe injury than a navy sheet. The ro-

bots are equipped with a colour sensor, an ultrasonic sensor and a touch sensor.

28

The colour sensor is facing down toward the surface of the table and is used to

identify the coloured paper. The ultrasonic and touch sensors are used to avoid

collision with other robots and the wall of the table. Robots use dead reckon-

ing to keep track of their coordinates. A robot uses these coordinates to inform

others when he finds an injured person. Robots are also aware of their starting

position5.

3.1 Start

Rescuer has the task of saving injured people. To save an injured person, he

first needs to locate them. Rescuer needs to move in a random path and use the

colour sensor to find a sheet of coloured paper. After an injured person is found

he needs to receive basic medical care. The doctor should move to the location

of the injured person and spend a certain amount of time with him. The doctor

provides basic medical care to the injured person whilst he is there. The doctor

robot moves over the sheet of coloured paper and waits in that location for ten

seconds. After the doctor has provided the care, the injured person is ready to

be sent to a hospital for further medical attention. The rescuer sends a message

to the operator who sends an ambulance to collect the injured person. In our

example the rescuer robot sends a message to the PC and the operator removes

the sheet of coloured paper from the table.

The plan to save injured people consists of three basic actions:

• a1: Scan for sheets of coloured paper

• a2: Spend ten seconds over a sheet of coloured paper

• a3: Send the location of the sheet to the PC

5A video of robots performing this scenario can be see here: http://vimeo.com/42409674

29

The rescuer has the task of saving injured people. He has a plan for this task

which is the series of the above actions. The rescuer believes mission(t,p)

where t is saving four injured people and p is the above series of actions. The

rescuer also believes plan(p,[a1,a2,a3]) which means that plan p is a series

of actions from a1 to a3.

Each of these actions has some requirements. The first action, a1, requires a

robot with a colour sensor to find sheets of coloured paper. It also needs a

robot that moves randomly on the table and scans for coloured papers. The

third action, a3, needs a robot that keeps track of all the injured people that

are found. This robot should also send a message to the operator PC when

an injured person has been attended by the doctor and is ready to be taken to

hospital.

We give the name r1 to the collection of all the requirements needed for actions

a1 and a3. This means that both a1 and a3 have the same requirements which

is r1
6. Therefore a robot that wants to perform a1 and a3 needed to have r1.

Action a2 requires a robot that can receive coordinates of an injured person

locations and move there. This robot then needs to provide medical care to

the injured person. In our example he spends ten seconds over the sheet of

coloured paper. We give the name r2 to the requirements that are needed to

perform a2. Therefore a robot that wants to perform a2 needs to have r2.

The robots believe:

action(a1,r1).

6We need to clarify that although a1 and a3 are two different actions but they they both have

the same set of requirements which we are calling r1. If an agent or robot has this requirement,

r1, then he can perform both actions: a1 and a3. This choice is made to display that Rescuer

that has the requirement r1 can perform both actions a1 and a3

30

action(a2,r2).

action(a3,r1).

The robots also know the requirements that are available to them. The rescuer

believes available_requirements(r1) and the doctor believes available_requirements(r2).

The rescuer has the requirements for actions a1 and a3 and the doctors have the

requirements for action a2. To perform the plan, they need to work together in

a team.

3.2 Rescuer needs help

The rescuer needs to perform plan p to achieve his task. This plan consists of

action a1 to a3. The rescuer does not have the requirements that are needed for

these actions, namely r2. He needs to find other robots who can provide this

missing requirement, form a team with them and together they perform the

plan.

Initially the rescuer does not know what actions he can or cannot perform. He

needs to check his available requirements to find this out. The rescuer uses

pseudocode 1 to find this out. The rescuer has a mission consisting of task

t, finding four injured people and plan p which is actions a1 to a3. He now

needs to check for the requirements that are needed for his actions. He uses

+check_requirementswhereTask andPlan aret and p. +check_requirements

unifies Requirements with r1,r2,r3. These are the requirements needed to

perform plan p. Missing_requirements also unifies with r2. The rescuer has

r1 and r3 but he is missing r2. This is when the rescuer realises the potential for

cooperation. He now continues with a cooperative solution. The rescuer uses

!cooperate_to_solve to find other robots that can provide him with r2 and so

31

perform plan p together to achieve the task.

3.3 Finding the help

In the last section we have seen that the rescuer chooses a cooperative solu-

tion to complete his task. The first step in a cooperative solution is to form a

team. The team will then work together to complete the task. In pseudocode

2 the cooperative solution starts with !form_team. A team is formed based

on task t and plan p. Missing_requirements is r2. If forming a team is suc-

cessful then it will be unified with Team. After the team is formed they will use

!execute_team_plan to jointly perform plan p.

The rescuer now uses !form_team from pseudocode 3 to form a team. He needs

to find robots that can provide r2. He broadcasts a message using!solicit_requirements

to find robots who can provide him with Missing_requirements which is r2

and are willing to be committed to plan p. The doctors who receive this mes-

sage, first check their initial beliefs to see if they know the plan p. They also need

to check their available_requirements for r2. The doctors will now reply with

their names, doctor1 and doctor2, the plan they commit to perform, p, and

the requirement that they are providing, r2. By doing this they are becoming

volunteers for the team that is about to be formed. The rescuer, after a dead-

line, uses !find_volunteers to find the volunteerswhich will be unified with

[doctor1,doctor2]. The rescuer now knows that there are two robots with

whom he can build a team with. The rescuer uses !build_team to team with

the doctors. Former volunteers, [doctor1,doctor2], are called team members

from now on. The team, that !build_team unifies with Team, is:

+team[t,p,[rescuer,[r1,r3]],[doctor1,[r2]],[doctor2,[r2]]]

32

The rescuer now needs to communicate this to all team members. He sends a

message to the team members and informs them of this newly build team. Each

member now knows that he is part of a team committed to plan p to complete

task t. He also knows who else is in the team and which requirements they are

providing. Note that task t is now the team’s task. The team is formed and the

members are ready to perform the plan.

