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Abstract   Although it is a common practice in the field of Dynamics to treat a system as being 
linear, the assumption of linearity is only valid in situations where the effect of any 
nonlinearities is minimal. Significant nonlinear behaviour (such as Limit Cycle Oscillations) 
has been observed in many practical manifestations of aeroelastic systems, highlighting the 
need to account for system nonlinearities. A consequence of incorporating nonlinearity into the 
model is that the application of linear control methods becomes inadequate when the system 
operates in a substantially nonlinear regime. Thus, the present work addresses both these 
concerns by applying nonlinear control on an aeroelastic system consisting of a flexible wing 
with a structural nonlinearity. The Feedback Linearisation method is employed to render the 
system linear, such that linear control methods are applicable. The utility of the Small Gain 
Theorem and Adaptive Feedback Linearisation in situations where errors in the parameters 
describing the nonlinearities are present is demonstrated. 
 
1. INTRODUCTION 
 

The avoidance of flutter still remains a key constraint in the design of all aircraft. In this endeavour, 
the need to develop models that accurately reproduce physical phenomena is of growing 
importance; one such phenomenon is nonlinearity. Substantial nonlinear behaviour such as limit 
cycle oscillations (LCO) have been observed in several aeroelastic systems [1, 2], making evident 
the need to account for nonlinearity. The present work gains motivation from this need. The 
situation where a nonlinear limit cycle oscillation (LCO) response is caused by a structural 
nonlinearity is considered, and means of mitigating such undesirable response are investigated. 
 
The suitability of linear control methods for flutter suppression in aeroelastic systems is clearly 
dependent on the extent of nonlinearities present in the system. Application of linear control 
methods on a nonlinear aeroelastic system with hardening stiffness was investigated 
experimentally by Block and Strganac in [3]. It was found that the effectiveness of linear control is 
limited to situations where the airspeed is not much higher than the linear flutter speed, where the 
LCO amplitude is small. For airspeeds substantially higher than the linear flutter speed (where 
LCO amplitudes are higher) the control becomes unpredictable, and its effectiveness limited. 
 
Ko et al. applied feedback linearisation (with and without adaptation) to a 2 - degree of 
freedom (DOF) rigid aeroelastic system with torsional nonlinearity [4, 5].This work was later 
implemented experimentally by Platanitis and Strganac [6], with results indicating an 
improvement in controlled response when using an additional control surface, but only up to 
moderately high air velocities. Experimental implementation of adaptive feedback linearisation 
by Strganac et al. [7], produced results suggesting that knowledge of the exact nonlinear 
parameters is critical to the performance of feedback linearisation in the absence of adaptive 
methods, and that the adaptive controller substantially improves the controlled response. It was 
also observed in [7] that performing feedback linearisation without adaptation in the presence 
of parameter errors caused the system to reach non-zero equilibria. 
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In this paper, feedback linearisation is applied to a flexible wing with a structural nonlinearity. 
The latter is introduced to the system by coupling a rigid pylon-engine to the wing via a 
nonlinear hardening torsional spring. An error in the parameter describing the nonlinearity is 
considered, and initially the Small Gain Theorem is used to impose bounds on the error 
function such that closed-loop stability will be guaranteed in the absence of adaptive methods. 
Subsequently, a substantial error in the nonlinear parameter is introduced, and adaptive 
feedback linearisation is applied. The resulting controlled response is compared with that 
obtained when standard feedback linearisation is applied. 
 
2. THE AEROSERVOELASTIC MODEL 
 

The governing equation of the aeroservoelastic model takes the usual form [8] given by 
 

 ( ) ( )2 ,extV Vρ ρ+ + + + =Aq B D q C E q fɺɺ ɺ  (1) 

 
where , ,A D E  are the inertia, structural damping and structural stiffness matrices respectively, 

,B C  are the aerodynamic damping and aerodynamic stiffness matrices respectively, and ,Vρ  
are air density and velocity respectively. The vector q  contains generalised co-ordinates 
describing the motion of the system, whereas the vector e x tf  contains externally applied 
generalised forcing terms, which may consist of control forces. In this work, modified 
aerodynamic strip theory has been used to compute the lift and pitch moment acting on the 
wing. An additional unsteady aerodynamic derivative term (appearing in B ) is included to 
account for significant unsteady effects [8]. Aerodynamic forces/moments arising from the 
pylon-engine have been assumed to be negligible compared to those associated with the wing. 
Following an assumed-mode-shapes approach [8, 9], the wing has been assumed to consist of two 
deflection patterns (depicted in Figure 1), the first being a bending mode, and the second a torsional 
mode. The origin of the co-ordinate system is at the Leading Edge, root of the wing. 
 

