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Abstract Although it is a common practice in the field@ynamics to treat a system as being
linear, the assumption of linearity is only valid situations where the effect of any
nonlinearities is minimal. Significant nonlinearnaaiour (such as Limit Cycle Oscillations)
has been observed in many practical manifestatdreeroelastic systems, highlighting the
need to account for system nonlinearities. A consege of incorporating nonlinearity into the
model is that the application of linear control hwgts becomes inadequate when the system
operates in a substantially nonlinear regime. This, present work addresses both these
concerns by applying nonlinear control on an aesisl system consisting of a flexible wing
with a structural nonlinearity. The Feedback Ling#tion method is employed to render the
system linear, such that linear control methodsaggicable. The utility of the Small Gain
Theorem and Adaptive Feedback Linearisation inasitts where errors in the parameters
describing the nonlinearities are present is detnaiesl.

1. INTRODUCTION

The avoidance of flutter still remains a key caaistrin the design of all aircraft. In this endeano

the need to develop models that accurately repeodutysical phenomena is of growing
importance; one such phenomenon is nonlinearitpstaatial nonlinear behaviour such as limit
cycle oscillations (LCO) have been observed in isd\aeroelastic systems [1, 2], making evident
the need to account for nonlinearity. The preseotkwgains motivation from this need. The
situation where a nonlinear limit cycle oscillatighCO) response is caused by a structural
nonlinearity is considered, and means of mitigasingh undesirable response are investigated.

The suitability of linear control methods for flettsuppression in aeroelastic systems is clearly
dependent on the extent of nonlinearities preserthe system. Application of linear control
methods on a nonlinear aeroelastic system with ehamd stiffness was investigated
experimentally by Block and Strganac in [3]. It viasnd that the effectiveness of linear control is
limited to situations where the airspeed is not Imigher than the linear flutter speed, where the
LCO amplitude is small. For airspeeds substantiaifjher than the linear flutter speed (where
LCO amplitudes are higher) the control becomesadigiable, and its effectiveness limited.

Ko et al. applied feedback linearisation (with and with@daptation) to a 2 - degree of
freedom (DOF) rigid aeroelastic system with toraiomonlinearity [4, 5].This work was later
implemented experimentally by Platanitis and Stegarj6], with results indicating an
improvement in controlled response when using atitiadal control surface, but only up to
moderately high air velocities. Experimental impéartation of adaptive feedback linearisation
by Strganacet al. [7], produced results suggesting that knowledfighe exact nonlinear
parameters is critical to the performance of feelldmearisation in the absence of adaptive
methods, and that the adaptive controller substintmproves the controlled response. It was
also observed in [7] that performing feedback lirezdion without adaptation in the presence
of parameter errors caused the system to reaclzeranequilibria.
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In this paper, feedback linearisation is appliea ftexible wing with a structural nonlinearity.
The latter is introduced to the system by couplangigid pylon-engine to the wing via a
nonlinear hardening torsional spring. An error hie parameter describing the nonlinearity is
considered, and initially the Small Gain Theoremuged to impose bounds on the error
function such that closed-loop stability will beaganteed in the absence of adaptive methods.
Subsequently, a substantial error in the nonlinearameter is introduced, and adaptive
feedback linearisation is applied. The resultingitaalled response is compared with that
obtained when standard feedback linearisationpsieg

2. THE AEROSERVOELASTIC MODEL
The governing equation of the aeroservoelastic ia#tes the usual form [8] given by

AG+(VB +D) +(VC +E)q =t (1)

where A,D,E are the inertia, structural damping and structstiffiness matrices respectively,
B, C are the aerodynamic damping and aerodynamic eséfrmatrices respectively, apgV

are air density and velocity respectively. The @ecfj contains generalised co-ordinates
describing the motion of the system, whereas thetovef_, contains externally applied

generalised forcing terms, which may consist of tmdnforces. In this work, modified
aerodynamic strip theory has been used to competdift and pitch moment acting on the
wing. An additional unsteady aerodynamic derivatigem (appearing irB) is included to
account for significant unsteady effects [8]. Agmoa@mic forces/moments arising from the
pylon-engine have been assumed to be negligiblgpaoed to those associated with the wing.
Following an assumed-mode-shapes approach [$)vinhg has been assumed to consist of two
deflection patterns (depicted in Figure 1), thet fireing a bending mode, and the second a torsional
mode. The origin of the co-ordinate system is at#ading Edge, root of the wing.