3.4 Team to the rescue

The rescuer and the doctors are now ready to save injured people. They are

going to perform the joint plan and complete the task. They will use pseudo-

code 5 to cycle through the actions until the task is attained (or the team fails to

complete the task). Each robot uses !execute_team_plan to choose an action,

perform it and communicate the outcome to the team.

The rescuer uses !choose_action to select a1. The requirement for a1 is [r1]

which he has. He then uses !execute to perform a1. The rescuer moves on

a random path until, using his colour sensor, he finds a sheet of coloured pa-

per. At this moment performing a1 is finished. The outcome of this action is

the the location of the sheet of paper and the colour of the sheet. The colour

indicates the severity of the injure. This will be unified with Outcome. The res-

cuer now needs to inform the doctors. The rescuer uses !inform to send the

outcomes of this action to the team. He informs them of a1 which is the action

he has performed and the outcomes of this action. They are the coordinates

and the severity of the injury. Both doctors have been waiting to perform a2

and provide medical care to the injured person. However they first need to

know the coordinates of an injured person. This is a prerequisite of a2. Now

that this has been provided by the rescuer they can perform a2. The first doc-

33

tor that receives the outcome message from the rescuer takes the job and starts

performing a2. He informs the team and hence the second doctor waits for an-

other injured person to be found. Assuming that doctor1 received the message

first then he chooses a2 and moves towards the injured person. He provides

medical care to the injured person by spending ten second on that location.

After the time is over the injured person is ready to be discharged to the hos-

pital. This is when a2 ends. doctor1 communicates the outcome of this to the

team. He informs the team that this injured person is ready to be removed to a

hospital for further medical care. Meanwhile the rescuer is cycling though the

!execute_team_plan and searching for other injured people. When he finds

one he sends the coordinates to the team.

When a rescuer receives discharge message from a doctor, he chooses a3. That

is to discharge the injured person to the hospital. In our example the rescuer

sends a message to the operator at the PC to remove that particular sheet of

paper from the table. The doctor moves to the next injured person after he be-

comes free. If while a doctor is attending an injured person, he receives the loc-

ation of another person with a more severe injury then he abandons the person

he is currently attending and moves towards the person with the more severe

injury. He communicates this with the team. The rescuer sends the location of

the abandoned injured person to the next doctor that becomes free. When all

four injured people have been attended by doctors and discharged by the res-

cuer then the task is completed. When the rescuer discharges the last injured

person he realises that the task is accomplished. He send a message to the team

and informs them that the team’s task has been accomplished.

34

4 Implementation

This chapter explains how the multi-robotic programming constraints that we

discussed above are implemented. We start by looking at how a multi-robotic

framework based on the constraints explained above is built. This framework

consists of two parts, one that runs on robots, codded in Java and running on

the lejos virtual machine and a second part codded in AgentSpeak which run

on the PC. As mentioned before they communicate using Bluetooth.

4.1 Sensors

We make use of three different sensors for each robot. They are the Ultrasonic,

Colour and Touch sensors. As mentioned in chapter 3, Ultrasonic and Touch

sensors are used to avoid collision with other robots and the wall of the table.

Colour sensor is used to detect sheets of coloured paper. These sensors are

managed by dedicated classes. These classes share a common design pattern.

Each sensor needs to run on a separate thread. This is because the robot needs

to have access to sensory data at all time. To make use of multithreading, the

classes implement the java.lang Runnable interface. Using the Runnable in-

terface is common multithreading practice in Java.

We will look at the ultrasonic class as an example. The color and touch sensor

classes follow the same pattern.

Code 6: Snippet from the ultrasonic sensor class (Ultrasonic.java)

1int distance;

2public void run(){

3while(true){

4distance=us.getDistance ();

35

5if (distance >=100) Thread.sleep (4000);

6else if (distance >=50) Thread.sleep (2000);

7else Thread.sleep (100);

8}

9}

10public int getDistance (){

11return distance;

12}

The ultrasonic class - Ultrasoic.java - accesses the Ultrasonic sensor using

the thelejos.nxt UltrasonicSensor class. Sensor classes are deigned to have

an internal process that keeps updating a local variable using the sensory read-

ing at a certain time interval. The local process running on a dedicated thread

uses an infinite while loop to (i) read the sensory data, (ii)update a local variable

and (iii) place the thread on hold for a certain amount of time. This time may

differ based on the data read by the sensor and, of course, the type of sensor

used. The Ultrasonic sensor class also has a public method that returns the

local value holding the sensory reading.

Code 6 displays a snippet of the Ultrasonic sensor class. distance at line 1

is a private variable to store the value of the Ultrasonic sensory reading data.

