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For Robert and my sister.

Ship: I have taught you about the classical Pandora and her box.
Panille: I know how this planet got its name.
Ship: Where would you hide when the serpents and shadows oozed out of the box?
Panille: Under the lid, of course.

–Kerro Panille, Shiprecords

by Frank Herbert, The Jesus Incident

But the Great Sea is terrible, Tuor son of Huor; and it hates the Noldor, for it works
the Doom of the Valar. Worse things it holds than to sink into the abyss and so perish:
loathing, and loneliness, and madness; terror of wind and tumult, and silence, and
shadows where all hope is lost and all living shapes pass away. And many shores evil
and strange it washes, and many islands of danger and fear infest it. I will not darken
your heart, son of Middle-earth, with the tale of my labour seven years in the Great Sea
from the North even into the South, but never to the West. For that is shut against us.

by J.R.R. Tolkien and Christopher Tolkien as editor, Unfinished Tales
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Preface

A significant part of this thesis is based on two peer-reviewed papers that have been

published in international conferences. The two papers have been adapted for the pur-

pose of this thesis and expanded to contain work that was omitted from the conference

versions of the papers. The extended versions of the papers are also either under sub-

mission for journal publication or in preparation for submission. An additional chapter

presents work that has not yet been published that is related to one of the above papers.

Specifically, Chapter 3 of the thesis is based on the paper entitled “An 8/3 Lower

Bound for Online Dynamic Bin Packing”, co-authored with Prudence W.H. Wong and

Fencol C.C. Yung. The paper has been published in Proceedings of the 23rd Interna-

tional Symposium on Algorithms and Computation.

We study the dynamic bin packing problem introduced by Coffman, Garey

and Johnson. This problem is a generalization of the bin packing problem in

which items may arrive and depart dynamically. The objective is to minimize

the maximum number of bins used over all time. The main result is a lower

bound of 8/3 ∼ 2.666 on the achievable competitive ratio, improving the best

known 2.5 lower bound. The previous lower bounds were 2.388, 2.428, and

2.5. This moves a big step forward to close the gap between the lower bound

and the upper bound, which currently stands at 2.788. The gap is reduced by

about 60% from 0.288 to 0.122. The improvement stems from an adversarial

sequence that forces an online algorithm A to open 2s bins with items having

a total size of s only and this can be adapted appropriately regardless of the

current load of other bins that have already been opened by A. Comparing with

the previous 2.5 lower bound, this basic step gives a better way to derive the

complete adversary and a better use of items of slightly different sizes leading

to a tighter lower bound. Furthermore, we show that the 2.5-lower bound can

be obtained using this basic step in a much simpler way without case analysis.

Chapters 4 and 5 of the thesis are based on the paper entitled “Online Multi-dimensional

Dynamic Bin Packing of Unit-Fraction Items”, co-authored with Prudence W.H. Wong

and Fencol C.C. Yung. The paper has been published in Proceedings of the 8th Inter-

national Conference on Algorithms and Complexity.

xi



We study the 2-D and 3-D dynamic bin packing problem, in which items arrive

and depart at arbitrary times. The 1-D problem was first studied by Coffman,

Garey, and Johnson motivated by the dynamic storage problem. Bar-Noy et

al. have studied packing of unit fraction items (i.e., items with length 1/k for

some integer k ≥ 1), motivated by the window scheduling problem. In this

paper, we extend the study of 2-D and 3-D dynamic bin packing problem to

unit fractions items. The objective is to pack the items into unit-sized bins

such that the maximum number of bins ever used over all time is minimized.

We give a scheme that divides the items into classes and show that applying

the First-Fit algorithm to each class is 6.7850- and 21.6108-competitive for 2-D

and 3-D, respectively, unit fraction items. This is in contrast to the 7.4842

and 22.4842 competitive ratios for 2-D and 3-D, respectively, that would be

obtained using only existing results for unit fraction items.

Finally Chapter 6 represents a continuation of the work in Chapters 4 and 5 that focuses

on obtaining lower bounds for certain online algorithms for multi-dimensional dynamic

bin packing. We consider several types of input and construct different adversaries

suitable to each specific input.
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Abstract

In this thesis we study online algorithms for dynamic bin packing. An online algorithm

is presented with input throughout time and must make irrevocable decisions without

knowledge of future input. The classical bin packing problem is a combinatorial opti-

mization problem in which a set of items must be packed into a minimum number of

uniform-sized bins without exceeding their capacities. The problem has been studied

since the early 1970s and many variants continue to attract researchers’ attention today.

The dynamic version of the bin packing problem was introduced by Coffman, Garey and

Johnson in 1983. The problem is a generalization of the bin packing problem in which

items may arrive and depart dynamically. In this setting, an online algorithm for bin

packing is presented with one item at a time, without knowledge of its departure time,

nor arrival and departure times of future items, and must decide in which bin the item

should be packed. Migration of items between bins is not allowed, however rearrange-

ment of items within a bin is permitted. The objective of problem is to minimize the

maximum number of bins used over all time. In multi-dimensional generalizations of the

problem, multi-dimensional items must be packed without overlap in multi-dimensional

bins of uniform size in each dimension. In this work, we study the setting where items

are oriented and cannot be rotated.

We first consider online one-dimensional dynamic bin packing and present a lower

bound of 8/3 ∼ 2.666 on the achievable competitive ratio of any deterministic online

algorithm, improving the best known 2.5-lower bound. Since the introduction of the

problem by Coffman, Garey and Johnson, the progress on the problem has focused on

improving the original lower bound of 2.388 to 2.428, and to the best known 2.5-lower

bound. Our improvement from 2.5 to 8/3 ∼ 2.666 makes a big step forward in closing

the gap between the lower bound and the upper bound, which currently stands at 2.788.

Secondly we study the online two- and three-dimensional dynamic bin packing prob-

lem by designing and analyzing algorithms for special types of input. Bar-Noy et al.

initiated the study of the one-dimensional unit fraction bin packing problem, a restricted

version where all sizes of items are of the form 1/k, for some integer k > 0. Another

related problem is for power fraction items, where sizes are of the form 1/2k, for some

integer k ≥ 0. We initiate the study of online multi-dimensional dynamic bin packing

of unit fraction items and power fraction items, where items have lengths unit frac-

tion and power fraction in each dimension, respectively. While algorithms for general

xiii



input are suitable for unit fraction and power fraction items, their worst-case perfor-

mance guarantees are the same for special types of input. For unit fraction and power

fraction items, we design and analyze online algorithms that achieve better worst-case

performance guarantees compared to their classical counterparts. Our algorithms give

careful consideration to unit and power fraction items, which allows us to reduce the

competitive ratios for these types of inputs.

Lastly we focus on obtaining lower bounds on the performance of the family of Any-

Fit algorithms (Any-Fit, Best-Fit, First-Fit, Worst-Fit) for online multi-dimensional

dynamic bin packing. Any-Fit algorithms are classical online algorithms initially studied

for the one-dimensional version of the bin packing problem. The common rule that the

algorithms use is to never pack a new item to a new bin if the item can be packed in any

of the existing bins. While the family of Any-Fit algorithms is always O(1)-competitive

for one-dimensional dynamic bin packing, we show that this is no longer the case for

multi-dimensional dynamic bin packing when using Best-Fit and Worst-Fit, even if the

input consists of power fraction items or unit fraction items. For these restricted inputs,

we prove that Best-Fit and Worst-Fit have unbounded competitive ratios, while for

First-Fit we provide lower bounds that are higher than the lower bounds for any online

algorithm. Furthermore, for general input we show that all classical Any-Fit algorithms

are not competitive for online multi-dimensional dynamic bin packing.
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Chapter 1

Introduction

In this thesis we investigate the area of online algorithms in the context of the bin packing

problem. An online algorithm must make irrevocable decisions without knowledge of

future input. Our aim is the study of performance guarantees of online algorithms for

optimization problems, specifically variants of the bin packing problem. The classical bin

packing problem is a combinatorial optimization problem in which a set of items must be

packed into a minimum number of uniform-sized bins without exceeding their capacities.

In this setting, an online algorithm for bin packing is presented with one item at a time,

without knowledge of future items, and must decide in which bin the item should be

packed. Migration of items between bins is not allowed, however rearrangement of items

within a bin is permitted. The objective of the problem is to minimize the total number

of bins used. A classical approach to measure the performance of an online algorithm

is competitive analysis, where the output of an online algorithm is compared to the

output of an optimal offline algorithm that holds complete knowledge about the input.

We first give an introduction to algorithms, including offline algorithms and the NP

complexity class in Section 1.1.1, approximation algorithms in Section 1.1.2, and online

algorithms and competitive analysis in Section 1.1.3. We further present the models for

bin packing problems we consider in Section 1.2. The organization of the thesis and

author’s contributions are noted in Sections 1.3 and 1.4, respectively. Finally in Section

1.5 we note an additional contribution of the author that was not included as part of

this thesis.

1.1 Algorithms

In this thesis we focus on deterministic algorithms for optimization problems. A deter-

ministic algorithm is an algorithm which, presented with a particular input, will always

produce the same output by passing through the same sequence of steps. Depending on

the nature of the input, algorithms can be classified as offline and online. In the offline

setting, all input is known in advance to the algorithm and can usually be preprocessed

in such a way that it allows for good performance guarantees. On the other hand, in

the online setting, input is received throughout time and preprocessing is not usually

1



Chapter 1. Introduction 2

available. Our goal is to overcome these additional hurdles and design and analyze on-

line deterministic algorithms with good performance guarantees. The class of problems

for which we aim to prove performance guarantees are called optimization problems.

An optimization problem refers to a problem of either cost minimization or profit

maximization. In our case, the bin packing problem is a cost minimization problem

and we give definitions applicable to this type of optimization problem, while profit

maximization problems can be defined similarly. An optimization problem P of cost

minimization can be defined as follows [11]. P consists of a set I of inputs and a cost

function C. Associated with every input I is a set of feasible outputs (or solutions)

F (I), and associated with each feasible solution O in F (I) is a positive real, C(I,O),

representing the cost of the output O with respect to the input I. The aim of such a

problem thus becomes to minimize C(I,O) for any input I ∈ I.

1.1.1 Offline Algorithms and the NP Complexity Class

Offline algorithms are algorithms that hold complete knowledge of the input for a prob-

lem and are required to output an answer or solution for a given problem. For many

important optimization problems, including the bin packing problem, an optimal so-

lution of minimum cost (or maximum profit, respectively) may not be determined in

polynomial time, even if the input is received offline. These problems fall within the

non-deterministic polynomial (NP) complexity class [45] and some of the hardest prob-

lems in NP are NP-complete and NP-hard problems. On the other hand, the polynomial

(P) complexity class also falls within NP and its problems are polynomial-time solvable.

For both NP-complete and NP-hard problems, an optimal solution cannot be found

in polynomial time, unless P=NP [29]. Given a solution for an optimization problem,

the difference between NP-complete and NP-hard problems lies in whether we may be

able to verify in polynomial time if the solution given is an optimal solution. While NP-

complete problems are verifiable in polynomial time, NP-hard problems may or may not

be verifiable in polynomial time. The bin packing problem, for example, is an NP-hard

problem which is not verifiable in polynomial time, assuming P 6=NP. This is due to the

fact that an optimal solution is required beforehand in order to determine if the given

solution is optimal. Up to now no polynomial-time algorithm for any NP-complete or

NP-hard problem is known and researchers have focused on approximation algorithms

that run in polynomial time.

1.1.2 Approximation Algorithms

In order to solve NP-complete or NP-hard optimization problems in polynomial time, a

trade-off is typically made between solution cost and time complexity. Approximation

algorithms are offline algorithms that are often used to obtain near-optimal solutions

to such problems and can run in polynomial time. An approximation algorithm must

produce a feasible solution with cost at most some factor away from the optimal cost.

This factor is called an approximation ratio.
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Let A(I) denote the cost of the solution for an approximation algorithm A on any

input I, and OPT (I) denote the cost of the optimal solution on I. For a minimization

problem, we say that A has an asymptotic approximation ratio c > 1 (or alternatively is

c-approximate) if for any input I, A(I) ≤ cOPT (I)+ b, for a positive constant b. If the

constant b is not a positive value, then we say that A has an absolute approximation ratio

c (or alternatively is strictly c-approximate). The definition for a maximization problem

is similar, except that we now require that OPT (I) ≤ cA(I) + b. These performance

guarantees are similar for online algorithms, which are the main focus of this work, as

we will see in the next subsection.

1.1.3 Online Algorithms and Competitive Analysis

Optimization problems in which the input is received one at a time and output must be

produced throughout time are called online problems. In order to solve such problems,

online algorithms are used. An online algorithm receives input throughout time and

must make irrevocable decisions without knowledge of future input. The disadvantage

of online algorithms becomes apparent compared to offline algorithms that have access

to the whole input in advance. In the case of online algorithms, irrevocable decisions

taken throughout their execution affect the cost of the solution produced. Nonetheless,

the challenge of designing ‘good’ online algorithms has contributed to the theory of

combinatorial optimization for almost half a century in the context of, e.g., bin packing,

scheduling, and data structures (surveys [23], [64], and [1], respectively). Although many

of the problems mentioned above are initially studied offline, their online counterparts

reflect realistic models and online algorithms constitute an interesting class of algorithms

by themselves. It is also worth mentioning that some online algorithms give good offline

approximation results, thus their significance is not only limited to online problems.

Competitive analysis [11] was introduced by Sleator and Tarjan [65] as a measure-

ment of the worst-case performance of an online algorithm A compared to an optimal

offline algorithm OPT . As mentioned before, OPT knows the whole input in advance

and is able to compute an optimal solution for a given problem. Even though the com-

putational complexity of finding such an optimal solution may be very high and we may

not be able to explicitly give such an optimal algorithm, a comparison of performance

between A and OPT can still be made, as the minimum cost of OPT ’s solution is con-

strained by the problem model and input. Competitive analysis has also been compared

to a game of two players [67], in which an online algorithm plays against an adversary

that generates the input and acts as an offline algorithm, while it tries to minimize its

cost relative to the online algorithm.

For a cost minimization problem, an online algorithm A is said to be c-competitive

against an optimal offline algorithm OPT if there exists a constant b such that for

any input I, A(I) ≤ cOPT (I) + b, where A(I) and OPT (I) denote the cost of the

solution of A and OPT , respectively, on the input I. In this case, we say that A is

c-competitive or equivalently that A attains a competitive ratio c. When the constant
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b is a positive value, c is called an asymptotic competitive ratio. Having a positive

constant b reflects that for online problems we allow arbitrarily long input and thus the

value of b becomes insignificant. On the other hand, when b is a constant with value at

most zero, i.e., A(I) ≤ cOPT (I), we say that A is a strictly c-competitive algorithm or

equivalently that A attains an absolute competitive ratio c. Note that in the case of a

cost minimization problem the competitive ratio is at least 1 and the smaller it is, the

better an online algorithm performs against an optimal offline algorithm.

In this work we focus on the asymptotic performance of deterministic online algo-

rithms for the bin packing problem. A different approach would be to use randomized

online algorithms. Randomized algorithms for bin packing are algorithms that use coin

flips to determine where to pack items. We recognize that randomization may be useful

in improving upper bounds for optimization problems. However, for bin packing it is

currently unclear whether randomized algorithms may help substantially. As noted in

[23], Chandra [21] gave adversaries for any randomized online algorithm for some bin

packing problems where the lower bounds were matching the lower bounds of determin-

istic online algorithms. Note that some lower bounds for deterministic online algorithms

were further improved since [21]. The study of randomized online algorithms for bin

packing would merit a topic of its own, however it is beyond the scope of this thesis.

We will thus mainly study the bin packing problem from a deterministic point of view.

1.2 Bin Packing Problems

There are many variants of the classical bin packing problem that continue to attract

researchers’ attention (see the surveys [31, 27, 24, 23]). We introduce the classical bin

packing problem in Section 1.2.1 before proceeding to online (static) bin packing in

Section 1.2.2. In Section 1.2.3 we introduce the online dynamic bin packing problem,

which is the model studied throughout this thesis. These sections give a brief overview

of the problem models and some results for them, while Chapter 2 gives a detailed

literature review. Most of the results obtained in this thesis are described in Section

1.2.3, with additional results in Section 1.2.4.

1.2.1 The Classical Bin Packing Problem

The bin packing problem is an NP-hard [45] classical combinatorial optimization problem

that has been extensively studied throughout the years and different variants continue

to attract researchers’ attention (surveys [31, 27, 24, 23]).

Problem definition. In the offline setting [53], we are given a set of items, each with

size a real number in (0, 1] and an infinite supply of unit-size bins. The objective of the

bin packing problem is to pack the set of items into a minimum number of bins such

that the total size of the items in a bin does not exceed the bin capacity.

Motivation. The bin packing problem has many applications such as allocating mem-

ory in computers [20], assigning commercials to station breaks in television programming
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Figure 1.1: (a) The optimal solution with three bins and (b) the First-Fit online algo-
rithm solution with four bins for item list L. The example shows items being packed

along the height of a one-dimensional bin.

[13], and packing and cutting stock applications [2]. Multi-dimensional generalizations of

the problem have applications in storing real objects. Furthermore, the dynamic setting

is a more realistic model that takes into account departure of items at arbitrary times,

and is suitable for dynamic storage allocation in computers and warehouse storage. It

is worth mentioning that the online versions of the problems also reflect more realistic

scenarios where the input is given one at a time, and decisions are irrevocable and will

impact the overall cost of the solution.

1.2.2 Online Bin Packing

Problem definition. In the online setting [63, 69], items with sizes that are real

numbers in (0, 1] arrive at arbitrary times. The item size and arrival time are only

known when the item arrives. Given an infinite supply of unit-size bins, the objective of

the online bin packing problem is to pack items given throughout time into a minimum

number of bins such that the total size of the items in a bin does not exceed the bin

capacity. Migration of items between bins is not permitted1.

Recall from Section 1.1.3 that the performance of an online algorithm is measured

using competitive analysis [11]. Consider any online algorithm A. Given an input I,

let A(I) and OPT (I) be the number of bins used at the end of the input by A and the

optimal offline algorithm, respectively. Algorithm A is said to be c-competitive if there

exists a constant b such that A(I) ≤ cOPT (I) + b for all I. In order to highlight the

additional difficulty of the online model, let us consider the following example.

Example 1.1. Suppose we have an input list L consisting of six items. Let L =

(p1, p2, p3, p4, p5, p6) and let si denote the size of pi. For a small ǫ > 0, suppose

s1 = s2 = 1/2−ǫ, s3 = s4 = 1/2+ǫ, s5 = 1/3, and s6 = 2/3. In the offline setting,

all items sizes are known in advance, while in the online setting item sizes are given one

at a time in the order of their indices.

For Example 1.1, one optimal solution is to pack items as shown in Figure 1.1(a), i.e.,

p1 and p3 are packed in one bin, p2 and p4 are packed in a second bin, and p5 and p6

are packed in a third bin. An online algorithm will also aim to minimize the “wasted”

1This reflects realistic scenarios where the overhead cost of migration may not be justified or where
bins may be physically far away from each other.
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space within a bin, even without knowledge of the input, in this case consisting of

complementary size items. Consider the First-Fit (FF) algorithm. When a new item

arrives, if there are occupied bins in which the item can be repacked, FF assigns the new

item to the bin which has been occupied for the longest time. In other words, assuming

bins are indexed in increasing order from left to right, FF aims to pack a new item in

the lowest index bin in which it will fit. If no existing bin can accommodate the item,

FF opens a new bin and packs the item there. Note that FF will not open a new bin

unless no existing bin can accommodate the new item. For the item list L with items

given in the order of their indices, FF requires four bins as shown in Figure 1.1(b).

Knowing the input in advance does provide better cost solutions. For instance, First-

Fit Decreasing (FFD), an algorithm that sorts the items in non-increasing order of their

sizes and then packs them according to the First-Fit rule, gives an optimal solution for

Example 1.1. In general, FFD has an asymptotic approximation ratio of 11/9 ∼ 1.223

[52, 53], while the best lower bound for any algorithm for online bin packing currently

stands at 1.54037 [4].

1.2.3 Online Dynamic Bin Packing

Most existing work focuses on “static” bin packing in the sense that items do not depart.

In some potential applications like warehouse storage, a more realistic model takes into

consideration dynamic arrival and departures of items. This natural generalization,

known as dynamic bin packing, was introduced by Coffman, Garey and Johnson [26].

Problem definition. In online dynamic bin packing, items with sizes that are real

numbers in (0, 1] arrive over time, reside for some period of time, and may depart at

arbitrary time. The size and arrival time of an item are only known when the item

arrives and the departure time is only known when the item departs. We are also given

an infinite supply of unit-size bins. Each item has to be assigned to a bin from the time

it arrives until it departs such that the total size of the items in a bin does not exceed

the bin capacity at any time. The objective is to minimize the maximum number of bins

used over all time. Migration of items between bins is not allowed, while rearrangement

of items within a bin is permitted2.

While the generalization to include dynamic departure of items is indeed useful, it

may further increase the ratio of the online solution cost to the optimal offline solution

cost. Recall the item list L in Example 1.1. Suppose first all items in L are packed by

the First-Fit (FF) online algorithm (defined in Section 1.2.2). After all items have been

packed, we let p1 and p3 depart as shown in Figure 1.2(b). Finally, we release one new

item p7 with s7 = 1. In the end, FF uses five bins as no existing bin can accommodate

the new item. On the other hand, the cost of the optimal solution remains unchanged,

as shown in Figure 1.2(a).

2Rearrangement of items within a bin is permitted as it does not affect the configuration of other
bins. The related problem where position of items inside a bin are fixed is called “checkerboarding” [57]
and has been studied in the context of dynamic storage allocation [62], where one is concerned with
managing space within a bin.
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(a) The first bin is emptied entirely
as items p1 and p3 depart. The new
item p7 is packed in the first bin and
the cost of the optimal solution re-

mains unchanged.

p1
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p3 p4

p5

p6

p7

departed

(b) As items p1 and p3 depart the contents of ex-
isting bins may be shifted towards the bottom of
the bin to accommodate new items. However, no
existing bin can accommodate the new item p7.

Figure 1.2: (a) The optimal solution with three bins and (b) the First-Fit online algo-
rithm solution with five bins.

Existing results. The seminal paper [26] studied the First-Fit online algorithm. They

showed that the competitive ratio of First-Fit lies between 2.75 and 2.897. However, the

2.75-lower bound assumes an optimal offline algorithm that allows migration of items

between bins. They also showed that a modified First-Fit algorithm is 2.788-competitive.

The modified First-Fit algorithm packs any item with size larger than 1/2 to a dedicated

bin and all other items according to the First-Fit rule. They also gave a lower bound

of 2.388 on the competitive ratio of any deterministic online algorithm. As usual, the

2.388-lower bound adversary assumes the optimal offline algorithm knows the input in

advance, however it is not allowed to migrate items between bins, thus the result is

“stronger” in this sense. This lower bound has later been improved to 2.428 [18] and

then to the best known lower bound of 2.5 [19].

Our contribution. In Chapter 3 of this thesis, we improve the lower bound for any

deterministic online algorithm to 8/3 ∼ 2.666, reducing the gap between the upper

and lower bounds by about 60% from 0.288 to 0.122. We introduce a novel adversarial

sequence that forces an online algorithm A to open 2s bins with items having a total

size of s only and this can be adapted appropriately regardless of the current load of

other bins that have already been opened by A. Comparing with the previous 2.5 lower

bound, this basic step gives a better way to derive the complete adversary and a better

use of items of slightly different sizes leading to a tighter lower bound. Furthermore, we

show that the 2.5-lower bound can be obtained using this basic step in a much simpler

way.

Online Multi-dimensional Dynamic Bin Packing. The bin packing problem has

been initially studied in one dimension, i.e, 1-D, and has been extended to multiple

dimensions, i.e., d-D, where d ≥ 1 (see survey [39]).

Problem definition. In online multi-dimensional dynamic bin packing (d-D packing),

items with lengths in each dimension that are real numbers in (0, 1] arrive over time,

reside for some period of time, and may depart at arbitrary time. The lengths and

arrival time of an item are only known when the item arrives and the departure time
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is only known when the item departs. We are also given an infinite supply of multi-

dimensional bins of unit size in each dimension. Each item has to be assigned to a bin

from the time it arrives until it departs such that items do not overlap and do not exceed

the boundary of the bin. The items are oriented and cannot be rotated. The objective

of the problem is to minimize the maximum number of bins used over all time. As in

one-dimensional dynamic bin packing, migration of items to another bin is not allowed,

yet rearrangement of items within a bin is allowed.

Unit fraction and power fraction items. In some real applications, item size is not

represented by arbitrary real numbers in (0, 1]. Bar-Noy et al. [8] initiated the study

of the one-dimensional unit fraction bin packing problem, a restricted version where all

sizes of items are of the form 1
k , for some integer k > 0. The problem was motivated

by the window scheduling problem [7, 8]. Another related problem is for power fraction

items, where sizes are of the form 1
2k
, for some integer k ≥ 0.

It is clear that items with lengths that are real numbers in (0, 1], which we call general

size items, form a superset of unit fraction and power fraction items, and algorithms

for general size items obtain the same worst-case performance for unit fraction and

power fraction items. A natural question arising is whether there are better algorithms

for multi-dimensional dynamic bin packing of unit fraction and power fraction items.

Currently, the best algorithm for online one-dimensional dynamic bin packing of unit

and power fraction items is the First-Fit algorithm that attains a competitive ratio of

2.4842 [47], compared with 2.788 [26] for general size items.

Our contribution. We extend the answer to the above question in the affirmative and

initiate the study of two- and three-dimensional dynamic bin packing of unit and power

fraction items. In Chapter 4 we provide a new algorithm for online 2-D dynamic bin

packing of unit fraction items and show that its worst-case performance is indeed better

than its classical counterpart. Based on this result, we expand our analysis and provide

new algorithms for 2-D power fraction items, and 3-D unit and power fraction items in

Chapter 5.

1.2.4 Additional Lower Bounds

The last part of the thesis in Chapter 6 is dedicated to obtaining lower bounds on

the performance of classical bin packing algorithms belonging to the Any-Fit family of

algorithms. We give adversaries for First-Fit, Best-Fit, Worst-Fit, and Any-Fit for multi-

dimensional dynamic bin packing. When a new item R arrives, if there are occupied bins

in which R can be packed (allowing repacking for existing items), the algorithms assign

R to one of these bins as follows: First-Fit assigns R to the bin which has been occupied

for the longest time; Best-Fit assigns R to the heaviest loaded bin with ties broken

arbitrarily; Worst-Fit assigns R to the lightest loaded bin with ties broken arbitrarily;

and Any-Fit assigns R to any of the bins arbitrarily.
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Our contribution. We first show that the First-Fit, Best-Fit, Worst-Fit, and Any-Fit

algorithms without modification have unbounded competitive ratios for multi-dimensional

dynamic bin packing of general size items. This is contrasted with the performance of

First-Fit which is O(1)-competitive for one-dimensional dynamic bin packing of general

size items [26]. Using an argument from [26], it can also be shown that Any-Fit (in-

cluding Best-Fit and Worst-Fit) is also O(1)-competitive for one-dimensional dynamic

bin packing of general size items. Additionally, we show that Best-Fit and Worst-Fit

have unbounded competitive ratios for multi-dimensional dynamic bin packing even for

power fraction items, while First-Fit is at least 5.45-competitive for 2-D unit fraction

items and at least 6.45-competitive for 3-D unit fraction items. For First-Fit, the lower

bound results for 2-D and 3-D power fraction items are slightly lower. These results are

in contrast with the lower bounds of any algorithm of 3.70301 [37] and 4.85383 [37] for

2-D and 3-D unit fraction items, respectively.

1.3 Organization of the Thesis

The thesis is dedicated to the design and analysis of online algorithms for the dynamic

bin packing problem. In particular, Chapter 2 gives a more detailed background of the

bin packing problem, current results, and the online dynamic bin packing models that

are considered in this thesis. Chapter 3 gives a new approach to improving the lower

bound of any deterministic online algorithm for one-dimensional dynamic bin packing.

The results are published in [71]. In Chapter 4 we consider two-dimensional online

dynamic bin packing of unit fraction items and design and analyze the performance

of an online algorithm for the model. Based on this result, we expand our analysis

in Chapter 5 to two-dimensional power fraction items, and three-dimensional unit and

power fraction items. The results in Chapters 4 and 5 are published in [15], however

most of the analysis of Chapter 5 was omitted in [15]. In Chapter 6 we present several

lower bounds for the family of Any-Fit algorithms for multi-dimensional dynamic bin

packing of general size, unit fraction, and power fraction items. The work in Chapter 6

represents a continuation of the results in [15]. Finally in Chapter 7 we give concluding

remarks, including some partial results on the lower bound for the algorithm in Chapter

4. We also propose future directions for the work.

1.4 Author’s Contribution

The main construction of the adversary in Chapter 3 was completed by two co-authors,

Prudence W.H. Wong and Fencol C.C. Yung. The author contributed to the proof for a

simpler 2.5-lower bound (the adversary and the optimal offline packing configuration), as

well as contributing to the optimal offline packing configuration for the new 2.666-lower

bound. In Chapters 4 and 5, the work was completed by the author with significant

contributions from the same co-authors. Finally, in Chapter 6, the work was primarily

completed by the author, with guidance from one co-author, Prudence W.H. Wong.
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The work in this thesis is in part based on the following two publications, that have

been expanded and adapted for the purpose of this thesis:

• Prudence W.H. Wong, Fencol C.C. Yung, and Mihai Burcea. An 8/3 Lower Bound

for Online Dynamic Bin Packing. Proceedings of the 23rd International Symposium

on Algorithms and Computation (ISAAC), 2012, pp. 44–53 ([71]).

The journal version is currently under submission to Algorithmica; and

• Mihai Burcea, PrudenceW.H. Wong, and Fencol C.C. Yung. Online Multi-dimensional

Dynamic Bin Packing of Unit-Fraction Items. Proceedings of the 8th International

Conference on Algorithms and Complexity (CIAC), 2013, pp. 85–96 ([15]).

The journal version is currently in preparation.

1.5 Additional Contribution

The author has also contributed to an offline scheduling problem arising in demand

response management [17, 60] in Smart Grid [42]. However, the work resulted in part

from a collaboration with another Ph.D. student and it has been decided not to include

the results in this thesis. For completeness, we give the definition of the problem and

results obtained.

Problem definition. We consider an offline scheduling problem where the input con-

sists of a set of unit-sized jobs J = {J1, J2, . . . , Jn}. The time is divided into integral

timeslots T = {1, 2, 3, . . . , τ} and each job Ji ∈ J is associated with a set of feasible

timeslots Ii ⊆ T , in which it can be scheduled. In this model, each job Ji must be

assigned to exactly one feasible timeslot from Ii. The load ℓ(t) of a timeslot t represents

the total number of jobs assigned to the timeslot. We consider a general convex cost

function f that measures the cost used in each timeslot t based on the load at t. The

total cost used is the sum of cost over time. Over all timeslots this is
∑

t∈T f(ℓ(t)). The

objective is to find an assignment of all jobs in J to feasible timeslots such that the

total cost is minimized.