 
 

Figure 1 : The two deflection patterns assumed for the flexible wing 
 
Thus, the wing comprises two DOFs. The assumed shapes are incorporated into the wing 
model by specifying the vertical deflection of the wing ζ  at any point (x, y) in terms of 
contributions from all deflection patterns, viz., 
 

 ( )2
1 2 ,fy q y x x qζ = + −  (2) 

 
where 1 2,q q  are generalised co-ordinates that quantify the amount of bending and torsion 

modes present in the overall deflection, and fx  is the x- co-ordinate of the wing flexural axis. 

The pylon-engine depicted in Figure 2 has been modelled as a rigid body, consisting of a solid 
cylinder (engine) onto which a parallelogram-shaped plate (pylon) has been fixed at the top.  
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Figure 2 : 3D view of pylon-engine 
 
In this model, the pylon-engine is assumed to have 1 DOF (this brings the dimension of the 
coupled wing-pylon-engine system to three), which is a rotation about an axis that is parallel to 
the global y-axis, going through the attachment point to the wing (this axis will be referred to as a 
local y-axis). A sketch of the combined wing-pylon-engine is shown in Figure 3. 
 

 
 

Figure 3 : Various views of the wing- pylon-engine model  
(pylon represented by a rigid link, in side view) 

 
Note that peϑ  is the deflection of the pylon-engine relative to the wing. The absolute rotation peθ  

may be obtained by adding the wing twist angle at the engine attachment location, 2χ , to peϑ . The 

absolute pylon-engine rotation is also defined in terms of a generalised co-ordinate in the same 
domain of 1 2,q q  as ,pe peqθ ς=  where ς  is some arbitrary scalar multiple. 

 
2.1. Co-ordinate Transformation and System Matrices 
 

Since the wing deflection has been defined in assumed-mode-shapes generalised co-ordinates, in 
order to model the entire wing-pylon-engine system, it is necessary to represent the pylon-engine 
also in the same domain; this may be achieved by a co-ordinate transformation. A number of 
physical co-ordinates equal to the number of assumed modes in the system is specified; in the 
present case, three. One has already been chosen as peϑ . The remaining two are chosen as: 

 
a) 1ζ , a vertical deflection at point 1, which lies at the crossing between the wing flexural axis 

and the local x- axis going through the attachment point of the pylon-engine to the wing. 
b) 2χ , the wing twist angle at point 2, the pylon-engine attachment location, which is chosen 

as the intersection of the quarter-semi-span and quarter-chord. 



The particular choice of the above two co-ordinates is due to the requirement of these co-ordinates 
in the derivation of energy expressions for the system. Figure 3 depicts the three physical co-
ordinates on the wing-pylon-engine system. Thus, the required transformation takes the form 
 

 { } { }1 2 1 2, where , ,
T T

pe peq q qζ χ ϑ= = =p Tq p q  (3) 

 
where T  is the equivalence transformation matrix. Using equation (2), T  may be derived as 
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2
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y

y ς

 
 =  
 − 

T  (4) 

 

where 1 2,y y  are the y- co-ordinates at points 1 and 2 respectively. Using the Lagrange equation 
and aerodynamic strip theory [8], maintaining the same ordering of co-ordinates in equation (3), the 
system matrices of the wing-pylon-engine system in the assumed-modes domain are derived as 
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 (7) 

In equations (5) and (6), ,w wc s  are the wing chord and semi-span respectively, m  the wing mass 

per unit area, ,EI GJ  the wing flexural and torsional rigidity respectively, pem  the combined 

mass of the pylon and engine, GI  the moment of inertia of the pylon-engine referred to a local y- 
axis going through the pylon-engine centre of mass (COM), c

⌢  the cosine of the angle of the 
pylon-engine COM relative to the top flat surface of the pylon taken about the flexural axis, Gr  

the distance between the flexural axis and the local y- axis mentioned above, and TK  the linear 
torsional coupling stiffness of the spring connecting the pylon-engine to the wing. In equation (7) 
the eccentricity ratio e  is the distance between the aerodynamic centre and flexural axis as a 



fraction of the chord, Wa  is the lift curve slope and Mθɺ  the non-dimensional pitch damping 

derivative. As it has been assumed that the pylon-engine does not participate in the 
aerodynamics, the corresponding terms in ,mod modB C  are zero. An appropriate level of structural 

damping modD  may be included in the model. A convenient way of doing this is to specify the 
damping in the modal domain [10], and subsequently transforming into the assumed-modes 
domain using the eigenvectors of the undamped system. 
 
