
! 1!

New technologies for high throughput genetic 

analysis of complex genomes 

 

 

Thesis submitted in accordance with the requirements of the University of Liverpool 

for the degree of Doctor in Philosophy by 

 

 

Laura-Jayne Gardiner 

 

July 2014 

  



! 2!

Acknowledgements 

 

I would firstly like to thank my parents and my husband Dave, who have provided me with 

constant support and encouragement.  

 

I am particularly grateful for the years of advice, guidance and teasing provided by my main 

supervisor Anthony Hall and my secondary supervisor Neil Hall. The wisdom and ideas 

from the car sharing collaborative is greatly appreciated. Thank you to the many members of 

the CGR and the bioinformatics office for their help and for keeping me sane.  

 

Finally thanks to Walt Disney, Topshop and to Jacobs Creek for keeping up my spirits 

throughout this project.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



! 3!

 

Table of Contents 

Table of Contents ……………………………………………………………………………… 3 

List of Tables …………………………………………………………………………………... 6 

List of Figures ………………………………………………………………………………….. 7 

List of Abbreviations ………………………………………………………………………….. 9 

Abstract ………………………………………………………………………………………… 10 

Chapter 1. Introduction ……………………………………………………………………….. 12 

1.1 Summary ………………………………………………………………………………….... 12 

1.2 Outline of sequencing technologies ……………………………………………………….. 13 

1.2.1 Roche 454 sequencing …………………………………………………………………….. 16 

1.2.2 Applied Biosystem’s SOLiD™ sequencing system ……………………………………… 18 

1.2.3 Illumina sequencing ………………………………………………………………………. 21 

1.2.4 Outlining recent developments in next generation sequencing …………………………… 22 

1.3 Bioinformatical tools: Mapping and downstream analyses …………………………….. 24 

1.3.1 Mapping …………………………………………………………………………………... 25 

1.3.1.1 BWA ……………………………………………………………………………………. 28 

1.3.2 Analyses downstream of mapping ………………………………………………………... 30 

1.3.3 Further bioinformatical tools ……………………………………………………………… 34 

1.4 Arabidopsis ………………………………………………………………………………… 37 

1.5 Brachypodium ……………………………………………………………………………... 40 

1.6 Wheat ………………………………………………………………………………………. 41 

1.6.1 Evolution of wheat ………………………………………………………………………... 43 

1.6.2 Gene enrichment in wheat ………………………………………………………………... 44 

1.7 Identifying mutations responsible for traits in complex organisms ……………………. 49 

1.7.1 Summary ………………………………………………………………………………….. 49 

1.7.2 Methods for identifying traits …………………………………………………………….. 50 

1.8 Wheat methylation studies ………………………………………………………………... 55 

1.9 Aims ………………………………………………………………………………………… 58 

Chapter 2. Mutant identification in the model plant Arabidopsis thaliana ………………… 60 

2.1 Introduction ………………………………………………………………………………... 60 

2.2 Ebi-1 SNP identification …………………………………………………………………... 62 

2.3 Mutant identification in the Arabidopsis strain Ws-2 …………………………………… 64 

2.4 Further mutation identification in the Arabidopsis strain Ws-2 ……………………….. 68 

2.4.1 SHORE mapping pipeline ………………………………………………………………… 68 

2.4.2 Development of a novel pipeline for mutant identification with use of BWA and 

SAMtools ……………………………………………………………………………………….. 

 

73 

2.5 Mutant identification in a diploid using an artificial dataset …………………………… 77 

2.5.1 Development of an artificial diploid sequence dataset …………………………………… 78 



! 4!

2.5.2 Mutant identification in the artificial diploid dataset ……………………………………... 80 

2.6 Mutant identification in a tetraploid using an artificial dataset ………………………... 82 

2.6.1 Development of an artificial tetraploid sequence dataset ………………………………… 82 

2.6.2 Mutant identification in the artificial tetraploid dataset ………………………………….. 83 

2.7 Mutant identification in a hexaploid using an artificial dataset ……………………….. 86 

2.7.1 Development of an artificial hexaploid sequence dataset ………………………………… 86 

2.7.2 Mutant identification in the artificial hexaploid dataset ………………………………….. 87 

2.8 Conclusions ………………………………………………………………………………… 90 

Chapter 3. Validation of a wheat gene capture array ……………………………………….. 93 

3.1 Introduction ………………………………………………………………………………... 93 

3.2 Intron and exon modeling ………………………………………………………………… 95 

3.3 Ordering array probes …………………………………………………………………….. 96 

3.4 Comparative enrichment study (exome array versus gene capture array) ……………. 100 

3.4.1 Mapping analysis …………………………………………………………………………. 100 

3.4.2 SNP analysis …………………………………………………………………………........ 103 

3.5 Comprehensive analysis of the array targets …………………………………………….. 104 

3.6 Mapping and SNP identification in four wheat varieties ……………………………….. 106 

3.7 Conclusions …………………………………………………………………………............ 115 

Chapter 4. Mutant identification combined with target enrichment in wheat ……………. 118 

4.1 Introduction …………………………………………………………………………........... 118 

4.2 Mutant identification in the diploid wheat T. monococcum …………………………….. 121 

4.2.1 Sample preparation and mapping …………………………………………………………. 121 

4.2.2 Initial homozygote allele frequency determination for mutant identification ……………. 125 

4.2.3 Final haplotyping algorithm for mutant identification ……………………………………. 127 

4.2.4 Conclusions from mutant identification in T. monococcum ……………………………… 130 

4.3 Identification of genes linked to stripe rust resistance in 3 hexaploid wheat mutants ... 135 

4.3.1 Mapping and SNP identification pipelines ……………………………………………….. 135 

4.3.2 P2 and P3 datasets; Mutant Identification ………………………………………………… 137 

4.4 Conclusions ………………………………………………………………………………… 142 

Chapter 5. A comprehensive genome wide analysis of methylation patterns in wheat …… 145 

5.1 Introduction …………………………………………………………………………........... 145 

5.2 Design of the methylation array ………………………………………………………….. 147 

5.3 Identification of a reference list of homeologous SNPs ………………………………….. 148 

5.4 Enrichment performance and validation of the array …………………………………... 151 

5.4.1 Non-Bisulfite treated samples …………………………………………………………….. 151 

5.4.2 Setting thresholds for methylation ………………………………………………………... 155 

5.4.3 Bisulfite treated samples ………………………………………………………………….. 155 

5.5 Determination of the available dataset for analysis ……………………………………... 158 

5.6 Identification of global methylation patterns ……………………………………………. 160 

5.6.1 Identification of genome specific methylation/non-methylation in wheat ……………….. 161 



! 5!

5.6.2 Identification of genome independent methylation ……………………………………….. 166 

5.7 Transposon and chloroplast methylation state assessment through the analysis of off 

target sequence . ……………………………………………………………………………….. 

 

167 

5.8 Investigating temperature dependent differential methylation and gene expression …. 169 

5.9 Validation of homeologous SNP calls and methylation status ………………………….. 176 

5.10 Conclusions ……………………………………………………………………………….. 179 

6 Discussion ……………………………………………………………………………………. 181 

7 References ……………………………………………………………………………………. 188 

Files on disc  

8 Appendix 1 (tables 1-9 in file: Appendix_1.docx) …………………………………………. 64 

9 Command outline appendix (sections 1-5 in file: Command_outline_appendix.docx) ... 64 

10 Allele-frequency-interval-determination.pl ………………………………………………. 74 

11 Appendix 2 (table 1 and figure 1 in file: Appendix_2.docx) …………………………….. 95 

12 3rd_base_script.pl …………………………..…………………………..…………………... 108 

13 ID_varietal_SNPs.pl …………………………..…………………………..………………... 108 

14 Four_varieties_SNPs_beta_array_final.txt …………………………..…………………...     109 

15 Appendix 3 (tables 1-6 in file: Appendix_3.docx) ………………………………………...  125 

16 Homozygote_frequency_plus_plot.pl …………………………..………………………….     132 

17 Haplotyping_hex_wheat_plus_plot.pl …………………………..…………………………     134 

18 Homeologous_SNP_list.txt …………………………..…………………………..…………     148 
19 Are_SNP_reads_methylated.pl …………………………..………………………………...     149 

20 Assign_read_to_genome.pl …………………………..……………………………………..     149 

21 Associate_sequencing_read_with_SNP.pl …………………………..……………………..     149 

22 Calc_%_read_meth2.pl …………………………..………………………………………...      149 

23 Appendix 4 (tables 1-8 and figure 1 in file: Appendix_4.docx) ………………………….  160 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 



! 6!

List of Tables 
Table 1.1 A comparison of next-generation sequencing platforms …………………………... 16 

Table 2.1. Top candidate homozygous SNPs for the phenotype inducing SNP of an 

Arabidopsis Ws-2 mutant ……………………………………………………………………... 

 

68 

Table 2.2. Top candidate homozygous SNPs for the phenotype inducing SNP of an 

Arabidopsis Ws-2 mutant ……………………………………………………………………... 

 

72 

Table 2.3. Descriptive mapping statistics for an Arabidopsis Ws-2 mutant ………………….. 74 

Table 2.4. Top candidate homozygous SNPs for the phenotype inducing SNP of an 

Arabidopsis Ws-2 mutant ……………………………………………………………………... 

 

77 

Table 3.1. Exome capture array versus gene capture array …………………………………… 102 

Table 3.2. Exome capture array targets versus gene capture array targets …………………… 105 

Table 3.3. Mapping statistics for four varieties of wheat ……………………………………... 106 

Table 4.1 Mapping statistics for the 4 enriched wheat DNA samples in relation to the 

pseudo-chromosome reference sequence ……………………………………………………... 

 

124 

Table 4.2 Detailing the pseudo-chromosome regions that harbour potential deletions ………. 131 

Table 4.3 Yr-7 iSelect SNPs mapping to wheat pseudo-chromosome 2 ……………………... 142 

Table 5.1. Mapping Statistics for enriched wheat DNA samples (non-bisulfite treated) …….. 152 

Table 5.2. Mapping Statistics for six enriched and bisulfite treated wheat DNA samples …… 156 

Table 5.3. Overall Mapping Statistics in Bisulfite treated data ………………………………. 157 

Table 5.4. Summary of orientation of the methylation sites that were analyzed in sample 12 

(12°C) and sample 27 (27°C)  ………………………………………………………………… 

 

163 

Table 5.5. Repeat composition of the 12°C sample’s unmapped sequencing reads ………….. 168 

Table 5.6. Annotation of differentially methylated sites ……………………………………… 176 

Table 5.7. Methylation site validation data …………………………………………………… 177 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



! 7!

List of Figures 
Figure 1.1 Basic outline of analysis of next-generation sequencing datasets to perform SNP 

calling ……………………………………………………………………………………….. 
 

12 

Figure 1.2. Steps to generate a mate-paired library for Roche 454 sequencing …………….. 18 

Figure 1.3. An outline of SOLiD sequencing technology …………………………………... 20 

Figure 1.4. An outline of the Illumina sequencing-by-synthesis technology ……………….. 22 

Figure 1.5. An outline of assembly and mapping of sequencing reads ……………………... 25 

Figure 1.6. Mapping and SNP calling pipeline ……………………………………………… 27 

Figure 1.7. Example of a Circos plot: Alignment of wheat 454 reads, SNPs and genetic 

maps to the Brachypodium genome ………………………………………………………… 

 

36 

Figure 1.8. Image of the model diploid plant Arabidopsis thaliana ………………………… 37 

Figure 1.9. Image of the model diploid plant Brachypodium distachyon …………………… 40 

Figure 1.10. Evolution of hexaploid bread wheat …………………………………………… 44 

Figure 1.11. Development of 2 wheat capture arrays in solution …………………………… 47 

Figure 2.1. Positions of ebi-1 SNPs along the Arabidopsis chromosomes 1-5 ……………... 64 

Figure 2.2 Pipeline for mutant identification using SHOREmapping ………………………. 65 

Figure 2.3.  SHOREmap denovo output pdf file for an Arabidopsis Ws-2 mutant …………. 67 

Figure 2.4. SHOREmap denovo output pdf file for an Arabidopsis Ws-2 mutant ………….. 70 

Figure 2.5. Allele frequency analysis of an Arabidopsis Ws-2 mutant ……………………... 75 

Figure 2.6. Outline of sequence input into SAMtools wgsim ………………………………. 79 

Figure 2.7. Allele frequency analysis of a simulated Arabidopsis diploid mutant ………….. 81 

Figure 2.8. Allele frequency analysis of a simulated Arabidopsis tetraploid mutant ……….. 85 

Figure 2.9. Allele frequency analysis of a simulated Arabidopsis hexaploid mutant ……….. 89 

Figure 3.1. Construction of pseudo-chromosomes from the gene capture array design-space 

contigs using Brachypodium-wheat markers ………………………………………………... 

 

97 

Figure 3.2. Using barley for the construction of pseudo-chromosomes from the gene 

capture array design-space contigs ………………………………………………………….. 

 

99 

Figure 3.3. Extract from a VarScan SNP call output at a position with more than one 

alternate allele ……………………………………………………………………………….. 

 

107 

Figure 3.4. SNPs that have been identified in three varieties of wheat ……………………... 110 

Figure 3.5. Circos plot outlining the three wheat varieties Rialto, Truman and Utmost ……. 111 

Figure 3.6. Circos plot outlining the three wheat varieties Rialto, Truman and Utmost ……. 114 

Figure 4.1 Construction of a RIL line ……………………………………………………….. 120 

Figure 4.2 Processing 4 sets of enriched sequencing data to identify a mapping interval 

containing the deletion that is inducing the phenotype of interest…………………………… 

 

123 

Figure 4.3 Frequencies of Bulk A and Bulk B homozygotes calculated along each pseudo-

chromosome …………………………………………………………………………………. 

 

126 

Figure 4.4 Outline of mutant identification algorithm ………………………………………. 128 

Figure 4.5 Homozygosity scores calculated for Bulk A and Bulk B datasets ………………. 129 



! 8!

Figure 4.6 Homozygosity frequencies/scores calculated for Bulk A and Bulk B datasets 

along each pseudo-chromosome …………………………………………………………….. 

 

133 

Figure 4.7 Processing 5 sets of enriched sequencing data to identify a mapping interval 

containing the gene that is inducing the phenotype of interest ……………………………… 

 

136 

Figure 4.8 Homozygosity scores calculated for the P2 and P3 bulk segregant datasets along 

each pseudo-chromosome …………………………………………………………………… 

 

139 

Figure 4.9 Homozygosity scores calculated from the P2 and P3 bulk segregant datasets for 

the iSelect Yr-7 linked SNP positions ………………………………………………………. 

 

141 

Figure 5.1. Theory behind association of methylation sites with the 3 wheat genomes …….. 149 

Figure 5.2. Pipeline for association of methylation sites with the 3 wheat genomes ……….. 150 

Figure 5.3. Average depth of coverage per bait probe plotted for the 12°C sample ………... 154 

Figure 5.4. Determination of the subset of data that was available for detailed analysis in 

the 12°C sample ……………………………………………………………………………... 

 

159 

Figure 5.5. Categorizing observed methylation averaged across the 12°C and 27°C sample 

datasets ………………………………………………………………………………………. 

 

162 

Figure 5.6. Positional information for methylation sites ……………………………………. 165 

Figure 5.7. Frequency plot of percentage per genome contribution to overall gene 

expression …………………………………………………………………………………… 

 

170 

Figure 5.8. Frequency plot of percentage per genome contribution to overall gene 

expression (subset) ………………………………………………………………………….. 

 

172 

Figure 5.9. Sanger sequencing output trace …………………………………………………. 178 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



! 9!

List of Abbreviations 

AFA, Adaptive Focused Acoustics 

BAC, Bacterial Artificial Chromosome 

BAM, Binary Alignment Map 

CGR, Centre for Genomic Research 

EMS, Ethyl Methanesulfonate 

NIL, Near Isogenic Line 

RIL, Recombinant Inbred Line 

SAM, Sequence Alignment Map 

SNP, Single Nucleotide Polymorphism 

GAIIx, Illumina Genome Analyzer IIx 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



! 10!

Abstract  

 

High throughput sequencing can generate hundreds of millions of reads in a single day and is 

revolutionizing modern genetics. This project aimed to utilize next generation genetic 

approaches to analyze non-model but important agronomical plant species. A key feature of 

these species is their complexity. Mapping and SNP calling of these sequencing datasets is 

fundamental to many downstream analyses that have been implemented here including; 

mutant identification, comparative analyses between related organisms and epigenetic 

studies.  

 

The first objective in this project involved developing accelerated mutant identification 

techniques using mapping-by-sequencing analyses that combine whole genome sequencing 

with genetic mapping. Such methods have largely required a complete reference sequence 

and are typically implemented on a mapping population with a common mutant phenotype 

of interest. Here mutant identification was demonstrated on the model diploid plant 

Arabidopsis thaliana as a proof of principle of the methodology. It was also demonstrated on 

a simulated hexaploid mutant that was developed using the Arabidopsis reference genome. 

In species such as wheat, no finished genome reference sequence is available and, due to its 

large genome size (17 Gb), re-sequencing at sufficient depth of coverage is not practical. 

Therefore a genomic target enrichment approach was validated and used here to capture the 

gene rich regions of hexaploid bread wheat, reducing the sequencing cost while still allowing 

analysis of the majority of wheat’s genic sequence. A pseudo-chromosome based reference 

sequence was developed from this genic sequence with a long-range order of genes based on 

synteny of wheat with Brachypodium distachyon. Using the capture probe set for target 

enrichment followed by next generation sequencing; an early flowering locus was mapped in 

the diploid wheat Triticum monococcum and in hexaploid bread wheat Triticum aestivum, 

the stripe rust resistance gene was located. A bespoke pipeline and algorithm was developed 

for mutant loci identification and the pseudo-chromosome reference was implemented. This 

novel method will allow widespread application of sliding window mapping-by-sequencing 

analyses to datasets that are; enriched, lacking a finished reference genome or polyploid. 

 

The second main objective of this project involved a study of methylation patterns in wheat 

utilizing sodium bisulfite treatment, combined with target enrichment. An enrichment system 

was specifically designed, developed, validated and implemented here to perform one of the 

first studies of methylation patterns in hexaploid bread wheat across the 3 genomes that used 

a genome-wide subset of genes and can thus be used to infer genome-wide methylation 

patterns and observations. This investigation confirmed that differential methylation exists 
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between the A, B and D genomes of wheat and that temperature is capable of altering 

methylation states.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Note 

The work that is outlined in section 4.2 has been adapted for publication and is currently 

under review (reference 1 below). After publication the relevant pipelines that are detailed in 

section 4.2 will be made publicly available in Iplant. The work that is outlined in chapter 5 

has also been adapted for publication and is currently in the final stages of editing prior to 

journal submission (reference 2 below). 

 

 

1. Gardiner L, Gawronski P, Olohan L, Schnurbusch T, Hall N, Hall A (2014) Using genic 

sequence capture in combination with a syntenic pseudo genome to map a deletion mutant in 

a complex wheat species. Under review-accepted with revision!!
!
2. Gardiner L, Olohan L, Price J, Quinton-Tulloch M, Hall N, Hall A (2014) A genome-wide 

epigenetic study of hexaploid wheat using target enrichment. Paper ready for submission 
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Chapter 1. Introduction 

 

 

1.1 Summary  

This project is primarily bioinformatically based and focuses on the development of 

strategies for the analysis of high throughput next-generation DNA re-sequencing datasets in 

the complex non-model organism wheat. Such analyses are a great challenge due to the large 

size of the sequencing datasets that are generated. This challenge is intensified when taking 

into account the polyploid nature of wheat (containing six sets of chromosomes) and wheat’s 

poorly annotated and fragmented genome sequence. Here analyses will be developed to 

allow the use of these sequencing datasets for mutant identification and comparative 

analyses between varieties. Epigenetic studies will also be performed i.e. the study of 

heritable changes in gene activity that are not caused by DNA sequence change e.g. 

methylation. Such analyses will be outlined in this chapter and typically utilize SNP (single 

nucleotide polymorphism) calls that are made as a starting point and represent natural DNA 

sequence variation at a single nucleotide level. The basic profile for sequencing data analysis 

to determine SNP calls is summarized in figure 1.1, although within this project no sequence 

assembly has been required due to the availability of reference genome sequences, even if 

incomplete, for the genomes under analysis. Relevant software that is available to carry out 

each step shown in figure 1.1 will be outlined in this chapter along with an overview of 

current sequencing technologies.  

 

 

 
 

Figure 1.1 Basic outline of analysis of next-generation sequencing datasets to perform 

SNP calling.  
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The genomes of interest within this project will also be introduced here; the model diploid 

plant Arabidopsis thaliana that is used to validate analyses prior to adaptation for a complex 

genome, the model grass Brachypodium distachyon that is primarily used to enable 

comparative analyses, the non-model diploid wheat strain Triticum monococcum and 

hexaploid bread wheat Triticum aestivum. Further to this, and to manage the large, complex 

genome of wheat, the design of two wheat capture array probe sets in solution will be 

outlined (design by Hall, A). Here these two arrays are validated and implemented in 

subsequent comparative analyses and mutant identification analyses. An additional in 

solution capture array, developed within this project, partly using the design and knowledge 

gained from the first two arrays, will also be outlined. This capture array was implemented 

within this study to document methylation patterns in hexaploid bread wheat. 

 

This being a primarily bioinformatical project any sequencing that was required is carried 

out by the CGR at Liverpool University unless otherwise stated.  

 

 

1.2 Outline of sequencing technologies 

Derived in 1977, Sanger sequencing was the original method of choice for rapid 

determination of DNA sequence for around 30 years, utilizing chain termination. Chain 

termination involves the synthesis of new DNA strands on a single stranded template and the 

random incorporation of chain-terminating nucleotides to produce a set of different sized 

DNA fragments. The last base in a DNA fragment can be identified using a unique label and 

sizing of these fragments using electrophoresis gains positional information allowing us to 

read the DNA sequence (Sanger et al., 1977). The development of Sanger sequencing as a 

technique was aided by subsequent laboratory automation and parallelization enabling, 

currently, the generation of over 2Mb of sequencing data in a single day with read lengths up 

to ~900bp (Schuster, 2008).  

 

Sanger sequencing was utilized to publish a complete finished genome sequence for the first 

higher plant, Arabidopsis, in 2000 (section 1.4). This analysis involved cloning Arabidopsis 

fragments into a bacterial host using large-insert bacterial artificial chromosome (BAC) 

libraries. A scaffold of these BAC clones was determined to cover the genome. BACs that 

formed this scaffold or ‘tiling path’ were then sheared and sequenced (The Arabidopsis 

Genome Initiative, 2000). Due to the creation of this tiling path or low-resolution genome 

map followed by shotgun clone-by-clone sequencing this methodology is slower than if the 

whole genome was shotgun sequenced directly but relies less heavily on computational 

genome assembly. To date computing power has steadily become cheaper, and with highly 
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developed software available for sequence analysis, the feasibility for whole genome 

shotgun sequencing has increased. Sanger sequencing was also utilized to publish the 

Brachypodium genome sequence in 2010, here whole genome shotgun sequence data was 

generated and assembled then validated using existing genetic maps, physical maps and 

BAC sequences (The International Brachypodium Initiative, 2010). The Brachypodium 

sequencing initiative is an example of the feasibility of whole genome shotgun sequence for 

de novo genome sequencing. With the advent of next generation sequencing, that 

significantly streamlines the sequencing process, combined with constantly improving 

sequencing read lengths, the necessity for a detailed physical or genetic map to complement 

whole genome shotgun sequencing for de novo genome assembly lessens.  

 
High-throughput massively parallel sequencing appeared in 2007 and is referred to as next-

generation sequencing. It has the ability to generate hundreds of millions of reads in a single 

day, revolutionizing modern genetics and allowing a dramatic increase in sequencing output, 

which is constantly improving, while also lowering sequencing costs. In such a fast moving, 

competitive industry sequencing technologies are constantly being developed and although 

technologies tend to be adaptations rather than total overhauls, many of the instruments that 

were used at the beginning of this project (2010) are now largely redundant and have been 

replaced by newer models generating longer, higher quality reads and larger volumes of 

data. Here the current next-generation sequencing technologies will be outlined with the 

main focus on those that were utilized throughout this project.  

 

Next-generation sequencing typically follows two paths to sequence generation, determined 

during library preparation of the DNA sample to be run on the desired instrument. The first 

path, fragment library production, involves simply fragmenting the DNA to pre-defined 

lengths and sequencing the fragments directly. Sequencing using fragment libraries typically 

requires less input DNA, it is appropriate for sequence lengths ≤ 300 bp, it has a simpler 

library construction workflow and it results in higher recovery of unique molecules (Applied 

Biosystems, 2012). The second method is mate-paired library production. Here the DNA is 

again fragmented and DNA fragments that are “mates” originate from the 2 ends of one 

DNA fragment. The distance between “mates” can vary greatly depending on initial read 

length 500bp-6kb (if the distance is 500bp or less the term paired-end has been employed by 

certain companies). In addition to the sequence information this method informs of the 

physical distance between the 2 reads in the genome. For example, if the DNA was 

fragmented to produce ~500bp fragments then we know that the mate-pairs will map 

approximately 500bp apart in the genome. This information can help to resolve larger 

structural rearrangements (insertions, deletions, inversions), as well as helping to assemble 



! 15!

across repetitive regions. Sequencing using mate-paired libraries involves more input DNA 

but tends to result in more even coverage of the genome.  

 

For fragmentation of DNA the Covaris ‘Adaptive Focused Acoustics’ technology is largely 

employed. Double stranded DNA is fragmented on exposure to the energy of AFA. AFA can 

be readily controlled so that the output fragment size after DNA shearing can be precisely 

selected in the range 100bp-5kb. Covaris technology shows no G/C bias (problematic in 

enzymatic shearing), has reproducible results, is isothermal (leading to high recovery/fidelity 

of DNA) and is fast and easy to use (Covaris, The sample prep advantage, 2011).  

 
At the onset of this project in 2010 the most common sequencing technologies included the 

Roche 454 GS FLX Titanium Series, the Applied Biosystems SOLiD™ 3 Plus Systems and 

the Illumina Genome Analyzer IIx (GAIIx). A summary of these next-generation sequencing 

tools and their outputs can be found in table 1.1. The Illumina® (Genome AnalyzerTM) and 

Applied BiosystemsTM (SOLiDTM) (Cullum et al., 2010) technologies produce huge amounts 

of highly accurate (>99%) sequence data (up to ~100 Gb) however, they produce short read 

sequences that are typically ~35-100bp in length which would make assembly of de novo 

genomes difficult and labour intensive. As such, the sequence output from these technologies 

is more suitable for whole genome re-sequencing and high-throughput applications e.g. 

sequencing closely related species, sequencing enriched datasets and transcriptome 

sequencing. The high coverage that is generated allows confident SNP and mutation 

detection within populations.  

 

The instruments produced by Roche/454 and Solexa established the next generation 

sequencing campaign offering millions of reads that are now typically greater than ~500bp 

in length. Although the sequence data output of these technologies is lower, the increased 

read length and high accuracy (> 99.997%) allows data to be used primarily for de novo 

sequencing of the genome of interest and medium-throughput applications (Mane et al., 

2011).  
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Sequencing technology Output 

(Gb) 

Run time 

(days) 

Max read 

length (bp) 

Accuracy Cost per 

Mbp ($) 

Illumina      

Genome Analyzer IIx 95 14 150 >99% 2 

HiSeq 2000 600 11 100 >99% 0.07 

HiSeq 2500 1000 6 200 >99% 0.05 

HiSeq X ten 1800 3 150 >99% 0.01 

MiSeq 15 3 300 >99% 0.10 

Applied Biosystems      

SOLiD™ 3 Plus System 60 14 50 >99.9% - 

SOLiD™ 4 Plus System 100 16 50 >99.9% 0.13 

SOLiD™ 5500 90 7 75 >99.99% 0.10 

SOLiD™ 5500xl 180 7 75 >99.99% 0.10 

Life Technologies      

Ion Torrent (PGM) 2 7hr 400 >99% 0.38 

Ion Proton (P1) 10 4hr 200 >99% 0.15 

Pacific Biosciences      

PacBio RS II 6.4* 3hr >30000 85% 1 

Roche      

Roche 454 GS FLX 0.7 1 1000 >99.997% 10 

 

Table 1.1 A comparison of next-generation sequencing platforms. An outline of the 

mainstream next-generation sequencing tools; past and present. Figures represent the upper 

limit/best-case scenario in each category and are taken from the manufacturers specification 

sheets for each sequencing technology. (*Estimated using the maximum 16 SMRT cells) 

 

 

1.2.1 Roche 454 sequencing 

The Roche 454 GS FLX titanium series implements pyrosequencing and can generate high 

accuracy reads with lengths up to 1000bp (mode length ~700bp). It is known for its longer 

read lengths and short run times but higher costs per base pair of sequencing (see table 1.1). 

454 pyrosequencing is based on sequencing-by-synthesis; hundreds of thousands of beads, 

each carrying copies of a unique single-stranded DNA molecule, are sequenced in parallel. 

They are added to a PicoTiterPlate for sequencing. This plate contains over a million wells; 

each can hold 1 capture bead. Nucleotide addition to the plate, if the nucleotide is 

complementary to the template strand, results in the polymerase extending the existing DNA 
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strand by adding nucleotides i.e. controlled non-competitive base extension. This addition 

results in a light signal that is recorded by the instrument (Rothberg and Leamon, 2008). For 

this project 454 data is used primarily for de novo sequencing of the genome of interest i.e. it 

can be used to produce a reference sequence that is required for further analyses if this 

information is not already available e.g. in the case of whole genome shotgun sequencing of 

the wheat genome (Brenchley et al., 2012).  

 

There is a tendency within 454 sequencing data to see a high error rate in homopolymer 

regions (regions with three or more identical bases that are consecutive). This is caused as 

the light signal that is produced during nucleotide addition to the growing DNA strand is 

proportional to the number of identical bases that are incorporated i.e. the length of the 

homopolymer. Problems occur when light intensities do not faithfully reflect the 

homopolymer length or if the exact light intensity is wrongly determined and a subsequent 

homopolymer length error occurs e.g. AAAA recorded when the correct sequence is AAA. 

The error rate increases as the homopolymer length increases (Quince et al., 2009).  

 

To implement 454 sequencing initially a DNA library must be prepared from a DNA sample. 

To produce a fragment library DNA must be sheared to 400-600bp sized fragments. 

Adaptors can then be attached to both ends of each fragment after repair. Otherwise to 

produce a mate-paired library an exemplary protocol is as follows (figure 1.2); DNA is 

fragmented to an average length of 2.5 Kb. Fragmented genomic DNA is end-repaired with 

unlabeled nucleotides and biotin-labeled circularization adaptors are ligated onto both ends. 

The fragments are circularized and the resultant circular DNA can be again fragmented 

creating DNA fragments that have the adaptor DNA in the middle and genomic DNA that 

was once approximately 2.5 kb apart on each end. These desired fragments are purified from 

the rest of the genomic DNA using streptavidin beads to capture biotin labels (Roche, 454 

Life Sciences, 2006; Berglund et al., 2011). Additional library adaptors can finally be 

attached to both ends of each fragment. 
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Figure 1.2. Steps to generate a mate-paired library for Roche 454 sequencing (Roche, 

454 Life Sciences, 2006; Berglund et al., 2011).  

 

 

The double stranded DNA fragments with library adaptors at each end are separated into 

single strands and an emulsion PCR is carried out to amplify them. Emulsion PCR requires 

the DNA library fragments along with capture beads and PCR reagents in a water mixture, to 

be mixed with synthetic oil causing ‘micro-reactors’ to form as the water mixture forms 

droplets around the beads. Each ‘micro-reactor’ will typically contain only one DNA 

fragment; as such one DNA fragment in each droplet will be amplified in the PCR reaction 

into millions of copies of DNA that are immobilized on the capture beads. The beads are 

screened from the oil and cleaned and those containing amplified DNA from one initial 

DNA fragment only are used for sequencing (Roche, 454 Life Sciences, 2007). 

 

1.2.2 Applied Biosystem’s SOLiD™ sequencing system 

The Applied Biosystems SOLiD™ 3 Plus System can generate accurate sequencing reads 

that are much shorter than those of the 454 sequencer, typically 50-75bp in length, however 

at a far greater output per run (up to 60Gb in the 3 plus system and upwards of 100Gb in 

more recent models) and with a lower cost per base pair of sequencing (table 1.1). As a 

result this sequencer is effectively used for whole genome re-sequencing within this project. 

SOLiD™ sequencing like 454 sequencing utilizes emulsion PCR to amplify the prepared 

DNA library (fragment or mate-paired) although it differs from 454 sequencing by 

implementing sequencing-by-ligation and by de-coding DNA using a unique ‘colour-space’ 

methodology.   

Genomic DNA  
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SOLiD sequencing technology (figure 1.3) uses ‘colour-space’ methodology that is based on 

ligation of dye-labeled oligonucleotides to the DNA, to assay two nucleotides at a time. It 

allows effective sequencing since most bases are interrogated by two different probes that 

have ligated independently. The dual interrogation i.e. overlapping dimers, allows for error 

correcting and effective sequence discrimination. SOLiD™ sequencing therefore implements 

controlled ligation and competitive oligonucleotide extension and boasts up to 99.99% 

sequencing accuracy due to its dual interrogation system (Applied Biosystems, 2011).  

 

Prior to the emulsion PCR, DNA libraries must be prepared from samples so that they can be 

run on the SOLiD sequencer. To produce a fragment library in this case DNA must be 

sheared to ~100-110bp sized fragments on average. After end-repair of the DNA, adaptors 

can then be attached to both ends of each fragment. Size selection allows only the correctly 

sized DNA fragments to be taken forward for analysis. The fragments are then nick 

translated as there is a 5' phosphate on the end repaired template so the "nick" left over from 

ligating primers without a 5'-phosphate is translated towards the primer terminus (moves 

nick along from adaptor-DNA join to allow cutting at specific site including more DNA 

fragment). Finally the library is PCR amplified (Applied Biosystems, 2012). 

 

To produce a mate-paired library two protocols can be followed. The first to produce 

typically 2 × 25 bp mate-paired libraries, the protocol is very similar to that in figure 1.1. 

Adaptors are ligated to sheared DNA and this DNA is circularized with biotinylated internal 

adaptors. The circularized DNA is cleaved ~25bp away from recognition sites in the adaptor, 

creating small DNA fragments that have the adaptor DNA in the middle and 25 nucleotides 

of genomic DNA that were once approximately 600bp-6kb apart on each end (depending on 

fragment size). P1 and P2 Adaptors are then ligated to the ends of the mate-paired library for 

subsequent amplification by PCR. The second protocol produces 2 x 50 bp mate-paired 

libraries. DNA fragments are ligated to LMP CAP Adaptors and then circularized with 

internal adaptors. The LMP CAP Adaptor is without a 5'-phosphate so nick translation is 

carried out on a defined length of DNA that is controlled by reaction temperature and time. 

The DNA is then cut at the position opposite to the nick to release the DNA mate pair. Again 

P1 and P2 Adaptors are then ligated to the ends of the mate-paired library for subsequent 

amplification by PCR (Applied Biosystems, 2012). After emulsion PCR amplification of the 

SOLiD™ sequencing DNA library, beads with a single amplified DNA fragment are 

separated from undesired beads using bead enrichment with P2-coated Polystrene beads that 

are used to collect P2-positive beads. These desired beads are then deposited on a slide for 

sequencing. 
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Figure 1.3. An outline of SOLiD sequencing technology. Taken from: Valouev, A. et al. (2008). 4 fluorescently labeled di-base probes that encode for 16 

possible two-base combinations (4 dimers each) compete for ligation to the sequencing primer (1). The first 2 bases in a ligation reaction are ultimately 

interrogated. Following a series of ligation cycles (ligation, detection and cleavage) (2,3,4,5) the product of extension is removed and a primer complementary 

to the n-1 position (if the position of the previous primer was n) is used for the next ligation cycle (6,7). This process is repeated 3 more times (8) 
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1.2.3 Illumina sequencing 

The Illumina Genome Analyzer IIx is comparable with the Applied Biosystems SOLiD™ 

System generating accurate sequencing reads that are much shorter than those of the 454 

sequencer; typically 100bp in length, however at a far greater output per run (up to 100Gb 

and almost 20x this in more recent models) and with a lower cost per base pair of sequencing 

(table 1.1). The Illumina technology also rivals the SOLiD™ System in terms of output and 

read length. The Illumina Genome Analyzer IIx was effectively used within this project for 

whole genome re-sequencing. Illumina’s technology uses a proprietary reversible terminator-

based method for sequencing-by-synthesis and utilizes bridge amplification on a flow cell 

(figure 1.4) in preference to emulsion PCR.  

  

During Illumina sequencing primers are annealed to DNA strands that are bound to the flow 

cell and sequencing is enabled through detection of single bases as they are incorporated into 

growing complementary DNA strands. A fluorescently labeled terminator is imaged as each 

dNTP is added and then cleaved to allow incorporation of the next base. Since all four 

reversible terminator-bound dNTPs are present during each sequencing cycle, natural 

competition minimizes incorporation bias resulting in base-by-base sequencing (Illumina, 

2011). This method of sequencing therefore utilizes controlled replication and competitive 

base extension.  

 

To produce a fragment library for the Illumina Genome Analyzer, DNA is sheared to less 

than ~800bp. Size selection allows only the correctly sized DNA fragments to be taken 

forward for analysis. Fragment ends are polished and A-tailed to allow adaptor ligation and 

finally the library can be PCR amplified. During this PCR further adaptor sequence is added 

to the fragmented DNA to enable hybridization to oligonucleotides on a flowcell surface. 

This allows enrichment of fully ligated templates (Kozarewa et al., 2009). To produce up to 

2 x 100 bp mate-paired libraries DNA is fragmented to 2-5Kb in size. Fragments are end-

repaired with biotin labeled nucleotides and then circularized. The circularized DNA is 

fragmented and biotinylated fragments can be affinity purified (ends of original DNA 

fragment ligated together). These biotinylated fragments are end-repaired and adaptors are 

ligated to each end before PCR amplification where further adaptor sequence is added to 

enable hybridization to oligonucleotides on the flowcell surface (Berglund et al., 2011). 
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Figure 1.4. An outline of the Illumina sequencing-by-synthesis technology. Taken from: 

Mardis, 2008. Single stranded DNA fragments from mate-paired or fragment libraries are 

hybridized to the ‘lawn of primers’ on the flow cell (via complementary oligonucleotide 

sequences). Flow cell Bridge amplification occurs when the DNA flips over to hybridize 

adjacent primers forming a bridge. This hybridized primer is extended by polymerases until 

the bridge is double stranded. It is subsequently denatured leaving 2 single stranded 

fragments, each covalently bound to a flow cell primer. This cycle is repeated as necessary 

to fill the flow cell with library fragments and later reverse strands are cleaved and washed 

away. This generates a cluster on the flow cell with forward strands only that is ready for 

sequencing (Illumina, 2011). 

 

 

1.2.4 Outlining recent developments in next generation sequencing 

The Illumina® (Genome AnalyzerTM) and Applied BiosystemsTM (SOLiDTM) (Cullum et al., 

2010) technologies that were heavily used at the onset of this project quickly became 

redundant and in 2014 we see a movement away from SOLiD sequencing altogether with the 

replacement of the Illumina Genome Analyzer with the current firm favorites for whole 
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genome re-sequencing; the HiSeq 2000 and 2500. With essentially the same sequencing 

chemistry as its predecessor, but with improved optics and improved sequencing-by-

synthesis chemistry, the HiSeq can produce 150bp sequencing reads at a maximum capacity 

of 1000Gb of data in a single run (table 1.1) (Illumina, 2014). While runs can be lengthy 

(over 6 days), the HiSeq is the main workhorse of sequencers with its unrivalled high 

sequencing output and consistently decreasing costs, and many of the sequencing datasets 

that have been generated more recently for this study have employed its use. The release of 

the most recent HiSeq X ten in early 2014 promises still higher outputs per run (1800Gb) 

and decreases the cost of sequencing again. It reportedly, at maximum running capacity, is 

able to achieve the prized $1000 human genome sequence at 30x (Illumina, 2014(b)). 

 

The 454 sequencer has been utilized for de novo sequence assembly requiring long 

sequencing reads. Throughout 2013 there has been a looming redundancy for the Roche 454 

sequencer with greater accessibility of the new PacBio RS technology. The PacBio RS II 

was released in April offering higher throughput (~400Mb per SMRT cell and up to 16 

SMRT cells per run) and longer sequencing lengths (up to 30Kbp and ~8.5Kbp on average) 

than its predecessor. The PacBio RS II is a Single Molecule, Real-Time (SMRT®) DNA 

Sequencing System that uses SMRT cells. Each SMRT cell contains thousands of zero-mode 

waveguides (ZMWs) that act as light microscopes each containing an immobilized DNA 

template and polymerase complex at the bottom. Fluorescent dye-labeled nucleotides diffuse 

into the ZMW chamber and nucleotides held by the polymerase prior to incorporation into a 

complementary strand emit a signal that identifies the base being incorporated. These ZMWs 

provide a window to watch the DNA polymerases perform sequencing by synthesis and to 

record light pulses that are emitted by nucleotide incorporation to read the DNA sequence 

directly (Pacific Biosciences, 2014). Although the 454 sequencer was used within this study 

it is predicted that future de novo sequencing efforts are more likely to employ use of the 

more cost effective PacBio RS II. Although its first pass error rate is higher, these errors are 

distributed randomly. As such, its generation of a consensus sequence increases accuracy to 

~99.999% and its extremely long read lengths are an invaluable advance to de novo 

sequencing efforts (Pacific Biosciences, 2014 (b)). 

 

When considering lower throughput sequencers, Illumina’s MiSeq (based on the same 

sequencing chemistry as the HiSeq) is generally favored over the offering under the umbrella 

of Life Technologies (responsible for SOLiD sequencing), the Ion Torrent PGM. The Ion 

Torrent performs DNA sequencing based on flooding a microwell containing the DNA 

strand to be sequenced with a single dNTP; if complementary to the template DNA 

nucleotide the dNTP will be incorporated into the growing complement strand releasing 
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Hydrogen ions that can be detected by a sensor. Although the MiSeq has lengthier runs 

(minimum of ~24 hours compared to ~7 hours) it currently has a higher data output (up to 

15Gb compared to 2Gb) and average read length (~250bp compared to ~200bp) and it is 

generally considered to be the simpler of the 2 platforms to use and for sample preparation 

(Illumina, 2014). The release of the Life technologies Ion Proton may rival the MiSeq in the 

future with increasing data output of 10Gb and even up to 60Gb with continuing 

development (Life technologies, 2014). These technologies have not been utilized within this 

study due to the large complex genomes that have mainly been under analysis and the high 

depth of coverage required for analyses. 

 

In 2012 Oxford Nanopore technologies promised a sequencing device, the GridION that is 

based on nanopore technology. This has yet to come to market although a miniature 

prototype the MinION has been released to a select few scientists for trial under embargo. 

The technology involves threading a single stranded DNA molecule through a protein pore 

while conductivity is measured allowing sequence discrimination. The fast natural rate of 

DNA passage through the pore has been an issue, as sequence could not be read quickly 

enough. Various solutions involving molecular motors or processive enzymes have been 

investigated to slow DNA passage (Clarke et al., 2009). Ultimately it is claimed that the 

nanopore sequencing technology will be easy to parallelize, inexpensive, able to create very 

long reads and offers a label-free approach without the need for sample amplification. This 

would be likely to make Oxford Nanopore technologies key to the future of sequencing 

although this has yet to be confirmed with widespread product release or published results. 

 

 

1.3 Bioinformatical tools: Mapping and downstream analyses 

Following on from sequencing a genome of interest the sequencing reads can commonly be 

mapped to a reference genome or assembled into a contiguous sequence (contig) (see figure 

1.5). If there was no previous genomic information for the genome we would have to 

assemble the sequencing reads into contiguous sequences i.e. a reference genome or 

transcriptome and as such longer sequencing reads are desirable. Software such as Newbler 

(developed for Roche 454 or Sanger sequencing reads) or Geneious (used for Sanger, 454, 

Ion Torrent, PacBio, or Illumina sequencing reads), to name only a few, can be used for this 

assembly. Sequencing data can then be mapped to this assembled ‘reference sequence’ to 

determine the natural variation within a sample for downstream analyses. More recently, 

tools such as Cortex can function, typically in the absence of a reference genome, to 

assemble even short sequencing reads for one or more species and then go on to detect 

natural variation within the species directly. This streamlining of sequence assembly and 
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natural variation identification paves the way for accessible analysis of species that do not 

have a reference sequence (Iqbal et al., 2012).  

 

Throughout this project the two main genomes of interest Arabidopsis and bread wheat, have 

assembled genome sequences available. In the case of bread wheat this reference sequence is 

incomplete and has not yet been organized into structured chromosomes but is still adequate 

for mapping analyses. If the genome’s sequence is already available then it is commonplace 

to map our sequencing reads against that ‘reference’ genome using a mapping software tool 

and as such short sequencing reads are adequate. This is desirable as then natural variation 

can be called from the mapping output directly in relation to the reference genome where 

there are differences between the two.  

 

 

 
 

Figure 1.5. An outline of assembly and mapping of sequencing reads. (left) Align 

sequencing reads to each other in an assembly to generate a contiguous sequence. (right) 

Mapping of sequencing reads to a reference genome to generate a consensus sequence.  

