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Abstract 

β-lactam hypersensitivity reactions can be severe and are extremely difficult to predict. Drug-specific T-
cells have been identified in blood of patients presenting with cutaneous and hepatic hypersensitivity 
reactions, indicating that they play a role in the disease pathogenesis. Animal models are highly effective 
tools that have been used extensively to dissect mechanisms of disease and pathways of disease 
progression; however, animal models of drug hypersensitivity reactions have proven difficult to develop. 
The aims of this thesis were to utilize 3 β-lactam antibiotics amoxicillin, piperacillin and flucloxacillin to 
explore antigen-specific T-cell responses in the mouse and to attempt to develop a model of T-cell-
mediated drug-induced liver damage. The project utilized the C57/Bl6 CD4+ T-cell deficient mouse with a 
mutation in the αβ gene encoding for MHC class II molecules, which has previously been used to 
investigate skin sensitization to drugs. 

In initial experiments, amoxicillin-specific CD8+ T-cell responses were detected both in vivo and ex vivo. 
Sensitization was obtained through painting of the drug onto the skin of mice that had been depleted of 
CD4+ T-cells, which are thought to exert regulatory/suppressor functions. On completion of the 
sensitization protocol, draining lymph node cells were removed and the drug-specific T-cell response was 
detected through analysis of proliferation and IFN-γ release. In contrast, proliferative responses and 
cytokine release were not detected with cells from vehicle control mice. 

The study was expanded to include 3 β-lactam antibiotics. Activation of CD8+ T-cells was readily 
detectable following sensitization with flucloxacillin. In contrast, only weak ex-vivo proliferative responses 
were detected following sensitization with piperacillin, which may relate to the fact that piperacillin 
preferentially activates CD4+ T-cells in hypertensive human patients. Drug-specific T-cell clones from 
human patients were generated and tested alongside murine counterparts to provide a detailed 
assessment of cross-reactivity and variability in the drug-specific T-cell response between 
species. Amoxicillin and flucloxacillin demonstrated cross-reactivity with both human and murine drug-
specific T-cells. Piperacillin cross-reactivity was difficult to assess in mouse. However, human piperacillin-
specific T-cells displayed no evident cross-reactivity with amoxicillin or flucloxacillin. 

The ex vivo activation of flucloxacillin-specific CD8+ T-cells from sensitised mice was discovered to be 
dependent on the presence of APCs. The concentration of APCs added to cultures of drug-specific 
draining lymph node cells was directly correlated with the amount of CD8+ T-cell activation. In fact, the 
removal of APCs ablated the proliferative response and IFNγ secretion when APCs were added to 
flucloxacillin re-challenged ex vivo cultures of flucloxacillin-specific CD8+ T-cells from the draining lymph 
nodes of sensitised mice. 

There are currently no animal models of drug-induced liver injury where the adaptive immune system has 
been shown to damage hepatocytes. It is therefore difficult to explore the mechanistic basis of the tissue 
injury. Thus, an aim of the project was to characterize the immunogenicity of flucloxacillin and explore 
whether flucloxacillin-responsive CD8+ T-cells damage hepatocytes. In initial experiments sensitization 
was achieved through epicutaneous application. CD8+ T-cells from draining lymph nodes of the 
flucloxacillin-treated mice proliferated in a concentration-dependent manner following ex vivo secondary 
stimulation. The proliferative response was associated with IFN-γ and granzyme B release. Flucloxacillin-
specific hepatocyte toxicity and apoptosis was observed when CD8+ T-cells were cultured with dendritic 
cells and flucloxacillin for 24h, washed and transferred to the hepatocyte cultures. In contrast, 
hepatocyte killing was not detected in with T-cells from vehicle control mice. In separate experiments, 
flucloxacillin-specific T-cells were forced to migrate to the mesenteric lymph nodes using retinoic acid, 
prior to administration of oral flucloxacillin for 10 days, followed by analysis of liver histology and plasma 
biomarkers of liver injury. Oral exposure resulted in gall bladder swelling, hepatic mononuclear cell 
infiltration (especially around the bile ducts) and mild elevations in plasma ALT.  

This work has highlighted the usefulness of animal models in studying disease whilst also acting as 
evidence to the difficulty in developing such models. The experiments show successful sensitization of 
mice against different β-lactam antibiotics and a promising model to study the role of the adaptive 
immune system in flucloxacillin-induced cholestatic liver injury.  
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1.1. Adverse drug reactions 

In 2004 it was reported that 6.5% of hospital admissions were due to adverse drug reactions 

(ADRs) (Pirmohamed et al. 2004).  ADRs can occur to nearly every drug.  Reactions have 

been reported in almost every organ/tissue and range in severity from mild skin reactions to 

life threatening organ failure. The objective of this first section of the introduction is to 

define, classify and explain the clinical implications of ADRs. 

1.1.1. Definition 

The World Health Organisation (WHO) effectively defines ADRs as any “harmful, unintended 

reaction to medicines that occur at doses normally used for treatment” 

(www.who.int/mediacare/factsheets/fs193/en/index.htmL).  

1.1.2. Classifications of ADRs 

ADRs can be classified into 5 groups based on the nature of reaction induced by the drug; 

Type A, B, C, D, and E reactions (Park et al. 1998). Type A reactions are referred to as “on-

target” dose-dependent reactions. Due to the predictable nature of these reactions, they 

are possible to control through dose alterations. Type A reactions represent the majority of 

ADRs.  

Type B reactions as opposed to type A reactions are “off-target” and rarely dose-dependent. 

The idiosyncratic nature of the reactions means that they are not related to the primary 

pharmacology of the drug. Type B reactions require the drug to be removed totally from the 

system as these reactions have a relatively high mortality rate. An example of a Type B ADR 

would be a severe skin reaction (e.g. Stevens Johnson syndrome) after administration of 

anti-convulsants such as carbamazepine. 

http://www.who.int/mediacentre/factsheets/fs293/en/index.html
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Other ADRs are known and although they present only in the minority of reactions, are 

defined as thus (Edwards I. R. and Aronson 2000): 

Type C (Chemical) 

Type C reactions can be explained by the chemical structure of the drug or metabolite and 

how it may react in a biological system. An example would be liver toxicity after 

paracetemol overdose. 

Type D (Delayed) 

These can occur many years after a treatment; for example, tumours occurring many years 

after administration of chemotherapeutics. 

Type E (end of treatment) 

Type E reactions are concerned with withdrawal-like symptoms after an extended drug 

course is stopped. An example would include seizures after stopping phenytoin. 

 

1.2. Hypersensitivity reactions 

Hypersensitivity reactions are off-target type B reactions which account for approximately 

one sixth of all ADRs (Pirmohamed et al. 2004). They can be allergic or pseudo-allergic 

reactions with the latter showing symptoms of an allergic reaction, except without a 

detectable response from the adaptive immune system. Pseudo-allergic reactions mimic the 

allergic response clinically without any allergy-specific immune mechanism involved 

(Descotes and Choquet-Kastylevsky 2001). That is to say, pseudo-allergic reactions involve 

the same mediators as non-pseudo-allergic reactions however pseudo-allergic reactions do 

not progress due to immunological intolerance but due to pharmaco-toxicological 

intolerance in relation to a pharmacogenetic predisposition found in select patients 
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(Descotes and Choquet-Kastylevsky 2001). For example, non-immunological activation of 

the complement system by contrast media results in the immediate release (<1h, with no 

requirement of previous sensitisation) of biologically active peptidic by-products, such as 

the anaphylatoxins, which in turn causes the release of histamine (Bush and Swanson 1991). 

An allergic drug hypersensitivity reaction can occur to nearly any drug and effect nearly any 

biological system, but, the most commonly diagnosed reactions are those from antibiotics 

and antiepileptics and the skin is the organ most commonly affected with an incidence of 2-

3% of all hospitalised patients (Bigby et al. 1986) (Hunziker et al. 1997). Allergic reactions are 

classified as involving immunological memory and highly specific recognition processes 

where prior sensitisation is a pre-requisite to development of symptoms (Descotes and 

Choquet-Kastylevsky 2001). If already sensitised, allergic symptoms can vary in time of onset 

from <1h to over 3 weeks (Pichler 2003). 

1.2.1. Classifications of drug hypersensitivity reactions 

Gell and Coombs (Gell 1963) classified drug hypersensitivity reactions based on the nature 

of the induced immune response into Type I, II, III, and IV (Table1:1). Knowledge pertaining 

to the Type IV delayed hypersensitivity reactions, as well as hypersensitivity reactions in 

general, has improved greatly since Gell and Coombs first put forward their classification 

and so delayed-type hypersensitivity reactions were further classified into 4 sub-categories; 

IVa – IVd. This expanded classification was based around the phenotype and function of T-

cells isolated from patients with different forms of hypersensitivity (Pichler 2003).  
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Table1:1 – Classification of hypersensitivity reactions based on immune reactants, antigens and 

effector mechanisms. Examples of the clinical hypersensitivity reactions are also listed. Adapted 

from Pichler (2003). 

  

1.3. The immune system 

1.3.1. The innate immune system 

The innate immune system is the first line of defence against infectious agents. The 

mechanisms of the innate immune system are in place even before encounter with 

microbes and are matured further after contact with them. Innate immunity is, 

evolutionarily, the oldest mechanism of defence with its co-evolution alongside microbes 

 
Immune 

Reactant 
Antigen Effector 

Example of 

hypersensitivity 

reaction 

Type I IgE Soluble antigen 
Mast cell 

activation 

Asthma, systemic 

anaphylaxis 

Type II IgG 
Cell or matrix associated 

antigen 

FcR+ cells 

(phagocytes, NK 

cells) 

Haemolytic anaemia 

Type III IgG Soluble antigen FcR+ cells Serum sickness 

Type IVa 
IFN-γ, TNF-α 

(TH1 cells) 

Antigen presented by cells 

or T-cell stimulation 

Macrophage 

activation 

Contact 

hypersensitivity 

Type IVb 
IL-5, IL-4/IL-13 

(TH2 cells) 

Antigen presented by cells 

or T-cell stimulation 
Eosinophils 

Chronic asthma, 

Maculopapular 

exanthema 

Type IVc 

Perforin/ 

granzyme B 

(CTL) 

Cell associated antigen or 

T-cell stimulation 
T-cells 

Contact 

hypersensitivity, 

Hepatitis 

Type IVd 
IL-8, GM-CSF 

(T-cells) 

Soluble antigen presented 

by cells or direct T-cell 

stimulation 

Neutrophils AGEP 
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making it present in all multicellular organisms including insects and plants. Components of 

the innate immune system are functional at all times like the skin and epithelial barriers of 

the gut and respiratory tracts whereas, other parts including phagocytes and the 

complement system are only activated when in the presence of microbes (Beutler 2004). 

The cells of the innate immune system include intraepithelial lymphocytes, neutrophils, 

macrophages, and natural killer (NK) cells. These all contribute to the fight against invading 

microbes through the presentation pattern recognising receptors to pathogen-associated 

molecular patterns (PAMPS) (Beutler 2004). PAMPS are an array of microbial products that 

are present on the surface of microbes. They are essential for the survival of the microbe. 

However, a variety of pattern recognition receptors on the surface of the cells of the innate 

immune system interact with PAMPS. The main ones are toll-like receptors (TLRs) of which 

there are 10 known human variants (Table 1.2). All are responsible for recognising 

molecules usually expressed on microbial but not mammalian cells. Depending on the TLR 

activated, the end outcome can be expression of inflammatory cytokines, chemokines, 

endothelial adhesion molecules, and costimulatory molecules (Tang D. et al. 2012).  
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Plasma membrane TLRs PAMPs 

1 & 2 Bacterial triacylated lipopeptides 

2 Bacterial peptidoglycan, lipoprotein, lipotechoic 

acid, porins; Viral hemagglutinin 

4 Gram negative bacteria LPS, fungal mannans, 

parasitic phospholipids, viral envelope proteins, 

host heat shock negative proteins 

5 Bacterial flagellin 

2 & 6 Bacterial diacylated lipopeptides and lipotechoic 

acid 

10 Partner for TLR2 and shares a variety of agonists 

with TLR 1(Guan et al. 2010) 

Endosome membrane TLRs  

3 Viral double stranded RNA 

7 Viral single stranded RNA 

8 Viral single stranded RNA 

9 Viral and bacterial unmethylated CpG DNA 

Table 1.2 – Toll-like receptor molecules with specific PAMPs that bind them. Adapted from Abbas 

(2010) 

 

The innate immune system also has a role in stimulating an adaptive immune response. For 

lymphocytes to begin to launch response against a particular antigen they need two signals; 

1) is the requirement of a specific antigen to be presented to the cell which ensures that the 

following response is antigen-specific and 2) is additional stimuli by the innate immune 

system which can be in the form of either costimulators (T-cells), cytokines (T & B-cells) or 

complement breakdown products (B-cells). These latter signals ensure that the response is 

to a dangerous antigen and not just the cell reacting to a non-hazardous antigen. It is 
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important to note at this point that the innate immune system is incapable of attacking 

“self“ unlike the adaptive immune system which is very capable of auto-immune reactions. 

1.3.2. Cells of the innate immune system 

1.3.2.1. Mast cells 

Mast cells are a granule-containing cells involved with wound repair and defence against 

pathogens. When activated, mast cells release granules containing chemokines and 

histamine which dilates blood vessels and recruit neutrophils and macrophages. Mast cells 

play a central role in allergy and autoimmune diseases such as eczema and asthma (Prussin 

and Metcalfe 2003) and have a large role in reactions such as immediate hypersensitivity 

reactions to β-lactam antibiotics where cross linkage of cell surface IgE molecules by drug 

induces mast cell activation and de-granulation (Gould et al. 2003). 

1.3.2.2. Neutrophils 

Neutrophils are granule-containing cells capable of phagocytosing pathogens, however, only 

after these pathogens have been opsonised. They are also one of the first types of cell to 

migrate toward sites of inflammation and are a marker of acute inflammation (Hickey and 

Kubes 2009). 

1.3.2.3. Eosinophils 

Eosinophils are granule-containing cells responsible for combating invading parasites. Upon 

activation, eosinophils release their granular contents which include reactive oxygen 

species, enzymes, lipid mediators, growth factors, and a large variety of cytokines. 

Eosinophils also have a role in eczema and asthma (Hogan et al. 2008). 
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1.3.2.4. Basophils 

Basophils are granular cells similar to mast cells which secrete histamine and heparin when 

activated under inflammatory conditions. Like eosinophils and mast cells, basophils play a 

role in parasite infection and allergy. Basophils can be found in usually high numbers around 

ectoparasite infections (Schroeder 2009). 

1.3.2.5. Phagocytes 

The main role of the phagocyte is to devour and destroy foreign bodies and pathogens 

through lysosome injection of digestive hydrolytic enzymes. Mature phagocytes usually 

reside in tissues but a small population is present in the circulation and are capable of 

presenting antigens to T-cells. There are a number of phagocytes in different tissues and are 

named according to the tissue they reside in with phagocytes in the central nervous system 

being called microglial cells, in the vascular sinusoids of the liver they are called Kupffer 

cells, in the pulmonary airwaves they are called alveolar macrophages, multinucleate 

phagocytes in the bone are called osteoclasts (Flannagan et al. 2009). 

1.3.2.6. Natural killer cells (NK cells) 

Natural killer cells are lymphocyte-like cells which are responsible for recognising stressed, 

infected or malignant cells; they then kill them by secreting inflammatory cytokines (Biron 

1999). When a NK cell encounters a cell the decision whether to kill that cell is finely 

balanced through a number of activating or inhibitory signals that are generated through 

detection of the ligands that are present on the surface of that cell. For example class I MHC 

molecules are interpreted by the NK cell as inhibitory signals and if there are a lack of MHC I 

molecules on the surface of the cell (which regularly happens when a cell has been 

infected), the NK cell will receive an imbalance of signals, become activated, and kill the 
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target cell (Bryceson et al. 2006).  NK cells can be identified ex vivo through the expression 

of CD56 and they have been shown to have a role in contact hypersensitivity where NK cells 

were capable of mediating long-lived, antigen-specific adaptive recall responses 

independent of B-cells and T-cells to the strong haptens DNCB and oxazolone (O'Leary et al. 

2006). 

1.3.2.7. Dendritic cells (DCs) 

Dendritic cells (DCs) have an important role in immunity through linking the innate immune 

response to an adaptive immune response. Generally, DCs express PAMPS, and mature from 

being large round immature cells with low level expression of MHC, to being cells with large 

membranous projections. This maturation is triggered after coming into contact with 

molecules such as lipoposaccharides on the surface on gram positive bacteria (Medzhitov et 

al. 1997) or after release of damage‐associated molecular patterns (DAMPs) such as 

HMGB1, heat shock proteins, and uric acid (Shi et al. 2003) which, apart from morphological 

changes, induce up-regulation of costimulatory molecules CD80, CD86, and MHC II on the 

cell surface. This maturation process transforms the DC into a potent T-cell stimulator. Some 

drugs can influence the maturational state of dendritic cells including amoxicillin which 

induces the increased expression of CD80 and CD86 on DCs from hypersensitive patients but 

not tolerant controls (Rodriguez-Pena et al. 2006). DCs develop from stem cells in the bone 

marrow and there are a number of DC subsets in both mouse and human with varied cell 

surface molecules and functional responses (Villadangos and Schnorrer 2007). There are 

two main types of DC, plasmacytoid DCs and conventional DCs. Plasmacytoid DCs require 

FTL3 ligand to differentiate (Sathe and Wu 2011) and are recognisable from their lack of 

CD1a, CD11b, and CD11c expression (Satpathy et al. 2012). They are also involved in 

mounting responses to viruses through their intracellular expression of TLR7/9 and their 
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ability to secrete large amounts of IFNα/β once activated (Hochrein and O'Keeffe 2008). 

Mouse and human plasmacytoid DCs can be distinguished through expression of endocytic 

receptor Siglec-H and CD303, respectively (Satpathy et al. 2012). Conventional DCs are 

generally thought of as being derived from lymphoid progenitors (Sathe and Wu 2011). 

Conventional DCs which express high levels of CD11c and MHC II can be divided into two 

further subsets; 1) lymphoid associated-DCs which reside in the spleen, thymus, and lymph 

nodes or 2) migratory DCs which reside in the peripheral organs (Kushwah and Hu 2011). 

Lymphoid associated conventional DCs are also further divided by their CD4/8 cell surface 

expression where CD8+ DCs are polarised to secrete high amounts of pro-inflammatory IL-12 

and presentation of intracellular foreign immunogen whilst CD4+ DCs are more associated 

with initiating humoral CD4 TH2 responses (den Haan et al. 2000). CD4- CD8- lymphoid 

associated conventional DCs are also polarised towards initiating humoral TH2 responses but 

can, importantly, also secrete TGFβ which results in priming Tregs which can lead to the 

suppression of immune responses (Zhang X. et al. 2005). Migratory conventional DCs 

encompass cells such as the DCs of the skin like Langerhans cells (LC) and other dermal DCs. 

These DCs are unique in their ability to migrate from their place of origin to lymphoid organs 

where they can then present immunogenic antigen to T-cells (Villadangos and Schnorrer 

2007). 

1.3.3. The adaptive immune system 

The cells of the adaptive immune system consist of T and B-lymphocytes and can be found 

circulating through the lymph as well as scattered across virtually all the other organs and 

tissues of the body. The role of the adaptive immune system is to be able to respond 

specifically to a wide variety of microbes which could be introduced at any point in the 

body. The first step in encountering a foreign microbe is transporting it to the peripheral 
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lymphoid organ (lymph node) where the antigen is presented by APCs to T and B 

lymphocytes. Naive lymphocytes migrate through the lymphoid organs and are presented 

the antigen by the APCs which allow them to develop into either effector cells, which 

provide immediate action, or memory cells, which “remember” the foreign antigen and 

provide future action, if required. These memory and effector lymphocytes are effectively 

transported all around the body to peripheral sites of antigen entry so that an adaptive 

immune response is able to be launched systemically to the particular antigen.  

1.3.3.1. T-lymphocytes 

T-cells progenitor cells are generated in the bone marrow and are transported to the 

thymus where they are required to undergo four selection/differentiation steps in order to 

become a cell population which express a fully functioning T-cell receptor (TCR) along with 

co-receptor molecules CD4 and CD8 (Carpenter and Bosselut 2010). These steps generate 

double positive CD4+ CD8+ thymocyte population which then migrates to the cortex of the 

thymus for further differentiation into single positive CD4 or CD8 T-cells (Germain 2002). 

The continued survival of these thymocytes is dependent upon their interaction with self-

peptides displayed by residual cortical epithelial cells in regards to MHC I or MHC II 

presentation. The amount of interaction through MHC I or MHC II molecules will also 

determine whether the double positive thymocyte will differentiate into a single positive 

CD8+ or CD4+ T-cell, respectively (Germain 2002). Furthermore, double positive T-cells 

containing TCRs which do not efficiently interact with self peptide-MHC complexes do not 

receive survival signals and undergo apoptosis. This mechanism has evolved in an effort to 

ensure that matured T-cells do not react to self-antigen (Germain 2002). After migration of 

these single positive T-cells to the thymic medulla and further depletion of cells which 

recognise self-antigen, the now mature CD4/CD8+ T-cells migrate to periphery secondary 
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lymphoid organs (Germain 2002). Naturally occurring immunosuppressive CD4+CD25+FoxP3+ 

regulatory T-cells also develop in the thymus with current opinions suggesting that these 

cells develop from single positive CD4+ T-cells which interact strongly with self-peptides but 

at a level deemed insufficient enough to warrant deletion (Sakaguchi 2004). This mechanism 

seems to involve the regulatory T-cell master transcription factor FoxP3 (Sakaguchi 2004) 

(Picca et al. 2006). 

T-cells once mature recognise peptide fragments presented by MHC molecules which have 

been intracellularly processed and need both this antigenic signal and co-stimulatory signals 

to become activated. After exposure to an antigen, antigen-specific T-cells with the 

corresponding T-cell receptor will proliferate and differentiate. T-cells expressing TCRs with 

no corresponding MHC peptide complex undergo apoptosis through lack of stimulation 

(Romagnani 2006). T-cells have subsets which are distinguished by their expression markers. 

T-cells which express CD4 are known to have roles in B-cell differentiation, macrophage 

activation, and regulation of cell-mediated immunity. They are activated by peptide MHC II 

complexes. “Regulatory” T-cells which express CD4 and CD25 (most commonly but other 

phenotypes exist) have the ability to suppress the functions of other T-cells which is an 

important process in regulation of immune responses and maintenance of self-tolerance. 

Cytotoxic CD8+ T-cells recognise peptide antigen through MHC I presentation and are 

responsible for the killing of cells infected with foreign antigens and tumour cells 

(Romagnani 2006).  

1.3.3.2. Memory T-cells 

Memory T-cells may be either CD4 or CD8+ T-cells and can be derived from any point of 

differentiation from naive T-cell precursors. Upon activation, they have the potential to 
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differentiate into further subsets and/or also retaining their effector and cytokine secretion 

profiles (Zielinski et al. 2011). Memory T-cells can be further subdivided due to their homing 

properties with central memory T-cells expressing CCR7 and L-selectin. These cells home to 

lymph nodes whilst only having limited effector functions but able to undergo brisk 

proliferative responses to generate many effector cells, upon antigen challenge. In contrast, 

effector memory T-cells do not express CCR7 or L-selectin and mainly home to peripheral 

mucosa (Zielinski et al. 2011). They retain effector T-cell function but do not retain 

significant proliferation potential. Memory T-cells usually develop at the peak of an immune 

response where a small subset of cells begin to express the IL-17R (Zielinski et al. 2011). 

Unlike effector and naive T-cells, memory T-cells only require the cytokines IL-15 and IL-17 

for their continued survival (Surh and Sprent 2008). 

1.3.3.3. CD4+ T-cells 

CD4+ T-cells are capable of differentiating into various subsets, each with their own distinct 

set of cytokines able to perform seperate effector functions. The CD4+ T-helper cells 

demonstrate a large amount of plasticity in their differentiation ability and are induced to 

differentiate into subsets of T-helper cells like TH1, TH2, TH17, by the cytokine contents of 

their surroundings (Zhu and Paul 2010). Two of the best defined subsets of effector CD4+ T-

cells are TH1 and TH2 cells. The main difference between these two subsets is their secretory 

cytokines with TH1 CD4+ T-cells secreting IFNγ, TNFα, and IL-2 and TH2 CD4+ T-cells secreting 

IL-4, IL-5, and IL-13 (Hsieh et al. 1993). Differentiation into TH1 is dependent upon exposure 

to pro-inflammatory cytokines e.g. IL-12 and IFNγ derived from innate immune cells 

(Lighvani et al. 2001). Activated CD8+ DCs represent a major source of IL-12 and are believed 

to be the main drivers of TH1 deviation (Maldonado-Lopez et al. 1999). Once the naive T-cell 

has differentiated into a into a TH1 cell it secretes IFNγ which both upregulates TH1 
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differentiation and simultaneously downregulates TH2 diferentiation. Through a trascription 

cascade involving transcription factors STAT-1, T-bet, and STAT-4, the TH1 CD4+ T-cell is able 

to fully differentiate into an effector cell with the primary objective of removing cells 

infected with foreign intracellular antigen through macrophage activation (Zhu and Paul 

2010). Increased TH1 differentiation and effector function has been implicated in the 

pathogenesis of autoimmune diseases including Crohn’s disease (Neurath et al. 2002) and 

lupus nephritis (Ooi and Kitching 2012). 

TH2 CD4+ T-cells differentiate for example under conditions of helminth infection where 

phagocytosis would be ineffective. The presence of foreign parasites induce the release of 

IL-4 from mast cells which is detected by naive CD4+ T-cells.IL-2 IL-4 signalling initiates 

activation of transcription factors including GATA-3, STAT5, and STAT6 (Pai et al. 2004) (Zhu 

et al. 2003). This leads to the differentiation of T-cells into a TH2 polarised subset (Zhu and 

Paul 2008). Differentiated TH2 CD4+ T-cells produce their effector function through secretion 

of cytokines IL-4 and IL-13. These cytokines induce production and secretion of specific IgE 

antibodies by B-cells to opsinise the parasites whist also secreting IL-5. IL-5 may activate 

eosinophils in the vicinity of the parasite to release their protein-degrading granule contents 

(Kool et al. 2012). TH2 cells are also well known for their role in triggering immune responses 

to innocuous environmental allergens, resulting in chronic inflammation associated with 

allergic diseases such as eczema, allergic rhinitis, and asthma (Holgate 2012). 

Also recently discovered and of note, are TH9, TH17 and TH22. Similar to TH1 and TH2 

secreting T-cells, naive CD4+ T-cells are promoted to differentiate into the different subsets 

of TH cells through exposure to polarising cytokines. 
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TH9 CD4+ T-cells differentiate when exposed to IL-4 and TGF-β and fully developed TH9 cells. 

TH9 cells seem to be associated with tissue inflammation and mucus production (Chang et 

al. 2010). TH9 CD4+ T-cells are classified according to the production of high amounts of IL-9, 

a cytokine closely linked to the development of athsma. 

 TH17 cells develop when exposed to a cocktail of many cytokines including TGF-β, IL-6, IL1-

β, IL-21 and IL-23. When fully differentiated this subset of CD4+ T-cell mainly targets 

extracellular pathogens and chronic neutrophillic inflammation (Bettelli et al. 2008). TH17 

cells are endowed with the ability to infiltrate tissues are and responsible for autoimmune 

dieseases such as mutilpe sclerosis (Stockinger and Veldhoen 2007). 

TH22 cells develop in environments containing the cytokines TGF-α and IL-6 and when fully 

developed are mainly associated with tissue inflammation (Eyerich et al. 2009) as well as 

being an important component of mucosal antimicrobial host defense (Basu et al. 2012). 

Regulatory T-cells or Tregs  are CD4+ CD25+ T-cells capable of regulating other types of 

effector T-cells and are present in a variety of tissues with differentiated, distinct roles in 

each particular tissue. Tregs  which do not develop in the thymus are deemed “induced” Tregs 

and they differ from Tregs which develop in the thymus through being Forkhead box P3 

(FoxP3) transcription factor negative (Baron et al. 2007) in contrast to Tregs which remain in 

the lymphoid tissue which are deemed natural Tregs. The FoxP3 transcription factor has been 

linked to fatal autoimune reactions in humans and mice (Hori et al. 2003) with FoxP3 being 

found to be the master regulator of CD25+ CD4+ T-cells. The implications of this discovery 

being that FoxP3 is vital for the prevention of certain autoimmune diseases. Natural 

occurring Tregs elicit their suppressive function in response to extremely low doses of antigen 

in comparison to concentrations required to activate naive CD4+ T-cells (Takahashi et al. 
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1998). The suppression of effector T-cell functions are achieved through a number of 

means. Tregs are capable of inhibiting IL-2 secretion by responder T-cells, a cytokine required 

for clonal expansion (Takahashi et al. 1998), they can directly kill effector CD8+ T-cells and 

NK cells via granzyme and perforin mediated mechanisms (Cao et al. 2007), and they can 

directly outcompete T-cell interactions with APCs through enhanced expression of LFA-1 

(Yamaguchi et al. 2011). FoxP3+ Tregs also express the co-inhibitory receptor Cytotoxic T-

lymphocyte Antigen 4 (CTLA-4) which can interact with CD80/86 on DCs resulting in the 

down-regulation of these T-cell co-stimulatory signals for T-cell activation (Wing et al. 2008). 

The secretion of TGF-β and IL-10 is also an important immunosuppressive mechanism which 

can induce CD4+CD25+FoxP3- cells to acquire FoxP3+ cell characteristics like increased CD25 

and CTLA-4 expression (Chen W. et al. 2003). Natural Tregs can also induce peripheral CD4+ T-

cells to become “induced” Tregs through TGF-β and IL-10 secretion and also through contact- 

dependent mechanisms (Chen W. et al. 2003) (Zheng et al. 2004). 

Tregs have been used in a therapeutic manner in mouse models of various diseases. The 

general protocol is adoptive transfer of Tregs from naive mice. This has demonstrated 

therapeutic effects in animal models of autoimmune encephalomyelitis (Kohm et al. 2002), 

inflammatory bowel disease coalitis (Kohm et al. 2002), and autoimmune haemolytic 

anaemia (Mqadmi et al. 2005), to name just three. 

