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Abstract: 

HIF (Hypoxia Inducible Factor) is an oxygen-regulated transcription factor that mediates the 

intracellular response to hypoxia in human cells. There is increasing evidence that cell 

signaling pathways encode temporal information, and thus cell fate may be determined by the 

dynamics of protein levels. We have developed a mathematical model to describe the 

transient dynamics of the HIF-1α protein measured in single cells subjected to hypoxic shock. 

The essential characteristics of these data are modeled with a system of differential equations 

describing the feedback inhibition between HIF-1α and Prolyl Hydroxylases (PHD) oxygen 

sensors. Heterogeneity in the single-cell data is accounted for through parameter variation in 

the model. We previously identified the PHD2 isoform as the main PHD responsible for 

controlling the HIF-1α transient response, and make here testable predictions regarding HIF-

1α dynamics subject to repetitive hypoxic pulses. The model is further developed to describe 

the dynamics of HIF-1α in cells cultured as 3D spheroids, with oxygen dynamics 

parameterized using experimental measurements of oxygen within spheroids. We show that 

the dynamics of HIF-1α and transcriptional targets of HIF-1α display a non-monotone 
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response to the oxygen dynamics. Specifically we demonstrate that the dynamic transient 

behavior of HIF-1α results in differential dynamics in transcriptional targets. 

Keywords: Hypoxia, HIF (Hypoxia Inducible Factor), Negative feedback loop, Prolyl 

Hydroxylase, spheroids, mathematical modeling, oxygen nanoprobes.  



1. Introduction 

Oxygen homeostasis is crucial for the normal function and maintenance of respiring cells. 

The result of an insufficient supply of oxygen to the cell is hypoxia, a condition that plays a 

key role in a number of human pathologies. Hypoxia Inducible Factor (HIF) family members 

are transcription factors that mediate the intracellular hypoxic response. During hypoxia, HIF 

induces the transcription of a series of genes involved in diverse adaptive functions such as 

angiogenesis, glycolysis, cell proliferation and iron metabolism [1]. HIF is a heterodimer, 

comprised of an oxygen-regulated α subunit and a constitutive β subunit. Dimerization 

between the two subunits is necessary for DNA binding. In normoxic conditions prolyl 

hydroxylases (PHDs) catalyze the hydroxylation of HIFα, promoting its proteasomal 

destruction. Since PHDs require molecular oxygen in order to hydroxylate HIFα, in hypoxic 

conditions, hydroxylation is decreased. This results in HIFα stabilization and increased 

transcriptional activity. There is a feedback loop in this system as HIF also induces the 

transcription of the PHDs. This increase in PHD levels can compensate for the reduction of 

their activity when oxygen availability drops [2]. 

Mathematical models of biochemical networks have improved our understanding of 

biological phenomena. In particular, feedback models have provided insight into robust 

biological adaptation [3] and into dynamic oscillatory and pulsatile behavior. Examples of 

dynamic behavior include models of circadian rhythms [4], the cell cycle [5], and the 

dynamic behavior of key regulatory transcription factors [6, 7]. Cellular signaling pathways 

are typically very complex, and models must be designed to tackle the scientific questions 

being addressed subject to the available experimental data. Dynamic feedback models are 

typically expressed as systems of ordinary or stochastic differential equations, or hybrid 

combinations thereof. For example stochastic models may be necessary to investigate 

heterogeneity in single-cell imaging data [8], whereas minimal deterministic models may be 

sufficient to probe the dynamic properties of biological oscillators [9]. Calibrating or fitting 

the models to the data is a mathematically complex process, which again depends on the 

scientific questions being addressed and the experimental data available. Within the context 

of transcription factor pathways, a system perturbation by a given stimulus that produces an 

oscillatory or pulsatile response is particularly suitable for feedback modeling. Determining 

whether experimental data is sufficient to parameterize a model [10], and how to include 

parameter variability [11] are important concerns when developing dynamic feedback 

models. 

Motivated by novel experimental data describing the dynamics of the HIF-1α protein at the 

level of single cells, we previously developed a simple mathematical model to capture the 

HIF-1α-PHD negative feedback [12]. This mathematical model was built based on live 

imaging experiments of single cells experiencing a single hypoxic transition. Parameters in 

the model were optimized through a combination of fitting to single-cell dynamic data, and 

through data collected from additional experiments. Whilst developing this model, it became 

apparent that it was necessary to explicitly distinguish the PHD isoforms and thus we 

developed an extended model which included the isoforms PHD1, 2 and 3. Using this 

extended model we previously identified PHD2 as the main PHD responsible for HIF-1α 



peak duration [12]. Here, in theory sections 3.1-3.3, and results section 4.1, we provide more 

extensive details of model development and calibration. In results section 4.2 we then provide 

additional validation of the model by comparing model predictions with new experimental 

data (described in methods section 2.1) investigating the response of cells to pulsatile hypoxic 

stimulation. 

Whilst our previous work focused on single cells experiencing a single hypoxic transition, in 

tissues cells respond to continuous temporal changes in oxygen as well as spatial gradients. 