 

 

1.3.1 Mapping  

A typical mapping software has to align relatively short sequencing reads to a reference 

sequence. It must take into account if the sequencing data is a fragment library or a paired-

end library, if the sequence data is in colour-space, the read length and the read quality. 

Many reads will not align perfectly to the reference sequence due to errors in the sequencing 

raw sequencing reads 
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reads and also the potential for natural variation between the reference and the sequence 

data. This can introduce insertions/deletions and/or SNPs between the reference and the 

sequencing data and a mapper must typically accept a defined number of mismatches 

between a sequencing read and the reference before it will define a mapping as unsuccessful.  

 

 The two most commonly used mapping programs are detailed as follows and are ideal for 

the short nucleotide sequences generated by next generation sequencing; 

Burrows-Wheeler Aligner (BWA) aligns relatively short nucleotide sequences against a long 

reference sequence. All of its algorithms perform gapped alignment allowing 

insertion/deletion detection (Li and Durbin, 2009). 

Bowtie aligns short DNA sequences to large genomes. It is fast and relatively memory-

efficient. Bowtie extends previous Burrows-Wheeler techniques with a novel quality-aware 

backtracking algorithm permitting mismatches (Langmead et al., 2009). 

 

The two mapping softwares are highly comparable in terms of memory usage, numbers of 

reads mapped and number of false positive SNPs called from mappings. However, BWA 

allows easy and accurate identification of desired uniquely mapping reads and assigns lower 

quality values to the undesirable non-uniquely mapping reads. BWA also allows for 

insertions and deletions whereas, at the onset of this project, Bowtie may not have mapped a 

read if there was an insertion or a deletion within it (Heng, Li, 2010). With the recent 

introduction of Bowtie2, that now allows gapped alignment, the two tools have become even 

more comparable. Bowtie2 is thought to run more quickly at the risk of failing to align some 

reads with a valid match, while BWA runs more slowly and is specifically designed not to 

miss any potential mappings. There are strengths and weaknesses to both tools and as such 

there is a degree of consideration of the desired mapping outcome and personal preference 

involved in choosing between them (Ruffalo et al., 2011).  

 

This reported high degree of comparability between BWA and Bowtie2 was tested here in a 

direct comparison of the two tools to map an Illumina Arabidopsis sequencing dataset.  The 

dataset was run through both tools specifying the paired-end nature of the sequencing reads 

and otherwise using default parameters. It was noted that there was less than 1% difference 

in the percentage of the reference sequence that was mapped to (98% by BWA and 98.8% by 

Bowtie2) and that in terms of the average depth of coverage BWA generated ~35x which 

was marginally higher than the ~31x that was generated by Bowtie2. As predicted the 

differences in mapping ability between the two softwares on the surface appear to be 

relatively small.  BWA was selected for mapping analyses during this project, rather than the 

main alternative Bowtie and its mapping pipeline is outlined in blue in figure 1.6. 
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Figure 1.6. Mapping and SNP calling pipeline. (blue) The various pipelines for mapping 

of sequencing reads using BWA (purple) downstream processing of mapping output using 

SAMtools and picard tools (pink) Utilization of GATK to identify and filter SNPs from the 

mapping output (green) Utilization of VarScan to identify and filter SNPs from the mapping 

output 
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1.3.1.1 BWA 

At the onset of this project BWA initially implemented two algorithms (BWA-short and 

BWA-SW). The former was intended for query sequences shorter than 200bp and the latter 

was used for longer sequences (up to 100kbp) (Li and Durbin, 2009). In software versions 

that were released after Easter 2013, which were developed to cope with the general 

increases that were being seen in sequencing read length, three algorithms are now used 

within BWA; BWA-backtrack, BWA-MEM and BWA-SW (Li and Durbin, 2010). BWA-

backtrack has replaced BWA-short and although many parameters and commands are 

conserved between the two it is now advised for use on sequencing reads that are below 

100bp in length. BWA-MEM is a newly developed algorithm and, as of 2014, is 

recommended for mapping all high quality queries over 70bp. BWA-SW, like BWA-MEM, 

tolerates longer sequences (up to 1Mbp) and was originally the mapper of choice for longer 

sequencing reads. With the addition of BWA-MEM, BWA-SW is usually recommended if 

these longer sequences have frequent alignment gaps as it may have better sensitivity. With 

the bulk of the mapping in this project being performed before Easter 2013 on sequencing 

reads of 100bp or less mapping analyses have been largely performed using BWA-short. 

 

BWA works by first building an index of the reference sequence. For the read to be aligned 

to the reference BWA uses a seed from the sequencing read e.g. in BWA-short typically 

32bp and with this seed it performs fast look-ups of sections of the reference in the index to 

identify the reference sequence it can most closely match the seed to. It, by default allows a 

maximum of 2 differences between the seed and the reference. Once it has this initial seed 

match in the reference it tries to extend the match along the rest of the sequencing read using 

its maximum number of differences threshold to ensure that only accurate matches are 

reported (by default the maximum number of differences between the entire sequencing read 

and the reference is 4%).  

For each successful read alignment to the reference sequence BWA calculates a mapping 

quality score, this is increased the more closely a read matches the reference sequence and 

also if the read only maps to one location, as it ideally should. Quality scores can be used to 

distinguish reads mapping to only one location (uniquely mapped reads) and if mapped to 

multiple locations can be used to distinguish the most likely correct mapping position for a 

read. 

BWA can, like most other mapping tools, map both mate-paired and fragment sequencing 

datasets. There is little difference between the 2 except that for the mate-paired dataset, after 

alignment to the reference, additional checks are performed to identify mate-pairs and their 
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mapping orientation in relation to one another. It estimates the mate-pair insert size on 

average from all read pairs with both pairs mapped to high quality (20). This insert size can 

then be used to estimate if any individual mate-pairs that have been aligned to the reference 

are the correct distance apart and are as such likely to be mapped correctly. Reads pairs are 

marked accordingly so that they can be discriminated from one another; if they are both 

mapped and in the correct orientation with the correct insert size separating them, if they are 

both mapped in the incorrect orientation and finally if only one of a pair is mapped. Quality 

scores are adjusted according to how well the read maps in addition to information regarding 

mapping of its mate-pair. It is typical to eliminate mappings from downstream analyses 

where both mate-paired reads are mapped to different chromosomes whereas mate-pairs 

mapped with an incorrect orientation on the same chromosome e.g. a larger/smaller insert 

size could be indicative of insertions/deletions (Li and Durbin, 2009). 

Mapping analyses using mate-paired reads are of great value. Although they require a more 

complex sequencing preparation and higher DNA input, when the resultant sequencing reads 

are mapped to a well-defined reference sequence they can help to resolve larger structural 

rearrangements (insertions, deletions, inversions), while providing fairly even coverage of 

the genome. This does come at a price of loss of depth of coverage partly due to the removal 

of mate-pairs mapping in the incorrect orientation (likely due to an incorrect mapping of one 

of the pair) or only one of a pair mapping. Such a loss of coverage can be minor in a well-

defined genome and if structural rearrangements are not of primary concern mate pairs 

where only one of a pair map can be included in downstream analyses to boost coverage. It 

is possible to map mate-paired data as fragment data and this method is favored if the 

reference genome is in shorter assembled contigs rather than long chromosomes i.e. more 

fragmented. This is the case of the wheat reference sequence that is implemented within this 

project. With a set of shorter reference contigs we are highly unlikely to be able to resolve 

larger structural rearrangements anyway and many of the mates in mate-pairs are likely to 

correctly map to different reference sequences and be flagged as having an incorrect 

orientation. Therefore the benefit of mate-paired mapping is diminished and the quicker 

fragment mapping generating generally higher coverage is a sensible option. Throughout this 

project mate-paired reads are still generated for wheat regardless of the un-suitability for the 

current mapping reference. This is sensible since the ability to map mate-paired reads as 

fragment reads does not hinder this current investigation but data can also be re-mapped as 

mate-paired and structural re-arrangements investigated at a later stage when full 

chromosome sequences are released.  
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1.3.2 Analyses downstream of mapping  

The standard output from mapping software is a SAM file (Sequence Alignment Map); this 

is a generic format for storing large nucleotide sequence alignments i.e. a text file containing 

sequence alignment data. It will typically display the following columns per line in a tab-

delimited format: 

 

1. Sequencing read ID 

2. Flag. A bitwise number to indicate the sequencing read mapping status i.e. unmapped, 

mapped, mapping orientation, secondary alignment etc. 

3. Reference sequence name that sequencing read has mapped to 

4. Leftmost mapping position of sequencing read 

5. Mapping quality 

6. Cigar string. Details the alignment match of the read to the reference including any 

insertions, deletions, skipped regions and mismatched regions 

7. Reference sequence name that mate-pair of the sequencing read has mapped to 

8. Leftmost mapping position of mate-pair of the sequencing read 

9. Sequencing read length 

10. Mapped sequencing read 

11. Quality string that is associated with the sequencing read 

 

The most commonly used downstream processing tools use the SAM file output from 

mapping analyses and are detailed as follows and in figure 1.6 in purple: 

 

SAMtools 

SAMtools is a set of programs that manipulate alignments outputted from mapping analyses. 

Most programs within SAMtools take input in the BAM format (the binary version of a 

SAM file) and as such it can import from and export to the SAM format. It can carry out 

sorting, merging and indexing and allows retrieval of reads in specific regions or passing 

specific filters swiftly. SAMtools mpileup can be used to generate raw SNP and indel calls. 

It can also generate an easy to read pileup file detailing, for every mapped position, all of the 

alleles mapping to it and their qualities. This allows easy calculations of percentage of reads 

with a specific allele (Li et al., 2009). Tools are also available that filter SNP/indel calls 

directly from a pileup file e.g. VarScan. 

 

Picard tools 

Picard tools are an additional set of tools from the makers of SAMtools that were also 

developed for the manipulation of SAM and BAM files. Tools that are included cover a 
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multitude of functions but the main tool that is utilized within this project is known as 

MarkDuplicates. This tool allows the identification of and removal of duplicate sequencing 

reads. Such reads are a by-product of PCR amplification of a DNA sample before 

sequencing and inclusion of these reads during SNP calling can lead to incorrect 

representation of allele frequencies (Sourceforge.net, 2009).  

 

Downstream processing tools such as SAMtools are used for processing of mapping outputs 

before SNP calling can be carried out, regardless of the SNP caller that is used. There are a 

wide range of SNP callers available and the choice of which to use depends heavily on the 

dataset under analysis i.e. bulk segregant, single sample, diploid, polyploid etc. and the type 

of SNP calling required; a greedy approach including as many SNPs as possible that is likely 

to include false positive results or a more stringent approach that will exclude many of the 

false positives but potentially also some real SNPs. Two well known SNP callers are 

outlined here that are complimentary with regard to the datasets that they are recommended 

for and the stringencies of their SNP calling algorithms. Both of these SNP callers are used 

within this project: 

 

GATK 

The GATK (Genome Analysis Tool Kit) (McKenna et al., 2010) is a structured software 

library and a suite of tools for working with re-sequencing projects. These tools typically 

take a sorted, indexed BAM file (SAMtools compatible) as input and include; depth of 

coverage analyzers, a SNP/indel caller, a SNP filterer and a quality score re-calibrator plus 

local realigner to improve mapping analyses (DePristo et al., 2011). The standard GATK 

pipeline for SNP calling within this project is outlined in pink in figure 1.6. The GATK is 

well known for its stringent SNP calls, strict file formatting and command requirements and 

it has been extensively tested in diploid datasets. At the onset of this project it was designed 

for use in single sample diploid organisms as such it has been used within this study solely 

for this purpose when stringent calls are required. By 2013 GATK had the capability to 

handle polyploid or pooled datasets i.e. report multiple alternate alleles, although it employs 

the same stringent model as for diploid organisms for determination of allele counts. The 

output of this ‘ploidy’ pipeline can be difficult to manage and interpret.  

 

VarScan 

The VarScan SNP caller will take a SAMtools mpileup file as input and outputs SNP calls. 

The standard VarScan pipeline for SNP calling within this project is outlined in green in 

figure 1.6. With more simple statistics it proves to be more effective in extreme read depth, 

pooled samples, and contaminated or impure samples and can identify low frequency 
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alternate alleles (Koboldt et al., 2009; Koboldt et al., 2012). Low frequency allele 

identification is useful within wheat as we would typically expect to see a homeologous 

homozygous SNP in one of its 3 genomes ~1/3 of the sequencing reads and a heterozygote in 

~1/6 of the sequencing reads. VarScan can also output multiple alternate alleles in one 

position that has allowed its use on polyploid and pooled datasets within this project. 

Although parameters can be employed to increase stringency, without use of such 

parameters a less stringent SNP call can be performed using this tool, and it has been 

employed within this project for this purpose where necessary. 

 

Several pipelines have been introduced that allow simultaneous mapping, SNP calling and 

mutant identification or mapping-by-sequencing analyses. These are all intended for use in 

diploid organisms and include, SHORE/SHOREmap, MAQGene, MutMap, NGM-Next-

generation EMS mutation mapping and CloudMap (Schneeberger et al., 2009; Doitsidou et 

al., 2010; Abe et al., 2012; Austin et al., 2011; Minevich et al., 2012). SHOREmap was one 

of the earliest examples of such a pipeline and is thought to be the most widely used. As 

such it will be implemented within this study where appropriate and has formed the basis for 

many derivative mapping-by-sequencing methodologies including MutMap and MAQGene. 

SHOREmap uses a combination of sequencing a phenotyped F2 mapping population, a 

technique known as bulk segregation analysis (Michelmore et al., 1991), and whole genome 

re-sequencing to generate approximate mapping intervals that should contain the phenotype 

inducing mutation.  

 

SHORE links to programs such as BWA and Bowtie to carry out a mapping analysis. It then 

uses its own SNP calling program ‘SHORE consensus’ to define SNPs. This program 

sequentially scans an alignment to analyze base calls, base qualities, coverage, repetitiveness 

and alignment quality. This information is then used to predict differences between the 

mapped data and the reference sequence. The follow on tool from SHORE, SHOREmap uses 

its 'denovo' tool to define SNP markers as positions with support for two alleles i.e. potential 

heterozygotes and to analyze marker scarcity per user defined window (defined as the 

position-wise average distance to the closest identified marker divided by local marker 

density). A peak will be identified in a region of low marker density i.e. high homozygosity 

as SHOREmap assumes that the homozygous character of the region harbouring the causal 

mutation reduces the density of markers. SHOREmap’s 'annotate' tool is then used on the 

'denovo' output to rank base pair substitutions according to their distance to the allele 

distribution peak. The causal mutation will typically be ranked as the top candidate. This 

program has allowed successful identification of phenotype inducing mutations in the 

diploid organism Arabidopsis and although ideally requiring a full contiguous chromosomal 
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reference sequence and being based on diploid organisms, its methodologies, in theory, 

could potentially be applied to polyploid plants (Schneeberger et al., 2009).  

 

More recently, at the end of this project, SHOREmap was developed to be more comparable 

to CloudMap and will process re-sequencing data for not only a bulk-segregant F2 

population but also for the parental lines that were used to produce the population. 

SHOREmap’s software ‘SHORE outcross’ can take an outcrossed sample as input and can 

use the support of mutant parental homozygous SNP calls to distinguish high quality 

markers that have been identified in the F2 bulk segregant population. In the case of a 

backcrossed sample ‘SHORE backcross’ can eliminate SNPs that are shared between the F2 

and the wild type parental line, reducing the number of ‘markers’ that are used in the 

analysis, focusing on only those that are likely to be relevant e.g. a mutant specific SNP 

markers list that is likely to contain the mutant phenotype inducing SNP. The homozygous 

character of the region harbouring the causal mutation will still allow ‘a rough’ visualization 

of the region. However, the reduced number of markers created the need for an alternative 

way of plotting the data (rather than distance between heterozygote markers) and the 

tendency now is to plot SNP markers individually, according to their allele frequency, to 

locate a region with increased homozygosity. Window averaged allele frequencies can also 

be calculated if desired. Such an analysis was demonstrated in Arabidopsis with additional 

selection for EMS-induced variation to define a region of interest as the lower arm of 

chromosome 3. Since this region only contained three homozygous EMS mutations limited 

further work was required to identify the causal mutation (Hartwig et al., 2012).  

 

At the onset of this project SNP callers in general were mainly intended for use on a dataset 

that is derived from a diploid organism. As such, only one alternate base would be identified 

per SNP position i.e. reference and alternate base. The complex nature of wheat means that it 

can harbour two or even three alternate bases at low frequencies, which poses a problem for 

SNP calling and it is only now, at the end of my thesis, that such polyploid application of 

SNP callers has been fully developed (SHORE/SHOREmap and all of the other detailed 

mapping-by-sequencing pipelines detailed above are still intended for use on a diploid only). 

For most analyses within this project it was noted that the typically rare occurrence (< 5%) 

of a second or third alternate allele in the sequence data, at sufficient depth of coverage to 

call a SNP allele, has made elimination of such SNP calls from the dataset altogether the 

safer and less time consuming option, having little or no impact on the analysis. For 

positions with only 1 alternate allele a diploid SNP caller is equally effective and will output 

a SNP call identically to how a polyploid SNP caller would. In samples requiring efficient 

identification of multiple alternate alleles with the use of SAMtools mpileup/VarScan and a 
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bespoke parsing pipeline this has also been made possible even prior to specific polyploid 

SNP caller development. 

 

1.3.3 Further bioinformatical tools  

Evolver 

It is known that over time a given species will accumulate mutations within its DNA 

sequence at a calculable rate. If this rate is reliable it can be used as a ‘molecular clock’ to 

estimate the divergence between sequences (Ho, 2008). We can use information on the 

expected amount of sequence change per site from an ancestor to a current species to create 

an artificially diverged current species sequence from an ancestral sequence. Evolver is a 

whole genome nucleotide sequence evolution simulator that was implemented within this 

study for this purpose. Evolver simulates the long-term average effects of mutation/selection 

in a species giving the user two options; inter-chromosomal changes (e.g. chromosome 

fission and fusion) and intra-chromosomal changes (e.g. substitutions and 

insertions/deletions) (Edgar et al., 2012). Within this project only intra chromosomal 

changes were necessary to give an approximate outline of how a genome would neutrally 

evolve over time with regard to SNP accumulation at random. Evolver can take genome 

annotations such as gene locations, non-gene conserved elements, tandem 

arrays/microsatellites and CpG islands as input to allow informed evolution of the input 

genome. Although for the neutral intra chromosomal evolution that is utilized within this 

project none of the above are required. 

 

Evolver takes an ancestral genome as input along with an indication of the length of time 

over which evolution is required and it outputs an evolved genome along with statistics of 

the evolutionary events that it has undergone i.e. number of substitutions made. The length 

of time over which to evolve the input sequence is specified as the ‘branch length’ i.e. the 

length of the branch separating the ancestor and evolved species in its evolutionary 

phylogenetic tree or the expected amount of sequence change per site. For example in wheat 

this average number of substitutions per site is hypothesized by Gu et al. to be 0.0093 for 

genome A and 0.0056 for genome B when compared to their donor T. turgidum and 0.0137 

for genome D when compared to its ancestor Ae. Tauschii (Gu et al., 2006). T. turgidum 

(AABB) is the tetraploid wheat that hybridized with the diploid wild grass Ae. tauschii (DD) 

~8000 years ago to form hexaploid bread wheat and as such, these two species are the 

genome donors for hexaploid wheat. 

 

Within this project the program evolver was used to create an evolved Arabidopsis genome 

(called Arabidopsis A genome within this study) that was as different from the Arabidopsis 
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reference strain Columbia (Col-0) than the wheat A genome is from its donor T. turgidum.  

To output an evolved sequence evolver took the Arabidopsis Columbia reference sequence 

as input along with a ‘branch length’ of 0.0093. This branch length or expected amount of 

sequence change per site was the value for genome A in wheat (Gu et al., 2006) and creates 

a random substitution approximately every 108 bases (Gu et al., 2004). The two sequences; 

the Arabidopsis reference strain Col-0 and the evolved Arabidopsis A genome could then be 

used as the basis for a sequencing dataset for a simulation mutant identification analysis (see 

section 2.5).  

 

Circos 

The tool Circos was also implemented in this project; it is primarily a visualization tool to 

allow easy analysis and comparison between genomes and also within a genome. This is 

mainly due to the fact that it displays data in an attractive, publication quality, circular 

layout. Brenchley et al. utilized a Circos plot, shown in figure 1.7, to effectively demonstrate 

SNP density in the wheat reference strain Chinese Spring (tracks 2-4) and gene conservation 

between wheat and Brachypodium (track 1) using heat maps (Brenchley et al., 2012). These 

plots allowed easy identification of SNP or syntenic hotspot/dropout regions at a glance. 

Figure 1.7 additionally plots syntenic regions between the wheat genome sequence and the 

Brachypodium genome onto the Brachypodium chromosomes to allow visualization.   

 

The circular effect of a Circos plot can allow highlighting of relationships between pairs of 

positions using ribbons (encode position, size and orientation of related elements). Circos 

can display data as scatter, line or histogram plots, heat maps, tiles, connectors and text 

(Krzywinski et al., 2009). Within this project Circos will be used primarily to demonstrate 

SNP distribution across a genome and SNP conservation between genomes. Its heat map 

ideograms allow clear visualization of SNP frequency and histogram or line plots can also be 

used effectively to outline the depth of sequencing coverage on a chromosome-by-

chromosome basis across the genome. 
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Figure 1.7. Example of a Circos plot: Alignment of wheat 454 reads, SNPs and genetic 

maps to the Brachypodium genome. Taken from Brenchley et al., 2012. The inner circle 

represents the 5 Brachypodium chromosomes. Track 1 shows wheat and Brachypodium gene 

conservation per window of 20 genes in wheat. Tracks 2-4 show SNP density in wheat 

(average SNP number per gene in a window of 20 genes) in the A (track 2), B (track 3) and 

D (track 4) genomes. Tracks 5-7 show wheat-Brachypodium syntenic regions for the A 

(Track 5), B (track 6) and D (track 7) genomes. Genetic markers for each chromosome are 

shown in darker colours. 
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1.4 Arabidopsis 

 

 

 
 

Figure 1.8. Image of the model diploid plant Arabidopsis thaliana. Taken from: Delaware 

Wildflowers at http://delawarewildflowers.org 

 

 

Arabidopsis thaliana is a dicotyledonous species, a member of the Brassicaceae or mustard 

family. It is a model system and has been a focal point for laboratory studies of the cellular 

and molecular biology of flowering plants due to its possession of several desirable traits: 

-It requires only light, air, water and low-level nutrients to complete its life cycle 

-It has a rapid life cycle (approximately 6 weeks from germination to mature seed) 

-It has limited space requirements and is easily grown in a greenhouse/indoor growth 

chamber  

-It has prolific seed production 

-It has relatively small genome (125 Mb)  

-There are extensive genetic and physical maps of all of its 5 chromosomes (The Arabidopsis 

Genome Initiative, 2000) 

-It has a large number of mutant lines and genomic resources many of which are available 

from Stock Centers 
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-It has a multinational research community of academic, government and industry 

laboratories 

-It has a genome that can be manipulated through genetic engineering with great speed and 

ease (The National Science Foundation, 2009).  

 

Finally, Arabidopsis has a dedicated website, The Arabidopsis Information Resource 

(TAIR), that maintains and regularly updates a database of it’s genetic and molecular 

biology data. This includes the complete genome sequence along with gene structure, gene 

product information, metabolism information, gene expression data, DNA/seed stocks, 

genome maps, genetic/physical markers, publications and information about the Arabidopsis 

research community (TAIR, 2011). Arabidopsis was the first higher plant and only the third 

multicellular organism for which a complete finished genome sequence was published and 

is, as detailed above, an ideal model organism for biological research (Bevan and Walsh, 

2005). Model systems have assisted understanding of biological processes at genetic, 

molecular and systems levels.  

 

The reference Arabidopsis genome sequence that was produced in 2000 is from the Col-0 

accession and was published by The Arabidopsis Genome Initiative. This international 

sequencing project implemented large-insert bacterial artificial chromosome (BAC), phage 

(P1) and transformation-competent artificial chromosome (TAC) libraries i.e. libraries of 

constructs in which fragments of DNA up to ~300Kb, in this case Arabidopsis fragments, 

can be cloned into bacteria where they are amplified (Xu, 2010). Several methods were used 

to identify overlapping BACs and positional information for clones in order to assemble 

physical maps of the Arabidopsis genome; the first is restriction fragment analysis where 

clones are treated with restriction enzymes and the resultant fragment sizes are analyzed. The 

degree of shared fragments between clones can allow definition of the degree of overlap 

between them to allow assembly into contigs (Marra et al., 1999). The second method 

involves the hybridization of a clone to a southern blot containing digested DNA from the 

other clones. If hybridization occurs clonal overlap has been found (Bent et al., 1998). 

Finally the third method utilizes sequence-tagged sites (STS) that are DNA sequences that 

have a single occurrence in the genome at a known location and therefore act as markers. 

STS’s can be easily detected using PCR and if present in a clone sequence allow easy 

positional anchoring of it to the genome (Mozo et al., 1999; Sato et al., 1997).  

 

The physical maps of the Arabidopsis genome were used with genetic maps to generate 

sequencing tiling paths; end sequence of BAC clones was used to assist integration of 

contigs and the majority of the genome could be represented by the final set of 10 contigs, 
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representing chromosome arms, that were assembled largely from BAC and P1 clones. 

Subsequent sequencing of fragmented clones and BAC end sequences (supplemented by 

genetic mapping in centromeric regions (Copenhaver et al., 1999)) allowed contig assembly 

and genetic markers allowed sequence verification. The sequenced region totaled ~115.4 Mb 

with ~10Mb un-sequenced centromeric and rDNA repeat regions (The Arabidopsis Genome 

Initiative, 2000). The Arabidopsis reference sequence is under continuous development and 

now covers over 119 Mb of the 125 Mb genome and includes 27,416 protein coding genes 

and 41,671 gene models (TAIR, 2011). 

 

Over 750 natural accessions of Arabidopsis have been found. These accessions are quite 

variable in terms of form and development (e.g. leaf shape, hairiness) and physiology (e.g. 

flowering time, disease resistance). The commonly used background lines include 

Landsberg, Columbia, and Wassilewskija (TAIR, 2011).   

 

Within this project the Arabidopsis genome is largely used to test and validate pipelines and 

methodologies prior to their application to the complex and large genome of wheat. “Large 

genomic resources like EST and full length cDNA databases, large collections of 

characterized mutants from genetic screens and insertion mutants as well as a huge set of 

expression data covering numerous environmental conditions and developmental stages 

make Arabidopsis also an excellent source for functional and comparative genomics” it 

offers the chance to test hypotheses quickly and efficiently before they are implemented on 

more complex genomes (Spannagla et al., 2011). 
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1.5 Brachypodium 

 

 

 
 

Figure 1.9. Image of the model diploid plant Brachypodium distachyon. Taken from: 

James and the giant corn at http://www.jamesandthegiantcorn.com/2010/02/11/why-to-

celebrate-the-publication-of-the-brachypodium-genome/ 

 

 

Brachypodium distachyon is a member of the grass subfamily Pooideae. It is a wild grass 

and it has become a widely recognized model plant for important crops such as wheat and 

barley due to its desirable traits, many of which are shared with Arabidopsis:  

-It has a fully sequenced genome 

-It has a small, compact, diploid genome (~272 Mbp)  

-A short life cycle and few growth requirements 

-It is in the same subfamily as economically important cereal grain species such as wheat 

and Barley (Kersey et al., 2013) 

-Easily experimentally manipulated 

-Extensive genetic and physical maps of all 5 chromosomes 

-Large number of mutant lines and genomic resources 
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-Multinational research community of academic, government and industry laboratories 

(International Brachypodium Initiative) 

 

Finally, Brachypodium, like Arabidopsis, has a dedicated website, Brachypodium.org, that 

maintains and regularly updates a database of it’s genetic and molecular biology data. This 

includes the complete genome sequence along with annotations including gene predictions, 

SNPs, structural variants and indels. 

 

The Brachypodium genome was sequenced in full by the International Brachypodium 

Initiative and published in 2010. This sequencing initiative implemented similar techniques 

to those used to publish the Arabidopsis genome utilizing genetic maps, physical maps and 

sequenced BACs to confirm sequencing assemblies. However on this occasion the diploid 

inbred line of Bd21 was sequenced using whole-genome shotgun sequencing. Sequencing 

reads were assembled into scaffolds and comparison with genetic maps, physical maps and 

sequenced BACs detected false joins, created further joins and validated the assembly to 

yield 5 pseudomolecules spanning 272 Mb (The International Brachypodium Initiative, 

2010).  

 

Brachypodium has been used within this project for the unique purpose of anchoring wheat 

sequence to specific locations in the wheat genome. Due to its high synteny with the wheat 

genome, Brachypodium-wheat markers can be used for such comparative genomic 

organization of wheat using a genome for which a complete and well-annotated reference 

genomic sequence is available. Rice (Oryza sativa L.), a model, well-characterized species, 

has been previously used in comparative wheat analyses for molecular mapping and gene 

isolation (Liu and Anderson, 2003). Synteny and gene homology and order between rice and 

the other cereal genomes, e.g. wheat, is extensive (Goff et al., 2002) but numerous studies 

show that co-linearity between the two species can frequently break down due to 

translocations, deletions and gene duplications (Bennetzen and Ma, 2003). The 

Brachypodium genome has become a popular option to rice due to its completed and 

annotated genomic sequence and data suggesting that better co-linearity exists between it 

and wheat than between rice and wheat (Caol et al., 2012).  

 

 

1.6 Wheat 

Wheat is the dominant cereal crop grown in temperate countries and, with a global output of 

681 million tonnes in 2011 (United States Department of Agriculture, 2012), is one of the 

most important crops for human and livestock feed (Shewry, 2009). The world is facing a 
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potential crisis in terms of food security. With a population that is projected to reach 9 

billion by 2050 the challenge is to produce and supply enough safe and nutritious food in a 

sustainable way (Foresight, 2011), making it a top priority to increase wheat yields (Allen et 

al., 2011). It is estimated that, in Europe, wheat production must double to keep pace with 

demand and to maintain stable prices. This increasing demand for wheat is challenged by a 

shortage of high quality agricultural land, increased fertilizer costs, disease, resource 

limitations and environmental issues that dramatically reduce optimal yields.  

 

The common bread wheat genome is allohexaploid and is one of the largest higher plant 

genomes at ~17Gb in size (128 times larger than Arabidopsis and 5 times larger than Homo 

sapiens) (Dubcovsky and Dvorak, 2007). It’s large genome size, polyploid complexity and 

high repetitive sequence content (~80-90%) poses challenges to the researcher including 

expense and difficulty in sequencing as well as in isolation and cloning of mutant loci (The 

National Science Foundation, 2009; Smith and Flavell, 1975). The recent sequencing and 

gene identification analysis of the wheat genome using 454 pyrosequencing (Brenchley et 

al., 2012) has increased research prospects and opened up the cost effective possibility of 

utilizing targeted genome capture re-sequencing arrays to analyze wheat genes specifically. 

 

Within this project several common UK hexaploid wheat varieties are analyzed including; 

Truman, a red winter wheat variety released by the University of Missouri Agricultural 

Experiment Station. It stands well in most environments producing high yields (Wisconsin 

Crop Improvement Association, 2011). Rialto, a winter wheat variety with good yields, 

relatively long straw (Hoad et al., 2006) and good bread-making quality (Nickerson Ltd, 

2007). Utmost, a Canadian Western red spring wheat variety that was developed by the 

wheat breeder Pierre Hucl and is known to have good yields and to contain the Sm1 gene to 

confer orange wheat blossom midge tolerance (Canadian Food Inspection Agency, 2013). 

Finally, Chinese Spring, a spring wheat variety that is widely used in genome studies and 

was the variety that was sequenced to 5X coverage in 2010 at the University of Liverpool by 

Brenchley et al. in the effort to develop a reference sequence for wheat (Brenchley et al., 

2012). 

 

Winter wheat seeds are known to have strong dormancy that prevents germination. They can 

be planted in Autumn and will survive the winter months to mature in the spring for harvest 

around summertime. In contrast spring wheat seeds have no or weak dormancy. They tend to 

be planted in the spring with harvest soon following in summer (Lei et al., 2013). Higher 

yields are associated with the winter wheat varieties as a result although spring wheat does 

tend to offer a high quality for bread making (Columbia University Press, 2005). 
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1.6.1 Evolution of wheat 

The allohexaploid (AABBDD) wheat genome is derived from three diploid progenitor 

genomes. It was produced from two separate hybridization events (figure 1.10). The AA 

genome is from Triticum urartu, the BB from an unknown species but likely to be of the 

Sitopsis section (includes Aegilops speltoides), and the DD from Aegilops tauschii 

(Brenchley et al., 2012). In the first hybridization event AABB tetraploids appeared less than 

0.5 million years ago (Dvorak et al., 2006).  It is thought that Emmer tetraploid wheat 

developed from the domestication of such natural tetraploid populations. The wheat that we 

have today formed around 8000 years ago by the hybridization of the unrelated diploid wild 

grass Aegilops tauschii (DD genome) with the tetraploid Triticum turgidum or Emmer wheat 

(AABB genome) (Dubcovsky and Dvorak, 2007). Each hybridization was followed by 

chromosome doubling in the new hybrid enabling normal bivalent formation at meiosis and 

thus production of fertile plants and it has been reported as likely that this hybridization 

occurred several times independently with the novel hexaploid (genome AABBDD) being 

selected by farmers for its superior properties (Shewry, 2009). The resultant hexaploid bread 

wheat carries 6 genomes each with 7 chromosomes and thus 42 chromosomes in total 

(Winfield, 2011). The coding regions of the 3 homeologous diploid wheat genomes share 

over 90% homology (Kawaura et al., 2009). 
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Figure 1.10. Evolution of hexaploid bread wheat. Detailing the 2 separate hybridization 

events that allowed the evolution of bread wheat Triticum aestivum (Winfield, 2011). 

 

 

1.6.2 Gene enrichment in wheat 

The wheat variety Chinese Spring was sequenced to 5X coverage primarily within the 

University of Liverpool in 2010 using Roche's 454 GS FLX. A draft wheat genome 

assembly was constructed from the 454 reads using the de novo DNA sequence assembly 

software package Newbler. Whole genome re-sequencing of wheat is prohibitively 

expensive due to its large size and repetitive nature. The volume of data that would be 

produced from such an analysis is a challenge to analyze and as such this method is unlikely 

to become the method of choice for determination of wheat mutants and for other wheat 

genome analyses. It is essential to allow analyses to be affordable and less prohibitively 

complex in an organism such as wheat with a large, repetitive, largely uncharacterized 

genome, where routine whole genome re-sequencing is an undesirable option and a 

completed reference is not yet available. 
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To overcome this limitation researchers have employed capture arrays to reduce the genome 

complexity. These allow enrichment of and thus the sequencing of targeted regions to high 

coverage, leading to confident SNP scoring. The utilization of enrichment in combination 

with mapping-by-sequencing as a mechanism to rapidly identify genes responsible for key 

agricultural traits one of the main challenges of this project. Such targeted sequencing in 

wheat reduces the cost associated with re-sequencing the entirety of the genome and the 

recent sequencing of the wheat genome using 454 pyrosequencing (Brenchley et al., 2012) 

has opened up the possibility of utilizing targeted capture re-sequencing arrays for wheat 

analyses by generating a sequence around which an array can be designed.  

 

Within this project capture arrays in solution are used to perform targeted re-sequencing 

however a selection of other methods exist that can effectively target subsets of a genome for 

sequencing and are detailed as follows; Firstly RNA sequencing or RNA-seq involves next-

generation sequencing of RNA transcripts using reverse transcription to convert them into 

cDNA’s that can be sequenced. This effectively targets transcribed regions for sequencing 

and provides information to reveal the transcriptional structure of genes and/or the level of 

expression for each gene (Wang et al., 2009). Secondly, restriction site associated DNA 

sequencing involves using next-generation sequencing technology to only sequence at 

specific sites that are defined by restriction enzymes. Such methodology can identify and 

score thousands of genetic markers across the genome from one or a group of individuals i.e. 

enriching for potential marker regions (Davey and Blaxter, 2010). Cot filtration uses the 

principles of DNA renaturation kinetics to separate repetitive DNA sequence from gene rich 

regions to allow selective sequencing of non-repetitive genic regions. It utilizes the fact that 

a specific sequence will renature at a rate proportional to the number of times it occurs in the 

genome i.e. repetitive sequences more quickly than non-repetitive, and this technique has 

been successfully applied to wheat by Lamoureux et al., although theoretically it may select 

against large gene families that become normalized. Finally methylation filtration in wheat 

produces genomic libraries enriched in hypomethylated, typically genic, sequence using a 

bacterial methylation-dependent restriction endonuclease. This method eliminates 

hypermethylated repetitive sequence, however, it can also eliminate hypermethylated gene 

sequence (Rabinowicz et al., 2005).  

 

The NimbleGen exome capture array in solution that was utilized within this project was 

developed for the wheat genome (~41 Mbp) using the Roche custom array design service. 

The exome is comprised of the coding exons in the genome i.e. the small sections of DNA 

that encode for proteins. Current knowledge of the genome reveals a large majority of DNA 

changes causing genetic diseases are within the exome, which is why it is often referred to as 
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the most relevant portion of the genome (NimbleGen, Roche, 2011). This initial array design 

was based on cDNA as at the time the full genomic sequence of wheat was unavailable. The 

exome capture array acts as a proof of principle that such a method is applicable for gene 

enrichment and subsequent SNP calling in wheat. It also allowed development of array 

design methodology. The issue with using cDNA sequence is that only the subset of genes 

that were expressed in the sequenced sample at the time of processing will be included in the 

array.  

 

The development of the exome capture array is detailed in Figure 1.11b. This initial array 

was based on the cDNA sequence that was generated for the hexaploid wheat strain Chinese 

Spring by the Roche 454 sequencer. This cDNA was assembled into contigs using the 

software package Newbler that is specialized for de novo DNA sequence assembly of 454 

reads. The cDNA contigs that were generated by Newbler were then taken through a BLAST 

search against various databases to aid elimination of duplicate sequence, repetitive sequence 

or sequence from the chloroplast/mitochondrial genomes.  Homeologous genes were 

collapsed into 1 sequence to allow generation of a single probe set that is capable of 

enriching all 3 wheat genomes. The remaining contigs were filtered for regions of low 

complexity and used as the basis for the array probe targets. Array probes were tiled across 

these target sequences (known as design-space sequence). Winfield et al. hypothesized that if 

the wheat exome is thought to represent about 170–340 Mb and the wheat exome capture 

array contains only unique sequences, as it was designed to do, and given that the total 

length of the features on the array is ~57.5 Mb; it is therefore capable of capturing 50% of 

the genes in a diploid exome as a minimum and that this figure could be potentially much 

higher. 
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 (a)        (b) 

 

 

Figure 1.11. Development of 2 wheat capture arrays in solution. (a) Development of a 

wheat gene capture array that is based on the genic regions of wheat (transcribed and non-

transcribed) (b) Development of a wheat exome array that is based on wheat cDNA 

sequence.  

 

 

As the wheat 454 genomic sequence assembly became available in 2010 a further array in 

solution was developed using similar techniques. This array was to contain the majority of 

the genic regions of wheat (transcribed and non-transcribed) and as such will be referred to 

as the wheat gene capture array.  

 

The development of the wheat gene capture array is detailed in Figure 1.11a. The genomic 
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selected that hit genes in the closely related species Brachypodium distachyon or that hit the 

wheat cDNA sequence when BLAST searches were conducted. Homeologous genes were 

again collapsed into 1 sequence and the remaining contigs were processed as for the wheat 

exome capture array to eliminate redundancy, repetitive sequence and 

chloroplast/mitochondrial sequence. The final contig set that remained is referred to as the 

design-space sequence and was used as the target sequence for wheat gene capture array. 

Array probes were tiled across these target sequences.  

 

The wheat gene capture array is a clear improvement on the exome capture array; it will 

contain all of the genes that were sequenced whether they were expressed or not expressed 

and it allows inclusion of exon and intron sequence in the array. With growing importance 

being attributed to polymorphisms affecting splice sites (Baralle and Baralle, 2005) that are 

mostly located in introns, the analysis of SNPs in intronic sequence along with those in 

exonic sequence is desirable.  

 

Here custom capture probe sets had to be designed due to there being no pre-existing 

marketed whole exome or genic capture array for wheat. NimbleGen’s capture probe sets 

utilize DNA probes that are typically less than 100bp in length and tiled across the genome 

i.e. high density overlapping baits. This allows sensitive detection of small variants. 

NimbleGen will work closely with a researcher that is developing an array to allow custom 

development and validation of a capture probe set for an organism of interest and to ensure 

an effective end product. The main rival for custom capture probe design is Agilent (Sure 

select). These capture probe sets utilize 120bp RNA baits that can also overlap. Agilent, at 

the onset of this study were less involved in the development process of custom capture 

probe sets, with the design being mainly down to the customer. Over the course of this study 

Agilent have become more involved in the design process. For the development of the 

exome and genic wheat capture arrays NimbleGen was a clear favourite, at the time, due to 

the added design assistance and reported lower off-target enrichment/greater on-target 

enrichment when utilizing such methodology compared to an Agilent Sure select capture 

probe set. Clark et al. found that 7.2% more of the targeted bases were covered by 

NimbleGen enriched sequence at a depth of 10x or more and 3.5% less off-target sequence 

was generated compared to using Agilent enrichment (Clark et al., 2011).  In section 5 an 

Agilent Sure select custom capture probe set was designed and utilized for a methylation 

study in preference to a NimbleGen array since at this time NimbleGen did not support the 

use of their capture probe sets for the study of methylation patterns using bisulfite treatment.  
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Capture arrays are used to enrich target sequence by hybridization to bait probes. After 

hybridization, any DNA that has not hybridized is washed away and the desired captured 

DNA can be eluted for downstream processing e.g. sequencing. Arrays can be designed 

using bait probes that are on a solid support (Winfield et al., 2012) or more recently in 

solution (Sulonen et al., 2011). In the latter case, that is implemented in this project, a 

standard DNA fragment library is hybridized to biotinylated bait probes in solution and 

streptavidin beads are used to collect the complexes of probes and bound DNA fragments 

from which the enriched DNA fragment pool are eluted. Saintenac et al. reported the use of 

SureSelect, an in-solution targeted capture technology to examine a tetraploid wheat genome 

whilst Winfield et al. used the NimbleGen in-solution targeted capture genomic DNA probe 

set that is detailed here that was designed to capture a significant proportion of the wheat 

exome (Saintenac et al., 2011; Winfield et al., 2012). 

 

 

1.7 Identifying mutations responsible for traits in complex organisms 

 

1.7.1 Summary 

Organisms vary in a multitude of ways including morphology, behavior, physiology, 

development, and susceptibility to disease. Some of these phenotypes are controlled by a 

single gene and are known as monogenic (Mendelian) traits whilst other phenotypes are 

controlled by multiple genes and as such are known as mulitgenic or genetically complex 

traits (Glazier et al., 2002). All of the mutants that will be analyzed here in the two key 

genomes of interest, wheat and Arabidopsis, are monogenic. Forward genetics, which is used 

in this project, identifies the underlying genotype that is responsible for a given phenotype. 

 

Many of the mutants that are analyzed in the Arabidopsis genome are ethylmethanesulfonate 

(EMS) induced or deletion mutants. EMS is a well-known alkylating agent that is commonly 

used to induce point mutations in plants. Treatment with EMS results in a high mutation 

frequency without preference for specific genomic regions (Watanabe et al., 2007; Kim et 

al., 2006). If a selected plant mutant phenotype has been EMS induced in a diploid plant the 

cause of this is anticipated to be a point mutation or homozygous SNP (single nucleotide 

polymorphism). In contrast to this the mutants that are analyzed in the wheat genome are 

typically sources of natural variation that induce a given phenotype. 

 

The pipelines for mapping and SNP calling of next generation sequencing data that will 

provide the foundation of this project have been outlined. Besides providing a 

knowledgebase about the plant being studied in general and allowing comparative analyses 
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between strains etc., such analyses provide the initial information that is required to perform 

downstream analyses such as mutant identification. Here mutant identification will primarily 

be carried out using mapping-by-sequencing, a newer technique that vastly decreases time 

input in comparison to the more outdated methods such as map-based cloning. Mapping-by-

sequencing analyses and other methodologies are outlined here. Such methods can be used 

with DNA samples that have been prepared in a variety of ways depending on the desired 

output of the analysis i.e. with a variety of plant crosses. As such, a background to plant 

breeding, with focus on the techniques employed within this project, will also be outlined. 

Sliding window mapping-by-sequencing analyses have largely benefitted from a complete 

reference sequence and employed whole genome re-sequencing of diploid organisms 

(Nordstrom et al., 2013). The feasibility of the application of such studies to an enriched 

polyploid wheat dataset will be tested in this project.  