1.3.3.4. CD8+ T-cells 

CD8+ T-cells are generated in much the same way as CD4+ T-cells where in the lymph organs, 

antigen is presented to induce antigen-specific clonal expansion of naive CD8+ T-cells. 

Activated cells differentiate into effector cytotoxic CD8+ T-cells (CTL), and finally migration 

into other tissues. 
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Like CD4+ T-cells, CD8+ T-cells can differentiate into different subsets under different 

cytokine environments. These include the subsets Tc1, Tc2, and Tc17. The Tc1 CD8+ T-cells 

are comparable to TH1 type in CD4+ T-cells in regards to the secretion of IFNγ, TNFα, and IL-

2, and an effector profile aimed towards combatting bacterial and viral infection (Mosmann 

et al. 1997) (Kryczek et al. 2007) (Tajima et al. 2011). Unlike CD4+ T-cells however, which 

readily differentiate into TH1 and TH2 cells, CD8+ T-cells appear to prefferentially 

differentiate into Tc1 CD8+ T-cells with differentiation into Tc2 CD8+ T-cells requiring large 

concentrations of IL-4 and use of an anti-IFNγ antibody in vitro (Sad et al. 1995). If CD8+ T-

cells can be induced to differentiate into Tc2 cells, they can be identified through their 

cytokine secretions with Tc2 cells able to secrete IL-4 and IL-5 and not IFNγ as opposed to 

Tc1 cells which secrete IFNγ but not IL-4 or IL-5 (Mosmann et al. 1997). It is important to 

state however, that once differentiated ex vivo and adoptively transferred, Tc1 and Tc2 cells 

are releatively stable and able to retain their cytokine secretion profiles even after 90 days 

in vivo (Cerwenka et al. 1998). As well as Tc1 and Tc2, a further subset of CD8+ T-cells has 

been discovered which secrete IL-17, these cells have been deemed Tc17 cells (Kryczek et al. 

2007) (Tajima et al. 2011). These Tc17 cells differentiate from naive CD8+ T-cells when 

cultered with TGF-β and IL-6 and furthermore, seem to be affiliated with the tumour 

microenvironment (Nam et al. 2008) and were capable of exhibiting anti-tumour activity 

and cytotoxicity as well as Tc1-like cells (Tajima et al. 2011). 

To differentiate from being naive to becoming cytotoxic, CD8+ T-cells require co-stimulation 

from APC as well as peptide presentation via MHC I. The CD8+ T-cells can also recieve 

differentiation signals from helper CD4+ T-cells; however, this is not a requirement for CD8+ 

T-cell clonal expansion and CTL development and seems to be more associated with CD8+ T-

cell differentiation into memory cells (Kaech and Cui 2012). IL-2 is instrumental in 
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stimulating CD8+ T-cells to proliferate and become CTL. Upon DC-mediated antigen 

stimulation in the lymph node, subsequent co-stimulation leading inexorably to T-cell 

activation, activated antigen-specific CD8+ T-cells begin to secrete IL-2 which works in an 

autocrine fashion through binding to its high affinity IL-2R on the T-cell surface, thereby 

driving its clonal expansion and functional differentiation into an effector CTL (Boyman and 

Sprent 2012). 

CTLs target cells infected with intracellular pathogen. This causes the clonal expansion of the 

CTLs in the first instance and killing is contact dependent, as well as antigen-specific with 

cytotoxic molecules only being injected into the target cell when the target cells express 

MHC I complexed to the target peptide (which is the ligand for the T-cell recepter and CD8 

corecepter on the CTL). Alongside MHC presentation, binding of adhesion molecule ICAM-1 

to the ligand for the CTL ahesion molecule LFA-1 is required. Only when all these 

connections are made betwixt CTL and target cell, will cytotoxic molecules be released into 

the intracellular space between CTL and target cell to cause cell death through cytotoxicity 

by the release of Fas-L, perforin /granzyme B (Nassif et al. 2004), and /or granulysin (Chung 

et al. 2008). To cause apoptosis, granzyme B must first gain entry into the target cell 

cytoplasm which is done through the action of secreted membrane disrupting protein 

perforin (Kagi et al. 1994). Upon entry into the infected target cell, granzyme B causes 

apoptosis through both caspase-dependent pathways via activation of caspases 8 and 3 

(Atkinson et al. 1998) (Medema et al. 1997) and through caspase independent pathways 

through mitochondrial dysfunction leading to release of cytochrome c and eventual necrotic 

cell death (Heibein et al. 1999). In addition to perforin and granzyme B killing pathways, 

cytotoxic CD8+ T-cells can cause cell death through fas-ligand signalling which leads to 

apoptosis through direct activation of caspase 8 leading to eventual activation of active 
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caspase 3 and target cell apoptosis (Rouvier et al. 1993). Cytotoxic CD8+ T-cells are not 

damaged during this process due to a proteolytic enzyme on the surface of the CD8+ T-cell 

named cathepsin B, which degrades any errant perforin molecules which may have come 

into its vicinity. Granulysin, as opposed to fas ligand and granzyme B is a secreted apoptotic 

agent which does not require direct cell-cell contact. Investigations using mice found that 

granulysin was in high concentration in blister fluid and where upon injection into naive 

mice, stimulated SJS-like symptoms (Chung et al. 2008). Granulysin is a molecule found only 

in activated CD4+ and CD8+ T lymphocytes, NK cells and in activated, but not in resting, CTLs 

(Pena et al. 1997). The mechanism of cell death is achieved through binding to the target 

cell membrane. Granulysin then activates sphingomyelinase followed by a slow increase in 

ceramide concentration or induces an increase in intracellular calcium and efflux of 

intracellular potassium (Saini et al. 2011). Both pathways are linked with fast mitochondrial 

membrane damage, which leads to cell death via activation of caspase molecules (Li Q. et al. 

2005) (Veljkovic Vujaklija et al. 2012). 

1.3.3.5. B-lymphocytes 

B-cells differentiate in the bone marrow. The main function of this class of lymphocyte is to 

secrete antibodies. Upon encountering antigen, B-cells will proliferate via clonal expansion 

to become either plasma or memory B-cells (Parkin and Cohen 2001). Plasma B-cells secrete 

antibodies of the same antigen affinity as the pre-clonal expanded B-cell-surface antibody. 

The major difference between B and T-cells is that B-cell receptors interact with antigenic 

protein, not the derived peptide (Parkin and Cohen 2001). The secreted B-cell antibodies 

functions include the neutralisation of viral components and opsonisation of antigens in 

order to aid cell removal through the work of phagocytes or NK cells  (Parkin and Cohen 

2001). Memory B-cells remain in circulation for the long-term and differentiate to secrete 
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higher-affinity IgG or IgA antibodies, rather than their plasma and naive counterparts (IgD 

and IgM) to allow a swift response if the antigen is ever reintroduced (Parkin and Cohen 

2001). Immediate hypersensitivity reactions are seen following exposure to foods like 

peanuts or drugs like β-lactam antibiotics such as amoxicillin. These immediate reactions are 

caused by B-cells secreting specific IgE molecules (Torres et al. 2003). 

 

1.4. MHC molecules 

As previously mentioned, T-cell antigens are presented through either MHC I or MHC II 

molecules on the surface of APCs to CD8 or CD4 TCRs, respectively. 

There are some important differences between mouse and human MHC molecules. For 

example, once activated, human T-cells express MHC II whilst mice only express MHC II on 

certain cells e.g. DCs (Mestas and Hughes 2004). All MHC molecules are polymorphic with 

more than 200 alleles of some human MHC class I and class II genes (Janeway CA Jr 2001.). 

Furthermore, a human typically expresses around six different MHC I molecules and eight 

different MHC II molecules on their cells (Janeway CA Jr 2001.). Mouse MHC haplotypes 

include MHC I - K, D, and L (also called H2-K, H2-D, H2-L), and MHC II - A and E (also called I-

A and I-E) (Janeway CA Jr 2001.). 

The structure of MHC I molecules consists of one polymorphic light chain (α) and a β‐chain 

(β2m) (Fig 1.1) which is not membrane bound but plays a key role in transporting newly 

synthesised MHC molecules to the cell surface. Peptides of between 9-11 amino acids in 

length are presented in the binding groove and are held in place through hydrogen bonds 

and Van der Waals forces (Janeway CA Jr 2001.).  



24 
 

The MHC II structure differs from MHC I molecules through having the β-chain anchored in 

the MHC region and the length of presented peptides can be larger than 11 peptides long. 

 

Fig 1.1. The structure of class I and class II major histocompatibility complex molecules 

 

Intracellular foreign peptides are processed and presented via MHC I and extracellular 

foreign antigens are presented via MHC II (Fig 1.2). Intracellular antigens usually originate 

from viral origins where a virus enters a cell, replicates and therefore releases viral protein 

into the host cell cytosol (Neefjes et al. 2011). These proteins are degraded by cytosolic and 

nuclear proteasomes and the resulting peptides of around 9-11 amino acids in length are 

translocated to the endoplasmic reticulum (ER) (Neefjes et al. 2011). This translocation is 

done through transporter associated with antigen presentation (TAP) which allows the 

peptide to access MHC I molecules (Neefjes et al. 2011). In the ER the MHC I heterodimer is 

assembled out of the heavy chain, a light chain called β2 microglobulin (β2m) and the 

MHC I MHC II 
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peptide itself which sits deeply in the MHC binding groove. After the MHC I molecule is fully 

assembled it is released from the ER and presented at the cell surface (Neefjes et al. 2011). 

Uncoupled MHC/peptide molecules are returned to the cytosol for degradation (Hughes et 

al. 1997) (Fig 1.2). Constraints of the MHC binding are that peptides with a “low-affinity” for 

the MHC binding site will not be presented at the cell surface and the MHC molecule instead 

will be further subjected to further rounds of peptide selection and binding (Moremen and 

Molinari 2006) (Blum et al. 2013). 

 

Fig 1.2. The processing of intracellular and extracellular antigen followed by presentation via MHC I, 

and MHC II molecules, respectively. Intracellular antigens are degraded in the proteasome. Peptides 

are transported to the ER via TAP where they associate with MHC I molecules. The MHC-bound 

peptide is then trafficked to the Golgi in vesicles. These then fuse with the phagolysosome where 
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peptide loading then occurs. The MHC-bound peptide is then transported to the cell surface where 

the particular antigen is displayed. Figure adapted from Neefjes et al (2011). 

 

Extracellular peptides are presented through MHC II molecules to CD4+ cells and only 

specific APCs like DCs, macrophages, and B-cells are able to utilise this pathway. 

Extracellular pathogens are endocytosed and proteins are degraded through enzyme activity 

to generate peptide fragments. MHC II molecules that have been assembled in the ER are 

released into the endosome to allow peptide loading to occur in the MHC II binding groove. 

The MHC II molecules are then fused with the cell surface to present the foreign peptides 

(Neefjes et al. 2011). 

1.4.1. Human HLA types 

The MHC region is highly polymorphic and this has been attributed to increases in viral 

protection offered by heterozygosity (Doherty and Zinkernagel 1975). MHC genes code a 

large variety of cell surface glycoproteins involved in the presentation of antigens and in 

humans the genes are called human leukocyte antigen (HLA) class I and II genes. 

Human MHC I molecules are encoded by the HLA-A, B, and C loci with MHC II molecules 

being encoded by HLA-DR, DQ, and DP loci. Certain HLA types have now been associated 

with particular drug hypersensitivity reactions. For example, carbamazepine hypersensitivity 

reactions have been linked with HLA type B*15:02 and A*31:01 (Chung et al. 2004) 

(McCormack et al. 2011), nevirapine hypersensitivity reactions have been linked with 

DRB1*01:01 (Martin A. M. et al. 2005), and flucloxacillin-induced liver injury has been linked 

to B*57:01 (Daly et al. 2009). 
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1.4.2. TCR activation following MHC presentation 

Upon MHC presentation to a T-cell via the TCR, the T-cell must first recognise the peptide-

MHC molecule presented by the APC which is accomplished through the TCR. The TCR is a 

multi-protein transmembrane complex consisting  of the TCRαβ, CD3εδ, CD3εγ, and CD3ζζ 

dimers (Kuhns and Davis 2012) and arguably the TRIM2 dimer (Swamy et al. 2010). On the 

TCR, the TCRαβ dimer has variable antibody domains which bind to MHC-presented peptide 

as well as the MHC molecule itself (Garcia et al. 1996). Upon successful ligand binding to the 

TCRαβ, tyrosine residues on the CD3 chains (which are part of the immunoreceptor 

tyrosine-based activation motif) of the TCR are phosphorylated to instigate further T-cell 

activation steps. Currently, models propose either a conformational change, aggregation, or 

segregation of the TCR-CD3 complex however all models result in tyrosine phosphorylation 

of the cytoplasmic TCR/CD3 ITAMs which is the earliest detectable biochemical step known 

to be required for TCR triggering (Choudhuri et al. 2005) (Choudhuri and van der Merwe 

2007). Co-receptor CD4 and CD8 recognition of sites present on the MHC molecule is crucial 

for efficient T-cell activation. Co-stimulatory receptor engagement between CD28 on T-cells 

and CD80/86 on DCs results in the secondary activation signal for T-cell stimulation 

(Janeway CA Jr 2001.) and is linked to downstream signalling involving P13K leading to the 

phosphorylation of PIP2 which in turn leads into the cellular pathway described in more 

detail below (Okkenhaug et al. 2001). The amount of peptide-MHC presentation to the TCR 

appears directly correlated with the amount of in vivo CD8+ memory T-cells generated 

(Leignadier and Labrecque 2010) and their cytotoxic abilities (Wherry et al. 1999). 

Contrastingly, a study of in vivo progression of a monoclonal CD8+ T-cell responses 

demonstrated that low-affinity peptide-MHC ligands could induce expansion of functional 

cytotoxic and memory T-cells (Zehn et al. 2009) (Corse et al. 2011). 
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Following successful MHC presentation, intracellular signalling is induced to allow for 

transcription of factors responsible for proliferation, differentiation and/or cytokine/growth 

factor release. TCR triggering stimulates IL-2 release. IL-2 binds to the IL2-R which leads to 

clonal expansion and differentiation into either effector T-cells or memory T-cells; 

immunoreceptor tyrosine-based activation motifs (ITAMs) must be phosphorylated on the 

TCR/CD3 complex by signalling cascade molecule Lck for this to occur (Zhang W. et al. 1998). 

Likewise, Zap 70 is recruited to the TCR/CD3 complex where it is activated, inducing 

phosphorylation of downstream adaptor proteins (Nel 2002) (Smith-Garvin et al. 2009) to 

ultimately produce DAG. DAG activates the MAPK/ERK pathways to promote activation of 

transcription factor NF-κB, and IP3 which induces Ca2+ release from the ER which, in turn, 

induces the opening of Ca2+ release activated Ca2+ channels to increase cytosolic Ca2+. 

Calcium-bound calmodulin activates the phosphatase calcineurin which promotes IL-2 gene 

transcription through the transcription factor NFAT. T-cells can then become activated 

through release and binding of IL-2 to the IL2-R which leads to clonal expansion and 

differentiation into either effector T-cells or memory T-cells (Kuo and Leiden 1999). 

 

1.5. The liver and immune regulation 

Hepatocytes are the main constituents of liver with ~80% of mass consisting of hepatocyte 

cytoplasm. Functions of hepatocytes include protein synthesis and storage, synthesis of 

cholesterol, bile acids and phospholipids, detoxification, and modification and excretion of 

exogenous and endogenous substances. Hepatocytes are the primary producers of serum 

albumin, the most abundant protein in the body. The liver is somewhat immunosuppressive 

with more lymphoid cells associated with the innate immune system than the lymphoid cells 



29 
 

found in peripheral blood. In particular, large amount of NK cells are present which 

comprise 65% of all lymphoid cells found in the liver; however conversely, the amount of 

adaptive immune CD3+ CD4+ CD8- and CD3+ CD4- CD8+ T-cells is lower in the liver when 

compared with PBMCs. This balance indicates that the liver immune system is highly 

polarised to fight pathogens through the actions of the innate immune system (Norris et al. 

1998) (Norris et al. 1999).  

 

1.6. The skin and immune regulation 

The skin is mainly comprised of keratinocytes which as well as forming a physical barrier 

against invading pathogens, also help fight them through displaying various pattern 

recognition receptors such as toll-like receptors. Specialised immune cells are present in the 

epidermis alongside keratinocytes; these consist of memory T-cells and Langerhans cells 

(epidermal DCs). Langerhans cells have been discovered to be important in contact 

hypersensitivity reactions where the immunogen is delivered shallowly into the skin, not 

penetrating the epidermis (Romani et al. 2012). Langerhans cells have also been shown to 

have a poor capacity for activating CD8+ T-cells in staphylococcal infected skin leading to 

resolution of the infection through humoral immune responses. In mice, a subset of CD103+ 

dendritic cells exist deeper in the skin, in the dermis, as well as in other organs (Ginhoux et 

al. 2009). This subset seems to have a human equivalent (CD141+ DCs) (Haniffa et al. 2012). 

In both species this group of DCs has a well-defined role in immunity against viral antigens 

and preferential presentation to CD8+ T-cells (Bedoui et al. 2009). Another subset of DC 

found in the skin is a CD11b+DC which seems to preferentially present antigen to CD4+ T-
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cells and in particular, regulatory CD4+ T-cells (Haniffa et al. 2012). Collectively, these data 

indicate that an adaptive response is preferred in the skin. 

 

1.7. T-cell movement and organ infiltration 

The ability of antigen-specific T-cells to move around the body to possible sites of infection 

is a necessary requirement in the adaptive immune system. Leukocytes travel from the 

blood to peripheral tissues using adhesion molecules. These adhesion molecules include 

selectins, integrins, and chemoattractant receptors. Selectins promote the rolling 

movement of leukocytes along endothelial cell surfaces (Luster et al. 2005). Integrins are 

trans-membrane surface receptors which promote the firm attachment of leukocytes to 

endothelial cells, and chemoattractants are G-protein coupled receptors which promote the 

firm adhesion to endothelial cells through integrins and subsequent direct cell migration 

through tissue gradients (Luster et al. 2005). During inflammation in a tissue, the vascular 

beds upregulate the ligands for selectins, integrins, and chemoattractants to induce 

direction cues for inflammatory T-cells, which express the corresponding receptors to enter 

the tissue of requirement from the vascular system. T-cells can also be “imprinted” with 

specific allergy-prone organ homing when they are still naive. The three main organs that T-

cells are imprinted to are the gut, the skin, and the lung. To imprint T-cells to travel to the 

gut, the T-cell is stimulated to express the integrin α4β7 and the receptor chemokine 9 

(CCR9) (Luster et al. 2005) (Fig 1.3. B). To imprint homing to the skin, T-cells are stimulated 

to express the lectin cutaneous leukocyte antigen (CLA) along with chemokine receptors 

CCR4, CCR10, and in some T-cell subsets CCR8 and CCR6 (Januszewicz and Firkin 1988) (Fig 

1.3. A). The DCs which originate from specific organs have shown to be able to imprint 
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homing to naive T-cells through release of environmental cues. DCs originating from the gut 

secrete retinoic acid metabolites which induces expression of the gut-tropic receptors α4β7 

and CCR9 on naive T-cells (Mora et al. 2005); DCs from the skin secrete the active vitamin D3 

metabolite which induces CCR10 expression in naive T-cells (Sigmundsdottir et al. 2007). 

Other chemokine receptors have also been discovered and linked to migration to other 

organs, like lung (Fig 1.3. C) (Masopust and Schenkel 2013). 

 

Fig 1.3. T-cell migration in skin (A), gut (B), and other tissues like lung (C). The migration of T-cells is 

determined by tissue specific vitamins or factors as well as priming location. Adapted from 

Masopust and Schenkel (2013). 
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1.8. Contact hypersensitivity (CHS) 

Contact hypersensitivity is defined as an immune reaction which usually presents itself after 

someone has been repeatedly exposed to a particular drug or protein-reactive chemical (Xu 

et al. 2000). In CHS, when the body is first exposed to the protein-reactive chemical usually 

via the skin, but not exclusively, the chemical in question first binds to protein. This bound 

protein is then taken up by APCs in the skin; these cells proceed to travel to the draining 

lymph nodes where peptides derived from the foreign protein are presented to CD4+ and 

CD8+ T-cells which then enter the circulation and lymphatic system (Xu et al. 2000). This 

process is known as sensitisation. The next step in CHS is elicitation; this happens when the 

body is re-introduced to the protein-reactive chemical after a period of time has passed. The 

chemical again binds to protein but this time chemical specific CD4+ and CD8+ T-cells from 

the draining lymph node travel to the site of contact (Nassif et al. 2004). The effector CD8+ 

T-cells proceed to secrete inflammatory cytokines like IFNγ and cause death of keratinocytes 

which have been in contact with the altered proteins through cytotoxicity involving Fas-L, 

perforin/ granzyme B, and granulysin (Chung et al. 2008) (Nassif et al. 2004).  

It is known that CD4+CD25+FoxP3+ natural Tregs are capable of inhibiting the development of 

CHS through a variety of mechanisms including the production of inhibitory cytokines like IL-

10, TGF-β, and IL-35 (Hawrylowicz and O'Garra 2005) (Green et al. 2003) (Collison et al. 

2007), direct cytolytic abilities (Zhao et al. 2006), inhibition of proliferation (Thornton and 

Shevach 1998), and disruption of DC function (Tang Q. et al. 2006) (Kimber et al. 2012). The 

development of CHS via skin sensitisation has been experimentally demonstrated to be 

reliant upon TLR2, TLR4 activation, and IL-12 signalling. It is important to note however that 

only in mice devoid of both TLR signalling and IL-12 signalling was sensitisation inhibited 

(Martin S. F. et al. 2008) (McFadden et al. 2013). 
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An example of perhaps the most well known molecule capable of causing CHS is urushiol, 

the active molecule responsible for the effects of poison ivy.  Urushiol requires oxidation via 

keratinocytes before becoming protein-reactive and able to cause sensitisation but upon 

repeat exposure, the elicitation response usually leads to painful blisters. Chemicals capable 

of causing CHS can range in severity from being able to sensitise most individuals at very 

small concentrations, like nitrohalobenzenes, which have been studied extensively due to 

their sensitising nature, to extremely weak sensitising chemicals, like drugs such β-lactam 

antibiotics which only sensitise a very small percentage of the population even at extremely 

high concentrations (Gielen and Goossens 2001).  

1.9.  Clinical implications of cutaneous drug hypersensitivity reactions 

 Drug hypersensitivity reactions most commonly present themselves as a relatively mild skin 

reaction called maculopapular exanthema (MPE). This condition consists of itching wheals 

and rashes which can resolve by discontinuing the drug and treatment with either 

steroid/emollient creams or systemic antihistamines (Rich et al. 2013). Symptoms generally 

appear 8-11 days after the drug is first given, but in already sensitised patients, symptoms 

can be seen after only 1-2 days. A myriad of drugs have been reported to cause MPE 

including β-lactam antibiotics, sulphonamide, and diuretics to name just a few. The more 

severe form of MPE which also derives from drug exposure is acute generalized 

exanthematous pustulosis (AGEP) which effects about 1 in every 100,000 drug treatments 

(Rich et al. 2013). The symptoms for this form of reaction include the appearance of sterile 

pustules in the skin which usually appear 2-5 days after starting treatment. Healing is 

evident 5 days after stopping the administration of the drug, but this condition can be fatal 

with a mortality rate of about 2-4%. The most serious drug induced skin reactions are 

however Steven’s Johnson syndrome (SJS) and toxic epidermal necrosis (TEN) which have a 
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mortality rate of approx 13% and 39% respectively (Rich et al. 2013). They are rare with SJS 

affecting ~1 in 100,000 treated patients and TEN affecting ~1 in 1,000,000 treated. They are 

diagnosed through the amounts of skin detachment (~10%- SJS, 10-20%-SJS/TEN, ~30%-

TEN) and the average time for onset of symptoms is around 17 days after the start of 

treatment (Rich et al. 2013). The turning point from diagnosis of MPE to SJS is often when 

the exanthema becomes painful and bullae begin to form 12-24 hours later. Removal of the 

drug is usually enough to prevent the SJS progressing to TEN but common symptoms still 

include blistering in mucous membranes (e.g. mouth/lips) and possible keratoconjunctivitis 

(Rich et al. 2013). 

 

1.10. Clinical implications of systemic drug hypersensitivity reactions  

Although the skin is usually the organ under duress in drug hypersensitivity reactions, 

systemic drug hypersensitivity reactions pose a real problem for certain drugs like 

flucloxacillin, ximelagatran, and carbamazepine.  

1.10.1. Drug reaction with eosinophilia and systemic symptoms (DRESS) 

Eosinophilia is diagnosed when eosinophils in the blood increase above normal levels. 

Eosinophilia is only a disorder if it is idiopathic; however, it is often an accompaniment of 

DRESS (Simon and Simon 2007). DRESS is a term used to define drug hypersensitivity 

reactions which present with a latency period between onset of symptoms and first 

exposure to the culprit drug. The term DRESS has been coined to describe a variety of drug 

hypersensitivity reactions and the main symptoms are cutaneous reactions as described 

above along with internal organ damage which has clinical overlap with other diseases 

caused by drugs such as SJS and drug-induced liver injury (Schlienger et al. 1998). The 
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systemic symptoms which usual present alongside cutaneous symptoms, are predominantly 

liver orientated but can also include kidney, lung, and heart. The mortality rate of DRESS is 

around 10% with the majority of these deaths being contributed to liver damage (Peyriere 

et al. 2006) (Eshki et al. 2009). Other than drug induced, DRESS can also be virus induced. 

Evidence of this stems from some cases continuing to exacerbate despite discontinuation of 

the offending drug and evidence of viral infection in laboratory tests (Shiohara and Kano 

2007). In patients with sporadic outbreaks of DRESS, tests have shown that the emergence 

of symptoms coincides with the reactivation of viruses HHV-61, HHV-7, Epstein-Barr virus, 

and cytomegalovirus (Seishima et al. 2006) (Oskay et al. 2006) (Kano et al. 2006). 

1.10.2. Drug-induced liver injury (DILI) 

Drugs which induce skin reactions are usually only discovered to do so after the drug has 

been marketed to the public due to the small percentage of people that are effected, 

whereas systemic drug hypersensitivity reactions, and DILI, is one of the most common 

reasons for the prevention of drugs from entering the pharmaceutical market in the first 

place (Temple and Himmel 2002). DILI is the main reason for acute liver failure having just 

over 50% of cases attributed to it with 39% being due to hepatotoxicity due to overdose of 

paracetemol’s active metabolite and 13% due to idiosyncratic liver injury caused by other 

drugs (Maddrey 2000). Relatively recently, an important role has been highlighted for HLA 

class I and II genes in the development of DILI.  

1.10.3. Idiosyncratic drug-induced liver injury (IDILI) 

Not all drugs cause one type of liver damage and the effects of a drug can vary in the time of 

onset of symptoms which can vary from hours after the drug is given to weeks after the 

drug has been stopped, which is not unusual for DILI caused by antibiotic treatment. When a 
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delay is observed between drug exposure and onset of liver injury, the reactions is deemed 

idiosyncratic drug-induced liver injury (IDILI). The mechanism of how this happens is not 

fully known however, the delayed nature of the reaction strongly indicate the involvement 

of the adaptive immune system (Adams et al. 2010). Relatively recently, an important role 

has been highlighted for HLA class I and II genes in the development of IDILI which again 

implicates the adaptive immune system in the pathogenesis of the disease (Daly and Day 

2012). 

Interestingly, there seems to be a correlation between drug-HLA associations and the 

incidence of cholestatic drug-induced liver injury. Cholestasis is known to be a possible 

route for IDILI by drugs like flucloxacillin. Damage is caused when the transport of bile is 

halted through disruption in transport proteins in the bile duct. This leads to the build of bile 

and bile salt in the liver which leads to bile induced liver membrane damage and build up of 

cholesterol, both disrupt membrane proteins and reductions in the bile salt pool and 

enterohepatic recirculation, all of which add to liver function impairment and damage 

(Andrews and Daly 2008). There are a variety of forms of liver damage cause by drugs which 

can widely vary from drug to drug. Paracetemol had long been a model drug to investigate 

drug-induced liver injury however the mechanisms are a known pharmacology of the drug; 

hepatocyte damage occurs due to the protein-reactive metabolite of paracetemol N-acetyl-

p-benzoquinoneimine (Dahlin et al. 1984) which at therapeutic doses is detoxified by 

glutathione however, at overdoses, glutathione is exhausted resulting in the toxic 

metabolite and subsequent hepatocyte necrosis  attributed to mitochondrial death 

(Masubuchi et al. 2005). Amodiaquine is a malaria drug found to cause liver damage 

through hepatotoxicity where symptoms appeared weeks to months after drug 

administration and re-appear after re-administration of the drug strongly indicating the 
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adaptive immune system (Uetrecht J. 2005). Although, like flucloxacillin the adaptive 

immune system is culprit, the mechanisms of damage are vastly different between the two 

drugs highlighting the complexity and variance of IDILI from drug to drug. 

 

1.11. Pathogenesis of drug hypersensitivity reactions 

There are currently three mechanisms by which drugs are thought activate T-cells through 

their TCR; the hapten hypothesis, the Pi mechanism and the altered peptide hypothesis. A 

hapten is defined as a low molecular weight compound capable of binding to protein to 

create an immunogenic molecule. An immunogen is any antigen that is capable of inducing 

a humoral or cell-mediated immune response rather than immunological tolerance. Hence, 

an antigen is any substance that may be specifically bound by components of the immune 

system although not every antigen causes an immune response; ones that do are defined as 

immunogenic.  