For example, the vascularization and oxygenation status of solid tumors vary over time due to 

the dynamic process whereby new blood vessels are formed and sub-functional vessels 

collapse [13]. The transient cycles of hypoxia-reoxygenation (intermittent hypoxia) that are 

known to occur in solid tumors is a poorly appreciated therapeutic problem and it is 

associated with resistance to radiation therapy and impaired delivery of chemotherapeutic 

agents [14]. Moreover, cells will experience different levels of oxygenation, depending on 

their proximity to blood vessels. These can also vary over time due to cell migration within a 

tissue. Hence, due to a combination of spatial and temporal factors, cells will experience 

constant and complex changes in their oxygenation.  

The results presented in this current paper explore the implications of HIF-1α temporal 

dynamics within a spatial setting. In order to achieve this, we used experimental data which 

measured the oxygen concentration within a 3D system of cancerous neuroblastoma cells 

forming tumorspheres (described in methods section 2.2). These tumorspheres were subjected 

to different degrees of hypoxia and oxygen concentration distributions within the spheres 

were measured using phosphorescent Pt-porphyrin based oxygen nanosensors [15, 16]. These 

data were used to parameterize a spatial reaction-diffusion model for oxygen concentration 

(theory section 3.4 and results section 4.3), which was then coupled to the intracellular model 

of the HIF-1α-PHD feedback loop (theory section 3.5). By explicitly incorporating the 

dynamic behavior of HIF-1α, instead of assuming that the HIF-1α concentration takes an 

equilibrium value dependent on oxygen concentration, we uncovered unexpected HIF-1α and 

PHD spatio-temporal dynamics. Specifically our model predicts that in a tumorsphere, HIF-

1α levels may display overshoot dynamics near the surface even though the absolute oxygen 

levels may be higher at the surface than in the center (results section 4.4). We also used the 

model to predict how the proteins PHD2 and PHD3, which are transcriptional targets of HIF-

1, display different temporal dynamics at different spatial locations in the tumorsphere 

(results section 4.5).  

  



 

2. Material and methods 

2.1. Single-cell imaging of HIF-1α and ODD  

Cell culture and hypoxic incubation: 

HeLa cells were grown in Dulbecco’s Modified Eagle’s Medium (DMEM) supplemented 

with 10 % fetal calf serum (FCS) (v/v) and 1 % Non essential amino acids (v/v), at 37 °C, 5 

% CO2. Cells (between passages 8 to 20) were plated at 1×10
5
 cells/ml. For imaging 

experiments, cells were plated in 35 mm glass bottom dishes (Greiner bio-one, UK). Hypoxic 

incubation was performed directly on the microscope stage equipped with a PeCon incubator 

with an O2 controller. The ODD-EGFP HeLa cell line was generated by transduction of a 

HIV-ODD-EGFP-ires dTomato lentivirus as described in [12]. 

Time-lapse confocal microscopy: 

Cells were incubated on the microscope stage at 37 °C, 5 % CO2, 1 % or 20 % O2 and 

observed by confocal microscopy using a Zeiss LSM510 with a Plan-apochromat 63X 1.3 

NA oil immersion objective. Excitation of EGFP was performed using an argon ion laser at 

488 nm. Emitted light was detected through a 505-550 nm bandpass filter from a 545 nm 

dichroic mirror. For time-lapse experiments mean fluorescence intensity was extracted and 

the fluorescence intensity was determined for each cell using CellTracker version 0.6 

software [17]. Further details of the experimental protocol are provided in [12].  

2.2. 3D cell culture and oxygen levels measurements  

Tumorsphere formation and oxygen probe loading: 

The cell line SK-N-AS (human S-type neuroblastoma) was grown in Minimal Essential 

Medium with Earle’s salts plus 10 % FCS (v/v) and 1 % Non essential amino acids (v/v) and 

maintained in a humidified incubator at 37 °C, 5 % CO2. For O2 imaging MitoImage
TM

 

NanO2 probe (Luxcel Biosciences, Ireland) was added to the culture medium at a final 

concentration of 10 µg/ml and incubated for 6 h at 37 °C. After the incubation period, loaded 

cells were washed twice with PBS, trypsinized and resuspended in Neurobasal media 

supplemented with EGF (20 ng/ml), FGF2 (20 ng/ml), 2 % B27 (v/v), 1 % L-Glutamine 

(v/v), 1 % N2 supplement (v/v). A total of 1×10
4
 cells/well was seeded in a 96-well U-

Bottom plate (non-tissue culture treated) to allow sphere formation. After 24 h spheres were 

carefully transferred to a glass bottom dish (Ibidi, Germany) and Neurobasal media was 

added to a total volume of 2 ml.  

FLIM measurements: 

Oxygen levels in spheroids were imaged in FLIM mode (fluorescence lifetime imaging) on 

an inverted wide-field fluorescence microscope Axiovert 200 (Zeiss) equipped with 40x 

objective, and CO2/O2 climate control chamber (PeCon), pulsed excitation with a 390 nm 

LED and detection with gated CCD camera (both LaVision BioTec) and filter cube (390/40 

nm excitation and 655/40 nm emission). More detail can be found in [18].  



