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S U M M A R Y
The Fisher distribution is central to palaeomagnetism but presents several problems when used
to characterize geomagnetic field directions as observed in sequences of volcanic rocks. First,
it introduces a shallowing effect when used to define the mean of any group of directional unit
vectors. This is problematic because it can suggest the presence of persistent non-axial dipole
components when none are present. More importantly, it fails to capture the observed ‘long
tail’ in distributions of both directions and associated virtual geomagnetic poles in terms of
angular distance from a central direction. To achieve a good fit to data, it therefore requires the
introduction of a second distribution (and therefore the estimation of additional parameters)
or the arbitrary removal of data. Here we present a new distribution to describe palaeomag-
netic directions and demonstrate that it overcomes both of these problems, generating robust
indicators of both the central direction (or pole position) and the spread of palaeomagnetic
data as defined by unit vectors. Starting from the assumption that poles (or directions) have
an expected colatitude, rather than a mean location, we derive the spherical exponential distri-
bution. We demonstrate that this new distribution provides a good fit to palaeomagnetic data
sets from seven large igneous provinces between 15 and 65 Ma and also those produced by
numerical dynamo models. We also use it to derive a new shape parameter which may be
used as a diagnostic tool for testing goodness of fit of models to data and use this to argue
for a shift in geomagnetic behaviour between 5 and 15 Ma. Furthermore, we point out that
this new statistic can be used to determine the most appropriate distribution to be used when
constructing confidence limits for poles.

Key words: Probability distributions; Palaeomagnetic secular variation; Palaeomagnetism
applied to geological processes.

1 I N T RO D U C T I O N

The most accessible record of the ancient magnetic field is provided
by the remanent magnetization of igneous rocks. The palaeomag-
netic directions from a locality can be used to infer its palaeolatitude,
under the hypothesis of a geocentric axial dipole (GAD), while the
distribution of the directions reflects the geomagnetic secular vari-
ation over the period that the rocks cooled (e.g. Cox 1970). This
palaeosecular variation is increasingly viewed as one of the most
important tools for studying changes in the behaviour of the geody-
namo (McFadden et al. 1991; Biggin et al. 2008a,b; Smirnov et al.
2011). To make inferences regarding either the mean direction or
the dispersion of palaeomagnetic poles, the distribution proposed
by Fisher (1953) is commonly used.

The hypothesis that the geomagnetic field, when averaged over
palaeomagnetic timescales, is a GAD is generally accepted, at least
as a first order approximation. A strictly valid statement of the

GAD hypothesis is difficult because it would require a definite time
period, long enough to average out secular variation, but free from
reversals and excursions. The preferred form of the GAD hypothesis
depends on the application. When deriving a palaeopole from a
group of palaeomagnetic directions, it is convenient to assume that
the average direction, obtained from unit vectors, is the direction
of a GAD field, although it has been shown that averaging unit
vectors may introduce bias to the mean direction (Creer 1983).
The bias tends to give shallow directions which can masquerade as
non-dipole field components, particularly a zonal octopole.

Field models can be constructed that reproduce realistic features
of the secular variation of the field, subject to the constraint of a
time-averaged GAD, by so-called giant-Gaussian processes (Con-
stable & Parker 1988). In these models the GAD constraint is ful-
filled by letting all the Gauss coefficients of the field, other than the
axial dipole, vary randomly around zero. It is possible to derive a
sampling distribution for palaeomagnetic vectors from such models
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(Khokhlov et al. 2006), but generally the models are based on recent
data, from the past 5 Myr, and so are only valid for that time period.
Often, it is argued that the frequency distribution of virtual geomag-
netic poles (VGPs) is more isotropic than that of palaeomagnetic
directions and can be reasonably approximated by a Fisher distribu-
tion (e.g. McElhinny & Merrill 1975). Detailed analysis of VGPs
from the past 5 Ma led Harrison (2009) to conclude that they could
be well described by a mixture of a Fisher distribution and a uni-
form distribution. The extra parameter introduced (describing the
relative amount of the two distributions) makes this very difficult to
use in practical parameter estimation. In such problems, where for
instance the question is to determine the position of the geographic
pole, relative to the site, the Fisher distribution remains the sampling
distribution of choice, largely because there exist explicit formulae
for both the mean direction (or pole) and the corresponding confi-
dence limits. Here we consider a simple alternative distribution, the
spherical exponential distribution, which like the Fisher distribution
has a single precision parameter in addition to the central direction.