Mode 1 (bending) Mode 2 (torsion)

Figure 1 : The two deflection patterns assumedHerflexible wing

Thus, the wing comprises two DOFs. The assumedeshape incorporated into the wing
model by specifying the vertical deflection of théng ¢ at any point X, y) in terms of
contributions from all deflection patterns, viz.,

Z:y2q1+y(x—xf)q2, (2)

where ¢, g, are generalised co-ordinates that quantify the ummnof bending and torsion
modes present in the overall deflection, andis thex- co-ordinate of the wing flexural axis.

The pylon-engine depicted in Figure 2 has been itemtlas a rigid body, consisting of a solid
cylinder (engine) onto which a parallelogram-shaplate (pylon) has been fixed at the top.



Figure 2 : 3D view of pylon-engine

In this model, the pylon-engine is assumed to HENROF (this brings the dimension of the

coupled wing-pylon-engine system to three), which irotation about an axis that is parallel to
the globaly-axis, going through the attachment point to thegwihis axis will be referred to as a

local y-axis). A sketch of the combined wing-pylon-engmsehown in Figure 3.
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Figure 3 : Various views of the wing- pylon-engimedel
(pylon represented by a rigid link, in side view)

Note thatd . is the deflection of the pylon-enginéative to the wing. The absolute rotatieh,

may be obtained by adding the wing twist anglé@gngine attachment locatioki, , to 4, . The
absolute pylon-engine rotation is also defineceimis of a generalised co-ordinate in the same
domain ofq, g, as 8, =¢q,, , where¢ is some arbitrary scalar multiple.

2.1. Co-ordinate Transformation and System Matrices

Since the wing deflection has been defined in asgumode-shapes generalised co-ordinates, in
order to model the entire wing-pylon-engine systins, necessary to represent the pylon-engine
also in the same domain; this may be achieved bg-ardinate transformation. A number of
physical co-ordinates equal to the number of asdumedes in the system is specified; in the
present case, three. One has already been choggn dhe remaining two are chosen as:

a) {,, a vertical deflection at point 1, which lies lage tcrossing between the wing flexural axis

and the locak- axis going through the attachment point of thiemengine to the wing.
b) x,, the wing twist angle at point 2, the pylon-engatachment location, which is chosen

as the intersection of the quarter-semi-span aadepchord.



The particular choice of the above two co-ordina&etue to the requirement of these co-ordinates
in the derivation of energy expressions for theesgys Figure 3 depicts the three physical co-
ordinates on the wing-pylon-engine system. Thusrequired transformation takes the form

p=Tq, wherep={¢, x, 9.} .a={a, a, q.} 3)

where T is the equivalence transformation matrix. Usingagmpn (2), T may be derived as

yv 0 0
T=0 vy, O], (4)
0 -y, ¢

where y,, Y, are they- co-ordinates at points 1 and 2 respectively. ¢#re Lagrange equation

and aerodynamic strip theory [8], maintaining thme ordering of co-ordinates in equation (3), the
system matrices of the wing-pylon-engine systetherassumed-modes domain are derived as

i 5 4 2 l
m SNCW + mpeyf m%(% - waf j mpeylerec
_| i Suf G Suf G _ 2 2
A =m%E X-cX m—>%| % -¢ X, +C, X 0 ,
mod 4 ( 2 va fj 3 3 w f W (5)
mpeylzreec 0 (IG + mpeer) cz
4Els, 0 0
Emod = 0 G‘]S/v + KT y§ _KT yzc ! (6)
0 Ky KTCZ
_ 5 _ _ . _
GBS o 0 o S&SA
10 8
_| _Cleauss _GsiM, _ €C, S8
B . =|- - 0|, C.,=|0 - 0l .
e 8 24 e 6 (7)
0 0 0 0o 0 0