3. Theory/calculation 

3.1. Two-component negative feedback model 

We consider the following minimal feedback-model: HIF-1α ( ) induces the transcription of 

PHD ( ) at rate   and HIF-1α ( ) is degraded via PHD ( ) dependent hydroxylation at a 

maximal rate  . To prevent elimination of HIF-1α ( ) and unbounded growth of PHD ( ) we 

further suppose HIF-1α ( ) is produced through basal synthesis at rate   and PHD ( ) is 

degraded at rate  . The sensitivity to oxygen in this model is represented by the function 

    , where   is oxygen concentration, which is the rate at which PHD induces the 

degradation of HIF-1α. In preliminary work we described the hydroxylation by simple mass 

action, that is the rate at which HIF-1α ( ) was removed through PHD ( ) dependent 

hydroxylation was given by    . However when we attempted to fit the model to single-cell 

data obtained by time-lapse confocal microscopy we were unable to get good fits of the 

single-cell bell shaped data; in particular we were unable to obtain a large amplitude transient 

peak in HIF-1α concentration without a significant change in equilibrium levels between 

normoxic and hypoxic conditions. The bell-shaped data was of particular interest from a 

biological regulation point of view, as it is suggests a negative feedback loop, and so a 

requirement of our model was that it should capture this feature. We therefore included a 

saturating response to hydroxylation, thus introduce an additional parameter,  , representing 

the HIF-1α hydroxylation threshold. Thus the minimal 2-component model is given as: 

   

  
         

 

   
 

  

  
        

(1) 

We also investigated models which incorporated a PHD precursor, representing for example 

PHD mRNA. However we obtained high degradation rates of mRNA, suggesting that the 

mRNA dynamics were operating on a fast timescale, thus justifying our assumption that the 

mRNA are at a quasi-steady state [19]. We note that standard linear stability-analysis [20] 

shows that the unique equilibrium solution to this system is stable. 

3.2. Parameter optimization 

The two-component model was fit to time-series data which measured the amount of HIF-1α 

( ) in individual cells. The dataset comprised two de-oxygenation experiments consisting of 

17 and 22 cells respectively. To fit the model, an error function ( ) was defined as the sum of 

squared residuals to indicate the difference between the solution to the ordinary differential 

equations (ODEs) and the experimental data. An optimization algorithm was written in 

Matlab R2011a to search for model parameters which minimized the error function. The 

built-in functions ode45 and fminsearch were used for solving the ODEs and minimization 

respectively.  

There were six parameters to optimize: four parameters which were fixed for each cell for the 

duration of the experiment ( ,  ,   and  ) and two values for the hydroxylation rate (   in 

normoxia, and    in hypoxia) for each cell. As PHD ( ) data was not available, if we 



attempted to fit the model to experimental data, then several parameters in the model would 

not be identifiable. For example the solution for      is unchanged if we replace      by any 

scalar multiple, say      , and also replace   with    and   with    . Therefore, the 

parameters   and   are unidentifiable. In order to obtain a model which we could fit to data, 

that is a model which was structurally identifiable, we chose to rescale   with   , the 

hydroxylation rate of HIF-1α in normoxia. With this choice of rescaling, the parameter   now 

represents the original   multiplied by   , and     in normoxia and         in 

hypoxia. Furthermore we took             , based on measured values from the literature 

[21] for the hydroxylation rate of the PHD2 isoform (widely considered to be the main 

oxygen sensor, see e.g. [22]). The number of free parameters to optimize in the system was 

thus reduced to four. 

For each cell dataset we generated 50 parameter sets [ ,  ,  ,  ] to use as initial values to 

find a global optimal parameter set which best fit each experimental data set. The parameters 

  and   were specified based on the experimental data, and the parameters  ,   were sampled 

from a distribution. The half-life of the pathway’s main oxygen sensor, PHD2, has been 

measured at 785 min [12]. This gave an initial estimate for   of 8.83×10
-4

 min
-1

. The 

Michaelis constant   should be comparable to the amount of protein for which saturation is 

observed to justify its inclusion in the model, thus the sampling range for   was taken to be 

centered on     , varying one order of magnitude either way. In preliminary fitting of a small 

subset of data, the value estimated for   was very consistent, falling between 2.24×10
-4

 and 

5.49×10
-4

 for 6 cells. The sampling range was centered on the average of these values varying 

one order of magnitude either way. We assumed that prior to the oxygen switch,    , the 

system was at equilibrium (       ) which satisfies  
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)     

  

  
               

(2) 

We took the first experimental data-point as an initial estimate for the value of HIF-1α at 

   , i.e.     . Initial estimates for the values of      and   were then computed by 

assuming equilibrium at    :  
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3.2.1. Free optimization of bell-shaped data 

The model parameters were initially optimized by separately fitting the model to each of 11 

cells that shared a qualitative bell-shaped property in their transient HIF-1α dynamics during 



hypoxic induction. This dataset was chosen as it motivated the development of the minimal 

model described above. Furthermore, we anticipated that the data from each cell would 

correspond to a unique optimal parameter set; that is for each data set the model parameters 

would be identifiable. In contrast, we anticipated that the model could adequately fit each 

data set showing simpler dynamics for several choices of parameters; that is the model 

parameters would be unidentifiable.  

