
Development of Parallel Meshless Methods for Moving

Geometry Simulations

Thesis submitted in accordance with the requirements of

the University of Liverpool for the degree of Doctor in Philosophy

by

Juan Jacobo Angulo

April 2014

Copyright © 2014 by Juan Jacobo Angulo

All rights reserved.

ii of 126

Abstract

Computational fluid dynamics methods to simulate flows around geometries in relative

motion are important for the aerospace industry. Traditional methods like finite-volume

techniques are better suited for static simulations where the geometry of the problem

does not change, or where only small movements are found. The meshless method can

provide a solution for these problems where the geometry changes significantly and

different bodies can move in relation to one another.

A meshless method to select stencils from overlapping and moving point distribu-

tions, and a corresponding flow solver capable of solving the Euler equations on those

stencils, have been developed previously. This work expands the existing meshless

formulation by including the capabilities to simulate viscous flows in laminar and tur-

bulent regimes and by implementing different parallel computing techniques in an effort

to improve the computational efficiency.

The treatment of viscous and turbulent flows is performed by augmenting the origi-

nal Euler meshless scheme by using central-differences to discretise the viscous terms in

the Navier-Stokes equations. The Spalart-Allmaras turbulence model is used to model

the turbulent viscosity term and complete the closure of the system of equations to be

solved. Validation of the method was carried out by calculating several well-known test

cases and comparing the results to published data.

The parallel implementation of the flow solver follows a distributed approach with

asynchronous communications using message-passing standards. The parallel flow

solver method is tested with two three-dimensional geometries, running in dedicated

parallel machines with processor numbers ranging in the thousands. Results show good

agreement to published data and very good parallel scalability.

Preliminary testing of the stencil selection method, showed that the computational

cost of the operations needed to find stencils for each point in the domain can vary dra-

matically for all points. Furthermore, this cost cannot be predicted a-priori, making

it very difficult to perform an appropriate domain decomposition. With this in mind,

three types of implementation are used for the parallel stencil selection scheme: a dis-

tributed memory approach, a shared memory approach and hybrid method combining

the two previous ones. Using the shared and hybrid implementations, the negative

effects of using a poor domain decomposition are reduced. Four test cases are studied

iii of 126

using the parallel stencil selection procedure coupled with the parallel flow solver. Two

of these cases are static, and two of them are simulations over moving geometries. The

fourth case introduces a 6 degree-of-freedom simulation to calculate the movement of a

store being released from an aircraft and showcases the full capabilities of the method.

These parallel tests show important reductions in the calculation times and open the

door for the meshless scheme to be used in the future for more realistic cases.

iv of 126

Acknowledgements

I would like to extend my gratitude to my supervisors Professor Ken Badcock and

Professor George Barakos for their assistance and support, and to all the members of

the Computational Fluid Dynamics Laboratory at the University of Liverpool, past

and present.

To my friends in Liverpool and back home, I thank you for your continuous support

during both the good and hard times, and especially to Fleur: your love and support

during these complicated times have been invaluable. I love you.

Last, but certainly not least, I would like to thank my family, who have believed in

me at all stages of my life, and to whom I owe everything. Mireya, Rafael and Andrea.

I love you very much.

This research has been financially supported by the Engineering and Physical Sci-

ences Research Council (EPSRC) and BAE Systems through a CASE award. This work

made use of the facilities of N8 HPC provided and funded by the N8 consortium and

EPSRC (Grant No.EP/K000225/1). The Centre is co-ordinated by the Universities of

Leeds and Manchester.

v of 126

vi of 126

Declaration

I confirm that the thesis is my own work, that I have not presented anyone else’s work as

my own and that full and appropriate acknowledgement has been given where reference

has been made to the work of others.

Juan Jacobo Angulo

April 2014

vii of 126

viii of 126

List of Publications

Angulo, J. J., Kennett, D. J., Timme, S., and Badcock, K. J., “Parallel Methods

for a Semi-Meshless Euler and Navier-Stokes Solver”, Submitted to AIAA Journal.

Angulo, J. J., Kennett, D. J., Timme, S., and Badcock, K. J., “Parallel Semi-

Meshless Stencil Selection for Moving Geometry Simulations,” AIAA Paper 2013–2854,

Presented at the 21st AIAA Computational Fluid Dynamics Conference, San Diego,

California, Jun 2013.

Kennett, D. J., Angulo, J. J., Timme, S., and Badcock, K. J., “Semi-Meshless

Stencil Selection on Three-Dimensional Anisotropic Point Distributions with Parallel

Implementation,” AIAA Paper 2013–0867, Presented at the 51st AIAA Aerospace

Sciences Meeting, Grapevine, Texas, Jan 2013.

Kennett, D. J., Timme, S., Angulo, J. J., and Badcock, K. J., “Semi-Meshless

Stencil Selection for Anisotropic Point Distributions,” International Journal of

Computational Fluid Dynamics Vol. 26, Nos. 9–10, 2012, pp. 463–487

Kennett, D. J., Timme, S., Angulo, J. J., and Badcock, K. J., “An Implicit

Meshless Method for Application in Computational Fluid Dynamics,” International

Journal for Numerical Methods in Fluids Vol. 71, No. 8, 2012, pp. 1007–1028

Kennett, D. J., Timme, S., Angulo, J. J., and Badcock, K. J., “An Implicit

Semi-Meshless Scheme with Stencil Selection for Anisotropic Point Distributions,”

AIAA Paper 2011–3234, Presented at the 20th AIAA Computational Fluid Dynamics

Conference, Honolulu, Hawaii, June 2011.

ix of 126

x of 126

Table of Contents

Abstract iii

Acknowledgements v

Declaration vii

List of Publications ix

List of Figures xiii

List of Tables xvii

List of Symbols xix

1 Introduction 1

1.1 Motivation . 1

1.2 Objectives and Thesis Outline . 2

2 Theoretical Background and Literature Review 3

2.1 Overview of Numerical Methods for Moving Geometries 3

2.2 Meshless Numerical Methods in Fluid Dynamics 6

2.3 Parallel Computing Concepts . 8

2.4 Challenges of Parallel Computing Applied to Meshless Methods 13

3 Governing Equations 15

3.1 Navier-Stokes Equations . 15

3.2 Turbulence Modelling (Spalart - Allmaras Model) 18

4 Solution Method 21

4.1 Approximation of Continuous Functions from Scattered Data 21

4.2 Spatial Discretisation of Non-Viscous Fluxes 23

4.3 Spatial Discretisation of Viscous Fluxes 25

4.4 Spatial Discretisation of the Turbulence Model 26

4.5 Boundary Conditions . 27

xi of 126

4.6 Integration to Steady-State . 28

4.7 Iterative Linear Solver . 29

4.8 Preconditioning . 29

4.9 Time-Accurate Integration . 30

5 Laminar and Turbulent Results 31

5.1 NACA0012 Laminar Case . 32

5.2 Cylinder Laminar Flow . 37

5.3 RAE2822 Turbulent Case . 41

6 Parallel Implementation of the Flow Solver 51

7 Parallel Flow Solver Results 57

7.1 Onera M6 Wing Case . 57

7.2 DLR-F6 Case . 62

8 Stencil Selection and its Parallel Implementation 65

8.1 Introduction to the Preprocessor . 65

8.2 Parallel Implementation of the Preprocessor 71

8.2.1 Distributed Implementation . 71

8.2.2 OpenMP and Hybrid MPI/OpenMP Implementations 79

9 Parallel Stencil Selection Results 83

9.1 Presentation of Test Cases . 83

9.1.1 Test Case 1: NACA0012 Aerofoil in Transient Pitching Motion . 83

9.1.2 Test Case 2: Two-Dimensional Multi-Element Aerofoil 84

9.1.3 Test Case 3: Open-Source Fighter 85

9.1.4 Test Case 4: Delta Wing with Store in Unsteady Mode 86

9.2 Profiling the Code and Sorting Algorithms 87

9.3 Results for the NACA0012 Aerofoil in Transient Motion Test Case . . . 88

9.4 Results for the Multi-Element Aerofoil Test Case 89

9.5 Results for the Open-Source Fighter Test Case 95

9.6 Results for the Transient Store-Drop Case 102

10 Conclusions and Future Work 109

A Appendices 123

A.1 Decomposition by Polar Coordinates . 123

A.2 6-DOF Motion Simulation . 124

xii of 126

List of Figures

2.1 Points across a 2D domain. Local Meshless Stencil. 5

2.2 Parallel Architectures . 10

2.3 Combined Memory System . 11

4.1 Local Cloud of Points. 22

4.2 Mid-Edge Interface. 23

4.3 Ghost Points . 27

5.1 Stencil selection for PML cases. 32

5.2 Entire domain view of point distribution for NACA0012 case. 33

5.3 Close-up view of point distribution for NACA0012 case (1e-4 first grid

spacing). 33

5.4 Pressure coefficient contours for NACA0012 case. 34

5.5 Stream-wise velocity contours for NACA0012 case. 34

5.6 Surface pressure coefficient for NACA0012 case. 35

5.7 Surface skin friction for NACA0012 case. 35

5.8 Comparison of stream-wise velocity profiles inside the boundary layer

for NACA0012 case. 36

5.9 Entire domain view of the point distribution for cylinder case. 38

5.10 Close-up view of the point distribution for cylinder case (1e-4 first grid

spacing). 38

5.11 Calculated streamlines and pressure contours for two-dimensional cylin-

der case at Re = 26 . 39

5.12 Flow streamlines (image from experiment) for two-dimensional cylinder

case at Re = 26. Taken from Ref. [102] 39

5.13 Skin friction for two-dimensional cylinder case 40

5.14 Drag coefficient for different Reynolds numbers from 5 to 40 for the

two-dimensional cylinder case . 40

5.15 Entire domain view of the point distribution for RAE2822 cases 41

5.16 Close-up view of the point distribution for RAE2822 cases (5e-6 first grid

spacing) . 42

xiii of 126

5.17 Pressure coefficient contours for RAE2822 turbulent flow case with sub-

sonic conditions. 43

5.18 Stream-wise velocity contours for RAE2822 turbulent flow case with sub-

sonic conditions. 43

5.19 Surface pressure coefficient for RAE2822 turbulent flow case with sub-

sonic conditions. 44

5.20 Maximum value of turbulent eddy viscosity at different vertical slices

along the aerofoil for RAE2822 subsonic case. 44

5.21 Stream-wise velocity at different slices along the RAE2822 upper surface

for subsonic case (Slices from left to right: x=1.0, x=0.9, x=0.8 and x=0.6). 45

5.22 Turbulent eddy viscosity at different slices along the RAE2822 upper

surface for subsonic case (Slices from left to right: x=0.6, x=0.8, x=0.9

and x=1.0). 45

5.23 Pressure coefficient contours for RAE2822 case with transonic conditions. 47

5.24 Stream-wise velocity contours for RAE2822 case with transonic conditions. 47

5.25 Turbulent eddy viscosity contours for RAE2822 case with transonic con-

ditions. 48

5.26 Maximum value of turbulent eddy viscosity at different vertical slices

along the aerofoil for RAE2822 transonic case. 48

5.27 Stream-wise velocity at different slices along the RAE2822 upper surface

for transonic case (Slices from left to right: x=1.0, x=0.9, x=0.8, x=0.6

and x=0.4). 49

5.28 Turbulent eddy viscosity at different slices along the RAE2822 upper

surface for transonic case (Slices from left to right: x=0.4, x=0.6, x=0.8,

x=0.9 and x=1.0). 49

5.29 Surface pressure coefficients for RAE2822 case with transonic conditions. 50

6.1 Classification of points close to an inter-processor boundary. 52

6.2 Algorithm for the parallel flow solver . 54

6.3 Algorithm for the parallel GCR . 55

7.1 Calculated surface pressure for Onera M6 wing case. 58

7.2 Comparison of computed surface pressure coefficients with PMB and

experimental data at different locations throughout the wing span for

Onera M6 wing at M∞ = 0.86 and α = 3.06 °. 59

7.3 Efficiency of the parallel flow solver for Onera M6 case using explicit

integration with one MPI process per core. 60

7.4 Efficiency of the parallel flow solver for Onera M6 case using implicit

integration with one MPI process per core. 60

xiv of 126

7.5 Total number of iterations to convergence and total calculation time.

Onera M6 case. 61

7.6 Surface pressure contours and flow streamlines for DLR-F6 case. 62

7.7 Surface pressure coefficients and convergence histories for DLR-F6 case. 63

7.8 Performance of parallel solver for DLR-F6 case running one MPI process

per core. 64

7.9 Memory usage of the parallel flow solver for DLR-F6 case. 64

8.1 Examples of bounding boxes over stencils and boundary elements. . . . 67

8.2 Definition of resolving vectors. 68

8.3 Definition of new local coordinate system for merit function. 68

8.4 Example of basic sorting algorithm. Smallest number for each iteration

shown in light blue. Numbers already sorted shown in grey. 69

8.5 Domain decomposition for the preprocessor. 73

8.6 Example of the blanking of points interior to solid boundaries in parallel. 74

8.7 Example of a single bounding box surrounding all points assigned to a

process. 76

8.8 Example of adaptive sub-division by quadrants on purple process (The

sub-division operation and the exclusion of parents/children are shown

as if they were performed together at each step). 77

8.9 Points identified for communication. 78

8.10 Example of the search region for a point. The size of the region grows

with any overlapping stencil. 79

8.11 Representation of the hybrid MPI/OpenMP algorithm for the preprocessor. 81

9.1 Input point distributions for pitching NACA0012 test case. 84

9.2 Multi-Element aerofoil. 84

9.3 OSF test case. 85

9.4 Store-drop test case geometry. 86

9.5 Surface pressure coefficients for the NACA0012 in pitching motion. . . . 89

9.6 Normal force coefficient for NACA0012 in pitching motion. 89

9.7 Flow solution for multi-element aerofoil test case. 90

9.8 Speed-up of preprocessor for multi-element aerofoil case using distributed

implementation with polar decomposition, running one MPI process per

core . 92

9.9 Load balance for two processes for multi-element aerofoil case using dis-

tributed implementation with polar decomposition 92

9.10 Load balance for twelve MPI processes for multi-element aerofoil case

using distributed implementation with polar decomposition 92

xv of 126

9.11 Preprocessor memory usage for multi-element aerofoil case using dis-

tributed implementation with polar decomposition 92

9.12 Number of initial and communicated points per MPI process for multi-

element aerofoil case using distributed implementation with polar de-

composition. Comparison of number of communication points between

small and big search regions. 93

9.13 Performance of parallel preprocessor for multi-element aerofoil using

shared and hybrid implementations. 94

9.14 Performance of parallel preprocessor for multi-element aerofoil using hy-

brid implementation after rebalancing the partitions. 94

9.15 OSF test case flow solution showing surface pressure and streamlines

coloured by stream-wise velocity. 95

9.16 Calculation times per operation, per process for OSF test case with slice-

based domain decomposition . 96

9.17 Calculation times per operation, per process for OSF test case using

polar-based domain decomposition . 97

9.18 Parallel preprocessor speed-up for OSF case using distributed implemen-

tation with two types of domain decomposition 98

9.19 Number of points received per domain for OSF case running on 12 pro-

cesses. 100

9.20 Points per domain running on 72 processes for OSF case with distributed

implementation (points received with big regions were omitted as they

showed a similar trend) . 100

9.21 Memory usage for the OSF case using two types of domain decomposition101

9.22 Parallel performance of the hybrid (MPI/OpenMP) method for OSF case.101

9.23 Store-drop test case flow solution at t=0. 102

9.24 Surface pressure coefficient on the store at t = 0s, measured through two

different planes . 103

9.25 Trajectory of the store during 6-DOF simulation. 104

9.26 Calculated trajectory and velocities of the centre of gravity. 105

9.27 Calculated angular movements and rates. 105

9.28 Parallel performance of the method for store-drop case. 106

A.1 Ground reference system, denoted with the superscript G and body-fixed

system, denoted by the superscript b. 124

xvi of 126

List of Tables

5.1 Flow conditions for the test cases. 31

5.2 Grid definition for the two-dimensional cylinder test case. 38

5.3 Flow conditions for the RAE2822 test cases. 42

5.4 Summary of force and moment coefficients for RAE2822 test cases. . . . 50

5.5 Calculation times for RAE2822 test cases. 50

8.1 Summary of tested sorting algorithms. 70

9.1 Grid sizes for the OSF test case. 85

9.2 Full-scale store characteristics. 87

9.3 Profiling of the preprocessing code. 87

9.4 Speed-up of different sorting algorithms. 88

9.5 Processor combinations in hybrid mode for multi-element aerofoil case. . 93

9.6 Preprocessor load balance for OSF test case. 99

9.7 Aerodynamic forces and moments at carriage position (t=0s) for store-

drop test case. (All forces in N and moments in N ·m) 103

9.8 Average calculation per real time-step for store-drop case. (All times in

seconds) . 107

xvii of 126

xviii of 126

xix of 126

List of Symbols

A = Jacobian matrix (= ∂R/∂w)

a = speed of sound

b, c, d = shape function derivatives

c = chord length

Cd = drag coefficient

Cf = skin friction coefficient

Cl = lift coefficient

Cm = moment coefficient

Cp = pressure coefficient

d = distance to closest wall

e = specific total energy

E = total energy

Ep = parallel efficiency

f , fv = inviscid, viscous fluxes in the x direction

g, gv = inviscid, viscous fluxes in the y direction

h, hv = inviscid, viscous fluxes in the z direction

h = specific enthalpy

i = star point

I = identity matrix

j = neighbour point

k = Cartesian direction (1=x, 2=y, 3=z)

L = level of the sub-division by quadrants

m = pseudo-time level

mp = order of polynomial

M∞ = freestream Mach number

n = unit normal vector

n = real-time level

N = number of total points in the domain

p = vector of primitive variables

p = polynomial

p = pressure

xx of 126

Pr, Prt = Prandtl number, turbulent Prandtl number

q = heat flux vector

R = residual vector

R = gas constant

Re = Reynolds number

Sp = parallel speed-up

t = time

T = temperature

u = velocity component in the x direction

v = velocity component in the y direction

v = Cartesian velocity vector

w = velocity component in the z direction

x, y, z = Cartesian coordinates

x = Cartesian coordinate vector

w = vector of conserved variables

Greek Symbols

α = freestream angle of attack

αs = non-parallelisable fraction of any parallel algorithm

γ = ratio of specific heats

δ = boundary layer thickness

ε = tolerance

η = basis vector

τ = stress tensor

κ = thermal conductivity

µ, µt = viscosity, turbulent viscosity

ν̃ = turbulent eddy viscosity (transport variable for Spalart-Allmaras model)

ξ = vector of basis coefficients

ρ = density

φ = any function

φ̂ = meshless approximation to function

ψ = slope limiter

ς = pseudo-time

xxi of 126

Acronyms

6-DOF = six-degree of freedom

AGARD = Advisory Group for Aerospace Research and Development

BILU = block-incomplete lower–upper

CFD = computational fluid dynamics

CFL = Courant-Friedrichs–Lewy

DEM = diffuse element method

DLR = German Aerospace Center

EFG = element-free Gelerkin

FEM = finite element method

FPM = finite point method

GCR = generalised conjugate residual

HPC = high-performance computing

MIMD = multiple-instruction-multiple-data

MISD = multiple-instruction-single-data

MLPG = meshless local Petrov-Galerkin

MLS = moving least squares

MPI = message passing interface

NUMA = non-uniform memory access

NS = Navier–Stokes

ONERA = French Aerospace Lab

OSF = open-source fighter

PDE = partial-differential equation

PMB = parallel multiblock

PML = parallel meshless

RANS = Reynolds–averaged Navier–Stokes

RKPM = reproducing kernel particle method

SA = Spalart–Allmaras

SISD = single-instruction-single-data

SIMD = single-instruction-multiple-data

SMC = symmetric multi-core

SPH = smoothed particle hydrodynamics

xxii of 126

Chapter 1

Introduction

1.1 Motivation

The analysis of complex flows around bodies in relative motion is required by the

aerospace industry. Example applications include the release of stores from aircraft,

the opening of cavity doors, the deployment of control surfaces, helicopter blades in

rotation, flapping wings, and wind turbine blades. This requirement has driven the

development of numerical tools that can successfully deal with complex movable con-

figurations. Conventional mesh generation techniques become difficult or impossible

to apply when used to calculate flows over bodies in relative motion. For this reason,

several techniques have been developed in the last few years to tackle the simulation of

flow around bodies with parts in relative motion.

One technique is the meshless method, which discretises the domain by using a set

of points. Each point in the domain has a sub-domain of neighbouring points, called

a stencil or cloud. These clouds are then used to approximate the spatial derivatives

in the partial differential equations to be solved. The meshless method is attractive

for moving-body problems, as points can move independent of one another during a

time-dependent simulation.

Fluid simulation techniques are known to be computationally intensive and mesh-

less schemes are no exception. For the meshless method described in this work to be

useful in aerospace applications, it needs to provide fast and accurate predictions of

turbulent flows. Even though the speed and memory size of modern processors has

advanced, they are still not sufficient to carry out the computations required by the

industry. For this reason it is obvious that parallel processing is required. The appli-

cation of parallel computing to meshless schemes is still an open area of research and

the method can be divided into two problems: selecting the stencils for all points and

then solving the governing equations. Finding a balance between the parallel efficiency

of the stencil selection operations and actually solving the equations proves not to be

straight forward, which translates into an interesting topic of research.

1 of 126

The current work documents the research carried out to implement parallel algo-

rithms for the solution of turbulent flows in aerospace applications using the meshless

method.

1.2 Objectives and Thesis Outline

The main aim of this thesis is the development of parallel methods applied to a meshless

fluid dynamics scheme for the simulation of turbulent flows over moving geometries.

Three objectives were drawn and achieved in this work.

� The treatment of viscous and turbulent flows was included into an existing inviscid

meshless flow solver.

� Parallel computing methods were implemented for the flow solver to reduce cal-

culation times.

� A new parallel algorithm for the selection of stencils used by the flow solver was

devised.

Chapter 2 describes some of the previous work carried out in the field of simulation

of flows over moving geometries, as well as an introduction of some of the challenges

found when using parallel computers to simulate these problems. It also contains

a basic introduction on parallel computing terminology. Chapters 3 and 4 describe

the mathematical and numerical formulation used to model aerodynamic flows using

the meshless scheme as well as the description of the implementation of the laminar

and turbulence models. Several test cases that validate the laminar and turbulent

capabilities of the solver are presented in Chapter 5. The thesis continues with the

description of the computational methods used to parallelise the meshless flow solver

on Chapter 6, and the presentation of two test cases that assess the efficiency of the

parallel implementation on Chapter 7. This is then followed by the detailed description

of the method used to select stencils in parallel in Chapter 8, along with validation

cases that test the full capabilities of the parallel meshless scheme in Chapter 9. Four

test cases are used for this purpose, including a case that combines the calculation of

stencils, aerodynamic loads and rigid-body motion, all performed in parallel. Finally in

Chapter 10, conclusions are drawn, together with suggestions for possible future work.

2 of 126

Chapter 2

Theoretical Background and

Literature Review

2.1 Overview of Numerical Methods for Moving Geome-

tries

Among the most commonly used techniques applied to simulating flows around moving

geometry, we can name the following three methods: self-adapting grids, sliding grids,

and Chimera or overset Grids. Each of them has its own advantages and disadvantages.

Self-Adapting Grids (Cartesian / Unstructured)

The foremost advantage of using self-adapting meshing is the automation that the

procedure offers in grid generation. Apart from this, Cartesian or unstructured meshes

in conjunction with tree data structures become a natural choice for solution-adaptive

grids and dynamic flow computations involving moving bodies [1–3].

Several studies have shown the capabilities of adapting grids to compute inviscid

and low Reynolds number flows [4–6]. In spite of the success involving inviscid flow

computations, the main drawback of using adaptive Cartesian or tetrahedral meshes

for viscous flows over complex geometries is the fact that automatically filling boundary

layers with isotropic cells results in a high number of control volumes, ultimately leading

to large grids [7–9].

Several researchers have tried dealing with these problems [2, 10–12]. One of the

possible solutions is to use hybrid grids, where the viscous layer is filled with stretched,

body-fitted structured elements, and the rest of the domain is filled with Cartesian

or unstructured grids. Other methods include developing advanced pre-processors to

generate the viscous grid by a suitable projection procedure [2, 13–15]. All of these

methods can hamper automatic grid generation, so the fact remains that for practical

applications, the required grids for calculating three-dimensional turbulent flows over

3 of 126

complex geometries are too big using adaptive Cartesian or automatic triangulation

techniques.

The parallel implementation of automatic grid generators has received a good

amount of attention from researchers [16–21]. Several techniques like Octree sub-

division, Delaunay triangulation and the Advancing-Front Technique have proven suc-

cessful in dealing with different fluid problems with good parallel efficiency. The main

drawback of using this type of method is still the fact that even though they are gen-

erated quickly, the grids generally are not well suited for viscous and turbulent flow

computations because of the increase in grid size needed to capture the flow character-

istics near solid boundaries.

Sliding Grids

The concept of sliding meshes in Computational Fluid Dynamics (CFD) was first in-

troduced for the analysis of turbo-machinery [22–24]. This method allows for the inte-

gration of two domains (meshed separately) by interpolating the flow variables along

the surface joining the two domains. Sliding meshes have been successfully used and

validated in different studies where the movement between the domains is known a

priori, including helicopter rotor-fuselage interaction [25, 26], turbo-machinery [27–29]

and wind turbine blades [30,31].

The sliding planes method can be implemented in parallel without much difficulty.

Each separate processing unit can calculate the flow solution on its assigned data,

as long as the code provides the information about the movement of cells around the

sliding interface [25,32]. The main issues with this method are the interpolation needed

to transfer the values from one grid to the other, and the fact that the movement of

the geometry is restricted by the mating surface. This makes the method work well for

problems with rotating bodies, but makes its use almost impossible for problems where

the movement of the geometry is not known a-priori.

Chimera (Overset Grids)

The Chimera technique [33–35] is most often associated with finite volume/difference

schemes, and its functionality is based on overlapping different grids belonging to each

body or moving part. The method uses interpolations to estimate flow properties in

the overlap region and besides allowing for the treatment of movable geometries, it also

helps in reducing the meshing time as different parts of the domain can be meshed

separately and then joined together. Normally structured grids are used with this

technique.

Chimera has been successfully used for aerodynamic computations [36–39], but there

are still some drawbacks with the technique. The main difficulties include: 1) The fact

that the procedure to cut the grids, generate the interpolating region and interpolate

4 of 126

the flow variables can be time consuming. 2) The complexity of the interconnectivity

is perhaps as difficult as dealing with an unstructured grid, resulting in orphan points

and bad quality of interpolation stencils [40]. 3) The fact that interpolation is generally

used to connect grids implies that conservation is not strictly enforced [40].

The parallel implementation of the overset grids method is still a field of active

research. Several studies have been successful at implementing the Chimera scheme in

parallel [41–44]. Even so, the parallel efficiency of the connectivity methods still poses

a problem. The main difficulty found is that the cost of the hole-cutting and search

operations varies greatly for different regions in the computational domain, and finding

an estimate of these costs to perform a correct decomposition of the domain is very

difficult. In most cases, this ultimately results in low parallel efficiencies.

Meshless Methods:

Traditional methods used in CFD (Finite Volumes, Finite Element, Finite Difference,

etc) use grids or meshes as the underlying structures where the partial derivatives

are discretised. Contrary to grid based methods, Meshless schemes do not require a

connected grid since they can discretise the derivatives from local clouds, formed at

each of the points in the domain (See Fig. 2.1). Meshless methods can be used to

model problems with large geometry deformations, making them an excellent choice

for applications where different bodies can interact with each other.

