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Abstract

Identification, characterisation and quantification of proteins used in chemical

communication.

Most animals have excretory systems to remove soluble waste. In humans soluble
waste is mainly excreted through the urinary system. Kidneys, urinary bladder and
urethra make up this system and are responsible for the production of urine by
filtration, reabsorption and secretion. Under normal circumstances urine contains
water, creatinine, urea and salts. In humans, the presence of elevated levels of
protein or glucose is indicative of medical conditions such as impaired kidney
function and diabetes. Some animals are an exception to this. Rodents such as the
house mouse (Mus musculus), Norway rat (Rattus norvegicus), bank vole (Myodes
glareosin) and Roborovski hamster (Phodopus roborovskii) excrete substantial
amounts of protein in their urine yet their renal function remains intact. These
proteins belong to the lipocalin family and play an essential part in chemical
signalling. Their size (18-19kDa) allows them to escape from being filtered out of

the urine during the ultrafiltration step resulting in their excretion in the urine.

Many of these proteins share a high sequence identity and genomic data is often
incomplete or absent. One aspect of this thesis looks at developing a quantification
method for a set of highly homologous lipocalins in mice. Another was to
characterise and identify proteins excreted in the harvest mouse (Micromys
minutus) and mouse lemur (Microcebus) in the absence of genomic data and see if
they are related to the lipocalin family or if they belong to a completely different

group of proteins.

Using mass spectrometric techniques a method to quantify major urinary proteins
(MUPS), lipocalins found in mice, was developed and implemented. A
guantification concatemer (QconCAT) was designed to do this and was based on
genomic data from the laboratory strain of mouse C57BL/6. MUP isoforms were
successfully quantified in both male and female C57BL/6 mice. The QconCAT

strategy was also used to assess MUP production during the estrous cycle in female
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mice. Females express more MUP during the estrous stage with a decline in

expression seen during the proestrous.

For the second part of this thesis, lipocalin expression in the harvest mouse
(Micromys minutus) was investigated. Urine samples collected from male and
female harvest mice revealed proteins approximately 18-19 kDa expressed in both
sexes. The concentration of protein in urine was much lower than that observed in
other rodents. Alternative areas of protein excretion were explored and revealed
the same protein to be excreted in much higher concentrations from the saliva
and/or paws. Again mass spectrometry was employed to identify and characterise
these proteins. A preliminary discovery analysis identified proteins that shared high
homology with other lipocalins including MUPS and odorant binding proteins.
Intact mass analysis also confirmed the presence of three abundant proteins in both
males and females. Anion exchange chromatography was used to separate the
proteins for de novo sequence analysis which confirmed that harvest mice excrete

proteins belonging to the lipocalin family.

The final section of this thesis examines characterising protein expression in the
mouse lemur (Microcebus). Although they are classed as primates not rodents,
mouse lemurs are known to respond to urinary chemosignals from their
conspecifics. Urine samples were collected from two species of mouse lemur -
Microcebus murinus and Microcebus lehilahytsara. As mouse lemurs have a specific
breeding season samples were collected both in and out of season. Some of the
male mouse lemurs from both species expressed a large amount of protein during
reproductive season. No protein was observed in females. Intact mass analysis
identified a protein at 9388 Da in the M. murinus and 9418 Da in the M.
lehilahytsara. Unlike many members of the rodent family who excrete large
qguantities of lipocalins, de novo sequencing confirmed this protein to be a member
of the Whey Acidic Protein family (WAPS). WAPS are expressed across many
lineages and have a variety of functions including antibacterial and antifungal
action, protease inhibition, tumour suppression and anti-inflammatory activity. No
protease inhibition by the mouse lemur protein was observed and further studies

will need to be established to determine the biological function of this WAP.
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Chapter 1: Introduction

Chapter 1: Introduction

1.1 Animal communication

Animal communication can be defined as the transfer of information from one
animal to another that results in a behavioural change in the receiver.
Communication is often in the form of visual, auditory and olfactory cues. Visual
signals frequently include gestures, facial expressions, body posture and mimicry.
Herring gull chicks exhibit a begging response upon presentation of the parents’
beak which signals feeding time to the chicks (Tinbergen and Perdeck, 1951; Ten
Cate et al., 2009). Aggressive, dominant wolves will often have high body posture
and raised hackles while submissive ones lower their tails and ears and carry their
bodies low (Sillero-Zubiri, 2004). Others examples of visual signalling include
peacocks attracting peahens by erecting and displaying their impressive trains and
chameleons change colour to reflect their physiological state and intentions to

conspecifics (Stuart-Fox and Moussalli, 2008).

Auditory signals are also regularly used as a form of communication between
animals. Male pacific walruses use acoustic displays to attract a female during the
breeding season and to warn other competing males (Fay 1982; Stirling et al.,
1987). Lactating female guinea pigs respond to vocal calls from their pups (Kober et
al., 2007) while ultrasonic calls in red deer play a key role in sexual behaviour

(Pomerantz and Clemens, 1981).

While visual and auditory cues are frequently used by most animals, olfactory
signals are the primary source of communication. The advantage of olfactory
signalling is information about the depositor is still able to be detected after they
have left the scene, which is particularly useful for defending territories etc.
Olfactory signals are deposited in the form of scent marks and provide more

detailed information about the depositor.
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1.2 Scent marking

Scent marking is a behaviour by which glandular secretions are deposited on the
ground or onto objects in an animal's environment (Johnson, 1973). These
secretions are often in the form of urine, faeces or are excreted from specialised
scent glands. Most animals display scent marking behaviour and use it as a form of
communication between conspecifics (Brown and MacDonald, 1985) with glandular
secretions, urine and faeces being placed in noticeable places in their
territories/home ranges, often in lines or along paths and boundaries (Gosling and
Roberts, 2001). By placing scent marks in this manner, an individual can define and
defend their territory from invading conspecifics. These scent marks contain
information such as sex, species, individual identity, social status and the prescence,
age and location of the marking (Brown and MacDonald, 1985; Hurst, 1993; Gosling
and Roberts, 2001; Hurst et al., 2001; Petrulis, 2013). Examples of marking

behaviour by various mammals are outlined on Table 1.1.

Males usually mark more than females with dominant males marking more than
others ensuring the markings stay fresh (Gosling, 1982). Although scent marking
has advantages such as conveying information about the signaller in their absence
and requiring less energy to produce than an acoustic signal, it does involve
significant cost in time and risk. The reasons behind scent marking are unclear but
there are several hypotheses. The first hypothesis is an individual tends to place
their markings around the edge of a territory; the markings serve as fence or
warning sign for conspecifics not to enter the territory. However most species
studied will cross into territories despite the markings (Gosling and McKay, 1990)
the exceptions being male moles and beavers who avoid marked sites (Gosling and
Stone, 1990; Sun and Muller-Schwarze 1998). The second hypothesis is a trespasser
will learn the scent of the signaller so if they encounter the owner of the scent they
will recognise this and avoid fights they are likely to lose (Gosling and Roberts,
2001). The third hypotheses propose that animals establish boundaries with major
competitors and therefore prevent costly disagreements between territory owners

(Brashares and Arcese 1999; Gosling and Roberts, 2001).
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Animals can counter-mark existing scents. This can be in the form of over-marking
where an individual will partially or completely cover the existing scent of another
individual or by adjacent marking where an individual will mark nearby the existing
scent of another individual (Johnston et al., 1994). Outcomes of over-marking
include scent blending, individual scents that have been over-marked remain
distinct or scent masking which has been observed in male Syrian hamsters who
ignore earlier marks and only treat the most recent top marking as “familiar”
(Johnston et al., 1994). Territory owners will often verify their ownership by over-

marking an intruder’s scent. In mice dominant males appear not to over-mark their

own scent or that of a genetically identical individual (Hurst, 1990; Nevison et al.,

2000).

Table 1.1 Examples of scent marking behaviours in mammals

Species Scent marking behaviour References
Hyaena Create ‘scent posts’ by rubbing their anal scent | Drea et al., 2002;
(Hyaena glands over tall grasses and shrubbery to relay | Burgener et al., 2009
hyaena) information such as sex, familiarity, identity and

possibly sexual status.
Wolf Alpha males urinate by raising one of their back | Peters and Mech, 1975;

(Canis lupus)

legs to mark their territory. This is different to
normal urination in which the animal uses a
squatting technique. The alpha female will often
counter mark where her mate has just urinated.

Briscoe et al., 2002

clawing, cheek rubbing and vegetation flattening.
Males increase the frequency of marking when
females are in estrous and when marking their
territory.

Red squirrel Uses secretions from oral glands for kin | Mateo, 2006
(Sciurus recognition.
vulgaris)
House mouse | Use urinary scents to provide a broad range of | Rich and Hurst 1998;
(Mus individual-specific information such as dominance, | Beynon and Hurst,
musculus) health and reproductive status and territorial | 2004;
information. Hurst, 2009
Rabbit Both male and female rabbits display “chinning” | Mykytowycz, 1965;
(Oryctolagus | which is when the animal rubs its chin on objects | Arteaga et al., 2008
cuniculus) or conspecifics in order to deposit secretions from
the submandibular scent glands.
Giant panda Scent mark off ground e.g. tree trunks. Use both | Swaisgood et al., 1999;
(Ailuropoda urine and anogenital gland secretions to | Swaisgood et al., 2000;
melanoleuca) | communicate individual identity, sex, | Hagey and MacDonald,
reproductive condition, age and competitive | 2003
status.
Tiger Urine spraying and scraping with deposits of | Smith et al., 1989
(Panthera urine, faeces and anal gland secretions are the
tigris) primary forms of marking. Other forms include
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Both physiological and behavioural responses have been observed in response to
scent marking. In mice and rats, female puberty is accelerated in the presence of
male urine and can be delayed by the presence of female urine amongst group-
housed females (Drickamer, 1977; Mucignat-Caretta et al., 1995; Novotny et al.,
1999). Urine from males will promote aggression in other males and attract
females (Novotny et al., 1985; Lacey et al., 2007; Roberts et al., 2010). In female
gray short tailed opossums, estrous is only ever induced in response to a male scent
mark (Harder et al., 2008). Decreased testosterone levels have been observed in
male gray mouse lemurs post exposure to dominant male urine (Schilling et al.,
1984). Male giant pandas in response to rival scent marks will significantly increase
their sexual motivation and become more interested in estrous females (Bian et al,,
2013). Exposure to dominant male urine will suppress aggression, scent marking
and production and territorial patrolling in male blackbuck antelopes (Rajagopal et

al., 2010).

A scent mark usually contains pheromones which are responsible for the relaying
information about the signaller and cause the behavioural and physiological
changes observed. Pheromones are described as ‘substances which are secreted to
the outside by an individual and received by a second individual of the same
species, in which they release a specific reaction, e.g., a definite behaviour or a
developmental process’ (Karlson and Luscher, 1959). Pheromones are separated
into two categories — volatile and involatile. Volatile compounds tend to be small

molecules while involatile compounds usually include peptides and proteins.

1.3 Volatiles

Volatile pheromones require no extra energy investment by the signaller as they are
often by —products of metabolism (Wyatt, 2009). The advantage of a volatile
pheromone is that it can be detected even after the depositor has left the scene.
The disadvantage is they are lost to the environment quite soon after secretion of
the scent mark. Volatile pheromones have been identified in a number of mammals
and have been studied extensively in rodents, mice and rats in particular. A number

of volatile components identified by Gas chromatography — Mass spectrometry (GC-
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MS) analysis are present in the urine of both mice and rats. 2-sec-butyl-4,5-
Dihydrothiazole and 2,3-dehydro-exobrevicomin are two pheromones found in
male mouse urine and promote inter-male aggression as well as puberty
acceleration and estrous synchronisation in females (Novotny et al., 1985; Jemiolo
et al., 1986; Novotny et al., 1999). They also bind to involatiles (major urinary
proteins) (Novotny et al., 1985; Jemiolo et al., 1986). Male mouse urine also
contains 6-hydroxy-6-methyl-3-heptanone and (methylthio)-methanethiol which
causes puberty acceleration and an attractant females respectively (Novotny et al.,
1999; Lin et al, 2005). Female urine contains 2-heptanone and 2,5 -
dimethylpyrazine which both delay puberty with 2-heptanone potentially causing a
prolongation of estrous and 2,5 —dimethylpyrazine having the opposite effect and
suppressing estrous in grouped females (Novotny et al.,1986; Ma et al., 1998). Rat
urine contains 2-heptanone and 4- ethylphenol both of which are attractive to
females (Zhang et al., 2008). 2-heptanone also serves as a fear pheromone causing
anxiety and stress in rats (Sugai et al., 2006; Gutierrez-Garcia et al., 2007). Rat pups
also emit dodecyl propionate from their preputial glands which serves as an

attractant to their mothers (Brouette-Lahlou et al., 1999).

Volatile pheromones have also been observed in other mammals. During estrous,
the urine of female Asian elephants contain high concentrations of (Z)-7-dodecen-1-
yl acetate, a sex pheromone that stimulates male sexual behaviour (Rasmussen,
1997). Female bovine urine contains 1-iodoundecane during estrous and serves as
an attractant to bulls (Kumar et al., 2000; Archunan and Kumar, 2013). Male black
buck antelope urine has three volatile components - 3-hexanone, 6-methyl-5-
hepten-2-one and 4-methyl-3-heptanone — all of which are only observed during
the dominance hierarchy period by dominant males (Rajagopal et al., 2010). A
pheromone emitted by male goats — 4-ethyloctanal, is responsible for the activation
of gonadotropin releasing hormone (GnRH) a key hormone in the regulation of
estrous and reproduction, in female goats (Murata et al., 2014). Three volatile
pheromones have been identified in female buffaloes - 1-chlorooctane, 4-
methylphenol and 9-octadecenoic acid. Isolation of the three fractions saw sexual

responses such as sniffing and mounting by males in response to two of the
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volatiles 4-methylphenol and 9-octadecenoic acid. No responses were observed

with 1-chlorooctane (Rajanarayanan and Archunan, 2011).

1.4 Involatiles

The volatile components of a scent mark draw the receiver towards the location of
the scent mark and allow them to investigate the markings further. As volatiles are
metabolically produced, information such as health and reproductive status of the
signaller at the time of the marking is conveyed to the recipient. Involatile
pheromones have the advantage over volatile pheromones in that they are more
stable and continue to be present in the scent mark for some time. Examples of
involatile components are the major urinary proteins (MUPS), the major
histocompatibility complex (MHC) peptides and the exocrine gland secreting
peptides (ESP). These involatiles portray information such as individual identity and
the receiver must make direct contact with the scent mark to collect the required
information. The longevity and robustness of these pheromones means the scent

mark will not be mistaken as belonging to another individual.

1.4.1 Major urinary proteins

The excretory system is responsible for removing excess and unwanted materials
from an organism to prevent damage to the body and to maintain homeostasis.
Most animals have excretory systems to remove soluble waste. In mammals soluble
waste is mainly excreted through the urinary system (Kardasz, 2009). Kidneys,
urinary bladder and urethra make up this system and are responsible for the

production of urine by filtration, reabsorption and secretion.

The production of urine begins with an ultra filtration step. Filtration is one of the
main functions of the kidneys and uses special filtration units known as glomeruli,
which line the capillaries that make up the glomerulus (Ronco, 2007). The filtration
step is aided by a blood pressure difference between two arterioles —the afferent
arteriole which supplies blood to the glomerulus and the efferent arteriole in which
the blood exits the glomerulus (Atherton, 2012). This blood pressure difference

between the two arterioles results in small molecules such as water, sodium
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chloride, urea and glucose being forced through the glomerular capillaries to form a
fluid called glomerular filtrate. The capillaries have a low permeability to plasma
proteins, such as albumin, so the passage of large molecular weight products are

restricted (Larina et al., 2013).

The majority of the glomerular filtrate is then reabsorbed back into the blood as it
passes through the renal tubes. This enables the body to retain most if its nutrients
(Rubenstein et al., 2012). At the same time waste substances are then secreted into
the tubular fluid, such as potassium ions, ammonium ions, creatinine, urea and drug
metabolites (Atherton, 2006) leading to the production of urine. This not only
removes excess amounts of these substances but also helps maintain a healthy
blood pH (approximately 7.4) (Atherton, 2006). Urine is then excreted via the

ureters, bladder and urethra.

Under normal circumstances urine contains water, creatinine, urea and salts. In
humans, presence of elevated levels of protein or glucose is indicative of medical
conditions such as impaired kidney function and diabetes (Bailey, 2011; Naresh et
al.,, 2013). The urine content of some rodents such as the house mouse (Mus
musculus) and the Norway rat (Rattus norvegicus) has been widely studied and it is
well known that these rodents excrete a substantial amount of protein in their urine
yet their renal function remains intact. These proteins are known as major urinary
proteins (MUPs) and play an essential part chemosignalling (Beynon and Hurst,
2003). Mice in particular excrete high concentrations of MUP (up to 20 mg/ml per
day) which is a huge energy investment for each individual animal. The size (18-
19kDa) of these MUP proteins allows them to escape from being filtered out of the
urine during the ultrafiltration step resulting in their excretion in the urine

(Neuhaus, 1986).

MUPS belong to the lipocalin family of proteins. Lipocalins are a large group of
extracellular proteins. They are transport proteins that bind small hydrophobic
molecules. They also have other molecular recognition properties that include

binding to specific cell-surface receptors and the formation of complexes with
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soluble macromolecules (Flower, 1996; Flower et al., 2000). Lipocalins have highly
conserved structures yet vary quite drastically on the sequence level. All lipocalins
have eight B-strands which together form a cup-shaped anti parallel B-barrel which
surrounds an internal ligand binding site (Flower et al., 1993). The eight strands of
the barrel are connected by B-hairpin loops, the first loop being slightly larger than
the rest and forms a lid by folding back to close off the internal binding site (Flower
et al., 1993; Flower et al., 2000). The other end is closed off by a short N-terminal

a-helical domain (Lucke et al., 1999) (Figure 1.1).

The structure of mouse MUPS has been defined by x-ray crystallography (Bocskei et
al., 1991; Bocskei et al., 1992; Lucke et al., 1999; Timm et al., 2001). Similar to
other lipocalins, MUPS have eight anti parallel B-strands that form a single B-sheet
surrounding a ligand binding cavity. The binding cavity contains several
hydrophobic residues with the highly conserved tryptophan residue (Try 19) at the

centre of the cavity (Flower et al., 1993)

MUP ligand binding

Mouse MUPS bind a number of volatile components in their hydrophobic cavity
including the male specific volatile pheromones mentioned in section 1.3 - 2-sec-
butyl-4,5-Dihydrothiazole, 2,3-dehydro-exobrevicomin and 6-hydroxy-6-methyl-3-
heptanone (Bacchini et al., 1992; Robertson et al., 1993; Novotny et al., 1999).
Fractions of MUP isoforms by anion exchange chromatography has shown there is
some specificity of ligand binding (Robertson et al., 1993; Armstrong et al., 2005).
The male specific isoform known as darcin not only binds more thiazole than the
other isoforms, it also binds it more tightly causing slower release of the volatile
from the scent mark (Armstrong et al, 2005; Roberts et al., 2010). Despite
functional genes being present in both sexes, darcin is only expressed in male mice
(Mudge et al., 2008). Behavioural studies have revealed females are most attracted
to the darcin component of male urine. MUPs were separated using anion

exchange chromatography and females were exposed to each individual fraction.
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Figure 1.1 The tertiary structure of a lipocalin

A ribbon diagram demonstrating the 3D structure of aphrodisin, a lipocalin observed
in female Syrian hamsters, as well as secondary domains. The B sheet forming the B
barrel is highlighted in red and the a helix is illustrated in blue. The tertiary structure
was generated using PyMOL molecular visualisation software (Schrodinger, Inc).
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All females showed the most interest in the darcin fraction (Roberts et al., 2010).
To test whether this response was darcin or thiazole related a recombinant form of
darcin was produced and presented to the female mice (Roberts et al., 2010).
Females were equally as attracted to the recombinant darcin suggesting darcin
protein itself acts as a sex pheromone. As darcin is a single protein that is not
polymorphic between males, it cannot provide the individual scent specific signal
that females require to recognize a particular male. Recognition of an individual
male is a result of a learned attraction by the females to the airborne volatiles
produced by individual males. This learned attraction by females is stimulated by
direct contact with darcin and results in the female learning and becoming attracted
to the airborne odours of a specific individual but no to that of other males (Roberts

etal., 2010; Roberts et al., 2012).

X-ray crystallography has been used to observe the interaction of MUPs and bound
ligands (Figure 1.2) (Bocskei et al., 1992; Timm et al., 2001). Two pheromones 2-
sec-butyl-4,5-dihydrothiazole and 6-hydroxy-6-methyl-3-heptanone have been
shown to bind within hydrophobic cavity at one end of the B-barrel, formed by the
side chains of Phe56, Leu58, Leu60, lle63, Leu72, Phe 74, Met87, Vall00, Tyrl02,
Phel08, Alal121, Leul123, Leu134, and Tyr138 (Timm et al., 2001). Furthermore, the
exact orientation of the ligand binding has also been recognized by hydrogen
bonding between water molecules and the 2-sec-butyl-4,5-dihydrothiazole nitrogen
and the ketone oxygen group in 6-hydroxy-6-methyl-3-heptanone (Timm et al,
2001). It is unclear exactly how the ligands reach the binding site as the cavity is
completely surrounded by side chains. A study by Zidek et al., 1999 showed, using
NMR relaxation techniques, the backbone flexibility of the MUP protein increases as
it binds 2-sec-butyl-4,5-dihydrothiazole. Large conformational changes in the
protein allow the ligand access to the binding site and also significantly stabilises
the protein-pheromone complex (Zidek et al., 1999). Fluorescent probe studies
with various MUP isoforms proved that different amino acid compositions inside
the binding pocket led to a decreased binding affinity and fluorescence vyield for the

probe (Darwish Marie et al., 2001).

10



Chapter 1: Introduction

Figure 1.2 The tertiary structure of mouse MUP 1 with ligand.

A ribbon diagram demonstrating the 3D structure of mouse MUP 1 as well as secondary domains.
The B sheet forming the B barrel is highlighted in red and the a helix is illustrated in blue. At the
centre of the cavity is the male specific ligand (s)-2-sec-butyl -4, 5 dihydrothiazole highlighted in
yellow. The tertiary structure was generated using PyMOL molecular visualisation software
(Schrodinger, Inc).
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One of the disadvantages of volatile ligands is they are lost to the environment after
a short period of time and when the MUP ligands are not bound to MUP protein
they fade away after only a few minutes (Robertson et al., 2001). MUPS have the
ability to delay the release of these pheromones and therefore extend the lifetime
of the these chemical signals, with pheromones still being detected by conspecifics

up to 24 hours later (Hurst et al., 1998; Humphries et al., 1999).

MUP genetics

MUPS are products of a multigene cluster located on mouse chromosome 4
(Krauter et al.,, 1982). A gene cluster is usually defined as a set of two or more
genes that encode for the same or similar products. They are created by gene
duplication and divergence. A gene is accidently duplicated during cell division so
its descendants have two copies of the gene which initially code for the same
protein. During the course of evolution these genes diverge so the product they
code for have different but related functions with genes still being adjacent to each

other on the chromosome (Ohno, 1970).

Extensive sequencing of the laboratory strain of mouse C57BL/6 has enabled
significant amount of information about this multigene cluster to be acquired.
Mudge et al., 2008 identified 19 functional MUP genes and 19 pseudogenes with
further analysis by Logan et al., 2008 identifying a total of 21 intact genes and 21
pseudogenes. The multigene cluster could be separated into three groups on the
basis of phylogenetic analysis. Phylogenetic analysis is used to observe the
evolution of a genetically related group of organisms or study the relationships
between a collection of genes or proteins that are derived from a common
ancestor. One group of genes within the MUP cluster consisted of pseudogenes. A
second group contained functional genes with high homology to each other and a
third group contained genes and pseudgenes that were more divergent and have
low homology to all other MUP genes. These groups were localised within the MUP
locus to two areas, referred to as central and peripheral genes by Mudge et al
(2008). The central region is flanked at either end by the peripheral region (Figure

1.3). The central region contains 15 functional MUP genes and 16 pseudogenes.
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The central genes are extremely homologous and are most likely the result of a
number of gene duplications and divergence from one of the older peripheral
genes. The timing of the oldest divergence event for the functional central MUP
genes is approximately 1.2-2.4 Mya (Mudge et al., 2008). The peripheral genes
share less sequence homology and include 6 intact functional genes and 5
pseudogenes (Mudge et al., 2008; Logan et al., 2008). The timing for the oldest
divergence for the functional MUP loci in the peripheral region is estimated to be

11.2-22.4 Mya (Mudge et al., 2008).

MUP expression

MUPs are primarily synthesised in the liver and escape glomerular filtration leading
to excretion in urine. MUPs account for approximately 99% of protein found in
mouse urine. They are synthesised with a 19 amino acid signalling peptide that is
cleaved off before entering the bloodstream (Finlayson et al., 1965). Several
hormones — testosterone, growth hormones, thyroxine, insulin and glucocorticoids
are all thought to contribute to the control of MUP synthesis (Ruemke and Thung,

1964; Knopf et al., 1983; Spiegelberg and Bishop, 1988; Johnson et al., 1995).

Male laboratory mice typically excrete 10-20 mg/ml of protein per day  with
females excreting much less — approximately 2-10 mg/ml per day (Cheetham et al,,
2009). Although highly homologous, major MUP isoforms can be separated using
mass spectrometry and isoelectric focussing (Robertson et al., 1996, 1997; Beynon
et al.,2002; Cheetham et al., 2009; Mudge et al., 2008). For laboratory strains of
mice who often belong to one of only two phenotypes, these isoform profiles are
virtually identical between individuals of the same sex in the same species. Wild
mice profiles are more complex and unique. Both sexes of wild mice excrete up to
three times more protein than laboratory strains (Beynon and Hurst, 2004).
Substantial variation between unrelated individuals has been observed (Robertson
et al., 1997; Beynon et al., 2002). Offspring inherit different MUP haplotypes from
their parents leading to large variability. Wild mice will use these variations in MUP
profiles rather than MHC peptides (see section 1.4.2) to avoid in-breeding
(Sherborne et al., 2007).
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MUP and lipocalin expression in non-rodents

MUPS have been studied extensively in mice who use MUPS as their primary source
of communication. Phylogenetic analysis by Logan et al., (2008) found the last
common ancestor of rat and mouse had either a single or small number of MUPs
which enabled them to determine the extent of MUP gene expansions across non-
rodent lineages. Of the sequenced genomes available, they were able to identify
genes in different species that evolved from a common ancestral gene by speciation
(orthologues) and contiguous genomic sequence spanning the interval between the
genes in nine additional placental mammals. Pigs, dogs, bush babies, macaques,
chimpanzees and orang-utans all have one functional MUP gene. Humans have a
single MUP pseudogene containing a mutation that causes mis-splicing, rendering it

dysfunctional (Table 1.2, Figure 1.4).

Interestingly, two of the nine genomes did reveal further examples of lineage
specific expansions (Figure 1.3). Three MUP paralogues were identified in the horse
with the product of one of these previously isolated from dander and sublingual
salivary glands (Gregoire et al., 1996). lIdentified as a major horse allergen, this
protein has been used to identify further expression in the submaxillary glands and
liver. The gray mouse lemur was also found to have at least two MUP gene

paralogues and one possible pseudogene.

Protein expression arising from these MUP genes has also been observed in the pig.
Expression of a salivary lipocalin that binds sex pheromones in the submaxillary
gland of male pigs has been observed (Marchese et al., 1998; Loebel et al., 2000).
Dogs also express two lipocalins in their tongue epithelial tissue and paratoid gland
that are also potent allergens to humans (Konieczny et al., 1997; Saarelainen et al.,
2004). Cats express a number of allergen proteins one of which FEL D 4 is a lipocalin
secreted from the submandibular salivary gland (Smith et al., 2004). Interestingly,
this lipocalin is detected through the vomeronasal organ (VNO) of mice and caused
defensive behaviours. Also native odour stimuli from other species that did not

contain MUP/lipocalins caused no response in mice (Papes et al., 2010).
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Table 1.2 A list of functional and pseudo MUP genes in 11 different species. Table was
adapted from Logan et al., 2008

Species Chromosome Functional Pseudogenes

genes
Mice 4 21 21 42
(Mus musculus)
Rat 5 9 13 22
(Rattus rattus)
Pig 1 1 0 1
(Sus scrofa)
Dog 11 1 0 1
(Canis lupus
familiaris)
Bush baby Unassigned 1 0 1
(Otolemur
agyisymbanus)
Macaque 15 1 0 1
(Macaca
sylvanus)
Chimpanzee 9 1 0 1
(Pan
troglodytes)
Horse 25 3 0 3
(Equus ferus
caballus)
Mouse lemur Unassigned 2 1 3
(Microcebus)
Orang-utans 9 1 0 1
(Pongo borneo)
Human 9 0 1 1
(Homo sapiens)
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Figure 1.4 Phylogeny of MUP coding sequences in mammals

A rooted phylogenetic tree illustrating the MUP coding sequences in mammals, using a MUP-like
cDNA previously described in opossums (Chamero et al., 2007). The expected cDNA sequences
generated from open reading frames and aligned. The repeatability was tested by bootstrapping

using 1000 replicates and a random seed. Interior branches with bootstrap support 50% are
shown. This diagram was taken from Logan et al., 2008
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1.4.2 MHC peptides

The major histocompatability complex is a large multigene area containing a
number of closely linked highly polymorphic genes that play a crucial role in
immunological self and non-self recognition (Klein and Figueroa 1986; Janeway,
1993). The main function of MHC proteins is to transport peptides from within a
cell to the cell surface where they are presented to T-cells, which will ignore healthy
cells and destroy cells containing foreign protein. Each protein binds to a specific
peptide producing a set of uniquely bound peptide-MHC complexes for each
individual. These complexes are then discarded from the cell during cell turnover

and released into bodily fluids such as blood, saliva and urine (Singh et al., 1997).

In addition to their role in immunity, the MHC is thought to participate in mate
selection for many mammals through olfactory cues. Females are thought to
choose a mate with a dissimilar MHC type to their own to avoid inbreeding and to
improve resistance to infection (Penn and Potts, 1998; Jordan and Bruford, 1998).
However, there is limited research into this heterozygote advantage of disease
resistance with one study suggesting no immunological advantages (llmonen et al.,

2007).

MHC-dependant mate choice has been observed in primates such as humans and
mouse lemurs. Women were exposed to odours from MHC-dissimilar and MHC-
similar males and mostly preferred odours from MHC-dissimilar males. Also the
MHC-dissimilar odours often reminded woman of previous partners (Gosling et al.,
2008). In a study with gray mouse lemurs, post-copulatory mate-choice has been
observed with fathers being more MHC-dissimilar to mothers (Schwensow et al.,
2008). MHC-dependant mate choice has also been observed in non-mammals such
as fish and birds (Von Schantz et al., 1996; Von Schantz et al., 1997; Olsen et al.,

1998; Freeman-Gallant et al., 2003).

In mice, there are reservations over the role of MHC peptides as a signal of
individuality as native MHC peptides have never been observed in urine. Mice have
receptors for MHC peptides in their VNO and MOE. Synthetic peptides have been

shown to cause pregnancy block (Leinders-Zufall et al., 2004; Thompson et al.,
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2007) and conflicting data surrounding response of VNO sensory neurons to MHC
peptides has been published (Chamero et al., 2007; He et al., 2008; Nodari et al.,
2008).

1.4.3 Exocrine-gland secreting peptides (ESPs)

More recently ESPS have been observed in rodents such as mice and rats. These
peptides are not secreted in urine but are found in extraorbital lachrymal gland,
Harderian gland and/or submaxillary gland of with responses to these peptides
observed in the vomeronasal organ but not the main olfactory epithelium (Kimoto
et al,, 2007). They are encoded by a multigene family on chromosome 17 of the
mouse and chromosome 9 of the rat and encode proteins of various lengths ranging

from 5-15 kDa (Kimoto et al., 2007).

There are 24 functional ESP genes in mice with expression of the various individual
ESPs varying between strains. Expression also varies between sexes, a male-specific
ESP has been identified in the lachrymal glands of a number of strains. When
females make close nasal contact with the facial area or bedding of adult males,

stimulation of vomeronasal sensory organs is observed (Kimoto et al., 2005).

1.5 Pheromone detection

In most mammals, pheromones are detected using a dual olfactory system (Figure
1.5). This olfactory system consists of the main olfactory system (MOS) and the
accessory olfactory system (AOS). Mammals use either one or both of these system
to detect chemosensory clues present in scent marks. The main olfactory
epithelium (MOE) is responsible for the conscious perception of odours while the
accessory olfactory system is responsible for the detection of pheromones that

elicit various behavioural and physiological responses between conspecifics.

1.5.1 Main olfactory system
The MOE is located at the posterior end of the nasal cavity and is mostly made up of
olfactory sensory neurons (OSNs). These OSNs send their axons into the main

olfactory bulb (MOB) which in turn sends out nerve fibres to the olfactory cortex

19



Chapter 1: Introduction

before proceeding to higher sensory centres. The OSN contain olfactory receptors
which are heptahelical G-protein-coupled receptors (GPCR) that share a significant
homology in vertebrates (Rouquier and Giorgi, 2007). The amount of receptors
varies between mammals depending on how much olfactory system is required for
survival. For instance, humans contain less functional olfactory receptor genes than
most other mammals. A rise in pseudogenes from old world monkeys to new world
monkeys suggests primates may have lost part of their olfactory ability over time
(Rouquier et al., 2000). In contrast to this mice and rats have over 1300 olfactory
receptors that bind a broad range of odorants with different affinities (Zhang and

Firestein, 2002).