3.2.2. Constrained optimization  

All heterogeneity in the experimental data was accounted for in our optimization process 

through the variation of parameters. By examining the experimental protocol and the model 

we could predict which parameter values may be expected to vary between cells. Taking all 

the experimental data alongside the model, these parameters could be interpreted as being 

globally unidentifiable; that is whilst we anticipated that they would be identifiable for each 

bell-shaped experimental data, we did not expect to be able to identify a unique value across 

all the experimental data. Parameters which were not expected to vary between cells, or at 

least only vary due to endogenous cell-to-cell heterogeneity, were interpreted as being 

globally identifiable. We undertook a parameter search where globally identifiable 

parameters were constrained with the aim of obtaining a unique optimal parameter set for 

each and every cell data set.  

The dynamics in the experimental data are represented by arbitrary units (A.U.) of 

fluorescence produced as a result of the transient transfection of the cells with HIF-1α green 

fluorescent fusion protein. These fluorescence units are not comparable between separate 

experiments or between cells in the same experiment for at least two reasons. The method of 

transient transfection leads to cells with different copy numbers of the HIF-1α fusion 

constructs. In our model this corresponds to  , the basal synthesis rate of HIF-1α, not being 

conserved across cells. Also, the experimental imaging protocol involves manually adjusting 

laser settings in order to optimize the image. Gain and offset values are fine-tuned at the start 

of each experiment to minimize noise-to-signal ratio and avoid saturation of the signal. Thus 

fluorescence units between independent experiments cannot necessarily be directly 

compared. For details on how these factors affect parameter variation see the Appendix. 

We again initialized our search using 50 parameter sets [ ,  ,  ,  ]. However, in the 

constrained optimization, we fixed the initial estimates of   and   to be the median values 

found in the free optimization of bell-shaped data (section 3.2.1). Initial values of   and   

were chosen as described above. 

In the constrained parameter optimization, estimates for   and   were constrained to within 

50 % of median values found in the free optimization of bell-shaped data. Converged 

solutions were further classified as good or bad fits using an error envelope. Specifically, we 

constructed an error envelope with upper and lower bound defined by: 

 
        (   (      )     (      )) (5) 



where        represents the time-series vector of experimental data and   defines the width 

of the envelope, which was taken as       . Solutions were classified as bad fits if more 

than 1 % of the experimental data points lay outside the error envelope and good fits 

otherwise. The values for the envelope width,  , and the deviation from the envelope 

provided an objective measure of goodness of fit but were chosen arbitrarily. 

 

3.3. Extension of model to four components 

The minimal two-component ODE model was extended to four components by removing the 

generic PHD feedback variable ( ) and explicitly accounting for the three different isoforms 

of PHD: PHD1, PHD2 and PHD3 (termed   ,    and    respectively): 
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Biological justification for the model development is provided in [12]. In summary, we take 

PHD2 and PHD3 to be HIF-1α-inducible with equal induction rate  , whilst PHD1 is not 

inducible. For     to   basal synthesis and degradation rates for PHD  are given by   , and 

  ; and PHD  causes hydroxylation of HIF-1α at a rate    which is dependent on oxygen 

concentration,  . Specifically, the equations for the hydroxylation rates, normalized on    in 

normoxia (      ), are based on data from [21] and given by: 

                                    

                               

                                     

(7) 

The induction rate,  , and synthesis rate of one of the PHDs were optimized to obtain a best 

fit to the 2-component model with median parameter values. Other parameters were 

constrained by experimental data as detailed in [12]. 

3.4. Model for oxygen concentration 

We model the tumorsphere as a radially symmetric sphere of radius   and assume oxygen 

diffuses at rate    inside the sphere and rate    outside the sphere. Within the sphere, we 

assume cells consume oxygen. Thus the oxygen concentration,     , satisfies the following 

equation: 
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subject to boundary conditions: 
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 at        (11) 

The first boundary condition ensures no singularities occur at the origin and the second 

boundary condition specifies the far-field oxygen-concentration,   . The final boundary 

condition matches the diffusive flux at the surface of the sphere to ensure conservation of 

mass at the surface. 

3.4.1. Steady state solution and parameter fitting 

Non-dimensionalizing radial position on  , by using standard techniques for solving ODEs 

(e.g. [23]) we find the steady-state solution is given by 
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where  ̃ is the uptake rate non-dimensionalized on      and the concentration at the surface 

of the sphere,   , is given by 
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(13) 

To estimate the model parameters, we simultaneously fitted the steady-state solution to four 

sets of experimental data corresponding to 2 cross-sections of a tumorsphere for two 

specified values of   . Given the radius,   , was known, we optimized the quantity   

 ̃         which should be the same for all data regardless of sphere radius. We also 

optimized the constant parameter  .  

3.4.2. Unsteady numerical solution 

Initially, the unsteady oxygen concentration was computed numerically with time non-

dimensionalized on the timescale for diffusion across the sphere,      . Solutions to the 



time-dependent system were found numerically using a backward-time centered-space 

(BTCS) implicit Euler finite difference method.  

To couple the unsteady solution for the oxygen dynamics with the HIF-1α model, we 

required an estimate of the diffusion rate inside the sphere,   . This was necessary in order to 

run the oxygen model on the same timescale as the HIF-1α model. Whilst detailed 

information regarding the temporal oxygen dynamics was lacking, experiments have shown 

that it takes 5 min for a tumorsphere of radius 187.5 μm to attain oxygen equilibrium when 

subject to an oxygen switch from 8 % to 3 % (data not shown). We could then estimate 

          , where           ,           , and   is the non-dimensional time taken 

in the numerical simulation for equilibrium to be attained after a sphere is subject to an 

oxygen switch from 8 % to 3 %. We defined the numerical simulation to be at equilibrium if 

the relative error between the oxygen concentration and the analytic steady-state was less 

than 1 % at every grid point.  