2 M A X I M U M E N T RO P Y
D I S T R I B U T I O N S

In problems of elementary parameter estimation, a sensible choice
of sampling distribution is one that has maximum entropy subject to
whatever constraints are specified, where the entropy of a distribu-
tion P(x) is defined as −∑

x P(x) logP(x). It can be shown that, for
given constraints, such a distribution is by far the most likely to be
observed as a frequency distribution (Jaynes 2003). Simple univari-
ate distributions include the uniform distribution which maximizes
entropy for a quantity that lies in a given range, or the Gaussian dis-
tribution that maximizes entropy for a quantity that has an expected
first and second moment. In the case of unit vectors, the Fisher
distribution has maximum entropy of all distributions with a given
mean direction. Assigning a Fisher distribution to palaeomagnetic
directions therefore amounts to a simple statement of belief: the
directions have a specified mean direction, usually taken as the di-
rection of a GAD field. Similarly, when applied to VGPs, the belief
that the mean VGP is coincident with the geographic pole leads to
the assignment of a Fisher distribution, although it has been noted
that this poorly represents the observed frequency distribution of
VGPs for the past 5 Myr (Harrison 2009). Generally, the frequency
distributions of both VGPs and directions have longer tails than
a Fisher distribution, with a lot of the mass far from the central
direction. Sometimes, the observations are trimmed to fit a Fisher
distribution by either removing low-latitude VGPs or by a scheme
proposed by Vandamme (1994), which iteratively removes outlying
data until the remaining distribution fits some criteria. Rather than
shoehorn data to fit a Fisher distribution, it would be preferable
if all the available data could be retained, and a more appropriate
sampling distribution developed, yet it is desirable to retain a maxi-
mum entropy formulation with no additional adjustable parameters.
Clearly, to achieve this, the formulation of the GAD constraint must
be adjusted. One possibility would be to constrain the total vector
sum of the magnetic vectors to lie in a specified direction, but as
palaeomagnetism usually only provides unit vectors, such a con-
straint would involve an additional adjustable parameter.

It has become commonplace in studies of palaeosecular variation
to define the angular dispersion of the field in terms of the root mean
squared angle of deviation, by analogy with the normal distribution.
There is general agreement that the field over a given period can
be characterized by the angular spread of either VGPs about the
pole or directions around the GAD direction, usually as a function

of observation latitude. In the case of VGPs, an obvious choice of
sampling distribution would therefore be one that maximizes en-
tropy subject to the constraint that the VGPs have expected latitude.
A similar distribution can be given for directions. Imagine the angle
between palaeomagnetic directions (vi) and the GAD direction (u)
are θ i, and the expectation of θ is S′

〈θ〉 = S′, (1)

where we have used the prime to distinguish S′ from the conventional
definition of S as the rms angular deviation:

S =
√

1

N

∑
i

θ 2
i . (2)

Maximizing entropy subject to (1) leads to the spherical expo-
nential distribution with precision parameter kE

P(θ )dθ = k2
E + 1

1 + e−kE π
e−kE θ sin θdθ. (3)

If the distribution is circularly symmetric, the distribution of the
vector v is found by dividing eq. (3) by 2πsinθ , which gives