Although meshless methods can provide a solution for moving geometries, they are

not without their drawbacks. Among the most important ones we note: 1) Finding

suitable candidates to form the local clouds can be time consuming. 2) Similar to

Chimera methods, by forming the local clouds of points it is possible that conservation

is not strictly enforced. 3) Because of the nature of the local clouds, achieving spatial

higher-order accuracy may not be as straight-forward as with traditional finite-volume

methods. Even with these drawbacks, meshless methods have been shown capable of

providing accurate solutions to complex problems [45, 46] and become an interesting

proposition for the simulation of flows over moving geometries in aerospace applications.

Figure 2.1: Points across a 2D domain. Local Meshless Stencil.

5 of 126

2.2 Meshless Numerical Methods in Fluid Dynamics

Meshless methods for CFD is an active area of research. Important developments have

been made in the last few years that have contributed to the understanding of the

principles that allow the approximation functions to be built and used for solving the

Navier-Stokes equations.

Main Developments Documented in the Literature

The first steps towards developing meshless methods for CFD were made almost 30

years ago. The starting point for meshless research is known as the Smoothed Particle

Hydrodynamics (SPH) method and dates back to the 1970s. SPH was developed by

Lucy [47] and Monaghan [48] between 1977 and 1982 to model problems in Astrophysics

such as explosions of stars of particle clouds. The idea behind SPH is to replace the

fluid by a set of moving particles and transforming the governing partial differential

equations into the kernel estimates integrals. SPH uses a pseudo-particle interpolation

method to compute smooth field variables. Each pseudo-particle has mass, Lagrangian

position, velocity and internal energy. Other quantities are derived by interpolation

or from constitutive relations. These particles have a spatial distance (“smoothing

length”), over which their properties are “smoothed” by a kernel function. Any physical

quantity is then obtained by summing the relevant properties of all the particles which

lie within two smoothing lengths. Although the particles are not connected in SPH,

the partitioning of the domain into volume elements is difficult, especially in three

dimensions.

The original ideas from SPH have had a big influence in the development of meshless

methods in general. Several techniques have been developed over the years to improve

the effectiveness of this method. Most of the advances were produced by incorporating

powerful interpolation techniques, initially developed for data processing and surface

generation. Swegle et al. [49] used dispersion analysis of the linearised equations to

find the origin of the so-called ”tensile instability” and proposed an artificial viscosity

to stabilize it. Dyka [50] then proposed a different stabilization method by means of

stress particles. Further progress was made by Liu and Chen [51] and Liu et al. [52] by

developing the Reproducing Kernel Particle Method (RKPM). The reproducing kernel

in this method is similar to the SPH Lagrangian method with one major difference:

the development of a correction function for boundary effects [52]. With this function,

the tensile instability was eliminated. The SPH method has been successfully applied

to a wide range of problems such as free surface, impact and explosion simulation, heat

conduction and many other computational mechanics problems [53,54]. Even with the

many improvements that have been made throughout the years, SPH is still viewed by

some as unstable and inaccurate when compared with other methods for complex fluid

simulation [55], unless a large number of particles is used.

6 of 126

Parallel to the development of Lagrangian particle methods like SPH, Nayroles et

al. [56] introduced the use of moving least square approximations in their Diffuse Ele-

ment Method (DEM). The Diffuse Element Method uses moving least squares interpo-

lation to replace the Finite-Element Modelling (FEM) functions, valid in one element,

with a weighted minimum squares approximation, valid for a small localised domain

around one point [57]. The approximation function is smoothed by introducing con-

tinuous functions instead of discontinuous coefficients. The fact that these weighting

functions vanish at a certain distance from the main node allows for the preservation

of the local character of the approximation. It can be seen that for DEM, each of

the points can be considered as a particular type of finite element, with one singular

integration point, a variable number of nodes and a diffuse domain of influence.

Belytschko et al. [58] then extended the idea of least squares approximation by de-

veloping a method where the spatial discretisation was made by using moving least

squares and a Galerkin formulation. This scheme was called Element-Free Galerkin

method (EFG) and was originally devised to solve progressive crack growth in struc-

tural mechanics. The method is seen as an extension of the DEM by Nayroles, and

introduced two main improvements: 1) It used an auxiliary background mesh of regular

cells in order to create a structure to define the quadrature points, thus allowing for the

numerical integration to be performed. 2) It was able to enforce the essential boundary

conditions by using Lagrange multipliers. The method showed good accuracy, as well

as convergence rates which rivalled finite element methods, even though it was compu-

tationally more expensive than FE models. The EFG method has found applications in

many fields such as fracture, crack and wave propagation, acoustics and fluid flow [59].

An important step towards true meshless methods was the Meshless Local Petrov-

Galerkin method (MLPG), proposed by Atluri et al. [60]. The MLPG method arose

from the finite element community and is based on the weak form of a given PDE [61].

MLPG incorporates the moving least squares approximations for trial and test functions

to discretise the local weak form of the equations. The method is based on a Petrov-

Galerkin formulation in which weight and trial functions used in the discretisation of the

equations do not need to be the same. This gives the method a “local” nature in which

the integral is satisfied over a local domain [61]. The MLPG approach has been used

successfully to solve different problems, including work on incompressible flows [62],

fracture mechanics [63], and three-dimensional elasto-statics and dynamics [63].

More recently, several methods that can be referred to as Finite Point Methods

(FPMs) have been developed. They are usually based on the strong form of the PDEs.

In general, FPMs are based on least squares fitting of functions to discrete points.

Batina [64] proposed the use of a polynomial based approximation in conjunction with

least squares to compute the derivatives of the fluid governing equations. His method

provided approximations to both the Euler and Navier-Stokes equations and was suc-

cessfully used to solve viscous flows about complex aircraft configurations. The first

7 of 126

official use of the term Finite Point Methods was provided by Oñate [65]. He combined

a weighted least square approximation of the unknowns over each local cloud with a

stabilised point collocation procedure, eliminating any numerical instability. FPMs

have been successfully used in several problems, including compressible inviscid and

viscous flows [66,67].

Katz and Jameson [68] developed a formal meshless scheme which compared

favourably with conventional finite volume methods in terms of accuracy and efficiency

for the Euler and Navier-Stokes equations. The success of their method is attributed to

its local extremum diminishing property, which they generalised to handle local clouds

of points instead of mesh-based schemes. The method adopts an edge-based connec-

tivity to describe local points and uses Taylor series expansions with weighted least

squares for the reconstruction of the gradients found in the PDEs.

Parallel Computing and Meshless Methods

Even though in recent years meshless schemes that are suitable for simulation of com-

plex flows are becoming more common, most of the published work focuses on the

mathematical description of the methods, without addressing the computational effi-

ciency. Some researchers have implemented meshless schemes that solve the governing

equations in parallel [69–72], but few have addressed the problem of parallelising the

selection of local stencils. References [69, 73, 74] are among the few published works

that describe the stencil selection in parallel and their method, while showing great

parallel efficiency, is based on triangulation and is aimed at working on isotropic point

distributions to simulate incompressible flows. To the best of the authors knowledge

there has not been any published work that deals with parallel implementations for

meshless schemes aimed at simulating flows over complex three-dimensional, movable

geometries.

2.3 Parallel Computing Concepts

In order to simulate most scientific problems it is necessary to perform a large number

of numerical computations. Historically, the desire to run increasingly complex prob-

lems has been running ahead of the capabilities of the time. This has provided a driving

force for the development of parallel computing. A variety of parallel computer archi-

tectures have been made available during the years. One way to classify these systems

is according to Flynn’s taxonomy [75]. It uses the relationship between the instruction

stream and the data stream to classify the four different possible architectures:

� SISD: Single Instruction stream operating on a Single Data stream. This is a

standard sequential computer, such as personal computer (PC).

8 of 126

� SIMD: Single Instruction stream operating on Multiple Data stream. A set of

processors execute the same instruction on different sets of data. The shared

memory eliminates the need for message passing constructs.

� MIMD: Multiple Instruction streams operating on Multiple Data streams. These

are the most versatile parallel computers. They are essentially a set of different

processors that can run the same or different programs with the same or different

data sets. Each processor controls its own memory and runs asynchronously.

Communication between processors is accomplished via message-passing con-

structs.

� MISD: Multiple Instruction streams operating on a Single Data stream comput-

ers are included for completeness as there are few, if any, commercial examples.

Most computers now found in scientific applications and all the machines used in

this work fall into the MIMD classification. The following naming conventions for

hardware components are used throughout the thesis:

� Central processing unit (CPU), also referred to as “core”: the component that

carries out the instructions of a program by performing the basic arithmetical,

logical, control, and input/output operations of the system.

� Processor: physical chip containing one or more independent central processing

units. All processors used in this thesis are of the multi-core type, hence they

contain two or more cores.

� Computing node: self-contained computer with one or more processors.

An important sub-classification of an MIMD machine is obtained according to their

memory distribution:

� Shared Memory: Central processing units share a global memory space (See

Fig.2.2(a)). The key feature is the use of a single address space across the whole

system, so that all CPUs have access to the same view of memory. Symmetric

multi-core (SMC) chips found in most modern computers fall into this category.

� Distributed Memory: Processing units have their own private memory space

as shown in Fig.2.2(b). Access to data assigned to other CPUs must be done

through a network. Common clusters of sequential workstations with dedicated

networks fall into this category.

It is interesting to note that most modern clusters and high-performance-cumputing

(HPC) systems have a combination of the memory distributions described above, as

several nodes containing symmetric multi-core processors are interconnected through a

network as depicted in Fig.2.3.

9 of 126

In modern SMC systems, memory access becomes the main bottleneck as the num-

ber of processing units is increased. Different CPUs would require access to the same

memory space and the “system bus”, which can be thought of as a pathway between

the CPUs and the memory is not big enough to transfer all the data needed by all

cores at the same rate as when only one core is being used. To alleviate this problem,

processor manufacturers design modern chips so that each independent core inside the

chip has access to its own bus and its own memory space. This type of architectures

is known as Non-Uniform Memory Access (NUMA). As these still are shared memory

architectures, access to the entire memory space within the system is still possible,

but cores can access their own memory space much faster than accessing the space

assigned to other CPUs. For this reason care needs to be taken to ensure the data to

be processed is stored locally within the space assigned to each core.

A parallel algorithm is often effective and efficient only on a specific target archi-

tecture which must be carefully considered during the development. High level pro-

grammers normally do not need to deal with the network topology. However, it is

useful to consider a few aspects of the networks that are relevant for the design of the

algorithms [76].

The standard network model involves two parameters that define the data transfer

rate. The first is network latency L [s], which is the time needed to initiate the connec-

tion between two processing units. The second is the network bandwidth B [bytes/s],

which is the rate at which data is exchanged. Because of the latency, it is better to

send one long message rather than a set of short messages, even if the total amount of

data to be transferred is the same.

On distributed memory machines, the communication between CPUs is made by

message-passing directives. These directives have two basic types: point-to-point and

global communications; respectively referring to message passing among specific cores

in the system, or message passing to all cores. Message passing can also be classified

as blocking and non-blocking. Blocking messages stop execution of the code until the

(a) Shared Memory System (b) Distributed Memory System

Figure 2.2: Parallel Architectures

10 of 126

Figure 2.3: Combined Memory System

message is received. In contrast, non-blocking messages continue with the execution of

the code as soon as the communication order is issued.

There are two metrics normally used to measure the performance of parallel al-

gorithms [77]. The first metric is speed-up. Speed-up indicates how much faster an

application runs on p parallel CPUs compared to on one:

Sp =
T1
Tp

(2.1)

where Tp and Sp are the time the application takes and the speed-up for p cores,

respectively, and T1 is the time the application takes on one core. Often, a linear

speed-up is not possible to achieve as there is extra work involved in distributing work

to the CPUs and coordinating them. In addition, an optimal serial algorithm may be

able to do less work overall than an optimal parallel algorithm for certain problems, so

the achievable speed-up may be sub-linear in p, even on theoretical ideal machines.

The second metric is efficiency and is given by

Ep =
Sp
p

where, Ep and Sp are the efficiency and speed-up for p cores, respectively. An effi-

ciency of 1.0 (100%) indicates that every core is being used to the full extent of its

capabilities. Usually, efficiency measures that are significantly lower than 100% are

due to communication overheads or the unbalanced distribution of the problem over

the CPUs involved [78].

Historically, there have been two schools of thought when dealing with parallel

algorithms: Amdahl’s law [79] and Gustafson’s law [80]. Amdahl’s law focuses on the

theoretical speed-up limits for parallel algorithms running on an increasing number of

CPUs while the problem size remains fixed. This is known as “strong scalability”. He

11 of 126

argued that the execution time can be divided between two categories: the time spent

doing non-parallelisable work, and the time spent doing parallel work. Amdahl’s law

argues that there is a limit to the possible speed-up based on the portion of the code

that is sequential. Using this idea, the attainable parallel speed-up follows the relation

Sp =
1

β +
(1− β)

p

=
p

βp+ (1− β)

where β is the portion of the code that must be computed sequentially. The time

required for the sequential portion of the code is βT1, and the time required for the

parallel portion is (1− β)T1/p. It is clear that as p tends to infinity, the upper bound

for the speed-up becomes S∞ = 1
β .

Amdahl’s equations assume however, that the computation problem size does not

change when running on an increasing number of machines, hence, the fraction of the

problem that is parallelisable remains fixed. On the other hand, Gustafson noted that

problem sizes grow as computers become more powerful, and that higher speed-ups

than originally predicted by Amdahl’s law were in fact possible when using massively

parallel machines. Gustafson’s law [80] addresses the theoretical limits introduced by

Amdahl by concluding that speed-up should be measured by scaling the problem to

the number of cores, and not by fixing the problem size. This approach is referred to

as “weak scalability.” In Gustafson’s law the parallel speed-up is defined as

Sp = p− αs(p− 1)

where αs is the non-parallelisable fraction of any parallel algorithm. Following

Gustafson’s law, an application is then called scalable if an increase in the size of

the problem can be countered by a corresponding increase in the number of CPUs, and

the time required for the application remains constant.

Another important concept in parallel computing is domain decomposition versus

control decomposition. In domain decomposition, the domain of the input data is par-

titioned and the partitions are assigned to different CPUs. In control decomposition,

program tasks are divided and distributed among processing units. [77]. This decom-

position is balanced if the amount of work assigned to each core is equal. The attempt

to balance the decomposition is known as “load balancing” [77].

The granularity of an application indicates the amount of processing that can be

completed between required message passing events. A “fine-grained” application has

few operations between message passing events. A “coarse-grained” application has

numerous operations to perform between message passing events. If the grain is too

small, communication can dominate the time required to complete the application.

12 of 126

The final concept to be introduced here is the one of threads, which are instruction

sequences that can run concurrently and are managed by the operating system at run

time. Threads can be used to parallelise code on multi-core architectures as every core

can execute a separate set of instructions concurrently.

2.4 Challenges of Parallel Computing Applied to Mesh-

less Methods

The problem of applying parallel computing to the meshless method is an interesting

one. The meshless method starts by finding a group of neighbours (associated stencil)

for each point in the domain and then, it solves the governing equations on each of

these points. Finding the stencils and solving the governing equations are in fact two

different problems that need to be tackled separately.

The main difficulties with the implementation of the parallel method are to correctly

load balance the problem and to maintain parallel communications as well as memory

consumption to a minimum. The computational cost per point for the solution of the

governing equations is roughly the same for all the points in the domain. This is not the

case for the selection of the stencils. All points in the domain are surrounded by other

points that are possible candidates to form part of the stencils. There may be cases

where some points are surrounded by only a few candidates, making the calculations

for the stencil selection quite fast. On the other hand, there will be points that are

surrounded by many candidates and the process of selecting the appropriate stencils is

slow.

Finding a proper balance that increases the parallel efficiency of the stencil selection

as well as the solution of the governing equations, while maintaining low memory usage,

is the main difficulty to solve.

13 of 126

14 of 126

Chapter 3

Governing Equations

The Navier-Stokes equations are a system of partial differential-equations (PDEs) that

define the conservation of mass, momentum and energy of fluids. They form the basis of

the CFD formulation. Most aerodynamic flows are characterised by Reynolds numbers

well above the critical value for transition, and thus turbulence needs to be taken into

account. Viscosity plays a major role in many engineering cases and can be viewed

as having two major components: a laminar one and a turbulent one. The laminar

viscosity is usually a function of temperature and can be estimated using Sutherland´s

formula. The turbulent viscosity depends on the mean flow characteristics and needs

to be evaluated separately. In this work the turbulent viscosity is calculated by using

turbulence models.

In this section we describe the mean flow equations and the Spalart-Allmaras tur-

bulence model.

3.1 Navier-Stokes Equations

The motion of viscous fluids can be described by the Navier-Stokes equations. In three

dimensions, the equations are written in differential conservative form as:

∂w

∂t
+

∂

∂x
(f − fv) +

∂

∂y
(g − gv) +

∂

∂z
(h− hv) = 0 (3.1)

where w is the vector of conserved variables, f , g and h are the inviscid fluxes in the

x, y and z directions respectively, and fv, gv and hv are the viscous fluxes along the

same directions. They are defined as:

15 of 126

w =



ρ

ρu

ρv

ρw

e


f =



ρu

ρu2 + p

ρuv

ρuw

(e+ p)u


g =



ρv

ρuv

ρv2 + p

ρuw

(e+ p)v


h =



ρv

ρuw

ρvw

ρv2 + p

(e+ p)w



fv =



0

τxx

τxy

τxz

uτxx + vτxy + wτxz − qx


gv =



0

τxy

τyy

τyz

uτxy + vτyy + wτyz − qy



hv =



0

τxz

τyz

τzz

uτxz + vτyz + wτzz − qz


(3.2)

Pressure is related to the conservative variables via the equation of state for a perfect

gas:

p = (γ − 1)

[
e− 1

2
ρ(u2 + v2 + w2)

]
(3.3)

The shear and normal stresses found in the viscous fluxes are:

τxx =
2

3
(µ+ µt)

1

Re

(
2
∂u

∂x
−
(
∂v

∂y
+
∂w

∂z

))
(3.4)

τyy =
2

3
(µ+ µt)

1

Re

(
2
∂v

∂y
−
(
∂u

∂x
+
∂w

∂z

))
(3.5)

τzz =
2

3
(µ+ µt)

1

Re

(
2
∂w

∂z
−
(
∂u

∂x
+
∂v

∂y

))
(3.6)

τxy = (µ+ µt)
1

Re

(
∂u

∂y
+
∂v

∂x

)
(3.7)

τxz = (µ+ µt)
1

Re

(
∂u

∂z
+
∂w

∂x

)
(3.8)

τyz = (µ+ µt)
1

Re

(
∂v

∂z
+
∂w

∂y

)
(3.9)

16 of 126

qx = − γ

γ − 1

1

Re
(
µ

Pr
+

µt
Prt

)
∂

∂x
(
p

ρ
) (3.10)

qy = − γ

γ − 1

M∞
Re

(
µ

Pr
+

µt
Prt

)
∂

∂y
(
p

ρ
) (3.11)

qz = − γ

γ − 1

1

Re
(
µ

Pr
+

µt
Prt

)
∂

∂z
(
p

ρ
) (3.12)

where Re, the Reynolds Number, and a, the speed of sound are defined by:

Re =
ρ∞ c a∞
µ∞

(3.13)

a =
√
γRT (3.14)

The values of γ and Pr are 1.4 and 0.72 respectively in this work. In the viscous

fluxes, µ and µt represent the dynamic laminar and dynamic turbulent eddy viscosities

respectively. Here, µt is determined using the Spalart-Allmaras turbulence model and

µ is determined using Sutherland’s law:

µ =
µ

µ∞
=

(
T

T∞

)3/2
T∞ + S∗

T + S∗
(3.15)

where S∗ is the Sutherland constant of 110.33K for air, T∞ is the freestream tempera-

ture of 255.56K for air.

The above equations have been non-dimensionalised using the following relations:

x =
x

c
y =

y

c
z =

z

c
(3.16)

u =
u

u∞
v =

v

v∞
w =

w

w∞
(3.17)

ρ =
ρ

ρ∞
e =

e

ρ∞u∞
t =

tu∞
c

(3.18)

where c is the chord length. The subscript ∞ identifies freestream values, and the

overbar, dimensional values.

17 of 126

3.2 Turbulence Modelling (Spalart - Allmaras Model)

When simulating turbulent flows, very fine computational grids and small time-steps

are needed to capture the complex flow structures that develop as the calculation pro-

gresses. For most industrial applications, these requirements make the calculations

infeasible for resolving all scales on the grid. Instead of solving for all the flow charac-

teristics directly, an approximated solution can be calculated. One such approximation

is done by modelling the effects of the small-scale motions on the computed mean-

flow values (large-scale flow). This approach is known as turbulence modelling for the

Reynolds-Averaged Navier-Stokes (RANS) equations. In order to quantify the influ-

ence of the turbulence on the resolved flow, a closure model needs to be introduced.

There are several different approaches to turbulence modelling [81,82] and usually, each

of them is better suited to different applications [83–86]. The current work is aimed at

simulating aerodynamic applications with compressible flows at medium to high Mach

numbers. As a first approach to introducing turbulence modelling to the meshless

scheme, the Spalart-Allmaras (S-A) model [87] is implemented.

The Spalart-Allmaras turbulence model solves a differential expression for the tur-

bulence variable ν̃. The model includes the treatment of transition to turbulence, but

in the present study the flow is assumed to be fully turbulent. Assuming this simplifi-

cation, the model in conservative dimensional form is

Dν̃

Dt
= Cb1S̃ν̃ +

1

σ
[∇ · ((ν + ν̃)∇ν̃) + Cb2(∇ν̃)2]− Cw1fw

[
ν̃

d

]2
(3.19)

with the material on the left hand side derivative described as

Dν̃

Dt
=
∂ν̃

∂t
+ v · ∂ν̃

∂x
(3.20)

where v = [u, v, w]T and x = [x, y, z]T . The term ν̃ is called the turbulent eddy viscosity

and contributes to the Navier-Stokes equations (Eq. 3.1) through the turbulent viscosity

µt = ρν̃fv1 (3.21)

where the viscous damping function fv1 is given by

fv1 =
χ3

χ3 + C3
v1

(3.22)

and χ is the ratio of the kinematic eddy turbulent viscosity to the kinematic laminar

viscosity (ν = µ/ρ),

χ =
ν̃

ν
(3.23)

18 of 126

The production term is modelled by

S̃ = Sfv3 +
ν̃

κν2d2
fv2 (3.24)

fv2 =
1

(1 + χ/Cv2)3
fv3 =

(1 + χfv1)(1− fv2)
max(χ, 0.001)

(3.25)

where d is the distance from the nearest solid wall and κ is the von Karman constant,

equal to 0.41. S is the magnitude of the vorticity, written as

S =
√

2ΩijΩij (3.26)

where Ωij is the mean rate of rotation tensor so Eq. 3.26 becomes

S =

√(
∂v

∂x
− ∂u

∂y

)2

+

(
∂u

∂z
− ∂w

∂x

)2

+

(
∂w

∂y
− ∂v

∂z

)2

(3.27)

The values in the destruction term are

fw = g

[
1 + Cw3

3

g6 + Cw3
6

] 1
6

(3.28)

g = r + Cw2(r
6 − r) (3.29)

r =
ν̃

S̃κ2d2
(3.30)

where Cw2 and Cw3 are constants. For large r the function fw reaches a constant so

large values of r can be truncated to 10.

The various constants used in the model have the following values

Cb1 = 0.1355 Cb2 = 0.622

Cv1 = 7.1 Cv2 = 5.0

Cw1 =
Cb1
κ2

+
1 + Cb2
σ

Cw2 = 0.3

Cw3 = 2 σ =
2

3

κ = 0.41

19 of 126

To non-dimensionalise the S-A transport equation we use the same reference values

as with the N-S equations, plus the following:

µ∗ =
µ

µ∞
, µ∗t =

µt
µ∞

, ν̃∗ =
ν̃

ν̃∞
(3.31)

where the superscript ∗ denotes non-dimensional values. The superscript ∗ can however

be dropped for convenience, and the S-A equation can be written in non-dimensional

form as

∂ν̃

∂t
+ u

∂ν̃

∂x
+ v

∂ν̃

∂y
+ w

∂ν̃

∂z
= Cb1S̃ν̃ +

1

σRe∞
[∇ · ((ν + ν̃)∇ν̃)

+ Cb2(∇ν̃)2]− Cw1fw
Re∞

[
ν̃

d

]2 (3.32)

where the auxiliary functions are redefined in non-dimensional form as

χ =
ν̃

ν
fv1 =

χ3

χ3 + Cv1
3 (3.33)

fv2 =
1(

1 + χ
Cv2

)3 fv3 =
(1 + χfv1)(1− fv2)

max(χ, 0.001)
(3.34)

fw = g

[
1 + Cw3

3

g6 + Cw3
6

] 1
6

g = r + Cw2(r
6 − r) (3.35)

r =
ν̃

Re∞ S̃κ2d2
S̃ = Sfv3 +

ν̃

κν2d2
fv2·

1

Re∞
(3.36)

20 of 126

Chapter 4

Solution Method

4.1 Approximation of Continuous Functions from Scat-

tered Data

Scattered data approximation deals with the problem of reconstructing a function or its

derivatives from given disperse data. While the idea of scattered data approximation

is not new, it has recently become a fast growing area of research. For a given domain

in space, discretised by a set of N points, it is possible to define a local cloud for each

of the points, as shown in Fig. 4.1. These local clouds, or stencils, are then used to

approximate the required functions. In this work, the central point of each of these

local stencils is referred to as the “star point” and denoted by the sub-index i.

There are several different meshless methods that deal with interpolation from scat-

tered data. A modern overview of these methods can be found in Ref. [88]. Some of

the most commonly used ones include Radial Basis Functions, Moving Least Squares

approximations and Reproducing Kernel Particle methods, among others. All of these

methods can be used to obtain the partial derivatives of a function φ at each of the

star points in the domain by interpolating scattered data from the points contained in

the associated stencil of the star point. This can be written as:

∂φi
∂x

=

ni∑
j=0

ajφj ,
∂φi
∂y

=

ni∑
j=0

bjφj ,
∂φi
∂z

=

ni∑
j=0

cjφj (4.1)

where i denotes the main point, j represents each of the points in the stencil, ni is the

number of points in the stencil with j = 0 being the star point and aj , bj and cj are

coefficients independent of the function φ. These coefficients, called shape functions,

are found using Polynomial Basis Functions combined with the least-squares method.

The following description of the method assumes a two-dimensional problem. The

generalisation to three-dimensional problems is trivial since the procedure is the same.

21 of 126

Figure 4.1: Local Cloud of Points.