The MOS is not normally associated with pheromone detection; it is usually
responsible for detection and differentiation of complex chemical signals that are
present in both the physical and social surroundings of individuals. However the
individual sensory roles for the two olfactory systems are still unclear. Pheromone
detection by the MOS has been reported in female boars. Male boars secrete a
volatile steroid androstenone in their saliva that induces lordosis in females (Dorries
et al., 1995; Dorries et al., 1997). If the female AOS is blocked off the pheromone
continues its effect inducing the female mating stance, suggesting this volatile is
detected in the MOS (Dorries et al., 1995; Dorries et al., 1997). Also preovulatory
LH surge and ovulation in ewes after exposure to ram odours is thought to involve
the MOS. The ewes still experience a surge in LH in response to the rams after
blocking off the AOS (Cohen-Tannoudji et al.,, 1989; Delgadillo et al., 2009).
(methylthio) methanethiol (MTMT) in male mouse urine is also detected by the
MOS (Lin et al., 2005). The rabbit mammary pheromone 2-methylbut-2-enal
present in the milk of the mother encourages nipple-searching behaviour in pups.
Removal of the AOS has no affect on the pups’ nipple-searching efforts but removal

of the MOE eliminates the behaviour completely (Hudson and Distel, 1986).
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Accessory olfactory
bulb (AOB)

Main olfactory epithelium
(MOE) Main olfactory bulb

(MOB)

Gruenberg ganglion (GG)

Vomeronasal organ
(VNO)
Septal organ of Masera
(so)

Figure 1.5 Anatomical representation of the mammalian olfactory system.
The location of the various chemosensory subsystems in the mammalian nose. A rodent was used
in this example. Adapted from Brennan and Zufall , 2006.
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1.5.2 Accessory olfactory system

The AOS is responsible for the detection of the majority of pheromones. A
vomeronasal organ (VNO) is based in the vomer between the nose and the mouth
and is responsible for detecting stimuli. Like the MOE, the VNO contains sensory
receptors whose axons project into the accessory olfactory bulb (AOB). The axons
that leave the AOB project into parts of the brain that stimulate aggression and

mating behaviour.

The VNO contains two types of sensory receptor — VR1 and VR2 receptors. VR1
receptors detect small volatile molecules and VR2 receptors perceive involatile
pheromones such as peptides and proteins (Dulac and Axel, 1995; Matsunami and
Buck, 1997). Both receptors belong to two distinct super families of seven trans
membrane G-protein coupled receptors. They have different molecular structures
and are expressed in different locations in the VNO. VR1 receptors are linked to the
G protein Gai2 and are located in the apical region of the VNO. VR2 receptors are
liked to a G protein Gao and are based in the basal compartment of the VNO (Dulac
and Torello, 2003; Mombaerts, 2004). They have a longer N terminal which is
thought to be involved in pheromone binding. The V1R receptors transmit
projections into the rostral part and the V2Rs into the caudal part of the AOB (Zufall
and Leinders-Zufall, 2007).

Identification of VR1 genes has been made easier because of their relatively simple
gene structure. At present a complete VR1 gene repertoire has been identified in
human, chimpanzee, mouse, rat, dog, cow and opossum with the number of intact
genes varying between species (Rodriguez and Mombaerts, 2002; Rodriguez et al.,
2002; Grus and Zhang, 2004; Zhang et al., 2004; Young et al., 2005; Grus et al.,
2005). However little is known about VR2 receptors and until recently these
receptors had only been described in rodents and marsupials. The first functional
VR2 receptor genes in a primate, the gray mouse lemur, were observed in a study

by Holenbrink et al., 2012.
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Many mammals exhibit the Flehmen response to transfer information to their VNO.
This involves the animal curling back its upper lip and exposing its front teeth. The
animal then inhales over the scent and remains in that position for a few minutes to
allow air to transfer from the scent mark to the VNO. In cattle blocking of the VNO
significantly reduces inter-individual aggression between males (Klemm et al,
1984). Removing the VNO in male mouse lemurs reduces aggression between
males and reduces sexual behaviours (Aujard, 1997). Ewes could not distinguish
their own lambs from lambs belonging to others after their VNO was purposely
blocked (Booth and Katz, 2000) however conflicting evidence was published by Levy
et al.,, 1995. VNO- dependant pheromone responses in rodents have been studied in
more detail and include:

e The Lee-Boot effect — the grouping of female mice in one area causes
suppression or a modification of estrous (Van der Lee and Boot, 1955)

e The Vandenbergh effect — the onset of puberty in young female mice is
accelerated by non-volatile molecules in adult male urine (Vandenbergh,
1969)

e The Bruce-Lee effect — the presence of a male (or his urine) from a different
strain to her mate can prevent egg implantation in females that have
recently mated (Bruce, 1960)

e The Whitten effect — synchronised estrous in a group of females in response

to urinary cues from a male conspecific (Whitten, 1958)

1.6 Discovery, identification and quantification of pheromones

Biochemical analysis of volatile and non-volatile pheromones requires two very
different analytical approaches. Volatile ligands have been the subject of in-depth
analysis for a number of years with detection and identification methods for these
pheromones well established. The complexity of secretions left by various
mammals may complicate isolating individual volatiles and defining roles for each
volatile in mammalian behaviour. However, significant progress in volatile
pheromone isolation and detection has been made, primarily by GC —MS, and has
allowed a greater insight into the biological role of volatile pheromones. As

pheromone production is linked to hormonal control, monitoring volatile profiles
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for animals in different behavioural situations/endocrine status will enable the
identification of possible pheromones by any changes in the GC-MS volatile profiles.
These potential pheromones can be analysed further to clarify the chemical
structure and allow the design of a biological assay to help confirm the presumed

pheromones biological and behavioural role (Novotny, 2003).

Recent advances in proteomics have allowed comprehensive analysis of non-
volatile components of scent marks, proteins in particular. The term proteomics
was devised in 1995 (Wilkins et al., 1996) and can be defined as the study of the
structure and function of proteins. The varying complexities of proteomic
methodologies mean behavioural labs can often get a complete insight into the
scent complexity and protein components within a scent mark. Significant
developments in liquid chromatography — mass spectrometry (LC-MS) has resulted
in full identification and characterisation of proteins present in a scent mark in the
absence of genomic data. Also, post identification and characterisation of these
proteins, quantification methods have been established allowing an assessment of

the regulation of the proteins expressed by an animal.

1.6.1 Discovering the complexity of a scent mark

The complexity of a scent mark will determine the analytical approach to be taken.
The most commonly used technique to asses complexity is sodium dodecyl sulphate
polyacrylamide gel electrophoresis (SDS-PAGE). Proteins are separated according to
their molecular weight followed by visualisation using stain. SDS is an anionic
surfactant that binds to polypeptide chains resulting in denaturisation and a
negative charge on the proteins. During the electrophoresis step, the proteins are
then separated by molecular weight. However, protein shape and folding can also
influence where a protein will migrate to on the gel. Darcin is a good example of
this as this MUP protein retains some of its shape after treatment with SDS. This

results in darcin migrating further down the gel than one would expect.

Complexity is assessed by visual inspection of the gel. A large number of bands

would signify the scent mark being of high complexity and the intensity of the band
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gives an approximation of the relative abundance of each protein. SDS-PAGE could
also be used to efficiently compare protein expression in animals in response to a

social status and also compare different individuals and sexes.

Other gel methods that are slightly less simple than SDS-PAGE include isoelectric
focussing (Towbin et al., 2001; Friedman et al., 2009) and native gel electrophoresis
(Wittig and Schagger, 2008). A two-dimensional separation (2D-PAGE) can allow
further exploration of the complexity of a scent mark. Proteins are first resolved by
their charge then in a second dimension their molecular weight. They can resolve
thousands of proteins and are particularly useful for identifying polymorphisms e.g.
MUPs. While 2D gels are provide a good visualization of complexity they do

require more protein than SDS-PAGE and can be quite challenging to prepare.

1.6.2 Identification of proteins in a scent mark

Following the assessment of complexity by gel electrophoresis, individual protein
bands from the gel are digested with protease such as trypsin to cleave the protein
into smaller fragments, referred to as peptides. Peptide masses are obtained using
mass spectrometry to produce a peptide mass fingerprint which can be compared
to other fingerprints in a database of known fingerprints (Perkins et al., 1999). The
database search engine will allocate a score to the peptide mass fingerprint — the

higher the score the more likely it is the protein match is true.

25



Chapter 1: Introduction

If no protein matches are made from the peptide mass fingerprinting analysis,
further information about each peptide in the digest can be collected using tandem

mass spectrometry (MS/MS). Tandem mass spectrometry involves two stages of
mass spectrometry. During the first stage the masses of the peptides are measured
and are often referred to as precursor ions, during the second stage the peptides
are isolated and fragmented using an inert gas such as helium in a process referred
to as collisional induced dissociation (CID) (Figure 1.6). During CID, precursor ions
collide with helium gas molecules which lead to activation or excitement of the
peptide backbone. The kinetic energy from these collisions is converted into
vibrational energy in the peptide ion, which the peptide ion then releases through
fragmentation reactions (Bertsch et al., 2009). The fragments of the peptide are
termed b and y ions depending on where the charge has been retained. If it is
retained on the N-terminus the ion will be labelled a b ion and if the charge is on
the C-terminus the ion will be termed a y ion (Figure 1.7). Other common ions
found in a CID MS/MS spectrum include a and x ions which are as a result of a C=0
loss from b and y ions. A loss of ammonia and water from b and y ions may also be

observed in the spectrum.

If working with a species whose genome is known then the fragmentation patterns
are searched against all patterns of peptides that can be generated by the
proteome of that organism (Cottrell, 2011). The most commonly used protein

identification programme is called Mascot (www.matrixscience.com). Mascot uses

statistical methods to assess the validity of a match. The strength of a peptide
match is based primarily on the concurrence of masses — the precursor mass and
MS/MS fragment ion masses that are present in the spectra, coinciding with the
predicted masses of peptides and fragment masses calculated on the basis of the
sequence from a peptide present in a protein database (Perkins et al., 1999). The
strength of the statistical score can be adversely affected by the presence of
unassigned peaks, which are mostly likely to be baseline noise, and by the number
of peptides in the database which have the same precursor mass within a user
defined search tolerance. The majority of search programmes use the precursor

mass first to select a subset of fragments from the database that have the correct
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Intensity

Protein digested with protease into peptides

First stage of MS analysis —masses of peptide
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Second stage — Precursor
fragmentation (MS/MS)
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Figure 1.6 LC-MS/MS workflow

m/z

m/z m/z

Proteins are digested overnight by incubation with enzymes to break up proteins into
peptides (represented by the coloured lines). The digested proteins are then analysed by
mass spectrometry. During the first stage of MS the masses of the precursor ions are
measured. During the second stage of MS the precursor ions are isolated and fragmented
with an inert gas to produce fragmentation spectra (bottom row of graphs). The distance
between each ion in the fragmentation spectra corresponds to the mass of an amino acid.
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mass and then the algorithm compares the MS/MS peak masses to a set of
predicted fragment masses, generated in silico from the sequence of each peptide
in the subset. Other factors that affect scoring include choice of database, whether

taxonomy has been selected and user defined mass tolerances.

Chemical communication proteins are often proteins with a high rate of evolution
and under selective pressure so obtaining significant matches through a database
search is unlikely. There is often incomplete or no genome data when it comes to
identifying chemical signalling proteins and identification becomes more
complicated. The MS/MS fragmentation spectra will require manual interpretation,
referred to as de novo sequencing. The mass difference between fragment ions in
MS/MS spectra is used to determine the amino acid sequence — each amino acid
residue has its own unique mass. To interpret the sequence of tryptic peptide, it is
common to start by looking for the y1 ion, which will be 147 Da if the sequence
terminates with a lysine or 175 Da if the sequence ends with an arginine residue
(Ma and Johnson, 2011). This provides a good starting point for interpretation. The
distance is measured between the y1 ion and the next y ion in the series and an
amino acid is assigned. The distance between the y2 and y3 ion is then measured
and the third amino acid residue is assigned. This continues until the end of the
spectrum, signified by the peptide precursor mass. The sequence is then
interpreted in the opposite direction - left to right - using the b ion series to provide

confidence in the sequence deduced from the y ion series (Ma and Johnson, 2011).

Unlike Mascot which uses the masses (both precursor and fragment) to obtain an
identification, the short manual interpreted peptide sequences are then searched
against protein databases for similar proteins using a BLAST tool (Basic local
alignment search tool). This can provide information on what class the protein
might belong too (Altschul et al., 1990). If several peptides prove to be similar to a
certain protein or certain family of proteins then this protein will be used as a
model to attempt to construct the unknown protein sequence. The unknown

protein is also digested with different proteases that have different specificities to

29



Chapter 1: Introduction

generate overlapping sequence data and therefore adding confidence to the newly

generated sequence.

1.6.3 Quantification of proteins in a scent mark

Once a chemical signalling protein has been identified and characterised the next
stage would be to quantify them. Proteins involved in scent communication are
thought to have their expression up and down regulated depending on a social
situation, season, sex and maturation. There are a number of methodologies
available to quantify proteins. Non-mass spectrometry based methods include
Bradford assay, quantitative western blotting, enzyme-linked immunosorbent assay
(ELISA) and enzyme assays. While these techniques are still commonly used, there
are occasions were a more complex approach is required for example quantification
of the highly polymorphic MUP proteins (see Chapter 3). Recently developed
methods have introduced protein quantification by mass spectrometry. The
advantages of mass spectrometry include high sensitivity, speed of analysis and the

large amount of information generated in one experiment.

There are a variety of mass analysers available each suited to certain types of
analysis. All differ in terms of mass accuracy and resolution, sensitivity and
selectivity. Mass accuracy indicates the accuracy of the mass to charge ratio (m/z)
provided by the mass analyser. It is often expressed in parts per million (ppm) and
is defined as the difference between the theoretical m/z and the measured m/z.
Mass accuracy is largely linked to resolution of the instrument. Low resolution
instruments have poor mass accuracy. Resolution is the ability of a mass analyser to
produce two distinct signals for two ions with a small m/z difference. As the
precision obtained on the mass of the analysed sample depends on the
determination of the centroid of the peak, if the instrument cannot resolve two
similar masses then the calculated m/z will be inaccurate leading to a large ppm

error.

An Orbitrap is a mass analyser that benefits from both high resolution and mass

accuracy. The Orbitrap operates by radially trapping ions about a central spindle
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electrode. An outer barrel electrode is coaxial with an inner spindle electrode and
m/z values are calculated from the frequency of ion oscillations, along the axis of
the electric field, undergone by the orbitally trapped ions. lon frequencies are
determined by acquisition of time-domain image current transients, with
subsequent Fourier transforms being used to obtain mass spectra (Hu et al., 2005).
A second type of mass analyser that is popular for quantitative studies is the triple
guadrupole mass spectrometer. In contrast to the Orbitrap, triple quadrupoles
have a much lower resolution but are more sensitive and have a larger linear
dynamic range. Two quadrupole mass spectrometers (Q1 and Q3) are positioned in
tandem with a non mass resolving, radio frequency only, quadrupole between them
to act as a collision cell for fragmentation. Q1 and Q3 act as mass filters and ions
are separated based on the stability of their trajectories in the oscillating electric
fields that are applied to the quadrupoles. In a typical multiple reaction monitoring
experiment (MRM, most commonly used for quantification) Q1 is set to select a
certain precursor mass and Q3 is set to select the fragments of this precursor mass.
This selectivity reduces the number of background and matrix ions which improves
the signal to noise ratio allowing for much lower limits of detection. A time of flight
mass analyser (TOF) is another routinely used mass analyser. TOF analysers use an
electric field to accelerate ions through the same potential and then measure the
time they take to reach the detector (Aebersold and Mann, 2003). If the ions all
have the same charge then their kinetic energies will be identical and their
velocities will depend only on their m/z with lighter ions reaching the detector first
and the heavier ones taking longer. TOF instruments have high resolution and mass
accuracy (not as high as Orbitrap), a large dynamic range, good linearity and very
fast acquisition times. Sensitivity, particularly on newer generation TOFs is

impressive but greater sensitivity is still observed using triple quadrupoles.

There are a variety of methods to quantify proteins using mass spectrometry.
These methods can be divided into relative and absolute quantification. Relative
quantification uses a comparison between two or more samples to assess changes
in the levels of proteins in response to the alteration of the function of a biological

system, for example healthy versus disease states. Absolute quantification uses a
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labelled internal standard and is useful for the comparison of protein abundances in

a single sample.

1.6.3.1 Relative quantification

Label free quantification

Label free quantification involves comparing the abundances of proteins in multiple
samples without the use of stable isotopes (Chelius and Bondarenko, 2002). Label
free quantification may be based on precursor ion intensity, such as peptide peak
areas or peak heights, or on spectral counting. Spectral counting simply counts the
total number of fragmentation (MS/MS) spectra produced by peptides belonging to
a certain protein (Lundgen et al.,, 2010). A label free approach requires excellent
resolution and mass accuracy for reproducible identification and quantification.
The instrument must be able to resolve co-eluting isobaric species and reduce
quantification interferences which are especially important for samples of high
complexity or high dynamic range. Reproducible chromatography is also imperative
for efficient separation from co-eluting species that would lead to inaccurate
guantification data. The mass spectrometers of choice include and Orbitrap,
Fourier transform ion cyclotron (FTICR) or new generation TOFs. Label free
guantification can be applied to a variety of applications including complex
biomarker discovery, systems biology studies and isolated proteins and protein
complexes. Proteins are extracted from samples and digested with a protease such
as trypsin. The peptides are then analysed by LC-MS and identified using accurate
mass precursor information and the fragmentation data. Quantification occurs at
the MS level by comparing chromatographic peak areas for precursor ions between

individual raw data files (Wong and Cagney, 2010).

Stable isotope labelling by amino acids in cell culture (SILAC)

SILAC based quantification is a widely used technique that uses non radioactive
labelling to identify differences in protein abundances between samples (Ong et al.,
2002). Two populations of cells are cultured. One population contains all essential

amino acids. The second population contains all but one essential amino acid for
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example arginine. Arginine is replaced by a labelled version — [Cq] arginine. Both
cell populations are combined, proteins are extracted and then digested with a
protease. The resulting peptides are analysed by mass spectrometry with a +6 Da
mass shift observed in peptides containing heavy arginine (Ong and Mann, 2006).
The ratio of peak intensities for heavy/light peptide pairs reflects the abundance
ratio for the two proteins. Quantification is performed at the MS level by
comparing the intensities of the heavy and light precursor ions with protein
identification based on accurate mass and fragmentation data (Ong and Mann,
2007). As with the label free approach, an Orbitrap is normally the choice of mass

spectrometer for SILAC due to its high resolution and mass accuracy.

Isotope-coded affinity tags (ICATs)

ICAT uses chemical labelling reagents that consist of an affinity tag (biotin), a linker
that can incorporate stable isotopes and a reactive group with specificity for thiol
groups. The method was originally developed to reduce sample complexity and
identify low abundance proteins and peptides in complex samples as only cysteine
residues are tagged and labelled peptides are affinity purified (Gygi et al., 1999).
The ICAT reagent exists in both heavy (traditionally deuterium 8) and light forms.
Two protein mixtures that symbolise two different cell states are treated with ICAT
reagent — one with heavy and one with light. They are then combined and digested,
normally with trypsin. The digested material is then subjected to an affinity
chromatography step to isolate the peptides labelled with ICAT reagent (Gygi et al.,
1999). These peptides are then analysed by mass spectrometry and identification
of peptides is completed using fragmentation data and quantification is achieved on
the MS level by measuring the ratio of the signal intensity between the heavy and

light peptide pairs. Again an Orbitrap is a common choice of mass spectrometer.

Isobaric labelling

Isobaric labelling is another mass spectrometry based strategy used in quantitative
proteomics. Peptides or proteins are labelled with various chemical groups that are
isobaric (the same mass). These isobaric tags contain reporter, balance, and

reactive regions. Each sample is digested and labelled individually. All samples are
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then mixed in equal ratios and analysed by mass spectrometry. As the tags have
the same total molecular weight they are indistinguishable in the first MS scan. It is
only during the fragmentation stage that the reporter regions disassociate to
produce ion signals which reflect quantitative information about relative amounts
of peptide in the sample (Thompson et al., 2003; Ross et al., 2004). Peptide
identification and quantification is derived from the MS/MS spectrum. A database
search is typically performed on the fragmentation data to identify the labelled
peptides (and consequently the proteins) while the reporter ion is used to relatively
quantify the peptides. Instrumentation such as Orbitraps and Q-TOFs are the
normally the analysers of choice although Orbitraps are favoured as they have the
option of higher-energy collisional dissociation (HCD) fragmentation. HCD does not
suffer from the low mass cut-off like the standard CID and therefore is useful
for isobaric tag based quantification as reporter ions can be observed (Kocher et al.,

2010).

1.6.3.2 Absolute quantification

Absolute quantification peptides (AQUA)

An AQUA peptide is a stable isotope labelled, chemically synthesised peptide
designed for the absolute quantification of proteins (Kirkpatrick et al., 2005). The
development and implementation of an AQUA based strategy usually begins with
the amino acid sequence of the protein to be quantified being examined and a
tryptic peptide chosen to be chemically synthesised and used for quantification. An
AQUA peptide is then produced with the exact amino acid sequence as its
counterpart in the native protein except one residue is substituted for a labelled
version resulting in a mass difference between the two peptides. This allows the
mass spectrometer to distinguish between the native and synthetic peptide
(Kirkpatrick et al., 2005). Both the AQUA peptide and the native peptide should
share the same physiochemical properties for example they should ionise the same
in the mass spectrometer source and should chromatograph from the LC column in

the same way. This will result in a more accurate quantification.
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A triple quadrupole mass spectrometer is usually the mass analyser of choice for
absolute quantification. The synthetic and native peptides are analysed by LC-
MS/MS and appropriate fragment ions are chosen to be incorporated into an MRM
experiment for quantification (Kirkpatrick et al, 2005). The targeted precursor
mass is selected in Q1, fragmented in Q2 and the chosen fragments are selected in
Q3. This targeted MS analysis using MRM enhances the lower detection limit for
peptides by up to 100 fold (as compared to full scan ms/ms analysis) by allowing
rapid and continuous monitoring of the specific ions of interest. To detect an
analyte-AQUA peptide pair, two alternating MRM experiments are done during a
single LC-MRM analysis. Care must be taken when setting up the MRM method to
ensure enough data points (15-20) are collected across the chromatographic peak
for reproducible quantification data. The number of data points can be
manipulated by the scan time i.e. the time the mass spectrometer spends looking at
the mass of interest. An alternative approach to absolute quantification is using an
instrument with high accuracy (TOF or Orbitrap), extracting the exact m/z values
out of the chromatogram for both the labelled and analyte peptides and comparing

the peak intensity or area between the two peptides.

The AQUA peptide is then either added to the protein sample prior to proteolysis or
added just before LC-MS analysis. During the LC-MS analysis, both versions of the
peptide fragment identically in the collision cell of the mass spectrometer so the
mass spectrum will contain the same fragments with some of them shifted in mass
due to the isotope label. Protein quantification is determined by the ratio between
specifically monitored fragment ions for the AQUA peptide and analyte (Kettenbach
etal, 2011).

Protein standards for absolute quantification (PSAQ)

PSAQ standards are full length stable isotope labelled proteins used for absolute
quantification (Brun et al., 2007). These standards are produced using cell free
systems or a bacterial expression system. A PSAQ standard is produced for each
protein to be quantified and is added to the sample mixture at the beginning of the

experimental process. Advantages of this method over other quantification
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strategies are firstly, the digestion efficiency should be the same for both the
analyte and labelled peptide producing more accurate quantification data (Brun et
al., 2009). AQUA peptides are produced as ready made labelled tryptic peptides so
complete digestion of the analyte is imperative for accurate quantification. A
similar situation is observed when using the QconCAT method (see next section).
Although the QconCAT is a labelled protein, the peptides are not in the same
position as the corresponding peptides in the native protein. Secondly, PSAQ
standards are compatible with pre-fractionation which has enabled them to be
successfully used to quantify proteins in complex biological matrices were pre
fractionation is necessary. These standards also have the added advantage of
switching to an alternative reporter peptide if the peptide originally chosen for
guantification is no longer suitable for example if interferences such as ionisation
competition prevent detection of the peptide in a complex matrix (Brun et al., 2009;

Lebert et al., 2011).

Similarly to the AQUA method, quantification is routinely done using a triple
guadrupole with an MRM method (Brun et al., 2007; Brun et al., 2009). An MRM
method is advantageous for sensitivity, selectivity and specificity. Although
selectivity can often be lost in complex matrices, this is improved by using labelled
proteins and peptides as they co-elute with the target peptide. The improved
sensitivity allows even the low abundant proteins to be quantified in difficult
matrices. Alternatively quantification is also possible on the MS level by measuring
differences between peak intensity or area between the labelled and native

peptides.

Quantification concatemers (QconCATS)

A QconCAT is a stable isotope labelled protein that comprises of peptides from
multiple proteins to be quantified (Pratt et al., 2006). The QconCAT approach is
relatively low cost compared to PSAQ standards and AQUA peptides as multiple
proteins (up to 100) can be quantified using a single QconCAT protein. Peptides are
chosen to represent each protein to be quantified. Peptides should be unique to

the protein to be quantified, be suitable for LC-MS analysis i.e. ionise and
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chromatograph well, have amino acids present that will be required for labelling
and residues that could potentially cause problems with quantification such as
methionine, which can oxidise and cause a mass shift, should be avoided (Eyers et
al., 2008). These rules for choosing peptides are discussed further in chapter 3.
Once peptides have been chosen for incorporation into the QconCAT, their
sequences are assembled in silico and a gene is constructed which encodes the
assembled Q peptides using codons that yield maximum expression in E. coli. A His-
tag motif for purification is also added onto the c-terminus. The gene is then
synthesised and subcloned into an expression plasmid. Once an expression plasmid
encoding the QconCAT protein has been produced, the plasmid is introduced into
an appropriate E. coli. expression strain. A single transformant is then grown in
medium containing amino acids with certain residues added to the culture in a
labelled form, for example Cs arginine and Cs lysine for tryptic digests.
Expression is induced using Isopropyl B-D-1-thiogalactopyranoside (IPTG) and
analysed by SDS-PAGE to monitor expression (Pratt et al., 2006; Rivers et al., 2007).
The QconCAT is then purified by affinity chromatography and the end product can
be confirmed by either SDS-PAGE followed by an in gel tryptic digest and MALDI —
TOF analysis or electrospray — mass spectrometry (ESI-MS) to obtain an accurate
mass of the protein. Once the purified product is confirmed as being the QconCAT,
it must be quantified to enable quantification of the analyte proteins. QconCAT
protein concentration is normally measured using a protein assay (Pratt et al., 2006;

Rivers et al., 2007).

A known concentration of QconCAT protein is then added to the mixture of proteins
to be quantified. This mixture is then digested using the appropriate protease,
which depends on what amino acids have been labelled, and analysed by LC-MS
(Rivers et al., 2007). Amounts of each protein are calculated either on the fragment
ion level by using a triple quadrupole and MRM method or the MS level by
comparing the intensity of the precursor masses using extracted ion
chromatograms on a high mass accuracy and resolution instrument such as a TOF or
Orbitrap. Again, as seen with AQUA and PSAQ strategies, the MRM approach is

more popular due to the ability to detect low abundant proteins and selectivity and
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specificity to provide confidence in the quantification by being able to select the

exact precursor mass and the corresponding fragment ions.

1.7 Aims and objectives

The overall aim of this thesis was to investigate the protein components present in
scent marks using advanced proteomic methodologies. The first aspect of this
thesis aimed to develop a method for the quantification of MUPS in a laboratory
strain of mouse C57BL/6. Mouse MUPS have been widely studied on a behavioural
level and a considerable amount of genome data for this strain of mouse has been
collected. Electrospray (ESI) mass spectrometry has identified 5 major isoforms in
males and 3 isoforms in female mice in this strain of mouse. Developing a
guantification method would either confirm the presence or absence of other
minor MUP isoforms whose functional genes had been identified from genomic
data. A QconCAT strategy was implemented to quantify all MUPs expressed by
male and female B6 mice and differences between sexes were examined. The
QconCAT quantification method was then used to assess MUP production in female

mice during the estrous cycle.

The second part of this thesis examined protein secretion in the harvest mouse
(Mlcromys minutus). There is no genomic data available for this species so it is
unknown if they have any genes related MUPs or other lipocalins observed in other
rodent species. Lipocalins have been observed in the Syrian hamster (Sibger et al.,
1986), bank vole (Stopkova et al., 2010), Roborovski hamster (Turton et al., 2010) in
addition to the well established MUPS in mice and rats. Proteins from the harvest
mice were characterised using mass spectrometric techniques and potential

behavioural aspects were also investigated.

The final section of this thesis investigated urinary proteins secreted by the mouse
lemur (Microcebus). Mouse lemurs are the world’s smallest primate and have been
observed responding to urinary cues from conspecifics. They have two functional
MUP genes and also functional VR2 receptors, the first in primates, have recently

been discovered (Holenbrink et al., 2012). Urinary proteins excreted by two species
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of male mouse lemur - Microcebus murinus and Microcebus lehilahytsara were

identified and fully characterised using advanced mass spectrometric techniques.
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2.1 Sample collection

C57BL/6 laboratory mice

Urine was collected from male and female C57BL/6 laboratory mice by gentle
bladder massage. The urine samples were collected between 9am-10am by
technical staff at the University of Liverpool, Leahurst campus. A single sample of
urine was supplied from each mouse. The mice, illustrated in figure 2.1, were
housed in a temperature (20 °C) and humidity controlled environment with a 12
hour light cycle (12 hours light/12 hours’ darkness). Males were housed
individually; females were housed in groups of 2-3 per cage. Inbred stocks were

supplied by Harlan laboratories (Bicester, Oxon, UK).

Harvest mice

Harvest mouse urine was collected using a recovery method. The rodents,
illustrated in figure 2.1, were individually placed on a mesh wire grid over a glass
dish with another over the top to confine the animal - they were then left for
approximately 1 hour with regular checks for urine. The urine samples were
collected between 9am-1lam by technical staff at the University of Liverpool,
Leahurst campus. A single sample of urine was supplied from each rodent. The
animals were housed in a temperature (20 °C) and humidity controlled environment
with a 12 hour light cycle (12 hours light/12 hours’ darkness). Harvest mice were
bred in an outdoor enclosure based at the University of Liverpool, Leahurst campus,

UK.

The saliva from the harvest mice was collected by swabbing the inside of the cheek
with a Pasteur pipette and then transferred to an eppendorf tube (0.5 ml). The
body and paw washes were collected by swabbing the animal with cotton buds
soaked in water (50 pl). The buds were then removed and placed in an eppendorf

tube (1.5 ml) before centrifugation for five minutes at 2000 rpm.
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The glass rod washes were collected in a similar manner. Rods were placed in
harvest mice cages and left for two weeks. After two weeks the rods were removed
and washed with cotton buds soaked in water (150 pl) prior to centrifugation at
2000 rpm for five minutes. Samples were collected by technical staff at the
University of Liverpool, Leahurst campus. A single sample of each wash and saliva

was supplied from each rodent.

Mouse lemurs

Mouse lemur urine was collected using gentle bladder massage. The urine samples
were collected early morning by technical staff at the University of Hanover,
Germany. A single sample of urine was supplied from each mouse lemur for each
season (breeding and non-breeding). The mouse lemurs, illustrated in figure 2.1,
were housed in a temperature (23 °C) and humidity controlled environment. The
animals were kept under a fluctuating, reversed light cycle with a 14-h light period
and a 10-h dark period (reproduction period) or vice versa (10 h light, 14 h dark;
resting period). The mouse lemurs are bred and housed in captivity in a breeding
colony at the Institute of Zoology, University of Veterinary Medicine Hannover. The

mouse lemurs are kept in groups of three-four animals of the same sex.
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Gray mouse lemur Goodmans mouse lemur
(M. murinus) (M. lehilahytsara)

Harvest mouse C57BL/6 laboratory mouse
(M. minutus)

Figure 2.1 Animals systems used to obtain samples for analysis.

Top pictures: The two species of mouse lemur used to collect urine samples from during the breeding
and non breeding seasons. Photographs obtained from the Institute of Zoology, University of
Veterinary Medicine Hannover.

Bottom pictures: A harvest mouse in an outdoor enclosure and a C57BL/6 laboratory mouse.
Photographs supplied by technical staff at the University of Liverpool, Leahurst campus, UK.
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2.2 Protein assay

Total protein concentration was measured using a Coomassie Plus protein assay kit
(Pierce, Rockford, USA). A stock solution of Bovine Serum Albumin (BSA, 1 mg/ml)
was prepared and diluted down appropriately to produce a standard curve (0-50
pug/ml). Samples were diluted down with purified water to make sure they were
within the linear range of the assay. Absorbance readings were measured at 620

nm using a plate reader (Thermo Scientific™ Multiskan™).

2.3 Creatinine assay

Creatinine levels were measured using a creatinine assay kit (Sigma, UK). The
creatinine standard curve ranged from 0-30 pg/ml. Samples were diluted down
with purified water to make sure they were within the linear range of the assay.
Absorbance readings were measured at 570 nm using a plate reader (Thermo

Scientific™ Multiskan™).

2.4 SDS-PAGE

SDS-PAGE was performed as described by Laemmli (1970). Samples were mixed 1:1
with reducing sample buffer and heated at 95 °C. Samples were loaded onto a 15 %
SDS-PAGE gel and run at a constant voltage of 200 V until the dye front reached the
bottom of the gel. Protein bands were visualised with Coomassie Brilliant blue stain
(Sigma) overnight and destained the following morning with a mixture of purified

water (80%), acetic acid (10%) and methanol (10%).