 

1.7.2 Methods for identifying traits 

Until recently, identifying a mutated gene required the tedious process of map-based cloning 

that can take, from skilled post-doctorial research, from 6-12 months. The original idea of 

map-based cloning was to identify a molecular marker linked to the gene of interest as 

markers consistently associating with the mutant phenotype with low recombination 

frequency indicate close proximity to the mutant allele i.e. in linkage disequilibrium 

(Maniatis et al., 2004). Chromosome ‘walking’ would then be performed to the gene using 

overlapping clones (e.g. YAC/BACs) i.e. using a probe for a marker near a gene to select a 

genomic clone near the gene and moving toward the gene by repeatedly selecting for 

overlapping clones until you have a clone that contains the gene.  This method of 

chromosome ‘walking’ proved difficult to apply to larger, more complex uncharacterized 

plant genomes and was only necessary under the assumption that the markers that were 

identified were not physically close to the gene of interest. With the advent of physical 

molecular linkage maps (also comparative genetic linkage maps-allowing determination of 

the relative order of genes among related species that evolved from a common ancestral 

genome) markers that were tightly linked to genes of interest could be identified. Markers 

could then be used to screen YAC/BAC libraries and isolate the clone containing the gene of 

interest directly. This is particularly useful for the Arabidopsis genome for which both 

genetic and physical maps had been generated along with a complete reference sequence by 

2000 (The Arabidopsis Genome Initiative, 2000) and this became the main strategy by which 

map-based cloning could be applied to isolate genes underlying complex traits in plant 

species for which such information was available (Tanksley et al., 1995). 
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Map-based cloning in Arabidopsis involves crossing the mutant plant with a divergent 

accession e.g. Ler-0 to create a mapping population. Different crosses can be carried out 

these include outcrossing, backcrossing or introgression. Outcrossing can introduce 

unrelated genetic material into a breeding line by crossing two genetically unrelated 

individuals. This tends to always be the first step in a linkage analysis (Mooney and 

McGraw, 2007). Outcrossing to produce an F1 population can be followed by backcrossing 

of the F1 population (where an F1 hybrid strain is crossed to one of its parental strains) to 

produce an F2 population. Introgression involves the gene flow from one species to another 

by repeated backcrossing of a hybrid with one of its parents (Frisch and Melchinger, 2005). 

Outcrossing to produce an F1 population can alternatively be followed by one or more 

intercrosses i.e. F1 brother and sister crosses to produce a highly homozygous F2 etc. During 

map-based cloning in the F2 generation the mutant phenotype is scored and molecular 

markers are then used to rough map the gene i.e. markers consistently associating with the 

mutant phenotype. Plants with intra-chromosomal recombination events can be used to 

narrow down the genetic interval (Lukowitz et al., 2000). This process becomes difficult if 

natural variation exists in the phenotype being mapped between the two parental lines or if 

the mutant phenotype is subtle and assaying for it is labour intensive (Ashelford et al., 2010). 

Ashelford et al. encountered such a problem when determining a novel circadian clock 

mutation in Arabidopsis. In this case simply identifying the mutant phenotype in a set of 

plants could be difficult and time consuming.  

 

There was an obvious requirement for method development with regard to identifying 

mutations responsible for traits at this point since the process of genetic mapping, linking a 

phenotype to its causal mutation, is widely acknowledged to be long-winded and time-

consuming. Direct re-sequencing has already been successfully used as an alternative to 

map-based cloning to identify point mutations in the 15.4 Mb genome of the yeast Pichia 

stipitis (Smith. et al., 2008) and in Caenorhabditis elegans (Sarin et al., 2008). Whole 

genome re-sequencing approaches like that of Sarin et al. are of limited use if, like in 

Arabidopsis, the EMS mutation load is high. Therefore, a method of reducing the number of 

point mutations must be considered in these cases. However, it would still rely on the ability 

to accurately score mutants in an F2 mapping cross and has all the limitations with regards to 

map-based cloning in this respect (Ashelford et al, 2010). In an ‘in house’ study mentioned 

previously by Ashelford et al. the 120 Mb genome of a novel Arabidopsis clock mutant early 

bird (ebi-1) and the corresponding wild type, Wassilewskija (Ws-2) were re-sequenced using 

the Applied Biosystems SOLiD sequencing by ligation technology. Sequencing a 

backcrossed line reduced the number of point mutations, investigating gene expression data 

for mutated genes further narrowed the SNPs down and finally the new SNP data was used 
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to exclude a known clock gene and identify a SNP in the gene AtNFXL-2 as the likely cause 

of the ebi-1 phenotype.  

 

Mapping-by-sequencing is the process of taking this direct re-sequencing approach and 

combining it with genetic mapping. The direct re-sequencing that has been previously 

outlined is one example of such methodology that can be used to ‘roughly’ map the causal 

mutation. Other methodologies involve sequencing a bulk segregant or pooled mutant 

population (typically an F2 population that has been previously outcrossed and then selfed or 

backcrossed) to uncover the mutation, potentially a single nucleotide polymorphism (SNP) 

that is responsible for the phenotype. This approach benefits from a reference parent genome 

that the mutant dataset can be mapped to (Nordstrom et al., 2013). SNPs can then be called 

from the mapping output and used to study allele frequencies and to define regions of 

conserved homozygosity with the mutant dataset.  

 

Bulk segregant analysis can be used to map monogenic traits and involves a pooled DNA 

sample of typically F2 individuals from a cross who share a single phenotypic trait of 

interest differing from the normal population and as such they will differ genetically only at 

the trait locus. All of the pooled plants with the desired trait will have high homozygosity in 

this region that is conserved with the mutant parent, with a high frequency of heterozygosity 

across the rest of the genome, while in the pool without the specific trait such conservation 

with the mutant parent will not be seen (Quarrie et al., 1999). 

 

It is common for these techniques to become integrated, for example, in assays to find a 

phenotype inducing mutation or loci that are demonstrated here; Parent 1 is crossed with 

parent 2 that contains a desirable phenotype (outcrossing to produce an F1 population). The 

progeny of the cross is crossed back to parent 1. The F2 progeny of this cross is selected for 

the desirable phenotype and then crossed back to parent 1 and such backcrossing is repeated. 

The aim of this being to create a line as identical as possible to parent 1 while still having the 

donor gene of interest from parent 2 enabling easier identification of the gene by narrowing 

the donor interval. This method can be combined with bulk segregant analysis for 

monogenic traits to allow further ease of donor gene identification through looking at allele 

frequency distribution. High heterozygote frequency across the genome due to pooling of 

samples allows the homozygous region harbouring the trait of interest to be easily identified 

(Michelmore et al., 1991). 

 

Earley & Jones used phenotype-based selection and introgression to backcross a food 

preference loci in Drosophila simulans into D. sechellia (has opposite food preference at 
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loci). Populations of D. simulans and D. sechellia were hybridized and then selected for the 

food preference phenotype across multiple generations of backcrosses. The trait of interest 

(D. simulans food preference in D. sechellia) was selected in each generation and the 

offspring mated with D. sechellia. Backcrossing continued for 15 generations and then the 

final generation was inbred for 2-3 generations to ensure introgressed loci were mostly 

homozygous. DNA from 30 females was then pooled and sequenced using Illumina 

technology. By looking for enrichment of D. simulans SNPs in a D. sechellia background 

the breakpoints of introgressions were identified and thus the regions harbouring the genes 

influencing the trait (Earley and Jones, 2011). 

 

The programs SHORE and SHOREmap enable mapping-by-sequencing in one streamlined 

pipeline that allows simultaneous mapping (SHORE) and mutation identification 

(SHOREmap) to output an approximate mapping interval that would contain the phenotype 

inducing mutation plus a prediction of the phenotype inducing mutation itself (see 1.3.2 

Analyses downstream of mapping). This program is intended for use on diploid organisms 

with a reference sequence (Schneeberger et al., 2009). SHOREmap implements an analysis 

of local differences in parental allele frequencies across a complete reference sequence that 

have been introduced via mutant phenotypic selection (Galvao et al., 2012). With use of a 

bulk-segregated F2 population that is derived from an initial outcross and subsequent selfing 

of F1 offspring Schneeberger et al. identified a mutation in Arabidopsis that was causing 

slow growth and light green leaves owing to lesions in an unknown gene using SHOREmap. 

They sequenced a single genomic DNA sample (prepared from mutant F2 plants) using the 

Illumina® (Genome AnalyzerTM), produced an ‘interval’ plot of the relative allele 

frequencies of the mapping parents to reveal a candidate region of interest on chromosome 4. 

They then used mutations relative to the reference within this region as input for 

SHOREmap ‘annotate’ (ranks base pair substitutions by distance from allele distribution 

peak and predicts base change effects). SHOREmap detected a mutation in the AT4G35090 

gene as the causal mutation (Schneeberger et al., 2009).   

 

Such mapping-by-sequencing analyses have largely required complete chromosome 

sequences and have involved the use of whole genome re-sequencing. In species such as 

wheat, no finished genome reference sequence is available. Additionally due to its vast size 

and highly repetitive content, complexity reduction methods such as targeted enrichment 

sequencing have been proposed to reduce the need for whole genome re-sequencing analyses 

that are prohibitively expensive. In this analysis it is proposed that routinely using the gene 

capture array to target wheat genic regions prior to sequencing will greatly reduce the cost 

associated with sequencing the wheat genome eliminating much of the repetitive sequence 
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from the analysis while still, essentially, allowing mapping-by-sequencing analyses to be 

performed. As such it is this application of mapping-by-sequencing to, firstly, a polyploid 

and, secondly, an enriched dataset that is of interest here.   

 

Trick et al. employed the use of Near Isogenic Lines (NILs) that are created by outcrossing 

an organism with a phenotype of interest with the wild type parent to produce an F1. The F1 

population is intercrossed to produce an F2 population and F2 offspring with the phenotype 

of interest are repeatedly backcrossed to the wild type parent to generate a NIL line that will 

be almost identical to that of the wild type parent except for the genomic segment harbouring 

the phenotype-inducing gene. In this project they sequenced the mRNA (a technique known 

as RNAseq) of tetraploid wheat lines that differed for the grain protein content gene (GPC-

B1) in order to identify the region containing the gene of interest. They identified inter-

varietal SNPs between the parental lines and examined the relative frequencies of these 

SNPs in two bulked samples of near isogenic lines (NILs) differing for the GPC phenotype. 

Marker assays were designed for any enriched SNPs and they were mapped to using each set 

of bulked DNA leading to identification of a ~0.4cM interval including ~70% of the SNPs 

and the gene of interest in wheat with use of synteny of marker sequences with the closely 

related grass Brachypodium (Trick et al. 2012). 

 

Galvao et al. demonstrated the enrichment of a subset of marker linked genomic DNA 

sequences and that mapping of this data back to the marker sequences could successfully 

identify an interval of interest in Arabidopsis. They also found that by sorting Arabidopsis 

cDNA sequences into Brassica rapa based pseudo-chromosomes, using synteny between the 

two, a confidence interval could be identified in B. rapa that could be translated back to a 

position in Arabidopsis. They hypothesized that enrichment and mapping-by-sequencing 

analyses, based on the SHOREmap methodology, were compatible however likely to need 

additional fine mapping due to likely exclusion of the target region from the enriched dataset 

(Galvao et al., 2012). These approaches have yet to be combined and fully tested for a 

mapping-by-sequencing analysis i.e. full gene enrichment and organization into pseudo-

chromosomes, based on synteny with a related organism, in a polyploid species such as 

wheat, that is lacking in extensive annotation and a finished genome reference sequence. For 

their enriched dataset Galvao et al. analyzed allele frequency at each individual marker 

position to look for homozygous regions, as did Trick et al. and sliding window analyses 

were reserved for whole genome sequencing projects with a defined reference genome 

(Galvao et al., 2012; Trick et al. 2012). Within this project the wheat pseudo genome is 

utilized to perform a sliding window analysis of allele frequencies in the mapping population 

along each pseudo-chromosome to identify a region in wheat directly. The extensive 
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coverage of the majority of wheat genetic sequence in the gene capture array will allow 

enrichment whilst maintaining the likelihood of inclusion of the target region within the 

dataset.  

 

 

1.8 Wheat methylation studies 

Methylation of the cytosine residues in eukaryote DNA is thought to act as a mechanism of 

gene expression control. In plants, it occurs typically at CpG (Finnegan et al., 1998) residues 

but can also occur at CpNpG sites, where N is any nucleotide, and any CpHpH site, where H 

represents adenine, cytosine or thymine (Lukens and Zhan, 2007). It was noted in 

Arabidopsis that most methylation that would occur in the gene body was mainly at CpG 

sites, whilst methylation elsewhere and in repetitive regions could be at CpG, CHH and 

CHG sites (Widman et al., 2009). 

 

Cytosine methylation within gene promoter regions is thought to inhibit binding of 

regulatory proteins and repress transcription; it can also silence the transposable elements 

(TEs) that would otherwise disrupt DNA sequence by transposition. TE transposition can 

result in altered gene expression, novel regulatory networks, gene deletions, duplications, 

increases in genome size, illegitimate recombination and chromosome 

breaks/rearrangements (Cantu et al., 2010). As such, reduced DNA methylation is known to 

disrupt normal plant development. Methylation within introns and downstream exons has 

been highly correlated and if such gene body methylation is found it has been associated 

with highly expressed genes in some studies (Zhang et al., 2006) while other studies have 

found little or no association in this context. Brenet et al. discovered that methylation 

downstream of the transcriptional start site i.e. in the first exon region was strongly linked to 

gene silencing, even more so than methylation of the upstream promoter region. The effects 

of gene body methylation can be seen to remain controversial and largely without 

clarification. It is clear that the location of methylation within or around a gene is important, 

however, the reasoning for this is, as of yet, poorly understood (Brenet et al., 2011). 

 

In a study by Rabinowicz et al. a small subset of whole genome sequencing data for 

hexaploid wheat was analyzed and subsequently methylation filtration was utilized in an 

attempt to isolate hypomethylated genic material from hexaploid wheat for sequencing. 

Isolated sequenced material was later used in a BLAST search to identify wheat genes. From 

the whole genome sequencing data wheat was found to have a large number of gene-like 

sequences relative to other plants (1597 sequencing reads, ~500bp in length, 1.44% genes) 
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while in the enriched data gene enrichment was comparatively low (1548 sequencing reads, 

~500bp in length, 6.78% genes). They predicted that the apparent excess of genes combined 

with poor enrichment could be due to high levels of methylated pseudogenes (recently 

amplified and then silenced), reducing the number of active genes to a level closer to that 

which was expected (Rabinowicz et al, 2005).  

 

Here the study of methylation patterns in wheat was to be used to test a number of 

hypotheses; firstly, if differential methylation exists between the A, B and D genomes. 

Secondly, using two growth temperatures for the Chinese Spring to test if temperature is 

capable of altering the methylation state and to see if this is both genome specific and 

genome independent. Finally, to investigate if it is this underlying methylation that can 

control both genome specific and temperature dependent changes in gene expression. 

 

There are three main methods used in the laboratory for the study of methylation patterns; 

-Bisulfite treatment deaminates un-methylated cytosine residues converting them to uracil. 

The conversion of these un-methylated but not methylated residues to uracil allows, after 

PCR and sequencing, effective discrimination of the methylation status at every cytosine 

residue making this method the gold standard in methylation studies (Darst et al., 2010). 

-Differential enzymatic cleavage uses methylation-sensitive restriction enzymes to fragment 

genomic DNA that can then be analyzed. Enzymatic cleavage is limited by the number of 

enzyme recognition sites (New England Biolabs, 2009).   

-Affinity based methods use antibodies or proteins that bind to methylated DNA resulting in 

the enrichment of the methylated DNA in the experimental sample to allow downstream 

analysis (New England Biolabs, 2009). 

 

The clear significance of the impact of methylation on the genome makes it an obvious area 

for research. In order to study the general effects and patterns of methylation in the 

hexaploid wheat, without encountering the problems previously detailed due to the large size 

of the wheat genome, development of a methylation target enrichment array would be the 

best way forward i.e. the ability to enrich for regions of interest in the genome and to study 

methylation patterns therein. Sodium bisulfite treatment is an increasingly popular method 

for epigenetic profiling and combined with the use of Agilent’s SureSelect Methyl-Seq 

Target Enrichment System allows the study of methylation patterns in target regions. The 

Agilent enrichment system utilizes 120bp biotinylated RNA baits in solution to capture user-

defined regions based on primary DNA sequence. In this system a standard DNA fragment 

library is hybridized to biotinylated bait probes in solution and streptavidin beads are used to 

collect the complexes of probes and bound DNA fragments from which the enriched DNA 
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fragment pool are eluted. The enriched DNA fragments are then bisulfite converted; PCR 

amplified to convert uracil residues in the sample to thymidine, indexed if necessary and 

finally sequenced using next generation sequencing technology (Illumina recommended) 

(Agilent Technologies Inc., 2012). Bioinformatical analysis can then be carried out to 

differentiate methylated cytosines from un-methylated cytosines and to determine their 

implications. Such methodology opens up the possibility of cost effective epigenetic 

profiling in large genomes. 

 

The RNA baits for the SureSelect Methyl-Seq Target Enrichment are based on primary DNA 

sequence. As such, when designing the wheat methylation array, design-space contigs for the 

wheat gene capture array were adapted for this purpose. This ensured that probe sequences 

were unique, non-repetitive, gene-rich and evenly distributed across the wheat genome. In 

this project it is demonstrated that an enrichment array can be used to give an overview of 

methylation patterns across the genic regions in the wheat genome and designed to target a 

6Mb subset of the genic regions of wheat using the 5x Roche 454 genomic DNA wheat 

sequence generated by Brenchley, R. et al. (subset distributed across the contigs that were 

selected previously for the gene capture array design-space) (Brenchley et al. 2012).  

 

Modification of gene expression by methylation can be tissue-specific or developmental 

stage dependent (Wang et al., 2011a). It has been reported that methylation levels between 

members of the same species can differ, resulting in disease (Langevin and Kelsey, 2013) 

and can also differ in response to environmental factors or stresses e.g. temperature (Hashida 

et al., 2006) or salt stress in plants (Wang et al., 2011a). Further to this allele specific 

methylation has also been observed in animals and plants. Notably Wei et al. found allele 

specific methylation in humans that resulted in allele–specific expression (ASE) of death-

associated protein kinase 1 (DAPK1) and predisposition to chronic lymphocytic leukemia 

(CLL) (Wei et al., 2013).  

 

The potential for differential methylation of homeologous genes in a polyploidy species is an 

important question in this study. Differential methylation was observed in maize correlating 

with differential expression of maternal and paternal alleles in the genes r and dzr1 

(Kermicle, 1978; Chaudhuri and Messing, 1994). In tetraploid cotton silencing or unequal 

homeologs expression was observed with epigenetic induction implicated; the proportion of 

genes with only partial homoeoalleles expressed was predicted to be as high as 25% (Adams 

et al., 2003). For hexaploid wheat the percentage of genes with partial homoeoalleles 

expressed i.e. genome-wise differential gene expression, is thought to be 29%, typically one 

of the three homeoalleles present is silenced (Bottley et al., 2006; Wang et al., 2011b).  
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The array was to be used to test a number of hypotheses in wheat; firstly, Chinese Spring 

hexaploid wheat DNA could be enriched using the array to see if differential methylation 

exists between the A, B and D genomes. A list of naturally occurring homeologous SNP 

positions within the array bait sequences would allow identification of differential 

methylation between the A, B and D genomes in this analysis. Such SNPs would make it 

possible to associate sequencing reads with a homeologous SNP allele and ultimately a 

particular wheat genome. Secondly, using two growth temperatures for the Chinese Spring 

(12°C to represent a lower more ambient temperature for wheat growth in the UK and 27 °C 

to represent a contrasting high temperature for wheat growth) such DNA could be enriched 

using the array to test if temperature is capable of altering the methylation state and to see if 

this is both genome specific and genome independent. Finally, with use of RNAseq datasets 

for Chinese Spring at the same two growth temperatures (12°C and 27 °C) gene expression 

patterns could be identified and correlated with differential methylation under the hypothesis 

that it is this underlying methylation that can control both genome specific and temperature 

dependent changes in gene expression. To generate this gene expression data cDNA was 

generated, sequenced and analyzed by Mark Quinton-Tulloch by mapping the sequence data 

to the methylation array design-space. The program BitSeq was utilized to allow 

identification of gene expression levels. 

 

BitSeq is an additional bioinformatical software tool with two main stages: transcript 

expression estimation and differential expression assessment. For the transcript expression 

estimation; sequencing reads are taken as input and aligned to the transcriptome using 

Bowtie to then allow calculation of the probability of a read originating from the transcript to 

be calculated and finally transcript expression level estimation. For differential expression 

assessment expression estimates are generated from replicates of 2 or more conditions; it 

infers the condition mean transcript expression and ranks transcripts based on the likelihood 

of differential expression (Glaus et al., 2012). 

 

 

1.9 Aims 

Here the SOLiDTM system and Illumina HiSeq and Genome Analyzer IIx are used primarily 

as re-sequencing tools to allow analysis of closely related species in relation to a reference 

genome with a view to SNP detection. The primary challenge is the efficient mapping of 

these short sequences to a reference genome and ultimately the further analysis of mapped 

reads to enable SNP detection. This information can be applied to analyses such as mutant 

identification by mapping-by-sequencing using where possible SHOREmap or else the 

principles that it employs. The complexity of the wheat genome makes it a great challenge to 
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analyze in such a way. Initially a mapping, SNP calling and mutant identification analysis 

will be carried out on Arabidopsis to enable technique and skill development before 

beginning analyses on wheat. Further to this, and to manage the large, complex genome of 

wheat the gene and exome capture arrays will be validated and implemented in comparative 

and mutant identification analyses. The methylation enrichment array, which is developed 

here, will also be implemented to perform one of the first genome-wide studies of 

methylation patterns in hexaploid bread wheat. 

 

The main aims of this project are therefore to develop high throughput pipelines for 

mapping, SNP calling and mutant identification in Arabidopsis and then adapting these 

optimized approaches for use with diploid and then polyploid wheat combined with use of 

target enrichment. These mapping, SNP calling and enrichment techniques will then be 

applied to enable a study of methylation patterns in a subset of wheat. These aims can be 

split up as follows: 

 

-To perform a mapping and SNP identification analysis on the Arabidopsis clock mutant 

early bird (ebi-1) as an introduction to the techniques in the hope of gaining results largely 

similar to those gained by Ashelford, K et al. 

-To perform mutant identification analyses on various Arabidopsis mutants to produce an 

interval of interest to be investigated further in the hope of determining the phenotype 

inducing SNP with use of SHOREmap 

-To perform analyses and implement the use of the gene and exome capture NimbleGen 

arrays to allow validation plus a comparative inter-varietal hexaploid wheat SNP study 

-To perform mutant identification to identify a mapping position and possibly a causative 

SNP in a simulated diploid, tetraploid and hexaploid wheat mutant (simulated complete 

chromosomes) to allow method development using SHOREmap or else the SHORE 

mapping-by-sequencing principles 

-To identify a mapping interval and possibly a causative SNP in a diploid wheat mutant 

employing a combination of exome enrichment and SHOREmap or else the SHORE 

mapping principles with use of pseudo-chromosomes based on ordered enriched fragments 

by synteny with the closely related Brachypodium 

-To ultimately produce a streamlined pipeline to enable mutant identification using sliding 

window mapping-by-sequencing analyses in enriched hexaploid mutants with the use of 

pseudo-chromosomes 

-To design and validate a wheat methylation array based on the NimbleGen gene capture 

array to enable a comprehensive study of methylation patterns in a subset of wheat 
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Chapter 2. Mutant identification in the model plant Arabidopsis thaliana 

 

 

Here accelerated mutant identification techniques are developed using mapping-by-

sequencing analyses that combine whole genome sequencing with genetic mapping. Such 

methods have largely required a complete reference sequence and are typically implemented 

on a mapping population with a common mutant phenotype of interest. Here mutant 

identification was demonstrated on the model diploid plant Arabidopsis thaliana as a proof 

of principle of the methodology. It was also demonstrated on a simulated hexaploid mutant 

that was developed using the Arabidopsis reference genome. 

 

2.1 Introduction 

This chapter serves as an introduction to bioinformatics and to the techniques that will later 

be applied to the enriched genic regions of hexaploid bread wheat. It is sensible here to first 

apply mapping, SNP calling and mutation identification techniques to a more simple, well-

annotated and smaller diploid genome, such as Arabidopsis, to develop a working pipeline 

before transferring their application to a more complex genome. This allows the 

understanding of the principles, limitations and time constraints of the various softwares to 

anticipate and solve problems that may be encountered when implementing them on a larger 

more complex genome. Here artificial sequencing datasets were also created using the 

Arabidopsis reference genome (Columbia strain, Col-0) allowing a simulation of mutant 

identification for firstly a diploid, then a tetraploid and finally a hexaploid mutant. Thus 

demonstrating the feasibility of the mapping-by-sequencing approach for polyploid genomes 

and allowing pipeline development before producing data sets. 

 

Section 2.2 served as an initial familiarization study for the popular mainstream-mapping 

tool BWA and the SNP caller GATK. A mapping and SNP calling pipeline was developed 

(see figure 1.6) using these tools and SNP calls were generated for the same Arabidopsis 

datasets that were previously analyzed in a study by Ashelford et al.  Study of a previously 

analyzed dataset provided a benchmark for comparison and validation of the pipeline under 

development here. 

 

Section 2.3-2.4 demonstrated the use of the program’s SHORE and SHOREmap for mapping 

and mutant identification in various Arabidopsis mutant plant datasets, all of which were 

grown, phenotyped, bulk segregated and typically backcrossed to the wild type parental line 

by Jonathan Napier’s research group in Rothamsted. The samples were sequenced by the 

CGR at the University of Liverpool. In this, its original form, SHOREmap analyses 
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heterozygote frequency, which is high due to the pooling of mutant plant DNA, and assumes 

that the homozygous character of the location harbouring the causal mutation will reduce the 

density of heterozygote markers to enable identification of the region (Schneeberger et al., 

2009). A firm grasp of such mapping-by-sequencing methodology that is used within 

SHOREmap will be needed if it is to be ultimately adapted for use in the hexaploid wheat. 

SHOREmap itself is currently intended only for use in a diploid genome.  

 

In section 2.4.2 these techniques were combined to demonstrate the initial trial of a bespoke 

novel mutant identification pipeline. This pipeline was developed here using a combination 

of BWA mapping and VarScan SNP calling methodologies plus implementation of the ideas 

demonstrated by SHOREmap for allele frequency analysis and identification of an interval 

containing the phenotype inducing SNP. Due to the complexity of this task the method was 

first developed using the diploid Arabidopsis Ws-2 mutant (section 2.4.1), in effect re-

creating the result from this section that was gained using SHOREmap, using these pipelines 

and methodologies to enable comparison and subsequent validation. Development of this 

novel mutant identification pipeline will ensure a clear and thorough understanding of the 

principles used for the analysis and the mechanism of action at each stage of the pipeline that 

will allow easier manipulation for its future use on a polyploid genome.   

 

The novel mutant identification pipeline that is introduced in section 2.4.2 was further 

developed and utilized in sections 2.5-2.7. Here, it is demonstrated that it is in fact possible 

to use such a mapping-by-sequencing based method to identify a region harbouring a causal 

mutation in a diploid, tetraploid and finally a hexaploid with use of artificial sequencing 

datasets. These datasets were all created using the Arabidopsis Col-0 reference genome as a 

starting point. This analysis allows the focus for this initial methodology development to be 

on mutant detection in a polyploid and to eliminate, for now, the added complexity of 

fragmented, incomplete chromosome sections that will later be encountered in the study of 

the enriched and poorly defined wheat genome. In the hexaploid mutants that are studied 

here the phenotype inducing SNP is likely to only be homozygous in 1 of the 3 genomes, and 

therefore present in only ~1/3 of sequencing reads, thus potentially more difficult to pick out 

than a homozygote SNP in a diploid organism where it will be seen in ~100% of the 

sequencing reads.  

 

The artificial dataset that is utilized and developed in sections 2.5-2.7 was also designed to 

represent data similar to that which we would expect from a mutant scored F2 bulk 

segregant, backcrossed line with a single homozygous phenotype inducing SNP. This design 

ensured that the novel mutant identification pipeline that is based on SHOREmap’s 
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mapping-by-sequencing principles could be more easily employed. In the hexaploid mutant 

(section 2.7) the genomes were also designed to be approximately comparable to the 3 wheat 

genomes i.e. three diploid genomes with similar numbers of SNPs conserved and different 

between them and no major structural differences as co-linearity appears to be retained 

between them (Gu et al., 2004).  

 

 

2.2 Ebi-1 SNP identification  

In the study by Ashelford et al. the 120 Mb genome of a novel EMS induced Arabidopsis 

clock mutant early bird (ebi-1) and the corresponding wild type, Wassilewskija (Ws-2) were 

re-sequenced using the Applied Biosystems SOLiD sequencing by ligation technology. 

Screening an EMS-mutagenized population for mutants with CAB2 oscillating with a short 

period allowed identification of the ebi-1 mutant. This mutant was then backcrossed four 

times with the original parent line Ws-2 in the hope of removing EMS-induced SNPs that 

were not associated with the phenotype. The data was mapped and SNP calling was carried 

out using the SOLiD System Analysis Pipeline Tool (Corona Lite) and the Arabidopsis Col-

0 TAIR9 reference genome. SNPs that were novel to ebi-1 were selected that could be 

potential candidates for causing it’s phenotype. Investigating gene expression data for 

mutated genes further narrowed down the list of SNPs that were identified and finally a SNP 

in the gene AtNFXL-2 was determined as the likely cause of the ebi-1 phenotype (Ashelford 

et al, 2010). 

 

With the current development of mapping tools such as BWA and Bowtie enabling efficient 

sequence data mapping independent of sequencing technology, the corona lite tool, that was 

developed specifically for mapping colour-space reads and subsequent SNP calling, is now 

largely redundant. In this study, re-mapping and SNP calling in the sequencing datasets that 

were generated by Ashelford et al., enabled a comparison of the SNP calls that were 

generated using a bespoke mapping and SNP calling pipeline to ensure that the pipeline 

picked up the phenotype inducing SNP plus the majority of the other confirmed SNPs that 

were identified in this study. This served as a validation for the SNP calling pipeline that has 

been developed here. The data mapping and SNP calling for the SOLiD sequenced 

Arabidopsis clock mutant ebi-1 and the corresponding wild type Ws-2 datasets generated by 

Ashelford et al. was therefore repeated using BWA (v 0.5.8) and GATK (version 1.0.4418).  

 

The short SOLiD sequencing reads that were generated for Ws-2 were initially mapped to 

Col-0, to the TAIR9 reference genome, using the alignment tool BWA. The same was done 

for ebi-1 dataset. The steps involved in the BWA alignment and subsequent GATK SNP 
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calling are shown in figure 1.6. Indexing of the reference sequence, involved use of the ‘IS’ 

algorithm that is preferred if the genome is smaller than 2GB. The path for BWA fragment 

short read mapping was followed (prior to the 2013 update to BWA-backtrack) and 

parameters to allow processing of colour-space SOLiD reads were used. The program 

csfasta2fastq was used to convert the SOLiD sequencing csfasta/qual files into a fastq file, 

which is required as input for BWA’s alignment step. For sequencing read alignment the 

mismatch number was altered and the alignment re-run allowing 2, 3, 4 and 6 mismatches 

per sequencing read. All example BWA/GATK commands can be found in the command 

outline appendix section 1, 2 and 3 showing default parameters used unless otherwise stated. 

When 4 mismatches were used on average approximately 20x coverage was gained and over 

85% of the genome was mapped to in both datasets. 

 

Using the GATK SNP detection was carried out between Ws-2 and Col-0 and ebi-1 and Col-

0. This allowed subsequent identification of those homozygote SNPs that differed between 

ebi-1 and Ws-2 relative to Col-0 i.e. SNPs novel to ebi-1 could be potential candidates for 

causing it’s phenotype. Four such lists were created corresponding to the 4 different mapping 

analyses that were carried out for each sample (allowing 2, 3, 4 and 6 mismatches per 

sequencing read). SNPs that could be found in all 4 lists made up the final list.  

 

The following main filters were applied to the SNPs during variant filtration that were found 

to enable distinction between true SNPs and false positives in this dataset: Discard SNPs 

within the 10bp flanking region around a potential indel; discard SNPs covered by 3 or fewer 

reads (per sample); discard SNPs with a QUAL score below 50 (phred scaled probability that 

call is correct); in any 10bp window if there are 3 or more SNPs discard them all; discard 

SNP if depth of coverage is greater than 100 and finally discard heterozygote calls. These 

filters were determined to be most appropriate for this particular dataset and where possible 

were tailored to be as close as possible to those used in the study by Ashelford et al.  

 

The ebi-1 mutant was compared with Ws-2 rather than simply Col-0 as it shares greater 

similarity with Ws-2. With this methodology SNPs could be eliminated as unlikely to cause 

the mutant phenotype if both Ws-2 and ebi-1 had them when mapped to Col-0. The results 

gained supported those identified by Ashelford et al. and are summarized in figure 2.1.  
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Figure 2.1. Positions of ebi-1 SNPs along the Arabidopsis chromosomes 1-5. 

Homozygous SNPs that were unique to the Arabidopsis ebi-1 mutant were identified using 

GATK and are detailed here 

 

 

The original study identified 109 SNPs that were unique to ebi-1, plus the ebi-1 phenotype 

inducing SNP that was found in the gene AtNFXL-2 (At5g05660). The AtNFXL-2 protein 

shares homology with the mammalian zinc finger transcription factor. In this study 95 SNPs 

were identified that were unique to ebi-1 (for full list see Appendix 1, table 1) plus the ebi-1 

phenotype inducing SNP. Two trends were also found in the original study that were 

reinforced with this study; a high proportion of SNPs that were found in the north arm of 

chromosome 5 where the phenotype inducing SNP was found. This is a result of SNPs being 

carried through with the ebi-1 mutation during backcrossing. There was also, to a lesser 

extent, a group of SNPs on chromosome 1 due to backcrossing ebi-1 with the original parent. 

 

 

2.3 Mutation identification in the Arabidopsis strain Ws-2 

In this study an EMS Ws-2 fatty acid metabolism mutant, which was provided by Jonathan 

Napier’s research group in Rothamsted, was sequenced by the CGR using the Illumina 

Genome Analyzer IIx (standard fragment library preparation). A pool of over 100 F2 

backcrossed lines were sequenced that all displayed the mutant phenotype. Analysis of the 

allelic frequency of EMS SNPs that co-segregate with the mutant SNP could potentially 

locate a mapping interval to allow identification of the mutation causing SNP. Bulk 

segregation of the mutant makes it an ideal candidate to be analyzed using the SHORE and 

SHOREmap software (version 0.5.0 and version 1.1). The steps that were followed using 

SHORE and SHOREmap to allow the identification of possible causative SNPs responsible 

for the mutant phenotype of the organism are summarized in figure 2.2. The actual 

commands that were used are detailed in the command outline appendix section 5. All 

settings that have been used are default unless otherwise stated. 
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Figure 2.2. Pipeline for mutant identification using SHOREmapping. ‘SHORE 

preprocess’ takes the reference sequence as input and produces an Index folder as output. 

Then ‘SHORE import’ can take as input csfasta/qual files or fastq files and outputs SHORE 

file format reads to the Flowcell Folder. ‘SHORE mapflowcell’ performs read alignments 

using the Index and Flowcell folder producing a map.list file that is written to the Flowcell 

folder. ‘SHORE merge’ can merge together alignments for parallel analysis downstream as 

one map.list file. ‘SHORE consensus’ takes the map.list alignment file and the reference 

sequence from the Index folder and outputs its analysis (SNPs, indels, CNV’s etc.) to an 

Analysis folder. ‘SHOREmap denovo’ takes input from the Analysis folder (heterozygous 

SNPs) and the Index folder reference genome and generates a plot for each chromosome of 

the relative allele frequencies per user-defined window (200,000bp default) in order to 

define the phenotype inducing SNP’s mapping interval. Finally ‘SHOREmap annotate’ 

extracts a list of homozygous SNPs that lie within the interval identified by ‘denovo’. 

SHORE preprocess 
Creates mapping reference index and calculates local GC content and 

sequence complexity 

SHORE import 
Processes and filters sequencing reads converting them into SHORE 

format 

SHORE mapflowcell 
Performs actual read alignments to a reference genome with use of its 
own tool GenomeMapper or else links to other well known tools such 

as BWA, Bowtie etc. 

SHORE merge 

SHORE consensus 
 

Identifies SNPs, indels, CNV’s etc. It can generate a consensus 
sequence by combining all predictions. Also estimates min/max read 

length, sequencing coverage and GC content bias 

SHOREmap denovo 
Helps define mapping interval by calculating marker frequency using 
heterozygous SNPs as markers. Outputs chromosome-wise image of 

analysis to outline any identified peaks of interest 

SHOREmap annotate 

Outputs list of mutations underneath peak of interest that is defined 
by SHOREmap denovo 
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In this instance ‘SHORE preprocess’ was implemented with use of Col-0, the TAIR10 

reference genome, as the reference input. The colour-space (–c) option was not 

implemented, as colour-space indexing was not required due to having Illumina not SOLiD 

reads. ‘SHORE import’ was then used to convert the sequencing reads into SHORE read file 

format. ‘SHORE mapflowcell’ was used to perform read alignments with the –v option as 

‘Fastq’ due to Illumina output in fastq files as opposed to ‘Solid’ used when SOLiD 

generated sequence data is inputted. At this step, again no –c is required due to Illumina 

sequencing reads and an average depth of coverage of 18.5 was calculated. ‘SHORE merge’, 

‘SHORE consensus’ and ‘SHOREmap denovo’ were then each run in turn. In this case the 

program ‘SHOREmap denovo’ was re-run using 100,000, 200,000 and 300,000bp windows 

to allow downstream determination of the most suitable parameters for this dataset and 

200,000bp was confirmed as such (gave the smoothest baseline and most convincing peaks 

of interest). The ‘denovo’ output plot is created in pdf format and for this dataset is shown in 

figure 2.3. 

 

It is clear from figure 2.3 that one peak has been clearly identified at the beginning of 

chromosome 3. The peak of interest was noted in the region 1,000,000-3,000,000 bp on 

chromosome 3 and was within the preliminary mapping interval that has been identified for 

this mutation. This region was used as input for ‘SHOREmap annotate’ with the processed 

‘denovo’ output along with the reference sequence (Index folder) and a list of homozygote 

SNPs that were identified by ‘SHORE consensus’ and outputted to a file called 

homozygous_snp.txt in the Analysis folder. A text file list of homozygous mutations, 

prioritized by their distance to the highest peak in the user-defined interval, was generated as 

output.  The top SNP in the list generated by ‘annotate’ is likely to be the causative mutation 

(Schneeberger et al., 2009). The results gained are shown in table 2.1 and outline the top 

SNPs identified and their positions. Subsequent analysis of these SNPs through the The 

Arabidopsis Information Resource (TAIR, 2011) allowed further information to be gained 

regarding associated genes and annotations. 
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Figure 2.3.  SHOREmap denovo output pdf file for an Arabidopsis Ws-2 mutant. 

Mapping analyses carried out using the Arabidopsis Col-0 TAIR10 genome as a reference 

sequence. A window size of 200,000bp was used. 
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SNP 

Position 

Base 

Change 

Associated 

Gene 

Function Location % Reads 

Supporting 

SNP 

Amino Acid 

Change 

 

 
1052392 

 
C!T 

 
AT3G04050 

 
Pyruvate 
kinase 
family 
protein 
 

 
~900bp 
downstream 

 
100 

 
n/a 
 
 

1082660 C! T AT3G04120 Encodes 
cytosolic 
GADPH  
 

Exonic 97 Proline ! 
Leucine 
 

1163605 C!T AT3G04380 Encodes 
nucleolar 
histone 
methyl-
transferase 
 

Intronic 100 n/a 
 
 
 

856061 C!T AT3G03560 Unknown Intronic 100 n/a 
 

1287110 C! T AT3G04721 Unknown Promoter 100 n/a 

 

Table 2.1. Top candidate homozygous SNPs for the phenotype inducing SNP of an 

Arabidopsis Ws-2 mutant. SNPs taken from output of ‘SHOREmap annotate’ and 

additional annotation provided with use of the Arabidopsis TAIR website.   

 

 

Professor Johnathan Napier and his group at Rothamsted supplied the original bulk 

segregated mutant DNA that was sequenced at the University of Liverpool. Prof. Napier’s 

group are now taking the SNPs that are detailed in table 2.1, along with a short list of SNPs 

in the immediate vicinity, forward for further investigation in the laboratory. The table 2.1 

list was extended to ensure the phenotype inducing SNP was not missed since the peak in 

chromosome 3, although very convincing, was spread over a large interval. The extended list 

encompassed 32 SNPs ranked in order of confidence, that were spread across the entire peak 

interval rather than simply the peak tip, and is detailed in full in Appendix 1, table 2.  

 

 

2.4 Further mutation identification in the Arabidopsis strain Ws-2 

 

2.4.1 SHORE mapping pipeline 

In a parallel study to that detailed in section 2.3 an EMS Arabidopsis Ws-2 fatty acid 

metabolism mutant (pool of F2 backcrossed lines all displaying the mutant phenotype) that 
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was provided by Jonathan Napier’s research group in Rothamsted, was sequenced at the 

CGR using the SOLiD sequencing by ligation technology (fragment library used). The aim 

of this investigation was to identify a potential SNP that was novel to the mutant that could 

be inducing the mutant phenotype.  

 

The SOLiD sequencing reads were initially taken through the pre-assembly error correction 

SAET-SOLiD Accuracy Enhancement Tool.  This software first builds a list of all k-mers 

present in the reads and those with a frequency higher than a default threshold are considered 

trusted. Each read is corrected, where possible, so that it contains only trusted k-mers. This 

tool corrects missing and miss-calls in the reads thus increasing their mappability by up to 3 

times. It helps to reduce false SNP calls due to colour-space to allow us to distinguish 

between true SNPs and sequencing errors (Applied Biosystems, Life Technologies, SAET, 

2011). In an assay that was carried out on a sub-set of Arabidopsis SOLiD sequencing reads 

the use of SAET before mapping resulted in a 20% increase in the number of reads that were 

subsequently mapped. The tool requires as input the csfasta and qual file output standard to 

SOLiD sequencing. The approximate size of the genome that has been sequenced is also 

required. 

 

The steps that were followed using SHORE/SHOREmap to allow the identification of 

possible causative SNPs responsible for the mutant phenotype of the organism follow the 

same method used in section 2.3 with use of the Col-0 TAIR10 reference genome and 

parameters to allow use of SOLiD colour-space reads. In the penultimate step of the pipeline 

‘SHOREmap denovo’ was re-run using 100,000, 200,000 and 300,000bp windows to allow 

downstream determination of the most suitable parameters for this dataset. 200,000bp was 

again confirmed as the correct choice. The ‘baseline’ in the plots deviated from the smooth 

baseline that was seen in the exemplary dataset shown in figure 2.3. This was potentially due 

to the fact that in order to create that mutant bulk segregant dataset 100 plants were pooled, 

here only ~50 plants were pooled.  

 

An initial run through of this method gained inconclusive results in the ‘denovo’ output and 

as such the mapping success of the dataset was analyzed. Around 93% of the reference 

genome was mapped to with a mean depth of ~17 and a median depth of 15. The mean and 

median depths of mapping seem to be comparable to the successful analysis in section 2.3 

and therefore adequate. On closer inspection the SNPs that had been identified and were 

being used to generate the ‘denovo’ output had, on average, a depth of 7.05. This depth was 

much lower than the overall average. In a repeat analysis only SNPs that had a depth of 

coverage greater than or equal to 10 were considered. Subsequent filtering of SNPs allowed 
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SHOREmap ‘denovo’ to be re-run with greater success and the graphical output that was 

generated is shown in figure 2.4. 

 

 

 
 
 

Figure 2.4. SHOREmap denovo output pdf file for an Arabidopsis Ws-2 mutant. 

Mapping analyses carried out using the Col-0 TAIR10 Arabidopsis genome as a reference 

sequence. A window size of 200,000bp was used for this analysis. 
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Two peaks were clearly identified from figure 2.4. These peaks were noted in the region 

14,000,000-15,000,000bp on chromosome 1 and in the region 18,000,000-19,698,289bp on 

chromosome 2. These two regions were used as input for ‘SHOREmap annotate’ with the 

processed ‘denovo’ output. The results gained are shown in table 2.2 and outline the top 

homozygous SNPs that were identified and their positions. Subsequent analysis of these 

SNPs through the The Arabidopsis Information Resource (TAIR, 2011) allowed further 

information to be gained regarding associated genes that is also detailed in the table.  

 

It should be noted that the two top candidate SNPs that were found by ‘SHOREmap 

annotate’ in chromosome 1 (table 2.2) are transposable element genes and as such will be 

disregarded as these SNPs are likely to be located within the centromeric region of the 

chromosome. SNPs found in chromosome 2 were not found to have the same issue and as 

such can be taken forward for further investigation in the laboratory by Prof. Johnathan 

Napier and his group who supplied the original bulk segregated mutant DNA that was 

sequenced here at the University of Liverpool. The SNP locations that were identified in 

chromosome 2 were within the preliminary mapping interval that Prof. Napier’s group 

identified for this mutation. 

 

SNPs with a depth below 10 were removed from this analysis as low coverage, potentially 

false positive SNPs, appeared to be hindering effective peak discrimination within the 

genome-wide analysis. However, these SNPs were reinstated onto the final SNP list given to 

Prof. Napier if they fell within the proximity of the identified peak. This was considered to 

be sensible in case a real SNP was wrongly classified as a false positive due to low coverage. 