The run() is called in a separately executing thread and contains the infinite

while loop. Line 4 reads the distance from the Ultrasonic sensor and updates

the distance variable. Lines 5,6 and 7 place the Thread on sleep based on

the distance. If it is further than 100 cm the next reading will be done after

4 seconds. For distances between 100 cm to 50 cm there will be a 2 seconds

wait. And for less than 50 cm it will be a short 100 milliseconds wait. This is to

36

provide a chance to other threads to perform as well 7. getDistance() is the

public getter for distance. It is used by other classes to read the distance.

An alternative method of implementing a sensor class is to read the sensory

data on request and directly from the sensor. That is rather than having a sep-

arate class to provide the sensory data, the application reads the sensory data

when needed directly from the sensor. In this method the sensory data, when it

becomes available to the application, is the most recent reading of the sensor.

However that comes with cost of a slow application. Accessing the sensors and

reading data from them is a considerably slower compared to performing op-

erations in the processor and memory. If an application, while running on the

main thread, needs to access a sensor, the main thread would have to wait until

a reply from the sensor arrives. This means that the whole robot operation will

come to a halt until the main thread resumes, which, of course, is not desir-

able. The method discussed above and implemented in this project is a reliable

approach that keeps the main thread unblocked and thus the robot responsive

at all times. Thread.sleep() can be adjusted when higher accuracy of sens-

ory data is needed. In code 6, the seconds that the thread is set to sleep was

adjusted to give us an accurate reading from the Ultrasonic sensor.

4.2 Communication

Robots and the PC communicate through Bluetooth. They send and receive

messages to and from the PC which often happens simultaneously. This means

that whilst the robot is sending a message he may also be receiving one from the

PC. Similar to how the sensory data was managed by different threads, sending

7LEGO NXT robot possessor has a single core and is only able to execute a single thread at a

time. LeJOS virtual machine manages the thread scheduling and switches between threads

37

and receiving massages also need to take advantage of multithreading. An in-

terface needs to be provided to the robot for sending messages to the PC. We

provide this interface though the BTSend.java class.

Code 7: Snippet from the Bluetooth massage sender class (BTSend.java)

1NXTConnection conn = Bluetooth.waitForConnection ();

2DataInputStream in = conn.openDataInputStream ();

3Queue <String > q = new Queue <String >();

4public void run(){

5while(true){

6while(q.empty ()) Thread.yield ();

7out.writeUTF((String)q.pop ());

8}

9}

10public void write(String message){

11q.push(message);

12}

Code 7 is a snippet from theBTSend.java. Lines 1 uses lejos.nxt.comm NXTConnection

to create a Bluetooth connection and line 2 uses this Bluetooth connection to

create a stream. This is the standard mechanism of Bluetooth communication

in LeJOS. In line 3 we use a java.util Queue<E> class to create a queue collec-

tion for storing messages. A Queue is a first-in-first-out data structure. Meth-

ods push, pull and empty are used to add a message to the back of the queue,

extract the message from the front of the queue and check for an empty queue

respectively. We use a queue to store messages before being sent because send-

ing a message to the PC can be slow. It is also possible that a message is lost.

38

Reasons for this are loss of Bluetooth connection and the need to reconnect,

or delay in receiving a message from the PC due to the PC processing a mes-

sage from another robot. When the robot want to send a message it will use the

public method write(String message) at line 10 and 11 to add the message

to the queue. When the class is initiated on a separate thread, the run() at line

4 is called which in order runs the infinite while loop at line 5. Line 6 places

the Thread on hold using Thread.yield() whilst the queue is empty. When a

message is added to the queue by the robot, line 7 extracts it from the queue -

q.pop() - and writes it to the stream.

Additionally when a massage arrives from the PC, there needs to be a re-

ceiver to collect and parse the massage and provide the information to the

robot. The message receiver needs two main components: (i) a continuous

listener for arriving messages from the PC and (ii) a message parser. This job is

done by BTReceive.java.

Code 8: Snippet from the bluetooth massage receiver class (BTReceive.java)

1NXTConnection conn = Bluetooth.waitForConnection ();

2DataInputStream in = conn.openDataInputStream ();

3public void run(){

4while(true) parse(in.readUTF());

5}

6private parse(String message){

7//parse the massage and pass it to the robot

8}

39

Code 8 is a snippet used in the BTReceive.java class. Lines 1 and 2 create

a Bluetooth connection and stream. run() at line 3 is called once the thread

starts. The method will start an infinite while loop at line 4 in which the read-

ing stream, in.readUTF(), waits for a message to arrive. Here we do not need to

useThread.yieldbecause this is already implemented in thejava.io DataInputStream

class. When a message is received it will be passed to theparse(String message)

method at line 6. This method will extract and parse information from the mes-

sage passes it to the robot 8.

4.3 The robot

In this section we discuss the main class that controls the behaviour of the ro-

bot. This class makes use of three main components. They are locomotion,

sensors and communication. We discussed in the above sections how the sensors

and communication are implemented. In this section we will see how the ro-

bot uses this implementation to function. We will also see how the robot uses

the navigation and localisation mechanism provided by the LeJOS platform for

locomotion.

The robot class makes use of a scanner class. The scanner is used to inform

the robot of any obstacles that will be on its path. The scanner makes use of

the Ultrasonic and Touch sensor classes, discussed above, to scan and detect

obstacles. To improve the functionality of the ultrasonic sensor, it is moun-

ted over a rotating motor placed at top of the robot. The motor performs a 25

degrees rotation to left and right and covers a wide angle in front of the robot

8Detail of this process can be seen the source code

40

for the ultrasonic sensor. Lego NXT Ultrasonic sensors have a range of 30 de-

grees. This means that a static ultrasonic sensor can detect any object within a

30 degree angle in front of it. In addition to this 30 degree angle our 50 degree

rotating angle makes a wide area in front of the robot detectable by the ultra-

sonic sensor. The speed which the motor rotates needs to be adjusted based on

the environment in which the robot is operating.