For a function φ(x) defined at discrete values inside the local cloud, an approxima-

tion φ̂(x) can be constructed using polynomials (p) in the form:

φ̂(x) = p(x)Tα (4.2)

where

p(x) = [1 x y . . . pmp(x)]T (4.3)

α = [α0 α1 . . . αmp] (4.4)

In this work, the approximation to the function φ is obtained by using a first order

polynomial (mp = 3):

φ̂(x, y) = α0 + α1x+ α2y (4.5)

where the coefficients α0, α1, and α2 can be determined using a least-squares curve

fit. Performing a least-squares fit in a given cloud of points results in three equations

represented in matrix form by ni Σxi Σyi

Σxi Σx2i Σxiyi

Σyi Σxiyi Σy2i




α0

α1

α2

 =


Σfi

Σxifi

Σyifi


The solution of the system of equations requires the inversion of a 3 x 3 matrix which is

performed for every cloud in the computational domain. Having solved these equations

for α0, α1 and α2, the spatial derivatives are now known since by differentiating Eq. (4.5)

it is obvious that

∂φ̂(x, y)

∂x
= α1

∂φ̂(x, y)

∂y
= α2

22 of 126

Using this method it is possible to approximate the derivatives of any of the primitive

values found in the governing equations. As an example, the derivatives of the velocity

in the horizontal direction can be written as:

∂u

∂x
=

ni∑
j=0

α1j ·u (4.6)

where αj corresponds to the shape function aj from equation 4.1. In addition to defining

the derivatives of the fluxes f , g and h in the governing equations, this same method

can also be used to find the shear stresses and heat fluxes needed for the viscous fluxes.

4.2 Spatial Discretisation of Non-Viscous Fluxes

For inviscid flow, equation 3.1 is re-written as:

∂w

∂t
+
∂f

∂x
+
∂g

∂y
+
∂h

∂z
= 0 (4.7)

where w is the vector of conserved variables, and f , g and h; are the inviscid flux vectors.

This system of equations is hyperbolic in nature, hence a centered form of spatial

discretisation will be unstable. In order to correctly solve the governing equations we

compute upwind fluxes along the co-ordinate directions at a fictitious interface formed

between the star point and each of the neighbours, as shown in Fig. 4.2

Figure 4.2: Mid-Edge Interface.

Then, the discretisation takes the form:

dwi

dt
= −

ni∑
j=0

(
aj− 1

2
fj− 1

2
+ bj− 1

2
gj− 1

2
+ cj− 1

2
hj− 1

2

)
(4.8)

where bj− 1
2
, cj− 1

2
and dj− 1

2
are the shape functions calculated from the polynomial-

least squares reconstruction evaluated at the mid-edge interface. The fluxes fj− 1
2
, gj− 1

2

and hj− 1
2

are evaluated using the approximate Riemann solver of Roe [89] with an

23 of 126

appropriate entropy correction technique. Using this procedure, the mid-edge fluxes

are calculated with:

fj− 1
2

=
1

2
(f(pL) + f(pR))− 1

2
|A(wL, wR)|(wR − wL) (4.9)

where pL and pR are the vectors of primitive values at the left and right hand side

of the interface, and A is the Jacobian matrix evaluated based on the Roe’s average

properties W̃ (wL, wR). For a first order accurate scheme, the vectors pL and pR simply

become:

pL = pi

pR = pj

To increase the accuracy of the solver in the presence of shocks, a higher order

scheme is used. Then, the vectors pL and pR are obtained by extrapolating the values

at i and j, based on a reconstructed gradient as in Ref. [45]:

pL = pi + ψij lij · ∇pi (4.10)

pR = pj − ψij lij · ∇pj

where lij is the vector formed between the star and neighbouring point, ψij is an

appropriate flux limiter, and ∇φ denotes the gradient of φ. A sufficient condition to

avoid introducing oscillation in the solution process is that no new local extrema are

formed during reconstruction [90]. The idea behind the slope limiters consists of finding

a value ψij (∈ [0, 1]) in each stencil that will limit the gradient in the piecewise-linear

reconstruction of the solution. The following procedure was proposed by Barth and

Jespersen [91] and is used in this work:

1. Find the largest negative (δφi
min = min(φj − φi)) and positive

(δφi
max = max(φj −φi)) difference between the solution in the immediate neigh-

bours and the star point in the current stencil.

2. Compute the unconstrained reconstructed value at each star point (φij = φi +

lij · ∇pi).

3. For each point j in the stencil, compute a maximum allowable value of a function

ϕij defined as

ϕij =


min(1, δφi

max

φij−φi
), if (φij − φi) > 0

min(1, δφi
min

φij−φi
), if (φij − φi) < 0

1, if (φij − φi) = 0

4. Select ψij = min(ϕij)

24 of 126

4.3 Spatial Discretisation of Viscous Fluxes

The discretisation of the viscous fluxes requires a slightly different approach since they

involve second order derivatives. Furthermore, the viscous fluxes in the governing

equations are diffusive in nature, so a central difference scheme can be employed.

The same least squares coefficients used to discretise the partial derivatives of the

Euler (inviscid) fluxes, are used to compute the gradients in the viscous fluxes. The

gradients are calculated at each of the star points, so a least squares reconstruction

centered at the points is used. After finding the gradients of the primitive variables,

the same shape functions calculated at mid edge from the least squares coefficients are

used again to calculate the second order derivatives:

∇φ =
∂φ

∂x
î +

∂φ

∂y
ĵ +

∂φ

∂z
k̂ (4.11)

∂2φ

∂x2
≈

ni∑
j=0

bj− 1
2

∂φ

∂x
(4.12)

To calculate the flux derivatives, simple arithmetic averages of the flow variables

are used:

φij =
1

2
(φi + φj) (4.13)

In the case of the second order derivatives, the averages of the gradients are modified

as described in Ref. [92] to suppress the odd-even decoupling. This is:

∇φij =
1

2
(∇φi +∇φj)−

[
1

2
(∇φi +∇φj) ·

tij
|tij |

− φj − φi
|tij |

]
· tij
|tij |

(4.14)

where tij is the coordinate vector from i to j with components {x, y, z}. As an example

of the discretisation, the derivatives of the shear stress τxy in the governing equations

can be calculated as follows:

∂(τxyij)

∂x
=

∂

∂x

(
µ

Re

(
∂u

∂y
+
∂v

∂x

))
≈

ni∑
j=0

bj− 1
2

µij
Re

(
∂uij
∂y

+
∂vij
∂x

)
(4.15)

where

µij =
µi + µj

2

∂uij
∂y

=
1

2

(
∂ui
∂y

+
∂uj
∂y

)
−
[

1

2
(
∂ui
∂y

+
∂uj
∂y

) · yij
|tij |

− uj − ui
|tij |

]
· yij
|tij |

∂vij
∂x

=
1

2

(
∂vi
∂x

+
∂vj
∂x

)
−
[

1

2
(
∂vi
∂x

+
∂vj
∂x

) · xij
|tij |

− vj − vi
|tij |

]
· xij
|tij |

25 of 126

4.4 Spatial Discretisation of the Turbulence Model

Equation 3.32 which describes the Spalart-Allmaras model can be re-written in similar

manner to the Navier Stokes treatment above, after some algebraic manipulation. This

means separating the equation into a time derivative, convective and diffusive terms

plus an algebraic source term:

∂ν̃

∂t
+

ConvectiveTerms︷ ︸︸ ︷
∂(H)

∂x
+
∂(I)

∂y
+
∂(J)

∂z
=

DiffusiveTerms︷ ︸︸ ︷
1

Re

(
∂(Hd)

∂x
+
∂(Id)

∂y
+
∂(Jd)

∂z

)
+

SourceTerm︷︸︸︷
K (4.16)

where

H = uν̃, I = vν̃, J = wν̃

Hd =
ν + ν̃

σ

(
∂ν̃

∂x

)
, Id =

ν + ν̃

σ

(
∂ν̃

∂y

)
, Jd =

ν + ν̃

σ

(
∂ν̃

∂z

)

The algebraic source term K can be divided into four components as follows:

K = K1 +K2 +K3 +K4 (4.17)

K1 = Cb1S̃ν̃

K2 =
Cb2
σRe∞

[(
∂ν̃

∂x

)2

+

(
∂ν̃

∂x

)2

+

(
∂ν̃

∂x

)2
]

K3 = −Cw1fw
Re∞

[
ν̃

d

]2
K4 = ν̃

(
∂u

∂x
+
∂v

∂y
+
∂w

∂z

)

The turbulence model is treated in a similar way to the Navier-Stokes equations

with the convective terms discretised using the same upwind scheme as for the inviscid

terms, with the left and right sides of the Riemann problem as in Eq. (4.10). The

diffusive terms are discretised using a central difference scheme in the same way as the

viscous fluxes of the mean-flow equations in Eq. (4.14) and the source term is evaluated

at each of the star points. With the addition of the turbulent transport equation, the

discretisation of the Navier-Stokes system of Eq. (3.1) becomes:

26 of 126

dwi

dt
= −

ni∑
j=0

(
bj− 1

2
(fj− 1

2
− fvij) + cj− 1

2
(gj− 1

2
− gv

ij) + dj− 1
2

(hj− 1
2
− hv

ij)
)
−Ki

(4.18)

where the convective and diffusive terms in the Spalart-Allmaras equation are added to

the inviscid and viscous fluxes respectively, and the algebraic source term is included

in the right-hand side of the equation.

4.5 Boundary Conditions

Ghost points located outside of the boundary elements are used in order to impose

boundary conditions along the geometry. The location of these ghost points is de-

termined by reflecting the flow field points that are close to the surface, as shown in

Fig. 4.3.

Figure 4.3: Ghost Points

For inviscid flow, “slip conditions” are enforced on solid walls by setting the variables

at the ghost points so that the velocity normal to the boundary is zero:

u·n = 0

For viscous flows it is necessary to enforce a “no-slip condition” at the solid walls.

This is achieved by setting the tangential velocity on the boundary wall to equal the

wall velocity. Considering a static wall, this means u = 0. For the Navier-Stokes

equations, the velocity values at the ghost point must have the opposite value to that

of its equivalent interior point.

ug = −ui, vg = −vi, wg = −wi

where the subscripts g and i denote the variables at the ghost and interior points,

respectively. The pressure and density at the ghost points are determined by first

27 of 126

order extrapolation of the values at the interior and surface points. At the far field,

the ghost points have the values of the freestream quantities.

For the turbulence model, the turbulent eddy viscosity at the surface walls is set

to zero (ν̃ = 0). At the freestream, ν̃ depends on the freestream kinematic laminar

viscosity (ν∞). Values of ν̃∞ ≤ 0.1ν∞ are acceptable [87].

4.6 Integration to Steady-State

Once the spatial discretisation has been calculated, the time integration is performed.

It is helpful to first write Eq. (4.18) in terms of a residual:

∂w

∂t
= −R(w)i (4.19)

As a first integration stage a simple explicit forward difference iteration in pseudo-

time (ς) is used to smooth out the initial flow field:

∆w = wm+1 −wm (4.20)

wm+1 = wm −∆ςR(wm) (4.21)

where R(w) is the residual vector, consisting of the right-hand side of Eq. (4.8) and

the superscript m denotes the time level in pseudo-time ς.

In order to increase the rate of convergence an implicit integration scheme is used:

∆w

∆ς
= −R(wm+1) (4.22)

This represents a system of non-linear algebraic equations. In order to simplify the

solution procedure the residual R(wm+1) is linearised as follows:

R(wm+1) = R(wm) +
∂R(w)

∂ς
∆ς +O(∆ς2) (4.23)

≈ R(wm) +
∂R(w)

∂p

∂p

∂ς
∆ς (4.24)

≈ R(wm) +
∂R(w)

∂p
∆p (4.25)

where p is the vector of primitive variables, ∆p = pm+1 − pm, and ∂R
∂p is the flux

Jacobian matrix with respect to the primitive variables at each point. Choosing a

Jacobian with respect to primitive variables makes the differentiation simpler.

After linearising the flux residual Rm+1 in pseudo-time, Eq. (4.22) becomes a system

of linear equations to be solved for the primitive variables p.(
I

∆ς

∂w

∂p
+
∂R

∂p

)
∆p = −R(wm) (4.26)

28 of 126

where ∂w
∂p is the transformation matrix between conservative and primitive variables.

For the solution of this system to steady-state, an approximate form of the Jacobian

matrix with a sparsity pattern from a first order spatial discretisation is used. The

linear system is solved by using an iterative solver with a preconditioner based on

block incomplete lower-upper (BILU) factorisation [93]. The size of ∆ς is determined

by a local time-step estimate [68] in order to accelerate convergence to a steady-state.

4.7 Iterative Linear Solver

As mentioned before, an iterative method is used to solve the linear system described

in Eq. (4.26). The method is based on successive approximations to the solution of a

system:

Ax = b (4.27)

where A is the coefficient matrix, b is the right hand side and x the vector of unknowns.

The basic successive approximation approach is worked out by defining a residual vector

as r = b − Ax. The method used for the solution of the system is the Generalised

Conjugate Residual algorithm (GCR) [94, 95], which is shown in Algorithm 1.

Algorithm 1 GCR

1: Compute r0 = b−Ax0. Set p0 = r0.
2: For j = 0, 1, ..., until convergence, Do:

3: αj =
(rj ,Apj)
(Apj ,Apj)

4: xj+1 = xj + αjpj
5: rj+1 = rj − αjApj
6: Compute βij = − (Arj+1,Api)

(Api,Api)
, for i = 0, 1, ..., j

7: pj+1 = rj+1 +
j∑
i=0

βijpi

8: EndDo

To compute the scalars βij in the algorithm, the vector Arj and the previous Api’s

are required. In order to limit the number of matrix-vector products per iteration to

one, we can proceed as follows: Follow line 5 by a computation of Arj+1 and then

compute Apj+1 after line 7 from the relation:

Apj+1 = Arj+1 +

j∑
i=0

βijApi

4.8 Preconditioning

Both efficiency and robustness of an iterative solver can be improved by using a tech-

nique called preconditioning [95]. Put simply, preconditioning is a way of transforming

29 of 126

the original linear system into an equivalent system having the same solution, but that

is easier to solve with an iterative solver. Numerically, the preconditioner is a non-

singular matrix (M) with the property that the system Mx = b is less expensive to

solve than the original Ax = b. After applying the preconditioner, algorithm 1 becomes:

Algorithm 2 Preconditioned GCR

1: Compute r0 = M−1(b−Ax0). Set p0 = r0.
2: For j = 0, 1, ..., until convergence, Do:

3: αj =
(rj , Apj)

(Apj ,M−1Apj)
4: xj+1 = xj + αjpj
5: rj+1 = rj − αjM−1Apj
6: Compute βij = − (Arj+1, Api)

(Api,M−1Api)
, for i = 0, 1, ..., j

7: pj+1 = rj+1 +
j∑
i=0

βijpi

8: EndDo

4.9 Time-Accurate Integration

For time-accurate, unsteady simulations, Eq. (4.22) must be solved in real-time t, such

that

dw

dt
= −Rn+1 (4.28)

where the superscript n denotes the time level in real-time t. The time integration is

done using Jameson’s dual time-stepping method [96], in which Eq. (4.28) becomes

R∗ =
3wn+1 − 4wn + wn−1

2∆t
+ Rn+1 = 0 (4.29)

where R∗ is defined as the unsteady residual. This is a non-linear system of equations

that cannot be solved directly. Instead, Eq. (4.29) can be viewed as a modified pseudo-

time steady state problem, which can be solved iteratively for wn+1 by introducing a

derivative with respect to the fictitious pseudo-time ς, as explained in Ref. [45]. Finally,

the following system for the updates is obtained:((
1

∆ς
+

3

2∆t

)
∂w

∂p
+
∂R

∂p

)
∆p = −

(
3wm − 4wn + wn−1

2∆t
+ Rm

)
(4.30)

30 of 126

Chapter 5

Laminar and Turbulent Results

In this chapter, results that test the capabilities of the meshless flow solver to calculate

viscous and turbulent flows are presented. The results obtained from the meshless flow

solver are compared to computational results from an established CFD solver, and to

experimental data whenever it is available. The solver used to compare the meshless

results is the Parallel Multi-Block (PMB) code from the University of Liverpool which

is a proven research code that has been developed and validated for two decades [97].

Examples of research performed with PMB can be found among others, in [97–100].

For simplicity, the meshless flow solver is referred to from now on as Parallel Meshless

or PML.

Four different two-dimensional test cases are selected for this validation study. The

first case consists of a NACA0012 aerofoil in steady-state laminar flow. The second,

involves simulating the steady-state flow over a circular cylinder at low Reynolds num-

bers. Finally, the third and fourth tests are based on a RAE2822 aerofoil in steady-state

turbulent flow. The test cases are summarised in Table. 5.1

Table 5.1: Flow conditions for the test cases.

Case

Number
Flow Type Geometry

Mach

Number

Reynolds

Number

Angle of

Attack

1 Viscous NACA0012 0.50 5.0e3 3.00°

2 Viscous 2D Cylinder 0.10 5.0 - 40.0 0.00°

3 Turbulent RAE2822 0.69 5.7e6 -2.35°

4 Turbulent RAE2822 0.73 6.5e6 2.79°

The point distributions for all the test cases were obtained from block-structured

grids which were created using ICEM-CFD. For all the cases, the stencils for each of the

points in the domain are selected by using the connectivity of the structured grids. This

31 of 126

Figure 5.1: Stencil selection for PML cases.

results in stencils with 9 neighbours for internal points, and 6 neighbours for boundary

points. Fig. 5.1 shows an example of the stencil selection for internal points.

5.1 NACA0012 Laminar Case

The NACA0012 aerofoil has been used extensively in the literature as a test case for

CFD codes. It is used here as a validation case for the implementation of laminar flows

into PML. A relatively low Reynolds number of 5000 is selected in order to simulate

a laminar regime. For the calculation, subsonic flow conditions are imposed at the

farfield, with a Mach number of 0.5 and an angle of attack of 3 degrees. The point

distribution used for the case is obtained from a C-type structured grid and contains

516 points along the aerofoil surface and 129 points in the normal direction. The chord

length of the aerofoil is set to 1.0 and the first wall spacing for this grid is 1.0× 10−4.

The total number of points is 86,753 and the point distribution for the case is shown

in Figures 5.2 and 5.3.

The calculation was considered to have converged when the L2 norm of the residuals

is reduced by six orders of magnitude. As an indication of the computational cost of the

method, the calculations took 759 seconds to converge in PML and 587 seconds in PMB,

using the same machine. Figures 5.4 and 5.5 show the pressure coefficient and stream-

wise velocity flow fields obtained from PML for this case showing highly separated flow

over the aerofoil. The results for the surface pressure coefficient obtained from PML

and PMB are shown in Fig. 5.6, while Fig. 5.7 shows a comparison of the calculated skin

friction over the aerofoil, where the skin friction has been normalized by the reference

freestream values. Both these figures show very good agreement between both solvers.

Finally, velocity profiles inside the boundary layer, as well as the separation point over

the top of the aerofoil are calculated. Figure 5.8 shows the velocity profiles at different

positions along the chord direction. The results show almost identical velocity profiles

for both codes, and very good agreement in the separation point location with PML

calculating it to be at 46.9% of the chord length, while PMB calculates 46.2%.

32 of 126

x

z

-50

-50

0

0

50

50

-40 -40

-20 -20

0 0

20 20

40 40

Figure 5.2: Entire domain view of point distribution for NACA0012 case.

x

z

-0.5

-0.5

0

0

0.5

0.5

1

1

1.5

1.5

-0.5 -0.5

0 0

0.5 0.5

Figure 5.3: Close-up view of point distribution for NACA0012 case (1e-4 first grid spacing).

33 of 126

Figure 5.4: Pressure coefficient contours for NACA0012 case.

Figure 5.5: Stream-wise velocity contours for NACA0012 case.

34 of 126

x

-C
P

0

0

0.2

0.2

0.4

0.4

0.6

0.6

0.8

0.8

1

1

-1.2 -1.2

-1 -1

-0.8 -0.8

-0.6 -0.6

-0.4 -0.4

-0.2 -0.2

0 0

0.2 0.2

0.4 0.4

0.6 0.6

PMB
PML

Figure 5.6: Surface pressure coefficient for NACA0012 case.

x

C
f

0

0

0.2

0.2

0.4

0.4

0.6

0.6

0.8

0.8

1

1

0 0

0.05 0.05

0.1 0.1

0.15 0.15

PMB
PML

Figure 5.7: Surface skin friction for NACA0012 case.

35 of 126

Stream-wise velocity

D
is

ta
nc

e
fr

om
 w

al
l

0

0

0.2

0.2

0.4

0.4

0.6

0.6

0.8

0.8

1

1

1.2

1.2

0 0

0.02 0.02

0.04 0.04

0.06 0.06

0.08 0.08

0.1 0.1
PMB
PML

(a) x = 0.2

Stream-wise velocity

D
is

ta
nc

e
fr

om
 w

al
l

0

0

0.2

0.2

0.4

0.4

0.6

0.6

0.8

0.8

1

1

1.2

1.2

0 0

0.02 0.02

0.04 0.04

0.06 0.06

0.08 0.08

0.1 0.1
PMB
PML

(b) x = 0.4

Stream-wise velocity

D
is

ta
nc

e
fr

om
 w

al
l

0

0

0.2

0.2

0.4

0.4

0.6

0.6

0.8

0.8

1

1

1.2

1.2

0 0

0.02 0.02

0.04 0.04

0.06 0.06

0.08 0.08

0.1 0.1
PMB
PML

(c) x = 0.6

Stream-wise velocity

D
is

ta
nc

e
fr

om
 w

al
l

0

0

0.2

0.2

0.4

0.4

0.6

0.6

0.8

0.8

1

1

1.2

1.2

0 0

0.02 0.02

0.04 0.04

0.06 0.06

0.08 0.08

0.1 0.1
PMB
PML

(d) x = 0.8

Stream-wise velocity

D
is

ta
nc

e
fr

om
 w

al
l

-0.2

-0.2

0

0

0.2

0.2

0.4

0.4

0.6

0.6

0.8

0.8

1

1

0 0

0.02 0.02

0.04 0.04

0.06 0.06

0.08 0.08

0.1 0.1
PMB
PML

(e) x = 0.9

Stream-wise velocity

D
is

ta
nc

e
fr

om
 w

al
l

-0.2

-0.2

0

0

0.2

0.2

0.4

0.4

0.6

0.6

0.8

0.8

1

1

0 0

0.02 0.02

0.04 0.04

0.06 0.06

0.08 0.08

0.1 0.1
PMB
PML

(f) x = 1.0

Figure 5.8: Comparison of stream-wise velocity profiles inside the boundary layer for
NACA0012 case.

36 of 126

5.2 Cylinder Laminar Flow

This test case involves simulating the steady-state flow over a circular cylinder in the

laminar regime. The flow past circular cylinders has been extensively studied in the

literature and it is well known that at low Mach and Reynolds numbers, the flow exhibits

steady behaviour with two counter rotating vortices in the wake of the cylinder. Wind-

tunnel experiments by Tritton et al. [101] and water-tunnel experiments by Taneda [102]

show that for low Mach numbers, the steady flow around the cylinder exists in regimes

with Reynolds numbers of up to around 60. After this point, unsteady behaviour with

vortex-shedding starts occurring. To avoid any vortex-shedding during the simulations,

the case is run with a Mach number of 0.1 and a variable Reynolds number in the range

of 5 to 40 (based on the diameter of the cylinder). The angle of attack is set to zero

degrees.

The computational domain used for the calculations extends to 40D from the centre

of the cylinder, where D is the diameter. Three point distributions were generated for

this case to perform a grid sensitivity study. All of these were generated from O-type

structured grids. The first grid, called “fine” contains 488 points along the cylinder

surface and 261 points in the radial direction, for a total of 254,753 points, with the

first grid spacing set at 1.0 × 10−4. The other two grids were generated by starting

from the fine grid and successively deleting every other layer of points, thus ending up

with the family of grids summarised in Table 5.2. The point distribution from the fine

grid is shown in Figs. 5.9 and 5.10.

The results calculated by PML show that as expected for Reynolds numbers under

40, two static, counter-rotating vortices are generated in the wake of the cylinder. This

is shown in Fig. 5.11, where the pressure contours and velocity streamlines for the PML

solution at a Reynolds number of 26 are plotted. The image in Fig. 5.12 was taken

from the experimental tests of [102], at the same flow conditions. Comparing the results

from PML to the image, it is clear that the flow structures present in the experiment

are predicted well by the solver.

The results obtained from PML for skin friction and drag are compared to experi-

mental data obtained by Williamson [103] on a pressurized wind-tunnel using a buried

wired-gauge technique. Figure 5.13 shows the skin friction coefficient versus circle an-

gle on the cylinder, where the skin friction has been again normalized by the reference

freestream values. In the figure, the circle angle θ = 0 represents the stagnation point

to the left of the cylinder. Good agreement is observed between the simulations and

the experimental data. The figures also show that as expected, the solution improves

by using finer grids. Even so, PML results for this case show not to be particularly

sensitive to the grid density.

Finally, the drag coefficients calculated by PML using the finest grid at different

Reynolds numbers are compared to experimental data from [101] and numerical results

37 of 126

from [104]. Fig. 5.14 shows that the drag coefficient calculated by PML is in good

agreement with both sets of results.

x

z

-60

-60

-40

-40

-20

-20

0

0

20

20

40

40

60

60

-40 -40

-20 -20

0 0

20 20

40 40

Figure 5.9: Entire domain view of the point distribution for cylinder case.

x

z

-1.5

-1.5

-1

-1

-0.5

-0.5

0

0

0.5

0.5

1

1

1.5

1.5

-1 -1

-0.8 -0.8

-0.6 -0.6

-0.4 -0.4

-0.2 -0.2

0 0

0.2 0.2

0.4 0.4

0.6 0.6

0.8 0.8

1 1

Figure 5.10: Close-up view of the point distribution for cylinder case (1e-4 first grid spacing).

Table 5.2: Grid definition for the two-dimensional cylinder test case.

Grid Name Description
Total
Points

First Grid
Spacing

Fine 488x261 edge points 254,736 1.0e-4

Medium 248x131 edge points 64,976 1.0e-4

Coarse 128x66 edge points 16,896 1.0e-4

38 of 126

Figure 5.11: Calculated streamlines and pressure contours for two-dimensional cylinder case
at Re = 26

Figure 5.12: Flow streamlines (image from experiment) for two-dimensional cylinder case at
Re = 26. Taken from Ref. [102]

39 of 126

Figure 5.13: Skin friction for two-dimensional cylinder case

Figure 5.14: Drag coefficient for different Reynolds numbers from 5 to 40 for the two-
dimensional cylinder case

40 of 126

5.3 RAE2822 Turbulent Case

To test the turbulent implementation of the meshless solver, the flow over an RAE2822

aerofoil under two different flow conditions was studied. The RAE2822 aerofoil has been

used extensively for the validation of CFD codes due to the availability of experimental

data for comparison purposes. The two tests used here correspond to cases 2 and 9

from the experimental data base from Ref. [105]. The computations shown here have

slightly different flow conditions than the original experimental results to account for

the wind tunnel corrections. The corrections made to the flow conditions follow the

method from [106]. Details of the original and corrected flow conditions for the cases are

shown in Table 5.3. The Spalart-Allmaras model was used with the default parameters

in both PML and PMB.

The grid used for the cases was converted from a C-type structured grid and contains

516 points along the aerofoil surface and 129 points in the normal direction. The total

number of points is 86,736 and the grids were clustered towards the surface to correctly

solve the thin boundary layers. The first grid spacing at the walls for the cases is set

to 5.0x10−6. The point distribution is shown in figures 5.15 and 5.16.

x

z

-50

-50

0

0

50

50

-40 -40

-20 -20

0 0

20 20

40 40

Figure 5.15: Entire domain view of the point distribution for RAE2822 cases

For both test cases, the simulations were started by performing 100 explicit steps,

and then continued with implicit integration until a reduction of six orders of magnitude

in the normalised mean flow residuals was achieved.