The list totalled 36 SNPs and is detailed in full in Appendix 1, table 3. 
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Chrom SNP 
Position 

Base 
Change 

Associated 
Gene 

Function Location Amino Acid 
Change 

1 14608287   T!A AT1G39350 Transposable 
element gene 

n/a n/a 

1 14608141 A! G AT1G39350 Transposable 
element gene 

n/a n/a 

2 19186718 G!A AT2G46700 CDPK-related 
kinase 3 

Promoter n/a 

2 19256651 G!A PPA3 Inorganic 
pyrophosphatase 
activity 

1000bp 
down-
stream of 
gene 

n/a 

2 19328802 G!A AT2G47040 Enhance growth 
of pollen tube in 
style and 
transmitting tract 
tissues  

Coding 
regon 

Alanine! 
Valine 

2 19336514 G!A AT2G47070 DNA binding 
proteins/putative 
transcription 
factors 

Promoter n/a 

2 19357996 G!A AT2G47160 Boron transporter Coding 
region 

Serine ! 
Phenylalanine 

2 19388595 G!A AT2G47230 
 

Plant specific 
DUF724 protein 
family 

Coding 
region 

Aspartic acid 
! Asparagine 

2 19443789 G!A AT2G47390 
 

Serine-type 
peptidase activity 

Coding 
region 

Leucine ! 
Phenylalanine 

2 19540806 G!A AT2G47650 
 

Similar to UDP-
glucuronic acid 
decarboxylase 

Coding 
region 

Glutamine ! 
Stop codon 

2 19548657 G!A AT2G47680 
 

Zinc finger 
helicase family 
protein 

Coding 
region 

Proline ! 
Serine 

2 19566463 G!A AT2G47760 
 

Asparagine-linked 
glycosylation 

Coding 
region 

Leucine ! 
Phenylalanine 

2 19577036 G!A AT2G47800 
 

Plasma membrane 
localized ATPase 
transporter 

Coding 
region 

Glycine ! 
Aspartic acid 

2 19672565 G!A AT2G48100 
 

Exonuclease 
family protein 

Intron n/a 

2 19678764 G!A AT2G48110 
 

Unknown protein Coding 
region 

Glycine ! 
Glutamic acid 

2 19691150 G!A AT2G48160 
 

Tudor/PWWP/M
BT domain-
containing protein 

Coding 
region 

Threonine ! 
Methionine 

 

Table 2.2. Top candidate homozygous SNPs for the phenotype inducing SNP of an 

Arabidopsis Ws-2 mutant. Homozygous SNPs in over 80% of the sequencing reads and 

taken from output of ‘SHOREmap annotate’ and additional annotation provided with use of 

the Arabidopsis TAIR website.   
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2.4.2 Development of a novel pipeline for mutant identification with use of BWA and 

SAMtools  

SHOREmap is currently intended only for use in a diploid genome. There is a need to 

develop a mutant identification pipeline that can be applied to polyploid species. Here the 

initial trial of a bespoke novel mutant identification pipeline is implemented using the 

diploid Arabidopsis Ws-2 mutant (section 2.4.1), in effect re-creating the result from this 

section that was gained using SHOREmap, to enable pipeline validation prior to 

implementation on polyploid species.  

 

This bespoke mutant identification pipeline was initially trialed on the Arabidopsis mutant 

dataset that was introduced in section 2.4.1 and involved mapping the data, SNP calling and 

finally analysis of allele frequency to define an interval containing the phenotype inducing 

SNP. The tools selected for use in the pipeline include; mapping tool BWA (v 0.5.8), 

SAMtools (SAMtools-0.1.16) and VarScan (VarScan.v2.2.3.jar). Here VarScan was 

implemented in preference to GATK for the following main reasons; firstly, with more 

simple statistics VarScan proves to be more effective in pooled samples easily identifying 

low frequency alternate alleles (Koboldt et al., 2009); the tools are fairly similar otherwise 

and a repeat of the investigation in section 2.2 using VarScan yielded a SNP list that was 

over 70% identical to that gained with GATK and more importantly included similar SNP 

trends and the mutation of interest; VarScan can output multiple alternate alleles in one 

position in a simple user-friendly output that allows easier adaptation downstream to a 

polyploid genome; its input SAMtools pileup file also allows easy user manipulation and 

calculation of alternate allele frequency; finally, at this time the GATK had no such 

polyploid adaptation.  

 

The Arabidopsis Ws-2 mutant bulk segregant sequencing data was mapped to the Col-0 

TAIR10 reference genome using the BWA short read-mapping pipeline, SAMtools was 

implemented for filtering, duplicate reads were removed and finally the VarScan SNP 

calling pipeline was followed (see figure 1.6.). All commands can be found in the command 

outline appendix section 1 and 4. During indexing of the reference parameters to allow a 

colour-space index to be built and the ‘IS’ algorithm to be used were selected. During 

alignment of reads to the reference 4 mismatches per read alignment were allowed and the 

query was reversed but not complemented (required for a colour-space alignment). No other 

parameters were altered to gain a comparable mapping output (SAM/BAM file) to that of 

section 2.4.1. Mapping coverage was analyzed and details are shown in table 2.3. 
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Chromosome Size  

(bp) 

Bp  

mapped 

%  

Mapped 

Mean 

coverage 

Median 

coverage 

SD of 

coverage 

 

1 

 

30,427,671 

 

28,066,281 

 

92.24 

 

15.95 

 

15.00 

 

20.34 

2 19,698,289 18,630,523 94.58 19.26 15.00 75.87 

3 23,459,830 22,153,984 94.43 16.54 15.00 57.87 

4 18,585,056 17,420,143 93.73 15.73 15.00 33.15 

5 26,975,502 25,263,754 93.65 16.10 15.00 32.73 

 

 
Table 2.3. Descriptive mapping statistics for an Arabidopsis Ws-2 mutant. Statistics 

given per chromosome for the mapping of an Arabidopsis mutant to the TAIR10 reference 

genome using BWA. 

 

 

SNP calling was performed from the filtered BAM file using SAMtools. Initially SAMtools 

mpileup was used to output a summary of the bases seen across all sequencing reads 

mapping to each genomic position.  This command took as input the reference fasta file and 

the BAM file. The output pileup format file was then run through VarScan to filter out SNPs 

and to calculate alternate allele frequencies at each location. The parameter ‘min-coverage’ 

was used and defined as 10 i.e. the minimum depth of coverage for a SNP to be called was 

set to 10. This produces a text file including columns detailing the following: SNP position, 

reference base, consensus base, number of reads supporting the reference allele, number of 

reads supporting the alternate allele, % of reads with the alternate allele, average quality of 

mapped reads supporting the reference allele, average quality of mapped reads supporting 

the alternate allele and finally the variant allele itself.  

 

A homozygote SNP that could potentially be inducing the phenotype in this mutant was 

defined as a SNP with more than 80% of the sequencing reads containing the alternate allele. 

These SNPs were filtered from the VarScan output into a homozygote’s file.  A heterozygote 

SNP was defined as having greater than or equal to 20% and less than or equal to 80% of 

sequencing reads containing the alternate allele. These SNPs were also filtered from the 

VarScan output into a heterozygote’s file. 

 

Both of these files were then run through a preliminary Perl script (Allele-frequency-

interval-determination.pl) that was developed to take VarScan formatted files as an input and 

calculate how many SNPs in the input file fall within each 200,000 base pair window along 

each chromosome. The output from this Perl script takes the form of a simple text file with 
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the interval number in column 1 and the number of SNPs in the input file that fall within it in 

column 2. From this data the homozygote to heterozygote ratio per window could be 

calculated and used to produce the frequency plot shown in figure 2.5. A higher ratio would 

suggest a homozygote region with fewer heterozygotes present (as we would expect in a 

region that harboured the causal mutation). Centromeric regions were masked to avoid false 

positive peaks. 

 

 

 
 
 
Figure 2.5. Allele frequency analysis of an Arabidopsis Ws-2 mutant. Plots describe the 

homozygote to heterozygote ratio (x axis) per 200,000bp interval along each chromosome (y 

axis). 

 

 

In figure 2.5 a clear solitary peak can be seen at the end of chromosome 2 within the interval 

95-97. This interval corresponds approximately to chromosome location 19,200,000-

19,698,289 bp and covers the same region that was discovered by SHOREmap. The absolute 

peak (highest point) is observed in the interval 97 i.e. location 19,600,000-19,698,289bp and 

Chromosome 1 

Chromosome 2 

Chromosome 3 

Chromosome 4 

Chromosome 5 
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in theory the SNPs of interest could be narrowed down further to only those in this narrow 

region. Experimental validation is required before this conclusion could be confirmed. The 

SNPs that were identified in this study that fall within the peak intervals 95-97 on 

chromosome 2 are detailed in table 2.4 and a comparison of the chromosome 2 SNPs in table 

2.4 and table 2.3 shows that both lists are identical apart from 2 SNPs; one at position 

19,347,162 bp in chromosome 2 appears in the SAMtools data in table 2.4 and not the 

SHOREmap data in table 2.3 due to it having insufficient depth of coverage when analyzed 

by SHOREmap (depth of 8); the other SNP at position 19,540,806 in chromosome 2 appears 

in the SHOREmap data and not the SAMtools data seemingly due to a lower mapping 

quality in the SAMtools data leading to the SNP not passing SNP calling filters marginally 

within SAMtools. 
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SNP 
Position 

Base 
Change 

Associated 
Gene 

Function Location Amino Acid 
Change 

19186718 G! A AT2G46700 CDPK-related 
kinase 3 

Promoter n/a 
 

19256651 G! A PPA3 Pyrophosphatase 
activity 

1000bp 
downstream 
of gene 

n/a 

19328802 G!A AT2G47040 Enhance growth of 
pollen tube in style 
and transmitting 
tract tissues  

Coding 
regon 

Alanine! 
Valine 

19336514 G!A AT2G47070 DNA binding 
proteins/putative 
transcription factors 

Promoter n/a 

19347162 G ! A AT2G47115 Unknown protein Promoter n/a 
19357996 G!A AT2G47160 Boron transporter Coding 

region 
Serine ! 
Phenylalanine 

19388595 G!A AT2G47230 
 

Plant specific 
DUF724 protein 
family 

Coding 
region 

Aspartic acid 
! Asparagine 

19443789 G!A AT2G47390 
 

Serine-type 
peptidase activity 

Coding 
region 

Leucine ! 
Phenylalanine 

19548657 G!A AT2G47680 
 

Zinc finger helicase 
family protein 

Coding 
region 

Proline ! 
Serine 

19566463 G!A AT2G47760 
 

Asparagine-linked 
glycosylation 

Coding 
region 

Leucine ! 
Phenylalanine 

19577036 G!A AT2G47800 Plasma membrane 
localized ATPase 
transporter 

Coding 
region 

Glycine ! 
Aspartic acid 

19672565 G!A AT2G48100 
 

Exonuclease family 
protein 

Intron n/a 

19678764 G!A AT2G48110 
 

Unknown protein Coding 
region 

Glycine ! 
Glutamic acid 

19691150 G!A AT2G48160 
 

Tudor/PWWP/MB
T domain-
containing protein 

Coding 
region 

Threonine ! 
Methionine 

 
Table 2.4. Top candidate homozygous SNPs for the phenotype inducing SNP of an 

Arabidopsis Ws-2 mutant. Candidate homozygous SNPs taken from output of BWA 

mapping, SAMtools SNP calling and allele frequency analysis and additional annotation 

provided with use of the Arabidopsis TAIR website. All positions that are detailed can be 

found on chromosome 2. 

 

 

2.5 Mutant identification in a diploid using an artificial dataset  

Here the bespoke mutant identification pipeline that was introduced in section 2.4.2 was 

trialed on an artificial sequencing dataset that was created for the diploid plant Arabidopsis. 

This analysis was carried out as a precursor to the development of the artificial sequencing 

dataset into a tetraploid and finally a hexaploid based dataset on which the pipeline would 

later be trialed. 
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2.5.1 Development of an artificial diploid sequence dataset 

The development of sequencing data for the artificial diploid mutant was based on the 

evolution of the A genome of wheat. The program evolver was used to create an evolved 

Arabidopsis genome (known as Arabidopsis A genome within this study) that was as 

different from the Arabidopsis reference strain Col-0 than the wheat A genome is from its 

donor T. turgidum. To output an approximation of an evolved sequence that has accumulated 

SNPs at random over a given time period, evolver took the Arabidopsis Col-0 reference 

sequence as input, along with a ‘branch length’ of 0.0093. This branch length, or expected 

amount of sequence change per site, was the value for genome A in wheat calculated by Gu 

et al. and creates a random substitution approximately every 108 bases. No major structural 

changes were added into this approximation of an evolved genome for simplicity within the 

analysis. 

 

For this evolved genome to be run through a SNP identification pipeline, sequencing data for 

the Arabidopsis A genome was required. The SAMtools program wgsim, the short read 

simulator, creates artificial paired end Illumina sequencing data for an input fasta sequence 

with a base error rate of 0.02, a standard distance between the two ends of 500, a standard 

length of read of 70 and an option to determine the number of read pairs created that in this 

case was set at 100,000,000. 

  

The sequencing data required a characteristic homozygous hotspot (containing the phenotype 

inducing SNP) fading into the low homozygote/high heterozygote frequency found 

elsewhere in the genome and characteristic of a bulk segregant sample of mutant F2 

backcrossed lines. To create this effect the fasta file described in figure 2.6 was created and 

used as input into wgsim. Duplicating the genome sequence within this input file would 

result in approximately 50% of the sequencing reads being created corresponding to each 

genome sequence and tripling the genome would result in 33% of the reads corresponding to 

each genome sequence etc. Therefore if two genome sequences were included as wgsim 

input and the second differed from the first, as Arabidopsis Col-0 differs from the evolved 

Arabidopsis A genome i.e. every ~108bps, then at every differing position a heterozygote 

with an approximately 50:50 distribution of reads will be created.  
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Figure 2.6. Outline of sequence input into SAMtools wgsim. Outline of the fasta sequence 

input (red and black lines) into SAMtools wgsim in order to create a diploid mutant with a 

homozygous hotspot. Chromosome 1 is shown, all other chromosomes are of the same 

design as for the 3,500,000bp+ region of chromosome 1. 

 

 

The mutation and the homozygous hotspot were placed on chromosome 1 in the region 

1,600,000-1,900,000bp. The reference genome sequence that the data would eventually be 

mapped to was the TAIR10 Arabidopsis Col-0 genome as such the mutation was added to 

the Arabidopsis A Genome sequence. Figure 2.6 demonstrates how for each section of the 

Arabidopsis genome four DNA sequences were inputted into wgsim. For chromosomes 2-5 

and chromosome 1 region 3,500,000bp+ this was broken down into two sequences for the 

Arabidopsis Col-0 genome and two for the evolved Arabidopsis A genome i.e. 

approximately 50% reads generated for each in these regions. This ensured that on average 

every 108bp where there was a difference between the two genomes a heterozygote could be 

seen in the sequencing reads (higher heterozygote frequency).  The only homozygotes found 

in these regions were due to errors in sequencing reads generated by wgsim to create a 

dataset with more variability that is typical of a real dataset, this is also why heterozygotes 

were not always in exactly 50% of reads. 

 

In figure 2.6 the regions of chromosome 1 approaching the mutation; 0-1,600,000bp and 

1,900,000-3,500,000 show a demonstration of the phasing into the homozygote region that 

we would expect to see in real data (although we would expect more interim stages between 

50:50 and 100:0 than just 75:25 this would have proved too difficult to simulate). These 
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sections both required three input sequences for the Arabidopsis A genome and only one for 

the Arabidopsis Col-0 genome to allow more potential homozygote alternate allele calls 

against the Arabidopsis Col-0 reference as the proportion of reads with an allele from the 

Arabidopsis A Genome, at positions with a difference, reached ~75%. 

 

Finally in the homozygote hotspot region of chromosome 1 (1,600,000-1,900,000bp) only 

four Arabidopsis A genome sequences were inputted into wgsim ensuring a high 

homozygote alternate allele frequency to the Arabidopsis Col-0 reference sequence in this 

area harbouring the mutation as the proportion of reads with an allele from the Arabidopsis 

A Genome, at positions with a difference, reached ~100%. The mutation that was selected 

for analysis was in chromosome 1 position 1,700,408 and was a G to A substitution. 

Although four sequences were used at each point in the genome a maximum of two alleles 

were possible at any point due to use of only the Arabidopsis A genome and the ancestor 

Arabidopsis Col-0 genome sequences therefore this mutant was diploid. 

 

2.5.2 Mutant identification in the artificial diploid dataset 

After the Illumina data was generated from the input fasta file it was firstly analyzed, as per 

section 2.3, using the SHORE/SHOREmap pipeline. Arabidopsis Col-0 (TAIR10) was 

implemented as the reference sequence.  SHOREmap ‘denovo’ was run on the output files 

with a window size of 100,000bp due to the small 300,000bp window of the artificial 

homozygote region. The minor allele frequency text file, used as input for ‘denovo’ acts as a 

list of heterozygotes. The output from ‘denovo’ can be seen below in figure 2.7a and an 

obvious peak appears in the target region of chromosome 1 at ~1,600,000-1,900,000bp. 

SHOREmap ‘annotate’ was run over this peak and a list of 641 homozygous SNPs were 

identified (see Appendix 1, table 4) of which the mutant SNP was 170th. It was identified 

correctly as a G!A SNP and found in 100% of sequencing reads with a depth of coverage 

of 81.  

 

The correct interval was identified containing the SNP of interest, but the mutant SNP was 

not the top ranked SNP, and the longer length of the list of SNPs that were identified was not 

ideal. This was anticipated due to the previously detailed difficulties of phasing into the 

homozygote region when creating the dataset and this resulted in a longer length 

homozygote region. The correct identification of the region containing the mutant SNP 

provides the proof of concept, however, additional phasing into the homozygote region, as 

would be seen in a real sample, (the more backcrossing or pooled samples the smaller the 

interval) could have allowed further homing in on the SNP of interest. 
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  (a)               (b) 

   
 

Figure 2.7. Allele frequency analysis of a simulated Arabidopsis diploid mutant. (a) ‘SHOREmap denovo’ output pdf file for an artificial Arabidopsis 

mutant mapped to the TAIR10 Arabidopsis reference genome (window size 100,000bp used). (b) Output from bespoke allele frequency analysis of artificial 

Arabidopsis mutant. Plots describe the homozygote to heterozygote ratio (y axis) per 100,000bp window along each chromosome (x axis) 
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This investigation was repeated using the bespoke mapping, SNP calling pipeline and allele 

frequency analysis that was developed here as per section 2.4.2 without the need for 

additional parameters to account for colour-space reads and the TAIR10 Arabidopsis Col-0 

sequence was used as the reference. SNPs with more than 80% of the sequencing reads 

containing the alternate allele were filtered from the output into a homozygote’s file. On this 

occasion a heterozygote SNP was defined as having greater than or equal to 30% and less 

than or equal to 70% of sequencing reads with the alternate allele and these SNPs were 

filtered from the VarScan output into a heterozygote’s file. Both files were run through the 

Perl script (Allele-frequency-interval-determination.pl) to calculate the numbers of 

heterozygotes and homozygotes per 100,000bp interval along each chromosome and the 

homozygote to heterozygote ratio was calculated. These ratios were plotted and are shown in 

figure 2.7b. In both analyses in figure 2.7a and 2.7b average depth of coverage was 

calculated to be ~100. 

 

A peak appears in figure 2.7b in the target region around chromosome 1 windows 16, 17 and 

18 corresponding to 1,600,000-1,900,000bp. 3436 SNPs were found within this peak in the 

VarScan output, these could be narrowed to 430 relevant homozygous SNPs (see Appendix 

1, table 5). Within this list the mutant SNP position was identified correctly as a G!A SNP 

in 100% of sequencing reads with a depth of coverage of 92. Either the bespoke pipeline that 

was developed here or SHORE can be used effectively for determination of the interval 

containing the phenotype inducing SNP position within a diploid mutant.  

 

 

2.6 Mutant identification in a tetraploid using an artificial dataset  

 

2.6.1 Development of an artificial tetraploid sequence dataset 

This novel mutant identification pipeline was then trialed on an artificial tetraploid 

sequencing dataset; an additional diploid mutant was developed to add to the existing diploid 

mutant created in section 2.5.1 to create this tetraploid mutant. This second diploid was 

based on the evolution of the B genome of wheat. The program evolver was again used to 

create this evolved Arabidopsis genome (Arabidopsis B genome) that was as different from 

the Arabidopsis reference strain Col-0 than the wheat B genome is from its most likely donor 

T. turgidum.  To output this evolved sequence evolver took the Arabidopsis Col-0 reference 

sequence as input along with a ‘branch length’ of 0.0056. This branch length was the value 

for the genome B in wheat as calculated by Gu et al. and creates a substitution 

approximately every 179 bases. 
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In the original diploid mutant that was created in section 2.5.1 Arabidopsis Col-0 was used 

to create heterozygosity in the data (sequence data from one input sequence will create 

homozygotes only). In this case to create the B diploid genome it was more suitable to create 

a B’ genome to compliment the B genome and create heterozygosity within it. The B’ 

genome was a further minimally evolved version of genome B and as such the difference 

between genomes A and B was calculated and divided by 10 and this figure (0.00037) was 

used as the branch length along with the Arabidopsis B genome for input into evolver.  

 

A phenotype inducing mutation in a tetraploid is likely to be homozygous and in a 

homozygous hotspot within one genome. As such, the A genome Illumina data that was 

generated in section 2.5.1 could be re-used, and the B genome data added to it in equal 

amounts. With no mutation in the B genome, data could be generated for it as follows; the 

Arabidopsis B genome and the Arabidopsis B’ genome sequences were used once each as 

input for SAMtools wgsim with the same parameters to create another 100,000,000 read 

pairs. This Illumina data was merged with Arabidopsis Genome A sequencing data, 

100,000,000 read pairs for each excluded bias. The resultant dataset contains approximately 

equal numbers of reads for each of the 2 diploid genomes that make up the tetraploid. 

 

The same features as detailed in figure 2.6 were expected for this tetraploid however the 

addition of the B genome altered the proportions of reads effected. Due to the presence of 

two genomes, heterozygotes in one of the two genomes along the chromosomes 2-5 and 

chromosome 1 3,500,000bp+ were typically found in approximately 25% of sequencing 

reads (unless two identical heterozygotes were present in both genomes or more than 2 

alternate alleles were present; both were found to be rare occurrences which would not effect 

results). In the ‘phased’ regions of chromosome 1 approaching the mutation; 0-1,600,000bp 

and 1,900,000-3,500,000 alternate alleles would be expected in around 37-38% of reads. 

Finally in the homozygote hotspot region of chromosome 1 (1,600,000-1,900,000bp) a high 

homozygote alternate allele frequency to the Arabidopsis Col-0 reference in this area 

generated by the Arabidopsis genome A mutation would result in an alternate allele in ~50% 

of sequencing reads. 

 

2.6.2 Mutant identification in the artificial tetraploid dataset 

After the Illumina data was generated for the tetraploid it was analyzed identically to the 

data in section 2.5.2 using the SHORE/SHOREmap pipeline and later the bespoke mutant 

identification pipeline, again using Arabidopsis Col-0 (TAIR10) as the reference sequence. 

SHOREmap ‘denovo’ was run on the output files with a window size of 100,000bp. The 

minor allele frequency text file, used as input for ‘denovo’, that is intended to act as a 
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representation of heterozygote frequency along the genome, was filtered using awk to 

remove any minor alleles with a frequency in the sequencing reads lower than 15% and 

greater than 35% since we expect heterozygotes in this dataset to be found in ~25% of 

sequencing reads. The outputs from ‘denovo’ using the filtered minor allele frequency file 

can be seen in figure 2.8a. 

 

The VarScan output that was generated by the bespoke mutant identification pipeline that 

this dataset was also taken through was filtered for SNPs with more than 45% and less than 

55% of the sequencing reads containing the alternate allele. These SNPs were added into a 

homozygote’s file. A heterozygote SNP was defined as having greater than or equal to 15% 

and less than or equal to 35% of sequencing reads containing the alternate allele and these 

SNPs were filtered from the VarScan output into a heterozygote’s file. Both files were then 

run through the Perl script (Allele-frequency-interval-determination.pl) and the numbers of 

heterozygotes and homozygotes per 100,000bp interval along each chromosome were 

calculated along with the homozygote to heterozygote ratio. These ratios were plotted to 

produce the output in figure 2.8b. In both analyses in figure 2.8a and 2.8b average depth of 

coverage was calculated to be ~200. 
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   (a)                               (b) 

   
 

Figure 2.8. Allele frequency analysis of a simulated Arabidopsis tetraploid mutant. (a) ‘SHOREmap denovo’ output pdf file for an artificial Arabidopsis 

mutant mapped to the TAIR10 Arabidopsis reference genome (window size of 100,000bp used). (b) Output from bespoke allele frequency analysis of 

artificial Arabidopsis mutant. Plots describe the homozygote to heterozygote ratio (y axis) per 100,000bp window along each chromosome (x axis).
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In figure 2.8a, a peak appears in the target region around chromosome 1 at ~1,550,000-

1,940,000bp. SHOREmap ‘annotate’ was run over this peak and a list of 3006 homozygous 

SNPs in ~50% of sequencing reads were identified of which the mutant SNP was 737th (see 

Appendix 1, table 6). It was identified correctly as a G!A SNP and found in ~48% of 

sequencing reads with a depth of coverage of 100.  Figure 2.8b supports these findings since 

a peak appears in the target region in chromosome 1 windows 16, 17 and 18 corresponding 

to ~1,600,000-1,900,000bp and on closer inspection 1,600,000-1,850,000bp. 2528 

homozygous SNPs in ~50% of the reads were found within this peak in the VarScan output 

(see Appendix 1, table 7). Within this list the mutant SNP was identified correctly as a G!A 

SNP and found in 49.57% of sequencing reads with a depth of coverage of the alternate 

allele of 114. Either the bespoke pipeline or SHOREmap can be used effectively for 

determination of the correct interval containing the phenotype inducing SNP position within 

a tetraploid genome.  

 

 

2.7 Mutant identification in a hexaploid using an artificial dataset  

 

2.7.1 Development of an artificial hexaploid sequence dataset 

This novel mutant identification pipeline was finally trialed on an artificial hexaploid 

sequencing dataset; an additional diploid mutant was developed to add to the existing 

tetraploid mutant created in section 2.6.1 to create this hexaploid mutant. Creation of this 

diploid was based on the evolution of the D genome of wheat. Evolver was implemented 

with the Arabidopsis Col-0 reference sequence as input and a ‘branch length’ of 0.0137 to 

create an Arabidopsis D genome that was as different from Col-0 as the wheat D genome is 

from its ancestor Ae. tauschii. This branch length was the value for the genome D in wheat 

as calculated by Gu, Y. Q. et al. and creates a substitution approximately every 73 bases. It 

was not ideal that the A and B genome’s branch lengths were taken from their evolution 

from T. turgidum while the D genomes branch length was taken from its evolution from Ae. 

tauschii, however, these plants act as hexaploid wheat’s genome donors to allow a guideline 

for diversity between the 3 genomes since little is known about their long-term divergence.    

 

Here, as for the Arabidopsis B genome, a minimally evolved Arabidopsis D’ genome was 

developed to compliment the Arabidopsis D genome and to create heterozygosity within it. 

To create this the difference between wheat genomes A and D was calculated and divided by 

10, this figure (0.00044) was used as the branch length along with the Arabidopsis D 

genome as input for evolver.  



! 87!

A phenotype inducing SNP in a hexaploid is likely to be homozygous and in a homozygous 

hotspot within one genome, as such the Illumina data that was generated in section 2.6.1 for 

genomes A and B could be re-used and the D and genome data simply added to it. With no 

mutation in the Arabidopsis D genome, data could be generated for it as follows; the 

Arabidopsis D genome and the Arabidopsis D’ genome sequences were used once each as 

input for SAMtools wgsim with the same parameters to create another 100,000,000 read 

pairs. This Illumina data was merged with the section 2.6.1 Arabidopsis Genome A and B 

sequencing data, 200,000,000 read pairs in total resulting in 100,000,00 read pairs for each 

genome ensuring no bias between genomes. 

 

The same features as detailed in section 2.6.1 were expected for this hexaploid however the 

addition of the Arabidopsis D genome altered the proportions of reads effected. Due to the 

presence of 3 genomes heterozygotes in one of the 3 genomes along the chromosomes 2-5 

and in chromosome 1 3,500,000bp+ were, in general, in approximately 16.6% of sequencing 

reads (unless identical heterozygotes were present in 2 or even 3 genomes or more than 2 

alternate alleles were present; both were found to be rare occurrences which would not effect 

results). In the ‘phased’ regions of chromosome 1 approaching the mutation; 0-1,600,000bp 

and 1,900,000-3,500,000 alternate alleles were expected in ~25% of reads. In the 

homozygote region of chromosome 1 (1,600,000-1,900,000bp) a high homozygote alternate 

allele frequency to the Arabidopsis Col-0 reference in this area generated by the Arabidopsis 

genome A results in an alternate allele in ~33% of sequencing reads. 

 

2.7.2 Mutant identification in the artificial hexaploid dataset 

After the Illumina data was generated for the hexaploid it was analyzed identically to the 

data in both of the previous sections using the SHORE/SHOREmap pipeline and later the 

bespoke mutant identification pipeline, using Arabidopsis Col-0 (TAIR10) as the reference 

sequence. SHOREmap ‘denovo’ was run on the output files with a window size of 

100,000bp. The minor allele frequency text file was filtered using awk to remove any minor 

alleles with a frequency in the sequencing reads lower than 10% and greater than 20% since 

we expect heterozygotes in this dataset to be found in ~16.6% of sequencing reads. The 

output from ‘denovo’ gave inconclusive results using the filtered minor allele frequency file. 

The minor allele frequency text file was then re-filtered using awk to remove any minor 

alleles with a frequency in the sequencing reads lower than 16% and greater than 17% and 

the output from ‘denovo’ using the re-filtered file is shown in figure 2.9a. 

 

The VarScan output of the mutant identification pipeline that this dataset was also taken 

through was filtered for SNPs with more than 28% and less than 38% of the sequencing 
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reads containing the alternate allele. These SNPs were added into a homozygote’s file. A 

heterozygote SNP was defined as having greater than or equal to 10% and less than or equal 

to 20% of sequencing reads containing the alternate allele and these SNPs were also filtered 

from the VarScan output into a heterozygote’s file. Both files were then run through the Perl 

script (Allele-frequency-interval-determination.pl) and the numbers of heterozygotes and 

homozygotes per 100,000bp interval along each chromosome were calculated along with the 

homozygote to heterozygote ratio. These ratios were plotted to produce the frequency plot 

shown in figure 2.9b. In both analyses in figure 2.9a and 2.9b average depth of coverage was 

calculated to be ~300. 
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 (a)                              (b) 

     
 
Figure 2.9. Allele frequency analysis of a simulated Arabidopsis hexaploid mutant. (a) ‘SHOREmap denovo’ output pdf file for an artificial Arabidopsis 

mutant mapped to the TAIR10 Arabidopsis reference genome (window size of 100,000bp used). (b) Output from bespoke allele frequency analysis of 

artificial Arabidopsis mutant. Plots describe the homozygote to heterozygote ratio (y axis) per 100,000bp window along each chromosome (x axis).
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In figure 2.9a a peak appears in the target region around chromosome 1 and on closer 

inspection this maps to ~1,360,000-1,920,000bp. SHOREmap ‘annotate’ was run over this 

peak and a list of 9228 homozygous SNPs in ~33% of sequencing reads were identified of 

which the mutant SNP was 2368th (see Appendix 1, table 8). It was identified correctly as a 

G!A SNP and found in ~37% of sequencing reads with a depth of coverage of 105.  Figure 

2.9b supports these findings since a peak appears in the target region in chromosome 1 

windows 16, 17 and 18 corresponding to 1,600,000-1,900,000bp. 6197 homozygous SNPs 

were found within this peak in the VarScan output (see Appendix 1, table 9). Within this list 

the mutant SNP was identified correctly as a G!A SNP and found in 36.67% of sequencing 

reads with a depth of coverage of the alternate allele of 117. Either the bespoke pipeline or 

SHORE/SHOREmap can be used effectively for determination of the correct interval 

containing a phenotype inducing SNP position within a hexaploid mutant.  

 

 

2.8 Conclusions  

Section 2.2 acts as a mapping and SNP calling pipeline validation. It demonstrates that the 

pipeline that was developed using BWA and GATK was successfully able to identify a large 

proportion of the ebi-1 specific SNPs that were identified by Ashelford et al. (~90%). The 

SNP that is responsible for causing the ebi-1 phenotype was successfully identified in the 

dataset along with the two trends (high proportion of SNPs on the north arm of chromosome 

5 and a group of SNPs on chromosome 1) that were found in the original studies.  

  

Here all of the analyses that were carried out using SHORE/SHOREmap on Arabidopsis 

Ws-2 mutants (sections 2.3-2.4) produced clear peaks of interest and a short list of potential 

phenotype inducing SNPs to be taken forward for further analysis. Schneeberger et al. 

demonstrated that SHOREmap ranks the SNPs that it finds in the defined interval so that the 

top SNP in the list is likely to be the causative mutation. Here lists of SNPs were taken 

forward for further investigation, rather than a single top candidate, due to higher numbers of 

SNPs being close to the identified peak whilst also close to one another within the genome. 

This is possibly due to false positive SNPs creeping into data and ‘cluttering’ results (due to 

low coverage or too few pooled plants) or simply due to the SNP dense nature of the 

identified region. Despite these issues this is a very useful analysis as the recommended SNP 

list to be investigated experimentally as potential phenotype inducers has been reduced to a 

relatively small and manageable number that can be tentatively ranked in order of 

confidence. The more narrow a region and smaller a list of SNPs for experimental validation 

is the less time consuming and expensive the analysis. The SNP list can be further narrowed 

by investigating the functions of the genes associated with the SNPs and their relevance. 
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In section 2.4 figure 2.4 had secondary smaller peaks in centromeric regions. The repetitive 

nature of such regions is as such that mapping coverage tends to be excessively high and 

SNPs found within these regions tend to be ignored. The peaks identified in these regions 

were therefore disregarded (Round, E. K. et al., 1997). Otherwise, the exemplary smooth 

‘baseline’, with only one peak, that was demonstrated in figure 2.3 (section 2.3) and in the 

Schneeberger et al. analysis, was not seen in figure 2.4, although clear peaks could still be 

easily identified within the data. In the example dataset tested by SHOREmap’s developers 

Schneeberger et al. ~500 plants were pooled and in the dataset detailed in figure 2.3 ~100 

plants were pooled (Schneeberger et al., 2009). In the dataset that is shown in figure 2.4 only 

~50 plants were pooled. Pooling fewer plants yields fewer markers for definition between a 

homozygote region (harbouring the phenotype inducing mutation) and a heterozygote 

region. This could increase the possibility of erroneous calls/false peaks or cause a more 

uneven baseline. James et al. demonstrated that if a sample had been backcrossed to the wild 

type parent a balance between sequencing coverage and the number of pooled plants would 

hold the key to successful interval identification. It was noted that at good coverage 

(upwards of 25x) and a larger pool size (~70 or more) effective interval determination could 

be achieved, but from this point the effect of further increasing coverage, larger pools or 

more backcrosses was diminished and similar sized intervals were identified (James et al., 

2013). In section 2.3/2.4 coverage was not ideal in either dataset (less than 20x) however the 

large pool size of ~100 allowed effective interval identification while a pool size of ~50 

compromised the analysis. In this dataset phenotype subtlety, i.e. difficulty in selecting 

plants of the correct phenotype for pooling, was reported which could have been a factor.  

 

Using a standard mapping and SNP calling pipeline (BWA/SAMtools/VarScan) combined 

with a bespoke allele frequency analysis (section 2.4.2) the investigation successfully 

produced largely the same results as SHOREmap produced for the same dataset (section 

2.4.1) (~87% SNP conservation). It also identified the interval containing the mutant 

phenotype inducing homozygote in a diploid organism. The challenge was the adaptation of 

this analysis to a polyploid wheat strain. In section 2.5-2.7 it has been demonstrated that it is 

in fact possible to use this method to identify a region harbouring a causal mutation in an 

artificial diploid, tetraploid and even a hexaploid genome despite the fact that the phenotype 

inducing SNP was only homozygous in 1 of the 3 genomes i.e. present in ~1/3 of sequencing 

reads and thus potentially more difficult to detect.  

 

This polyploid mutant identification analysis was successful not only using a bespoke 

pipeline but also through manipulation of the SHOREmap output/input files to almost ‘trick’ 

it into identifying homozygotes and heterozygotes in only one of a number of polyploid 
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genomes. This adaptation of SHOREmap shows that the methodology is applicable to 

polyploid species although this was unnecessarily complex due to this being an un-intended 

use for SHOREmap. The bespoke pipeline that was developed here was quicker to 

implement and it was more straightforward to use. Adaptation of SHOREmap for a 

polyploid could only be achieved as follows (detailed for a hexaploid); SHOREmap’s lower 

limit of detection of a homozygote and heterozygote could be re-defined i.e. to just below 

1/3 and 1/6 respectively, however, the upper limit of detection of a heterozygote could not be 

altered and remained at 80% resulting in an overlap of homozygote and heterozygote calls. 

No definition between heterozygotes and homozygotes hindered mapping interval 

identification. Therefore multiple intermediate SNP files that are utilized by SHOREmap had 

to be manually located and edited to only include what was deemed in the hexaploid context 

to be heterozygote/homozygote calls. Since SHOREmap defines SNP files separately, and in 

different formats, as heterozygote, homozygote and minor allele these files were re-defined 

and re-formatted as required. It was these filtered files that could be used as input for 

‘SHOREmap denovo’ and ‘SHOREmap annotate’.  

 

This adaptation of SHOREmap was not ideal; it was long winded and required a relatively 

high degree of programming knowledge. This outlined the need for an alternative mutant 

identification method that can be easily tailored to use on a polyploid genome. When 

considering all of the artificial wheat mutants, SHOREmap identified longer lists of potential 

mutation inducing SNPs compared to the bespoke pipeline, increasing the downstream effort 

to locate the SNP of interest e.g. in the hexaploid mutant SHOREmap defined a peak that 

was 260Kbp longer and contained 3031 more SNPs. This was observed using comparable 

parameters and heterozygote definitions where possible. For all these reasons, the bespoke 

mutant identification pipeline will be the analysis of choice to be used, and/or adapted for 

use, for any further frequency based mutant identification investigations within this project.  

 

The artificial datasets themselves, although not a perfect simulation of wheat, allowed the 

trial and development of this bespoke mutant identification pipeline on a polyploid species in 

silico prior to the costly generation of sequencing datasets for polyploid wheat species. A 

similar approach to simulate an artificial sequencing dataset has been used by Brenchley et 

al. to simulate maize whole genome shotgun sequencing data (Brenchley et al. 2012).  

 

NB: The Perl script that is used in this analysis; Allele-frequency-interval-determination.pl, 

is here in its preliminary developmental stage.  Further development that was ongoing 

throughout this project, utilizing knowledge that was gained from multiple datasets, has 

resulted in further pipeline development and the depreciation of this particular script. 
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Chapter 3. Validation of a wheat gene capture array 

 

 

Here a genomic target enrichment approach was validated and used to capture the gene rich 

regions of several hexaploid bread wheat varieties, reducing the sequencing cost while still 

allowing SNP calling and varietal comparison across the majority of wheat’s genic sequence. 

A detailed analysis and validation of the gene capture array is provided to outline its target 

sequence and improved enrichment capability over the original exome capture array. A 

pseudo-chromosome based reference sequence was developed from the gene capture array 

target sequence with a long-range order of genes based on synteny of wheat with 

Brachypodium distachyon. 

 

3.1 Introduction 

This chapter will assess the utility of mapping-by-sequencing as a methodology to rapidly 

identify genes responsible for key agricultural traits in complex, largely uncharacterized 

genomes. Mapping-by-sequencing typically involves the generation of high coverage 

shotgun sequence of a scored F2 mapping population. In wheat, due to its vast 17 Gb size 

and high repeat content (Choulet et al., 2010), it is expensive to generate high coverage 

datasets and challenging to analyze such data. To reduce this genome complexity methods 

such as transcriptome sequencing (Trick et al. 2012) or targeted enrichment sequencing 

(Winfield et al 2012), have been proposed to reduce the need for whole genome re-

sequencing.  

 

In section 1.6.2 two NimbleGen in solution capture probe sets were introduced that enable 

the application of targeted DNA enrichment to wheat. The development of the exome 

capture array is detailed figure 1.11b. This initial array was based on the cDNA sequence 

that was generated for the hexaploid wheat strain Chinese Spring using the Roche 454 

sequencer. This cDNA formed the design-space contigs across which capture probes were 

tiled. At that time the full genomic sequence of wheat was not yet available and as such the 

exome capture array was used for gene enrichment and subsequent SNP calling in hexaploid 

wheat. The issue with using cDNA sequence is that only those genes that were expressed in 

the sequenced sample at the time of processing are included in the array. 

 

As wheat’s full genomic sequence and the resulting assembly became available in 2010 a 

further in solution capture probe set was developed using similar techniques (see figure 

1.11a). Genic regions of this wheat genomic sequence formed the design-space for the gene 

capture array that the capture probes were tiled across and contained the majority of the 
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genic regions of wheat. This was a clear improvement on the exome capture array, 

containing all of the genes that were sequenced, whether they were expressed or not 

expressed, plus transcribed and non-transcribed sequence. It is therefore this gene capture 

array that has been preferentially utilized for mutant identification later in this project. 

 

Here a detailed analysis and validation of the gene capture array, plus a comparison of its 

features, is provided to outline it’s improved enrichment capability over the original exome 

capture array.  Using the array probe set in solution to enrich wheat plant(s) of interest and 

subsequent sequencing and mapping of the data back to the array design-space facilitated 

such an analysis. Each array’s design-space was used to map non-enriched data to and then 

to map data that had been enriched to allow a comparison between the two. This analysis 

highlighted the benefits of enrichment and demonstrated the array’s efficacy in general 

whilst discriminating which array performed better (section 3.4).  

 

For the exome and gene capture arrays in solution an analysis was carried out on each 

design-space, to determine the approximate number of genes that were represented, that 

would ultimately be present in the enriched sequence that was generated. Section 3.5 

includes a detailed comparative analysis of the predicted target sequence for each array in 

wheat. In section 3.2 the BLAST (Basic local alignment search tool) analysis comparing 

wheat cDNA sequence to the wheat gene capture array design-space allowed approximate 

determination of the proportion of coding and non-coding sequence that is contained within 

the enrichment array.  

 

The gene capture array design-space contigs were ordered and concatenated into 7 pseudo-

chromosomes that are representative of the genic regions of wheat. This method is detailed 

in section 3.3 and is based on each contig’s synteny to the Brachypodium genome, a close 

grass relative of wheat. Sorting the array probes employed comparative genomic 

organization with a genome for which a complete and well-annotated reference genomic 

sequence is available. Rice (Oryza sativa L.), a model species, has been previously used in 

comparative analyses of wheat for molecular mapping and gene isolation (Liu and Anderson, 

2003). Synteny and gene homology between rice and the other cereal genomes e.g. wheat is 

extensive (Goff et al., 2002) but numerous studies show that co-linearity between the two 

species can frequently break down due to translocations, deletions and gene duplications 

(Bennetzen and Ma, 2003). The Brachypodium genome has become a popular alternative to 

rice due to its completed and annotated genomic sequence and data suggesting better co-

linearity exists between it and wheat than between rice and wheat (Cao1 et al., 2012). For 

this reason markers were designed between Brachypodium and wheat to allow association of 
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contigs with a region of wheat to enable ordering and sorting into pseudo-chromosomes.  

 

Pseudo-chromosomes assist in the application of chromosome dependent mutant 

identification methods and visualization tools. Such methods, e.g. those derived from the 

SHOREmap approach in Arabidopsis, are based on a sliding window analysis along a 

chromosome. Also for visualization of mapping statistics e.g. analysis of variable sequencing 

coverage, such analyses of sliding windows along each chromosome can be very useful.  

 

As detailed in section 3.6 the gene capture array was used to enrich a number of common 

hexaploid wheat varieties including; Truman, Rialto, Utmost and Chinese Spring. 

NimbleGen carried out this enrichment and subsequent sequencing externally. Enrichment of 

the hexaploid wheat varieties plus the standard reference variety Chinese Spring enabled 

identification of varietal SNPs between the wheat crops allowing downstream comparisons 

between the varieties and visualization of any regions/hot spots for SNP conservation or 

difference. Here the hope is to develop methods to enable easy identification of important 

genes/mutants/characteristics within or between wheat plants to facilitate crop improvement 

with use of target enrichment to facilitate such analyses.  

 

 

3.2 Intron and exon modeling 

The gene capture array design-space was used as input for a BLAST search against wheat 

cDNA sequences (pre-determined e-value cutoff of 0.001). Regions of alignment identified 

predicted exons within the input design-space sequences. The wheat cDNA sequences used 

were 4 million 454 reads from a normalized Chinese Spring library that was sequenced by 

Brenchley, R. et al. (Brenchley et al., 2012). 71% of the design-space contigs had, at least in 

part, a hit to the wheat cDNA. Of these 71%, the average percentage of each design-space 

contig that was found to be exonic sequence was ~49%. The average percentage overall of 

gene capture design-space that was found to be exonic sequence was ~35%. 

 

As a basis for comparison the same investigation as above was carried out for the exome 

capture array. We would expect a much higher proportion of this array to be correctly 

identified as exonic sequence due to its cDNA based design, although perhaps not 100%, as 

although the cDNA sequence produced by Brenchley et al. was used to design this array, 

additional sequence from the public wheat EST collection was also used. The exome array 

design-space was used as input for the BLAST alignment against the wheat cDNA 

sequences. This time 70% of contigs had an alignment hit to the wheat cDNA sequence. Of 

these the average percentage of each design-space contig that was found to be exonic 
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sequence was 91% i.e. the percentage of the array design-space that was found to be exonic 

sequence was higher at ~64% (detailed in table 3.2).  