In equations (5) and (6%, S, are the wing chord and semi-span respectivelythe wing mass
per unit area,El, GJ the wing flexural and torsional rigidity respeetiy, m . the combined

mass of the pylon and engink, the moment of inertia of the pylon-engine referieed localy-
axis going through the pylon-engine centre of m@&3M), ¢ the cosine of the angle of the
pylon-engine COM relative to the top flat surfadeh® pylon taken about the flexural axrs,
the distance between the flexural axis and the kpcaxis mentioned above, aritl the linear

torsional coupling stiffness of the spring connegtihe pylon-engine to the wing. In equation (7)
the eccentricity ratioe is the distance between the aerodynamic centreflexwaral axis as a



fraction of the chorda, is the lift curve slope andM, the non-dimensional pitch damping
derivative. As it has been assumed that the pyhmime does not participate in the
aerodynamics, the corresponding term8jg,, C,, are zero. An appropriate level of structural
dampingD, ., may be included in the model. A convenient waylaihg this is to specify the

damping in the modal domain [10], and subsequemndigsforming into the assumed-modes
domain using the eigenvectors of the undampedmsyste

2.2.Forcing Terms

The aileron (control surface) usually provides tleeessary means to apply control forces to
the wing-pylon-engine system. It is assumed in thiwk that two control surfaces are
available, the first (closest to the wing root) rspag 85% of the length of the wing and the
second spanning the remaining length (the contabuwif the control surfaces to the dynamics
of the overall system is neglected). The widththeffirst and second control surfaces are set at
20% and 33.33% of the chord length respectivelyasdo optimise the distribution of work
performed by each control surface. It is also agslthat a separate actuator is available to

apply a torquerl,, directly on the engine rotational DOF. Again, gsthe Lagrange equation
and aerodynamic strip theory, the forcing vectdoisd as

-ifaa,s, —if(l-a’)acs, 0 (g
c 2 > 2 1 = Fi= Vs,
foma =| 2FORC, %r(l—a )bczcw ~Y2 | Bap =Bl _
a=0.85
0 0 ¢ Tpe

(8)

and each surface will have its own deflection angles, and set of aerodynamic parameters

ac,b. [11], which are the rates of change of lift cogffnt and moment coefficient
respectively, with respect to control surface dgiten angle.

2.3.Inclusion of Nonlinearity
The nonlinear force may be incorporated as annatdorce in the equation of motion, viz.,

A+ (VB 1 D 1)+ (V°C g+ B} 11 g = ©)

expressed in the assumed-modes domain. In thenpreselel, a cubic hardening nonlinearity is

assumed in the torsional spring connecting therpgiagine to the wing. The nonlinear force in the
spring is expressed ds; >, where K, is the cubic stiffness coefficient. Sin¢g, is a
relative deflection (involving both coupling DOF#)e nonlinear force vector takes the form

fymos =T'F,, wheref,={0 0 K55} (10)

nl, mod
with T defined in equation (4).

3. NUMERICAL SIMULATION — UNCONTROLLED SYSTEM

A numerical simulation of the aeroelastic modehawv performed. Initially, dimensions and
parameters for the wing and pylon-engine are cho&drequency domain computation is then
performed on the linear system, and thereby tleatfiflutter speed is determined. Subsequently,
a cubic hardening stiffness is included in theitoral spring connecting the wing to the pylon-



engine, and the nonlinear time-domain responsensilated above the flutter speed. It is
assumed that there is no external excitation,Haitthere is an initial deflection.