41 of 126

x

z

0

0

0.5

0.5

1

1

-0.4 -0.4

-0.2 -0.2

0 0

0.2 0.2

0.4 0.4

Figure 5.16: Close-up view of the point distribution for RAE2822 cases (5e-6 first grid spacing)

RAE2822 Subsonic

The pressure contours of the flow around the aerofoil are shown in Fig. 5.17, while the

stream-wise velocity contours are shown in Fig. 5.18. The surface pressure coefficient

calculated from PML is shown in Fig. 5.19, along with results from PMB and experi-

mental data for comparison. There is very good agreement in terms of pressure with

PMB and the experimental data. Figure 5.20 shows the maximum calculated turbulent

eddy viscosity (ν̃) at different vertical slices along the stream-wise direction and again,

very good correlation is found between both solvers. The velocity profiles calculated

from PML and PMB at different positions along the stream-wise direction on the upper

surface of the aerofoil are shown in Fig. 5.21. Similar plots comparing the profiles of

turbulent eddy viscosity (ν̃) from both solvers are shown in Fig. 5.22. Even though

there are small differences in the eddy viscosity profiles, the agreement of the velocity

profile results inside the boundary layer is excellent.

Table 5.3: Flow conditions for the RAE2822 test cases.

Experimental conditions Computational conditions

Case No α M Re α M Re

Case 2 -2.18° 0.676 5.7x106 -2.35° 0.685 5.7x106

Case 9 3.19° 0.73 6.5x106 2.79° 0.734 6.5x106

42 of 126

Figure 5.17: Pressure coefficient contours for RAE2822 turbulent flow case with subsonic
conditions.

Figure 5.18: Stream-wise velocity contours for RAE2822 turbulent flow case with subsonic
conditions.

43 of 126

x

C
p

0

0

0.2

0.2

0.4

0.4

0.6

0.6

0.8

0.8

1

1

-1.5 -1.5

-1 -1

-0.5 -0.5

0 0

0.5 0.5

1 1

1.5 1.5

PMB
PML
Experimental

Figure 5.19: Surface pressure coefficient for RAE2822 turbulent flow case with subsonic
conditions.

x

M
ax

im
u

m
 t

u
rb

u
le

n
t

ed
d

y
vi

sc
o

si
ty

0.2

0.2

0.4

0.4

0.6

0.6

0.8

0.8

1

1

0 0

200 200

400 400

600 600PMB Lower Surface
PMB Upper Surface
PML Lower Surface
PML Upper Surface

Figure 5.20: Maximum value of turbulent eddy viscosity at different vertical slices along the
aerofoil for RAE2822 subsonic case.

44 of 126

Stream-wise velocity

D
is

ta
nc

e
fr

om
 w

al
l

0

0

0.2

0.2

0.4

0.4

0.6

0.6

0.8

0.8

1

1

1.2

1.2

1.4

1.4

0 0

0.02 0.02

0.04 0.04

0.06 0.06

0.08 0.08

0.1 0.1

PMB
PML

Figure 5.21: Stream-wise velocity at different slices along the RAE2822 upper surface for
subsonic case (Slices from left to right: x=1.0, x=0.9, x=0.8 and x=0.6).

Turbulent eddy viscosity

D
is

ta
ce

 f
ro

m
 w

al
l

0

0

100

100

200

200

300

300

0 0

0.005 0.005

0.01 0.01

0.015 0.015

0.02 0.02

0.025 0.025

0.03 0.03

0.035 0.035

PML
PMB

Figure 5.22: Turbulent eddy viscosity at different slices along the RAE2822 upper surface for
subsonic case (Slices from left to right: x=0.6, x=0.8, x=0.9 and x=1.0).

45 of 126

RAE2822 Transonic

The calculated flow-field with contours for pressure coefficient, stream-wise velocity and

turbulent viscosity are shown in Figs. 5.23, 5.24 and 5.25, respectively. In the figures,

a strong shock over the upper surface of the aerofoil can be clearly appreciated, as well

as the thin turbulent boundary layer expanding after the shock. The maximum turbu-

lent eddy viscosity calculated from both solvers at different vertical slices is shown in

Fig. 5.26, with PML matching the PMB results almost perfectly on the lower surface,

and only showing small differences on the upper surface. Profiles of stream-wise veloc-

ity and turbulent eddy viscosity inside the boundary layer, at different locations on the

upper surface of the aerofoil are shown in Figs. 5.27 and 5.28 respectively. Here, a simi-

lar behaviour is found to that of the subsonic case, with small differences found between

PML and PMB in the turbulent eddy viscosity profiles, but with good agreement on

the velocity profiles. Fig. 5.29 shows the surface pressure coefficients calculated from

the meshless solver and PMB compared to experimental data. The results from PML

show good overall agreement with the data from PMB and the experimental results,

with a well formed shock over the aerofoil. Even though the shape of the shock is

predicted well and there are very few differences between the shock calculated from

both flow solvers, there is a discrepancy in the location of the shock calculated from

both solvers when compared to the experiments. The prediction of the shock strongly

depends on the performance of the turbulence model [86]. This fact opens the door for

future implementations of different turbulence models into PML.

A summary of the calculated values of the drag, lift and moment coefficients for

the two RAE2822 cases is presented in Table 5.4. Even though the results from PML

and PMB are very similar, the values obtained from PML are very encouraging as

they approximate better the experimental data from Ref. [105], especially at subsonic

conditions.

Finally, as a comparison of the computational efficiency of the methods, Table 5.5

shows the calculation times needed to reduce the mean-flow residuals five orders of

magnitude for both PMB and PML. During these tests PMB was approximately 40%

faster than PML. Even though the finite-volume method used by PMB is more compu-

tationally efficient than PML, the meshless method used in this work proves valuable

by providing the capability of simulating moving geometries, as it will be demonstrated

in Chapter 9.

46 of 126

Figure 5.23: Pressure coefficient contours for RAE2822 case with transonic conditions.

Figure 5.24: Stream-wise velocity contours for RAE2822 case with transonic conditions.

47 of 126

Figure 5.25: Turbulent eddy viscosity contours for RAE2822 case with transonic conditions.

x

M
ax

im
u

m
 t

u
rb

u
le

n
t

ed
d

y
vi

sc
o

si
ty

0.2

0.2

0.4

0.4

0.6

0.6

0.8

0.8

1

1

0 0

200 200

400 400

600 600

800 800

1000 1000

1200 1200PMB Lower Surface
PMB Upper Surface
PML Lower Surface
PML Upper Surface

Figure 5.26: Maximum value of turbulent eddy viscosity at different vertical slices along the
aerofoil for RAE2822 transonic case.

48 of 126

Stream-wise velocity

D
is

ta
nc

e
fr

om
 w

al
l

0

0

0.5

0.5

1

1

1.5

1.5

0 0

0.02 0.02

0.04 0.04

0.06 0.06

0.08 0.08

0.1 0.1

PMB
PML

Figure 5.27: Stream-wise velocity at different slices along the RAE2822 upper surface for
transonic case (Slices from left to right: x=1.0, x=0.9, x=0.8, x=0.6 and x=0.4).

Turbulent eddy viscosity

D
is

ta
n

ce
 f

ro
m

 w
al

l

0

0

500

500

1000

1000

0 0

0.02 0.02

0.04 0.04

0.06 0.06

PMB
PML

Figure 5.28: Turbulent eddy viscosity at different slices along the RAE2822 upper surface for
transonic case (Slices from left to right: x=0.4, x=0.6, x=0.8, x=0.9 and x=1.0).

49 of 126

x

C
p

0

0

0.2

0.2

0.4

0.4

0.6

0.6

0.8

0.8

1

1

-1.5 -1.5

-1 -1

-0.5 -0.5

0 0

0.5 0.5

1 1

1.5 1.5

Experimental
PMB
PML

Figure 5.29: Surface pressure coefficients for RAE2822 case with transonic conditions.

Table 5.4: Summary of force and moment coefficients for RAE2822 test cases.

Subsonic Transonic

Study Cl Cd Cm Cl Cd Cm

PML -0.126 0.0084 -0.045 0.800 0.0162 -0.092

PMB -0.126 0.0095 -0.076 0.783 0.0170 -0.091

Experimental -0.121 0.0083 -0.028 0.803 0.0168 -0.099

Table 5.5: Calculation times for RAE2822 test cases.

Subsonic Transonic

PMB PML PMB PML

Calculation time in seconds 864 1182 940 1212

50 of 126

Chapter 6

Parallel Implementation of the

Flow Solver

If the meshless method described in this work is to be used to study real industrial

applications its computational efficiency needs to be addressed. During the last three

decades, the performance of computing processors increased dramatically, mainly by

increasing the clock frequency of the CPUs. In the last few years however, the increase

in CPUs clock speeds has been moderate, as power consumption has become the main

limiting factor. The main development objective for hardware manufacturers has

shifted from trying to achieve faster clock frequencies and now focuses on making more

efficient processors with multiple cores per chip. In order to perform the large scale

computations required in industrial applications, parallel processing becomes a neces-

sity. In this chapter, a parallel implementation of the meshless flow solver is described.

It uses a distributed memory approach and follows single-instruction-multiple-data

(SIMD) techniques in which the separate CPUs perform the same computations on

different sets of data. The implementation uses explicit message-passing interface

(MPI) commands for parallel communication and assigns one set of instructions, called

MPI process, to each CPU.

Domain decomposition:

Before the solver is run, the input point distributions are partitioned such that each

MPI process is responsible for a distinct portion of the domain. A domain partitioning

tool called preDomain was created for this purpose. This tool uses a readily available

library called METIS [107] to decompose the domain. Before performing the domain

decomposition, preDomain forms connecting edges between all of the points in the

domain and their neighbouring points (in the stencil). A graph representing the con-

nectivity of the domain is then created and passed onto the partitioning library. METIS

51 of 126

then uses a multilevel recursive-bisection algorithm to partition the graph. During the

flow calculations, the computational cost per point of forming the residuals and solving

the system is very similar for all points in the domain. Assigning the same number of

points to each MPI process, will then result in a near perfect load balance. For this

reason, and to improve the parallel efficiency of the method, the criteria for the do-

main decomposition is to balance the number of points among partitions, and to have

the least number of edges cut to decrease communication time. At each MPI process,

the domain is then divided into two classes of points: interior points and halo points

(Fig. 6.1). Halo points are not local to the processor but are included in local stencils.

These points are the communication links between processors across communication

boundaries (boundaries of the domain decomposition).

Figure 6.1: Classification of points close to an inter-processor boundary.

In an effort to reduce the parallel overhead associated with the exchange of data,

preDomain rearranges the list of points for each MPI process so that the halo points

are stored first. This reordering combined with the use of non-blocking commands and

pre-allocated buffers for communication, allows for the code to work asynchronously as

it will be explained next.

As explained in Section 3.2, the Spalart-Allmaras turbulence model needs the dis-

tance of each point in the domain to its nearest solid wall. In parallel, when initialising

the computations, all MPI processes interchange the coordinates of their boundary

points and elements, and then CPUs work independently to find the nearest solid wall

for all of its assigned points.

Solver Stage:

In broad terms, the parallel flow solver works with the following sequence of operations:

form the residuals, update the solution and communicate the solution to other MPI

processes where needed.

52 of 126

As it was explained in the introductory chapters, the parallel communication in-

troduces an overhead in the computation originating from the latency to start the

communication operations, and from the actual communication time. This overhead

however, can be reduced by using asynchronous communications. To accomplish this,

at each iteration, the code first updates the variables for the points that are needed

by other MPI processes. It then issues a non-blocking receive command and sends the

needed data across to other CPUs. The use of the non-blocking receive commands, al-

lows for the processes to continue their calculations, while the parallel communications

take place. The code immediately continues to update the rest of its points without

waiting for any of the messages to be received. At the next iteration, when the remote

data is needed, the code checks if the information has been received correctly and if

not, the code waits until all communication is completed. In practice, this method

should allow for the parallel overhead due to communication to be minimised, as it is

hoped that communications finish by the time the processes check if the messages have

been received correctly. The diagram shown in Fig. 6.2 shows the algorithm that each

of the MPI processes follow for the parallel flow solver.

Parallel Linear Solver:

When using the implicit scheme, the solver performs what can be seen as two distinct

types of iteration: an outer loop and an inner loop. In the outer loop, the solver

calculates the residuals and stores the Jacobian matrix information for all the points

in the domain. In the inner loop, the solution to the linear system of Eq. (4.26) is

obtained.

To solve the linear system in parallel, the Jacobian matrix is divided among the

processes using the same point-based domain decomposition as before. Each process

stores the Jacobian matrix information for its local, as well as its halo points. At

each iteration of the linear solver and before the matrix-vector multiplications, the

values for the halo points need to be updated. The method again uses asynchronous

communication to accomplish this, in an effort to reduce the communication overheads.

The calculation of the BILU preconditioner is simplified by only using local points, as

this avoids any parallel communication when forming the preconditioner [108]. This

simplification can have an effect on the convergence rate of the linear solver which

needs to be studied. The computational algorithm for the parallel linear solver can be

visualised in the Fig. 6.3. The main bottleneck for the parallel linear solver is expected

to be the global communications to reduce the dot-products in steps 2, 5 and 7 of the

algorithm. The parallel overheads from the communications needed to perform the

matrix-vector operations are reduced by using asynchronous communications, but the

overheads caused by the global reduction operations cannot be reduced and means that

the CPUs lose their independence with each iteration of the iterative linear solver.

53 of 126

Figure 6.2: Algorithm for the parallel flow solver

54 of 126

Figure 6.3: Algorithm for the parallel GCR

55 of 126

56 of 126

Chapter 7

Parallel Flow Solver Results

To study the efficiency of the parallel flow solver, two cases were selected. The ge-

ometries used are of two well known test cases: the Onera M6 wing and an aircraft

configuration known as the DLR-F6. The Onera wing case serves as a good starting

point for validating the parallel method and the much bigger aircraft case is used to

further asses the capabilities of the parallel flow solver to cope with cases resembling

more realistic industrial applications. In both cases, the point distributions used by

PML are obtained from structured grids using the same method described in Chapter

5. The parallel flow solver was run on systems ranging from a small cluster of worksta-

tions to dedicated HPC machines. The results obtained were compared to data from

PMB as well as other published data when available.

7.1 Onera M6 Wing Case

The Onera wing was developed in the 1970s as an experiment to study high Reynolds

number flows with complex flow phenomena. Reference [109] contains the original

experimental results for this test case, carried out in a pressurised wind-tunnel by the

Advisory Group for Aerospace Research and Development (AGARD) of NATO, in

1979. The Onera wing has become a clasic validation case for CFD codes due to its

complicated flow physics and availability of experimental data. The wing is a semi-

span, defined by a symmetric aerofoil section, a leading edge sweep angle of 30 degrees,

an aspect ratio of 3.8, and a taper ratio of 0.562. The point distribution used for this

test case is formed of 1,201,075 points with a first wall spacing of 5 × 10−4c. Since

the objective of this test is to assess the efficiency of the parallel flow solver, the flow

conditions are set to inviscid flow instead of turbulent. The freestream Mach number is

0.84 and the angle of attack is set to 3.6 degrees. The test case was also simulated with

PMB using the same flow conditions and compared to the experimental data from [109].

The flow solver is run with a varying number of MPI processes ranging from 1 to 32,

with each process running on one CPU (core). Figure 7.1 shows the flow solution for the

57 of 126

Figure 7.1: Calculated surface pressure for Onera M6 wing case.

test case, where the pressure contours are plotted. Figure 7.2 shows the surface pressure

coefficients obtained from the run with 32 cores at six different span-wise locations

locations, these are 20%, 44%, 65%, 80%, 90% and 96% of the wing span. These

results show very good agreement when compared to PMB calculations. Both codes

however have small differences with the experimental data. The biggest discrepancies

between the calculations and the experimental data can be appreciated close to the

root of the wing (20%). Here, the pressure recovery after the first shock on the upper

surface is over-estimated by the code and the location and shape of the second shock

is not calculated well. The second biggest difference can be seen at 80%, where two

distinct shocks are found in the experiments which are not captured in the calculations.

These differences are to be expected as the codes are simulating inviscid flow. Another

possible source for the discrepancies close to the root is that during the experiments, an

end-plate was located at the root of the wing, while the simulations assume a symmetry

boundary condition. Even with these differences, PML proves capable of simulating

complex-flow phenomena where strong, variable shocks are present.

The efficiency of the parallel flow solver in explicit and implicit integration modes

is evaluated separately. Even though the explicit integration scheme is only used for

a few iterations to start the calculation, evaluating the explicit and implicit schemes

independently allows to identify the performance gains of different operations when

running in parallel. The parallel speed-up observed in explicit mode takes into account

forming the residuals, the parallel communication of the solution, and the updating of

the variables in the domain. Any differences observed between the speed-ups of the

implicit and explicit schemes are then due to the operations required to solve the linear

system described in Section 6.

58 of 126

x/c

C
p

0 0.2 0.4 0.6 0.8 1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1.2 PMB
PML
Experiment

x/c

C
p

0 0.2 0.4 0.6 0.8 1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1.2 PMB
PML
Experiment

20% 44%

x/c

C
p

0 0.2 0.4 0.6 0.8 1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

x/c

C
p

0 0.2 0.4 0.6 0.8 1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1.2 PMB
PML
Experiment

60% 80%

x/c

C
p

0 0.2 0.4 0.6 0.8 1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1.2 PMB
PML
Experiment

x/c

C
p

0 0.2 0.4 0.6 0.8 1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1.2 PMB
PML
Experiment

90% 96%

Figure 7.2: Comparison of computed surface pressure coefficients with PMB and experimental
data at different locations throughout the wing span for Onera M6 wing at M∞ = 0.86 and
α = 3.06 °.

59 of 126

Number of Cores

S
pe

ed
-U

p

0 4 8 12 16 20 24 28 32
0

5

10

15

20

25

30

35

40 Linear Speed-Up
Async. (1 core per node)
Sync. (1 core per node)
Async. (8 cores per node)
Sync. (8 cores per node)

(a) Explicit iteration speed-up.

0

2

4

6

8

10

12

14

16

M
em

or
y

U
sa

ge
in

m
b

1 2 4 8 16 32
Number of Cores

Minimum per Processor
Maximum per Processor
Total

(b) Parallel flow solver memory usage.

Figure 7.3: Efficiency of the parallel flow solver for Onera M6 case using explicit integration
with one MPI process per core.

Number of Cores

S
pe

ed
-U

p

0 4 8 12 16 20 24 28 32
0

5

10

15

20

25

30

35

40 Linear Speed-Up
Async. (1 core per node)
Sync. (1 core per node)
Async. (8 cores per node)
Sync. (8 cores per node)

(a) Implicit iteration speed-up.

Iterations

lo
g(

 R
es

id
ua

l)

0 500 1000 1500 2000 2500 3000 3500
-5

-4

-3

-2

-1

0
1 Core
4 Cores
8 Cores
16 Cores
32 Cores

(b) Parallel flow solver convergence histories.

Figure 7.4: Efficiency of the parallel flow solver for Onera M6 case using implicit integration
with one MPI process per core.

Figure 7.3(a) shows the parallel speed-up per explicit iteration of the flow solver

obtained in a system with eight cores per computing node, therefore, the results show-

ing 32 cores were obtained with four computing nodes working with all their cores.

In the figure, data for both the synchronous and asynchronous modes are shown for

comparison. On asynchronous mode, running on one core per node, an almost-linear

speed-up is achieved for the explicit iterations up to 32 processes. The advantage of

using asynchronous communication in the code is clear. On average for this test case,

the asynchronous communication proves 10% faster per iteration than the synchronous

one, with the difference increasing as we run in more processes. From the figure, it is

clear that the parallel speed-up is negatively affected when running on a higher number

60 of 126

Number of Cores

N
um

be
r

of
 it

er
at

io
ns

 a
nd

 r
un

 ti
m

e
in

 s
ec

on
ds

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

500

1000

1500

2000

2500

3000

3500

4000

Ideal time reduction (Linear speed-up)
Number of iterations to convergence
Total run time

Figure 7.5: Total number of iterations to convergence and total calculation time. Onera M6
case.

of cores per node. This is a consequence of the NUMA architectures where memory

access becomes the performance bottleneck of the method. The parallel solver proves

to be scalable in terms of memory consumption. This can be seen in Fig. 7.3(b), which

shows the usage per core. Here, the differences between the minimum and maximum

consumptions show that the problem is well balanced in terms of data storage and that

the increase in total memory usage is manageable.

The parallel speed-up for an implicit iteration is shown in Fig. 7.4(a). Here, an

iteration means forming the residuals, performing the parallel communications and

solving the linear system using four inner-iterations of the linear solver. The figure

shows an important speed-up of the implicit method when running in parallel with

efficiencies of around 90% when using 32 cores with one core per node. The same

behaviour found in the explicit iterations when running more cores per node is observed

here as well. During implicit iterations however, the adverse effects of running more

cores per node are comparatively lower than when running in explicit mode. Even

though the linear solver used during implicit integrations requires two synchronizations

per iteration, Fig. 7.4(a) also shows that the asynchronous communications proves

faster than the synchronous mode. These gains are mostly found in the outer loop

defined in Chapter 6, when forming residuals and updating the solutions. Finally,

Fig. 7.4(b) shows the normalized convergence histories for the case. The test case

was run in explicit mode for 200 iterations before changing to implicit integration. In

this graph, the effect of using a local BILU preconditioner with approximate linear

solves is appreciated, as the convergence behaviour is slightly different when running

on a different number of cores. This does not necessarily mean that using more CPUs

61 of 126

Figure 7.6: Surface pressure contours and flow streamlines for DLR-F6 case.

will result in a higher number of iterations needed for convergence. On the contrary,

Fig. 7.5 shows that using 4 and 16 MPI processes, PML achieved convergence faster

than when using one, two or eight processes. Even though convergence is somewhat

affected by using the approximate parallel preconditioner, an important reduction in

the total calculation times is achieved.

7.2 DLR-F6 Case

This case is based around a simplified wing-fuselage geometry of a commercial aeroplane

and has been previously studied for CFD validation purposes [110, 111]. The flow

conditions for the test are transonic inviscid flow with a Mach number of 0.8 and zero

degrees angle of attack. The point distribution used for the model contains 45 million

points and was created from a structured grid with a first wall spacing of 1 × 10−3c,

where c is the wing chord at half the span. The point distribution is much bigger than

those normally used to solve the Euler equations on such a simple geometry. The high

number of points is chosen to test the capabilities of the parallel algorithm to tackle

cases resembling realistic applications. The parallel flow solver was run on a different

62 of 126

x

C
p

100 150 200 250

-1

-0.5

0

0.5

1

1.5

Reference [112]
PML

(a) 0.25% of wing span

x

C
p

160 180 200 220 240 260

-1

-0.5

0

0.5

1

1.5

Reference [112]
PML

(b) 0.50% of wing span

x

C
p

220 240 260 280 300
-1

-0.5

0

0.5

1

Reference [112]
PML

(c) 0.75% of wing span

Iterations

lo
g(

 R
es

id
ua

l)

0 500 1000 1500 2000 2500
-5

-4

-3

-2

-1

0

64 MPI Processes
256 MPI Processes
512 MPI Processes
1024 MPI Processes

(d) Convergence histories

Figure 7.7: Surface pressure coefficients and convergence histories for DLR-F6 case.

number of cores ranging from 64 to 1024 on the facilities of Polaris N8 HPC cluster

provided and funded by the N8 consortium and EPSRC. As with the previous case,

one MPI process was started on each core.

The flow results for this test case calculated with 512 cores are shown in Fig. 7.6.

Here, the surface pressure contours over the fuselage and wings are drawn, and flow

streamlines show the wing tip vortices being captured well by the calculation. Fig-

ures 7.7(a) to 7.7(c) show the surface pressure coefficient at three different locations

along the span of the wing (0.25%, 0.50% and 0.75%). The results from PML are

compared to data from [112] which uses an unstructured, finite-volume flow solver for

this same test case, calculating inviscid flow at the same conditions. The PML solution

agrees well with the published data, with very similar locations for the shocks towards

the trailing edge. Small discrepancies are found however, with the magnitudes of the

shocks calculated by PML being slightly smaller than those in the reference all along

the span of the wing.

63 of 126

Number of Cores

S
pe

ed
-U

p

0 256 512 768 1024
0

4

8

12

16
Linear
PML

(a) Flow solver speed-up.

Number of Cores

N
um

be
r

of
 it

er
at

io
ns

 a
nd

 r
un

 ti
m

e
in

 m
in

ut
es

128 256 384 512 640 768 896 1024
0

250

500

750

1000

1250

1500

1750

2000

2250

2500

Ideal time reduction (Linear speed-up)
Number of iterations to convergence
Total run time

(b) Time reduction.

Figure 7.8: Performance of parallel solver for DLR-F6 case running one MPI process per core.

Number of Cores

M
em

or
y

U
sa

ge
 in

 g
b

128 256 384 512 640 768 896 1024
0

1

2

3

4

5

6

7

(a) Minimum and maximum per core.

Number of Cores

M
em

or
y

U
sa

ge
 in

 g
b

128 256 384 512 640 768 896 1024

430

440

450

460

470

480

(b) Total memory usage.

Figure 7.9: Memory usage of the parallel flow solver for DLR-F6 case.

Finally, the parallel performance of the meshless solver is presented. The parallel

speed-up is shown in Fig. 7.8 while the memory usage is shown in Fig. 7.9. The parallel

flow solver shows very strong scalability in terms of speed, with an almost linear speed-

up up to 512 cores and a parallel efficiency of 95% on 1024 cores (compared to 64 CPUs).

As with the previous case, the effects of using a local preconditioner are small, with

the flow solver converging five orders of magnitude in a similar number of iterations for

all the runs on different number of processes, as is shown in Fig. 7.7(d). The memory

usage per core shown in Fig. 7.9(a) decreases as expected, but it plateaus at around

1024 cores. This is a result of having to store more communication points, as more

processes are used. Even so, the total memory usage increases at a lower rate than the

increase in numbers of processes, resulting in a strong scalability in terms of memory,

with the total usage increasing by only 11% when going from 64 to 1024 processes.

64 of 126

Chapter 8

Stencil Selection and its Parallel

Implementation

8.1 Introduction to the Preprocessor

For multi-body systems, including moving-body simulations, the meshless method in

this work needs to select the stencils used by the flow solver to discretise the governing

equations. A preprocessing tool has been developed and documented by Kennett et al.

in [46,113]. We introduce the stencil selection method here from the original source for

the sake of being self-contained. This preprocessor selects stencils automatically from

overlapping point distributions associated with bodies, which may be moving relative

to one another. The point distributions are obtained from structured or unstructured

meshes and the original connectivity of the input grids is used as an aid to select the

best stencils from the points available. This way the tool works well for isotropic as

well as anisotropic regions, which are usually found close to solid boundaries in CFD

problems. Even though the stencils selected by the preprocessor provide a direct input

to the flow solver, the preprocessor and the solver are designed as two separate tools

that can work in coupled mode for transient moving-body problems.

For brevity, the method described here is for geometry in two dimensions, for details

of the implementation in three dimensions refer to [46].

The preprocessor method can be divided into four stages:

1. Check if the surface elements belonging to the solid boundaries of the different

input grids intersect in any way. If so, the boundaries need to be redefined

accordingly.

2. Detect points falling inside solid surfaces as a result of the point distributions

overlap, and exclude (blank) them from the calculation in the flow solver.

3. Select the meshless stencils for all active points.

65 of 126

4. Check that the selected stencils respect the boundaries i.e. to make sure that no

stencil contains points that lie on the opposite side of a solid boundary.

More details are given in the following.