1.11.1. Hapten hypothesis 

The hapten hypothesis states that drugs or low molecular weight compounds under 1000Da 

in weight must form stable adducts with endogenous protein to be able to induce an 

immune response (Park et al. 1998). Haptenation of proteins can occur either directly or 

through metabolic activation. In direct haptenation, like with the classic sensitising agents 

dinitrochlorobenzene (DNCB) and dinitroflourobenzene (DNFB), the haptenic molecule 

binds directly to protein in a relatively non-specific manner to modify lysine and cysteine 

residues generating the immunogenic protein (Knight and Green 1979) (Fig 1.4. A). β-lactam 

antibiotics are also known to be directly protein-reactive and mass spectrometric 

techniques have been used in the case of piperacillin (Whitaker et al. 2011)  and 
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flucloxacillin (Jenkins et al. 2009) to determine the exact amino acid residues that are 

modified by the drugs. However, most drugs only become sufficiently haptenic after 

bioactivation and this bioactivation is thought to occur after the chemical structure of the 

molecule has been altered through the action of enzymes such as cytochrome P450 

enzymes, which are usually responsible for the detoxification of compounds. However, the 

oxidation of certain drugs can, ironically, cause them to become protein-reactive. P450 

enzymes are found most abundantly in liver but can be also found in skin, gut and kidney. 

Importantly, immune cells express only low levels of P450 enzyme. However, other enzymes 

known to cause drugs to become protein-reactive (e.g. NADPH oxidase and 

myeloperoxidase) are found in phagocytes and other APCs (Sezer et al. 2001). 

1.11.2. The Pi concept 

The pharmacological interaction or “Pi concept” states that drugs do not need to be bound 

covalently to protein to become immunogenic and that some drugs can in fact bind directly 

to the MHC binding grooves to cause T-cell-mediated immune reactions. The Pi concept, as 

opposed to the hapten hypothesis, states that parent drug is able to “structurally” fit into 

both the T-cell receptor and the antigen presenting cells-MHC groove to stimulate the T-

cells to react (Pichler et al. 2006) (Adam et al. 2011) (Fig 1: 4. B). This concept was devised 

through experimentation with drug-specific T-cell clones to drugs like sulfamethoxazole 

where the T-cells were found to react to drugs in an MHC-T-cell receptor dependent way. 

Furthermore, specific T-cell clones were capable of reacting to drug-treated fixed APCs 

(Schnyder et al. 1997) (Zanni et al. 1998). 
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1.11.3. Altered-self peptide repertoire hypothesis 

One drug,  abacavir, has recently been shown to directly bind to MHC molecules through its 

association with HLA-B*57:01 allele where up to 50% of patients carrying the allele will 

develop hypersensitivity reactions whilst patients not carrying the allele are prescribed the 

drug with absolutely no immunological hypersensitivity reactions predicted (Mallal et al. 

2008). This association lead to the screening of patients before prescription of the drug, 

leading to the first successful example of personalised medicine (Yun et al. 2012). This 

particular mechanism of the Pi-concept has come to be named the “altered-peptide 

concept” (Fig 1:4. C). The interaction of abacavir with endogenous HLA-B*57:01 shows the 

binding interaction changes the confirmation of the peptide binding cleft, altering the 

repertoire of peptides displayed on the cell surface (Illing et al. 2012) (Ostrov et al. 2012) 

(Norcross et al. 2012). These data imply that pre-existing peptide-specific T-cells are 

activated indirectly by abacavir through the display of cross-reacting “altered-self” peptides. 

1.11.4. The danger hypothesis 

The danger hypothesis simply states that the body does not discriminate between non-self 

and self but only strives to protect against danger (Matzinger 1994) (Anderson and 

Matzinger 2000). It is thought that the immune system requires three signals to react fully 

to an antigen (Curtsinger et al. 1999). Signal 1 involves presentation of an antigen via the 

MHC to the T-cell receptor and if no other signals are received, then this will result in 

tolerance to the particular antigen. Signal 2 involves the action of co-stimulatory interaction 

between APC and T-cells and the release of pro-inflammatory cytokines like IFNγ to enhance 

presentation. Signal 3 involves the response of specific TH1 or TH2 cells through polarising 

cytokines which specifically target T-cells (Pirmohamed et al. 2002). With respect to drug 
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hypersensitivity reactions, drugs and/or protein-reactive metabolites have the ability to be 

presented as part of Signal 1 via a possible drug protein interaction or MHC-T-cell receptor 

interaction and Signal 2 and 3 can be derived from either surgical trauma, drug derived 

stress, infection (Uetrecht J. P. 1999), or necrotic or apoptotic cell death. It has been shown 

that only necrotic cells can activate dendritic cells (Gallucci et al. 1999) but apoptotic cells 

have been shown to activate cytotoxic T-cells (Shi et al. 2000). It is well documented that 

patients with viral infections are more susceptible to adverse drug reactions (Sullivan and 

Shear 2001), however, with respect to danger signals in drug hypersensitivity reactions the 

specific nature and origin of the danger signals from drug and non-drug signalling is not well 

defined and more research is needed.  
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Fig 1.4. The hapten hypothesis, the “Pi-concept”, and the altered peptide concept. (A) Hapten 

hypothesis where the peptide embedded in the MHC I molecule, is covalently bound and altered by 

protein-reactive drug (e.g. flucloxacillin), creating an immunogenic antigen. (B) The “pi-concept” 

where the drug is capable of binding directly to the TCR during MHC presentation (e.g. SMX, 

carbamazepine). (C) Altered peptide concept where the drug is capable of non-covalent binding 

directly to particular HLA-B associated MHC I molecules, allowing for presentation of “altered-self” 

peptides to CD8+ T-cells and subsequent sensitisation (e.g. only abacavir to date). Adapted from 

Adam et al (2011). 

 

1.12. β-lactam antibiotics 

Beta-lactam ring-containing drugs are antibiotics that exert their pharmacological effect 

through binding irreversibly to bacterial penicillin binding proteins involved in the synthesis 
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of peptidoglycan. β-lactam antibiotics are known to be capable of inducing immediate (IgE 

mediated) and delayed-type (T-cell-mediated) hypersensitivity reactions. 

1.12.1. β-lactam-induced immediate hypersensitivity reactions 

Beta-lactam-induced immediate allergic reactions are classified as Type 1 through their 

quick onset of symptoms (<1h) and release of histamine and other vasoactive inflammatory 

mediators. The release of these usually generates clinical symptoms of anaphylaxis and 

rapidly occurring urticaria (Baldo 2014). Before an immediate reaction can instigate in a 

patient, that patient must first have been sensitised to the β-lactam in question (Stone et al. 

2014). Sensitisation occurs when the antibiotic is first introduced to the patient and 

immunogens created by the presence of the drug are taken up by APCs and presented to T 

and B-cells in the context of a TH2 response. This results in drug specific IgE antibodies being 

produced in response to that particular immunogen if the drug is re-introduced (Stone et al. 

2014). The specific mechanisms involved in β-lactams causing the symptoms of immediate 

reactions are a consequence of three interactions between allergen, antibody, and cell. The 

produced IgE antibodies mediate this reaction through interacting with their 

complementary allergens and with mast cells and basophils. The antibodies bind strongly 

with their FcεRI receptor which is abundantly expressed on mast cells and basophils and 

form a long-lasting, slowly dissociating complex (Baldo 2014). Interactions of the combining 

sites of the cell-bound antibodies alongside the actions of the bound allergen allows cross-

linkage of adjacent antibodies, aggregation of the FcεRI receptors, and the triggering for 

rapid release of histamine, platelet activating factor, heparin, chemo-tactic factors, 

serotonin, and enzymes, all of which leads to the symptoms seen in type I β-lactam 

hypersensitivity reactions (Kaliner et al. 1972) (Gould et al. 2003) (Baldo 2014). 
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1.12.2. β-lactam induced delayed hypersensitivity reactions 

Beta-lactam containing antibiotics are capable of causing Type IV delayed hypersensitivity 

reactions which involve drug-specific T-lymphocytes (Pichler 2003). The symptoms of organ 

damage appear after drug-specific cytotoxic cells are generated through sensitisation via 

APC presentation of drug-immunogens to naive T-cells which can be polarised towards a TH1 

(Monshi et al 2013) or a TH2 (El-Ghaiesh et al. 2011) type response  (Pichler 2003). This 

induces clonal expansion of drug-specific T-cells. Upon re-exposure to the particular drug, 

specific T-cells infiltrate organs, utilise their cytotoxic abilities and secrete inflammatory 

cytokines in response to the presence of the immunogen. The generation of drug-specific T-

cells requires MHC presentation of non-self-protein as previously discussed which in respect 

to β-lactams, is usually generated through the creation of haptenated protein. There is 

long‐standing evidence of β‐lactams covalently binding to protein and specifically, lysine 

residues (Levine and Ovary 1961) (Jenkins et al. 2009) (Padovan et al. 1997). This occurs 

through the opening of the reactive β-lactam ring after nucleophilic attack to create stable 

protein adducts to prime naive T-cells through a widely accepted haptenic mechanism. 

Amoxicillin, piperacillin, and flucloxacillin have all been investigated in regards to the hapten 

hypothesis where human serum albumin has been found to be modified at specific lysine 

residues (Whitaker et al. 2011) (Jenkins et al. 2009) (Ariza et al. 2012) and synthetic 

piperacillin albumin conjugates have been demonstrated to stimulate T‐cell clones from 

hypersensitive patients in a concentration-dependent manner (Elsheikh et al. 2010). All 

these drugs show similar protein-binding patterns and involvement of the adaptive immune 

system is well defined (Rozieres et al. 2009) (Elsheikh et al. 2010) (Monshi et al. 2013). T-

cells affect different organs in susceptible patients with amoxicillin and piperacillin mainly 

inducing skin rash and flucloxacillin mainly injuring liver. The reason as to this has not been 
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fully elucidated although a  possibility could be that T-cell clones generated from 

flucloxacillin-sensitised patients mainly express CD8+ (Monshi et al. 2013), while piperacillin-

specific T-cell express CD4+ (Elsheikh et al. 2010). Why these two seemingly similar β-lactam 

antibiotics would show this trend may lie in the mode of sensitisation. Hepatocytes are 

known to be able to generate albumin which is synthesised in the cytosol. Flucloxacillin is 

known to be able to bind to liver protein in hepatocytes of rats as Carey and Van Pelt (2005) 

demonstrated through analysis of liver cytosol of rats dosed systemically with flucloxacillin, 

where albumin was specifically drug-modified. The mode of sensitisation in flucloxacillin 

reactions may therefore be directed against intracellular antigen. In contrast, piperacillin 

and amoxicillin-specific T-cells may be activated by a MHC II-restricted extracellular antigen. 

 

1.13. Experimental approaches to studying delayed-type hypersensitivity 

Drug hypersensitivity reactions can be studied through protein modification, antigen 

presentation, or human T-cell activation ex vivo. However, animal models where drug-

specific T-cells can be monitored in or ex vivo represent the only approach where the 

relationship between drug distribution and the priming of naive T-cells can be studied 

directly.  

1.13.1. Nitrohalobenzenes 

Nitrohalobenzenes are a family of haptens which all form the same dinitrophenyl-modified 

protein adduct. DNCB in particular has been studied extensively in regards to mechanisms of 

T-cell activation, drug distribution, and protein binding. DNCB is known to be a strong 

sensitiser capable of inducing cellular immune response in 100% of subjects which is readily 

detectable after skin challenge with proliferating and IFNγ secreting CD4 and CD8+ T-cells 
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(Friedmann et al. 1983) (Pickard et al. 2009). Through fixation of APCs with gluteraldehyde it 

was shown that DNCB requires metabolic activity and the processing of protein antigens to 

generate a T-cell response (Pickard et al. 2007). With the utilisation of designer peptides 

with MHC binding motifs, others found that DNCB must bind to specific peptides to become 

immunogenic with the presence of DNCB in the peptide being an obligatory factor (Martin S. 

et al. 1993) (Martin S. and Weltzien 1994) (Preckel et al. 1997). Collectively, this research 

shows that DNCB binds to intracellular and extracellular proteins which generate activated 

T-cells via protein processing and MHC-restricted antigen presentation.  

1.13.2. The local lymph node assay (LLNA) 

In 1989 Kimber et al developed the murine local lymph node assay (LLNA) which is an in vivo 

assay capable of determining if a substance was a strong sensitizer through measurement of 

proliferation of the draining lymph nodes with radioactive [3H] thymidine after painting of 

the particular hapten onto the skin. The methods for this procedure involve [3H] thymidine 

being injected I.V., lymph nodes are then isolated and macerated and proliferation counted 

as scintillation per cell pellet. This was a breakthrough assay to determine strong haptens 

but however, the assay is not sensitive enough to detect sensitisation to very weak 

sensitisers including drugs (Kimber et al. 1989). 

1.13.3. Effector mechanisms of sensitisation 

Work performed by Vocanson et al (2006) demonstrated that CD8+ T-cells were the effector 

cells in CHS reactions to DNCB. Using mice depleted of CD4+ T-cells, sensitisation and 

subsequent elicitation responses were observed to be extraordinarily robust. Furthermore, 

adoptive transfer of DNCB sensitised CD8+ T-cells was able to induce an elicitation response 
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in naive mice but only after they had been depleted of CD4+ T-cells simultaneously 

demonstrating the down-regulatory abilities of Tregs in the CHS response. 

1.13.4. Models of drug hypersensitivity and attempted animal models of idiosyncratic 

drug-induced liver injury 

Animal models capable of showing drug hypersensitivity and involvement of the adaptive 

immune system are a useful tool in unveiling the mechanisms of specific drug 

hypersensitivity reactions; examples include the nevirapine skin rash model, halothane, and 

amodiaquine-induced liver injury.  Each of these are briefly discussed below. 

1.13.4.1. Nevirapine 

The animal model of nevirapine skin rash has been developed in rats as the sensitisation of 

mice was unsuccessful (Ng et al. 2012). Nevirapine is a drug used to treat patients with HIV 

infection and soon after market it was discovered to cause varying severities of skin rash 

and, in rare cases, liver toxicity in females (Pollard et al. 1998). Sensitisation of rats revealed 

a strong adaptive immune response involving infiltrates in inflamed skin containing large 

amount of T-cells and macrophages. Depletion of CD4+ T-cells ablated the response and 

depletion of CD8+ T-cells made the response stronger indicating that in nevirapine 

hypersensitivity, CD4+ T-cells are the effector cells (Popovic et al. 2006). The mechanism of 

how the nevirapine activated CD4+ T-cells cause tissue injury has been thoroughly 

investigated in this model. Oxidation of nevirapine in the liver leads to the generation of 12-

OH-nevirapine. This is carried to the skin where metabolism leads to production of 12-OH-

nevirapine sulphate in the epidermis. Covalent binding of this metabolite to protein leads to 

the activation of effector CD4+ T-cells and nevirapine-associated skin rash (Sharma et al. 

2013). Mouse models of nevirapine-induced liver injury have been investigated. In C57Bl/6 
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mice, increased ALT are observed after 3 weeks of treatment. Livers show inflammatory 

lesions which resolve over time (Ng et al. 2012). This observation indicates that this may in 

fact be a model of immune tolerance, as opposed to a model of idiosyncratic DILI (IDILI) (Ng 

et al. 2012). 

1.13.4.2. Halothane 

The closest animal model of drug-induced liver injury involving the adaptive immune system 

to date investigates reactions associated with halothane, which is metabolized in liver to 

ultimately form adducts with liver proteins. Halothane is thought to cause hepatitis through 

an antibody driven auto-immune reaction with the majority of patients with halothane 

hepatitis having antibodies in their sera that react with liver microsomal antigens (Canalese 

et al. 1981) (Bird and Williams 1989). The immunological pathway of mild liver damage in 

animals is known for halothane. The liver protein adducts are detectable in animals 

(Neuberger et al. 1987) (Mathieu et al. 1975), and it was recently shown that the injury in 

this model is associated with an infiltrate of eosinophils which when depleted, reduced 

injury (Proctor et al. 2013). This type of damage is typical of clinical halothane-induced 

hepatitis but severe halothane-induced injury seems to progress over time which strongly 

suggests an adaptive response, however, there has been no direct evidence to date of liver 

damage in mice caused directly through a drug-driven adaptive immune response. 

1.13.4.3. Amodiaquine  

Amodiaquine is an anti-malarial drug which was withdrawn from the market due to 

hepatotoxicity and agranulocytosis. The clinical symptoms of amodiaquine hepatotoxicity 

resolved quickly after discontinuation but re-introduction of the drug was met with rapid 

rises in ALT levels, being consistent with an immune-mediated reaction (Uetrecht J. 2005). 
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Amodiaquine is metabolised to yield a reactive haptenic metabolite (Harrison et al. 1992). 

After dosing mice and rats for 2-3 weeks with amodiaquine, increases ALT of 2-3 fold control 

were observed. However, this returned to basal levels after 6 weeks dosing in both species 

(Shenton et al. 2004). In animals with raised ALT, increases in numbers of CD4+ T-cells and 

activation of macrophages and B-cells in the spleen was observed along with changes in the 

liver. Increased expression of immune function-related genes like CD3e and CD4 was 

observed (Uetrecht J. 2005). Furthermore, the livers of these animals were found to have a 

mild infiltration of immune cells with raised numbers of CD4+ T-cells, NK cells, and TH17 cells 

(Uetrecht J. 2005). The reduction of ALT levels after continued dosing of amodiaquine 

indicates immune adaptation and tolerance to the drug as opposed to the progression to 

severe DILI. This adaptation is also seen in humans and is more frequent than the 

development of severe DILI. In defence of this statement a 3-fold increase in IL-10 liver 

mRNA was detected during dosing indicating the involvement of regulatory T-cells which are 

well known for their role in immune tolerance (Langier et al. 2010) (Shevach et al. 2001). It 

would be of interest to attempt to develop an animal model of DILI in an animal devoid of 

regulatory T-cells, where CD8+ T-cells are known to be the majority effector cell in the 

disease. 

 

From this brief discussion, is it clear that animal models of IDILI have been difficult to 

develop and/or reproduce and most end in failure (Ng et al. 2012) (Uetrecht J. and Naisbitt 

2013); because of this there are, currently, no adaptive immunity-based animal models of 

liver injury from any drug that produces IDILI in humans (Roth and Ganey 2011). 
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1.14. AIMS 

 To establish an animal model of β-lactam skin sensitisation to show drug-specific T-

cell responses to amoxicillin, piperacillin, and flucloxacillin. 

 Use this model to; 

o Study the phenotype and function of antigen-specific T-cells 

o Study β-lactam T-cell cross-reactivity 

o Investigate whether drug-responsive T-cells kill hepatocytes in vitro or in vivo 
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Development and optimisation of the mouse model of contact hypersensitivity to 

amoxicillin 
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2.1. INTRODUCTION 

Recently, Vocanson et al (2006) developed a mouse model in which the mice are 

predisposed to develop CHS responses to weak haptens, haptens which only sensitise a very 

small percentage of the population even at high doses. The mice used have a mutation in 

the αβ gene encoding for MHC class II molecules (II°/°) and have reduced numbers of CD4+ 

T-cells (2.5% of peripheral CD4+ T-cells) (Rozieres et al. 2010). Approximately 50% of the 

residual CD4+ T-cells in the MHC II KO mice are Tregs that can suppress hapten-specific CD8+ 

T-cell responses (Kish et al. 2007).  The IL-10-producing CD4+ FoxP3-T-cells, and natural CD4+ 

CD25+ FoxP3+ T-cells endowed with down-regulatory abilities circulate in wild type and 

knockout mice and participate in the resolution of autoimmunity (Bacchetta et al. 2007) 

(Roncarolo and Battaglia 2007). These cells need to be depleted with an anti-CD4+ antibody 

before CHS reactions to weak haptens can be observed due to their down-regulatory effect 

on the effector cells of CHS, CD8+ T-cells (Vocanson et al. 2006).  

The anti-CD4+ antibody used throughout this thesis has been proposed to cause depletion of 

CD4+ T-cells through C3b-receptor-mediated clearance (Alters et al. 1990). This would cause 

phagocytosis of antibody-bound target cells through interaction between 

macrophage/monocyte Cb3 with target-cell bound Cb3. This hypothesis has been tested in 

investigations into systemic lupus erythematosus where patients have been discovered to 

have defective C3b-mediated clearance (Iida et al. 1982). Investigations using mice pre-

disposed to developing this disease have reported that CD4+ T-cell depletion using anti-CD4+ 

antibody GK 1.5 in these mice is significantly more difficult (Wofsy and Seaman 1987). 

The presence of Tregs in an MHC II KO mouse raises questions upon the origin/ selection/ 

differentiation of these cells. In wild-type mice, CD4+ T-cells develop through high-affinity 
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interaction with self-peptides and MHC II molecules. Interestingly, the interaction of CD4 

with the MHC II molecules is not a prerequisite for the development of Tregs (Denning et al. 

2003) (Kish et al. 2007). The main culprit for Tregs development is however the transcription 

factor Foxp3 (Curiel 2007), which can be induced to be expressed by external cues at low 

levels in thymocytes in the thymus. This low level expression of Foxp3 thereby induces the 

cell to express medium levels of CTLA-4 and CD25 along with TH1, TH17, and adaptive Treg 

cytokines which, along with other microenvironment factors, push the cell to develop into a 

CD4+CD25+Foxp3+  Treg and is the likely reason as to why Tregs escape deletion in the thymus 

(Rudensky et al. 2006) (Curiel 2007). 

The assays developed by Vocanson et al (2006) demonstrated that CD8+ T-cells were the 

effector cells in CHS. This was demonstrated through ablation of the elicitation response 

after administration of an anti-CD8+ antibody and through adoptive transfer of sensitisation 

to naive mice, via transference of purified CD8+ T-cells from sensitised mice. It is important 

to point out the limitations of this model in regards to the lack of MHC II molecules and 

CD4+ T-cells where only CD8+ T-cell-mediated reactions are being measured and possible 

CD4+ T-cell-mediated reactions will not be able to be investigated or measured. It is also 

prudent to take the strain choice of C57Bl/6 mice into account when looking at the 

limitations and bias of the model that has been developed and investigated in this chapter 

and throughout this thesis. Mice on a C57Bl/6 background have a TH1 bias towards 

pathogens whilst other strains like BALB/c bias towards TH2- predominant responses (Mills 

et al. 2000). 

In this chapter we attempted to establish the model in Liverpool to analyse the drug-specific 

activation of T-cells in vitro. Proliferative responses and IFNγ secretion were measured using 

[3H] thymidine and IFNγ ELISA, respectively. Furthermore, the activation state of CD8+ T-cells 
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has been analysed through flow cytometric analysis of CD8+ T-cell activation markers CD28 

and “inducible T-cell co-stimulator” (ICOS). CD8+ T-cells are known to up-regulate certain T-

cell receptors as a defence against foreign antigens.  These include CD28 and ICOS. CD28 

and ICOS enhance basic T-cell responses to foreign antigen including proliferation, secretion 

of cytokines, and up-regulation of molecules that mediate cell-cell interactions (Hutloff et al. 

1999). CD25 can also be a marker of CD8+ T-cell activation as CD25 is rapidly up-regulated by 

antigen-specific CD8+ T-cells after T-cell receptor stimulation (Kalia et al. 2010). DCs also 

have important roles in activating T-cells through maturation, expression of costimulatory 

molecules like CD40 and CD86, and antigen presentation via MHC I or MHC II. Interestingly, 

amoxicillin has been shown to have the ability to drive DCs, from allergic patients, to 

become semi-mature and activate T-cells (Rodriguez-Pena et al. 2006). Thus, we also 

analysed the effect of amoxicillin on mouse DC maturation markers ex vivo. 

 

2.2. AIMS 

 To utilise CD4+ T-cell depleted, MHC II KO mice to investigate the mechanisms of 

delayed-type hypersensitivity to the β-lactam amoxicillin.  
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2.3. METHODS 

The initial methods described below were performed in Lyon, France where the successful 

sensitisation of mice to amoxicillin was first described and published (Rozieres et al. 2010) 

(Vocanson et al. 2006). Subsequent experiments were performed in Liverpool. 

2.3.1. Mice 

All mice used were between 8-20 weeks of age. Female wild type C57Bl/6 mice were 

ordered from Charles River (Kent, UK). MHC II KO mice were C57BL/6 mice with a mutation 

in the αβ gene encoding for MHC class II molecules were provided by C. Benoist and D. 

Mathis (Harvard Medical School, Boston, MA) for experiments performed in Lyon, France. 

Liverpool based experiments used C57Bl/6 mice with a mutation in the αβ gene encoding 

for MHC class II molecules (Charles River - Kent, UK). To deplete CD4+ T-cells from mice, I.P. 

injections of rat anti-mouse CD4 antibody (GK 1.5 Bioxcell - UK) were administered on day 0 

(100µg/mouse) and on day 7 (100µg/mouse) in 100µL PBS. Unless otherwise stated, for ex 

vivo readouts, mouse inguinal dLN cells were pooled from groups of two mice to generate 

one n-number. 

2.3.2. Drugs and chemicals 

The strong haptens 2, 4-Dinitro-1-flourobenzene (DNFB), 2, 4-dinitro-1-chlorobenzene 

(DNCB), 2, 4-dinitro- benzenesulphonic acid (DNBS) and the antibiotic amoxicillin were 

purchased from Sigma Aldrich (UK). Amoxicillin suitable for I.V. injection was also used for 

sensitisation experiments in Lyon (Clamoxyl- GlaxoSmithKline, France) and at Liverpool 

(Amoxil – GlaxoSmithKline, UK). Sulfamethoxazole (SMX) was purchased from Sigma 

(France).  
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2.3.3. Sensitisation and challenge 

Mice were sensitised over days 3 days through daily painting with either DNFB (50µL of 2.5% 

solution) or amoxicillin (50µL of 1g/mL) in DMSO (Sigma, UK) on a shaved abdomen of 

approximately 3cm2 surface area. I.V. sensitisation was attempted through injection of 

100µL of 10mg/mL amoxicillin via orbital venous injection in Hanks balanced salt solution. In 

certain experiments amoxicillin was administered orally (10µL of 200mg/mL) in Hanks 

balanced salt solution. All drug-exposed mice were compared against comparable vehicle 

exposed controls. Ear challenge was performed on day 8 and 10 with sensitiser/challenger 

(25µL of 0.5g/mL amoxicillin) (25µL 2.5% DNFB) on each side of one ear as well as SMX 

(0.25g/mL) to act as a specificity control. The contralateral ear was painted with equal 

amount of vehicle alone, with increase in swelling being measured through use of a pocket 

thickness gauge micrometer (Mitutoyo, Kyoto, Japan). Each mouse was treated as one n-

number. 

2.3.4. Cell isolation 

For ex vivo readouts; draining lymph node (dLN), spleen, or liver was removed from mice on 

day 7 or 8. Immune cells were isolated from dLNs and spleens via maceration through 

100µm nylon filter (BD Biosciences, UK) and then washed. Splenocytes were exposed to 

NH4Cl to lyse blood cells. Livers were perfused with PBS prior to removal and then finely 

chopped and incubated for 30 minutes at 37°C with DNAse (1mg/mL) (Sigma, France) and 

collagenase (0.1mg/mL) (Sigma, France). The remaining suspension was passed through 

100µm nylon filters and then suspended in 1:1 of 40%:80% Percoll (Sigma, France). After 

centrifugation, the middle layer of cells (lymphocytes) were collected and washed. 
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2.3.5. Cell culture medium 

Immune cells were incubated in RPMI 1640 (Sigma, UK) supplemented with 10% foetal 

bovine serum (FBS) (Gibco, UK) L-glutamine (2mM), 2-mercaptoethanol (50µM), and unless 

otherwise stated, 1000U/mL penicillin and 0.1mg/mL streptomycin. 

2.3.6. Generation and isolation of APCs 

To generate bone marrow-derived dendritic cells (BMDDCs) the bone marrow was flushed 

from the femurs of mice with complete culture medium and large pieces of bone were 

filtered out with a 100µm nylon filter. Cells were incubated with 0.1mg/mL GMCSF 

(Peprotech, NJ, USA) for 8 days after which immature DCs were harvested. To mature the 

DCs, LPS (0.5µg/mL) was added to the cultures for 24h before harvesting.  

To isolate CD11c positive APCs, the mesenteric LNs were removed from mice and 

disaggregated into a single cell solution through ~1h incubation with 5mg/mL collagenase D 

(Sigma, UK). Cells were then washed with Hanks balanced salt solution and incubated with 

CD11c+ magnetic beads (Miltenyi Biotec – UK) before being run through a magnetic column 

(Miltenyi Biotec – UK) and then washed, counted, and finally used. 

2.3.7. Flow cytometric analysis of bone marrow-derived dendritic cell maturation 

markers 

Bone marrow-derived DCs were generated as previously described and on day 8, were 

incubated with amoxicillin (0.25mg/mL) or LPS (0.5µg/mL) in petri dishes at 3x106 cells/dish 

in 10mLs. Medium alone was used as a positive control. After 72h, the surface phenotype of 

the cells was analyzed using the following antibodies: CD40 (FITC), CD86 (FITC), Class II (PE) 

(BD Pharminogen, UK), and CD11c (PE -Cy5.5) (Caltag laboratories, UK). Antibodies were 

diluted with FACS buffer (PBS, 10%FCS, 0.02%  sodium azide (Sigma, UK)) and 0.5µL of each 
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antibody was added to around 500,000 cells. Cells were then incubated on ice for 20 

minutes and washed with 1.5mLs buffer prior to analysis on a FACScalibur flow cytometer 

using CellQuestPro. 

2.3.8. Analysis of antigen-specific proliferative responses ex vivo 

Unless otherwise stated, LNs were pooled from groups of 2 mice to give one n-number. 

Draining LN (inguinal) and spleen cells were plated out in triplicate (0.5x106 cells/well) with 

APCs (5x104 cells/well) in the presence or absence of antigen and cultured for 5 days at 37°C 

and 5% CO2. Proliferation was measured through addition of [3H] thymidine (0.25µCi/well) 

(Moravek -California, USA) for 16h, and assessment of incorporation into newly synthesised 

DNA. Plates were harvested and read as cpm per well.  