The Scanner class - Scaner.java - has internal thread that operated the motor.

Code 9: Scanner motor rotation system (Scanner.java)

1private void startRadar() throws Exception{

2final int ANGLE = 25;

3Motor.C.setSpeed (750);

4while(true){

5Motor.C.rotateTo(ANGLE);

6Motor.C.rotateTo(-ANGLE);

7}

8}

Code 9 shows how the scanner motor operates. Lines 2 and 3 set the rotation

angle and the speed of the motor and the infinite while loop at line 4 rotates

the motor back and forth. This methed runs on a separated background thread.

The while loop terminates when the main thread reaches the end (i.e. when the

application ends).

The Scanner was added to hide the details of obstacle avoidance from the ro-

bot. The robot delegates the process of obstacle avoidance to the scanner. This

results in organised and easy to manage code structure in the robot class.

41

NXJ API provide a variety of classes for locomotion. We use DifferentialPilot,

OdometryPoseProvider and Navigator in this project. DifferentialPilot

provides methods for control of robots’ movements: travelling forward and

backward in a straight line or moving in a circular path and rotating to a new

directions. This class automatically updates the OdometryPoseProvider with

the robots new location and heading. A robot’s wheel diameter and track width

will be passed to the DifferentialPilot upon initialisation of this class. The

unit of measure for travel distance, acceleration and speed is the same as the

one used for wheel and track diameter and width 9. Motors used for tracks

movement are also passed to the DifferentialPilot on initialisation.

Code 10: Robot’s locomotion control

1DifferentialPilot pilot = new

2DifferentialPilot (3.25f,19.8f,Motor.B,Motor.A);

3OdometryPoseProvider poseProvider = new

4OdometryPoseProvider (pilot);

5poseProvider.setPose(new Pose (20 ,100 ,0));

6Navigator robot = new

7Navigator(pilot ,poseProvider);

Lines 1 and 2 in code 10 create and initialise a new DifferentialPilot. 3.25f

and 19.8f are wheel diameter and track width and Motor.B and Motor.A are

the motors used.

OdometryPoseProvider keeps track of robots location and heading. We men-

tioned in chapter 3 that robots use dead reckoning to keep track of their co-

ordinates. OdometryPoseProvideruses the odometry data for dead reckoning.

9Centimeters in our case

42

Lines 3 and 4 create and initialise a new OdometryPoseProviderby passing the

DifferentialPilot created in the lines before. Line 5 sets the starting location

and heading of the robot 10.

Navigator class uses the DifferentialPilot to traverse a path while updating

the OdometryPoseProvider. Lines 6 and 7 create and initialise the Navigator.

From the point onward the robot class uses the Navigator for locomotion.

4.4 AgentSpeak

Jason provides a basic set of functionalities. More advanced features such as

bluetooth communication can be added to Jason by means of user-defined in-

ternal actions. These internal actions are programmed in Java. Jason is also dis-

tributed with a set of standard internal actions. For example .send for agents

to send messages to each other or .print to output a message to the Jason’s

console.

In our scenario we created two user-defined internal actions for bluetooth com-

munication and message parsing. Before we start looking at Jason code for each

agent, let us explain how these internal actions perform.

Code 11: Agents communication (Communication.java)

1LinkedBlockingQueue <String > q =

2new LinkedBlockingQueue <String >();

3NXTConnector conn =

4new NXTConnector ();

10In our scenario we use three robots each located 100 cm away from each other and facing

the Y axis

43

5boolean connected =

6conn.connectTo(nxtName ,nxtBTAddress ,2);

7DataInputStream dis = new DataInputStream (conn.

getInputStream ());

8DataOutputStream dos = new DataOutputStream (conn.

getOutputStream ());

Communication.java is a user-defined internal action which sends and receives

message to and from the robot using bluetooth. This internal action has sim-

ilar structure to the robots’ communication method discussed in the above sec-

tion. Messages are stored in a BlockingQueue and an input and output streams

- DataInputStream and DataOutputStream - are used to read and write from

the bluetooth channel. Line 1 of code 11 creates the BlockingQueue to store

messages. Line 3 creates the communication channel and Line 5 connects to

this channel. Upon initialisation of the class, robots’ bluetooth address and

names, i.e. Rescuer, Doctor1 and Doctor2, are sent to the PC for identification.

Lines 5 connects to the robot with the name of nxtName and bluetooth address

of nxtBTAddress. Lines 7 and 8 use the channel to create an input and output

stream. These streams are used from this point onward to send and receive

message between the robot and the PC where Jason agents are located.

A newly arrived message from the robot will be places in the BlockingQueue.

Code 12: Agents communication - reading from a stream

1public void run(){

2while(true){

3q.put(dis.readUTF());

4Thread.sleep (100);

44

5}

6}

7public String read(){

8while(q.size()==0) Thread.yield ();

9return q.poll();

10}

Method run at line 1 of code 12 which runs on a separate thread uses an infinite

loop to continuously listen to and read messages arriving from the robot. Line 3

adds the message to the BlockingQueue. Method read is used for reading mes-

sages from the BlockingQueue. At line 8 while the BlockingQueue is empty the

thread is paused. Line 9 returns the earliest message from the BlockingQueue.