Our contribution. We propose a polynomial time offline algorithm that gives an

optimal solution. We show that the time complexity of the algorithm is O(n2τ), where

n is the number of jobs and τ is the number of timeslots. We further show that if the

feasible timeslots for each job to be served form a contiguous interval, we can improve

the time complexity to O(n log τ +min(n, τ)n log n).

The interested reader is referred to the following publication.

• Mihai Burcea, Wing-Kai Hon, Hsiang-Hsuan Liu, Prudence W.H. Wong, and David

K.Y. Yau. Scheduling for Electricity Cost in Smart Grid. Proceedings of the 7th

International Conference on Combinatorial Optimization and Applications (COCOA),

2013, pp. 306–317 ([14]).

The journal version is currently in preparation.



Chapter 2

Bin Packing Problems

In this chapter we give a more detailed history of the bin packing problem and some of

its variants. We first survey results on the offline bin packing problem in Section 2.1

before proceeding to online bin packing in Section 2.2 and ultimately online dynamic

bin packing in Section 2.3. We also present variations on the bin packing problem and

other metrics to measure the performance of online algorithms in Section 2.4.

We also give a flavour of the results addressed in this thesis. Specifically, we give

simple upper and lower bounds for the First-Fit algorithm in the context of online

dynamic bin packing (Section 2.3). This serves to introduce the reader to the more

complex analysis in later chapters, where several algorithms are analyzed.

2.1 The Classical Bin Packing Problem

In the classical bin packing problem [53] we are given an infinite supply of uniform-sized

bins and a list of items, each of which has size no larger than the common bin capacity.

The goal of the optimization problem is to pack the items into a minimum number of

bins, such that the sum of all items in a bin does not overflow the bin capacity. There are

many applications of bin packing such as allocating memory in computers [20], assigning

commercials to station breaks in television programming [13], and packing and cutting

stock applications [2].

Due to the fact that the bin packing problem is NP-hard [45], research has been

devoted to developing approximation algorithms for the offline version of the problem

and online algorithms for its online counterpart. In fact, the research on bin packing has

played an important role in the formation of complexity theory and in both the com-

binatorial and average-case analysis of approximation and online algorithms [27, 23].

Approximation algorithms (online algorithms, respectively) are sub-optimal offline algo-

rithms (online algorithms, respectively) that guarantee worst-case performance within a

factor of the optimal offline solution. For the bin packing problem, approximation and

online algorithms that run in polynomial time are generally sought.

In Sections 1.1.2 and 1.1.3 we have defined the approximation ratio and the com-

petitive ratio for approximation and online algorithms, respectively. For bin packing,

11
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p1
p2

p3
p4

(a) The optimal solution requires two bins,
by packing p1 and p4 in the first bin, and

p2 and p3 in the second bin.

p1

p2

p3
p4

(b) The First-Fit algorithm requires three
bins. p1 and p2 are packed in the first bin,
p3 is packed in the second bin, and p4 is

packed in the third bin.

Figure 2.1: (a) The optimal solution and (b) the First-Fit solution for item list L. The
example shows items being packed along the height of a one-dimensional bin.

where input sequences may be arbitrarily long, we use the asymptotic approximation

ratio and asymptotic competitive ratio as a metric for measuring the performance of

approximation and online algorithms, respectively. We usually refer to the asymptotic

approximation (competitive, respectively) ratio simply as the approximation (compet-

itive, respectively) ratio when discussing worst-case performance of algorithms, unless

both absolute and asymptotic ratios are relevant to the discussion.

Throughout the thesis we assume without loss of generality that each bin has a

capacity of 1 and items have sizes that are real numbers in (0, 1]. To illustrate the

classical bin packing problem, suppose we have an input list L consisting of four items.

Let L = (p1, p2, p3, p4) and let si denote the size of pi. Suppose s1 = 1/3, s2 = s3 = 1/2,

and s4 = 2/3. It is clear that an optimal solution requires at least ⌈(s1 + s2 + s3 +

s4)⌉ = 2 bins; Figure 2.1(a) shows such an optimal solution. Nonetheless, it is not

so straightforward how to produce an optimal solution. Consider the First-Fit (FF)

algorithm. When a new item arrives, if there are occupied bins in which the item can be

repacked, FF assigns the new item to the bin which has been occupied for the longest

time. If no existing bin can accommodate the item, FF opens a new bin and packs the

item there. For the item list L, FF requires three bins as shown in Figure 2.1(b). Note

that FF greedily packs the items in order of their indices.

A better approximation algorithm would make use of the information of the input se-

quence, i.e., the item sizes. In order to obtain an improvement over First-Fit, algorithms

that pack larger items first would be desirable. This is because we want to minimize the

“wasted” space in a bin. A natural modification of First-Fit is the First-Fit Decreasing

(FFD) algorithm that first sorts the items sizes in non-increasing order and then packs

them according to the First-Fit rule. For the example list L given above FFD produces

an optimal solution.

Xia and Tan [72] showed that, for any input, FF requires at most 1.7OPT + 0.7

bins, where OPT denotes the minimum number of bins required by an optimal offline

algorithm. Dósa and Sgall [35] improved the approximation ratio to exactly 1.7, thus the

asymptotic approximation ratio and the absolute competitive ratio are indeed equal for

FF. They also give a lower bound of 1.7 on the absolute approximation ratio of FF, thus
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1-D 2-D 3-D

Approximation ratio 1.184 [54] 1.525 [5] 2.8595 [16]

Admits APTAS? Yes [43] No [6] No [6]

Admits PTAS? No [3] No [3] No [3]

Table 2.1: Asymptotic approximation ratios, and APTAS and PTAS admissibility for
offline bin packing.

the bound is shown to be tight. On the other hand, FFD originally analyzed by Johnson

et al. [52, 53] has a much better asymptotic approximation ratio of 11/9 ∼ 1.223, while

its absolute approximation was shown by Dósa et al. [34] to be 4/3 ∼ 1.334. The current

best approximation algorithm was proposed by Johnson and Garey [54]. The algorithm

is called Modified First-Fit Decreasing (MFFD) and is a modification based on FFD. The

main difference from FFD is that MFFD attempts to packs items with sizes in (1/6, 1/3]

in bins containing items with size larger than 1/2. The asymptotic approximation ratio

is proven to be 71/60 ∼ 1.184.

There are of course many other offline algorithms for bin packing, including asymp-

totic polynomial-time approximation schemes [45] denoted by APTAS. An APTAS pro-

duces an approximation algorithm that uses (1 + ǫ)OPT + b bins, for a small ǫ > 0,

OPT being the number of bins used by an optimal offline algorithm, and b a positive

constant, that has a running time that is polynomial in 1/ǫ. The bin packing problem

is shown to admit an asymptotic PTAS in [43]. If the additive constant is not positive,

there is no PTAS for the bin packing problem [3]. A recent survey [23] covers a wide

range of results for classical bin packing algorithms.

There are multi-dimensional generalizations of the classical bin packing problem,

where items have lengths in (0, 1] in each dimension and must be packed in multi-

dimensional unit-size bins. The best approximation ratio for two-dimensional bin pack-

ing is 1.525 [5], while for three-dimensional bin packing it is 2.8595 [16]. Bansal et

al. [6] showed that even the two-dimensional problem does not admit an APTAS un-

less P=NP. Multi-dimensional generalizations of the classical bin packing problem are

surveyed in [39]. Table 2.1 gives a summary of the best results for bin packing ap-

proximation algorithms. In the next sections we will also survey existing results for the

online multi-dimensional model before discussing the online multi-dimensional dynamic

setting.

2.2 Online Bin Packing

In the previous section, we have seen the disadvantage of the First-Fit (FF) algorithm

against the First-Fit Decreasing (FFD) algorithm. FFD uses knowledge of the input and

sorts the items according to their sizes. FF on the other hand does not use knowledge

of the whole input and thus attains a worse approximation ratio. The challenge that

online algorithms for the bin packing problem face is similar in this sense, as each item
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1-D 2-D 3-D

Upper
bound

Static 1.58889 [63] 2.5545 [46] 4.3198 [46]
Dynamic 2.788 [26] 7.788 [70] 22.788 [70]

Lower
bound

Static 1.54037 [4] 1.907 [9] 2.111 [9]
Dynamic 2.666 [*] [71] 3.70301 [37] 4.85383 [37]

Table 2.2: Asymptotic competitive ratios and lower bound results for online static bin
packing and online dynamic bin packing of general size items. General size items have
lengths that are real numbers in (0, 1]. [*] This result is also presented in Chapter 3.

is received one at a time, without knowledge of future input, and an online algorithm

must make an irrevocable decision on where to pack the current item.

FF can be applied to the online (static) bin packing problem and its approximation

ratio directly translates into a tight 1.7-competitive ratio based on the result of [35].

There are many [23] online algorithms for bin packing. The current best algorithm,

Harmonic++ [63] has a competitive ratio of 1.58889. The algorithm works by defining

types for the items based on their sizes and for each type the items are packed in

dedicated bins which contain only items of one specific type. Harmonic++ defines 70

types of items, i.e., there are 70 disjoint subintervals of (0, 1] which together fully cover

(0, 1]. The lower bound for this algorithm, which belongs to the class of Harmonic

algorithms [68], was already established to be 19/12 ∼ 1.58333 [61]. The lower bound

for any algorithm for online bin packing currently stands at 1.54037 [4].

In multi-dimensional online (static) bin packing, the bins have capacity 1 in each

dimension and items have lengths in (0, 1] in each dimension. In this thesis, we study

the model where items are oriented and cannot be rotated. For two-dimensional online

bin packing, the current best upper bound of 2.5545 is due to Han et al. [46], and

they achieve this result by using a Harmonic-type algorithm. The best lower bound

known is 1.907 [9]. Han et al. [46] also mentioned that their result can be applied to

three-dimensional online bin packing and this gives an algorithm with competitive ratio

4.3198, improving the previous upper bound of 4.8354 [38]. The lower bound for any

online algorithm for three-dimensional bin packing is 2.111 [9]. A more detailed survey

by Epstein and van Stee [39] covers offline and online results for multi-dimensional bin

packing. Table 2.2 gives a summary of the best results for online static bin packing

and also provides a comparison with the results for online dynamic bin packing. It is

interesting to note that Harmonic-type approaches currently give the best algorithms

for online static bin packing. Unfortunately, some of these approaches may not be

suitable for online dynamic bin packing, as we will discuss in the next section.

2.3 Online Dynamic Bin Packing

Online dynamic bin packing is a natural generalization of the online bin packing problem.

In potential applications such as warehouse storage and dynamic storage allocation in

computers, the more realistic model of dynamic bin packing is required. This natural
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generalization was introduced by Coffman, Garey and Johnson [26]. In online dynamic

bin packing, items arrive over time, reside for some period of time, and may depart at

arbitrary time. Each item has to be assigned to a bin from the time it arrives until

it departs. The objective is to minimize the maximum number of bins used over all

time. Note that migration to another bin is not allowed, but rearrangement of items

within a bin is permitted. In the online setting, the size and arrival time is only known

when an item arrives and the departure time is only known when the item departs.

For online dynamic bin packing, as usual, we measure the performance of an online

algorithm using competitive analysis [11]. The subtle difference from online bin packing

is that the maximum number of bins used by an online algorithm A and an optimal

offline algorithm OPT are measured over all time. More formally, for any input I, we

say that A is c-competitive if there exists a constant b such that A(I) ≤ cOPT (I) + b

for all I, where A(I) and OPT (I) are the maximum number of bins used by A and

OPT , respectively, over all time.

In the remainder of this section, we will discuss the one-dimensional dynamic bin

packing problem, showing how to obtain simple bounds for the First-Fit algorithm,

before proceeding to online multi-dimensional dynamic bin packing where we describe

previous algorithms by Epstein and Levy [37]. These discussions serve to introduce

the reader to the more complex analysis in later chapters, where several algorithms are

analyzed. State of the art results for online dynamic bin packing are summarized in

Table 2.2, where they are compared against results for online static bin packing. It

is interesting to note that the lower bounds for any algorithm for online dynamic bin

packing exceed the upper bound results for online static bin packing, making online

dynamic bin packing “harder” than its static counterpart.

2.3.1 Online one-dimensional dynamic bin packing

Coffman, Garey, and Johnson [26] initiated the study of the online one-dimensional

dynamic bin packing problem. Among their results, they analyze the worst-case per-

formance of the First-Fit (FF) algorithm (see Section 2.1 for a description) and pro-

vide lower bounds for FF and any online algorithm. They showed that FF is 2.897-

competitive and gave a lower bound for any online algorithm of 2.388. They also gave

a modified version of First-Fit (FFM) that classifies items into two classes, items with

size larger than 1/2 and smaller or equal to 1/2, and packs items of the first class in a

dedicated bin and items of the second class according to the First-Fit rule. They show

that FFM is 2.788-competitive.

To introduce the reader to the more complex analysis of bin packing algorithms in

later chapters, we give a trivial method of proving a competitive ratio of 3 for FF, shown

in [26]. We also show how a simple lower bound can be constructed for FF.

An upper bound of 3 for First-Fit ([26]). As noted in [26], to analyze the per-

formance of FF we can restrict our attention to any input satisfying the following two

conditions:
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(i) FF uses the maximum number of bins when the last item is packed and not before.

(ii) No occupied bin ever becomes empty during the execution of FF on input sequences

satisfying (i). Otherwise, if there is an occupied bin that becomes empty, we can

consider the same sequence of items without all the items that are packed to that

bin before the bin becomes empty. FF will work out the same final packing and

the maximum number of bins used will remain unchanged.

Let FF(I) and OPT(I) denote the number of bins used by First-Fit and an optimal

offline algorithm OPT , respectively, on any input I satisfying the above two conditions.

Notice that by condition (ii) we can label the bins in increasing order and their labels

do not change. The lowest index bin represents the longest occupied bin that FF uses

and the highest index bin represents the latest occupied bin used by FF. We refer to

bin Bi as the i-th bin opened by FF. The load of a bin Bi, denoted by ℓi, represents the

sum of sizes of items that have been packed in Bi. Similarly, the total load L of all bins

represents the total sum of loads of all bins. It is clear that an optimal solution requires

at least ⌈L⌉ bins.

Coffman et al. give the following two observations that are sufficient to prove the

upper bound of 3. First, any item that is packed in bin Bj with j > 2OPT(I) must have

size greater than 1/2. Otherwise, if any item smaller than 1/2 is packed in Bj , the load

of all bins before Bj must exceed 1/2, i.e., ℓi > 1/2, for all i < j, and thus the total load

of all bins used by FF exceeds 2OPT(I) × 1/2. In this case, OPT would require more

than OPT(I) bins to pack the load, which is a contradiction. The second observation

is that there are at most OPT(I) items with size larger than 1/2, since more than that

number requires more than OPT(I) bins. Then the upper bound of 3 follows.

Although the analysis presented above is simple, it contains important arguments

when analyzing the performance of bin packing algorithms. We first want to ensure

that when a new bin is opened, we can obtain a bound on the load of all other bins.

Additionally, we want to deduce the sizes of items beyond a certain point in the packing

configuration. Our approach in Chapters 4 and 5, albeit more complex, follows this line

of arguments.

A lower bound of 2.25 for First-Fit. From an adversarial point of view, the lower

bound construction aims to maximize the “wasted” space in a bin. For FF, we show

how to obtain a simple 2.25 lower bound for online dynamic bin packing. Generally,

lower bounds for dynamic bin packing consist of multiple stages and in each stage there

may be item arrival and departure. Let k be an arbitrarily large integer and ǫ = 1/k.

We aim to show that FF uses 2.25k bins, while the optimal offline algorithm OPT uses

k + 1 bins. Then the competitive ratio of FF is at least 2.25. During the adversarial

sequence, we keep the total load of items released and not departed to at most k + 1.

In Stage 0, we release k/ǫ items of size ǫ and FF uses k bins. In Stage 1, we first

depart a load of 1/2− ǫ of ǫ-sized items from each of the k bins opened in the previous

stage. Afterwards, we have k bins, each packed with a load 1/2+ ǫ of ǫ-sized items. The
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Figure 2.2: The final configuration of FF achieved by the adversary for a simple 2.25
lower bound.

total load in the packing at this point becomes k× (1/2 + ǫ) = k/2+ 1. We now release

k items of size 1/2, accounting for a load of k/2. No item can fit in any of the opened k

bins, and FF packs them in k/2 new bins, two items in each bin. In Stage 2, we depart

only one 1/2-sized item from each of the k/2 bins opened in Stage 1. Additionally, we

depart a load of 1/2 of ǫ-sized items from each of the first k bins. We are left with k bins

each packed with one ǫ-sized item and k/2 bins each packed with a 1/2-sized item, with

a total load of k/4 + 1. We can finally release 3k/4 items of size 1. FF packs each item

in a dedicated bin, thus the total number of bins used by FF is 9k/4 = 2.25k. Figure

2.2 shows the final configuration of the packing of FF.

What remains to show is that there exists an optimal offline algorithm OPT that can

use at any time no more than k + 1 bins. In Stage 0, all ǫ-sized items in the adversary

that never depart are packed in one bin by OPT . The remaining ǫ-sized items are packed

as follows. The items that will depart in Stage 1 are packed in k/2 − 1 bins and the

ǫ-sized items that depart in Stage 2 are packed in k/2 bins. OPT uses k bins in Stage

0. At the beginning of Stage 1, k/2− 1 bins are emptied. OPT packs the new 1/2-sized

items that never depart in k/4 of the emptied bins, and the remaining items in k/4 bins,

opening only one additional new bin. In total OPT uses k+1 bins. At the beginning of

Stage 2, k/4 bins containing 1/2-sized items are emptied and k/2 bins containing ǫ-sized

items are emptied. The new 3k/4 items of size 1 are packed in the empty bins and at

the end OPT uses k + 1 bins. The lower bound of 2.25 then follows.

We have noted that in order to minimize the wasted space in a bin, an algorithm’s

aim is to pack larger items first. It is natural that adversaries used to construct lower

bounds should present an algorithm with smaller items first and attempt to maximize the

wasted space in a bin. Another technique of the adversary is to “block” items arriving

at a later time, by leaving a bin packed with sufficient items, e.g., at the beginning of

Stage 1 we have k bins each packed with a load of 1/2 + ǫ and items of size 1/2 later

arrive. This prevents the new items from being packed in existing bins and forces FF

to open additional bins. The construction of the lower bound becomes more complex

as we attempt to reach the upper bound of an algorithm, especially if our aim is to

prove a lower bound for any online algorithm (e.g., it also involves case analysis). It

is also important to show that there exists an optimal offline algorithm OPT that can

pack the input sequence into a desired number of bins, without allowing migration of

items between bins at any time. OPT must also not encounter any “fitting” issues,
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e.g., for some small ǫ > 0, three items of size 1/2 + ǫ (with total load 1.5 + 3ǫ) may

not be packed in less than three bins, as any two items packed in the same bin would

overflow the bin capacity. Our 8/3 ∼ 2.666 lower bound for any online algorithm in

Chapter 3 is based on these observations and additionally a novel way of constructing

the adversary, by using items of slightly different sizes and items with complementary

sizes. Furthermore, Chapter 6 also gives adversaries for several online algorithms for

multi-dimensional dynamic bin packing.

A note on Harmonic-type algorithms. Recall that Harmonic-type algorithms are

used for online non-dynamic (static) bin packing. The algorithms define types for the

items based on their sizes and for each type the items are packed in dedicated bins

which contain only items of one specific type. We can see that for online dynamic bin

packing such algorithms may not be suitable if the number of types defined is large.

We can construct an adversary that releases items of one type at a time, then departs

most of them from the packing, without emptying any bin, and proceeds to release

items of a different type. Previously opened bins will not pack items of a different type,

thus the wasted space in existing bins can be maximized. Nonetheless, for online multi-

dimensional dynamic bin packing we use in Chapters 4 and 5 a classification of items

based on their lengths (three and four classes for two- and three-dimensional dynamic bin

packing, respectively) in order to get constant competitive algorithms. In fact, without

any classification we show that, amongst other algorithms, First-Fit is not competitive

for multi-dimensional dynamic bin packing in Chapter 6. One of the aims in this thesis

is also to strike a balance between the number of classes used and the performance of an

algorithm. Indeed, the number of classes we define in Chapters 4 and 5 gives algorithms

with good competitive ratios.

Before proceeding to online multi-dimensional dynamic bin packing, we briefly dis-

cuss special types of input for the bin packing problem, in particular unit fraction and

power fraction items, for which we initiate the study in the context of online multi-

dimensional dynamic bin packing in Chapters 4 and 5.

Unit fraction and power fraction items. Bar-Noy et al. [8] initiated the study of the

unit fraction bin packing problem, a restricted version where all sizes of items are of the

form 1
k , for some integer k > 0. The problem was motivated by the windows scheduling

problem [7, 8]. Another related problem is for power fraction items, where sizes are of

the form 1
2k
, for some integer k ≥ 0. Bin packing with other restricted form of item

sizes includes divisible item sizes [25] (where each possible item size can be divided by

the next smaller item size) and discrete item sizes [22] (where possible item sizes are

{1/k, 2/k, · · · , j/k} for some 1 ≤ j ≤ k). For d-dimensional packing, for d ≥ 2, items of

restricted form have been considered, e.g., [51] considered strip packing ([67]) of items

with one of the dimensions having discrete sizes and [59] considered bin packing of items

where the lengths of each dimension are at most 1/m, for some integer m. The study

of these problems is motivated by applications in job scheduling.
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Clearly items that have lengths real numbers in (0, 1], which we call general size

items, form a superset of unit fraction and power fraction items, and algorithms for

general size items obtain the same worst-case performance for unit fraction and power

fraction items. However, algorithms that exploit unit fraction input can obtain better

worst-case performance for unit fraction items. For online dynamic bin packing, Chan et

al. [18] obtained a competitive ratio of 2.4942 for First-Fit, which was recently improved

by Han et al. to 2.4842 [47], while the lower bound for First-Fit was proven to be 2.45 [18].

The lower bound for any algorithm is 2.428 [18]. As FF is 2.4842-competitive for unit

fraction items and the lower bound for any algorithm for online dynamic bin packing

of general size items is 2.666 (Chapter 3 and [71]), online dynamic bin packing of unit

fraction items is indeed “easier” than packing general size items. We also expect better

competitive ratios for online multi-dimensional dynamic bin packing algorithms of unit

fraction and power fraction items compared to packing general size items. This is in

fact the case as discussed in Chapters 4 and 5. Table 2.3 shows a comparison between

competitive ratios of general size, unit fraction, and power fraction items.

2.3.2 Online multi-dimensional dynamic bin packing

In multi-dimensional bin packing the bins have unit size in each dimension and items

have lengths that are real numbers in (0, 1] in each dimension. For the two-dimensional

(2-D) problem the input consists of a set of rectangles that must be packed in unit

squares. Similarly, for three-dimensional (3-D) bin packing, boxes must be packed in

unit cubes. Recall that we study the setting where items are oriented and cannot be

rotated. As for online dynamic bin packing, migration of items between bins is not

allowed, while rearrangement within a bin is permitted.

Epstein and Levy [37] initiated the study of online multi-dimensional dynamic bin

packing. For 2-D, they give a 8.5754-competitive algorithm and a lower bound for any

online algorithm of 3.70301. For 3-D, they present a 35.346-competitive algorithm and a

lower bound for any online algorithm of 4.85383. In the construction of the lower bounds

only items with lengths in each dimension being unit fraction (1/k, for k integer) are

used and the lower bounds also apply to online multi-dimensional dynamic bin packing

of unit fraction items. They also address d-dimensional bin packing of boxes, for d ≥ 2,

and give an algorithm with a 2 · 3.5d competitive ratio and a lower bound of d+ 1.

We will give a brief overview of the 2-D algorithms in [37] for packing rectangles

and afterwards compare them to the best-in-class results by Wong and Yung [70]. The

overview and comparison should also help the reader observe some of the common ar-

guments for getting competitive algorithms for online multi-dimensional dynamic bin

packing, arguments that are also used in bin packing of 2-D unit fraction items in Chap-

ter 4, and 2-D power fraction items and 3-D unit and power fraction items in Chapter

5.

Online two-dimensional dynamic bin packing. First, let us consider the Next-Fit

(NF) algorithm. After packing the first item, NF packs each successive item in the bin
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containing the last item that has been packed, if it fits in that bin; if it does not fit,

NF closes that bin and packs the current item in an empty bin. On its own, NF is not

suitable for dynamic bin packing, due to the fact that a bin cannot be reopened after the

current item does not fit in the bin. Some items may depart from the closed bin, leaving

the bin almost empty, and the bin cannot be reused for subsequent items. Nevertheless,

a two-dimensional variant of the algorithm, the Next-Fit Decreasing Height (NFDH)

algorithm is used originally for offline bin packing and is adapted to the online dynamic

model in [37]. NFDH is a level (shelf) algorithm which uses the next-fit approach to pack

the sorted (by non-increasing height) list of rectangles. A level algorithm creates levels

by drawing horizontal lines of length 1, and placing rectangles between consecutive pairs

of lines, including the bottom and top of the bin. The two lines which form a level are

called the “floor” and “ceiling” of the level or the “bottom” and “top” of the level. The

additional lines are typically created online starting from the bottom, where the “floor”

of the first level is the bottom of the bin. The rectangles are packed, left-justified on

the floor of a level until the next rectangle does not fit. This rectangle is used to define

the height of a new level and the packing continues on this level. A new level is defined

just above the previous level. If a new level of the given height cannot be opened, a

new bin is opened and the rectangle defines the first level of that bin. As opposed to

the algorithm First-Fit Decreasing Height (FFDH), earlier levels are not revisited. The

levels are numbered from bottom to top, according to the order they are created.

NFDH can be used in the online dynamic setting when a new item pi arrives in the

following way. When pi arrives, the algorithm attempts to pack it in the smallest index

bin in which it is possible. pi is merged into the sorted list of items already packed in the

bin. Then NFDH uses the merged list of items to pack items according to its description.

If the merged list can fit in a single bin, then the item is packed there. Otherwise, i.e.,

the merged list cannot fit in a single bin, we revert to the old configuration and NFDH

attempts to pack pi to the next bin. If none of the existing bins can fit the item, NFDH

packs pi to a new bin. Note that NFDH can be used in the online dynamic setting as

it only uses information about items already arrived and not departed in the packing.

Epstein and Levy use NFDH for one class of items that satisfies some constraints on the

item lengths, while the other items are packed in a different way as we will see next.

For online two-dimensional dynamic bin packing, Epstein and Levy give an algorithm

called Rectangle Packing (RCP) that classifies the items based on their width and height.

Let wi and hi denote the width and height, respectively, of item pi. Then pi belongs to

one of the following four disjoint classes, which together cover all possible input.

Class 1 if wi > 1/2 and hi > 1/2;

Class 2 if wi > 1/2 and hi ≤ 1/2;

Class 3 if wi ≤ 1/2 and hi > 1/2; or

Class 4 if wi ≤ 1/2 and hi ≤ 1/2.
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RCP packs the items in each class separately, independent of other classes, by us-

ing sub-algorithms for each particular class. For each class of items, we can obtain a

competitive ratio by comparing the sub-algorithm’s performance to an optimal offline

algorithm that also packs items in each class separately, independent of other classes.

Then, the overall competitive ratio of RCP is no larger than the sum of the competitive

ratios of the composed sub-algorithms for each class. Class 1 items are each packed in a

separate bin as no two items can fit in the same bin. As Class 2 items have width greater

than 1/2, no two items can fit along the width of a bin, and we can use the concept of

projection of a higher dimension item to a lower dimension item. We project along the

width of the items and the problem is reduced to 1-D, for which First-Fit (FF) is used.

A similar argument is used for Class 3 items. Finally, Class 4 items are packed using

the online dynamic version of NFDH described above.

It is easy to see that Class 1 items achieve a competitive ratio of 1, as no two items of

the same class can fit in a single bin. By using a parametric version of FF, where items

have size at most 1/k, for some integer k ≥ 2, Classes 2 and 3 both achieve a competitive

ratio of 1.787682 for k = 2. The analysis for parametric FF with general k is given by

Coffman et al. [26]. For NFDH, Epstein and Levy prove that if items have both width

and height bounded by 1/k and a new item pi does not fit in any of the existing bins,

then the total occupied area of each existing bin (except possibly the last one) is at least

(1 − 1/k)2. For k = 2, this results in Class 4 items achieving a competitive ratio of 4.

Overall, the competitive ratio of RCP is 8.5754.

The techniques of classifying items based on their lengths, repacking a list of items in

a bin using a specific approach, parametric versions of algorithms, projection of a higher

dimension to a lower dimension, and lower bounding the total area that items occupy in

a bin are all used in designing and analyzing the performance of online algorithms for

multi-dimensional dynamic bin packing. We also employ these techniques in Chapters 4

and 5. In these chapters we will in fact repack a list of items satisfying certain conditions

using Steinberg’s algorithm [66] for offline two-dimensional strip packing [39, 67].

Strip packing. In strip packing, a strip of finite width 1 and infinite height is given.

The input consists of a list of rectangles (items) R1, R2, . . . , Rn, and each item Ri has

a given width wi and height hi. The goal is to pack the items into the strip such that

the height to which the strip is filled is minimized. As in bin packing, the items cannot

overlap and rotation of items is not permitted. Steinberg’s algorithm [66] classifies items

based on their lengths into seven classes and for each class they divide it into two smaller

sub-classes and solve the problems recursively. Roughly speaking, the approach of the

algorithm is to pack a list of items belonging to a particular class into a rectangle Q

of width u and height v. Steinberg proves that if a list of rectangles is given such that

their lengths and their total area satisfy certain conditions with regards to u and v,

then the list may be packed in the rectangle Q, using some defined packing procedures

for each class. Note that classes are defined based on the input, as the maximum item

height can be arbitrarily large. Steinberg’s algorithm is an approximation algorithm with
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1-D 2-D 3-D

General size 2.788 [26] 7.788 [70] 22.788 [70]

Unit fraction 2.4842 [47] 6.7850 [*] [15] 21.6108 [**] [15]

Power fraction 2.4842 [47] 6.2455 [**] [15] 20.0783 [**] [15]

Table 2.3: Competitive ratios for general size, unit fraction, and power fraction items.
Results also presented in Chapters 4 and 5 are marked with “[*]” and “[**], respectively.

an absolute approximation ratio of 2. The current best result for offline strip packing

with respect to the absolute approximation ratio is an algorithm based on Steinberg’s

algorithm that is (5/3 + ǫ)-approximate [48], for any ǫ > 0.

In Chapters 4 and 5 we will use the following lemma implied by the results in [66] in

order to be able to lower bound the total area that existing items occupy in a bin when

no new item can repacked in that bin. Note that the lemma holds for online dynamic bin

packing, as we only consider the list of items already packed in the bin but not departed

and items may be repacked within a bin each time a new item arrives.