2.3.9. Analysis of antigen-specific IFNγ secretion ex vivo 

Cell supernatants were removed after dLN cells (0.5x106 cells/well) and APCs (2.5x104 APCs 

([either CD11c+ cells from non-dLN or BMDDCs]/well) were incubated for 5 days at 37°C and 

5% CO2 with amoxicillin (0, 0.1, 0.25, 0.5, 1mg/mL). Supernatant was frozen at -20°C prior to 

analysis of cytokine secretion using a mouse IFNγ ELISA kit (R&D systems, UK). ELISA 96 well 

micro-plates (Mabtech – UK) were firstly coated with 100µL of 4mg/mL capture antibody 

(rat anti-mouse IFNγ antibody) in PBS, sealed and incubated overnight at 4°C. Plates were 

then washed with wash buffer (0.05% TWEEN*20 (Sigma- UK)) via wash bottle three times, 

adding 300µL wash buffer each time. Block buffer (1% BSA (Sigma-UK) in PBS) was then 

added at 250µL/well and plate incubated at room temperature for 1h, after which plates 

were washed again. Samples were then added at 50µL neat supernatant and 50µL reagent 

diluent (0.1% BSA, 0.05% TWEEN*20 in Tris-buffered saline (Sigma- UK)) in duplicate. 

Standard was added from 2000pg/mL mouse IFNγ down 7 halving concentrations to zero in 
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reagent diluent. Plates were incubated for 2h at room temperature and then washed. 

Detection antibody (600ng/mL biotinylated goat anti-mouse IFNγ antibody) was added at 

100µL/well in reagent diluent and plates incubated for 2h at room temperature. Plates were 

then washed and Streptavidin HRP (200x diluted kit stock) was added at 100µL in reagent 

diluent and plates incubated for 40 minutes at room temperature. Plates were then washed 

and substrate solution (tetramethylbenzidine) was added at 100µL and plates were 

incubated for ~20 minutes. After colour change in wells containing standard were clearly 

visible, 50µL of 1M H2SO4 was added, and optical density was determined in a microplate 

reader set to 450nm. Results were determined using a 4-parameter logistic standard curve 

plotted on SigmaPlot software. 

The number of IFNγ secreting cells per dLN/spleen was determined through IFNγ ELISpot 

where 0.5x106 cells/well and bone marrow-derived dendritic (2x104cells/well) were 

incubated for 48h at 37°C with 5% CO2. ELISpot plates were processed for IFNγ secreting 

cells according to the kit instructions (BD Biosciences mouse IFNγ ELISPOT – France). 

Multiscreen filter plates were coated with IFNγ antibody (15μg/mL) overnight at 4˚C. Wells 

were washed with PBS (200μl) and blocked for 30 minutes with medium (200μl). Cells from 

the dLNs of painted mice were added to the plate at 0.25x106cells/well along with matured 

BMDDCs. Amoxicillin (0.5mg/mL) or SMX (50µg/mL) was added to wells and after 48h, the 

plate was developed. The wells were washed with PBS and incubated with secondary 

antibody (diluted 1:1000 in PBS containing 0.5% FBS) for 2h at room temperature. After 

washing with PBS, Streptavidin‐ALP (diluted 1:1000 in PBS containing 0.5% FBS) was added 

to wells for one hour. Spots were visualised by the addition of BCIP/NBT substrate (100μl, 

15 min). The plate was counted on an AID ELISpot reader (Cadama Medical, Stourbridge, 

UK) when thoroughly dried. 
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2.3.10. Flow cytometric analysis of splenocytes and lymph node CD4+ and CD8+ T-cells 

Splenocytes and mesenteric, auxiliary, and auricular LNs were stained with CD4 (FITC) CD8 

(PE) (BD Pharminogen, UK) antibodies (2µL/ sample) for 15 minutes before being washed 

and analysed on a FACScalibur flow cytometer (BD Bioscience, UK). Cells were initially gated 

on the FSC to remove cell debris. Samples were analysed using CellQuestPro and analyzed 

with CyflogicTM software (CyFlo Ltd, Finland). 

2.3.11. Flow cytometric analysis of CD8+ T-cell activation markers after sensitisation with 

amoxicillin 

Activation of CD8+ T-cells was analysed in dLN, spleen, and liver of CD4-depleted, 

amoxicillin-sensitised mice. After lymphocyte isolation, cells were stained with anti-CD8 (PE 

Cy7), CD4 (APC), CD25 (PE), and ICOS (PE Cy5.5) antibodies (BD Pharminogen, France). Cells 

were then washed and analysed on a BD LSR II for CD8+ T-cell activation after gating on the 

FSC to remove cell debris. 

2.3.12. Statistics 

Unless otherwise stated, statistics were performed on SigmaPlot with significance being 

measured using the students T-test. Error bars display the standard deviation from the 

mean. 
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2.4. RESULTS 

2.4.1. Phenotyping of BMDDCs following amoxicillin incubation 

To investigate if amoxicillin could induce DC maturation in mice as had been reported using 

human DCs from allergic patients (Rodriguez-Pena et al. 2006), mouse BMDDCs were 

generated and cultured with no drug, amoxicillin, or the positive control LPS. Results 

indicated that culture with amoxicillin for 72h did not alter the phenotype of BMDDCs 

against cells cultured in medium alone with no increases in the co-stimulatory molecules 

CD40 or CD86 or mature DC marker CD11c (Fig 2.1.). A small shift in MHC II molecules was 

detectable in amoxicillin-cultured BMDDCs compared against untreated control however 

the biological relevance of this small shift is open to question. The positive control LPS 

induced increased expression of CD40, CD86, and CD11c with a shift in expression of MHC II 

molecules when compared against untreated control and amoxicillin cultured cells (Fig 2.1.). 
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Fluorescent 

antibody 

CD40 (FITC) CD86 (FITC) 
MHC CLASSII 

(PE) 

CD11c (PE-CY 

5.5) 

Condition ΠΠ= Un-labelled      ΠΠ = Fluorescent antibody labelled 

Untreated 

    

LPS(0.5µg/mL) 

    

Amoxicillin 

(0.25mg/mL) 

    

Fig 2.1. Amoxicillin does not alter BMDDCs phenotype or induce maturation. BMDDCs were generated through 

culturing wild-type C57/Bl6 mouse bone marrow with GMCSF (0.1mg/mL) for 8 days. On day 9, cells were 

further incubated with no drug, amoxicillin (0.25mg/mL) or LPS (0.5µg/mL) for 72 hours before cells were 

harvested, marked with fluorescent antibodies CD40, CD86, MHC II and CD11c, and analysed for marker 

expression by flow cytometry. Red histograms indicate un-labelled cells with black line histograms 

representing labelled cells. 

 

2.4.2. In vivo depletion of CD4+ T-cells from MHC II KO mice 

To investigate the efficiency of using a CD4 antibody to deplete CD4+ T-cells in vivo, I.P. 

injections of anti-CD4 antibody (100µg injection on day 0 and 7) were administered. Flow 

cytometric analysis of spleen and lymph node of MHC II KO mice demonstrated effective 

depletion of residual CD4+ T-cells from the MHC II KO mouse. Similar results were detected 
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following flow cytometric analysis of lymph node and spleen (Fig 2.2.). Wild type mice 

showed clear populations of CD4+ and CD8+ T-cells while MHC II KO mice have visibly 

decreased CD4+ T-cells. MHC II KO mice which received anti-CD4+ T-cell antibody injections 

expressed no detectable CD4+ T-cells in either lymph node or spleen. Populations of CD8+ T-

cells remain constant and apparently un-altered by antibody treatment (Fig 2.2.). 

 

Fig 2.2. Flow cytometry of mouse lymph nodes and spleen showing full depletion of CD4
+
 T-cells in MHC II KO 

mice administered I.P. anti-CD4 antibody injections. Wild type and MHC II KO were on a C57/Bl6 background. 

I.P. injections of CD4 antibody were given to mice on day 0 and 7 with tissues being taken on day 8. Cells were 

dual stained with CD8 (PE) and CD4 (FITC) fluorescent antibodies. 

 

2.4.3. Assessment of the T-cell response to dinitroflourobenzene  

In order to establish in and ex vivo readouts, MHC II KO mice were painted with DNFB and 

then analysed for increases in ear thickness after a hapten-specific ear challenge (Fig 2.3.) or 

via draining lymph node T-cell activation measured via proliferation and IFNγ ELISA (Fig 

2.4.). In both instances large, hapten-specific increases were observed. In vivo challenge 
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showed an increase in ear thickness at days 1, 2, and 3 days after the challenge. Ex vivo 

challenge showed hapten-specific increases in proliferation and IFNγ secretion. DNFB was 

used in vivo due to its superior sensitising ability (Friend and Lane 1973). DNBS was used in 

the in vitro assays. This was done because DNFB and DNBS are known to create the same 

haptenic molecules however DNBS is significantly less toxic to cells in culture compared to 

DNFB (Akiba et al. 2004). 

 

Fig 2.3. Increase in ear thickness after DNFB ear challenge. MHC II KO mice were depleted of CD4
+
 T-cells and 

painted with DNFB or vehicle control for three days. Five days later, mice were challenged on one ear with 

DNFB and with vehicle control on contralateral ear. Results were measured for 3 days after challenge and as 

increases in hapten challenged ear minus increases in vehicle challenged (Control n=3, DNFB n=2).  
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Fig 2.4. Significant antigen-specific increases in proliferation (A) and IFNγ secretion (B) from mouse dLN cells 

after painting of DNFB onto a shaved abdomen compared to vehicle only painted controls. Mice were painted 

with DNFB (2.5%) or vehicle only (70% DMSO) on days 1-3. Draining auxiliary LNs were taken on day 8, 

macerated to a single cell suspension and added at 0.5x10
6
 cells/well with 5x10

4
 BMDDCs in the presence or 

absence of  0.1mM DNBS. After 5 days incubation, proliferation was measured via [
3
H] thymidine 

incorporation and IFNγ content of cell supernatant was measured via ELISA (n=3).  
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2.4.4. Development of a mouse model of delayed, T-cell-mediated skin sensitisation to 

amoxicillin 

Initial attempts to recreate the mouse model developed by Vocanson et al (2009) using 

MHC II KO mice depleted of CD4+ T-cells were unsuccessful. Analysis was performed using 

three readouts; 1. Ear swelling after challenge showed no significant differences in the drug-

treated compared to the respective control (Fig 2.5.) 2. Drug-specific T-cell proliferation was 

not detected (Fig 2.6. A) 3. Furthermore, analysis of IFNγ secretion following amoxicillin 

treatment ex vivo showed no drug-specific increases (Fig 2.6. B). 

 

Fig 2.5.Ear swelling challenge of amoxicillin-painted mice showing no increases in swelling compared to vehicle 

controls. MHC II KO mice were depleted of CD4
+
 T-cells on day 0 and painted with 50µL of 0.5g/mL amoxicillin 

or vehicle control for days 1-3 with swelling measured after a challenge on the ear (25ul of 0.5g/mL 

amoxicillin) on day 8. Ear swelling represents increase in swelling compared to vehicle only challenged ear 

(n=3). Statistics are shown if p<0.1. 

 

-15 

-10 

-5 

0 

5 

10 

15 

20 

0 1 2 3 4 5 

In
cr

e
as

e
in

 s
w

e
lli

n
g 

(µ
m

) 

Days after ear challenge 

Amox 

Control 



67 
 

 

 

Fig 2.6.Proliferation (A) and supernatant IFNγ content (B) of amoxicillin-painted mouse dLN cells incubated 

with amoxicillin.  MHC II KO mice were depleted of CD4
+
 T-cells with I.P. injections of CD4 antibody (100µg) on 

day 0 and painted with 50µL of 0.5g/mL amoxicillin or vehicle control for days 1-3. On day 8 the dLNs were 

removed, macerated to a single cell suspension and incubated in triplicate at 0.5x10
6
 cells/well with 5x10

4
 

BMDDCs in RPMI medium containing pen/strep for 5 days after which proliferation was measured via [
3
H] 

thymidine incorporation and IFNγ content of supernatant was measured via ELISA. (n=3). 
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2.4.5. Amoxicillin-modified, LPS matured BMDDCs cause non-specific activation in co-

cultured mouse draining lymph node cells 

As the initial experimental conditions were un-suitable for sensitising mice to amoxicillin, 

the methods were altered so as to more closely mirror a clinical sensitisation to amoxicillin 

where human patients are prescribed amoxicillin due to a bacterial infection. The amoxicillin 

used in the assays was changed to an I.V. grade drug and administered at 50µL of 0.5g/mL. 

The APCs in the ex vivo assay were matured with LPS before incubation with the dLN cells. 

However, ear swelling analysis after amoxicillin sensitisation and challenge showed no 

significant increases when compared with vehicle controls (Fig 2.7.). Furthermore, 

maturation of the BMDDCs with LPS just served to increase the background proliferation 

and IFNγ release (Fig 2.8.). 

 

Fig 2.7. Amoxicillin I.V. grade painting and challenge showing no increase in ear swelling. MHC II KO mice were 

depleted of CD4
+
 T-cells on day 0 and painted with 50µL of 0.5g/mL I.V. amoxicillin or vehicle control for days 

1-3 with swelling measured after a challenge on the ear (25ul of 0.5g/mL amoxicillin) on day 8. Ear swelling 

represents increase in swelling compared to vehicle only challenged ear plus standard deviation from the 

mean (n=3). Statistics are shown if p<0.1. 
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Fig 2.8.Proliferation (A) and IFNγ content of supernatant (B) from I.V. amoxicillin-painted mouse dLN cells 

incubated with matured BMDDCs. MHC II KO mice were depleted of CD4
+
 T-cells with I.P. injections of anti-CD4 

antibody (100µg) on day 0 and painted with 50µL of 0.5g/mL  I.V. amoxicillin or vehicle control for days 1-3. On 

day 8 the dLNs were removed, macerated to a single cell suspension and incubated in triplicate at 0.5x10
6
 

cells/well with 5x10
4
 matured BMDDCs in RPMI medium containing pen/strep for 5 days after which 

proliferation was measured via [
3
H] thymidine incorporation and IFNγ content of supernatant was measured 

via ELISA. Figures show mean +/- one standard deviation (n=3). Statistics are shown if p<0.1. 
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experimental protocols could be observed and documented. These experiments used the 

same MHC II KO mouse with depletion of CD4+ T-cells using antibodies; however, the Lyon 

protocol used an increased initial sensitising dose of amoxicillin (50µL 0.5g/mL to 50µL of 

1g/mL) and a second ear challenge on day 9. These alterations were sufficient to show an 

increase in ear thickness in mice painted and challenged with amoxicillin against all controls 

(Fig 2.9.), thereby sensitising mice to amoxicillin. Ex vivo readouts from the dLN and spleens 

of amoxicillin-painted mice were also increased. IFNγ ELISpot analysing the number of IFNγ 

secreting cells in the dLNs and spleens of amoxicillin-painted mice were significantly 

increased against sensitisation-specific controls of amoxicillin (Fig 2.10.). Flow cytometric 

analysis of the activated CD8+ T-cells in the dLNs of amoxicillin-painted mice revealed an 

increase in the number of activated T-cells when amoxicillin and control mice were 

compared (Fig 2.11.). 

Other than sensitisation via skin, sensitisation through oral dosing and I.V. injection was 

investigated. Intra-venous dosing of amoxicillin was performed at 100µL of 10mg/mL 

amoxicillin and ear challenge yielded significant increases in ear swelling against all 

respective controls on days 2, 3, and 4 after first ear challenge (Fig 2.9.). Ex vivo readouts for 

I.V. sensitised mice were not as clear cut as for painted mice with no distinct increases in 

IFNγ secreting cells or amount of activated CD8+ T-cells in the dLNs or spleens. Although no 

CD8+ T-cells were detectable in the livers of control mice, I.V. administration of amoxicillin 

caused a consistent increase in the amount of activated CD8+ T-cells in the livers of these 

mice, when compared against skin painted or orally dosed mice (Fig 2.11.). Mice orally 

dosed with amoxicillin showed no significant increases in ear swelling after ear challenge 

(Fig 2.9.) or in ex vivo readouts (Fig 2.10.) (Fig 2.11.), showing that oral dosing, is the least 

efficient route of administration if attempting to induce sensitisation. 
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Fig 2.9. Amoxicillin sensitisation and challenge showing significant increases in ear swelling in mice 

administered amoxicillin I.V. or cutaneously. Mice were depleted of CD4
+
 T-cells on days 0 and 6 with 100µg 

and 20µg I.P. injection respectively. Sensitisation was performed on days 1-3 with cutaneous amoxicillin-

painted onto a shaved abdomen at 50µL of 1g/mL, oral amoxicillin at 10µL of 200mg/mL and I.V. amoxicillin at 

100µL of 10mg/mL via orbital injection. Ears were challenged with 12.5µL on each side of the ear of 0.5g/mL 

amoxicillin or with 0.25g/mL SMX in 70% DMSO on day 7 and 9. Mice were painted with drug on their left ear 

and with vehicle only on the contra-lateral ear. Values represent increases in swelling from drug challenged 

ear minus vehicle challenged ear. Statistical analysis compare amoxicillin-specific swelling against amox 

cutaneous/SMX (each n-number is indicative of one mouse)(irritation amox and irritation SMX n=2, amox 

cutaneous/amox and amox cutaneous/SMX n=4, amox IV/amox and amox oral/amox n=5) (*p<0.01, 

**p<0.001).  

 

 

** 

* 

** ** 

0 

10 

20 

30 

40 

50 

60 

70 

80 

90 

Day 0 Day 1 Day 2 Day 3 Day 4 

m
o

u
s
e

 e
a

rs
 s

w
e

lli
n

g
 (
μ

m
) 

Time after first challenge 

Irritation Amox 
(0,5g/ml) 
Irritation SMX 
(0,25g/ml) 
Amox cutaneous 
/amox 
Amox IV /amox 

Amox oral /amox 

Amox cutaneous 
/SMX 



72 
 

  

Fig 2.10.IFNγ secreting cells of the spleen (A) and dLN (B) of amoxicillin-sensitised mice. Mice were depleted of 

CD4
+
 T-cells on days 0 and 6 with 100µg and 20µg I.P. injection respectively. Sensitisation was performed on 

days 1-3 with cutaneous amoxicillin-painted onto a shaved abdomen at 50µL of 1g/mL and I.V. amoxicillin at 

100µL of 10mg/mL via orbital injection. Spleens and dLNs were collected on day 7, macerated to a single cell 

suspension through 100µm nylon filter and subjected to a red blood cell lysis. Cells were counted and 

incubated with no drug, amoxicillin (0.5mg/mL) or SMX (50µg/mL) at 5x10
5
 T-cells/well with 2x10

4
 

BMDDCs/well naive for 36 hours at 37°C with 5% CO2 in ELISpot plates which were analysed for IFNγ secreting 

cells according to the kit instructions. Cell counts are presented as number of IFNγ secreting cells in whole 

tissue (cells were pooled from three mice per condition, n=1).  

 

0 
2000 
4000 
6000 
8000 

10000 
12000 
14000 
16000 

Non 
sensitized 

Amox IV Amox 
cutaneous 

IF
N
γ
 s

e
c
re

ti
n

g
 c

e
ll

s
 /
 

s
p

le
e
n

 

Treatment 

Amox 

SMX 

0 

100 

200 

300 

400 

500 

Non 
sensitized 

Amox IV Amox 
cutaneous 

IF
N
γ
 s

e
c
re

ti
n

g
 c

e
ll

s
 /
 L

N
 

Treatment 

Amox 

SMX 

  Amoxicillin route of administration 

 Gating None Cutaneous Oral I.V. 

% of CD25
+
 

CD8
+
 cells 

CD8
+
  

    

                     
CD25

+
/ Icos

+ 

6.42% 7.24% 6.57% 6.46% 

Lymph 

Node 

CD25
+
 , 

CD8
+
 cells 

(blue) 

CD8
+
  

    

                      
CD25

+ 
    

% of Icos
+
, 

CD8
+
 cells 

 9.58% 10.59% 9.1% 10.33% 

A B 



73 
 

Lymph 

node 

Icos
+
, CD8

+
 

cells 

(green) 

CD8
+
  

    

                      
Icos

+ 
    

% of CD25
+
 

CD8
+
 cells 

  7.56 % 6.5% 13.19% 

Liver 

CD25
+
, 

CD8
+
 cells 

(blue) 

CD8
+
  

    

                      
CD25

+ 

No CD8
+
 cells 

   

% of Icos
+
, 

CD8
+
 cells 

  10.01% 9.04% 13.27% 

Liver 

Icos
+
, CD8

+
 

cells 

(green) 

CD8
+
  

    

                      
Icos

+ 

No CD8
+
 cells 

   

% of CD25
+
 

CD8
+
 cells 

 10.95% 7.37% 6.81% 9.68% 

Spleen 

CD25
+
, 

CD8
+
 cells 

(blue) 

CD8
+
  

    

                      
CD25

+ 
    

% of Icos
+
, 

CD8
+
 cells 

 12.04% 8.1% 7.17% 10.76% 



74 
 

Fig 2.11.Flow cytometric analysis of amount and activation status of, amoxicillin-painted mouse dLN, spleen, 

and liver CD8
+
 T-cells. Mice were depleted of CD4

+
 T-cells on days 0 and 6 with 100µg and 20µg I.P. injection 

respectively. Sensitisation was performed on days 1-3 with cutaneous amoxicillin-painted onto a shaved 

abdomen at 50µL of 1g/mL, oral amoxicillin at 10µL of 200mg/mL, and I.V. amoxicillin at 100µL of 10mg/mL via 

orbital injection. Spleens and dLNs were collected on day 7, macerated to a single cell suspension through 

100µm nylon filter and subjected to a red blood cell lysis. Livers were perfused with PBS, cut up finely and 

incubated for 30 minutes at 37°C with DNAse (1mg/mL) and collagenase (0.1mg/mL). Liver tissue was then 

macerated into a single cell suspension through 100µm nylon filters, diluted in PBS, washed and resuspended 

in 1:1 of 40%: 80% Percoll. After centrifugation, the middle layer of cells (lymphocytes) were collected, washed 

and counted. Cells were labelled with flourochromes CD8 (PE Cy7) CD4 (APC), CD25 (PE) and ICOS (PE Cy5.5) 

(BD Pharminogen) and were analysed on a BD – LSR II (cells were pooled from three mice per condition n=1) 
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in Liverpool was the increased concentration of painted amoxicillin from 0.5g/mL to 1g/mL 

and the removal of penicillin from the in vitro cell culture medium. The next step therefore 
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APCs from the non-draining lymph nodes of experimental mice. This had the added 

advantage of reducing the number of mice used in each experiment. Cells from the dLN of 

amoxicillin-painted mice showing significant increases in proliferation when co-cultured 

with APCs and amoxicillin at 0.25, 0.5 and 1mg/mL for 5 days (Fig 2.13. A). Significant 

increases in IFNγ were also detectable by IFNγ ELISA from the dLN cells of amoxicillin-

painted mice when cultured with amoxicillin at 0.25 and 0.5mg/mL (Fig 2.13. C). Spleen cells 

from amoxicillin-painted mice also showed increased drug-specific proliferation however 

only at the highest drug concentration of 1mg/mL (Fig 2.13. B). Interferon-γ secretion by 

splenocytes from amoxicillin-sensitised mice was not detectable (results not shown) 

indicating that spleen cells are not activated to the same extent as dLN cells. 
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Fig 2.12. Amoxicillin induced ear swelling. MHC II KO mice were depleted of CD4
+
 T-cells on day 0 and painted 

with 50µL of 1g/mL I.V. amoxicillin or vehicle control for days 1-3 with swelling measured after a challenge on 

the ear (25ul of 1g/mL amoxicillin) on day 8. Values represent increase in swelling compared to vehicle only 

challenged ear (amox n=5, control n=8) (*p<0.0.5, **p<0.005). 
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Fig 2.13.Significant, dose-dependent increases in proliferation in dLN (A) and spleen cells (B) with accompanied 

significant IFNγ release from the dLN of amoxicillin-sensitised mice. MHC II KO mice were depleted of CD4
+
 T-

cells with I.P. injections of CD4 antibody (100µg) on day 0 and 7. Mice were painted with 50µL of 1g/mL I.V. 
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amoxicillin or vehicle control for days 1-3. On day 8 the dLNs and spleens were removed, macerated to a single 

cell suspension and incubated in triplicate at 0.5x10
6
 cells/well with 2.5x10

4
 APCs collected from the 

mesenteric LN through CD11c positive magnetic isolation. Cells were incubated in RPMI medium containing no 

pen/strep for 5 days with amoxicillin after which proliferation was measured via [
3
H] thymidine incorporation 

after 16h and IFNγ content of supernatant was measured via IFNγ ELISA. (n=3) (*p<0.05, **p<0.005). 

 

 

2.5. DISCUSSION 

Beta-lactam hypersensitivity is a well-documented clinical problem. Reactions involve the 

drug-specific activation of patient T-cells, which secrete cytokines and cytolytic molecules 

that initiate tissue injury. The intrinsic reactivity of the β-lactam ring structure is critical for 

drug binding to the pharmacological target – membrane and cytoplasmic bacterial penicillin-

binding proteins involved in peptidoglycan synthesis. The drug forms an irreversible bond 

with the protein targets, inhibiting peptidoglycan synthesis. Unfortunately, the β-lactam 

antibiotics also bind to human proteins generating drug-hapten-protein adducts that at least 

have the potential to act as antigens and activate an unwanted immune response. Using 

mass spectrometry, such adducts have been detected in 100% of patients exposed to β-

lactam antibiotics including piperacillin (Whitaker et al. 2011), flucloxacillin (Jenkins et al. 

2009), and amoxicillin (Jenkins unpublished data). Thus, although the formation of drug-

protein adducts is implicated in β-lactam hypersensitivity, it is clearly not the primary factor 

that determines whether drug exposure will be associated with the development of a 

hypersensitivity reaction.   

The nature of the drug-specific T-cell response in patients with amoxicillin hypersensitivity 

has been studied in detail with T-cells isolated from the blood of hypersensitive patients 

showing high T-cell activation upon ex vivo drug re-stimulation (Rozieres et al. 2009). CD4+ 

and CD8+ T-cells from hypersensitive patients have been shown to proliferate and secrete 
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IFNγ and IL-5 (Rozieres et al. 2009). Most recently, amoxicillin has been shown to regulate 

dendritic cell toll-like receptor expression and activity selectively in patients with 

hypersensitivity (Sanchez-Quintero et al. 2013). 

Patient studies provide information on the nature of the drug-specific T-cell response, but it 

is very difficult to study the factors involved in T-cell priming and/or the mechanisms that 

regulate the primary immune response. Hence, Vocanson et al (2009)(Vocanson et al. 

2006)(Vocanson et al. 2006)(Vocanson et al. 2006)(Vocanson et al. 2006) developed a 

mouse model devoid of CD4+ T-cells, capable of becoming sensitised to weak sensitising 

molecules including the β-lactam antibiotic amoxicillin. The mechanisms of amoxicillin 

sensitisation and elicitation of a T-cell response was further dissected by Rozieres et al 

(2010) using the same mouse model. They demonstrated the accumulation of amoxicillin-

specific CD8+ T-cells in the draining lymph nodes of amoxicillin-painted mice and their 

activation upon ex vivo stimulation with amoxicillin. The sensitisation of animals to 

amoxicillin was strongly inhibited by CD4+ CD25+ regulatory T-cells. Collectively, these data 

suggest that drug-specific CD8+ T-cells are the culprits in amoxicillin-induced hypersensitivity 

and are capable of the eliciting effector functions responsible for the severe skin reactions 

witnessed in delayed hypersensitivity reactions (Rozieres et al. 2010) (Vocanson et al. 2006). 

In beginning to prepare for the mouse model, the competencies of the readouts were 

investigated using the model strong haptens DNCB and DNFB (which both form the same 

protein-reactive intermediate 2, 4-dinitrophenol). Both in vitro and in vivo sensitisation 

were confirmed in animals painted with the haptens, verifying the readouts as suitable to 

assess sensitisation and elicitation. 
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Sensitisation of mice to amoxicillin was not as efficient and removal of CD4+ T-cells is 

required to detect a drug-specific T-cell response (Rozieres et al. 2010). We initially 

conducted similar experiments in Liverpool with little success. A number of alterations in 

the methods were required to finally witness a full immunological reaction to amoxicillin.  

The experiments performed in Lyon show a clear sensitisation to amoxicillin through drug-

specific ear swelling (Fig 2.9.) and increases seen in the number of amoxicillin-specific IFNγ 

secreting cells in the dLN of amoxicillin-sensitised mice. The difference in the routes of 

administration show that to achieve maximal sensitisation and elicitation, cutaneous 

application of drug is required (Fig 2.9) (Fig 2.10.). Fig 2.11. sheds further light on the 

activation status of CD8+ T-cells in amoxicillin-exposed CD4+ T-cell depleted MHC II KO mice. 

Cutaneous application of amoxicillin yielded the highest amount activated CD8+ T-cells in 

the draining lymph nodes, confirming that the best route of administration for generating 

drug-specific T-cells in the dLN is cutaneous application. These results were however not 

reciprocated in the percentage of activated CD8+ T-cells in the spleen having negative 

implications for the further use of splenocytes as a readout of ex vivo T-cell activation. From 

the T-cells isolated from liver, the largest percentage of activated CD8+ T-cells came from 

the route of I.V. administration and the least from oral administration. These data suggest 

that a greater number of CD8+ T-cells infiltrate the liver following I.V. administration of drug. 

Thus it could be interesting to study oral dosing with β-lactams which are known to cause 

liver damage like amoxicillin/clavulanic acid in rare cases (Kim et al. 2011) and/or 

flucloxacillin (Monshi et al. 2013). 

Although measurement of proliferation through [3H] thymidine incorporation of dLN cells 

measures whole well proliferation instead of T-cells alone, hapten-specific CD8+ effector 

cells are known to be responsible for high IFNγ production and have been used by various 
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research groups as a marker of hapten-specific T-cell activation (Akiba et al. 2002) (Xu et al. 

1996) (Kehren et al. 1999). Amoxicillin-specific proliferation and IFNγ secretion was 

detected in sensitised animals and with both readouts together, this indicates the presence 

of amoxicillin-specific CD8+ effector cells in the dLN of the amoxicillin-painted mice.  

DCs from amoxicillin allergic patients have been reported to become semi-mature upon 

culture with amoxicillin (Rodriguez-Pena et al. 2006). This data was not able to be replicated 

in wild type C57/Bl6 mice indicating that the DCs generated in this manner are more like 

naive or non-allergic patient DCs. 