3.5. Coupling spatial oxygen model with HIF-1α model 

The oxygen spatial model was coupled to the HIF-1α model by computing the temporal 

dynamics of both the oxygen and HIF-1α at different spatial locations. In this simple model, 

we neglected details of cell movement and growth, and assumed oxygen uptake is uniform 

throughout the tumorsphere. We thus did not take explicit account of individual cells, and 

instead focussed on how the HIF-1α dynamics would vary spatially due to the spatiotemporal 

oxygen signal. At a particular spatial location, we could compute the oxygen temporal 

dynamics which were then input into the hydroxylation function (equations (7)) used in the 

HIF-1α model. Specifically, the model for the unsteady oxygen dynamics was solved to 

obtain          for       ,       , where   and   are equally spaced vectors 

representing radial position and time with     ,      ,     ,       h. Note that 

space is non-dimensionalized on the sphere radius, whilst time is dimensional in order to 

couple with the dimensional HIF-1α model. The grid values taken were         , and 

convergence of the solution was checked by increasing the spatial and temporal resolution. 

The HIF-1α ODE model as described in section 3.3 was then solved for   ,        by 

taking temporally varying hydroxylation rates (see equations (7)) based on the oxygen 

concentration given by         . Conversion between the internal oxygen concentration given 

in units of μM to equivalent external oxygen concentration given as % volume as measured 

in the atmosphere of the hypoxic chamber was performed using previous calibration results 

[18, 24]. 

 

4. Results and Discussion 

4.1. A minimal 2-component model for HIF-1α-PHD negative feedback can capture 

dynamic single-cell data. 

Numerical simulations of model (1) were compared with experimental data [12]. By varying 

parameters in the model, we previously obtained a good fit to the experimental bell-shaped 

data (Fig 1, adapted from [12]). Furthermore, in most cases, the optimal parameters were 



independent of initial estimates for the parameters, thus suggesting that we have found a 

unique global optimal set. Specifically, Fig 2 shows the results of the parameter optimization, 

in which 50 initial sets of parameter were randomly selected for each cell. For all cells, at 

least 32 of the initial sets converged to a   value (measure of error between numerical 

solution and experimental data) within 1 % of the minimum   value. The optimal parameters 

generally converged to a unique parameter set, although we note exceptions, for example the 

value of   in cell 9 displays variability depending on the initial parameter estimates. Much 

greater variability was found when applying the free optimization method to non-bell-shaped 

data. For example, multiple parameter sets were equally good at fitting experimental data 

which shows a simple linear increase in HIF-1α (data not shown). 

Under free optimization, we see large variability in optimal parameters across the cells (Fig 

2). However we would expect the parameters   and   to be conserved (see section 3.2.2 and 

[12]). In Fig 3, the optimal parameters were obtained via a constrained optimization for the 

full set of experimental data. In the constrained search, parameters   and   were constrained 

to within 50 % of the median values depicted in Fig 2. For each cell, at least 42 of the initial 

sets converged to a   value within 1 % of the minimum   value. The model could 

successfully fit 31 out of 39 cells according to the error envelope criteria. Fig S1, Fig S2, Fig 

S3 provide additional plots of all the simulations fit to the experimental data, and identify 

cells which fail the error envelope criteria. 

 

In Fig 3 we see that the bell data in Experiment 2 had higher values of   and lower values of 

  than data from Experiment 1. Whereas imaging protocols would predict a positive 

correlation between measured values of   and  , variation in HIF-1α copy number between 

cells as a result of transient transfection may lead to variation in   but not   (see scaling 

analysis of section 3.2.2). Therefore it could be that   values are generally lower in 

Experiment 2 than Experiment 1 as a result of the imaging scaling but   values are higher due 

to a significantly higher copy number of HIF-1α in Experiment 2 as a result of transient 

transfection. This hypothesis may also be linked to why we only see bells in Experiment 2. 

Alternatively, the exclusivity of bells to Experiment 2 may suggest that there are other means 

of regulation (e.g. oxygen independent) involved that we have not accounted for in the 

model. This could include for example environmental factors such as Fe2+, 2-oxoglutarate 

(2OG) and ascorbate.  

4.2. Predictions and experimental validation of the extended model 

As demonstrated in [12], the extended 4-component model, which is more tightly constrained 

by additional experimental measurements, fits to the 2-component model quite well. We also 

have previously demonstrated that removal of PHD2 leads to sustained high-levels of HIF-

1α, indicating that PHD2 is the main PHD responsible for controlling HIF-1α dynamics.  

Here we investigate the effect of repetitive hypoxic shocks applied to the system through 

model prediction (Fig 4A) and experimental validation (Fig 4B). Both the prediction and 

validation show a reduction of the amplitude of HIF-1α response for the second peak. This 



occurs because PHD2 and PHD3 are not reduced to basal equilibrium levels during the single 

hour of normoxia which separates the hypoxic shocks. 