Detecting Boundary Overlaps and Redefining Boundaries

A method of detecting solid boundary overlaps, and procedures to redefine the bound-

aries have been developed and is described in Ref. [113], but this stage has not yet been

implemented in the parallel version of this Chapter. In this work, Stage 1 from above

is skipped as there is no boundary overlap in the test cases presented.

Blanking Points and Checking Final Stencils

Stages 2 and 4, which correspond to blanking the points internal to solid walls and to

checking that the selected stencils respect the boundaries are similar in their implemen-

tation. They rely on searching for intersections between the boundary elements and

the initial stencils of all the points in the domain. These operations are based on the

use of higher-dimensional search trees as discussed in [114]. These search trees allow

for fast geometry searches by focusing only on regions that will be of interest.

The procedure works by forming bounding boxes around all initial stencils from the

input domains, as in Fig. 8.1(a), and around all boundary elements, as in Fig. 8.1(b).

Then, a search tree containing all stencil bounding boxes is formed and traversed with

the bounding boxes of boundary elements used as a search region. If intersections

between bounding boxes are found, then some of the points in the stencil may lie inside

solid walls, or in the case of the final checks in stage 4, some points in the final stencils

might not respect the boundaries. To test for this, intersection algorithms are used.

Rays are formed between the star point and all neighbouring points in the stencil.

The code then looks for intersections between the rays and the boundary elements as

in Fig. 8.1(c) to define which of the points in the stencil, if any, are identified to be

blanked. In the case of the final checks, these points are removed from the final stencils.

In the case of the blanking operation, this procedure would only identify the points

whose stencils cross the solid boundary elements. Points inside solid bodies still need

to be removed from the calculation. This is done by a so-called “flood” operation, in

which the method blanks the neighbouring points of an already blanked one, as long

as they do not cross any solid boundary elements again. The process is repeated until

there are no more points interior to solid boundaries to be blanked.

Selecting Candidates

In stage 3, the method selects the stencils for all the points. The operation works by

performing a search through each of the points in the domain, looking for intersections

66 of 126

(a) Bounding box for a
grid stencil

(b) Bounding box for an in-
ternal point stencil.

(c) Blanking points inside
boundary elements.

Figure 8.1: Examples of bounding boxes over stencils and boundary elements.

with the initial stencils of other points. The stencil bounding boxes in Fig. 8.1(a) are

used as before. All of the points intersecting the stencil of the star point for which

the search is being performed are included in a list of possible candidates for the final

meshless stencil of that star point.

Most CFD grids contain anisotropic regions to capture the rapidly changing flow

behaviour without having to greatly increase the total number of grid points. The

preprocessor method needs to take into account this arrangement of points when se-

lecting the meshless stencils. To account for the anisotropy of the original stencils, the

method defines a resolving vector v for each point in the domain. This vector points

in the direction where the original stencil is the finest. An example can be seen in

Fig. 8.2(a). For each point i, a resultant resolving direction is then formed, using the

resolving vectors of the candidate points, as well as the vector of point i, as shown

in Figs. 8.2(b) and 8.2(c). Using this resultant direction, a new coordinate system is

defined, as shown in Fig. 8.3(a). The basis η is chosen so that the basis vector η1 lies

parallel to the resultant resolving direction, and η2 lies orthogonal. Setting the origin

of the coordinate system to be the star point, the algorithm calculates the quantities

a and b as the projections of the stencils onto the newly created coordinate system,

as shown in Fig. 8.3(b). It also defines the coefficients ξ1 and ξ2 as the coordinates of

each of the candidate points in basis η. With these quantities, a merit function ψ is

defined, which rates each candidate point in terms of the direction and refinement by

balancing the orthogonality of the points chosen (for refinement) and distance. The

merit function is given by:

ψ =
ξ1

2

a2
+
ξ2

2

b2
(8.1)

Finally, the method uses this merit function to rate the candidates, and to select the

most appropriate ones to form the final stencil by locating them across the quadrants

shown in Fig. 8.3(c). In three dimensions the process is similar, with three-dimensional

bounding boxes surrounding the stencils and boundary elements.

67 of 126

(a) Resolving vector for a grid
stencil

(b) Two anisotropic stencils
overlap

(c) An anisotropic and a reg-
ular stencil overlap

Figure 8.2: Definition of resolving vectors.

(a) Defining new coordinate
system

(b) Choosing a and b using
stencil projections

(c) Quadrants around resolv-
ing direction

Figure 8.3: Definition of new local coordinate system for merit function.

Sorting of Candidates

After the list of candidates is formed for each point in the domain, the stencils are

selected according to the merit function ψ described before in Eq. (8.1). For each point

in the domain, the method assigns a value of ψ to each of its candidates. It is then

required that the list of candidates is ordered according to these values so that the two

candidates for each quadrant with the lowest ψ value are selected for the final stencil.

The problem of sorting lists is well known in the field of computer science. Several

algorithms have been developed to tackle the problem but a major issue with all of

them is that their efficiency depends on the size of the lists to be sorted and how they

are arranged initially. For all sorting problems, there is no a-priori information on

how expensive the sorting operation will be for a particular sequence of numbers. To

illustrate, we use an example in which we use the simplest of the algorithms to sort

the following sequence of eight numbers: {12, 5, 95, 1, 7, 16, 26, 11}. The algorithm

finds the smallest number in the list and swaps it with the element stored in the first

position. It then scans the list again for the second smallest and swaps it with the

element in the second position. It then goes on to find the third element and so on

until the list is sorted in a non-decreasing fashion. If at any time the algorithm finds

that the next smallest number is in the correct position, it leaves it there and moves

to the next. This algorithm is applied to the example and it results in the sequence

shown in Fig. 8.4.

68 of 126

In this particular example, the algorithm searched the list eight times and swapped

numbers four times. Now, if the initial ordering of the list is changed the same algorithm

will yield different results. It is easy to see that the same algorithm for the initial

sequence {5, 7, 16, 1, 11, 95, 12, 26} will need seven swaps, and for the initial sequence

{1, 5, 7, 11, 12, 16, 95, 26}, will only require one swap.

Search for the smallest (No swap, move on)

Search for the smallest. Swap it in the correct position

Search for the smallest. Swap it in the correct position

Search for the smallest. Swap it in the correct position

Search for the smallest (No swap, move on)

Search for the smallest (No swap, move on)

Search for the smallest (No swap, move on)

Search for the smallest. Swap it in the correct position12 5 95 11 7 16 26 1

1 5 95 12 7 16 26 11

1 5 95 12 7 16 26 11

1 5 7 12 95 16 26 11

1 5 7 11 95 16 26 12

1 5 7 11 12 16 26 95

1 5 7 11 12 16 26 95

1 5 7 11 12 16 26 95

1 5 7 11 12 16 26 95 Finish

Figure 8.4: Example of basic sorting algorithm. Smallest number for each iteration shown in
light blue. Numbers already sorted shown in grey.

In the case of the stencil selection, for the sorting problem this means two things:

first, different sorting algorithms need to be tested to ensure efficient operation of

the software; second, the parallel load balancing is difficult to achieve since we have

no information about the cost of the sorting operation. It is worth noting that the

performance of a sorting algorithm depends on the particular lists to be sorted. For

this reason, several different algorithms are tested in an effort to improve the efficiency

of the code. The algorithms tried are all described in detail in Ref. [115]:

� Selection Algorithm: The selection sort algorithm works by successively scanning

the array to find the next smallest element and swapping it with the correspond-

ing element in the correct position in the queue. The computational cost of

this algorithm is fixed as it needs to scan the array the same number of times,

regardless of how the array is originally ordered.

� Insertion Algorithm: While forming the array to be sorted, this algorithm finds

the correct position for each element and then shifts all the candidates with bigger

values of ψ one step to the right. The cost of this algorithm depends on how many

elements need to be shifted to store each candidate.

69 of 126

� Bubble-Sort Algorithm: This algorithm works by comparing pairs of successive

elements, swapping them if necessary and repeating the operation until no more

swaps are required. In the worst case scenario, this algorithm is as expensive as

the selection algorithm, but depending on the initial ordering of the array it can

prove more efficient.

� Shell-Sort Algorithm: This algorithm in an extension of the insertion algorithm.

It differs in the fact that it starts by comparing and exchanging elements that are

far apart and progressively reducing the gap before finishing with neighbouring

elements.

� Quick-Sort Algorithm: This algorithm follows a “divide and conquer” strategy.

It creates successive partitions of the array by selecting a pivot. All elements

smaller than the pivot are moved before it and all greater elements are moved

after it. The operation is repeated until the array is sorted.

A summary of the algorithms and its expected computational performance is given

in Table 8.1. The different sorting algorithms are evaluated in Chapter 9, in terms of

the efficiency of the preprocessor.

Transient Simulations

The process of running transient simulations with movable geometry starts with a

call to the preprocessor, which performs all the stencil selection operations and passes

this information to the flow solver to solve the governing equations. After this first

iteration, a closed loop starts with successive calls to the preprocessor and flow solver.

At the beginning of each real time-step, the points are moved in space according to the

prescribed or calculated motion, and the preprocessor is called to re-calculate the new

stencils. The flow solver then uses these stencils to calculate the flow solution.

Table 8.1: Summary of tested sorting algorithms.

Name
Best case

performance
Average case
performance

Worst case
performance

Selection-Sort O(n2) O(n2) O(n2)
Insertion-Sort O(n) O(n2) O(n2)
Bubble-Sort O(n) O(n2) O(n2)

Shell-Sort O(n log(n))
Depends on gap

sequence
O(n2)

Quick-Sort O(n log(n)) O(n log(n)) O(n2)

70 of 126

8.2 Parallel Implementation of the Preprocessor

Depending on the case to be studied, the preprocessing method described previously

can become expensive in terms of computation time. It was described in Ref. [46]

that the time taken by the preprocessor for simple three-dimensional cases ranges from

around 10% to 20% of the time taken to converge the flow solution with the solver.

This means that for complex cases, the time taken by the serial preprocessor can be

counted in hours. This fact justifies the development of parallel implementations of the

stencil selection procedures.

The parallel method described here is designed to work as far as possible with the

same operations of the serial preprocessor described in Section 8.1. The implementation

however is far from trivial. Most of the operations rely on the use of search trees and the

main difficulties are finding ways of distributing the search trees among processors while

maintaining good load balance and keeping parallel communications to a minimum.

The parallel preprocessor is designed to be used in modern clusters which normally

include several interconnected symmetric multi-core (SMC) computing nodes. Each

of these SMC nodes contains multiple processing cores with a shared memory space.

For this reason, a two-level parallel implementation was devised. The first level is

a distributed implementation that uses MPI commands to communicate across SMC

nodes, while the second is a shared memory implementation using OpenMP directives

to parallelise the work among the cores within each node.

8.2.1 Distributed Implementation

Usually, when using tree search algorithms, a master-slave parallel paradigm can prove

beneficial, as the load balance is not assumed a-priori and slave CPUs perform work

on small chunks of data at a time, requesting more work from the master as they finish

their tasks [116]. In this work however, there was a specific requirement of not using a

master-slave type of operation, as by avoiding master-slave algorithms, the number of

cores doing work is maximised.

The distributed implementation of the preprocessor subdivides the domain by start-

ing different MPI processes and assigning groups of points to each of the processes,

instead of forming one global search tree for the domain and distributing it among

CPUs. Each MPI process then forms its own separate search trees that are used for the

different operations. Ideally, to increase the performance of the parallel stencil selec-

tion, each process should be allowed to work as independently as possible and the work

load should be balanced between processes. An immediate drawback of performing

tree searches for the stencil selection, is that it is not possible to have prior information

about the computational cost of the operations for each individual point. The problem

is aggravated as the candidate points need to be sorted according to the merit function

71 of 126

(Eq. 8.1). These considerations make it difficult to correctly load balance the stencil

selection problem, as it will be demonstrated in the results section.

There are two modes of operation of the preprocessor. In the first mode, it can be

used independent of the flow solver to take different overlapping input grids, calculate

the stencils and write an output with the connected domain. In the second mode, the

preprocessor is coupled with the flow solver for transient, moving-body simulations.

The domain decomposition employed by the preprocessor depends on which of these

modes is to be used.

When the preprocessor is used independently, the different input point distribu-

tions are overlapped, and then the full computational domain needs to be decomposed

among processes. At this stage, the domain is simply a collection of overlapped point

distributions with no connection between them. For this reason, the METIS library

cannot be used to perform the preprocessor domain decomposition, as it needs the

full connectivity of the domain. Instead, two alternative decomposition methods are

included with the preprocessor. The performance obtained from these two decomposi-

tion techniques can be case-dependent and it is left to the user to decide which is the

most appropriate, for each case to be studied.

The first technique is based on slicing the domain according to the original Cartesian

coordinates of the points, along a user defined axis. The width of the slices is auto-

matically adjusted so that all the processes have roughly the same number of points.

Figure 8.5(a) shows an example where the grid used in the test case of section 5.2

is divided among four processes, along the x-axis. The second type of decomposition

is based on polar coordinates in two dimensions and cylindrical coordinates in three

dimensions. This technique creates a polar reference system and transforms the co-

ordinates of all the points in the domain into this system, using the transformations

found in Appendix A.1. It then divides the polar circle into pieces, aiming to assign

roughly the same number of points per piece, to finally assign one of these regions to

a each of the processes. The centre of the polar system can either be chosen by the

user, or placed at the centroid of the points in the domain. An example of this type

of decomposition is found on Fig. 8.5(b), where the same case of section 5.2 is divided

among four processes. In three dimensions a similar procedure is used, extruding the

polar system along a user-selected axis to form a cylindrical system.

The simulation of transient, moving-body problems is started by the preprocessor

selecting the stencils using one of the two decomposition techniques described above.

After this initial step, the solver performs its own domain decomposition as described

in Sec. 6.6 and from this point on, both the preprocessor and solver use this first de-

composition calculated by the parallel flow solver. The decision to use the same domain

decomposition in the preprocessor and solver was made to remove the cost of partition-

ing the domain in each call to the preprocessor and to avoid unnecessary input-output

operations. It was demonstrated in Ref. [46] that the flow solver is more expensive

72 of 126

(a) Slices along the x-axis. (b) Cake pieces using polar coordinates.

Figure 8.5: Domain decomposition for the preprocessor.

in terms of computing time than the preprocessor. Thus, to favour the flow solver

decomposition is an acceptable compromise. For this reason, all the parallel prepro-

cessing operations are designed to work with different types of domain decompositions,

including the two described previously, and any type of decomposition given by the

solver.

Blanking Points and Checking Final Stencils in Distributed Mode

When running in parallel, each process stores all of the global boundary elements. By

doing this, the preprocessor avoids communicating information about the boundaries

and most operations regarding boundaries can be performed by each process working

independently from others. Hence, each process uses its local trees with the global

boundaries to perform the searches, and the same serial operations defined in Section 8.1

to identify points directly behind solid boundaries work well in parallel. Difficulties

occur however, when performing the flood operation described in Section 8.1 in parallel.

For this operation to work correctly, the code successively blanks neighbours of points

that were identified to be blanked by the ray intersection method. In parallel, some

processes might not contain any points identified by the ray intersections as being

behind solid walls, while still having points that are indeed inside solid bodies.

An example is shown in Fig. 8.6(a) where two point distributions belonging to

different components of a multi-element aerofoil are overlapped and divided among two

processes shown in blue and red. Figure 8.6(b) shows the result of the ray intersection

method performed by process 1. Here, the green points are identified to be immediately

behind solid elements, thus the points inside solid boundaries located in that process

would be flooded as expected. The problem arises when process 2 do not find any

73 of 126

(a) Domain divided among two processes with process 1 shown in grey and process
2 shown in black.

(b) Detail of blanking operation for process 1 with
dark grey points identified as being directly
behind solid walls

(c) Detail of blanking operation for process 2 with
no points identified

Figure 8.6: Example of the blanking of points interior to solid boundaries in parallel.

of its points located behind solid walls. The points forming the triangular shape in

Fig. 8.6(c) which should be excluded from the calculation, are not. To solve this

problem, processes need to exchange information after the first layer of points behind

solid boundaries is found. This way the flood operation that stopped at the limit of an

inter-process boundary, will continue to all processes.

The final stage in the parallel preprocessor is checking that the selected stencils are

valid and that they respect the boundary elements. Similar to the first part of Stage 2,

all processes work independently to check the validity of the selected stencils for their

local points.

Selecting Stencils in Distributed Mode

Stage 3, which corresponds to selecting the final stencils, is modified and divided into

the following operations:

74 of 126

(a) Form bounding boxes for each of the local points in the domain and create search

trees considering these local points only.

(b) Identify the points located in regions of inter-process overlap to make sure only

information from relevant points is communicated.

(c) Execute the parallel communication of coordinates, bounding boxes and merit func-

tion information for all the points identified before and add the received information

to the local search trees.

(d) Perform the search for candidates following the same method described for the

serial preprocessor and select the meshless stencils from the candidate list. It is at

this stage that the biggest load imbalance is found. Even though all processes are

assigned the same number of points, it is likely that the number of candidates per

point, as well as the computational cost of the sorting operation, are different.

Details of the second and third operations are given in the following.

Identifying Relevant Points to be Communicated

When running in parallel, each process needs to find candidates for all its assigned

points by searching through its local data, but it also needs to find potential candidates

that are stored remotely in the other processes. To increase efficiency, before performing

the parallel communications each process identifies a list of relevant points to be sent

to other processes. This means that all processes will perform a preliminary search to

make sure that only relevant data is communicated.

There are several ways this can be done. The simplest is for each process to form one

large bounding box surrounding all of its points, communicating this box to all the other

processes and letting them search which of their points lie inside the box. Points laying

inside the box would be identified as the communication points. This simple method

has the drawback of dramatically over-estimating the points to be communicated as can

be visualised with the example in Fig. 8.7. Here, a domain formed of two overlapped

aerofoils is divided among four processes using a decomposition obtained from the flow

solver. In this example, the bounding box for the purple process contains all the points

in the blue process and overlaps more than half of the points of the red one. This

means that using this method, all of these points would have to be communicated

to the purple process. The case of the green process is even worse, as its bounding

box (not shown because it exceeds the limits of the image) contains all of the other

processes. This would see the green process storing all of the points in the domain,

thus resulting in zero parallel scalability in terms of memory. To improve the method, a

scheme that uses adaptive sub-division of quadrants in two dimensions, and of octants

in three dimensions was developed. The method is explained here for two-dimensional

geometry, as the extension to three dimensions is straight-forward.

75 of 126

Figure 8.7: Example of a single bounding box surrounding all points assigned to a process.

To help with the description of the method, the same domain shown in Fig. 8.7 is

used as an example. The sub-division method is described for process 1. The algorithm

starts by forming a bounding box surrounding all the points initially assigned to the

process. This box is iteratively sub-divided into four quadrants until a certain stopping

criteria is achieved. The method uses a quad-tree data structure with four children

branching from each parent to represent the quadrants created at each level. Every

time a new sub-division is performed, process 1 searches to see if there are any of

its initially assigned points contained within any of the newly created boxes. Boxes

containing points are flagged as active, the rest are discarded. At each level, the

method also assesses if all four new children of any given parent in the tree are active

and if so, the parent is kept as active while the children are discarded. Conversely, if

not all children of a given parent are active, the children are kept while the parent is

excluded. The process stops if at any given sub-division iteration the number of newly

created boxes is higher than the number of points initially assigned to the process.

The final quadrants, corresponding to level six in Fig. 8.8 are used to identify

points stored in other processes that need to be sent to process 1. The points marked

in Fig. 8.9 are the ones identified by other processes to be communicated to process 1

for the stencil selection.

76 of 126

Level 1 Level 2

Level 3 Level 4

Level 5 Level 6

Figure 8.8: Example of adaptive sub-division by quadrants on purple process (The sub-division
operation and the exclusion of parents/children are shown as if they were performed together
at each step).

77 of 126

Figure 8.9: Points identified for communication.

Parallel Communication

In the third step, information is exchanged among processes. The data to be com-

municated includes the coordinates, bounding boxes and resolving vectors for all the

points identified before. Different to the parallel communication for the flow solver, the

parallel exchange here needs to be run synchronously. This means that the overhead

caused by the latency of the network cannot be masked. After the data is exchanged,

the received points are added to the local trees. Adding the extra points to the existing

trees makes the searches more efficient, when compared to generating separate search

trees containing received points only.

In the original method from Ref. [113], the search region for each point in the domain

grows to the maximum size of any overlapping stencil. For example in Fig. 8.10, the

blue box which surrounds the original stencil of the star point, intersects the green

bounding box that surrounds another overlapping stencil. Hence, the search region for

the star point grows to the size of the dashed box in grey. All points inside the grey

box become candidates for the final stencil of the star point. Now imagine that all the

points to the left of the blue dotted line, including the star point, are located in one

process and all the points to the right of the dotted line are located in another. All the

points inside the grey box located in the second process, including the green and red

points, need to be sent to the first process to be consistent with the serial method. Even

though the automatic sub-division method described in the previous section allows for

quick identification of the points that need to be communicated, the number of these

points can be quite large for some cases. This fact poses a problem that cannot be

avoided without changing the method used to select the candidates for each stencil.

78 of 126

Figure 8.10: Example of the search region for a point. The size of the region grows with any
overlapping stencil.

This is especially problematic in cases where big differences are found in the sizes

of overlapping stencils, for example when a point distribution for a complex geometry

which contains small stencils is overlapped with a background point distribution, which

would normally contain bigger stencils to fill the background domain.

In an effort to alleviate the problem, in this work, the size of the search regions

grows only to the location of the central point of any overlapping stencil and not to the

maximum size of the stencil, as was the case in the original description of the method.

This might result in different stencils being calculated with the original method and the

one proposed here. In turn, this might have an effect on the meshless approximation of

the governing equations that needs to investigated. Two other methods are currently

being studied to alleviate this problem but their testing is still ongoing, thus their

details are not included in this work. The methods that are being studied are:

� Using a hole-cutting method on any background point distribution to reduce the

possibility of having big differences in the sizes of overlapping stencils.

� When running time-dependent simulations, using the data from previous time-

steps to limit the size of the search regions.

8.2.2 OpenMP and Hybrid MPI/OpenMP Implementations

Besides load balancing, the main factor that affects the efficiency of the distributed

implementation described above are parallel overheads. The main overheads of the

distributed method are the preliminary search to identify points to be communicated

and the actual parallel communication. One way to eliminate, or at least diminish these

overheads, is to use shared memory architectures. A parallel application that only uses

shared memory will completely eliminate the parallel overheads mentioned earlier, as

all the processes have access to the same data. In this work, the shared memory

parallelism is accomplished by starting different threads that run concurrently. The

79 of 126

multi-threading algorithms are managed by OpenMP which is an application program

interface that is used to explicitly direct multi-threaded, shared memory parallelism. In

the preprocessor, OpenMP works by starting different threads, each of which is assigned

to one processing core, so referring to running on Np number of threads is the same as

using Np number of cores within an SMC node.

There are two main drawbacks with such an application. First, as the number of

cores accessing the memory bank increases, the parallel performance will potentially

decrease. More importantly, the cases to be studied would need to fit entirely into

memory, making this type of implementation non-scalable in terms of memory. Know-

ing the advantages and disadvantages of each approach however, the preprocessor can

benefit from a hybrid distributed/shared memory implementation. If used carefully,

this type of operation can decrease the parallel overheads of the preprocessor while

maintaining good scalability.

The hybrid method is developed from the distributed implementation described

above. Separate threads are created on each of the SMC nodes and the loops of the

different preprocessing operations are parallelised between the threads using OpenMP.

The loops to be parallelised with OpenMP are all of the point-based loops. These are

loops that go through all of the points in a given node. Most of the loops found in the

preprocessor are point-based. As an example we can name the search for candidates,

where each core goes through all of its assigned points, finding suitable candidates.

All the parallel loops in the code are controlled by dynamic scheduling. This type of

scheduling is controlled by the operating system at run-time and works by dynamically

assigning groups of points to the separate threads. When a thread finishes its currently

assigned group, the operating system assigns a new one and continues.

A simplified visualization of the hybrid code running with two MPI processes with

two threads each, is seen in Fig. 8.11. Throughout the code, the multi-threading man-

agement follows a “fork/join” procedure, with several threads created at each ”fork”

juncture. In order to avoid any possible deadlocks when running in hybrid mode, with

multiple threads started from each MPI process, only the master threads are responsible

for the MPI communications.

In threaded applications, there is a latency overhead associated with actually start-

ing and joining threads. For this reason, the threaded regions of the code were main-

tained as big as possible. In the shared memory method, threads were started by

dividing the main MPI processes into forks at three locations: before the blanking of

points, before the operations to select and sort the candidates and again before the

checking of the stencils. The code is expected to run in modern computer hardware,

designed with NUMA architectures. For this reason, as explained in Section 2.3, care

needs to be taken to ensure the data to be processed by each thread is stored locally

within the memory space assigned to each core. With this in mind, temporary storage

for the required operations is allocated by each thread after they are started.

80 of 126

Thread 1 Thread 2

Start Threads (Fork)

Blank Points

MPI Process 1 MPI Process 2

MPI Comms
(Blanked Points)

Identify Points to
be Communicated

Thread 1 Thread 2

Thread 1 Thread 2 Thread 1 Thread 2

Start Threads (Fork)

MPI Comms
(Data for Identified Points)

Thread 1 Thread 2 Thread 1 Thread 2

Start Threads (Fork)

Thread 1 Thread 2 Thread 1 Thread 2

Start Threads (Fork)

Select Stencils

Check Stencils

Figure 8.11: Representation of the hybrid MPI/OpenMP algorithm for the preprocessor.

81 of 126

82 of 126

Chapter 9

Parallel Stencil Selection Results

In this chapter, the performance of the parallel stencil selection is evaluated using four

test cases, both in two and three dimensions. The purpose of these tests is to assess

the parallel methods, not to perform detailed studies of the physics of a particular

configuration. The selected test cases are academic, but they still serve the purpose of

demonstrating the capabilities of the method.

9.1 Presentation of Test Cases

The first test case consists of a two-dimensional aerofoil performing a cyclic pitching mo-

tion. The second consists of a two-dimensional multi-element aerofoil in a steady-state

simulation. The third case is a simulation of the steady-state flow over the geometry

of a generic fighter aircraft with several stores. The final test is a transient three-

dimensional case, in which a store is released from a delta-wing geometry and shows

the full capabilities of the parallel preprocessor and flow solver.

9.1.1 Test Case 1: NACA0012 Aerofoil in Transient Pitching Motion

This simple two-dimensional case was selected as a validation test for the parallel imple-

mentation of the preprocessor. It consists of a NACA0012 aerofoil undergoing a cyclic

pitching motion. The case corresponds to the AGARD CT1 experiments documented

in Ref. [117].

There are two input point distributions in the case: a background distribution and

the aerofoil distribution. The background grid contains 21,585 points and is unstruc-

tured in nature. It forms an ellipse that extends 35 chords in the normal direction and

45 chords in the stream-wise direction and is shown in Fig. 9.1(a). The aerofoil point

distribution is created from a structured grid and contains 29,798 points with first wall

spacing of 1× 10−3. The aerofoil grid is shown in Fig. 9.1(b). The PMB grid used to

compare the results is the same described for the NACA0012 case in Chapter 5.1.

83 of 126

x

z

-40

-40

-20

-20

0

0

20

20

40

40

-40 -40

-20 -20

0 0

20 20

40 40

(a) Background grid.

x

z

-1.5

-1.5

-1

-1

-0.5

-0.5

0

0

0.5

0.5

1

1

1.5

1.5

2

2

2.5

2.5

3

3

3.5

3.5

-2 -2

-1.5 -1.5

-1 -1

-0.5 -0.5

0 0

0.5 0.5

1 1

1.5 1.5

2 2

(b) Aerofoil grid.