  

3.3 Ordering array probes 

Data is available detailing 800 wheat markers (see Appendix 2, table 1), their positions along 

the wheat chromosomes and their respective alignment positions within the Brachypodium 

genome. If we know which Brachypodium genes that our array probes align to then they can 

be ordered into 7 pseudo wheat chromosomes according to the known associated marker 

positions.  

 

Although 3 separate genomes exist in wheat, gene co-linearity appears to be retained 

between them (Gu et al., 2004) and it is estimated that homeologous gene copies differ by 

only 1 in 100bp with varietal SNPs occurring at the rate of approximately 1 per 233bp 

(Barker and Edwards, 2009). Array probes are designed to be able to hybridize to a target in 

the presence of a limited number of mismatches between the probe and the target allowing 

subsequent target enrichment. Given this we can conclude that, in most cases, if a single 

sequence is used to represent the 3 genomes of wheat, one probe under 100bp in length is 

likely to enrich all 3 homeologs.  

 

Downstream mapping of the enriched sequence data can also be successfully implemented in 

the presence of mismatches to the reference genome (typically 1-4 per 100bp sequencing 

read) to allow SNP detection. With such a low frequency of homeologous SNPs one ordered 

probe set is therefore also likely to be sufficient as a reference sequence for downstream 

mapping and SNP calling of enriched sequencing data, even in the presence of inter-varietal 

SNPs. One collapsed wheat reference representing all 3 genomes of wheat may in fact be 

desirable for downstream mapping analyses; considering homeologous SNP frequency, a 

large proportion of ~100bp mapping regions of the A, B and D genomes would be identical 

or have a small number of differences, making allocation of some of the ~100bp mapped 

sequencing reads to a single genome impossible and introducing a high proportion of non-

uniquely mapped reads. Such reads are usually removed from SNP calling analyses 

resulting, in this case, in potentially a large amount of unused data. 

 

Here BLAST (version 2.2.17) was used to search for similarities between the gene capture 

array design-space and Brachypodium. BLASTn was implemented with an e-value cutoff of 

0.001. The most likely gene hit for each array design-space contig was filtered out ordered 

by lowest e-value, highest score and then longest length hit. 68% of the contigs had an 

alignment to Brachypodium. The mid-point of the aligned contig in Brachypodium was taken 
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as the ‘contig position’ to enable calculation of the nearest wheat marker as a measure of 

distance along the relevant Brachypodium chromosome. The probes could then be ordered 

into pseudo-chromosomes using wheat marker positions (see figure 3.1 for illustration). 

 

 

 
 

Figure 3.1. Construction of pseudo-chromosomes from the gene capture array design-

space contigs using Brachypodium-wheat markers. Here the ordering of 6 design-space 

contigs (green) into a section of pseudo-chromosome 1 is illustrated. The central point of a 

contig’s alignment with Brachypodium is used to calculate it’s nearest Brachypodium-wheat 

marker as a distance in Brachypodium. The order of these contigs in Brachypodium 

determines local ordering of contigs around the marker. These ordered groups of contigs that 

are associated with an individual marker are then further assembled and concatenated into 

pseudo-chromosome sequences based on marker positions in wheat.  

 

 

This analysis was replicated, as per figure 3.1; on this occasion the newly sequenced dataset 

that was available for barley (Hordeum vulgare L.) was used in combination with 1822 

barley-wheat markers (The International Barley Genome Sequencing Consortium, 2012b). 

For this purpose only barley sequences that were assigned to a specific chromosome position 

in the genome would be useful and as such, this dataset contained contigs that spanned 3.9 
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Gb and had been assigned genetic positions (The International Barley Genome Sequencing 

Consortium, 2012). The aim of this analysis was to increase the available input for the 

pseudo-chromosomes since barley is a closer relative to wheat than Brachypodium is. When 

a similar BLAST search to the one above was carried out, using the gene capture array 

design-space and the barley contigs, an increased number of wheat design-space contigs 

could be aligned to the barley sequence (81%) and pseudo-chromosomes could then be 

constructed from these using the barley-wheat markers. This increased the number of design-

space probes that could be included in the pseudo-chromosomes, improving the analysis.  

 

Over 90% of the design-space contigs were aligned to a barley region where another wheat 

contig, aligning to a different barley sequence, had the same reported location. This is 

because only 12% of the barley contigs that were used in the BLAST alignment were 

associated with a unique position on a barley chromosome. Multiple, partially overlapping, 

barley contigs have been anchored to the barley genome using the same marker and have 

been assigned this same position, although its exact location along the contig is not detailed. 

Therefore their relative positions cannot be accurately discriminated. Figure 3.2 details the 

problems that were encountered as a result of this. Ultimately although a group of design-

space contigs could be correctly assigned a chromosome position using anchored barley 

contigs and wheat-barley markers, at this chromosome position, ordering of the array contigs 

using barley could only be an approximation at a local level. 

 

The barley-based pseudo-chromosomes were compared to the Brachypodium based pseudo-

chromosomes to determine which were more suitable for further use. The bulk B pooled 

wheat mutant dataset that was studied in section 4.2 was analyzed using both pseudo-

chromosome assemblies. When an initial allele frequency analysis was run along each 

chromosome, plotting the raw frequency of bulk B homozygotes that were conserved with its 

parental line per 100,000bp window, the plot that was gained using Brachypodium was 

found to generate significantly less noise and a much more convincing peak of interest was 

observed at the end of chromosome 3 (see Appendix 2, figure 1). Therefore the 

Brachypodium based order of array probe sequences for the pseudo-chromosomes was used 

preferentially throughout this project. The benefit of a complete assembled and annotated 

reference genome for pseudo-chromosome assembly is clear. 

 

 

 

 



! 99!

          (a)            (b) 

 
 

Figure 3.2. Using barley for the construction of pseudo-chromosomes from the gene capture array design-space contigs. Adapted from figure 3.1; 

ordering 6 design-space contigs (green) into a section of pseudo-chromosome 1 utilizing barley for comparative analyses. (a) Multiple barley contigs (barley 

anchored contigs 1 and 2) have been assigned the same barley position but its exact location along the contig is not detailed therefore the relative positions 

of the barley contigs cannot be discriminated. As a result non-redundant wheat gene capture array design-space contigs appear to align to overlapping regions 

in barley. These ordered groups of contigs (numbered 1-3 and 4-6) could be assigned a chromosome position using wheat-barley markers although local 

ordering at this location is an approximation. (b) Defining relative contig positions in barley enables local ordering of wheat sequence i.e. here the start 

positions of the barley-anchored contigs 1 and 2 have been defined. 
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The release of the wheat chromosome assemblies by the International Wheat Genome 

Sequencing Consortium (IWGSC) allowed further interrogation of the current pseudo-

chromosome model. These chromosome sequences were in fact a collection of contigs that 

had been sorted by wheat chromosome (no large scale chromosomal anchoring or order was 

available). Whilst these sequences would not aid validation of the ordering of the pseudo-

chromosomes they would give an indication of how much of each pseudo-chromosome’s 

sequence had been placed into the correct chromosomal bin. A BLAST search (BLASTn 

with an e-value of 0.001) was carried out using the gene capture array design-space and the 

wheat chromosome sorted IWGSC contigs. Over 80% of the design-space contigs that were 

concatenated into the pseudo-chromosomes were found to have been associated with the 

correct chromosome. The error rate for the chromosomal sorting of the IWGSC contigs is 

unknown but cases where scaffolds appear to have been associated with incorrect 

chromosomal arms have been found as the purity of the flow-sorted DNA used to 

generate the sequence is not 100% (IWGSC, 2014). 

 

 

3.4 Comparative enrichment study (exome array versus gene capture array)  

 

3.4.1 Mapping analysis 

The exome array bait probes were tiled across 198,056 design-space contigs that were used 

as reference sequences in all relevant mapping analyses and ranged from a minimum length 

of 51 to a maximum length of 2467. Similarly in all analyses that involved the gene capture 

array, these bait probes were tiled across 169,345 design-space contigs that were used as 

reference sequences in mapping analyses and ranged from a minimum length of 100 to a 

maximum length of 13168. 

 
The hexaploid wheat variety Rialto was enriched using the gene capture array and sequenced 

externally using Illumina sequencing technology (Genome Analyzer IIx). The resultant 

paired end sequencing dataset was mapped to the gene capture array design-space as a 

fragment library, due to the shorter length of the reference sequence contigs, using BWA (v 

0.6.2) short read mapping (prior to the 2013 update to BWA-backtrack). Indexing of the 

reference sequence involved use of the ‘IS’ algorithm and during alignment of reads to the 

reference 4 mismatches were allowed per sequencing read. All unmapped, non-uniquely 

mapped and duplicate reads were later removed using SAMtools. The steps involved in this 

analysis are shown in figure 1.6 and example commands are outlined in the command line 

appendix sections 1 and 4. Rialto was also enriched using the exome capture array in 

solution and sequenced using SOLiD sequencing technology. This dataset was mapped to 
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the exome capture array design-space using the same steps, filtering and parameters although 

additional parameters to allow processing of colour-space SOLiD reads were used.  

 

Non-enriched DNA (whole genome sequencing) from the wheat variety Rialto, that was 

sequenced externally using SOLiD sequencing technology, was also mapped separately to 

both the gene capture array design-space and the exome capture array design-space using the 

same steps and parameters as detailed for the enriched Rialto above ensuring that parameters 

to allow processing of colour-space SOLiD reads were used. The program csfasta2fastq was 

used to convert the SOLiD sequencing csfasta/qual files into a fastq file, which is used as 

input for BWA.  

 

SAMtools mpileup (v 0.1.16) was implemented on all mapped datasets and finally SNP calls 

were filtered out using VarScan (VarScan.v2.2.3.jar) with the following parameters: discard 

SNPs covered by 20 or fewer reads, discard sequencing reads with a quality less than 20 and 

if the alternate allele has less than 2 supporting reads passing the quality filter discard it. For 

this SNP analysis the tool awk was implemented to remove indels from the VarScan output.  

 

This analysis enabled a comprehensive comparison of enrichment quality between the 

original exome capture array and the gene capture array. The results gained are shown below 

in table 3.1. The non-enriched data maps with a deeper coverage on average to the gene 

capture array compared to the exome array, it also maps to more of the gene capture array 

i.e. ~42% compared to ~31%. Although this gene capture array is double the size of the 

exome capture array it has fewer design-space contigs since average contig length is ~654bp 

while for the exome capture array it is ~205bp. It is therefore not surprizing that a higher 

depth and more extensive coverage has been achieved using the gene capture array with use 

of significantly longer reference contigs. This could also account for the ability to 

confidently call a higher number of SNPs using the gene capture array. 
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Table 3.1. Exome capture array versus gene capture array. Mapping statistics for 

enriched and non-enriched Rialto to the exome capture array design-space and also to the 

gene capture array design-space. 

 

 

The enriched Rialto data, as anticipated, had a much deeper coverage than the non-enriched 

Rialto on average across both of the arrays. Approximately ~6x more sequence data was 

generated for the gene capture array than for the exome capture array and, as it is double the 

size of the exome capture array, we would expect ~3x more coverage overall, yet the 

enriched Rialto maps with over 7x deeper coverage to the gene capture array. It is likely that 

this is because the gene capture array generates less off target sequence data; almost 50% of 

its sequence reads can be mapped compared to ~30% of the exome capture array reads. Data 

also maps to ~95% of the gene capture array design-space but to only ~65% of the exome 

capture array design-space suggesting that a greater proportion of the gene capture array bait 

probes are enriching effectively in comparison to the exome capture array. Of the unmapped 

sequencing data typically ~63% of sequencing reads include repetitive sequence. 

 

For the exome capture array overall 21,077 contigs out of 198,056 were not mapped to (11% 

of reference contigs). However, for the gene capture array overall only 579 contigs out of 

169,345 were not mapped to, this amounts to less than 1% of the reference contigs and 

shows a great improvement. 2,399 contigs (~1%) in the exome array had a high depth of 

coverage (over 3 SD from the mean) whilst only 2,415 contigs had a high depth of coverage 

Wheat 
Variety 

Mean 
depth 

% Of 
array 
probes 
mapped  

Mean % 
coverage 
array 
probe 

StdDev 
coverage 
depth 

% Of 
reads 
mapped 

Total reads SNP No. 

 
cDNA array 
 

     

Rialto 
(enriched) 
 

36.5 86.4 86.1 18.8 29.4 106,435,597 146527 

Rialto 
(non-
enriched) 

11.5 58.8 53.4 6.5 0.38 1,725,138,247 57222 

 
Genomic DNA array 
 

  

Rialto 
(enriched) 
 

268.3 98.6 96.1 183.0 49.9 642,311,196 517022 

Rialto 
(non-
enriched) 

17.1 88 48.1 14.7 1.25 1,725,138,247 124021 
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in the gene capture array amounting to less than 1% of the reference contigs. The gene 

capture array performed enrichment more efficiently. 

 

3.4.2 SNP analysis 

A comparison of the homeologous SNPs that could be identified in enriched and non-

enriched Rialto data for each array was carried out to ensure that enrichment did not affect 

SNP calling i.e. that they enrich all three wheat genome copies effectively. The low average 

non-enriched data coverage was potentially an issue. It was possible that SNP alleles found 

in the enriched data would not be picked up at all, or at a depth high enough to confidently 

call SNPs, in non-enriched data due to comparatively low coverage. Conversely it was 

possible that low frequency SNP alleles in the non-enriched data could be proved to be false 

positive SNP calls in the higher coverage of the enriched data. The following technique was 

adopted for this particular situation; SNPs were only considered for comparison between the 

non-enriched and enriched datasets if they were in regions that were mapped to in both 

datasets with a depth greater than or equal to 20 and if the alternate allele from one dataset is 

found in the raw reads of the other (or in the case of an ambiguous alternate allele if both 

alleles represented are seen) then a SNP was defined as conserved. As detailed in section 3.6 

VarScan outputs multiple alternate alleles for one position if they pass quality filters 

therefore even if multiple homeologous SNP alleles for one position are seen then they could 

all be validated. 

 

For the exome array 86% of SNPs that were found in the enriched data could be identified in 

the non-enriched data. The remaining 14% of SNPs from the enriched dataset that were not 

identified in the non-enriched tend to be low frequency alternate alleles making them 

difficult to define in the low coverage of the non-enriched data. 96% of SNPs found in the 

non-enriched data could be identified in the enriched dataset. The remaining 4% of non-

enriched data SNPs that could not be identified in the enriched data also showed evidence of 

SNPs with low frequency alternate alleles or low quality and as such may have been proved 

to be false positives in the high coverage gained by the enriched data. 

 

For the gene capture array 97% of SNPs found in the enriched data were found in non-

enriched data with only 3% that could not be seen at all. 96% of SNPs found in the non-

enriched data were found in the enriched data with only 4% that could not be seen at all. The 

same reasoning as seen in the exome capture array could be attributed to the 3 and 4% of 

SNPs that could not be seen. Importantly the proportion of unseen SNP alleles was 

consistently low in both of the enriched datasets although an improvement was noted with 

use of the gene capture array.  
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3.5 Comprehensive analysis of the array targets 

Both the exome capture array and gene capture array were run through a BLAST search of 

the Brachypodium gene database (International Brachypodium Initiative, 2010) (e-value 

cutoff of 0.001). When the exome capture design-space was analyzed 96,014 contigs had hits 

(48%) whilst 70.4% of the Brachypodium genes were covered. 100,006 contigs in the gene 

capture design-space had hits to Brachypodium (59%) and 82.7% of the Brachypodium 

genes were covered. As anticipated, the same pattern was observed when the Brachypodium 

gene database was replaced with the Brachypodium exon database (International 

Brachypodium Initiative, 2010) whereby 45% of the exome capture design-space contigs had 

hits and 84% of the Brachypodium genes had exons that were hit. 55% of the gene capture 

design-space contigs hit Brachypodium exons and 93% of the Brachypodium genes had an 

exon that was hit. As a comparison, wheat cDNA sequences from the full Chinese Spring 

library that was sequenced by Brenchley, R. et al and used to develop the exome array were 

subjected to the same analysis; 71% of the cDNA sequence was hit and 82% of the 

Brachypodium genes had 1 or more exon hit (highly comparable to the 82.7% of genes hit by 

the gene capture array) (Brenchley et al. 2012).  

 

Of the remaining array contigs that did not hit the Brachypodium gene database, an 

additional 37,685 contigs from the gene capture array hit the wheat cDNA to make a total of 

81% of the array contigs hitting either Brachypodium genes or wheat cDNA. This is an 

improvement on the 56,180 additional contigs from exome capture array hitting the wheat 

cDNA to make a total of only 77% of the array contigs hitting either Brachypodium genes or 

wheat cDNA i.e. likely to be hitting wheat genes.  

 

In a separate investigation how much in total of each array design-space hits the wheat 

cDNA sequence (1.8Gb) alone was analyzed i.e. potential gene space and in turn how much 

of the wheat cDNA is hit was established. For the gene capture array 119,503 contigs hit the 

cDNA (71%) and ~99% of the cDNA was hit. For the exome array 138,368 contigs hit the 

cDNA (70%) and ~93% of the cDNA was hit. It was not surprising that a larger proportion 

of the exome array design-space was predicted to be transcribed i.e. hit wheat cDNA (~64% 

compared to ~35% in gene capture array) as this array was modeled solely on cDNA 

sequence. The gene capture array is still an improvement hitting slightly more wheat cDNA 

whilst still including non-coding sequence information. These results are summarized in 

table 3.2. 
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 Number of 
design-space 
contigs 
hitting wheat 
cDNA 

Average % of 
each design-
space contig 
hitting wheat 
cDNA  

% Wheat 
cDNA that is 
hit by design-
space contigs 

% design-
space 
contigs 
that hit 
Brachy 
genes 

% 
Brachy* 
genes hit 
by design-
space 
contigs  

% design-
space 
contigs 
hitting 
wheat 
cDNA or 
Brachy 
genes 

% design-
space 
contigs 
hitting 
Brachy 
exons  

% Brachy 
genes with 
an exon 
hit by an 
design-
space 
contig 

Non-
mapped 
design-
space 
contigs 

Contigs 
with 
depth of 
coverage 
>3 SD 
from 
mean 

 
cDNA array 

 
138368 
(70%) 

 
91 

 
92.8 

 
48 

 
70.4 

 
77 

 
45 

 
84 

 
21077 
(11%) 

 
2399 
(~1%) 

 
Genomic 
DNA array 

 
119503 
(71%) 

 
49 

 
98.6 

 
59 

 
82.7 

 
81 

 
55 

 
93 

 
579 
(<1%) 

 
2415 
(~1%) 

 
 

Table 3.2. Exome capture array targets versus gene capture array targets. Summary of array design-space contig targets for the exome capture and the 

gene capture array. Number of Brachypodium genes: 32255, number of wheat cDNA contigs: 97481 and number of Brachypodium exons: 167291. *Brachy; 

Brachypodium distachyon. 
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3.6 Mapping and SNP identification in four wheat varieties 

Following the previous enrichment and sequencing of the hexaploid wheat variety Rialto, 

three additional hexaploid bread wheat varieties; Chinese Spring, Truman and Utmost were 

enriched using the gene capture array and paired end sequenced using Illumina sequencing 

technology (GAIIx). Enrichment and sequencing was carried out alongside the three 

varieties in a repeat analysis for Rialto and all four datasets were created externally by 

NimbleGen. Here the datasets were mapped to the gene capture array design-space and SNP 

calling was performed using the same pipeline/parameters detailed for the enriched Rialto 

dataset that was mapped to the gene capture array (section 3.4.1). Mapping efficacy is 

summarized below in table 3.3. The analysis of the four varieties would allow varietal SNP 

identification within the enriched gene set.  

 
 
 

Wheat 

variety 

Further 

details 

Sequencing 

technology 

Mean 

Depth of 

coverage 

Coverage 

of 

reference 

(%) 

Median 

Depth of 

coverage 

Q95* 

Depth of 

coverage 

SNP 

No. 

Rialto 
(enriched) 

winter 
wheat 

Illumina 206 98.6 194 571 733,576 

Rialto (non 
enriched) 

winter 
wheat 

SOLiD 17.1 88 7 42 124,021 

Truman winter 
wheat 

Illumina 197 98.7 186 548 722,801 

Utmost spring 
wheat 

Illumina 254 98.8 235 720 713,291 

CS spring 
wheat 

Illumina 165 99.5 156 464 614,885 

 
Table 3.3. Mapping statistics for four varieties of wheat. Coverage data for 4 varieties of 

wheat mapped to the gene capture array design-space. *Q95 of coverage indicates the depth 

of coverage for which 95% of data points are lower than or equal to.  

  

 

When identifying SNPs across hexaploid datasets we expect, in the main, to see 

heterozygotes or homozygotes in 1 of the 3 genomes only, thus one reference and one 

alternate allele overall. At the time of this investigation SNP callers were mainly intended 

for use on datasets derived from a diploid organism and these tools fail to detect regions 

deviating from the one reference and one alternate allele genotype i.e. where more than one 

different alternate allele is seen. This typically results in less than a 5% loss in SNPs and will 
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have little or no impact on many analyses. However, since this analysis is a comprehensive 

comparison of 4 hexaploid wheat varieties it would be desirable to record all alternate alleles 

for each SNP position. With this in mind for this analysis any alternate allele in >10% of the 

sequencing reads will be recorded as a potential SNP allele.   

 

VarScan is fine tuned for pooled datasets and is able to pick up the low frequency alternate 

alleles that we are also likely to see in wheat. It also outputs one line for every alternate 

allele that passes filters for a SNP call per position thus multiple lines per SNP position can 

potentially be seen i.e. multiple alternate alleles. This is useful for defining regions with 

multiple alternate alleles, although since VarScan is expecting a diploid with only 1 alternate 

allele, for each individual alternate allele it calculates the percentage of reads with that 

alternate allele as a proportion of the number of those reads plus the reference reads. As a 

result the percentage of reads containing the alternate allele can be overestimated if there is 

more than one alternate allele since this additional alternate allele’s sequencing reads are not 

included in the total coverage at that position. Figure 3.3 shows a snapshot of a typical 

VarScan output where there is more than one alternate allele and the accurate percentage of 

each alternate allele in the sequencing reads at that position is compared to the VarScan 

analysis output. At this position 50 reads contain the reference allele A, 50 reads contain a G 

and 50 reads contain a T so the correct proportion of reads for each alternate allele G and T 

is ~1/3 and the proportion of reads with the reference allele is also ~1/3, as shown, VarScan 

defines this incorrectly. 

 

 

                       VarScan Accurate 

Probe  Position   Reference   Alternate     Reference     Alternate    % Alternate   % Alternate  

                  Allele        Allele            Reads          Reads            Allele           Allele 

1 100       A            G       50              50          50                 33.3 

1 100       A            T       50              50          50                 33.3 

 

 

Figure 3.3. Extract from a VarScan SNP call output at a position with more than one 

alternate allele.  Here the first 7 columns are extracted directly from a VarScan SNP call 

output and the last column details an accurate calculation of the percentage of sequencing 

reads containing the alternate allele to allow comparison with the VarScan analysis output. 
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As a solution to this problem for each VarScan SNP position the original SAMtools base 

pileup column was associated with that position (from the SAMtools mpileup output file that 

is used as input for VarScan). This column details every read mapping to the position and its 

allele, reference or alternate, to allow identification of any number of alternate alleles so that 

one all-inclusive SNP call per position could accurately be made. This method utilizes the 

fact that each VarScan SNP location will be a position where mapping quality and number of 

reads mapping to that position for the identified SNP allele and reference allele are greater 

than the set threshold, in this case 20. Since we are processing only SNP positions that 

VarScan has identified, this is indicative of a region mapped well by high quality reads. The 

risk of including additional reads that are below recommended quality filters when using the 

pileup column directly to identify any additional alternate alleles in >10% of the sequencing 

reads was quantified. In 99% of cases this was determined to not be an issue and we were 

not including poor quality reads i.e. calculated depths of coverage for alleles using the pileup 

output directly were within 5% of those that were accurately made, from positions with one 

alternate allele, using VarScan’s strict quality filters. This is not surprising as strict mapping 

parameters and filters should largely exclude poorly mapped reads prior to the SAMtools 

mpileup file generation. 

 

To implement this methodology a bespoke Perl script (3rd_base_script.pl) was developed and 

used to extract, for every SNP position that was identified by VarScan; the position, 

reference base, an ambiguous base representing all alleles present, depth of coverage, % of 

sequencing reads with A, % of sequencing reads with C, % of sequencing reads with G, % of 

sequencing reads with T and the base pileup column. The reference base can be associated 

with the corresponding % of sequencing reads for that allele and any alternate alleles in more 

than 10% of the sequencing reads are easily identified. Using IUPAC nucleotide ambiguity 

codes, the appropriate ambiguous base is assigned to the position representing all of the 

alleles that are present. The output, which will be referred to as the “polyploid SNP list”, was 

produced for each of the 4 varieties of wheat that were enriched with the genomic DNA 

array using their individual VarScan SNP calls.  

 

The 4 polyploid SNP lists were compared using a bespoke Perl script (ID_varietal_SNPs.pl) 

that took the 4 files as input and extracted the ambiguous base representing all alleles present 

at each position. The output of this script known as the “varietal SNP list” consists of a line 

for every SNP position that was identified over the 4 input files detailing; the position, 

Truman ambiguous base, Rialto ambiguous base, Chinese Spring ambiguous base and 

Utmost ambiguous base. The ambiguous base was recorded as a “-“ if a particular variety did 

not have a SNP at that position i.e. it has only the reference allele at this position. If one 
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variety or more was unmapped at that position then the SNP position was discarded. There 

were 886,888 SNPs in the varietal SNP list (see file 

Four_varieties_SNPs_beta_array_final.txt). 

 

The reference, although based on the variety Chinese Spring included no ambiguous bases 

despite the possibility of their presence in the genome. As such, it was quite possible for a 

SNP to be called in Chinese Spring sequencing data against the Chinese Spring based 

mapping reference. This however, was likely to happen less often than for the other varieties 

and explains the lower number of SNPs found in the Chinese Spring data. As a result the 

Chinese Spring variety sequencing data SNP calls were treated as the reference bases from 

this point in the analysis. If an ambiguous base was found in the Chinese Spring sequencing 

data this was to be the reference base or if a “-“ was found in the Chinese Spring sequencing 

data then the original reference base call was supported and could be used. This allowed 

expansion of the reference to include all three genomes alleles to increase accuracy of the 

analysis. 

 

This varietal SNP list output was then used to parse out varietal SNPs and SNPs conserved 

between varieties. Any position, at which one variety had a different base to the other 2 

varieties and the new reference Chinese Spring allele, was classified as a varietal SNP. The 

other 2 varieties plus Chinese Spring could appear all as a “-“, supporting the original 

reference base, or additionally the other 2 varieties could appear as the same ambiguous base 

as that of the Chinese Spring sequencing data. This methodology was used to identify 

Truman, Rialto and Utmost specific SNPs i.e. varietal SNPs.  

 

A similar method was applied to identify SNPs that were conserved across the 3 varieties of 

wheat (Rialto, Truman and Utmost) but differed from the Chinese Spring sequencing data. In 

addition, SNPs that were conserved across any of the 2 varieties of wheat yet differing from 

Chinese Spring data were recorded. These SNPs can be used for downstream analysis of 

areas of SNP conservation or hot spots for differences between varieties.  A summary of the 

SNPs that were identified is shown in figure 3.4.  
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Figure 3.4. SNPs that have been identified in three varieties of wheat. Varietal SNPs are 

shown in bold type i.e. SNPs in one variety that differ from the other two varieties and the 

reference Chinese Spring. SNPs that are conserved in all 3 varieties but are different to 

Chinese Spring are underlined and SNPs that are conserved in each of the 2 varieties in turn 

that differ from Chinese Spring and the 3rd variety are shown in normal type. 

 

 

Similar numbers of varietal SNPs were identified for each of the three varieties using 

Chinese Spring as a reference. Numbers were more strongly conserved across 

Utmost/Truman with neither variety deviating by more than ~2% from their average number 

of 88089 varietal SNPs. Rialto, however showed a frequency of varietal SNPs which was 

~26% higher than the Truman/Utmost average number. The number of SNPs that are 

conserved in all three varieties but are different to Chinese Spring i.e. non-reference SNPs in 

all varieties was relatively high at 120,851. When looking at SNPs that are conserved in two 

varieties (that differ from Chinese Spring and the third variety) the numbers for 

Utmost/Rialto, Rialto/Truman and Utmost/Truman were highly similar with none deviating 

from the average of 45,446 by greater than ~4% i.e. no two varieties appeared to have more 

or less similarity to each other in comparison to the third variety and Chinese Spring.  

 

Figure 3.5 shows the varietal SNP positions on the gene capture array design-space contigs 

that were translated into their respective positions on the pseudo-chromosome sequences. 

This image, created using the software Circos, allows, using heat maps, visualization of the 

distribution of each type of SNP per 80,000bp window along each pseudo-chromosome.  
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Figure 3.5. Circos plot outlining the three wheat varieties Rialto, Truman and Utmost. 

Average depth of coverage of; (0) Utmost, (1) Truman and (2) Rialto. Varietal SNP count 

for; (3) Truman, (4) Rialto and (5) Utmost. Count of SNPs conserved in; (6) Utmost & 

Truman, (7) Utmost & Rialto, (8) Rialto & Truman and (9) Utmost/Truman/Rialto. SNPs are 

called against the Chinese Spring reference dataset. SNP counts and average depths are 

calculated per 80,000bp window. The heat maps represent SNP numbers with an 18-colour 

Brewer palette (see figure). Minimum and maximum values are set as q5 (lowest) and q95 

(highest) values and other percentiles of SNP counts are divided equally between the 16 

remaining interim palette colours i.e. percentiles; 1-5, 6-11, 12-16, 17-22, 23-27, 28-33, 34-

39, 40-44, 45-50, 51-55, 56-61, 62-67, 68-72, 73-78, 79-83, 84-89, 90-95 and 96-100 are 

assigned to each of the 18 interim Brewer palette colours from blue to red for comparatively 

low to high SNP numbers respectively. Any windows with numbers falling above or below 

these minimum and maximum values will be coloured deep red or deep blue respectively.  
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In figure 3.5 the q5/q95 lowest/highest values per 80,000bp over all Rialto, Utmost and 

Truman varietal SNPs (33/169) were used for these 3 tracks 3, 4 and 5. This allowed 

comparison between the varieties Rialto, Utmost and Truman over all 7 chromosomes. The 

q5/q95 lowest/highest values respectively per 80,000bp across the datasets; Rialto/Utmost 

conserved SNPs, Truman/Utmost conserved SNPs and Rialto/Truman conserved SNPs (13/ 

68) were used for these 3 tracks 6, 7 and 8 to also allow comparison between the frequency 

of Rialto/Utmost conserved SNPs, Truman/Utmost conserved SNPs and Rialto/Truman 

conserved SNPs over all 7 chromosomes. Finally the q5/q95 lowest/highest values of SNPs 

in all 3 varieties (50/137) per 80,000bp were used for this plot in track 9. Tracks 0-2 are line 

plots of the average depth of coverage per 80,000bp window. Minimum and maximum 

values are the q5/q95 for each dataset independently. 

 
 
The Circos plot in figure 3.5 is suited to visualization of larger trends in SNP distribution 

across all chromosomes i.e. genome-wise trends. The majority of the plots show relatively 

consistent trends; smaller regions of SNP density or scarcity are numerous, scattered 

consistently across the genome and difficult to identify in the large volume of data that is 

represented in the plot. We can however conclude from figure 3.5’s larger trends that when 

looking at Rialto, Utmost and Truman varietal SNP plots (tracks 3-5) chromosomes 3 and 4 

appear to be more SNP sparse. The Rialto varietal SNP plot  (track 4) appears to have a SNP 

dense region, compared to the other chromosomes and other varieties, at the beginning of 

chromosome 1.  

 
In figure 3.6 the same dataset is represented. However the q5/q95 lowest/highest values per 

80,000bp window across the Rialto, Utmost and Truman varietal SNP lists were used on a 

chromosome-by-chromosome basis for tracks 3, 4 and 5. The limits were as follows;  

       chromosome 1 (32/285)  chromosome 5 (33/141) 

       chromosome 2 (32/206)  chromosome 6 (33/124) 

       chromosome 3 (32/285)  chromosome 7 (32/143) 

       chromosome 4 (29/129)  

 

The q5/q95 lowest/highest values respectively between Rialto/Utmost conserved SNPs, 

Truman/Utmost conserved SNPs and Rialto/Truman conserved SNPs were again used on a 

chromosome-by-chromosome basis per 80,000bp window for tracks 6, 7 and 8. The limits 

were as follows;  

                                   chromosome 1 (13/60) chromosome 5 (13/68) 

       chromosome 2 (14/65)  chromosome 6 (15/89) 

       chromosome 3 (13/79)  chromosome 7 (12/76) 
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       chromosome 4 (12/57)  

        

Finally the q5/q95 lowest/highest numbers of SNPs in all 3 varieties for each chromosome 

individually per 80,000bp window were used for track 9. The limits were as follows;  

                                   chromosome 1 (50/141)  chromosome 5 (50/119) 

       chromosome 2 (49/143)  chromosome 6 (56/137) 

       chromosome 3 (50/148)  chromosome 7 (54/131) 

       chromosome 4 (49/114)  

 

This chromosome-wise analysis allowed clarity of the frequency of Rialto, Utmost and 

Truman varietal SNP plots within each of the 7 chromosomes individually. It also allowed 

comparison between the frequency of Rialto/Utmost conserved SNPs, Truman/Utmost 

conserved SNPs and Rialto/Truman conserved SNPs within each of the 7 chromosomes. 

Any within-chromosome trends that had been previously masked could be identified e.g. if 

in figure 3.5 one chromosome had a higher number of SNPs in general then it would look 

SNP dense (red) and make other chromosomes comparatively look SNP sparse (blue), if this 

chromosome was viewed alone regions of its own high and low SNP density may then 

become clearer.  
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Figure 3.6. Circos plot outlining the three wheat varieties Rialto, Truman and Utmost. 

Average depth of coverage for; (0) Utmost, (1) Truman and (2) Rialto. Varietal SNP count 

for; (3) Truman, (4) Rialto and (5) Utmost. Count of SNPs conserved in; (6) 

Utmost/Truman, (7) Utmost/Rialto, (8) Rialto/Truman and (9) Utmost/Truman/Rialto. All 

SNPs are called against the Chinese Spring reference dataset. SNP counts and average 

depths are calculated per 80,000bp window along each pseudo-chromosome sequence. The 

heat maps represent SNP numbers with an 18-colour Brewer palette (see figure and full 

description in figure 3.5). Minimum and maximum values are set as q5/q95 lowest/highest 

values on a chromosome-by-chromosome basis as detailed previously.  
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Figure 3.6 allows visualization of larger trends in SNP distribution on a chromosome-by-

chromosome basis i.e. trends within a within chromosome. Smaller regions of SNP density 

or scarcity appear to be numerous, scattered consistently within each chromosome over the 

majority of the plots and thus difficult to identify in the large volume of data that is 

represented in the plot. We can however conclude from figure 3.6’s larger trends that when 

looking at Rialto, Utmost and Truman varietal SNP plots (tracks 3-5) chromosome 2 appears 

to be on the whole relatively SNP sparse with several small SNP dense regions rather than 

the consistent scatter of both dense and sparse regions that is seen in the other chromosomes. 

For these same varietal SNP plots (tracks 3-5) chromosome 1 appears to be very SNP sparse 

on the whole with little or no SNP dense regions in Truman and Utmost plots (tracks 3 and 

5) but the same comparatively SNP dense region appears in the Rialto varietal SNP plot  

(track 4) at the beginning to middle of chromosome 1.  

 

 

3.7 Conclusions 

Synteny of the wheat gene capture array design-space contigs with Brachypodium allowed 

Brachypodium-wheat markers to be used to order and concatenate 68% of the contigs into 7 

pseudo wheat chromosomes. These pseudo-chromosomes will assist in the application of 

chromosome dependent mutant identification methods/visualization tools to enriched wheat. 

Using the chromosome sorted IWGSC wheat sequence data over 80% of the array probes 

that were concatenated into the pseudo-chromosomes could be confirmed to have been 

associated with the correct chromosome (IWGSC, 2014). 

 

In a comprehensive comparison of the quality of enrichment between the exome array and 

the gene capture array the following was observed over the non-enriched Rialto and enriched 

Rialto datasets after mapping analyses: the percentage coverage of the gene capture array 

reference and its average depth of coverage was always higher than that of the exome 

capture array; the enriched Rialto, as anticipated, has a much deeper coverage than the non-

enriched Rialto on average across both of the arrays; for the exome capture array 11% of 

reference probe set were consistently unmapped with ~1% having a high depth of coverage 

(over 3 SD from the mean); this improved, and fell to <1% that were consistently unmapped 

and again <1% that had a high depth of coverage for the gene capture array. The gene 

capture array generates less off target sequence data and a greater proportion of the gene 

capture array bait probes appear to be enriching effectively in comparison to the exome 

capture array. 

 



! 116!

The results of a comparison of the homeologous SNPs identified in the enriched and non-

enriched Rialto data for each array highlighted that both arrays enriched all three wheat 

genome’s alleles efficiently. The key issue when working with a hexaploid is differential 

hybridization of homeologous SNPs and it appears at this stage that this will not be an issue 

with either array, as they are both, in the main, enriching data containing all of the 

anticipated homeologous SNP alleles. The gene capture array in particular does this with 

great accuracy as SNPs were largely conserved between enriched and non-enriched datasets 

in a minimum of 96% of cases in the comparative analyses (a minimum of ~86% of cases for 

the exome capture array). The small number of remaining SNPs that were unaccounted for 

tended to be low frequency alternate alleles, in areas of low coverage or low quality. 

 

In a study of the array targets 77% of the exome array design-space contigs aligned to either 

Brachypodium genes or wheat cDNA as intended. This figure increased to 81% for the 

alignment of the gene capture array design-space contigs. The average percentage overall of 

the gene capture array probe design-space that was found to be exonic sequence was ~35%. 

As anticipated this figure increased greatly to ~64% for the exome capture array design-

space. The gene capture array aligned to ~99% of the wheat cDNA sequence thus it 

effectively enriches the vast majority of wheat exonic sequence whilst still including non-

coding sequence information, an improvement on the ~93% of the wheat cDNA that was hit 

by the exome array. 

 

In almost all aspects of this study the gene capture array is confirmed to be an improvement 

upon the original exome capture array. It allows a higher quality of enrichment; higher 

reference coverage by mapped data, greater accuracy of SNP calls, the ability to pull out 

homeologous SNPs and a larger proportion of the intended target sequence hit. It will 

therefore be the enrichment array of choice for future analyses. 

 

Four wheat varieties in total were successfully enriched using the genomic DNA array. A 

mapping and bespoke SNP calling pipeline was developed to map the data to the gene 

capture array design-space contigs and to identify a varietal SNP list in the context of a 

hexaploid i.e. multiple alternate alleles identified and represented by an appropriate 

ambiguous base call. Truman, Rialto and Utmost specific SNPs were identified against the 

reference dataset Chinese Spring. These varietal SNP numbers are loosely conserved across 

all three datasets and more strongly conserved across Utmost/Truman with Rialto having the 

most overall. A large number of SNPs are also present in all three varieties when compared 

to Chinese Spring. When looking at SNPs that are conserved in each of the two varieties in 

turn that differ from Chinese Spring and the third variety, no two varieties appear to have 
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more or less similarity to each other in comparison to the third variety and Chinese Spring.  

 

These conclusions were confirmed using the Circos plots (figure 3.5 and 3.6) where the 

varietal SNP positions were translated into pseudo-chromosome positions and their 

frequency summarized in plots per 80,000bp window. No notable (large scale conserved) 

differences were observed when comparing the tracks for SNPs that are conserved in each of 

the two varieties in turn that differ from Chinese Spring, as predicted. The majority of the 

plots showed relatively consistent trends in both plots; smaller regions of SNP density or 

scarcity are numerous, scattered consistently across the genome. A large number of SNPs 

were found to be present in all three varieties when compared to Chinese Spring and the 

consistent lighter to red colour (lack of dark blue in comparison to all other tracks) of the 

innermost track in both plots reflects this. When looking at Rialto, Utmost and Truman 

varietal SNP plots (tracks 3-5) the Rialto varietal SNP plot  (track 4) appears to have a SNP 

dense region, compared to the other chromosomes and other varieties, at the beginning of 

chromosome 1. This trend was conserved in the within chromosome analysis where 

chromosome 1 appears to be very SNP sparse on the whole with little or no SNP dense 

regions in Truman and Utmost plots (tracks 3 and 5) but the same comparatively SNP dense 

region appears in the Rialto varietal SNP plot (track 4) at the beginning to middle of 

chromosome 1. This SNP dense region could account for the elevated numbers of varietal 

Rialto specific SNPs in comparison to Utmost and Truman. 
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Chapter 4. Mutant identification combined with target enrichment in wheat 
 
 
Using the gene capture probe set for target enrichment followed by next generation 

sequencing; an early flowering locus was mapped in the diploid wheat Triticum 

monococcum and in hexaploid bread wheat Triticum aestivum, the stripe rust resistance gene 

was located. A bespoke pipeline and algorithm was developed for mutant loci identification 

and the pseudo-chromosome reference was implemented. This novel method will allow 

widespread application of sliding window mapping-by-sequencing analyses to datasets that 

are; enriched, lacking a finished reference genome or polyploid. 

 

4.1 Introduction 

In chapter 2 a bespoke mapping, SNP calling and allele frequency analysis pipeline (BWA, 

SAMtools and VarScan) was successfully implemented to identify regions that were 

potentially harbouring a causal SNP in various diploid Arabidopsis mutant plants. 

Generation of artificial sequencing datasets that were created using the Arabidopsis Col-0 

reference genome allowed a successful simulation of mutant identification for a diploid, 

tetraploid and finally a hexaploid mutant with a full reference genome using a sliding 

window mapping-by-sequencing analysis. 

 

Mapping-by-sequencing analyses typically require the generation of shotgun sequence for a 

scored F2 mapping population. In chapter 3 a NimbleGen gene capture array in solution 

(120Mb) was introduced and validated. Utilization of this enrichment array allows effective 

enrichment and subsequent sequencing of the gene rich regions of hexaploid wheat. This 

allows high coverage to be generated for target regions by eliminating much of the repetitive 

sequence from the analysis and greatly reduces the need for whole genome re-sequencing 

and the great cost associated with it. Mapping-by-sequencing analysis also benefits from a 

reference genome for mapping of the sequence data. For wheat, like many crop species, no 

finished genome reference sequence is available and as such the gene capture array design-

space contigs were arranged into a long-range order on the finished Brachypodium genome 

and then using synteny between Brachypodium and wheat, they could be ordered and 

concatenated into wheat based pseudo-chromosome sequences that are used here directly as 

a reference genome for sliding window analyses (section 3.3). This extends a proof of 

principle approach where Arabidopsis cDNA sequence was assembled into Brassica rapa 

based pseudo-chromosomes using synteny between the two. In a mapping-by-sequencing 

analysis two mutant intervals were identified as positions in B. rapa using allele frequency 

estimates at 4375 marker positions in an enriched subset of Arabidopsis. These B. rapa 

intervals were later translated back to a single Arabidopsis position (Galvão et al., 2012). 
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This adds a new level of complexity to the overall aim here; to identify a mutant region in 

hexaploid wheat using enriched sequencing data i.e. a fragmented reference genome. Since 

the intention here is to ultimately apply this methodology to polyploid wheat this 

necessitates the development of a novel pipeline that prioritizes adaptability to polyploid 

species since current tools such as SHOREmap are tailored to diploid species. This analysis 

required further development of the current bespoke pipeline and mutant identification 

algorithm (chapter 2) to firstly map an early flowering locus, a deletion, in the gene enriched 

genome sequence of the diploid einkorn wheat mutant Eps-3Am (Triticum monococcum L.) 

(section 4.2). Eps-3Am, is an early flowering mutant with an altered circadian clock 

phenotype, with previous mapping suggesting that the phenotype is due to the deletion of a 

circadian clock gene, an ortholog of the Arabidopsis circadian clock gene LUX 

ARRHYTHMO/ PHYTOCLOCK 1 (LUX), that is thought to play an important role in the 

evening complex within the circadian clock (Campoli et al., 2013; Mizuno et al., 2012; 

Gawroński et al., 2014; Hazen et al., 2005). This mutant dataset was developed and 

phenotyped by Gawroński et al. and sequenced at the CGR (Gawroński et al., 2014).  

 

Bread wheat is made up of the A, B, and D genomes. Based on Acc-1 gene evolution the 

bread wheat A genome donor T. urartu and T. monococcum were estimated to have diverged 

only 0.5 to 1 million years ago (Huang et al., 2002). As such here the genome of T. 

monococcum has been used successfully as a model for the A genome of hexaploid wheat 

(Wicker et al., 2003). Although originally designed based on hexaploid wheat the gene 

capture array was shown here to effectively enrich a divergent diploid wheat with high 

synteny to one of the three wheat genomes. This analysis allows a mutant identification trial 

in an enriched diploid dataset before adding the extra complication of a hexaploid genome.  

 

This mutant identification analysis involves the use of parental Recombinant Inbred Lines 

(RILs). These are immortal populations in which recombinant chromosomes have been fixed 

through inbreeding. RIL lines are advantageous, as they only have to be genotyped once; 

they are mainly homozygous and the remaining small percentage of the genome that is 

heterozygous ensures that only a small portion of the genome segregates for the two parental 

alleles (Weigel, 2012). Figure 4.1 demonstrates an example of the construction of a RIL line 

in which a parental cross produces F1 offspring that are intercrossed to produce F2 offspring. 