4.3. The oxygen dynamics in a tumorsphere can be captured by a diffusion model 

Steady state experimental measurements of oxygen concentration across the diameter of a 

tumorsphere in normoxia and hypoxia are shown in Fig 5. Also shown are steady-state 

solutions to a radially-symmetric reaction-diffusion equation representing oxygen uptake 

(respiration) within the tumorsphere and diffusion both inside and outside the tumorsphere. 

The model is fit to the experimental data by adjusting only two parameters:       , the 

ratio of oxygen uptake to oxygen diffusion inside the sphere and        , the ratio of 

diffusion outside to inside the sphere. Estimates for these parameters are       ×

          and       .  

We obtained an estimate for the non-dimensional time to attain equilibrium to be         

which, based on the experimental estimate of 5 min for            , leads to an estimate 

of internal diffusion rate of                 ×             . This appears a plausible 

estimate when compared to a typical diffusion rate of oxygen in water, 2.5×10
-5 

cm
2 

s
-1

 [25]. 

We can also compare our estimate for oxygen consumption rate with literature values. We 

estimate the uptake rate to be       ×           which for a cell of volume 5×10
3 

μm
3   

gives an uptake rate per cell ranging from 2.8×10
-17

 mol s
-1 

at the centre of the sphere 

(corresponding to oxygen concentration of 10 μM) to 11×10
-17

 mol s
-1

 at the outside (oxygen 

concentration of 40 μM) of the relatively normoxic sphere depicted in Fig 5. This is 

comparable to literature values for oxygen uptake in spheroids computed through 

measurements of external oxygen concentration, for example from  ×        l    ll       

to   ×        l    ll       [26, 27]. 

4.4.  Hypoxic shock causes HIF-1α overshoot dynamics near surface of tumorsphere 

Results of a coupled numerical solution of the extended HIF-1α dynamic model with 

unsteady reaction-diffusion model for oxygen dynamics are shown in Fig 6. Initially, at 

normoxic equilibrium, HIF-1α levels are elevated towards the center of the sphere where 

oxygen levels are depleted due to oxygen uptake by the cells and diffusion-limited transport 

through the outer boundary of the sphere. When a tumorsphere experiences a rapid change to 

hypoxia, the oxygen-level at the boundary drops and HIF-1α levels rise rapidly. Because the 

transition in oxygen is most rapid at the boundary, the transient HIF-1α dynamics are also 

most significant at the outer boundary. Furthermore, although the oxygen concentration has 

attained a new equilibrium by        , there is still significant dynamic behavior in the 

HIF-1α levels, which varies across the sphere. Once HIF-1α dynamics stabilize to a new 

equilibrium state (e.g. solution at       ) we again see HIF-1α levels inversely correlated 

with distance from the center of the sphere corresponding to the correlation between steady-

state oxygen levels and distance from the center of sphere. 

This result questions the conventional assumption that low oxygen levels equate to high 

levels of HIF-1α, and high oxygen levels equate to low levels of HIF-1α. Whilst the 



assumption is true when considering the equilibrium state; the dynamic response of HIF-1α to 

changes in oxygen levels can result in the assumption being false. Specifically we here show 

that the highest levels of HIF-1α are found at the surface of a tumorsphere where the oxygen 

levels are highest, because the surface is where the fastest change in oxygen occurs. We note 

that these results are based on an average HIF-1α temporal response, and we have neglected 

the observed cell-to-cell heterogeneity in the single-cell data. For example, if a large 

proportion of the cell population display a gradual increase in HIF-1α (e.g. see Fig S2) 

instead of the bell-shaped response, the surface overshoot dynamics might not be observed. 

4.5. The dynamic transient behavior of HIF-1α results in differential dynamics in 

the expression of transcriptional targets. 

In Fig 7, we model a tumorsphere that experiences an acute hypoxic switch from 20 % 

oxygen to hypoxia (1 %). As in Fig 6, we present results from the coupled numerical solution 

of the extended HIF-1α dynamic model with unsteady reaction-diffusion model for oxygen 

dynamics. However, in Fig 7 the boundary conditions represent a greater hypoxic shock than 

considered in the tumorsphere experiments depicted in Fig 5 and modeled in Fig 6. The 

response to oxygen is incorporated through the hydroxylation rates given by equations (7). In 

Fig 7, we present the dynamic response at different spatial locations of both HIF-1α and 

transcriptional targets PHD2 and PHD3 which appear in the extended HIF-1α dynamic 

model. We see a pronounced boundary overshoot for both HIF-1α and PHD3 levels 

following this severe hypoxic switch. In contrast, PHD2 levels are ordered such that there is 

always more PHD2 in more hypoxic regions. This is likely due to the significant difference of 

stability between PHD2 and PHD3 (measured in [12]). PHD3 has a shorter half-life and 

therefore responds more rapidly to the hypoxic switch. Our model thus predicts that the 

expression levels of the transcriptional targets of HIF-1, in this case the PHD isoforms, can 

display differential dynamics when subjected to the same hypoxic signal, due to HIF-1α 

dynamics. 

This result highlights the implications of the dynamic HIF-1α model within a spatial context. 

We remind that these results are based on an average HIF-1α temporal response, and that 

cell-to-cell heterogeneity may lead to alternative patterns in the temporal-spatial dynamics of 

target genes. HIF-1α is a transcription factor for many target genes, and so correctly 

incorporating the dynamics of HIF-1α appropriate for a given spatial location is necessary to 

identify the dynamics of target genes. Identifying differential dynamics in target proteins may 

have implications regarding spatial variability in cell fate. 