2.5 Protein digestion

In-gel digestion

Pieces of gel were removed from the protein bands identified by SDS-PAGE. The gel
pieces were destained (50:50 ACN:25 mM NH4HCO3) for 15 minutes at 37°C. This
process was repeated until the gel pieces were fully destained. The gel plugs were
then reduced in dithiothreitol (DTT, 10 mM) to reduce the disulfide bonds between
the cysteine residues inside the protein. This reduction process was carried out at

60 °C for 1 hour. The DTT was discarded and lodoacetamide (25 ul, 55 mM) was
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added to the gel pieces to prevent the re-formation of the disulfide bonds between
the cysteine residues by covalently binding to the thiol group of the cysteine
residue. This alkylation step was carried out in the dark at room temperature for 45
minutes. The samples were then dehydrated in acetonitrile (ACN) for 15 minutes at
37 °C. Protease — trypsin, endoproteinase LysC or endoproteinase GluC (10 ul, 10
ng/ml) was added to each of the gel pieces at a 10:1 substrate:enzyme ratio and the
samples were incubated for 16 hours. The digestion reaction was stopped with the

addition of formic acid (1% v/v).

In-solution digestion of MUPS

Urine was diluted in 25 mM NH4HCO3 to produce a final concentration of 10 pg/ul of
protein. This solution was incubated with RapiGest™ SF Surfactant (0.1% w/v final
concentration, Waters) at 80 °C for 10 minutes. The samples were then reduced
with DTT (3 mM final concentration) at 60 °C for 10 minutes followed by alkylation
with iodoacetamide (9 mM final concentration) in the dark at room temperature.
The protease, either trypsin (0.2 pg/ul diluted in 25 mM NH4HCO3), endoproteinase
LysC (0.1 pg/ul diluted in 25mM Tris HCl pH 8.5) or endoproteinase GluC (0.2 pg/ul
diluted in ddH,0) was added to the digests at an substrate:enzyme ratio of 50:1
and left to incubate for 16 hours. Following incubation, a small proportion of the
digested material was removed to run on an SDS-PAGE gel to check for complete
digestion. The rest of the digest was treated with TFA (to a final concentration of
0.5% v/v) and incubated at 37 °C for 45 minutes to remove the RapiGest™ SF
Surfactant prior to LC-MS analysis. The samples were then centrifuged at 10,000

rpm for 15 minutes and the supernatant transferred to a fresh 0.5 ml Eppendorf.

In-solution digestion of harvest mouse and mouse lemur samples

Samples were diluted in 25 mM NH4HCO; to produce a final concentration of 10
ug/ul of protein. This solution was incubated with RapiGest™ SF Surfactant (0.05%
w/v final concentration, Waters) at 80 °C for 10 minutes. The samples were then
reduced with DTT (3 mM final concentration) at 60 °C for 10 minutes followed by

alkylation with iodoacetamide (9 mM final concentration) in the dark at room
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temperature. The protease, either trypsin (0.2 pg/ul diluted in 25 mM NH4HCO3) or
endoproteinase LysC (0.1 pg/ul diluted in 25mM Tris HCl pH 8.5), was added to the
digests at an substrate:enzyme ratio of 50:1 and left to incubate for 16 hours.
Following incubation, a small proportion of the digested material was removed to
run on an SDS-PAGE gel to check for complete digestion. The rest of the digest was
treated with TFA (to a final concentration of 0.5% v/v) and incubated at 37 °C for 45
minutes to remove the RapiGest™ SF Surfactant prior to LC-MS analysis. The
samples were then centrifuged at 10,000 rpm for 15 minutes and the supernatant

transferred to a fresh 0.5 ml Eppendorf.

In solution digestion of glass rod anion exchange fractions

Strataclean beads (20 pl, Agilent technologies, UK) were added to fractions
produced from anion exchange chromatography. The samples were vortexed for
two minutes before centrifugation at 5000 rpm for two minutes. The supernatant
was discarded and the beads were washed by vortexing with purified water (500
pl).  The samples were again centrifuged at 5000 rpm and the supernatant
discarded. This process was repeated once more. The beads were then suspended
in 25 mM NH4HCO3 (50 pl) and incubated with RapiGest™ SF Surfactant (0.05% w/v
final concentration, Waters) at 80 °C for 10 minutes. The samples were then
reduced with DTT (3 mM final concentration) at 60 °C for 10 minutes followed by
alkylation with iodoacetamide (9 mM final concentration) in the dark at room
temperature. The protease, either trypsin (5 pl, 0.2 pg/ul diluted in 25 mM
NH;HCO3), endoproteinase LysC (5 pl, 0.1 pg/ul diluted in 25mM Tris HCI pH 8.5) or
endoproteinase GluC (0.2 pg/ul diluted in ddH,0), was added to the digests and left
to incubate for 16 hours. All stages of the digestion process were carried out using
a shaking mixer (1000 rpm) to keep the beads suspended and ensure efficient
digestion. Following incubation the supernatant was removed and a small
proportion was removed to run on an SDS-PAGE gel to check for complete
digestion. The rest of the digested material was treated with TFA (to a final
concentration of 0.5% v/v) and incubated at 37 °C for 45 minutes to remove the

RapiGest™ SF Surfactant prior to LC-MS analysis. The samples were then
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centrifuged at 10,000 rpm for 15 minutes and the supernatant transferred to a

fresh 0.5 ml Eppendorf.

2.6 Peptide mass fingerprinting (PMF)

The peptide mixtures from the in-gel digestion were analysed by MALDI-TOF-MS
(matrix-assisted laser-desorption ionization—time of  flight), (Bruker
ultrafleXtreme™). The mass spectrometer was operated in reflectron mode with
positive ion detection. Samples were mixed with MALDI matrix (a-cyano-4-
hydroxycinnamic acid in 50% ACN / 0.2%TFA) in a 1:5 ratio and spotted onto a
target plate before being left to air dry. The laser frequency was set to 1000Hz with
the laser energy optimised to 27% of the maximum with 500 shots per spectrum.
Spectra were gathered between 800-4000 m/z. The mass spectrometer was
externally calibrated with a mixture of Des-Arg bradykinin (904.47 Da), angiotensin |
(1296.69 Da), neurotensin (1672.92 Da), ACTH 1-17 fragment (2093.09 Da) ACTH
(corticotrophin, 2465.2 Da) and ACTH 7- 38 fragment (3657.93 Da). The
concentration of each was 6 pmol/pul, apart from ACTH 7- 38 which was 9 pmol/ul.

All standards were sourced from Sigma.

2.7 Electrospray — mass spectrometry (ESI-MS) of intact protein

Samples were diluted in formic acid (0.1% in purified water) to produce a protein
concentration of approximately 5 pmol/ul. The samples were injected onto a C4
desalting trap (Waters MassPREP ™ Micro desalting column, 2.1 x 5 mm, 20 um
particle size, 1000 A pore size) (Waters, Manchester, UK) that was fitted onto a
nano ACQUITY Ultra Performance liquid chromatography®(UPLC®) system. The
chromatography system was coupled to a SYNAPT™ G1 QTof mass spectrometer
fitted with an electrospray source (Waters, Manchester, UK). Protein was eluted
using a mixture of solvents A and B. Solvent A was HPLC grade water with 0.1%
(v/v) formic acid, and solvent B was HPLC grade acetonitrile with 0.1% v/v) formic
acid. Separations were performed by applying a linear gradient of 5% to 95%
solvent B over 10 min at a flow rate of 40 pl/min followed by an equilibration step

(5 min at 5 % solvent B).

46



Chapter 2: Materials and methods

Data was collected between 500 — 3500 m/z. The mass spectrometer was
externally calibrated with horse heart myoglobin (1 pmol/ul, Sigma). Data was
processed using maximum entropy software (MAX ENT 1, Mass Lynx version 4.1,
Waters). Data sets were processed at 0.5 Da/channel over a mass range of 18200 —
19200 Da (for MUPS), 16000-18000 Da (harvest mouse) and 8500-10000 Da (Mouse

lemur).

2.8 Tandem mass spectrometry

MUP quantification data

LC-MS analysis was carried out using a nano upLC’ system coupled to a SYNAPT™
G2 QTof mass spectrometer fitted with a nanospray source (Waters, Manchester,
UK). Peptides (500 fmol) were loaded onto a C;g trapping column (180 um x 20
mm) (Waters, Manchester, UK) at 5 pl/min in 99% formic acid diluted in purified
water (0.1%) and 1% formic acid diluted in ACN (0.1%) for five minutes. Peptides
were then separated using an ACQUITY UPLC® BEH column C18 analytical column
(75um x 150mm, 1.7um) over a one hour gradient using a mixture of solvents A and
B. Solvent A was HPLC grade water with 0.1% (v/v) formic acid, and solvent B was
HPLC grade acetonitrile with 0.1% (v/v) formic acid. Separations were performed by
applying a linear gradient of 3% to 85% solvent B over 35 min at 300 nL/min

followed by an equilibration step (15 min at 3 % solvent B).

The mass spectrometer was operated positive ion mode using an MSe method.
Data was acquired between 300-3000 m/z. The mass spectrometer detectors were
calibrated with Leucine-enkephelin (50 pmol/ul) (Waters, Manchester, UK). Glu-
fibrinopeptide (5 pmol/ul) (Waters, Manchester, UK) was used for the mass
calibration. The mass spectrometer conditions were as follows: capillary voltage, 3
kV; cone voltage, 45 V; source temperature, 80 °C; desolvation temperature, 150 °C;

cone gas flow, 50 L/hr; desolvation gas flow, 500 L/hr.

Protein quantification was achieved on the MS level using extracted ion

chromatograms. An m/z for each analyte was recovered/extracted from the entire
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dataset for the chromatographic run. The mass tolerance for the extraction, which
varies depending on which mass analyser is used, was set to 0.2 Da for extracting
m/z values for peptides to be used in MUP quantification. Quantification was
performed by comparing the extracted ion chromatogram peak intensity of the

endogenous and the labelled forms of the proteotypic peptide.

Harvest mouse and mouse lemur de novo sequence data

Samples were analysed using a Ultimate 3000 nano system (Dionex/Thermo Fisher
Scientific, Hemel Hempstead, UK) coupled to a QExactive mass spectrometer
(Thermo Fisher Scientific, Hemel Hempstead, UK). Peptides (500 fmol) were loaded
onto a trap column (Acclaim PepMap 100, 2cm x 75 um inner diameter, Cig, 3 um,
100A) at 5 pl/min with an aqueous solution containing 0.1% (v/v) TFA and 2% (v/v)
acetonitrile. After 3 min, the trap column was set in-line with an analytical column
(Easy-Spray PepMap® RSLC 15cm x 75 um inner diameter, Ciz, 2 pm, 100A)
(Dionex). Peptides were eluted by using an appropriate mixture of solvents A and B.
Solvent A was HPLC grade water with 0.1% (v/v) formic acid, and solvent B was
HPLC grade acetonitrile 80% (v/v) with 0.1% (v/v) formic acid. Separations were
performed by applying a linear gradient of 3.8% to 50% solvent B over 35 min at
300nL/min followed by a washing step (5 min at 99% solvent B) and an equilibration

step (15 min at 3.8% solvent B).

The mass spectrometer was operated in data dependent positive (ESI+) mode to
automatically switch between full scan MS and MS/MS acquisition. Survey full scan
MS spectra (300-2000 m/z) were acquired in the Orbitrap with 70,000 resolution
(200 m/z) after accumulation of ions to 1x10° target value based on predictive
automatic gain control (AGC) values from the previous full scan. Dynamic exclusion
was set to 20s. The 10 most intense multiply charged ions (z > 2) were sequentially
isolated and fragmented in the octopole collision cell by higher energy collisional

dissociation (HCD) with a fixed injection time of 120ms and 35,000 resolution.

The mass spectrometer was calibrated using a ready to use positive ion calibration
solution from the instrument manufacturer (Thermo Fisher Scientific, Hemel

Hempstead, UK). The solution contains a mixture of caffeine, MRFA, Ultramark
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1621, and n-butylamine in an acetonitrile:methanol:water solution containing acetic
acid (1% v/v). The mass spectrometer conditions were as follows: spray voltage,
1.9kV, no sheath or auxillary gas flow; heated capillary temperature, 250°C;
normalised HCD collision energy 30%. The MS/MS ion selection threshold was set to

1 x 10* counts and a 2 m/z isolation width was set.

2.9 De novo sequencing analysis

De novo sequencing analysis of the harvest mouse and mouse lemur proteins was
assisted by PEAKS®6 software for proteomics (Bioinformatics Solutions Inc, Canada).
Precursor and fragment ion error tolerances were set to 10 ppm and 0.01Da
respectively. Post translational modifications, carbamidomethylation (fixed
modification) and oxidation of methionine (variable modification) residues were
also included in the processing set-up. Fragmentation type was set to higher-
energy C-trap dissociation (HCD). The average local confidence score — a score
assigned by PEAKS which reflects the likelihood of a peptide sequence being correct

—was set to a 55% cut off as recommended by PEAKS.

2.10 Database searching

Raw data was imported into Peaks 6 software for proteomics (Bioinformatics
Solutions Inc, Canada) and searched against a custom made lipocalin database. The
parameters were set to accept 1 missed cleavage, a fixed modification of
carbamidomethyl cysteine and a variable medication to include methionine
oxidation. Precursor and fragment ion error tolerances were set to 10 ppm and

0.01Da respectively. Fragmentation was set to HCD.

2.11 Anion exchange chromatography

Anion exchange chromatography was performed using an Akta chromatography
system (GE Healthcare, Bucks., UK). Samples (approximately 1 mg of protein) were
manually injected (100 ul) onto a UNO Q (1 ml) anion exchange column that had

been previously equilibrated in 10 mM Hepes pH 8.0. Bound protein was eluted
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using a linear salt gradient of 0-0.5 M NaCl. The eluent from the column was
monitored at 214 nm. Fractions were collected (1ml) over a 60 minute gradient.

Mass and purity of detected proteins was confirmed by ESI-MS.

2.12 QconCAT design

The MUP QconCAT was designed by Dr. S Armstrong and Dr. D Simpson, University
of Liverpool, Protein Function Group. Theoretical digests (using endoproteinase
LysC) of MUP sequences taken from genomic sequencing data by Mudge et al.,
2008 were used to select MUP peptides for inclusion in the QconCAT. Peptides
were chosen based on uniqueness in the first instance. For those MUPs with no
unique peptides, a subtraction method using shared MUP peptides was deployed
(see Chapter 3). Once the Q peptides were chosen, the QconCAT gene was
constructed and synthesised by PolyQuant GmbH, Germany using the method
described in Pratt et al., 2006.

2.13 Bacterial Transformation

The transformation process was carried out Mrs L McLean, University of Liverpool,
Protein Function Group. Transformation is the transmissible modification of the
properties of a competent bacterium by DNA from another bacterial strain. The
MUP QconCAT gene was cloned into apET21a plasmid vector and transformed into
E. coli BL21 (DE3) cells. A tube of BL21(DE3) competent E. Coli cells were thawed on
ice for 10 minutes. The cells were gently mixed and 50 ul transferred to a separate
tube and kept on ice. Plasmid DNA (5 pl) was added to the cell mixture and the
contents mixed gently. The mixture was placed on ice for 10 minutes before being
heat shocked in a water bath set at 42 °C for 10 seconds. The sample was then
placed on ice for a further 5 minutes. A super optimal broth (SOC) solution (950 ul)
supplied by Promega, UK, was added to the sample. This SOC solution contained
2% w/vtryptone, 0.5% w/v Yeast extract, NaCl (10mM), KCI(2.5mM),
MgCl, (anhydrous 10mM) and deionised water. The mixture was then left to
incubate (37 °C) on a mixer at 250rpm for 60 minutes. Cells were then mixed by
inversion and a 10-fold dilution was performed in SOC. LB agar plates were heated

at 37 °C for 10 minutes prior to the diluted transformation mixture (50 ul) being
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added to the plates. The plates were incubated at 37 °C overnight. The following
morning a glycerol stock of the plasmid was produced to allow for long term
storage. A single colony from an LB plate was added to a culture of LB medium (5
ml) containing ampicillin (100 pug/ml). The culture was placed in an incubator at 37
°C for 5-6 hours with vigorous shaking at 300 rpm. The bacterial cells were then
harvested by centrifugation 4000 rpm for 15 minutes at 4 °C. The centrifuged
bacteria was then added to a sterilized 60% glycerol solution (1:1 by volume e.g. 1
ml of glycerol solution to 1 ml of bacteria). The glycerol bacterial stock was

aliqguoted in 100 pl aliquots and stored at -80 °C prior to protein expression.

2.14 Expression and purification of the MUP QconCAT

The glycerol stock was defrosted and streaked, using a loop and sterile technique,
onto LB agar plates containing ampiciliin (50 mg/ml). The plates were incubated
overnight at 37 °C. The following morning an individual colony was incubated at 37
°C in LB broth (10 ml) and ampicillin (10 ul, 50 mg/ml). After 6 hours, 100 ul of the
LB culture was added to minimal medium containing disodium phosphate (0.24 M),
potassium phosphate (0.11 M), sodium chloride (11 mM), ammonium chloride (93
mM), magnesium sulphate (1 M), calcium chloride (0.1 M), glucose (20%, 1 g in 5
ml), thiamine (0.5 % w/v) and deionised water. The culture was then incubated
overnight at 37 °C with continuous vigorous shaking at 300 rpm. The following
morning 6 mls of the overnight culture was added to 200 ml of minimal medium
containing the solutions described above plus a full set of unlabelled amino acids
(10 mg/ml of hydrophilic amino acids and 20 mg/ml of hydrophobic amino acids)
and [BCG] lysine and/or [13C5] arginine (100 mg/L) as the only source of these amino
acids. The culture was incubated at 37 °C with continuous vigorous shaking at 300
rom. The OD (600nm) was taken every hour until it reached an absorbance reading
of 0.6. QconCAT protein expression was then induced with isopropyl-D-
thiogalactopyranoside (IPTG) and the cells were harvested by centrifugation at 3500
rom at 4 °C for 15 min. Inclusion bodies containing the QconCAT protein were
recovered by breaking cells using BugBuster Protein Extraction Reagent (Novagen,
Nottingham, UK). Inclusion bodies were resuspended in 80 mM phosphate buffer, 6

M guanidinium chloride, 2 M NaCl, 40 mM imidazole, pH 7.4. From this solution,
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QconCAT proteins were purified by affinity chromatography using a nickel-based
resin (HisTrap kit, GE Healthcare, Bucks., UK). Following sample loading, HisTrap
columns were washed with 80 mM phosphate buffer, pH 7.4, prior to elution of the
sample with the same buffer containing a higher concentration of imidazole (80 mM
phosphate, 2 M NaCl, 2 M imidazole, 6 M guanidinium chloride, pH 7.4) during
which phase fractions (1 ml) were collected. The purified QconCAT was desalted by
three rounds of dialysis against 100 volumes of 100 mM ammonium bicarbonate,

pH 8.5, for 3 h using fresh buffer each time.

2.15 Expression and purification of labelled darcin

The darcin glycerol stock was defrosted and streaked, using a loop and sterile
technique, onto LB agar plates containing ampiciliin (50 mg/ml). The plates were
incubated overnight at 37 °C. The following morning an individual colony was
incubated at 37 °C in LB broth (10 ml) and ampicillin (10 ul, 50 mg/ml). After 6
hours, 100 ul of the LB culture was added to minimal medium containing disodium
phosphate (0.24 M), potassium phosphate (0.11 M), sodium chloride (11 mM),
ammonium chloride (93 mM), magnesium sulphate (1 M), calcium chloride (0.1 M),
glucose (20%, 1 g in 5 ml), thiamine (0.5 % w/v) and deionised water. The culture
was then incubated overnight at 37 °C with continuous vigorous shaking at 300 rpm.
The following morning 6 mls of the overnight culture was added to 200 ml of
minimal medium containing the solutions described above plus a full set of
unlabelled amino acids (10 mg/ml of hydrophilic amino acids and 20 mg/ml of
hydrophobic amino acids) and [3Ce] lysine and [3Ce] arginine (100 mg/L) as the only
source of these amino acids. The OD (600 nm) was taken every hour until it reached
an absorbance reading of 0.6. Darcin protein expression was then induced with
isopropyl-D-thiogalactopyranoside (IPTG) and the cells were harvested by
centrifugation at 3500rpm at 4 °C for 15 min. Labelled darcin protein was then
purified by affinity chromatography using a nickel-based resin (HisTrap kit, GE
Healthcare, Bucks., UK). Following sample loading, HisTrap columns were washed
with 80 mM phosphate buffer, pH 7.4, prior to elution of the sample with the same

buffer containing a higher concentration of imidazole (80 mM phosphate, 2 M NaCl,
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2 M imidazole, pH 7.4) during which phase fractions (1 ml) were collected. The
purified darcin was desalted by three rounds of dialysis against 100 volumes of 100

mM ammonium bicarbonate, pH 8.5, for 3 h using fresh buffer each time.
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Chapter 3: Quantification of mouse major urinary proteins

3.1 Introduction

Mice use olfactory chemosignals present in their urine as their main source of
communication. These signals can provoke a variety of behavioural and
physiological responses including the onset of puberty (Drickamer 1986, Caretta-
Mucignat et al., 1995), mate choice (Hurst 1990, Thom et al., 2008) and aggression
between males (Novotny et al., 1985, Caretta-Mucignat et al., 2004). Mouse MUP
proteins contain the primary source of information for conspecifics and have been
the subject of in-depth behavioural experiments (Cheetham et al., 2007; Ramm et
al., 2008; Roberts et al., 2012). Following the identification of MUPs and their roles
in chemical signalling, the next logical step was to monitor the regulation in
expression of these proteins through the development of a quantification method.
Development of a quantification method will mean not only can changes in overall
MUP expression be observed, but increases and decreases in individual MUP
proteins in selected social situations will be also possible allowing a greater insight

into intra-species communication.

3.2 Aims and objectives

This chapter will focus on the development of a method to absolutely quantify

MUPS. The objectives of the study were:

e To design a QconCAT for the quantification of MUPS expressed in an inbred
laboratory strain of mouse C57BL/6 (B6)

e To devise a method for complete proteolysis of the native protein,

e To quantify MUPS in both male and female B6 mice and compare expression
between sexes.

e Use the QconCAT to examine female MUP production during the estrous

cycle.
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3.3 Results and discussion
3.3.1 Design of a QconCAT for the quantification of MUPS

A QconCAT strategy was designed and implemented for the quantification of MUP
isoforms in B6 laboratory mice. The B6 strain was an ideal choice as the MUP locus
in these mice has been subjected to in depth gene analysis (Mudge et al., 2008;
Logan et al., 2008). Although the majority of the MUP cluster has been sequenced,
there are still gaps suggesting there may be further uncharacterised MUP variants
expressed in urine. The QconCAT was designed based on the Mudge paper as this
paper was released earlier than the Logan paper. The B6 genome was sequenced
using bacterial artificial chromosomes (BACS), engineered DNA molecules used to
clone DNA sequences in bacterial cells. Segments of an organisms DNA is inserted
into BACs. The BACs, with the inserted DNA, are then taken up by bacterial cells
which grow and divide, amplifying the BAC DNA which can be then isolated and
used in sequencing DNA. The sequenced parts are then rearranged in silico
resulting in the genomic sequence of the organism. Genomic sequencing by Mudge
et al., 2008 identified 19 predicted genes and 18 loci that are pseudogenes. There
were three gap regions identified within the tiling path indicating that the full
complement of MUP loci is not yet represented. Liver transcription for 14 of the
genes was confirmed, peptides for these proteins were included in the QconCAT
design. A further two peptides were chosen for incorporation into the QconCAT.
These peptides were from two proteins from a second strain of mouse BALB/C
which would allow potential quantification of urinary proteins in this strain of

mouse at a later date. This chapter will just focus on the B6 strain of mouse.

ESI —MS has been previously been employed to map MUP variants by virtue of their
molecular mass and using this information, compare the MUP urinary phenotype
between inbred strains, wild populations, gender, and individuals (Evershed et al.,
1993; Robertson et al., 1996; Beynon et al., 2002; Robertson et al., 2007, Dr S
Armstrong, thesis). However, only the mass of the MUP isoform can be reported
with any real confidence, and even then minor MUP masses may be obscured by

more dominant MUP species. In the B6 lab strain, five major MUP isoforms were
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identified in males and three major isoforms in females using ESI-MS analysis of
intact urine. B6 male urine was separated by anion exchange and the separate
fractions collected and subjected to ESI-MS. As the dominant isoforms were in
separate fractions, further minor MUP variants could be detected including MUPs 3,
13, 17 and 14 (Dr S Armstrong, thesis). By designing a QconCAT for the
quantification of MUPs, it was anticipated that quantification data for every MUP
could be collected. Quantifying on the peptide level eliminates some of the issues
observed with the ESI-MS data such as the major isoforms dominating the signal

and resolving the MUP isoforms which have very similar masses.

The design of a QconCAT for MUP quantification was constrained by the high
sequence homology between individual MUPS (Figure 3.1). Ideally a unique peptide
would be chosen to represent each protein to be quantified in the QconCAT.
Finding unique tryptic fragments for all MUPS was difficult. Choosing an alternative
protease such as endoproteinase LysC (LysC) that created larger peptides upon
proteolysis increased the number of unique fragments available for quantification

(Figure 3.2).

When selecting peptides to be used for quantification, a number of factors should
be considered. Firstly is the peptide in an area of the protein where complete
proteolytic digestion will be consistently achieved? For example if trypsin is the
choice of protease, cleavage sites near negatively charged amino acids will prove
more difficult to cleave. Trypsin contains an aspartate residue inside its binding
pocket that attracts basic residues such as arginine (Arg) and lysine (Lys) to form salt
bridges with the aspartate, an essential part of the binding process (Hedstrom,
2002). If there are negatively charged residues near the cleavage site in the protein,
these can form salt bridges with nearby basic residues disrupting the recognition
process leading to missed or partial cleavages (Siepen et al., 2007). Therefore
optimisation of the digestion method is imperative. Other factors to consider when
deciding on peptides for quantification include peptide suitability for the type of
analysis to be used e.g. LC-MS (Eyers et al., 2011) and potential for a post-
translational modification to occur such as deamidation or oxidation of methionine.

A post translational modification will alter the mass of the peptide which would
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cause problems for quantification. If using an MRM method with a precise mass set
in the MS method, the peptide would go undetected because it would have a
different mass. If quantifying on the MS level using extracted ion chromatograms
the mass shift will again result in a reduced or no signal in the extracted ion
chromatogram window. The degree of modification may also be different in the
analyte compared to the Q peptide. For example the storage conditions of the Q
peptides may promote a certain PTM like deamidation which would lead to

inaccurate quantification data.

For MUPS many of these “rules” for choosing peptides cannot be applied because
the number of unique peptides is very restrictive even when using a protease such
as LysC. Using the predicted amino acid sequences of mature MUPs (sourced from
Mudge et al., 2008), LysC peptides were chosen for inclusion in the QconCAT. The
choice of peptides to be used was limited as there were few unique peptides to
choose from. In some MUPS there were no unique peptides at all making the

strategy for quantification quite complicated.

Sixteen peptides were chosen to be incorporated into the MUP QconCAT (Figure
3.3). Calculating amounts of those MUPS with no unique peptide involved using a
subtraction method. For example MUP 17 has no unique peptide so the amount will
be calculated using peptide 4 in figure 3.3 and subtracting off MUP 13 which shares
peptide 4 but has also has a unique peptide 6 and can therefore be quantified. This
in turn can then be used to calculate MUP 7 by subtracting amounts of MUP 13 and
17 away from peptide 7 which they both share with MUP 7. MUPs 1 and 12 can
then be quantified by subtracting the amount calculated for MUP 7 away from
peptide 12 which they both share. Finally MUPs 9, 11, 16, 18 and 19 can be
calculated by subtracting MUP 2 which has a unique peptide and MUP 1 and 12
away from peptide 13 which they all share. Alternatively, MUPs 9, 11, 16, 18 and 19
could be calculated using either peptide 1 or 5 and subtract away all MUPS that

share those peptides. The strategy for quantification is outlined in Figure 3.4.
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Fig 3.2 Proteolytic maps of MUP amino acid sequences.
Sequences were aligned using the ClustalW2 alignment tool for multiple sequences.
cleavage sites for LysC and trypsin are highlighted blue (lysine) and red (arginine).

The
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The MUP QconCAT was expressed in E. coli (as described in the methods) with a
single label [Ce] lysine. Samples were analysed by SDS-PAGE to ensure expression
had taken place post IPTG induction (Figure 3.4). The QconCAT was then purified
and aliquots of the wash and elution steps analysed by SDS-PAGE (Figure 3.5). To
check that the correct product had been produced with complete labelling, an in-gel
digest of the purified product followed by MALDI-TOF analysis was completed
(Figure 3.6).
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Fig.3.5 Expression and purification of the MUP QconCAT.

Top gel. The MUP QconCAT was expressed in E. coli and labelled with 13C6 Lysine. The OD
(600nm) of E. coli was taken every hour until it reached an absorbance reading of 0.6. IPTG was
then added to the culture to induce E. coli to synthesise the protein. Bottom gel. A MUP
QconCAT cell pellet was then purified by solubilising the inclusion bodies in NaCl (2 M), sodium
phosphate (80 mM, pH 7.4), GnCl (6 M) and imidazole (40 mM). The solubilised inclusion body
was then filtered and passed through a 1 ml HisTrap column. The purified protein was eluted in
NaCl (2 M), sodium phosphate (80 mM, pH 7.4), GnCl (6 M) and imidazole (2 M). Elute wash 1
and 2 were combined and dialysed overnight in NH,CO; (100 mM , pH 8.5). Samples were run on
a 15% SDS gel and stained with coomassie blue.
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Chapter 3: Quantification of mouse major urinary proteins

3.3.2 Optimising proteolysis of the native protein

Complete digestion of the analyte and concatenated standard is essential for
absolute quantification. Complete digestion of the MUP QconCAT should be easily
achieved as it lacks secondary structure (Figure 3.7) (Pratt et al., 2006). The MUP
proteins present in the urine are more challenging to digest because they have an
extensive beta sheet conformation (Flower et al.,, 1993; Flower, 1996), making them
difficult to digest. Using a standard digest protocol of reduction and alkylation
followed by enzyme proteolysis is not very effective against MUPS (Figure 3.7). A
comparison of undigested and digested MUP by SDS-PAGE shows very little
proteolysis with a minor shift in molecular weight for the digested material (Dr S
Armstrong thesis, Wu et al., 1999). This is thought to be due to the digested MUPS
missing the N and C termini that have been cleaved off by the protease. The rest of

the protein is intact and resistant to further proteolysis (Wu et al., 1999).

Previous attempts at digesting MUPS have included the use of denaturing reagents
such as urea (8 M) combined with increased enzyme: protein ratios (Dr S
Armstrong, thesis; Dr D Simpson personal communication). While this method has
had some success, it can be time consuming and many denaturing reagents are not
compatible with LC-MS analysis. An alternative more LC-MS compatible reagent
RapiGest™ SF Surfactant provides a feasible alternative to the harsh denaturing
buffers. RapiGest™ makes proteins more soluble and therefore more susceptible
to enzymatic cleavage. Unlike denaturing reagents it does not suppress protease
activity or modify substrates. After overnight incubation with protease, digests are
acidified with TFA to break down RapiGest™ into by-products that do not interfere
with LC-MS analysis (Yu YQ et al., 2003; 2004).

Initially, MUPS (100 pg) were digested using the recommended protocol for
RapiGest™. RapiGest™ was added to the sample to be digested (total concentration
0.05%) and the sample heated at 80 °C for 10 minutes. This was followed by
reduction with DTT (3 mM final concentration) and alkylation with iodoacetamide (9
mM final concentration). The digest was then incubated overnight with trypsin

(50:1 substrate: protease). Trypsin was used in the optimisation experiments
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Fig.3.7 Digestion of MUPs and QconCAT using a standard in-solution digest protocol.

Top gel. MUPS (100 pg) from C57/BL6 male mouse urine were reduced with DTT (3 mM final
concentration) and alkylated with iodoacetamide (9 mM final concentration). Trypsin was added
(50:1 substrate:enzyme) and the digest incubated overnight at 37 °C. An aliquot of the starting
material (100 pg MUP diluted into 25 mM NH,CO;) was reserved to compare to the digested material.
The same amount of starting and digested material was loaded onto the gel so a direct comparison
could be made. Samples were run on a 15% SDS gel and stained with coomassie blue stain. Bottom
gel. QconCAT(100 pg) was reduced with DTT (3 mM final concentration) and alkylated with
iodoacetamide (9 mM final concentration). Trypsin was added (50:1 substrate:enzyme) and the digest
incubated overnight at 37 °C. An aliquot of the starting material (100 pg QconCAT diluted into 25 mM
NH,CO;) was reserved to compare to the digested material. The same amount of starting and
digested material was loaded onto the gel so a direct comparison could be made. Samples were run
on a 15% SDS gel and stained with coomassie blue
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because it was more readily available and more cost effective. An aliquot of the
digest was removed the following morning before removal of the RapiGest™ and
resolved by SDS-PAGE along with the starting material to assess the degree of
digestion. The majority of the protein appeared to be digested with just a faint
band seen in the digested material (Figure 3.8). The digest was repeated again
using increased concentrations of RapiGest™ 0.05%, 0.1%, 0.2%, and 0.4%. Slightly
more protein appeared to be digested using the 0.1% RapiGest™ solution but not
much improvement was seen increasing the concentration after that (Figure 3.9).
Using 0.1% RapiGest™ as the new standard concentration, a time course
experiment was done to see if this could further improve digestion (Figure 3.10).
Six digests were prepared and the RapiGest™ solution (0.1 %) was added to the
samples, one digest was heated for the standard 10 minutes, one digest heated for
20 minutes etc up to 60 minutes. Again the samples were resolved by SD-PAGE and
level of digestion compared. There did not appear to be a significant improvement

after ten minutes so the protocol was not amended.