2.2. Forcing Terms 
 

The aileron (control surface) usually provides the necessary means to apply control forces to 
the wing-pylon-engine system. It is assumed in this work that two control surfaces are 
available, the first (closest to the wing root) spanning 85% of the length of the wing and the 
second spanning the remaining length (the contribution of the control surfaces to the dynamics 
of the overall system is neglected). The widths of the first and second control surfaces are set at 
20% and 33.33% of the chord length respectively, so as to optimise the distribution of work 
performed by each control surface. It is also assumed that a separate actuator is available to 
apply a torque peT  directly on the engine rotational DOF. Again, using the Lagrange equation 

and aerodynamic strip theory, the forcing vector is found as 
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and each surface will have its own deflection angle 1 2,β β  and set of aerodynamic parameters 

,C Ca b  [11], which are the rates of change of lift coefficient and moment coefficient 
respectively, with respect to control surface deflection angle. 
 
2.3. Inclusion of Nonlinearity 
 

The nonlinear force may be incorporated as an internal force in the equation of motion, viz., 
 

 ( ) ( )2
, , ,mod mod mod mod mod nl mod c modV Vρ ρ+ + + + + =A q B D q C E q f fɺɺ ɺ  (9) 

 
expressed in the assumed-modes domain. In the present model, a cubic hardening nonlinearity is 
assumed in the torsional spring connecting the pylon-engine to the wing. The nonlinear force in the 
spring is expressed as 3

,T nl peK ϑ , where ,T nlK  is the cubic stiffness coefficient. Since peϑ  is a 
relative deflection (involving both coupling DOFs), the nonlinear force vector takes the form 
 

 { }3
, ,, where 0 0 ,

TT
nl mod nl nl T nl peK ϑ= =f T f f  (10) 

 
with T  defined in equation (4). 
 
3. NUMERICAL SIMULATION – UNCONTROLLED SYSTEM 
 

A numerical simulation of the aeroelastic model is now performed. Initially, dimensions and 
parameters for the wing and pylon-engine are chosen. A frequency domain computation is then 
performed on the linear system, and thereby the linear flutter speed is determined. Subsequently, 
a cubic hardening stiffness is included in the torsional spring connecting the wing to the pylon-



engine, and the nonlinear time-domain response is simulated above the flutter speed. It is 
assumed that there is no external excitation, but that there is an initial deflection. 
 
3.1. Model Dimensions and Parameters 
 

The dimensions and parameters chosen for the model are given in Table 1 and Table 2. For the 
flexible wing, the values chosen are based on those used in a numerical example found in [8]. 
The dimensions and mass of the pylon-engine have been chosen such that their proportion with 
respect to those of the wing is similar to what one might find in a real aircraft (e.g. [12]). 
 

Semi-span (sw) 7.5 m Flexural rigidity (EI) 3,675 
2 Eccentricity  

ratio (e) 0.23 
Chord (cw) 2.0 m Torsional rigidity 

(GJ) 
1,890 
kNm2 

Flexural axis ( fx ) 0.96 m Air density (ρ ) 1.225 
kgm-3 

Non-
dimensional 

pitch damping 
derivative ( M θɺ ) 

-1.2 

Mass/unit area (m) 100 
kgm-2 

Lift curve slope ( Wa ) 2π  

 

Table 1 : Dimensions and Parameters of Flexible Wing 

 

Engine diameter ( ed ) 0.75 
m 

Engine mass ( em ) 350 kg Engine length (el ) 1.125 
m 

Pylon mass ( pm ) 35 kg Pylon height ( ph ) 0.125 
m 

Coupling torsional  
spring stiffness ( TK ) 