P(v) ∼= k2
E + 1

2π
e−kE θ , (4)

where it has been assumed that e−kE � 1.
The distribution has a longer tail than the Fisher distribution. The

expectation of θ is given by

〈θ〉 ∼= 2kE

2kE + 1
∼= 2

kE
, (5)

whereas for a Fisher distribution with precision parameter kF,

〈θ 2〉 ∼= 2

kF
. (6)

The estimate of central direction given by the likelihood function
(4) has the character of a median-type estimator; it minimizes the
total angular deviation, rather than the squared deviation and is less
sensitive to data far from the centre of the distribution. A drawback
in assigning the sampling distribution (4) is that unlike the Fisher
distribution there are no explicit formulae for either the central
direction or its confidence limits. To evaluate the likelihood, we can
use Bayes theorem.

P(u|v, k) = P(v|u, k)P(u, k)

P(v, k)
, (7)

where the subscript on k has been dropped.
As the expected deviation and precision k are unknown, k must

be eliminated by integration:

P(u|v) =
∫ kmax

kmin

P(u|v, k)P(k)dk. (8)

The prior probability of k [P(k)] can be assigned by considering
likely limits of palaeosecular variation. If we assign upper and lower
limits to S′ of 4◦ and 40◦, we find 2 < k < 30 to be a suitable range for
the prior. Rather than assigning a uniform prior within this range,
we assign P(k) ∝ 1

k .
This choice, often called a Jeffreys’ prior, can be used when there

are well-defined limits to the range of a scale parameter, so that the
probability can be normalized. It was suggested by Jeffreys (1932)
and was vigorously attacked by Fisher (1934). The motivation for
using it is that it obviates the need to consider whether precision
(k), mean deviation (S′) or mean squared deviation (S2), etc. is the
parameter of interest, because any power of k has the same prior
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distribution (i.e. the logarithm of k is uniformly distributed). The
explicit form of prior is then

P(k) = (k log 15)−1. (9)

The distribution of u can now be found numerically. Because the
likelihood is such a sharply peaked function of the data, the choice
of prior is of no practical importance and the results would not
be noticeably changed if a uniform prior was assigned. In fact, all
parameter estimation involves adopting some prior distribution for
the parameter of interest whether this is made explicit or not; often
it is uniform (e.g. when calculating maximum likelihood estimates),
but this is not usually stated.

3 E S T I M AT I N G P O L E S

Here, we compare the effectiveness of the spherical exponential
distribution and the Fisher distribution at determining the position
of the pole using the statistical field model TK03 (Tauxe & Kent
2004). It is known that taking the Fisher average of unit vectors can
lead to bias towards shallow inclinations (Creer 1983). Using the
statistical field model of Constable & Johnson (1999), the effect of
averaging unit vectors was shown to produce an apparent inclination
anomaly that would be well fit by an axial octupole of about 2 per
cent of the axial dipole (Johnson et al. 2008). A similar shallowing
of inclinations when unit vectors are averaged was observed in the
field model TK03 (Tauxe & Kent 2004). While the average effect
is quite small, in individual cases the mean pole may fall some way
from the expected position. It is of particular interest to see how
often the much used α95 value of the Fisher distribution actually
contains the expected pole.

One hundred vectors were drawn from the field model TK03
(Tauxe & Kent 2004) and the Fisher mean direction calculated,
along with its 95 per cent confidence limits. Over many repetitions
at random locations on the globe, the 95 per cent confidence limits
for the mean were found to exclude the direction of a GAD field
about 20 per cent of the time. Generally, the mean direction was
shallower than the GAD field. 95 per cent confidence regions were
also calculated using the likelihood function of the spherical ex-
ponential distribution, and these were found to include the GAD
field direction even when the Fisher mean was too shallow. In 100
trials, with 100 vectors drawn from TK03, the 95 per cent con-
fidence limits failed to contain the GAD direction only once. In
Fig. 1, some examples are shown. By including a g0

3 term in the
statistical model, it can be shown how using the spherical exponen-
tial sampling distribution allows the degree of shallowing due to
geomagnetic field behaviour to be recovered (Fig. 1d). In this case,
the average direction of the full magnetic vectors lies close to the
region of maximum probability for u calculated using a spherical
exponential distribution, and it would be possible to correctly infer
the contribution of the axial octupole.