Lemma 4.2 ([66]). Given a bin with width u and height v, if all items have width at

most u
2 and height at most v, then any set of these items with total area at most uv

2 can

fit into the same bin by using Steinberg’s algorithm.

State of the art. The current best algorithms for online multi-dimensional dynamic

bin packing of general size items are due to Wong and Yung [70]. For 2-D, the algorithm

uses a classification of items into three classes based on their width alone and achieves a

competitive ratio of 7.788 compared to the previous result of 8.5754 [37]. For 3-D, they

use four classes of items and achieve a competitive ratio of 22.788, compared with the

previous approach of using eight classes that achieves a competitive ratio of 35.346 [37].

For d-dimensional packing they also improve the competitive ratio to 3d from 2 · 3.5d

[37].

Recall that general size items have lengths that are real numbers in (0, 1], unit

fraction items have lengths of the form 1/k, for some integer k > 0, and power fraction

items have lengths of the form 1/2k, for some integer k ≥ 0. In Chapter 4 we also classify

2-D unit fraction items into three classes, while 3-D unit fraction items in Chapter 5 are

classified into four classes. The same number of classes are used for 2-D and 3-D power

fraction items in Chapter 5. Although the number of classes is the same as in [70], the

analysis in Chapters 4 and 5 is different and requires careful consideration of unit and

power fraction items, which allows us to reduce the competitive ratios for these types of

inputs. Table 2.3 shows a comparison between competitive ratios of general size, unit

fraction, and power fraction items.

2.4 Variations on Bin Packing

There are many variations of bin packing that continue to attract researchers’ attention

(e.g., see surveys [31, 27, 24, 23]). We will first give a brief overview of related models,
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although the analysis of such models is generally different from online dynamic bin

packing. Afterwards, we discuss several other models for bin packing. While they are

not directly related to our problem, these models show the broad scope of bin packing.

We conclude this chapter with other types of analysis that may be introduced for online

dynamic bin packing in future work.

Fully dynamic bin packing. Ivkovic and Lloyd [49, 50] studied the fully dynamic bin

packing problem which is a variant of dynamic bin packing that allows existing items

to migrate between bins each time an item arrives or departs. For the one-dimensional

model they gave a 1.25-competitive online algorithm, showing that the variant is much

“easier” than dynamic bin packing, for which the lower bound currently stands at 2.666

(Chapter 3 and [71]). Such an advantage of migrating items seems to negate in part

the optimal offline algorithm’s OPT full knowledge of the input, even while allowing

migration of items for OPT .

Rotation of items. For online multi-dimensional static (non-dynamic) bin packing,

where items are permanent, Epstein and van Stee [40] consider items that can be rotated

and give the best results to date for the non-oriented problem. For two-dimensional

bin packing, they give an algorithm with a competitive ratio of 2.25, while for three-

dimensional bin packing, they give a 4.5-competitive algorithm. It is unclear whether

rotation alone may make the problem “easier” as the optimal offline algorithm also has

the advantage of rotating items. It is interesting to note that while the upper bound

for the 2-D oriented problem (rotation is not allowed) is 2.5545 [46], thus greater than

for the non-oriented problem, the upper bound for the 3-D oriented problem is 4.3198

[46], lower than for the non-oriented problem1. Rotation of items has not yet been

introduced for online dynamic bin packing. In future research, it may indeed provide

us with a better understanding of the difficulty of such problems compared to oriented

problems.

Resource augmentation. Resource augmentation [55] has also been studied for bin

packing [32, 41, 19]. In this variant, the online algorithm uses bins of uniform sizes that

are larger than the unit size bins used by the optimal offline algorithm. As expected,

in this model the competitive ratios improve. Chan et al. [19] first investigate online

one-dimensional dynamic bin packing and show that bins of size 2 are both necessary

and sufficient in order for an online algorithm to achieve 1-competitiveness. For online

two-dimensional dynamic bin packing, Wong and Yung [70] show that using bins of

width 3 and height 1 is sufficient to achieve 1-competitiveness, while for d-dimensional

bin packing, for d ≥ 2, they show that using bins of size {2}d is both necessary and

sufficient to achieve 1-competitiveness. This setting is yet another direction which may

yield new results, especially for two- and three-dimensional online dynamic bin packing.

Other variants. Many more variants of bin packing have been studied and have

themselves provided more insight to other problems, while contributing to the field

1The best results for the oriented problem are obtained later than for the non-oriented problem.
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of complexity theory. We briefly note some interesting variants including semi-online

algorithms, bounded-space bin packing, and strip packing.

In the context of bin packing, semi-online algorithms are algorithms that can migrate

items between bins, look ahead to later items before assigning the current one, or assume

some pre-ordering of items. In the case of fully dynamic bin packing [49, 50], an algorithm

uses all the above operations and can achieve a competitive ratio of 1.25. Algorithms

that can use only one operation amongst those mentioned above are surveyed in [23].

Semi-online algorithms attempt to bridge the gap between optimal offline algorithms

that hold complete knowledge of the input and online algorithms that receive items one

at a time. In fact, advice complexity analysis [10, 33] aims to strike a balance between

information given to online algorithms and their performance.

Bounded-space bin packing assumes that only a constant number of bins k may be

open to receive items at any time. The Next-Fit algorithm, discussed in Section 2.3.2, is

in fact a 1-bounded space algorithm. The problem is motivated by applications such as

loading trucks, where only a certain number of vehicles are available at any time. The

recent survey [23] covers different results for different values of k.

Strip packing [39, 67] is a two-dimensional packing problem in which we are given a

strip of a finite width w but infinite height, and a set of boxes each of width at most w.

The objective is to pack all the items into the strip to minimize the height used. Cutting-

stock problems [2], where material of fixed width needs to be cut while minimizing the

height of the strip used is an application of strip packing. Other applications of strip

packing are in scheduling problems, e.g., [51].

Metrics for performance of online algorithms. For online algorithms, the perfor-

mance is usually measured using competitive analysis [11]. Using competitive analysis,

we provide a worst-case guarantee for the performance of an online algorithm. While

this guarantees the algorithm’s performance on any input, other metrics are nevertheless

useful. For online static bin packing, other benchmarks such as average case analysis

([58]) have been studied [22, 28]. The difference from worst-case analysis is that average

case analysis relies on input distribution and thus may not consider every possible in-

put. Furthermore, other types of analysis such as advice complexity analysis ([10, 33]),

random order analysis, and relative worst order analysis ([12]) have been introduced

to online static bin packing in [73], [56], and [36], respectively. In the future, interest-

ing results may arise by introducing such performance metrics for online dynamic bin

packing.



Chapter 3

An 8/3 Lower Bound for Online

Dynamic Bin Packing

3.1 Introduction

In this chapter, we study the online one-dimensional dynamic bin packing problem,

introduced by Coffman, Garey and Johnson [26]. In online dynamic bin packing, items

with sizes real values in (0, 1] arrive over time, reside for some period of time, and may

depart at arbitrary time. Each item has to be assigned to a unit-size bin from the time

it arrives until it departs. The objective is to minimize the maximum number of bins

used over all time. Note that migration to another bin is not allowed, but rearrangement

of items within a bin is permitted. In the online setting, the size and arrival time are

only known when an item arrives and the departure time is only known when the item

departs. Recall that for online dynamic bin packing, we measure the performance of

an online algorithm using competitive analysis [11]. For any input I, we say that A is

c-competitive if there exists a constant b such that A(I) ≤ cOPT (I)+ b for all I, where

A(I) and OPT (I) are the maximum number of bins used by A and OPT , respectively,

over all time.

We present a novel adversary for the one-dimensional dynamic bin packing problem

that allows us to improve the lower bound from 2.5 [19] to 8/3 ∼ 2.666. Previously,

the first lower bound of 2.388 [26] was improved to 2.428 [18], and subsequently to

the best known 2.5-lower bound [19]. On the other hand, the best upper bound result

currently stands at 2.788 [26]. The results have been published in Proceedings of the

23rd International Symposium on Algorithms and Computation (ISAAC), 2012 [71].

Previous results. The online dynamic bin packing problem was first studied by Coff-

man, Garey and Johnson [26]. They showed that the First-Fit (FF) algorithm (described

in Section 2.1) has a competitive ratio lying between 2.75 and 2.897, and a modified First-

Fit algorithm is 2.788-competitive. The modified First-Fit algorithm classifies items into

two classes, large items with size larger than 1/2 and small items with size smaller or

equal to 1/2, and then packs each large item in a dedicated bin while small items are

25
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packed according to the First-Fit rule. While the 2.75-lower bound also applies to the

modified First-Fit algorithm, it is worth mentioning that in the construction of the ad-

versary the optimal offline algorithm was allowed to migrate items between bins. They

also give a “stronger” lower bound of 2.388 on the competitive ratio of any online deter-

ministic algorithm and moreover the optimal offline algorithm is not permitted migration

of items between bins. The result was improved to 2.428 [18] and subsequently to the

best known lower bound of 2.5 [19].

Our contribution. We improve the lower bound on the competitive ratio of any

online algorithm from 2.5 [19] to 8/3 ∼ 2.666, reducing the gap between the upper and

lower bounds by about 60% from 0.288 to 0.122. The improvement of the lower bound

to 8/3 ∼ 2.666 stems from an adversarial sequence that forces an online algorithm

A to open 2s bins with items having a total size of s only and this can be adapted

appropriately regardless of the load of other bins that have already been opened by A.

Comparing with the previous 2.5-lower bound, this basic step gives a better use of items

of slightly different sizes leading to a tighter lower bound. Furthermore, we show in

Section 3.3.4 that the 2.5-lower bound can be obtained using this basic step in a much

simpler way. It is worth mentioning that we consider optimal packing without migration

at any time.

The adversary. The adversarial sequence is composed of two operations, namely

Op-Inc and Op-Comp. Roughly speaking, Op-Inc uses a load of at most s to make A

open s bins, this is followed by some item departure such that each bin is left with only

one item and the size is increasing across the bins. Op-Comp then releases items of

complementary size such that for each item of size x, items of size 1 − x are released.

The complementary size ensures that the optimal offline algorithm O is able to pack all

these items using s bins while the sequence of arrival ensures that A has to pack these

complementary items into separate bins.

Organization of the chapter. In Section 3.2, we introduce the notation used through-

out the chapter. In Section 3.3, we detail the operations Op-Inc and Op-Comp that are

used to force an online algorithm A to open new bins. Sections 3.4 and 3.5 are dedicated

to proving the simple and complex cases of the 8/3 lower bound, respectively. In Section

3.6, we detail the packing configuration of the optimal offline algorithm. Finally, we give

some concluding remarks in Section 3.7.

3.2 Preliminaries

In dynamic bin packing, items arrive and depart at arbitrary time. Each item comes

with a size. We denote by s-item an item of size s. When an item arrives, it must be

assigned to a unit-sized bin immediately without exceeding the bin capacity. At any

time, the load of a bin is the total size of items currently assigned to that bin that have

not yet departed. We denote by ℓ-bin a bin of load ℓ. Migration is not allowed, i.e.,



Chapter 3. An 8/3 Lower Bound for Online Dynamic Bin Packing 27

once an item is assigned to a bin, it cannot be moved to another bin. This also applies

to the optimal offline algorithm. The objective is to minimize the maximum number of

bins used over all time.

When we discuss how items are packed, we use the following notations:

• Item configuration ψ: y∗z describes a load y with y
z items of size z, e.g., 1

2∗ǫ
means

a load 1
2 with 1

2ǫ items of size ǫ. We skip the subscript when y = z.

• Bin configuration π: (ψ1, ψ2, · · · ), e.g., (
1
3 ,

1
2∗ǫ

) means a bin has a load of 5
6 , with

a 1
3 -item and an addition load 1

2 with ǫ-items. In some cases, it is clearer to state

the bin configuration in other ways, e.g., (12 ,
1
2), instead of 1

∗ 1

2

. Similarly, we will

use 6× 1
6 instead of 1

∗ 1

6

.

• Packing configuration ρ: {x1:π1, x2:π2, · · · } a packing where there are x1 bins with

bin configuration π1, x2 bins with π2, and so on. E.g., {2k:1∗ǫ, k:(
1
3 ,

1
2∗ǫ

)} means

2k bins are each packed with load 1 with ǫ-items and another k bins are each

packed with a 1
3 -item and an addition load 1

2 with ǫ-items.

• It is sometimes more convenient to describe a packing as x:f(i), for 1 ≤ i ≤ x,

which means that there are x bins with different load, one bin with load f(i) for

each i. E.g., k: 12−iδ, for 1 ≤ i ≤ k, means that there are k bins and one bin with

load 1
2−iδ for each i.

3.3 Op-Inc and Op-Comp

In this section, we discuss a process that the adversary uses to force an online algorithm

A to open new bins. We first give the main idea and discuss its difference from previous

approach in [19]. The adversary in [19] releases items of the same size in each stage

and uses items of complementary sizes in two different stages (i.e., the two sizes sum to

one, e.g., 1
3 -item and 2

3 -item). On the other hand, the adversary in this chapter releases

items of slightly different size in each stage and continues to use items of complementary

sizes in different stages. To realize the advantage of the latter approach, let us consider

the following scenario.

Suppose we have s bins each with a 1
3 -item. If we want to force A to open s new

bins using items of size 2
3 , we may need to release 2s such items because each existing

bin can pack one item. The maximum load in total including the 1
3 -items would be

s(1 + 2
3). On the other hand, if the original s bins have items of size from 1

3 ,
1
3+δ,

1
3+2δ, · · · , 1

3+(s−1)δ, for some small δ > 0, we can force A to open s new bins with

a smaller maximum load at any time as follows. First release items of size 2
3−(s−1)δ

until A opens a new bin. At most s+1 such items are required. We then let all items of

size 2
3−(s−1)δ depart except the last one packed in the new bin. Next we release items

of size 2
3−(s−2)δ. Note that these items can only be packed into the first s−1 existing

bins. Therefore, at most s items are required to force A to open a new bin. We can
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repeat this process, for 1 ≤ i ≤ s, with no more than s−i+2 items of size 2
3−(s−i)δ

to force A to open a new bin. Note that at any time, the total load of all items not

departed is at most s+ 2
3 , versus s(1+

2
3) in the former case. It is better for an adversary

to use less load to force A to open the same number of bins.

Our adversary is based on the above observations. Two operations are designed,

namely, Op-Inc and Op-Comp, and the details are given in Sections 3.3.1 and 3.3.2,

respectively. Op-Inc aims to force A to open some bins each with one item (of size < 1
2 )

and the size of items is strictly increasing. Op-Comp then bases on the items in the bins

opened by Op-Inc and releases items of complementary size. The complementary size

is to ensure that an item released in Op-Inc can be packed with a corresponding item

released in Op-Comp into the same bin by an optimal offline algorithm. The adversary

to be described in Sections 3.4 and 3.5 works in stages. A stage of Op-Inc is associated

with a corresponding stage of Op-Comp, but not necessarily consecutive, e.g., in one of

the cases, Op-Inc is in Stage 1 and the corresponding Op-Comp is in Stage 4.

3.3.1 Operation Op-Inc

The aim of Op-Inc is to make A open at least s more bins, for some s > 0, such that

each new bin contains one item with item size increasing over the s bins.

Pre-condition. Consider any value 0 < x < 1
2 . Let h be the number of x-items that

can be packed in existing bins.

Items to be involved. The items to be released have size in the range [x, x + ǫ], for

some small ǫ, such that x+ ǫ < 1
2 . A total of h+ ⌊ 1

x+ǫ⌋ × s items are to be released.

Outcome. A opens at least s more new bins with increasing load in each new bin and

the load of current bins remains unchanged.

The adversary. The adversary releases items of size x, x+ ǫ
s , x+

2ǫ
s , · · · . Let zi = x+ iǫ

s .

In each step i, the adversary releases zi-items until A opens a new bin. We stop releasing

items when h+⌊ 1
x+ǫ⌋×s items have been released in total in a single step. By definitions

of h, s, and x, A would have opened at least s new bins. We then let zi-items depart

except exactly one item of size zi, for 0 ≤ i < s, in the i-th new bin opened by A.

Using Op-Inc. When we use Op-Inc later, we simply describe it as Op-Inc releasing

at most h + ⌊ s
x⌋ items with the understanding that it works in phases and that items

may depart at the end.

Remark. To simplify discussion, we denote the packing configuration of the new bins

as {s:x+ iǫ
s } to mean that the s bins have different load with different value of i. Note

that in some cases of the lower bound, items released in the very last step of Op-Inc do

not depart the packing configuration unless explicitly mentioned.

3.3.2 Operation Op-Comp

Op-Comp is designed to work with Op-Inc and assumes that there are s existing bins

each with load in the range [x, y] where x < y < 1
2 . The outcome of Op-Comp is that A



Chapter 3. An 8/3 Lower Bound for Online Dynamic Bin Packing 29
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1−ℓs 1−ℓs−1 1−ℓ11−ℓ2

Figure 3.1: Op-Comp: Assuming h = 0. The s bins on the left are bins created by
Op-Inc. The s new bins on the right are due to Op-Comp. Note that each existing

item has a complementary new item such that the sum of sizes is 1.

opens s more bins. Figure 3.1 gives an illustration.

Pre-condition. Consider two values x < y < 1
2 . Suppose A uses s bins with load

x = ℓ1 < ℓ2 < · · · < ℓs = y. Let ℓ =
∑

1≤i≤s ℓi. Furthermore, suppose there are some

additional bins with load smaller than x. Let h be the number of (1−y)-items that can

be packed in other existing bins with load less than x.

Items to be involved. The items to be released have size in the range [1 − y, 1 − x].

Note that 1−x > 1−y > 1
2 . In each step i, for 1 ≤ i ≤ s, the number of (1−ℓs+1−i)-items

released is at most h+ s+ 2− i.

Outcome. A opens s more bins, each with an item 1 − ℓs+1−i, for 1 ≤ i ≤ s, and the

load of current bins remains unchanged.

The adversary. Starting from the largest load ℓs, we release items of size 1−ℓs until

A opens a new bin. At most h + s + 1 items are needed. Then we let all (1−ℓs)-items

depart except the one packed in the new bin. In general, in Step i, for 1 ≤ i ≤ s, we

release items of size 1−ℓs+1−i until A opens a new bin. Note that such items can only

be packed in the first s + 1 − i bins and so at most h+ s + 2 − i items are required to

force A to open another bin. We then let all (1−ℓs+1−i)-items depart except the one

packed in the new bin.

Using Op-Comp. Similar to Op-Inc, when we use Op-Comp later, we describe it as

Op-Comp with h and s and the understanding is that it works in phases and there

are items released and departure in between. Note that the ℓi- and (1 − ℓi)-items are

complementary and the optimal offline algorithm would pack each pair of complementary

items in the same bin.

3.3.3 Using Op-Inc and Op-Comp

In order to illustrate the use of Op-Inc and Op-Comp we will use the operations to force

an online algorithm A to open 2s bins, for an arbitrarily large s using only a total load

smaller than s+ 2
3 = s+O(1). The adversary is similar in construction to the example

provided in the beginning of Section 3.3, except we now explicitly specify the parameters

for Op-Inc and Op-Comp. Op-Inc will use items of slightly increasing sizes from 1
3 , while

Op-Comp will use items of complementary sizes to the ones released by Op-Inc. Let s

be an arbitrarily large integer and ǫ = 1
s . In the first part of our example, we aim to

open s bins using Op-Inc.
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Figure 3.2: The s bins on the left are bins created by Op-Inc. The s bins on the right
are due to Op-Comp. 1

3
+ and 2

3
− denote items with increasing sizes larger than 1

3
and

smaller than 2
3
, respectively. Each item on the left has a complementary item on the

right such that the sum of sizes is 1.

Op-Inc. We use Op-Inc to release items of size in [13 ,
1
3+

(s−1)ǫ
s ], i.e., x = 1

3 . Note that

there are no existing opened bins, thus no new items are packed in existing bins, i.e.,

h = 0. We have s steps, and in each step 0 ≤ i < s, Op-Inc releases identical items

of size zi =
1
3+

iǫ
s until a new bin is opened by A. Afterwards, we depart all zi-items

released except the one packed in the new bin by A. In Step 0, one item of size 1
3 is

released and A packs it in a new bin. As there are no additional items of size z0, except

the one packed in the new bin, we proceed to Step 1 without departure of items. In

Step 1, we release two items of size 1
3+

1ǫ
s . As no more than two items of size 1

3+
iǫ
s , for

i ≥ 1, can be packed in the same bin, A opens at least one new bin. We now keep only

the z1-item that opened a new bin and depart the other z1-item, regardless of where A

packed it. In general, in Step i, we release i+ 1 items of size zi =
1
3+

iǫ
s and A opens a

new bin in each step. Afterwards, we depart all zi-items except the one that has been

packed in the new bin. The maximum load used at any time for items released and not

departed is achieved in Step s − 1; this is s
3 +

s−1∑

j=0

jǫ
s + (s − 1)(13+

(s−1)ǫ
s ) < 2s

3 . After

departure of items the total load used becomes s
3 +

s−1∑

j=0

jǫ
s = s

3 +O(1). We have obtained

s bins, each packed with one item and the item size is increasing across the bins from 1
3

up to 1
3+

(s−1)ǫ
s . Figure 3.2 illustrates the bins obtained by Op-Inc.

Op-Comp. We can now use Op-Comp to release items of size in [23−
(s−1)ǫ

s , 23 ], i.e.,

x = 1
3 and y = 1

3+
(s−1)ǫ

s . Apart from bins opened by Op-Inc, there are no other existing

bins in which (1− y)-items can be packed, thus h = 0. As for Op-Inc, we have s steps,

and in each step 1 ≤ i ≤ s, we release identical items of size wi = 2
3−

(s−i)ǫ
s until A

opens a new bin. Afterwards we depart all wi-items released, except the one packed in

the new bin. In Step 1, we release s + 1 items of size w1 = 2
3−

(s−1)ǫ
s . A can pack at

most s items in existing bins and opens at least one new bin. Afterwards, we depart all

w1 items released, except the one packed in the new bin. In Step 2, we release s items

of size w2 = 2
3−

(s−2)ǫ
s . A can pack at most s− 1 items in existing bins, as the s-th bin

opened by Op-Inc is packed with an item of size zs =
1
3+

(s−1)ǫ
s , thus w2 + zs > 1. Note

that no two items released by Op-Comp can be packed in the same bin. A opens a new

bin in Step 2, and afterwards we depart all other w2-items except the one packed in the

new bin. Notice that in general, in Step i, we release h+s+2− i items of size wi and the
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Figure 3.3: The final configuration of A achieved by the adversary for a simpler 2.5
lower bound in Cases 1 and 2.

number of items released decreases with each subsequent step. The items released are of

increasing size and items of largest size 2
3 are released in Step s. However, the maximum

load used at any time for items released and not departed (including items released by

Op-Inc) is achieved in Step 1; this is s
3 +

s−1∑

j=0

jǫ
s + (s+ 1)(23−

(s−1)ǫ
s ) < s+ 2

3 = s+O(1).

At the end of Step s, we obtain s additional bins each packed with one item and the

item size is increasing across the bins from 2
3−

(s−1)ǫ
s up to 2

3 . Each item in the final bin

configuration that has been released by Op-Comp has a complementary item released

by Op-Inc such that their sizes sum up to 1. This allows an optimal offline algorithm to

pack the items together and use at most s +O(1) bins in total. Figure 3.2 provides an

illustration of the final bin configuration achieved by using Op-Inc and Op-Comp.

3.3.4 A 2.5 lower bound using Op-Inc and Op-Comp

In this section we demonstrate how we can benefit from using Op-Inc and Op-Comp by

obtaining a 2.5 lower bound as in [19] for any deterministic online algorithm using the

two operations in a much simpler way. The lower bound in [19] involves five cases, while

using Op-Inc and Op-Comp only requires two cases and significantly fewer stages. We

give an adversary for any online algorithm A such that at any time, the load of items

released and not departed is at most k +O(1), for some large even integer k. We prove

that A uses 5k
2 bins and give an optimal offline algorithm O that uses at most k+O(1)

bins at any time. Thus, the competitive ratio of A is at least 5/2.

Let ǫ = 1
k and δ = ǫ

k+1 . The adversary works in stages and in Stage 0 we release k
ǫ

items of size ǫ. We denote by ni the number of new bins opened by A in Stage i, thus

n0 ≥ k as A requires at least k bins. We consider two cases: n0 ≥
3k
2 and 3k

2 > n0 ≥ k.

In Case 1, the adversary does not use Op-Inc and Op-Comp, while in Case 2 it uses

them in pairs in Stages 1 and 2, respectively.

We first consider Case 1, where n0 ≥ 3k
2 . In Stage 1 we let items depart such that

the configuration is {3k
2 :ǫ}. We can immediately release k items of size 1 and A needs

an additional k bins, i.e., n1 = k. The total number of bins used by A is thus 5k
2 . Figure

3.3(a) illustrates the final configuration of A. On the other hand, O uses at most k + 2

bins, packing the ǫ-items that never depart in 2 bins and the remaining items in k bins.
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O : # bins 1 1 k

2

k

2
total

Stage 0 - - - - 0
1∗ǫ - (1−ǫ)∗ǫ (1−ǫ)∗ǫ k

Stage 1 1∗ǫ - - 1
2∗ǫ

k
4+kǫ

(Op-Inc) 1∗ǫ - 1

2
−iδ, 1

2
−δ 1

2∗ǫ
, 1

2
−δ k+kǫ−kδ −

∑ k
2

i=1 iδ

Stage 2 1∗ǫ - 1
2−iδ (12−ǫ)∗ǫ

k
2+

kǫ
2 −

∑ k
2

i=1 iδ

(Op-Comp) 1∗ǫ
1

2
+k

2
δ 1

2−iδ,
1

2
+iδ (12−ǫ)∗ǫ,

1

2
+k

2
δ k+kǫ

2 +
k2δ
4 +(12+

k
2δ)

Stage 3 1∗ǫ - 1
2−iδ,

1
2+iδ - k

2+kǫ

(Final) 1∗ǫ - 1
2−iδ,

1
2+iδ 1 k+kǫ

Table 3.1: The optimal schedule for Case 2. For each stage, the first row is the con-
figuration just before items arrival and the second row is the configuration when the
maximum amount of load is released. The very last row is the final configuration.
Bolded entries are new items arrived in the corresponding stage. The notation y∗z
means packing a bin with a load y of z-items. The last column shows the total load of

all bins.

We now consider Case 2, where k ≤ n0 <
3k
2 . We first note that there are at least k

2

bins with load at least 1
2 + ǫ in each bin. Suppose by contradiction that there are less

than k
2 of these bins. The k

2 − 1 highest load bins can have a load of at most 1 and the

remaining bins (at most k of them) can have a load of at most 1
2 . Thus, the total load

of the n0 bins is at most (k2 − 1)×1+ ((3k2 − 1)− k
2 +1)× 1

2 < k, and this contradicts the

fact that we release a load of k.

In Stage 1 we aim to force A to use at least k
2 new bins, i.e., n1 ≥ k

2 . We let items

depart until the configuration is {k
2 :ǫ,

k
2 :(

1
2+ǫ)∗ǫ} with k bins and a total load of k

4+O(1).

We use Op-Inc to release at most 3k
2 items of size in [12−

k
2δ,

1
2−δ], resulting in a total load

of k +O(1). For each existing ǫ-bin, at most one such new item can be packed because

δ = ǫ
k+1 , (

1
2−

k
2δ) + (12−

k
2δ) + ǫ = 1− k

k+1ǫ+ ǫ > 1, and items released by Op-Inc are of

increasing sizes. For a similar reason, no new item can be packed in the ((12+ǫ)∗ǫ)-bins.

The parameters for Op-Inc are therefore x = 1
2−

k
2δ, h = k

2 and s = k
2 . According to

Op-Inc, A opens at least k
2 new bins, each with one (12−iδ)-item, for 1 ≤ i ≤ k

2 .

In Stage 2 we aim to force A to open at least another k
2 new bins, i.e., n2 ≥

k
2 . The

configuration of A at the end of Stage 1 and after departing one ǫ-item from each of the

((12+ǫ)∗ǫ)-bins is {k
2 :ǫ,

k
2 :

1
2 ∗ǫ
, k2 :

1
2−iδ}, for 1 ≤ i ≤ k

2 , with
3k
2 bins and a total load of

k
2 +O(1). Note that in the last k

2 bins, the load increases by δ from 1
2−

k
2δ to 1

2−δ. We

now use Op-Comp with x = 1
2−

k
2δ, y = 1

2−δ, h = k
2 , and s =

k
2 . I.e., Op-Comp releases

items of size in the range [12+δ,
1
2+

k
2δ] and at any time, at most k+1 items are released.

Note that at most one item can be packed in the ǫ-bins and none in the (12 ∗ǫ)-bins, i.e.,

h = k
2 as said. According to Op-Comp, A needs to open k

2 new bins.

In Stage 3, we aim at n3 = k
2 . We let items depart until the configuration becomes

{k
2 :ǫ,

k
2 :ǫ,

k
2 :

1
2−iδ,

k
2 :

1
2+iδ}, for 1 ≤ i ≤ k

2 , with 2k bins and a total load of k
2 +O(1). We

finally release k
2 items of size 1, and the total number of bins used by A becomes 5k

2 .

Figure 3.3(b) illustrates the final configuration of A.
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Figure 3.4: Different cases of the adversary.

On the other hand, the optimal offline algorithm O can use k + 2 bins to pack all

items as shown in Table 3.1, which lists the packing configuration in each stage. Note

that for stages involving Op-Inc and Op-Comp, we list the packing when the maximum

amount of load is released in that stage (as each stage may involve item arrival and

departure).

3.4 The 8/3 Lower Bound - The Simple Cases

We give an adversary such that at any time, the total load of items released and not

departed is at most 6k + O(1), for some large integer k. We prove that any online

algorithm A uses 16k bins, while the optimal offline algorithm O uses at most 6k+O(1)

bins. Then, the competitive ratio of A is at least 8
3 . Figure 3.4 illustrates the different

cases and gives an easy reference to the pages where the discussion resides.

The adversary works in stages and uses Op-Inc and Op-Comp in pairs. Case 1.1

does not use Op-Inc and Op-Comp, Cases 1.2 and 2.1 use them once while Cases 2.2.1

and 2.2.2 use them twice. Let ǫ = 1
6k , δ =

ǫ
16k , and δ

′ = δ
16k . Notice that ǫ≫ δ ≫ δ′, for

large k. To motivate our use of these three values, suppose that we have one ǫ-item and

one (12−δ)-item packed in the same bin. An additional (12−δ)-item cannot be packed

in the same bin, thus forcing an online algorithm A to open a new bin. On the other

hand, one (12−δ)-item can be packed in the same bin with any one of (12+δ)-, (
1
2−δ

′)-, or

(12+δ
′)-item. These item sizes are useful for the optimal offline algorithm O that packs

complementary items in the same bin.