3.1. Model Dimensions and Parameters

The dimensions and parameters chosen for the naoelaiven in Table 1 and Table 2. For the
flexible wing, the values chosen are based on these in a numerical example found in [8].
The dimensions and mass of the pylon-engine hage bleosen such that their proportion with
respect to those of the wing is similar to what omght find in a real aircraft (e.g. [12]).

Sem-span sy) 7.5 | Flexural rigidity (EI' | 3,67E Eccentricity 0.23
Chord (cy) 2.0 | Torsional rigidity | 1,89C ratio (€)
Flexural axis &) | 0.96m|  Airdensity (0) | 225 | Non
G dimensional
pitch damping -1.2
Mass/unit areanf) kgr)r?z Lift curve slope @,) | 27 | derivativg(M,)
Table 1 : Dimensions and Parameters of FlexiblegVin
Engine diameterd.) | 0.75 | Engine massif.) | 350 kg | Engine length k) | 1.125
Pylon massif,) 35 kg Pylon height 6 ) 0.771725
Coupling torsiona Coefficient of cubic omponen
. . 11 KNm/r : : 300K
spring stiffness K;) > frad| — of coupling stiffnessK ) T
Table 2 : Dimensions and Parameters of Pylon-Engine
3.2. Airspeed vs. Natural Frequency and Airspeed vs. Daping Ratio Plots
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Figure 4 : V-omega and V-zeta plots for the windspyengine model



The structural modes in the combined model occlrZt Hz (bending), 4.06 Hz (pylon-engine
mode) and 6.83 Hz (torsional). It is evident frongufe 4 that flutter initially occurs at an
airspeed of 77.6 risinvolving coupling of the pylon-engine mode anidgvbending modes.

3.3.Nonlinear Time-domain Response

The nonlinear system is simulated at an airspedDahs', just above the flutter point, under
the application of the initial conditiong, = 0.333 mm, Y, = 0.00333 radg,, = 0.05 rad.

These values have been chosen as they are re@tegeof typical physical displacements one

might expect in practice, for a wing-pylon-engingstem having the dimensions and

parameters specified in Table 1 and Table 2 abOwe resulting response of the system clearly
exhibits LCO. A sample of the response for the co-ordinate is shown in Figure 5.

time (s)

Figure 5 : Steady-state LCO i?},e response

For comparison, when the response for #h)e co-ordinate just below the linear flutter speed is
simulated, as expected the response continueséydand converges to the origin.

4. LINEARISED CLOSED-LOOP SYSTEM USING NONLINEAR CONTR OL

Feedback linearisation [13] is a process appliech toonlinear systenx =f(x) +G(X)u to
transform it into a linear system= Az + BU, based on a particular choice of output h(x). In
these equationa, U are the inputs to the nonlinear and linear systesigectively. The mapping
from the nonlinear domain to the linear domain dbieved through a non-singular co-ordinate

transformationz = T,, (x) . A mapping betweem, T is also required.

The present work assumes the use of 3 inputs antp8ts. Since the number of outputs is equal
to the dimension of the system, the entire nontirsyastem is linearised; thus, the complete
dynamics of the original system are preserved. bagdlinearisation is applied to the nonlinear
model developed above. It is appropriate to useaisemed-modes representation of the system
matrices because once the system has been linkgrae-placement may be performed directly
on the assumed modes to shift their respectivespolmore desirable locations.