Code 13: Message parsing

1String colour=

2inj.toString().split(";")[3]

3.replace(’"’, ’ ’).trim();

4if (colour.equals("Red")) severityLevel =3;

5else if (colour.equals("Navy")) severityLevel =2;

6else if (colour.equals("Green")) severityLevel =1;

7NumberTerm result =

8new NumberTermImpl (severityLevel);

We explained in the previous section how a message to the robot is constructed.

When the message arrives at the robot it will be parsed by the Severity.java

class. This class maps the three colours of green, navy and red to the three levels

of 1, 2 and 3 of severity where level 1 is the highest severity level and 3 is the

lowest. Injured people with the highest severity level are the highest priority for

45

the doctors. We will see below how the doctor agents use these severity levels

to decide in which order to attend for the injured people. The doctor agent

then passes these values to the robot agent in Jason. Code 13 uses the arrived

message from the robot to indicate the severity of the injury. Lines 4 to 6 set

the level of severity and lines 7 and 8 pass the value to the agent. When all the

injured people are found, Rescuer robot sends a end message which the agent

uses to end the task.

4.5 Rescuer agent

In this section we look at the Jason code for Rescuer agent. All agents start with

the initial beliefs of free. The two doctors send a message to Rescuer to tell

him that they are free. This essentially adds free[source(Doc)], where Doc is

unified with the Doctor that sent, the message to Rescuer’s beliefs.

Code 14: Free agents are added to the team

1free[source(rescuer)].

2

3+free[source(Sender)]: true <- +team(Sender);

4.broadcast(tell , team(Sender)).

In section 2.8 we discussed how teams are formed. Lines 2 and 3 of code 14

are used to form a team. They add agents to team. Line 2 of this code informs

other agents of the new member who is added to the team. It does so by using a

broadcast message which adds team(Sender) to other agents beliefs. To keep

the code simple and pragmatic we had to omit a few options. We assumed that

all agents will eventually become a member of the team. Therefore every agent

that sends a free message is automatically added to the team and others are

46

informed of this.

Rescuer agent starts by searching for injured people while initially the two doc-

tors are free. Rescuer, thus, starts by the initial achievement goal of !rescue

and doctors start with initial beliefs of free.

Code 15: Rescuer agent initialisation

1!rescue.

2+!rescue <- .wait (500);

3rescuer.a1(Inj);

4!check_end(Inj).

5+!check_end(Inj): Inj =="end" <- !check_injureds ;

6.wait (1000);

7!check_end(Inj).

8+!check_end(Inj): Inj \=="end" <- .wait (500);

9.print("Found ", Inj);

10+injured(Inj);

11!check_injureds (Inj);

12!!rescue.

Line 1 of the code 15 shows the initial belief of Rescuer robot. The plan to

achieve this goal - +!rescue - at line 2 starts by a 500 milliseconds of .wait

for bluetooth handshake to complete. It will then wait for a message from the

robot. The robot sends a message upon finding an injured person. Line 3 uses

the internal action a1 for Rescuer robot to achieve this. The user-defined in-

ternal action a1 uses the Communication.java to connect Rescuer agent and

Rescuer robot though bluetooth. It will also uses Severity.java to parse mes-

sages. Information about found injured people are unified with Inj at line 3.

47

The agent will then pursue the goal of !check_injureds(Inj) at line 4.

If the end message is not communicated, the plan at line 8 is performed. The

agent prints out the found injured person information in console and adds

him to his beliefs. At line 10 of code 15 Rescuer agent uses +injured(Inj)

to add the injured person to his beliefs. The next step is to pursue the goal of

!check_injureds(Inj) followed by!!rescue at lines 11 and 12. !check_injureds(Inj)

starting with a single ! means that it will be pursued as a separate intention

while !!rescue with two ! means that the agent will pursue another separate

intention to achieve !!rescue. !! are often used at the end of recursive plans

11.

Code 16: Rescuer agent - checking for injured people

1+! check_injureds :injured(Inj)

2<- !check_injureds (Inj).

3+! check_injureds :not injured(Inj)

4<- .broadcast(tell , end).

5+! check_injureds (Inj): free[source(Doc)]

6<- .print("Sending ", Inj , " to ", Doc);

7-free[source(Doc)];

8.send(Doc ,achieve ,go_to(Inj));

9+attending(Inj)[source(Doc)];

10-injured(Inj).

11+! check_injureds (Inj): not free[source(Doc)]

12<- .print("Broadcasting");

13.broadcast(tell ,check(Inj)).

11http://jason.sourceforge.net/faq/faq.html#SECTION00095000000000000000

48

So far we have seen how Rescuer agent checks for the incoming messages and

identifies the injured person or the end message. Code 16 are the plans Rescuer

has when an injured person is found which in essence is to inform the doctors.

!check_injureds are called by line 5 of code 15. If an injured person exists

in the agents belief base - injured(Inj) - then this information is retrieved

and passed to !check_injureds(Inj) at lines 5 or 11 of code 16. We will see

later that doctor agents inform Rescuer when they are free, including at the

initialisation of the program. When a doctor agent is free it sends a message

adding free[source(Doc)] to Rescuer agents belief base where Doc is unified

with the name of the doctor agent i.e. doctor1 and doctor2. We discussed in

chapters 2 and 3 that when teamwork is over, team members will be informed.