In each stage we give the total size of items in the packing configurations of both

A and O. Recall that Op-Inc and Op-Comp use items of slightly different sizes in

their respective stages. We omit the tedious calculations resulting as part of minor

differences in sizes by giving a total size of items that involves the parameter symbol

i used by Op-Inc and Op-Comp, even when i may take different values (see Remark
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Figure 3.5: The final configuration of A achieved by the adversary in Case 1.1.

in Section 3.3.1). Note that this slightly imprecise notation serves to avoid diverting

attention from the techniques used in our analysis. However, the exact total size of

items may be calculated as in Table 3.1 by taking into account the parameters of Op-Inc

and Op-Comp in the cases and stages that they are used.

The adversary. Let ni be the number of new bins used by A in Stage i. In Stage 0, the

adversary releases 6k
ǫ items of size ǫ, with total load 6k. It is clear that A needs at least

6k bins, i.e., n0 ≥ 6k. We distinguish between two cases: n0 ≥ 8k and 8k > n0 ≥ 6k.

We distinguish cases by the ranges of the number of new bins opened and we usually

let items depart to an exact value. We will then refer to ni as this exact value. For

example, in the case of n0 ≥ 8k, we let items depart until 8k bins are left and in the

next stage we refer to n0 = 8k instead of n0 >= 8k. In this section, we consider the

case n0 ≥ 8k.

Case 1: n0 ≥ 8k.

Stage 1. In this stage, we aim at n1 ≥ 2k. We keep one ǫ-item in 8k bins and let all

other items depart so that the configuration becomes {8k:ǫ}. The total size of items

departed is 6k−8kǫ and the size of items remaining is 8kǫ. We then release 12k items of

size 1
2−δ, resulting in a total load of 6k + O(1). Note that 1

2 >
1
2−δ >

1
2−16kδ = 1

2−ǫ.

At most one item can be packed in each existing bin and therefore A needs at least 2k

new bins, i.e., n1 ≥ 2k. We further consider two sub-cases: n1 ≥ 4k and 2k ≤ n1 < 4k.

Case 1.1: n0 ≥ 8k and n1 ≥ 4k.

In this case, we have n0 + n1 ≥ 12k.

Stage 2. In this stage, we aim at n2 = 4k. We keep one (12−δ)-item in 4k bins and

let all other (12−δ)-items depart so that the configuration becomes {8k:ǫ, 4k: 12−δ}, with

12k bins and a total load of 2k +O(1).

# bins 8k 4k

A ǫ 1
2−δ

total size: 2k+8kǫ−4kδ

# bins: 12k
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O : # bins 2 2k 4k total
Stage 0 - - - 0

1∗ǫ (1−2ǫ)∗ǫ (1−2ǫ)∗ǫ 6k

Stage 1 8
12∗ǫ

- - 8kǫ
8
12∗ǫ

1

2
−δ, 1

2
−δ 1

2
−δ, 1

2
−δ 6k+8kǫ−12kδ

Stage 2 8
12∗ǫ

1
2−δ,

1
2−δ - 2k+8kǫ−4kδ

(Final) 8
12∗ǫ

1
2−δ,

1
2−δ 1 6k+8kǫ−4kδ

Table 3.2: The optimal schedule for Case 1.1. For each stage, the first row is the
configuration just before items arrival and the second row is the configuration when
the maximum amount of load is released. The very last row is the final configuration.
Bolded entries are new items arrived in the corresponding stage. The notation y∗z
means packing a bin with a load y of z-items. The last column shows the total load of

all bins.

We then release 4k items of size 1. Each of these items has to be packed in a new

bin, i.e., n2 = 4k. In total, A uses 8k + 4k + 4k = 16k bins. Figure 3.5 shows the final

configuration of A.

# bins 8k 4k 4k

A ǫ 1
2−δ 1

total size: 6k+8kǫ−4kδ

# bins: 16k

Lemma 3.1 summarizes the case and the packing of the optimal solution.

Lemma 3.1. If A uses at least 8k bins in Stage 0 and 4k bins in Stage 1, then A uses

16k bins at the end while O uses 6k + 2 bins.

Proof. In order to complete the proof of the lemma, we list in Table 3.2 the packing

configuration of the optimal offline algorithm O, showing how items are packed in each

stage. We show that O uses at most 6k + 2 bins at any time. Each stage is composed

of item departure and arrival. In Stage 0, the 8k ǫ-items released that never depart are

packed in two bins, 4k ǫ-items in each bin, while the remaining ǫ-items that depart in

Stage 1 are packed in the remaining space of the two bins and additionally in 6k bins.

In Stage 1, 6k bins are emptied and 4k items of size 1
2−δ released that never depart are

packed in 2k bins, two items in each bin, with the remaining 8k items that depart in

Stage 2 packed in 4k bins, two items in each bin. In the final stage, 4k 1-items released

are packed in the last 4k bins that are emptied at the beginning of the stage.

Case 1.2: n0 ≥ 8k and 2k ≤ n1 < 4k.

In this case, we have 10k ≤ n0 + n1 < 12k. We first make an observation about the

number of bins that contain one ǫ-item and one (12−δ)-item. If this number is smaller

than 4k, then we have n1 > (12k − 4k)/2 = 4k because we have more than 12k − 4k
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Figure 3.6: The final configuration of A achieved by the adversary in Case 1.2.

items of size 1
2−δ to be packed in new bins and each bin can pack at most two of them,

contradicting the definition of Case 1.2.

Observation 3.2. At the end of Stage 1 of Case 1.2, the number of bins containing one

ǫ-item and one (12−δ)-item is at least 4k.

Stage 2. In this stage, we aim at n2 ≥ 2k. We keep 4k items of size 1
2−δ in each of those

bins that also have an ǫ-item and let other (12−δ)-items depart. Then the configuration

of A becomes {4k:ǫ, 4k:(ǫ, 12−δ)}, with 8k bins and a total load of 2k +O(1).

# bins 4k 4k

A ǫ ǫ, 12−δ

total size: 2k+8kǫ−4kδ

# bins: 8k

Recall that δ′ = δ
16k . We use Op-Inc with x = 1

2−8kδ′, h = 4k, and s = 2k. For

the first 4k bins, only one x-item can be packed; for the second 4k bins, no item can

be packed since 16kδ = ǫ, 16kδ′ = δ, and (ǫ+ 1
2−δ) +

1
2−8kδ′ > 1. Therefore, we have

h = 4k as said. With s = 2k, Op-Inc releases 8k items of increasing size from 1
2−8kδ′

to at most 1
2−δ

′. According to Op-Inc, A needs to open at least 2k bins, each with one

(12−(8k−i)δ′)-item, for 0 ≤ i < n2, and perhaps one other item. Note that n2 ≥ 2k and

at the end of Op-Inc we depart items such that n2 = 2k.

Stage 3. In this stage, we aim at n3 = 2k. The configuration at the end of Stage 2 is

{4k:ǫ, 4k:(ǫ,
1

2
−δ), 2k:

1

2
−(8k−i)δ′} , for 0 ≤ i < 2k,

with 10k bins and a total load of 3k +O(1).

# bins 4k 4k 2k

A ǫ ǫ, 12−δ
1
2−(8k−i)δ′

total size: 3k+8kǫ−4kδ−2k(8k−i)δ′

# bins: 10k

Note that in the last 2k bins, the load increases by δ′ from 1
2−8kδ′ to 1

2−6kδ′. We

now use Op-Comp with x = 1
2−8kδ′, y = 1

2−6kδ′, h = 4k and s = 2k, i.e., we release

items of sizes in the range 1
2+6kδ′ to 1

2+8kδ′ and at any time at most 6k + 1 items are
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released. Note that at most one new item can be packed in the first 4k bins, none in

the next 4k bins, i.e., h = 4k. According to Op-Comp, A needs to open 2k bins and

n3 = 2k.

Stage 4. In this stage, we aim at n4 = 4k. We let some items depart until the

configuration is

{4k:ǫ, 4k:ǫ, 2k:
1

2
−(8k−i)δ′, 2k:

1

2
+(8k−i)δ′} , for 0 ≤ i < 2k,

with 12k bins and a total load of 2k +O(1).

# bins 4k 4k 2k 2k

A ǫ ǫ 1
2−(8k−i)δ′ 1

2+(8k−i)δ′

total size: 2k+8kǫ

# bins: 12k

We further release 4k items of size 1, hence n4 = 4k. In total, A uses 4k+4k+2k+

2k + 4k = 16k bins. Figure 3.6 shows the final configuration of A.

# bins 4k 4k 2k 2k 4k

A ǫ ǫ 1
2−(8k−i)δ′ 1

2+(8k−i)δ′ 1

total size: 6k+8kǫ

# bins: 16k

We observe that each item with size 1
2−(8k−i)δ′ has a corresponding item 1

2+(8k−i)δ′

such that the sum of sizes is 1. This allows the optimal offline algorithm to have a better

packing. Lemma 3.3 summarizes the case and the packing of the optimal solution.

Lemma 3.3. If A uses at least 8k bins in Stage 0 and [4k, 8k) bins in Stage 1, then A

uses 16k bins at the end while O uses 6k + 2 bins.

Proof. We list in Table 3.3 the packing configuration of the optimal offline algorithm

O, showing how items are packed in each stage. We show that O uses at most 6k + 2

bins at any time. Each stage is composed of item departure and arrival. Note that in

Stages 2 and 3 Op-Inc and Op-Comp are used, respectively, and we list the packing

when maximum amount of load is released in that stage as each stage involves item

arrival and departure. In Stage 0, the 8k items of size ǫ that never depart are packed

by O in two bins, the first bin packed with 6k items and the second bin packed with 2k

items. This allows the remaining space of the second bin to be reused for one item of

size 1
2+(8k−i)δ′ in Stage 3. The remaining ǫ-items are packed in the remaining space of

the second bin and additionally 6k bins. In Stage 1, 6k bins are emptied and 4k items of

size 1
2−δ released that depart only in the final stage are packed in 4k bins, one item in

each bin. This allows some items released by Op-Inc and Op-Comp in Stages 2 and 3 to

be temporarily packed in the 4k bins, as (12−δ) + (12+(8k−i)δ′) < 1. The remaining 8k

items released that depart in Stage 2 are packed in the remaining space of the 4k bins
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O : # bins 1 1 4k 2k total
Stage 0 - - - - 0

1∗ǫ 1∗ǫ (1−2ǫ)∗ǫ (1−2ǫ)∗ǫ 6k

Stage 1 1∗ǫ
1
3∗ǫ

- - 8kǫ

1∗ǫ
1
3∗ǫ

1

2
−δ, 1

2
−δ 1

2
−δ, 1

2
−δ 6k+8kǫ−12kδ

Stage 2 1∗ǫ
1
3∗ǫ

1
2−δ - 2k+8kǫ−4kδ

(Op-Inc) 1∗ǫ
1
3∗ǫ

1
2−δ,

1

2
−(8k−i)δ′

1

2
−(8k−i)δ′,

1

2
−(8k−i)δ′

6k+8kǫ−4kδ

−8k(8k−i)δ′

Stage 3 1∗ǫ
1
3∗ǫ

1
2−δ

1
2−(8k−i)δ′

3k+8kǫ−4kδ

−2k(8k−i)δ′

(Op-Comp) 1∗ǫ

1
3∗ǫ
,

1

2
+(8k−i)δ′

1
2−δ,

1

2
+(8k−i)δ′

1
2−(8k−i)δ′,
1

2
+(8k−i)δ′

6k+8kǫ−4kδ

+4k(8k−i)δ′+(12+(8k−i)δ′)

Stage 4 1∗ǫ
1
3∗ǫ

-
1
2−(8k−i)δ′,
1
2+(8k−i)δ′

2k+8kǫ

(Final) 1∗ǫ
1
3∗ǫ

1
1
2−(8k−i)δ′,
1
2+(8k−i)δ′

6k+8kǫ

Table 3.3: The optimal schedule for Case 1.2. For each stage, the first row is the
configuration just before items arrival and the second row is the configuration when
the maximum amount of load is released. The very last row is the final configuration.
Bolded entries are new items arrived in the corresponding stage. The notation y∗z
means packing a bin with a load y of z-items. The last column shows the total load of

all bins.

and an additional 2k bins. In the beginning of Stage 2, the 8k items depart. Afterwards

Op-Inc is used to release 8k items of increasing sizes 1
2−(8k−i)δ′ and these are packed

in the emptied space, with the condition that the 2k of the items that never depart are

packed in the last 2k bins, one item in each bin. In Stage 3 we first depart 6k of the

items released in the previous stage. Op-Comp is then used to release at most 6k + 1

items of increasing sizes 1
2+(8k−i)δ′. 2k of these items that never depart are packed

in the last 2k bins, one item in each bin that has a complementary (12−(8k−i)δ′)-item.

The remaining 4k + 1 items are packed in the remaining space. Finally in Stage 4 the

first 4k bins are emptied and 4k 1-items released are packed there.

3.5 The 8/3 Lower Bound - The Complex Cases

Case 2: 6k ≤ n0 < 8k.

This case is more complicated and involves three subcases. We make two observations

about the load of the n0 bins. If less than 4k bins have load at least 1
2 + ǫ, then the total

load of all bins is at most (4k − 1) + 4k/2 = 6k − 1, contradicting the fact that total

load of items released is 6k. Similarly, if less than 5k bins have load at least 1
4 + ǫ, then

the total load of all bins is at most (5k − 1) + 3k/4 < 6k, leading to a contradiction.

Observation 3.4. At the end of Stage 0 of Case 2, (i) at least 4k bins have load at least
1
2 + ǫ; (ii) at least 5k bins have load at least 1

4 + ǫ.

Stage 1. We aim at n1 ≥ 2k. We let ǫ-items depart until the configuration of A becomes
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Figure 3.7: The final configuration of A achieved by the adversary in Case 2.1.

{4k:(
1

2
+ǫ)∗ǫ, k:(

1

4
+ǫ)∗ǫ, k:ǫ} ,

with 6k bins and a total load of 9k/4 +O(1).

# bins 4k k k

A (12+ǫ)∗ǫ (14+ǫ)∗ǫ ǫ

total size: 9k
4 +6kǫ

# bins: 6k

We then use Op-Inc with x = 1
4+δ, h = 9k, and s = 2k. The first 4k bins can

pack at most one x-item, the next k bins at most two, and the last k bins at most

three, i.e., h = 9k. Any new bin can pack at most three items, implying that Op-Inc

releases 15k = h+3s items of increasing sizes, from 1
4+δ to at most 1

4+15kδ. According

to Op-Inc, A opens at least 2k bins, i.e., n1 ≥ 2k, and Op-Inc does not depart items

released in its last step. We consider two subcases: n1 ≥ 4k and 2k ≤ n1 < 4k.

Case 2.1: 6k ≤ n0 < 8k and n1 ≥ 4k.

In this case, we have 10k ≤ n0 + n1.

Stage 2. In this stage, we aim at n2 ≥ 4k. The configuration after departing some

items released by Op-Inc and after departing a load of 1
4 of ǫ-items from each of the

((12+ǫ)∗ǫ)-bins becomes

{4k:(
1

4
+ǫ)∗ǫ, k:(

1

4
+ǫ)∗ǫ, k:ǫ, 4k:

1

4
+iδ} , for 1 ≤ i ≤ 4k,

with 10k bins and a total load of 9k/4 +O(1).

# bins 4k k k 4k

A (14+ǫ)∗ǫ (14+ǫ)∗ǫ ǫ 1
4+iδ

total size: 9k
4 +6kǫ+4kiδ

# bins: 10k

Note that in the last 4k bins, the load increases by δ from 1
4+δ to 1

4+4kδ. We now

use Op-Comp with x = 1
4+δ, y = 1

4+4kδ, h = k, and s = 4k. I.e., Op-Comp releases
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items of sizes from 3
4−4kδ to 3

4−δ and at any time, at most 5k + 1 items are needed.

None of these items can be packed in the first 5k bins, and only one can be packed in

the next k bins, i.e., h = k as said. According to Op-Comp, A requires 4k new bins.

Stage 3. In this stage, we aim at n3 = 2k. We let items depart until the configuration

becomes

{4k:ǫ, k:ǫ, k:ǫ, 4k:
1

4
+iδ, 4k:

3

4
−iδ} , for 1 ≤ i ≤ 4k,

with 14k bins and a total load of 4k +O(1).

# bins 4k k k 4k 4k

A ǫ ǫ ǫ 1
4+iδ

3
4−iδ

total size: 4k+6kǫ

# bins: 14k

We further release 2k items of size 1. A needs to open 2k new bins, so n3 = 2k. In

total, A uses 6k + 4k + 4k + 2k = 16k bins. Figure 3.7 shows the final configuration of

A.

# bins 4k k k 4k 4k 2k

A ǫ ǫ ǫ 1
4+iδ

3
4−iδ 1

total size: 6k+6kǫ

# bins: 16k

We note that each item with size 1
4+iδ has a corresponding item 3

4−iδ such that the

sum of sizes is 1. This allows the optimal offline algorithm to have a better packing.

The details are given in Section 3.6.

Lemma 3.5. If A uses [6k, 8k) bins in Stage 0 and at least 4k bins in Stage 1, then A

uses 16k bins at the end while O uses 6k + 4 bins.

Case 2.2: 6k ≤ n0 < 8k and 2k ≤ n1 < 4k.

In this case, the Op-Inc in Stage 1 is paired with an Op-Comp in Stage 4 (not consecu-

tively), and in between, there is another pair of Op-Inc and Op-Comp in Stages 2 and 3,

respectively. Let m be the number of bins among the n1 new bins that have been packed

with at least two items. We further distinguish two subcases: m ≥ 2k and m < 2k.

Case 2.2.1: 6k ≤ n0 < 8k, 2k ≤ n1 < 4k and m ≥ 2k.

In this case, we have 8k ≤ n0 + n1 < 10k and m ≥ 2k. We make an observation about

the bins containing some ǫ-items. In particular, we claim that there are at least k bins

that are packed with

• either one ǫ-item and at least two (14+iδ)-items,
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Figure 3.8: The final configuration of A achieved by the adversary in Case 2.2.1.

• or one (14+iδ)-item plus at least a load of 1
4 + ǫ.

We note that in Stage 1, 15k items are released and at most three items can be

packed in any of the n1 < 4k new bins, i.e., at most 12k items. So, at least 3k of them

have to been packed in the first 6k bins. Let a and b be the number of bins in the

first 5k bins (with load at least 1
4+ǫ) that are packed with at least one (14+iδ)-item and

at least two (14+iδ)-items, respectively; z1, z2, z3 be the number of bins in the next k

bins (with one ǫ-item) that are packed one, two, and three (14+iδ)-items, respectively.

Note that z1 + z2 + z3 ≤ k. Since 3k items have to be packed in these bins, we have

a+ 2b+ z1 + 2z2 + 3z3 ≥ 3k, hence a+ 2b+ z2 + 2z3 ≥ 2k. The last inequality implies

that a+ b+ z2 + z3 ≥ k and the claim holds.

Observation 3.6. At the end of Stage 1 of Case 2.2.1, at least k bins are packed with

either one ǫ-item and at least two (14+iδ)-items, or one (14+iδ)-item plus at least a load

of 1
4 + ǫ.

Stage 2. We aim at n2 ≥ 2k. Let z = z2+z3. We let items depart until the configuration

becomes

{3k:(
1

2
+ǫ)∗ǫ, k−z:((

1

4
+ǫ)∗ǫ,

1

4
+iδ), z:(ǫ,

1

4
+iδ,

1

4
+iδ), 2k:ǫ, 2k:(

1

4
+iδ,

1

4
+iδ)} ,

with 8k bins and a total load of 3k +O(1).

# bins 3k k−z z 2k 2k

A (12+ǫ)∗ǫ (14+ǫ)∗ǫ,
1
4+iδ ǫ, 14+iδ,

1
4+iδ ǫ 1

4+iδ,
1
4+iδ

total size: 3k+6kǫ+5kiδ+ziδ

# bins: 8k

Recall that δ′ = δ
16k . We use Op-Inc with x = 1

2−6kδ′, h = 2k, and s = 2k. The

x-items can only be packed in the 2k bins with load ǫ, at most one item in one bin, i.e.,

h = 2k. Any new bin can pack at most two, implying that Op-Inc releases 6k = h+ 2s

items of increasing sizes, from 1
2−6kδ′ to at most 1

2−δ
′. According to Op-Inc, A has to

open at least 2k new bins, i.e., n2 ≥ 2k. In the last step of Op-Inc we depart items such

that n2 = 2k.

Stage 3. In this stage, we aim at n3 ≥ 2k. We use Op-Comp which corresponds to

Op-Inc in Stage 2. We let items depart until the configuration becomes
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{3k:(
1

2
+ǫ)∗ǫ, k−z:((

1

4
+ǫ)∗ǫ,

1

4
+iδ), z:(ǫ,

1

4
+iδ,

1

4
+iδ), 2k:ǫ,

2k:(
1

4
+iδ,

1

4
+iδ), 2k:

1

2
−iδ′} ,

with 10k bins and a total load of 4k +O(1).

# bins 3k k−z z 2k 2k 2k

A (12+ǫ)∗ǫ (14+ǫ)∗ǫ,
1
4+iδ ǫ, 14+iδ,

1
4+iδ ǫ 1

4+iδ,
1
4+iδ

1
2−iδ

′

total size: 4k+6kǫ+5kiδ+ziδ−2kiδ′

# bins: 10k

We then use Op-Comp with x = 1
2−6kδ′, y = 1

2−4kδ′, h = 2k, and s = 2k. I.e., we

release items of increasing size from 1
2+4kδ′ to 1

2+6kδ′, and at any time, at most 4k+1

items are needed. The 2k bins of load ǫ can pack one such item. Suppose there are w,

out of 2k, ǫ-bins that are not packed with a (12+iδ
′)-item. According to Op-Comp, A

has to open 2k+w new bins.

Stage 4. In this stage, we aim at n4 ≥ 2k−w. We use Op-Comp which corresponds to

Op-Inc in Stage 1. We let items depart until the configuration is

{3k:(
1

4
+ǫ)∗ǫ, k−z:(

1

4
+ǫ)∗ǫ, z:(ǫ,

1

4
+iδ), 2k−w:(ǫ,

1

2
+iδ′), w:ǫ, 2k:

1

4
+iδ,

2k:
1

2
−iδ′, 2k+w:

1

2
+iδ′} ,

with 12k + w bins and a total load of 9k/2 +O(1).

# bins 3k k−z z 2k−w w 2k 2k 2k+w

A (14+ǫ)∗ǫ (14+ǫ)∗ǫ ǫ, 14+iδ ǫ, 12+iδ
′ ǫ 1

4+iδ
1
2−iδ

′ 1
2+iδ

′

total size: 9k
2 +6kǫ+2kiδ+ziδ+2kiδ′

# bins: 12k+w

We then use Op-Comp with x = 1
4+δ, y = 1

4+2kδ, h = w, and s = 2k − w. I.e.,

we release items of sizes from 3
4−2kδ to 3

4−δ and at any time, at most 2k + 1 items are

needed. Only w ǫ-bins can pack such item, i.e., h = w as said. According to Op-Comp,

A has to open 2k−w new bins.

Stage 5. In this final stage, we aim at n5 = 2k. We let items depart until the configu-

ration is

{3k:ǫ, k−z:ǫ, z:ǫ, 2k−w:ǫ, w:ǫ, 2k:
1

4
+iδ, 2k:

1

2
−iδ′, 2k+w:

1

2
+iδ′, 2k−w:

3

4
−iδ} ,

with 14k bins and a total load of 4k − w
4 +O(1).
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Figure 3.9: The final configuration of A achieved by the adversary in Case 2.2.2.

# bins 3k k−z z 2k−w w 2k 2k 2k+w 2k−w

A ǫ ǫ ǫ ǫ ǫ 1
4+iδ

1
2−iδ

′ 1
2+iδ

′ 3
4−iδ

total size: 4k+6kǫ+wiδ+wiδ′−w
4

# bins: 14k

Finally, we release 2k items of size 1 and A has to open 2k new bins. In total, A

uses 3k + (k − z) + z + (2k −w) +w + 2k + 2k + (2k +w) + (2k −w) + 2k = 16k bins.

Figure 3.8 shows the final configuration of A. The packing of O is given in Section 3.6.

# bins 3k k−z z 2k−w w 2k 2k 2k+w 2k−w 2k

A ǫ ǫ ǫ ǫ ǫ 1
4+iδ

1
2−iδ

′ 1
2+iδ

′ 3
4−iδ 1

total size: 6k+6kǫ+wiδ+wiδ′−w
4

# bins: 16k

Lemma 3.7. If A uses [6k, 8k) bins in Stage 0, [2k, 4k) bins in Stage 1, and m ≥ 2k,

then A uses 16k bins at the end while O uses 6k + 3 bins.

Case 2.2.2: 6k ≤ n0 < 8k, 2k ≤ n1 < 4k and m < 2k.

We recall that in Stage 1, 15k items of size 1
4+iδ are released and A uses [2k, 4k) new

bins for these items.

Observation 3.8. (i) At most 8k items of size 1
4+iδ can be packed to the n1 new bins.

(ii) At least k of the following bins have load more than 1
2 : {k:(14+ǫ)∗ǫ, k:ǫ}. (iii) At

least 2k of the {4k:(12+ǫ)∗ǫ} bins are packed with at least one (14+iδ)-item.

Proof. (i) By the definition of m, we note m new bins can pack at most three items and

n1 −m can pack at most one item. Therefore, the total number of items that can be

packed is at most n1+2m < 4k+2m < 8k because m < 2k. (ii) By (i), at least 7k items

have to be packed in existing bins. Each of the first 4k bins can pack at most one item,

meaning that at least 3k items have to be packed in {k:(14+ǫ)∗ǫ, k:ǫ}. Suppose there

are a of the ((14+ǫ)∗ǫ)-bins and b of the ǫ-bins that have load at least 1
2 . Therefore, we

require that 2a+3b+ (k− b) ≥ 3k or equivalently a+ b ≥ k. (iii) We note that at most

2k items can be packed in ((14+ǫ)∗ǫ)-bins and at most 3k items to ǫ-bins. Therefore, at

least 7k − 5k = 2k items needed to be packed in the first 4k bins, each packing at most

one item, implying that there are at least 2k such bins.
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Let z1 and z2 be the number of new bins that are packed one and at least two,

respectively, (14+iδ)-items. The following observation gives a bound on z.

Observation 3.9. (i) At most 9k items of size 1
4+iδ can be packed in existing bins. (ii)

z2 ≥ k. (iii) z1 ≥ 3(2k − z2).

Proof. (i) We observe that at most 9k items can be packed in existing bins because at

most 4k items can be packed in the first 4k bins, 2k items in the next k bins and 3k items

in the next k bins. (ii) At least 7k out of n0+n1 bins have load at least 1
2 . Otherwise, the

total load that can be packed is less than 7k× 3
4+(10k−7k)× 1

4 = 6k, contradicting that

there is more than 6k of load released. (iii) Therefore, at least 15k−9k = 6k items have

to be packed in the new bins. So we require that z1 +3z2 ≥ 6k and z1 ≥ 3(2k− z2).

Stage 2. In this stage, we target n2 ≥ z2. Recall that due to Observation 3.8(ii) at least

k of the following bins have load more than 1
2 : {k:(

1
4+ǫ)∗ǫ, k:ǫ}. Let k− q, for q ≤ k, be

the number of bins among the ((14+ǫ)∗ǫ)-bins that have load more than 1
2 . Then there

are at least q bins among the remaining ǫ-bins that have load more than 1
2 . We let items

depart until the configuration becomes

• 2k:(12+ǫ)∗ǫ,

• 2k:((14+ǫ)∗ǫ,
1
4+iδ), this is possible because of Observation 3.8(iii),

• q:(ǫ, 14+iδ,
1
4+iδ),

• k−q:((14+ǫ)∗ǫ,
1
4+iδ), this is possible because of Observation 3.8(ii),

• k:ǫ,

• z2:(
1
4+iδ,

1
4+iδ), this is possible because of Observation 3.9(ii),

• 2(2k−z2):(
1
4+iδ), this is possible because of Observation 3.9(iii),

with 10k − z2 bins and a total load of 7k/2 +O(1).

# bins 2k 2k q k−q k z2 2(2k−z2)

A (12+ǫ)∗ǫ
(14+ǫ)∗ǫ,

1
4+iδ

ǫ, 14+iδ,

1
4+iδ

(14+ǫ)∗ǫ,

1
4+iδ

ǫ

1
4+iδ,

1
4+iδ

1
4+iδ

total size: 7k
2 +6kǫ+7kiδ+xiδ

# bins: 10k−z2
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We then use Op-Inc with x = 1
2−5kδ′, h = 5k−2z2 and s = z2. The x-items can only

be packed in k of ǫ-bins and 2(2k−z2) of (
1
4+iδ)-bins, i.e., h = k+2(2k−z2) = 5k−2z2

as said. Any new bin can pack at most two, implying that Op-Inc releases 5k = h+ 2s

items of increasing sizes from 1
2−5kδ′ to 1

2−δ
′. According to Op-Inc, A has to open at

least z2 bins, i.e., n2 ≥ z2. Op-Inc departs items released in the last step such that

n2 = z2.

Stage 3. In this stage, we target n3 ≥ z2. We let items depart until the configuration

becomes

{2k:(
1

2
+ǫ)∗ǫ, 2k:((

1

4
+ǫ)∗ǫ,

1

4
+iδ), q:(ǫ,

1

4
+iδ,

1

4
+iδ), k−q:((

1

4
+ǫ)∗ǫ,

1

4
+iδ), k:ǫ,

z2:(
1

4
+iδ,

1

4
+iδ), 2(2k−z2):

1

4
+iδ, z2:

1

2
−iδ′} ,

with 10k bins and a total load of 7k/2 + z2/2 +O(1).

# bins 2k 2k q k−q k z2 2(2k−z2) z2

A (12+ǫ)∗ǫ
(14+ǫ)∗ǫ,

1
4+iδ

ǫ, 14+iδ,

1
4+iδ

(14+ǫ)∗ǫ,

1
4+iδ

ǫ

1
4+iδ,

1
4+iδ

1
4+iδ

1
2−iδ

′

total size: 7k
2 +6kǫ+7kiδ+xiδ+ z2

2 −z2iδ
′

# bins: 10k

We use Op-Comp with s = z2 to release items of increasing size from 1
2+δ

′. These

items can only be packed in ǫ-bins (k of them) and (14+iδ)-bins (2(2k − z2) of them).

At any time, at most (5k − z2) + 1 items are needed. According to Op-Comp, A has to

open z2 bins, i.e., n3 ≥ z2.

Stage 4. We target n4 ≥ (4k−z2). We let items depart until the configuration becomes

{4k−q:(
1

4
+ǫ)∗ǫ, k+q:(ǫ,

1

4
+iδ), k:ǫ, 4k−z2:

1

4
+iδ, z2:

1

2
−iδ′, z2:

1

2
+iδ′} ,

with 10k + z2 bins and a total load of 9k/4 + 3z2/4 +O(1).