From this it can be seen that adopting a spherical exponential
sampling distribution all but eliminated the effect of inclination
shallowing due to averaging of unit vectors and so allows not only
more accurate poles to be derived, but also will reveal whether
observed shallow inclinations in real palaeomagnetic data genuinely
reflect geomagnetic field behaviour. As an example, consider the
390 directions from 15-Myr-old lava flows in northwest Iceland
which yielded a mean direction about 5◦ shallower than would be
expected at the latitude (Kristjansson et al. 2003). We found close
agreement between the 95 per cent confidence limits calculated
using a Fisher and a spherical exponential distribution for these
data therefore, it can be concluded that averaging of unit vectors

Figure 1. Azimuthal equidistant projections showing inferred central direc-
tion of groups of 100 vectors drawn from TK03. Each projection is centred
on the GAD direction, and the Fisher 95 per cent confidence limits (dashed
line) and 95 and 67 per cent confidence limits derived from the spherical
exponential distribution are shown. In (d), an axial octupole of 5 per cent of
the axial dipole is added, and the expected direction marked with a cross.

Figure 2. Cumulative frequency of angle (θ ) between individual flow di-
rection and mean direction for the northwest Iceland data of Kristjansson
et al. (2003). Also shown are the cdfs for the best-fitting Fisher (dotted) and
spherical exponential (dashed) distributions.

is not the reason for shallow inclinations in this data set. Fig. 2
shows the cumulative distributions of the Iceland data along with
the best-fitting Fisher spherical exponential distributions. The close
agreement between the spherical exponential distribution and the
data suggests that low latitude VGPs are part of the normal secular
variation and should not be treated differently from other data.

4 T H E D I S T R I B U T I O N O F P O L E S I N
L A RG E I G N E O U S P ROV I N C E S

Large igneous provinces provide ideal testing grounds for statistical
analyses of palaeomagnetic directions because they provide a large
number of lava flows emplaced over a period that is short enough
to minimize the effects of continental drift. We selected data recent
studies of Cenozoic large igneous provinces that employ the best
palaeomagnetic practice (see Table 1) and have at least 40 indepen-
dent flow means. We considered all data to be equally valid, although
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Table 1. Locations, age and number of directions along with derived statistics for each of the studies used.

Location N Age (Ma) Kolmogorov prob exp Kolmogorov prob Fisher Likelihood ratio (dB) Reference

Directions Poles Directions Poles Directions Poles

Iceland 390 ∼15 0.61 0.01 0.00 0.00 +205 +9 Kristjansson (2002)
Kerguleen 258 24–30 0.21 0.31 0.00 0.00 +145 +75 Camps et al. (2007)
Yemen 69 28–30 0.84 0.60 0.01 0.00 +25 +41 Riisager et al. (2005)
Ethiopia 65 ∼30 0.45 0.50 0.50 0.02 −3 +6 Rochette et al. (1998)
Greenland 55 55–61 0.49 0.06 0.07 0.85 +12 −10 Riisager et al. (2003)
Faroes 43 55–58 0.62 0.62 0.41 0.36 +4 +5 Riisager et al. (2002)
Deccan 179 65 0.95 0.27 0.00 0.00 +76 +105 Vandamme et al. (1991)a

aOnly directions with α95 less than 5◦ have been taken from the Deccan compilation of Vandamme et al. (1991).