511 kNm/rad 
Coefficient of cubic component  

of coupling stiffness ( ,T nlK ) 300 TK  

 

Table 2 : Dimensions and Parameters of Pylon-Engine 

 
3.2. Airspeed vs. Natural Frequency and Airspeed vs. Damping Ratio Plots 
 

 
 

Figure 4 : V-omega and V-zeta plots for the wing-pylon-engine model 
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The structural modes in the combined model occur at 1.71 Hz (bending), 4.06 Hz (pylon-engine 
mode) and 6.83 Hz (torsional). It is evident from Figure 4 that flutter initially occurs at an 
airspeed of 77.6 ms-1, involving coupling of the pylon-engine mode and wing bending modes. 
 
3.3. Nonlinear Time-domain Response 
 

The nonlinear system is simulated at an airspeed of 80 ms-1, just above the flutter point, under 
the application of the initial conditions ζ1  = 0.333 mm, 2χ  = 0.00333 rad, peϑ  = 0.05 rad. 

These values have been chosen as they are representative of typical physical displacements one 
might expect in practice, for a wing-pylon-engine system having the dimensions and 
parameters specified in Table 1 and Table 2 above. The resulting response of the system clearly 
exhibits LCO. A sample of the response for the peϑ  co-ordinate is shown in Figure 5. 

 

 
 

Figure 5 : Steady-state LCO in ϑpe  response 

 
For comparison, when the response for the peϑ  co-ordinate just below the linear flutter speed is 

simulated, as expected the response continues to decay, and converges to the origin. 
 
4. LINEARISED CLOSED-LOOP SYSTEM USING NONLINEAR CONTR OL 
 

Feedback linearisation [13] is a process applied to a nonlinear system ( ) ( )= +x f x G x uɺ  to 
transform it into a linear system ,= +z Az Bu  based on a particular choice of output ( )=y h x . In 
these equations ,u u  are the inputs to the nonlinear and linear systems respectively. The mapping 
from the nonlinear domain to the linear domain is achieved through a non-singular co-ordinate 
transformation ( )= zxz T x . A mapping between ,u u  is also required. 

 
The present work assumes the use of 3 inputs and 3 outputs. Since the number of outputs is equal 
to the dimension of the system, the entire nonlinear system is linearised; thus, the complete 
dynamics of the original system are preserved. Feedback linearisation is applied to the nonlinear 
model developed above. It is appropriate to use the assumed-modes representation of the system 
matrices because once the system has been linearised, pole-placement may be performed directly 
on the assumed modes to shift their respective poles to more desirable locations. 
 
4.1. Nonlinear State-Space Model and Linearising Feedback 
 

Substituting from equation (8) into equation (9), the system is expressed in state-space form as 
 

 ( ) ( ) { } { }1 2 3 4 5 6, with : , : , : ,
T T

x x x x x x
 

= + = = = 
 

q
x f x G x u x q v

v
ɺ  (11) 
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87 88 89 90
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time (s)

ϑ p
e (

de
g)



 ( ) ( )
,

, ,
nl mod

   = =   + +   

v 0
f x G x

Ψq Φv Ωf Ξ
 (12) 

 
and 
 

 
( ) ( )1 2 1

1 1

: , : ,

: , : .

mod mod mod mod mod mod

mod mod mod

V Vρ ρ− −

− −

= − + = − +

= − =

Ψ A C E Φ A B D

Ω A Ξ A B
 (13) 

 
The inputs (defined in section 2.2) and outputs respectively are chosen as 
 

 { } { } { } { }1 2 1 2 1 2 3, : ,
T TT T

pe a b c peT y y y q q q x x xβ β= = = =u y  (14) 

 
thus, it is desired to control all three motions of the system using all three available inputs. Now, 
following the procedure of Input-Output feedback linearisation [13], the outputs are differentiated 
with respect to time, whilst substituting for xɺ  from equation (11) at each stage. This results in 
 

 [ ] [ ] [ ]
4 5 6

4 41 42 43 5 51 52 53 6 61 62 63

, , ,

, , ,
a b c

a b c

y x y x y x

y f g g g y f g g g y f g g g

= = =
= + = + = +u u u

ɺ ɺ ɺ

ɺɺ ɺɺ ɺɺ
 (15) 

 

where if  denotes the ith term of the vector ( )f x , and ijg  denotes the ijth term of the matrix ( ) .G x  