The reason for incomplete digestion was unclear. It was either due to the trypsin
activity reducing over time, which could be solved using an enzyme top up step, or
the MUPS were still forming inhibitory products making them resistant to complete
proteolysis despite the introduction of RapiGest™ to the protocol. A set of three
digests were prepared in duplicate using the RapiGest™ (0.1%) protocol. One digest
contained just MUP protein, one digest contained just bovine albumin and one
digest contained both MUP and albumin. Following overnight incubation, an
additional amount trypsin was added to just one replicate of each. The samples

were left to incubate for a further 6 hours.

Aliquots of both replicates were compared by SDS-PAGE. In the MUP only digest
there was no improvement in proteolysis, the addition of extra enzyme had no
effect. The albumin only digest went on to be completely digested after the
enzyme top up. In the co-digest there was no improvement seen in MUP digestion

but once again the albumin was completely digested after the top up.
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Fig.3.8 Digestion of MUPS using a standard in-solution digest protocol plus RapiGest™.

MUPS (100 pg) from C57/BL6 male mouse urine were digested using a 0.05% solution of
RapiGest™ followed by a reduction with DTT (3 mM final concentration) and alkylation with
iodoacetamide (9 mM final concentration) step. Trypsin was added (50:1 substrate:enzyme) and
the digest incubated overnight at 37 °C. An aliquot of the starting material (100 pg MUP diluted
into 25 mM NH,CO;) was reserved to compare to the digested material. The same amount of
starting and digested material was loaded onto the gel so a direct comparison could be made.
Samples were run on a 15% SDS gel and stained with coomassie blue stain.
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Fig.3.9 Digestion of MUPs using increasing concentrations of RapiGest™.

Four individual MUP digests (100 ug) were prepared. A different concentration of RapiGest™ was
used in each sample — 0.05%, 0.1%, 0.2% and 0.4% followed by reduction with DTT (3 mM final
concentration) and alkylation with iodoacetamide (9 mM final concentration). Trypsin was added
(50:1 substrate:enzyme) and the digests incubated overnight at 37 °C. The same amount of
starting and digested material was loaded onto the gel so a direct comparison could be made.
Samples were run on a 15% SDS gel and stained with coomassie blue stain.
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Fig.3.10 RapiGest™ time course experiment.

A MUP digest (100 pg) was prepared and mixed with RapiGest™ (0.1% total concentration) and
incubated at 80 °C. An aliquot was removed from the incubator every 10 minutes. After the
RapiGest™ incubation step, each aliquot was then reduced with DTT (3 mM final concentration)
and alkylated with iodoacetamide (9 mM final concentration). Trypsin was added (50:1
substrate:enzyme) and the digests incubated overnight at 37 °C . Starting material was again
retained for comparison purposes. The same amount of starting and digested material was
loaded onto the gel so a direct comparison could be made. Samples were run on a 15% SDS gel
and stained with coomassie blue stain.
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A fourth sample was also prepared containing just MUP. This sample was digested
with trypsin overnight with an additional amount of albumin added the following
morning. The sample was left to incubate for a further 6 hours and an aliquot taken
and resolved on SDS-PAGE. There was some digestion of albumin indicating that
trypsin was still active. This concludes that MUPS are still forming inhibitory
products making them resistant to further proteolysis by trypsin (Figure 3.11 and
3.12).

The digestion protocol used 100 pg of protein. It was anticipated that reducing the
amount of substrate to be digested will in turn reduce the amount of inhibitory
products formed. Three digests were prepared — one that contained 100 pg, one
that contained 50 pg and one that contained 10 pug of MUP protein. All three were
digested using the RapiGest™ protocol and incubated overnight with trypsin.
Aliquots were removed the following day and analysed by SDS-PAGE (Figure 3.13).
The same amount of protein was loaded onto the gel so a direct comparison could
be made between all three digests. There looked to be complete digestion in the 10

ug digest.

As the QconCAT was labelled with [*Cg] lysine the samples for quantification would
have to be digested using LysC. MUP (10 pg) was digested with LysC to ensure that
the method optimised using trypsin was appropriate for digestion with LysC.
Starting material and digested material was resolved by SDS-PAGE (Figure 3.14). No
bands were identified in the digested material indicating full digestion had been

achieved.

3.3.3 Co-digestion and LC-MS analysis of analyte and QconCAT

Following optimisation of the digest, both analyte and QconCAT were mixed ina 1:1
(by protein ratio) and digested using the protocol listed in the methods section. The
samples were analysed by LC-MS and each heavy: light pair was examined

individually. Many of the heavy: light pairs were not detected.
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200 kDa

VAR =
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Fig.3.12 SDS-PAGE analysis to identify the cause of incomplete digestion of MUPS.

A set of three digests were prepared in duplicate using the RapiGest™ (0.1%) protocol. The first
set of digests contained just MUP protein, the second set contained just bovine albumin and the
third set contained both MUP and albumin. Following overnight incubation with trypsin, an
additional amount trypsin was added to just one replicate of each. All samples were left to
incubate for a further 6 hours. A fourth sample was also prepared containing just MUP. This
sample was digested with trypsin overnight with an additional amount of albumin added the
following morning. This sample was also left to incubate for a further 6 hours. An aliquot of
each samples was taken for SDS-PAGE analysis to determine if incomplete digestion was due to
trypsin loosing activity or if MUPS were still managing to inhibit the protease despite the
introduction of RapiGest™ to the protocol. Starting material was again retained for comparison
purposes. The same amount of starting and digested material was loaded onto the gel so a direct
comparison could be made. Samples were run on a 15% SDS gel and stained with coomassie
blue stain.
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21kDa — <— MUP
<——darcin
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Fig.3.13 Observing the degree of digestion using decreasing amounts of MUP in the starting
material .

Three digests were prepared containing different amounts of MUPS — 100 pg, 50 pg and 10 pg. All
were incubated with 0.1% RapiGest™ at 80 °C before being reduced and alkylated with DTT (3 mM)
and iodoacetamide (9 mM) respectively. All were digested overnight with trypsin (substrate:enzyme
50:1) at 37 °C. Degree of digestion was then compared by SDS-PAGE. Starting material was again
retained for comparison purposes. The same amount of starting and digested material was loaded
onto the gel so a direct comparison could be made. Samples were run on a 15% SDS gel and stained
with coomassie blue stain.
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Fig.3.14 Proteolysis of MUPS with LysC using the optimised digest method.
MUP (10 pg) was incubated with 0.1% RapiGest™ at 80 °C before being reduced and alkylated
with DTT (3 mM) and iodoacetamide (9 mM) respectively before overnight digestion with LysC
(substrate:enzyme 50:1) at 37 °C. Degree of digestion was then compared by SDS-PAGE. Starting
material was again retained for comparison purposes. The same amount of starting and digested
material was loaded onto the gel so a direct comparison could be made. Samples were run on a

15% SDS gel and stained with coomassie blue stain.
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It was unclear why these peptide pairs were not observed. It was possible that the
digest had not been successful and there were missed cleavages that would have
been too large to see by LC-MS or the peptides not observed were not suitable for
analysis by LC-MS. As all the Q peptides had previously been identified using
MALDI-TOF during the purification step, the digest was also re-analysed using
MALDI-TOF. All the Q peptides could now be seen using MALDI-TOF analysis which
indicated that maybe some peptides were unsuitable for the type of
chromatography being used. Inspection of the Q peptide sequences indicated a
high proportion of hydrophobic residues. The stationary phase of an LC column
consists of hydrophobic alkyl side chains that interact with the analyte. These
carbon chains can vary in length C4, C8 and C18, C18 being the most hydrophobic
and C4 the least hydrophobic. C4 columns are used to analyse large molecules and
proteins, the idea being that they will have more hydrophobic sites and will
therefore only require a shorter side chain on the stationary phase to interact with.
Peptides are routinely separated using C18 stationary phase because they are
smaller and therefore have less hydrophobic sites and are more easily detained by

the longer hydrophobic carbon side chains.

A C18 reverse phase column had previously been used to analyse the MUP digests.
As many of the Q peptides were hydrophobic a C4 column was used as an
alternative to the C18 and the results compared (Figure 3.15). The data was
processed using maximum entropy software (MaxEnt 3, MassLynx 4.1, Waters) to
deconvolute the spectra to make a visual comparison and identification of peptides
less complicated. The software takes multiply charged spectra and deconvolutes it
into singly charged spectra. This is particularly useful for analysing the MUP Q
peptides as there are masses that are very similar and only differ by 1 Da and
therefore have overlapping isotopic patterns. A significant improvement was seen
in the number of peptides detected using the C4 column. Unfortunately the more
hydrophilic peptides that were detected using the C18 column had not been
detained on the C4 column and it is most likely they were lost during the trapping

step of the LC method.
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Investigating other column options was not feasible as there were some peptides
that also didn’t appear to ionise very well — peptide 4 (2883 m/z), peptide 11 (2865
m/z) and peptide 13 (2846 m/z) — giving a low signal to noise ratio making
quantification difficult. During replicate runs of the digests, there were occasions
when these three peptides were not detected at all. This would affect
quantification considerably as many of the MUPS are quantified using the
subtraction method explained previously so the absence of these three peptides

would have meant no quantification data for a number of MUPS.

Another approach would have to be taken to quantify MUPS. The current QconCAT
(Figure 3.3) was theoretically digested with trypsin. The smaller tryptic fragments
should ionise better and also be more compatible with a C18 column. The peptide
sequences were examined to see how many MUPS now shared the new tryptic
fragments and how this would affect the quantification. Fortunately this did not
have a large impact on the strategy for quantification. The MUPS that had unique
peptides still had a unique fragment (Figure 3.16). Peptide 7 was the only peptide
that when digested with trypsin gave two fragments that were shared with many
more MUPS disrupting the strategy for quantification considerably. Using a

combination of two proteases LysC and trypsin would eliminate this problem.

There were also three MUPS, 20, 21 and 3, who had Q peptides that did not have an
internal arginine residue. These were also peptides that were not compatible with
C18 chromatography. As a plasmid was available for MUP 20, more commonly
known as darcin, a labelled version of darcin was made and used as a standard.
New peptides were chosen for these three MUPS. Again this was based on a
subtraction method. MUP 20 (darcin) contained all 3 peptides so quantification was
possible. The amount of MUP 20 was to be calculated using peptide 8. MUPS 3 and
21 could then be quantified by subtracting their unique peptides away from the
value calculated for darcin. The revised strategy for quantification is outlined in

Figures 3.17 and 3.18.
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Fig.3.15 Comparison between C18 and C4 column chromatography.

MUP QconCAT was digested using the protocol described in section 3.2 and analysed by LC-MS.
One chromatography system was set up with a C18 column (top graph) and one system set up with
a C4 column (bottom graph) and the digest analysed on both systems. Only the least hydrophobic

peptides have been identified using the C18 column.

These peptides were not seen when C4

chromatography was used, they have most likely been lost at the trapping stage prior to the start
of the gradient. The more hydrophobic peptides are absent from the C18 analysis but were
observed when analysed using C4 chromatography. Spectra were deconvoluted using maximum
entropy software (MassLynx 4.1, Waters).
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3.3.4 Quantification of MUPS using a doubly labelled QconCAT and darcin

The MUP QconCAT was again expressed in E. coli and labelled with [**Cg] ysine and
[Ce] arginine. Samples were again resolved by SDS-PAGE to ensure expression had
taken place post IPTG induction (Figure 3.19). The QconCAT was then purified and
aliquots of the wash and elution steps analysed by SDS-PAGE (Figure 3.19). An in-
gel digest and MALDI-TOF analysis were carried out to check labelling had occurred
(Figure 3.20). A labelled version of darcin was also expressed and purified in the
same manner as the QconCAT (Figure 3.21) followed by MALDI-TOF analysis to
confirm labelling (Figure 3.22).

Prior to co-digestion with B6 urine, both the QconCAT and darcin were individually
digested and analysed by LC-MS using a C18 column. The Q peptides chosen to
represent MUPS 20 and 3 in the heavy darcin standard were ideal for analysis. The
peptide chosen for MUP 21 unfortunately was not suitable and as there were no
other options to quantify, this amount of this MUP could not be calculated. All
tryptic fragments from the QconCAT were identified by LC-MS. The isotopic
patterns for peptides 5 and 13 were slightly unusual. Both sequences for these
peptides contain the Asn-Gly (N-G) that can result in deamidation. Deamidation is a
non-enzymatic process (Robinson and Rudd, 1974) in which the side chain of
asparagine is converted into aspartic or isoaspartic acid. The side chain of
asparagine attacks the peptide group on the C terminal side which leads to the
formation of a succinamide intermediate. This intermediate is then hydrolysed to
form aspartic or isoaspartic acid resulting in a mass shift of +1 Da (Geiger and Clarke
1987; Bischoff et al., 1993). Deamidation is more likely to occur if asparagine is
followed by glycine in the amino acid sequence. As glycine is small with a low steric
hindrance it is more open to attack by the asparagine side chain (Robinson NE et al.,
2001; Rivers et al., 2008). The unusual isotopic pattern of peptide 5 and 13 suggests
that there is a mixture of deamidated and non-deamidated forms (Figure 3.23). If
both the acid and amide forms both ionised in a similar manner then the
monoisotopic masses for each form could be added up and used for quantification.
Peptide 5 was used in an experiment to test whether or not the amide and acid

forms behaved the same when analysed by mass spectrometry.
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Fig.3.19 Expression and purification of a doubly labelled MUP QconCAT.

Top gel. The MUP QconCAT was expressed in E. coli and labelled with BCe Lysine and Bee
arginine . The OD (600nm) of E. coli was taken every hour until it reached an absorbance
reading of 0.6. IPTG was then added to the culture to induce E. coli to synthesise the protein.
Bottom gel. A MUP QconCAT cell pellet was then purified by solubilising the inclusion bodies in
NaCl (2 M), sodium phosphate (80 mM, pH 7.4), GnCl (6 M) and imidazole (40 mM). The
solubilised inclusion body was then filtered and passed through a 1 ml HisTrap column. The
purified protein was eluted in NaCl (2 M), sodium phosphate (80 mM, pH 7.4), GnCl (6 M) and
imidazole (2 M). Elute wash 1 and 2 were combined and dialysed overnight in NH,CO; (100 mM,
pH 8.5). Samples were run on a 15% SDS gel and stained with coomassie blue.
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Fig.3.21 Expression and purification of a doubly labelled darcin standard.

Top gel. The labelled darcin was expressed in E. coli and labelled with e Lysine and Bes arginine .
The OD (600nm) of E. coli was taken every hour until it reached an absorbance reading of 0.6. IPTG
was then added to the culture to induce E. coli to synthesise the protein. Bottom gel. Unlike the
QconCAT which forms inclusion bodies, labelled darcin is found in the soluble fraction therefore GnCl
is not required. The soluble fraction was filtered and passed through a 1 ml HisTrap column. The
purified protein was eluted in NaCl (2 M), sodium phosphate (80 mM, pH 7.4) and imidazole (2 M).
Elute wash 1 and 2 were combined and dialysed overnight in NH,CO; (100 mM , pH 8.5). Samples
were run on a 15% SDS gel and stained with coomassie blue.
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Fig.3.23 Isotopic profiles of peptides 5 and 13.
Top graphs. Predicted isotopic patterns for peptides 5 and 13 was done using MS isotope

(Protein prospector tool, University of California). Middle graphs. Predicted isotopic patterns
for deamidation at N-G for peptides 5 and 13 was also done using the MS isotope tool. Bottom
graphs. Actual isotopic patterns obtained from LC-MS analysis showing a mixture of both

deamidated and non-deamidated forms.

87



Chapter 3: Quantification of mouse major urinary proteins

The QconCAT was stored in 100 mM ammonium bicarbonate at pH 8.5 to prevent
precipitation of the protein and allow long term storage at 4 °C. A deamidation
reaction is more likely to occur at a higher pH and an increase in temperature. This
more alkaline pH coupled with the first stage of the in-solution digest protocol —
heating the sample at 80°C — was most likely responsible for the deamidation of
peptide 5 and 13. A fresh pellet of QconCAT was purified and dialysed into 50mM
ammonium bicarbonate at pH 7. Aliquots (5 pg/ml) were then taken and diluted
into 50mM ammonium bicarbonate all at different pH values — pH 7, 8, 9 and 10.
These four aliquots were then digested using the in solution protocol stated in the
methods. They were then analysed by LC-MS and the ion of interest — peptide 5 —
was extracted. The isotopic pattern of Q peptide 5 digested at pH 7 suggested very
little if any deamidation had occurred. The sample at pH 8 showed some degree of
deamidation. Extensive deamidation was observed in the samples at pH 9 and 10
(Figure 3.24). To assess whether the ionisation was affected by the deamidation
reaction the sum of the intensities across the isotopic envelope were compared for
each pH (Figure 3.25). The sum of the intensities was plotted against degree of
deamidation and remained constant across the pH range. This suggests that the
conversion of amide to acid during the deamidation reaction does not affect
ionisation. Therefore adding up the intensities of both forms should be acceptable

when it comes to quantification.
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Fig.3.24 The conversion of amide to acid with increasing pH.

Top graphs. Traces from LC-MS analysis. The intensity of the monoisotopic mass (MO0) decreases
as the pH increases as a result of the conversion of asparagine to aspartic acid. Bottom graph.
The intensity of MO plotted against percentage of deamidation. The percentage of deamidation
at each pH was calculated using the MS solver programme in Microsoft excel.
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Fig.3.25 The effect of deamidation on ionisation.

Top graphs. Traces from LC-MS analysis. The intensity of the monoisotopic mass (MO0) decreases

as the pH increases as a result of the conversion of asparagine to aspartic acid. Bottom graph.

The sum of intensities (M0-M6) was added up for each sample and plotted against the percentage

of deamidation previously worked out using MS solver in Microsoft excel.
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Five B6 male and five B6 female urine samples were individually co-digested with
QconCAT in a 1:1 protein ratio. Urine samples from the same five males and five
females were also co-digested with heavy darcin in a 1:1 protein ratio. All samples
were analysed by LC-MS and heavy: light peptide pairs extracted for quantification
(supplementary data A). The amount of MUP 20 was quantified using peptide 8
followed by quantification of MUP 3 by subtracting peptide 14 away from 8. Using
the QconCAT LysC digest amounts of MUPS 13 and 17 were calculated first followed
by MUP 7. Peptide 6 was used to calculate MUP 13 which was then subtracted
from peptide 4 to calculate MUP 17. MUP 7 was then calculated by subtracting the
amounts of MUP 13 and 17 away from peptide 7 which all three share. MUPS 2, 10,
14 and 5 were then quantified using their unique fragments produced in the tryptic
digest. MUPS 1 and 12 were calculated by subtracting the amount of MUP 7 away
from peptide 12. The last MUPS to be quantified were 9, 11, 16, 18 and 19 which
relied on using either peptide 1, 5 or 13 and subtracting away the amounts of the
other MUPS that share those peptides (Figure 3.17). Using peptides 5 and 13 for
quantification resulted in negative numbers even when adding up both the amide
and acid forms produced during the deamidation reaction. This could be due to
the deamidation reaction stopping at the intermediate stage for both analyte and
QconCAT but at different rates leading to an inaccurate ratio between the two for
guantification. If this was the case then a signal for this intermediate would be
detected at -17Da. No intermediate was observed for either peptide 5 or 13.
Another reason for this may be down to the reproducibility of digestion. Even
though a digestion method was optimised for MUPS (section 3.3.2) this may not be
reproducible each time. Both peptides 5 and 3 are next to each other in the analyte
but not the QconCAT (Figure 3.26). In the analyte the cleavage site and the
surrounding residues are as follows D- K-R-E-K. This is the most challenging part of
the MUP sequence to digest. As mentioned previously, the two acidic residues will
make it difficult for trypsin to cleave successfully. There was also the added
complication of two basic residues being adjacent to each other. There may well be

partial missed cleavages around this site which would result in a lower signal for the
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MUP QconCAT

EEASSTGRNF
NSLVLKINGE
YDGSNTFTIL
IRVLENSLVL
LKIEDNGNFR

18694

EEASSTGRNF NVEKINGEWH TIILASDKRE KIEDNGNFRL FLEQIHVLEN SLVLKFHTVR

NVEKEEASSE
WHTIILASDK
KAGIYYLNYD
KERFAQLCEK
LFLEQIHVLE

GONLNVEKEE
YSVTYDGFNT
GFNTFTILKF
IEDNGNFRLF
KLCEEHGILR

ASSTGRNFNV QKIEEHGNFR LFLEQIHVLE
FTIPKVHTVR DEECSELSMV ADKAGEYSVT
HTVIDEECTE IYLVADKIED NGNFRLFLEQ
LEQIHVLENS LVLKAGIYYM NYDGFNTFSI
ENIILSNANR CLQARE

DEECSELSMV ADKTEKAGEY SVTYDGFNTF TIPKTDYDNF LMAHLINEKD GETFQLMGLY
GREPDLSSDI KERFAQLCEE HGILRENIID LSNANRCLQA RE

Fig.3.26 Sequence comparison between MUP QconCAT and 18694.
The sequences for peptides 5 (pink) and 13 (orange) are not next to each other in the QconCAT

but are in the native protein.

In the native protein the sequence for peptide 5 ends in D-K

followed by R-E-K (highlighted in red) which may make it more difficult for trypsin to cleave
causing missed cleavages and inaccurate quantification.
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analyte and the negative numbers calculated for quantification. They may not be
easily visualised on a 1D gel, something that is routinely done post digest before the
addition of TFA. No partial missed cleavages were found when searching manually
or using software (PLGS) but some of the partial missed cleavages would be quite

large and may not ionise or chromatograph well making detection difficult.

Using peptide 1 produced more reasonable data (Figure 3.27). The major isoforms
expressed in males are MUP 7, MUP 10, MUP 20, MUP 1, 2 and 12 and MUPS 9, 11,
16, 18 and 19. There were also low levels of minor isoforms detected — MUP 13, 17,
3 5 and 14 some of which correspond to the ESI-MS analysis on fractionated urine
(Dr S Armstrong, thesis). As the mice are genetically identical, less variation
between individuals would have been expected. Males are housed individually to
prevent fighting and the environment that all five males were kept in at the time of
sample collection was the same. It is possible that the degree of digestion of the
native protein varied between each sample but this is unlikely as the QconCAT data
is in agreement with SDS-PAGE, protein assay and ESI-MS (see pages 96-102). There
was a slight difference in age between the five males sampled and fully matured
mice have an increased MUP expression compared to juveniles (unpublished data).
Also, even though the mice are caged separately, their cages are placed next to
each other and therefore they will be aware of the presence of other males due to
their highly efficient olfactory system. This may influence their MUP expression
particularly if a dominant male is caged nearby. The females showed slightly less
variation between individuals although two females did express larger quantities of
MUP 10 than the other three. Females were also examined to make sure they not
in the estrus stage of their estrous cycle, however this is just a visual check and the
stage of the cycle is estimated, it could be that 3 of the females were in not in
estrus but the other two females were just entering the estrus stage so their protein
expression started to increase (see section 3.3.5). Like the male B6 mice, females
express MUP 2, MUPS 9, 11, 16, 18 and 19and MUP 10. There was no evidence of
MUP 20or MUP 7expression in females which agrees with published data
(Armstrong et al., 2005; Roberts et al., 2010). A comparison of total MUP

abundance between males and females (Figure 3.28) confirms that males express a
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higher concentration of MUPs compared to females (Cheetham et al., 2009). A
summary of which Q peptides were successfully used to quantify MUPs are outlined

in table 1.1.

Table 3.1 A summary of peptides used for the quantification of MUPs in male and female
B6 lab mice. Peptides 10 and 16 were not included as these peptides are used to quantify
MUPs present in a another strain of lab mouse BALB/C.

Peptide Sequence Used in Quantification?

1 NFNVEK Yes — used to quantify MUPs 9, 11, 16, 18 and 19

2 EEAASSEGQNLNVEK Yes — used to quantify MUP 5

3 NFNVQK Yes — used to quantify MUP 2

4 IEEHGNFR Yes — used to quantify MUP 17

5 INGEWHTIILASDK No — possible incomplete digestion of native
protein (Figure 3.26)

6 YSVTYDGFNTFTIPK Yes — used to quantify MUP 13

7 VHTVRDEECSELSMVADK Yes - used to quantify MUP 7

8 ENIIDLTNANR Yes — used to quantify MUP 20

9 DGETFQLMELYGR No — does not ionise well in mass spectrometer

11 LFLEQIR Yes — used to quantify MUP 14

12 FAQLCEK Yes — used to quantify MUPs 1 and 12

13 IEDNGNFR No — possible incomplete digestion of native
protein (Figure 3.26)

14 IEEHGSMR Yes — used to quantify MUP 3

15 LFLEQIHVLEK Yes — used to quantify MUP 10
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Fig.3.27 Quantification of individual MUP variants expressed in male and female C57BL/6
mice.

Individual MUP isoforms were quantified in five B6 male (top graph) and five B6 female (bottom
graph) mice using the MUP QconCAT.
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Fig.3.28 A comparison between C57BL/6 male and female MUP expression.

Individual MUP isoforms were quantified in five B6 male and five B6 female mice using the MUP
QconCAT. The amount of MUP was summed up for each mouse and plotted on the same scale to
observe differences between sexes.
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Fig.3.29 Comparison of QconCAT quantification and protein assay.

The amount of each MUP calculated using the QconCAT in each individual mouse was summed to
get a “total MUP” amount. The protein content (99% MUP) of each mouse urine sample was
established by a Coomassie dye binding assay.

97



Chapter 3: Quantification of mouse major urinary proteins

W - 9 & W <
- 0 -

- <— darcin

= QconCAT
1200

1000
800

600

Abundance (pM)

400

200 +

T T T T T
B6 Male 1 B6 Male 2 B6 Male 3 B6 Male 4 B6 Male 5

— e MUP

350
= QconCAT
300+

250

200 4 -

Abundance (pM)

150 —

100

50

T T T T T
B6 Female 1 B6 Female 2 B6 Female 3 B6 Female 4 B6 Female 5

Fig.3.30 Comparison of QconCAT total MUP quantification and SDS-PAGE.

Urine from each of the five males and females was mixed 1:1 with sample buffer and analysed by
SDS-PAGE. Samples were run on a 15% SDS gel and stained with coomassie blue. Total amount of
MUP was calculated for each mouse using the QconCAT data (graphs).
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Fig.3.31 Comparison of QconCAT darcin quantification and SDS-PAGE with densitometry
analysis.

Top graph: Urine from each of the five males was mixed 1:1 with sample buffer and analysed by
SDS-PAGE. Samples were run on a 15% SDS gel and stained with coomassie blue.

Bottom graph: Densitometry on SDS-PAGE analysis was performed using Total Lab™ software and
the relative volumes of the main MUP band and the fast migrating MUP 20 band were measured.
No albumin was present on the gel so no densitometry analysis was possible. Rolling ball
background subtraction (radius 300) was performed on the gel image. Band detection had a
minimum slope of 0, noise reduction was at 5% maximum peak and band edge detection was
automatic.
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The QconCAT quantification was compared with data obtained from a protein
assay, SDS-PAGE and intact mass analysis. The protein assay measures total protein
in the urine so the amounts for each individual MUP was added up to produce a
total and then amounts compared to the protein assay. The results correlated well
for both sexes with a slightly increased concentration calculated when using the
protein assay (Figure 3.29). This was most likely caused by the presence of low level
amounts of other protein e.g. albumin. As the protein content of mouse urine is
99% MUP, SDS-PAGE analysis can also provide an estimate on how much MUP
protein is present in a urine sample (Figure 3.30). Again this correlated well with
the QconCAT data, particularly darcin which according to the QconCAT data, B6M 4
and 5 expressed much lower levels than B6M1-3 (Figure 3.31). Densitometry

analysis also confirmed this (Figure 3.31).

As MUP isoforms are so similar in sequence and structure it is likely that the peak
intensities acquired from intact mass analysis (Figures 3.32 and 3.33) do reflect the
relative amounts of MUP isoforms present (Dr S Armstrong, thesis). The QconCAT
and intact mass compare adequately illustrating that the B6 males express larger
quantities of MUP 10, MUPs 1, 2 and 12, MUPs 9, 11, 16, 18 and 19, MUP 7and
MUP 20. Decreased levels of darcin are also observed in the intact mass spectrum
of B6BM4 and 5. The intact mass data also confirmed the variation in MUP isoform
expression observed between individual males. Due to the resolution of the mass
spectrometer, it was difficult to identify MUPs 1, 2 and 12 on the intact mass
spectra as only 1 Da separates this mass from MUPs 9, 11, 16, 18 and 19. It is most
likely that a peak for MUP 1, 2 and 12 is underneath the peak observed for MUPs 9,
11, 16, 18 and 19. Also due to the high abundance of MUP 10 and the resolution of
the mass spectrometer, it was difficult to identify MUP 14 particularly in B6M 1 and
3 which have levels similar to MUPs 1, 2 and 12. The intact mass spectra acquired
for each individual female also reflected the amounts quantified for each of the
major isoforms using the QconCAT method. The most abundant isoform was

confirmed to MUP 10 and again no
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Fig.3.32 Comparison of C57BL/6 male QconCAT quantification and ESI-MS analysis.

Urine from the five B6 males was diluted into formic acid (0.1 %) to produce a final
concentration of 5 pmol/ul. The samples were then injected onto a C4 desalting trap
and masses of MUPS present were determined by ESI-MS. The envelope of multiply
charged protein ions was deconvoluted using MAXENT 1 software to yield the true
mass composition of the sample (MaxEnt 1, MassLynx 4.1, Waters). The peak directly
after MUP 20 is an oxidation of a methionine residue resulting in a mass increase of

16 Da.
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analysis.

Urine from the five B6 females was diluted into formic acid (0.1 %) to produce a
final concentration of 5 pmol/ul. The samples were then injected onto a C4
desalting trap and masses of MUPS present were determined by ESI-MS.  The
envelope of multiply charged protein ions was deconvoluted using MAXENT 1
software to yield the true mass composition of the sample (MaxEnt 1, MassLynx
4.1, Waters).
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evidence of expression of the male specific isoforms MUP 7and MUP 20. Again it
was difficult to distinguish between MUPs 1, 2 and 12 and MUPs 9, 11, 16, 18 and
19. After the mass spectrum was deconvoluted, the software identified the mass to
be MUPs 1, 2 and 12 in the females, probably because these MUPs were more
abundant than MUPs 9, 11, 16, 18 and 19 which were expressed in much higher
levels in the males hence the peak in male intact mass data being identified as
MUPs 9, 11, 16, 18 and 19. A summary of MUP variants quantified in both male and

female B6 mice is outlined in table 3.2

Table 3.2 A summary of MUP proteins quantified in male and female B6 lab mice

MUPs present in B6 males \ MUPs present in B6 females \

Major isoforms MUP 7 MUP 2

MUP 2 MUP 1 and 12
MUP 1 and 12 MUPs 9,11,16,18,19
MUP 20 MUP 10
MUPs 9,11,16,18,19

MUP 10

Minor isoforms MUP 14 MUP 13
MUP 13 MUP 17
MUP 17 MUP 5
MUP 3
MUP 5

3.3.5 Investigating MUP production during the estrous cycle

In addition to behavioural and physiological responses such as inter-male
aggression, mate choice and puberty, MUPs are thought to play a role in the
oestrous cycle. Stopka et al., 2007 have presented a study in which they found both
sexes up regulate their MUP production during social contact and that females
advertise their reproductive status by modifying their MUP production during the

estrous cycle (Stopka et al., 2007).

The mouse estrous cycle lasts approximately 4-5 days. There are 4 stages in the
cycle - proestrus, estrous, metestrus and diestrus. Each stage can be defined on cell
types present from a vaginal swab (Marcondes et al.,, 2002). During the proestrus

stage the female is not yet sexually receptive, a swab will show the presence of
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mostly epithelial cells and the endometrium will start to grow as the level of
oestrogen rises. This is followed by an increase in gonadotropic hormones causing
ovulation which leads into the estrus phase. This can be defined by clusters of
squamous epithelial cells that are uneven in shape and contain no nucleus. The
female is sexually receptive at this stage. The level of oestrogen starts to decrease
and the corpus luteum begins to form and as a consequence progesterone levels
start to rise. This is the metestrus stage which is characterised by the presence of
leucocytes and nucleated epithelial cells. This stage is closely followed by the
diestrus phase which is verified by presence of mainly leukocytes (Parkening et al.,

1982, Walmer et al., 1992, Caligioni 2009).

The aim of this study was to use the MUP QconCAT to not only look at increases and
decreases of MUP expression during estrus but to identify any significant changes of
specific MUP isoforms. Six adult females were used in this study and urine samples
were collected at each stage. All samples were mixed 1:1 protein ratio and digested

using the protocol described in the methods before being analysed by LC-MS.

The amount of each MUP present in each sample was quantified using the same
workflow previously used to quantify the five B6 males and five B6 females. As it
was sometimes difficult to define the exact stage of the cycle some samples were
labelled as being in between phases for example diestrus-proestrus (D-P). Overall
there was an increase in MUP production during the estrus (E) phase with the
lowest amount of MUP expressed during the proestrus stage (P) (Figure 3.34 and

3.35).

B6 female A (B6FA) had samples taken at the following stages — D-P, estrus-
metestrus (E-M), metestrus (M) and diestrus (D). MUP expression peaked in the E-
M sample and was at its lowest in the D-P sample. The M and D samples showed
similar expression, with slightly more amounts in the M sample. B6 female B (B6FB)
had samples taken at D-P, proestrus-estrus (P-E), E-M and metestrus-diestrus (M-D).