where authors had put neighbouring flows into directional groups,
only the group means were taken and in the case of the Deccan
compilation (Vandamme et al. 1991) we restricted the data to those
with an α95 of less than 5◦. The studies selected all provide high
quality estimates of the field direction; in the Kerguelen compilation
of Camps et al. (2007) for instance, the average number of samples
per flow is 7.6 and the average value of α95 is 5.5◦. For each case we
consider which of the two sampling distributions discussed above
is most consistent with the data. In palaeomagnetism it is custom-
ary to use hypothesis tests and quantile–quantile plots to examine
a distribution of poles where the distribution of colatitude and lon-
gitude are tested independently (e.g. Riisager et al. 2002). We note
in passing that having uniformly distributed longitude does not im-
ply that a distribution is circularly symmetric; there are many ways
in which circular asymmetry can be introduced while maintain-
ing a uniform distribution of azimuth, for instance by making kE in
eq. (4) a function of azimuth. Here we consider only the distribution
of angle of deviation without considering circular symmetry.

In order to estimate the distribution of θ under a spherical expo-
nential distribution the central direction is taken as the direction of
maximum likelihood as defined by eq. (8). This was achieved by
random sampling over the appropriate area of a unit sphere.

A popular hypothesis test used to compare distributions is the
Kolmogorov test. Strictly speaking, it should not be used when the
parameters of a distribution have been estimated from the data, but
we give the Kolomogorov probabilities in Table 1 for each data set
under both distributions with the understanding that the true proba-
bility would be somewhat lower. An alternative test is to compare the
two distributions directly by applying a likelihood ratio test to both
the directions and VGPs for the data sets in Table 1. In each case the
likelihood of the data is calculated under the hypothesis of the best-
fitting Fisher (LF) and spherical exponential distribution (LE). The
ratio of likelihoods is given in decibels as 10 log10(LE/LF), follow-
ing a suggestion of Jaynes (2003), where a positive value supports
a spherical exponential distribution and a negative value supports a
Fisher distribution. A ratio of less than 3 dB has little significance,
up to 10 dB shows a slight preference and over 20 dB is strong evi-
dence for one model over the other. The ratios are shown in Table 1.
The point of using a logarithmic scale for comparing ratios is clear
as they vary by over 30 orders of magnitude. Converting the direc-
tions to VGPs is seen to decrease the likelihood ratio in some cases,
but most data are fit significantly better by a spherical exponential
distribution in either direction or pole space. An interesting point is
that the largest data sets are seen to be very well fit by the spheri-
cal exponential distribution, but not by the Fisher distribution. This
observation demonstrates the problem of using hypothesis tests on
small data sets; if a small number (less than about 15) of spherical
exponential data points are generated then any common statistical
test will prefer the hypothesis that they are Fisher distributed. This

is because the Fisher distribution, having shorter tails, will tend to
return a higher likelihood for small numbers of data because the
likelihood is more sharply peaked. This may make it difficult to
choose the appropriate sampling distribution for small sets of data.

5 PA L A E O S E C U L A R VA R I AT I O N

The spherical exponential distribution naturally leads to choosing
the mean angle of deviation as the estimate of palaeosecular varia-
tion:

S′ = 1

N

∑
i

θi . (10)

By taking the simple mean deviation, rather than squaring the
angular deviations, S′ is less affected by occasional outlying direc-
tions than S (eq. 2) and so can be considered robust to outliers.
This largely removes the need for various schemes to trim excur-
sional and transitional directions from palaeomagnetic data (e.g.
Vandamme 1994). The squared deviation (S2) traditionally studied
as an indicator of PSV is the sum of two contributions. If there is
a distribution of angles from a central direction (θ i), with mean S′

then the variance of θ is given by

V (θ ) = S2 − S′2. (11)