The initial published method of sensitising MHC II KO, CD4+ T-cell depleted mice to weak 

sensitisers used: amoxicillin at 1g/mL concentration to initially sensitise, ex vivo readouts 

using dLN cells incubated with APCs generated from bone marrow, and medium not 

containing penicillin (Rozieres et al. 2010). Problems encountered with this method were: 

(1) getting amoxicillin into solution at 1g/mL which was rectified through obtaining I.V. 

amoxicillin from the Royal Liverpool Hospital, (2) BMDDCs causing high background T-cell 

activation in ex vivo readouts which was rectified through use of magnetically isolated 

CD11c+ DCs from non-dLNs, (3) penicillin in medium causing T-cell activation via cross-

reactivity which was discovered upon its removal. This optimisation yielded the method 

which was used throughout the rest of this thesis.  

In this chapter we established and refined the Vocanson et al (2006) MHC II KO C57Bl/6 CD4 

depleted mouse model in Liverpool. This allowed us to study the priming of naïve CD8+ T-

cells to different β-lactam antibiotics, T-cell cross-reactivity with the different drugs 

(chapters 3 and 4), and attempt to develop an animal model of drug-induced liver injury 

(chapters 4 and 5). 
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CHAPTER 3 

 

 

 

 

 

 

 

 

 

Cross-reactivity of human and mouse T-cells to the β-lactam antibiotics amoxicillin, 

flucloxacillin, and piperacillin. 
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3.1. INTRODUCTION 

T-cells play a central role in the development and elicitation of β-lactam-induced delayed-

type hypersensitivity reactions. It is widely accepted that β-lactams cause these reactions 

through binding to protein to create a haptenic structure which is detected by the cells of 

the immune system. These T-cells have been isolated and cultured from drug-hypersensitive 

patients and have been shown to react in an antigen-specific manner (Romano et al. 2004) 

(Rozieres et al. 2009) (El-Ghaiesh et al. 2011). Due to the similar structure of different β-

lactam antibiotics (Fig 3.1.), once a patient is known to be allergic, other β-lactam containing 

antibiotics are avoided. However, cases of clinical cross-reactivity have been documented 

with penicillin/cephalosporins (Audicana et al. 1994) (Salvo et al. 2007) (Solensky 2012) and 

experimentally, the activation of drug-specific T-cells with different drug moieties has not 

been fully defined (Miranda et al. 1996). To date, investigations have outlined a link 

between drugs containing very similar side chains. This was discovered in patients allergic to 

amoxicillin who displayed an immediate reaction to the drug and who also demonstrated 

clinical cross-reactivity to cefadroxil, which has the same side chain. None of the same 

patients reacted to cephalosporins to different side chains (Miranda et al. 1996). This theory 

is however at odds with delayed hypersensitivity reactions with β-lactam containing 

antibiotics which have different side chains but nevertheless are cross-reactive. (Padovan et 

al. 1997) demonstrated that highly reactive amoxicillin-specific T-cell clones would react to 

other penicillins but not to cephalosporins, even cephalosporins with identical side chains. 

These findings indicate that T-cell clones generally react to the penicilloyl core structure and 

that some T-cell clones recognise the core structure with accompanying side chains and 

some do not, reacting to the core structure even when there are  large modifications to the 

side chains (Mauri-Hellweg et al. 1996) (Padovan et al. 1996). 
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T-cell cross-reactivity has been investigated using human T-cell clones from various different 

β-lactam hypersensitive patients (e.g. penicillin G, ampicillin, flucloxacillin, amoxicillin and 

piperacillin hypersensitive patients). Results showed that all β-lactams displayed a degree of 

cross-reactivity between each other with significant amounts of T-cell proliferation in at 

least one T-cell clone (Mauri-Hellweg et al. 1996) (Monshi et al. 2013). 

The three β-lactam antibiotics used in this study (amoxicillin, flucloxacillin, and piperacillin) 

are known to bind to lysine residues on protein and in particular, Lys 190 on human serum 

albumin. Adduct formation is dependent on opening of the β-lactam ring (between N and 

the double bonded O) following nucleophilic attack to allow the formation of stable protein 

adducts (Whitaker et al. 2011) (Monshi et al. 2013) (Jenkins et al. 2009) (Ariza et al. 2012).  

 
 

 

Flucloxacillin Piperacillin Amoxicillin 

Fig 3.1.  The molecular structures of the β-lactams flucloxacillin, piperacillin, and amoxicillin. 

 

 Patients with a history of delayed-type penicillin allergy are rarely prescribed drugs of 

similar classes but due to this, case reports of particular cross-reactive drugs are lacking 

(Yates 2008). Investigations into both mouse and human clone T-cell cross-reactivity has the 

benefit of discovering potential T-cell cross-reactivity whilst also being able to assess the 

comparability of the mouse model. It is important to state the limitations of the MHC II KO 

CD4+ T-cell mouse model in only looking at CD8+ T-cell responses. 
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3.2. AIMS 

- To investigate β-lactam cross-reactivity between amoxicillin, piperacillin and 

flucloxacillin in a mouse model of delayed-type drug hypersensitivity and compare 

results against drug-specific human clones. 
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3.3. METHODS 

3.3.1. Drugs and chemicals 

Intra-venous grade flucloxacillin and amoxicillin sodium was obtained from Royal University 

Hospital, Liverpool.  Piperacillin sodium, phytohaemagglutinin (PHA), Hanks balanced salt 

solution, and DMSO were from Sigma, Dorset, UK. 

3.3.2. Culture medium 

Mouse cells were cultured in RPMI 1640 (Sigma, Dorset, UK) medium supplemented with 

10% foetal bovine serum (FBS) (Gibco, UK), 2mM L-glutamine (Sigma, Dorset, UK), and 

50µM 2-mercaptoethanol (Sigma, Dorset, UK). 

Human cell culture medium was comprised of RPMI 1640 supplemented with human AB 

serum (10%), HEPES (25mM), L-glutamine (2mM) and transferrin (25µg/mL). 

3.3.3. Human Subjects 

Drug-specific T-cell clones were generated from patients with an adverse reaction to 

amoxicillin, piperacillin, or flucloxacillin. Table 3.1. lists the clinical features of the reactions 

and the number of clones generated. A total of 100mL of blood was collected for PBMC 

isolation. Approval for the study was acquired from the Liverpool local Research Ethics 

Committee and informed written consent was obtained from each donor.  

3.3.4. Generation of Epstein-Barr transformed-cells 

Epstein-Barr virus (EBV) transformed B-cell lines were created from PBMC by transformation 

with supernatant from the virus-producing cell line B9.58. Lines were maintained in RPMI 

1640 supplemented with 10% FBS (Invitrogen, Paisley, UK), 100 mM L-glutamine, 100 μg/mL 

penicillin, 100 U/mL streptomycin, and used as a source of autologous antigen-presenting 

cells 
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3.3.5. Generation of drug-specific T-cell clones from human donors 

To isolate peripheral blood mononuclear cells (PBMCs), blood was layered on top of 

lymphoprep (50:50, blood: lymphoprep) (Axis‐shield, Dundee, UK) and the erythrocytes 

were sedimented via density centrifugation (400g, 25min, room temperature). PBMCs were 

washed twice in Hanks balanced salt solution to remove any remaining lymphoprep, 

resuspended, counted via trypan blue exclusion, and plated out in 48 well plates at 1x106 

cells/well with drug at 1-2mM. IL-2 (60 U/mL) was added to maintain antigen-specific 

proliferation. Cultures were supplemented on days 6 and 9 with medium containing IL-2 and 

on day 14 cells were harvested, washed, and counted. T-cells were then cloned by serial 

dilution (El-Ghaiesh et al. 2011). Briefly, T-cells were dispensed into 20 96 well plates/drug 

at 0.3, 1, or 3 cells/well with a stimulation cocktail of 5x104 irradiated PBMCs/well, PHA 

(5µg/mL), and IL-2 (2.5µL/mL). Cells were cultured for 14 days. Medium was supplemented 

with IL-2 on day 5 and then every 2 days thereafter (25µL). Growing wells were further 

expanded into 4 wells prior to assessment of specificity. To test the specificity of the clones, 

T-cells (0.5 × 105) were incubated with drug (0, 0.5, 1, 2mM) and irradiated autologous EBVs 

(0.1 × 105). After 48h, [3H] thymidine (0.5μCi) was added, and 16h later proliferation was 

measured by scintillation counting. Clones with an SI of >2 were chosen for further 

expansion and cross-reactivity testing. 

3.3.6. Analysis of T-cell clone phenotype 

T-cell clone phenotyping was performed by flow cytometry on a BD FACSCanto II using anti-

CD4, CD8 fluorescent antibodies (BD Biosciences) (see chapter 2).  
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3.3.7. Activation of human T-cell clones and cross-reactivity 

The proliferative response and cytokine release was measured using [3H] thymidine 

incorporation and IFNγ ELISpot, respectively. Drug-specific T-cell clones (0.5x105cells/well in 

duplicate) were incubated for 48h with drugs (0-2mM) and autologous irradiated EBV 

transformed B-cells (0.1x105cells/well). For the last 16h [3H] thymidine (0.5µCi) was added 

to cultures. Interferon-γ secretion of drug-specific T-cell clones was quantified through IFNγ 

ELISpot where multiscreen HTS filter plates (Millipore, Watford, UK) were coated overnight 

at 4˚C with IFNγ capture antibody (15μg/mL). The following day, wells were washed five 

times with PBS and blocked with culture medium (200μl, 30min, room temperature). T-cell 

clones (0.5x105) were added to wells with irradiated autologous EBVs (0.1 x 105) and the 

drug antigen (0-2mM). Plates were incubated at 37˚C in 5% CO2 and developed after 48h, 

according to the manufacturer’s instructions. At the end of the incubation cells were 

discarded and wells were washed five times with 200μl PBS. Biotin‐labelled detection 

antibody was diluted to 1μg/mL in PBS containing 0.5% FBS and added to the wells (100μl). 

The plate was incubated at room temperature for 2h before wells were washed five times 

with PBS. Streptavidin‐ALP was diluted 1:1000 in PBS containing 0.5% FBS and added to 

wells (100μl, 1h, room temperature). Wells were washed five times with PBS (200μl) and 

spots were visualised by the addition of BCIP/NBT substrate. The plate was counted on an 

AID ELISpot reader (Cadama Medical, Stourbridge, UK) when thoroughly dried. 

3.3.8. Mice 

All mice used were between 8-20 weeks of age and were C57/Bl6 MHC II KOs with a 

mutation in the αβ gene encoding for MHC class II molecules. To deplete CD4+ T-cells from 
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mice, I.P. injections of rat anti-mouse CD4 antibody were administered on day 0 

(100µg/mouse) and on day 7 (100µg/mouse) in 100µL PBS. 

3.3.9. Mouse sensitisation 

Mice were sensitised on days 1-3 through painting with flucloxacillin, piperacillin, or 

amoxicillin (50ul, 1g/mL) in 70% DMSO on a shaved abdomen of approximately 3cm2 surface 

area. Vehicle mice were painted with 70% DMSO only. Tissues were removed on day 8 for ex 

vivo readouts. Unless otherwise stated, for ex vivo readouts, mouse inguinal dLN cells were 

pooled from groups of two mice to generate one n-number. 

3.3.10. Mouse cell isolation and analysis of drug-specific proliferative responses 

For ex vivo readouts dLNs were removed from mice on day 8. Cells were isolated from dLNs 

via maceration through 100µm nylon filter (BD Biosciences, UK) and then washed and 

counted. To isolate CD11c positive APCs, the mesenteric LNs were removed from mice and 

disaggregated into a single cell solution through ~1h incubation with 5mg/mL collagenase D 

(Sigma, UK). Cells were then washed with Hanks balanced salt solution and incubated with 

CD11c+ magnetic beads (Miltenyi Biotec – UK) before being run through a magnetic column 

(Miltenyi Biotec – UK) and then washed, counted, and finally used. 

After cell isolation, dLN cells were incubated in U-bottomed 96 well plates for 5 days (5% 

CO2 and 37°C) (1.25x105 cells/well – 200µL) with CD11c positively isolated APCs 

(2.5x104cells/well). Amoxicillin, piperacillin, and flucloxacillin were added to cell cultures at 

concentrations of 0, 0.25 (~0.65mM), 0.5 (~1.1mM), and 1mg/mL (~2.2mM). After 5 days, 

proliferation was measured through incorporation of [3H] thymidine (0.25µCi/well) 

(Moravek -California, USA) after 16h into newly synthesised DNA. Plates were harvested and 

read as stimulation index (SI) per well where the drug-specific increases are determined 
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through dividing the cpm at drug concentrations by the cpm at zero drug concentrations. 

Supernatants were collected for IFNγ secretion via IFNγ ELISA (see Chapter 2) (R&D Systems, 

UK). 

3.3.11. Statistics 

Unless otherwise stated, statistics were performed on SigmaPlot with significance being 

devised using the students T-test. Error bars represent one standard deviation from the 

mean. 
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3.4. RESULTS 

3.4.1. Generation of T-cell clones from hypersensitive patients 

The number of T-cell clones generated from hypersensitive patients as well as patient 

hypersensitivity symptoms and percentage of clone phenotype is described in Table3.1. 

Table 3.2. describes the phenotypes of clones used in the following experiments. 

Medication 

Clinical 

hypersensitivity 

reaction 

Number of 

clones 

generated 

Number found 

to be drug-

specific 

CD phenotype 

Amoxicillin 
DILI to co-

amoxiclavulanic acid 
169 67 80.6% CD8+ 

Piperacillin 
Maculopapular skin 

rash 
192 39 87.0% CD4+ 

Flucloxacillin DILI 186 23 91.5% CD8 

Table 3.1.  Allergic patient clinical features and T-cell cloning. 

 

T-cell clone 

phenotype 

CD4+ CD8+ Dual CD4+CD8+ 

Amoxicillin clones 75 64, 69, 106 41 

Piperacillin clones 36, 80, 117, 137, 139 N/A N/A 

Flucloxacillin clones N/A 50, 52, 149, 180 N/A 

Table 3.2. Phenotype of T-cell clones selected for this study 
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3.4.2. Activation of human T-cell clones with amoxicillin, piperacillin, and/or flucloxacillin 

3.4.2.1. Piperacillin-specific T-cell clones do not cross react with flucloxacillin or 

amoxicillin 

In order to analyse the activation and cross-reactivity of piperacillin-specific T-cell clones, 

they were incubated separately with amoxicillin, piperacillin, and flucloxacillin in vitro. 

Piperacillin-specific human T-cell clones showed drug concentration-dependent 

proliferation and increases in the number of IFNγ secreting cells when piperacillin-treated 

wells were compared against vehicle controls (Fig 3.2.). In contrast, clones did not 

proliferate or secrete IFNγ when stimulated with flucloxacillin or amoxicillin. 
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Fig 3.2. Proliferation (A-D) and IFNγ ELISpot (E) showing the activation of T-cell clones from a piperacillin 

hypersensitive patient with piperacillin but not with amoxicillin or flucloxacillin. Human T-cell clones were 

generated through serial dilution of PBMCs in the presence of IL2 and piperacillin. Piperacillin-specific T-cell 

E 



95 
 

clones were then incubated at 0.5x10
5
 cells/well with 0.1x10

5
 irradiated EBVs for 48h in the presence of 

absence of drug. For the proliferation assays (A-D) [
3
H] thymidine (0.5μCi) was added and 16h later 

proliferation was measured by scintillation counting. For IFNγ secretion analysis, cells were incubated in 

ELISpot filter plates for 48h and processed according to the kit protocols (E). All clones were CD4
+
. 

 

3.4.2.2. Flucloxacillin-specific CD8+ T-cell clones show cross-reactivity to amoxicillin, but 

not piperacillin 

In order to analyse the activation and cross-reactivity of flucloxacillin-specific T-cell clones, 

they were incubated separately with amoxicillin, piperacillin, and flucloxacillin in vitro. 

Flucloxacillin-specific human T-cell clones proliferated in a drug-concentration-dependent 

manner when incubated with flucloxacillin (Fig 3.3. A-D). Amoxicillin-specific responses were 

debatable with 3 of the 4 clones; an SI of 4 or above was recorded with all three clones 

(Fig3.3. A, B, D). In contrast, piperacillin did not activate the flucloxacillin-specific clones. 

 

Fig 3.3. Proliferation of flucloxacillin-specific human T-cell clones showing cross-reactivity to amoxicillin but not 

piperacillin. Human T-cell clones were generated through serial dilution of PBMCs in the presence of IL2 and 
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flucloxacillin. Flucloxacillin-specific T-cell clones were then incubated at 0.5x10
5
 cells/well with 0.1x10

5
 

irradiated EBVs for 48H in the presence or absence of drug (A-D). For the proliferation assay [
3
H] thymidine 

(0.5μCi) was added and 16h later proliferation was measured by scintillation counting (A-D). All clones were 

CD8
+
. 

 

3.4.2.3. Amoxicillin-specific T-cell clones show limited cross-reactivity to piperacillin 

Five amoxicillin-specific T-cell clones were tested for amoxicillin-specificity and cross-

reactivity with piperacillin and flucloxacillin. All five clones showed concentration-

dependent amoxicillin-specific increases in proliferation of at least 3x the control with 

accompanied increases in number of IFNγ secreting cells at all three amoxicillin 

concentrations tested (Fig 3.4.). Consistent increases (SI>3) in proliferation with flucloxacillin 

incubation were only observed with clones 41 and 106 at 2mM and 0.5mM, respectively (Fig 

3.4. A, E). However, the proliferative response was not accompanied with an increase in 

IFNγ secretion. Weak increases in piperacillin-specific proliferation were detected in two 

clones with SIs >8 in clone 69 and 106 at 1mM piperacillin incubation (Fig 3.4. C, E). Similar 

results were obtained when IFNγ secretion was analysed. Piperacillin-specific responses 

were clearly visible when spot forming units (SFUs) in drug and control wells were compared 

for clone 106 at 0.5mM piperacillin incubation (Fig 3.4. E).  
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Fig 3.4. Proliferation and IFNγ secretion analysis of the cross-reactivity of amoxicillin patient T-cell clones 

showing limited cross-reactivity with piperacillin and no significant cross-reactivity with flucloxacillin. Human T-

cell clones were generated through serial dilution of one human patient PBMCs in the presence of IL-2 and 

amoxicillin. Amoxicillin-specific T-cell clones were then incubated at 0.5x10
5
 cells/well with 0.1x10

5
 irradiated 

EBVs for 48h. For proliferation analysis (A-E) [
3
H] thymidine (0.5μCi) was added and 16h later proliferation was 

measured by scintillation counting. For IFNγ secretion quantification, cells were incubated in ELISpot filter 

plates and processed according to the kit protocols after 48h incubation with figures showing number of SFUs 

compared to zero control (Table). 

 

3.4.3. CD8+ T-cell reactivity of amoxicillin, piperacillin, and flucloxacillin in a mouse model 

In order to analyse the possible cross-reactivity between amoxicillin, piperacillin and 

flucloxacillin-specific CD8+ T-cells, proliferation and IFNγ secretion of β-lactam painted 

mouse dLN cells were studied. Proliferation data is presented as stimulation index (SI) 

where the response is calculated as fold increases compared to control wells. This is to more 

clearly show drug-specific increase whilst also making the separate experiments easier to 

compare. 

Drug-specific increases in dLN cell proliferation were observed when drug-treated and 

vehicle control mice were compared (Fig 3.5. A1. B1, C1). Comparable results were obtained 

when IFNγ secretion was used as a readout. Significant increases in IFNγ secretion were 

observed when dLN cells from drug and vehicle control mice were compared (Fig 3.5. A2, 

B2, C2). These data show that mice were successfully sensitised to the β-lactam-containing 

antibiotics amoxicillin, piperacillin, and flucloxacillin. 

The amount of dLN cell proliferation and IFNγ secretion (CD8+ T-cell activation) induced by 

incubating flucloxacillin-sensitised mouse dLN cells with flucloxacillin (Fig 3.5. C1 & C2) was 

significantly larger when compared against the proliferation and IFNγ secretion induced in 

piperacillin-sensitised mouse dLN cells when incubated with piperacillin (Fig 3.5. B1 & B2). 
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This difference in T-cell activation indicates that in a CD4+ T-cell depleted mouse model, 

flucloxacillin is more effective at sensitisation than piperacillin.  

Fig 3.5. Proliferation analysis of the cross-reactivity of amoxicillin, piperacillin, and flucloxacillin-specific mouse 

dLN cells. MHC II KO mice were depleted of CD4
+
 T-cells with I.P. injections of CD4 antibody (100µg) on day 0 

and 7. Mice were painted with 50µL of 1g/mL amoxicillin, piperacillin, or flucloxacillin for days 1-3. On day 8 

the dLNs were removed, macerated to a single cell suspension and incubated in triplicate at 0.125x10
6
 

cells/well with 2.5x10
4
 APCs collected from the non-draining LN through CD11c positive magnetic isolation. 

Cells were incubated for 5 days after which proliferation was measured via [
3
H] thymidine incorporation after 

16h (n≥3) (A) Results show proliferation data as stimulation index (SI). Immediately prior to thymidine 

addition, supernatants were removed from wells (100µL) and analysed for IFNγ content through IFNγ ELISA 

(B). Results show amount of IFNγ secreted to drug, minus IFNγ secreted at no added drug (Amoxicillin n=3, 

piperacillin n=3, flucloxacillin n=6). 

 

Cross-reactivity between amoxicillin, piperacillin, and flucloxacillin was investigated through 

ex vivo incubation of sensitised dLN cells with all three drugs. Cross-reactivity was assessed 

via a significant drug-specific proliferation and/or via significant drug-specific increases in 

IFNγ secretion when compared against vehicle controls.  
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Amoxicillin-sensitised mouse dLN cells proliferated in a drug-dependent manner when 

incubated with flucloxacillin (Fig 3.6. A - Amoxicillin-primed). This result was reciprocated in 

the analysis of IFNγ secretion from amoxicillin-sensitised mice (Fig 3.6. B - Amoxicillin-

primed). These data indicate a consistent cross-reactivity between amoxicillin and 

flucloxacillin in the mouse. Conversely, amoxicillin-sensitised mouse dLN cells did not 

significantly proliferate or secrete IFNγ when incubated ex vivo with piperacillin. 

Piperacillin-sensitised mouse dLN cells demonstrated mild proliferative responses following 

ex vivo incubation with amoxicillin, piperacillin, and flucloxacillin (Fig 3.6. A – Piperacillin-

primed). However, this cross-reactivity was not evident upon analysis of piperacillin-

sensitised mouse dLN cell IFNγ secretion, which showed no drug-specific increases from 

incubation with amoxicillin or flucloxacillin (Fig 3.6. B – Piperacillin-primed). The 

contradicting results from piperacillin-sensitised mouse dLN cells indicate a small degree of 

cross-reactivity between piperacillin with amoxicillin and flucloxacillin.  

Flucloxacillin-specific mouse dLN cells upon incubation ex vivo with amoxicillin and 

piperacillin did not significantly proliferate when compared against vehicle controls (Fig 3.6. 

A – Flucloxacillin-primed). Conversely however, upon ex vivo incubation with amoxicillin and 

piperacillin, flucloxacillin-specific mouse dLN cells secreted significant amounts of IFNγ when 

compared against vehicle controls. As with piperacillin, these contradicting results indicate a 

small degree of cross-reactivity between flucloxacillin with amoxicillin and piperacillin. 

 



102 
 

 

 

 



103 
 

Fig 3.6. Proliferation analysis of the cross-reactivity of amoxicillin, piperacillin, and flucloxacillin-specific mouse 

dLN cells. MHC II KO mice were depleted of CD4
+
 T-cells with I.P. injections of CD4 antibody (100µg) on day 0 

and 7. Mice were painted with 50µL of 1g/mL amoxicillin, piperacillin, or flucloxacillin for days 1-3. On day 8 

the dLNs were removed, macerated to a single cell suspension and incubated in triplicate at 0.125x10
6
 

cells/well with 2.5x10
4
 APCs collected from the non-draining LN through CD11c positive magnetic isolation. 

Cells were incubated for 5 days after which proliferation was measured via [
3
H] thymidine incorporation after 

16h (n≥3) (A) Results show proliferation data as stimulation index (SI). Immediately prior to thymidine 

addition, supernatants were removed from wells (100µL) and analysed for IFNγ content through IFNγ ELISA 

(B). Results show amount of IFNγ secreted to drug, minus IFNγ secreted at no added drug (amoxicillin n=3, 

piperacillin n=3, flucloxacillin n=6). 

 

 

3.5. DISCUSSION 

In this chapter, T-cell cross-reactivity between amoxicillin, flucloxacillin, and piperacillin was 

investigated using both a mouse model of β-lactam induced hypersensitivity and human 

patient T-cell clones in vitro. The aim of this was to investigate whether cross-reactivity 

between the three β-lactams was similar or different in both systems. These particular β-

lactam antibiotics were chosen due to their known association with inducing 

hypersensitivity reactions with different clinical phenotypes in humans. Furthermore, drug-

specific T-cells have been isolated from patients with each form of hypersensitivity (Romano 

et al. 2004) (Rozieres et al. 2009) (El-Ghaiesh et al. 2011). In hypersensitive patients 

piperacillin and amoxicillin mainly induce skin reactions (Grieco et al. 2005) (Chovel-Sella et 

al. 2013) with amoxicillin/clavulanic acid also however able to induce drug-induced liver 

injury  (Leise et al. 2014). Flucloxacillin hypersensitivity, conversely, mainly represents itself 

as drug-induced liver injury (Kaniwa and Saito 2013). Why these structurally similar drugs 

should target different organs during hypersensitivity reactions is largely unknown, 

however, an interesting correlation lies in the mechanisms of T-cell activation with 

piperacillin mainly inducing drug-specific CD4+ T-cells, amoxicillin producing mainly CD8+ T-
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cells and flucloxacillin producing nearly entirely drug-specific T-cells that are CD8+ (Table 

3.1.). 

The phenomenon of cross-reactivity between β-lactam antibiotics occurs through binding of 

the antibiotic molecule to specific lysine residues on self-protein to create an immunogenic 

protein structure (Whitaker et al. 2011) (Monshi et al. 2013) (Jenkins et al. 2009) (Ariza et al. 

2012); because of the similarities between β-lactam antibiotics, the same immunogenic 

protein could cause T-cell activation and thus cross-reactivity between two separate β-

lactam antibiotics. Both human and mouse T-cells displayed reactivity against flucloxacillin 

and amoxicillin. This could be because both drugs bind to the same lysine residue to create 

immunologically similar haptenic molecules which when re-introduced, cause T-cell 

activation. In respect to the three drugs investigated here, the different phenotypes of clone 

may play a role in the prevention or allowance of cross-reactivity. For example, piperacillin 

largely induces drug-specific T-cells that are CD4+ whilst amoxicillin and flucloxacillin mainly 

induce drug-specific T-cells that are CD8+. This difference in phenotype may induce 

sensitisation to different peptide epitopes which are not able to be replicated by other β-

lactams. This reason implicates a possible mechanism as to why, in human patients, 

piperacillin-specific T-cells are not cross-reactive with amoxicillin or flucloxacillin (Table 

3.3.).  

The mouse model of sensitisation to amoxicillin had been successfully established (see 

chapter 2). Furthermore, as we have isolated and generated amoxicillin, piperacillin, and 

flucloxacillin human T-cell clones from hypersensitive patients. The next step was to 

investigate if it was possible to sensitise mice to piperacillin and flucloxacillin. If this was 

possible, cross-reactivity could be compared in both human and mice. Sensitisation to 

amoxicillin was repeated alongside attempts to sensitise mice to piperacillin and 
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flucloxacillin. With flucloxacillin, sensitisation was possible and furthermore, caused even 

more robust effector T-cell responses upon ex vivo drug stimulation than amoxicillin. 

Piperacillin conversely, displayed very weak effector responses upon ex vivo drug 

stimulation indicating that sensitisation was not as efficient as with amoxicillin or 

flucloxacillin. A possible reason for the lack of T-cell response may again lie in the 

mechanism of sensitisation where piperacillin is known to cause sensitisation through 

mechanisms guided towards producing drug-specific T-cells which are CD4+ (Table 3.1.). In a 

mouse model devoid of CD4+ T-cells, a lack of drug-specific T-cells is not wholly unsurprising. 

Another explanation for the lack of substantial piperacillin-specific increases in proliferation 

and IFNγ could lay in the possibility that piperacillin is capable of generating drug-specific 

CD8+ T-cells which are of a Tc2 phenotype. This shift in phenotype would explain the lack of 

IFNγ with Tc2 cells secreting little or no IFNγ and instead secreting IL-4 and IL-5 (Sad et al. 

1995). The lack in substantial proliferation could also be partly explained through a shift 

towards a Tc2 phenotype through Tc2 human T-cell clones being reported to have 

dampened proliferative responses compared to Tc1, even when incubated with Tc2 related 

cytokine IL-4 (Vukmanovic-Stejic et al. 2000). The mild increases in IFNγ detected in the 

piperacillin-specific dLN cell supernatant indicates the very likely presence of Tc1 cells as Tc2 

cells do not secrete IFNγ (Sad et al. 1995) (Vukmanovic-Stejic et al. 2000). However, it would 

be of interest to analyse the cytokine secretions of the piperacillin-sensitised dLN cells to 

determine whether piperacillin is also capable of generating CD8+ T-cells shifted towards an 

IL-4 secreting Tc2 phenotype.  

Once sensitisation to the three drugs was detectable in the mouse model, cross-reactivity 

was investigated in the mouse model through ex vivo drug incubations and then compared 
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against human T-cell clone data. All mice and human cross-reactivity data is summarised in 

Table 3.3. 