Random F2 crosses are performed and then random pair matings of offspring (two from each 

cross) in each generation for multiple generations (inbreeding) (Pollard, 2012). Mapping-by-

sequencing relies on a local skewing of allelic frequency close to the site of the loci 

responsible for the mutant phenotype when you bulk therefore genotype-by-sequencing a 
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phenotypically scored F2 mapping population.  Such a bulk segregant F2 mapping 

population is also employed within this analysis. 

 

 

 
 

Figure 4.1. Construction of a RIL line. Example of the construction of a Recombinant 

inbred line (RIL) employed by Pollard where a set of diploid chromosomes represents an 

individual and each parental genotype is represented by either pink or purple. 

 

 

In section 4.3 a further slight adjustment of the algorithm that was developed in section 4.2 

was made to enable identification of gene regions that are associated with stripe rust 

resistance or susceptibility in two pools of enriched mutant hexaploid wheat plants. These 

pools were developed and phenotyped by a group at Reading University led by Donal 

O’Sullivan and sequenced at the CGR in Liverpool. The main objective was to re-map stripe 

rust resistance genes in the parental lines and in doing so, increase the density of 

polymorphisms associated with the intervals. Stripe rust or yellow rust, caused by Puccinia 

striiformis, is one of the most important diseases of bread wheat with epidemics often 

leading to severe wheat yield losses. The most efficient methods of combating stripe rust 

disease involve the utilization of resistant cultivars in affected regions. Frequent emergence 

of novel stripe rust races results in resistant wheat cultivars often becoming susceptible after 

being grown for some periods of time (Wellings et al., 1990; Chen et al., 2002). As a result, 

the search for new stripe rust-resistance genes and breeding of new resistant wheat varieties 

is carried out on a continued basis (Deng et al., 2004). 

Cross%parental%lines%to%generate%F1%

Cross%F1%to%generate%F2%

Con1nue%to%cross%random%pairs%derived%from%the%popula1on%(2%offspring%per%cross)%%

Recombinant%Inbred%Lines%

Cross%random%pairs%of%F2%
Each%F2%is%the%seed%of%an%inbreeding%process%%
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The analysis in section 4.3 involved the use of wheat lines that were bred specifically by 

Donal O’Sullivan’s group to be double haploid. Such lines are created, in this case, when 

two parental purebred lines of the wheat varieties Avalon and Cadenza are crossed to 

produce F1 progeny. The F1 progeny haploid cells are then allowed to undergo chromosome 

doubling to produce offspring that are a mosaic of the parental lines with both chromosomes 

largely identical i.e. widespread homozygosity between chromosome pairs within each of the 

3 diploid wheat genomes. Here two genotypes were to be studied after bulk segregant 

analysis of F1 offspring; those with the Yr7 stripe rust resistance locus originating from the 

Cadenza parent and those with Yr7 stripe rust susceptibility as per the Avalon parent.  

 

Here, target enrichment in wheat, combined with a sliding window mapping-by-sequencing 

mutant identification approach, is demonstrated using a pseudo genome reference, derived 

from wheat-Brachypodium synteny in; a diploid wheat, mapping the Eps-3Am mutation to a 

small deletion on chromosome 3 in T. monococcum and in a hexaploid wheat to enable 

identification of regions that are associated with stripe rust resistance/susceptibility. 

 

 

4.2 Mutant identification in the diploid wheat T. monococcum 

 

4.2.1 Sample preparation and mapping  

An early flowering T. monococcum mutant KT3-5 was crossed with a wild accession KT1-1 

of Triticum boeoticum; The F1 progeny self-pollinated and 1-2 seeds per plant were grown. 

This was repeated for ten or eleven generations to obtain the RILs. To eliminate another 

QTL for flowering time on chromosome 5 markers linked to the eps5 and Vrn2 were used 

and RIL25 (early flowering) and RIL71 (wild type) lines were selected. RIL25 and RIL71 

were then used as the parental lines for this analysis and crossed accordingly to produce an 

F2. This F2 mapping population was phenotypically classified and bulk segregated into two 

groups; wild type (parent RIL71) phenotype named Bulk A and early flowering (parent 

RIL25) phenotype named Bulk B. Each bulk contained approximately 250 individual plants 

(Gawroński et al., 2014). The full details of the breeding and phenotyping of the lines that 

were analyzed here is as previously reported (Gawroński et al., 2014). 

 

The two bulk segregated populations, along with the parental RIL25 and RIL71 lines were 

enriched using the gene capture array and sequenced at the University of Liverpool’s CGR 

as follows; Genomic DNA was purified using Agencourt AMPure XP beads (Beckman 

Coulter). Samples were quantified using a Qubit double-stranded DNA Broad Range Assay 

Kit and Qubit fluorometer (Life Technologies). Genomic DNA was sheared for 3×60s using 
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a Covaris S2 focused-ultrasonicator and the size distribution of the fragmented DNA was 

assessed on a Bioanalyzer High Sensitivity DNA chip (Agilent). End-repair, 3!-adenylation, 

and adapter ligation were performed according to the Illumina TruSeq DNA Sample 

Preparation Guide (Revision B, April 2012) without in-line control DNA and without size-

selection. Amplification of adapter-ligated DNA (to generate pre-capture libraries), 

hybridization to custom wheat NimbleGen sequence capture probes, and washing, recovery 

and amplification of captured DNA were all carried out according to the NimbleGen 

Illumina Optimized Plant Sequence Capture User’s Guide (version 2, March 2012), with the 

exception that purification steps were carried out using Agencourt AMPure XP beads instead 

of spin columns. Final libraries were quantified by Qubit double-stranded DNA High 

Sensitivity Assay and the size distribution ascertained on a Bioanalyzer High Sensitivity 

DNA chip. The 4 libraries were then pooled in equimolar amounts based on the 

aforementioned Qubit and Bioanalyzer data. Sequencing was carried out on two lanes of an 

Illumina HiSeq 2000, using version 3 chemistry, generating 2 x 100bp paired end reads. 

 

As seen in figure 4.2a sequence datasets for all 4 samples were mapped to the pseudo-

chromosome sequences, which were generated from the gene capture array design-space, 

using BWA (v 0.6.2) fragment short read mapping. Indexing of the reference sequence 

implemented the ‘IS’ algorithm and during alignment of reads to the reference 4 mismatches 

were allowed per sequencing read. All unmapped, non-uniquely mapped and duplicate reads 

were later removed using SAMtools. Finally SAMtools mpileup (v 0.1.18) (Li, H. et al., 

2009) was implemented on the 4 datasets and SNP calls were filtered out using VarScan 

(VarScan.v2.2.11.jar) (Koboldt et al., 2012) with the following parameters: discard SNPs 

covered by 10 or fewer reads, discard sequencing reads with a quality less than 15 and if the 

alternate allele has less than 2 supporting reads passing the quality filter discard it. For this 

SNP analysis the tool awk was implemented to remove indels from the VarScan output. The 

analysis steps are shown in figure 1.6 and in the command outline appendix sections 1 and 4. 
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Figure 4.2. Processing 4 sets of enriched sequencing data to identify a mapping interval 

containing the deletion that is inducing the phenotype of interest.  (a) Standard mapping 

and SNP calling pipeline (b) Initial homozygote allele frequency determination method for 

Bulk A and Bulk B samples (c) Final allele frequency algorithm or Bulk A and Bulk B 

samples to identify the interval of interest 
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Initially low mapping coverage was seen across the 4 datasets (54% of reference mapped to 

on average at a depth of ~59x). This was anticipated due to mapping the diploid wheat T. 

monococcum, that has since diverged from the hexaploid wheat A genome donor, to a 

reference sequence that was designed to represent any/all of the 3 genomes of the hexaploid 

wheat Chinese Spring. Further optimization of this mapping analysis enabled identification 

of parameters that allowed increased mapping of this divergent dataset to the reference 

sequence; firstly the mapping seed by default has 2 mismatches within it that was increased 

to 3, the seed length was reduced from 32 to 30 and the quality threshold for trimming reads 

was set at 20. Due to local re-arrangements in sequence between the diverged species T. 

monococcum and hexaploid wheat the 100bp raw sequencing reads were split into two 50bp 

reads and mapped separately. The 4 datasets were re-mapped using these parameters and 

SNP calling was repeated. Coverage was highly conserved between the 4 samples and 

increased with on average 70% of the reference mapped to at ~70x coverage (table 4.1). 

 

 

Sample Average % 
coverage of 
pseudo-
chromosome 
base space  

Average 
depth of 
coverage  

Number of 
homozygous 
SNPs 
identified  

Number of 
heterozygous 
SNPs 
identified 

 

 

RIL25 

 

69.8 

 

63.8 

 

978,511 

 

118,330 

 

RIL71 69.7 72.4 1,013,269 119,883  

Bulk A 69.8 69.4 159,822 143,147  

Bulk B 69.0 67.7 188,363 

 

155,570  

 

Table 4.1. Mapping Statistics for the 4 enriched wheat DNA samples in relation to the 

pseudo-chromosome reference sequence. Statistics calculated across the pseudo-

chromosome assembly base space. Homozygous SNPs in 80-100% of sequencing reads and 

heterozygotes in 30-70% sequencing reads. 

 

 

In RIL25 and RIL71 mapping extended across 108,218 and 108,263 of the design-space 

contigs that made up the pseudo-chromosomes respectively. Of the 7,031 and 6,986 

unmapped target sequence contigs in RIL25 and RIL71, the majority, 6,072 were unmapped 

in both samples. In a related study mapping the hexaploid wheat Chinese Spring to the 

pseudo-chromosome sequences 98% of the target sequence was mapped. This encompassed 
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114,981 design-space contigs with only 268 unmapped, 186 of these were also unmapped by 

the two RIL T. monococcum lines. 

 

Figure 4.2a also details the identification of RIL25 and RIL71 specific homozygous SNPs. 

Homozygous SNPs were classified as SNPs in 80% or more of the sequencing reads and 

881,860 homozygous SNPs were identified in relation to the Chinese Spring reference that 

were shared between the two RIL lines. These were removed leaving 96,651 RIL25 and 

131,409 RIL71 specific homozygous SNPs. The RIL specific SNPs could then be used to 

generate a RIL25 and RIL71 ‘reference genome’.  

 

4.2.2 Initial homozygote allele frequency determination for mutant identification  

Two mapping-by-sequencing mutant identification pipelines were developed from the 

bespoke mutant identification pipeline in chapter 2 and were successfully used for this 

analysis (Figure 4.2b and 4.2c). The first pipeline was used to identify regions with increased 

homozygous frequency compared to the parent genome and was closely based on the 

methodologies that were demonstrated by SHOREmap. Of the homozygote SNPs that were 

specific to the RIL25 parent 34,125 SNPs could be found as conserved homozygous alleles 

in the Bulk A data and 46,154 in the Bulk B data i.e. also in 80-100% of the sequencing 

reads. Of the homozygote SNPs that were specific to the RIL71 parent 54,376 were 

conserved as homozygotes in the Bulk A data and 64,700 in the Bulk B data.  

 

Frequencies of the RIL71 and RIL25 SNPs were calculated per 100,000bp window along 

each chromosome for Bulk A and Bulk B datasets and displayed graphically. To minimalize 

noise the data for all RIL25 specific SNPs could be combined with the following calculation; 

BulkB homozygote frequency per interval – BulkA homozygote frequency for the same 

interval, highlighting shared homozygosity between Bulk B and the mutant RIL25 parent. A 

clear peak of conserved RIL25 homozygous SNP frequency was observed at the end of 

chromosome 3 in Bulk B (Figure 4.3a). The same data was displayed for the RIL71 specific 

homozygous SNPs with the opposite calculation; BulkA homozygote frequency per interval 

– BulkB homozygote frequency per corresponding interval, highlighting shared 

homozygosity between Bulk A and RIL71. The same clear peak was observed at the end of 

chromosome 3 in Bulk A (Figure 4.3b). All raw data for figure 4.3a and 4.3b can be found in 

Appendix 3, table 1 and 2 respectively. The interval that the peak occurred within translated 

to the window 10,000,000bp-10,600,000bp of the pseudo wheat chromosome 3. There were 

748 probes concatenated in order to form this region and these probes aligned to the region 

58,063,918-59,004,348 in Brachypodium chromosome 2 (~940Kbp) including the genes 

Bradi2g60780-62310 (~160 genes). 
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        (a)                                           (b)   

 
 

Figure 4.3. Frequencies of Bulk A and Bulk B homozygotes calculated along each pseudo-chromosome. (a) Frequency of ‘RIL25 homozygous’ SNPs 

per window; Bulk B frequency minus Bulk A frequency per 100,000bp window (b) Frequency of ‘RIL71 homozygous’ SNPs; Bulk A frequency minus Bulk 

B frequency per 100,000bp window. 
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4.2.3 Final haplotyping algorithm for mutant identification 

Figure 4.2c details the final improved algorithm for analysis that has been developed with 

downstream implementation on hexaploid wheat in mind. This method scores regions of 

interest by prioritizing long homozygous parental haplotypes, the longer the length and the 

more homozygous the region, the higher the score generated. Scores are calculated per user-

defined window in both analyses and in the final algorithm an additional 1000bp window 

overlap was included. To enable this analysis again the RIL25 and RIL71 specific 

homozygote lists were implemented. However rather than looking for conserved 

homozygote positions in the Bulk A and Bulk B datasets the SNP alleles were simply 

identified in the Bulk A and Bulk B datasets regardless of homozygous or heterozygous 

status.  

 

Of the homozygote SNPs that were specific to the RIL25 parent, 49,126 of the SNP alleles 

were conserved in the Bulk A data regardless of homozygous or heterozygous status, and 

62,388 in the Bulk B data. Similarly of the homozygote SNPs that were specific to the 

RIL71 parent, 54,377 of these were found in the Bulk A data and 83,401 in the Bulk B data. 

These SNPs were categorized into homozygous, heterozygous or borderline (see Figure 4.2c 

for categorizing limits) and a scoring system was developed to calculate a homozygote score 

per 100,000bp window along the pseudo-chromosomes at 1000bp intervals (Figure 4.4).  
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Figure 4.4. Outline of mutant identification algorithm. A unique scoring system used to 

calculate a homozygote score per user-defined window (100,000bp used) along the pseudo-

chromosomes at 1000bp intervals. Position 1 defines the first SNP position in the 100,000bp 

window for which a score of 0, 1 or 2 is determined. For SNP position 2 the current score is 

amended taking into account the position 1 SNP call (position x) in relation to the position 2 

SNP call (position x + 1). Further iterations ensue for every SNP position i.e. position x will 

become position 2, 3, 4 up to the end of the 100,000bp window and the score is amended 

each time until a final value is recorded. The window for analysis is then re-set 1000bp 

downstream and the score re-set to 0 before the analysis will be repeated.  

 

 

The scores that were defined using the new algorithm for the Bulk A and Bulk B datasets in 

relation to both parents were plotted in figure 4.5 respectively and magnification of the peak 

regions confirm the same peak has been defined that was seen in the previous analysis. This 

method generates a much greater volume of analyzable data that its predecessor calculating a 

score every 1000bp rather than every 100,000bp. It amplifies the interval of interest at the 

end of chromosome 3 in comparison to the initial method whilst reducing background noise. 

The additional step of subtracting the Bulk A data from Bulk B and vice versa is no longer 

necessary to reduce noise. 
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       (a)                 (b) 

 
 

Figure 4.5. Homozygosity scores calculated for Bulk A and Bulk B datasets. Scores plotted along each pseudo-chromosome. Haplotypes conserved with the RIL25 

(magenta line) and RIL71 (blue line) parental unique homozygote SNPs. Scores calculated per 100,000bp window and calculated at 1000bp intervals. (a) Scores for Bulk A 

dataset (b) Scores for the Bulk B dataset. Peak interval magnified and regions harbouring a deletion > 100bp are highlighted. 
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4.2.4 Conclusions from mutant identification in T. monococcum 

The enrichment approach not only allows identification of SNPs it also allows the 

identification of copy number variation and deletions. Therefore, the “reference genome” 

was scanned for deletions. To define a deleted region that was potentially inducing the 

mutant phenotype it required mappeds reads in the wild type RIL71 and/or the Bulk A 

datasets, whilst being unmapped in the mutant RIL25 and the Bulk B datasets. Deleted 

regions were defined that were longer than 100bp, and that fitted this mapping expectation. 

Using this approach 163 deleted regions were identified (Appendix 3, table 3), 11 were 

within the interval that was identified at the end of chromosome 3.   

 

Although the enrichment array is predicted to contain the majority of wheat’s genic 

sequence, as only ~70% of the reference sequence has been mapped to it is possible that the 

causal deletion could be partially excluded from the analysis. As such, we may not see a full 

segment deletion but a concentrated region of smaller deleted regions using this approach. 

The 163 deletions were further filtered for regions where two or more deletions could be 

seen within a 1000bp window, resulting in 18 deleted regions that are detailed in table 4.2, 

the majority of which lie underneath the defined interval of interest on pseudo-chromosome 

3.  

 

Deletions within the peak interval of interest are in bold type in table 4.2 and they are also 

plotted in figure 4.5. This highlights sequence covering ~40Kbp and particularly a wheat 

gene region (10,481,196-10,482,558bp) that previously was found to align to the 

Brachypodium gene Bradi2g62067 with similarity to the Arabidopsis LUX gene. In a 

BLASTN alignment of this wheat gene region to the BLAST nr nucleotide database 

(Altschul et al., 1990), strong similarity was seen to the T. aestivum cultivar Chinese Spring 

LUX gene (e value < 1e-5, length ~859bp and sequence identity 99%). The LUX gene is 

known to affect both the circadian clock and flowering time in Arabidopsis (Hazen et al., 

2005) and therefore is a strong candidate for the mutation responsible for the Eps-3Am 

mutation in T. monococcum (Gawroński et al., 2014). 

 
 
 
 
 
 
 
 
 
 
 
 



! 131!

Chrom&
&

Position&
&

Length&of&&
hit&

Associated&
gene&

Function&

3 2205655 121 Bradi2g50140, 1,3/beta/D/glucan,synthase,activity,
3 2205890 441 Bradi2g50140 1,3/beta/D/glucan,synthase,activity 
3 2206382 163 Bradi2g50140 1,3/beta/D/glucan,synthase,activity 
3 
 

10452241 
 

129 
 

Bradi2g61960 DEAD box ATP dependent RNA 
helicase activity 

3&
&

10453160&
&

105&
&

Bradi2g61960& DEAD&box&ATP&dependent&RNA&
helicase&activity&

3&
&

10456240&
&

313&
&

Bradi2g61960& DEAD&box&ATP&dependent&RNA&
helicase&activity&

3&
&

10456774&
&

103&
&

Bradi2g61960& DEAD&box&ATP&dependent&RNA&
helicase&activity&

3&
&

10481196&
&

131&
&

Bradi2g62067& Similar&to&LUX&gene&G2Plike&(MybPlike&
domain)&

3&
&

10481946&
&

271&
&

Bradi2g62067& Similar&to&LUX&gene&G2Plike&(MybPlike&
domain)&

3&
&

10482446&
&

112&
&

Bradi2g62067& Similar&to&LUX&gene&G2Plike&(MybPlike&
domain)&

3&
&

10491979&
&

221&
&

Bradi2g62093& (Upstream&of)&gene&contains&FPbox&
domain&

3&
&

10492675&
&

179&
&

Bradi2g62093& (Upstream&of)&gene&contains&FPbox&
domain&

4,
,

2761361,
,

195,
,

Bradi1g69930, Putative,digalactosyldiacylglycerol,
synthase,

4,
,

2761813,
,

182,
,

Bradi1g69930, Putative,digalactosyldiacylglycerol,
synthase,

5, 577462, 132, Bradi2g39240, RNA,binding,
5, 577604, 239, Bradi2g39240, RNA,binding,
5, 4042813, 110, Bradi4g04880, Protein,binding,
5, 4042987, 102, Bradi4g04880, Protein,binding,
 
 
Table 4.2. Detailing the pseudo-chromosome regions that harbour potential deletions. 

Deletions are defined as regions longer than 100bp mapped to by the RIL71 data and Bulk A 

data and also unmapped by the RIL25 data and the Bulk B data. Only when 2 or more 

deleted segments are found within a 1000bp window are they included. Regions associated 

with the candidate gene are underlined and regions within our peak interval of interest are in 

bold type. 

 

 

With no prior knowledge regarding the deleted region of interest this method would still be 

able to reduce the number of deletions that would be taken forward for further analysis to a 

small manageable number. Particularly as any analysis would focus on the regions 

underneath the defined interval only. This region encompasses ~40Kbp and 9 identified 

potential deleted regions that could point towards the longer deletion within the region.  

 



! 132!

The mutant identification analysis that was carried out in chapter 2 involved calculation of a 

homozygote to heterozygote ratio in a bulk segregant mutant pool against a wild type 

reference sequence. Here, it did not identify an interval of interest. Instead analyses within 

this chapter adapted these principles and used algorithms based on conserved homozygote 

frequency of the bulk segregant mutant pool with the mutant parental line to locate an 

interval. Prioritizing conserved homozygosity between the mutant parent and bulk segregant 

mutant F2 pool; excludes most noise, utilizes only those homozygotes that have in effect had 

a double validation-appearing in two independent datasets and still retains and highlights the 

interval of interest. This is a general improvement on the methodology used in chapter 2 that 

is likely to decrease noise and identify an interval even in a divergent dataset. It is of 

particular use if there is no defined reference sequence for the wild type parental line that is 

used and therefore the final homozygote haplotyping algorithm that was developed here will 

be the analysis of choice for further mutant identification analysis within this project. 

 

Both of the pipelines featured in figure 4.2b and 4.2c are attached as user-friendly Perl 

scripts allowing command line input of required files and various parameters to allow user 

definition of windows for analysis and ploidy level of the organism under analysis. They 

output data files of scores per user-defined window along with ready-made raw plots of these 

values per chromosome using R. The original raw algorithm detailed in figure 4.2b 

(Homozygote_frequency_plus_plot.pl) requires simply a list of homozygote SNPs that are 

conserved between the mutant parent and mutant bulk segregant offspring; a tab separated 

file [chromosome <tab> position] and filtered VarScan and GATK outputs are therefore 

acceptable. A tab separated file specifying a line for each chromosome [chromosome <tab> 

length] is also required. Otherwise the user defines the window size for analysis (typically 

200,000bp) and output file prefix. The resultant output has been updated to be a text file 

containing [Chromosome <tab> Start position of interval on chromosome <tab> homozygote 

number] rather than the original [Chromosome <tab> Window number <tab> homozygote 

number] output that was used in figure 4.3. A pdf file is also generated of the raw frequency 

plot in R using this text file. An example pdf plot file is shown below in figure 4.6a for Bulk 

B homozygote frequency in relation to the RIL25 mutant parent. 
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  (a)                      (b) 

   
 

Figure 4.6. Homozygosity frequencies/scores calculated for Bulk A and Bulk B datasets along each pseudo-chromosome. Automated R plots for; (a) Frequency of 

‘RIL25 homozygous’ SNPs per window; Bulk B frequency per 100,000bp window (b) Scores plotted using final algorithm in relation to Bulk B SNP positions that are 

conserved with the RIL25 parental unique homozygote SNPs. Scores calculated per 100,000bp window and calculated at 1000bp intervals. 
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The final haplotyping algorithm detailed in figure 4.2c 

(Haplotyping_hex_wheat_plus_plot.pl) requires a list of SNP positions where SNP alleles 

that are in the mutant bulk segregant offspring are seen as homozygotes in the mutant parent 

that are unique to it; a tab separated file [chromosome <tab> position <tab> Alternate allele 

<tab> % reads with alternate allele] this can be filtered more easily from the VarScan output. 

A tab separated file specifying a line for each chromosome [chromosome <tab> length] is 

also required. Otherwise the user defines the window size for analysis (typically 200,000bp) 

and output file prefix. Additionally if the user does not define homozygote, heterozygote and 

borderline limits those that are defined in figure 4.2c are implemented i.e. diploid settings. 

However if analysis of a polyploid is to be carried out these limits can be user defined at the 

command line according to ploidy number. Such methodology is employed in section 4.3 for 

a hexaploid e.g. a homozygote defined as in ~33% of sequencing reads. The resultant output 

is a text file containing [Chromosome <tab> Start position of interval on chromosome <tab> 

homozygote score] plus a pdf file of the resultant raw frequency plot in R. An example pdf 

plot file is shown in figure 4.6b for Bulk B homozygote scores in relation to the RIL25 

mutant parent. 

 

The complete mapping/SNP calling pipeline plus final haplotyping algorithm is also 

available on iPlant (The iPlant Collaborative, 2011) as two workflows within the Discovery 

Environment; ‘Mapping Illumina seq data Part 1’ and ‘SNP calling Illumina seq data Part 2’. 

These workflows map and SNP call in Illumina sequencing datasets, ideally requiring a 

mutant parental line, a wild type parental line and a bulk segregant mutant F2 pool as input 

as was used within this study. The workflows allow user definition of parameters but the 

parameters that were used for this study are implemented by default and the 2 parental SNP 

lists generated as output are used as input for the workflow; ‘Identification of unique 

homozygous SNPs in mutant’ to identify mutant parental specific SNPs. Finally the 

workflow; ‘Mutant Identification 1’ takes this mutant parent specific SNP list and the bulk 

segregant mutant F2 population SNP list as input, finds conserved SNP alleles between the 2 

and implements the homozygote haplotyping algorithm to output the pdf file R plot seen in 

figure 4.6b identifying the mutant interval of interest. The text file of homozygote scores 

used to plot this is also generated as output. 
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4.3 Identification of genes linked to stripe rust resistance in 2 hexaploid wheat mutants 

 

4.3.1 Mapping and SNP identification pipelines 

Two parental purebred lines of the wheat varieties Avalon and Cadenza were crossed to 

produce F1 progeny. The F1 progeny haploid cells were then allowed to undergo 

chromosome doubling to produce double haploid offspring. Two distinct pools of F1 double 

haploid offspring were created; Pool one (P2) contained 53 individuals with a score of less 

than or equal to 2 of seedling reaction to an AVRYr7 isolate i.e. yellow stripe rust resistant 

lines. Pool two (P3) contained 50 individuals with a score of greater than or equal to 7 of 

seedling reaction to an AVRYr7 isolate i.e. yellow stripe rust susceptible lines. 

 

The two bulk segregated populations, that were equivalent to F2 mapping populations, P2 

and P3, along with purebred parental Avalon and Cadenza lines were developed by Donal 

O’Sullivan’s group and enriched using the NimbleGen wheat gene capture array and 

sequenced using the Illumina HiSeq technology at the CGR, with the same methodology as 

section 4.2, generating paired end reads (2 x 100bp). The pipeline that was developed for 

processing of this sequencing data is summarized in figure 4.7 and is a derivative of that 

shown in figure 4.2a plus 4.2c. The pipeline shown in figure 4.2b was depreciated and is not 

used here. The theory behind figure 4.7a/4.7b and figure 4.2a/4.2c is identical; the main 

changes being the replacement of RIL25 and RIL71 parental lines with Avalon and Cadenza 

hexaploid wheat lines, the replacement of Bulk A/B bulk segregant datasets with 2 pools P2 

and P3 and the limits for homozygote, heterozygote and borderline SNP categorizing have 

been adjusted accordingly for a hexaploid dataset. 

 

The sequence datasets for the 2 bulk segregated populations P2 and P3, along with purebred 

Avalon and Cadenza were all mapped to the pseudo-chromosome sequences, generated from 

the gene capture array design-space, using BWA-short fragment mapping; Indexing of the 

reference sequence involved use of the ‘IS’ algorithm and 4 mismatches were allowed per 

mapped read with a Q score of 20 to allow read trimming in areas of low quality. All 

unmapped, non-uniquely mapped and duplicate reads were later removed using SAMtools. 

Finally SAMtools mpileup (v 0.1.18) (Li, H. et al., 2009) was implemented on the 4 datasets 

and SNP calls were filtered out using VarScan (VarScan.v2.2.11.jar) (Koboldt, D. et al., 

2012) with the same parameters that were implemented in section 4.2.1. The steps involved 

in this analysis are shown in section figure 1.6 and in the command outline appendix sections 

1 and 4. 
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Figure 4.7. Processing 4 sets of enriched sequencing data to identify a mapping interval 

containing the gene that is inducing the phenotype of interest.  (a) Standard mapping and 

SNP calling pipeline (b) Pipeline implementing the final allele haplotype frequency 

algorithm (utilized in figure 4.2c) for P2 and P3 bulk segregant samples to identify the 

interval of interest 
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Approximately 94% of this pseudo wheat reference was mapped across all 4 datasets (P2, 

P3, Avalon and Cadenza) with an average depth of coverage of approximately 45 in Avalon 

and Cadenza and 75 in P2 and P3. Further parsing of the VarScan SNP output allowed 

homozygous SNPs for one of the three genomes between the Chinese Spring reference and 

the two parental lines (Avalon and Cadenza) to be identified (SNPs in 23-43% of the 

sequencing reads with the reference allele in 57-77% of reads). This resulted in 2 lists 

219,550 Avalon specific homozygotes and 254,101 Cadenza specific homozygotes. The high 

likelihood that a SNP allele that was in ~33% of the sequencing reads had come from one 

homozygous genome rather than 2 identical heterozygote genomes ensured the success of 

this methodology. Any deviations or locations with multiple alternate alleles were so small 

in number that they did not have an effect on the analysis outcome. 

 

Mapping positions from Avalon specific homozygotes list were located in each of the P2/P3 

datasets individually and if they had a depth of coverage greater than or equal to 50 and if 

the SNP allele that was identified in Avalon could be found in the P2/P3 data then they were 

added to a P2 and a P3 ‘Avalon unique homozygous SNP list’ respectively (P2; 14,868 SNPs 

and P3; 16,336 SNPs). These lists detailed the mapping position of the SNP; its alternate 

allele in Avalon and the percentage of sequencing reads that this alternate allele could be 

seen in in the respective bulk segregated dataset (P2 or P3). The exercise was repeated using 

the Cadenza specific homozygotes to generate lists for P2 and P3 if the SNP allele was 

conserved (P2; 17,235 SNPs and P3; 17,137 SNPs). 

 

Thus 4 lists were created; for each of the P2 and P3 datasets one each of; conserved Avalon 

unique homozygous SNPs and conserved Cadenza unique homozygous SNPs. These files 

were analyzed using the script Haplotyping_hex_wheat_plus_plot.pl. A tab separated file 

specifying a line for each chromosome [chromosome <tab> length] was also required. 

Otherwise the user defined window size for analysis was altered as necessary between 

datasets and the user-defined homozygote, heterozygote and borderline limits were altered to 

enable effective SNP calling in a hexaploid as per figure 4.7b. The relevant scores per 

window along each chromosome were outputted for each dataset in relation to both parents. 

 

4.3.2 P2 and P3 datasets; Mutant identification  

Homozygosity scores, were outputted every 10,000bp for each 600,000bp chromosomal 

window for the P2 and P3 datasets and plotted in relation to both parents. A larger window 

size than the typical 200,000bp window was used due to the expectation that the defined 

interval would be larger because of; the lower number of pooled plants combined with the 

hexaploid nature of wheat. These window sizes were determined to be best for each dataset 
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individually and the plots are detailed in figure 4.8 where the Avalon and Cadenza relevant 

scores have both been plotted together. 

 

Figure 4.8a shows the result gained from the analysis in the sample P2. It shows one main 

peak that is seen in Cadenza on chromosome 2 (~7.5Mbp) and not seen in Avalon. Since 

plants in this pool were bulk segregated on the basis of shared stripe rust resistance to an 

AVRYr7 isolate, that was likely to be inherited from the Cadenza parent, they are expected 

to show a high degree of homozygosity that is shared with Cadenza around the Yr-7 locus. 

The Yr-7 locus is documented to be on wheat chromosome 2 so this peak could be indicative 

of the gene region (McIntosh, R. A. et al., 1998). The approximately plateaued tip of this 

peak on chromosome 2 was determined to be between 7,200,001 and 7,880,001bp. This 

region was extended to include the entire peak for downstream analyses i.e. 6,870,001-

8,380,001bp and was used in a BLASTN alignment to the BLAST nr nucleotide database 

(Altschul et al., 1990) (e-value < 1e-3). The region encompassed; 247 homozygous SNPs 

(122 in tip of peak interval) that are unique to sample P2 and detailed along with their 

associated genes in appendix 3, table 4. It has been previously observed that most disease 

resistance genes in plants encode nucleotide binding site leucine-rich repeat proteins (NBS-

LRR) (McHale et al., 2006). It was noted from appendix 3, table 4 that 1 SNP was 

associated with the NBS-LRR disease resistance protein homologue and that 6 SNPs were 

associated with regions similar to the Brachypodium RGA4-like disease resistance protein 

that is also known to be of the NBS-LRR protein family (Ratnaparkhe et al., 2011). The 7 

SNPs were all unique to P2 and, in the region 7,518,606–7,556,492bp, they were 

approximately central to the tip of the peak interval of interest that was defined for sample 

P2 on chromosome 2. Analysis of pooled plants based on shared stripe rust resistance due to 

presence of the Yr-7 stripe rust resistance locus has allowed the location of SNPs that are 

associated with a gene that is likely to be linked to such disease resistance. 
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               (a)                                (b) 

!
Figure 4.8. Homozygosity scores calculated for the P2 and P3 bulk segregant datasets along each pseudo-chromosome. (a) Scores calculated per 600,000bp window 

along each chromosome at 10,000bp intervals. Magenta line; Scores plotted for ‘Cadenza unique homozygote SNPs’ found in the P2 bulk segregated dataset. Blue line; 

Scores plotted for ‘Avalon unique homozygote SNPs’ found in the P2 bulk segregated dataset. (b) See (a) but scores derived from P3 dataset. 
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Figure 4.8b shows the result gained from the analysis in the sample P3. It shows 1 main peak 

region in Avalon on chromosome 2 (~7.5M bp) that is not seen in Cadenza. Plants in this 

pool were bulk segregated on the basis of shared stripe rust susceptibility to an AVRYr7 

isolate due to absence/disruption of the Yr-7 locus that was likely to be inherited from the 

Avalon parent. They are expected to share a high degree of homozygosity with Avalon in 

this gene region that is documented to be on wheat chromosome 2 (McIntosh, R. A. et al., 

1998). This peak could therefore be indicative of the Yr-7 locus. We expect P3 to be an 

approximate mirror image of P2 due to one being resistant and one being susceptible to the 

same AVRYr7 isolate; this mirror image of plots has been seen as the peak for P2 was in the 

chromosome 2 Cadenza plot and the peak in P3 is approximately at the same position in 

chromosome 2 but in Avalon. This acts as a reinforcement of the accuracy of the analysis. 

The approximately plateaued tip of the peak that was seen in P3 was determined to be 

between 7,200,001 and 8,060,001bp. This region was extended to include the entire peak for 

downstream analyses i.e. 6,940,001-8,190,001bp and was used in a BLASTN alignment to 

the BLAST nr nucleotide database (Altschul et al., 1990) (e-value < 1e-3). The region 

encompassed 197 homozygous SNPs (143 in tip of peak interval) that are unique to sample 

P3 and detailed along with their associated genes in appendix 3, table 5. 11 SNPs were 

associated with the NBS-LRR disease resistance protein homologue and 10 further SNPs 

were associated with regions similar to the Brachypodium RGA4-like disease resistance 

protein that is also of the NBS-LRR protein family (Ratnaparkhe et al., 2011). 21 SNPs were 

identified in P3, in this region that showed homology to the NBS-LRR disease resistance 

proteins, while only 7 SNPs were identified in a similar sized and located interval in P2. 

Pooling and analysis of samples based on shared stripe rust susceptibility has allowed 

definition of a group of homozygous SNPs that are in gene regions that are likely to be 

linked to stripe rust resistance. The elevated level of SNPs found in P3 compared to P2 could 

be responsible for the disruption of transcription of the disease resistance gene and disease 

susceptibility in this sample. The 21 SNPs are therefore candidates for further investigation; 

they were unique to P3 and in the region 7,508,311–7,553,295bp approximately central to 

the tip of the peak interval of interest that was defined for sample P3 on chromosome 2.  

 

The 9000 SNP Infinium assay (iSelect array) includes SNPs that were discovered in 

transcriptomes generated from multiple wheat lines. Largely annotated, the array can be used 

to genotype a diverse set of polyploid wheat lines (Cavanagh et al., 2013). 296 Yr-7 linked 

iSelect SNP sequences were used in a BLAST search against the entire wheat enrichment 

array to find their relative positions. 193 had hits (65%) and 159 could be allocated to a 

pseudo-chromosome sequence position. Of these SNPs 144 (90%) were correctly anchored 

to pseudo-chromosome 2 with ~80% of these within the region 6,000,00-9,000,000bp. The 
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relative scores (Cadenza/Avalon unique homozygote SNP scores per window) for the 144 

iSelect Yr-7 SNP positions were extracted for each of the P2/P3 datasets and plotted in 

figure 4.9 (see Appendix 3, table 6 for list) to identify those that were situated within figure 

4.8’s peak interval. If multiple windows hit the SNP the average score was taken.  

 

 

 (a)                (b) 

!!!!!  
 

Figure 4.9. Homozygosity scores calculated from the P2 and P3 bulk segregant datasets 

for the iSelect Yr-7 linked SNP positions. Scores originally calculated per 600,000bp 

window along each chromosome at 10,000bp intervals but reported here only for windows 

on chromosome 2 containing iSelect Yr-7 linked SNPs. (a) Magenta line; Scores plotted for 

‘Cadenza unique homozygote SNPs’ found in the P2 bulk segregated dataset at iSelect Yr-7 

linked SNP positions. Blue line; Scores plotted for ‘Avalon unique homozygote SNPs’ 

found in the P2 bulk segregated dataset at iSelect Yr-7 linked SNP positions. (b) See (a) but 

scores derived from P3 dataset.  

 

 

In sample P2 the 30 Yr-7 linked iSelect SNP positions that gained a score above 1x109 

(~10% of graph limit) are detailed in table 4.3. These SNP scores made up the peak in figure 

4.9a and were derived from the Cadenza specific list as anticipated. The SNPs mapped to the 

region 7,293,769-7,783,887bp on chromosome 2 i.e. tip of the peak interval in figure 4.8a. In 

sample P3 an identical list of 30 Yr-7 linked iSelect SNP’s that gained a score above 1x109 

are detailed in table 4.3. These SNP scores made up the peak in figure 4.9b, are found at the 

tip of the peak interval in figure 4.8b, and were derived from the Avalon specific list as 

anticipated. Of the 30 iSelect SNP positions 4 and 1 were conserved with the P2 and P3 

homozygous SNP lists respectively i.e. alternate allele found in the population. In the 

BLASTN search these SNPs showed no homology with disease resistance proteins (not in 

the list of 7 P2 and 21 P3 candidate SNPs) and therefore may demonstrate proximity to the 

Yr-7 locus only. Locating Yr-7 linked SNP positions within and around the defined peak in 

the P2/P3 datasets suggests that the Yr-7 locus has been correctly located here even if the 

datasets do not have SNP alleles at many of these positions.  
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iSelect SNP name  

 

Position on 

Chromosome 2 

P2 Cadenza Score P3 Avalon Score 

 

RFL_Contig337_1645 7293769 1027635761 104896474 

Tdurum_contig54925_202 7293769 1027635761 104896474 

Tdurum_contig54925_225 7293792 1027635761 104896474 

RFL_Contig337_1432 7293982 1027635761 104896474 

Tdurum_contig54925_415 7293982 1027635761 104896474 

BobWhite_c19554_544 7294114 1027635761 104896474 

BS00088489_51 7294306 1027635761 104896474 

GENE-1125_32 7294306 1027635761 104896474 

Tdurum_contig46389_1838 7318237 1054095226 109368420 

Tdurum_contig46389_1540 7318535 1054095226 109368420 

Tdurum_contig46389_1459 7318616 1054095226 109368420 

Excalibur_c5557_201 7456131 1116094943 132971055 

BS00022717_51 7456454 1116094943 132971055 

BS00023060_51 7456706 1116094943 132971055 

Excalibur_rep_c68985_110 7462316 1120523493 134656957 

RAC875_rep_c118667_79 7472424 1120826498 135792788 

RAC875_c28108_144 7472838 1120826498 135792788 

TA005830-0667 7472956 1120826498 135792788 

RAC875_c28108_400 7475389 1120826498 135792788 

BS00011825_51 7475593 1120826498 135792788 

IACX8470 7475580 1120826498 135792788 

Kukri_c18058_764 7476327 1120826498 135792788 

RAC875_rep_c85788_180 7564051 1121253728 137829007 

CAP8_rep_c8162_101 7598207 1121283358 137821194 

wsnp_Ex_c12922_20472434 7606991 1121227500 137779505 

wsnp_Ex_c12922_20473104 7609812 1121200238 137765496 

Kukri_c25716_284 7614022 1121200238 137765496 

Kukri_c25716_445 7614182 1121087765 137751488 

Excalibur_c10071_213 7655834 1121087765 137751488 

wsnp_BE490267A_Ta_2_1 7783887 1120637065 137667033 

 

Table 4.3. Yr-7 iSelect SNPs mapping to wheat pseudo-chromosome 2. Scores have been 

extracted if greater than 1x109 and averaged over the 60 windows hit per SNP. P2 Cadenza 

scores and P3 Avalon scores detailed. 

 

 

4.4 Conclusions  

In section 4.2 a mutant bulk segregant F2 population of the non-model grass T. monococcum 

was developed from parental RILs, it was target enriched for genic regions and a region was 

identified on chromosome 3 that is likely to contain the Eps-3Am mutation. A region of 
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~600Kbp was initially identified within the pseudo-chromosomes and within this region a 

~40Kbp region could be pinpointed based on the identification of deletion hotspots. Finally, 

by assessing gene annotation, the candidate gene for the phenotype itself could be narrowed 

to a single capture design-space contig of 3693bp that had a high deletion frequency and 

showed a high degree of similarity to the T. aestivum cultivar Chinese Spring LUX gene. 

The LUX gene is known to affect both the circadian clock and flowering time in Arabidopsis 

(Hazen et al., 2005). This was all made possible with the development of a bespoke 

mapping/SNP calling and mutant identification algorithm. 

 

Additionally the use of a target enrichment strategy using capture probes that have been 

designed against the hexaploid wheat Chinese Spring to enrich the genic portion of a closely 

related plant has been demonstrated gaining on average 70x mapping coverage across 70% 

of the pseudo-chromosome reference sequence. This highlights the possibility for other 

capture probe sets to be used for close relatives with little or no resources available e.g. the 

soybean NimbleGen SeqCap EZ in solution exome enrichment probe set could be applied 

for study of the pea.  

 

This study extends a proof of concept approach where enrichment of a subset of a 

phenotyped Arabidopsis F2 mapping population was performed in combination with a 

mapping-by-synteny approach to order Arabidopsis cDNA into B. rapa pseudo-

chromosomes based on synteny. Two mutant intervals were defined in B. rapa using allele 

frequency analysis at marker positions. This translated to one position in Arabidopsis 

(Galvão et al 2012). Here, the full genic sequence of wheat was enriched and ordered into 

wheat pseudo-chromosomes based on synteny with the closely related Brachypodium to 

allow sliding window mapping-by-sequencing analyses. The mutant deletion could be 

identified directly as a position in wheat. The combination of sliding window analyses and 

mapping-by-synteny, implementing a pseudo genome directly, has not yet been documented. 

By targeting the majority of wheat’s genic sequence the concerns expressed by Galvão et al, 

that the causal mutation would be unlikely to be targeted with enrichment, are addressed. 

Here the likelihood of enrichment of the region of interest is increased and not only has a 

more divergent species been used to order the fragmented mapping reference, the mapping 

reference and enrichment capture probe set are both divergent from the analyzed species. 

 

A group at Reading University led by Donal O’Sullivan provided the P2/P3 Yr-7 stripe rust 

resistant/susceptible wheat datasets. Analysis of these datasets yielded confident definition 

of almost identical peak intervals and a small group of novel SNPs in common disease 

resistance genes that the group will go on to investigate further. In the P2 dataset 7 SNPs 
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were associated with the NBS-LRR disease resistance protein family; these SNPs were all 

unique to P2 and approximately central to the tip of the peak interval of interest that was 

defined for this dataset on chromosome 2. This SNP region is likely to indicate the location 

of the Yr-7 locus for stripe rust resistance. In the P3 dataset 21 SNPs were associated with 

the NBS-LRR disease resistance protein family. This SNP increase in the P3 dataset 

compared to P2, in the same peak region on chromosome 2 that showed homology to the 

NBS-LRR disease resistance proteins, could be responsible for the disruption of the disease 

resistance gene and therefore disease susceptibility in this sample and as such these 21 novel 

SNPs (not iSelect positions) are candidates for further study.  