A new co-ordinate system is now defined, which will provide a mapping from the equivalent 
linear system that is sought, to the original nonlinear system. Using equations (11) and (14), the 
co-ordinates corresponding to the linearised system are defined as 
 

 
1 1 1 2 1 1 4

3 2 2 4 2 2 5

5 3 6 3 6

: , : ,

: , : ,

: , : .

a a

b b

c pe c pe

z y q x z y q x x

z y q x z y q x x

z y q x z y q x x

= = = = = = =
= = = = = = =
= = = = = = =

ɺ ɺ ɺ

ɺ ɺ ɺ

ɺ ɺ ɺ

 (16) 

 

 
The above expressions provide the required co-ordinate transformation, which evidently is a 
permutation of the identity matrix. Note that this non-singular transformation is independent of 
x , and is therefore globally valid. Now, the vector of actual inputs may be chosen so as to 
cancel the nonlinearity in the controlled system, viz., 
 

 ( ) [ ]( )( )1

4,5,6 ,1
,−= −u Ξ u f x  (17) 

 

where ( ) [ ]( )4,5,6 ,1
f x  contains the 4th, 5th and 6th rows of ( )f x  in equation (11), i.e. 

 

 ( ) [ ]( ) ,4,5,6 ,1
,nl mod= + +f x Ψq Φv Ωf  (18) 

 
from equation (12). It may be shown that for this choice of inputs, the state-space equations 

= +z Az Buɺ  decouple to provide the following three controlled single-DOF systems: 
 

 5 51 1 3 3
1 2 3

6 62 2 4 4

0 1 0 0 1 0 0 1 0
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z zz z z z
u u u

z zz z z z

                     = + = + = +                      
                      

ɺɺ ɺ

ɺɺ ɺ
 (19) 

 



where { }1 2 3:
T

u u u=u  is the vector of inputs to the linear system. Note that the above three 

single-DOF systems correspond to the assumed-modes generalised co-ordinates 1 2, , peq q q  

respectively (see equation (16)). The artificial inputs may be chosen as a linear combination of 
instantaneous displacement and velocity, so as to modify the natural frequency and damping 
ratio of each of these systems respectively, viz., 
 

 51 3
1 1 1 2 2 2 3 3 3

62 4

, , .
zz z

u f g u f g u f g
zz z

    
     = − = − = −          

     
 (20) 

 
5. TREATMENT OF NONLINEAR PARAMETER ERROR 
 

It is of interest to study the effect of a nonlinear parameter error on the performance of the 
closed-loop system. The error in the parameter results in an error in ,nl modf  which, using 

equation (10) and the definition of s from the previous section, may be defined as 
 

 ( ) ( ) ( )
3 3

, , , , , 3,:: : ,    where  ,T
nl mod nl mod T nl T nl pe T nl peK K Kϑ ϑ′ ′= − = − = =ε f f s s s Tɶ  (21) 

 

,nl mod′f  is the nonlinear force vector based on the erroneous value ,T nlK ′  of the nonlinear parameter, 

and ,T nlKɶ  is the error. In the presence of error, the nonlinearity on which the linearising feedback is 

based takes on the erroneous value. Thus, the input (equation (17)) becomes 
 

 ( ) [ ]( )( ) ( ) [ ]( )
1

,4,5,6 ,1 4,5,6 ,1
, where   : .nl mod

− ′ ′ ′= − = + +u Ξ u f x f x Ψq Φv Ωf  (22) 

 
Combining equations (21), (22) and (11), it can be shown that 
 
 , .= = +q v v u Ωεɺ ɺ  (23) 
 
Similar to equation (20), one may express u  as a linear transformation of x , viz., 
 
 .= = +x q vu G x G q G v  (24) 

 
Combining the above expression with equation (23), along with the definition of the output, 
 
 , ˆ ˆ ˆ ˆ, , where , ,cl x x x pey y ϑ= + = = =x A x B u C x u εɺ  (25) 
 
and 
 

 [ ], , , .T
cl x x x

   = = =   
  q v

0 I 0
A B C s I 0

G G Ω
 (26) 

 
Thus, equation (25) shows how the nonlinear parameter error results in an input to the closed-loop 
system. Note that the output defined here is different from that defined for the purpose of 
linearising the system. The effect of the error input on this output may be quantified by the gain of 
the above system. Commonly used measures for the gain of systems of the form being considered 
here are the H∞ and L1 norms [14, 15], which may be readily computed using the matrices in 
equation (26). In the case of the L1 norm, it is usual to use the so-called H* norm, an upper-bound 
on the L1 norm, owing to the computational complexity associated with finding the latter [16]. 