Human T-cell cross-

reactivity 
Amox challenged Pip challenged Flu challenged 

Amox primed YY Y N 

Pip primed N YY N 

Flu primed Y* N* Y* 

Mouse CD8+ T-cell 

cross-reactivity 
Amox challenged Pip challenged Flu challenged 

Amox primed YY N YY 

Pip primed Y YY Y 

Flu primed Y Y YY 

Table 3.3. Cross-reactivity of mouse and human T-cells summarised. Data is shown as reactivity being evident 

in proliferation AND IFNγ (n>3) (YY), evident in proliferation OR IFNγ only (n>3) (Y), or not evident in either 

readout (n>3) (N) (*only one readout) 

 

In the mouse model, it would be feasible to assume that amoxicillin and flucloxacillin were 

creating similar haptenic proteins in both sensitisation and elicitation leading to cross-

reactive activation in both amoxicillin and flucloxacillin-primed dLN cells; as these drugs 

both bind to the same Lys residues and cause sensitisation via intracellular mechanisms 
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which yield large amount of CD8+ T-cells (Whitaker et al. 2011) (Monshi et al. 2013) (Jenkins 

et al. 2009) (Ariza et al. 2012). 

In human T-cell clones, amoxicillin-specific T-cells were different from their murine 

counterparts. No cross-reactivity to flucloxacillin and limited cross-reactivity to piperacillin 

were observed through analysis of the number of IFNγ secreting cells. Flucloxacillin-specific 

human T-cell clones showed similarities to the mouse model (i.e. through cross-reactive 

increases in proliferation to amoxicillin was observed). This was contrasted against the 

differences of piperacillin cross-reactivity in the mouse which was not detectable in the 

human data. Further investigation would have been ideal to fully dissect the cross-reactive 

potential of flucloxacillin-specific human T-cell clones but due to cell numbers this was not 

possible. Monshi et al (2013) has previously looked at cross-reactivity in flucloxacillin-

specific human T-cell clones and found cross-reactivity to both amoxicillin and piperacillin. 

The differences in cross-reactivity seen between human and mouse T-cells are not un-

surprising due to the differences between the two assays. At the time of sensitisation the 

protein which the β-lactams would likely bind to whether in human or mouse, would have 

been human albumin or mouse albumin, respectively, which have approximately 70% amino 

acid sequence homology (Kosa et al. 1998). This difference in initial protein could lead to 

differences in the tertiary structure of the haptenic peptides being presented to the T-cells 

during sensitisation. Protein differences at elicitation could also be a factor with human and 

mouse T-cells being cultured in medium containing human and bovine albumin, 

respectively. Bovine albumin is 76% identical to human albumin, in regards to amino acid 

sequence (Kosa et al. 1998).  
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The three β-lactam containing antibiotics used here all have structurally different side 

chains (Fig 3.1.) and displayed a cross-reactivity with at least one other drug in human 

and/or mice. This indicates that the haptenic peptides being formed are dependent on the 

core β-lactam structure, and not the side chains. Interestingly, human piperacillin-specific T-

cells did not show reactivity to amoxicillin or flucloxacillin in ex vivo readouts. Investigations 

into T-cell cross-reactivity with other β-lactam antibiotics has been performed by Mauri-

Hellweg et al (1996) to reveal that non-cross-reactive human T-cells showed an up-

regulation of one TCR Vβ-chain whilst broadly cross-reactive human T-cell lines 

demonstrated a heterogenous TCR usage; which may have been the case with the non-

cross-reactive piperacillin-specific human T-cell clones investigated here. (Mauri-Hellweg et 

al. 1996) 

Finally, the human T-cell clones used here are by definition one type of T-cell sensitised to 

one haptenic peptide and as previously described, β-lactams are capable of binding to 

multiple lysine residues on protein to create different haptenic peptides, some of which 

could be generated using other β-lactams. The mouse cells used in these experiments are 

derived from CD4+ T-cell depleted lymph node and so, are a multitude of CD8+ T-cells, 

sensitised to a variety of drug bound haptenic peptides; the implications of this being that 

the murine readouts are a measurement of a multitude of different CD8+ T-cells, and human 

readouts of one particular haptenic peptide for each clone. 

In conclusion, cross-reactivity in human T-cell clones has been analysed to show the 

possibility of cross-reactivity in all three β-lactams tested. Also, novel data has been 

generated in mice sensitisation experiments. Data presented show the activation of CD8+ T-

cells to the β-lactams flucloxacillin and piperacillin (albeit to a lesser extent). Cross-reactivity 

was observed between amoxicillin and flucloxacillin. Flucloxacillin sensitisation in mice 
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seemed efficient with large numbers of drug-specific T-cells showing robust T-cell activation 

upon ex vivo elicitation. This discovery opens up novel experimental possibilities involving 

flucloxacillin sensitisation, which is known to induce liver injury. There are currently no 

animal models of flucloxacillin sensitisation at the time of writing, so the development of a 

mouse model capable of mimicking the human condition could be utilised as a vital tool in 

dissecting the mechanisms of pathogenesis of flucloxacillin induced liver injury and working 

to block or counteract these mechanisms. 
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4.1. INTRODUCTION 

In 1999, carbamazepine‐induced mucocutaneous syndrome was observed in monozygotic 

twins (Edwards S. G. et al. 1999). This opened the field and in 2002 an association between 

HLA-B*57:01 and abacavir hypersensitivity was discovered (Mallal et al. 2002) (Veronesi et 

al. 2002). Several HLA types have since been found to contribute to drug hypersensitivity 

reactions including flucloxacillin-induced liver damage. Expression of HLA-B*57:01 was 

found to be significantly increased in patients with DILI (Daly et al. 2009). How the presence 

of the HLA-B*57:01 molecule contributes to the generation of flucloxacillin-induced liver 

injury is not entirely understood. There has been a proposal that flucloxacillin, when added 

to in vitro PBMC cultures devoid of professional APCs, activated antigen-specific CD8+ T-cells 

from naive HLA-B*57:01 positive individuals via a direct interaction with MHC and specific 

TCRs. In HLA-B*57:01 negative individuals, T-cell responses were detectable but the T-cells 

were activated via a hapten-based mechanism (Wuillemin et al. 2013). Drug-specific CD8+ T-

cells from donors carrying the risk allele are HLA-B*57:01-restricted in some individuals 

(Wuillemin et al. 2013). However, in other donors, other HLA-class molecules present the 

drug-derived antigen to T-cells (Wuillemin et al. 2013). As mice do not possess HLA-B*57:01 

allele or a murine equivalent, flucloxacillin sensitisation using the CD4 depleted mouse 

model would assume to be proceeding via a hapten-based mechanism, however, as mice 

have not been sensitised to flucloxacillin previously, this is not certain. 

In favour of a hapten-based mechanism of flucloxacillin-induced drug hypersensitivity, 

flucloxacillin is a β-lactam antibiotic known to be able to bind to lysine residues on albumin 

to create immunogenic drug-protein antigens capable of stimulating flucloxacillin-specific 

CD8+ T-cells from allergic human patients. Furthermore, flucloxacillin pulsed antigen 

presenting cells have been shown to stimulate flucloxacillin-specific human T-cell clones. 
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This response is blocked when the pulsed antigen presenting cells are fixed to inhibit cellular 

processing (Monshi et al. 2013). This indicates the binding of flucloxacillin to protein is 

crucial in the activation and generation of flucloxacillin-specific T-cells in humans. 

Establishment of a flucloxacillin mouse sensitisation model would allow the determination 

of whether flucloxacillin-specific T-cell activation was occurring through a hapten or Pi-

based mechanism. 

 

4.2. AIMS 

To use the mouse model to: 

- Analyse mechanisms of flucloxacillin-specific T-cell activation 

- Investigate the involvement APCs have on the flucloxacillin-specific T-cell response. 
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4.3. METHODS 

4.3.1. Mice and CD4+ T-cell depletion 

All mice used were between 8-20 weeks of age and were C57/Bl6 MHC II KOs with a 

mutation in the αβ gene encoding for MHC class II molecules (Charles River - Kent, UK). To 

deplete CD4+ T-cells from mice, I.P. injections of rat anti-mouse CD4 antibody (GK 1.5 

Bioxcell - UK) were administered on day 0 (100µg/mouse) and on day 7 (100µg/mouse) in 

100µL PBS. 

4.3.2. Drugs and chemicals 

Intra-venous grade flucloxacillin sodium was obtained from The Royal University Hospital, 

Liverpool.  Phytohaemagglutinin (PHA), Hanks balanced salt solution, and DMSO were from 

Sigma, UK. 

4.3.3. Culture medium 

RPMI 1640 (Sigma, UK) was supplemented with 10% foetal bovine serum (FBS) (Gibco, UK), 

L-glutamine (2mM) (Sigma, UK), and 2-mercaptoethanol (50µM) (Sigma, UK). 

4.3.4. Mouse sensitisation 

Mice were sensitised on days 1-3 through painting with flucloxacillin (50ul, 1g/mL) in 70% 

DMSO on a shaved abdomen (approximately 3cm2 surface area). Vehicle mice were painted 

with 70% DMSO only. Tissues were removed on day 8 for ex vivo readouts. Unless otherwise 

stated, for ex vivo readouts, mouse inguinal dLN cells were pooled from groups of two mice 

to generate one n-number. 
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4.3.5. Cell isolation 

For ex vivo readouts dLNs were removed from mice on day 8. Immune cells were isolated 

via maceration through 100µm nylon filter (BD Biosciences, UK) and then washed and 

counted.  

4.3.6. Generation of bone marrow-derived DCs and isolation of CD11c + DCs from lymph 

nodes 

To generate bone marrow-derived dendritic cells (BMDDCs) the bone marrow was flushed 

from the femurs of mice with complete RPMI medium and large pieces of bone were 

filtered out with a 100µm nylon filter. Cells were incubated with 5% GMCSF (Peprotech, NJ, 

USA) for 8 days after which immature DCs were harvested. To mature the DCs, LPS 

(0.5µg/mL) was added to the cultures for 24h before harvesting.  

To isolate CD11c positive APCs, the mesenteric LNs were removed from mice and 

disaggregated into a single cell solution through ~1h incubation with 5mg/mL collagenase D 

(Sigma, UK). Cells were then washed with Hanks balanced salt solution and incubated with 

CD11c+ magnetic beads (Miltenyi Biotec – UK) before being run through a magnetic column 

(Miltenyi Biotec – UK) and then washed, counted, and finally used. 

4.3.7. DC pulsing with flucloxacillin 

For DC pulsing experiments where DCs were incubated with flucloxacillin before culture 

with dLN cells, BMDDCs were generated and harvested on day 8 as previously described. 

Cells were then incubated in 6 well plates (1.5x106cells/well) with flucloxacillin (0.25, 0.5, 

1mg/mL) for 24h or at 0.5mg/mL for 1, 4, 24, or 48h (37°C, 5% CO2). At each time point, cells 

were washed with medium to remove un-bound drug and added (2.5x104cells/well) to dLN 

cells (2.5x105cells/well). Readouts were taken after 5 days in culture. 
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4.3.8. CD8+ T-cell proliferation analysis via CFSE staining 

After sensitisation and cell isolation, dLN cells were incubated with CFSE (5mM, 0.5µL) 

(Ebioscience, UK) for 5 minutes at room temperature. The cells were washed and incubated 

with flucloxacillin (0.25, 0.5, 1mg/mL) or PHA (10µg/mL) in U-bottomed 96 well plates 

(1.25x105 cells/well) (Nunc, UK) with CD11c positively isolated DCs (2.5x104 cells/well). After 

5 days at 37°C and 5% CO2, cells were then washed, incubated with a fluorescent CD8+ 

antibody (Allophycocyanin) (2µL/sample) for 15 minutes at 4°C. Cells were then washed and 

analysed for proliferation on a FACScalibur flow cytometer. FACS traces were gated to 

exclude dead or dying cells and to focus the analysis on CD8+ T-cells. Data was analysed with 

Cyflogic (Finland). 

4.3.9. Proliferation analysis of dLN cells via [3H] thymidine incorporation 

After sensitisation and cell isolation, dLN cells (1.25x105 cells/well) were incubated in U-

bottomed 96 well plates for 5 days at 5% CO2 and 37°C with either CD11c positively isolated 

DCs (2.5x104 cells/well), immature BMDDCS (2.5x104 cells/well), no addition of DCs, or 

removal of DCs with CD11c-positive magnetic isolation. After 5 days, proliferation was 

measured through incorporation of [3H] thymidine (0.25µCi/well) (Moravek -California, USA) 

into newly synthesised. Plates were harvested and read as scintillation per well.  

4.3.10. IFNγ secretion analysis of dLN cells 

IFNγ content of supernatant from the proliferation assays described above, was removed on 

day 5 of culture and analysed through a mouse IFNγ ELISA kit (R&D systems, UK).  

Quantification of IFNγ secreting cells was analysed through an IFNγ ELISpot kit (BD 

Biosciences, UK). Multiscreen filter plates (Millipore, Watford, UK) were coated with IFNγ 

antibody (15μg/mL) overnight at 4˚C. Wells were washed with PBS (200μl) and blocked for 
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30 minutes with medium (200μl). Cells from the dLNs of painted mice were added to the 

plate (2.5x105cells/well) with and without CD11c positive cells magnetically isolated from 

the non-dLNs (2.5x104cells/well). Flucloxacillin (0.25, 0.5 1mg/mL) and PHA (20µg/mL) were 

added to wells and after 48h, the plate was developed according to the manufacturer’s 

instructions. The wells were washed with PBS and incubated with secondary antibody 

(diluted 1:1000 in PBS containing 0.5% FBS) for 2h at room temperature. After washing with 

PBS, Streptavidin‐ALP (diluted 1:1000 in PBS containing 0.5% FBS) was added to wells for 

one hour. Spots were visualised by the addition of BCIP/NBT substrate (100μl, 15 min). The 

plate was counted on an AID ELISpot reader (Cadama Medical, Stourbridge, UK) when 

thoroughly dried. 

4.3.11. Detection of in vitro flucloxacillin covalent modification of human serum albumin 

by LC/MS 

Human serum albumin (1.3 mg, 40μM) was incubated with 400μM flucloxacillin in 500μL 

phosphate buffer, pH 7.4, at 37°C for 16h. Aliquots of 50μL were removed after 30 min, 1, 2, 

3, 16 and 24h and processed for MS analysis. At each time point the drug was removed by 

precipitation of the protein with ten volumes of ice-cold methanol followed by 

centrifugation at 14000g at 4°C for 10min. This was repeated three times, and the protein 

pellet was reconstituted in 25μL phosphate buffer. The protein was reduced by incubation 

with 10mM DTT w/v at 55°C for 15min, and alkylated by incubation with 166mM 

iodoacetamide w/v for a further 15min at room temperature. The samples were again 

subjected to methanol precipitation and were reconstituted in 30μL 50mM ammonium 

bicarbonate buffer. Trypsin (1μg) was added, and the samples were incubated overnight at 

37°C. The digestions were desalted using C18 Zip-Tips (Millipore) and dried prior to LC-

MS/MS analysis 



118 
 

For LC/MS analysis, digested and ZipTipped samples were reconstituted in 10μL 5% 

ACN/0.05% v/v TFA, and aliquots of 0.5–2μL were analysed, whereas cation exchange 

fractions were reconstituted in 120μL of 5% ACN/0.05% TFA, and aliquots of 60μL were 

analysed. Samples were delivered into a QSTAR® Pulsar I hybrid MS by automated in-line LC 

(integrated LCPackings System, 5mm C18 nano-precolumn and 75μm×15 cm C18 PepMap 

column (Dionex, California, USA)) via a 10μm inner diameter PicoTip (New Objective, MA, 

USA). For prefractionated samples, the nano-precolumn was washed for 30 min with 5% 

ACN/0.05% TFA prior to initiation of the solvent gradient in order to reduce the salt content 

of the sample. A gradient from 5% ACN/0.05% v/v TFA to 48% ACN/0.05% v/v TFA in 60min 

(unfractionated samples) or 70min (fractionated samples) was applied at a flow rate of 

300nL/min. MS and MS/MS spectra were acquired automatically in positive ion mode using 

information-dependent acquisition (Analyst, Applied Biosystems). Survey scans of 1s were 

acquired for m/z 400–2000, and the three most intense ions were selected for MS/MS, with 

accumulation times of 1s and with a dynamic exclusion of 40s. Database searching was 

performed using ProteinPilot version 2 (Applied Biosystems) against the latest version of the 

SwissProt database, with biological modifications allowed and with the confidence level set 

to 90%. Flucloxacillin (mass addition 453amu) or 5′-hydroxymethyl flucloxacillin (mass 

addition 469amu) were included as high probability user-defined modifications of Lys and 

carboxamidomethyl as a fixed modification of Cys. The data were also assessed manually for 

the presence of a dominant fragment ion of 160amu, indicative of cleavage of the 

thiazolidine ring from the drug adduct and the presence of the remaining adduct fragment 

of 294amu (flucloxacillin) or 310amu (5′-hydroxymethyl flucloxacillin) present on the lysine 

residue (Jenkins et al. 2009). 
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4.3.12. Adoptive transfer of flucloxacillin sensitisation to naive mice via I.V. injection of 

flucloxacillin-exposed DCs 

BMDDCs were isolated as previously described. Retinoic acid (RA) (10nM) (Sigma, UK) was 

added to the culture medium on day 4. On day 9, cells were washed and incubated with or 

without flucloxacillin (0.5mg/mL) with all cells being incubated with LPS (0.5µg/mL), RA 

(10nM) and GMCSF (5%) in medium containing mouse albumin (0.5%) (Sigma, UK) and L-

glutamine (2mM). After 16h, cells were then washed and injected at 0.5x106 cells/mouse via 

I.V. injection. Mice received the BMDDCS exposed to flucloxacillin or the un-exposed 

BMDDCS. All mice received I.P. injection of CD4 antibody (100µg) and RA (0.04mg) in Hanks 

balanced salt solution (100µL). After twenty one days, mesenteric lymph nodes were 

removed and analysed for flucloxacillin-specific proliferation via previously described [3H] 

thymidine incorporation. 

4.3.13. Statistics 

Unless otherwise stated, statistics were performed on SigmaPlot with significance being 

devised using the students T-test. Error bars represent one standard deviation from the 

mean. 

 

 

 

 

 

 



120 
 

4.4. RESULTS 

4.4.1. Flucloxacillin-specific CD8+ T-cell proliferation 

To quantitatively analyse the number of CD8+ T-cells that were proliferating in an antigen-

specific manner, CD8+ T-cells from the dLNs of flucloxacillin-sensitised mice were analysed 

through CFSE staining after five days incubation with flucloxacillin. Flucloxacillin-sensitised 

dLN cells incubated at 0.25-1mg/mL flucloxacillin showed a 5%-11% increase in CD8+ T-cell 

proliferation (Fig 4.1.). A maximal response was observed with 0.25-0.5mg/mL flucloxacillin 

indicating that the highest drug-concentration was inhibiting the proliferative response (Fig 

4.1.).  
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Condition 

CD8+ CFSE labelled 

flu sensitised 

mouse dLN cells 

% of total 

CD8+ cells 

proliferated 

No drug 

 

11.77% 

0.25mg/mL Flu 

 

22.93% 

0.5mg/mL Flu 

 

21.97% 

1mg/mL Flu 

 

16.73% 

PHA 10ug/mL 

 

69.78% 

Fig 4.1. CD8
+
 T-cells from the dLNs of flucloxacillin-painted mice proliferate in an antigen-specific fashion. MHC 

II KO mice were depleted of CD4
+
 T-cells with I.P. injection of an anti-CD4 antibody (100µg) on day 0 and 7. 

Mice were painted with flucloxacillin (1g/mL, 50µL) for days 1-3. On day 8 the dLNs were removed, macerated 

to a single cell suspension and incubated in triplicate with APCs collected from the mesenteric LN through 

CD11c positive magnetic isolation. Cells were incubated for 5 days with CFSE (FITC) and drug after which cells 

were harvested, washed, incubated with an anti-CD8 antibody (APC) and analysed for proliferation through 

gating on CD8
+
 CFSE fluorescence (n=1 with cells pooled from three mice per condition). 
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4.4.2. APCs are required for flucloxacillin-specific T-cell activation 

To investigate the impact of the addition of APCs into the ex vivo readouts (proliferation and 

IFNγ secretion), flucloxacillin-specific T-cells were analysed with varying levels of APCs in the 

assays. When CD11c positive cells were removed from the assay both flucloxacillin-specific 

dLN cell proliferation and IFNγ secretion were not detected (Fig 4.2. A1 and A2). When the 

dLN containing resident DCs were analysed, significant increases in proliferation were 

observed with flucloxacillin however, a significant increase in IFNγ secretion was not 

detected in culture supernatant (Fig 4.2. B1 and B2). Finally, when CD11c positive cells were 

isolated from the non dLN and added to the assay, significant increases in flucloxacillin-

specific proliferation and IFNγ secretion were observed (Fig 4.2. C1 and C2). Similar results 

were obtained in repeat experiments when an IFNγ ELISpot was used to detect CD8+ T-cell 

activation demonstrating that cytokine secretion was only stimulated upon addition of APCs 

to the assay (Fig 4.3.). 
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Fig 4.2. Ex vivo CD8
+
 T-cell activation with flucloxacillin requires APCs. MHC II KO mice were depleted of CD4

+
 

T-cells with I.P. injections of anti-CD4 antibody (100µg) on day 0 and 7. Mice were painted with flucloxacillin 

(1g/mL, 50µL) or vehicle only for days 1-3. On day 8 the dLNs were removed, macerated to a single cell 

suspension and incubated in triplicate with; CD11c cells removed (A), no DC addition or removal (natural 

DCs)(B), or addition of 2.5x10
4
  CD11c positive APCs collected from the mesenteric LN through CD11c positive 

magnetic isolation (C). Cells were cultured for 5 days at 37°C and 5% CO2 after which proliferation was 

measured through [
3
H] thymidine incorporation after 16h (1) or supernatants were removed and analysed for 

IFNγ content through IFNγ ELISA (2). P-values were devised using the students T-test or Mann Whitney, where 

appropriate and are shown if p<0.05(n=3). Standard deviation error bars have been removed to increase data 

clarity and comparability. 
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In vivo 

treatment 

Flu 1 

 

DCs 

Flu 2 

 

DCs 

Flu 1 

 

No DCs 

Flu 2 

 

No DCs 

Veh 1 

 

DCs 

Veh 2 

 

DCs 

Veh 1 

 

No DCs 

Veh 2 

 

No DCs Incubation 

conditions 

Control 

        

Control 

        

0.25mg/mL 

Flu         

0.5 mg/mL 

Flu         

1mg/mL Flu 

        

PHA 

20µg/mL         

 

Incubation 
conditions 

Flu 1- 
DCs 

Flu 2- 
DCs 

Flu 1- 
No DCs 

Flu 2- 
No DCs 

Veh 1- 
DCs 

Veh 2- 
DCs 

Veh 1- 
No DCs 

Veh 2- 
No DCs 

0mg/mL 
Flu 

0 0 0 0 0 0 0 0 

0.25mg/mL 
Flu 

220.5 77.5 11.5 5.5 0 0 0 8.5 

0.5mg/mL 
Flu 

150.5 110.5 12.5 11.5 0 0 0 12.5 

1mg/mL 
Flu 

199.5 189.5 18.5 3.5 0 0 0 0 

PHA 
20ug/mL 

TNTC TNTC 503.5 513.5 400.5 390.5 416 529.5 

Fig 4.3. APCs are required to stimulate flucloxacillin-specific CD8
+
 T-cells to secrete IFNγ. MHC II KO mice were 

depleted of CD4
+
 T-cells with I.P. injections of anti-CD4 antibody (100µg) on day 0 and 7. Mice were painted 

with flucloxacillin (1g/mL, 50µL) or vehicle only for days 1-3. On day 8 the dLNs were removed, macerated to a 

single cell suspension and incubated in an ELISpot plate with and without the addition of CD11c positive APCs. 
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Fig shows the ELISpot wells after development and table  shows the number of spot forming cells with control 

values subtracted (too numerous to count – TNTC) (n=2 shown). 

 

4.4.3. Modification of human albumin by flucloxacillin is time dependent 

The covalent modification of human serum albumin was analysed through LC/MS to give a 

semi-quantitative value of time required for flucloxacillin-induced covalent modification. In 

short, flucloxacillin was incubated with human albumin for 0.5, 1, 2, 3, and 16h before 

removal of drug and analysis of covalent binding of flucloxacillin through tryptic digestion 

and subsequent mass spectrometry. The number of covalently-modified lysine residues is 

semi-quantified to reveal increasing numbers of covalent-modification over time (Fig 4.4.). 

 

 

Fig 4.4. Covalent binding of flucloxacillin to human albumin lysine residues increases over time. After in vitro 

incubation of human albumin (1.3 mg, 40μM)  with flucloxacillin (400µM, pH 7.4, at 37°C), tryptic digestion of 

and MS/MS spectra of tryptic peptides 210–218 and 182–195 revealed flucloxacillin modification of Lys212 

and Lys190, respectively. Cleavage of the thiazolidine ring of the adduct yields a characteristic fragment ion of 

m/z 160 and cleavage of the entire adduct from the peptide yields an ion of m/z 454 in each spectrum. Semi-

quantitative analysis of the time dependent increase in the peptides containing modified Lys212 and Lys190 

are based on the relevant extracted masses followed by normalisation using the total ion count for the sample. 
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4.4.4. Flucloxacillin pulsed dendritic cells activate flucloxacillin-specific CD8+ T-cells 

As high DC numbers were required for future experiments, CD11c+ DCs isolated from LN 

were changed to BMDDCs. To explore whether BMDDCs act as suitable APCs and present 

flucloxacillin-hapten protein complexes, they were incubated with dLN cells to assess the 

flucloxacillin-specific T-cell activation response (Fig 4.5.). Similar to the dLN cell derived DCs, 

they induced a significant increase in proliferation upon addition of flucloxacillin at 0.5 and 

1mg/mL (Fig 4.5.). Unlike CD11c+ DCs however, the flucloxacillin-sensitised dLN cell 

proliferative curve started with high backgrounds and remained elevated with increasing 

flucloxacillin concentrations (Fig 4.5.). 

 

Fig 4.5. Flucloxacillin-specific CD8
+
 T-cells proliferating with BMDDCs as APCs. MHC II KO mice were depleted of 

CD4
+
 T-cells with I.P. injections of anti-CD4 antibody (100µg) on day 0 and 7. Mice were painted with 

flucloxacillin (1g/mL, 50µL) or vehicle only for days 1-3. On day 8 the dLNs were removed, macerated to a 

single cell suspension and incubated in triplicate at 1.25x10
5
 cells/well with BMDDCs which were added at 

2.5x10
4
 cells/well. After 5 days incubation, cells were analysed for proliferation through [

3
H] thymidine 

incorporation after 16h. P-values are shown if p<0.05 *p<0.05, **p<0.05, ***p<0.005 (n=3). 
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In subsequent experiments, to determine whether BMDDCs process and present 

flucloxacillin-hapten protein complexes, BMDDCs were cultured with 0.5mg/mL flucloxacillin 

for 1, 4, or 24h, then washed and incubated with flucloxacillin-sensitised mouse dLN cells for 

five days, after which IFNγ secretion was measured (Fig 4.6.). Significant IFNγ release was 

detected at 24h DC pulsing (Fig 4.6.) when compared to vehicle painted controls. Due to the 

washing steps in-between the incubation of APCs with flucloxacillin and the incubation of 

these pulsed APCs with the flucloxacillin specific CD8+ T-cells generated via the mouse 

model; the drug-specific increases in IFNγ secretion via CD8+ T-cell activation seen in Fig 4.6. 

are more likely to be through haptenisation of protein and subsequent intracellular 

processing (hapten hypothesis) than through long term non-covalent binding to the MHC I 

molecule (pi-concept or altered peptide concept). 

 

Fig 4.6. Flucloxacillin-specific CD8
+
 T-cells are activated with BMDDCs pulsed with flucloxacillin for 24h. MHC II 

KO mice were depleted of CD4
+
 T-cells with I.P. injection of anti-CD4 antibody (100µg) on day 0 and 7. Mice 

were painted with flucloxacillin (1g/mL, 50µL) or vehicle only for days 1-3. On day 8 the dLNs were removed, 

macerated to a single cell suspension and incubated in triplicate at 1.25x10
5
 cells/well with flucloxacillin 

treated BMDDCs. BMDDCs were generated and incubated for 1, 4, and 24 hours with flucloxacillin (0.5mg/mL) 

before being harvested, washed and plated out at 2.5x10
4
 cells/well. There was no soluble drug in assay. After 

5 days incubation, cells were analysed for IFNγ secretion through removal of supernatant and analysis by IFNγ 

*P = 0.029 
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ELISA. P-values were devised using the students T-test or Mann Whitney, where appropriate and are shown if 

p<0.05 (n=4).  

 

To confirm the pulsing experiment, BMDDCs were pulsed for 24h with 0.25, 0.5, and 

1mg/mL flucloxacillin, washed to remove un-bound drug and then incubated with mouse 

dLN cells. Significant proliferative responses were detectable at all flucloxacillin 

concentrations (Fig 4.7. A). Furthermore, significant IFNγ release from dLN cells was seen at 

0.5mg/mL and 1mg/mL flucloxacillin (Fig 4.7. B). Why keeping flucloxacillin in the assay 

during the five day incubation with BMDDCs causes high background proliferation (Fig 4.5.), 

whilst pulsing BMDDCs does not (Fig 4.7.), is unknown. One possible explanation could lie in 

five days in culture with flucloxacillin leading to a maturing of the un-matured BMDDCs. 
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Fig 4.7. 24h flucloxacillin pulsed mouse DCs incubated with dLN cells of flucloxacillin-painted mice showing 

CD8
+
 T-cell activation. MHC II KO mice were depleted of CD4

+
 T-cells with I.P. injections of anti-CD4 antibody 

(100µg) on day 0 and 7. Mice were painted flucloxacillin (1g/mL, 50µL) or vehicle only for days 1-3. On day 8 

the dLNs were removed, macerated to a single cell suspension and incubated in triplicate with flucloxacillin 

incubated BMDDCs. BMDDCs were incubated for 24h at 37°C and 5% CO2 at the stated flucloxacillin 

concentrations. BMDDCs were thoroughly washed before addition to dLN cells. There was no soluble drug in 

assay. After 5 days incubation, cells were analysed for proliferation through [
3
H] thymidine incorporation after 

16h (A) or for IFNγ secretion through removal of supernatant and analysis by IFNγ ELISA (B) (n=3). 
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4.4.5. Adoptive transfer of flucloxacillin pulsed dendritic cells to induce sensitisation in 

naive mice 

Since it was possible to activate flucloxacillin-sensitised CD8+ T-cells with flucloxacillin-

pulsed DCs in vitro, the next step was to explore whether CD8+ T-cells could be sensitised 

with flucloxacillin-pulsed DCs in vivo. BMDDCs were generated, matured, incubated with RA 

to imprint gut homing,  and then incubated for 24h with flucloxacillin (0.5mg/mL) before 

being I.V. injected into naive CD4+ T-cell depleted MHC II KO mice at 0.5x106 DCs/mouse. 