4.1.Nonlinear State-Space Model and Linearising Feedb&c
Substituting from equation (8) into equation (8 system is expressed in state-space form as

x=f(x)+G(x)u, with x::{?/}, a={x % x}', v={x, x; x¢', @1

where



f—(X):{lllq+<1>vv+gfn,m,}’ Q(X):[g] (12)

and

W= A (A Cong +Eg) . ®:=ALL (VB 1oy *+Dics)
Q:=-A" E= Ar_r:)dg

mod

(13)

mod *
The inputs (defined in section 2.2) and outputpeetvely are chosen as

T

u:{ﬂl 182 Tpe}T’ y:{ya yb yc}T ::{ql q2 qpe}T :{Xl X2 X3} ’ (14)

thus, it is desired to control all three motiongha system using all three available inputs. Now,
following the procedure of Input-Output feedbagiehrisation [13], the outputs are differentiated
with respect to time, whilst substituting f&r from equation (11) at each stage. This results in

Ya = X Yo = X Ve = %,

. ) . 15
Vo= f,+[0n 9 94U % =ft[0s 9 9U, Ve=f #0690 eg (15)

where f, denotes thé” term of the vectof (x), and g, denotes thg" term of the matribG (x).

A new co-ordinate system is now defined, which \pilbvide a mapping from the equivalent
linear system that is sought, to the original nogdir system. Using equations (11) and (14), the
co-ordinates corresponding to the linearised systentefined as

Zl::ya:ql:Xl’ ZZ::ya:q1:X1:X4’

ZS:Z yb=q2=X2’ 24:= yb=q2=X2=X5' (16)

2= Y, T e = Xy Zgi= Y T O = X3 = X
The above expressions provide the required co-atgitransformation, which evidently is a
permutation of the identity matrix. Note that thisn-singular transformation is independent of

X, and is therefore globally valid. Now, the vectdractual inputs may be chosen so as to
cancel the nonlinearity in the controlled systeim,,v

= (1 () an
wheref (x) 4 4 contains the' 5" and &' rows of f (x) in equation (11), i.e.
f_ (X)([4,5v6] 3) = ‘Pq TOV+ anl,mod ! (18)

from equation (12). It may be shown that for thiwice of inputs, the state-space equations
z=Az+Bu decouple to provide the following three controlfédgle-DOF systems:

(2100 Sfat{T S St I f31-{0 3 Jo o



wheret =:{t, U, U} is the vector of inputs to the linear system. Nb& the above three

single-DOF systems correspond to the assumed-mgeesralised co-ordinates, d,, d,.

respectively (see equation (16)). The artificigduts may be chosen as a linear combination of
instantaneous displacement and velocity, so asadifjnthe natural frequency and damping
ratio of each of these systems respectively, viz.,

gt wff) oot Y vetn il e

o]

z,

5. TREATMENT OF NONLINEAR PARAMETER ERROR

It is of interest to study the effect of a nonlingerameter error on the performance of the
closed-loop system. The error in the parameterltseesn an error inf, . which, using
equation (10) and the definition sffrom the previous section, may be defined as

_fr:I,mod) = (KT,nI - K;,nl)ﬁses = KT,nlﬁss where s = -Izs,:) (21)

pe=’

€= (fnl,mod

f ma IS the nonlinear force vector based on the eramealueK; | of the nonlinear parameter,

and K, , is the error. In the presence of error, the neality on which the linearising feedback is
based takes on the erroneous value. Thus, the(equetion (17)) becomes
=Yq+Ov+Qf) (22)

u:E‘l(U—f_’(x) ) where f_’(x)(

(4549 [455 )
Combining equations (21), (22) and (11), it carsbewn that

g=v, V=U+Qs. (23)
Similar to equation (20), one may expr@sss a linear transformation af, viz.,
U=Gx=G,q+G,v. (24)

Combining the above expression with equation (2®yg with the definition of the output,

X=Ay Xx+BU, y=Cx, wherel=¢, y=9_ (25)

W [0
Cl’X_Gq GV’

Thus, equation (25) shows how the nonlinear pammeetor results in an input to the closed-loop
system. Note that the output defined here is differfrom that defined for the purpose of
linearising the system. The effect of the errouingn this output may be quantified by the gain of
the above system. Commonly used measures for theofygystems of the form being considered
here are the Hand L norms [14, 15], which may be readily computed gidime matrices in
equation (26). In the case of therorm, it is usual to use the so-called H* hormupper-bound
on the L3 norm, owing to the computational complexity asatsd with finding the latter [16].