Line 2 of code 16 sends a broadcast message to all the members to inform

them that task is over.

If a doctor is free Rescuer agent performs the plan from line 5. It starts from line

6 by printing a message to the console followed by line 7, removing the belief

that the doctor to whom it is about to send a message to is free. At line 8 it

will send a message to the doctor. This is an achieve message, go_to(Inj),

that informs the doctor of information about the injured person unified with

Inj. This adds the !go_to(Inj) to doctor’s goals. Now that the doctor is in

charge of the injured person Rescuer adds +attending(Inj)[source(Doc)] to

its beliefs. This is to it keep track of doctors busy with injured people at any

given time. Finally Rescuer agent removes the information about the injured

person from its belief using -injured(Inj) at line 10.

Code 17: Doctor agent - check for severe injuries

1+check(Inj)[source(Res)]: free

2<- !go_to(Inj)[source(Res)].

49

3+check(Inj)[source(Res)]: severity_check (Inj)

4<- -+new_inj(Inj);

5.print("Severe injured to be attended: ", Inj);

6-check(Inj)[source(Res)].

7+check(Inj)[source(Res)]: not severity_check (Inj)

8<- .print("Ignored ", Inj);

9-check(Inj)[source(Res)].

If there are no free doctors, Rescuer chooses the plan at line 11 of code 16. It

broadcasts a message to all doctors using .broadcast(tell,check(Inj)) at

line 13. This broadcast message informs the currently busy doctors about the

injured person, Inj.

Code 17 are doctor plans for check(Inj). When a doctor agent becomes free

it will pursue the !go_to(Inj)[source(Res)] goal at line 1 and 2 of code 17.

The doctor agent will also check for the severity of the person’s injury.

We explained above that doctors attend people with more severe injuries with

a higher priority. If they are engaged with an injured person with a less severe

injury they will leave the current injured person and attend the one with more

severe injury. Lines 3 and 7 display that the doctor agent checks for level of

severity of the person’s injury. severity_check(Inj) checks how severe is the

injury. If the injury is more severe, line 4 replaces the current injured person

with the more severely injured one. It does so by removing and adding the

new_inj(Inj) belief. If the injury is not more severe then line 8 prints an ig-

nored message to the console.

Code 18: Rescuer agent - discharge injured people

1+discharge(Inj)[source(Doc)]

50

2<- -injured(Inj);

3-attending(Inj)[source(Doc)];

4-discharge(Inj)[source(Doc)].

5+abandoned(Inj)[source(Doc)]

6<- -attending(Inj)[source(Doc)];

7+injured(Inj);

8-abandoned(Inj)[source(Doc)].

An injured person will be ready for discharge after having been attended by a

doctor. However it is Rescuer that discharges the injured person. Doctors in-

form Rescuer that the injured person they attended is now ready for discharge.

They do so by sending a message that adds discharge(Inj) to Rescuers belief.

Line 1 to 4 of code 18 display Rescuer agent’s plan for this belief addition. At

line 2 Rescuer removes the injured person using -injured(Inj) from its be-

liefs followed by removing the belief about the doctor who was attending this

injured person, -attending(Inj)[source(Doc)] at line 3.

A doctor informs Rescuer robot when leaving an injured person to attend to

one a with more severe injury. The doctor does so by sending a message adding

abandoned(Inj)[source(Doc)] to Rescuer’s belief. Rescuer’s response to this

is displayed at lines 5 to 8. Rescuer removes the belief that the doctor Doc is

attending an injured person Inj using -attending(Inj)[source(Doc)]. He

will then uses +injured(Inj) to add Inj to its beliefs as an injured. Finally he

cleans up its belief base by removing -abandoned(Inj)[source(Doc)] at line

8.

51

4.6 Doctor agents

Initially the doctors do not have any injured person to attend and they are free.

A doctor starts with a free belief.

Code 19: Doctor agent - initialisation

1free.

2+free: .send(rescuer , tell , free).

3severity_check (Inj) :- robot.severity(Inj ,S) &

4injured(Inj_now ,S_now) &

5S > S_now.

6!inform.

7+!inform: free <- .send(rescuer ,tell ,free).

severity_check(Inj) at line 2 of code 19 uses the user-defines internal action

Severity.java, code 13, to inform the doctor if the current injured person he

is attending has a more severe injury than the one broadcast by Rescuer. The

doctor agent’s initial goal is to inform Rescuer that he is free. Line 6 sends a

message to inform Rescuer.

Code 20: Doctor agent - attending an injured person

1+! injured_check(Inj) <- robot.severity(Inj ,S);

2-+injured(Inj ,S).

3+!go_to(Inj)[source(Res)]

4<- -free;

5!injured_check (Inj);

6.print("Attending ", Inj);

7doctor.a2(Inj , Done);

8.wait (1000);

52

9!has_attended(Inj).

We have seen at line 8 of code 16 that Rescuer sends an achieved message

go_to(Inj) to the doctor. Code 20 is the plan a doctor uses to for this goal.

It starts by removing the belief that he is free. He will then pursue the goal of

!injured_check(Inj) which in consequence uses lines 1 and 2 of code 20 to

check for severity and add the injured person to his belief. Line 7 is a user-

defined internal action. It is to communicate with the robot to move to the

location of the injured person and attend to the injuries. Basically that is for a

doctor robot to spend a few seconds at that location which may vary based on

the severity of the injury. Finally at line 9 it pursues !has_attended(Inj).