Twenty-one days after immunisation, the mesenteric lymph nodes were removed, 

macerated to a single cell suspension, and incubated with APC and flucloxacillin for five days 

after which antigen-specific proliferation was measured via [3H] thymidine incorporation. 

Mice which were adoptively transferred flucloxacillin-exposed mature DCs demonstrated an 

antigen-specific increase in proliferation to flucloxacillin when compared to controls (Fig 

4.8.). 

 

Fig 4.8. Adoptive transfer of flucloxacillin sensitisation to naive CD4 depleted mouse. BMDDCs were generated, 

matured, incubated with RA (10nM) for 4 days, and with flucloxacillin (0.5mg/mL) or medium only for 16h 

*p = 0.036 
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before washing and I.V. injecting into a CD4 depleted MHC II KO mice. Mice were left for 21 days before 

mesenteric LNs were taken, and analysed for flucloxacillin-specific proliferation after 5 days through [
3
H] 

thymidine incorporation after 16h (n=3, one mouse per n-number). 

  

 

4.5. DISCUSSION 

The proliferation of drug-specific T-cells in an antigen-specific manner ex vivo is commonly 

used to diagnose drug hypersensitivity reactions in humans. The results shown here indicate 

that flucloxacillin sensitisation and elicitation in this mouse model is dependent on APCs and 

that T-cell activation is driven through a hapten-based mechanism dependent on antigen 

processing by APCs. 

Proliferation measured through [3H] thymidine incorporation measures whole well 

proliferation instead of CD8+ T-cell per se. To confirm that the proliferating dLN cells were in 

fact CD8+ T-cells, proliferation was also measured through CFSE incorporation and flow 

cytometry. CFSE is a fluorescent dye, which is split between daughter cells during each cell 

division. A particular advantage of this technique is that specific cell populations (CD8+ T-

cells) can be analysed (Hanafusa et al. 2012). These experiments confirm that flucloxacillin-

sensitised CD8+ T-cells were proliferating ex vivo in a drug-concentration-dependent manner 

with maximal proliferation at 0.25mg/mL. Interestingly, a higher drug concentration 

inhibited the proliferative response indicating that at these concentrations, flucloxacillin 

inhibits cell division.  

To attempt to dissect the mechanism by which flucloxacillin activates T-cells from sensitised 

mice, the role of APCs was analysed in the ex vivo assays. Experimental data showed that 

the removal of APCs from the assays stopped the activation of the CD8+ T-cells with ablation 

of proliferation and IFNγ secretion. Furthermore, pulsed and washed APCs were still able to 
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activate flucloxacillin specific CD8+ T-cells. This CD8+ T-cell activation in the absence of 

soluble drug ex vivo suggests that T-cell activation is progressing via a hapten-based 

mechanism emulating HLA-B*57:01 negative human patient flucloxacillin hypersensitivity 

(Daly et al. 2009) (Wuillemin et al. 2013). 

In analysis of the APC removal assays, the amount of T-cell activation was directly correlated 

with the amount of APCs in the assay. Flucloxacillin-specific T-cells incubated with the most 

APCs (added DCs) significantly proliferated and secreted IFNγ. A reduction in the amount of 

APC in the assay (natural DCs) induced less flucloxacillin-specific T-cell activation, with 

significant proliferation but no significant secretion of IFNγ. The same patterns have been 

reported with the use of human T-cell clones with particular T-cells requiring extra antigen 

stimulation to secrete IFNγ but not to proliferate (Hecht et al. 1983). 

The ability of flucloxacillin-pulsed DCs to induce drug-specific CD8+ T-cell activation has also 

been investigated using human T-cell clones. These experiments found that human T-cells 

were activated via a similar hapten mechanism where flucloxacillin-specific CD8+ T-cells 

were activated by APCs pulsed for 16h with flucloxacillin to yield increases in T-cell 

activation, measured through up-regulation of activation marker CD107a (Wuillemin et al. 

2013). Shorter APC pulses failed to activate T-cells and importantly these time-points 

correlate with the time required for flucloxacillin to modify protein (Monshi et al. 2013) 

(Jenkins et al. 2009) (Fig 4.4.). 

Adoptive transfer of sensitisation through injection of drug-exposed immune cells has been 

used historically in immunology research to identify immunogenic compounds or to induce 

immunity (Elsheikh et al. 2010) (Mitchison 1955). In regards to drug hypersensitivity, 

adoptive transfer of DCs has been used with drugs like SMX to identify the immunogenic 
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metabolite SMX-NO (Elsheikh et al. 2010), or with amoxicillin-specific CD8+ T-cells to identify 

effector mechanisms of CHS (Vocanson et al. 2006). As flucloxacillin-pulsed APCs were found 

to activate flucloxacillin-specific CD8+ T-cells ex vivo, the next step was to investigate 

whether they could also prime CD8+ T-cells in vivo. The benefit if this would be to create a 

more clinically accurate mouse model of flucloxacillin-induced delayed-type 

hypersensitivity, where the mesenteric lymph nodes were the site of CD8+ T-cell priming, 

instead of the inguinal lymph nodes when flucloxacillin is painted onto abdomen skin.  

In conclusion, sensitising naive mice to flucloxacillin via adoptive transfer of flucloxacillin-

exposed DCs demonstrated that sensitisation, as well as elicitation, to flucloxacillin is most 

likely mediated through a hapten mechanism. 
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Use of a mouse model to investigate flucloxacillin-induced liver damage 
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5.1. INTRODUCTION  

Delayed-type hypersensitivity reactions involving the immune system are a serious 

complication in both patient treatment and drug development. Although the skin is usually 

the organ under duress in drug hypersensitivity reactions, systemic drug hypersensitivity 

reactions pose a real problem for certain drugs like flucloxacillin which primarily causes DILI 

(Park et al. 2011). There are currently no animal models of DILI to show flucloxacillin 

damaging liver cells indirectly via activation of adaptive immune responses. However, one 

group has shown that after high doses of dicloxacillin (600mg/kg, approximately 8x 

maximum human dose) (a drug structurally similar to flucloxacillin), Th2 expression of the 

mediated factor IL-4 is increased in blood serum along with ALT and bilirubin levels. 

Furthermore, the authors stated that neutralisation of IL-4 reduced the hepatotoxicity 

(Higuchi et al. 2011). This model however, relied on an incredibly high dose of flucloxacillin 

and showed very few signs of cholestatic liver damage, the mechanism by which dicloxacillin 

(and flucloxacillin) usually causes liver damage in humans (Park et al. 2011) (Daly et al. 

2009). 

Flucloxacillin has previously been shown to form liver adducts in vivo through western 

blotting of liver cytosol of rats systemically dosed with flucloxacillin; the adducts formed 

were found to be at the same molecular weight of mouse albumin (Carey and van Pelt 

2005). As previously discussed flucloxacillin and other β-lactams are known to bind to lysine 

groups on protein to form adducts. Flucloxacillin has been shown to bind specifically in vitro 

to human serum albumin at Lys190 and Lys212. The level of binding of flucloxacillin to 

specific lysine residues has been shown to correlate with the activation of T-cell clones 

(Monshi et al. 2013); however the specific binding involved in activating T-cells in vivo has 

not been defined. As human albumin is produced inside hepatocytes, the preferential 
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activation of CD8+ T-cells in patients with flucloxacillin-induced liver injury (Monshi et al. 

2013) could be attributed to flucloxacillin forming an intracellular antigen. If CD8+ T-cells are 

the primary mediators of flucloxacillin-induced liver injury, immune cells must be prompted 

to migrate to the liver. The ability of DCs and CD8+ T-cells to migrate to specific lymph nodes 

is mediated through secreted chemokines able to cause cell migration after binding to G-

protein coupled receptors. Dendritic cells from the mesenteric lymph nodes are known to 

imprint gut homing onto co-cultured T-cells through releasing soluble factors (Mora et al. 

2005) and the soluble factor in question was found to be retinoic acid (RA) (Iwata et al. 

2004). In vitro culture of RA with DCs and T-cells up-regulated gut homing receptor CCR9 

expression (Jaensson et al. 2008) and subsequent in vivo mesenteric lymph node homing 

(Svensson et al. 2008). Experiments performed using staining and injection of activated DCs 

into liver parenchyma showed that three lymph nodes seem to drain the liver, the coeliac 

and portal nodes with the first mesenteric lymph node performing a secondary role (Barbier 

et al. 2012). For T-cells to migrate to the mesenteric lymph nodes, expression of integrin 

α4β7 and the chemokine receptor CCR9 is essential and is usually induced through antigenic 

stimulation by gut homing DCs (Svensson et al. 2008); however, retinoic acid is known to 

stimulate the expression of both integrin α4β7 and the chemokine receptor CCR9 (Iwata et 

al. 2004). Liver cells and their ability to process and present exogenous antigens to activate 

CD8+ T-cells has previously been investigated: liver sinusoidal epithelial cells and Kuppfer 

cells both present exogenous antigen to promote CD8+ T-cell proliferation comparable and 

in instances, increased when compared against the professional APCs (e.g. mature DCs). 

However, the increased CD8+ T-cell proliferation was not accompanied with increases in 

IFNγ or T-cell activation markers giving an insight into how antigen presentation could affect 

liver immune responses. Hepatocytes, although giving reduced amount of CD8+ T-cell 
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proliferation, were also shown to present exogenous antigen (Ebrahimkhani et al. 2011). 

This ability of liver epithelial cells to present antigen as efficiently as mature DCs is 

interesting in regards to flucloxacillin-induced cholestatic liver damage, where the epithelial 

cells of the bile ducts are the cells under duress. Flucloxacillin-induced cholestasis is defined 

as being painless jaundice with increased ALT, ALP, and bilirubin levels which are indicative 

of bile duct obstruction (also known as vanishing bile duct syndrome), where other causes 

have been eliminated (Russmann et al. 2005) (Miros et al. 1990). 

Liver cells contain high amounts of the enzyme ALT which is released when liver cells 

undergo cell death. ALT levels are detectable in the blood of patients and are used as a 

marker of liver disease with normal values between approximately 7-50 international units 

per litre (IU/L) (Panteghini et al. 1983). Although widely used as a liver damage biomarker, 

ALT is also found, albeit at lower levels, in locations such as the kidney, lung and skeletal 

muscle which can be problematic as strenuous exercise or unknown factors un-related to 

liver damage can increase blood serum ALT levels (Giannini et al. 2005). This means ALT 

levels alone are not a solid readout of liver damage and other liver damage biomarkers are 

required. Recently, micro-RNAs have been investigated in regards to markers of liver 

damage detectable in blood serum (Wang H. et al. 2012). MicroRNAs are released from 

certain tissues cells upon apoptosis or necrosis with most tissues having specific microRNA 

associations. To investigate possible liver associated microRNAs in DILI, a mouse model of 

acetaminophen induced liver damage has been reported; a panel of 44 microRNAs were 

screened and increases in blood serum levels of microRNA mir-122 were observed in mice 

with liver injury (Wang K. et al. 2009). Mir-122 has since been shown to be increased in the 

blood serum of human patients with DILI (Wang H. et al. 2012). Blood serum mir-122 levels 

have been investigated in this chapter alongside let-7d and lin-4 microRNA levels. Let-7d is 
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believed to become up-regulated during developmental processes (Kloosterman and 

Plasterk 2006). Lin-4 is a microRNA which acts to dictate the onset of larval stages of 

developmental events in C. elegans (Lee et al. 1993) and has been added to samples 

manually as an internal normalisation control while let-7d has been used here as an external 

normalisation control against levels of mir-122. 

Alkaline phosphatase (ALP) is a group of enzymes that hydrolyze phosphate esters and 

which can also be found within a number of human tissues. Clinically, ALP levels can be 

measured in human serum to give an indication of obstructive and space-occupying lesions 

of the liver. Cholestatic liver conditions are associated with liver damage through 

obstructive means and so increased ALP levels can be used as a diagnostic tool for the 

detection of the early stages of cholestasis (Epstein et al. 1984). 

To investigate flucloxacillin-induced liver injury three approaches have been undertaken 

where flucloxacillin-specific CD8+ T-cells have been directed towards the liver and then an 

elicitation challenge has been administered in the form of oral dosing at relative therapeutic 

doses.  

1. Mature BMDDCs were cultured with RA and flucloxacillin, then I.V. injected into 

naive mice. The hypothesis here was that these mature DCs would migrate to the 

mesenteric lymph nodes and present flucloxacillin altered peptides to CD8+ T-cells 

which would, in turn, undergo clonal expansion to flucloxacillin-modified peptides. 

2. Flucloxacillin-specific CD8+ T-cells from the dLN as well as CD11c+ DCs from the non-

dLN were isolated and cultured with RA before injection into naive mice. DCs were 

also cultured with flucloxacillin prior to injection. The hypothesis here was that all 
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injected immune cells would migrate to the mesenteric LNs without need for in vivo 

priming of flucloxacillin-specific CD8+ T-cells. 

3. To avoid the pitfalls of ex vivo cell culture, RA painted directly onto the skin of 

flucloxacillin-sensitised mice in the hope it would induce mesenteric LN gut homing 

receptor expression. The hypothesis here was that the skin DCs which migrate to the 

nearest draining lymph node in the skin to induce clonal expansion to foreign 

antigen, would be induced to travel to the mesenteric lymph nodes instead. 

In this chapter the binding of flucloxacillin to intracellular hepatocyte albumin was also 

studied alongside the cytotoxic abilities of flucloxacillin-specific CD8+ T-cells after ex vivo 

elicitation and in vivo elicitation, in the hope of developing a model of flucloxacillin-induced 

liver injury, mediated via cytotoxic actions of the adaptive immune system. 

 

5.2. AIMS 

- To investigate flucloxacillin binding to protein in vivo 

- To analyse the cytotoxic ability of flucloxacillin-specific CD8+ T-cells generated in the 

mouse model against hepatocytes in and ex vivo.  

- To develop a mouse model of flucloxacillin-induced liver injury 
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5.3. METHODS 

5.3.1. Mice 

As previously described, all mice used were between 8-20 weeks of age and were C57/Bl6 

MHC II KOs with a mutation in the αβ gene encoding for MHC class II molecules. To deplete 

CD4+ T-cells from mice, I.P. injections of rat anti-mouse CD4 antibody were administered on 

day 0 (100µg/mouse) and on day 7 (100µg/mouse) in 100µL Hanks balanced salt solution. 

5.3.2. Drugs and chemicals 

Intra-venous grade flucloxacillin was obtained from Royal University Hospital, Liverpool. 

Hanks balanced salt solution for hepatocyte isolation (Gibco, UK), Collagenase D (Roche, 

CA), NaHCO3, HEPES, CaCl2, DNAse and Trypsin inhibitor from soybean were from Sigma, UK. 

5.3.3. Dosing to generate flucloxacillin-specific CD8+ T-cells 

Mice were sensitised for days 1-3 through painting with flucloxacillin (50ul, 1g/mL) in 70% 

DMSO on a shaved abdomen of approximately 3cm2 surface area. Vehicle mice were 

painted with 70% DMSO only. Tissues were removed on day 8 for ex vivo readouts. 

5.3.4. Mouse immune cell isolation 

For ex vivo readouts dLNs were removed from mice on day 8. Immune cells were isolated 

from dLNs via maceration through 100µm nylon filter (BD Biosciences, UK) and then washed 

and counted. To isolate CD11c positive APCs, the mesenteric LNs were removed from mice 

and incubated with CD11c positive magnetic beads (Miltenyi Biotec – UK) before being run 

through a magnetic column (Miltenyi Biotec – UK) then washed and counted. 
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5.3.5. Granzyme B analysis 

Flucloxacillin-specific and vehicle only T-cells were plated out (1.25x105cells/well) with 

CD11c positive DCs magnetically isolated from the non-dLNs (2.5x104cells/well) in a pre 

coated ELISpot plate. Plates were incubated for 48h in a humidified 37 °C CO2 incubator 

after which wells were developed according to the mouse granzyme B ELISpot kit 

instructions (R&D Biosciences, UK). Briefly, cells were removed and wells washed with 

250µL of supplied wash buffer four times, completely removing the liquid in-between 

washes. Detection antibody was added (100µL of kit stock) to wells and plates incubated at 

4°C overnight. Washes were repeated and the Streptavidin-AP was added to each well 

(100µL of kit stock) and plates incubated for 2h at room temperature. Plates were washed 

again and then BCIP/NBT chromogen was added to each well (100µL) and plates incubated 

for 1h at room temperature in the dark. Wells were rinsed with de-ionised water and 

counted on an AID ELISpot reader (Cadama Medical, Stourbridge, UK) when thoroughly 

dried. 

5.3.6. Systemic administration of flucloxacillin for the analysis of drug protein binding 

MHC II KO mice were depleted of CD4+ T-cells on day 0 and on days 1-5 were dosed I.P. with 

flucloxacillin (14mgs, 100µL dH2O). On day 8 blood was taken from each mouse through 

cardiac puncture and centrifuged to separate out blood serum to be analysed for 

flucloxacillin-albumin binding. On day 8 livers were also removed to be fractionated and 

analysed for flucloxacillin-albumin binding to measure drug antigens. 

5.3.7. Liver fractionation to isolate cytosol 

Livers were removed after systemic dosing, chopped and homogenised. The liver cytosol 

was isolated through centrifugation of homogenised liver at 100,000g and removal of the 
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cytosol containing supernatant as described by Christen et al (Christen et al. 1991). The 

pellet was resuspended in buffer (0.1 M Tris, 1 mM EDTA, 10% glycerol, pH 7.4) and stored 

at −70 °C. The protein concentrations of the samples were determined using the method 

described by Bradford (1976) using the Bio-Rad (Bio-Rad, Hemel Hempstead, U.K.) protein 

assay reagent. 

5.3.8. Western blotting and coomassie staining 

Aliquots of 5μg protein were separated by electrophoresis on a 10% SDS-polyacrylamide gel 

and electroblotted onto nitrocellulose membrane. Non-specific binding was blocked using 

Tris/saline/Tween buffer (TST; NaCl, 150 mM; Tris-HCl, 10 mM; Tween 20, 0.05% [pH 8]) 

containing 10% non-fat dry milk for 16h at 4°C. The blot was incubated with primary anti-

flucloxacillin antibody (gift from Prof. Van Pelt, Dublin, Ireland) diluted 1:20,000 in 5% 

milk/TST for 1h, followed by incubation with HRP-conjugated anti-mouse IgG Ab (Abcam) 

diluted 1:10,000 in 5% milk/TST for a further 1h. Signal was detected by coomassie blue 

staining or via ECL (Western Lightning; PerkinElmer, Boston, MA) using autoradiography film 

and a GS800 calibrated scanning densitometer (Bio-Rad, UK.) (Whitaker et al. 2011). 

5.3.9. LC/MS to determine flucloxacillin binding to albumin lysine residues 

For LC-MS/MS analysis, digested and ZipTipped snap-frozen liver samples from mice 

systemically dosed with flucloxacillin were reconstituted in 10μL 5% ACN/0.05% v/v TFA, 

and aliquots of 0.5–2μL were analysed, whereas cation exchange fractions were 

reconstituted in 120μL of 5% ACN/0.05% TFA, and aliquots of 60μL were analysed. Samples 

were delivered into a QSTAR® Pulsar i hybrid MS by automated in-line LC (integrated 

LCPackings System, 5mm C18 nano-precolumn and 75μm×15cm C18 PepMap column 

(Dionex, California, USA)) via a 10μm inner diameter PicoTip (New Objective, MA, USA). For 
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prefractionated samples, the nano-precolumn was washed for 30min with 5% ACN/0.05% 

TFA prior to initiation of the solvent gradient in order to reduce the salt content of the 

sample. A gradient from 5% ACN/0.05% v/v TFA to 48% ACN/0.05% v/v TFA in 60min 

(unfractionated samples) or 70min (fractionated samples) was applied at a flow rate of 

300nL/min. MS and MS/MS spectra were acquired automatically in positive ion mode using 

information-dependent acquisition (Analyst, Applied Biosystems). Survey scans of 1s were 

acquired for m/z 400–2000, and the three most intense ions were selected for MS/MS, with 

accumulation times of 1s and with a dynamic exclusion of 40s. Database searching was 

performed using ProteinPilot version 2 (Applied Biosystems) against the latest version of the 

SwissProt database, with biological modifications allowed and with the confidence level set 

to 90%. Flucloxacillin (mass addition 453 amu) or 5′-hydroxymethyl flucloxacillin (mass 

addition 469 amu) were included as high probability user-defined modifications of Lys and 

carboxamidomethyl as a fixed modification of Cys. The data were also assessed manually for 

the presence of a dominant fragment ion of 160amu, indicative of cleavage of the 

thiazolidine ring from the drug adduct, and the presence of the remaining adduct fragment 

of 294amu (flucloxacillin) or 310amu (5′-hydroxymethyl flucloxacillin) present on the lysine 

residue (Jenkins et al. 2009). 

5.3.10. Hepatocyte isolation and culture for analysis of immune-mediated killing 

MHC II KO mice were anaesthetised with sodium pentobarbital (I.P. ~80µL, 40mg/mL) and 

once foot reflex had ablated, were surgically opened and the hepatic portal vein exposed 

and cannulated. The liver was then flushed with wash buffer (Hanks, 900mM NaHCO3, 

HEPES) for 4 minutes at 12mL/minute and then with digestion buffer (Wash buffer, 5mM 

CaCl2, 0.5mg/mL collagenase D, 0.07mg/mL trypsin inhibitor from soybean) at 12mL/min 

until liver began to soften and show striations. The liver was then eviscerated, the 
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epithelium removed through use of sharp forceps, and the resulting organ placed in a Petri 

dish. Incubation buffer (Wash buffer, 0.1mg/mL DNAse) was added to just cover the liver 

and hepatocytes were softly shaken out of tissue. Cell suspension was poured through a 

100µm nylon filter to remove large cell clumps then centrifuged (60g, 3 minutes) and 

washed. 

5.3.11. Detection of hepatocyte viability, cytotoxicity and apoptosis 

Hepatocytes were isolated, washed, counted via trypan blue exclusion and plated into white 

flat bottomed 96 well plates at 2500 or 5000 cells/well. CD8+ T-cells were isolated from the 

inguinal dLNs and plated out with CD11c positive DCs (from the mesenteric LNs) and 

flucloxacillin as previously described. After 24h T-cells and DCs were washed to remove 

soluble drug and incubated at 2x104 cells/well with freshly plated out hepatocytes. Plates 

were incubated for 4h (37°C and 5% CO2). Cell viability, cytotoxicity, and apoptosis was 

measured through ApoTox-Glo kit protocols (Promega, UK). Briefly, GF-AFC substrate 

(100µM) and bis-AAF-R110 substrate (100µM) was added to all wells and incubated for 30 

minutes at 37°C after which luminescence was measured at 400Ex/505Em  to give a  

quantitative readout of cell viability and at 485Ex/520Em to give a quantitative readout of 

cytotoxicity. To measure apoptosis, Caspase-Glo® 3/7 reagent (100µL/well) was added 

equally to all wells, plates were incubated for 30 minutes at room temperature and caspase 

activation was then measured through scintillation to give a quantitative readout of 

apoptosis. 

5.3.12. Adoptive transfer of BMDDCs 

To generate bone marrow-derived dendritic cells (BMDDCs) the bone marrow was flushed 

from the femurs of mice with complete RPMI medium and large pieces of bone were 
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filtered out with a 100µm nylon filter. Cells were incubated with 5% GMCSF (Peprotech, NJ, 

USA) for 8 days after which immature DCs were harvested. To mature the DCs, LPS 

(0.5µg/mL) was added to the cultures for 24h before harvesting. RA (10nM) (Sigma, UK) was 

added for days 4-8. On day 9, cells were washed and incubated with flucloxacillin 

(0.5mg/mL), LPS (0.5µg/mL), RA (10nM) and GMCSF (5%) in 1640 medium containing 0.5% 

mouse albumin (Sigma, UK) and L-glut for 16h before injection. Control conditions contained 

all reagents with the exception of flucloxacillin. Cells were then washed and injected at 

0.5x106 cells/mouse I.V. with 2 mice receiving BMDDCS exposed to flucloxacillin and 2 mice 

receiving un-exposed BMDDCS; all mice simultaneously received I.P. CD4 antibody (100µg) 

and RA (0.04mgs) in 100ul Hanks balanced salt solution. Twenty-one days later, oral dosing 

began with all mice receiving 2.3mgs/flucloxacillin/day in 10µL of dH2O. Readouts of ALT in 

blood serum were measured on days 0, 2, and 5. 

5.3.13. Adoptive transfer of CD8+ T-cells and CD11c+ APCs 

Flucloxacillin-specific and control CD8+ T-cells were generated as previously described. CD8+ 

T-cells (1.25x105cells/well) were then plated out in U-bottomed 96 well plates with CD11c 

positive DCs (2.5x104cells/well) isolated as previously described for 24h in medium 

containing 0.5% mouse albumin and 10nM RA. T-cells were then harvested, washed, and 

injected into naive MHC II KO mice at 0.2x106cells/mouse. Alongside T-cell preparation, 

CD11c+ APCs isolated from mesenteric lymph nodes of MHC II KO mice were incubated in 

flat bottomed 24 well plates for 24h at 1x106 cells/well in medium containing 0.5% mouse 

albumin, 10nM RA and with or without 0.5mg/mL flucloxacillin. Cells were then harvested, 

washed, and I.V. injected alongside non-specific CD8+ T-cells (0.1x106cells/mouse). 

Immediately prior to I.V. injections, naive mice were depleted of CD4+ T-cells via I.P. 

injection of anti-CD4 antibody (100µg) and I.P. injected with RA (14mgs) 100µL Hanks 
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balanced salt solution. After 3 days, oral dosing began with all mice receiving 

2.3mgs/mouse/day of flucloxacillin in 10µL of dH2O for 10 days. Readouts of mir-122 in 

blood serum and caspase 3 staining of liver were taken on days 0, 5, and 10. 

5.3.14. Painting of retinoic acid and flucloxacillin 

Mice were depleted of CD4+ T-cells and painted with flucloxacillin (1g/mL, 50µL) or vehicle 

alone as previously described. However, in this experiment each mouse received RA 

(0.5mgs, 50µL) painted onto skin/day. On day 7, oral dosing of flucloxacillin began for 2 days 

with each mouse dosed with 2.3mgs/flu/day. Readouts consisted of blood serum liver 

damage biomarkers ALT and mir-122 which were taken prematurely on day 3 of oral dosing 

due to mouse discomfort caused by skin damage. The experiment was subsequently 

repeated using reduced concentration of RA (0.1mgs, 50µL) with readouts taken on days 0, 

2, 4, and 10 of oral dosing. Readouts included: photography of the gall bladders on day 4 

and 10, blood serum analysis of liver damage biomarkers ALT, ALP and mir-122, and 

histology and immunohistochemistry of the liver. 

5.3.15. Histology of liver 

After organ dissection, tissues were fixed by immersion in 10% neutral buffered formalin (or 

4% PFA). Tissue was removed from fixative and cut to appropriate size/orientation & placed 

within labelled plastic cassettes. Tissues were then run through a Sakura Tissue Tek VIP E300 

Tissue Processor to remove water from tissue & replace it with paraffin wax. Tissues were 

subsequently placed in metal moulds containing molten paraffin wax and set on cold 

platform to solidify. Four micron sections were cut on a microtome, floated in water bath 

and collected onto glass slides. Sections were then dried at 37°C for 30 minutes to allow 

adherence to slide before staining.  Sections were de-waxed in Xylene (Sigma, UK) for 5 
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minutes and subsequently taken down descending grades of alcohol (100%, 96%, 85%, and 

70%) to distilled water. Sections were then stained in either Mayers Haematoxylin (Sigma, 

UK) or cleaved Caspase-3 monoclonal antibody to clone D175 (5A1E) (Cell Signalling 

Technology – UK) for 5 minutes. Sections were run under cold distilled water for 6 minutes 

and then stained sections in eosin for 2 minutes. Sections were taken through 3x 96% 

alcohol baths, then 3x 100% alcohol baths, then 2x xylene baths, before finally being 

mounted in DPX mounting medium (Sigma, UK) and allowed to dry. Histological analysis was 

conducted by Julie Haigh at The University of Liverpool, Leahurst Campus, Neston, United 

Kingdom. 

5.3.16. Measurement of ALT blood serum levels 

Mouse blood was left to clot for approximately 3h after which blood serum was separated 

via centrifugation. Serum samples were diluted in 0.9% saline solution (1;5, 1:10 or 1:20). 

Sample (30µL) was added to wells in triplicate prior to analysis in the ALT Liquid stable 

reagent-based kinetic assay (300µL) (Thermo, Waltham, MA), at 37°C, according to the 

manufacturer's instructions. 

5.3.17. Measurement of ALP blood serum levels 

As above, mouse blood serum was isolated. Serum sample ALP levels were subsequently 

processed according to the manufacturer’s instructions (Alkaline Phosphatase Assay Kit, 

Abcam, UK). Briefly, standard curves were set up alongside serum samples where 40μl of 

the 5mM p-nitrophenyl phosphate (phosphatase substrate which turns yellow when 

dephosphorylated by ALP) solution was diluted with 160μl assay buffer to generate1mM p-

nitrophenyl phosphate standard. 0, 4, 8, 12, 16, 20 nmol/well. Serum samples were diluted 

10x with assay buffer and added in triplicate (80µL) to a 96 well plate. P-nitrophenyl 
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phosphate standards were added to separate wells. p-nitrophenyl phosphate (5mM, 50µL) 

was then added to each sample well and plates incubated for 60min at 25°C away from 

light. ALP enzyme solution (10µL) (Abcam, UK) was then added to each well and plates 

incubated for 60min at 25°C away from light. Stop solution (Abcam, UK) (20µL) was then 

added to each well and plates read in a microplate reader set to 405nm. ALP activity of 

samples was calculated through using the formula ALP activity (U/mL) = A / V / T where: A is 

amount of p-nitrophenyl phosphate generated by samples (in μmol). V is volume of sample 

added in the assay well (in mL). T is reaction time (in minutes). Standard curves were 

devised using SigmaPlot. 