The P-E sample had most MUP expression followed closely by the E-M sample.
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Fig.3.34 Quantification of individual MUP isoforms expressed during the mouse estrous cycle.
Six B6 females (labelled A-F) had samples taken at four different stages in their estrous cycle. The
samples were mixed 1:1 with QconCAT and digested using the protocol described in section 3.2.3
and analysed by LC-MS. Amounts of individual MUP variants calculated at each stage in the
estrous cycle.
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Fig.3.35 Comparison of MUP expression in individual females during the estrous cycle.

Six B6 females (labelled A-F) had samples taken at four different stages in their estrous cycle. The
samples were mixed 1:1 with QconCAT and digested using the protocol described in section 3.2.3
and analysed by LC-MS. Total abundance was calculated at each stage of the cycle for each
individual mouse and plotted against the stage of the estrous cycle. The bottom graph illustrates
the total abundances at each stage of the estrous cycle for all six females.
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Similar to B6 female A, the D-P sample had the lowest amount of MUP expression.
The third female, B6 female C (B6FC), had samples taken at D-P, E, M and D. Similar
to B6 female A and B, MUP expression was at its lowest in the D-P sample. An
increase in MUP concentration was observed in the E sample. As seen in the first
sample B6FA, the M and D samples were very similar in protein concentration with
a slight raise in the M sample. B6 female D (B6FD) had samples collected at P-E, E,
M and D. MUP production was at its highest in the E sample which coincides with
B6FC. The lowest amount of MUP expression was seen in the P-E sample. B6FB
also had a P-E sample taken which had the highest amount of MUP in. It is possible
the B6FB mouse was more into the estrus phase in the P-E sample which is why this
sample had most protein in. B6FD could have been more into the proestrus phase
in their P-E sample hence the low amount of protein expression. The M and D
samples again had similar concentrations of MUP proteins. There was less of a
difference seen between stages for B6 female E (B6FE). Samples were taken at P-E,
E, E-M and D. The sample that contained most MUP protein was the E sample
followed closely by the E-M sample. Even though the P-E showed the least amount
of MUP expression, the amount calculated was not that much lower than the E and
E-M samples. This could be because the mouse was more into the estrus stage
when the P-E and E-M samples were taken. Finally B6 female F (B6FF) had samples
collected at P, E, E-M and D. As with the other samples, there was an increase in
MUP expression in the estrus sample and the lowest amount of protein was
expressed in the proestrus sample. E-M and D were once again very similar in

guantity with a slightly more protein calculated in the E-M sample.

3.4 Conclusions

Despite the high sequence similarity between MUP variants, a QconCAT strategy
was designed and implemented for quantification for these homologous protein
isoforms. Many of the rules for QconCAT design were unable to be applied,
particularly when it came to finding a unique peptide for each protein to be

qguantified. This was not possible for all MUP variants and required a logical
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subtraction method. Surrogate peptides should be unique to the protein being
quantified and easily detectable by LC-MS. The choice of peptides suitable for
detection by mass spectrometry is crucial for the sensitivity of the assay (Picotti and
Aebersold, 2012). Potential Q peptides should ideally be analysed by LC-MS prior to
being chosen for quantification. Alternatively, information may have been collected
about these peptides and stored in online suppositories such as Peptide Atlas and
Global Proteome Machine Database which contain information on how often the
peptide has been observed by mass spectrometry. If the peptide does not ionise
efficiently then detection by mass spectrometry unachievable. Also peptides that
are too hydrophilic will not bind the stationary phase of the LC column and if they
are too hydrophobic then it is unlikely to be eluted. These peptides should also be
avoided (Eyers et al., 2011; Picotti and Aebersold, 2012).

The native peptides should also be in a region that undergoes complete proteolysis.
Although trypsin is a highly selective and efficient protease, peptides with two
neighbouring basic residues and the presence of acidic residues surrounding the
cleavage site should be avoided as these situations often lead to missed cleavages.
Surrogate peptides should not be subjected to any post translational modifications
such as deamidation as these will alter the mass of the peptide and lead to
inaccurate quantification data. If using an MRM method then the peptide would
not be detected at all due to the mass shift (Lange et al., 2008; Picotti and
Aebersold, 2012).

Various mass spectrometer parameters should also be optimised to ensure the best
sensitivity is achieved for each peptide. Factors that influence signal intensity are
precursor charge state, ion source parameters, and if using an MRM method,
fragment ion type and collision energy. Using the most dominant charge state is
essential for sensitive detection of the peptide. Charge state detection is influenced
by solvents, background/noise and flow rates. Optimising ion source parameters
such as voltages, source temperatures and gas flows will influence the detectability
of peptides. If quantifying using fragments then fragments with a mass close to that
of the precursor ion should generally be avoided as these transitions often have a

higher signal to noise ratio. For highest selectivity, fragment ions with an m/z value
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above that of the precursor should be considered as singly charged background ions
can not result in fragments with higher m/z values than the precursor. The collision
energy should be optimised. If it is too low insufficient fragmentation will take
place and if set too high there will be losses due to secondary fragmentation events

(Lange et al., 2008; Picotti et al., 2010; Picotti and Aebersold, 2012).

Following the rules for Q peptide selection was not possible due to the high
sequence similarity between the MUP isoforms. It was not possible to find unique
peptides for MUPs 9,11,16,18 and 19 and the original [3Ce] Lys labelled QconCAT
contained peptides that ionised poorly and were too hydrophobic for the stationary
phase in the column. Although a [**C¢] Lys and [*3Cg] Arg labelled QconCAT followed
by a tryptic digest eliminated these issues, peptides 5 and 13 could still not be used
for quantification due to the incomplete proteolysis of the native peptides (Figure

3.26). These peptides also showed some degree of deamidation.

Deamidation is a PTM that can occur in peptides containing an Asn residue. The
reaction is more likely to occur when the Asn residue is followed by a Gly residue.
As glycine is a small, flexible amino acid with a low steric hindrance, the peptide
group is more vulnerable and open to attack by the Asn side chain (Figure 3.36).
The side chain of Asn attacks the peptide group of Gly residue which results in the
formation of a succinamide intermediate. A hydrolysis reaction results in the
formation of aspartic or isoaspartic acid and peptide mass shift of +1 Da. As
discussed in the results section, deamidation reactions are accelerated by increasing
the pH and exposure to high temperatures. The QconCAT was stored in ammonium
bicarbonate at pH 10 to prevent it coming out of solution. This storage combined
with the first section of the digest protocol — heating the samples to 80 °C — resulted
in extensive deamidation of peptides 5 and 13 which both contain Asn-Gly. The
isotopic patterns of these peptides indicated a degree of deamidation had occurred
in both the Q peptides and native protein but at different rates due the storage of
the QconcAT solution. Unfortunately the storage issues surrounding the QconCAT

were not known
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Figure 3.36. Deamidation reaction between asparagine and glycine residues

Deamidation reaction of Asn-Gly (top right) to Asp-Gly (at left) or iso(Asp)-Gly (in green at bottom
right). The succinamide intermediate is represented in red. "Deamidation Asn Gly". Licensed under
Creative Commons Attribution-Share Alike 3.0 via Wikimedia Commons -
http://commons.wikimedia.org/wiki/File:Deamidation_Asn_Gly.png#mediaviewer/File:Deamidation_

Asn_Gly.png
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prior to the selection of these peptides for inclusion in the QconCAT. Also there
were limited options for choosing other peptides due to the homologous nature of
the MUPs. However, both the acid and amide forms ionised in a similar fashion
(section 3.3.4) and therefore adding the addition of the intensities of the

monoisotopic masses of both the acid and amide forms was acceptable.

Deamidation was not the primary problem with peptides 5 and 13; the inaccurate
guantification was most likely caused by incomplete digestion in the native protein.
Alternative approaches such as filter aided sample preparation (FASP) may improve
the digestion of MUP proteins. A FASP method combines the advantages of both in
gel and in solution digestion processes. A FASP protocol begins with solubilisation
of the proteins in detergent such as SDS followed by reduction with DTT and
disassociation of detergent micelles and protein detergent complexes with urea (8
M). The DTT, detergent and low molecular weight are removed by
ultracentrifugation. lodoacetamide is then added to the sample to prevent the
reformation of disulphide bonds, the iodoacetamide is then removed by
ultracentrifugation. Urea is used to wash away any excess detergent. The proteins
are then digested with protease and incubated. The sample is then filtrated again
and peptides collected with high molecular weight substances retained on the filter
(Wisniewski et al., 2009). Another approach would be to incorporate flanking
regions in the QconCAT. Flanking regions are sequences from the proteins that
surround the tryptic fragments (Q-peptides) to create an identical amino acid
composition around the cleavage site. This should lead to the same rate of
proteolysis in both the native and QconCAT protein. The presence of the flanking
regions eliminates concerns surrounding dibasic cleavage site (seen between
peptide 5 and 13 in the native protein) and acidic residues at P2’ position (Kito et

al., 2007; Nanavati et al., 2008; Chen et al., 2012).

Sample analysis was carried out using a TOF mass analyser and quantification was
done on the MS level by extracting the exact masses of the analyte and QconCAT
precursor ions. Traditionally TOF instruments were used for qualitative applications
rather than quantitative experiments due to the limited dynamic range of these

mass analysers. However, newer generation instruments are now equipped with
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technology that allows both qualitative and quantitative analysis. The Waters G2
Synapt has QuanTof technology which incorporates novel detector electronics and
hardware features that enable modern TOF mass spectrometers to generate
spectra at speeds which enable narrow UPLC peaks to be accurately profiled
without compromising mass resolution. At the same time QuanTof provides a
proportionate response across a wide range of signal intensities, regardless of
spectral complexity, so that accurate quantitative results can be obtained even in
crude sample extracts. QuanTof technology contains an analogue-to-digital
converter (ADC) that records the intensity of detector response over time. This
enables the very fast signals produced by the detector to be correctly represented
and arrival time and intensity to be calculated accurately. This allows TOF spectra to
be recorded with high mass resolution, high mass accuracy and high dynamic range
at very fast data acquisition rates. The Waters G2 Synapt can display up to four
orders of linear magnitude. Linearity is important for accurate quantification and
most quantitative experiments use standard curves to extrapolate values for
unknown samples. A standard curve provides a visual representation of the
dynamic range of measurement and the limit of linearity — the point at which the
relationship between response and concentration are no longer linear which would

result in inaccurate quantification data.

The most commonly used mass spectrometry based technique for absolute
guantification is MRM methodology on a triple quadrupole mass analyser.
Although the newer generation TOF analysers have improved dynamic range, triple
guadrupoles have even better with instrument vendors now offering up to six
orders of dynamic range. The non scanning mode of operation of triple quadrupole
MRM results in increased sensitivity by up to two orders of magnitude compared to
full scan techniques used by other mass analysers. It also produces the wider linear
dynamic ranges which is useful for the detection of low abundant proteins in highly
complex sample mixtures (Lange et al., 2008). The wider dynamic range and
improved sensitivity of the MRM technique would be advantageous for MUP
guantification because of the large difference in intensities between the major

isoforms and minor MUP variants. For instance, a lot of the major isoforms
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contribute to the signal of one shared peptide making the response calculated for
that peptide close to the saturation limit of the instrument. The improved
sensitivity could possibly improve the quantification of the lower abundant MUP

variants.

The objectives of this chapter were to develop a method for the absolute
quantification of MUPs in male and female B6 lab mice and identify the differences
between sexes. Using a QconCAT strategy, MUPs were successfully quantified in
five male and five female B6 lab mice. The major MUP isoforms present in males
were MUPs 9,11,16,18 and 19, MUPs 1, 2 and 12, MUP 10 and two male specific
isoforms MUP 7 and MUP 20. The dominant variants present in females were MUPs
9,11,16,18 and 19, MUPs 1, 2 and 12 and MUP 10. These findings were in
agreement with previous research (Armstrong et al., 2005). Using the newly
developed method, MUP production in the estrous cycle was also assessed.
Although it was difficult to identify the exact stage of the cycle, there was a
reoccurring pattern in MUP expression throughout the estrous cycle in the 6
females tested. MUP expression peaked during the estrus stage and declined
during the proestrus stage. The biological significance of this is most likely
advertisement of reproductive status by the females. The results agree with
observations made by Stopka et al who identified female mice do vary their MUP
production during the estrous cycle with females up-regulating MUP expression at
the beginning of estrus (Stopka et al., 2007). Overall the objectives were achieved
but there were some limitations. Five animas of each sex were samples and only a
single sample was supplied for each. Ideally, analysis of at least 3 urine samples per
mouse, taken on different days, would provide a more accurate assessment of the
concentration of MUPs present in each animal and better assess the reproducibility
of the method. This is particularly important with this sample set as differences in
MUP expression was observed between animals of the same sex, which is unusual
as they are genetically identical mice. It would also be beneficial to monitor inter
and intravariability of the assay by analysing the samples multiple times on the LC-

MS system.
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Rodents such as mice and rats are generally deemed as ‘pests’ and their behaviours
can often have a detrimental effect to humans in particular. In developing
countries, it is estimated that rats and mice are responsible for 25% of infectious
disease cases. These diseases are often fatal due to the limited amount of health
care available. An ongoing long term project is currently investigating pest control
strategies in developing countries by trying to manipulate rodent behaviour. It is
anticipated that this work will contribute towards this project. Knowing what MUPs
are up and down regulated in social situations will provide a greater insight into
behaviours displayed by rodents. This work will also complement studies taking
place on animal welfare. Animal welfare research primarily focuses on the welfare
of animal in captivity for example laboratory rodents. Aggression is common
between laboratory rodents and current research is centred towards what triggers

this aggression and is there a certain MUP protein that is responsible for it.
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Chapter 4: Protein Secretion in the harvest mouse (Micromys minutus)

4.1 Introduction

Proteins used in rodent scent communication have been widely studied in mice.
These proteins, termed MUPs, belong to the lipocalin super family of proteins.
Other members of the rodent family have also been found to excrete lipocalins and
use them as a form of chemical communication (Table 4.1). The majority of these
lipocalins share very limited sequence homology with mouse MUPs except for the
highly conserved G-X-W residues, were X is any amino acid. The exception to this
are rats whose scent communication proteins were previously termed a-2-globulins
but have now been renamed rat MUPs (rMUPs) as they share some homology with

the well established mouse MUPs.

Table 4.1 Examples of lipocalin expression in rodents.

Species Sex Protein Excretion References
Bank Vole (Myodes Male and Odorant Urine, saliva | Stopkova et al., 2010
glareolus) Females binding

proteins
Bank vole (Myodes Males Glareosin Urine Dr M Turton, thesis
glareolus)
Syrian hamster Females Aphrodisin Vaginal Singer et al., 1986
(Mesocricetus auratus) secretion
Roborovski hamster Males and | Roborovskin Urine Turton et al., 2010
(Phodopus roborovskii) Females

House mouse (Musculus | Males and | Major urinary Urine, saliva | Finlayson and

domesticus) Females proteins Baumann, 1957;
(MUPS) Finlayson et al., 1965

Rat (Rattus rattus) Males Rat major Urine Roy and Neuhaus,
urinary 1966; Cavaggioni and
proteins Mucignat-Carretta,
(rMUPS) 2000; Hurst et al., 2007

These lipocalins are found in various bodily fluids and the concentrations excreted
are similar to the mouse MUPs observed in laboratory mice (approximately 4-10

mg/ml). The complexity of these proteins is much lower with only 1-4 proteins
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detected observed in each species, although genomic data is either incomplete or

non existent for these rodents.

The most widely studied lipocalin is aphrodisin, a female specific lipocalin secreted
by Syrian hamsters (Singer et al., 1986; Henzel et al., 1988). This protein, found in
vaginal secretions, facilitates the mounting behaviour of males via activation of a
specialized sensory structure named the vomeronasal organ, which activates the
accessory olfactory bulb (Clancy et al., 1984; Kroner et al., 1996; Jang et al., 2001).
Five major pheromones specifically bound onto natural aphrodisin have been
identified as 1-hexadecanol (44.7%), 1-octadecanol (19.5%), Z-9-octadecen-1-ol
(18.2%), E-9-octadecen-1-ol (15.4%) and hexadecanoic acid (2.2%) (Briand et al.,
2004). Interestingly, aphrodisin has been observed in vaginal discharges before
females reach fertility, suggesting another unknown function for this lipocalin

(Magert et al., 1999).

Roborovskin, a protein discovered in the urine of roborovski hamster, has not been
the focus of behavioural studies but observations made on the protein chemistry
level show that there is only a single protein present and that unlike MUPs and
other lipocalins no sexual dimorphism is observed and both males and females
secrete the similar concentrations in urine (Turton et al.,, 2010). Bank voles secrete
three odorant binding proteins primarily in their urine but also secrete the same
proteins in their saliva at lower concentrations (Stopkova et al.,, 2010). Male bank
voles express an additional sex specific lipocalin protein named glareosin (Dr M

Turton, thesis) but the behavioural significance of this is yet to be investigated.

There has been little investigation into olfactory communication and protein
expression in the harvest mouse. The harvest mouse, Micromys minutus, is a small
rodent approximately 2.5-3inches long that is native to Europe and Asia. Weighing
approximately 6-8g, they live in fields of cereal crops or among tall grasses (Harris
and Trout, 1991). They have a highly prehensile tail that is used for climbing and
balance, with slightly broader feet that are used for secure gripping on to grasses
leaving the front paws free to collect food (Ishwaka and Mori, 1999). They build

spherical nests that are often found suspended above ground and nest sharing,
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particularly during the winter, has been observed (Ishiwaka et al., 2010). Wild
harvest mice numbers can temporarily decline over winter, this is rectified over the

spring and summer months when frequent breeding occurs.

The limited behavioral data available suggests scents influence female mate choice.
Their specialised adaptations to exploit patches of seeds in tall grasses leads to local
high density populations where animals defend small individual territories. Unlike
most other rodents, females can display highly aggressive behaviour similar to
males. The aim of this chapter was to identify and characterise the protein
component in male and female harvest mice. The following objectives were set:

e Examine areas of protein secretion in male and female harvest mice

e Characterise the primary structure of these proteins using mass

spectrometric techniques.

e Establish the extent of structural heterogeneity and sexual dimorphism in

protein expression.

e Investigate possible roles of these proteins in scent communication.
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4.2 Results and discussion
4.2.1 Examination of the urine content of the harvest mouse

The harvest mice originated from Chester Zoo (Upton-by-Chester, UK) and were
housed in an outdoor enclosure of 250 square metres. Male and female harvest
mice were humanely captured from this outdoor enclosure and transferred to
individual cages indoor. Urine was collected from each rodent using the recovery
technique described in the methods section (Chapter 2, section 2.1) and analysed (5
pl) by 1D SDS-PAGE. In both sexes two abundant protein bands were observed
around 16-18 kDa (Figure 4.1) which is consistent with the mass of other lipocalins.
In contrast to other rodent species, the concentration of these proteins was quite
low. Unfortunately as the harvest mice only excrete between 5-10 ul of urine at
most, it was difficult to obtain protein concentration as there inadequate urine for a

protein assay.

4.2.2 Peptide mass fingerprinting of urine samples

To establish any differences between sexes, pieces of gel from each protein band
identified by SDS-PAGE were digested following the protocol listed in Methods
section 2.5. Following overnight incubation with trypsin, the digested material was
analysed by MALDI-TOF. The peptide masses produced were compared to a protein
database (SwissProt) and statistically analysed to see if there were any matches. No

significant matches were identified in either sex.

A comparison between protein bands highlighted differences in peptide masses
with few masses that were common in both proteins (Table 4.2). These proteins
may therefore be from the same protein family but with some sequence variation
between them. Although differences were observed between protein bands (Figure

4.2), no differences were observed between males and females (Figure 4.3 and 4.4).
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Figure 4.1 SDS-PAGE analysis of male and female harvest mouse urine.

Urine (5 pl) from both male and female harvest mice was mixed 1:1 with sample buffer and
resolved by SDS-PAGE. Samples were run on a 15% SDS gel. The gel was stained with coomassie
blue stain. The band at 66 kDa was later confirmed as albumin by PMF analysis. The potential
lipocalins (approximately 16-18 kDa) are highlighted by the red box.
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Table 4.2. A list of abundant masses from the peptide mass fingerprint analysis of the two
protein bands identified by SDS-PAGE.

PMF masses Detected in Detected in Observed in

(m/z) protein band protein band both sexes?
1?

842.4 Yes - Yes
870.4 - Yes Yes
959.6 Yes - Yes
995.6 Yes Yes Yes
11694 Yes - Yes
13225 Yes - Yes
1325.6 - Yes Yes
1489.1 - Yes Yes
1595.6 Yes - Yes
1648.4 - Yes Yes
17534 Yes Yes Yes
1860.4 Yes - Yes
2042.7 Yes - Yes

4.2.3 Investigating other sources of protein secretion

The concentration of protein in harvest mouse urine was much lower than that
observed in other rodents. In a study by Trout (1978), captive harvest mice were
observed scent marking certain areas of their habitat, in particular, branches and
twigs that were suspended off the ground. To investigate this theory further, Glass
rods were placed inside cages of the male and female harvest mice, previously
captured from the outdoor enclosure, for approximately two weeks. After two
weeks these rods were removed and wiped with a cotton bud soaked in water. The
end of the cotton buds were removed and placed into an Eppendorf tube (1.5 ml).
The tubes were centrifuged at 2000 rpm for five minutes before the buds were
removed and disposed of. Samples of the glass rod washes (5 ul) were then
resolved by SDS-PAGE (Figure 4.5). Two protein bands were identified at 16-18 kDa,
similar to those observed in the urine samples. The protein concentration of the
glass rod samples was much higher than that detected in the urine. Also the origin
of these protein bands in the glass rod washes did not appear to be urine as no
albumin band was identified on the gel (Figure 4.5). This was confirmed by a

creatinine assay. Creatinine is a breakdown product of creatine phosphate which is
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Figure 4.5 SDS-PAGE analysis of Glass rod washes from the cages of male and female harvest
mice.

Glass rods from both male and female harvest mice cages were washed with cotton buds soaked in
purified water (150 ul). The buds were removed and placed in Eppendorf tubes (1.5 ml) and
centrifuged at 2000 rpm for five minutes. A sample of glass rod wash (5 pul) was mixed 1:1 with
sample buffer and resolved by SDS-PAGE. Samples were run on a 15% SDS gel. The gel was
stained with coomassie blue stain.
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used in skeletal muscle contraction and is excreted directly into urine. Only trace
amounts of creatinine was detected in the glass rod washes — 0.5-1 pg/ml
confirming these proteins were being excreted from multiple areas. In rodents
creatinine concentrations in urine are usually much higher typically ranging from
100-500 pg/ml depending on sex. A protein assay confirmed the protein

concentration in these rod washes was between 3-4 mg/ml (Figure 4.6).

Further samples were collected from the same set of harvest mice including saliva,
paw washes and body washes to establish the origin of the protein secretion. Urine
was also collected from the same animals. Paw and body washes were collected in
a similar way to the glass rod washes. The paws and stomach were washed with
individual cotton buds soaked in water before removing the buds for centrifugation.
Saliva was collected using a glass pipette with a small diameter tip and transferred
directly into an Eppendorf tube. Approximately 0.5 — 1 ul of saliva was collected
from each animal. Purified water (4 ul) was added to each saliva sample to increase

the volume for analysis.

Samples of paw (5 pl), body (5 pl), saliva (1 ul) and urine (5 pl) were resolved by
SDS-PAGE (Figures 4.7). Two protein bands were identified in all samples around
16-18 kDa. No albumin was identified in the paw and body washes ruling out

contamination with urine.

4.2.4 Peptide mass fingerprinting of washes and saliva samples

To investigate the differences between the washes and saliva samples, an in-gel
digest of the protein bands of interest (from the SDS-PAGE analysis) was completed.
After overnight incubation with trypsin, the digested material was analysed using
MALDI-TOF. The PMFs were compared with those collected from the urine analysis
(Figure 4.8 and 4.9). No differences were observed confirming that these are most

likely the same two proteins.

Samples of gel were also taken and digested with two other proteases (LysC and

GluC) that cleave the protein at different sites. These PMFs together with the
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Figure 4.6 Protein and creatinine assays of harvest mouse glass rod washes.

Glass rods from both male and female harvest mice cages were washed with cotton
buds soaked in purified water (150 pl). The buds were removed and placed in
Eppendorf tubes (1.5 ml) and centrifuged at 2000 rpm for five minutes. Protein assay
(top graph). Samples were diluted down in purified water to be in the linear range of
the assay. Absorbance readings were measured at 620 nm using a plate reader.
Creatinine assay (bottom graph). Creatinine concentration was measured using a
creatinine assay kit. A creatinine standard curve was prepared (0-30 ug/ml), these
samples did not require a dilution due to the low abundance of creatinine in these
samples. Absorbance readings were measured at 570 nm.
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Figure 4.7 SDS-PAGE analysis of saliva, paw washes, body washes, glass rod washes and urine
from male and female harvest mice.

Glass rods from both male and female harvest mice cages were washed with cotton buds soaked in
purified water (150 ul). The buds were removed and placed in Eppendorf tubes (1.5 ml) and
centrifuged at 2000 rpm for five minutes. The paws and stomach of male and female harvest mice
were washed with individual cotton buds soaked in water (50 pl) before transferring the buds to
Eppendorf tubes (1.5 ml) for centrifugation. Saliva was collected using a glass pipette with a small
diameter tip and transferred directly into an Eppendorf tube (0.5 ml). Approximately 0.5 — 1 pl of
saliva was collected from each animal. Purified water (4 ul) was added to each saliva sample to
increase the volume so analysis could proceed. Samples of paw wash (5 pl), body wash (5 ul), and
saliva (1 pl), glass rod wash (5ul) and urine (5 ul) were mixed 1:1 with sample buffer and resolved
by SDS-PAGE. Samples were run on a 15% SDS gel. The gel was stained with coomassie blue stain.
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Figure 4.8 Peptide mass fingerprint comparison between paw, body and glass rod washes, saliva
and urine from harvest mice — protein band 1 (upper band)
Small pieces of gel were extracted from the protein bands of interest from the SDS-PAGE analysis
of harvest mouse paw, body and glass rod washes, and saliva and urine samples. These pieces of
gel were destained in 50:50 ACN:NH,CO; before being reduced and alkylated in DTT (10 mM) and
iodoacetamide (60 mM) respectively. Following overnight incubation at 37 °C with trypsin, the
peptides were collected and mixed 1:1 with a-Cyano-4-hydroxycinnamic acid dissolved in 50%
ACN, 0.1% TFA. The mixture (1 pl) was spotted onto a target plate and left to dry at room

temperature before being analysed by MALDI-TOF. *trypsin autolysis peak.
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Figure 4.9 Peptide mass fingerprint comparison between paw, body and glass rod washes, saliva

and urine from harvest mice — protein band 2 (lower band)

Small pieces of gel were extracted from the protein bands of interest from the SDS-PAGE analysis
of harvest mouse paw, body and glass rod washes, saliva and urine samples. These pieces of gel
were destained in 50:50 ACN:NH,CO; before being reduced and alkylated in DTT (10 mM) and
iodoacetamide (60 mM) respectively. Following overnight incubation at 37 °C with trypsin, the
peptides were collected and mixed 1:1 with a-Cyano-4-hydroxycinnamic acid dissolved in 50% ACN,
0.1% TFA. The mixture (1 pl) was spotted onto a target plate and left to dry at room temperature

before being analysed by MALDI-TOF. *trypsin autolysis peak.
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tryspin PMFs were used to support the sequence evidence found from the de novo

sequencing analysis.

Table 4.3 A comparison between the abundant masses observed in the original urine PMF
and the saliva, glass rod, paw and body washes

PMF masses Glass rod wash  Paw wash band Body wash Saliva band 2

band 1 -urine band 1 1 band 1
842.4 v v v v
959.6 v v v v
995.6 v v v v
1169.4 v v v v
1322.5 v 4 4 4
1595.6 v v 4 4
1753.4 v 4 4 4
1860.4 v v 4 4
2042.7 v v v 4

PMF masses Glass rod wash  Paw wash band Body wash Saliva band 2

band 2 -urine band 2 2 band 2
870.4 v v v v
995.6 v v v v
1325.6 v v v v
1489.1 v v 4 4
1648.4 v v 4 4
1753.4 4 4 4 4

4.2.5 Determination of an accurate molecular weight

To obtain a more accurate molecular weight, samples of the glass rod washes from
three male and three female harvest mice were diluted (5 pmol/ul in 0.1% formic
acid) and analysed by electrospray (ESI) mass spectrometry. The glass rod washes
were chosen as they contained a higher concentration of protein. Three abundant
proteins were identified in both sexes — 16437 Da, 16724 Da and 17888 Da. All
animals expressed 16724 Da with varying expression of the other two proteins
(Figure 4.10). The variation in expression between individuals may be a result of
genetic diversity as the animals originate from the outdoor enclosure where
breeding is not controlled so these rodents are not as in-bred as laboratory strains

of mouse.
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Fig 4.10 Determination of an accurate molecular weight of the protein bands identified by SDS-
PAGE in male and female harvest mice.
Glass rod samples from male and female harvest mice were diluted into formic acid (0.1 %) to
produce a final concentration of approximately 5 pmol/ul. The samples were then injected onto
a C4 desalting trap and masses of proteins present were determined by ESI-MS. Data was
processed using maximum entropy software MAX ENT-1 (MassLynx 4.1, Waters).
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4.2.6 Discovery analysis

Urine, washes and saliva were digested in-solution using the protocol described in
Chapter 2, section 2.5. Following proteolysis overnight with trypsin, the digested
material was analysed by LC-MS (Figure 4.11a and 4.11b). The raw data was

processed using PEAKS 6 software (Bioinformatics Solutions Inc., Canada).

PEAKS is a bioinformatics software that has de novo sequencing, database searching
and protein quantification capabilities. Raw data is imported from an LC-MS
analysis. This raw data can often contain background noise, redundancy as well as
errors due to sample preparation and instrument approximation. PEAKS will use a
data refining tool to improve the overall quality of the data. This tool merges
MS/MS scans from the same precursor m/z, using retention time to do this. It will
also use isotopic envelope patterns to correct the precursor m/z as sometimes
instruments will give values that are not the monoisotopic ion. The data refinement
tool will also remove low quality spectra and centroid and deconvolute charge and
isotopes. The MS/MS data is then de novo sequenced using an algorithm and
scoring functions that are specific to each mass analyser used. De novo sequencing
is carried out in the absence of a protein database which is advantageous for
identifying novel peptides (Zhang et al., 2003). Once the data has been de novo
sequenced, a summary of all peptides sequenced is displayed with both a
confidence score (as a percentage) for each amino acid in the sequence as well as
an overall average local confidence score (as a percentage) for each peptide which
is calculated as the total of the residue scores divided by the peptide length. The
amino acids are also colour coded to reflect the scoring of the residue for example
high scoring peptides are coloured red. This unique feature allows the user to
obtain very high confidence sequence tags even in cases where PEAKS can not find

the complete sequence with a high confidence level due to poor quality spectra.

It is also possible to include a database search in the set up of the processing
method. When a protein database is available, PEAKS can further explain the de

novo sequences. By comparing the de novo sequences with the database, PEAKS
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can confirm the database search results, find PTMs, mutations and homologous

peptides; as well as output the de novo only peptides (Zhang et al., 2011).

Prior to using PEAKS to de novo sequence the harvest mouse proteins; it was
internally validated using previously sequenced proteins. In this case the well
established mouse MUPs were used to test the PEAKS de novo abilities. Mouse
urine from male B6 laboratory mice was digested and analysed on three different
mass spectrometry platforms — Orbitrap, QTOF and an ion trap. The raw data was
imported into PEAKS and the data refinement tool initiated. Appropriate error
tolerances were set for each mass analyser and the data was de novo sequenced.
As predicted the data from the Orbitrap produced high scoring data (over 85%) with
many of the peptides matching exactly to mouse MUP sequences. This is most
likely due to the high sensitivity, mass accuracy and good quality MS/MS
fragmentation data provided by the Orbitrap. The other two platforms produced
data of a medium quality with very few high scoring peptides. So while PEAKS
produced impressive data with the Orbitrap setup, it is also important to choose an
appropriate mass spectrometry platform to achieve confident de novo sequence

data.

For the harvest mouse in-solution digests the PEAKS processing method was set up
to de novo sequence the peptides followed by a database search using a custom
made lipocalin database. Many sequences aligned with odorant binding proteins
from mice, rats and bank voles. There were also sequences that aligned with MUPS

4, 5 and 20 (Table 4.4).
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Table 4.4 Peptide sequence tags from PEAKS database search. Raw data was processed
using PEAKS software. Samples were searched against a lipocalin database for potential
matches and sequence tags for peptides that may share high sequence homology to other
peptides belonging to lipocalin proteins. PEAKS defaults to leucine for all leucine and
isoleucine residues. Using the current LC-MS system, it is not possible to distinguish
between the two residues due to their isobaric nature.