5.1. Imposing bounds on error input parameters – Small Gain Theorem 
 

Having computed the above norms, the Small Gain Theorem [14] may be used to impose 
bounds on the variables that the error input ε  depends on. The theorem states that for 
guaranteed input-output stability of two interconnected feedback systems with gains 1 2,γ γ , it is 

required that 1 2 1γ γ < . In the present case, the two systems are (a) the closed-loop system in 

equation (25), and (b) the relationship between ε  and the nonlinear parameter ,T nlKɶ . A 

Lipschitz constant [14] may be used to compute an upper bound for the gain of the error 
function ε  with respect to its input peϑ . An expression for the gain of the error function may be 

computed as a local Lipschitz constant βɶ , as 
 

 
2

,sup 3 .
pe pe max

T nl pe max
pe

d
K

dϑ ϑ
β ϑ

ϑ<
= =ε

sɶ ɶ  (27) 

 
Combining the estimate of the L1 norm computed earlier with the above equation, an amplitude 

bound peϑ  that satisifies the Small Gain Theorem is computed as  

 

 
, *

1
.

3pe max
T nlK

ϑ
γ

=
sɶ

 (28) 

 
It should be noted that the bounds computed using the H∞ and H* norms are conservative, as is the 
Small Gain Theorem. Thus, it may be possible to exceed the bounds computed by this approach and 
yet have a stable closed-loop system, although stability beyond these bounds cannot be guaranteed. 
 
6. ADAPTIVE FEEDBACK LINEARISATION 
 

It was described in the above section how a discrepancy between the actual nonlinearity and 
assumed nonlinearity used in the linearising feedback acts as an input to the closed-loop system. 
It is possible that this additional (unknown) input may destabilise the system - or at least degrade 
control performance – if its magnitude exceeds the bounds computed, for example, by the 
approach discussed in section 5.1. This possibility may be eliminated by accounting for 
nonlinearity errors using an adaptive scheme. Such a scheme will guarantee asymptotic stability 
of the closed-loop response. Essentially, the adaptive scheme entails continuously updating the 
assumed value of the nonlinear parameter, such that a positive scalar Lyapunov function based 
on the state and parameter error is continuously decreasing. Thus, a parameter update rate 
satisfying this requirement may be computed, such that closed-loop stability is ensured. 
 
7. NUMERICAL SIMULATION – CLOSED LOOP SYSTEM 
 

Closed-loop control is applied to the nonlinear model in the assumed-modes domain to provide 
linearising feedback. The latter is computed such that the linearised system consists of the 
uncoupled SDOF sub-systems referred to earlier. The following modal parameters are set for 
pole-placement of the system at 80 ms-1: 
 
 
 
 
The values specified above are in the same order of magnitude as the bending, torsional and pylon-
engine mode natural frequencies (see Figure 4). The initial conditions are set at the same values used 
in the uncontrolled case (section 3.3), namely ζ1  = 0.333 mm, 2χ  = 0.00333 rad, peϑ  = 0.05 rad. 

1q  0.93 Hz 0.01 2q  4.95 Hz 0.01 peq  2.9 Hz 0.01 



In the absence of any nonlinear parameter error, as one would expect, the controlled assumed-
modes are modified such that their natural frequencies and damping ratios are identical to those in 
the above table and the impulse response decays to zero, as seen in Figure 6. 
 

 
 

Figure 6 – Feedback-linearised response at 80 ms-1 (assumed-modes co-ordinates) 

 

 
 

Figure 7 : Control surface deflection angles and actuator torques for exact feedback linearisation 
 
The required control surface and actuator inputs are shown in Figure 7, where it can be seen that 
the input magnitudes are feasible in practice. When a 40% error in ,T nlK  is incorporated, and the 

closed-loop response is simulated based on the above feedback parameters and with the same 
initial conditions, an unstable response sets in from the very beginning, as seen in Figure 8. 
 