5. Conclusions 

In vivo, cells do not experience hypoxia as a binary on/off switch; instead cells respond to a 

range of spatial and temporal gradients in oxygen, mediated through a dynamic signaling 

pathway. A key novelty was to demonstrate that the protein HIF-1α does not simply track 

oxygen levels, but displays transient overshoots in response to a hypoxic shock. By 

developing a model based on this single-cell experimental data, we have been able to predict 

how the dynamics of HIF-1α are affected by a range of spatial and temporal oxygen signals. 



Alternative models investigating how HIF mediates the cell’s response to hypoxia often have 

focused on how equilibrium levels of HIF are a function of oxygen levels [28-30]. In 

developing our model, we have attempted to ensure that the model is suited to answer the 

scientific questions we wanted to address, and have parameterized it using available data. In 

future, our model should be integrated with a recent model incorporating data on the 

transcriptional activity of HIF-1 [31]. In our model we have accounted for cell-to-cell 

heterogeneity in the data via parameter variation using optimization tools. We are aware that 

fitting dynamic data to models is an area of active research, and appreciate that the fitting of 

our model would likely benefit from an increased level of sophistication with stochastic and 

statistical tools [11]. We also note that whilst we were able to fit our two-component model 

to a range of dynamic responses, the later conclusions of the study made use of an average 

cell constructed using median parameter values. It would be interesting to understand more 

clearly the impact that cell-to-cell heterogeneity has on these later conclusions.  

The applications of this model have more general use than just the study of the hypoxic 

response. Our mathematical model represents the evolution of a transcription factor that is 

predisposed to rapidly accumulate in an overshoot fashion, as the result of an acute change in 

signal. This qualitative overshoot characteristic may be lost in multi-cell environments or at 

least the rapidity of the peak transiency may be hidden among cells responding at slightly 

different times or gradients. Furthermore, these dynamics may be ignored completely in some 

signaling pathway models, especially if the transcription factor is an intermediate part in a 

long chain or the timescale of the phenomenon being studied is sufficiently separated from 

the transcription factor dynamics. These oversights could potentially result in the loss of any 

feedback information that propagates from these dynamics. This propagation could be in the 

form of downstream effects, which for transcription factors means target gene regulation. Our 

model is also useful in a general sense as it includes the description of target genes that have 

similar roles (negative feedback) but respond at different rates. This research is potentially 

applicable to other transcription factors that share transient dynamics as a result of acute 

signal changes and regulate the transcription of differently responding target genes.  

In the context of tumorspheres, we have developed a simple model for oxygen diffusion and 

uptake, parameterized with oxygen data obtained from experimental intracellular probes. We 

predicted that cells on the surface of the sphere experience a more acute switch and thus are 

more likely to experience transient overshoot dynamics than cells within the center of the 

sphere. This effect can compensate for the initially higher oxygen levels, and consequent 

lower levels of HIF-1α, to result in transient dynamics that have higher HIF-1α levels at the 

surface of the sphere than in the central hypoxic region. This result suggests a potential 

mechanism for manipulating the signaling pathway to deliver a stronger hypoxic response 

(HIF-1α activity) in less hypoxic cellular regions. This manipulation could take the form of a 

specific oxygen signal while the response of interest might be governed by a downstream 

target gene. This hypothesis should be tested experimentally by simultaneously measuring 

oxygen and HIF-1α within tumorspheres. In future, a more sophisticated model may be 

necessary which includes effects such as uptake rate being dependent on oxygen 

concentration. We have been able to better fit the experimental data of Fig 5 by allowing 



uptake rate to be a saturating response (data not shown). However the increased mathematical 

complexity did not modify the conclusions presented here. We also note recent relevant work 

focusing on modeling the oxygen dynamics in spheroids with a distinct necrotic core [32]. In 

that work, non-constant oxygen consumption is considered, but the boundary conditions 

differ from that considered here. In future, developing and extending the model to more 

realistic tumor geometries and physiological oxygen dynamics would provide useful insights 

into in vivo HIF-1α dynamics. 

HIF-1 directly induces the transcription of a multitude of genes, and also couples to many 

other signaling pathways, for example the p53 pathway [33]. We previously have shown the 

impact that dynamic HIF-1α has on a model for the p53 pathway, and investigated the impact 

of knocking out PHD2 [12]. Here, our model allowed us to predict how the dynamic behavior 

of HIF-1α in response to oxygen dynamics impacts the transcription of downstream genes 

within a spatial setting. As a specific example, we predicted the transient dynamics of PHD 

isoforms 2 and 3 within a sphere subject to a hypoxic shock. Because the timescales of 

degradation differed between the two isoforms, we were able to predict differential 

expression levels. For example, boundary cells experienced transient high levels of PHD3, 

but not PHD2. Coupling the spatial model to signaling pathways which cross-talk with HIF is 

crucial for making predictions as to how the body responds to hypoxia, for example in the 

response of tumors to medical intervention [34]. Moreover, considering the recent interest in 

targeting HIF for cancer treatment [35], a better understanding of its levels and activity with 

spatial and temporal resolution could potentially help to achieve more focused drug targeting. 