Figure 9.1: Input point distributions for pitching NACA0012 test case.

9.1.2 Test Case 2: Two-Dimensional Multi-Element Aerofoil

In this two-dimensional case, four point distributions are overlapped to study the flow

over a multi-element aerofoil. The test case, which consists of an aerofoil with a slat

and a single-slotted flap, is known as 30P-30N and has been extensively studied using

both numerical and experimental techniques. The first experimental results of the

configuration were documented in [118]. The geometry of the multi-element aerofoil

can be seen in Fig. 9.2(a). The four input point distributions are generated from grids

for each of the elements of the aerofoil, plus the background grid. The background

grid is the same used in the previous case. The input grids for all the elements of the

aerofoil are structured in nature. The main element grid contains 34,766 points, the

slat is composed of 24,026 and the grid for the flap contains 16,130. The assembly of

the multi-element configuration is shown in Fig. 9.2(b).

x

z

0

0

0.2

0.2

0.4

0.4

0.6

0.6

0.8

0.8

­0.4 ­0.4

­0.2 ­0.2

0 0

0.2 0.2

0.4 0.4

(a) 30P-30N aerofoil configuration.

x

z

­0.2

­0.2

0

0

0.2

0.2

0.4

0.4

0.6

0.6

0.8

0.8

1

1

­0.6 ­0.6

­0.4 ­0.4

­0.2 ­0.2

0 0

0.2 0.2

0.4 0.4

0.6 0.6

(b) 30P-30N overlapped grids

Figure 9.2: Multi-Element aerofoil.

84 of 126

Figure 9.3: OSF test case.

9.1.3 Test Case 3: Open-Source Fighter

The third test case aims to simulate a bigger, more realistic case. It contains a generic

fighter aircraft based on publicly available data of an F-16 fighter, combined with eight

stores located under the wings. There are ten input grids in total, a background, the

aircraft and one for each of the stores. The aircraft, which is called Open-Source-

Fighter (OSF) is 14.47m in length, with a wingspan of 10.12m, formed of a NACA

64A204 profile. Details of the aircraft geometry are found in Ref. [119]. There are two

types of store used in the study. The first one is a generic, fin-less store of 2.0m in length

and a diameter of 0.125m. Two stores of this type are used, located one at the tip of

each of the wings of the OSF. The second type of store, which was documented in [120],

is ogive-shaped with a length of 0.17m and a diameter of 0.025m. Six of these stores

are included in the model, three under each wing. The case geometry is visualised in

Fig. 9.3.

The point distribution for the background was generated from an unstructured

grid, while all the other distributions were generated from blocked-structured grids.

The total number of points in the domain is 11.44 million points. The sizes of the grids

for each of the bodies included in the test case are summarised in Table 9.1.

Table 9.1: Grid sizes for the OSF test case.

Body Instances Grid type Number of points

Background 1 Unstructured 600k
Open-Source-Fighter 1 Structured 7000k
Store 1 2 Structured 330k
Store 2 6 Structured 530k

Total 11.44m

85 of 126

9.1.4 Test Case 4: Delta Wing with Store in Unsteady Mode

The fourth to be studied, assesses the capabilities of the parallel preprocessor and flow

solver of performing time-accurate simulations with bodies in relative motion. The

case consists of a delta wing with a store located beneath it. The wing is a full-span,

clipped delta wing with a NACA64A010 aerofoil section, leading edge sweep angle of

45 degrees, with a root chord length of 7.62 meters and a semi-span of 6.6m. The test

case was first described in references [120] and [121]. There are three bodies in the

simulation, namely the far-field, the wing and the store. All of the point distributions

used were generated from unstructured grids in ICEM-CFD. The point distribution

for the far-field contains 725,000 points, while the distribution for the wing contains

700,000 points. The store used here is the same as the ogive-shaped store described for

the second test case which contained 530,000 points. The first wall spacing for both

wing and store is set to 1 × 10−3L, where L is the diameter of the store. The initial

configuration of the test case is shown in Fig. 9.4.

Figure 9.4: Store-drop test case geometry.

At the beginning of the motion, the store is forced away from its carriage position

by two ejectors, which are modelled as constant vertical forces acting directly on the

store. The trajectory and attitude of the store is calculated by a six degree-of-freedom

(6-DOF) routine which is coupled with the flow solver. This way, at each time step of

the unsteady simulation, the code calculates the aerodynamic loads by integrating the

pressure along the store surface. Then, the 6-DOF module calculates the new location

of the store and finally the preprocessor calculates the new stencils. The 6-DOF module

is described in detail in Appendix A.2 and the characteristics of the store used in this

study are summarized in Table 9.2.

86 of 126

Table 9.2: Full-scale store characteristics.

Variable Value

Mass 907kg
Store Centre of Gravity 1.416m (Aft of store nose)
Store Diameter 0.508m
Roll Inertia 27.12kg ·m2

Pitch Inertia 488.1kg ·m2

Yaw Inertia 488.1kg ·m2

Forward Ejector Location 1.24m (Aft of store nose)
Forward Ejector Force 10675.7N
Aft Ejector Location 1.75m (Aft of store nose)
Aft Ejector Force 42702.9N
Ejector Stroke Length 0.1m

9.2 Profiling the Code and Sorting Algorithms

Before proceeding with the evaluation of the parallel preprocessor, the performance of

the different operations was studied by profiling the code for the cases one and three

described above. The CPU time per operation was measured and the average of five

runs is taken. Table 9.3 shows the relative computational cost of the preprocessing

operations when running two MPI processes. From the results it is clear that the most

expensive operation is the sorting of the candidates according to the merit function.

The performance of a sorting algorithm depends on the particular data to be sorted.

For this reason, the different sorting algorithms described in Section 8.1 were tested to

find the most efficient one for the type of arrays found on the preprocessor. Table 9.4

shows the speed-up compared to the most expensive algorithm (selection sort) for test

cases 2 and 4 (initial position only). The bubble sort and the insertion algorithms

proved to be of similar efficiency, with both of them being about 3 times faster than

the selection algorithm. There is an increase in speed of more than 7 times using the

shell sort algorithm in respect to the least efficient one, while the Quick-Sort method

Table 9.3: Profiling of the preprocessing code.

Parallel Preprocessor Operation
Percentage of total

CPU time for case 1
Percentage of total

CPU time for case 3

Blank points 0.7 % 2.5 %
Local candidate search 4.9 % 2.5 %
Preliminary search 3.9 % 3.2 %
Parallel communication 0.2 % 0.9 %
Remote candidate search 2.0 % 5.3 %
Sort candidates and select stencils 85.3 % 79.4 %
Check final stencils 3.0 % 6.2 %

87 of 126

Table 9.4: Speed-up of different sorting algorithms.

Test case Selection-Sort Insertion-Sort
Bubble-

Sort
Shell-Sort

Quick-
Sort

Case 1 1.0 2.8 2.8 7.1 9.6
Case 2 1.0 2.8 2.9 7.6 9.0

is more than 9 times faster than the selection algorithm. Based on these results, the

Quick-Sort algorithm is now being used in the code and all the following results were

obtained using this sorting method.

9.3 Results for the NACA0012 Aerofoil in Transient Mo-

tion Test Case

The simulation of the NACA0012 aerofoil in pitching motion serves as an introduc-

tory case to demonstrate the capabilities of the method to tackle flow calculations over

moving geometries. It is also used to validate the results obtained from the parallel

implementation. Because the purpose of the method is to assess the parallel implemen-

tation and not to perform a detailed study of the flow physics, the flow is assumed to

be inviscid. Results from PML are compared to simulations in PMB and to the original

experimental results documented in Ref. [117]. The Mach number is set at 0.6 and the

predefined aerofoil motion is a sinusoidal pitch angle change around the quarter chord

of the aerofoil. The pitch angle follows the relation

α(t) = α0 + αa sin(2kt) (9.1)

with α0 = 2.89°, αa = 2.41° and k = 0.0808 representing the mean incidence, the pitch

amplitude and the reduced frequency, respectively.

During the transient simulation in PML, the background grid is kept static, while

the entire aerofoil grid is moved according to the function in Eq. (9.1). Three motion

cycles, each consisting of 64 real-time steps were simulated to solve the flow. At each

of the real time-steps the aerofoil was moved, the preprocessor was called to calculate

the new stencils, and then solver was run until a reduction in the residuals of three

orders of magnitude was achieved. Since PMB does not allow for the simulation of

movable grids, the pitching movement of the aerofoil was simulated by changing the

far-field boundary conditions. PMB was run in serial mode, while PML was run using

the distributed implementation using one, four and eight cores.

The pressure coefficient over the aerofoil at two different instants of the simulation

are shown in Fig. 9.5. In the figure, the differences in the results obtained with different

number of cores are negligible, thus validating the parallel implementation. The results

88 of 126

x

C
p

0 0.2 0.4 0.6 0.8 1

-1

-0.5

0

0.5

1

1.5

2 Experimental
PMB
PML 1 Core
PML 4 Cores
PML 8 Cores

(a) α = 5.0°(upstroke).

x

C
p

0 0.2 0.4 0.6 0.8 1

-1

-0.5

0

0.5

1

1.5

2

2.5

Experimental
PMB
PML 1 core
PML 4 core
PML 8 core

(b) α = 4.82°(downstroke)

Figure 9.5: Surface pressure coefficients for the NACA0012 in pitching motion.

α

C
N

0 1 2 3 4 5

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8
Experimental
PMB
PML 1 Core
PML 4 Cores
PML 8 Cores

Figure 9.6: Normal force coefficient for NACA0012 in pitching motion.

from PMB and PML are in good general agreement, even though small differences are

found between the solvers, especially in the location of the shock over the aerofoil on

the downstroke. Finally, Fig. 9.6 shows the normal force coefficient on the aerofoil.

Even though both solvers show relatively large differences with the data obtained from

the experiments, the results from PMB and PML running on different number of cores

are again in good agreement. It is important to note that the discrepancies with the

experimental data are not a cause for concern, as they are explained by the fact that

the simulations were performed assuming inviscid flow.

9.4 Results for the Multi-Element Aerofoil Test Case

For the multi-element aerofoil test case, the preprocessor and flow solver were run in

both serial and parallel modes with different numbers of MPI processes. Fully turbulent

flow is assumed at a Reynolds number of 9 million, a free stream Mach number of 0.2,

89 of 126

(a) Mach number contours.

x/c

-C
P

-0.2 0 0.2 0.4 0.6 0.8 1

-1

0

1

2

3

4

5

6
Experimental
PML with big search regions
PML with small search regions

(b) Surface pressure distribution.

Figure 9.7: Flow solution for multi-element aerofoil test case.

and zero degrees angle of attack. To obtain the turbulent flow solution, the flow solver

was started from a converged Euler calculation on a coarser grid by using interpolation.

To achieve this, the same framework used to select stencils for points is used to find

possible interpolation candidates from the coarser grid. This way, the code forms

bounding boxes for all the points in the coarse and fine grids and searches for box

intersections. All the intersecting points in the coarse grid are interpolation candidates

for the points in the finer grid. The variables on all points in the finer grid are started

by making an average of the previous solution of all its candidates from the coarser

grid, weighted with the distance to the point in the finer grid.

The converged flow solution shown in Fig. 9.7(a) was obtained after the solver con-

verged five orders of magnitude for the mean flow variables. In the figure, the big

separation regions behind the forward slat and the flap cavity are clearly appreciated.

This case was used to test the modification to the method described in Section 8.2.1,

which makes the search regions of all points grow to the location of the central point

of an overlapping stencil, instead of growing the regions to the maximum dimension

of the overlapping stencil. Figure 9.7(b) shows virtually identical results from stencils

calculated using the small or big search regions, and both solutions show good agree-

ment for the surface pressure coefficient when compared with the experimental results

from [122].

The performance of the parallel preprocessor is measured by two metrics, memory

usage and speed-up. The case was run on a system of desktop machines and the

preprocessor was run separately in distributed (MPI only), shared (OpenMP only) and

hybrid (MPI/OpenMP) modes to test the performance of each implementation. The

domain decomposition was performed using the polar coordinates method aiming to

assign the same number of points to each process.

90 of 126

The parallel speed-up using the distributed implementation with one MPI process

per core is shown in Fig. 9.8. The performance of the parallel preprocessor is good

when using two MPI processes, but decreases as the number of processes is increased.

This can be explained by Figs. 9.9 and 9.10, where the run times for the preprocessing

operations for two and twelve processes are shown. These figures give an indication

of the load balance for the preprocessor. When using two MPI processes for instance,

the work load is well balanced and both processes finish their operations in about the

same time. When running in twelve processes on the other hand, the load balance is

not as good, resulting in some processes finishing much faster than the rest. In the

figures, the operations for blanking points and the final checking of the stencils are

omitted as their contribution to the total computation time is very small for this case.

The imbalance in the work load comes from the fact that the domain decomposition

cannot predict the cost of the operations per point as it was explained in Section 8.2.

Figure 9.11 shows the memory usage for each process when running the preprocessor on

one to twelve cores. As expected, for the higher number of processes the total memory

consumption increases. This is due to the extra data stored in regions of inter-process

overlap. Figure 9.12 shows the number of points initially assigned to each sub-domain

as well as the number of extra points received from other sub-domains for the runs

with two and twelve processes. To be consistent with the serial method, when running

twelve processors almost all of the processes have to store a bigger number of extra

points than the amount that was initially assigned to them. For this test case, the

large number of points to be exchanged is not a particular problem as the memory

overhead is manageable. For bigger cases however, this might constitute a problem as

it will be seen in the next test case. In Fig. 9.12 it is also clear that the smaller search

regions result in a lower number of points being communicated, which in turn results

in lower memory consumption. These results show that the change to smaller search

regions provides a positive effect, and they are used in the rest of this thesis.

The tests using the shared memory implementation were run on a workstation with

six cores using one thread per core. Figure 9.13(a) shows good speed-up, with an

efficiency of approximately 85% when using the maximum number of cores in the ma-

chine. The efficiency of the preprocessor decreases as the number of cores is increased,

as memory access becomes the bottleneck. When using a shared memory approach, the

memory usage of the preprocessor changes only by a small amount as more processes

are used. For this reason, the parallel speed-up is the only metric used to measure the

performance.

The hybrid implementation was tested with the preprocessor running on a dis-

tributed system using two, three and four computing nodes, with one MPI process

started on each of the nodes. Each of the MPI processes were parallelised on a different

number of threads using OpenMP. Separate tests were performed using two, three and

four threads per node, running one thread per core. Table 9.5 summarises the parallel

91 of 126

Number of Cores

S
pe

ed
-U

p

2 4 6 8 10 12

2

4

6

8

10

12
Linear
Blank Points
Tree Searches
Sort & Select
Final Checks
Total

Figure 9.8: Speed-up of preprocessor
for multi-element aerofoil case using dis-
tributed implementation with polar decom-
position, running one MPI process per core

MPI process

C
al

cu
la

tio
n

tim
e

in
 s

ec
on

ds

1 2
0

0.5

1

1.5

2

2.5

3

3.5

4

Tree Searches
Sort & Select
Parallel Overheads

Figure 9.9: Load balance for two pro-
cesses for multi-element aerofoil case using
distributed implementation with polar de-
composition

MPI process

C
al

cu
la

tio
n

tim
e

in
 s

ec
on

ds

1 2 3 4 5 6 7 8 9 10 11 12
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8 Tree Searches
Sort & Select
Parallel Overheads

Figure 9.10: Load balance for twelve MPI
processes for multi-element aerofoil case us-
ing distributed implementation with polar
decomposition

0

50

100

150

200

250

300

M
em

or
y

U
sa

ge
in

m
b

1 2 4 8 12
Number of Cores

Minimum per Processor
Maximum per Processor
Total

Figure 9.11: Preprocessor memory usage
for multi-element aerofoil case using dis-
tributed implementation with polar decom-
position

configurations that were tested. The parallel speed-up on hybrid mode is shown in

Fig. 9.13(b), along with the parallel speed-up for the MPI-only implementation, for

comparison. The figure shows an important increase in the performance of the paral-

lel preprocessor when running in hybrid mode. The reasons for this increase are that

running on a lower number of MPI processes means an increase in the load balance as

well as a reduction of the relative cost of the parallel overheads. Combining this with

the performance increase of the OpenMP-only implementation results in a much better

overall efficiency, with speed-up gains of 88% when using three nodes and four threads,

compared to twelve individual MPI processes (shown in red in Fig. 9.8).

As it was previously established, it is not possible to have an a-priori estimation of

the cost per point of the preprocessing operations. It is possible however, to calculate an

92 of 126

MPI process

N
um

be
r

of
 p

oi
nt

s
(t

ho
us

an
ds

)

1 2
0

10

20

30

40

50

60 Initial
Received with big search regions
Received with small search regions

(a) 2 processes

MPI Process

N
um

be
r

of
 p

oi
nt

s
(t

ho
us

an
ds

)

1 2 3 4 5 6 7 8 9 10 11 12
0

10

20

30

40

50

60 Received with big search regions
Received with small search regions
Initial

(b) 12 processes

Figure 9.12: Number of initial and communicated points per MPI process for multi-element
aerofoil case using distributed implementation with polar decomposition. Comparison of num-
ber of communication points between small and big search regions.

Table 9.5: Processor combinations in hybrid mode for multi-element aerofoil case.

MPI Processes Threads Total number of CPUs

2 2 4
2 3 6
2 4 8
3 2 6
3 3 9
3 4 12
4 2 8
4 3 12

estimate of this cost after the preprocessor finished calculating the stencils. This would

make it feasible to rebalance the partitions on subsequent calls to the preprocessor, as

it would be the case for transient simulations with moving bodies. To test this idea,

the preprocessor was run in serial mode and the CPU time needed to perform the tree

searches and the sorting and selecting of candidates was used as an estimation of the

cost per point of the operations. The parallel preprocessor was then started using a

domain decomposition based on the polar coordinates method, aiming to balance the

load, based on the cost estimation obtained previously. The parallel preprocessor was

run in hybrid mode on an increasing number of MPI processes (nodes) from two to

four and always using three threads per node. Comparing Fig. 9.14(a) to Fig. 9.10 it is

clear that the load is much better balanced when using four MPI processes and three

threads than when using twelve MPI processes. This results in the speed-up shown

in Fig. 9.14(b). The figure gives a clear increase in performance after readjusting the

93 of 126

Number of Cores

S
pe

ed
-U

p

1 2 3 4 5 6

1

2

3

4

5

6 Linear
Preprocessor (OpenMP)

(a) Shared memory implementation.

Number of Cores

S
pe

ed
-U

p

2 4 6 8 10 12

2

4

6

8

10

12 Linear Speed-Up
1 thread per node (MPI only)
2 threads per node
3 threads per node
4 threads per node

(b) Hybrid implementation.

Figure 9.13: Performance of parallel preprocessor for multi-element aerofoil using shared and
hybrid implementations.

MPI process

C
al

cu
la

tio
n

tim
e

in
 s

ec
on

ds

1 2 3 4
0

0.2

0.4

0.6 Tree Searches
Sort & Select
Parallel Overheads

(a) Load balance with 12 cores (4 MPI pro-
cesses and 3 threads each).

Number of Cores

S
pe

ed
-U

p

2 4 6 8 10 12

2

4

6

8

10

12
Linear Speed-Up
Blank Points
Tree Searches
Sort & Select
Final Checks
Total

(b) Speed-up with increasing number of MPI
processes and 3 threads each

Figure 9.14: Performance of parallel preprocessor for multi-element aerofoil using hybrid
implementation after rebalancing the partitions.

partitions, resulting for example in close to 50% decrease in the total calculation time

when running four MPI processes and three threads, compared to the same combination

before rebalancing the partitions (shown in blue with diamonds in Fig. 9.13(b)). It is

worth noting that after the cost assessment, the efficiency of the blanking and final

checks operations decreased. This is because the estimation of the cost was taken

only from the tree searches and the sorting and selecting of candidates. The cost of

the blanking and final checking of points was not included in the estimation, as their

contribution to the total cost is small.

94 of 126

9.5 Results for the Open-Source Fighter Test Case

For this test case the preprocessor and solver were run on a different number of cores

ranging from 12 to 96. The Polaris HPC cluster was again used for the calculations.

The flow solver simulated inviscid flow at an angle-of-attack of 3 degrees and a Mach

number of 0.5. The flow solution obtained from 96 cores is shown in Fig. 9.15. Here, the

surface pressure is plotted along with streamlines coloured by the stream-wise velocity.

The preprocessor was run in distributed mode using both the slice-based and polar-

based decompositions, on a different number of MPI processes ranging from 12 to 96,

using one process per core. Both decompositions aimed to balance the number of

points per process. The Polaris N8 cluster was again used for the calculations. As with

the previous case, memory usage and speed-up are the metrics used to measure the

performance of the parallel preprocessor.

Figure 9.15: OSF test case flow solution showing surface pressure and streamlines coloured
by stream-wise velocity.

When using the slice-based decomposition, and contrary to previously tested cases,

the most expensive operation of the preprocessor is the blanking of points. This can be

appreciated in figs. 9.16(a) to 9.16(d), which show the calculation times per operation,

per core for this type of decomposition. From the figures it is clear that the slice-

based decomposition does not result in a good load balance. The processes which were

assigned to the central points in the domain do most of the work, while the rest are left

idle, waiting for the others to finish. This behaviour is due to the fact that the points

that intersect solid boundaries are found on the centre of the domain.

95 of 126

MPI process

C
al

cu
la

tio
n

tim
e

in
 s

ec
on

ds

1 2 3 4 5 6 7 8 9 10 11 12
0

50

100

150

200

250

300

350
Blank Points
Parallel Overheads
Tree Searches
Sort & Select

(a) 12 processes

MPI process

C
al

cu
la

tio
n

tim
e

in
 s

ec
on

ds

2 4 6 8 10 12 14 16 18 20 22 24
0

20

40

60

80

100

120

140
Blank Points
Parallel Overheads
Tree Searches
Sort & Select

(b) 24 processes

MPI process

C
al

cu
la

tio
n

tim
e

in
 s

ec
on

ds

8 16 24 32 40 48
0

20

40

60

80

Blank Points
Parallel Overheads
Tree Searches
Sort & Select

(c) 48 processes

MPI process

C
al

cu
la

tio
n

tim
e

in
 s

ec
on

ds

6 12 18 24 30 36 42 48 54 60 66 72
0

10

20

30

40

50

60

70
Blank Points
Parallel Overheads
Tree Searches
Sort & Select

(d) 72 processes

Figure 9.16: Calculation times per operation, per process for OSF test case with slice-based
domain decomposition

When using the polar-based decomposition, the load balance is in general much bet-

ter compared to using the slice-based partitioning. The times per operation, per process

for the polar-based decomposition are shown in figures 9.17(a) to 9.17(d). This improve-

ment in load balance of the polar decomposition compared to the sliced-based parti-

tioning translates into a much faster preprocessing time as it can be seen in Fig. 9.18(c).

For this case, the polar decomposition proves to be in average 40% faster than the sliced

partitioning.

To give an indication of the load balance of the preprocessor, the following formula

is used:

ϕ = 100

(
1−

(
M̌ − m̂

)
M̌

)
(9.2)

where ϕ is the load balance percentage, M̌ is the maximum time taken by a process, and

96 of 126

MPI process

C
al

cu
la

tio
n

tim
e

in
 s

ec
on

ds

1 2 3 4 5 6 7 8 9 10 11 12
0

50

100

150 Blank Points
Parallel Overheads
Tree Searches
Sort & Select

(a) 12 processes

MPI process

C
al

cu
la

tio
n

tim
e

in
 s

ec
on

ds

2 4 6 8 10 12 14 16 18 20 22 24
0

20

40

60

80

Blank Points
Parallel Overheads
Tree Searches
Sort & Select

(b) 24 processes

MPI process

C
al

cu
la

tio
n

tim
e

in
 s

ec
on

ds

8 16 24 32 40 48
0

20

40

60
Blank Points
Parallel Overheads
Tree Searches
Sort & Select

(c) 48 processes

MPI process

C
al

cu
la

tio
n

tim
e

in
 s

ec
on

ds

6 12 18 24 30 36 42 48 54 60 66 72
0

10

20

30

40

50
Blank Points
Parallel Overheads
Tree Searches
Sort & Select

(d) 72 processes

Figure 9.17: Calculation times per operation, per process for OSF test case using polar-based
domain decomposition

m̂ is the minimum. This equation was used to calculate the load balance percentage

for each of the separate operations, and then a weighted average of these percentages

was used to obtain the values shown in Table 9.6. These values give an indication of

the overall load balance of the preprocessor.

The parallel speed-up achieved by the preprocessor using both decomposition tech-

niques can be seen in figures 9.18(a) and 9.18(b). Even though neither of the two

types of decomposition can guarantee an even load balance, an important reduction in

the preprocessing times is obtained with both of them. The reduction in the rate of

increase of the speed-up when using more processes is due to two reasons. The first is

that as shown in Table 9.6, the load balance decreases as more processes are added. The

second, is that the parallel overheads become more expensive in relation to the other

operations when using more processes, a fact which is clear when looking at figure 9.17.

97 of 126

Number of Cores

S
pe

ed
-U

p

12 24 36 48 60 72 84 96

1

2

3

4

5

6

7

8 Linear
Blank Points
Tree Searches
Sort & Select
Final Checks
Total

(a) Slice-based domain decomposition

Number of Cores

S
pe

ed
-U

p

12 24 36 48 60 72

1

2

3

4

5

6 Linear
Blank Points
Tree Searches
Sort & Select
Final Checks
Total

(b) Polar-based domain decomposition

Number of Cores

T
ot

al
 ti

m
e

in
 s

ec
on

ds

8 16 24 32 40 48 56 64 72 80 88 96

100

200

300

400

500

600 Slice-based decomposition
Polar-based decomposition
Indicative linear performance

(c) Calculation times

Figure 9.18: Parallel preprocessor speed-up for OSF case using distributed implementation
with two types of domain decomposition

In terms of memory usage, the parallel method yields mixed results. On one hand,

as expected, the memory usage per process decreases with more processes. On the

other hand, the rate of descent is not as high as expected and the total memory usage

increases dramatically when using more processes. This behaviour is due to the large

number of points that need to be exchanged for the method to be consistent with the

serial implementation, as explained in Chapter 8. The large number of points to be

communicated can be visualised in Figs. 9.19 and 9.20. From here, it is clear that

the polar-based partitioning results in considerably more points being exchanged than

with the slice-based decomposition. As with the previous test case, the use of smaller

search regions results in a lower number of points being communicated.

The memory usage with the small search regions is shown in figures 9.21(a)

and 9.21(b) for both types of domain decomposition. The number of cores per node

98 of 126

Table 9.6: Preprocessor load balance for OSF test case.

Slice-based decomposition Polar-based decomposition

Number of
processes

Overall load
balance

Number of
processes

Overall load
balance

12 19% 12 45%
24 16% 24 42%
48 8% 48 36%
72 6% 72 30%
96 7% - -

used for the calculations was fixed to twelve (out of 16 available per node) to decrease

the total memory usage per node. Using the slice-based domain decomposition the

total memory was manageable on this configuration running on 96 processes, but using

the polar-based decomposition the total memory exceeded the maximum per node and

the calculations failed. The solution to the problem would be to decrease the number

of cores per node used, but due to the fact that the number of cores per node used can

have a effect the efficiency of the calculations, no attempt was made to decrease this

number in an effort to keep the parallel comparisons fair. These are the reasons why

the calculation time data shown above increases only to 72 processes when using the

polar-based domain decomposition.