and

sz[g}, C,=s"[I 0]. (26)



5.1.Imposing bounds on error input parameters — Small @in Theorem

Having computed the above norms, the Small Gainofigme [14] may be used to impose
bounds on the variables that the error inputdepends on. The theorem states that for

guaranteed input-output stability of two intercocteel feedback systems with gaips y,, it is
required thaty, ), <1. In the present case, the two systems are (agltsed-loop system in
equation (25), and (b) the relationship betweenand the nonlinear parametdiT’n,. A

Lipschitz constant [14] may be used to compute ppeu bound for the gain of the error
function & with respect to its inpug .. An expression for the gain of the error functioay be

computed as a local Lipschitz constrﬁ,t as

de

[Soe] <[ Foe] dl?pe

T,nl

S 14 27)

pe

B=

Combining the estimate of the horm computed earlier with the above equatioraraplitude
bound‘ﬂpe that satisifies the Small Gain Theorem is compuated

1
9| = /— . (28)
max SKT,nI y* |S|

e

It should be noted that the bounds computed ubmdit and H* norms are conservative, as is the
Small Gain Theorem. Thus, it may be possible tees¢he bounds computed by this approach and
yet have a stable closed-loop system, althougliistddeyond these bounds cannot be guaranteed.

6. ADAPTIVE FEEDBACK LINEARISATION

It was described in the above section how a discrep between the actual nonlinearity and
assumed nonlinearity used in the linearising feekllaats as an input to the closed-loop system.
It is possible that this additional (unknown) inpody destabilise the system - or at least degrade
control performance — if its magnitude exceeds lbands computed, for example, by the
approach discussed in section 5.1. This possibitiigy be eliminated by accounting for
nonlinearity errors using an adaptive scheme. Sustheme will guarantee asymptotic stability
of the closed-loop response. Essentially, the adagtheme entails continuously updating the
assumed value of the nonlinear parameter, suchatpasitive scalar Lyapunov function based
on the state and parameter error is continuoustyedsing. Thus, a parameter update rate
satisfying this requirement may be computed, shahdlosed-loop stability is ensured.

7. NUMERICAL SIMULATION — CLOSED LOOP SYSTEM

Closed-loop control is applied to the nonlinear eidd the assumed-modes domain to provide
linearising feedback. The latter is computed suddt the linearised system consists of the
uncoupled SDOF sub-systems referred to earlier. fohewing modal parameters are set for
pole-placement of the system at 80'ms

g | 093Hz | 001 | g | 495Hz | 001 | 9, |29 Hz | 0.01

The values specified above are in the same ordeaghitude as the bending, torsional and pylon-
engine mode natural frequencies (sigere 4. The initial conditions are set at the same \salged

in the uncontrolled case (section 3.3), nam@ly= 0.333 mm, Y, = 0.00333 radyg,, =0.05 rad.



In the absence of any nonlinear parameter erroonaswould expect, the controlled assumed-
modes are modified such that their natural fregesrand damping ratios are identical to those in
the above table and the impulse response decagsapas seen in Figure 6.

Time (s) Time (s) Time (s)

Figure 6 — Feedback-linearised response at 8b(assumed-modes co-ordinates)
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Figure 7 : Control surface deflection angles artdator torques for exact feedback linearisation

The required control surface and actuator inpwgsshown in Figure 7, where it can be seen that
the input magnitudes are feasible in practice. Wdi0% error inK, , is incorporated, and the

closed-loop response is simulated based on theeata®dback parameters and with the same
initial conditions, an unstable response setsamfthe very beginning, as seen in Figure 8.
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Figure 8 : Feedback-linearised response at 8% mish nonlinear parameter error included