# bins 4k−q k+q k 4k−z2 z2 z2

A (14+ǫ)∗ǫ ǫ, 14+iδ ǫ 1
4+iδ

1
2−iδ

′ 1
2+iδ

′

total size: 9k
4 +6kǫ+5kiδ+xiδ+ 3z2

4 −z2iδ

# bins: 10k+z2

We then use Op-Comp with s = 4k − z2 and items of increasing size 3
4−iδ. Using

similar ideas as before, A has to open (4k − z2) new bins.

Stage 5. In this stage, we target n5 = 2k. We let items depart until the configuration

becomes
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{4k−q:ǫ, k+q:ǫ, k:ǫ, 4k−z2:
1

4
+iδ, z2:

1

2
−iδ′, z2:

1

2
+iδ′, 4k−z2:

3

4
−iδ, } ,

with 14k bins and a total load of 4k +O(1).

# bins 4k−q k+q k 4k−z2 z2 z2 4k−z2

A ǫ ǫ ǫ 1
4+iδ

1
2−iδ

′ 1
2+iδ

′ 3
4−iδ

total size: 4k+6kǫ

# bins: 14k

We finally release 2k items of size 1 and A has to open 2k new bins. In total A uses

6k + 8k + 2k = 16k bins. Figure 3.9 shows the final configuration of A. The packing of

O is given in Section 3.6.

# bins 4k−q k+q k 4k−z2 z2 z2 4k−z2 2k

A ǫ ǫ ǫ 1
4+iδ

1
2−iδ

′ 1
2+iδ

′ 3
4−iδ 1

total size: 6k+6kǫ

# bins: 16k

Lemma 3.10. If A uses [6k, 8k) bins in Stage 0, [2k, 4k) bins in Stage 1, and m < 2k,

then A uses 16k bins at the end while O uses 6k + 5 bins.

Theorem 3.11. No online algorithm can be better than 8/3-competitive.

3.6 The optimal offline packing

In this section we discuss how the optimal offline algorithm O packs items in different

stages for the complex cases in the previous section. We list in Tables 3.4–3.6 the packing

configuration in each stage. Note that for stages involving Op-Inc and Op-Comp, we list

the packing when the maximum amount of load is released in that stage (as each stage

may involve item arrival and departure). In each table, for each stage the first row is

the configuration just before items arrival and the second row is the configuration when

the maximum amount of load is released. The very last row is the final configuration.

Bolded entries are new items arrived in the corresponding stage. The notation y∗z means

packing a bin with a load y of z-items. The last column shows the total load of all bins.

Case 2.1: We note that each item with size 1
4+iδ in Stage 1 has a corresponding item

3
4−iδ in Stage 2 such that the sum of sizes is 1. Table 3.4 lists the optimal offline

schedule.

Case 2.2.1: We note that each item with size 1
4+iδ in Stage 1 has a corresponding item

3
4−iδ in Stage 4 and each item with size 1

2−iδ
′ in Stage 2 has a corresponding item 1

2+iδ
′

in Stage 3 such that the sum of sizes is 1. Table 3.5 lists the optimal offline schedule.
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O : # bins 3 1 4k k k total
Stage 0 - - - - - 0

1∗ǫ 1∗ǫ (1−4ǫ)∗ǫ (1−5ǫ)∗ǫ (1−3ǫ)∗ǫ 6k

Stage 1 1∗ǫ 1∗ǫ (14−3ǫ)∗ǫ (14−3ǫ)∗ǫ (1−3ǫ)∗ǫ
9k
4 +6kǫ

(Op-Inc) 1∗ǫ 1∗ǫ
(14−3ǫ)∗ǫ,

3×(1
4
+iδ)

(14−3ǫ)∗ǫ,

3×(1
4
+iδ)

(1−3ǫ)∗ǫ 6k+6kǫ+15kiδ

Stage 2 2
3 ∗ǫ

- 1
4+iδ (14−3ǫ)∗ǫ (1−3ǫ)∗ǫ

9k
4 +6kǫ+4kiδ

(Op-Comp) 2
3 ∗ǫ

3

4
−iδ 1

4+iδ,
3

4
−iδ (14−3ǫ)∗ǫ,

3

4
−iδ (1−3ǫ)∗ǫ 6k+6kǫ−kiδ+(34−iδ)

Stage 3 1
3 ∗ǫ

- 1
4+iδ,

3
4−iδ - - 4k+6kǫ

(Final) 1
3 ∗ǫ

- 1
4+iδ,

3
4−iδ 1 1 6k+6kǫ

Table 3.4: The optimal schedule for Case 2.1.

Case 2.2.2: We note that each item with size 1
4+iδ in Stage 1 has a corresponding item

3
4−iδ in Stage 4 and each item with size 1

2−iδ
′ in Stage 2 has a corresponding item 1

2+iδ
′

in Stage 3 such that the sum of sizes is 1. Table 3.6 lists the optimal offline schedule.

3.7 Conclusion

We have derived an 8/3 ∼ 2.666 lower bound on the competitive ratio for dynamic bin

packing, improving the best known 2.5 lower bound [19]. We designed two operations

that release items of slightly increasing sizes and items with complementary sizes. These

operations make a more systematic approach to release items: the type of item sizes used

in a later case is a superset of those used in an earlier case. This is in contrast to the

previous 2.5 lower bound in [19] in which rather different sizes are used in different cases.

Furthermore, in each case, we use one or two pairs of Op-Inc and Op-Comp, which makes

the structure clearer and the proof easier to understand. We also show that the new

operations defined lead to a much easier proof for a 2.5 lower bound. An obvious open

problem is to close the gap between the upper and lower bounds.
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O : # bins 2 1 z 2k−w−z w k − w k w 2k total
Stage 0 - - - - - - - - - 0

1∗ǫ 1∗ǫ (1−3ǫ)∗ǫ (1−3ǫ)∗ǫ (1−3ǫ)∗ǫ (1−3ǫ)∗ǫ (1−3ǫ)∗ǫ (1−3ǫ)∗ǫ (1−3ǫ)∗ǫ 6k

Stage 1 1∗ǫ 1∗ǫ (12−2ǫ)∗ǫ (12−2ǫ)∗ǫ (34−2ǫ)∗ǫ (12−2ǫ)∗ǫ (14−2ǫ)∗ǫ (14−2ǫ)∗ǫ (14−2ǫ)∗ǫ
9k
4 +6kǫ

(Op-Inc-1) 1∗ǫ 1∗ǫ
(12−2ǫ)∗ǫ,

1

4
+iδ, 1

4
+iδ

(12−2ǫ)∗ǫ,
1

4
+iδ, 1

4
+iδ

(34−2ǫ)∗ǫ,
1

4
+iδ

(12−2ǫ)∗ǫ,
1

4
+iδ, 1

4
+iδ

(14−2ǫ)∗ǫ,

3×(1
4
+iδ)

(14−2ǫ)∗ǫ,

3×(1
4
+iδ)

(14−2ǫ)∗ǫ,

3×(1
4
+iδ)

6k+6kǫ+15kiδ

Stage 2 1∗ǫ
1
3∗ǫ

(14−2ǫ)∗ǫ,
1
4+iδ

(12−2ǫ)∗ǫ
(34−2ǫ)∗ǫ,

1
4+iδ

(12−2ǫ)∗ǫ,
1
4+iδ,

1
4+iδ

(14−2ǫ)∗ǫ,

3×(14+iδ)

(14−2ǫ)∗ǫ,
1
4+iδ

-
3k+6kǫ+5kiδ

+ziδ

(Op-Inc-2) 1∗ǫ
1
3∗ǫ

(14−2ǫ)∗ǫ,
1
4+iδ,

1

2
−iδ′

(12−2ǫ)∗ǫ,
1

2
−iδ′

(34−2ǫ)∗ǫ,
1
4+iδ

(12−2ǫ)∗ǫ,
1
4+iδ,

1
4+iδ

(14−2ǫ)∗ǫ,

3×(14+iδ)

(14−2ǫ)∗ǫ,
1
4+iδ,

1

2
−iδ′

1

2
−iδ′, 1

2
−iδ′

6k+6kǫ+5kiδ

+ziδ−6kiδ′

Stage 3 1∗ǫ
1
3∗ǫ

(14−2ǫ)∗ǫ,
1
4+iδ

(12−2ǫ)∗ǫ
(34−2ǫ)∗ǫ,

1
4+iδ

(12−2ǫ)∗ǫ,
1
4+iδ,

1
4+iδ

(14−2ǫ)∗ǫ,

3×(14+iδ)

(14−2ǫ)∗ǫ,
1
4+iδ

1
2−iδ

′
4k+6kǫ+5kiδ

+ziδ−2kiδ′

(Op-Comp-2) 1∗ǫ

1
3 ∗ǫ
,

1

2
+iδ′

(14−2ǫ)∗ǫ,
1
4+iδ,

1

2
+iδ′

(12−2ǫ)∗ǫ,
1

2
+iδ′

(34−2ǫ)∗ǫ,
1
4+iδ

(12−2ǫ)∗ǫ,
1
4+iδ,

1
4+iδ

(14−2ǫ)∗ǫ,

3×(14+iδ)

(14−2ǫ)∗ǫ,
1
4+iδ,

1

2
+iδ′

1
2−iδ

′, 1

2
+iδ′

6k+6kǫ+5kiδ

+ziδ+2kiδ′+(14+iδ)

Stage 4 5
6∗ǫ

-
(14−2ǫ)∗ǫ,

1
4+iδ,

1
2+iδ

′

(12−2ǫ)∗ǫ,
1
2+iδ

′

1
4∗
ǫ 1

4+iδ
1
4+iδ

(14−2ǫ)∗ǫ,
1
4+iδ,

1
2+iδ

′

1
2−iδ

′, 12+iδ
′

9k
2 +6kǫ+2kiδ

+ziδ+2kiδ′

(Op-Comp-1) 5
6∗ǫ

3

4
−iδ

(14−2ǫ)∗ǫ,
1
4+iδ,

1
2+iδ

′

(12−2ǫ)∗ǫ,
1
2+iδ

′

1
4∗
ǫ,

3

4
−iδ

1
4+iδ,
3

4
−iδ

1
4+iδ,
3

4
−iδ

(14−2ǫ)∗ǫ,
1
4+iδ,

1
2+iδ

′

1
2−iδ

′, 12+iδ
′

6k+6kǫ+ziδ

+2kiδ′+(34−iδ)

Stage 5 1
2∗ǫ

- - - - 1
4+iδ,

3
4−iδ

1
4+iδ,

3
4−iδ

1
4+iδ,

1
2+iδ

′ 1
2−iδ

′, 12+iδ
′

4k+6kǫ+wiδ

+wiδ′−w
4

(Final) 1
2∗ǫ

- 1 1 1 1
4+iδ,

3
4−iδ

1
4+iδ,

3
4−iδ

1
4+iδ,

1
2+iδ

′ 1
2−iδ

′, 12+iδ
′

6k+6kǫ+wiδ

+wiδ′−w
4

Table 3.5: The optimal schedule for Case 2.2.1.
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O : # bins 4 1 z2 4k−2z2 z2 q k−q q z2−k−q 2k−z2 total
Stage 0 - - - - - - - - - - 0

1∗ǫ - (1−4ǫ)∗ǫ (1−4ǫ)∗ǫ (1−4ǫ)∗ǫ (1−4ǫ)∗ǫ (1−4ǫ)∗ǫ (1−4ǫ)∗ǫ (1−4ǫ)∗ǫ (1−4ǫ)∗ǫ 6k

Stage 1 1∗ǫ - (14−3ǫ)∗ǫ (14−3ǫ)∗ǫ (14−3ǫ)∗ǫ (12−3ǫ)∗ǫ (34−3ǫ)∗ǫ (34−3ǫ)∗ǫ (12−3ǫ)∗ǫ (12−3ǫ)∗ǫ
9k
4 +6kǫ

(Op-Inc-1) 1∗ǫ -
(14−3ǫ)∗ǫ,

3×(1
4
+iδ)

(14−3ǫ)∗ǫ,

3×(1
4
+iδ)

(14−3ǫ)∗ǫ,

3×(1
4
+iδ)

(12−3ǫ)∗ǫ,
1

4
+iδ, 1

4
+iδ

(34−3ǫ)∗ǫ,
1

4
+iδ

(34−3ǫ)∗ǫ,
1

4
+iδ

(12−3ǫ)∗ǫ,
1

4
+iδ, 1

4
+iδ

(12−3ǫ)∗ǫ,
1

4
+iδ, 1

4
+iδ

6k+6kǫ+15kiδ

Stage 2 1∗ǫ -
(14−6ǫ)∗ǫ,

3×(14+iδ)

(14−3ǫ)∗ǫ,
1
4+iδ

-
(12−3ǫ)∗ǫ,
1
4+iδ,

1
4+iδ

(34−3ǫ)∗ǫ,
1
4+iδ

(12−3ǫ)∗ǫ (12−3ǫ)∗ǫ
(14−3ǫ)∗ǫ,

1
4+iδ

7k
2 +6kǫ+7kiδ

+xiδ

(Op-Inc-2) 1∗ǫ -
(14−6ǫ)∗ǫ,

3×(14+iδ)

(14−3ǫ)∗ǫ,
1
4+iδ,

1

2
−iδ′

1

2
−iδ′, 1

2
−iδ′

(12−3ǫ)∗ǫ,
1
4+iδ,

1
4+iδ

(34−3ǫ)∗ǫ,
1
4+iδ

(12−3ǫ)∗ǫ,
1

2
−iδ′

(12−3ǫ)∗ǫ,
1

2
−iδ′

(14−3ǫ)∗ǫ,
1
4+iδ,

1

2
−iδ′

6k+6kǫ+7kiδ

+xiδ−5kiδ′

Stage 3 1∗ǫ -
(14−6ǫ)∗ǫ,

3×(14+iδ)

(14−3ǫ)∗ǫ,
1
4+iδ

1
2−iδ

′
(12−3ǫ)∗ǫ,
1
4+iδ,

1
4+iδ

(34−3ǫ)∗ǫ,
1
4+iδ

(12−3ǫ)∗ǫ (12−3ǫ)∗ǫ
(14−3ǫ)∗ǫ,

1
4+iδ

7k
2 +6kǫ+7kiδ

+xiδ+ z2
2 −z2iδ

′

(Op-Comp-2) 1∗ǫ
1

2
+iδ′

(14−6ǫ)∗ǫ,

3×(14+iδ)

(14−3ǫ)∗ǫ,
1
4+iδ,

1

2
+iδ′

1
2−iδ

′, 1

2
+iδ′

(12−3ǫ)∗ǫ,
1
4+iδ,

1
4+iδ

(34−3ǫ)∗ǫ,
1
4+iδ

(12−3ǫ)∗ǫ,
1

2
+iδ′

(12−3ǫ)∗ǫ,
1

2
+iδ′

(14−3ǫ)∗ǫ,
1
4+iδ,

1

2
+iδ′

6k+6kǫ+7kiδ

+xiδ−2z2iδ
′

+5kiδ′+(12+iδ
′)

Stage 4 1
2∗ǫ

- 1
4+iδ

1
4+iδ

1
2−iδ

′, 12+iδ
′

(12−3ǫ)∗ǫ,
1
4+iδ,

1
4+iδ

(34−3ǫ)∗ǫ,
1
4+iδ

(14−3ǫ)∗ǫ (14−3ǫ)∗ǫ (14−3ǫ)∗ǫ
9k
4 +6kǫ+5kiδ

+xiδ+3z2
4 −z2iδ

(Op-Comp-1) 1
2∗ǫ

3

4
−iδ 1

4+iδ,
3

4
−iδ 1

4+iδ,
3

4
−iδ 1

2−iδ
′, 12+iδ

′
(12−3ǫ)∗ǫ,
1
4+iδ,

1
4+iδ

(34−3ǫ)∗ǫ,
1
4+iδ

(14−3ǫ)∗ǫ,
3

4
−iδ

(14−3ǫ)∗ǫ,
3

4
−iδ

(14−3ǫ)∗ǫ,
3

4
−iδ

6k+6kǫ+xiδ

+(34−iδ)

Stage 5 1
4∗ǫ

- 1
4+iδ,

3
4−iδ

1
4+iδ,

3
4−iδ

1
2−iδ

′, 12+iδ
′ - - - - - 4k+6kǫ

(Final) 1
4∗ǫ

- 1
4+iδ,

3
4−iδ

1
4+iδ,

3
4−iδ

1
2−iδ

′, 12+iδ
′ 1 1 1 1 1 6k+6kǫ

Table 3.6: The optimal schedule for Case 2.2.2.





Chapter 4

Online Two-dimensional Dynamic

Bin Packing of Unit Fraction

Items

4.1 Introduction

In this chapter, we design and analyze algorithms for online two-dimensional dynamic

bin packing of unit fraction items. Recall that general size items have lengths that are

real numbers in (0, 1], unit fraction items have lengths of the form 1/k, for some integer

k > 0, and power fraction items have lengths of the form 1/2k, for some integer k ≥ 0.

In multi-dimensional bin packing, items with lengths unit fraction or power fraction in

each dimension must be packed into multi-dimensional bins with lengths unit-size in

each dimension. In dynamic bin packing, items arrive over time, reside for some period

of time, and may depart at arbitrary time. Each item has to be assigned to a bin from

the time it arrives until it departs. The objective is to minimize the maximum number

of bins used over all time. Note that migration to another bin and rotation of items are

not allowed, but rearrangement of items within a bin is permitted. In the online setting,

the size and arrival time is only known when an item arrives and the departure time is

only known when the item departs. As in Chapter 3, we measure the performance of an

online algorithm using competitive analysis [11] (detailed in Section 1.1.3 and recalled

in Chapter 3).

We provide a new algorithm for online two-dimensional dynamic bin packing of unit

fraction items and show that its worst-case performance is better than its classical coun-

terpart for general size items. The results have been published in Proceedings of the 8th

International Conference on Algorithms and Complexity (CIAC), 2013 [15]. In Chapter

5 we continue our analysis by designing and analyzing algorithms for two-dimensional

dynamic bin packing of power fraction items, and three-dimensional dynamic bin packing

51
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1-D 2-D 3-D

General size 2.788 [26] 7.788 [70] 22.788 [70]

Unit fraction 2.4842 [47] 6.7850 [*] 21.6108 [**]

Power fraction 2.4842 [47] 6.2455 [**] 20.0783 [**]

Table 4.1: Competitive ratios for general size, unit fraction, and power fraction items.
The results obtained in this chapter is marked with “[*]”. The results obtained in

Chapter 5 are marked with “[**]”.

of unit and power fraction items. While these results were described in [15], their anal-

ysis was omitted. In this chapter we also introduce power fraction items and notation

used in Chapter 5.

Previous results. The dynamic bin packing problem was first studied in 1-D for gen-

eral size items by Coffman, Garey and Johnson [26], showing that the First-Fit (FF)

algorithm has a competitive ratio lying between 2.75 and 2.897, and a modified First-Fit

algorithm is 2.788-competitive. They gave a formula of the competitive ratio of FF when

the item size is at most 1
k . When k = 2 and 3, the ratios are 1.7877 and 1.459, respec-

tively. They also gave a lower bound of 2.388 for any deterministic online algorithm,

which was improved to 2.428 [18], 2.5 [19], and then to 2.666 (detailed in Chapter 3

and published in [71]). For unit fraction items, Chan et al. [18] obtained a competitive

ratio of 2.4942, which was recently improved by Han et al. to 2.4842 [47], while the

lower bound was proven to be 2.428 [18]. Multi-dimensional dynamic bin packing of

general size items was initially studied by Epstein and Levy [37], who showed that the

competitive ratios are 8.5754, 35.346 and 2 · 3.5d for 2-D, 3-D and d-D respectively. The

ratios are then improved to 7.788, 22.788, and 3d correspondingly by Wong and Yung

[70]. For 2-D and 3-D general size items, the lower bounds are 3.70301 and 4.85383 [37],

respectively. In the construction of the adversaries in [37], only items with lengths unit

fraction are used, thus the lower bounds also apply to 2-D and 3-D unit fraction items.

Our contribution. In this chapter, we extend the study of the 2-D online dynamic bin

packing problem to unit fraction items. We observe in Section 4.2 that using the 1-D

results on unit fraction items [47], the competitive ratio of 7.788 for 2-D [70] naturally

becomes 7.4842, while the competitive ratio of 22.788 for 3-D [70] becomes 22.4842. An

immediate question arising is whether we can have an even smaller competitive ratio.

We answer the questions affirmatively as follows (see Table 4.1 for a summary). In this

chapter, for 2-D, we obtain a competitive ratio of 6.7850 for unit fraction items, while

in Chapter 5 for 2-D power fraction items we obtain a competitive ratio of 6.2455, while

for 3-D we obtain competitive ratios of 21.6108 and 20.0783 for unit and power fraction

items, respectively.

We adopt the typical approach of dividing items into classes and analyzing each class

individually. We propose several natural classes and define different packing schemes

based on the classes1. In particular, we show that two schemes lead to better results.

1The proposed classes are not necessarily disjoint while a packing scheme is a collection of disjoint
classes that cover all types of items.
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We show that one scheme is better than the other for unit fraction items, and vice versa

for power fraction items (to be detailed in Chapter 5). Our approach gives a systematic

way to explore different combinations of classes. One observation we have made is that

dividing 2-D items into three classes gives comparable results but dividing into four

classes would lead to much higher competitive ratios.

Organization of the chapter. In Section 4.2 we introduce the preliminaries required

for discussion. In Section 4.3 we analyze the components of two different classification

schemes for unit fraction items, while in Section 4.4 we propose the two classification

algorithms for unit fraction items.

4.2 Preliminaries

Notations and definitions. We consider the online dynamic bin packing problem, in

which 2-D and 3-D items must be packed into 2-D and 3-D unit-sized bins, respectively,

without overflowing. The items arrive over time, reside for some period of time, and

may depart at arbitrary times. Each item must be packed into a bin from its arrival to

its departure. Migration to another bin is not allowed and the items are oriented and

cannot be rotated. Yet, repacking of items within the same bin is permitted. The load

refers to the total area or volume of a set of 2-D or 3-D items, respectively. The objective

of the problem is to minimize the total number of bins used over all time. For both 2-D

and 3-D, we consider two types of input: unit fraction and power fraction items.

A general size item is an item such that the length in each dimension is in (0, 1]. A

unit fraction item is an item with lengths of the form 1
k , where k ≥ 1 is an integer, A

power fraction item has lengths of the form 1
2k
, where k ≥ 0 is an integer.

A packing is said to be feasible if all items do not overlap and the packing in each

bin does not exceed the boundary of the bin; otherwise, the packing is said to overflow

and is infeasible.

Some of the algorithms discussed in this chapter repack existing items (and possibly

include a new item) in a bin to check if the new item can be packed into this bin. If the

repacking is infeasible, it is understood that we would restore the packing to the original

configuration.

For 2-D items, we use the notation T(w, h) to refer to the type of items with width

w and height h. We use ‘∗’ to mean that the length can take any value at most 1,

e.g., T(∗, ∗) refers to all items. The parameters w (and h) may take an expression ≤ x

meaning that the width is at most x. For example, T(12 ,≤
1
2) refers to the items with

width 1
2 and height at most 1

2 . In the following discussion, we divide the items into seven

disjoint types as showed in Table 4.2.

The bin assignment algorithm that we use for all types of 2-D and 3-D unit and

power fraction items is the First-Fit (FF) algorithm. When a new item arrives, if there

are occupied bins in which the item can be repacked, FF assigns the new item to the

bin which has been occupied for the longest time.
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T(1, 1) T(1, 12 ) T(12 , 1) T(12 ,
1
2) T(1,≤ 1

3) T(12 ,≤
1
3) T(≤1

3 ,≤1)

Table 4.2: Types of unit fraction items considered.

Scheme in [70]

Classes Types of items Competitive ratios

Class A T(≤1
3 ,≤1) 3 [70]

Class B T(12 , 1),T(
1
2 ,

1
2),T(

1
2 ,≤

1
3) 2 [70]

Class C T(1, 1),T(1, 12),T(1,≤
1
3 ) 2.4842 [47]

Overall All items 7.4842

Table 4.3: The 2-D results of [70] for unit-fraction items.

Remark on existing result on unit fraction items. Using this notation, the algo-

rithm in [70] effectively classifies unit fraction items into the classes as shown in Table 4.3.

Items in the same class are packed separately, independent of other classes. The overall

competitive ratio is the sum of the competitive ratios of all classes. By the result in [47],

the competitive ratio for Class C reduces from 2.788 [26] to 2.4842 [47] and the overall

competitive ratio immediately reduces from 7.778 to 7.4842. The algorithm in [70] for

3-D items also uses classification of items based on their lengths. The 2-D algorithm

is used as part of the 3-D algorithm for one class of 3-D items that can be projected

along the third dimension such that the problem is reduced to 2-D. This results in the

particular class of 3-D items achieving the same competitive ratio as the overall com-

petitive ratio for 2-D items. Substituting the reduced 7.4842 competitive ratio for 2-D

unit fraction items as part of the classification for 3-D items results in a reduced overall

upper bound of 22.4842 for 3-D unit fraction items compared with 22.788 for 3-D general

size items.

Corollary 4.1. The 2-D and 3-D packing algorithms in [70] are 7.4842-competitive for

2-D unit fraction items and 22.4842-competitive for 3-D unit fraction items, respectively.

Repacking. To determine if an item can be packed into an existing bin, we will need

some repacking. Here we make some simple observations about the load of items if

repacking is not feasible. We first note the following lemma which is implied by Theorem

1.1 in [66].

Lemma 4.2 ([66]). Given a bin with width u and height v, if all items have width at

most u
2 and height at most v, then any set of these items with total area at most uv

2 can

fit into the same bin by using Steinberg’s algorithm.

The implication of Lemma 4.2 is that if packing a new item of width w ≤ u
2 and

height h into a bin results in infeasible packing, then the total load of the existing items

is at least uv
2 − wh.
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1
2

1
2

< h

Figure 4.1: Infeasible repacking of existing items of types T(1,≤1
3
) and T(1

2
,≤1

3
) and

a new item of type T(1, ∗). The empty space has width 1
2
and height less than h.

β 〈x, y〉 y = 3 4 5 6

x = 3 1 1 1 1

4 3
4

5
6

= 1
3
+ 1

4
+ 1

4

5
6

11
12

= 2
3
+ 1

4

5
7
10

= 1
4
+ 1

4
+ 1

5

47
60

= 1
3
+ 1

4
+ 1

5

5
6

17
20

= 1
4
+ 3

5

6 7
10

23
30

= 1
6
+ 3

5

49
60

= 1
4
+ 1

6
+ 2

5

17
20

Table 4.4: Values of β 〈x, y〉 for 3 ≤ x ≤ 6 and 3 ≤ y ≤ 6.

Lemma 4.3. Consider packing of two types of items T(12 ,≤ h) and T(1, ∗), for some

0 < h < 1. If we have an item of type T(1, h′) that cannot be packed to an existing bin,

then the current load of the bin is at least 1− h
2 − h′.

Proof. We first pack all items with width 1, including the new type T(1, h′) item, one

by one on top of the previous one. For the remaining space, we divide it into two equal

halves each with width 1
2 . We then try to pack the T(12 ,≤ h) items into one compartment

until it overflows, and then continue packing into the other compartment. The space left

in the second compartment has a height less than h, otherwise, the overflow item can

be packed there (see Figure 4.1). As a result, the total load of items is at least 1 − h
2 .

Since the new item has a load of h′, the total load of existing items is at least 1− h
2 −h′

as claimed.

In the case of 1-D packing, Chan et al. [18] have defined the following notion. Let

x and y be positive integers. Suppose that a 1-D bin is already packed with some

items whose sizes are chosen from the set {1, 12 , . . . ,
1
x}. They defined the notion of the

minimum load of such a bin that an additional item of size 1
y cannot fit into the bin.

We modify this notion such that the set in concern becomes {1
3 ,

1
4 , . . . ,

1
x}. We define

β 〈x, y〉 to be the minimum load of this bin containing items with length at least 1
x and

at most 1
3 such that an item of size 1

y cannot be packed into this bin. Precisely,

β 〈x, y〉 = min
3≤j≤x and nj≥0

{
n3
3

+
n4
4

+ . . .+
nx
x

|
n3
3

+
n4
4

+ . . .+
nx
x
> 1−

1

y
}.

Table 4.4 shows the values of this function for 3 ≤ x ≤ 6 and 3 ≤ y ≤ 6.
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Classes Types of items Competitive ratio

Class 1 T(≤1
3 ,≤1) 2.8258

Class 2 T(1,≤1
3 ), T(

1
2 ,≤

1
3) 1.7804

Class 3 T(1, 1), T(1, 12), T(
1
2 , 1), T(

1
2 ,

1
2 ) 2.25

Class 4 T(1, 12), T(1,≤
1
3), T(

1
2 ,

1
2 ), T(

1
2 ,≤

1
3) 2.4593

Class 5 T(1, 1), T(12 , 1) 1.5

Table 4.5: Classifications of 2-D unit fraction items and their competitive ratios.

4.3 Classification of 2-D unit fraction items

Following the idea in [70], we also divide the type of items into classes. In Table 4.5, we

list the different classes we considered in this chapter. We propose two packing schemes,

each of which makes use of a subset of the classes that are disjoint. The competitive

ratio of a packing scheme is the sum of the competitive ratio we can achieve for each

of the classes in the scheme. In this section, we focus on individual classes and in the

next section, we discuss the two packing schemes. For each class, we use FF (First-Fit)

to determine which bin to assign an item. For each bin, we check if the new item can

be packed together with the existing items in the bin; this is done by some repacking

procedures and the repacking is different for different classes. Using a similar idea as

in [23], one can show that the maximum number of bins used by FF is achieved when

the items released are in order of non-decreasing area size. More specifically, suppose

T(w1, h1) and T(w2, h2) are two types of items given such that w1 × h1 < w2 × h2. We

denote by x1 ≥ 0 the last bin that FF ever packs a T(w1, h1)-item, and by x1+x2, where

x2 may be a negative integer, the last bin that FF ever packs a T(w2, h2)-item. Then

the maximum number of bins used by FF is achieved if and only if x1 +x2 ≥ x1, i.e., x2

is non-negative [23]. Our analysis in this and the next chapter assumes such sequences.

We start with simpler cases of Classes 5 and 3. We then continue with Class 2 while

the analysis of Class 1 applies the result of Class 2 and Class 4 follows the approach of

Class 2.

4.3.1 Class 5: T(1, 1),T(1

2
, 1)

We first consider a simple case where the items are either T(1, 1) or T(12 , 1). We show

that FF is 1.5-competitive.

Lemma 4.4. FF is 1.5-competitive for unit fraction items of types T(1, 1) and T(12 , 1).

Proof. Suppose the maximum load at any time is n. Then OPT uses at least n bins.