When applied to VGPs, the statistic S2 is therefore the sum of
the square of the expected angular deviation from the pole and its
variance. Dividing V by S′2 gives a normalized measure of the vari-
ance (V′), which can be thought of as a measure of shape. For the
spherical exponential distribution V′ can be calculated by integrat-
ing by parts and is found to be 1/2, for large k. Random sampling
sets of 50 directions generated using a spherical exponential distri-
bution suggests that 0.35< V′ < 0.65 in 80 per cent of cases. For a
Fisher distribution, V′ is largely independent of the precision κ and
tends to be less than for the previous case with 0.2 < V′ < 0.34 80
per cent of the time. With the exception of Ethiopia (V′ = 0.34),
for all of the directions from LIPs in Table 1 0.4 < V′ < 0.6, as
would be expected if they conform to spherical exponential distri-
butions Given that the shape statistic V′ is around 1

2 in these LIPs, it
provides a useful statistical feature to seek in field models and nu-
merical dynamo simulations. Statistical field models inspired by the
‘giant Gaussian process’ (Constable & Parker 1988) include QC96
(Quidelleur & Courtillot 1996) and CJ98 (Constable & Johnson
1999) as well as TK03 (Tauxe & Kent 2004). Groups of 50 vectors
are drawn at a random location for each model and vectors more
than 90◦ from the mean direction have their direction reversed, as V′

will be sensitive to occasional angles greater than 90◦. For TK03,
0.41 < V′ < 0.92 80 per cent of the time, with an average value of
about 2/3. For QC96, V′ lies between 0.22 and 0.48 in 80 per cent
of cases and for CJ98, V′ is much higher, lying between 0.5 and 2.4
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Table 2. Control parameters for the three simulations and descriptive statis-
tics of the field directions. Statistics were calculated from directions (rather
than poles) and the range of the middle 80 per cent for each simulation is
given.

Model Rayleigh Ekman Thermal Magnetic S′ (◦) V′
number number Prandtl Prandtl

p1 120 0.0065 1 20 16.2–26.2 0.54–0.89
p2 1350 0.001 1 5 19.0–28.4 0.40–0.67
p3 2500 0.001 1 5 31.1–46.6 0.23–0.47

80 per cent of the time, and it is not uncommon to see groups of
vectors for which the traditional estimate of angular dispersion, S,
is 50 per cent higher than the robust estimate S′. These models were
produced to simulate the secular variation over the past 5 Myr, so it
is not surprising that they produce shapes of distributions that are
at odds with the Cenozoic LIPs, but the shape of the distribution
as given by V′, provides an additional control on field models if
enough data exists to constrain it. Also, it has been noted previously
that much of the latitudinal dependence of the dispersion of VGPs
can be accounted for by making the harmonics vary as a function
of order (Harrison 2006), which none of the models considered
here do.

Increasingly there has been interest in studying palaeosecular
variation with respect to the output of numerical dynamo simula-
tions run under varying boundary conditions (Aubert et al. 2009,
2010; Lhuillier & Gilder 2013). Here we take directions from three
dynamo simulations produced by Parody-JA2.2 (Dormy et al. 1998;
Aubert et al. 2008) and consider the shape of the directions pro-
duced by each as described by V′. The control parameters for each
model are given in Table 2. Note that the Rayleigh number (Ra)
is as defined in Christensen et al. (2001) and m1 is very similar
to model 2 of Lhuillier et al. (2013). All three of the models had
non-conducting cores of present day size and were sampled over
several reversals. Statistics were derived by taking the directions of
100 field vectors randomly through the series at a random location
on the globe. Reversed directions were rotated by 180◦ and S′ and
V′ were calculated. This was repeated 200 times; Table 2 gives the
middle 80 per cent range of each statistic. The magnitude of the sec-
ular variation is large compared to the Earth; S′ does not exceed 21◦

for any of the LIPs in Table 1. This seems to be a feature of revers-
ing dynamo simulations (see Lhuillier et al. 2013) and producing
simulations with realistic magnitudes of VGP dispersion remains
a challenge. However differences in the shapes of the directional
distributions are also seen, as witnessed by V′. The values of V′

seen in m2 closely resemble those seen in LIPs, averaging around
0.55, while increasing the forcing in m3 causes a great increase in
the dispersion of directions, but actually reduces V′. We make no
claims regarding the parameter space that might produce Earth-like
simulations, but simply note that V′ provides a convenient measure
of the shape of a distribution which might be used in comparisons
between simulations and palaeomagnetic data. Furthermore, it can
be used as quick method of determining the most appropriate sam-
pling distribution to use when finding confidence limits for poles,
when the data sets are reasonably large.