Code 21: Doctor agent - discharge or abandoned an injured person

1+! has_attended(Inj): new_inj(New_inj)

2<- .print(Inj , " abandoned for ", New_inj);

3.send(rescuer ,tell ,abandoned(Inj));

4-new_inj(New_inj);

5!!go_to(New_inj).

6+! has_attended(Inj): not new_inj(New_inj)

7<- .print(Inj , " ready for discharge.");

8.send(rescuer ,tell ,discharge(Inj));

9.send(rescuer ,tell ,free);

10-injured(Inj ,S);

11+free.

When a doctor robot finishes attending an injured person he removes that in-

jured person from his belief base and informs Rescuer. He sends a message that

the injured person is ready for discharge. Line 8 of code 21 displays this. If the

53

doctor agent needs to move to an injured person with a more severe injury he

uses line 3 to inform Rescuer that he abandoned the injured person.

4.7 Evaluation

The above implementation can be viewed in action at http://vimeo.com/42409674

and the source code is available at https://github.com/alibojar/RoboticCPS.

The video displays Rescuer robot and the two doctor robots. The Jason pro-

gram running on the PC initiates a Bluetooth connection to the robots. Line

2 of Code 15 is a 500 milliseconds wait for this Bluetooth connection to be es-

tablished. After experimenting with different delay times we found that 500

milliseconds is optimum time needed for a successful Bluetooth connection.

It allows for sufficient time for the PC to connect to the robot but not too long

to cause a significant delay in the performance of robots. After the Bluethooth

connection is established other parts of the robot which are sensors and mo-

tors will be initiated.

Setting up a Bluetooth connection is not always successful. In the same way

as other Bluetooth devices such as earphone, mice and keyboards sometimes

do not connect to mobile phones or computers as expected, NXT robots occa-

sionally fail to connect to PC via Bluetooth. In these cases we have to restart the

process on the PC and robots.

The first robot to connect to the PC is Rescuer followed by Doctor1 and Doc-

tor2. Rescuer starts moving first because the goal he has to achieve - !rescue -

requires him to move around and scan for injured people. At this point the two

doctors remain still waiting for Rescuer to find an injured person.

When Rescuer finds an injured person he will assign the person to the first free

doctor available. At the start of the scenario both of the two doctors are free and

54

will inform Rescuer. The /textttfree message send from Doctor1 often arrives at

Rescuer first. This is due to the configuration of agents in Jason where agents

will start running based on the order they are created. However this does not

make any difference in the process of their teamwork. The next injured person

can be assigned to any of the two doctors based on how severe the injury is and

which of the doctors is free at that time. For example if Doctor1 is attending an

injured person with a less severe injury and another person with a more severe

injury is found, by Rescuer, then Doctor1 leaves the current injured person to

attend the newly found injured person with a more severe injury.

Automatic robotic actions such as moving to a certain coordinate or avoid-

ing an obstacle based on sensory scans are written using LeJOS platform. This

basically means that they run on the robot rather than Jason. Scanning for

sheets of coloured paper using a colour sensor or avoiding obstacles such as

other robots or the walls of the environment, are programmed using API that

LeJOS platform provides. Motors are also programmed using LeJOS. Inform-

ation is exchanged using the communication layer between the robot and its

mirroring agent in Jason.

The Jason code, on the other hand, concentrates on communication between

agents, high-level decision making and reasoning. The team is formed between

agents in Jason and they communicate using the mechanism provided in Jason.

Decisions about injured people, who to attend them and when to discharge

them, are also made in Jason. The Jason code concentrates on agent teamwork

aspects of this scenario. AgentSpeak and Jason are made for multiagent pro-

gramming and are suitable for agent and team related aspects of this scenario.

LeJOS, on the other hand, is a basic robotic platform for controlling motors and

55

sensors.

AgentSpeak and Jason as intended for multi-agents programming while LeJOS

is a robotic programming platform. In this project any aspects of robots related

to agents and their communication and teamwork is programmed in Jason.

Other parts such as robot locomotion and managing sensors are codded in Le-

JOS.

AgentSpeak is a perfect choice for robotic programming however it comes

with its limitations. Jason is written in JAVA and make a heavy use of multi-

threading. This makes Jason slow at times. While operating robots, we occa-

sionally came across situations that where due to slow replies from Jason ap-

plication robots did not stop at the right positions. We also experienced cases

where the messages send from doctors to the Rescuer did not get processed on

time. Although the message was send by a doctor and arrived at the rescuer,

the rescuer did not perform the corresponding plan. We believe this also due

to Jason’s slow performance. Json’s slow performance in general was noticeable

during execution of our scenarios. We used intentional suspense at parts of our

code to minimize this slow performance. These delayed, for example line 2 of

code 15 allows the other parts of the program to catch up with the rest.

Another difficulty we faced during the implementation of this project was un-

reliable Bluetooth connection between robots and PC. We occasionally faced

loose of Bluetooth connection which meant that we had to restart the process

of search and rescue which resulted in lose of time.

56

5 Conclusion

Multiagent programming languages have advanced rapidly in the last few years.

They have been used to solve many different cooperative agent tasks where

agents are placed in dynamic environments and can only achieve their task

though cooperation. Robot is a specific type of an agent. The multi-robotic

community can greatly benefit from progress in multiagent programming lan-

guages and agents teamwork in general. To demonstrate this we used Agent-

Speak to develop a comprehensive multi-robotic framework that covers the

whole process of teamwork from start to end. We tested and evaluated our

framework using a well known robotic scenario. This framework made the de-

velopment of a robots team for search and rescue intuitive and natural.