Let x1 be the last bin that FF ever packs an T(12 , 1)-item and x1+x2 for T(1, 1). When

FF packs such a T(12 , 1)-item in bin-x1, all the x1 − 1 bins before that must have a

load of 1. Therefore, we have (x1 − 1) + 1
2 ≤ n. When FF packs a T(1, 1)-item into

bin-(x1 + x2), the first x1 bins, which may have T(12 , 1)-item, have a load of at least 1
2

and the next x2 bins have a load of at least 1 (the latter holds because of the definition
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of x1). Therefore, we have x1

2 + x2 ≤ n. The maximum value of x1 + x2 is obtained by

setting x1 = n and x2 =
n
2 , such that x1 + x2 = 1.5n ≤ 1.5OPT .

4.3.2 Class 3: T(1, 1),T(1, 1

2
),T(1

2
, 1),T(1

2
, 1

2
)

We now consider Class 3 for which both the width and height are at least 1
2 . We show

that FF is 2.25-competitive.

Lemma 4.5. FF is 2.25-competitive for unit fraction items of types T(1, 1), T(1, 12 ),

T(12 , 1), T(
1
2 ,

1
2 ).

Proof. Suppose the maximum load at any time is n. Then OPT uses at least n bins.

Let x1 be the last bin that FF ever packs a T(12 ,
1
2)-item, x1+x2 for T(1,

1
2) and T(12 , 1),

and x1 + x2 + x3 for T(1, 1). When FF packs a T(12 ,
1
2 )-item to bin-x1, all the x1 − 1

before that must have a load of 1. Therefore, (x1 − 1) + 1
4 ≤ n. When FF packs a

T(1, 12) or T(
1
2 , 1)-item to bin-(x1 + x2), all the bins before that must have a load of 1

2 .

Hence, x1+x2

2 ≤ n. When FF packs a T(1, 1)-item to bin-(x1 + x2 + x3), the first x1

bins must have a load of at least 1
4 , the next x2 bins must have a load of at least 1

2 , and

the last x3 − 1 bins must have a load of 1. Therefore, x1

4 + x2

2 + (x3 − 1) + 1 ≤ n. The

maximum value of x1 + x2 + x3 is obtained by setting x1 = x2 = n and x3 = n
4 . Then,

x1 + x2 + x3 = 2.25n ≤ 2.25OPT .

4.3.3 Class 2: T(1,≤1

3
),T(1

2
,≤1

3
)

In this section, we consider items whose width is at least 1
2 and height is at most 1

3 . For

this class, the repack when a new item arrives is done according to the description in

the proof of Lemma 4.3. We are going to show that FF is 1.7804-competitive for Class

2.

Suppose the maximum load at any time is n. Let x1 be the last bin that FF ever

packs a T(12 ,≤
1
3)-item. Using the analysis in [26] for 1-D items with size at most 1

3 , one

can show that x1 ≤ 1.4590n.

Lemma 4.6 ([26]). Suppose we are packing unit-fraction items of type T(1,≤ 1
3), T(

1
2 ,≤

1
3)

and the maximum load over time is n. We have x1 ≤ 1.4590n, where x1 is the last bin

that FF ever packs a T(12 ,≤
1
3 )-item.

Lemma 4.6 implies that FF only packs items of T(1,≤ 1
3 ) in bin-y for y > 1.459n.

The following lemma further asserts that the height of these items is at least 1
6 .

Lemma 4.7. Suppose we are packing unit-fraction items of type T(1,≤1
3 ), T(12 ,≤

1
3 )

and the maximum load over time is n. Any item that is packed by FF to bin-y, for

y > 1.459n, must be of type T(1, h), where 1
6 ≤ h ≤ 1

3 .

Proof. Suppose on the contrary that FF packs a T(1,≤ 1
7)-item in bin-y for y > 1.459n.

This means that packing the item in any of the first 1.459n bins results in an infeasible

packing. By Lemma 4.3, with h = 1
3 and h′ = 1

7 , the load of each of the first 1.459n
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x1 x6 x5 x4 x3

Figure 4.2: Illustration of the proof of Lemma 4.8. In each set of bins, the shaded items
are the item types that do not appear in subsequent bins. For example, items of type

T(1
2
,≤ 1

3
) in the first x1 bins do not appear in the subsequent bins.

bins is at least 1 − 1
6 − 1

7 = 0.69. Then the total is at least 1.459n × 0.69 > 1.0067n,

contradicting that the maximum load at any time is n. Therefore, the lemma follows.

We are now ready to analyze the competitive ratio of FF for this class (Figure 4.2

gives an illustration).

Lemma 4.8. FF is 1.7804-competitive for unit fraction items of types T(1,≤ 1
3) and

T(12 ,≤
1
3 ).

Proof. Let (x1+x6), (x1+x6+x5), (x1+x6+x5+x4), and (x1+x6+x5+x4+x3) be the

last bin that FF ever packs a T(1, 16)-, T(1,
1
5)-, T(1,

1
4 )-, and T(1, 13)- item, respectively.

When FF packs a T(1, 16 )-item to bin-(x1 + x6), the load of the first x1 bins is at least

1 − 1
6 − 1

6 = 2
3 , by Lemma 4.3. By Lemma 4.7, only type T(1, k)-item, for 1

6 ≤ k ≤ 1
3 ,

could be packed in the x6 bins. These items all have width 1 and thus can be considered

as 1-D case. Therefore, when we cannot pack a T(1, 16 )-item, the current load must be

at least β 〈6, 6〉. Then we have x1(
2
3 ) + x6 β 〈6, 6〉 ≤ n. Similarly, we have

1. x1(
2
3) + x6 β 〈6, 6〉 ≤ n,

2. x1(1−
1
6 −

1
5) + x6 β 〈6, 5〉 + x5 β 〈5, 5〉 ≤ n,

3. x1(1−
1
6 −

1
4) + x6 β 〈6, 4〉 + x5 β 〈5, 4〉 + x4 β 〈4, 4〉 ≤ n,

4. x1(1−
1
6 −

1
3) + x6 β 〈6, 3〉 + x5 β 〈5, 3〉 + x4 β 〈4, 3〉 + x3 β 〈3, 3〉 ≤ n.

We note that for each inequality, the coefficients are increasing, e.g., for (1), we have
2
3 ≤ β 〈6, 6〉 = 17

20 , by Table 4.4. Therefore, the maximum value of x1+x6+x5+x4+x3

is obtained by setting the maximum possible value of x6 satisfying (1), and then the

maximum possible value of x5 satisfying (2), and so on. Using Table 4.4, we compute the

corresponding values as 1.4590n, 0.0322n, 0.0597n, 0.0931n and 0.1365n, respectively.

As a result, x1 + x6 + x5 + x4 + x3 ≤ 1.7804n ≤ 1.7804OPT .

4.3.4 Class 1: T(≤1

3
,≤1)

Items of type T(≤1
3 ,≤1) are further divided into three subtypes: T(≤1

3 ,≤
1
3), T(≤

1
3 ,

1
2),

T(≤1
3 , 1). We first describe how to repack these items.
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1. When the new item is T(≤1
3 ,≤

1
3), we use Steinberg’s algorithm [66] to repack

the new and existing items. Note that the item width satisfies the criteria of

Lemma 4.2.

2. When the new item is T(≤1
3 ,

1
2) or T(≤

1
3 , 1) and the bin contains T(≤1

3 ,≤
1
3)-item,

we divide the bin into two compartments, one with width 1
3 and the other 2

3 and

both with height 1. We reserve the small compartment for the new item and try

to repack the existing items in the large compartment using Steinberg’s algorithm.

This idea originates from [70].

3. When the new item is T(≤ 1
3 ,

1
2) or T(≤

1
3 , 1) and the bin does not contain T(≤1

3 ,≤
1
3)-

item, we use the repacking method as in Lemma 4.3 but with the width becoming

the height and vice versa. Note that this implies that Lemma 4.8 applies for these

items.

We now analyze the performance of FF. Suppose the maximum load at any time is

n. Let x1 be the last bin that FF ever packs a T(≤1
3 ,≤

1
3)-item, and x1 + x2 be the last

bin that FF ever packs a T(≤1
3 ,

1
2) or T(≤

1
3 , 1) item.

Consider x1. When a T(≤1
3 ,≤

1
3)-item cannot be packed using Steinberg’s algorithm,

the total bin load including the new items is at least 1
2 , by Lemma 4.2. The load of the

new item is at most 1
9 , hence, the total load of existing items is at least 1

2 − 1
9 = 7

18 .

Therefore, we have (x1 − 1) × 7
18 ≤ n, implying that x1 ≤ 2.5715n, for large n. As

for the other two subtypes, when FF packs such items into bin-(x1 + x2), the first x1

bins have load at least 1
3 because overflow of the repacking means that existing items

cannot be packed in the large compartment; by Lemma 4.2, the total load is at least
1
2 · 2

3 = 1
3 . In the next x2 bins, there could only be items of the two subtypes. Recall

how we repack these items in (3) above and that Lemma 4.8 applies. Note that we can

have at most a load of n− x1

3 in the x2 bins and by the proof of Lemma 4.8, this means

x2 ≤ 1.7804(n − x1

3 ). For similar reason as before x1 + x2 takes the maximum when

x1 = 2.5715n and x2 = 0.2544n. Therefore, we have the following lemma.

Lemma 4.9. FF is 2.8258-competitive for unit fraction items of types T(≤ 1
3 ,≤1).

4.3.5 Class 4: T(1, 1

2
),T(1,≤1

3
),T(1

2
, 1

2
),T(1

2
,≤1

3
)

The analysis of Class 4 follows a similar framework as in Class 2. Similar to Class 2,

the repack when a new item arrives is done according to the description in the proof of

Lemma 4.3. We are going to show that FF is 2.4593-competitive for Class 4.

Suppose the maximum load at any time is n. Let x1 be the last bin that FF ever

packs a T(12 ,≤
1
2)-item. Using the analysis in [26] for 1-D items with size at most 1

2 , one

can show that x1 ≤ 1.7877n.

Lemma 4.10 ([26]). Suppose we are packing unit-fraction items of type T(1,≤1
2 ),

T(12 ,≤
1
2 ) and the maximum load over time is n. We have x1 ≤ 1.7877n, where x1

is the last bin that FF ever packs a T(12 ,≤
1
2)-item.
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γ 〈x, y〉 y = 2 3 4 5 6

x = 2 1 1 1 1 1

3 2
3

5
6

= 1
2
+ 1

3

5
6

5
6 1

4
7
12

= 1
3
+ 1

4

3
4

5
6

5
6

11
12

= 2
3
+ 1

4

5
8
15

= 1
3
+ 1

5

7
10

= 1
2
+ 1

5

47
60

= 1
3
+ 1

4
+ 1

5

5
6

17
20

= 1
4
+ 3

5

6 8
15

7
10

23
30

= 1
6
+ 3

5

49
60

= 1
4
+ 1

6
+ 2

5

17
20

Table 4.6: Values of γ 〈x, y〉 for 2 ≤ x ≤ 6 and 2 ≤ y ≤ 6.

Lemma 4.10 implies that FF only packs items of T(1,≤ 1
2) in bin-y for y > 1.7877n.

The following lemma further asserts that the height of these items is at least 1
5 .

Lemma 4.11. Suppose we are packing unit-fraction items of type T(1,≤ 1
2 ), T(

1
2 ,≤

1
2 )

and the maximum load over time is n. Any item that is packed by FF to bin-y, for

y > 1.7877n, must be of type T(1, h), where 1
5 ≤ h ≤ 1

2 .

Proof. Suppose on the contrary that FF packs a T(1,≤ 1
6)-item in bin-y for y > 1.7877n.

This means that packing the item in any of the first 1.7877n bins results in an infeasible

packing. By Lemma 4.3, with h = 1
2 and h′ = 1

6 , the load of each of the first 1.7877n

bins is at least 1− 1
4 −

1
6 = 0.5833. Then the total is at least 1.7877n× 0.5833 > 1.042n,

contradicting that the maximum load at any time is n. Therefore, the lemma follows.

To further analyze the performance of FF, we consider the function γ 〈x, y〉, which

defines the minimum load of this bin containing items with length at least 1
x and at

most 1
2 such that an item of size 1

y cannot be packed into this bin. See Table 4.6 for the

values. We now state the result.

Lemma 4.12. FF is 2.4593-competitive for unit fraction items of types T(1, 12 ), T(1,≤
1
3 ),

T(12 ,
1
2), T(

1
2 ,≤

1
3).

Proof. Let (x1+x5), (x1+x5+x4), (x1+x5+x4+x3), and (x1+x5+x4+x3+x2) be the

last bin that FF ever packs a T(1, 15)-, T(1,
1
4)-, T(1,

1
3 )-, and T(1, 12)- item, respectively.

When FF packs a T(1, 15 )-item to bin-(x1 + x5), the load of the first x1 bins is at least

1− 1
4 −

1
5 = 11

20 , by Lemma 4.3. By Lemma 4.11, only type T(1, k)-item, for 1
5 ≤ k ≤ 1

2 ,

could be packed in the x5 bins. These items all have width 1 and thus can be considered

as 1-D case. Therefore, when we cannot pack a T(1, 15 )-item, the current load must be

at least γ 〈5, 5〉. Then we have x1(
11
20 ) + x5 γ 〈5, 5〉 ≤ n. Similarly, we have

1. x1(
11
20 ) + x5 γ 〈5, 5〉 ≤ n,

2. x1(1−
1
4 −

1
4) + x5 γ 〈5, 4〉 + x4 γ 〈4, 4〉 ≤ n,
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2DDynamicPackUFS1

Classes Types of items Competitive ratios

Class 1 T(≤1
3 ,≤1) 2.8258

Class 4 T(1, 12), T(1,≤
1
3), T(

1
2 ,

1
2 ), T(

1
2 ,≤

1
3) 2.4593

Class 5 T(1, 1), T(12 , 1) 1.5

Overall All of the above 6.7850

Table 4.7: Competitive ratios for 2-D unit fraction items.

2DDynamicPackUFS2

Classes Types of items Competitive ratios

Class 1 T(≤1
3 ,≤1) 2.8258

Class 2 T(1,≤1
3 ), T(

1
2 ,≤

1
3) 1.7804

Class 3 T(1, 1), T(1, 12), T(
1
2 , 1), T(

1
2 ,

1
2 ) 2.25

Overall All of the above 6.8561

Table 4.8: Competitive ratios for 2-D unit fraction items.

3. x1(1−
1
4 −

1
3) + x5 γ 〈5, 3〉 + x4 γ 〈4, 3〉 + x3 γ 〈3, 3〉 ≤ n,

4. x1(1−
1
4 −

1
2) + x5 γ 〈5, 2〉 + x4 γ 〈4, 2〉 + x3 γ 〈3, 2〉 + x2 γ 〈2, 2〉 ≤ n.

We note that for each inequality, the coefficients are increasing, e.g., for (1), we have
11
20 ≤ γ 〈5, 5〉 = 5

6 , by Table 4.4. Therefore, the maximum value of x1+x5+x4+x3+x2

is obtained by setting the maximum possible value of x5 satisfying (1), and then the

maximum possible value of x4 satisfying (2), and so on. Using Table 4.4, we compute the

corresponding values as 1.7877n, 0.0202n, 0.1085n, 0.1917n and 0.3514n, respectively.

As a result, x1 + x6 + x5 + x4 + x3 ≤ 2.4593n ≤ 2.4593OPT .

4.4 Packing of 2-D unit fraction items

Our algorithm, named as 2DDynamicPackUF, classifies items into classes and then pack

items in each class independent of other classes. In each class, FF is used to pack the

items as described in Section 4.3. In this section, we present two schemes and show their

competitive ratios.

Table 4.7 shows the classification and associated competitive ratios for 2DDynamic-

PackUFS1. This scheme contains Classes 1, 4, and 5, which cover all items.

Theorem 4.13. 2DDynamicPackUFS1 is 6.7850-competitive for 2-D unit fraction items.

Scheme 2DDynamicPackUFS2 has a higher competitive ratio than Scheme 2DDynamic-

PackUFS1, nevertheless, Scheme 2DDynamicPackUFS2 has a smaller competitive ratio

for power fraction items to be discussed in the next chapter. Table 4.8 shows the

classification and associated competitive ratios for 2DDynamicPackUFS2. This scheme

contains Classes 1, 2, and 3, which cover all items.
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Lemma 4.14. 2DDynamicPackUFS2 is 6.8561-competitive for 2-D unit fraction items.

Based on the results obtained in this chapter, we are ready to extend our analysis

to two-dimensional power fraction items and three-dimensional unit and power fraction

items in Chapter 5. We will also give concluding remarks on our study in Chapter 5.



Chapter 5

Online Multi-dimensional

Dynamic Bin Packing of Unit and

Power Fraction Items

5.1 Introduction

In this chapter we first study online two-dimensional dynamic bin packing of power

fraction items. We use a similar approach for proving the competitive ratio of 2-D

power fraction items in Section 5.2 as that for 2-D unit fraction items in Chapter 4.

Secondly, we extend our study to 3-D unit and power fraction items in Section 5.3. The

3-D results are based in part on the analysis of 2-D unit and power fraction items. While

this chapter contains results that were described in the paper published in Proceedings

of the 8th International Conference on Algorithms and Complexity (CIAC), 2013 [15],

their analysis was omitted from [15] and we present it here for the first time. In some

cases, the analysis for 2-D power fraction items is very similar to 2-D unit fraction items.

In order to avoid detailing such a similar analysis, we give a description on how this can

be performed as in Chapter 4.

Recall that a general size item is an item such that the length in each dimension is

in (0, 1], a unit fraction item is an item with lengths of the form 1
k , where k ≥ 1 is an

integer, and a power fraction item has lengths of the form 1
2k
, where k ≥ 0 is an integer.

The notation used for 2-D power fraction items is identical to the one used for 2-D unit

fraction items in Chapter 4 (Section 4.2), while for 3-D unit and power fraction items we

introduce the notation used in Section 5.3. Once again, the bin assignment algorithm

that we use for all types of 2-D power fraction items and 3-D unit and power fraction

items is the First-Fit (FF) algorithm. When a new item arrives, if there are occupied

bins in which the item can be repacked, FF assigns the new item to the bin which has

been occupied for the longest time. As in Chapter 4, we adopt the typical approach of

dividing items into classes and analyzing each class individually. We propose the classes

and define different packing schemes based on the classes.

63
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1-D 2-D 3-D

General size 2.788 [26] 7.788 [70] 22.788 [70]

Unit fraction 2.4842 [47] 6.7850 [**] 21.6108 [*]

Power fraction 2.4842 [47] 6.2455 [*] 20.0783 [*]

Table 5.1: Competitive ratios for general size, unit fraction, and power fraction items.
The results obtained in this chapter are marked with “[*]”. The result obtained in

Chapter 4 is marked with “[**]”.

T(1, 1) T(1, 12 ) T(12 , 1) T(12 ,
1
2) T(1,≤ 1

4) T(12 ,≤
1
4) T(≤1

4 ,≤1)

Table 5.2: Types of power fraction items considered.

Our contribution. In this chapter, we design and analyze algorithms for online two-

dimensional dynamic bin packing of power fraction items, and online three-dimensional

dynamic bin packing of unit and power fraction items. For 2-D power fraction items

we obtain a competitive ratio of 6.2455, while for 3-D we obtain competitive ratios of

21.6108 and 20.0783 for unit and power fraction items, respectively. Table 5.1 compares

these results to general size items and the 2-D unit fraction item result obtained in

Chapter 4.

Organization of the chapter. In Section 5.2 we study our new algorithm for 2-D

power fraction items, while in Section 5.3 we design and analyze our new algorithms for

3-D unit and power fraction items. Finally in Section 5.4 we give concluding remarks

on our study of unit and power fraction items in Chapters 4 and 5.

5.2 2-D power fraction items

We consider several types of 2-D power fraction items, given in Table 5.2. The difference

from unit fraction items lies in the boundary values of 1
3 being replaced with 1

4 for power

fraction items. We will first consider in Section 5.2.1 the classification scheme of 2-D

general size items in [70] and show that using some existing results and a new analysis

for a class of items leads to a competitive ratio of 7.1509. The purpose of this is to

show the new analysis which will be reused in the proof for 3-D power fraction items

in Section 5.3. Afterwards, we present a new classification scheme and analysis for 2-D

power fraction items in Section 5.2.2 for which the competitive ratio is further reduced

to 6.2455.

5.2.1 Existing scheme

The algorithm in [70] for general size items effectively classifies power fraction items

into the classes as shown in Table 5.3. The overall competitive ratio reduces from 7.788

to 7.1509 by using a new analysis for Class A items and existing results for Classes B

and C. We now show how to improve the competitive ratio for Class A items of type
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Scheme in [70]

Classes Types of items Competitive ratios

Class A T(≤1
4 ,≤1) 2.667

Class B T(12 , 1), T(
1
2 ,

1
2), T(

1
2 ,≤

1
4) 2 [70]

Class C T(1, 1), T(1, 12), T(1,≤
1
4) 2.4842 [47]

Overall All items 7.1509

Table 5.3: The 2-D results of [70] in the context of power-fraction items.

2DDynamicPackPF

Class Types of items Competitive Ratio

Class 1 T(≤1
4 ,≤1) 2.4995 [*]

Class 2 T(1,≤ 1
4), T(

1
2 ,≤

1
4) 1.496025 [*]

Class 3 T(1, 1), T(1, 12), T(
1
2 , 1), T(

1
2 ,

1
2) 2.25

Overall All items 6.2455

Table 5.4: Competitive ratios for 2-D power fraction items. Marked with [*] are the
competitive ratios that are reduced as compared to unit fraction items.

T(≤1
4 ,≤1). This result will also be used in the analysis of 3-D power fraction items in

Section 5.3.

2DRepackNarrowPF. We will make use of the procedure 2DRepackNarrowPF that

packs 2-D power fraction items with width w ≤ 1
4 and height h ≤ 1 into a 2-D unit

size bin in the following way: we divide a bin into two partitions, one with width 1
4

and height 1, and the other with width 3
4 and height 1. When a new item arrives, we

place it into the first partition and try to repack existing items to the second partition

using Steinberg’s algorithm [66]. If the existing items cannot be repacked to the second

partition, it is understood that we revert to the old configuration. Lemma 4.2 states

that if a bin is given with width u and height v, and the width of all items is smaller

than u
2 , any set of these with total area at most uv

2 can fit into the same bin by using

Steinberg’s algorithm. In our case, all the items have width w ≤ 1
4 , and the width of

the bin that they need to be fitted into is 3
4 . The condition that the items must have

width w ≤ u
2 , i.e.,

1
4 ≤ 3

8 , is satisfied. Additionally, we can express the following: if

the items cannot fit into the second partition, the area must exceed uv
2 , i.e., 3

8 . Using

2DRepackNarrowPF for Class A items results in a competitive ratio of 8
3 = 2.(6).

For Class B we reuse the existing competitive ratios from [70] and for Class C the

problem is reduced to 1-D and we reuse the competitive ratios from [47], noting that

power fraction items are a subset of unit fraction items.

Corollary 5.1. The 2-D packing algorithm in [70] is 7.1509-competitive for power frac-

tion items.
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βp 〈x, y〉 y = 4 8

x = 4 1 1

8 7
8 1

Table 5.5: Values of βp 〈x, y〉 for x ∈ {4, 8} and y ∈ {4, 8}.

5.2.2 Classification of 2-D power fraction items

For 2-D power fraction items we present a new classification scheme in Table 5.4 based

on 2DDynamicPackUFS2 for unit fraction items (Table 4.8) where the competitive ratio

reduces to 6.2455. We reduce the competitive ratio for Classes 1 and 2 of unit fraction

items and we reuse the competitive ratio of 2.25 obtained for Class 3 (Section 4.3.2),

as the unit fraction items coincide with the power fraction items. A possible scheme

based on 2DDynamicPackUFS1 (Table 4.7) for unit fraction items would lead to a higher

competitive ratio of 6.3669 for power fraction items and we do not present it.

Repacking procedures. We note that repacking procedures for power fraction items

are similar to those for unit fraction items described in Sections 4.3.4, 4.3.3, and 4.3.2,

for Classes 1, 2, and 3, respectively. Even though the boundary value of 1
3 changes

to 1
4 (for items T(1,≤ 1

4), T(
1
2 ,≤

1
4), and T(≤1

4 ,≤1), including its three subtypes), the

procedures remain the same. The bin assignment algorithm description remains the

same, but we rename it 2DDynamicPackPF.

We are now ready to proceed with the analysis of Classes 2 and 1.

Class 2: T(1,≤1

4
), T(1

2
,≤1

4
)

We now consider items whose width is at least 1
2 and height is at most 1

4 . For this class,

the repacking of a newly arrived item is done according to the description in the proof

of Lemma 4.3. We can show that FF is 1.496025-competitive for Class 2 in a similar

manner to the proof for Class 2 unit fraction items (Section 4.3.3).

Suppose the maximum load at any time is n. If x1 is the last bin that FF ever packs

a T(12 ,≤
1
4 )-item, using the analysis in [26] for 1-D items with size at most 1

4 , one can

show that x1 ≤ 1.3192n (Lemma 5.2 (1)). Lemma 5.2 (1) implies that FF only packs

items of T(1,≤ 1
4) in bin-y for y > 1.3192n. Therefore, any item that is packed by FF

to bin-y, for y > 1.3192n, must be of type T(1, h), where 1
8 ≤ h ≤ 1

4 (Lemma 5.2 (2)).

We now further modify the β 〈x, y〉 function such that the new function βp 〈x, y〉

denotes the minimum load of a bin containing items of lengths at least 1
x and at most

1
4 such that an item of length 1

y will not be able to pack in this bin. Table 5.5 shows

the values of the function for x ∈ {4, 8} and y ∈ {4, 8}. Using Table 5.5, it can be

proved that FF is 1.496025-competitive for power fraction items of types T(1,≤1
4 ) and

T(12 ,≤
1
4 ) (Lemma 5.2 (3)). The arguments are similar to those for Class 2 of 2-D unit

fraction items in Section 4.3.3.
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Lemma 5.2. (1) Suppose we are packing power-fraction items of type T(1,≤ 1
4), T(

1
2 ,≤

1
4)

and the maximum load over time is n. We have x1 ≤ 1.3192n, where x1 is the last

bin that FF ever packs a T(12 ,≤
1
4)-item. The proof is similar to Lemma 4.6.

(2) Suppose we are packing power-fraction items of type T(1,≤ 1
4), T(

1
2 ,≤

1
4) and the

maximum load over time is n. Any item that is packed by FF to bin-y, for y >

1.3192n, must be of type T(1, h), where 1
8 ≤ h ≤ 1

4 . The proof is similar to Lemma

4.7.

(3) FF is 1.496025-competitive for power fraction items of types T(1,≤ 1
4) and T(12 ,≤

1
4 ).

The proof is similar to Lemma 4.8.

Class 1: T(≤1

4
,≤1)

As with unit fraction items, we further divide the power fraction items of type T(≤1
4 ,≤1)

into three subtypes T(≤1
4 ,≤

1
4), T(≤

1
4 ,

1
2), T(≤

1
4 , 1). The repacking of these items is

similar to Class 1 unit fraction items (Section 4.3.4):

1. When the new item is T(≤1
4 ,≤

1
4 ), we use Steinberg’s algorithm [66] to repack the

new and existing items.

2. When the new item is T(≤1
4 ,

1
2) or T(≤

1
4 , 1) and the bin contains T(≤1

4 ,≤
1
4)-item,

we divide the bin into two compartments, one with width 1
4 and the other 3

4 and

both with height 1. We reserve the small compartment for the new item and try

to repack the existing items in the large compartment using Steinberg’s algorithm.

This idea originates from [70].

3. When the new item is T(≤ 1
4 ,

1
2) or T(≤

1
4 , 1) and the bin does not contain T(≤1

4 ,≤
1
4)-

item, we use the repacking method as in Lemma 4.3 but with the width becoming

the height and vice versa. Note that this implies that Lemma 4.8 applies for these

items.

In a similar way to Section 4.3.4 (Lemma 4.9) we can show that FF is 2.4995-

competitive for power fraction items of types T(≤1
4 ,≤1).

Lemma 5.3. FF is 2.4995-competitive for power fraction items of types T(≤1
4 ,≤1).

Finally, for Class 3 items we reuse the existing result from Section 4.3.2 and combined

with Lemmas 5.2 (3) and 5.3, the theorem follows.

Theorem 5.4. 2DDynamicPackPF is 6.2455-competitive for power fraction items.

5.3 3-D unit and power fraction items

For 3-D unit fraction and power fraction items we propose two classification schemes as

shown in Tables 5.6 and 5.7, respectively. We first introduce the notation necessary for
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3DDynamicPackUF [70]

Classes Types of items Competitive ratios

Class 1 T(> 1
2 , ∗, ∗) 6.7850 [*]

Class 2 T(≤ 1
2 , >

1
2 , ∗) 4.8258 [**]

Class 3 T(≤ 1
2 , (

1
3 ,

1
2 ], ∗) 4 [70]

Class 4 T(≤ 1
2 ,≤

1
3 , ∗) 6 [70]

Overall All items 21.6108

Table 5.6: Competitive ratios for 3-D unit fraction items. [*] This result uses Theorem
4.13. [**] This result uses Lemma 4.9.

3DDynamicPackPF

Classes Types of items Competitive ratios

Class 1 T(> 1
2 , ∗, ∗) 6.2455 [*]

Class 2 T(≤ 1
2 , >

1
2 , ∗) 4.4995 [**]

Class 3 T(≤ 1
2 , (

1
4 ,

1
2 ], ∗) 4 [70]

Class 4 T(≤ 1
2 ,≤

1
4 , ∗) 5.334 [***]

Overall All items 20.0783

Table 5.7: Competitive ratios for 3-D power fraction items. [*] This result uses Theorem
5.4. [**] This result uses the competitive ratio of Class 1 from Lemma 5.3. [***] This

result uses the procedure 2DRepackNarrowPF from Section 5.2.1.

discussion and afterwards we apply our new results for 2-D unit and power fraction items

and some results for 2-D general size from [70] in order to prove the 3-D competitive

ratios.

Notations. For 3-D items, we use the notation T(x1, x2, x3) to refer to the type of

items with lengths x1, x2, x3 in the three dimensions, in a similar way to 2-D items. We

use ‘∗’ to mean that the length can take any value at most 1, e.g., T(∗, ∗, ∗) refers to

all items. A parameter may take an expression > x, meaning that the length is larger

than x. In addition to 2-D items, a parameter may take an interval, (x, y] meaning that

the length is in the interval (x, y]. For example T(≤ 1
2 , (

1
3 ,

1
2 ], ∗) refers to items with x1

in (0, 12 ], x2 in (13 ,
1
2 ], and x3 in (0, 1]. Lastly, we denote the length of an item R along

dimension xi by xi(R).

3-D unit fraction items. The bin assignment algorithm, 3DDynamicPackUF, classi-

fies the items as they arrive into the four classes from Table 5.6. Items in each class are

assigned to bins independently of other classes. 3DDynamicPackUF then packs a new

item into the first bin of the corresponding class in which it will repack along with exist-

ing items or, if the item is not packable in any bin, opens a new bin of the corresponding

class and places the new item there.