Sequence tag PEAKS de Protein identification from database % shared
novoscore ~ dentity
LNGDWFSLLTASEK 93 Rat MUP (Rattus norvegicus) 100
MUP 5(Mus musculus) 80
LEENGSMR 96 Rat MUP (Rattus norvegicus) 100
MUP 4 (Mus musculus) 86
MUP 5(Mus musculus) 86
MUP 20(Mus musculus) 86
EPDLSSDLK 98 MUP 20(Mus musculus) 100
MUP 5(Mus musculus) 100
Rat MUP (Rattus norvegicus) 78
TDYDNYLMFHVTNVK 86 MUP 4(Mus musculus) 80
MUP 20(Mus musculus) 80
CLEAR 89 MUP 20(Mus musculus) 100
SVALAADNLNK 97 Aphrodisin (Cricetulus griseus) 73
SLTTVTGYVEADGQTYR 85 Odorant binding protein 1a and 1b 69
(Mus musculus)
EEVEGLMSEVTK 85 Vomeromodulin 91
(Rattus norvegicus)
LTALAANNADK 98 Odorant binding protein 1 69
(Myodes glareolus)
LOEEGPMR 92 Odorant binding protein 2 78
(Myodes glareolus)
ELTCEDDCK 94 aphrodisin-like (Rattus norvegicus) 67
NQYEGDRNFEPVK 93 Odorant binding protein 2 73

(Myodes glareolus)

ATPENLVFYSENVDR 96 Odorant binding protein 1b 86
(Mus musculus)

LLFVVGK 99 Odorant binding protein 2 86
(Myodes glareolus)

TQFEGDNHFAPVK 93 Odorant binding protein 2 83
(Myodes glareolus) 75

Odorant binding protein 3
(Myodes glareolus)

ATPDNLVFYSENLDR 95 Odorant binding protein 1b 73
(Mus musculus)
Odorant binding protein 3 73
(Myodes glareolus)
VLFVVGHAPLTPDQR 91 Odorant binding protein 1a 62

(Mus musculus)
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Fig 4.11a Base peak chromatograms from LC-MS discovery run.

Protein (1-5 pg) from male and female urine, paw washes, body washes, glass rod washes and
saliva was reduced with DTT (3 mM final concentration) and alkylated with iodoacetamide (9 mM
final concentration). Trypsin was added (50:1 substrate:enzyme) and the digests incubated
overnight at 37 °C. The samples were acidified with TFA (0.1 % final concentration). Peptides from
the in-solution proteolysis were analysed using a Thermo Scientific QExactive mass spectrometer
coupled to a Thermo Scientific™ Dionex™ UltiMate™ 3000 nano chromatography system. The
samples were injected (typically equivalent to 500fmol protein) onto a reversed phase column and
were eluted over a 1 h acetonitrile gradient. Spectra were acquired between 300-2000 m/z
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Fig 4.11b Base peak chromatograms from LC-MS discovery run.

Protein (1-5 pg) from male and female urine, paw washes, body washes, glass rod washes and
saliva was reduced with DTT (3 mM final concentration) and alkylated with iodoacetamide (9 mM
final concentration). Trypsin was added (50:1 substrate:enzyme) and the digests incubated
overnight at 37 °C. The samples were acidified with TFA (0.1 % final concentration). Peptides from
the in-solution proteolysis were analysed using a Thermo Scientific QExactive mass spectrometer
coupled to a Thermo Scientific™ Dionex™ UltiMate™ 3000 nano chromatography system. The
samples were injected (typically equivalent to 500fmol protein) onto a reversed phase column and
were eluted over a 1 h acetonitrile gradient. Spectra were acquired between 300-2000 m/z.
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4.2.7 Protein purification for de novo sequencing analysis

As there was a mixture of proteins present in the samples, a purification step was
implemented prior to de novo sequencing. Anion exchange chromatography (AEX)
was used to separate the proteins into individual fractions. AEX is a non denaturing
protein purification technique that separates proteins according to their net charge.
Glass rod washes were used for AEX because they contained the highest
concentration and amount of protein. The isoelectric point (PI) of the proteins to
be separated would normally be used to determine buffers and pH. A pH higher
than the Pl would give the proteins a negative charge and vice versa for cation
exchange. The PI of these proteins was unknown therefore a method that had
previously been used to separate lipocalins in the bank vole was used as a starting

point.

Samples (100 pl) were injected onto a UNO Q (1 ml) anion exchange column that
was equilibrated in 10 mM Hepes pH 8.0 and eluted with a 0-0.5 M NaCl gradient in
the same buffer. The chloride ions disturb the ionic interaction between the
column resin and negatively charged proteins. The negatively charged proteins are
progressively displaced from the resin and eluted from the column. Fractions were
collected (1 ml/min) over a 60 minute period. Post analysis, the fractions were split
into two tubes, one for SDS-PAGE and one for de novo sequencing analysis.
Strataclean beads were added to one set of fractions to concentrate the protein
solution and analysed by SDS-PAGE. SDS-PAGE analysis of the fractions revealed
protein around 16-18 kDa had been eluted in fractions’ 12-15 (Figure 4.12). ESI
analysis of these fractions identified that proteins 16437 Da and 16724 Da had been
successfully separated (Figure 4.13). There was no protein at 17888 Da despite it

being present in the starting material.

The absence of 17888 Da was either due to low abundance of this protein or
because the AEX conditions did not suit this protein. As the discovery run
highlighted the presence of MUPS the AEX conditions were changed to a one
previously used to separate MUPS (Robertson et al., 1996) incase this 17888 Da

protein was possibly a MUP rather than an odorant binding protein. Samples (100
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ul) were injected onto a Mono Q (1 m) anion exchange column that was
equilibrated with 50 mM MES buffer pH 5.0 and eluted over a 0-0.2 M NaCl
gradient. Fractions were collected (1.5 ml) over an 85 minute period. Strataclean
beads were then added to the fractions to concentrate the protein solution. The
beads were then analysed by SDS-PAGE. No protein was identified on the gel

indicating that the MUPS detected in the discovery run were in low abundance.

4.2.8 De novo sequencing analysis

The other half of each fraction containing the protein to be sequenced was split into
three aliquots. Strataclean beads were added to each aliquot. The beads were
digested using three different proteases - trypsin, endoproteinase LysC and
endoproteinase GluC — to produce overlapping sequence information due the
specificity of each enzyme. Following overnight proteolysis, the samples were

analysed by LC-MS to produce de novo sequence data.

Following LC-MS analysis, the raw was processed using PEAKS 6 software. Peptides
that were sequenced in PEAKS were then manually BLAST searched

(http://blast.ncbi.nlm.nih.gov). BLAST — Basic Local Alignment Search Tool, is a

bioinformatics software that identifies sections of similarity between sequences.
For each protein there were peptide sequences that shared some homology with
odorant binding proteins found in the bank vole and mouse (Table 4.5). The
samples were also searched against a lipocalin database and matches and sequence
tags for odorant binding proteins were observed (as in the discovery run section
4.2.6) but none for MUPS suggesting the two main proteins that the harvest mouse

excretes were most likely to be lipocalins but not MUPS.
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Fig 4.12 Harvest mouse protein purification using anion exchange chromatography.

A glass rod wash from a harvest mouse was initially examined by ESI-MS to check all three
proteins to be purified had been expressed. The sample (100 ul) was injected onto a UNO Q (1
ml) anion exchange column that was equilibrated in 10 mM Hepes pH 8.0 and eluted with a 0-
0.5 M NaCl gradient. Fractions (1 ml) were collected over a 50 minute period. The fractions
were split into two aliquots, one aliquot was treated with strataclean beads to concentrate up
any protein in the samples. Samples were vortexed for 2 minutes before being centrifuged at
2000 rpm for two minutes. The supernatant was discarded and the beads were mixed with

sample buffer (20 ul) and analysed by SDS-PAGE. Samples were run on a 15% SDS gel. Gels
were stained with coomassie blue stain.
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Fig 4.13 Identification of proteins present in AEX fractions.

Following SDS-PAGE analysis, Fractions 13 and 14 were diluted into formic acid (0.1 %) to
produce a final concentration of approximately 5 pmol/ul. The samples were then injected
onto a C4 desalting trap and masses of proteins present were determined by ESI-MS. Data was
processed using maximum entropy software MAX ENT-1 (MassLynx 4.1, Waters).
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Table 4.5 BLAST results of harvest mouse protein sequences obtained from LC-MS
analysis. Sequences for both proteins were assessed using the blastP algorithm. Search
parameters were restricted to rodents.

Harvest mouse

Sequence (16724 Da
protein)

Protein identification

Score

E

Sequence
homology

Harvest mouse

Sequence (16437 Da
protein)

(Myodes glareolus)

Protein identification

SLEGKWK aphrodisin-like (Rattus 23.5 0.11 85%
norvegicus)
LTALAANNADK Odorant binding protein 1 22.7 55 78%
(Myodes glareolus)
LOEEGPMR Odorant binding protein 2 24.4 16 86%
(Myodes glareolus)
ELTCEDDCK aphrodisin-like (Rattus 25.7 6.5 67%
norvegicus)
NQYEGDRNFEPVK | Odorant binding protein 2 25.2 14 73%
(Myodes glareolus)
ATPENLVFYSENVDR | Odorant binding protein 43.5 8e-08 86%
1b
(Mus musculus)
LLFVVGK Odorant binding protein 2 21 186 86

Sequence
homology

(Mus musculus)

SLEGKWK aphrodisin-like (Rattus 235 0.11 85%
norvegicus)
SVALAADNLNK Aphrodisin (Cricetulus 21.8 137 64%
griseus)
ELTCEDDCKR aphrodisin-like (Rattus 25.7 7.2 67%
norvegicus)
TQFEGDNHFAPVK | Odorant binding protein 2 34.6 0.014 83%
(Myodes glareolus)
29. . 9
Odorant binding protein 3 9.9 0.44 75%
(Myodes glareolus)
ATPDNLVFYSENLDR | Odorant binding protein 37.1 0.002 73%
1b o
(Mus musculus) 3 0.012 73%
Odorant binding protein 3
(Myodes glareolus)
VLEVVGHAPLTPDQR | Odorant binding protein 28.2 1.8 62%
1a
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4.2.9 Determination of the harvest mouse protein sequences

Based on the BLAST results the harvest mouse protein sequences were aligned
against OBP 2 (Myodes glareolus) for the 16724 Da protein and OBP 3 (Myodes
glareolus) for the 16437 Da protein (Figures 4.14 and 4.15). Using peptides
produced from three different proteases partial sequences for each protein were
confirmed. Most sequences were confirmed by at least two cleavage strategies for
the 16724 protein. There was less confirmatory evidence for the 16437 Da protein
due to the lack of cleavage sites for LysC and GluC. The lack of lysine and glutamic
acid residues in certain parts of the protein resulted in only tryptic fragments
providing sequence data. The highly conserved lipocalin consensus G-X-W, where X
represents any amino acid residue, was observed in both sequences providing

confirmation that these proteins belong to the lipocalin family.

To collect further confirmatory sequence information, particularly for protein 16437
Da, a fourth digest (post purification) using endoproteinase AspN (AspN) was
prepared. AspN hydrolyses peptide bonds at the N terminal side of aspartic acid and
also glutamic acid but at a slower rate. Due to the potential non-specific cleavage,
the PEAKS processing method was set to include cleavage at both sites. This was
successful as it provided some extra confirmatory sequences and even produced a
candidate peptide for the C-terminus of the 16437 Da protein. However in both
proteins there is a section (amino acids 50 -65 in Figures 4.14 and 4.15) where little
or no sequence data was found at all. This could be due to a number of factors.
The first is lack of cleavage sites leading to large peptides that are difficult to
fragment and ionise in the mass spectrometer source. Secondly there could be
many cleavage sites leading to small peptide fragments being produced, these

fragments may be too small to be identified.

The harvest mouse proteins were sequenced with the aid of the peptide mass
fingerprints for added confidence (Figure x). PMFs for tryptic and LysC digests were
used to match up masses to sequences to confirm the two abundant bands
identified by SDS-PAGE were the proteins that had been partially sequenced (Table
4.6). Unfortunately the GIuC PMF did not identify any peptides. As many GluC
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autolysis peaks were identified, it is likely the protease self-digested preventing
efficient digestion. There could potentially be missed cleavages of the harvest

mouse peptides but without complete sequence data it is difficult to identify these.

Some of the smaller masses were difficult to detect in the MALDI spectra due to ion
suppression caused by the MALDI matrix ions. The LysC PMFs (Figure 4.16) both
had an abundant unique ion - 2480 m/z in band 1 (16724 Da) and 2137 m/z in band
2 (16437 Da). This confirmed the 1753 m/z ion in the trypsin PMFs, which was an
assumed shared peptide between the two proteins, were two unique sequences
even though they share the same mass. Unfortunately only partial sequence
information was collected for the 2480 m/z ion There were also some masses in
both LysC PMFs that did not have a corresponding sequenced peptide. These could
either be missed cleavages or peptides that were difficult to fragment resulting in

poor de novo sequencing data.
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Table 4.6 A comparison between the masses observed by PMF analysis and the sequence

data.
Sequence protein 16724 Da Protease Corresponding m/z in PMF
LQEEGPMR Trypsin 959.4
LTALAANNADK LysC 1101.6
ELTCEDDCK Trypsin and LysC 1169.4
NQYEGDRNFEPVK Trypsin 1595.7
ATPENLVFYSENVDR Trypsin 1753.8
SLTTVTGYVQADGQTYR Trypsin 1858.9
Sequence protein 16437 Da Protease Corresponding m/z in PMF
SVALAADNLNK LysC 1115.6
LLPSGPMR Trypsin 870.5
ELTCEDDCKR Trypsin 1325.5
TQFEGDNHFAPVK Trypsin and LysC 1489.7
ATPDNLVFYSENLDR Trypsin 1753.8
VLFVVGHAPLTPDQR Trypsin 1648.9
ATPDNLVFYSENLDRANAK LysC 2138.1

The list of peptides used to piece together the harvest mouse protein sequences are

highlighted in tables 4.7 and 4.8. Examples of MS/MS fragmentation spectra are

illustrated in figures 4.17-4.24. The rest of the MS/MS product ion spectra are

illustrated in supplementary data B.
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Table 4.7 A summary of all peptides de novo sequenced from the harvest mouse in-
solution digest of 16724 Da. The raw data was processed using PEAKS software. A cut off
value of 55% for the total confidence level (recommended by PEAKS) was applied to the de
novo analysis. Each amino acid was given an individual confidence percentage. The total
confidence score was worked out using the mean of the individual scores. PEAKS defaults
to leucine for all leucine and isoleucine residues. Using the current LC-MS system, it is not
possible to distinguish between the two residues due to their isobaric nature.

Sequence Protease Mass Individual residue confidence Average
(Da) scores (%) PEAKS
confidence
score (%)
SLEGKWK Trypsin 846.46 | 868797909098 95 92
LysC 97 98 100 98 98 99 96 98
LTALAANNADK Trypsin 1100.58 | 98 99 100 100 100 100 98 97 97 98
99 87
LysC 97 99 100 100 100 100 99 98 98 98
99 90
LQEEGPMR Trypsin 958.45 9997 1009997949261 92
ELTCEDDCK Trypsin 1168.44 | 9698 99 10010097 100 100 61 94
NQYEGDRNFEPVK Trypsin 1594.73 | 959587 94 98 97 94 96 95 98 93
100 100 59
ATPENLVFYSENVDR Trypsin 1752.83 | 8698 1009997 99 100 100 95 96 96
9591939792
LLFVVGK Trypsin 774.50 10099 99 100 100 100 61 99
LysC 9999 99 100 100 100 58 94
QGPLTGPEQTAK Trypsin 1225.63 | 86919999 1009691918792 91
96 59
LAEYAK Trypsin 693.36 | 100 100 100 100 100 97 99
100 100 100 100 100 96 99
LAEYAKEK Trypsin 950.50 100 100 10099 99 99 99 93 99
GQPLTGPEQTAK LysC 1125.63 | 565199999998 9191 88 94 96 85
59
EGPMRLYVRE GluC 1248.62 | 99 100 100 100 10096 96 99 59 91
59
GDNRFEPVKATPE GluC 1458.71 | 97979293 9397 100 99 99 99 94
99 100 59
NLVFYSE GluC 870.41 90909597 99 100 59 90
EYAKE GluC 638.29 99 99 99 100 59 91
LTALAANNADKLQE GluC 1470.76 | 9090 100 100 1009997 97 97 99 97
98 96 98 94
DTALVTCPE GluC 1004.44 | 858696 98 97 97 99 100 59 91
SLTTVTGYVQADGQTYR | Trypsin 1858.94 | 6064 96 99 99 99 99 99 99 97 98 85
98 69 64 96 98 85
DGQTYRNQ AspN 980.43 8374919492879075 85
DNRFEPVKATP AspN 1272.61 | 8788857176887977828180 81
EQTAKLA AspN 759.43 95768079 735169 75
EYAKEKNLPPENLQ AspN 1671.82 | 979287 77 90 87 83 92 97 88 97 90

91 97 86
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Table 4.8 A summary of all peptides de novo sequenced from the harvest mouse in-
solution digest of 16437Da. The raw data was processed using PEAKS software. A cut off
value of 55% for the total confidence level (recommended by PEAKS) was applied to the de
novo analysis. Each amino acid was given an individual confidence percentage. The total
confidence score was worked out using the mean of the individual scores. PEAKS defaults to
leucine for all leucine and isoleucine residues. Using the current LC-MS system, it is not
possible to distinguish between the two residues due to their isobaric nature.

Sequence Protease Mass Individual residue confidence Average
(Da) scores (%) PEAI.(S
confidence
score (%)
SLEGKWK Trypsin 846.46 | 9898 9997 97 99 97 98
LysC 98
SVALAADNLNK Trypsin 1114.60 | 949499 100 100 99 99 98 98 98
99 95 98
LysC
LLPSGPMR Trypsin 869.48 59100 100 100 98 97 96 59 89
ELTCEDDCKR Trypsin 1324.54 | 8996 99 10099 94 98 97 95 95 96
TQFEGDNHFAPVK Trypsin 1488.70 | 898599919898 98 99 100 93
LysC 100 100 100 59 94
ATPDNLVFYSENLDR Trypsin 1752.83 | 6796 9797 97 100 100 100 97 95
98 969194 97 92
VLFVVGHAPLTPDQR Trypsin 1647.91 | 7473829296 959799 96 94 91
96 94 92 96 90
LAEYAK Trypsin 693.36 100 100 100 100 100 95 99
LysC 100 100 100 100 100 95 99
ATPDNLVFYSENLDRANAK LysC 2137.04 | 9998 9393 91 100 100 100 97 84
979176 78 9590 61 48 65 58
TQYKTQFE GluC 1043.49 | 88 8596 85979398 95 92
DDCKRL AspN 805.37 87 10099 90 78 97
DNLNKLLPSGMPR AspN 1453.71 | 78 7296 96 97 99 98 61 56 56 71
76 68 81
DDHFAPVKATP AspN 1196.54 | 62 89 8895 96 879079 88 97 85
92
DNLVFYS AspN 856.32 76 708782737271 76
EYAKEKNLPTMNLQ AspN 1693.89 | 99999895989287977374 89
77 77 96 92
DVLATDTCPE AspN 1119.43 | 707582715477 7692 64 83 74

157



Chapter 4: Protein secretion in the harvest mouse (Micromys minutus)

4.4 Conclusions

Like many other rodent species, harvest mice to excrete proteins belonging to the
lipocalin family. These proteins are excreted by both male and females with little
sexual dimorphism observed. Both sexes excrete the same proteins (confirmed by
ESI-MS and PMF) and the concentration expressed is very similar in each sex (SDS-
PAGE). Unlike the majority of other rodents whose primary source of protein
excretion is their urine, harvest mice secrete high concentrations of protein in their
saliva and possibly their paws with much lower concentrations observed in the
urine. The protein identified in the body wash samples was most likely transferred
onto the stomach areas during grooming and when climbing up and down the glass
rods. The glass rod washes also contained a substantial amount of protein. Urine
contamination was ruled out as no albumin was observed during SDS-PAGE analysis
and no creatinine was detected in the samples. The origin of the protein secretion
was either saliva and the rodents were licking their paws prior to climbing up the
rods, or the animals were secreting protein from their paws during the climbing
process. Also, when the glass rods were removed from the cages they were heavily
coated in a white “sticky” residue. As captive harvest mice have been observed to
primarily scent mark on objects suspended above ground, if the primary source of
secretion is the paws, the rodents may only secrete during the climbing process
which is why the paw washes didn’t look to contain as much protein as the other

washes and saliva.

Three abundant proteins were identified in both male and female harvest mice by
ESI-MS — 16437 Da, 16724 Da and 17888 Da. Unfortunately a purified sample of
protein 17888 Da was unable to be collected by AEX and as a consequence this
protein was not de novo sequenced. There is evidence that the other two proteins
are lipocalins as they contain the characteristic conserved lipocalin sequence motif
G-X-W. The proteins were sequenced using PEAKS 6 software. Overall the
sequence data produced by PEAKS was of high quality with the majority of ALC
scores above 90% with a couple of sequences scoring just above 70%. This is a
combination of both the unique algorithms used by PEAKS and using the right mass

analyser to produce high quality raw data. There were a couple of MS/MS spectra
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that upon visual inspection looked difficult to interpret due to the lack of b and y
ions. Although PEAKS managed to sequence these with high confidence, care
should be taken with the data refinement step where PEAKS removes low quality
data as it is possible that too many ions were removed leading to sparse looking
spectra. It could be that the parameters were set too high and other peptide

spectra were poorly sequenced and therefore discarded because of the 55% cut off.

A database search was also enabled in the PEAKS processing method and there
were many matches to mouse MUPs (Figure 4.25). The two dominant proteins
secreted by harvest mice are odorant binding proteins with no evidence of MUPs in
the AEX fractions so are these MUP sequence matches true? PEAKS database
searching uses a series of unique authenticated algorithms to assign a peptide to a
protein and then validates the result. PEAKS firstly use the de novo sequence tags
to find approximate matches in the protein database. All proteins in the database
are evaluated according to the sequence tag matches. The top 7000 proteins are
used to make a protein shortlist. All peptides in the protein shortlist are used to
match MS/MS spectra using a rapid scoring function. The top 512 highest scoring
peptide candidates are kept for each MS/MS spectra. A precise scoring function is
then used to find the best peptide for each spectrum from the 512 peptides
calculated in the peptide shortlisting step. The similarity between the de novo
sequence and the database peptide is an important component in the scoring
function. The score is also normalized to ensure it can be compared across different

spectra (Zhang et al., 2012).

Like most software, PEAKS peptide identification is statistically validated to avoid
false positives. The most accepted result validation method is through a false
discovery rate (FDR). FDR is defined as the ratio between the false peptide
matching spectrums and the total number of peptide matching spectrums above
the score threshold. The threshold score is user defined and by adjusting the score
thresholds, the result accuracy (FDR) can be traded with the sensitivity (number of
reported identifications). Different software equipped with different scoring
functions may have significant different trade off efficiencies. A comparison

between MASCOT, SEQUEST and PEAKS demonstrated PEAKS performs slightly
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better when all three software’s had an FDR set to exactly the same threshold,
PEAKS identified the most peptide matching spectrums (Zhang et al., 2012). PEAKS
has an estimate FDR with decoy fusion option which enables search result
validation with an enhanced target-decoy approach. Decoy sequences are
automatically generated from a target database and are searched by PEAKS. This

enables the estimation of the false discovery rate in the analysis report.

Peptides that were de novo sequenced were also BLAST searched to find any
similarities between sequences. Many sequences shared a high percentage
homology with other lipocalins observed in other rodents. For each peptide an E
value and score is given. The E value illustrates the number of hits you can expect
to see by chance when searching a database of a particular size. It exponentially
decreases as the score value increases. The lower the E value the more significant
the match is although the length of the sequence is taken into account. Shorter
sequences often have higher E values because they have a higher probability of
occurring in the database by chance. The score value gives an indication of how
good the alignment is; the higher the score, the better the alignment. The score is
calculated from a formula that takes into account the alignment of similar or

identical residues, as well as any gaps introduced to align the sequences.

Preliminary behavioural studies, carried out by technical staff at the University of
Liverpool, Leahurst, testing responses to glass rods show the harvest mice have no
attraction to their own odour but respond to scents from unfamiliar rodents.
Harvest mice were exposed to a control — two clean glass rods — which they showed
little interest in. They were then exposed to a glass rod that had been removed
from their cage and contained their own scent and a clean rod. The rodents were
attracted to neither rod and didn’t spend any more time near their own rod versus
the clean rod. The third test was to expose the animal to another two rods - one
rod from the cage of another rodent of the same sex and a clean rod. The fourth
test was to again expose the rodent to two rods — one from the cage of an
unfamiliar rodent of the opposite sex and a clean rod. In both tests, rodents spent a
significant amount of time near the rods containing the unfamiliar scent, with

slightly stronger responses to male odour rods — males exposed to rods from other
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males and females exposed to rods from males. These behavioural tests and the
data collected in this chapter, was done using rodents that had been transferred
from the outdoor enclosure to cages indoor. It is unknown how this affects the
rodents behaviourally and whether or not it effects protein expression of the
lipocalin proteins. Although the cages are set up to closely mimic an outdoor
habitat, it would be interesting to repeat these behavioural tests on rodents that
have just been captured from the enclosure and compare them to rodents who
have been living indoors for a number of weeks. Alongside this, collecting urine,
saliva and washes would be useful to monitor potential protein expression

differences.

What exactly the mice are responding to in the behavioural experiments is
unknown. It would be beneficial to complete the de novo sequencing of the two
abundant proteins so a recombinant form of each could be made for further
behavioural studies. Alternative sequencing methods such as electron transfer
dissociation (ETD) may result in more sequence coverage. ETD fragmentation
causes rapid cleavage of the peptide backbone via the transfer of an electron
produced by a radical anion (e.g. Flouranthene) resulting in c and z ions (Figure 1.6)
(Syka et al., 2004). One of the advantages of ETD is the ability to fragment larger
peptides. In the case of the harvest mouse proteins there was a section (amino
acids 54-66, figure 4.14 and amino acids 45-69, figure 4.15) where no sequence data
was collected. This could have been due to a lack of protease cleavage sites
resulting in large peptides that would be difficult to fragment using CID. ETD
fragmentation could therefore provide sequence information for these parts of the
protein. Alternatively top-down ETD using the intact protein (the glass rod wash

fractions) could also be used to gain further sequence information.

The numbers of wild harvest mice have fluctuated quite dramatically over the last
10 years. Predation, harsh winters and the rise in the housing development
projects have caused numbers to drop to a threatened status on some occasions.
Various short term conservation projects including the recycling of tennis balls, to
use as harvest mouse nests, after the Wimbledon tennis championship in 2001 have

seen numbers of wild harvest rise. It is anticipated that this work will contribute to
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long term conservation projects in a similar manner to the pest control projects
discussed in chapter 3. By understanding the behaviour and communication
between these rodents, it may be possible to manipulate their behaviours to
encourage them to live in safer habitats in the wild. Also, a greater understanding
into how they reproduce would be advantageous so if numbers should fall again it

will be possible to promote successful reproduction strategies.
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Chapter 5: Seasonal expression of urinary proteins in the male mouse lemur

(Microcebus)

5.1 Introduction

Mouse lemurs (Microcebus) are small nocturnal primates native to Madagascar.
With a total length of approximately 11 inches, they are the world’s smallest
primate. At present there has been 19 species of mouse lemur identified
(Mittermeier et al, 2010; Radespiel et al., 2012). Each species vary little in their
physical features such as their size and phenotypic traits. This chapter will focus on
two of the mouse lemur species — Microcebus murinus and Microcebus

lehilahytsara.

Mouse lemurs are social animals although they prefer to forage alone (Bearder,
1987). Their social pattern can vary depending on gender and season. Mouse
lemurs regularly interact with their conspecifics and establish steady home ranges
which often overlap (Radespiel 2000; Weidt et al., 2004). Male home ranges are
often larger than females and often increase in size during the mating season as a
possible strategy to improve mating success (Schmelting, 2000; Schmelting et al,
2000). Females prefer to form stable restricted matrilineal sleeping groups
(Radespiel et al., 2001; Lutermann et al., 2006; Jurges et al., 2013) while males are
frequently found sleeping alone (Radespiel et al., 1998; Schmelting, 2000) although

during the reproductive season can be found in female nesting sites.

The mouse lemur mating system can be described as multi male/multi female
(Fietz, 1999). They have defined breeding seasons, the onset of which is triggered
by seasonal changes and the length of daylight. Female promiscuity leads to sperm
competition in males, (Karr and Pitnick, 1999) who often establish dominance
hierarchies prior to the beginning of the reproductive season (Perret, 1992).
Physiological changes can be seen in males to cope with this evolutionary pressure
and improve their chances of reproductive success. In M. murinus changes such as

increased body mass and testis size have been observed, changes which can be
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subsequently reversed in subordinate males after exposure to urine from a
dominant male (Perret and Schilling 1987; Perret and Schilling, 1995). As females
are the dominant sex they ultimately decide whether mating will take place
(Radespiel and Zimmermann, 2001). Females will accept or refuse to mate
depending on her reproductive interests. At present reasons for female mate

choice are poorly understood.

In mice and rats chemical communication is well documented (Beynon and Hurst,
2004; Robertson et al., 2007; Beynon et al., 2007; Roberts et al., 2010; Roberts et
al., 2012). Both have functional vomeronasal receptors, VR1 and VR2, for detecting
volatiles and non volatiles respectively (Krieger et al, 1999; Sugai et al., 2006). VR1
genes are found in most mammals with large variation and diversity between
taxonomy (Grus et al., 2005; Grus et al., 2007). Until recently, intact VR2 genes
were thought to be limited to rodents and marsupials. However two intact VR2
genes have now been identified in the gray mouse lemur (M. murinus) with
expression established in the vomeronasal organ (Hohenbrink et al., 2012). This is
particularly interesting as VR2 receptors in rodents bind non-volatiles such as MUPS
which are used to communicate a variety of information such as health, relatedness

and reproductive status (Beynon and Hurst, 2003).

5.2 Aims and objectives

This chapter will focus on examining the urine content of Microcebus murinus and
Microcebus lehilahytsara with the aim of identifying and characterising any
potential proteins that may be used in scent communication. The objectives of the

study were:

e To observe both male and female mouse lemur urine in 2 species of mouse
lemur - Microcebus murinus and Microcebus lehilahytsara. As mouse lemurs
have a specific breeding season, urine samples were taken both in and out of
season.

e |dentify any differences between species, sexes and season.
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e Characterise and sequence proteins of interest using mass spectrometric

techniques.

5.3 Results and discussion
5.3.1 Identification of a sex-specific protein in male mouse lemurs (Microcebus)

Urine samples were collected from captive male and female mouse lemurs (M.
murinus and M. lehilahytsara) during breeding and non-breeding season. The urine
(10 pl) was analysed by 1D SDS-PAGE. In both species, a single protein band at
approximately 10 kDa was identified in some of the male mouse lemur urine
samples collected during the reproductive season (Figure 5.1, Figure 5.2). This
protein was not present in the samples collected out of season. No dominant

protein was identified in the female mouse lemur urine samples.

Protein and creatinine measurements were taken to assess the concentration of
protein in the urine of the male mouse lemurs. Protein concentration varies with
the volume of urine excreted. To correct for urine dilution, creatinine levels were
also measured. Creatinine is a breakdown product of creatine phosphate which is
used in skeletal muscle contraction. The daily production of creatinine is dependent
on muscle mass which fluctuates very little so the amount of creatinine produced
remains fairly constant. Therefore measuring the protein: creatinine ratio provides
an appropriate correction for urine dilution. The protein concentration varied

between males, ranging from 0.6 mg/ml — 1.6 mg/ml (Figure 5.3 and Figure 5.4).
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Fig 5.1 SDS-PAGE analysis of male and female Microcebus murinus urine samples.
Urine samples were taken from both male and female mouse lemurs during both the
reproductive and non-reproductive season. Urine (10 pl) was mixed 1:1 with samples
buffer and run on a 15% SDS gel. Gels were stained with coomassie blue stain. The
red box highlights a protein expressed in certain male mouse lemurs during the
breeding season. Creatinine is only 113 Da so is not present on the gel.
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Fig 5.2 SDS-PAGE analysis of male and female Microcebus lehilahytsara urine samples.

Urine samples were taken from both male and female mouse lemurs during both the
reproductive and non-reproductive season. Urine (10 pl) was mixed 1:1 with samples buffer
and run on a 15% SDS gel. Gels were stained with coomassie blue stain. The red box highlights
a protein expressed in certain male mouse lemurs during the breeding season.
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Figure 5.3 Determination of protein concentration in M. murinus males during the breeding
season.

Protein concentration was determined using a Coomassie Plus protein assay kit. Bovine serum
albumin was used to prepare a standard curve (0-50 pg/ml). Samples were diluted down in
purified water to be in the linear range of the assay. Absorbance readings were measured at 620
nm using a plate reader. Creatinine concentration was measured using a creatinine assay kit. A
creatinine standard curve was prepared (0-30 pug/ml) and samples diluted down in purified water
to be in the linear range of the assay. Absorbance readings were measured at 570 mm. The
protein: creatinine ratio was then calculated to correct for urine dilution.
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Figure 5.4 Determination of protein concentration in M. lehilahytsara males during the
breeding season.

Protein concentration was determined using a Coomassie Plus protein assay kit. Bovine serum
albumin was used to prepare a standard curve (0-50 pg/ml). Samples were diluted down in
purified water to be in the linear range of the assay. Absorbance readings were measured at
620 nm using a plate reader. Creatinine concentration was measured using a creatinine assay
kit. A creatinine standard curve was prepared (0-30 pg/ml) and samples diluted down in
purified water to be in the linear range of the assay. Absorbance readings were measured at
570 mm. The protein:creatinine ratio was then calculated to correct for urine dilution.
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5.3.2 Determination of an accurate molecular weight

To obtain a more accurate molecular weight, urine from the male mouse lemurs'
was analysed by electrospray (ESI) mass spectrometry. A protein with a molecular
weight of 9388 Da was identified in the male M. murinus urine samples (Figure 5.5).
A second peak 16 Da heavier was also detected. This was either a second protein or
a modification on one of the amino acids (methionine) that make up the protein.
This would have to be confirmed by de novo sequencing. The masses were
consistent in each mouse lemur. Analysis of the male M .lehilahytsara urine
revealed a mass with a slightly different molecular weight of 9418 Da. Again this
mass was consistent in each of the male M. lehilahytsara samples and had a second

peak present in the chromatogram 16 Da heavier (Figure 5.6).