At this point, it is appropriate to compute an masiie of the bounds on the error function (see
equation (21)) using the approach discussed inosebtabove. The matrices in the state-space
equation (25) are assembled, and theaHd H* norms are subsequently computed. For the H
problem, i, A are chosen as 0.003 and 0.115 respectively. Thaiyand Sedumi Matlab
toolboxes [17, 18] have been used to solve the LM&ving computed the normg, and ).,
which are 2.4x10 and 4.25x10 respectively, the Small Gain Theorem is used tmmae
appropriate bounds in each case. Suppose it isedesi keep the estimated error gy, at
40%. In this case, the bound should be imposederallowable deflection anglg,. Using
eqguation (28), the allowable magnitudes in theardd H* cases are computed as 0.003265 and
0.002453 radians respectively. Given tig is being controlled such that the amplitude of its
vibration envelope is decreasing, its initial vatonay be set to the maximum allowable bound
computed above (thus, it is ensured that the madmiof 2, will not exceed the allowable



bound). When the simulation is repeated with thgaincondition of J . set to the K bound

0.003265 for example, it is seen that the resultegponse is stable. In fact, instability only
begins whend , is approximately 0.043 rad.

The instability shown in Figure 8 may be avoidetbgéther by implementing the adaptive
controller described in section 6 above. In thisegdhe resulting controlled response, again for
the same initial conditions, is shown in Figure 9.

o
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Time (s) Time (s) Time (s)

Figure 9 : Feedback-linearised response at 8 mish parameter adaptation

A comparison between Figure 9 and Figure 6 showasttie controlled responses are similar,
but not identical. Although the original pole-plasent requirement has not been satisfied, it
can be seen that the controlled response is sthlolie that by implementing the adaptive

controller, it has been possible to significantkceed the bounds o(t?pe as estimated by the
Small Gain Theorem. In fact, the adaptive contradigccessfully drives the responses to zero
for values Of‘z9 (set as an initial condition) up to around 0.078&. The required control

.
in this case is accomplished through achievablaérabsurface deflection angles11°) and
actuator torque magnitude (55 kNm).

8. CONCLUSIONS

This work demonstrates the application of adapfeziback linearisation on a 3-DOF flexible
aeroelastic model consisting of a flexible wing andgid pylon-engine attached to the wing by a
nonlinear torsional spring. For the dimensions pachmeters chosen in the illustrations, the
initial flutter is caused by the pylon-engine modijch is a novel contribution of this paper.

The availability of 3 inputs and 3 outputs is asedrmn the feedback linearisation of the 3-DOF
aeroelastic system. The inputs are provided by @ierons and a torsional actuator, and the
outputs measured are the wing bending and torsidisgdlacements, and relative angular
deflection between wing and pylon-engine. This mpmhtion is advantageous as it leads to a
completely linearised system, enabling control #f 3 co-ordinates of the system. Pole-
placement through linearising feedback is achieseccessfully in the absence of nonlinear
parameter error, which is expected. When a sizeahler in the nonlinear parameter is
introduced, an unstable response is encounteredcedately. The Small Gain Theorem is
applied to estimate bounds on acceptable error uags to ensure stable controlled response in
the absence of adaptive methods. The estimateghin provides a reasonable estimate of the
allowable pylon-engine deflection for a fixed (esdte of) nonlinear parameter error.

Application of adaptive feedback linearisation kedd a marked improvement in controlled
response by preventing the instability previouglgrs and causes the response to converge to the
origin. Numerical simulations confirm this factyealing that stabilising adaptive control can be
implemented with achievable magnitudes of ailerefiedtion angles. This result is compared



with the closed-loop response obtained when noalityeerrors are ignored during feedback
linearisation; a marked improvement in responsdbaerved when adaptation is included.

In work that is due to appear elsewhere, the aatbbthis paper present a new treatment of the
application of Feedback Linearisation to generabad-order systems [19], in a second-order
representation that is familiar in the area oftelasechanics and aeroelasticty.
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