 

113 Yr-7 linked iSelect SNP sequences could be correctly anchored to pseudo-chromosome 

2 within the region 6,000,00-9,000,000bp. 30 iSelect SNP sequences were located at the tip 

of the peak interval in both the P2 and P3 datasets. 5 of these 30 were also found in the 

P2/P3 homozygous SNP lists, i.e. alternate allele seen in the populations, though these 

positions could not be associated with disease resistance genes and are unlikely to be 

candidates for stripe rust resistance/susceptibility. The ability to find Yr-7 linked SNP 

positions within the defined peak in P2 and P3 suggests that the Yr-7 locus has been 

correctly located here even if the P2/P3 datasets do not have SNP alleles at many of the 

iSelect SNP positions. In theory all of the Yr-7 linked SNPs should relatively closely 

associate with the peak regions in the BLASTN search. Cases where this was not true are 

likely to be a result of local inaccuracies in the contig ordering that was used to make up the 

pseudo-chromosomes. The full peak region that is identified can encompass over 2Mbp of 

genic material. This can be tentatively narrowed down to peak plateaus that tend to be less 

than 1Mbp. Homing in on the peak tip could be more confidently relied upon if the pseudo-

chromosomes contained all genic material and contig order could be fully confirmed. James 

et al. noted that, at a minimum of 15x coverage, larger pools of ~200 plants generated 

interval sizes 159-603Kbp, while smaller pools of ~50 plants generated interval sizes 216-

1350Kbp (Velikkakam et al., 2013). Here the average pool size was ~66 therefore the 

defined interval of ~1Mbp is approximately within the anticipated range.  

 

In chapter 3 utilization of the IWGSC wheat chromosome assemblies showed that 80% of 

the design-space contigs that were concatenated into the pseudo-chromosomes were found to 

have been associated with the correct chromosome. All figures in this study have been re-

plotted retrospectively after the removal of any probes that had a chromosomal position that 

could not be validated. Almost identical results were observed when this is compared to 

plots prior to removal with no noteworthy deviations.  
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Chapter 5. A comprehensive genome wide analysis of methylation patterns in wheat 

 

 

Here a study of methylation patterns in wheat is outlined that utilized sodium bisulfite 

treatment combined with target enrichment. An enrichment system was specifically 

designed, developed, validated and implemented here to perform one of the first studies of 

methylation patterns in hexaploid bread wheat across the 3 genomes that used a genome-

wide subset of genes and can thus be used to infer genome-wide methylation patterns and 

observations. This investigation confirmed that differential methylation exists between the 

A, B and D genomes of wheat and that temperature is capable of altering methylation states. 

 

5.1 Introduction 

Methylation of the cytosine residues in eukaryote DNA is thought to act as a mechanism of 

gene expression control. As outlined in section 1.8 it is clear that the location of methylation 

within or around a gene is important, however, the reasoning for this is, as of yet, poorly 

understood (Brenet et al., 2011) and as such the various predicted effects of methylation, 

depending on gene location, remain controversial and largely without clarification. 

Rabinowicz et al. analyzed a small subset of whole genome sequencing data for hexaploid 

wheat and identified a high number of genes. They predicted high levels of methylated 

pseudogenes in wheat (recently amplified and then silenced), reducing the number of active 

genes to a level closer to that, which was expected (Rabinowicz et al, 2005).  

 

The 3 main methods used in the laboratory for the study of methylation patterns include; 

bisulfite treatment, differential enzymatic cleavage and affinity based methods that use 

antibodies or proteins to pull down methylated DNA. Here the study of methylation patterns 

in wheat was tested using bisulfite treatment. Sodium bisulfite treatment is an increasingly 

popular method for epigenetic profiling and allows effective discrimination of the 

methylation status at every cytosine residue making this method the gold standard in 

methylation studies (Darst et al., 2010). The clear significance of the impact of methylation 

on the genome makes it an obvious area for research but to study methylation in the large 

hexaploid wheat genome, without encountering the problems previously detailed due to the 

large size of the wheat genome, the combination of a bisulfite treatment with target 

enrichment was the best way forward. This technique was used to test: firstly, if differential 

methylation exists between the A, B and D genomes; secondly, using two growth 

temperatures for the Chinese Spring to test if temperature is capable of altering the 

methylation state and to see if this is both genome specific and genome independent; finally, 

to investigate if it is this underlying methylation that can control both genome specific and 
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temperature dependent changes in gene expression. 

 

Previously detailed capture probe sets i.e. the gene and exome capture arrays, were designed 

with, and made by, NimbleGen (detailed in section 1.6). Such capture probes are typically 

less than 100bp in length, DNA based and tiled across the design-space for the array. Here 

an Agilent Sure select custom capture probe set was designed and used for the methylation 

study in preference to a NimbleGen probe set since at this time NimbleGen did not support 

the use of their capture probe sets for the study of methylation patterns using bisulfite 

treatment. Agilent capture probe sets utilize 120bp RNA baits that, here, do not overlap.  

Agilent’s Sure Select Methyl-Seq Target Enrichment System allows the study of methylation 

patterns in target regions. Such methodology opens up the possibility of cost effective 

epigenetic profiling in large genomes and here it is demonstrated that enrichment can be 

used to give a genome-wide overview of methylation patterns across a subset of genic 

regions in the wheat genome. As an initial proof of principle an enrichment capture probe set 

was designed to target a 6Mbp subset of the genic regions of wheat. Here this will be 

referred to as the methylation capture probe set or array. To design this methylation capture 

probe set, a subset of regions were selected from the wheat gene capture array design-space 

that was introduced in figure 1.11 and validated in chapter 3. This design-space had already 

been through extensive validation and this ensured that probe sequences that were derived 

from it, similarly to those in the gene capture array, were; unique, non-repetitive, gene-rich, 

represent all 3 genomes, exclude chloroplast and mitochondrial sequence and are evenly 

distributed across the wheat genome. Use of this methodology ensured a successful 

methylation array probe set with little additional validation needed. The methylation array’s 

enrichment performance is detailed in section 5.4. 

 

The methylation array was used to test a number of hypotheses in wheat (section 5.6-5.8); 

firstly that Chinese Spring hexaploid wheat DNA could be enriched using the array to see if 

differential methylation exists between the A, B and D genomes. A list of naturally occurring 

homeologous SNP positions within the array bait sequences would allow identification of 

differential methylation between the A, B and D genomes in this analysis. Such SNPs make 

it possible to associate sequencing reads with a homeologous SNP allele and ultimately a 

particular wheat genome and this methodology is detailed in figure 5.1 and section 5.3. This 

limited the analyzable dataset to those regions that could be associated with homeologous 

SNPs (see section 5.5 for details). Secondly, two growth temperatures were used for the 

Chinese Spring (12°C to represent a lower more ambient temperature for wheat growth in 

the UK and 27 °C to represent a contrasting high temperature for wheat growth) such DNA 

was enriched using the array and bisulfite treated to test if temperature is capable of altering 
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the methylation state and to see if this is both genome specific and genome independent. 

Finally, gene expression was compared between the two growth temperatures to test whether 

this differential methylation correlated with changes in gene expression (section 5.8). The 

two Chinese Spring datasets grown at 12°C and 27°C were developed, enriched, bisulfite 

treated and sequenced by the CGR. 

 

 

5.2 Design of the methylation array 

The design-space (~110Mbp) of the gene capture array was used as a starting point for 

design of the methylation array. 50,000 120bp fragments were selected from this design-

space to form the RNA baits that would be used in the 6 Mbp methylation array. Fragments 

were selected with 3 main properties; previous good mapping coverage of the region, the 

presence of homeologous SNPs in the region from previous mapping analyses (chapter 3) 

and good genome-wide representation.  Regions were ranked on the basis of homeologous 

SNP presence and coverage and 120bp sequences were distributed evenly across the more 

‘desirable’ base-space. The 120bp baits were uploaded onto Agilent’s EArray online (custom 

array design tool) to allow submission for manufacture. Bait ‘boosting’ was selected to allow 

excess unused design-space (less than 1Mb in this case) to be filled with repeat sequences of 

baits that are predicted to perform less efficiently i.e. those with an above average GC 

content are ‘boosted’ to ultimately gain even depth of sequence coverage across the array. 

 

In a BLAST search the methylation array baits hit 47% of the genes in the most closely 

related sequenced grass, Brachypodium and 34% of the 97481 full length wheat cDNA 

contigs that were identified by Brenchley, R. et al when only top hits for each probe with an 

e-value less than 1e-5 were considered. Moreover, aligned regions with 1e-5 and over 90% 

sequence identity to the wheat cDNA contigs that were identified by Brenchley, R. et al 

were used to determine the transcribed regions of the bait sequences.  Approximately 37% of 

the array probe set sequence was identified as transcribed. Thus, both methylation patterns in 

transcribed and untranscribed regions could be analyzed (Brenchley et al., 2012). 

 

For all mapping analyses in this study rather than mapping directly to the 6Mb 120bp 

Agilent probe sequences, unless otherwise stated, data was mapped to the 120bp probes plus 

any contiguous DNA sequence surrounding the probes that was available. These will be 

referred to as the extended methylation bait sequence and reference contigs ranged from 

121bp-8835bp with a median length of 698bp. The total size of the mapping reference was 

therefore approximately 44Mb (35% transcribed). 
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5.3 Identification of a reference list of homeologous SNPs 

Publicly available sequencing datasets representing the closest available diploid ancestors for 

genome A (T. monococcum), B (Ae. speltoides) and D (Ae. tauschii) were mapped 

individually to the extended methylation bait sequences to identify homeologous SNPs.  

 

The sequencing datasets were mapped to the extended methylation bait reference sequence 

using BWA-short fragment mapping (version 0.7.4). The “IS” algorithm was implemented to 

index the reference sequence. Genome A data was generated externally on the Illumina 

GAIIx and the ~30bp reads that were generated were mapped using 1 mismatch per read. 

Genome B data was generated externally on the Illumina GAIIx (Brenchley et al. 2012) and 

the ~100bp reads were mapped using 4 mismatches per read. Genome D data was generated 

externally using SOLiD sequencing and the ~30bp reads that were generated were mapped 

with 4 mismatches with use of parameters to allow mapping of reads in colour-space 

(Brenchley et al. 2012). Mapping results were processed using SAMtools; any non-uniquely 

mapping reads, unmapped reads and duplicate reads were removed. SNP calling was carried 

out using the GATK pipeline due to diploid datasets (all steps in figure 1.6 and commands in 

the command outline appendix sections 1, 2 and 3). When the GATK Unified Genotyper was 

implemented for SNP calling; a minimum quality of 50 and coverage of 6 was used, SNPs 

were filtered using standard GATK parameters and homozygous SNPs only were selected.  

 

A list of positions was identified at which all three genome’s alleles (taken from the three 

ancestral genomes) were unambiguous, known, and at least one differed from the reference 

base and/or the other two genomes i.e. homeologous SNPs. All C/T or G/A SNPs were 

excluded from this list to avoid future confusion between genuine SNP sites and C/T 

conversions of un-methylated cytosines as a result of the bisulfite treatment. 38,384 

homeologous SNPs were identified (Homeologous_SNP_list.txt). These SNP alleles were 

used to associate cytosine residue methylation status with a wheat genome (figure 5.1). 
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Figure 5.1. Theory behind association of methylation sites with the 3 wheat genomes. 

Illustrating the association of a homeologous SNP allele with a methylation site within the 

same sequencing read to allow determination of its genome of origin. Here genome A 

specific methylation is shown.   

 

 

The full methodology that is utilized here to associate the methylation status of cytosine 

residues with a wheat genome using homeologous SNPs is outlined in figure 5.2. The 

pipeline generates a final output file detailing every cytosine residue, its associated reads, the 

genomes they have been associated with plus % methylation for each genome. Here 

cytosines are used in downstream analyses if all three genomes are mapped to by a minimum 

of 5 reads each. 

 

 

Correlation of methylation with a homeologous SNP allele within 
a sequencing read allows its association to a particular wheat 

genome 

Reference     A T C G T C G T T T C C G G A T 
          *      C   
          *      C 
         A 
         A 
         A 
          *      C 
          *      C 
         G 

          G   
  Sequencing reads 

 
 Methylation * 
 Genome A allele     Genome A 100% methylated 
 Genome B allele     Genome B un-methylated 
 Genome D allele     Genome D un-methylated 
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Figure 5.2. Pipeline for association of methylation sites with the 3 wheat genomes. SNP 

positions were identified in the enriched wheat bisulfite treated sequencing dataset using 

VarScan (reads mapping to these SNP positions have sufficient average mapping quality, 

sufficient depth overall and one or more alternate allele present). This SNP list is filtered for 

positions that are conserved in the homeologous SNP list. Stage 1 takes this filtered VarScan 

list as input and Bismark’s mapping output SAM file and outputs any sequencing reads of 

sufficient quality with an associated SNP plus the SNP allele represented in the read (output 

1). Stage 2 takes output 1 plus Bismark’s 3 files of all CpG/CHH/CHG cytosine sites 

methylation statuses to generate output 2 with a line for each sequencing read/SNP 

association outlining how many cytosines in the read are methylated/un-methylated and 

Homeologous SNP position list 
38,384 

SNP positions in bisulfite 
treated sequencing data 

(VarScan output file) 

Conserved SNP positions only  
(filtered VarScan output) 

PROCESSING STAGE 1 
 (Associate_sequencing_read_with_snp.pl) 

INPUT 
 

Filtered VarScan file 
Bismark’s SAM file 

OUTPUT  
 

Sequencing reads 
associated with SNP 
position (output 1) 

PROCESSING STAGE 2 
 (Are_SNP_reads_methylated.pl) 

INPUT 
 

Output 1 
 

Bismark’s cytosine  
methylation statuses 

OUTPUT  
 

Output 1 plus 
associated cytosines 
methylation statuses 

(output 2) 

PROCESSING STAGE 3 
 (Assign_read_to_genome.pl) 

INPUT 
 

Output 2 
 

Homeologous SNP 
list 

OUTPUT  
 

Cytosines 
methylation statuses 
genome associated 

(output 3) 

PROCESSING STAGE 4 
 (Calc_%_read_meth2.pl) 

INPUT 
 

Filtered output 3 

OUTPUT  
 

Final Output 

Filter duplicates and erroneous calls 
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translating their positions to those from extended methylation bait sequences. Stage 3 output 

2 sequencing reads are associated with the appropriate wheat genome using their SNP allele 

plus the full homeologous SNP list as input to generate output 3. Duplicate lines, if a 

sequencing read has more than one associated SNP, were collapsed into 1 and SNPs 

associating one read with different genomes are known erroneous calls and filtered out from 

the file. Stage 4 uses the filtered output 3 to produce a final output file detailing methylation 

status at every genome associated cytosine residue across the 3 genomes (all Perl scripts are 

available as supplementary data). 

 

 

5.4 Enrichment performance and validation of the array  
 
5.4.1 Non-Bisulfite treated samples  
 
An initial trial was carried out using the methylation capture probe set for wheat enrichment 

prior to sequencing without the use of bisulfite treatment. This analysis acted as a control for 

comparison to determine if the array could efficiently enrich without the added complication 

of bisulfite treatment. Four genomic DNA samples were enriched using the array and 

sequenced by the CGR. These samples were all extracted from the areal tissue of 7 day old 

seedlings of the wheat variety Chinese Spring and included; two replicate plants (known as 

12B and 12C) grown at 12°C and an additional two replicate plants (known as 27B and 27C) 

grown at 27°C. The genomic DNA was quantified and sheared for 6×60s using the Covaris 

S2 focused-ultrasonicator. Fragmented DNA quality and quantity were assessed on a 

Bioanalyzer High Sensitivity DNA chip (Agilent) prior to purification using 1.8 × Agencourt 

AMPure XP beads (Beckman Coulter). End-repair, 3!-adenylation, adapter ligation, 

enrichment and PCR were carried out. Amplified libraries were then indexed using 6 PCR 

cycles. Final libraries were quantified and pooled in equimolar amounts. Sequencing was 

carried out on an Illumina HiSeq 2000, using version 3 chemistry, generating 2 x 100bp 

paired end reads.  

 

The four sequencing datasets for the samples were mapped to the extended methylation bait 

reference sequence using BWA-short (version 0.7.4) plus 4 mismatches per read. Mapping 

results were processed using SAMtools; any non-uniquely mapping reads, unmapped reads 

and duplicate reads were removed. SNP calling was carried out using SAMtools mpileup 

that was implemented prior to VarScan, to loosely identify positions containing an alternate 

allele, with a minimum coverage of 6, an average mapping quality above 15 and a minor 

allele frequency (MAF) of greater than 0.1. The steps involved in this analysis are shown in 

figure 1.6 and in the command outline appendix sections 1 and 4. 
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The sequence that was generated from the four wheat genomic DNA samples, sample 12 B 

and C and sample 27 replicate B and C had an average depth of coverage of 43.3 across 

94.8% of the 6Mb array probe sequence.  Mapping statistics between the repeat samples 

were comparable and a SNP comparison between 12B and 12C, in regions that were mapped 

by both datasets at a minimum depth of 15, revealed ~100% SNP conservation (27B and 

27C also yielded ~100% SNP conservation). As such, the data was merged for the repeat 

samples 12B and 12C and also for 27B and 27C generating overall data for the 12°C and 

27°C samples and resulting in an average depth of coverage of ~84x with ~96.4% of the 

6Mb array probe sequence being mapped (see table 5.1 for full details). Notably an average 

depth of coverage of ~43x was observed with ~54% of the ~44Mb mapping reference being 

mapped across both samples i.e. the mapped region extended into surrounding next-to-target 

regions covering almost 4x the 6Mb capture probe space.  

 

 

Sample Mean % 

coverage per 

reference probe 

Mean depth 

of coverage 

per reference 

probe 

Number of 

Probes 

mapped 

(50000 

total) 

% of 

Reference 

probes 

mapped 

 

12B 

 

98.8 

 

43 

 

48104 

 

96 

12C 98.9 45.8 47985 96 

27B 98.9 42.2 48043 96 

27C 

 

12 

27 

98.8 

 

99.4 

99.3 

42.2 

 

86.3 

82.2 

48034 

 

48316 

48339 

96 

 

97 

97 

 

 

Table 5.1. Mapping Statistics for enriched wheat DNA samples (non-bisulfite treated). 

All mapping statistics in relation to the 6Mb array probe base space. Mapping Statistics 

included for 4 original enriched wheat samples (12 B/C and 27 B/C) plus the data when 

replicate datasets were merged (12°C and 27°C) 

 

 

The methylation array was seen to effectively enrich ~97% of the target 6Mb plus up to an 

additional 18Mb of sequence in its immediately surrounding regions. The depth of coverage 
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across the probe set was largely consistent with less than 0.2% of baits exceeding 10x the 

average depth of coverage and only ~3% of probes unmapped. The extended methylation 

bait sequences were ordered and concatenated into pseudo-chromosome sequences to allow 

visualization of per chromosome mapping coverage that is shown for the 12°C sample in 

figure 5.3. These pseudo-chromosomes were designed as per the methodology in section 3.3 

for the gene capture array design-space and allowed inclusion and approximation of the 

order of >80% of the methylation array probes. 
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Figure 5.3. Average depth of coverage per bait probe plotted for the 12°C sample.  

Coverage plotted along each pseudo-chromosome construct after ordering and concatenation 

of extended methylation bait sequences.  
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5.4.2 Setting of thresholds for methylation  

The standard thresholds used within this study to classify residues allow clear distinction of 

methylated and un-methylated regions. At each cytosine residue site, where three genomes 

can be identified, the percentage of the reads mapping to each genome that were methylated 

can be calculated using Bismark’s categorization of sequencing reads as methylated or un-

methylated at each cytosine residue. Thresholds of 100% (>= 75%), 50% (< 75% and > 

25%) and 0% (<= 25%) methylation were used to categorize the data for easier comparison. 

It was noted that the vast majority of cytosine residues could be classified as methylated/un-

methylated with less than 0.05% of residues classified as intermediate. Constant thresholds 

were utilized across CpG, CHH or CHG methylation sites to allow comparison between CpG 

and non-CpG site methylation (Harris et al., 2010). 

 

5.4.3 Bisulfite treated samples 

The analysis in section 5.4.1 was repeated using six genomic DNA samples, plants (known 

as 12B, 12C and 12D) grown at 12°C and plants (known as 27B, 27C and 27D) grown at 

27°C. This time the six samples were enriched using the array and after end-repair and 3’-

adenylation; methylated adapter ligation, hybridization, bisulfite conversion and PCR were 

carried out according to the SureSelectXT Methyl-Seq Illumina Multiplexed Sequencing 

Protocol (version B, January 2013). Amplified libraries were then indexed using 6 PCR 

cycles, quantified and pooled as per the standard protocol. Sequencing was again carried out 

on an Illumina HiSeq 2000, using version 3 chemistry, generating 2 x 100bp paired end 

reads (one strand only). Sample growth and sequencing was performed by the CGR. 

 

The sequencing datasets that were generated for the 6 samples were mapped to the extended 

methylation bait sequences using Bismark. Bismark is an aligner and methylation caller 

designed specifically for bisulfite treated sequence data (Krueger and Andrews, 2011). 

During mapping of sequencing reads a mismatch number of 3 was used per read and the 

non-directional nature of the library was specified. The Bismark methylation extractor tool 

was then used to identify all cytosine residues within the mapping and categorize the reads 

mapping to them as un-methylated or methylated at that position while also detailing which 

type of potential methylation site was present (CHH, CHG or CpG). The mapping results 

generated by Bismark also come in the form of a SAM file. This allowed mapping results 

also to be processed using SAMtools to remove: any non-uniquely mapping reads, 

unmapped reads and duplicate reads. SNP calling could then be carried out using SAMtools 

mpileup that was implemented prior to VarScan, to loosely identify positions containing an 

alternate allele, with a minimum coverage of 6, an average mapping quality above 15 and a 

MAF of greater than 0.1. This SNP calling plus Bismark analysis allows sequencing reads 
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and therefore cytosine residues to be assigned to genomes for downstream methylation 

analyses. 

 

The six samples (sample 12B, 12C, 12D, 27B, 27C and 27D) that were enriched using the 

array, bisulfite treated and then sequenced had an average depth of coverage of ~102 across 

96.3% of the 6Mb array probe sequence (see table 5.2 for full details).  

 

 

Sample  Mean % 

coverage per 

reference probe 

Mean depth 

of coverage 

per reference 

probe 

Number of 

Probes 

mapped 

(50000 

total) 

% Of 

reference 

probes 

mapped 

 

12B 

 

97.2 

 

89.8 

 

49838 

 

99 

12C 96.9 70.4 49692 99 

12D 97.9 138.5 49928 99 

27B 97.1 80.9 49798 99 

27C 

27D 

97.2 

97.9 

96.3 

135.8 

49807 

49917 

99 

99 

 

 

Table 5.2. Mapping Statistics for six enriched and bisulfite treated wheat DNA samples. 

All mapping statistics in relation to the 6Mb array probe base-space  

 

 

Mapping statistic and SNP comparisons between the repeat samples again revealed extensive 

conservation between 12B, 12C and 12D and between 27B, 27C and 27D (~100% 

conservation), in addition methylation statuses were highly conserved (100% conservation 

using threshold values). Therefore sequence datasets for all of the 12°C sample replicates 

and also for the 27°C sample replicates were merged and used in downstream analyses. This 

resulted in an average depth of coverage of 297.6x with ~97.5% of the 6Mb array probe 

sequences being mapped to (detailed in table 5.3). An average depth of coverage of ~128x 

was observed with ~62% of the ~44Mb mapping reference being mapped to across both 

samples i.e. the mapped region extended into surrounding next-to-target regions covering 

over 4x the 6Mb capture probe space. If, at a particular cytosine residue, the percentage 

methylation of a genome was >=15% different between repeat samples then this site was 
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recorded as a possible site of ‘background methylation’ i.e. sites containing noise that could 

therefore easily be flagged in downstream analyses. This ‘background methylation’ 

accounted for less than 2% of the cytosine residues that were analyzed and could reflect 

noise i.e. poorer quality reads/mapping or regions showing tissue specific methylation. 

 

 

Sample 

(°C) 

Average % 

coverage of 

reference 

probe  

Average 

depth of 

coverage per 

reference 

probe 

Number of 

Probes 

mapped  

% Of 

reference 

probes 

mapped  

12 98.4 290.8 49986 99 

27 98.5 304.4 49982 99 

 

Table 5.3. Overall Mapping Statistics in Bisulfite treated data. Detailing the mapping 

output statistics for 2 enriched and bisulfite treated wheat DNA samples in relation to the 

6Mb array probe base space  

 

 

The methylation array was again seen to effectively enrich ~98% of the target 6Mb plus an 

additional ~18Mb of sequence in its immediately surrounding regions even with use of the 

bisulfite treated DNA that is more difficult to map and due to the nature of the treatment is 

highly degraded. Looking at all analyzed sites, 86,192 for the 12°C sample plus 94,363 for 

the 27°C sample (detailed in section 5.5), the average number of reads per genome could be 

calculated across the 2 samples; 32-33% for genome A, 34-35% for genome B and 33% for 

genome D. We see approximately 1/3 of the reads assigned to each genome so the bait 

probes enrich all 3 genomes effectively and consistently.  

 

Over the 2 samples on average 31,939,028 (~20%) sequencing reads in each case were 

mapped to the reference sequence. It is estimated that ~63% of off target sequencing reads 

include repetitive sequence. The array probe set was re-designed based on this analysis to 

remove baits exceeding 10x the average depth of coverage i.e. potentially enriching off-

target material. Future enrichment analyses using the re-designed baits are predicted to allow 

generation of an additional ~15% on target sequencing reads and enrichment protocol 

development is likely to increase this figure further.   

 



! 158!

5.5 Determination of the available dataset for analysis  

In the 12°C sample Bismark identified 7,813,105 cytosine residues (methylated and un-

methylated) in the sequencing data; 8,069,906 were identified in the 27°C sample. These 

numbers vary between datasets due to slight differences in the mapping coverage of the 

reference. In the 12°C sample ~37% of cytosine residues were predicted to be transcribed; 

this is in proportion to the ~35% of the full 44Mb mapping reference that is predicted to be 

transcribed. Considering fully or partially methylated cytosine residues only, a similar 

proportion were seen in transcribed/un-transcribed regions with ~32% thought to be 

transcribed.  

 

To assign a cytosine residue to the A, B or D wheat genome an individual sequencing read 

must contain the cytosine residue plus a homeologous SNP allele and 38,384 homeologous 

SNP positions were identified for this purpose in section 5.3. The workflow detailed in 

figure 5.4 outlines how the 7,813,105 and 8,069,906 cytosines in the 12°C and 27°C samples 

respectively could be interrogated to produce a list of 86,192 residues for the 12°C sample 

and 94,363 for the 27°C sample where; using homeologous SNPs all 3 genomes could be 

identified at a depth of 5 or greater per genome in the mapped reads and where the 3 

genomes’ methylation patterns were identical across the 3 repeat (B, C and D) samples 

making up the dataset i.e. no ‘background methylation’. In both cases alleles representing 

each of the 3 genomes could be identified in ~66% of methylation sites with a depth of 

coverage over 20. In both samples ~72% of these 86,192 and 94,363 residues were found to 

be in transcribed regions. This ~72% is high, considering that ~35% of the full 44Mb 

mapping reference is predicted to be transcribed, and most likely reflects lower mapping 

coverage in non-transcribed regions, as such transcribed regions are more likely to gain 

sufficient coverage for identification of homeologous SNP alleles and be preferentially 

selected to allow methylation site association with them. Lower mapping coverage tends to 

be gained in non-transcribed regions due to their comparatively repetitive nature causing 

sequencing reads to map non-uniquely i.e. multiple times and be removed from analyses 

(Jiang and Goertzen, 2011).  
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Figure 5.4. Determination of the subset of data that was available for detailed analysis in the 12°C sample. Corresponding numbers in the 27°C sample 

shown in brackets. At each stage the percentages of residues/SNPs that are transcribed/non-transcribed are detailed. Stage 1 describes the mapping reference 

and the reference homeologous SNP list developed in section 5.3. Stage 2 Shows all cytosine residues and reference homeologous SNP positions within the 

mapped 12°C /27°C sample datasets. In Stage 3 the outputs from stage 2 are combined to identify all cytosines that could be associated with homeologous 

SNP locations in each of the datasets. In stage 4 the final analyzable dataset; cytosine residues were selected if all 3 genomes could each be identified at a 

depth of 5x or more in the mapped reads and if the 3 genomes’ methylation status were identical in the 3 repeat (B, C and D) samples making up the dataset.  

Stage Feature Proportion Transcribed/Non-Transcribed 

Stage 1 
Reference & SNP list 

Reference sequence 44Mb 
 
38,384 Homeologous SNPs   
 
 
 

35%/65% 
 
61%/39%  

Stage 2 
Within mapped sequencing data 
 

7,813,105 cytosine residues      (8,069,906) 
 
11,877 Homeologous SNPs       (12,092) 
 
 
 

37%/63%      (37%/63%) 
 
67%/33%      (67%/33%) 
 

Stage 3 
Associated data 
 
 
 
 

510,619 cytosine residues associated  
with a homeologous SNP       (522,358) 

65%/35%      (65%/35%)  

Stage 4 
Final dataset:  
-3 genomes mapped 5x or more  
-methylation identical in  
 B, C and D repeat samples  
 

86,192 cytosine residues       (94,363) 72%/28%      (72%/28%)  
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The list of 86,192 residues for the 12°C sample and 94,363 for the 27°C sample were 

produced as follows (figure 5.4); Cytosine residues that could be associated with 

homeologous SNP locations included 510,619 residues in the 12°C sample (65% in 

transcribed regions) and 522,358 residues in the 27°C sample (65% in transcribed regions). 

11,877 homeologous SNP positions were conserved in the 12°C sample sequencing data and 

used for this cytosine association (12,092 positions in the 27°C sample). In both samples 

~67% of the SNP positions were predicted to be in transcribed regions. Finally, cytosine 

residues with sufficient per genome mapping coverage and identical methylation patterns 

across the 3 repeat (B, C and D) samples could be selected leaving the 86,192 residues for 

the 12°C sample and 94,363 for the 27°C sample. 

 

 

5.6 Identification of global methylation patterns  

The subset of wheat sequence that was analyzed here, representing an unbiased selection of 

gene rich genomic DNA sequence, should represent the patterns seen across the entirety of 

the wheat genome’s gene regions and is potentially comparable with methylation patterns 

seen in other organisms with high genic content such as the ~90% non-repetitive gene rich 

Arabidopsis thaliana (Lister et al., 2008). Widman, N. et al. performed a comprehensive 

study of methylation patterns in the model plant genome Arabidopsis. This study 

implemented detailed knowledge of the plant to define a cytosine residue as methylated if 

80%, 25% or 10% or more of the total number of sequencing reads were methylated for 

CpG, CHG and CHH sites respectively. Here, looking at all cytosine residues and defining 

methylation using the same cutoffs as Widman, N. et al. 32% of the residues that were CpG 

sites were methylated, 15% of CHG sites were methylated and 11% of CHH sites were 

methylated. Widman, N. et al. saw a similar pattern, at slightly lower levels, in Arabidopsis 

where 24% of CpG sites, 7% of CHG sites and 2% of CHH sites were methylated. If the 

under-represented vast repetitive regions of wheat were also taken into account we are likely 

to see a higher proportion of methylated sites overall since methylation associates strongly 

with repetitive regions (Zhang et al., 2006; Widman et al., 2009). 

 

Although the implementation of Widman, N. et al.’s methodology is useful within this study 

constant standard thresholds for methylation identification were utilized across CpG, CHH 

or CHG methylation sites given the relatively unknown expectations of the wheat 

methylome and to allow comparison between CpG and non-CpG site methylation (Harris et 

al., 2010; Widman et al., 2009). Thresholds were implemented on a genome-by-genome 

basis to allow discrimination of sites where only one genome was methylated. Using these 

standard thresholds and looking at all analyzed residues (86,192 in the 12°C sample and 
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94,363 in the 27 °C sample); ~10% of residues under analysis were CpG sites with 52% that 

showed one or more genome to be methylated, ~22% of residues were CHG sites with 3% 

methylated and ~68% of residues were CHH sites with ~3% methylated. These percentages 

of CpG/CHG/CHH residues follow a similar pattern to that observed across the entire 

dataset, as such, the subset for analysis are representative of the whole dataset in this respect.  

 

This same analysis was repeated focusing on sites that showed one or more genome to be 

methylated; distribution varies slightly between transcribed regions (~64% CpG methylation, 

~27% CHH and ~9% CHG) and non-transcribed regions (~55% CpG methylation, ~34.5% 

CHH and ~10.5% CHG) within the subset. CpG sites consistently account for the majority of 

methylated sites, although there is a slight reduction in CpG site methylation and an increase 

in CHH/CHG site methylation in non-transcribed sites compared to transcribed sites. In 

previous studies in plants such as Arabidopsis (Lister et al., 2008; Glaus et al., 2012) CpG 

sites tend to be seen almost exclusively in coding regions while CpG along with CHG and 

CHH sites typically only seen in non-coding regions. Here, all three types of methylation are 

a significant presence in both transcribed and non-transcribed regions although an increase in 

CHH/CHG site methylation was observed in non-transcribed sites. 

 

5.6.1 Identification of genome specific methylation/non-methylation in wheat  

~5% of the cytosine residues that were analyzed overall contained methylation (100% 

threshold) in 1 or more genomes. Differential methylation has been observed between the A, 

B and D genomes in 27% of analyzed methylated cytosine residues, in each of the 12°C and 

27°C samples, and was recorded at a minimum difference of 50% (for full list of 

differentially methylated residues for sample 12 see Appendix 4, table 1).  

 

Table 5.4 details the breakdown of the genome specific methylation into relevant genomes, 

transcription status and finally type of methylation (CpG, CHH or CHG) for the 12°C and 

27°C samples while figure 5.5 shows a visual representation of this data using the data 

averaged between the 12°C and 27°C datasets due to consistently high similarity overall 

between them across the three genomes.  
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Figure 5.5. Categorizing observed methylation averaged across the 12°C and 27°C sample datasets.  (a) Genome specific methylation occurrences 

broken down into distribution between the 3 genomes and finally an overview of its division between CpG, CHG and CHH sites in transcribed and non-

transcribed regions (averaged over all 3 genomes due to high similarity). (b) Genome specific non-methylation occurrences broken down identically to (a). 

(c) Genome independent methylation and its division into CpG, CHG and CHH sites in transcribed and non-transcribed regions. 
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Table 5.4. Summary of orientation of the methylation sites that were analyzed in 

sample 12 (12°C) and sample 27 (27°C). Breakdown of methylation into genome specific 

and independent sites; transcribed/non-transcribed regions and CpG/CHH/CHG sites.  

! !!!!!!!!!!!!!!Sample!12!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!Sample!27!

Genome!Specific!Methylation! A!!!!!!!!!!!!!!!!!!!!B!!!!!!!!!!!!!!!!!!!!D!!!!!!!!!!!!!!!!!!!!!!A!!!!!!!!!!!!!!!!!!!!B!!!!!!!!!!!!!!!!!!!!D!

!

Transcribed!(%)!

!

60!!!!!!!!!!!!!!!!!!!!!!!76!!!!!!!!!!!!!!!!!!!!!!!81!!!!!!!!!!!!!!!!!!!!!!!!!54!!!!!!!!!!!!!!!!!!!!!!!!!78!!!!!!!!!!!!!!!!!!!!!!!74!

!

%!CpG!methylation!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

%!CHH!methylation!

%!CHG!methylation!

61.5!!!!!!!!!!!!!!!!!!!58.0!!!!!!!!!!!!!!!!!!!67.8!!!!!!!!!!!!!!!!!!!!!!47.6!!!!!!!!!!!!!!!!!!!!!!56.2!!!!!!!!!!!!!!!!!73.3!

27.0!!!!!!!!!!!!!!!!!!!29.0!!!!!!!!!!!!!!!!!!!18.6!!!!!!!!!!!!!!!!!!!!!!42.9!!!!!!!!!!!!!!!!!!!!!!27.6!!!!!!!!!!!!!!!!!20.0!

11.5!!!!!!!!!!!!!!!!!!!!13.0!!!!!!!!!!!!!!!!!!!13.6!!!!!!!!!!!!!!!!!!!!!!!9.5!!!!!!!!!!!!!!!!!!!!!!!16.2!!!!!!!!!!!!!!!!!!6.7!

!

Not!Transcribed!(%)!

!

40!!!!!!!!!!!!!!!!!!!!!!!24!!!!!!!!!!!!!!!!!!!!!!!19!!!!!!!!!!!!!!!!!!!!!!!!!!46!!!!!!!!!!!!!!!!!!!!!!!!!22!!!!!!!!!!!!!!!!!!!!!!!26!

!

%!CpG!methylation!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

%!CHH!methylation!

%!CHG!methylation!

43.0!!!!!!!!!!!!!!!!!!!57.0!!!!!!!!!!!!!!!!!!!!57.1!!!!!!!!!!!!!!!!!!!!!!47.0!!!!!!!!!!!!!!!!!!!!!!55.4!!!!!!!!!!!!!!!!62.0!

51.0!!!!!!!!!!!!!!!!!!!34.0!!!!!!!!!!!!!!!!!!!!14.3!!!!!!!!!!!!!!!!!!!!!!47.0!!!!!!!!!!!!!!!!!!!!!!33.7!!!!!!!!!!!!!!!!19.0!

6.0!!!!!!!!!!!!!!!!!!!!!!9.0!!!!!!!!!!!!!!!!!!!!!!28.6!!!!!!!!!!!!!!!!!!!!!!6.0!!!!!!!!!!!!!!!!!!!!!!!!!10.9!!!!!!!!!!!!!!!!19.0!

!

Genome!Specific!Non9

Methylation!

A!!!!!!!!!!!!!!!!!!!!B!!!!!!!!!!!!!!!!!!!!D!!!!!!!!!!!!!!!!!!!!!!A!!!!!!!!!!!!!!!!!!!!B!!!!!!!!!!!!!!!!!!!!D!

!

Transcribed!(%)!

!

%!CpG!methylation!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

%!CHH!methylation!

%!CHG!methylation!

!

Not!Transcribed!(%)!

!

%!CpG!methylation!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

%!CHH!methylation!

!

61!!!!!!!!!!!!!!!!!!!!!!!78!!!!!!!!!!!!!!!!!!!!!!76!!!!!!!!!!!!!!!!!!!!!!!!!64!!!!!!!!!!!!!!!!!!!!!!!!!77!!!!!!!!!!!!!!!!!!!!!!!69!

!

92.1!!!!!!!!!!!!!!!!!!!95.2!!!!!!!!!!!!!!!!!!!89.2!!!!!!!!!!!!!!!!!!!!94.0!!!!!!!!!!!!!!!!!!!!!!95.0!!!!!!!!!!!!!!!!!!!87.1!

6.6!!!!!!!!!!!!!!!!!!!!!!2.4!!!!!!!!!!!!!!!!!!!!!6.2!!!!!!!!!!!!!!!!!!!!!!!5.0!!!!!!!!!!!!!!!!!!!!!!!!!3.0!!!!!!!!!!!!!!!!!!!!!5.7!

1.3!!!!!!!!!!!!!!!!!!!!!!2.4!!!!!!!!!!!!!!!!!!!!!4.6!!!!!!!!!!!!!!!!!!!!!!!1.0!!!!!!!!!!!!!!!!!!!!!!!!!2.0!!!!!!!!!!!!!!!!!!!!!7.2!

!

39!!!!!!!!!!!!!!!!!!!!!!!22!!!!!!!!!!!!!!!!!!!!!!!24!!!!!!!!!!!!!!!!!!!!!!!!36!!!!!!!!!!!!!!!!!!!!!!!!!23!!!!!!!!!!!!!!!!!!!!!!!31!

!

81.6!!!!!!!!!!!!!!!!!!!92.7!!!!!!!!!!!!!!!!!!!76.2!!!!!!!!!!!!!!!!!!!!!82.2!!!!!!!!!!!!!!!!!!!!!91.5!!!!!!!!!!!!!!!!!!!64.5!

6.1!!!!!!!!!!!!!!!!!!!!!!5.2!!!!!!!!!!!!!!!!!!!!!!9.5!!!!!!!!!!!!!!!!!!!!!!!4.5!!!!!!!!!!!!!!!!!!!!!!!!5.7!!!!!!!!!!!!!!!!!!!!12.9!
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In the 12°C sample; 31.8% of genome specific differential methylation was from genome A, 

31.9% from genome B and 36.3% from genome D. In the 27°C sample; 28.1% of the 

differential methylation was from genome A, 32.1% from genome B and 39.8% from 

genome D. In both cases the three percentages were found to be significantly different to the 

expected percentage of 1/3 (Sample 12; X2 = 6.579, p = 0.0373 and Sample 27; X2 = 34.793, 

p < 0.0001). Genomes A and B show genome specific methylation in relatively similar 

proportions whilst Genome D contains the most overall. All figures are normalized to 

account for bias in the SNP numbers used to associate sequencing reads with each genome. 

The same pattern could not be distinguished in the genome specific non-methylated group 

(one genome is un-methylated while the other two are methylated) where, across the two 

samples, distribution between the three genomes was without a visible significant trend.  

 

Genome specific methylation is mostly at CpG sites (~57%) although CHH and CHG sites 

are still a significant presence (~30% and ~13% respectively) across the three genomes, 

across the 12°C and 27°C samples and whether transcribed or non-transcribed. These figures 

closely resemble those seen over all methylated sites and there does not appear to be a bias 

in the regions selected for genome specific methylation. Genome specific non-methylation 

yields similar results with a less prominent CHH and CHG site presence. Across the three 

genomes, in both samples and over transcribed and non-transcribed regions genome specific 

non-methylation was more prominently at CpG sites (~87%) with a lower but significant 

presence at CHG (~7%) and CHH (~6%) sites. These figures do deviate from those expected 

within the dataset looking at all methylated sites. There does seem to be a stronger CpG bias 

and CHH/CHG reduction in methylation sites within this dataset when considering genome 

specific non-methylation and this is conserved across transcribed and non-transcribed 

regions. 

 

No difference is seen consistently between transcribed and non-transcribed regions when 

looking at genome specific patterns as a whole. Both samples behave in a similar way, as do 

the three genomes. CpG genome specific methylation is preferred while CHG and CHH 

methylation sites are a significant presence. Genome specific non-methylation has a stronger 

bias for CpG methylation and a lower level of CHH/CHG sites. Figure 5.6 represents the 

distribution of methylated residues along the pseudo-chromosome sequences for (a) the 12°C 

sample and (b) the 27°C sample. Sites are relatively evenly distributed across this, the genic 

portion of the genome, with most gaps due to missing information for analysis in a region 

rather than a break in methylation.  
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Figure 5.6. Positional information for methylation sites. Incidences of genome specific methylation/genome specific non-methylation between the 3 wheat 

genomes and genome independent methylation are detailed relative to all analyzed sites. Data is shown along each of the pseudo-chromosomes using 

threshold values. (a) the 12°C sample (b) the 27°C sample 
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GO enrichment using the program GOEAST was performed on these differentially 

methylated 12°C sample residues by Jonathan Price. This highlighted common functional 

terms associated with the differentially methylated sites of the A, B and D genome’s (p 

<0.01) (Appendix 4, table 2). The A genome’s enriched genes tended to relate to signaling 

pathways, metabolic processes and response to water stimulus. The B genome showed 

enrichment for terms such as: biosynthetic/metabolic processes, RNA splicing and protein 

de-phosphorylation. Finally the D genome’s enrichment profile contained terms involved in 

chromatin silencing, histone modification and methylation/regulation of gene expression and 

chromosome organization. Extended bait probe sequences were ranked based on the number 

of differentially methylated sites per bp across each, this identified highly differentially 

methylated regions. All of the GO terms that were associated with the top 10% of contigs in 

this list correlated with the GOEAST result highlighting its capability to identify highly 

differentially methylated genes. The GO enrichment analysis was repeated for the 27°C 

sample and the enriched GO terms were compared with those in the 12°C sample; 78% of 

terms found in the 12°C sample genome B were found in the 27°C sample genome B and 

100% of those found in the 12°C sample genome D were found in the 27°C sample genome 

D. No significant enrichment could be confirmed in genome A to allow comparison. This 

demonstrates highly conserved genome specific methylation between the two samples. 

 

For each instance of genome specific methylation (A, B and D) the average depth of 

coverage of the methylated genome across the dataset was calculated and compared to the 

average coverage of the other two non-methylated genomes at each position. This analysis 

was conducted across the two samples and depths at each genome were normalized to 

account for the minor deviation from 1/3 reads per genome that was seen in the dataset. The 

mean coverage’s in the non-methylated group (mean=99.2, SD=16.3) were compared to 

those of the methylated group (mean=122.7, SD=18.5) and no significant difference was 

found (p=0.164, two-tailed t test). Therefore there was no issue with bias towards enrichment 

of methylated or un-methylated DNA sequence. 

 

5.6.2 Identification of genome independent methylation  

Across the 12°C and 27°C sample datasets over 98% of the cytosine residues that were 

analyzed displayed genome independent behavior i.e. methylated or un-methylated status 

conserved across the three genomes. Of these genome independently methylated or un-

methylated residues ~4% in each sample could be defined as showing genome independent 

methylation i.e. all three genomes methylated. This ~4% accounted for ~73-74% of all 

analyzed residues that contained methylation in one or more genomes (detailed for the 12°C 

sample in Appendix 4, table 3). In table 5.4 and figure 5.5 it can be seen that in the 12°C and 
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27°C samples, across all three genomes, most of the genome independent methylated 

residues are, irrespective of transcription status, almost exclusively CpG sites (>99%). This 

differs from the observation looking at genome specific associations. Figure 5.6 represents 

this genome independent subset of methylated residues for (a) the 12°C sample and (b) the 

27°C sample and outlines their relative positions along the pseudo-chromosomes; again they 

are approximately evenly distributed along the chromosomes. 