5.3.3 Peptide mass fingerprinting

To investigate the differences between the two species, an in-gel digest of the
protein bands of interest (from the SDS-PAGE analysis) was completed. Following
overnight incubation with trypsin the digests were analysed by MALDI-TOF to
produce a peptide mass fingerprint (Figure 5.7). The peptide masses produced
were compared to protein databases (swissprot) and statistically analysed to see if
there were any matches. No matches were identified for the protein band in either

species.

A comparison of the two species highlighted a peptide (991 m/z) in the M.
lehilahytsara samples that was 30Da heavier than a peptide seen in M. murinus
samples (961 m/z) which was consistent with the mass difference in the intact mass
spectra (5.3.2). Another peptide, 2979 m/z, which had a +16 Da equivalent at 2995
m/z, was also identified (Figure 5.8). Many of the other major peptides were the
same in each species suggesting that it was the same protein except for some
amino acid mutations in the 961/991 m/z peptide to account for the 30Da

difference.
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Fig 5.5 Determination of the molecular weight of the male specific urinary protein in the
Microcebus murinus urine samples.

Urine samples containing substantial amounts of protein (from SDS-PAGE analysis) were
diluted into formic acid (0.1 %) to produce a final concentration of approximately 5 pmol/ul.
The samples were then injected onto a C4 desalting trap and masses of proteins present were
determined by ESI-MS. Data was processed using maximum entropy software MAX ENT-1

(MassLynx 4.1, Waters).
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Fig 5.6 Determination of the molecular weight of the male specific urinary protein in the
Microcebus lehilahytsara urine samples.

Urine samples containing substantial amounts of protein (from SDS-PAGE analysis) were diluted
into formic acid (0.1 %) to produce a final concentration of approximately 5 pmol/ul. The
samples were then injected onto a C4 desalting trap and masses of proteins present were
determined by ESI-MS. Data was processed using maximum entropy software MAX ENT-1
(MassLynx 4.1, Waters).
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Fig 5.8 Identification of the +16 Da adduct observed in the ESI-MS data.

Small pieces of gel was extracted from the protein bands of interest from the SDS-PAGE
analysis of M. murinus and M. lehilahytsara male urine samples. These pieces of gel were
destained in 50:50 ACN:NH,CO; before being reduced and alkylated in DTT (10 mM) and
iodoacetamide (60 mM) respectively. Following overnight incubation at 37 °C with trypsin, the
peptides were collected and mixed 1:1 with a-Cyano-4-hydroxycinnamic acid dissolved in 50%
ACN, 0.1% TFA. The mixture (1 pl) was spotted onto a target plate and left to dry at room
temperature before being analysed by MALDI-TOF. A peptide was detected at 2979 m/z with a
+16 Da adduct at 2995 m/z in both species of mouse lemur.
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Samples of the gel band were also taken and digested with two other proteases
(endoproteinase LysC and endoproteinase GluC) that cleave the protein at different
sites. These PMFs together with the trypsin ones were used to support the

sequence evidence found from the de novo sequencing analysis.

5.3.4 De novo sequencing analysis

To obtain amino acid sequence information, urine (containing the protein of
interest) from both species was digested with three different proteases — trypsin,
LysC and GIuC — to produce overlapping sequence information due the specificity of
each enzyme. The digested urine was analysed by LC-MSMS and the raw data was

de novo sequenced using PEAKS 6 software for proteomics (Table 5.1).

Table 5.1 Peptide sequences identified from PEAKS de novo analysis. Raw MSMS data
from each digest was analysed using PEAKS software for proteomics.

.~ sequence Species Protease  Mass (Da)
WGNCPAEK M. murinus Trypsin 960.41
LysC 960.41
VKGGKEKWGNCPTE M. lehilahytsara GluC 1588.76
WGNCPTEK M. lehilahytsara Trypsin 990.41
LysC 990.41
SGPSQCHSDNDCPGDKK M. murinus Trypsin 1887.74
M. lehilahytsara LysC 1887.74
CCFLHCSYK M. murinus Trypsin 1273.50
M. lehilahytsara LysC

CVSPER M. murinus Trypsin 746.33

M. lehilahytsara
CVSPERNRK M. murinus LysC 1144.57
EGLGQOMAPVLE M. murinus GluC 1158.50
TWNVGQVGQE M. murinus GluC 1116.52

M. lehilahytsara
QGAPDTWNVPVADTWNVGQVGQEASPOK M. murinus LysC 2978.41

The peptide sequences were BLAST searched (http://blast.ncbi.nlm.nih.gov). A

number of sequences showed high similarity to a Whey Acidic Protein (WAP)

identified in the ring tailed lemur (Lemur catta), (Table 5.2).
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Table 5.2 BLAST results of mouse lemur sequences obtained from LC-MS analysis.
Sequences for both species of lemur were assessed using the blastP algorithm. High
sequence homology with WAP 4 — disulphide core domain 12 (Lemur catta) was observed
with a number of peptides. Search parameters were restricted to mammals.

Mouse lemur Protein Score E Sequence

sequence identification value Identity
WGNCPAEK WAP 4 —disulphide 31.2 3.9 100%
core domain 12

(Lemur catta)

WGNCPTEK WAP 4 —disulphide 31.2 3.9 100%
core domain 12
(Lemur catta)
SGPSQCHSDNDCGPDKK WAP 4 —disulphide 41.4 0.004 81%

core domain 12
(Lemur catta)
WAP 4 —disulphide 20.2 0.29 66%
core domain 12
(Lemur catta)
CVSPER WAP 4 —disulphide 20.6 0.16 83%
core domain 12
(Lemur catta)
VKGGKEKWGNCPTE WAP 4 —disulphide 48.6 2E-10 93%
core domain 12
(Lemur catta)

EGLGQMAPVLE WAP 4 —disulphide 28.6 0.82 80%
core domain 12
(Lemur catta)
TWNVGQVGQE WAP 4 —disulphide
core domain 12
(Lemur catta)
QGAPDTWNVPVADTWNVGQVGQEASPQK | WAP 4 —disulphide 38.8 0.001 64%
core domain 12
(Lemur catta)

CCFLHCYSK

5.3.5 Determination of the mouse lemur protein sequence

The L. catta protein, full name WAP 4 —disulphide core domain 12 (WFDC12), was
therefore used to align further MS/MS sequences (Figure 5.9). The L. catta protein
was used to construct the mouse lemur sequence as many of the peptides share
high homology to this protein. The first section of the protein (amino acids 1-55 on
figure 5.9) was relatively straightforward to sequence and align with the L. catta
protein. These peptides both ionised and fragmented well in the LC-MS analysis
making sequencing easier. No sequence information was discovered that could be
aligned with the middle section of the ring tailed lemur protein (greyed out on

figure 5.9). This is unsurprising giving the intact mass identified the mouse lemur
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protein to be approximately 9.4 kDa compared to the L. catta protein which is 13.2
kDa. The C terminus of the peptide was thought to be peptide 2979 m/z previously
identified in the PMF as having a possible +16 Da modification. This was confirmed
by subtracting away the sequenced peptides from the intact mass to give 2978 Da.
This is a large peptide and would struggle to ionise and fragment leading to poor de
novo data. This peptide was identified in one of the M. murinus LysC digests and
PEAKS did attempt to sequence it - QGAPDTWNVPVADTWNVGQVGQEASPQK. The
first section of the sequence QGAPDTWNVPVA had lower scores for the individual
amino acids in PEAKS as the raw spectra was difficult to interpret. The last part of
the sequence DTWNVGQVGQEASPQK had improved fragmentation and was
therefore easier to sequence leading to increased confidence scores by PEAKS. It
also shared high homology with the L. catta protein. A partial piece of the second
part of sequence was confirmed in a GIuC digest TWNVGQVGQE. GluC appears to
have cleaved at an aspartic acid residue which is possible as GIluC can also cleave at
aspartic acid residues at a rate of 100-300 times slower than at glutamic acid
residues. To confirm this and also gather sequence data for the poorly sequenced
section of 2979 m/z an additional digest using endoproteinase AspN (Asp-N) was
completed. The raw LC-MS data was analysed by PEAKS proteomics software (Table
5.3).

Table 5.3. AspN sequences to support C terminal sequence data collected from digests
with alternative proteases. Raw MSMS data from each digest was analysed using PEAKS
software for proteomics.

Peptide Protease Mass (Da)

EGLGQMAPVPQGA M. murinus AspN 1253.60
EGLGQMAPVPGAQ M. lehilahytsara AspN 1253.60
DTWNVGQVG M. murinus AspN 1102.50

M. lehilahytsara

EASPQKEWS M. murinus AspN 1060.48

M. lehilahytsara
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The peptide at 1103.50 m/z confirmed the residue to be an aspartic acid. Cleavage
at the N terminal side of glutamic acid identified a second peptide at 1061.58 m/z.
Both of these peptides confirmed the high scoring section of the peptide 2979 m/z

observed in the LysC digest - DTWNVGQVGQEASPQK .

A third peptide 1126.54 m/z was also observed in the AspN digest and shared high
homology with the L. catta protein. There was a slight difference between species,
EGLGQMAPVPQGA inthe M. murinus digest and EGLGQMAPVPGAQ in the M.
lehilahytsara digest. The confidence scores were much higher in the M. murinus
digest so this was the peptide used to assemble the sequence. It also agreed with
the high scoring section of the peptide 1159.50 m/z in the GIuC digest -
EGLGQOMAPVLE. The last two residues were given a slightly lower confidence
values by PEAKS and did not align with the L. catta protein. The rest of sequence

scored highly and did align with the L. catta protein.

This peptide would account for the first section of the LysC peptide 2979 m/z that
was poorly sequenced. As there was an internal aspartate residue in the 2979 m/z
peptide it could be cleaved into two smaller peptides by AspN making
fragmentation more effective. Using a combination of three sequences from the
three different proteases the final sequence of the C terminus was determined as
GLGOMAPVPQGADTWNVGQVGQEASPQKEWS . There is also a methionine residue
present in this 2979 m/z peptide which would explain the additional peak detected
at 16Da heavier on the intact mass spectrum in both species. The final mouse
lemur sequence is illustrated in figure 5.10. A summary of all peptides used to
determine the mouse lemur sequences are highlighted in Table 5.4 and 5.5 and
examples of MS/MS spectra are illustrated in figures 5.11-5.18. The remaining

MS/MS spectra can be found in supplementary data C.
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Table 5.4 A summary of all peptides de novo sequenced from the M. murinus in-solution
digests. The raw data was processed using PEAKS software. A cut off value of 55% for the
total confidence level (recommended by PEAKS) was applied to the de novo analysis. Each
amino acid was given an individual confidence percentage. The total confidence score was
worked out using the mean of the individual scores.

Sequence Species  Protease(s) Mass Individual residue Total PEAKS
confidence scores (%) confidence
score (%)
WGNCPAEK M. mur Trypsin 960.41 | 98,98, 98, 99, 95, 96, 99, 96
89
LysC 960.41 | 99,98, 99, 99, 96, 97, 99, 97
90
CCFLHCSYK M. mur Trypsin 1273.50 | 98,99, 99, 99, 99, 99, 99, 98
99, 88
LysC 1273.50 | 99, 98, 99, 99, 96, 97, 99, 97
90, 99
CVSPER M. mur | Trypsin 746.33 | 99,99, 100, 100, 100, 70 94
CVSPERNRK M. mur LysC 1144.57 | 86, 85,97, 88, 77, 83, 78, 81
67, 67
EGLGQMAPVLE M. mur GluC 1158.50 | 95, 94,97, 92, 88, 97, 99, 84
99, 99, 33, 33
TWNVGQVGQE M. mur GluC 1116.52 | 90, 91, 69, 89, 75, 72, 88, 83
90, 92,77
QGAPDTWNVPVA | M. mur LysC 2978.41 | 49,41, 42,42, 54, 66, 56, 74
DTWNVGQVGQEA 52, 65, 87, 66, 86, 89, 90,
SPQK 86, 80, 95, 84, 85, 87, 97,
98, 91, 92, 88
SGPSQCHSDNDC | M. mur Trypsin 1887.74 | 95, 100, 100, 95, 93, 100, 97
PGDKK 92,99, 99, 97, 98, 100,
97,94, 95, 99, 93
LysC 1887.74 97, 97, 96, 86, 85, 100, 96
93, 99, 99, 95, 99, 100,
98, 96, 98, 100, 96
EGLGQMAPVPQG | M. mur AspN 1253.61 | 96, 73,87,78, 64,92, 97, 86
A 96, 98, 87, 83,76,88
DTWNVGQVG M. mur AspN 1102.50 | 87, 88, 90, 97, 93, 95, 96, 91
88, 84
EASPQKEWS M. mur AspN 1060.48 | 98, 97,93, 89, 75, 85, 96, 90
93, 86
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Table 5.5 A summary of all peptides de novo sequenced from the M. lehilahytsara in-
solution digests. The raw data was processed using PEAKS software. A cut off value of 55%
for the total confidence level (recommended by PEAKS) was applied to the de novo
analysis. Each amino acid was given an individual confidence percentage. The total
confidence score was worked out using the mean of the individual scores.

Sequence Species Protease(s) Mass Individual residue Total
(Da) confidence scores PEAKS
(%) confidence
score (%)
VKGGKEKWGNCPTE M. lehi GluC 1588.76 | 71, 87,79, 83,95, 99, 90
99, 97, 92, 96, 98, 95,
93, 86
WGNCPTEK M. lehi Trypsin 991.47 92, 97,97, 93, 75, 84, 92
97,95 92
LysC 991.47 97, 96, 98, 97, 91, 88,
96, 72
CCFLHCSYK M. lehi Trypsin 1273.50 | 93,98, 99, 99, 99, 99, 95
99, 99, 68 94
LysC 1273.50 | 92,97, 99, 99, 99, 98,
98, 95, 68
SGPSQCHSDNDCPG M. lehi Trypsin 1887.74 94,94, 95, 87, 84, 95
DKK 100, 91, 99, 97, 94,
99, 100, 96, 92, 93,
99, 94
LysC 1887.74 89, 97, 96, 82, 81, 95

100, 94, 100, 99, 97,
99, 100, 98, 97, 98,
100, 96

CVSPER M. lehi Trypsin 746.33 99, 99, 100, 99, 99, 91
55

EGLGOMAPVPGAQ M. lehi AspN 1253.61 | 96,73,87,78, 64,92, 79
97, 96, 98, 87,
55,56,58

EASPQKEWS M. lehi AspN 1060.48 | 98,97, 93, 88, 75, 86, 90
96, 93, 86

TWNVGQVGQE M. lehi GluC 1116.52 | 90, 91, 69, 89, 75, 72, 83
88,90, 92,77

The final mouse lemur sequence was input into a software tool that gives the
masses of expected peptides in the digest. This would further support the de novo
analysis and confirm that the middle section of the L. catta protein was not present
in the mouse lemur protein. These theoretical sequences were then matched up to
the PMFs (section 5.2.3) (Figure 5.19a, 5.19b, 5.19¢ and 5.19d). The software tool
was set to allow 3 missed cleavages —sites were the enzyme has not cleaved. Most
of the peptides on the PMF were matched up to the theoretical peptides produced

by the digest software tool. The exception was the N terminal peptide VKGGKEK
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which was below the mass limit for this MALDI method. Masses below 800 Da are
normally suppressed by matrix ions and therefore difficult to identify. It was
however detected as a missed cleavage in the M. lehilahytsara GluC LC-MSMS
digests (Table 5.5). The summary of the PMF peptides aligned with the mouse
lemur sequence is demonstrated in figure 5.20. The total mass of the mouse lemur
sequence in each species was also calculated and is in agreement with the intact

mass data.

Following the de novo sequence analysis and determination of the mouse lemur
sequence, genome data for WFDC 12 in M. murinus was released. Using the
information on the Ensembl database (which obtains its data from Genbank) a
predicted amino acid sequence encoded by WFDC 12 M. murinus was predicted.
Also the part of the L. catta protein that is not found in the mouse lemur protein
does have a corresponding nucleotide sequence in mouse lemur, and use of an
alternative splice site can account for the shorter protein found in urine (Figure
5.21). The predicted M. murinus sequence is in agreement with the de novo
analysis providing further supporting evidence that the final sequence is correct.
Once the sequence was confirmed, a model of the protein was constructed using

Pymol visualisation software (Schrodinger, Inc) (Figure 5.23).

5.3.6 Sequence differences between species

Sequence analysis of the M. lehilahytsara samples identified one single amino acid
change that explained the 30 Da increase in molecular weight. As predicted by the
peptide mass fingerprint, this sequence change was observed in peptide 991 m/z
(961m/z in M. murinus). The 991m/z peptide was sequenced as WGNCPTEK with
the 961 m/z peptide sequenced as WGNCPAEK in the M. murinus samples. The Ala
— Thr substitution accounted for the 30 Da difference in mass. There were no other
amino acid changes identified between species — the rest of the protein sequence

was identical (Figure 5.22).
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5.3.7 Identification of a novel Whey acidic protein

WAP proteins were first identified in the whey fraction of mouse milk
(Hennighausen and Sippel, 1982). Rat, camel, rabbit and pig milk were also found
to contain a considerable amount of WAP protein (Campbell et al., 1984; Beg et al.,
1986; Devinoy et al., 1988; Simpson et al., 1998). These WAP proteins were found
to contain disulphide rich domains of approximately 40-50 amino acids. These
domains shared limited sequence identity except for 8 characteristically-spaced
cysteine residues forming disulphide bonds (Hennighausen and Sippel, 1982). These
structural domains were termed four disulphide core domains (FDC) (Drenth et al.,
1980). This protein family was therefore named Whey acidic protein four

disulphide core proteins (WFDC).

Despite the name not all WFDC proteins are found in milk (Ranganathan et al,
1999). Many WFDC have been discovered across all lineages and all share very
limited sequence homology except for the highly conserved cysteine region. They
are allocated into sub groups depending upon biological function and tissue
expression. Biological functions include antibacterial and antifungal action,
protease inhibition, tumour suppression and anti-inflammatory activity (Sallenave
et al., 1994; Hiemstra et al., 1996; Larsen et al., 1998; McAlhany et al., 2003;
Hagiwara et al., 2003; Clauss et al., 2005; Williams et al., 2006; Moreau et al., 2008).

The mouse lemur protein has been identified as WFDC 12. WFDC12 has been
studied in several primates and is known to be expressed in the prostate as well as
the skin, lungs and oesophagus (Hagiwara et al., 2003). In humans, the WFDC locus
contains genes that encode seminal proteins semenogelin 1 and 2 (SEMG1 and
SEMG2) which are essential in male reproduction (Lundwall and Clauss, 2011).
SEMG proteins are highly expressed in the seminal vesicles and make up over half of
the human ejaculate. Post ejaculation these proteins cross link to form a gel matrix
that encases ejaculated spermatozoa and trapping it in the female reproductive
tract. A protease named prostate-specific antigen (PSA) then breaks down this gel
matrix to allow motility of the spermatozoa to return. In contrast to monoandrous

mating where the ejaculate is “loose” in texture, in multi-male/multi female mating
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systems the male ejaculate forms a rigid solid copulatory plug. Also the rate of
SEMG2 evolution is thought to correlate with female promiscuity and semen
coagulation which is thought to be related to post-copulatory sperm competition
(Doris et al., 2004). In most primates, including mouse lemurs, the WFDC 12 gene
in particular resides on the same centromeric sublocus as the genes encoding these
reproductive proteins (Hurle et al., 2007). In a study by Hurle et al., 2007, evidence
of positive selection on WFDC12 was observed during primate evolution which

suggests this gene may be involved in sexual selection.

5.3.8 Potential functions of the mouse lemur WDFC 12 protein

As many WFDC proteins have protease inhibition effects protease inhibition of the
mouse lemur protein was investigated. Many WAP proteins inhibit trypsin,
chymotrypsin and elastase (McCrudden et al., 2007) so potential trypsin inhibition
properties of the mouse lemur protein were examined. Trypsin activity was
previously investigated in chapter 3 to assess whether MUPs where forming
inhibitory products that made them resistant to complete proteolysis by trypsin
(see section 3.3.2). An alternative approach to using the spectrophotometric
method described here could have been to use a similar set-up illustrated in
chapter 3 by replacing the MUP protein with the mouse lemur protein. If the
mouse lemur protein inhibited trypsin then the digestion reaction would not go to
completion. However this would depend on the rate of inhibition, something which
can be calculated using a spectrophotometric assay. If the protein was a slow
inhibitor this may be difficult to detect by SDS-PAGE as the majority of the protein

would be digested and any that has not been may be too low to visualise on the gel.

A stock solution of trypsin was prepared (200 pg/ml in 50 mM Tris-HCl pH 8.0 + 10
mM CaCl,) and incubated at 37 °C for 60 minutes. At 10 minute intervals an aliquot
was removed and mixed with a trypsin substrate Ny-Benzoyl-L-arginine 4-
nitroanilide (BAPNA, 0.5 mM in 50 mM Tris-HCI pH 8.0 + 10 mM CacCl,) to produce a
final concentration of 20 pg/ml trypsin. Trypsin recognises BAPNA as a substrate

and cleaves at arginine to release the 4 nitroanaline which turns the solution
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yellow. The absorbance (405 nm) was measured every minute over a 10 minute
period. The absorbance readings were plotted against time to assess if incubating
trypsin at 37 °C caused a reduction in activity over time (Figure 5.24a). This was not

the case and trypsin activity remained stable over the 60 minute incubation period.

A solution containing the mouse lemur protein and trypsin was prepared (200
ug/ml of each in 50 mM Tris-HCl pH 8.0 + 10 mM CaCl,) and incubated at 37 °C for
60 minutes. At 10 minute intervals an aliquot was removed and mixed with BAPNA
(0.5 mM in 50 mM Tris-HCl pH 8.0 + 10 mM CacCl,) to produce a final concentration
of 20 pug/ml of each. The absorbance (405 nm) was measured every minute over a
10 minute period. The absorbance readings were plotted against time to assess if
incubating trypsin with mouse lemur WFDC protein inhibited trypsin activity over
time (Figure 5.24b). If the mouse lemur protein was an inhibitor of trypsin the
absorbance readings would decrease or reach a plateau as the amount of p-
nitroanaline produced slows down or halts completely depending on the strength of
inhibition. No inhibition of trypsin was identified. The experiment was repeated
again, the only difference was the concentration of mouse lemur protein was
doubled (40 pg/ml final concentration). Still no inhibition of trypsin was identified

(Figure 5.24c).

These results were not surprising as the key amino acid required in the trypsin
inhibition process is a Lys at position 18, which is a serine in the mouse lemur
protein (Cechova and Muszynska, 1970). A WFDC protein named eppin is an
androgen dependant epididymal protease that plays an important role in human
male reproduction and fertility. Functions of eppin include modulation of PSA
activity, antimicrobial action and inhibition of sperm motility by binding to SEMG1
(Yenugu et al., 2004; O'Rand et al., 2011). Eppin also lacks a Lys residue at position
18 in its FDC domain and therefore does not inhibit trypsin. It does however inhibit
elastase (McCrudden et al., 2007). It is possible that the mouse lemur protein may
share some of the functions of eppin as they are both male specific and there is
evidence of the mouse lemur protein having a role in sexual selection and
reproduction (Hurle et al., 2007). As eppin inhibits elastase, the mouse lemur

protein was also examined to see if it too reduced or halted the activity elastase.
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For investigating elastase inhibition by the mouse lemur protein, the same
experimental process was applied as with the trypsin inhibition experiment. An
elastase substrate N-Succinyl-ALA-ALA-ALA p-Nitroanilide was used instead of
BAPNA. Again no inhibition was identified (Figure 5.25).

The lack of protease inhibition is not very concerning. It is thought that elastase
inhibition by eppin is due to an additional domain it possesses — kunitz domain
which are normally found in proteins that are responsible for inhibiting the activity
of protein degrading enzymes. Furthermore isolation of the WFDC domain in eppin
shows antimicrobial effects against E. coli. A study by Donpudsa et al., 2010 tested
two recombinant crustin proteins for protease inhibition and antimicrobial effects
as both proteins contained a WFDC domain. Both proteins did not inhibit protease
activity but did exert antimicrobial activity through a bactericidal effect.

Antimicrobial activity of the mouse lemur protein is yet to be investigated.
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5.4 Conclusions

Using advanced proteomic techniques, it was possible to fully identify and
characterise the mouse lemur urinary protein prior to obtaining genomic
information. This protein has been identified as a WFDC protein. This protein was
observed in certain male mouse lemurs from two different species Microcebus
murinus and Microcebus lehilahytsara and is only expressed during the reproductive
season. Only one amino acid mutation is present to differentiate between the two
species. The de novo sequencing approach was similar to that undertaken in the
harvest mouse chapter. PEAKS produced high scoring confidence levels for all

sequences with the majority of scoring over 90%.

Despite having two functional MUP genes, this protein is not a MUP and is in fact
very different to the lipocalins observed in many rodent species. WAP proteins
have a variety of biological functions, some of which were explored in this chapter.
Protease inhibition properties of this protein were investigated and they were
shown to not affect protease activity. As many other WAP proteins have
antimicrobial properties, including those that do not display protease inhibition, the
mouse lemur protein should also be examined to see if antimicrobial activity is one

of its functions.

Assessing the link between chemical signalling and the expression of this protein
was not in the scope of this project. The captive mouse lemurs live in triads and
unfortunately not all males that live together were sampled. Also only one sample

of urine was provided for each mouse lemur sampled.

It would be beneficial to not only sample all males, but also take a number of
samples just before breeding season commences and throughout the breeding
season itself. If protein expression was related to male dominance then increased
concentrations may be observed just prior to the breeding season when dominance
hierarchies are established. Also, by sampling all males who live together, if
expression is dominance related we might expect to see just one member of the
group expressing the protein. Taking samples over a number of breeding seasons

may confirm the dominance theory if the same male continue to express the
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protein. Also it may potentially reveal new dominance hierarchies being formed as
the existing alpha males get older and are no longer classed as a threat to younger

maturing males.

If the expression of this protein peaks during the season when actual mating is
taking place, then the protein may play a role in sperm competition and possible
serve as an attractant for females as they are the dominant sex. Alternatively, it
could be a protein that has antimicrobial properties to protect sperm in the
reproductive tract and has escaped the filtration step due to its small size resulting
in the presence of the protein in urine or the primary origin of the protein may not
be from urine but from the seminal fluid. It is not known if the mouse lemurs had
mated prior to sampling. If the protein originates from seminal fluid, then residual
amounts could have been left in the urinary tract and consequently ended up in the
urine sample which reinforces the need for multiple samples collections. It would
therefore be advantageous to examine seminal fluid for the presence of this WAP

protein.
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Chapter 6: General conclusions

The aim of this thesis was to investigate the protein content of scent marks using
advanced proteomic techniques. With significant developments in the mass
spectrometry field in particular, it was possible to achieve the main aims and
objectives set out at the beginning of this thesis (section 1.7). The newer
generation TOF analyser with improved dynamic range and sensitivity, enabled the
absolute quantification of MUP isoforms in B6 laboratory mice using a QconCAT
method. Previously, MUP quantification was limited to ESI-MS and it was only
possible to relatively quantify the major isoforms. While the QconCAT method was
successful, further testing of this method using more biological and technical
replicates is fundamental to ensure robustness and reproducibility of the method,
particularly surrounding the digestion of the MUP proteins. Future MUP quant
studies should focus on trying to improve the digestion or alternatively, look at re-
designing the QconCAT to contain flanking regions or the use of alternative
proteases. There would no doubt be similar problems when it comes to unique
peptides but enzyme cleavage sites may be less challenging to cleave, improving
digestion efficiency. Peptides could also be chosen on how well they digest so there
can be confidence in complete digestion of at least the peptides chosen for
guantification. Other options for absolute quantification such as AQUA peptides
and PSAQ standards would see the same issues arise as with the current QconCAT —
limited unique peptides and digestion discrepancies. A PSAQ method could
potentially result in a more accurate method as quantification is done using
multiple peptides but this would be very time consuming and costly. A PSAQ
standard would have to be produced for each MUP and a pre-fractionation method

developed to separate each MUP isoform prior to digestion.

In the past de novo sequencing of proteins could be a very time consuming and
manual task. The introduction of mass analysers such as the Orbitrap and the
improvements made in software means de novo sequencing is now both quicker
and more automated. In chapters two and three of this thesis, proteins secreted by

the harvest mouse and mouse lemur were de novo sequenced prior to genomic
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data becoming available. The high resolution, sensitivity and efficient
fragmentation (HCD) of the QExactive mass analyser resulted in high quality
sequence data being obtained for both species. PEAKS 6 software proved to be
reliable and accurate for de novo sequencing although it is good practice to
manually inspect MS/MS spectra as the software is only as good as the raw

fragmentation data supplied for interpretation.

Three proteins were identified in the harvest mouse and de novo data was obtained
for two of these proteins. These proteins were identified as being from the lipocalin
family. Unlike mice and rats, there appeared to be no sexual dimorphism between
males and females. This is similar to roborovskin, a protein secreted by Roborovski
hamsters that also show no expression differences between sexes. Three abundant
proteins were identified in both sexes by ESI-MS but the isoform pattern was
different between individuals. As the harvest mice originate from an outdoor
enclosure they are not as inbred as the laboratory strains of mice so the variation
could be due to genetic diversity. SDS-PAGE analysis revealed two abundant
protein bands and after extensive mass spectrometry analysis it appears that
harvest mice express large quantities of odorant binding proteins and it is these
proteins that are most likely used to convey information although further
behavioural studies would have to confirm this. The third mass (17888 Da) was not
able to be characterised as this protein was not observed by AEX chromatography
and could therefore not be isolated and characterised. The most likely cause of this
was there simply was not enough of the protein present in the sample. Capturing a
larger sample size of harvest mice from the outdoor enclosure could result in
obtaining a rodent who expresses much larger quantities of this particular protein

allowing for identification and characterisation.

A discovery run on the harvest mouse protein secretion not only identified odorant
binding proteins but also MUPS. The database and BLAST matches were to the
peripheral MUPS — 5, 4 and 20. The peripheral MUP genes are older and more
stable and it is thought the central MUPs in mice are a result of gene duplications
and divergence of the peripheral genes. So in the case of the harvest mouse if they

do have peripheral MUP genes then results would suggest these genes have maybe
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not diverged as there was no evidence of central MUPs in the harvest mouse.

Genomic data would be necessary to confirm this.

The primary source of the protein secretion in the harvest mouse was also different
to other rodents. The majority of rodents secrete a large amount (mg/ml) of
protein into their urine and this is used as their primary source of communication.
In the case of the harvest mouse urinary protein abundance was low and the
primary source of secretion is either the paws and/or saliva. There are two theories
— one is that the paws secrete the protein during climbing, an activity harvest do
routinely too reach nests, food etc, which is why the SDS-PAGE of the paw washes
identified low abundant bands compared to the glass rod washes, which the
rodents climb up. The second theory is that the protein is primarily excreted in
saliva and the rodent licks their paws before climbing. Many peptides were
matched to mouse MUPs 4 and 5 in the discovery run which are not observed in
mouse urine but have been observed in mouse saliva. It would be beneficial to
complete the sequencing of the two lipocalins so that more in-depth behavioural
studies can occur and identify individual roles for the individual proteins. It would
also be interesting to observe any potential volatiles that may be bound to these
proteins as MUPs in rats and mice bind a number of small molecules which have

many roles in chemical signalling.

The final chapter of this thesis examined protein expression in two species of mouse
lemur Microcebus murinus and Microcebus lehilahytsara. The protein was
identified as a male specific WAP protein that was only expressed in the breeding
season with only a single amino acid mutation between species. WAP proteins have
a variety of functions and are expressed across all lineages. As the protein has been
fully characterised and now has genomic data to support the de novo sequence
analysis, the next step is to find out the biological function. Behavioural studies
were not in the scope of this project but after the identification of the WAP several

hypotheses have been raised.

One theory is this protein is not involved in chemical communication at all and may

just serve as an antimicrobial that protects the sperm as it enters the female
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reproductive tract. One of the functions of eppin is bind to the surface of SEMG1
and performs a protective shield around the spermatozoa once the ejaculate has
entered the recipient female. This would account for the mouse lemur protein

being male specific and also up-regulated during the breeding season.

The second theory is that this protein is involved in scent communication. The
protein is very different to the MUP and other lipocalin proteins deposited by
rodents. Male mouse lemurs are known to establish dominance over each other at
the beginning of the breeding season so it is possible this protein plays a role in
sperm competition. Physiological effects including decreased body mass and
testosterone levels have been observed in subordinate males post exposure to
dominant male urine (Perret and Schilling 1987; Perret and Schilling, 1995).
Alternatively, this protein, like eppin, may be androgen dependant. If the males
that are not expressing this protein are subordinate males then their testosterone
levels will be lower and protein expression down regulated. This theory would have
to be investigated further and establish which of the mouse lemurs sampled live

together and which ones are at the top of the dominance hierarchy.

As females are the dominant sex they ultimately decide who to mate with. The
protein may serve as an attractant for females similar to darcin in male mice which
causes females to become sexual attracted to individual males (Roberts et al.,
2010). A study using captive gray mouse lemurs by Radespiel et al., 2002 found no
correlation between dominance and reproductive success and that maybe female
mate choice and sperm competition play more of a central role. In a separate
study by Aujard 1997 the removal of the VNO in sexually experienced males caused
a dramatic decline in intermale aggression but did not impair successful mating or

testosterone levels.