In an effort to alleviate some of the previously described difficulties, this test case

was also calculated using the hybrid MPI/OpenMP method. The case was run using

the polar-based decomposition on 12, 24 and 48 MPI processes with one, two and

four OpenMP threads each. The obtained parallel speed-up is shown in fig. 9.22(a)

and the calculation times are shown in fig. 9.22(b). Here, it is clear that the hybrid

method outperforms the distributed-only technique. Running on 48 cores for example,

the MPI-only method yields 82% parallel efficiency when compared to 12 processes,

while the hybrid method yields 89%. When using 96 cores the differences are even

more noticeable with the MPI-only method yielding 64% efficiency and the hybrid

method with 24 MPI processes and four threads resulting in 78% efficiency (when

compared to 12 processes). Another important benefit from using the hybrid method

is that the memory usage per cores is much lower than the MPI-only method. It was

previously described that with our current computing hardware, the maximum number

of processes that could be tested when using the MPI-only implementation with the

polar-based domain decomposition, was 72. By using the hybrid method it was possible

to run up to 192 cores with important gains in terms of speed-up and with memory

consumption maintained at the level of 48 MPI processes shown in fig. 9.21.

99 of 126

MPI Process

N
um

be
r

of
 p

oi
nt

s
(m

ill
io

ns
)

1 2 3 4 5 6 7 8 9 10 11 12
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0
Received with big search regions
Received with small search regions
Initial

(a) 12 processes using slice-based domain decom-
position

MPI Process

N
um

be
r

of
 p

oi
nt

s
(m

ill
io

ns
)

1 2 3 4 5 6 7 8 9 10 11 12
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0
Received with big search regions
Received with small search regions
Initial

(b) 12 processes using polar-based domain decom-
position

Figure 9.19: Number of points received per domain for OSF case running on 12 processes.

MPI Process

N
um

be
r

of
 p

oi
nt

s
(m

ill
io

ns
)

12 24 36 48 60 72
0.0

0.5

1.0

1.5

2.0

Received with small regions
Initial

(a) Slice-based domain decomposition

MPI Process

N
um

be
r

of
 p

oi
nt

s
(m

ill
io

ns
)

12 24 36 48 60 72
0.0

0.5

1.0

1.5

2.0

Received with small regions
Initial

(b) Polar-based domain decomposition

Figure 9.20: Points per domain running on 72 processes for OSF case with distributed imple-
mentation (points received with big regions were omitted as they showed a similar trend)

100 of 126

Number of Cores

M
em

or
y

us
ag

e
in

 G
B

12 24 36 48 60 72
0

2

4

6

8

10

12

14

16

18
Min. (Polar-based decomposition)
Max. (Polar-based decomposition
Min. (Slices-based decomposition)
Max. (Slices-based decomposition

(a) Memory usage per process

Number of Cores

M
em

or
y

us
ag

e
in

 G
B

12 24 36 48 60 72

50

100

150

200

250

300
Total (Polar-based decomposition)
Total (Slices-based decomposition)

(b) Total memory usage

Figure 9.21: Memory usage for the OSF case using two types of domain decomposition

Number of Cores

S
pe

ed
-U

p

24 48 72 96 120 144 168 192

2

4

6

8

10

12

14

16 Linear
MPI only
24 MPI + OpenMP
48 MPI + OpenMP

(a) Hybrid method speed-up

Number of Cores

Lo
g

(T
ot

al
 ti

m
e

in
 s

ec
on

ds
)

16 32 48 64 80 96 112 128 144 160 176 192

100

200

300

400

500
600
700
800

Indicative linear performance
MPI only
24 MPI + OpenMP
48 MPI + OpenMP

(b) Hybrid method calculation time (Log scale)

Figure 9.22: Parallel performance of the hybrid (MPI/OpenMP) method for OSF case.

101 of 126

Figure 9.23: Store-drop test case flow solution at t=0.

9.6 Results for the Transient Store-Drop Case

The store-drop test case was calculated using the preprocessor and solver in coupled

mode, running on 1 to 32 processes. The flow conditions for the test case are inviscid

flow at a Mach number of 1.2 and an angle of attack of zero degrees. To start the

simulation, the steady-state flow was calculated at the carriage position. The conver-

gence criteria for the steady calculation is a reduction of the residuals of five orders

of magnitude. The calculated flow-field and surface pressures at the initial position

are shown in Fig. 9.23. Figures 9.24(a) and 9.24(b) show the surface pressure coeffi-

cient on the store at t=0s compared to the experimental data from [121]. The figures

correspond to the data at two cross-section planes on the surface of the store. Both

planes cut the store longitudinally and are rotated along the store axis. The first one

is rotated by 5 degrees, while the second is rotated 95 degrees. Table 9.7 summarizes

the total forces and moments acting on the store compared to the experimental data

from [120]. These results show good agreement between PML and the experimental

data. The main differences observed are most likely due to the fact that the PML

values correspond to an inviscid simulation, and the fact that the store sting used in

the wind tunnel experiments was not included in the PML model.

After the steady-state solution has converged, the 6-DOF routine started calculating

the successive movement of the store using the loads calculated by the flow solver. The

time step used for the simulation is maintained constant at ∆t = 0.002 s and the final

time for the simulations was t = 0.35 s.

102 of 126

x

-C
P

0 0.2 0.4 0.6 0.8 1
-1.2

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

PML 5 degrees
Experiment 5 degrees

(a) Slice 1. 5° from XZ plane

x

-C
P

0 0.2 0.4 0.6 0.8 1
-1.2

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

PML 95 degrees
Experiments 95 degrees

(b) Slice 2. 95° from XZ plane

Figure 9.24: Surface pressure coefficient on the store at t = 0s, measured through two different
planes

Table 9.7: Aerodynamic forces and moments at carriage position (t=0s) for store-drop test
case. (All forces in N and moments in N ·m)

Fx Fy Fz Mx My Mz

Wind Tunnel 4893.0 2504.8 -2451.9 107.2 -3570.0 2896.7
PML 4693.7 2609.4 -2412.5 122.4 -3703.2 3081.8

Figure 9.25 shows the movement of the store as it falls from its carriage position, at

four different times during the simulation. The computed results for the relative dis-

placement and velocities of the store centre of gravity are compared to the experimental

data in Fig. 9.26. Similar plots for the angular position and angular rates are shown

in Fig. 9.27. From these results it is clear that the correlation between the calculated

and experimental data for the displacement of the centre of gravity (CG) is excellent.

The vertical movement was expected to correlate well, as it is dominated first by the

ejector forces and then by the gravitational force acting on the store. The lateral and

longitudinal movements on the other hand, are very much dependent on aerodynamic

loads and the numerical method provides good predictions for these values. Initially,

the store moves inwards towards the centre of the wing and then, it progressively moves

outwards. The longitudinal displacement increases steadily as the store falls and this

is well predicted by PML.

In terms of the angular attitude of the store, it can be seen that the yaw angle is

well predicted throughout the simulation. On the other hand, both the roll and pitch

angles are slightly over-predicted by PML. The maximum discrepancy in the roll angle

is of 0.6 degrees at t = 0.35 s. The maximum pitch angle calculated by PML is 5.85

degrees, compared to an experimental value of 5.45 degrees. Even so, PML correctly

103 of 126

(a)

(b)

(c)

Figure 9.25: Trajectory of the store during 6-DOF simulation.

104 of 126

Time in s

C
G

 m
ov

em
en

t i
n

m

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35

-1.5

-1

-0.5

0

0.5

Experimental X
Experimental Y
Experimental Z
PML X
PML Y
PML Z

(a) Relative displacement of the CG

Time in s

C
G

 v
el

oc
iti

es
 in

 m
/s

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35
-6

-5

-4

-3

-2

-1

0

1

2

3

4 Experimental Vx
Experimental Vy
Experimental Vz
PML Vx
PML Vy
PML Vz

(b) Velocities of the CG

Figure 9.26: Calculated trajectory and velocities of the centre of gravity.

Time in s

A
ng

ul
ar

 m
ov

em
en

t i
n

de
g

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35
-2

0

2

4

6

8

10

12

Experimental pitch
Experimental roll
Experimental yaw
PML pitch
PML roll
PML yaw

(a) Angular movement of the store

Time in s

A
ng

ul
ar

 r
at

es
 in

 d
eg

/s

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35

-40

-20

0

20

40

60

80 Experimental pitch rate
Experimental roll rate
Experimental yaw rate
PML pitch rate
PML roll rate
PML yaw rate

(b) Angular rates of the store

Figure 9.27: Calculated angular movements and rates.

predicts the time of this peak value to be around t = 0.2 s and the trend of both

the pitch and roll angles follow the experimental values correctly. There are two main

reasons that are likely to be behind the discrepancies on the angular movement of the

store. The first is the previously mentioned fact that the calculation was inviscid and

that the PML model did not include the store sting. The other reason is the Euler

integration method used to predict the velocities and positions in the 6-DOF method.

It is well known that the error of this first-order method is proportional to the step

size used. Because of time constraints, a study of sensitivity of the calculations to the

time-step was not performed.

The parallel efficiency of the method was also evaluated. Figure 9.28(a) shows the

parallel speed-up obtained for the preprocessor after the first iteration of the flow solver.

105 of 126

Number of Cores

P
ar

al
le

l S
pe

ed
-U

p

0 4 8 12 16 20 24 28 32
0

4

8

12

16

20

24

28

32 Linear
MPI only
Hybrid. (2 MPI + OMP)
Hybrid. (4 MPI + OMP)
Hybrid. (8 MPI + OMP)
Hybrid. (16 MPI + OMP)

(a) Preprocessor speed-up for the store-drop test
case

Number of Cores

S
pe

ed
-U

p

4 8 12 16 20 24 28 32

4

8

12

16

20

24

28

32
Linear
Total
Flow solver
Preprocessor

(b) Full time-step speed-up for the store-drop test
case

Figure 9.28: Parallel performance of the method for store-drop case.

This means that the preprocessor is using the domain decomposition given by the flow

solver. In the figure, the rate of increase of the speed-up for the parallel preprocessor

varies, as a different number of processes are used. This is due to the change in

load balance given by the domain decomposition. Using four processes for example,

the decompositions provided by the solver yields poor load balancing, resulting in a

parallel efficiency 64%. When increasing the number of processes to eight however, the

load balance proves to be much better and the efficiency increases to 76%. When using

16 and 32 processes similar efficiencies are obtained and the parallel method proves

to be scalable as the speed-up continues to climb when the number of processes is

increased. The figure also shows the parallel performance when the hybrid method is

used. As with the previous test cases, the hybrid method improves the performance

of the preprocessor. It is interesting to note however, that this is true only for cases

when the limiting factor for the MPI-only implementation is the load balance. In this

particular case, going from four to eight MPI processes results in a better load balance

as it was noted previously. For this reason, starting with four MPI processes and adding

hybrid threads results in lower performance than using eight MPI processes.

Finally, figure 9.28(a) shows the average parallel speed-up for a full time-step of the

simulation. This is the total time needed to calculate one iteration of the preprocessor-

solver loop as explained in Section 8.1. A hybrid implementation of the flow solver

had not being completed at the time of writing, hence the transient simulation of the

store release case was performed using the MPI-only method. The flow solver again

shows strong parallel performance with a minimum efficiency of 95% on 32 processes.

The computational cost per time-step of the flow solver is on average about 7.3 times

higher than the cost of the preprocessor for this test case. For this reason, the overall

106 of 126

Table 9.8: Average calculation per real time-step for store-drop case. (All times in seconds)

1 CPU 2 CPU 4 CPU 8 CPU 16 CPU 32 CPU

Flow Solver 3483.8 1751.2 884.2 446.6 226.7 115.2
Preprocessor 346.5 228.3 136.4 57.0 35.5 21.1

parallel performance of the method is quite good. The average values of the calculation

time per iteration are shown in Table 9.8. The fact that the flow solver proves to be

this much more expensive than the preprocessor justifies the decision of making the

preprocessor work with the domain decomposition given by the flow solver.

In the future, however, different domain decomposition methods for the preprocessor

should be investigated, as well as methods for changing the load balance of the flow

solver as the transient simulations progress.

107 of 126

108 of 126

Chapter 10

Conclusions and Future Work

In this thesis, the implementation of parallel methods for the simulation of turbulent

flows using a meshless scheme was investigated. The research started by implementing

the full Navier-Stokes equations onto an existing Euler meshless solver. The extension

of the original Euler meshless scheme was carried out by using central differences to

include the second derivatives (diffusive terms) of the governing equations. Turbulence

modelling was introduced by using Reynolds averaging with the Spalart-Allmaras clo-

sure equation. The extension to the original solver was tested with four different test

cases and validated by comparing the meshless scheme to computational results from

an established finite-volume solver and experimental data. Results showed good agree-

ment for flows in both laminar and turbulent regimes. Future work should include

the implementation of Large-Eddy Simulation(LES) and Detached-Eddy Simulation

(DES) models into PML to assess the capabilities of the meshless method to tackle

more advanced problems.

The second part of the thesis was dedicated at implementing parallel algorithms

into the meshless flow solver to improve the computational efficiency. The method uses

graph partitioning techniques to perform the domain decomposition and non-blocking

MPI commands to perform the parallel communication. In an effort to reduce the

parallel overheads, two techniques were used. The first is that the list of points that

need to be communicated are stored first. This way, their data is communicated as soon

as their variables are updated and processors are free to update the rest of their points

while the parallel exchange takes place. The second technique is that only local data

is used to form the preconditioner needed to solve the linear system of equations that

arises from the implicit integration method. The parallel meshless flow solver was tested

on different machines, ranging from a small cluster of workstations to dedicated HPC

machines. Two test cases that resemble real industrial applications were studied, a wing

in transonic flow conditions and a generic aircraft configuration with a grid size of more

than 40 million points. In both cases, the parallel flow solver shows good scalability

with the second test case in particular yielding over 90% parallel efficiency on 1024

109 of 126

processors when compared to 64. Results also showed that the asynchronous mode of

operation yields an average of 10% speed improvement over synchronous communication

techniques. During the tests, it was seen that when running in parallel, the use of an

incomplete preconditioner affects the convergence characteristics of the linear solver.

This resulted in the number of iterations needed to achieve convergence being different

when using a different number of processors. Even so, the variations of the total number

of iterations were small and the total reduction in calculation time was significant for

both test cases, showcasing the capabilities of the method to perform big calculations.

Finally, the development of a parallel automatic preprocessing tool for the selection

of stencils was presented. The preprocessor takes different overlapping grids that can

be stationary, or moving relative to one another, and selects meshless stencils which

are used by the flow solver to solve the governing equations. Three types of implemen-

tation were described. The first one follows a distributed memory approach using MPI

commands, the second one uses a shared memory approach with OpenMP directives

and the third is a hybrid method that combines the two previous ones.

The distributed method first decomposes the domain according to the geometry of

the problem, by using slices along the x coordinates or by using polar coordinates. It

then blanks the points internal to solid boundaries, and identifies which of the locally

stored points are to be sent to other processors for their stencil search. After the

parallel communication takes place, the method finds candidates for each of the points

in the domain, sorts these candidates according to a “merit” function and finally selects

the stencils that are sent to the flow solver. The shared memory method assumes

that all processors have access to the same data and parallelises the operations that

contain loops by dynamically assigning chunks of data to each of the processors at

run-time. The hybrid method combines the two previous approaches by dividing all

the available processors into groups. The method follows the distributed approach

described before in between these groups, but internally, it follows the shared memory

idea by parallelising the work in between the processors that form the group. When

performing parallel unsteady simulations where the preprocessor and flow solver are

coupled together, both of them use the same domain decomposition. This is done in

an effort to avoid introducing the overheads from performing the decomposition.

The first set of tests carried out with the preprocessor showed that the sorting

of the candidates was the most expensive operation of the method. Several different

sorting algorithms were tested in an effort to reduce this cost and it was found that the

Quicksort algorithm proves the fastest, reducing the sorting times by almost an order

of magnitude when compared to the original “brute-force” sorting algorithm.

Four test cases were then successfully computed, showcasing the method as a pow-

erful tool for applications where different component grids can move in relation to one

another. Of particular relevance, the fourth test case was the simulation of a store

being dropped from an aircraft. In this case, the parallel preprocessor and flow solver

110 of 126

were coupled with a 6-DOF module that calculates the motion of the store from the

aerodynamic loads. The method correctly predicted the movement of the store when

compared to experimental data. The proposed implementations of the parallel prepro-

cessor were successful in accelerating the calculation of meshless stencils and allowed

for the study of big cases resembling real industrial applications, that would otherwise

be impossible to compute using serial computers.

There were a few difficulties that were found in each of the implementations. When

testing the distributed memory method, three main problems were found. The first one

is the fact that the load balancing techniques included in the proposed implementation

proved far from perfect, thus hampering the parallel speed-up. This is due to the

fact that it is not possible to predict the computational cost per point of the different

operations performed by the preprocessor. The test cases proved that in fact, the

computational cost of the operations can vary from point to point by as much as three

orders of magnitude. The second problem found is that the communication overheads

can be significant, depending on the case to be tested and the number of processors used.

The final one is that the memory usage grows quickly when using more processors as

they need store data that was initially assigned to other processors. The main difficulty

found with the shared memory method is that the scheme is limited by the physical

memory of the machine to be used. The second is the fact that due to the design

of current computing hardware the access to the memory becomes slower when using

more processors.

By using the hybrid method however, some of the difficulties of both the distributed

and shared memory approaches are alleviated. Modern (and most likely all future)

hardware is designed around the use of chips that contain several processors sharing

a common memory bank. Most HPC machines use several of these chips connected

together. For this reason, it makes sense to use the shared memory method within one

chip and use the distributed approach among several chips. It was found that using the

hybrid method and combining several distributed processes with several threads each,

yields the best results both in terms of speed-up and memory usage.

When using the distributed or hybrid implementations, the polar-based decompo-

sition proves to be considerably faster than the slice-based partitioning on the cases

tested, but the memory usage of the polar based method is much higher than using the

slices technique. The recommendation then is to use the polar based decomposition

unless the problems are limited by memory usage.

As a final conclusion to this work, we can safely state that the initial objectives were

met. Furthermore, to the best of the authors knowledge, this is so far the only published

implementation of parallel methods applied to the problem of selecting stencils and

solving the flow governing equations using a meshless scheme aimed at aerodynamic

problems with movable geometry.

111 of 126

Future Work

Future work needs to include the parallel implementation of boundary re-definitions

when different bodies intersect. At the moment this capability is not included in the

parallel method, but if this scheme is to become valuable for real-life industrial appli-

cations this problem needs to be addressed. Future work should also include research

on how to optimize the size of the search regions used to select the candidates for

the stencil of any given point. This can have a major impact on the efficiency of the

parallel preprocessor. In the original method, the search regions for points located in

one processor can grow too big into the domain of other processors, especially in cases

where small stencils overlap big stencils close to inter-process boundaries. This results

in processors having to exchange big amounts of data with one another, thus hamper-

ing memory scalability. In an effort to reduce this problem, in this work the method

was slightly changed, with the search regions growing only to the location of the cen-

tral point of an overlapping stencil, instead of growing the regions to the maximum

dimension of the overlapping stencil. This simple change had a positive effect of the

method, with the parallel preprocessor needing to communicate less data to provide

the solver with stencils that produce virtually identical results to the ones calculated

with stencils selected using the original method. Other possible solutions that should

be tested in the future include using hole-cutting techniques on background grids to

reduce the number of stencils of detailed component grids (which are usually small)

that overlap the background stencils (which are normally big). One final suggestion is

to use data from previous time-steps during a transient simulation to limit the size of

the search regions.

The final suggestion for future work is that a shared memory implementation and in

turn, a hybrid MPI/OpenMP implementation of the flow solver needs to be completed,

in order for the hybrid preprocessing method to work in transient simulations when

the preprocessor is coupled with the flow solver. Progress has been made towards this

goal, but further testing is needed to provide conclusive results of the capabilities of

the hybrid flow solver.

112 of 126

Bibliography

[1] Thompson, J. F., Soni, B. K., and Weatherill, N. P., Handbook of Grid Genera-

tion, CRC Press, 1999.

[2] Mondal, P., Munikrishna, N., and Balakrishnan, N., “Cartesian-Like Grids Using

a Novel Grid-Stitching Algorithm for Viscous Flow Computations,” Journal of

Aircraft , Vol. 44, 2007.

[3] Baker, T. J., “Mesh Generation: Art or Science?” Progress in Aerospace Sciences,

Vol. 41, 2005, pp. 29–63.

[4] Murman, S. M., Aftosmis, F. J., and Berger, M., “Simulations of Store Separation

from an F/A-18 with a Cartesian Method,” Journal of Aircraft , Vol. 41, 2004.

[5] Zeeuw, D. D. and Powell, K. G., “An Adaptively Refined Cartesian Mesh Solver

for the Euler Equations,” Journal of Computational Physics, Vol. 104, 1993,

pp. 56–68.

[6] Clarke, D. K., Salas, M. D., and Hassan, H. A., “Euler Calculations for Multi

Element Airfoils Using Cartesian Grids,” AIAA Journal , Vol. 24, 1986, pp. 353–

358.

[7] Meyer, M., Simulation of Complex Turbulent Flows on Cartesian Adaptive Grids,

Ph.D. thesis, Technical University of Munich, 2013.

[8] Lee, J. D. and Ruffin, S. M., “Solution of Turbulent Flow using a Cartesian

Grid Based Numerical Scheme,” International Conference on computational and

Information Sciences Aerospace Systems Engineering , 2009, pp. 612–472.

[9] Lee, J. D., Development of an Efficient Viscous Approach in a Cartesian Grid

Framework and Application to Rotor-Fuselage Interaction, Ph.D. thesis, Georgia

Institute of Technology, 2006.

[10] Coirier, W. J. and Powell, K. G., “Solution-Adaptive Cartesian Cell Approach

for Viscous and Inviscid Flows,” AIAA Journal , Vol. 34, 1996, pp. 938–945.

113 of 126

[11] Wang, Z. J. and Chen, R. F., “Anisotropic Solution-Adaptive Viscous Cartesian

Grid Method for Turbulent Flow Simulation,” AIAA Journal , Vol. 4, 2002.

[12] Frymier, P. D., Hassan, H. A., and Salas, M. D., “Navier-Stokes Calculations Us-

ing Cartesian Grids, 1: Laminar Flows,” AIAA Journal , Vol. 26, 1988, pp. 1181–

1188.

[13] Mavriplis, D. J., “Adaptive Mesh Generation for Viscous Flows Using Delaunay

Triangulation,” Journal of Computational Physics, Vol. 90, 1990, pp. 271–291.

[14] Peraire, J., Peiro, J., and Morgan, K., “Adaptive Remeshing for Three-

Dimensional Compressible Flow Computations,” Journal of Computational

Physics, Vol. 103, 1992, pp. 269–285.

[15] Hassan, O., Probert, E. J., Morgan, K., and Peraire, J., “Mesh Generation and

Adaptivity for the Solution of Compressible Viscous High Speed Flows,” Interna-

tional Journal for Numerical Methods in Engineering , Vol. 148, 1995, pp. 1123–

1148.

[16] Zagaris, G., Campbell, M., Bodony, D. J., Shaffer, E., and Brandyberry, M., “A

Toolkit for Parallel Overset Grid Assembly Targeting Large-Scale Moving Body

Aerodynamic Simulations,” 19th International Meshing Roundtable, 2010.

[17] Alleaume, A., Francez, L., Loriot, M., and Maman, N., “Large Out-of-Core Tetra-

hedral Meshing,” Proc. 16th International Meshing Roundtable, Vol. Sandia Na-

tional Laboratory, 2007.

[18] Andrae, H., Ivanov, E., Gluchshenko, O., and Kudryavtsev, A., “Automatic

Parallel Generation of Tetrahedral Grids by Using a Domain Decomposition

Approach,” Journal of Computational Mathematics and Mathematical Physics,

Vol. 48, 2008, pp. 1448–1457.

[19] Chrisochoides, N., Parallel Mesh Generation, Springer, 2005.

[20] de Cougny, H. L., Shephard, M. S., and Ozturan, C., “Parallel Three-Dimensional

Mesh Generation,” Computing Systems in Engineering , Vol. 5, 1994, pp. 311–323.

[21] Ivanov, E. G., Andrae, H., and Kudryavtsev, A., “Domain Decomposition Ap-

proach for Automatic Parallel Generation of Tetrahedral Grids,” International

Mathematical Journal Computational Methods in Applied Mathematics, Vol. 6,

2006, pp. 178–193.

[22] Rai, M. H., “Navier-Stokes Simulations of Rotor/Stator Interaction using Patched

and Overlaid Grids,” Journal of Propulsion and Power , Vol. 3, 1987, pp. 387–396.

114 of 126

[23] Mathur, S., “Unsteady Flow Simulations using Unstructured Sliding Meshes,”

AIAA Journal , 1994.

[24] Wang, M. H., Calabrese, R. V., and Bakker, A., “Effect of Reynolds Number

on the Flow Generated by a Pitched Blade Turbine,” 45th CSChE Conference,

Qubec City , 1995.

[25] Nam, H. J., Park, Y., and Kwon, O. J., “Simulation of Unsteady Rotor-Fuselage

Aerodynamic Interaction Using Unstructured Adaptive Meshes,” Journal of the

American Helicopter Society , Vol. 51, 2006, pp. 141–149.

[26] Steijl, R. and Barakos, G., “Computational Investigation of Rotor-Fuselage In-

teractional Aerodynamics using Sliding-Plane CFD Method,” AIAA Journal ,

Vol. 47, 2009, pp. 2143–2157.

[27] Murthy, J. Y., Mathur, S. R., and Choudhury, D., “CFD Simulation of Flows in

Stirred Tank Reactors Using a Sliding Mesh Technique,” Mixing 8, Proceedings of

The Eighth European Conference on Mixing, Institution of Chemical Engineers,

Vol. Symposium Series No. 136, 1994, pp. 341–348.

[28] Adami, P. and Martelli, F., “Three-Dimensional Unsteady Investigation of HP

Turbine Stages,” Journal of Power and Energy , Vol. 220, 2006, pp. 155–167.

[29] Rivera, C. A., Heniche, M., Bertrand, F., Glowinski, R., and Tanguy, P., “A

Parallel Finite Element Sliding Mesh Technique for the Simulation of Viscous

Flows in Agitated Tanks,” International Journal for Numerical Methods in Flu-

ids, Vol. 69, 2012, pp. 653–670.

[30] Gomez-Iradi, S., CFD for Horizontal Axis Wind Turbines, Ph.D. thesis, School

Of Engineering. University of Liverpool, 2009.

[31] McNaughton, J., Afgan, I., Apsley, D. D., Rolfo, S., Stallard, T., and Stansby, K.,

“A Simple Sliding-Mesh Interface Procedure and its Application to the CFD Sim-

ulation of a Tidal-Stream Turbine,” International Journal for Numerical Methods

in Fluids, Vol. 74, 2014, pp. 250–269.

[32] Steijl, R. and Barakos, G., “Sliding Mesh Algorithm for CFD Analysis of He-

licopter Rotor-Fuselage Aerodynamics,” International Journal for Numerical

Methods in Fluids, Vol. 58, 2008, pp. 527–549.

[33] Steger, J. L., Dougherty, F. C., and Benek, J. A., “A Chimera Grid Scheme,”

Advances in Grid Generation ASME FED , Vol. 5, 1983, pp. 59–69.