6 D I S C U S S I O N A N D C O N C LU S I O N S

The statistic V′, introduced in the last section, is a measure of the
shape of a distribution of vectors and may be useful for discrim-
inating between models. Interestingly, although it can be rather

sensitive to even a single outlying datum, when applied to real
palaeomagnetic data sets from LIPs, V′ tends to be reasonably con-
sistent, tending to the sort of values that are seen in a spherical
exponential distribution.

The traditional estimate of PSV (S) is the quadrature sum of two
parts, S′, the mean of θ , and V, the variance of θ . In this study, data
were not arbitrarily excluded from the analysis. Exclusion is often
justified as an attempt to make the data fit a Fisher distribution (e.g.
Vandamme 1994), but if a simple one-parameter maximum entropy
distribution adequately describes the data, then the logic of trimming
extreme values must be questioned. The values of V′ seen here are
all well within the expected range for the spherical exponential
distribution, and this seems to be a highly appropriate sampling
distribution to adopt in palaeomagnetism. In addition it gives rise
to naturally robust estimators for both the central direction and
dispersion of a group of vectors, so that there is less of a temptation
to discard data. Given the effort that goes into palaeomagnetic field
initiatives and subsequent measuring, this must be regarded as a
considerable bonus. Instead of discarding data which fails to fit
a Fisher distribution, a simple estimate of V′ could be used by
palaeomagnetists to determine the most appropriate distribution to
use when making inferences from a set of directions.

As a diagnostic tool, V′ can also help discriminate between field
models. Palaeomagnetic data from the past 5 Myr has not been
considered here, as this has been dealt with in depth elsewhere
(Quidelleur et al. 1994; Johnson & Constable 1996; McElhinny
et al. 1996; Johnson et al. 2008; Harrison 2009). In fact, it is unlikely
that any distribution will improve upon that suggested of Harrison
(2009) for the past 5 Myr, which yielded nearly perfect fits. There it
was shown that the distribution of poles from latitudinal bands could
be described by a mixture of a Fisher distribution and poles whose
latitude was uniformly distributed. It is interesting to see how the
shapes of these VGP distributions compare to the earlier Cenozoic
LIPs considered here. As the fitted distributions describe the data
well, we can simply take the models of Harrison (2009) and calculate
V′ for each one. It is found that V′ is about 1 for the lower latitude
bands and decreases to about 0.6 at higher latitudes. This would
suggest that there is a real difference in the pattern of PSV seen over
the last 5 Ma compared to that seen in earlier Cenozoic LIPs. The
values of V′ seen in the models of Harrison (2009) are clearly higher
than those seen in spherical exponential distributions and are close
to those seen in simulation p1 (Table 2). The spherical exponential
distribution would not fit the poles from low latitude bands given
by Harrison (2009) but does describe those from both Yemen and
Ethiopia. The shape of distribution of magnetic vectors produced
by dynamo simulation appears to be sensitive to the strength of
forcing given by the Rayleigh number and consideration of this
statistical feature may help determine what parts of parameter space
will produce Earth-like simulations and what might be controlling
changes in the behaviour of the geomagnetic field. Finally, it is worth
reiterating that the spherical exponential distribution arose naturally
by considering a group of vectors having an expected angle from
a reference direction. The fact that the resulting distribution fits
observations well suggests that this is a more accurate description
of the time-averaged field than that of a group of vectors having a
definite mean direction.
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