3-D power fraction items. For power fraction items we slightly modify the classifica-

tion for 3-D items, such that boundary values of 1
3 are replaced by 1

4 . Table 5.7 details
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this classification. The bin assignment algorithm for power fraction items, 3DDynamic-

PackPF, is identical to 3DDynamicPackUF.

We will now prove the competitive ratio of 21.6108 for 3DDynamicPackUF based on

our new results for 2-D unit fraction items and existing results for 2-D and 3-D general

size items by Wong and Yung [70].

Theorem 5.5. Algorithm 3DDynamicPackUF is 21.6108-competitive for unit fraction

items.

Proof. The proof is similar to the one provided in [70] for 3DDynamicPack. For Class 1

items, as only one item can fit along dimension x1, we project along this dimension and

the problem is reduced to 2-D; we pack the items using our 2-D algorithm for unit fraction

items, 2DDynamicPackUFS1. The algorithm has a competitive ratio of 6.7850. Class

2 items are further divided into two subclasses: T(≤ 1
3 , >

1
2 , ∗) and T((13 ,

1
2 ], >

1
2 , ∗).

Projecting the items along dimension x2, the first subclass corresponds to 2-D unit

fraction items of type T(≤1
3 ,≤1) and for the second subclass we reuse the procedure

2DRepackMedium from [70]. The first and second subclasses attain competitive ratios

of 2.8258 and 2, respectively. For Classes 3 and 4, we reuse the competitive ratios of 4

and 6, respectively, from [70]. Denoting by n1, n2, n3, and n4 the number of bins used

by Classes 1, 2, 3, and 4, respectively, and by n the total number of bins used by all

classes, we have: n ≤ n1+n2+n3+n4 ≤ 21.6108OPT , where OPT is the total number

of bins used by the optimal offline algorithm.

Lastly, we will prove the competitive ratio of 20.0783 for 3DDynamicPackPF based

on our new results for 2-D power fraction items, the 2DRepackNarrowPF procedure

from Section 5.2.1, and existing results for 2-D and 3-D general size items by Wong and

Yung [70].

Theorem 5.6. Algorithm 3DDynamicPackPF is 20.0783-competitive for power fraction

items.

Proof. Similar to unit fraction items, Class 1 power fraction items will repack items using

the 2-D power fraction algorithm, 2DDynamicPackPF, by projecting along dimension

x1. 2DDynamicPackPF attains a competitive ratio of 6.2455. Class 2 items are further

divided into two subclasses: T(≤ 1
4 , >

1
2 , ∗) and T((14 ,

1
2 ], >

1
2 , ∗). We note that by

projecting along dimension x2, the first subclass corresponds to power fraction items of

type T(≤1
4 ,≤1) and for the second subclass we again reuse the procedure 2DRepack-

Medium from [70]. The first and second subclasses attain competitive ratios of 2.4995

and 2, respectively. For Class 3, we reuse the competitive ratio of 4 from [70].

For Class 4 items, we first sort the items in non-increasing order of their lengths

in dimension x1. Items are then packed into layers constructed along dimension x1 in

a next-fit-decreasing-height manner (detailed in Section 2.3.2). The first layer always

has length 1
2 along dimension x1. We project the items along dimension x1, and pack

items into this layer along dimensions x2 and x3 by using 2DRepackNarrowPF from
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Section 5.2.1. I.e., we create two partitions with lengths 1
4 and 3

4 along dimension x2,

and length 1 along dimension x3, corresponding to widths and heights of 2-D items,

respectively, and repack items using 2DRepackNarrowPF. If some item Q cannot pack

into this layer, we create a new layer with length x1(Q) along dimension x1 and pack Q

into the first partition of this layer. Then we use 2DRepackNarrowPF and try to repack

Q and subsequent items to the second partition. We repeat this process until all items

are packed or an item overflows dimension x1 of the bin, in which case we revert to the

previous feasible configuration. Note that once an item cannot fit into a layer, the layer

is closed and closed layers are not revisited; however, each time a new item arrives the

layers are reconstructed.

As for unit fraction items, we denote by n1, n2, n3, and n4 the number of bins used by

Classes 1, 2, 3, and 4, respectively, and by n the total number of bins used by all classes.

When we open the n4-th bin for a new Class-4 item, by Lemma 4.2, in the repacking

of each bin, by projecting items along dimension x1, the total area of all Class-4 items

in the second partition in each layer and the first partition in the next layer is more

than 3
8 . Furthermore, the length of all items along dimension x1 in each layer is at least

the length of the next layer. Since existing items cannot be repacked into the same bin

by using 2DRepackNarrowPF, the total length of all layers along dimension x1 is more

than 1 and that of all but the first layer is more than 1
2 . Therefore, the total volume

of existing items in each bin is more than 3
16 and the total volume of all existing items

is more than (n4 − 1) 3
16 . Concluding, we have n ≤ n1 + n2 + n3 + n4 ≤ 20.0783OPT ,

where OPT is the total number of bins used by the optimal offline algorithm.

5.4 Conclusion

In Chapters 4 and 5 we have extended the study of 2-D and 3-D dynamic bin packing

problem to unit and power fraction items. We have improved the competitive ratios that

would be obtained using only existing results for unit fraction items from 7.4842 to 6.7850

for 2-D, and from 22.4842 to 21.6108 for 3-D. For power fraction items, the competitive

ratios are further reduced to 6.2455 and 20.0783 for 2-D and 3-D, respectively. Our

approach is to divide items into classes and analyzing each class individually. We have

proposed several classes and defined different packing schemes based on the classes. This

approach gives a systematic way to explore different combinations of classes.

An open problem is to further improve the competitive ratios for various types of

items. The gap between the upper and lower bounds could also be reduced by improving

the lower bounds. Another problem is to consider higher dimension bin packing. For

d-dimensional static and dynamic bin packing, for d ≥ 2, the competitive ratio grows

exponentially with d. Yet there is no matching lower bound that also grows exponentially

with d. It is believed that this is the case [30] and any such lower bound would be of

great interest.
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Another direction is to consider the packing of unit fraction and power fraction

hypercubes, where all sides of an item are the same length. We note in Lemma 5.7 that

the competitive ratio for the packing of 2-D unit fraction square items would reduce to

3.9654 compared to the competitive ratio of 2-D general size square items of 4.2154 [37].

For 3-D unit fraction cubes, this would reduce to 5.24537 compared to 5.37037 for 3-D

general size cubes [37].

Lemma 5.7. There exists a 3.9654-competitive algorithm for 2-D unit fraction squares

and a 5.24537-competitive algorithm for 3-D unit fraction cubes.

Proof. We denote 2-D unit fraction square items using the regular notation for 2-D unit

fraction items, i.e., they are of type T(x, y), where x = y. A similar notation is used

for 3-D unit fraction cubes of type T(x, y, z), where x = y = z. For 2-D unit fraction

squares, we divide the items into two classes, class of item types T(≤ 1
3 ,≤

1
3) and class

of items types T(≥ 1
2 ,≥

1
2), and the two classes cover all types of items. By the analysis

in [37], the first class of items achieves a competitive ratio of 2.2154 using the Next-Fit

Decreasing Height (NFDH) algorithm (detailed in Section 2.3.2). Using the First-Fit

(FF) algorithm for the second class of items, we can achieve a competitive ratio of 1.75.

The proof is similar to the analysis of Class 5-items (T(1, 1)- and T(12 , 1)-items) detailed

in Section 4.3.1. Overall the competitive ratio obtained is 3.9654.

For 3-D unit fraction cubes, we have three classes of items: T(≤1
4 ,≤

1
4 ,≤

1
4), T(

1
3 ,

1
3 ,

1
3 ),

and T(≥ 1
2 ,≥

1
2 ,≥

1
2). The first two classes are shown to achieve competitive ratios of

2.37037 and 1 in [37], using the NFDH algorithm and using dedicated bins, respec-

tively. For the third class of items using FF would result in a competitive ratio of 1.875

through a similar analysis as in Section 4.3.1. Overall the competitive ratio obtained is

5.24537.

By using similar arguments as the previous lemma, the competitive ratios for 2-D and

3-D power fraction hypercubes are further reduced to 3.52778 and 4.24537, respectively.

Corollary 5.8. There exists a 3.52778-competitive algorithm for 2-D power fraction

squares and a 4.24537-competitive algorithm for 3-D power fraction cubes.





Chapter 6

Lower Bounds for Online

Multi-dimensional Dynamic Bin

Packing

6.1 Introduction

In this chapter we give lower bounds of certain online algorithms for multi-dimensional

dynamic bin packing. We separately consider lower bounds for three types of items,

general size items, unit fraction items and power fraction items. While in Chapter 3

we gave a lower bound for any online algorithm, in this chapter we focus on the family

of Any-Fit algorithms, specifically First-Fit, Best-Fit, Worst-Fit, and Any-Fit. We

first introduce the algorithms for which we will construct adversaries for online multi-

dimensional dynamic bin packing. When a new item R arrives, if there are occupied

bins in which R can be packed (allowing repacking for existing items), the algorithms

assign R to one of these bins as follows:

First-Fit (FF) assigns R to the bin which has been occupied for the longest time.

Best-Fit (BF) assigns R to the heaviest loaded bin. Ties are broken arbitrarily.

Worst-Fit (WF) assigns R to the lightest loaded bin. Ties are broken arbitrarily.

Any-Fit (AF) assigns R to any of the bins arbitrarily.

Our contribution. We first consider general size items and show that the family of

Any-Fit algorithms (First-Fit, Best-Fit, Worst-Fit, and Any-Fit) without modification

is not competitive for online multi-dimensional dynamic bin packing. Note that it is

sufficient to show that the algorithms are not competitive for online two-dimensional

dynamic bin packing. This result is in contrast to the O(1)-competitiveness of First-Fit

without modification for online 1-D dynamic bin packing [26]. In fact, it can also be

shown that Any-Fit, including Best-Fit and Worst-Fit, is O(1)-competitive for online

73
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1-D bounds 2-D bounds 3-D bounds

Algorithm Input Upper Lower Upper Lower Upper Lower

First-Fit
General 2.897 [26] 2.75 [26] ∞ ∞ ∞ ∞

UF 2.4842 [47] 2.45 [18] ? 5.45 ? 6.45
PF 2.4842 [47] ? ? 5.4375 ? 6.4375

Best-Fit
General 3 [18, 26] 3 [18] ∞ ∞ ∞ ∞

UF 3 [18] 3 [18] ∞ ∞ ∞ ∞

PF 3 [18] 3 [18] ∞ ∞ ∞ ∞

Worst-Fit
General 3 [18, 26] 3 [18] ∞ ∞ ∞ ∞

UF 3 [18] 3 [18] ∞ ∞ ∞ ∞

PF 3 [18] 3 [18] ∞ ∞ ∞ ∞

Any-Fit
General 3 [18, 26] 2.666 [*] ∞ ∞ ∞ ∞

UF 3 [18] 2.428 [18] ? 3.70301 [37] ? 4.85383 [37]
PF 3 [18] ? ? ? ? ?

A
General - 2.666 [*] - 3.70301 [37] - 4.85383 [37]

UF - 2.428 [18] - 3.70301 [37] - 4.85383 [37]
PF - ? - ? - ?

Table 6.1: Bounds for the family of Any-Fit algorithms without modification. Bolded
entries are results obtained in this chapter. For input, General, UF, and PF refer
to general size, unit fraction, and power fraction items, respectively. A refers to any
online algorithm. “∞” denotes unbounded competitive ratios and “?” denotes unknown

bounds. [*] This result is detailed in Chapter 3 and published in [71].

1-D dynamic bin packing of general size items (Section 6.3). Secondly we consider

unit fraction and power fraction items. We show that Best-Fit and Worst-Fit without

modification are not competitive for online multi-dimensional dynamic bin packing of

unit and power fraction items, while the lower bound for First-Fit is at least 5.4375 for 2-

D power fraction items and at least 5.45 for 2-D unit fraction items. These results again

show that modification of the algorithms is required in order to achieve competitiveness.

These results are in contrast to the O(1)-competitiveness for online 1-D dynamic bin

packing of unit fraction items of Best-Fit and Worst-Fit [18] and the general lower

bound of any algorithm of 3.70301 [37] for 2-D unit fraction items. Lower bound results

for Any-Fit are yet to be investigated in the context of unit and power fraction items,

although it is expected that these will not exceed the corresponding lower bounds for

First-Fit. In Table 6.1 we give a summary of existing and new results for the family of

Any-Fit algorithms for online multi-dimensional dynamic bin packing.

Organization of the chapter. In Section 6.2 we give preliminaries required for dis-

cussion. In Section 6.3 we consider the lower bound result for general size items, while

in Section 6.4 we consider lower bounds for unit and power fraction items. We give

concluding remarks in Section 6.5.

6.2 Preliminaries

Recall that a general size item is an item such that the length in each dimension is in

(0, 1]; a unit fraction item is an item with lengths of the form 1
k , where k ≥ 1 is an
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integer; and a power fraction item has lengths of the form 1
2k
, where k ≥ 0 is an integer.

Algorithms without modification. Algorithms without modification are algorithms

that belong to the family of Any-Fit that do not classify items based on their lengths

and then pack items of different classes in different bins independently of each other.

We also refer to these algorithms as algorithms without classification of items.

Notations. When we discuss how items are packed, we use the following notations:

• Item configuration ψ: T(w, h) describes an item with width w and height h, with

an area w × h, e.g., T(12 ,
1
2) means an item with width 1

2 and height 1
2 , with an

area 1
4 .

• Bin configuration π: (ψ1, ψ2, · · · ), e.g., (T(
1
2 ,

1
2),T(1,

1
2)) means a bin has a load

of 3
4 , with a T(12 ,

1
2)-item and a T(1, 12)-item. Multiple items of the same type in

a bin are represented as m×T(w, h), for some integer m ≥ 1, e.g., 4×T(12 ,
1
2 ).

• Packing configuration ρ: {x1:π1, x2:π2, · · · } is a packing where there are x1 bins

with bin configuration π1, x2 bins with π2, and so on. E.g., {2n:T(12 , 1), n:T(1, 1)}

means 2n bins are each packed with load 1
2 with one T(12 , 1)-item and another n

bins are each packed with a load 1 with one T(1, 1)-item.

6.3 Lower bounds for general size items

Only one adversary is required for 2-D general size items in order to prove that the

family of Any-Fit algorithms without modification is not competitive for online multi-

dimensional dynamic bin packing. The idea behind the adversary is to use items of

slightly different sizes that are “tall” and “thin”, and items that are “short” and “wide”,

in each stage. Furthermore, in each stage the choice of where the family of Any-Fit

algorithms can pack new items is limited to only a new bin due to two-dimensional

packing constraints.

Theorem 6.1. The competitive ratio of the family of Any-Fit algorithms (First-Fit,

Best-Fit, Worst-Fit, and Any-Fit) without classification of items for the online dynamic

bin packing problem of 2-D general size items is unbounded.

Proof. Let z be an arbitrarily large integer and n be the largest integer such that
∑

0≤i≤n−1
1

z+i ≤ 1. The adversary works in n stages. In Stage i, the adversary re-

leases one T(1, 1
z+i)-item and n items of type T( 1

z+i , 1−
1

z+i). The adversary then lets

items released in this stage depart until one T(1, 1
z+i)-item and one T( 1

z+i , 1−
1

z+i)-item

remain. We observe that by the definition of z and n, the items released in each stage

can be packed into one bin. Furthermore, for i′ > i, a T( 1
z+i′ , 1−

1
z+i′ )-item cannot be

packed in the same bin with a T(1, 1
z+i)-item.

All algorithms in the family of any-fit algorithms pack in the same way. Let A be

such an algorithm. The items in each stage will be packed by A in the same new bin
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and, after the departure of items, only one T(1, 1
z+i)-item and one T( 1

z+i , 1−
1

z+i)-item

are left in this new bin. By the above observation, no items in later stages can be packed

into this bin and A is forced to use one new bin in each stage. In total A uses n bins.

On the other hand, the optimal algorithm, O, can reserve two bins for the items that

do not depart at all, one for T(1, 1
z+i)-items and one for T( 1

z+i , 1−
1

z+i)-items. A third

bin is needed for the other items, which can be reused in the next stage after these

items depart. The competitive ratio of A is n/3, which can be made arbitrarily large by

having an arbitrarily large z.

Online one-dimensional dynamic bin packing. While the family of Any-Fit al-

gorithms without classification is not competitive for online multi-dimensional dynamic

bin packing of general size items, it is O(1)-competitive for one-dimensional dynamic

bin packing as follows. First-Fit is 2.897-competitive for online dynamic bin packing

[26]. A lower bound of 2.75 for First-Fit is also shown in [26], however the lower bound

construction makes use of an optimal offline algorithm that is allowed to migrate items

between bins at any time. Any-Fit, including Best-Fit and Worst-Fit, can be shown to

be 3-competitive by using the same arguments as in Section 2.3.1 for the simple upper

bound of 3 for First-Fit. The arguments originate from [26]. The lower bounds for

Best-Fit and Worst-Fit are 3 [18], while the lower bound for any algorithm, including

Any-Fit, is 2.666 (detailed in Chapter 3 and published in [71]).

6.4 Lower bounds for unit and power fraction items

We show that when no classification of items based on their lengths is used, the lower

bound of FF is at least 5.4375 for 2-D power fraction items and 5.45 for 2-D unit

fraction items (Section 6.4.1). In contrast to FF, the competitive ratios of BF and WF

are unbounded even for power fraction items (Sections 6.4.2 and 6.4.3, respectively).

When classification of items is used, items in different classes are packed independently

of each other and competitive ratios may improve. The lower bound for any algorithm

that may also use classification of items is 3.70301 [37] for 2-D unit fraction items.

The adversaries work in stages and each stage may consist of item arrival and de-

parture. In each stage, an online algorithm may open new bins. We denote the number

of new bins opened in Stage i as si.

6.4.1 First-Fit

In this section, we give an adversary for the First-Fit (FF) algorithm when the input

consists of power fraction items and no classification of items is used. Recall that power

fraction items have lengths of the form 1
2k
, for some integer k ≥ 0. The adversary

consists of multiple stages and at any time the load of items released and not departed

is at most 16n +O(1), for some large integer n that is a power of 2. We prove that FF

uses 87n bins, while the optimal offline algorithm O uses at most 16n+O(1) bins. Then,
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(a) Stage 0.1 bins after
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(b) Stage 0.1 bins after
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(c) Stage 0.2 bins after the first arrival of items.
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(d) Stage 0.2 bins after the second arrival of items.

Figure 6.1: Select bin configurations for First-Fit in Stage 0.

the competitive ratio of FF is at least 5.4375 (Lemma 6.2). Note that power fraction

items are a subset of unit fraction items and the lower bound also applies to the latter

input. For unit fraction items, the lower bound of FF for one-dimensional dynamic bin

packing of unit fraction items is 2.45 [18]. Using this result, we improve slightly the

lower bound of FF without classification of two-dimensional unit fraction items to 5.45

(Corollary 6.3). On the other hand, the lower bound for unit fraction items for any

algorithm is 3.70301 [37].

The adversary. Let n be an arbitrarily large integer that is a power of 2 and ǫ = 1
16n .

Stage 0. In this initial stage consisting of item arrival and departure, we aim to force

FF to use 32n bins, i.e., s0 = 32n, using a total load of 16n+O(1). This stage consists

of two parts and the adversary forces FF to open 16n new bins in each part.

Stage 0.1. The first sequence of item arrival consists of alternating between releasing

some items of types T(12 , ǫ) and T(ǫ, 1). Notice that releasing 16n items of type T(12 , ǫ)

and 8n items of type T(ǫ, 1) results in FF packing them in one bin with a load of 1. We

first aim to open 16n bins and this can be achieved by releasing 16n items of type T(12 , ǫ)

and 8n items of type T(ǫ, 1) and repeating the process for 16n bins. In total, 16n
ǫ items

of type T(12 , ǫ) and
8n
ǫ items of type T(ǫ, 1) are needed, resulting in a total load of 16n.

Figure 6.1(a) shows how items are packed by FF. We now depart items such that in

each of 16n bins there remains one T(12 , ǫ)-item and one T(ǫ, 1)-item. The configuration

becomes {16n:(T(12 , ǫ),T(ǫ, 1))}, with 16n bins and a total load of 1.5. Figure 6.1(b)

shows an illustration.



Chapter 6. Lower Bounds for Online Multi-dimensional Dynamic Bin Packing 78
·

ǫ

ǫ

16n16n16n

1

2

1

2

(a) Stage 2 bins after the first arrival of items.
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(b) Bins at the end of Stage 2.

Figure 6.2: Select bin configurations for First-Fit in Stage 2.

Stage 0.2. We now aim to open an additional 16n bins by alternating releasing T(12 , ǫ)-

items and T(ǫ, 1)-items (with item departure in-between). We release 32n
ǫ items of type

T(12 , ǫ), resulting in a total load of 16n+ 1.5. Note that only 16n− 1 new items of type

T(12 , ǫ) can be packed in each of the first 16n bins due to them containing one T(ǫ, 1)-item

and one T(12 , ǫ)-item. Thus, FF packs 16n−1
ǫ items in the first 16n bins and opens 8n+1

new bins for the remaining items (see Figure 6.1(c) for an illustration). Among these

items released, we keep one T(12 , ǫ)-item in each of the last 8n bins and let all other items

depart such that the configuration becomes {16n:(T(12 , ǫ),T(ǫ, 1)), 8n:T(
1
2 , ǫ)}, with 24n

bins and a total load of 1.75. We now release 16n
ǫ items of type T(ǫ, 1). By similar

observations as before, FF packs 8n−1
ǫ items in the first 16n bins, 4n

ǫ items in the next

8n bins, and opens 4n + 1 new bins for the remaining items (see Figure 6.1(d) for an

illustration). We now let items depart such that the configuration becomes

{16n:(T(12 , ǫ),T(ǫ, 1)), 8n:(T(
1
2 , ǫ),T(ǫ, 1)), 4n:T(ǫ, 1)} ,

with 28n bins and a total load of 2.5. Let s′0t be the number of existing bins in Stage 0

at some time t. We observe that alternating between releasing T(12 , ǫ)- and T(ǫ, 1)-items

(with departure of items in-between) forces FF to open more than 16n−s′0t/2 new bins,

as each existing bin can pack a load slightly less than 1/2 of T(12 , ǫ)- and T(ǫ, 1)-items.

By repeating this process we obtain a total of 8n + 4n + 2n + n + n/2 + · · · new bins,

which converges to 16n. Overall, in Stage 0, we obtain 32n bins, each packed with one

T(12 , ǫ)-item and one T(ǫ, 1)-item, thus s0 = 32n.

Stage 1. In this stage, we aim at s1 = 16n. At the end of Stage 0, the packing

configuration is {32n:(T(12 , ǫ),T(ǫ, 1))}, with 32n bins and a total load of 3. We then

release 16n
ǫ items of type T(1, ǫ) and none of the existing bins can pack any new items

due to the existence of T(ǫ, 1)-items. FF opens 16n new bins, i.e., s1 = 16n as said.

Stage 2. In this stage, we aim to modify the configuration of the first 32n bins such

that T(ǫ, 1)-items depart, and each bin will be packed with one of each T(12 , ǫ)-, T(ǫ,
1
2)-,

and T(1, ǫ)-item at the end of the stage. The last 16n bins will each be packed with

one T(1, ǫ)-item. This configuration aims to force FF to open additional new bins in

subsequent stages. No new bins are opened during this process. This stage follows the
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Figure 6.3: The bin configuration of First-Fit at the end of Stage 4.

approach of Stage 0, by alternating release of T(ǫ, 12)-items and T(1, ǫ)-items with item

departure in-between.

We begin by departing items such that the configuration becomes {32n:T(12 , ǫ),

16n:T(1, ǫ)}, with 48n bins and a total load of 2. We now release 24n
ǫ items of type

T(ǫ, 12 ) and FF packs them in the first 16n bins, as each bin can pack 24n items (see

Figure 6.2(a) for an illustration). We now keep one T(ǫ, 12 )-item in each of the first 16n

bins and let all other T(ǫ, 12)-items depart. Similar to Stage 0, we release 16n
ǫ items of

type T(1, ǫ). In the first 16n bins, FF packs 8n
ǫ items, and in the next ⌈ 8n

1−1/16n⌉ > 8n

bins FF packs the remaining 8n
ǫ items. We now let items depart such that the configu-

ration becomes

{16n:(T(12 , ǫ),T(ǫ,
1
2),T(1, ǫ)), 8n:(T(

1
2 , ǫ),T(1, ǫ)), 8n:T(

1
2 , ǫ), 16n:T(1, ǫ)} ,

with 48n bins and a total load of 4. We can further alternate between releasing 32n
ǫ

items of type T(ǫ, 12) and releasing 16n
ǫ items of type T(1, ǫ), while keeping one item of

each type in each bin, and departing all other items released. We can repeat this process

for 32n bins as in Stage 0. (Note that one T(12 , ǫ)-item is already packed in each of the

32n bins and the total number of bins that are each packed with one T(12 , ǫ)-, T(ǫ,
1
2)-,

and T(1, ǫ)-item converges faster to 32n compared to Stage 0.) Figure 6.2(b) shows the

bin configuration of FF at the end of the stage.

Stage 3. In this stage, we aim at s3 = 16n. At the end of Stage 2, the packing

configuration is {32n:(T(12 , ǫ),T(ǫ,
1
2),T(1, ǫ)), 16n:T(1, ǫ)}, with 48n bins and a total

load of 5. We now release 16n
ǫ items of type T(ǫ, 1) and FF opens 16n new bins, as

T(ǫ, 1)-items cannot be packed in any existing bins due to the existence of T(1, ǫ)-items,

i.e., s3 = 16n as said.

Stage 4. Similar to Stage 2, we aim to modify the configuration of the first 48n bins in

order to force FF to open additional new bins in Stage 5. We keep one T(ǫ, 1)-item in

each of the last 16n bins and let all other T(ǫ, 1)-items depart such that the configuration

becomes

{32n:(T(12 , ǫ),T(ǫ,
1
2 ),T(1, ǫ)), 16n:T(1, ǫ), 16n:T(ǫ, 1)} ,
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Figure 6.4: The final configuration achieved by First-Fit.

with 64n bins and a total load of 6. We then release 64n items of type T(12 ,
1
2). In the

first 32n bins FF packs 32n items, one item in each bin, and in the next 16n bins FF

packs 32n items, two items in each bin. The last 16n bins do not pack any new item

and no new bins are opened. Figure 6.3 shows the bin configuration of FF at the end of

the stage.

Stage 5. In this stage, we aim at s5 = 12n. We keep one T(12 ,
1
2)-item in each of

the second 16n bins and let all other T(12 ,
1
2 )-items depart such that the configuration

becomes

{32n:(T(12 , ǫ),T(ǫ,
1
2 ),T(1, ǫ)), 16n:(T(1, ǫ),T(

1
2 ,

1
2 )), 16n:T(ǫ, 1)} ,

with 64n bins and a total load of 4n+6. We then release 24n items of type T(1, 12). No

new items can be packed in existing bins and FF opens 12n new bins by packing two

items in each new bin, i.e., s5 = 12n as said.

Stage 6. We aim at s6 = 2n. We keep one T(1, 12)-item in each of the last 12n

bins and let all other T(1, 12)-items depart, and depart all T(12 ,
1
2)-items such that the

configuration becomes

{32n:(T(12 , ǫ),T(ǫ,
1
2),T(1, ǫ)), 16n:T(1, ǫ), 16n:T(ǫ, 1), 12n:T(1,

1
2)} ,

with 76n bins and a total load of 6n+6. We now release 20n items of type T(12 , 1). FF

packs 16n items in the existing 16n bins each packed with one T(ǫ, 1)-item, one item in

each bin, and FF opens 2n new bins for the remaining items, by packing two items in

each new bin, thus s6 = 2n as said.

Stage 7. In this final stage, we aim at s7 = 9n. We keep one T(12 , 1)-item in each of the

last 2n bins and let all other T(12 , 1)-items depart such that the configuration becomes

{32n:(T(12 , ǫ),T(ǫ,
1
2),T(1, ǫ)), 16n:T(1, ǫ), 16n:T(ǫ, 1), 12n:T(1,

1
2), 2n:T(

1
2 , 1)} ,

with 78n bins and a total load of 7n+6. We finally release 9n items of type T(1, 1) and FF

opens 9n new bins, i.e., s7 = 9n. In total FF uses 32n+16n+16n+12n+2n+9n = 87n

bins. Figure 6.4 shows an illustration of the final configuration of FF.