 

Furthermore, for both samples, most residues displaying genome specific methylation are in 

transcribed regions (~74%) as are those displaying genome independent methylation (~79%) 

and those displaying genome specific non-methylation (~71%) (table 5.4). None of these 

three proportions deviate by more than 10% from the ~72% of residues that were found to be 

in transcribed regions in the full list that they were derived from of 86,192 residues for the 

12°C sample and 94,363 for the 27°C sample. We can therefore conclude that genome 

specific/genome independent methylation does not appear to target transcribed/non-

transcribed regions and is found in these regions in the anticipated proportions.  

 

 

5.7 Transposon and chloroplast methylation state assessment through the analysis of 

off target sequence 

In theory the majority of the sequencing reads in the enriched dataset should map to the 

extended bait reference sequence. Elimination of repetitive sequence from the capture probes 

and high specificity of the long 120bp sequences should stop enrichment of off target 

repetitive regions. It is however possible to carry over contamination of enriched sequence 

with non-enriched repetitive sequence that can then appear in the sequencing data. This is a 

particular problem in wheat where, due to its high repetitive sequence content, most of the 

contaminating non-enriched sequencing reads are likely to represent repetitive sequence. If 

this is the case the contamination carry-over will be random and as such the repetitive 

sequence diversity should be representative of that seen in the sequencing analysis of non-

enriched wheat by Brenchley et al. (Brenchley et al., 2012). 

 

The unmapped sequencing data (non-bisulfite treated) for the 12°C sample, ~80% of the 

sequencing data, was analyzed to see if repetitive sequence could be identified/categorized. 

The unmapped sequencing reads were used in a BLAST alignment to the wheat TREP 

repetitive sequence database (e-value of 1e-5). This allowed comparison of it to the 

repetitive sequencing data that was seen in non-enriched wheat by Brenchley et al. Jonathan 

Price carried out this comparison and no notable proportional deviations were observed 

between the 2 datasets (see table 5.5) i.e. there was no bias introduced for specific repetitive 
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regions by enrichment. The percentage of sites in each transposon type showing 100% 

threshold methylation in one or more genomes was also calculated using Bismark to map the 

12°C sample’s previously un-mapped bisulfite treated data to the TREP database sequences. 

It was noted that transposons in general were hyper-methylated, typically >25% sites showed 

100% methylation in one or more genomes, in comparison to gene regions where we see 

such methylation in ~5% of the sites that were analyzed. The retro transposon group SINE 

was the only exception to this. In an additional comparison, using Bismark to map the 12°C 

sample’s un-mapped bisulfite treated data to the wheat chloroplast genome (Middleton et al., 

2014), that is thought to be generally un-methylated (Kovarik et al., 2001); less than 0.0% of 

sites showed methylation at the 100% threshold i.e. the bisulfite treatment was effective and 

the rate of incomplete conversion was low allowing discrimination of this known feature. 

 

 

 
Table 5.5. Repeat composition of the 12°C sample’s unmapped sequencing reads.  

Enriched sequencing reads from the 12°C sample that did not map to the reference sequence 

(non-bisulfite treated) were aligned using BLASTN to the TREP repeat database and the 

number of read matches are detailed here with the % of the total transposon database hit. The 

same analysis performed by Brenchley et al. on non-enriched wheat is also shown. Average 

% methylation was calculated for each transposon type using Bismark to map the bisulfite 

treated data to it i.e. the % of sites that showed 100% methylation in one or more genomes.  

Type No. of reads Percentage of total (%) Brenchley et al. 
Percentage of total 

(%) 

DNA transposons 1408434 23.669 18.691 

Helitron 2319 0.039 0.303 

TIR 1403061 23.579 18.311 

   HAT 1034 0.017 0.052 

   Harbinger 73350 1.233 0.427 

   Marnier 140677 2.364 0.128 

   CACTA 1082075 18.185 15.995 

   Mutator 105743 1.777 0.557 

   Unknown 191 0.003 0.011 

Unknown 3054 0.051 0.077 

Retro transposons 4235099 71.172 79.779 

SINE 151 0.003 0.005 

LINE 297416 4.998 1.026 

LTR 3937532 66.172 78.748 

   Gypsy 2815602 47.317 44.034 

   Copia 940479 15.805 17.394 

   Unknown 181451 3.049 1.490 

Unknown 306946 5.158 1.530 

 16934614   
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Type! No. of Reads! Percentage of 
Total (%)!

Average 
Methylation (%)!

DNA 
Transposons!

1408434! 23.669! 26.78 

Helitron! 2319! 0.039! 23.81!

TIR! 1403061! 23.579! 25.93!

   HAT! 1034! 0.017! 24.11!

   Harbinger! 73350! 1.233! 25.29!

   Marnier! 140677! 2.364! 30.68!

   CACTA! 1082075! 18.185! 24.94!

   Mutator! 105743! 1.777! 24.04!

   Unknown! 191! 0.003! 26.54!

Unknown! 3054! 0.051! 26.78!

Retro 
Transposons!

4235099! 71.172! 22.01 

SINE! 151! 0.003! 0!

LINE! 297416! 4.998! 23.73!

LTR! 3937532! 66.172! 23.07!

   Gypsy! 2815602! 47.317! 21.66!

   Copia! 940479! 15.805! 21.5!

   Unknown! 181451! 3.049! 26.06!

Unknown! 306946! 5.158! 27.21!
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5.8 Investigating temperature dependent differential methylation and gene expression  

78,628 cytosine residue sites, from the subset of sites for which three genomes could be 

confidently identified, are conserved between the 12°C and 27°C samples. Using threshold 

values the methylation statuses of these sites were compared to identify any differential 

methylation between the two samples in one, two or all of the three genomes and no sites 

could be found. Methylation status between the two samples was highly conserved. 24 sites 

were identified where differential methylation of 15% or more could be seen between the 

two samples in one or more of the three genomes.  This number was reduced to 23, as sites 

also which showed 15% or more difference between the three repeats within either the 12°C 

or 27°C sample were removed i.e. ‘background methylation’. This analysis only considered 

differential methylation between the 12°C and 27°C samples that was conserved over the 

three replicate samples that each dataset was made up of and sites are detailed in full in 

Appendix 4, table 4. Of the 23 sites identified, genome independent differences between the 

two samples were exceptionally rare with none seen in this analysis. Two cases were seen 

where two genomes were differentially methylated between the two samples leading us to 

believe that genome independent differential methylation may be possible, however, 

unusual, and most likely missed in the small dataset observed. Genome specific methylation 

variation between the two samples was observed the most commonly with 6 cases affecting 

genome A, 13 cases affecting genome B and 2 cases affecting genome D.  

 

In an independent analysis by Mark Quinton-Tulloch RNA-seq data was generated and 

analyzed for the 12°C and 27°C samples to allow determination of gene expression across 

the dataset and to allow comparison with methylation i.e. cDNA for the two wheat samples 

was generated and sequenced using the Illumina HiSeq. This RNA-seq data was run through 

the BitSeq pipeline (mapping using Bowtie2) that estimates transcript expression level using 

a Bayesian approach (Glaus et al., 2012). The PPLR values that were generated detailed 

changes in gene expression levels between the 12°C and 27°C samples per extended 

methylation array bait sequence. Information was also generated per sample on each 

genomes percentage contribution to overall gene expression per extended methylation array 

bait sequence using homeologous SNPs. The expected average contribution per genome was 

~1/3 unless genome specific differences in gene expression were seen. Here, for all cytosine 

residues under analysis for the 12°C sample the per genome percentage contributions to gene 

expression, from the extended bait sequence that the residue was found in, i.e. the gene 

associated with the residue, could be identified and are detailed in figure 5.7 (frequency of 

residues per 5% contribution interval are calculated).  
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Figure 5.7. Frequency plot of percentage per genome 

contribution to overall gene expression. Percentage contribution 

per genome to gene expression overall for the contig that the 

cytosine residue originated from. Frequency of sites calculated 

within each 5% interval in the range 0-100%.  (a) For every 

genome independently methylated site (dashed line) and genome 

independently un-methylated site (non-dashed line) the percentage 

contributions of each of the 3 genomes to gene expression overall 

were retrieved for the extended bait sequence that the site 

originated from and for each 5% interval the number of sites were 

calculated. (b) For each site showing either genome specific 

methylation (non-dashed line) or genome specific non-methylation 

(dashed line), for the genome concerned only, the percentage 

contribution of that genome to gene expression overall was 

retrieved for the extended bait sequence that the site originated 

from. For each 5% interval the number of sites were calculated and 

are plotted (normalized numbers of A, B and D specific 

methylation are used to allow comparison).  
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It was noted from figure 5.7 that the number of residues represented in figure 5.7a (over 

3000 genome independently methylated residues and over 80,000 genome independently un-

methylated residues) was significantly higher than those represented in figure 5.7b (~1100 

genome specific sites overall). In order to create a fairer comparison of contribution to gene 

expression between genome specific and genome independent sites figure 5.8 was 

developed. This figure demonstrates the same data using a comparable sized subset of 

methylated/un-methylated genome independent residues to the genome specific subset of 

residues (all genome specific and genome independent residues and their raw % 

contributions to gene expression for the gene that the residue is associated with can be found 

in Appendix 4, table 5 and 6 respectively). 
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Figure 5.8. Frequency plot of percentage per genome contribution to overall gene expression (subset). Percentage contribution per genome to gene 

expression overall for the contig that the cytosine residue originated from. Frequency of sites calculated within each 5% interval in the range 0-100%.  See 

figure 5.7 for full annotation. (a) Plots for each of a subset of 100 genome independently methylated sites (dashed line) and genome independently un-

methylated sites (non-dashed line) transcribed residues only. (b) See (a) but for non-transcribed regions only. (c) Plots for each site showing either genome 

specific methylation (non-dashed line) or genome specific non-methylation (dashed line), for the genome concerned only (normalized numbers) and for 

transcribed residues only. (d) See (c) but for non-transcribed regions only. 
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Figure 5.8b demonstrates that gene expression percentages that were associated with genome  

independently methylated/non-methylated non-transcribed sites in the region tend, with an 

approximately normal distribution, towards a peak in the anticipated 30-35% interval. Here 

methylation in a genome independent manner, if affecting gene expression, appears to affect 

all three genomes so that they contribute equally to the overall expression profile at that 

position. In contrast to this, gene expression that is associated with a cytosine residue in 

genome specific methylated or non-methylated non-transcribed regions (figure 5.8d) is far 

more variable with no consistent trends seen and mainly multimodal distributions. It is likely 

that genome specific changes in methylation status in non-transcribed regions may skew that 

genomes contribution to overall gene expression from the expected 30-35% interval. For 

these skewed peaks, where possible, associated GO terms that deviate from those seen across 

all sites in the 30-35% interval are detailed in Appendix 4, table 7 and in genome A are 

linked to low expression of genes linked to phosphorylation, carboxylase, synthase, O-

acyltransferase, ATPase, protein kinase and transglucosylase activity and high expression of 

genes with arabionsyltransferase and auxin transporter activity. In genome B low expression 

is linked to genes involved in transmembrane transporter activity and finally in genome D 

low expression is linked to genes with ligase/catalytic activity and damaged DNA binding. 

 

In transcribed regions gene expression data tends towards a more platykurtic set of 

distributions when associated with both genome independent methylated/non-methylated 

cytosines (figure 5.8a) and genome specific methylated or non-methylated cytosines (figure 

5.8c) except for the addition of a clear peak in the genome specifically methylated cytosine 

subset for genome D showing an average associated gene expression level with a left skew 

tending towards ~20-25% i.e. a conserved decrease in expression correlating with 

methylation of this genome and a smaller right skewed peak tending towards ~50-55%. 

Again for these 2 peaks, where possible, associated GO terms that deviate from those seen 

across all sites in the 30-35% interval are detailed in Appendix 4, table 7. The peak in the 20-

25% interval was associated with monooxygenase activity and the peak in the 50-55% 

interval associated with ATP-dependent DNA helicase activity.  

 

The poorly understood downstream effect of methylation of the different gene body regions 

makes interpretation of such data difficult, particularly with the added complication of a 

poorly annotated genome. With only a reliable classification of analyzed sites into 

transcribed and non-transcribed regions and, as of yet, no further information regarding 

promoter, first exons etc. we could reliably see both increased and decreased expression 

profiles associated with methylation in transcribed regions (in the first exon decreasing 

expression or in a downstream exon potentially associating with increased expression) and 
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likewise in non-transcribed regions (in promoter regions decreasing expression or in 

downstream introns possibly associating with increased expression).  

 

Mark Quinton-Tulloch’s RNA-seq data for the 27°C sample was used for a comprehensive 

comparison of gene expression between the two samples i.e. investigate if temperature 

dependent differential methylation could be correlated with gene expression. The PPLR 

values that were generated from his gene expression analysis detailed changes in expression 

levels between 12°C and 27°C samples for each genome individually. A low PPLR tending 

towards 0 indicates down regulation of a gene in the 27°C sample compared to the 12°C 

sample and a high PPLR value tending towards 1 indicated up-regulation of the 27°C sample 

compared to the 12°C sample. These values allowed confident analysis of the gene 

expression status of the 23 sites that had sufficient mapping of RNA-seq data and also 

showed differential methylation between samples. 16 sites showed PPLR values for the 

genome that was differentially methylated, that deviated from the baseline 0.5 by +/- 20%; 

these show gene expression changes that could potentially be caused by differential 

methylation and are detailed in table 5.6 with syntenic genes and GO annotations.   

 

Methylation in promoter and first exon regions has been associated with silencing of a gene, 

therefore hyper-methylation in transcribed and non-transcribed regions leading to a decrease 

in expression and hypo-methylation leading to an increase in expression could be indicative 

of first exon or promoter regions. Methylation increase in internal introns and exons has 

been closely correlated and linked to increased gene expression (Zhang et al., 2006; Brenet 

et al., 2011). In table 5.6 9 up-regulated genes in the 27°C sample are linked to differential 

methylation; 3 were of unknown function and likely to be involved in protein binding, 1 was 

linked to stress response due to the presence of stress response elements (2 sites correlated 

with this gene), 1 gene with amine receptor activity thought to be involved in binding 

proteins, 1 gene was found to be similar to the PRP5 heat shock protein in a BLAST 

alignment, 1 gene had ATPase activity, 1 gene had potassium ion transmembrane transporter 

activity and finally 1 gene was related to putative glycine hydroxymethyltransferase. 7 

down-regulated genes in the 27°C sample were linked to differential methylation; 3 of 

unknown function and likely to be involved in protein binding, 1 with similarity to the 

vacuolar ATPase B subunit that has interestingly been linked to tissue specific transcript 

level decrease under heat stress (Kluge et al., 2003), a gene likely to encode a frigida-like 

protein found typically in winter accessions to prevent flowering until after winter (Risk et 

al., 2010), a gene with glutamate synthase activity and finally a residue that was related to 

the F-box protein that has been up-regulated under cold stress (Jain et al., 2007). 
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Contig: Position Associated 

Brachypodium 

gene 

Associated GO 

term 

PPLR 

value 

Gene 

expression 

(sample 

27°C) 

Methylation 

status  

(sample 

27°C) 

Region* 

CONTIG216081_1
50-888-608:726 

Bradi2g46350 
F-box protein 

- 0.242 Down-
regulation 

Hypo-
methylated 
genome B 

T 

CONTIG26428_1-
2754-2097:2211 

Bradi2g40770 
amine receptor 
activity  

GO:0005515  
protein binding  
GO:0035091  
phosphatidylinosito
l binding  

0.801 Up-
regulation 

Hyper-
methylated 
genome D 

T 

CONTIG3867046_
1-404-130:254 

Bradi1g66670 
PRP5 heat shock 
related protein 

- 0.676 Up-
regulation 

Hyper-
methylated 
genome B 

T 

CONTIG606372_1
-981-385:485 

Bradi1g15830 
Stress response  

- 0.607 Up-
regulation 

Hypo-
methylated 
genome B 

T 

CONTIG606372_1
-981-385:510 

Bradi1g15830 
Stress response 
linked 

- 0.607 Up-
regulation 

Hypo-
methylated 
genome B 

T 

CONTIG79256_1-
2552-86:249 

Bradi2g48082 
similarity to 
putative vacuolar 
ATPase B subunit 

- 0.277 Down-
regulation 

Hyper-
methylated 
genome A 

T 

CONTIG829414_1
-1110-466:560 

Bradi1g55530 GO 0003755  
stress related 
peptidyl-prolyl cis-
trans isomerase 
activity 
ras GTPase binding 

0.38 Down-
regulation 

Hypo-
methylated 
genome A 

T 

CONTIG1004297_
1-1020-93:210 

Bradi4g08780 
Frigida like protein 

- 0.101 Down-
regulation 

Hyper-
methylated  
genome B 

T 

CONTIG1254038_
1-910-552:542 

Bradi4g14900 GO 0003723 
Motor activity and 
RNA binding 

0.695 Up-
regulation 

Hyper-
methylated 
genome B 

NT 

CONTIG150583_1
-2126-197:157 

Bradi4g06350 GO:0005515  
protein binding  

0.112 Down-
regulation 

Hyper-
methylated 
genome B 

NT 

CONTIG1541763_
1-805-627:635 

Bradi1g19080 
glutamate synthase 
(NADPH) activity 

GO:0005515  
protein binding  

0.073 Down-
regulation 

Hyper-
methylated 
genome B 

T 

CONTIG171513_2
32-1141-280:399 

Bradi1g09327 
putative glycine 
hydroxymethyltran
sferase 

- 0.624 Up-
regulation 

Hypo-
methylated 
genome B 

T 

CONTIG21278_11
49-3562-622:629 

Bradi3g04350 GO:0005515 
protein binding 
GO:0001653  
peptide receptor 
GO:0004888 
transmembrane 
receptor activity 
GO:0004672  
protein kinase 
activity 

0.834 Up-
regulation 

Hyper-
methylated 
genome A 

T 
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CONTIG2710387_
1-564-171:303  

Bradi1g15610 
Potassium ion 
transmembrane 
transporter activity  

GO:0009674  
potassium:sodium 
symporter activity 

0.677 Up-
regulation 

Hyper-
methylated 
genome A 

T 

CONTIG2862936_
1-548-255:308 

Bradi3g59920 
ATPase activity 

GO:0008017  
microtubule 
binding 

0.766 Up-
regulation 

Hypo-
methylated 
genome A 

T 

CONTIG336185_1
-1612-297:381 

Bradi2g61980 GO:0009672  
auxin:hydrogen 
symporter activity 

0.694 Up-
regulation 

Hypo-
methylated 
genome B 

T 

CONTIG75035_1-
2272-1646:1765 

Bradi1g63433 GO:0005524  
ATP binding  
GO:0042626  
ATPase activity, 
transmembrane 
movement  

0.035 Down-
regulation 

Hypo-
methylated 
genome A 

T 

 

Table 5.6. Annotation of differentially methylated sites. Brachypodium genes and GO 

annotations associated with each of the contigs containing a differential methylation site (>= 

15%) between the 12°C and 27°C samples plus a PPLR value for the differentially 

methylated genome that deviated from 0.5 by +/- 20%. *T: transcribed, NT: non-transcribed. 

 

 

5.9 Validation of homeologous SNP calls and methylation status 

The DNA for the 12°C and 27°C samples was bisulfite treated using the EZ DNA 

Methylation-Gold kit (Zymo research group). 23 SNP sites were selected at random for 

validation and primers were designed to capture 150-400bp regions surrounding the SNP 

sites in bisulfite treated DNA. These regions contained a total of 337 analyzed cytosine sites 

(304 un-methylated and 33 partially or fully methylated) that could also be used for 

methylation site status validation. For primer design all C’s were treated as Y’s (C/T) and no 

more than 2 Y’s were included in a primer sequence. PCR amplification of the DNA 

followed using KAPA HiFi HotStart Uracil+ ReadyMix and finally samples were sequenced 

using Sanger sequencing (by Source Bioscience). If SNP alleles that had been seen in the 

next generation sequencing data could be seen in the Sanger sequencing data in 

approximately the same proportions (within ~20%) they were said to be validated. Similarly 

a methylation call was deemed to be correct if the Sanger sequencing data showed a 

proportion of methylation that was within approximately 20% of that seen previously i.e. 

50% methylation would mean approximately equal peaks of C and T in the Sanger 

sequencing data. 

 

In this independent validation of methylation and SNP calls ~80% of SNPs analyzed from 

both samples were validated, >99% of sites that had been previously determined to be un-

methylated were confirmed in both samples and finally of those sites that had been 
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previously determined to be fully or partially methylated 88% were found to be accurate 

calls in the 12°C sample (91% in 27°C sample). An example of one such SNP validation in 

the 12°C sample is shown in figure 5.9 (all additional SNP validations in Appendix 4, figure 

1). This SNP analysis was coupled to the analysis of the cytosine residues surrounding the 

SNP call. Table 5.7 details the positions of these residues and their expected and observed 

methylation statuses, demonstrating the high degree of accuracy of calls generated within 

this study (all additional cytosine residue validations in Appendix 4, table 8).  

 

 

Methylation 
site 
 (893-
1115bp) 
 

Status in next 
generation 
sequencing data 
Sample 12 

Peak in Sanger 
sequencing data 
Sample 12 

Methylation 
site 

Status in next 
generation 
sequencing data 
Sample 12 

Status in Sanger 
sequencing data 
Sample 12 

894 98.4% un-methylated  T (un-methylated) 964 98.9% un-methylated T (un-methylated) 

899 100% un-methylated T (un-methylated) 965 98.9% un-methylated T (un-methylated) 

900 99.7% un-methylated  T (un-methylated) 972 99.2% un-methylated T (un-methylated) 

901 99.3% un-methylated T (un-methylated) 981 99.5% un-methylated T (un-methylated) 

906 99.7% un-methylated T (un-methylated) 983 98.2% un-methylated T (un-methylated) 

907 99.3% un-methylated T (un-methylated) 984 100% un-methylated T (un-methylated) 

912 97.3% un-methylated T (un-methylated) 985 98.4% un-methylated T (un-methylated) 

924 98.7% un-methylated T (un-methylated) 987 96.1% un-methylated T (un-methylated) 

926 99.4% un-methylated T (un-methylated) 990 99.5% un-methylated T (un-methylated) 

928 98.7% un-methylated T (un-methylated) 992 99.0% un-methylated T (un-methylated) 

930 56.6% un-methylated ~60% T / ~40% C 996 99.2% un-methylated T (un-methylated) 

931 99.4% un-methylated  T (un-methylated) 1003 98.3% un-methylated T (un-methylated) 

937 98.7% un-methylated T (un-methylated) 1015 98.0% un-methylated T (un-methylated) 

940 95.7% un-methylated T (un-methylated) 1017 98.4% un-methylated T (un-methylated) 

941 98.1% un-methylated T (un-methylated) 1019 98.8% un-methylated T (un-methylated) 

942 99.1% un-methylated T (un-methylated) 1024 98.4% un-methylated T (un-methylated) 

946 97.8% un-methylated T (un-methylated) 1026 99.2% un-methylated T (un-methylated) 

949 99.8% un-methylated T (un-methylated) 1036 98.1% un-methylated T (un-methylated) 

958 99.3% un-methylated T (un-methylated) 1039 98.5% un-methylated T (un-methylated) 

960 97.8% un-methylated T (un-methylated) 1048 98.2% un-methylated T (un-methylated) 

962 99.3% un-methylated T (un-methylated)    

 
Table 5.7. Methylation site validation data. Observations from the Sanger sequencing 

output generated for sample 12 (12°C ) in Contig462845_1-1429-894 between positions 894 

and 1049 (figure 5.9). Data used for the validation of methylation sites at individual cytosine 

residues.  
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Figure 5.9. Sanger sequencing output trace.  Raw sequencing output generated for sample 12 (12°C) in Contig462845_1-1429-894 between positions 894 

and 1049. Data used for the validation of SNP and methylation sites.  

 

Sample 12: Validation of SNP and methylation sites in CONTIG462845_1.1429.8940between positions 893 and 1049 
        0

1040$ 1020$1030$ 1010$ 1000$ 990$ 980$ 970$ 960$ 950$ 940$ 930$ 920$ 910$ 900$

SNP position 1014  
In next generation sequencing see; T: 33% A: 67% 

We see here; T: ~30% A: ~70%0
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5.10 Conclusions 

The methylation array enriched the 3 genomes consistently without bias for methylated and 

un-methylated regions (section 5.4). When mapped, enriched data extended out from target 

regions covering over 4 times the original 6Mb capture target sequence. Validation of up to 

88% of homeologous SNPs and over 99% of methylation sites that were analyzed in section 

5.9 supports enrichment combined with bisulfite treatment as a sound method to accurately 

identify SNPs and methylation sites in enriched hexaploid wheat data. There was no bias 

introduced for specific repetitive regions by enrichment and it was noted that transposons in 

general were hyper-methylated in comparison to gene regions.  

 

~5% of the cytosine residues that were analyzed overall contained methylation in 1 or more 

genomes. Genome specific methylation did exist between the A, B and D genomes with the 

D genome showing preferential methylation at a significant level. The enriched genes that 

were linked to the D genomes preferential methylation, unlike those linked to the A and B 

genome, were involved in; chromatin silencing, histone modification, methylation/regulation 

of gene expression and chromosome organization; adding weight to the hypothesis that the 

expression of the D genome may be controlled by methylation. Genome independent 

methylation existed more commonly across the genome than genome specific methylation 

(~73-74% of all analyzed residues that contained methylation in one or more genomes). Bias 

for CpG sites was stronger in genome independent sites, while genome specific sites had a 

consistently higher proportion of CHG/CHH methylation in predicted transcribed and non-

transcribed regions, but still a bias towards CpG methylation (section 5.6). 

 

Genome independent methylation or non-methylation resulted in consistent expression 

profiles across the 3 genomes i.e. similar levels of expression in associated genes. In contrast 

to this, genome specific methylation was seen to effect the expression of that genome, in 

relation to the expression profiles of the other 2 genomes, in non-transcribed regions; such 

genome specific methylation in genome A was linked to low expression of genes linked to 

phosphorylation, carboxylase, synthase, O-acyltransferase, ATPase, protein kinase and 

transglucosylase activity and high expression of genes with arabionsyltransferase and auxin 

transporter activity; in genome B genome specific methylation was linked to low expression 

of genes involved in transmembrane transporter activity; in genome D genome specific 

methylation was linked to low expression in genes with ligase activity, catalytic activity and 

damaged DNA binding activity. In transcribed regions genome specific methylation was 

seen to effect the expression of the D genome only, in relation to the expression profiles of 

the other 2 genomes. A large decrease in expression was seen when genome D was 

specifically methylated in transcribed regions in a gene associated with monooxygenase 
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activity. This could be indicative of first exon methylation that is strongly associated with 

gene silencing (Brenet et al., 2011). Also a small increase in expression was seen when 

genome D was specifically methylated in transcribed regions in a gene associated with ATP-

dependent DNA helicase activity. This supports the hypothesis that methylation could be 

directly affecting gene expression in wheat in general across the genome (section 5.8).  

 

Temperature was found to have an effect on methylation; 23 differentially methylated sites 

were identified between the 12°C and 27°C samples. These sites were mainly genome 

specific but differences were also seen in 2/3 genomes indicating that it is likely to be 

possible for methylation differences to occur genome independently between samples, 

however, much more rarely. The adaptation of this study to a larger region of the genome 

would be likely to confirm this. Some of the temperature dependent differential methylation 

was found to be likely to be linked to the increased or decreased expression of affected genes 

with high biological significance (table 5.6); 1 up-regulated gene in the 27°C sample was 

linked to stress response due to the presence of stress response elements (2 sites correlated 

with this gene), 1 up-regulated gene was found to be similar to the PRP5 heat shock protein 

in a BLAST alignment and finally 1 up-regulated gene was related to putative glycine 

hydroxymethyltransferase. 1 down-regulated gene in the 27°C sample had similarity to the 

vacuolar ATPase B subunit that has interestingly been linked to tissue specific transcript 

level decrease under heat stress (Kluge et al., 2003), 1 down-regulated gene was likely to 

encode a frigida-like protein found typically in winter accessions to prevent flowering until 

after winter (Risk et al., 2010) and finally a down-regulated gene was related to the F-box 

protein that has been up-regulated under cold stress (Jain et al., 2007) (section 5.8).  
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6. Discussion  

The main aims of this project included the development of high throughput pipelines for 

mapping, SNP calling and mapping-by-sequencing mutant identification analyses in 

complex species. Mapping and SNP calling analyses were first implemented in the model 

diploid organism Arabidopsis. Analysis of the Arabidopsis clock mutant early bird (ebi-1), 

that was developed using BWA and GATK, was successfully utilized to identify a large 

proportion of ebi-1 specific SNPs that were identified by Ashelford et al. in 2010 (~90%) 

and the SNP that is responsible for causing the ebi-1 phenotype. Mutant identification 

analyses were also performed in various known bulk segregant Arabidopsis mutants using 

SHOREmap (Schneeberger et al., 2009). All analyses gained clear intervals of interest in 

anticipated mapping intervals, and a short list of potential phenotype inducing EMS SNPs, 

demonstrating the functionality of this methodology. These analyses outlined the theory 

demonstrated by James et al. in 2013 that a higher number of pooled plants used in the 

analysis would increase our ability to define an interval of interest.  

 

Initial mapping, SNP calling and mutant identification in a diploid organism with a complete 

reference sequence allowed pipeline development prior to the end goal of application in the 

target enriched hexaploid bread wheat. In addition to mutant identification in SHOREmap 

these results were also replicated using a bespoke mapping, SNP calling and mutant 

identification pipeline, to assist in its development. Bespoke pipeline development was 

considered necessary in anticipation of the downstream polyploid application issues that 

were encountered with use of methodologies such as SHOREmap that is intended for diploid 

organisms only. The bespoke mutant identification pipeline was successfully implemented 

on a simulated hexaploid dataset that was created using the Arabidopsis genome.  

 

Wheat’s large genome size makes the whole genome re-sequencing, that mapping-by-

sequencing analyses benefit from, a costly option. The NimbleGen gene capture array was 

implemented to eliminate repetitive sequence and to target enrich the majority of gene rich 

regions of wheat (~110Mb) covering ~99% of the wheat cDNA sequence. Here, this gene 

capture array’s efficiency was validated and it was used to enrich 4 wheat varieties. Use of a 

polyploid mapping and SNP calling pipeline allowed determination of varietal SNPs in 

comparison to the reference dataset, Chinese Spring, in each of the other 3 varieties. This 

enabled varietal comparative analyses. Varietal SNP numbers were loosely conserved across 

Truman, Utmost and Rialto and more strongly conserved across Utmost/Truman with Rialto 

having the most overall. No two varieties appeared to have more or less similarity to each 

other in comparison to the 3rd variety and Chinese Spring. Looking at SNP distribution 

smaller regions of varietal SNP density or scarcity were numerous and scattered consistently 
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across the genome. Rialto appeared to have a SNP dense region, compared to the other 

chromosomes and other varieties, at the beginning of chromosome 1 that could account for 

the elevated numbers of varietal Rialto specific SNPs in comparison to Utmost and Truman. 

Since Rialto is reported to contain the 1B/1R wheat/rye translocation on chromosome 1 this 

could account for increased SNP diversity in this region (Burnett et al., 1995). 

 

In addition to a manageable size for cost effective re-sequencing, mapping-by-sequencing 

largely benefits from a complete reference genome, and as such many of the current 

mapping-by-sequencing pipelines require such a sequence (Nordstrom et al., 2013). Here, 

the full genic sequence of wheat i.e. the target sequence for the gene capture array, was 

assembled into pseudo-chromosomes where possible based on synteny with the closely 

related Brachypodium. 68% of the target sequence contigs could be ordered and 

concatenated into 7 pseudo wheat chromosomes using this methodology. 800 

Brachypodium-wheat markers were used for this assembly that was then implemented 

successfully in several mutant identification analyses. This successful application 

demonstrates that in relatively un-characterized species mutant identification analyses are 

possible with limited resources. With the release of the wheat genome zipper to the public in 

March 2014 by the IWGSC (available at: https://urgi.versailles.inra.fr/download/iwgsc/) the 

number of available wheat markers has been increased and future pseudo-chromosome 

constructs are likely to benefit from a more accurate structure. Furthermore, when full wheat 

chromosome assemblies are completed, this will allow a further improved set of pseudo 

wheat chromosomes with all of the genic sequence included and arranged confidently, 

without the limitation of including only those contigs that could align to barley or 

Brachypodium. A full wheat genome chromosomal assembly would allow the development 

of the enrichment array itself to ensure inclusion of all of the relevant genic material for 

wheat.  

 

Using gene capture target enrichment and the pseudo-chromosome reference sequence, in 

combination with an evolved version of the bespoke mutant identification pipeline that was 

previously implemented in Arabidopsis, mapping intervals were successfully identified in a 

series of diploid and hexaploid wheat mutant bulk segregant F2 mapping populations.  

 

A region was identified on chromosome 3 that is likely to contain the Eps-3Am mutation in 

the early flowering diploid mutant T. monococcum. A region of ~40Kbp region could be 

pinpointed based on the identification of deletion hotspots. Finally, by assessing gene 

annotation, the candidate gene for the phenotype itself could be narrowed to a single capture 

target sequence contig of 3693bp that had a high deletion frequency and showed a high 
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degree of similarity to the T. aestivum cultivar Chinese Spring LUX gene. The LUX gene is 

known to affect both the circadian clock and flowering time in Arabidopsis and had 

previously been associated with this deletion (Hazen et al., 2005). This analysis highlights 

the capability of capture probe sets to be used effectively for close relatives with little or no 

resources available. This developed a proof of concept approach where enrichment of a 

subset of a phenotyped Arabidopsis F2 mapping population was performed in combination 

with a mapping-by-synteny approach to order Arabidopsis cDNA into B. rapa pseudo-

chromosomes based on synteny. Two mutant intervals were defined in B. rapa using allele 

frequency analysis at marker positions that translated to one position in Arabidopsis (Galvão 

et al 2012). With use of an enrichment system targeting the majority of the wheat genic 

sequence the concerns expressed by Galvão et al, that the causal mutation would be unlikely 

to be targeted with enrichment, were addressed and the likelihood of enrichment of the 

region of interest were increased. Here, not only had a divergent species been used to order 

the fragmented mapping reference, additionally the mapping reference itself and enrichment 

capture probe set were both divergent from the species under analysis. This analysis also 

uniquely demonstrates the combination of sliding window analyses with mapping-by-

synteny by implementing a pseudo genome. 

 

Highly similar ~1Mb intervals were defined in the P2 and P3 Yr-7 stripe rust resistant and 

susceptible wheat datasets on chromosome 2. A small group of novel SNPs, within this 

interval, that were found in common disease resistance genes, were defined as candidates for 

further investigation. In the P2 dataset 7 SNPs were associated with the NBS-LRR disease 

resistance protein family; the 7 SNPs were all unique to P2 and approximately central to the 

tip of the peak interval of interest that was defined on chromosome 2. This SNP region is 

likely to indicate the location of the Yr-7 locus for stripe rust resistance. In the P3 dataset 21 

SNPs were associated with the NBS-LRR disease resistance protein family. This SNP 

increase in the P3 dataset compared to P2, in the same peak region on chromosome 2 that 

showed homology to the NBS-LRR disease resistance proteins, could be responsible for the 

disruption of the disease resistance gene and therefore disease susceptibility in this sample. 

Therefore these 21 novel SNPs are candidates for further study. 90% of the 159 iSelect Yr-7 

linked SNPs could be correctly anchored to the pseudo-chromosome 2. ~80% fell within the 

defined intervals or in close proximity to them (6,000,00-9,000,000bp) supporting correct 

interval identification although none were in the list of 21 candidate SNPs. In theory Yr-7 

linked SNPs should all relatively closely associate with peak regions. Cases where this was 

not true are likely to result from local inaccuracies in pseudo-chromosome order. As such, 

this analysis would benefit from increased numbers of markers in Brachypodium for 

improved ordering of the pseudo-chromosomes, and/or an increased number of SNPs that 
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are linked to the gene of interest. Only 65% of Yr-7 linked SNP sequences could be 

confidently located in the gene capture array design-space. It is anticipated that those 

sequences that could not be confidently placed overlapped the ends of assembled contigs, 

potentially hitting more than one design-space contig or extended into repetitive regions that 

were not included in the design-space. A full wheat genome assembly would allow 

scaffolding of the gene capture array design-space contigs and relative positional 

information regarding the SNP positions to be gained to confirm this.   

 

The initial main aim of mapping, SNP calling and mutant identification in an enriched 

hexaploid wheat dataset using a pseudo-chromosome reference sequence has been achieved 

with use of a bespoke pipeline and allele frequency algorithm. This pipeline is detailed 

within this project with attached Perl scripts but is also available within the Discovery 

Environment of iPlant (The iPlant Collaborative, 2011) (see section 4.2.5) as series of public 

workflows allowing users with a non-programming background to utilize the methodology 

and requiring, through an online graphical user interface, only uploads of sequencing data 

(fastq) files as input. The default algorithm is set for a diploid organism, though with a 

simple change of parameters a polyploid organism can be processed (as demonstrated in the 

study here of P2 and P3 hexaploid wheat samples). This allows a specialist mapping-by-

sequencing pipeline in a polyploid or diploid plant to be truly accessible to non-specialists 

for implementation on additional datasets.  

 

The mapping, SNP calling and enrichment techniques detailed here could then be applied to 

enable a study of methylation patterns in a subset of wheat. The wheat methylation array 

(6Mbp), or Agilent SureSelect Methyl-Seq Target Enrichment System, was designed based 

on the pre-validated probe target sequences used for the NimbleGen gene capture array. It 

was used to enrich samples that were from the wheat variety Chinese Spring and included; 

plants grown at 12°C and plants grown at 27°C. Bisulfite treatment was also used to allow, 

after PCR and sequencing, discrimination of methylated cytosine residues. It was found that 

the methylation array enriched the 3 genomes consistently without bias for methylated and 

un-methylated regions.  

 

The methylation analysis confirmed our main hypotheses. Genome specific methylation did 

exist between the A, B and D genomes with the D genome showing preferential methylation 

at a significant level. The enriched genes that were linked to the D genomes preferential 

methylation, unlike those linked to the A and B genome, were involved in; chromatin 

silencing, histone modification, methylation/regulation of gene expression and chromosome 

organization; adding weight to the hypothesis that the expression of the D genome may be 
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controlled by methylation. Genome independent methylation existed more commonly across 

the genome than genome specific methylation. Bias for CpG sites was stronger in genome 

independent sites, while genome specific sites had a consistently higher proportion of 

CHG/CHH methylation in predicted transcribed and non-transcribed regions, but still a CpG 

methylation bias (section 5.6). 

  

Genome independent methylation or non-methylation resulted in consistent expression 

profiles across the 3 genomes i.e. similar levels of expression. Genome specific methylation 

was seen to effect the expression of the genome in question, across a variety of genes, in 

relation to the expression profiles of the other 2 genomes, in non-transcribed regions. In 

transcribed regions genome specific methylation was seen to effect the expression of the D 

genome only, in relation to the expression profiles of the other 2 genomes. A large decrease 

in expression was seen when genome D was specifically methylated in transcribed regions in 

a gene associated with monooxygenase activity. This could be indicative of first exon 

methylation that is strongly associated wth gene silencing (Brenet et al., 2011). Also a small 

increase in expression was seen when genome D was specifically methylated in transcribed 

regions in a gene associated with ATP-dependent DNA helicase activity. This supports the 

hypothesis that methylation could be directly affecting gene expression in wheat in general 

across the genome (section 5.8). The observation of preferential D genome methylation in 

genes that are involved in chromatin silencing, histone modification, methylation/regulation 

of gene expression and chromosome organization combined with changes in D genome gene 

expression could be indicative of the use of methylation to control the D genome to maintain 

stability in the plant after the addition of this, the newest genome to be introduced, to create 

hexaploid wheat. 

 

Temperature was found to have an effect on methylation; differences between the 12°C and 

27°C samples were mainly genome specific but differences were also seen in 2/3 genomes 

indicating that it is likely to be possible for methylation differences to occur genome 

independently between samples, however, much more rarely. The adaptation of this study to 

a larger region of the genome would be likely to confirm this. Some of the temperature 

dependent differential methylation was found to be likely to be linked to the increased or 

decreased expression of affected genes with high biological significance (table 5.6); 1 up-

regulated gene in the 27°C sample was linked to stress response due to the presence of stress 

response elements (2 sites correlated with this gene), 1 up-regulated gene was found to be 

similar to the PRP5 heat shock protein in a BLAST alignment and finally 1 up-regulated 

gene was related to putative glycine hydroxymethyltransferase. 1 down-regulated gene in the 

27°C sample had similarity to the vacuolar ATPase B subunit that has interestingly been 
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linked to tissue specific transcript level decrease under heat stress (Kluge et al., 2003), 1 

down-regulated gene was likely to encode a frigida-like protein found typically in winter 

accessions to prevent flowering until after winter (Risk et al., 2010) and finally a down-

regulated gene was related to the F-box protein that has been up-regulated under cold stress 

(Jain et al., 2007) (section 5.8). 

 

This methylation analysis was the first genome wide methylation study in wheat, selecting a 

subset of wheat genes that were distributed relatively evenly across the wheat genic 

sequence. Such an analysis should give a clear indication of the trends and methylation 

patterns that we are likely to see if the study is extended to include the entirety of wheat’s 

genic sequence. This is an obvious next step for this analysis, to increase the region under 

observation e.g. with adaptation of the ~110Mbp gene capture array target sequence, 

encompassing the majority of what genes, into a larger scale methylation analysis. This 

analysis also only allowed the analysis of one strand of DNA and future analyses would 

benefit from the analysis of both strands. Implementation of the PacBio RS could aid a larger 

scale approach as the unique sequencing methodology employed by this technology allows 

discrimination of the methylation status of a cytosine residue without the need for bisulfite 

treatment. This is due to DNA polymerase synthesizing DNA at slightly different speeds 

depending on whether it is epigenetically modified or not. Nucleotides emit pulses of 

fluorescent light as they are added to the DNA and by calculating the lengths of the pulses 

and distances between them; it is possible to identify methylated sites (Flusberg et al., 2010).  

 

Implementation of target enrichment has cost effectively facilitated mapping and SNP 

calling, mapping-by-sequencing mutant identification, varietal comparisons and methylation 

analyses in the genic regions of wheat. All of this has been achieved with no finished 

genome reference sequence and outlines the possibility of such analyses being implemented 

on other non-model organisms. Discrimination between the 3 genomes has been achieved 

using homeologous SNPs to allow comparison between them in several of these studies, this 

is also a limiting factor since the absence of a homeologous SNP hinders genome 

discrimination. Future work in this field would benefit from longer length sequencing reads 

allowing more methylation sites to be connected to a homeologous SNP to enable genome 

discrimination. Correlation of a methylated region with desirable gene expression in wheat 

could allow methylation status to be used as a marker for improved crop yields. A simple 

cost effective assay to routinely detect such methylation sites, e.g. the PCR/Sanger 

sequencing assay implemented within this study, could be used in crop yield development.  

 

The 454 genomic wheat DNA sequence assembly that was generated by Brenchley et al. was 
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used throughout this project and consisted of a contig set that is anticipated to represent the 

complete wheat gene set. As this project ends the IWGSC released the full genome sequence 

of wheat in July 2014; an improved version of the 454 DNA assembly, containing a set of 

contigs that have been assigned to an individual wheat genome A, B or D and a wheat 

chromosomal arm (IWGSC, 2014). Such sequence could be used in future mapping studies 

similar to those implemented here with enriched data allowing assignment of sequences to 

individual wheat genomes via mapping rather than using homeologous SNPs.  Such analyses 

would benefit from long, high quality sequencing reads to ensure effective association of a 

sequencing read with the correct wheat genome given the high degree of similarity between 

them. Full wheat chromosomal sequences are still under construction by the IWGSC 

therefore the wheat contigs have still yet to be assigned, in the main, anchored positional 

information that would allow the construction of an improved set of pseudo-chromosomes 

with all of the target sequence contigs included and arranged confidently to improve our 

mutant identification pipeline. The utilization of the IWGSC assembly has been 

retrospectively applied throughout this project since its release to ascertain if the pseudo-

chromosome sequences contain sequence from the correct wheat chromosome (>80% of 

sequence was correctly assigned to a chromosome and all analyses yielded identical results 

with un-validated sequence removed). This would not aid validation of the local ordering of 

the sequence within the pseudo-chromosomes. This recent wheat genome sequence was 

complemented by 124,201 gene annotations; these would improve the methylation study in 

chapter 5 allowing differentiation of promoter, first exon, internal exon/intron structures that 

assist the effort to correlate the positional effect of a methylation site on gene expression; 

annotations would also assist in the effort to define phenotype inducing SNPs in the P2/P3 

datasets in chapter 4, allowing discrimination of synonymous/non-synonymous SNPs. 

 

At the end of this project it is clear that many of the sequencing technologies, mapping/SNP 

calling tools and mutant identification pipelines that were commonly used at the onset of the 

project have since been replaced by newer more improved versions or else disregarded 

altogether. Programs such as SHOREmap, BWA and Bowtie, to name a few, received total 

overhauls and the newer algorithms and methodologies that have been detailed here are 

typically much more sophisticated and multi-functional than they were in 2010. Sequencing 

technologies such as the Roche 454 sequencer are soon to be largely redundant with 

competitors such as the PacBio RS II entering the market while the SOLiD sequencing 

methodology has seen an invasion of the market by the increasingly high throughput of the 

Illumina HiSeq series. In such a fast moving field, with increased accessibility of computing 

power and huge amounts of sequence data, of increasing read length, that is generated in a 

single day, bioinformatic analyses are likely to be continually under development.  
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