[34] Suhs, N. E., Rogers, S. E., and Dietz, W. E., “PEGASUS 5: An Automatic Pre-

Processor for Overset-Grid CFD,” AIAA Paper 2002-3186. AIAA 32ND Fluid

Dynamics Conference, St. Louis, 2002.

115 of 126

[35] Meakin, R. L., Composite Overset Structured Grids, CRC Press, 1999.

[36] Benoit, C., Jeanfaivre, G., and Canonne, E., “Synthesis of ONERA Chimera

Method Developed in the Frame of CHANCE Program,” 31st European Rotorcraft

Forum. Florence, Italy , 2005.

[37] Boger, D. and Dreyer, J., “Prediction of Hydrodynamic Forces and Moments for

Underwater Vehicles Using Overset Grids,” AIAA Paper 2006-1148. 44th AIAA

Aerospace Sciences Meeting And Exhibit , 2006.

[38] Boger, D., Noack, R. W., and Amar, R. W., “Overset Grid Applications in Hy-

personic Flow Using the DPLR Flow Solver,” AIAA Paper 2008-921. 46th AIAA

Aerospace Sciences Meeting And Exhibit , 2008.

[39] Tarhan, E. and Kavsaoglu, M. S., “Parallel Overset-Grid Euler Solution of

Generic Wing Pylon and Finned Store,” Journal of Aircraft , Vol. 42, 2005.

[40] Kao, K. H. and Liou, M. S., “Advance in Overset Grid Schemes: From Chimera

to DRAGON Grid,” AIAA JOURNAL, Vol. 33, 1995.

[41] Wissink, A. M. and Meakin, R. L., “Computational Fluid Dynamics with Adap-

tive Overset Grids on Parallel and Distributed Computer Platforms,” Interna-

tional Conference on Parallel and Distributed Computing , 1998.

[42] Prewitt, N. C., Belk, D. M., and Shyy, W., “Parallel Computing of Overset

Grids for Aerodynamic Problems with Moving Objects,” Progress in Aerospace

Sciences, Vol. 36, 2000, pp. 117–172.

[43] Zagaris, G., Campbell, M., Bodony, D. J., Shaffer, E., and Brandyberry, M. D.,

“A Toolkit for Parallel Overset Grid Assembly Targeting Large-Scale Moving

Body Aerodynamic Simulations,” Proceedings of the 19th International Meshing

Roundtable, 2010, pp. 385–401.

[44] Landmann, B. and Montagnac, M., “A Highly Automated Parallel Chimera

Method for Overset Grids Based on the Implicit Hole Cutting Technique,” Inter-

national Journal for Numerical Methods in Fluids, Vol. 66, 2010, pp. 778–804.

[45] Kennett, D. J., Timme, S., Angulo, J. J., and Badcock, K. J., “An Implicit

Meshless Method for Application in Computational Fluid Dynamics,” Interna-

tional Journal for Numerical Methods in Fluids, Vol. 71, 2012, pp. 1007–1028.

[46] Kennett, D. J., Angulo, J., Timme, S., and Badcock, K. J., “Semi-Meshless Sten-

cil Selection on Three-Dimensional Anisotropic Point Distributions with Parallel

Implementation,” AIAA Paper 2013–0867. Presented at the 51st AIAA Aerospace

Sciences Meeting, Grapevine, Texas, 2013.

116 of 126

[47] Lucy, L. B., “A Numerical Approach to the Testing of the Fission Hypothesis,”

Astronomical Journal , Vol. 93, 1977, pp. 1013–1024.

[48] Monaghan, J. J. and Gingold, R. A., “Shock Simulation by the Particle Method

SPHs,” Journal of Computational Physics, Vol. 52, 1983, pp. 374–389.

[49] Swegle, J. W., Hicks, D. L., and Attaway, S. W., “Smoothed Particle Hydro-

dynamics Stability Analysis,” Journal of Computational Physics, Vol. 16, 1995,

pp. 123–134.

[50] Dyka, C. T., Randles, P. W., and Ingel, P., “Stress Points for Tension Instability

in SPH,” International Journal for Numerical Methods in Engineering , Vol. 40,

1997, pp. 2325–2341.

[51] Liu, G. R., Meshfree Methods: Moving Beyond the Finite Element Method , CRC

Press, 2003.

[52] Liu, G. R. and Gu, Y. T., An Introduction to Meshfree Methods and Their Pro-

gramming , SPRINGER, 2005.

[53] Liu, M. B. and Liu, G. R., “Smoothed Particle Hydrodynamics:A Meshfree Par-

ticle Method,” World Scientific Publishing , Vol. 620, 2003, pp. 89–119.

[54] Li, S. and Liu, W. K., “Meshless and Particle Methods and their Applications,”

Applied Mechanics Review , Vol. 55, 2002, pp. 1–34.

[55] Bernal, F. M., Meshless Methods for Elliptic and Free-Boundary Problems, Ph.D.

thesis, Universidad Carlos III de Madrid, 2008.

[56] Nayroles, B., Touzot, G., and Villon, P., “Generalizing the Finite Element

Method: Diffuse Approximation and Diffuse Elements,” Computational Mechan-

ics, Vol. 10, 1992, pp. 307–318.

[57] Breitkopf, P., Rassineux, A., Savignat, J. M., and Villon, P., “Integration Con-

straint in Diffuse Element Method,” Computer Methods in Applied Mechanics

and Engineering , Vol. 193, 2004, pp. 1203–1220.

[58] Belytschko, T., Lu, Y., and Gu, L., “Element-Free Galerkin Methods,” Interna-

tional Journal for Numerical Methods in Engineering , Vol. 37, 1994, pp. 229–256.

[59] Viana, S. A., Rodger, D., and Lai, H. C., “Overview of Meshless Methods,”

International Compumag Society Newsletter , Vol. 14, 2007.

[60] Atluri, S. N. and Zhu, T., “A new Meshless Local Petrov-Galerkin (MLPG) Ap-

proach In Computational Mechanics,” Computational Mechanics, Vol. 22, 1998,

pp. 117–127.

117 of 126

[61] Katz, A., Meshless Methods for Computational Fluid Dynamics, Ph.D. thesis,

Stanford University, 1999.

[62] Atluri, S. N., Kim, H. G., and Cho, J. Y., “A Critical Assessment of the Truly

Mesh-less Local Petrov-Galerkin (MLPG) and Local Boundary Integral Equation

(LBIE) Methods,” Computational Mechanics, Vol. 24, 1999, pp. 348–372.

[63] Lin, H. and Atluri, S. N., “The Meshless Local Petrov-Galerkin (MLPG) Method

for Solving Incompressible Navier-Stokes Equations,” Computer Modeling in En-

gineering and Sciences, Vol. 2, 2001, pp. 117–142.

[64] Batina, J. T., “A Gridless Euler/Navier-Stokes Solution Algorithm for Complex

Aircraft Applications,” AIAA Paper 1993-0333. AIAA 31ST Aerospace Sciences

Meeting and Exhibit, Reno, NV,, 1993.

[65] Oñate, E., Idelsohn, S., Zienkiewicz, O. C., Taylor, R. L., and Sacco, C., “A Sta-

bilized Finite Point Method For Analysis of Fluid Mechanics Problems,” Compu-

tational Methods in Applied Mechanical Engineering , Vol. 139, 1996, pp. 315–346.

[66] Oñate, E., Idelsohn, S., Zienkiewicz, O. C., and Taylor, R. L., “A Finite Point

Method in Computational Mechanics. Applications to Convective Transport

and Fluid Flow,” International Journal for Numerical Methods In Engineering ,

Vol. 39, 1996, pp. 3839–3866.

[67] Oñate, E. and Idelsohn, S., “A mesh-free finite point method for advective-

diffusive transport and fluid flow problems,” Computational Mechanics, Vol. 21,

No. 4–5, 1998, pp. 283–292.

[68] Katz, A. and Jameson, A., “A Meshless Volume Scheme,” AIAA Paper 2009-

3534. 19th AIAA Computational Fluid Dynamics. 22 - 25 June 2009, San Anto-

nio, Texas, 2009.

[69] Shirazaki, M. and Yagawa, G., “Large-Scale Parallel Flow Analysis Based on Free

Mesh Method: a Virtually Meshless Method,” Computational Methods in Applied

Mechanical Engineering , Vol. 174, 1999, pp. 419–431.

[70] Gunther, F., Liu, W., Diachin, D., and Christon, M., “Multi-Scale Meshfree

Parallel Computations for Viscous, Compressible Flows,” Computational Methods

in Applied Mechanical Engineering , Vol. 190, 2000, pp. 279–303.

[71] Li, J. and Hon, Y., “Domain Decomposition for Radial Basis Meshless Methods,”

Numerical Methods for Partial Differential Equations, Vol. 20, 2004, pp. 450–462.

[72] Kosec, G., Depolli, M., Rashkovska, A., and Trobec, R., “Super Linear Speedup

in a Local Parallel Meshless Solution of Thermo-Fluid Problems,” Computers and

structures, Vol. 133, 2013, pp. 30–38.

118 of 126

[73] Yagawa, G. and Shirazaki, M., “Parallel Computing for Incompressible Flow

Using a Nodal-Based Method,” Computational Mechanics, Vol. 23, 1999, pp. 209–

217.

[74] Fujisawa, T., Inaba, M., and Yagawa, G., “Parallel Computing of High-Speed

Compressible Flows Using a Node-Based Finite-Element Method,” International

Journal for Numerical Methods in Engineering , Vol. 58, 2003, pp. 481–511.

[75] Flynn, M., “Some Computer Organizations and Their Effectiveness,” IEEE

Transactions on Computers, Vol. 21, 1972, pp. 948–960.

[76] Guerrero, M. S., Parallel Multigrid Algorithms for Computational Fluid Dynamics

and Heat Transfer , Ph.D. thesis, Department of Machines and Thermal Engines.

Universitat Politecnica de Catalunya, 2000.

[77] Lewis, T. G. and El-Rewini, H., Introduction to Parallel Computing , Prentice

Hall, 1992.

[78] Davis, D. E., A Parallel Computational Fluid Dynamics Unstructured Grid Gen-

erator , Ph.D. thesis, Graduate School of Engineering. Air Force Institute of Tech-

nology, 1993.

[79] Amdahl, G., “Validity of the Single-Processor Approach to Achieving Large Scale

Computing Capabilities,” Proceedings of AFIPS Conference, 1967, pp. 483–485.

[80] Gustafson, J. L., “Reevaluating Amdahl’s Law,” Communications of the ACM ,

Vol. 31, 1988, pp. 532–533.

[81] Baldwin, B. S. and Barth, T. J., “A One-Equation Turbulence Transport

Model for High Reynolds Number Wall-Bounded Flows,” NASA Tech. Memo,

Vol. 102847, 1990.

[82] Yakhot, V., Orszag, S. A., Gatski, T. B., and Speziale, C. G., “Development of

turbulence models for shear flows by a double expansion technique,” Physics of

Fluids A, Vol. 4, 1992, pp. 1510–1520.

[83] Bertin, J. J., Periaux, J., and Ballmann, J., Advances in Hypersonics: Modeling

Hypersonic Flows, Birkhauser Boston, 1992, ISBN: 0817636633.

[84] Chen, C. J., Fundamentals Of Turbulence Modelling , CRC Press, 1997.

[85] Libby, P. A., An Introduction To Turbulence, CRC Press, 1996.

[86] Barakos, G., Study of Unsteady Aerodynamics Phenomena Using Advanced Tur-

bulence Closures, Ph.D. thesis, Faculty of Technology. University of Manchester,

2009.

119 of 126

[87] Spalart, P. R. and Allmaras, S. R., “A One-Equation Turbulence Model for Aero-

dynamic Flows,” AIAA Paper 92-0439 , 1992.

[88] Belytschko, T., Krongauz, Y., Organ, D., Fleming, M., and Krysl, P., “Meshless

Methods: an Overview and Recent Developments,” Computational Methods in

Applied Mechanical Engineering , Vol. 139, 1996, pp. 3–47.

[89] Roe, P. L., “Approximate Riemann Solvers, Parameter Vectors and Difference

Schemes,” Journal of Computational Physics, Vol. 43, 1981, pp. 357–372.

[90] Michalak, K. and Ollivier-Gooch, C., “Limiters for Unstructured Higher-Order

Accurate Solutions of the Euler Equations,” AIAA Forty-Sixth Aerospace Sci-

ences Meeting , 2008.

[91] Barth, T. J. and Jespersen, D. C., “The Design and Application of Upwind

Schemes on Unstructured Meshes,” AIAA paper , Vol. 89, 1989.

[92] Mavriplis, D. J., “Unstructured Mesh Discretisations and Solvers for Computa-

tional Aerodynamics,” AIAA Paper 2007-3955, 18th AIAA Computational Fluid

Dynamics Conference, Miami, Florida, 2007.

[93] Axelsson, O., Iterative Solution Methods, Cambridge University Press, 1994.

[94] Eisenstat, S., Elman, H., and Schultz, M., “Variational Iterative Methods for

Nonsymmetric Systems of Linear Equations,” SIAM Journal of Numerical Anal-

ysis, Vol. 20, 1983, pp. 345–357.

[95] Saad, Y., Iterative Methods for Sparse Linear Systems. 2nd Edition, Society for

Industrial and Applied Mathematics, 2003.

[96] Jameson, A., “Time Dependent Calculations Using Multigrid, with Applications

to Unsteady Flows Past Airfoils and Wings,” AIAA Paper 91-1596, AIAA 10TH

Computational Fluid Dynamics Conference, Honolulu, 1991.

[97] Badcock, K. J., Richards, B. E., and Woodgate, M. A., “Elements of Com-

putational Fluid Dynamics on Block Structured Grids Using Implicit Solvers,”

Progress in Aerospace Sciences, Vol. 36, 2000, pp. 351–392.

[98] Barakos, G., Steijl, R., Badcock, K. J., and Brocklehurst, A., “Development of

CFD Capability for Full Helicopter Engineering Analysis,” 31st European Rotor-

craft Forum, Vol. Florence, 2005.

[99] Spentzos, A., Barakos, G., Badcock, K. J., Richards, B. E., Wernert, P., Schreck,

S., and Raffel, M., “CFD Investigation of 2D and 3D Dynamic Stall,” AIAA

Journal , Vol. 35, 2005, pp. 10231033.

120 of 126

[100] Vallespin, D., Da Ronch, A., Boelens, O., and Badcock, K. J., “Vortical Flow

Prediction Validation for an Unmanned Combat Air Vehicle Model,” Journal of

Aircraft , Vol. 48, 2011, pp. 1948–1959.

[101] Tritton, T. J., “Experiments on the Flow Past a Circular Cylinder at Low

Reynolds Numbers,” Journal of Fluid Mechanics, Vol. 6, 1959, pp. 547–567.

[102] Taneda, S., “Experimental Investigation of the Wakes behind Cylinders and

Plates at Low Reynolds Numbers,” Journal of the Physical Society of Japan,

Vol. 11, 1956, pp. 302–307.

[103] Williamson, C. H. K. and Roshko, A., “Measurements of Base Pressure in

the Wake of a Cylinder at Low Reynolds Numbers,” Zeitschrift Fuer Flugwis-

senschaften und Weltraumforschung , Vol. 14, 1990, pp. 38–46.

[104] Subhankar, S., Sanjay, M., and Biswas, B., “Steady Separated Flow Past a Circu-

lar Cylinder at Low Reynolds Numbers,” Journal of Fluid Mechanics, Vol. 620,

2009, pp. 89–119.

[105] Cook, P. H., McDonald, M. A., and Firmin, M. C. P., Aerofoil RAE 2822 Pressure

distributions, and Boundary Layer and Wake Measurements, AGARD AR 138,

1979.

[106] Timme, S., Transonic Aeroelastic Instability Searches Using a Hierarchy of Aero-

dynamic Models, Ph.D. thesis, University of Liverpool, 2010.

[107] Karypis, G. and Kumar, V., “A Fast and High Quality Multilevel Scheme for

Partitioning Irregular Graphs,” SIAM. Journal on Scientic Computing , Vol. 20,

1999, pp. 359–392.

[108] Woodgate, M., Badcock, K. J., and Richards, B. E., “A Parallel 3D Fully Implicit

Unsteady Multiblock CFD Code Implemented on a Beowulf Cluster,” Parallel

CFD , Vol. 20, 1999, pp. 359–392.

[109] Schmitt, V. and Charpin, F., “Pressure Distributions on the ONERA-M6-Wing

at Transonic Mach Numbers,” AGARD, TR AR138 , 1979.

[110] Lain, K. R., Klausmeyer, S. M., Zickuhr, T., Vassberg, J. C., Wahls, R. A., Morri-

son, J. H., Brodersen, O., Rakowitz, E., Tinoco, E. N., and Godard, J. L., “Data

Summary from Second AIAA Computational Fluid Dynamics Drag Prediction

Workshop,” Journal of Aircraft , Vol. 42, 2005, pp. 1165–1178.

[111] Vassberg, J., Tinoco, E., Mani, M., Rider, B., Zickuhr, T., Levy, D., Broderson,

O., Eisfeld, B., Crippa, S., Wahls, R., Morrison, J., Mavriplis, D., and Mu-

rayama, M., “Summary of the Fourth AIAA CFD Drag Prediction Workshop,”

121 of 126

AIAA 2010-4547, 28th AIAA Applied Aerodynamics Conference, Chicago, IL,

June 2010.

[112] Martin, M., Andres, E., Widhalm, M., Bitrian, P., and Lozano, C., “CAD-Based

Aerodynamic Shape Design Optimization with the DLR Tau Code,” Paper ICAS

2010-2.6.1 27th Congress of International Council of the Aeronautical Sciences.

Nice, France, 2010.

[113] Kennett, D. J., Timme, S., Angulo, J. J., and Badcock, K. J., “Semi-Meshless

Stencil Selection for Anisotropic Point Distributions,” International Journal of

Computational Fluid Dynamics, Vol. 26, 2012, pp. 463–487.

[114] Bonet, J. and Peraire, J., “An Alternating Digital Tree (ADT) Algorithm for

3D Geometric Searching and Intersection Problems,” International Journal of

Numerical Methods in Engineering , Vol. 31, 1991, pp. 1–17.

[115] Cormen, T. H., Leiserson, C. E., Rivest, R. L., and Stein, C., Introduction to

Algorithms, The MIT Press, 2009, ISBN: 0262033844.

[116] J’aJ’a, J., An Introduction to Parallel Algorithms, Addison-Wesley Pub Co, 1992.

[117] Landon, R. H., “NACA 0012. Oscillatory and Transient Pitching,” Technical

Report , Vol. AGARDR702, 1982.

[118] Valarezo, W. O., McGhee, R. J., Goodman, W. L., and Paschal, K. B., “Multi-

Element Airfoil Optimization for Maximum Lift at High Reynolds Numbers,” In

Proceedings of the AIAA 9th Applied Aerodynamics Conference, Vol. Washington,

DC, 1991, pp. 969–976.

[119] Marques, S., Badcock, K. J., Khodaparast, H. H., and Mottershead, J. E., “Tran-

sonic Aeroelastic Stability Predictions Under the Inuence of Structural Variabil-

ity,” Journal of Aircraft , Vol. 47, 2010, pp. 1229–1239.

[120] Carman, J. B., Hill, D. W., and Christopher, J. P., “Store Separation Testing

Techniques at the Arnold Engineering Development Center, Volume II: Descrip-

tion of Captive Trajectory Store Separation Testing in the Aerodynamic Wind

Tunnel (4T),” Arnold Engineering Development Centre-TR-79-1 , Vol. 2, 2000.

[121] Fox, J. H., “Generic Wing, Pylon, and Moving Finned Store,” Verification and

Validation Data for Computational Unsteady Aerodynamics, Vol. RTO Technical

Report, 2000.

[122] Chin, V. D., Peter, D. W., Spaid, F. W., and McGhee, R. J., “Floweld Measure-

ments About a Multi-Element Airfoil at High Reynolds Numbers,” AIAA paper

93-3137 , Vol. 31, July 1993.

122 of 126

Appendix A

Appendices

A.1 Decomposition by Polar Coordinates

One of the domain decomposition methods used in this work uses polar coordinates as

a basis for two-dimensional problems and cylindrical coordinates for three-dimensional

ones. In two dimensions, the original cartesian coordinates (X and Z) of the points

are transformed. In three-dimensional problems, the user selects in which plane (XZ

or YZ) to perform the polar transformation and the third axis is extruded from this

plane. In any of the cases, the transformation from Cartesian to Polar coordinates is

done using the following equations:

r =

√
x′2 + y′2 (A.1)

ϕ = atan2(y′, x′) (A.2)

where x′ and y′ are the selected horizontal and vertical coordinates, r and ϕ are the

radius and angle in the polar coordinates respectively and atan2 is a variation of the

arc-tangent function defined as:

atan2(a, b) =



arctan(b
a
), if a > 0

arctan(b
a
) + π, if a < 0 and b ≥ 0

arctan(b
a
)− π, if a < 0 and b < 0

π
2
, if a = 0 and b > 0

−π
2
, if a = 0 and b < 0

undefined, if a = 0 and b = 0

(A.3)

123

A.2 6-DOF Motion Simulation

This appendix describes the implementation of the motion simulation of unconstrained

rigid-bodies onto PML. A rigid body in space has six degrees of freedom (6-DOF), three

translations and three rotations. Because of this, the kinematics of any body in space

are fully described by the position of one point in the body (usually taken at the centre

of mass) and the angular orientation (attitude) of the body in respect with an external

reference system. The external reference system used in this work is an inertial (and

hence, fixed) reference system, called ground. In order to define the angular motion of

the body, a second reference system called body-fixed is introduced. This body-fixed

system is the unique frame defined by the principal axes of the moments of inertia of

the body. The ground and body-fixed systems can be seen in Fig. A.1.

The attitude of the body-fixed system relative to the ground is tracked by using

quaternions, commonly known as Euler Parameters:

p = [e0 e1 e2 e3]
T (A.4)

In simple terms, the Euler parameters can be seen as describing the attitude of the

object by defining one axis of rotation (a) and the angle of rotation (φ) about that

axis.

e0 = cos
φ

2

e1 = axsin
φ

2

e2 = aysin
φ

2

e3 = azsin
φ

2

Figure A.1: Ground reference system, denoted with the superscript G and body-fixed system,
denoted by the superscript b.

124 of 126

The vector-transformations between the two reference systems are performed with

the help of the transformation matrix A, which is composed of the direction cosines.

Using this transformation, a vector in the body-fixed system is transformed from the

ground system by:

V b = ATV G (A.5)

where A can be expressed in terms of the Euler parameters as:

A = 2

 e0
2 + e1

2 − 1
2 e1e2 − e0e3 e1e3 + e0e2

e1e2 + e0e3 e0
2 + e2

2 − 1
2 e2e3 − e0e1

e1e3 − e0e2 e2e3 + e0e1 e0
2 + e3

2 − 1
2

 (A.6)

The 6-DOF motion is calculated by solving the Newton-Euler equations for rigid-

body motion. The motion calculation is separated into two components, namely the

translation of the centre of mass (CG) and the angular motion around this CG. The

translation of the CG is governed by the Newton laws of motion which can be written

in the ground frame as:

FG = mr̈G (A.7)

where FG is the total sum of forces, m is the mass of the body and r̈G is the acceleration

of the CG in the ground reference frame. The forces acting on the body are the sum of

the aerodynamic forces, the external forces (eg: thrust, ejectors) and the gravitational

force.

The angular motion is governed by the Euler equations of motion. These equations

written in the body-fixed reference frame are:

Mb = Iω̇b + ωb × Iωb (A.8)

where Mb is the sum of moments acting on the CG of the body, I is the inertia matrix,

ω̇b is the angular acceleration and ωb is the angular rate vector. Assuming a constant

inertia matrix and that the inertia cross-terms (eg: Ixy, Iyz, etc) are zero, equation A.8

can be written as the system:

Mx
b = Ix

bω̇x
b − (Iy

b − Izb)ωybωzb

My
b = Iy

bω̇y
b − (Iz

b − Ixb)ωzbωxb

Mz
b = Iz

bω̇z
b − (Ix

b − Iyb)ωxbωyb
(A.9)

Solving equations A.7 and A.8 results in the second derivatives of the CG position

and the first derivatives of the angular rates, r̈G and ω̇b respectively. Euler’s theory of

motion defines that the Euler parameters are the same in both ground and body-fixed

reference systems. Using this, we can find the first and second derivatives of the Euler

125 of 126

parameters from the body-fixed angular rates and accelerations as follows:

ṗ = 1
2L

Tωb

p̈ = 1
2L

T ω̇b − 1
4(ωb)2p

(A.10)

where:

LT =


−e1 −e2 −e3
e0 −e3 e2

e3 e0 −e1
−e2 e1 e0

 (A.11)

After the derivatives are found, a system of second-order ordinary differential equa-

tions of the form d2x
dt2

= f(t, x, ẋ) is obtained. These equations are solved in time using

a modified Euler scheme:

xn+1 = xn + ẋn∆t+ 1
2 ẍn∆t2

ẋn+1 = ẋn + ẍn∆t
(A.12)

where n and n + 1 denote the current and next time-steps and ∆t is the size of the

step.

Finally, the Euler parameters can be transformed into the roll (φ), pitch (θ) and

yaw (ψ) angles described by the rigid body with:

tan(φ) = 2.0(e0e1+e2e3)
(e02−e12−e22+e32)

sin(θ) = −2.0(e1e3 − e0e2)
tan(ψ) = 2.0(e1e2+e0e3)

(e02+e12−e22−e32)

(A.13)

126 of 126

	Abstract
	Acknowledgements
	Declaration
	List of Publications
	List of Figures
	List of Tables
	List of Symbols
	Introduction
	Motivation
	Objectives and Thesis Outline

	Theoretical Background and Literature Review
	Overview of Numerical Methods for Moving Geometries
	Meshless Numerical Methods in Fluid Dynamics
	Parallel Computing Concepts
	Challenges of Parallel Computing Applied to Meshless Methods

	Governing Equations
	Navier-Stokes Equations
	Turbulence Modelling (Spalart - Allmaras Model)

	Solution Method
	Approximation of Continuous Functions from Scattered Data
	Spatial Discretisation of Non-Viscous Fluxes
	Spatial Discretisation of Viscous Fluxes
	Spatial Discretisation of the Turbulence Model
	Boundary Conditions
	Integration to Steady-State
	Iterative Linear Solver
	Preconditioning
	Time-Accurate Integration

	Laminar and Turbulent Results
	NACA0012 Laminar Case
	Cylinder Laminar Flow
	RAE2822 Turbulent Case

	Parallel Implementation of the Flow Solver
	Parallel Flow Solver Results
	Onera M6 Wing Case
	DLR-F6 Case

	Stencil Selection and its Parallel Implementation
	Introduction to the Preprocessor
	Parallel Implementation of the Preprocessor
	Distributed Implementation
	OpenMP and Hybrid MPI/OpenMP Implementations

	Parallel Stencil Selection Results
	Presentation of Test Cases
	Test Case 1: NACA0012 Aerofoil in Transient Pitching Motion
	Test Case 2: Two-Dimensional Multi-Element Aerofoil
	Test Case 3: Open-Source Fighter
	Test Case 4: Delta Wing with Store in Unsteady Mode

	Profiling the Code and Sorting Algorithms
	Results for the NACA0012 Aerofoil in Transient Motion Test Case
	Results for the Multi-Element Aerofoil Test Case
	Results for the Open-Source Fighter Test Case
	Results for the Transient Store-Drop Case

	Conclusions and Future Work
	Appendices
	Decomposition by Polar Coordinates
	6-DOF Motion Simulation