An advanced and complete framework for robotic teamwork needs to address

the important issue of recovery from failure. A team of robots is much more

likely to fail while performing plans than a team of artificial agents. This is be-

cause robots are located in a physical world. It is thus important to consider the

failure-prone nature of robots. Some of this has been addressed and resolved in

a small scale on the development of our framework. For example early commit-

ment to the joint plan removes the need for future negotiations. This reduces

the likelihood of plan failure.

However a robust framework requires a system to re-plan and recover when a

plan fails. A robotic team should be able to reorganise itself and choose a dif-

ferent course of action when need be. For example if a robot is removed from

a team, the team needs to re-evaluate their plan to understand whether they

can continue with the original course of action. If they cannot, then they many

need to choose a new plan or even start to form a new team.

57

In this framework a scenario starts with roles that are clearly defined. A future

area of study is role allocation in the team of robots upon the start of a scenario.

Another path of future development for this framework is the area of group ob-

ligation. That is which robot is responsible and what should do if the group did

not fulfil its responsibility. In the scenario above we have seen that should a

doctor fails to continue attending injured people, the remainder of the group -

the rescuer and the other doctor - are still capable of working together together

as a team. However if the rescuer cannot perform in the team any more, the

remainder - two doctors - cannot achieve the goal. A rescuer is always needed

in the team.

This project can be continued by looking at situations where a team realises

that the current course of action will not accomplish the task. This could be

because of a change happening to the team (e.g. a member has left the team)

or a change in the environment. For future work we also suggest modifying our

framework to handle situations where things do not go as expected.

58

References

[1] Behrens, T., Dix, J., Hubner, J., and Koster M. Annals of Mathematics

and Artificial Intelligence [Special Issue]: The Multi-Agent Programming

Contest: Environment Interface and Contestants in 2010. 61(4):257–383,

Springer, 2011.

[2] Bordini, R. H., Dastani, M., Dix, J. and Seghrouchni, A. E. Multi-Agent Pro-

gramming; Languages, Platforms and Applications. Springer, 2005.

[3] Bordini, R. H., Hübner, J. F. and Wooldridge, M. Programming Multi-Agent

Systems in AgentSpeak Using Jason. John Wiley and Sons Ltd, 2007.

[4] Cohen, P. R. and Levesque, H. J. Intention is choice with commitment. Ar-

tificial Intelligence, 42:213–261, 1990.

[5] Cohen, P. R. and Levesque, H. J. Teamwork. Nous, 25(4):487–512, 1991.

[6] Dix, J., Behrens, T., Dastani, T., Koester, M. and Novak, P. Annals of

Mathematics and Artificial Intelligence [Special Issue]: The Multi-Agent

Programming Contest: History and Contestants in 2009. 59(3–4):275–437,

Springer, 2010.

[7] Jacoff, A., Messina, E., and Evans. J. A standard test course for urban search

and rescue robots. In Proceedings of the Workshop on Performance Met-

rics for Intelligent Systems (PerMIS), 2000.

[8] Jennings, N. R. Controlling cooperative problem solving in industrial

multi-agent systems using joint intention. Artificial Intelligence, 75(2):195-

240, 1995.

59

[9] Kaminka, G. A. Autonomous Agents Research in Robotics: A Report from the

Trenches. AAAI Spring Symposium on Designing Intelligent Robots: Rein-

tegrating AI, 2012.

[10] Kaminka, G. A. I have a robot, and I’m not afraid to use it!. AI Magazine,

33(3):66–78, 2012.

[11] Kitano, H., Tadokoro, S., Noda, I., Matsubara, H., Takahashi, T., Shinjou,

A., Shimada, S. RoboCup Rescue: search and rescue in large-scale disasters

as a domain for autonomous agents research. International Conference on

Systems, Man, and Cybernetics Proceedings (IEEE SMC ’99), 6:739–743,

1999.

[12] Levesque, H. J., Cohen, P. R. and Nunes, J. H. T. On acting together. Pro-

ceeding of the Eighth National Conference on Artificial Intelligence (AAAI-

90), Boston, MA, 94–99, 1990.

[13] Rao, A.S. AgentSpeak(L): BDI agents speak out in a logical computable

language. Proceedings of Seventh European Workshop on Modelling

Autonomous Agents in a Multi-Agent World (MAAMAW-96), 1996.

[14] Shoham, Y. Agent-oriented programming. Artificial Intelligence, 60(1):51–

92, 1993.

[15] Sklar, E., Ozgelen, A. T., Schneider, E., Costantino, M., Munoz, J. P., Epstein,

S. L., and Parsons, S. On Transfer from Multiagent to Multi-Robot Systems,

Proceedings of the Workshop on Autonomous Robots and Multirobot Sys-

tems, Valencia, Spain, 2012.

60

[16] Smith, R. G. The Contract Net Protocol: High-Level Communication and

Control in a Distributed Problem Solver. IEEE Transactions on Computers,

C-29(12), 1980.

[17] Tambe, M. Towards flexible teamwork. Journal of AI Research, 28:203-242,

1997.

[18] Wooldridge, M. and Jennings, N. R. The Cooperative Problem Solving Pro-

cess. Journal of Logic and Computation, 9(4)563–592, 1999.

61