The optimal offline packing. The optimal offline algorithm O can use 16n + 6 bins

to pack all items as shown in Table 6.2. In each stage, we list the packing configuration
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O : # bins 2 2 1 1 n 3n 4n 2n 6n total
Stage 0
Stage 0.1–A

8n×T(ǫ, 1) 8n×T(1
2
, ǫ) - -

(16n−2)×
T(ǫ, 1)

(16n−2)×
T(ǫ, 1)

(16n−2)×
T(ǫ, 1)

(32n−2)×
T(1

2
, ǫ)

(32n−2)×
T(1

2
, ǫ)

16n

Stage 0.1–D 8n×T(ǫ, 1) 8n×T(12 , ǫ) - - - - - - - 24nǫ

Stage 0.2–A
8n×T(ǫ, 1),

8n×T(ǫ, 1)

8n×T(12 , ǫ),

8n×T(1
2
, ǫ)

- -
(16n−1)×
T(ǫ, 1)

(16n−1)×
T(ǫ, 1)

(16n−1)×
T(ǫ, 1)

(16n−1)×
T(ǫ, 1)

(16n−1)×
T(ǫ, 1)

16n+32nǫ

Stage 0.2–D
8n×T(ǫ, 1),
8n×T(ǫ, 1)

8n×T(12 , ǫ),

8n×T(12 , ǫ)
- - - - - - - 48nǫ

Stage 1–A
8n×T(ǫ, 1),
8n×T(ǫ, 1)

8n×T(12 , ǫ),

8n×T(12 , ǫ)

16n×
T(1, ǫ)

-
(16n−1)×
T(1, ǫ)

(16n−1)×
T(1, ǫ)

(16n−1)×
T(1, ǫ)

(16n−1)×
T(1, ǫ)

(16n−1)×
T(1, ǫ)

16n+48nǫ

Stage 2–D -
8n×T(12 , ǫ),

8n×T(12 , ǫ)

16n×
T(1, ǫ)

- - - - - - 32nǫ

Stage 2–A 16n×T(1, ǫ)
16n×T(12 , ǫ),

16n×T(ǫ, 1

2
)

16n×
T(1, ǫ)

-
(16n−1)×
T(1, ǫ)

(16n−1)×
T(1, ǫ)

(16n−1)×
T(1, ǫ)

(16n−1)×
T(1, ǫ)

(16n−1)×
T(1, ǫ)

16n+64nǫ

Stage 2–D 16n×T(1, ǫ)
16n×T(12 , ǫ),

16n×T(ǫ, 12)

16n×
T(1, ǫ)

- - - - - - 80nǫ

Stage 3–A 16n×T(1, ǫ)
16n×T(12 , ǫ),

16n×T(ǫ, 12)

16n×
T(1, ǫ)

16n×
T(ǫ, 1)

(16n−1)×
T(ǫ, 1)

(16n−1)×
T(ǫ, 1)

(16n−1)×
T(ǫ, 1)

(16n−1)×
T(ǫ, 1)

(16n−1)×
T(ǫ, 1)

16n+80nǫ

Stage 4–D 16n×T(1, ǫ)
16n×T(12 , ǫ),

16n×T(ǫ, 12)

16n×
T(1, ǫ)

16n×
T(ǫ, 1)

- - - - - 96nǫ

Stage 4–A 16n×T(1, ǫ)
16n×T(12 , ǫ),

16n×T(ǫ, 12)

16n×
T(1, ǫ)

16n×
T(ǫ, 1)

4×

T(1
2
, 1

2
)

4×

T(1
2
, 1

2
)

4×

T(1
2
, 1

2
)

4×

T(1
2
, 1

2
)

4×

T(1
2
, 1

2
)

16n+96nǫ

Stage 5–D 16n×T(1, ǫ)
16n×T(12 , ǫ),

16n×T(ǫ, 12)

16n×
T(1, ǫ)

16n×
T(ǫ, 1)

4×
T(12 ,

1
2 )

4×
T(12 ,

1
2)

- - - 4n+96nǫ

Stage 5–A 16n×T(1, ǫ)
16n×T(12 , ǫ),

16n×T(ǫ, 12)

16n×
T(1, ǫ)

16n×
T(ǫ, 1)

4×
T(12 ,

1
2 )

4×
T(12 ,

1
2)

2×

T(1, 1

2
)

2×

T(1, 1

2
)

2×

T(1, 1

2
)

16n+96nǫ

Stage 6–D 16n×T(1, ǫ)
16n×T(12 , ǫ),

16n×T(ǫ, 12)

16n×
T(1, ǫ)

16n×
T(ǫ, 1)

- -
2×

T(1, 12)
2×

T(1, 12)
- 6n+96nǫ

Stage 6–A 16n×T(1, ǫ)
16n×T(12 , ǫ),

16n×T(ǫ, 12)

16n×
T(1, ǫ)

16n×
T(ǫ, 1)

2×
T(1

2
, 1)

2×
T(1

2
, 1)

2×
T(1, 12)

2×
T(1, 12)

2×
T(1

2
, 1)

16n+96nǫ

Stage 7–D 16n×T(1, ǫ)
16n×T(12 , ǫ),

16n×T(ǫ, 12)

16n×
T(1, ǫ)

16n×
T(ǫ, 1)

2×
T(12 , 1)

-
2×

T(1, 12)
2×

T(1, 12)
- 7n+96nǫ

Stage 7–A 16n×T(1, ǫ)
16n×T(12 , ǫ),

16n×T(ǫ, 12)

16n×
T(1, ǫ)

16n×
T(ǫ, 1)

2×
T(12 , 1)

T(1, 1)
2×

T(1, 12)
2×

T(1, 12)
T(1, 1) 16n+96nǫ

Table 6.2: The optimal schedule used by the adversary for First-Fit.“A” and “D” denote
arrival and departure of items, respectively.

of O when the maximum number of bins is used by FF and the maximum load of items

is released. Bolded entries are new items arrived in the corresponding stage. Where

applicable, we also list the packing configuration after departure of items. Some items

that never depart are packed in a constant number of bins. The last column shows the

total load of all bins.

Theorem 6.2. The First-Fit algorithm without classification is not c-competitive for

any c < 5.4375 for two-dimensional power fraction items.

Unit fraction items lower bound. The lower bound of FF for one-dimensional

dynamic bin packing of unit fraction items was proven to be 2.45 in [18]. We can modify

our adversary for power fraction items given above such that the lower bound of FF

without classification of two-dimensional unit fraction items is 5.45 in the following way.

We first complete Stages 0–2 of our adversary without modification. Notice that at the

end of Stage 2, the packing configuration is {32n:(T(12 , ǫ),T(ǫ,
1
2),T(1, ǫ)), 16n:T(1, ǫ)},

with 48n bins and a total load of 5 = O(1). We can now use the adversary for 1-D items

by fixing the height of items released to be 1 and the width corresponds to the length of

1-D items. Items released are of type T(x, 1), for variable width x, and no items released

can be packed in existing bins. The 1-D adversary can also be modified in such a way
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that the optimal offline algorithm uses 16n bins, while FF uses 16n × 2.45 bins. Using

this approach the lower bound can be improved to 48n/16n + 39.2n/16n = 5.45.

Corollary 6.3. The First-Fit algorithm without classification is not c-competitive for

any c < 5.45 for two-dimensional unit fraction items.

3-D unit and power fraction items. The lower bounds for First-Fit for 3-D unit

fraction items and 3-D power fraction items can be obtained as 6.45 and 6.4375, re-

spectively, as follows. Recall that T(x1, x2, x3) refers to the type of items with lengths

x1, x2, x3 in the three dimensions, in a similar way to 2-D items. Before Stage 0 of the

adversaries for 2-D unit and power fraction items, we release a load of 16n of items of

type T(1, 1, ǫ) and FF uses 16n bins. Afterwards, we depart most of the items, such that

in each of the 16n bins we are only left with one T(1, 1, ǫ)-item. The adversaries for 2-D

unit and power fraction items may now be used by releasing items of type T(w, h, 1),

where w and h correspond to the widths and heights of 2-D items used in the 2-D adver-

saries. Due to 3-D packing restrictions, none of the items released from Stage 0 onwards

can be packed in the first 16n bins. The optimal offline algorithm will only require one

additional bin in order to pack T(1, 1, ǫ)-items that never depart.

Corollary 6.4. The First-Fit algorithm without classification is not c-competitive for

any c < 6.45 for three-dimensional unit fraction items and is not c-competitive for any

c < 6.4375 for three-dimensional power fraction items.

6.4.2 Best-Fit

We give an adversary for Best-Fit (BF) that consists of n stages, for an arbitrarily large

integer n that is a power of 2, and aims to force BF to open n bins using at most a

total load of 2 = O(1) only. The adversary is constructed taking into account the fact

that BF packs a new item to the heaviest loaded bin, breaking ties arbitrarily. Roughly

speaking, in each stage the adversary will force BF to open a new bin using a small

load of items, regardless of how many existing bins are already opened in the packing

configuration. This is made possible by 2-D packing constraints. The adversary then

modifies the configuration of the existing bins (without completely emptying the bins at

any time) such that they will be packed with the same item types as the newly opened

bin. This will allow the adversary to open a new bin in each subsequent stage.

Theorem 6.5. The competitive ratio of the Best-Fit algorithm without classification for

two-dimensional power fraction items is unbounded.

Proof. Let n be an arbitrarily large integer that is a power of 2 and ǫ = 1
n . The adversary

aims to force BF to open one bin in each stage, such that BF uses i+ 1 bins at the end

of Stage i, for 0 ≤ i < n. Notice that in Stage i, i + 1 corresponds to the index of the

opened bin in that stage. In a slight abuse of notation, we identify the bins by their

indices, with the understanding that bin i refers to the opened bin in Stage i − 1. We
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Figure 6.5: The final configuration achieved by Best-Fit for n bins.

denote by ℓi the load of bin i. Note that the indices of bins do not change as no bin is

emptied entirely during the sequence.

The adversary will use a limited number of different items in order to open a new bin

in each stage. In consecutive stages, the existing bins will alternate between the packing

configuration of {(T(ǫ, 12),T(1, ǫ))} and {(T(12 , ǫ),T(ǫ, 1))}. To unify the discussion, we

let ((w1, h1), (w2, h2)) ∈ {((ǫ, 12), (1, ǫ)), ((
1
2 , ǫ), (ǫ, 1))}. Notice that (a) a T(w2, h2)-item

cannot be packed in the same bin with a T(h2, w2)-item due to 2-D packing constraints,

e.g., if T(w2, h2) = T(1, ǫ) then T(h2, w2) = T(ǫ, 1) and w2 + h2 > 1; and (b) the load

of each pair of T(w1, h1)-item and T(w2, h2)-item is 3ǫ
2 . By (a) the adversary can force

BF to open a new bin using one type of item if all other existing bins contain at least

one item of different type. By (b) the adversary can ensure that even if two bins each

contain different pairs of items, their load is the same, and this helps with modifying

the configuration of existing bins. I.e., when modifying the configuration of a bin we

ensure that it has highest load, while all other bins have equal lighter load, regardless

of their configuration. The adversary sequence ensures that at the beginning of each

stage, each existing bin will be packed with one pair of items defined above. Suppose

that in the beginning of Stage i each bin is packed with one T(w1, h1)-item and one

T(w2, h2)-item belonging to the set of items defined above. Then, the adversary releases

T(h2, w2)-items and T(h1, w1)-items during the stage, such that a new bin is opened.

Afterwards the adversary aims to modify the configuration of all bins such that at the

end of the stage each bin will contain one T(h2, w2)-item and T(h1, w1)-item. In the next

stage, the process is repeated by first releasing T(w1, h1)-items and T(w2, h2)-items.

In the beginning of Stage 0, there are no open bins and we set ((w1, h1), (w2, h2))

= ((ǫ, 12 ), (1, ǫ)). We start in Stage 0 and release one T(w1, h1)-item and one T(w2, h2)-

item. BF packs them in one bin. For any later Stage i, with i > 0, we have the following

steps (repeating n− 1 times) consisting of sequences of arrival and departure of items.

Step 1. We first release two T(h2, w2)-items and BF packs both items to a new bin with

index i+1 as no existing bin can pack the items. We further release one T(h1, w1)-item

and BF packs the item in bin i + 1 as ℓi+1 = 2× (ǫ×1) > ℓi = ℓi−1 = · · · = ℓ1 = 3ǫ
2 . If

i+ 1 = n, we have obtained n bins and stop, otherwise we continue as follows.

Step 2. In this step, we aim to modify the configuration of all i + 1 bins without

closing any bin such that, at the end of the process, each bin will be packed with one
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T(h1, w1)-item and one T(h2, w2)-item.

(i) We first depart one T(h2, w2)-item from bin i+ 1.

For each of the first 1 ≤ j ≤ i bins we repeat the following sequence of item departure

and arrival in Steps 2(ii)–2(vii).

(ii) Depart one T(w1, h1)-item from bin j.

(iii) If T(w1, h1) = T(ǫ, 12), release one T(1, 12)-item, otherwise release one T(12 , 1)-item.

BF packs the item in bin j as no other bin can accommodate the item. This is because

all bins with index smaller than j and bin i+1 are packed with one T(h1, w1)-item and

one T(h2, w2)-item and all remaining bins with index larger than j, except for bin i+1,

are packed with one T(w1, h1)-item and one T(w2, h2)-item.

(iv) Release four T(h1, w1)-items. All existing bins can accommodate the new items,

however BF packs them to bin j as it has highest load, i.e., ℓj = (1×ǫ)+(1×1
2 ) > ℓk = 3ǫ

2 ,

for any bin k 6= j.

(v) Depart the T(1, 12)-item or T(12 , 1)-item packed in bin j and additionally depart the

T(w2, h2)-item from bin j; note that ℓj becomes 4× (12×ǫ) = 2ǫ.

(vi) Release one T(h2, w2)-item; BF packs it in bin j for a similar reason as before.

(vii) Finally depart three T(h1, w1)-items from bin j, and the bin remains packed with

one T(h1, w1)-item and one T(h2, w2)-item, for a total load of 3ǫ
2 .

At the end we obtain i + 1 bins, each packed with one T(h1, w1)-item and one

T(h2, w2)-item.

Step 3. Set ((w1, h1), (w2, h2)) = ((h1, w1), (h2, w2)) and go back to Step 1, where we

proceed to the next stage.

Figure 6.5 shows an illustration of the final configuration of BF.

The optimal offline packing. On the other hand, the optimal offline algorithm O

uses four bins. The first bin packs at most n items of type T(ǫ, 12 ) and n items of type

T(12 , ǫ), the second bin packs at most n items of type T(ǫ, 1), and the third bin packs

at most n items of type T(1, ǫ). The last bin packs one item of type T(12 , 1) and three

additional items of type T(ǫ, 12), or one item of type T(1, 12) and three additional items of

type T(12 , ǫ), at any time. Thus, the competitive ratio of BF is n/4 and for an arbitrarily

large n the theorem follows.

6.4.3 Worst-Fit

In this section, we consider the lower bound of the Worst-Fit (WF) algorithm for two-

dimensional power fraction items when no classification of items is used. The items used

by the adversary for WF are a subset of the items used for the adversary of Best-Fit (BF)

in Section 6.4.2. For completeness, we give the structure of the adversary in Theorem

6.6. Recall that WF assigns a new item R to the lightest loaded bin, breaking ties

arbitrarily. Thus, in contrast to BF, in order to individually modify the configuration
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Figure 6.6: The final configuration achieved by Worst-Fit for n bins.

of an existing bin we require that it has lightest load. Similar to BF, the adversary

consists of n stages and aims to force WF to open n bins using at most a total load of

3/2 = O(1) only.

Theorem 6.6. The competitive ratio of the Worst-Fit algorithm without classification

for two-dimensional power fraction items is unbounded.

Proof. Let n be an arbitrarily large integer that is a power of 2 and ǫ = 1
n . The adversary

aims to force WF to open one bin in each stage, such that WF uses i + 1 bins at the

end of Stage i, for 0 ≤ i < n. Notice that in Stage i, i + 1 corresponds to the index of

the opened bin in that stage. In a slight abuse of notation, we identify the bins by their

indices, with the understanding that bin i refers to the opened bin in Stage i − 1. We

denote by ℓi the load of bin i. Note that the indices of bins do not change as no bin is

emptied entirely during the sequence.

The adversary will use a limited number of different items in order to open a new bin

in each stage. In consecutive stages, the existing bins will alternate between the packing

configuration of {(T(ǫ, 12),T(1, ǫ))} and {(T(12 , ǫ),T(ǫ, 1))}. To unify the discussion, we

let ((w1, h1), (w2, h2)) ∈ {((ǫ, 12), (1, ǫ)), ((
1
2 , ǫ), (ǫ, 1))}. The adversary makes use of the

fact that (a) a T(w2, h2)-item cannot be packed in the same bin with a T(h2, w2)-item

due to 2-D packing constraints and (b) each pair of items has equal load of 3ǫ
2 . By (a)

the adversary can force WF to open a new bin using one type of item if all other existing

bins contain at least one item of different type. By (b) the adversary can ensure that

even if two bins each contain different pairs of items, their load is the same. This helps

with modifying the configuration of an existing bin, as we ensure that it has lightest

load, while all other bins have equal higher load, regardless of their configuration. The

adversary sequence ensures that at the beginning of each stage, each existing bin will

be packed with one pair of items defined above. If in Stage i each bin is packed with

one T(w1, h1)-item and one T(w2, h2)-item then the adversary releases T(h2, w2)-items

and T(h1, w1)-items during the stage, such that a new bin is opened. Afterwards the

adversary aims to modify the configuration of all bins such that at the end of the stage

each bin will contain one T(h2, w2)-item and T(h1, w1)-item. In the next stage, the

process is repeated by first releasing T(w1, h1)-items and T(w2, h2)-items.
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In the beginning of Stage 0, there are no open bins and we set ((w1, h1), (w2, h2))

= ((ǫ, 12 ), (1, ǫ)). We start in Stage 0 and release one T(w1, h1)-item and one T(w2, h2)-

item. WF packs them in one bin. For any later Stage i, with i > 0, we have the following

steps (repeating n− 1 times) consisting of sequences of arrival and departure of items.

Step 1. Release one T(h2, w2)-item and WF opens a new bin with index i + 1 as no

existing bins can pack the item. We further release one T(h1, w1)-item and WF packs

the item in bin i+ 1 as ℓi+1 = ǫ× 1 < ℓi = ℓi−1 = · · · = ℓ1 = 3ǫ
2 . If i+ 1 = n, we have

obtained n bins and stop, otherwise we continue as follows.

Step 2. In this step, we aim to modify the configuration of the first i bins without

closing any bin such that, at the end of the process, each bin will be packed with one

T(h1, w1)-item and one T(h2, w2)-item.

(i) Depart all T(w2, h2)-items from the first i bins.

(ii) Release i items of type T(h1, w1) and WF packs one item in each of the first i bins

as they have equal lightest load ǫ
2 .

(iii) Depart all T(w1, h1)-items from the first i bins.

(iv) Release i items of type T(h2, w2). As before, WF packs one item in each of the

first i bins.

At the end we have obtained i + 1 bins, each packed with one T(h1, w1)-item and

one T(h2, w2)-item.

Step 3. Set ((w1, h1), (w2, h2)) = ((h1, w1), (h2, w2)) and go back to Step 1, where we

proceed to the next stage.

Figure 6.6 shows an illustration of the final configuration of WF.

The optimal offline packing. The optimal offline algorithm O uses three bins, one

bin for at most n items of type T(ǫ, 12) and n items of type T(12 , ǫ), one bin for at most

n items of type T(ǫ, 1), and one bin for at most n items of type T(1, ǫ). Thus, the

competitive ratio of WF is n/3 and for an arbitrarily large n the theorem follows.

6.5 Conclusion

We have shown that the family of Any-Fit algorithms that does not use classification

of items is not competitive for online multi-dimensional dynamic bin packing of general

size items. In contrast, First-Fit without classification has a competitive ratio of 2.897

[26] for online one-dimensional dynamic bin packing of general size items. It can also

be shown that Any-Fit (including Best-Fit and Worst-Fit) is 3-competitive for 1-D

general size items using an argument from [26] for First-Fit. Furthermore, we show that

Best-Fit and Worst-Fit without classification are also not competitive for online multi-

dimensional dynamic bin packing of power fraction items. Lastly, First-Fit without

classification of items has lower bounds of at least 5.4375 for 2-D power fraction items,

at least 6.4375 for 3-D power fraction items, at least 5.45 for 2-D unit fraction items,
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and at least 6.45 for 3-D unit fraction items. All these results are in contrast to the

general lower bounds of any algorithm of 3.70301 [37] for 2-D unit fraction items and

4.85383 [37] for 3-D unit fraction items. One of the directions for future work would be

to obtain a better lower bound for any algorithm, as the upper bounds for 2-D and 3-D

unit fraction items currently stand at 6.7850 and 21.6108, respectively.





Chapter 7

Conclusion

In this work we have studied the online multi-dimensional dynamic bin packing problem.

In the online model of the bin packing problem items arrive one at a time and irrevocable

decisions must be made on where to pack items such that the total number of bins used

is minimized. In the dynamic setting items may also depart at unknown arbitrary time

and the goal becomes to minimize the total number of bins used over all time.

For online one-dimensional dynamic bin packing, we have improved the best known

lower bound of 2.5 [19] to 8/3 ∼ 2.666 in Chapter 3. The previous lower bounds were

2.388 [26], 2.428 [18], and 2.5 [19]. We designed two operations called Op-Inc and

Op-Comp that release items of slightly increasing sizes and items with complementary

sizes. These operations make a more systematic approach to release items: the type of

item sizes used in a later case is a superset of those used in an earlier case. This is in

contrast to the previous 2.5 lower bound in [19] in which rather different sizes are used

in different cases. Furthermore, in each case, we use one or two pairs of Op-Inc and

Op-Comp, which makes the structure clearer and the proof easier to understand. We

also show that the new operations defined lead to a much easier proof for a 2.5 lower

bound. We believe the design of this adversary may be useful in other optimization

problems.

The upper bound result for the one-dimensional dynamic bin packing problem, based

on the analysis of a modified version of First-Fit, currently stands at 2.788 [26]. There

has been no progress on improving the upper bound for more than 30 years at this

time. The current best approach for online static bin packing is using Harmonic-type

algorithms that classify items into a large number of classes and then pack items in

each class independently of each other. This approach does not seem to be suitable

for online dynamic bin packing as discussed in Section 2.3.1. It is also not yet clear

whether the lower bound can be improved beyond 2.666. As we have seen throughout

this work, First-Fit appears to give the best competitive ratios for online dynamic bin

packing. A different analysis of First-Fit may be worth pursuing towards a better

upper bound, perhaps using weighting function techniques ([44, 53]), through which

the absolute approximation ratio and asymptotic approximation ratio of First-Fit were

proven to be equal and exactly 1.7 [35] for static bin packing.

89
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We have initiated the study of two- and three-dimensional dynamic bin packing of

unit fraction and power fraction items, providing algorithms with better worst-case per-

formance compared to algorithms for general size items in Chapters 4 and 5. Specifically,

we have improved the competitive ratios that would be obtained using only existing re-

sults for unit fraction items from 7.4842 to 6.7850 for 2-D, and from 22.4842 to 21.6108

for 3-D. For power fraction items, the competitive ratios are further reduced to 6.2455

and 20.0783 for 2-D and 3-D, respectively. Our approach is to divide items into classes

and analyze each class individually. We have proposed several classes and defined dif-

ferent packing schemes based on the classes. This approach gives a systematic way to

explore different combinations of classes and future work may easily build on our results.

The technique of dividing items into classes for online multi-dimensional dynamic

bin packing seems to be in certain cases necessary. As we have shown in Chapter 6, the

family of Any-Fit algorithms that does not use classification of items is not competitive

for online multi-dimensional dynamic bin packing of general size items. Furthermore,

we have also shown that Best-Fit and Worst-Fit without classification are also not

competitive for online multi-dimensional dynamic bin packing of power fraction items.

First-Fit without classification of items has a lower bound of at least 5.4375 for 2-D

power fraction items and at least 5.45 for 2-D unit fraction items. For 3-D power and

unit fraction items, First-Fit is at least 6.4375- and 6.45-competitive, respectively.

For 2-D and 3-D unit fraction items, the lower bounds for any algorithm are 3.70301

and 4.85383 [37], respectively. There is still quite a gap between these and the upper

bounds for unit fraction items (6.7850 for 2-D and 21.6108 for 3-D), especially for 3-

D, and future work may focus on improving the lower bound. A different direction is

improvement specifically on the lower bounds of any algorithm for general size items,

as the current best results are obtained using only 2-D and 3-D unit fraction items in

the construction of the adversaries [37]. The upper bounds for 2-D and 3-D general size

items currently stand at 7.788 and 22.788 [70], respectively.

For the classes given for 2-D unit fraction items in Chapter 4, we have obtained

some preliminary results on a lower bound for any online algorithm that uses the given

classification of items. These types of lower bounds would allow to determine how

good a classification and packing configuration are, an approach not yet explored in

online dynamic bin packing literature. For completeness we will give the details of our

preliminary lower bounds for two classes of 2-D unit fraction items in Observations 7.1

and 7.2 (the notations used are described in Section 6.2).

The following observation shows a lower bound of 1.5 for any online algorithm for

Class 5 two-dimensional unit fraction items. As detailed in Section 4.3.1, First-Fit

obtains a competitive ratio of 1.5 for Class 5 items, thus the bound is tight for this

input.

Observation 7.1. For any online dynamic bin packing algorithm A with input of types

T(1, 1) and T(12 , 1), A is not c-competitive for any c < 1.5.
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Proof. We give an adversary for any online algorithm A for items of types T(1, 1) and

T(12 , 1), i.e., Class 5 items, such that at any time the load of items released and not

departed is at most n, for some large even integer n. We consider two stages of a

sequence of arrivals and departures of items of types T(1, 1) and T(12 , 1). We prove that

A uses 3n/2 bins, while the optimal offline algorithm O uses at most n bins at any

time. Then, the competitive ratio of A is at least 1.5, which matches the upper bound

achieved by First-Fit (FF) for Class 5 items.

Stage 0. We release 2n items of type T(12 , 1), with total load n. A needs at least n

bins by packing at most two T(12 , 1)-items in each bin, thus s0 ≥ n.

Stage 1. In this stage, we aim at s1 = n/2. We keep one T(12 , 1)-item in each of n bins

and let all other items depart such that the configuration becomes {n:T(12 , 1)}, with n

bins and a total load of n/2. We then release n/2 items of type T(1, 1). The first n bins

cannot pack any T(1, 1)-item and A opens n/2 new bins, thus s1 = n/2. In total A uses

3n/2 bins.

The optimal offline packing. In Stage 0, n items of type T(12 , 1) that never depart

are packed in n/2 bins and the remaining n items in an additional n/2 bins. In Stage 1,

the second n/2 are emptied and n/2 items of type T(1, 1) released are packed in these

bins. Thus O uses at most n bins at any time and the lemma follows.

This final observation shows a lower bound of 1.9375 for any online algorithm for

Class 3 two-dimensional unit fraction items. The bound is not tight, as First-Fit obtains

a competitive ratio of 2.25 (Section 4.3.2).

Observation 7.2. For any online dynamic bin packing algorithm A with input of types

T(1, 1), T(1, 12), T(
1
2 , 1), and T(12 ,

1
2), A is not c-competitive for any c < 1.9375.

Proof. We give an adversary for any online algorithm A for items of types T(1, 1),

T(1, 12), T(
1
2 , 1), and T(12 ,

1
2), i.e., Class 3 items, such that at any time the load of items

released and not departed is at most 16n, for some large integer n. We prove that A

uses 31n bins, while the optimal offline algorithm O uses at most 16n bins at any time.

Then, the competitive ratio of A is at least 1.9375.

Stage 0. We release 64n items of type T(12 ,
1
2 ), with total load 16n, and A needs at

least 16n bins, i.e., s0 ≥ 16n. A can pack at most four T(12 ,
1
2)-items in each bin, thus

A needs at least 64n/4 = 16n bins as said.

Stage 1. In this stage, we aim at s1 ≥ 4n. We keep one T(12 ,
1
2)-item in each of 16n

bins and let other items depart such that the configuration is {16n:T(12 ,
1
2)}, with 16n

bins a total load of 4n. We then release 24n items of type T(1, 12). The existing bins

can pack at most 16n new items, one item in each bin. For the remaining 8n items, A

needs to open at least 4n new bins by packing at most two T(1, 12)-items in each bin,

thus s1 ≥ 4n.

Stage 2. In this stage, we aim at s2 ≥ 2n. We let all T(1, 12)-items that have packed

in the first 16n bins depart and keep one T(1, 12)-item in each of the next 4n bins. The
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1-D bounds 2-D bounds 3-D bounds

Algorithm Input Upper Lower Upper Lower Upper Lower

Best-in-Class
General 2.788 [26] 2.75 [26] [*] 7.788 [70] 3.70301 [37] 22.788 [70] 4.85383 [37]

UF 2.4842 [47] 2.45 [18] 6.7850 [15] 3.70301 [37] 21.6108 [15] 4.85383 [37]
PF 2.4842 [47] ? 6.2455 [15] ? 20.0783 [15] ?

First-Fit
General 2.897 [26] 2.75 [26] ∞ ∞ ∞ ∞

UF 2.4842 [47] 2.45 [18] ? 5.45 ? 6.45
PF 2.4842 [47] ? ? 5.4375 ? 6.4375

Best-Fit
General 3 [18, 26] 3 [18] ∞ ∞ ∞ ∞

UF 3 [18] 3 [18] ∞ ∞ ∞ ∞

PF 3 [18] 3 [18] ∞ ∞ ∞ ∞

Worst-Fit
General 3 [18, 26] 3 [18] ∞ ∞ ∞ ∞

UF 3 [18] 3 [18] ∞ ∞ ∞ ∞

PF 3 [18] 3 [18] ∞ ∞ ∞ ∞

Any-Fit
General 3 [18, 26] 2.666 [71] ∞ ∞ ∞ ∞

UF 3 [18] 2.428 [18] ? 3.70301 [37] ? 4.85383 [37]
PF 3 [18] ? ? ? ? ?

A
General - 2.666 [71] - 3.70301 [37] - 4.85383 [37]

UF - 2.428 [18] - 3.70301 [37] - 4.85383 [37]
PF - ? - ? - ?

Table 7.1: Bounds for the Best-in-Class algorithms and the family of Any-Fit algorithms
without classification of items. Bolded entries are results obtained in this thesis. For
input, General, UF, and PF refer to general size, unit fraction, and power fraction items,
respectively. A refers to any online algorithm. “∞” denotes unbounded competitive
ratios and “?” denotes unknown bounds. [*] The lower bound construction allows the

optimal offline algorithm to migrate items between bins.

configuration becomes {16n:T(12 ,
1
2 ), 4n:T(1,

1
2)}, with 20n bins and a total load of 6n.

We now release 20n items of type T(12 , 1). A may pack at most 16n items in the first

16n bins and none in the second 4n bins. For the remaining 4n items, A needs to open

at least 2n bins by packing at most two T(12 , 1)-items in each bin, thus s2 ≥ 2n.

Stage 3. In this final stage, we aim at s3 = 9n. We let items depart such that the

configuration becomes

{16n:T(12 ,
1
2), 4n:T(1,

1
2), 2n:T(

1
2 , 1)} ,

with 22n bins and a total load of 7n. We finally release 9n items of type T(1, 1) and A

opens 9n new bins, i.e., s3 = 9n. In total A uses 16n+ 4n + 2n + 9n = 31n bins.

The optimal offline packing. In Stage 0, all T(12 ,
1
2)-items that never depart are

packed in 4n bins and the remaining items in 12n bins. In Stage 1, the second 12n bins

are emptied. All T(1, 12)-items released that never depart are packed in 2n bins and the

remaining items in 10n bins. In Stage 2, the last 10n bins are emptied. The T(12 , 1)-

items that never depart are packed in n bins and the remaining items in 9n bins. Finally

in Stage 3, the T(1, 1)-items are packed in the last 9n bins emptied at the beginning of

the stage. Note that O uses at most 16n bins at any time and the lemma follows.

To provide some perspective and summarize our work in this thesis, we present in

Table 7.1 state of the art results for online multi-dimensional dynamic bin packing of

general size items, unit fraction items and power fraction items. The Best-in-Class

algorithms refer to the following algorithms, all of which (apart from First-Fit) use
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classification of items. For 1-D general size items the algorithm is First-Fit Modified

[26], while for 1-D unit and power fraction items the algorithm is First-Fit [47]. For 2-D

general size, unit fraction, and power fraction items the algorithms are 2DDynamicPack

[70], 2DDynamicPackUFS1 [15] (Chapter 4), and 2DDynamicPackPF [15] (Chapter 5),

respectively. For 3-D general size, unit fraction, and power fraction items the algorithms

are 3DDynamicPack [70], 3DDynamicPackUF [15] (Chapter 5), and 3DDynamicPackPF

[15] (Chapter 5), respectively.

Apart from unknown results and closing gaps between upper and lower bounds in

Table 7.1, there are yet many more directions for online dynamic bin packing, including

rotation of items [40], allowing limited or full migration of items between bins [49, 50],

resource augmentation [55], and packing of hypercubes [37] (items have equal lengths

in all dimensions). All models are possible avenues of future work, especially for 2-D

and 3-D unit and power fraction items. In terms of analysis future work may focus on

introducing advice complexity analysis [10, 33], average case analysis [58], random order

analysis [56], and relative worst order analysis [12] to online dynamic bin packing.
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