Appendix 

We fit our 2-component HIF-1α feedback model to experimental single-cell data generated 

using transient transfection and time-lapse confocal microscopy. To understand how 

experimental protocols affect parameter variation, we considered two sets of model variables 

and parameters: the real variables and parameters (superscript  ); and the measured or fitted 

variables and parameters (superscript  ). So the real system as represented by our model has 

the following form: 
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(A1) 

We assume that measured HIF-1α is related to real HIF-1α by a scaling factor  , and that 

fitted PHD is re-scaled on the maximal hydroxylation rate of the measured HIF-1α in 

normoxia:  
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We thus obtain: 
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(A4) 

If we compare this to the fitted system: 

    

  
         (

  

     
) 

   

  
             

(A5) 

we see that the measured/fitted HIF-1α basal synthesis and Michaelis constant,    and   , 

are equal to their real values divided by the scaling factor  . This suggests that experimental 

protocols may result in variability between cells in individual measurements of   and  . 

However, the fitted parameters   and   should not vary between cells. In particular, the fitted 

  should correspond to the real   which justifies using a measured PHD degradation rate as 

an initial estimate during optimization. Furthermore, we may be able to distinguish the effects 

of transient transfection separately from the effects due to the imaging protocol. Specifically, 

the imaging protocol should result in a correlation between            such that the ratio 

      does not vary between cells, whereas transient transfection will lead to cell-to-cell 

variability in    and consequent    independently of  .   
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Figures and Tables  

Fig 1. Response of selected cells to transition from normoxic to hypoxic environment at 

   . Experimental HIF-1α data (red line); HIF-1α model output (blue line) and PHD model 

output (green line). Parameters were optimized to best fit the data as discussed in the text. In 

this fitting exercise the cells selected displayed bell-shaped transient dynamics. 



 

  



Fig 2. Estimates for model parameters from free parameter optimization of bell-shaped 

dynamic data. For each cell (x-coordinate 1-11), 50 initial sample parameter sets were 

chosen from which the search algorithm proceeded (see text for details). Final optimal 

parameter estimates for  ,  ,   and   corresponding to best fits (minimum   value) of the 

experimental data are indicated by circles on the figure. Final parameter estimates for 

searches which converged to a   within 1 % of the minimum   value are plotted as points on 

the figure. Horizontal red lines give median values (      ×           ;       ×

          ) for optimal parameters.   

 

  



Fig 3. Estimates for model parameters from constrained parameter optimization of all 

dynamic data. Parameters were optimized for the full dataset of 39 cells using the 

constrained search algorithm to minimize the   value. For each cell, final parameter estimates 

of searches that converged to a   value within 1 % of the minimum   were plotted, so long as 

the minimum   value also corresponded to a good fit according to the envelope criteria. 

Different colors refer to different cell data as follows: Experiment 1 (green), Experiment 2 

bell-shaped dynamics (blue) and Experiment 2 non-bell-shaped dynamics (cyan). 

 

  



Fig 4. Numerical simulations of 4-component model. (A) In-silico hypoxic pulsing 

experiment. (B) Experimental results of hypoxic pulsing experiment. 

 

  



Fig 5. Fitting oxygen data to reaction-diffusion model. Experimental observations of 

oxygen life-time data within tumorsphere at 8 % external O2 (A) and 3 % external O2 (B). 

Scale bar is 100 μm. Measured internal steady-state oxygen concentration at line 1 (C) and 

line 2 (D) at 8 % external O2, (blue) and 3 % external O2 (red), distance non-dimensionalised 

on cell width at given line. Model solution with best-fit parameters for uptake and diffusion at 

8 % external O2 (green) and 3 % external O2 (cyan).  

 

  



Fig 6. Predictions of HIF-1α model coupled to spatial model of oxygen dynamics in 

sphere. The upper cartoon depicts the coupled model. (A) Green/yellow sphere represent 

normoxic conditions, red/orange sphere represents hypoxic conditions, and cyan arrow 

indicates transition. (B) Sketch indicating oxygen temporal dynamics at an example spatial 

location, and (C) resultant HIF-1α dynamics. (D) Solution of oxygen reaction-diffusion 

equation within the sphere and resultant HIF-1α dynamics for when at     the external 

oxygen concentration is switched from 8 % to 3 %. The resultant internal oxygen (blue) and 

HIF-1α (black) dynamics are shown at indicated later times. Equilibrium solutions for the 

internal oxygen concentration in normoxia (green) and hypoxia (red) are also shown.  



 



Fig 7. Predictions of transcriptional targets in sphere. Plots for HIF-1α, PHD2, PHD3 and 

internal oxygen for an external switch in oxygen from 20 % to 1 % at time     taken to 

occur at the boundary of a sphere 200 μm in radius. Within each plot, each curve represents 

the dynamics at a particular spatial position over time. The color-map ranges from blue to red 

indicating the radial distance from 0 μm (core) to 200 μm (boundary).   

 

  



Supplementary Figures 

Fig S1 Constrained fit of bell data showing error envelope.  
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Fig S2 Constrained fit of Experiment 1 data showing error envelope. Stars indicate bad 

fits according to the error envelope (see text for details).  

 

  



Fig S3 Constrained fit of Experiment 2 non-bell data showing error envelope. Stars as 

Fig S2. 

 

 