 
 

Figure 8 : Feedback-linearised response at 80 ms-1, with nonlinear parameter error included 
 
At this point, it is appropriate to compute an estimate of the bounds on the error function (see 
equation (21)) using the approach discussed in section 5 above. The matrices in the state-space 
equation (25) are assembled, and the H∞ and H* norms are subsequently computed.  For the H* 
problem, ,µ λ  are chosen as 0.003 and 0.115 respectively. The Yalmip and Sedumi Matlab 

toolboxes [17, 18] have been used to solve the LMIs. Having computed the norms γ ∞  and *γ , 
which are 2.4×10-4 and 4.25×10-4 respectively, the Small Gain Theorem is used to compute 
appropriate bounds in each case. Suppose it is desired to keep the estimated error in ,T nlK  at 

40%. In this case, the bound should be imposed on the allowable deflection angle .peϑ  Using 

equation (28), the allowable magnitudes in the H∞ and H* cases are computed as 0.003265 and 
0.002453 radians respectively. Given that peϑ  is being controlled such that the amplitude of its 

vibration envelope is decreasing, its initial value may be set to the maximum allowable bound 
computed above (thus, it is ensured that the magnitude of peϑ  will not exceed the allowable 
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bound). When the simulation is repeated with the initial condition of peϑ  set to the H∞ bound 

0.003265 for example, it is seen that the resulting response is stable. In fact, instability only 
begins when peϑ  is approximately 0.043 rad. 

 
The instability shown in Figure 8 may be avoided altogether by implementing the adaptive 
controller described in section 6 above. In this case, the resulting controlled response, again for 
the same initial conditions, is shown in Figure 9. 
 

 
 

Figure 9 : Feedback-linearised response at 80 ms-1, with parameter adaptation 
 
A comparison between Figure 9 and Figure 6 shows that the controlled responses are similar, 
but not identical. Although the original pole-placement requirement has not been satisfied, it 
can be seen that the controlled response is stable. Note that by implementing the adaptive 

controller, it has been possible to significantly exceed the bounds on peϑ  as estimated by the 

Small Gain Theorem. In fact, the adaptive controller successfully drives the responses to zero 

for values of pe max
ϑ  (set as an initial condition) up to around 0.0735 rad. The required control 

in this case is accomplished through achievable control surface deflection angles (≈11˚) and 
actuator torque magnitude (55 kNm). 
 
8. CONCLUSIONS 
 

This work demonstrates the application of adaptive feedback linearisation on a 3-DOF flexible 
aeroelastic model consisting of a flexible wing and a rigid pylon-engine attached to the wing by a 
nonlinear torsional spring. For the dimensions and parameters chosen in the illustrations, the 
initial flutter is caused by the pylon-engine mode, which is a novel contribution of this paper. 
 
The availability of 3 inputs and 3 outputs is assumed in the feedback linearisation of the 3-DOF 
aeroelastic system. The inputs are provided by two ailerons and a torsional actuator, and the 
outputs measured are the wing bending and torsional displacements, and relative angular 
deflection between wing and pylon-engine. This configuration is advantageous as it leads to a 
completely linearised system, enabling control of all 3 co-ordinates of the system. Pole-
placement through linearising feedback is achieved successfully in the absence of nonlinear 
parameter error, which is expected. When a sizeable error in the nonlinear parameter is 
introduced, an unstable response is encountered immediately. The Small Gain Theorem is 
applied to estimate bounds on acceptable error magnitudes to ensure stable controlled response in 
the absence of adaptive methods. The estimated L1 gain provides a reasonable estimate of the 
allowable pylon-engine deflection for a fixed (estimate of) nonlinear parameter error. 
 
Application of adaptive feedback linearisation leads to a marked improvement in controlled 
response by preventing the instability previously seen, and causes the response to converge to the 
origin. Numerical simulations confirm this fact, revealing that stabilising adaptive control can be 
implemented with achievable magnitudes of aileron deflection angles. This result is compared 
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with the closed-loop response obtained when nonlinearity errors are ignored during feedback 
linearisation; a marked improvement in response is observed when adaptation is included. 
 
In work that is due to appear elsewhere, the authors of this paper present a new treatment of the 
application of Feedback Linearisation to general second-order systems [19], in a second-order 
representation that is familiar in the area of elasto-mechanics and aeroelasticty. 
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