To gain further insight into the potential function of this protein, comprehensive
behavioural studies will need to be established. A recombinant form of this mouse
lemur protein would assist in answering questions surrounding possible use in
chemical signalling. Recombinant forms of mouse MUPS have previously provided a

detailed analysis into both intrasexual and intersexual scent communication.
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The MUP quantification work will be used in an ongoing project on pest control in
developing countries. Rodents are not the only creatures classed as “pests” and it is
possible that other laboratories investigating pest control strategies can gain some
valuable insight from observations and data collected from the rodent pest control
project. For example, some insects can be described as “pests” due to their
destructive nature, damage to crops and homes, and for carrying fatal diseases.
Pheromones have been observed in insects such as termites and mosquitoes.
Mosquitoes are well known for carrying the potentially fatal disease malaria. It is
the females who are adapted to have the ability to feed on humans and other
animals for blood to give her the nutrients she needs to produce eggs. Females also
transmit a pheromone to attract males when they are ready to mate (Pitts et al.,
2014). Using strategies developed in the MUP rodent control project, gaining
further insight into mosquito (and other insect) behaviour, particularly on the

protein chemistry level, could dramatically reduce the number of malaria cases.

Animal welfare is another area of research that the MUP quantification studies will
benefit. As discussed in chapter 3, animal welfare projects monitor the wellbeing of
laboratory rodents and being able to identify what MUPs cause aggression between
conspecifics will be advantageous to these projects. However animal welfare is not
just restricted to the welfare of laboratory rodents but to other animals in captivity
such as zoo animals. Zoos are fundamental in preventing the extinction of many
endangered species and take part in worldwide breeding programmes. The well
being of these animals is crucial for the success of these breeding programmes.
Females will not feel comfortable producing young if they are not living a place they
feel secure in. Monitoring chemical signals, in particular those related to stress and
reproduction, may provide indicators to how relaxed an animal feels in its current

habitat.

It is expected that the identification and characterisation of the harvest mouse and
mouse lemur proteins will contribute towards conservation studies. At present the
numbers of harvest mice in the wild has increased quite significantly and are no
longer classed as endangered for the time being. Long term conservation projects

will be developed using the data from this thesis to prevent the numbers
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dramatically reducing as they have done in the past. There are also other research
groups investigating conservation strategies for other endangered species such as
the Syrian hamster, which is nearly extinct in the wild, who will be able to use
similar strategies to preserve these species. The mouse lemur conservation status is
also currently classed as vulnerable in the wild with numbers falling due to
deforestation of their natural habitat. Using data from this project, behavioural
studies will be carried out to determine if this protein is related to chemical
signalling and if so conservation projects will begin to hopefully increase the
number of wild mouse lemurs. Again, if successful, this approach could be used by

other research groups and charities focusing on conserving vulnerable species.

Many animal welfare and conservation projects are set up based on information
provided by behavioural laboratories so to set up projects using protein chemistry
data will be quite unique. Having protein chemistry data to complement
behavioural data will enhance the understanding of current complex behavioural
observations. It also highlights the importance of collaboration between
biochemistry and behavioural labs in the approach to chemical communication. This
partnership makes understanding the role pheromones in the complex social

behaviour of the animal kingdom more achievable.
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Supplementary data A. LC-MS analysis of individual male C57BL/6 mice. Q peptides 1
and 3.

A known amount of QconCAT was added to five individual male urine samples and
digested using the protocol optimised in section 3.3.2. The digested material was
analysed by LC-MS. The peptide pairs consist of the “light” analyte peptide and the
corresponding “heavy” Q peptide 6 Da heavier.
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Supplementary data A. LC-MS analysis of individual male C57BL/6 mice. Q peptide 2.
A known amount of QconCAT was added to five individual male urine samples and
digested using the protocol optimised in section 3.3.2. The digested material was
analysed by LC-MS. The peptide pairs consist of the “light” analyte peptide and the
corresponding “heavy” Q peptide 6 Da heavier. No “light” analyte was detected in these
five individual B6 male mice.
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Supplementary data A. LC-MS analysis of individual male C57BL/6 mice. Q peptide 4.
A known amount of QconCAT was added to five individual male urine samples and
digested using the protocol optimised in section 3.3.2. The digested material was
analysed by LC-MS. The peptide pairs consist of the “light” analyte peptide and the
corresponding “heavy” Q peptide 6 Da heavier. No “light” analyte was detected in these
five individual B6 male mice.
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Supplementary data A. LC-MS analysis of individual male C57BL/6 mice. Q peptide 5.

A known amount of QconCAT was added to five individual male urine samples and
digested using the protocol optimised in section 3.3.2. The digested material was
analysed by LC-MS. The peptide pairs consist of the “light” analyte peptide and the
corresponding “heavy” Q peptide 6 Da heavier.
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Supplementary data A. LC-MS analysis of individual male C57BL/6 mice. Q peptide 6.
A known amount of QconCAT was added to five individual male urine samples and
digested using the protocol optimised in section 3.3.2. The digested material was
analysed by LC-MS. The peptide pairs consist of the “light” analyte peptide and the
corresponding “heavy” Q peptide 6 Da heavier. No “light” analyte was detected in these
five individual B6 male mice.
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Supplementary data A. LC-MS analysis of individual male C57BL/6 mice. Q peptide 7.
A known amount of QconCAT was added to five individual male urine samples and
digested using the protocol optimised in section 3.3.2. The digested material was
analysed by LC-MS. The peptide pairs consist of the “light” analyte peptide and the
corresponding “heavy” Q peptide 12 Da heavier. This set of peptides are from a LysC
digest so the heavy peptide is 12 Da heavier than the light due to the internal labelled
arginine residue.
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Supplementary data A. LC-MS analysis of individual male C57BL/6 mice. Q peptide 8.
A known amount of QconCAT was added to five individual male urine samples and
digested using the protocol optimised in section 3.3.2. The digested material was
analysed by LC-MS. The peptide pairs consist of the “light” analyte peptide and the
corresponding “heavy” Q peptide 6 Da heavier.
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Supplementary data A. LC-MS analysis of individual male C57BL/6 mice. Q peptide

11.

A known amount of QconCAT was added to five individual male urine samples and

digested using the protocol optimised in section 3.3.2.

corresponding “heavy” Q peptide 6 Da heavier.

The digested material was
analysed by LC-MS. The peptide pairs consist of the “light” analyte peptide and the
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Supplementary data A. LC-MS analysis of individual male C57BL/6 mice. Q peptide
12.

A known amount of QconCAT was added to five individual male urine samples and
digested using the protocol optimised in section 3.3.2. The digested material was
analysed by LC-MS. The peptide pairs consist of the “light” analyte peptide and the
corresponding “heavy” Q peptide 6 Da heavier.
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Supplementary data A. LC-MS analysis of individual male C57BL/6 mice. Q peptide

13.

A known amount of QconCAT was added to five individual male urine samples and
digested using the protocol optimised in section 3.3.2.
analysed by LC-MS. The peptide pairs consist of the “light” analyte peptide and the

m/z

corresponding “heavy” Q peptide 6 Da heavier.

The digested material was
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Supplementary data A. LC-MS analysis of individual male C57BL/6 mice. Q peptide
14.

A known amount of QconCAT was added to five individual male urine samples and
digested using the protocol optimised in section 3.3.2. The digested material was
analysed by LC-MS. The peptide pairs consist of the “light” analyte peptide and the
corresponding “heavy” Q peptide 6 Da heavier.
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Supplementary data A. LC-MS analysis of individual male C57BL/6 mice. Q peptide

15.

A known amount of QconCAT was added to five individual male urine samples and
digested using the protocol optimised in section 3.3.2.
analysed by LC-MS. The peptide pairs consist of the “light” analyte peptide and the

corresponding “heavy” Q peptide 6 Da heavier.

The digested material was
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Supplementary data A. LC-MS analysis of individual female C57BL/6 mice. Q peptides 1

and 3.

A known amount of QconCAT was added to five individual female urine samples and
digested using the protocol optimised in section 3.3.2. The digested material was analysed
by LC-MS. The peptide pairs consist of the “light” analyte peptide and the corresponding

“heavy” Q peptide 6 Da heavier.
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Supplementary data A. LC-MS analysis of individual female C57BL/6 mice. Q peptide 2.
A known amount of QconCAT was added to five individual female urine samples and
digested using the protocol optimised in section 3.3.2. The digested material was analysed
by LC-MS. The peptide pairs consist of the “light” analyte peptide and the corresponding
“heavy” Q peptide 6 Da heavier. No “light” analyte was detected in these five individual B6
female mice.
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Supplementary data A. LC-MS analysis of individual female C57BL/6 mice. Q peptide 4.

A known amount of QconCAT was added to five individual female urine samples and
digested using the protocol optimised in section 3.3.2. The digested material was analysed
by LC-MS. The peptide pairs consist of the “light” analyte peptide and the corresponding
“heavy” Q peptide 6 Da heavier. No “light” analyte was detected in these five individual B6

female mice.
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Supplementary data A. LC-MS analysis of individual female C57BL/6 mice. Q peptide 5.

A known amount of QconCAT was added to five individual female urine samples and
digested using the protocol optimised in section 3.3.2. The digested material was analysed
by LC-MS. The peptide pairs consist of the “light” analyte peptide and the corresponding
“heavy” Q peptide 6 Da heavier.
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Supplementary data A. LC-MS analysis of individual female C57BL/6 mice. Q peptide 6.

A known amount of QconCAT was added to five individual female urine samples and
digested using the protocol optimised in section 3.3.2. The digested material was analysed
by LC-MS. The peptide pairs consist of the “light” analyte peptide and the corresponding
“heavy” Q peptide 6 Da heavier.
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Supplementary data A. LC-MS analysis of individual female C57BL/6 mice. Q peptide 7.

A known amount of QconCAT was added to five individual female urine samples and digested
using the protocol optimised in section 3.3.2. The digested material was analysed by LC-MS.
The peptide pairs consist of the “light” analyte peptide and the corresponding “heavy” Q
peptide 6 Da heavier. No “light” analyte was detected in these five individual B6 female mice.
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Supplementary data A. LC-MS analysis of individual female C57BL/6 mice. Q peptide 8.
A known amount of QconCAT was added to five individual female urine samples and
digested using the protocol optimised in section 3.3.2. The digested material was analysed
by LC-MS. The peptide pairs consist of the “light” analyte peptide and the corresponding
“heavy” Q peptide 6 Da heavier. No “light” analyte was detected in these five individual B6
female mice.



462.77 3.49e5

B6 Female 1
l_]\_ALA
L | 1 1
462.77
3.56e5
B6 Female 2
A_J__l_ﬁ_g
L l L '
462.77
3.41e5
B6 Female 3
l_l_lJ
! | 1 1
462.77
3.44e5
B6 Female 4
&_ng_ﬁ
. 1 . 1
462.77
3.59e5
B6 Female 5
.\_JL_J;AA
l 1 I L l L I L
457.5 460.0 462.5 465.0

m/z

Supplementary data A. LC-MS analysis of individual female C57BL/6 mice. Q peptide 11.

A known amount of QconCAT was added to five individual female urine samples and
digested using the protocol optimised in section 3.3.2. The digested material was analysed
by LC-MS. The peptide pairs consist of the “light” analyte peptide and the corresponding
“heavy” Q peptide 6 Da heavier. No “light” analyte was detected in these five individual B6
female mice.
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Supplementary data A. LC-MS analysis of individual female C57BL/6 mice. Q peptide 12.

A known amount of QconCAT was added to five individual female urine samples and digested
using the protocol optimised in section 3.3.2. The digested material was analysed by LC-MS.
The peptide pairs consist of the “light” analyte peptide and the corresponding “heavy” Q
peptide 6 Da heavier.
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Supplementary data A. LC-MS analysis of individual female C57BL/6 mice. Q peptide 13.

A known amount of QconCAT was added to five individual female urine samples and
digested using the protocol optimised in section 3.3.2. The digested material was analysed
by LC-MS. The peptide pairs consist of the “light” analyte peptide and the corresponding
“heavy” Q peptide 6 Da heavier.
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Supplementary data A. LC-MS analysis of individual female C57BL/6 mice. Q peptide 14.

A known amount of QconCAT was added to five individual female urine samples and digested
using the protocol optimised in section 3.3.2. The digested material was analysed by LC-MS.
The peptide pairs consist of the “light” analyte peptide and the corresponding “heavy” Q
peptide 6 Da heavier..
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Supplementary data A. LC-MS analysis of individual female C57BL/6 mice. Q peptide 15.

A known amount of QconCAT was added to five individual female urine samples and digested
using the protocol optimised in section 3.3.2. The digested material was analysed by LC-MS.
The peptide pairs consist of the “light” analyte peptide and the corresponding “heavy” Q peptide
6 Da heavier.
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Supplementary Data B. De novo sequence analysis of the processed MS/MS spectra of M. minutus Try peptide 847 m/z

M. minutus glass rod samples containing the protein of interest was digested using the in-solution digest protocol listed in the methods section. Peptides from the in-solution
proteolysis were analysed using a Thermo Scientific QExactive mass spectrometer coupled to a Thermo Scientific™ Dionex™ UltiMate™ 3000 chromatography system. The samples
were injected (typically equivalent to 500fmol protein) onto a reversed phase column and were eluted over a 1 h acetonitrile gradient . Spectra were acquired between 300-
2000m/z. Raw data was processed using PEAKS ®software (Bioinformatics Solutions Inc, Canada).
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Supplementary Data B. De novo sequence analysis of the processed MS/MS spectra of M. minutus LysC peptide 847 m/z

M. minutus glass rod samples containing the protein of interest was digested using the in-solution digest protocol listed in the methods section. Peptides from the in-solution
proteolysis were analysed using a Thermo Scientific QExactive mass spectrometer coupled to a Thermo Scientific™ Dionex™ UltiMate™ 3000 chromatography system. The samples
were injected (typically equivalent to 500fmol protein) onto a reversed phase column and were eluted over a 1 h acetonitrile gradient . Spectra were acquired between 300-
2000m/z. Raw data was processed using PEAKS ®software (Bioinformatics Solutions Inc, Canada).
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Supplementary Data B. De novo sequence analysis of the processed MS/MS spectra of M. minutus tryptic peptide 1114 m/z

M. minutus glass rod samples containing the protein of interest was digested using the in-solution digest protocol listed in the methods section. Peptides from the in-solution
proteolysis were analysed using a Thermo Scientific QExactive mass spectrometer coupled to a Thermo Scientific™ Dionex™ UltiMate™ 3000 chromatography system. The samples
were injected (typically equivalent to 500fmol protein) onto a reversed phase column and were eluted over a 1 h acetonitrile gradient . Spectra were acquired between 300-
2000m/z. Raw data was processed using PEAKS ®software (Bioinformatics Solutions Inc, Canada).
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Supplementary Data B. De novo sequence analysis of the processed MS/MS spectra of M. minutus LysC peptide 1114 m/z

M. minutus glass rod samples containing the protein of interest was digested using the in-solution digest protocol listed in the methods section. Peptides from the in-solution
proteolysis were analysed using a Thermo Scientific QExactive mass spectrometer coupled to a Thermo Scientific™ Dionex™ UltiMate™ 3000 chromatography system. The samples
were injected (typically equivalent to 500fmol protein) onto a reversed phase column and were eluted over a 1 h acetonitrile gradient . Spectra were acquired between 300-
2000m/z. Raw data was processed using PEAKS ®software (Bioinformatics Solutions Inc, Canada).
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Supplementary Data B. De novo sequence analysis of the processed MS/MS spectra of M. minutus tryptic peptide 870 m/z

M. minutus glass rod samples containing the protein of interest was digested using the in-solution digest protocol listed in the methods section. Peptides from the in-solution
proteolysis were analysed using a Thermo Scientific QExactive mass spectrometer coupled to a Thermo Scientific™ Dionex™ UltiMate™ 3000 chromatography system. The samples
were injected (typically equivalent to 500fmol protein) onto a reversed phase column and were eluted over a 1 h acetonitrile gradient . Spectra were acquired between 300-
2000m/z. Raw data was processed using PEAKS ®software (Bioinformatics Solutions Inc, Canada).
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Supplementary Data B. De novo sequence analysis of the processed MS/MS spectra of M. minutus tryptic peptide 1325 m/z

M. minutus glass rod samples containing the protein of interest was digested using the in-solution digest protocol listed in the methods section. Peptides from the in-solution
proteolysis were analysed using a Thermo Scientific QExactive mass spectrometer coupled to a Thermo Scientific™ Dionex™ UltiMate™ 3000 chromatography system. The samples
were injected (typically equivalent to 500fmol protein) onto a reversed phase column and were eluted over a 1 h acetonitrile gradient . Spectra were acquired between 300-
2000m/z. Raw data was processed using PEAKS ®software (Bioinformatics Solutions Inc, Canada).
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Supplementary Data B. De novo sequence analysis of the processed MS/MS spectra of M. minutus tryptic peptide 1489 m/z

M. minutus glass rod samples containing the protein of interest was digested using the in-solution digest protocol listed in the methods section. Peptides from the in-solution
proteolysis were analysed using a Thermo Scientific QExactive mass spectrometer coupled to a Thermo Scientific™ Dionex™ UltiMate™ 3000 chromatography system. The samples
were injected (typically equivalent to 500fmol protein) onto a reversed phase column and were eluted over a 1 h acetonitrile gradient . Spectra were acquired between 300-
2000m/z. Raw data was processed using PEAKS ®software (Bioinformatics Solutions Inc, Canada).
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Supplementary Data B. De novo sequence analysis of the processed MS/MS spectra of M. minutus LysC peptide 1489 m/z

M. minutus glass rod samples containing the protein of interest was digested using the in-solution digest protocol listed in the methods section. Peptides from the in-solution
proteolysis were analysed using a Thermo Scientific QExactive mass spectrometer coupled to a Thermo Scientific™ Dionex™ UltiMate™ 3000 chromatography system. The samples
were injected (typically equivalent to 500fmol protein) onto a reversed phase column and were eluted over a 1 h acetonitrile gradient . Spectra were acquired between 300-
2000m/z. Raw data was processed using PEAKS ®software (Bioinformatics Solutions Inc, Canada).
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Supplementary Data B. De novo sequence analysis of the processed MS/MS spectra of M. minutus tryptic peptide 1753 m/z

M. minutus glass rod samples containing the protein of interest was digested using the in-solution digest protocol listed in the methods section. Peptides from the in-solution
proteolysis were analysed using a Thermo Scientific QExactive mass spectrometer coupled to a Thermo Scientific™ Dionex™ UltiMate™ 3000 chromatography system. The samples
were injected (typically equivalent to 500fmol protein) onto a reversed phase column and were eluted over a 1 h acetonitrile gradient . Spectra were acquired between 300-
2000m/z. Raw data was processed using PEAKS ®software (Bioinformatics Solutions Inc, Canada).
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Supplementary Data B. De novo sequence analysis of the processed MS/MS spectra of M. minutus tryptic peptide 1649 m/z

M. minutus glass rod samples containing the protein of interest was digested using the in-solution digest protocol listed in the methods section. Peptides from the in-solution
proteolysis were analysed using a Thermo Scientific QExactive mass spectrometer coupled to a Thermo Scientific™ Dionex™ UltiMate™ 3000 chromatography system. The samples
were injected (typically equivalent to 500fmol protein) onto a reversed phase column and were eluted over a 1 h acetonitrile gradient . Spectra were acquired between 300-
2000m/z. Raw data was processed using PEAKS ®software (Bioinformatics Solutions Inc, Canada).
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Supplementary Data B. De novo sequence analysis of the processed MS/MS spectra of M. minutus tryptic peptide 643 m/z

M. minutus glass rod samples containing the protein of interest was digested using the in-solution digest protocol listed in the methods section. Peptides from the in-solution
proteolysis were analysed using a Thermo Scientific QExactive mass spectrometer coupled to a Thermo Scientific™ Dionex™ UltiMate™ 3000 chromatography system. The samples
were injected (typically equivalent to 500fmol protein) onto a reversed phase column and were eluted over a 1 h acetonitrile gradient . Spectra were acquired between 300-
2000m/z. Raw data was processed using PEAKS ®software (Bioinformatics Solutions Inc, Canada).
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Supplementary Data B. De novo sequence analysis of the processed MS/MS spectra of M. minutus tryptic peptide 643 m/z

M. minutus glass rod samples containing the protein of interest was digested using the in-solution digest protocol listed in the methods section. Peptides from the in-solution
proteolysis were analysed using a Thermo Scientific QExactive mass spectrometer coupled to a Thermo Scientific™ Dionex™ UltiMate™ 3000 chromatography system. The samples
were injected (typically equivalent to 500fmol protein) onto a reversed phase column and were eluted over a 1 h acetonitrile gradient . Spectra were acquired between 300-
2000m/z. Raw data was processed using PEAKS ®software (Bioinformatics Solutions Inc, Canada).
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Supplementary Data B. De novo sequence analysis of the processed MS/MS spectra of M. minutus LysC peptide 2138 m/z

M. minutus glass rod samples containing the protein of interest was digested using the in-solution digest protocol listed in the methods section. Peptides from the in-solution
proteolysis were analysed using a Thermo Scientific QExactive mass spectrometer coupled to a Thermo Scientific™ Dionex™ UltiMate™ 3000 chromatography system. The samples
were injected (typically equivalent to 500fmol protein) onto a reversed phase column and were eluted over a 1 h acetonitrile gradient . Spectra were acquired between 300-
2000m/z. Raw data was processed using PEAKS ®software (Bioinformatics Solutions Inc, Canada).
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Supplementary Data B. De novo sequence analysis of the processed MS/MS spectra of M. minutus GluC peptide 1043 m/z

M. minutus glass rod samples containing the protein of interest was digested using the in-solution digest protocol listed in the methods section. Peptides from the in-solution
proteolysis were analysed using a Thermo Scientific QExactive mass spectrometer coupled to a Thermo Scientific™ Dionex™ UltiMate™ 3000 chromatography system. The samples
were injected (typically equivalent to 500fmol protein) onto a reversed phase column and were eluted over a 1 h acetonitrile gradient . Spectra were acquired between 300-
2000m/z. Raw data was processed using PEAKS ®software (Bioinformatics Solutions Inc, Canada).
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Supplementary data C. De novo sequence analysis of the processed MS/MS spectra of M. murinus LysC peptide 961 m/z.

M. murinus urine containing the protein of interest was digested using the in-solution digest protocol listed in the methods section. Peptides from the in-solution
proteolysis were analysed using a Thermo Scientific QExactive mass spectrometer coupled to a Thermo Scientific™ Dionex™ UltiMate™ 3000 nano chromatography
system. The samples were injected (typically equivalent to 500 fmol protein) onto a reversed phase column and were eluted over a 1 h acetonitrile gradient .
Spectra were acquired between 300-2000m/z. Raw data was processed using PEAKS 6 ®software (Bioinformatics Solutions Inc, Canada).
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Supplementary data C. De novo sequence analysis of the processed MS/MS spectra of M. murinus tryptic peptide 1274 m/z.

M. murinus urine containing the protein of interest was digested using the in-solution digest protocol listed in the methods section. Peptides from the in-solution
proteolysis were analysed using a Thermo Scientific QExactive mass spectrometer coupled to a Thermo Scientific™ Dionex™ UltiMate™ 3000 nano chromatography
system. The samples were injected (typically equivalent to 500 fmol protein) onto a reversed phase column and were eluted over a 1 h acetonitrile gradient .
Spectra were acquired between 300-2000m/z. Raw data was processed using PEAKS 6 ®software (Bioinformatics Solutions Inc, Canada).
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Supplementary data C. De novo sequence analysis of the processed MS/MS spectra of M. murinus tryptic peptide 746 m/z.

M. murinus urine containing the protein of interest was digested using the in-solution digest protocol listed in the methods section. Peptides from the in-solution
proteolysis were analysed using a Thermo Scientific QExactive mass spectrometer coupled to a Thermo Scientific™ Dionex™ UltiMate™ 3000 nano chromatography
system. The samples were injected (typically equivalent to 500 fmol protein) onto a reversed phase column and were eluted over a 1 h acetonitrile gradient .
Spectra were acquired between 300-2000m/z. Raw data was processed using PEAKS 6 ®software (Bioinformatics Solutions Inc, Canada).
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Supplementary data C. De novo sequence analysis of the processed MS/MS spectra of M. murinus LysC peptide 1145 m/z.

M. murinus urine containing the protein of interest was digested using the in-solution digest protocol listed in the methods section. Peptides from the in-solution
proteolysis were analysed using a Thermo Scientific QExactive mass spectrometer coupled to a Thermo Scientific™ Dionex™ UltiMate™ 3000 nano chromatography
system. The samples were injected (typically equivalent to 500 fmol protein) onto a reversed phase column and were eluted over a 1 h acetonitrile gradient .
Spectra were acquired between 300-2000m/z. Raw data was processed using PEAKS 6 ®software (Bioinformatics Solutions Inc, Canada).
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Supplementary data C. De novo sequence analysis of the processed MS/MS spectra of M. murinus GluC peptide 1158 m/z.

M. murinus urine containing the protein of interest was digested using the in-solution digest protocol listed in the methods section. Peptides from the in-solution
proteolysis were analysed using a Thermo Scientific QExactive mass spectrometer coupled to a Thermo Scientific™ Dionex™ UltiMate™ 3000 nano chromatography
system. The samples were injected (typically equivalent to 500 fmol protein) onto a reversed phase column and were eluted over a 1 h acetonitrile gradient .
Spectra were acquired between 300-2000m/z. Raw data was processed using PEAKS 6 ®software (Bioinformatics Solutions Inc, Canada).
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Supplementary data C. De novo sequence analysis of the processed MS/MS spectra of M. murinus GluC peptide 1116 m/z.

M. murinus urine containing the protein of interest was digested using the in-solution digest protocol listed in the methods section. Peptides from the in-solution
proteolysis were analysed using a Thermo Scientific QExactive mass spectrometer coupled to a Thermo Scientific™ Dionex™ UltiMate™ 3000 nano chromatography
system. The samples were injected (typically equivalent to 500 fmol protein) onto a reversed phase column and were eluted over a 1 h acetonitrile gradient .
Spectra were acquired between 300-2000m/z. Raw data was processed using PEAKS 6 ®software (Bioinformatics Solutions Inc, Canada).
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Supplementary data C. De novo sequence analysis of the processed MS/MS spectra of M. Murinus LysC peptide 2979 m/z.

M. Murinus urine containing the protein of interest was digested using the in-solution digest protocol listed in the methods section. Peptides from the in-solution
proteolysis were analysed using a Thermo Scientific QExactive mass spectrometer coupled to a Thermo Scientific™ Dionex™ UltiMate™ 3000 nano chromatography
system. The samples were injected (typically equivalent to 500 fmol protein) onto a reversed phase column and were eluted over a 1 h acetonitrile gradient .
Spectra were acquired between 300-2000m/z. Raw data was processed using PEAKS 6 ®software (Bioinformatics Solutions Inc, Canada).
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Supplementary data C. De novo sequence analysis of the processed MS/MS spectra of M. Murinus LysC peptide 1888 m/z.

M. Murinus urine containing the protein of interest was digested using the in-solution digest protocol listed in the methods section. Peptides from the in-solution
proteolysis were analysed using a Thermo Scientific QExactive mass spectrometer coupled to a Thermo Scientific™ Dionex™ UltiMate™ 3000 nano chromatography
system. The samples were injected (typically equivalent to 500 fmol protein) onto a reversed phase column and were eluted over a 1 h acetonitrile gradient .
Spectra were acquired between 300-2000m/z. Raw data was processed using PEAKS 6 ®software (Bioinformatics Solutions Inc, Canada).
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Supplementary data C. De novo sequence analysis of the processed MS/MS spectra of M. Murinus AspN peptide 1102 m/z.

M. Murinus urine containing the protein of interest was digested using the in-solution digest protocol listed in the methods section. Peptides from the in-solution
proteolysis were analysed using a Thermo Scientific QExactive mass spectrometer coupled to a Thermo Scientific™ Dionex™ UltiMate™ 3000 nano chromatography
system. The samples were injected (typically equivalent to 500 fmol protein) onto a reversed phase column and were eluted over a 1 h acetonitrile gradient .
Spectra were acquired between 300-2000m/z. Raw data was processed using PEAKS 6 ®software (Bioinformatics Solutions Inc, Canada).
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Supplementary data C. De novo sequence analysis of the processed MS/MS spectra of M. Murinus AspN peptide 1060 m/z.

M. Murinus urine containing the protein of interest was digested using the in-solution digest protocol listed in the methods section. Peptides from the in-solution
proteolysis were analysed using a Thermo Scientific QExactive mass spectrometer coupled to a Thermo Scientific™ Dionex™ UltiMate™ 3000 nano chromatography
system. The samples were injected (typically equivalent to 500 fmol protein) onto a reversed phase column and were eluted over a 1 h acetonitrile gradient .
Spectra were acquired between 300-2000m/z. Raw data was processed using PEAKS 6 ®software (Bioinformatics Solutions Inc, Canada).
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Supplementary data C. De novo sequence analysis of the processed MS/MS spectra of M. lehilahytsara tryptic peptide 991 m/z.

M. lehilahytsara urine containing the protein of interest was digested using the in-solution digest protocol listed in the methods section. Peptides from the in-
solution proteolysis were analysed using a Thermo Scientific QExactive mass spectrometer coupled to a Thermo Scientific™ Dionex™ UltiMate™ 3000 nano
chromatography system. The samples were injected (typically equivalent to 500 fmol protein) onto a reversed phase column and were eluted over a 1 h acetonitrile
gradient . Spectra were acquired between 300-2000m/z. Raw data was processed using PEAKS 6 ®software (Bioinformatics Solutions Inc, Canada).
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Supplementary data C. De novo sequence analysis of the processed MS/MS spectra of M. lehilahytsara LysC peptide 991 m/z.

M. lehilahytsara urine containing the protein of interest was digested using the in-solution digest protocol listed in the methods section. Peptides from the in-
solution proteolysis were analysed using a Thermo Scientific QExactive mass spectrometer coupled to a Thermo Scientific™ Dionex™ UltiMate™ 3000 nano
chromatography system. The samples were injected (typically equivalent to 500 fmol protein) onto a reversed phase column and were eluted over a 1 h acetonitrile
gradient . Spectra were acquired between 300-2000m/z. Raw data was processed using PEAKS 6 ®software (Bioinformatics Solutions Inc, Canada).
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Supplementary data C. De novo sequence analysis of the processed MS/MS spectra of M. lehilahytsara tryptic peptide 1274 m/z.

M. lehilahytsara urine containing the protein of interest was digested using the in-solution digest protocol listed in the methods section. Peptides from the in-
solution proteolysis were analysed using a Thermo Scientific QExactive mass spectrometer coupled to a Thermo Scientific™ Dionex™ UltiMate™ 3000 nano
chromatography system. The samples were injected (typically equivalent to 500 fmol protein) onto a reversed phase column and were eluted over a 1 h acetonitrile
gradient . Spectra were acquired between 300-2000m/z. Raw data was processed using PEAKS 6 ®software (Bioinformatics Solutions Inc, Canada).
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Supplementary data C. De novo sequence analysis of the processed MS/MS spectra of M. lehilahytsara LysC peptide 1274 m/z.

M. lehilahytsara urine containing the protein of interest was digested using the in-solution digest protocol listed in the methods section. Peptides from the in-
solution proteolysis were analysed using a Thermo Scientific QExactive mass spectrometer coupled to a Thermo Scientific™ Dionex™ UltiMate™ 3000 nano
chromatography system. The samples were injected (typically equivalent to 500 fmol protein) onto a reversed phase column and were eluted over a 1 h acetonitrile
gradient . Spectra were acquired between 300-2000m/z. Raw data was processed using PEAKS 6 ®software (Bioinformatics Solutions Inc, Canada).
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Supplementary data C. De novo sequence analysis of the processed MS/MS spectra of M. lehilahytsara tryptic peptide 1888 m/z.

M. lehilahytsara urine containing the protein of interest was digested using the in-solution digest protocol listed in the methods section. Peptides from the in-
solution proteolysis were analysed using a Thermo Scientific QExactive mass spectrometer coupled to a Thermo Scientific™ Dionex™ UltiMate™ 3000 nano
chromatography system. The samples were injected (typically equivalent to 500 fmol protein) onto a reversed phase column and were eluted over a 1 h acetonitrile
gradient . Spectra were acquired between 300-2000m/z. Raw data was processed using PEAKS 6 ®software (Bioinformatics Solutions Inc, Canada).
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Supplementary data C. De novo sequence analysis of the processed MS/MS spectra of M. lehilahytsara LysC peptide 1888 m/z.

M. lehilahytsara urine containing the protein of interest was digested using the in-solution digest protocol listed in the methods section. Peptides from the in-
solution proteolysis were analysed using a Thermo Scientific QExactive mass spectrometer coupled to a Thermo Scientific™ Dionex™ UltiMate™ 3000 nano
chromatography system. The samples were injected (typically equivalent to 500 fmol protein) onto a reversed phase column and were eluted over a 1 h acetonitrile
gradient . Spectra were acquired between 300-2000m/z. Raw data was processed using PEAKS 6 ®software (Bioinformatics Solutions Inc, Canada).
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Supplementary data C. De novo sequence analysis of the processed MS/MS spectra of M. lehilahytsara AspN peptide 1125 m/z.

M. lehilahytsara urine containing the protein of interest was digested using the in-solution digest protocol listed in the methods section. Peptides from the in-
solution proteolysis were analysed using a Thermo Scientific QExactive mass spectrometer coupled to a Thermo Scientific™ Dionex™ UltiMate™ 3000 nano
chromatography system. The samples were injected (typically equivalent to 500 fmol protein) onto a reversed phase column and were eluted over a 1 h acetonitrile
gradient . Spectra were acquired between 300-2000m/z. Raw data was processed using PEAKS 6 ®software (Bioinformatics Solutions Inc, Canada).
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