5.3.18. Measurement of blood serum liver damage biomarker mir-122 

miRNA was extracted using an miRNeasy kit (Qiagen, Venlo, Netherlands), following the 

manufacturer's instructions, with minor modifications. Briefly, 40μL of serum was made up 

to 200μL with nuclease-free water then combined with 700μL of QIAzol. The sample was 

mixed and left for 5 minutes before the addition of 140μL of chloroform. Samples were then 

mixed vigorously for 15 seconds and centrifuged at 12,000g for 15 minutes at 4°C. Equal 

volumes (350μL) of the upper aqueous phase and 70% ethanol were mixed in a fresh 

microtube before adding the total volume to an miRNeasy minispin column. The column 

was centrifuged at 8,000g for 15 seconds at room temperature. The flow-through, 

containing the small RNA fraction, including the miRNA complement, was mixed with 450μL 

of 100% ethanol. The elute was then purified using a MinElute kit (Qiagen, Venlo, 

Netherlands). The small RNA elution mixture was applied to a MinElute column, 700μL at a 

time. The immobilized RNA was then washed with various buffers before a final 80% ethanol 

wash. The column was then dried by centrifugation. The small RNA fraction was eluted in 

14μL of nuclease-free water and stored at −80°C. MiRNA levels were measured using 
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Taqman-based quantitative polymerase chain reaction (PCR). The small RNA elute was 

reverse transcribed using specific stem-loop reverse-transcription RT primers (Applied 

Biosystems, Foster City, CA) for each target miRNA species, following the manufacturer's 

instructions. Next, 2μL of RNA was used to produce the complementary DNA (cDNA) 

template in a total volume of 15μL. Then, 1.33μL of cDNA was used in the PCR mixture with 

specific stem-loop PCR primers (Applied Biosystems, Foster City, CA) in a total volume of 

20μL. Levels of miRNA were measured by the fluorescent signal produced from the Taqman 

probes on an ABI Prism 7000 (Applied Biosystems). All samples were assayed in duplicate. 

Levels of miRNA were normalized to levels of ubiquitous let-7d and to externally added lin-

4. 

5.3.19. Statistics 

Unless otherwise stated, statistics were performed on SigmaPlot with significance being 

devised using the students T-test. Error bars represent one standard deviation from the 

mean. 
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5.4. RESULTS 

5.4.1. Detection of flucloxacillin-modified albumin peptides in vivo 

To analyse whether flucloxacillin can covalently modify albumin in vivo, the serum of mice 

dosed systemically with flucloxacillin for 5 days was analysed through western blot with a 

flucloxacillin-specific antibody. Flucloxacillin-specific binding was strongly detected in serum 

of all drug-exposed mice (Fig 5.1.). The flucloxacillin-modified band was detected with a 

molecular weight of approximately 67kDa, the same as mouse albumin. The faint band 

visible in the serum control is assumed to be non-specific binding, as albumin is known to be 

especially sticky in in vitro culture (Fig 5.1.). 

 

Fig 5.1. Western blot of mouse serum showing a flucloxacillin-modified band at the appropriate molecular 

weight for mouse albumin. MHC II KO mice were dosed for 5 days with flucloxacillin dosed I.P. Blood serum 

albumin was then analysed for flucloxacillin binding via western blot using a flucloxacillin-specific antibody. 

Marker on the left shows human albumin modified with flucloxacillin as reference with serum control being 

mice dosed with vehicle only. Protein analysis was performed by Roz Jenkins. 
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Liver cytosol was isolated and proteins present were separated through electrophoresis. The 

clear bands at the correct molecular weight of mouse albumin were removed (Fig 5.2. A) 

and analysed via LC/MS to determine if flucloxacillin binding to albumin was detectable. 

Specific peptides known to have previously been shown to bind to β-lactams were 

specifically analysed and results showed that for the peptide LDGVK*EK (Fig 5.2. B – 

underlined), flucloxacillin presence, β-lactam ring cleavage, full length peptide and full 

length peptide plus the flucloxacillin-molecule was detectable (Fig 5.2. C). 

 

 

 

 

 

 

 

 

 



153 
 

 

 

 

Fig 5.2. In vivo binding of flucloxacillin to mouse albumin in liver cytosol. Mice were systemically dosed with 

flucloxacillin for 5 days via I.P. injection (14mgs/mouse/day) and three days after the final dose, livers were 

removed, fractionated through centrifugation to isolate cytosol and subsequent cytosol run down a gel and 

coomassie stained to separate out proteins. Bands at the molecular weight of mouse albumin were cut out (A 

– outlined), trypsin digested (B - Green = peptide identified at >95% confidence, yellow = peptides identified at 

>90% confidence, red= low confidence assuming no modification of lysine, grey = not detected in this standard 

search, underlined peptides are tryptic peptides observed to be modified by flucloxacillin) and analysed 

through mass spectrometry(C). Peptide fragment LDGV*EK (lys 186) is shown in C from mouse 2’s band. 

Protein binding analysis was performed by Roz Jenkins. 
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5.4.2. Granzyme B secretion of flucloxacillin-specific CD8+ T-cells 

The cytotoxic ability of flucloxacillin-specific CD8+ T-cells was analysed through granzyme B 

ELISpot. Flucloxacillin-specific dLN cells were found to secrete significantly more granzyme B 

in response to ex vivo stimulation with flucloxacillin, when compared with dLN cells from 

vehicle control mice (Fig 5.3.). 
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Fig 5.3. Granzyme B ELISpot showing flucloxacillin-specific increases in granzyme B secretion from 

flucloxacillin-specific CD8
+
 T-cells. MHC II KO mice were depleted of CD4

+
 T-cells with I.P. injections of CD4 

antibody (100µg) on day 0 and 7. Mice were painted with 50µL of 1g/mL flucloxacillin or vehicle only for days 

1-3. On day 8 the dLNs were removed, macerated to a single cell suspension and incubated at 

1.25x10
5
cells/well with 2.5x10

4
cells/well of CD11c positive APCs collected from the mesenteric LN through 

CD11c positive magnetic isolation. Cells were plated out in an antigen coated plate and after 24h incubation at 

37°C and 5%CO2, were developed according to kit instructions. Table shows single well pictures with Fig 

showing number of drug-specific SFCs. Each n-number is indicative of one mouse (n=3). 
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5.4.3. Investigation into the cytotoxic potential of flucloxacillin-specific CD8+ T-cells on 

hepatocytes ex vivo 

The ability of flucloxacillin-specific CD8+ T-cells to cause hepatocyte cytotoxicity and 

apoptosis was measured via luminescence and scintillation respectively. Flucloxacillin-

specific CD8+ T-cells were generated through the usual protocol and pulsed with 

flucloxacillin in the presence of APCs for 24h after which they were washed and added to 

freshly isolated hepatocytes with readouts being measured 4h later. Significant 

flucloxacillin-specific T-cell/hepatocyte cytotoxicity and apoptosis was detected at 

0.25mg/mL flucloxacillin (Fig 5.4. A, B). Interestingly, un-pulsed CD8+ T-cells caused an 

increase in apoptosis compared to vehicle T-cells, showing an inherent cytotoxic capability 

when compared to hepatocytes only or hepatocytes with un-pulsed T-cells. No significant 

difference was observed between hepatocyte only and vehicle T-cell wells, indicating that 

the addition of T-cells alone had no effect on the viability, cytotoxicity, and apoptosis of 

hepatocytes (Fig 5.4. C). 
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Fig 5.4. Flucloxacillin-specific CD8
+
 T-cells cause drug-specific increases in cytotoxicity and apoptosis in 

hepatocytes. MHC II KO mice were depleted of CD4
+
 T-cells with I.P. injections of CD4 antibody (100µg) on day 

0 and 7. Mice were painted with 50µL of 1g/mL flucloxacillin or vehicle only for days 1-3. On day 8 the dLNs 

were removed, macerated to a single cell suspension and incubated at 1.25x10
5
cells/well with 

2.5x10
4
cells/well of CD11c positive APCs collected from the mesenteric LN through CD11c positive magnetic 

isolation. After 24h in culture at stated concentrations of flucloxacillin, cells were washed, counted, and 20000 

cells were added to 2500 freshly isolated mouse hepatocytes/well in medium for 4h at 37°C and 5% CO2 

alongside hepatocytes with no added T-cells. Wells were then treated according to Promega APOTOX GLO kit 

protocols to analyse cell viability (A) and cytotoxicity (B) measured via luminescence and apoptosis (C) 

measured through scintillation. Statistics were performed using the students T-test. P values of <0.05 were 

considered significant with p<0.1 being shown. Each n-number represents dLN cells from one mouse (n=3). 

 

 

5.4.4. Attempt to develop a mouse model of flucloxacillin-induced liver injury 

Flucloxacillin sensitisation in CD4 depleted MHC II KO mice has been shown to generate 

drug-specific CD8+ T-cells which become activated upon elicitation with flucloxacillin ex vivo 

to proliferate and generate inflammatory IFNγ (see chapter 4) as well as showing cytotoxic 

granzyme B secretion and drug-specific increase in hepatocyte cytotoxicity and apoptosis 

(this chapter). Systemic flucloxacillin dosing has shown that the drug binds to mouse 

albumin within the liver cytosol. Elsewhere, previous studies have shown that flucloxacillin 

systemic dosing of rats yielded drug adducts in the liver cytosol, detectable by western 

blotting (Carey and van Pelt 2005). Finally, I.V. injection of RA treated BMDDCs exposed to 

flucloxacillin-primed T-cells in the mesenteric lymph nodes of CD4+ T-cell depleted MHC II 

KO naive mice (see chapter 4). The next step in the development of a mouse model of 

flucloxacillin-induced liver injury was the elicitation of CD8+ T-cells in the mesenteric lymph 

nodes of CD4+ T-cell depleted MHC II KO naive mice and subsequent systemic dosing to test 

the hypothesis that flucloxacillin-specific CD8+ T-cells can cause liver injury.  

A 
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Three separate experiments were embarked upon in an attempt to develop a mouse model 

of flucloxacillin-induced liver injury.  

(1) CD4+ T-cell depleted MHC II KO mice were adoptively transferred mature BMDDCs 

exposed to flucloxacillin. Twenty-five days later a 5 day oral dosing regimen of 

2.3mgs flucloxacillin/day was initiated with ALT being measured on day 1, 2, and 5 of 

oral dosing. In this preliminary experiment, a visible increase in ALT levels to over 

double the respective controls in the serum of mice given flucloxacillin-exposed 

mature BMDDCs was observed at day 5 of oral dosing (Fig 5.5.) indicating the 

possibility of mild flucloxacillin-induced liver injury. 

 

Fig 5.5. Preliminary experiment showing increases in ALT levels in blood serum of orally dosed mice adoptively 

transferred with flucloxacillin-exposed mature DCs. Bone marrow was removed from the femurs of MHC II KO 

mice and incubated with GM-CSF for 8 days. RA was added at 10nM on days 4 and 8 with LPS being added on 

day 8 to mature the DCs. On day 9 BMDDCs were incubated in RPMI containing 0.5% mouse albumin with or 

without flucloxacillin at 0.5mg/mL and on day 10 the cells were washed and I.V. injected into naive MHC II KO 

mice at 0.25x10
6
 cells/mouse. Animals also received I.P. injections of 100µg CD4 antibody to deplete CD4

+
 T-

cells and 14mgs RA in 100µL Hanks balanced salt solution to make immune cells migrate to the mesenteric 

lymph nodes. Twenty-five days after injection of BMDDCs, oral dosing of 2.3mgs/day of flucloxacillin was 

started in all mice for 5 days. Mice were sacrificed on days 1, 2, and 5, post oral dosing with blood serum being 

analysed for increases in ALT (n=2 shown). 
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(2) The ability of flucloxacillin-specific CD8+ T-cells to cause in vivo liver damage was 

further investigated by adoptively transferring cytotoxic CD8+ T-cells as well as 

flucloxacillin-exposed APCs. CD4 depleted MHC II KO mice were adoptively 

transferred CD8+ T-cells taken from the dLNs of flucloxacillin or vehicle painted mice, 

after being incubated for 24h with APCs. Mice also received in vitro flucloxacillin-

exposed CD11c positive cells from the mesenteric lymph nodes of CD4 depleted 

MHC II KO mice. After three days, all mice were orally dosed with 

2.3mgs/flucloxacillin/day for 10 days with liver damage readouts of mir-122 in blood 

serum (Fig 5.6. B, C) and histology staining of caspase 3 of the liver (Fig 5.6. A) being 

investigated on day 0, 5, and 10 of oral dosing. In contrast to the previous 

experiment, no clear increases in liver damage biomarkers of mir-122 (Fig 5.6. B, C) 

were observed in animals injected with flucloxacillin-exposed immune cells when 

compared against relative controls. Additionally, no increases in apoptosing 

hepatocytes were detected after caspase 3 staining of the liver were witnessed by 

histological analysis (Fig 5.6. A). These data suggest that the transfer of cytotoxic 

CD8+ T-cells is not as efficient in transferring sensitisation as transfer of flucloxacillin-

exposed mature BMDDCs. ALT levels were not measured due to haemolysis. 
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Fig 5.6. I.V. injection of flucloxacillin-exposed CD8
+
 T-cells and CD11c

+
 APC from the mesenteric lymph nodes of 

sensitised mice fail to induce liver damage in naive mice subsequently orally dosed with flucloxacillin. 

Flucloxacillin-specific CD8
+
 T-cells were generated through CD4 depletion (day 0) and painting of flucloxacillin 

onto skin (day 1-3) in MHC II KO mice and maceration of the dLNs 5 days after the last dose (day 8). 

Flucloxacillin-specific CD8
+
 T-cells were incubated in media containing mouse albumin and 10nM RA to infer 

gut homing with CD11cs magnetically separated from the mesenteric lymph nodes. After 24h, cells were 

washed and I.V. injected  at 0.2x10
6
 cells/mouse into naive CD4 depleted MHC II KO mice along with 0.1x10

6
 

(24h,10nM RA, 0.5mg/mL flucloxacillin incubated) CD11cs isolated from the mesenteric lymph nodes (day 10). 

Control mice received CD8
+
 T-cells from vehicle only painted mice and CD11cs not incubated with flucloxacillin. 

All mice also received I.P. injections of 14mg/mouse of RA on day 10. On day 13, I.V. injected mice all received 

oral flucloxacillin of 2.3mgs/mouse/day for 10 days. Readouts of liver histology stained for caspase 3 activation 

(A)(brown) and mir-122 increase in blood serum (B, C, D) were taken on days 0, 5, and 10 of oral dosing. 

Histology (A) shows n=1 data representative of full results (n=3) which are fully shown in supplementary figure 

1. Complete histological analysis is reported in appendix 1. Mir-122 data is displayed as normalised compared 

to let-7d (B) and lin-4 (C) (one mouse per n=number. n=3 shown). 

 

(3) Due to the conflicting results from the two initial attempts to develop a model of 

flucloxacillin-induced liver injury (Fig 5.5.) (Fig 5.6.), a third protocol was designed in 

an attempt to remove in vitro culturing of immune cells and adoptive transfer as this 
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step had proved to be costly in regards to recoverable cell numbers. Thus, MHC II KO 

mice were sensitised as before with the added exception of adding RA to the site of 

drug/vehicle painting to impose mesenteric lymph node homing. In preliminary 

experiments after 2 days of oral dosing a statistically significant increase in ALT levels 

(Fig 5.7. A) and visible increases in relative mir-122 levels in the blood serum in 

flucloxacillin-painted mice was observed (Fig 5.7. B, C). Thus, a large scale 

experiment was designed incorporating the RA painting to assess the reproducibility 

of these results. 
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Fig 5.7. Significant increases in liver damage biomarkers in blood serum of CD4 depleted MHC II KO mice after 

oral dosing of flucloxacillin following painting of flucloxacillin and retinoic acid onto skin. MHC II KO mice were 
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depleted of CD4
+
 T-cells through I.P. injections of CD4 antibody on day 0 and mice were painted with 

0.5mg/RA/day with or without flucloxacillin on days 1-3. On day 7 mice were orally dosed with flucloxacillin for 

2 days with liver damage biomarkers of ALT levels (A) and mir-122 (B, C) being analysed in blood serum on day 

8 with mir-122 data being displayed as normalised compared to let-7d (B) and lin-4 (C). P values of <0.05were 

considered significant and statistics were devised using the students T-test (n=3 shown). 

 

In the repeat of the RA painting experiment (which induced significant increases in ALT 

levels and increased mir-122 in two out of three animals sensitised to flucloxacillin after 2 

days of oral dosing), a consistent increase in ALT levels was detected in the blood serum of 

mice sensitised and subsequently orally dosed with flucloxacillin for 2 days when compared 

against relative controls (Fig 5.8. A). Significant increases against controls were also 

detected in flucloxacillin-sensitised mice at day 4 of flucloxacillin oral dosing. Interestingly, 

after 10 days of oral dosing ALT levels dropped back to normal levels (Fig 5.8. A). To confirm 

liver damage, mir-122 levels in blood serum of mice were analysed but no significant 

increase was observed in orally dosed, flucloxacillin-sensitised mice (Fig 5.8. B). These data 

indicate that the increases seen in ALT may not have been hepatocyte-related. As 

flucloxacillin in humans primarily causes DILI through cholestasis, ALP levels in the blood 

were also measured to reveal no significant increases in flucloxacillin-sensitised mice 

compared against relative controls (Fig 5.8. C). These data indicate that flucloxacillin 

sensitisation/ RA painting alongside ten days of flucloxacillin oral dosing in the mouse was 

not able to demonstrate severe liver damage via cholestatic means. 
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Fig 5.8. Inconclusive results showing significant flucloxacillin-specific increases in ALT in blood serum at days 2 

and 5 however accompanied with negative mir-122 and ALP blood serum analysis. Mice were painted with RA 

(0.1mg/day) and either flucloxacillin (1g/mL, 50µL) or vehicle control for 3 days. 4 days later, all mice were 

orally dosed flucloxacillin (2.3mgs/day) for 10 days with mice being sacrificed after 0, 2, 4, and 10 days of oral 

dosing. Blood serum levels of ALT (A), mir-122 (B) (normalised to let-7d), and ALP (C) were analysed. P values 

of <0.05were considered significant and statistics were devised using the students T-test (n=4 shown). 

 

On removal of the livers on day 4 of oral dosing, an interesting development was 

encountered where the gall bladders in flucloxacillin-sensitised mice were swollen when 

compared against vehicle control. Intact gall bladders were photographed and on day 10 of 

oral dosing to reveal that gall bladders from all mice were swollen with flucloxacillin-

sensitised mice gall bladders being particularly engorged (Fig 5.9.). Although blood serum 
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analysis was negative for biomarkers of DILI, nevertheless the observation of swollen gall 

bladders upon administration of a drug known to cause cholestasis is intriguing.  

  Gall bladder swelling 

Individual 

mouse 

data 

 Control Flucloxacillin-sensitised 

Day 4 

oral 

dosing 

 

  

Day 10 
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Fig 5.9. Flucloxacillin-induced swelling of the gall bladders on day 4 of oral dosing in flucloxacillin-sensitised 

mice and on day 10 in both flucloxacillin-sensitised and control mice. Mice were painted with RA (0.1mg/day) 

and either flucloxacillin (1g/mL, 50µL) or vehicle control for 3 days. 4 days later, all mice were orally dosed 

flucloxacillin (2.3mgs/day) for 10 days with mice being sacrificed after 0, 2, 4, and 10 days of oral dosing. Table 

shows n=1 representative of results (n=1 day 4, n=4 day 10). All results from gall bladder swelling are shown in 

supplementary figure 2. 

 

As flucloxacillin-specific CD8+ T-cells had been shown to cause increases in hepatocyte 

apoptosis in vitro (this chapter), immunohistochemistry was performed on the livers of the 
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mice painted with RA/flucloxacillin and subsequently orally dosed to attempt to detect 

immune-mediated killing of hepatocytes in vivo. Livers sections from all mice were stained 

with caspase-3 and subsequent analysis revealed no significant increases in hepatocyte cell 

death in flucloxacillin-sensitised animals or after oral dosing (Fig 5.10.). Of the few visible 

apoptosing cells present, they were deemed not to be hepatocellular but endothelial or 

stellate cells.  
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Fig 5.10. Caspase 3 staining of the liver showing no increases in apoptotic hepatocytes. Mice were painted with 

RA (0.1mg/day) and either flucloxacillin (1g/mL, 50µL) or vehicle control for 3 days. 4 days later, all mice were 

orally dosed flucloxacillin (2.3mgs/day) for 10 days with mice being sacrificed after 0, 2, 4, and 10 days of oral 

dosing. Histological analysis for increases in apoptosis was performed through staining liver for caspase 3 

(brown). Cell nuclei were stained blue.  Table shown n=1 representative of full results (n=4). A complete 

histological analysis of caspase 3 content is shown in supplementary figure 3. 

 

Liver sections from mice painted with RA/flucloxacillin and subsequently orally dosed for 10 

days were H&E stained and imaged to look for any other cellular anomalies which 

flucloxacillin sensitisation and oral dosing may have induced. Analysis of livers revealed an 
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increase in infiltrating leukocytes which are especially pronounced at day 10 oral dosing in 

flucloxacillin-sensitised and vehicle animals (Fig 5.11.). 
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Fig 5.11. H&E stained liver showing increases in infiltrating leukocytes. Mice were painted with RA (0.1mg/day) 

and either flucloxacillin (1g/mL, 50µL) or vehicle control for 3 days. 4 days later, all mice were orally dosed 

flucloxacillin (2.3mgs/day) for 10 days with mice being sacrificed on days 0, 2, 4, and 10 of oral dosing. Black 

arrows highlight bile ducts. Table shows n=1 representative of full results (n=4). A complete histological 

analysis of H&E stained liver from all mice is shown in supplementary figure 4. 

 

 

5.5. DISCUSSION 

There are a number of mouse models of immune-mediated liver injury which show liver 

damage; both hepatocellular and cholestatic (Feldman et al. 2013) (Gujral et al. 2003) 

(Gujral et al. 2004b) (Woolbright et al. 2013). These models were designed with an aim to 

investigate liver injury induced through viral infection or genetic disease. A few models of 

particular relevance and interest to the investigations performed here are discussed below.  

Biliary atresia is a condition where bile is retained in the gall bladder. This condition is 

induced through auto-immune reactions following viral infection where disease symptoms 

are induced through attack of the bile ducts by the immune system (Feldman et al. 2013). If 

wild-type mice are infected with Rhesus rotavirus at birth they quickly develop bile duct 

obstruction, biliary atresia, and subsequent liver damage which leads to a survival rate of 

only 17.5% (Feldman et al. 2013). The investigators of this model put forth a possible 

mechanism of immune-mediated bile duct damage where B-cells are responsible for 

presenting foreign antigen to naive T-cells which in turn, stimulate CTL, macrophages and 

NK cells to induce damage in bile duct cells leading inexorably to biliary atresia (Feldman et 

al. 2013).  

Another technique which has proven insightful is to induce damage and then monitoring the 

resulting mechanisms. In bile duct ligation (a surgical technique that mimics obstructive 

cholestasis), analysis of resulting damage in mice has shown a role for infiltrating 
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neutrophils/leukocytes as animals deficient in CD18 or ICAM-1 were highly protected 

against bile duct ligation-induced liver injury (Gujral et al. 2003) (Gujral et al. 2004b). Others 

have used bile duct ligation to analyse the resulting mechanisms of cellular damage. Cell 

death was found to occur via necrosis, not apoptosis (Woolbright et al. 2013). 

 

Earlier in this thesis I have reported that flucloxacillin-induced liver injury in humans is a 

phenomenon known to involve drug-specific T-cell activation. The T-cell response is HLA-

B*57:01 restricted in the majority of cases (Monshi et al. 2013), which is in agreement with 

the HLA-B*57:01 and susceptibility to liver injury (Daly et al. 2009). Flucloxacillin-specific T-

cells from HLA-B*57:01 positive donors are activated by hapten and Pi-mechanisms 

(Wuillemin et al. 2013). However, 25% of patients that develop flucloxacillin-induced liver 

injury do not carry the risk allele. Combined analytical studies monitoring drug-protein 

binding and immunological studies clearly shows a hapten-based mechanism of CD8+ T-cell 

activation in these donors (Daly et al. 2009) (Monshi et al. 2013). Although CD8+ T-cells are 

known to circulate in patients with flucloxacillin-induced liver injury, their role in mediating 

tissue injury is unknown. The experiments performed here using a mouse model of 

flucloxacillin sensitisation, shed some light on possible routes of CD8+ T-cell-mediated liver 

injury. 

The objectives of this chapter were to investigate flucloxacillin-induced liver injury via 

direction of flucloxacillin-specific CD8+ T-cells to the liver. This was to be followed by an 

elicitation challenge directed at the liver through oral dosing. 

The flucloxacillin-specific CD8+ T-cells generated in this mouse model are known to require 

APCs to respond. These data suggest that the T-cell antigen derives from an intracellular 
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protein. Flucloxacillin has previously been shown to bind to specific lysine residues on 

circulating proteins, in particular human serum albumin (Jenkins et al. 2009). In this chapter 

flucloxacillin-modified lysine residues have been detected in the liver cytosol of mice. These 

data are in agreement with (Carey and van Pelt 2005) who characterised hepatic adducts in 

liver of rats systemically dosed with flucloxacillin. The major modified band had a mw of 65-

70kDa, the same as rat albumin. So: as flucloxacillin modifies albumin selectively, 

hepatocytes synthesise albumin, and flucloxacillin-specific CD8+ T-cells become activated 

upon presentation of flucloxacillin-modified intracellular peptides; the hypothesis in this 

chapter was that flucloxacillin-specific CD8+ T-cells would cause apoptosis in flucloxacillin-

exposed hepatocytes both in and ex vivo. 

In order to test the cytotoxic capabilities of the flucloxacillin-specific CD8+ T-cells, the 

number of granzyme B secreting cells was quantified through ELISpot. Flucloxacillin-specific 

T-cells from sensitised mice secreted significantly higher levels of granzyme B following 

flucloxacillin stimulation (1-2mM), when drug and vehicle treated mice were compared. This 

granzyme B secretion has also been demonstrated in human CD8+ T-cell clones which 

responded with a similar dose response (Monshi et al. 2013). 

Thus in the presence of APCs, flucloxacillin-specific CD8+ T-cells proliferate, and secrete IFNγ 

and granzyme B ex vivo following drug stimulation. Systemic dosing yields flucloxacillin-

albumin adducts in the liver of treated mice. The next step was to culture flucloxacillin-

specific CD8+ T-cells with hepatocytes to measure drug-specific T-cell-mediated hepatocyte- 

killing. Significant increases in hepatocyte cytotoxicity and apoptosis compared against 

hepatocytes only were observed in wells containing flucloxacillin-specific CD8+ T-cells. These 

data indicate that drug-specific T-cells are able to kill hepatocytes ex vivo. Interestingly drug 

stimulated and un-stimulated T-cells damaged hepatocytes indicating that they are isolated 
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from mice in a partially activated state. The ApoTox-Glo assay enables the discrimination 

between apoptotic and necrotic cell death (Prasad et al. 2012). The majority of dying 

hepatocytes were killed via an apoptotic pathway. Granzyme B (shown herein) and other 

molecules such as fas ligand are released from cytotoxic CD8+ T-cells and are known to 

cause cell death in target cells through activating the apoptotic cascade (Kagi et al. 1994) 

(Atkinson et al. 1998) (Medema et al. 1997). 

The next logical step in the investigation was to determine whether flucloxacillin-specific 

CD8+ T-cells cause liver injury in vivo. In preliminary experiments, mice were adoptively 

transferred flucloxacillin-exposed mature BMDDCs imprinted with gut homing via RA 

treatment and then orally dosed in an attempt to induce liver-orientated elicitation in vivo. 

Blood serum ALT levels in flucloxacillin-exposed DC injected mice, were over double the 

respective vehicle control (vehicle= 21-27U/L, flucloxacillin=51-64U/L). 

Animal models of drug-induced liver injury have been able to demonstrate increases in liver 

damage biomarkers with simultaneous infiltration of immune cells however the models 

which have come closest have all involved drugs which seem to act via MHC II mediated 

pathways: these include animal models of amodiaquine (Shenton et al. 2004) and 

nevirapine hypersensitivity (Shenton et al. 2003). Long-term dosing with these drugs 

resulted in adaptation with some showing increased numbers of CD4+ regulatory T-cells with 

eventual reductions in blood serum liver damage biomarkers (Ng et al. 2012). The next step 

therefore in attempting to develop a complete mouse model of flucloxacillin-induced liver 

injury would therefore involve long term oral dosing of flucloxacillin/RA painted mice whilst 

keeping CD4+ regulatory T-cells at depleted levels. This would assess whether the injury 

would increase or resolve itself which would be of particular interest in this model due to 

the effector cells being CD8+, not CD4+. 
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Painting of RA onto skin was more efficient than adoptive transfer showing ALT peaking at 

over 3x the normal upper limits (vehicle = 20-25U/L, flucloxacillin=67-107U/L), a value 

deemed to be clinically important in the removal of drugs such as ximelagatran from the 

market due to hepatocellular and cholestatic damage (Keisu and Andersson 2010). As the 

mir-122 levels were not as pronounced as the ALT levels with only two out of the three 

flucloxacillin-painted mice showing increases against vehicle control, it is possible that the 

increased ALT levels shown in Fig 5.7. A could have been partly attributed to other organs 

(e.g. kidney, lung or skeletal muscle) which are also known to give increased ALT levels after 

damage (Giannini et al. 2005). Importantly however, the increases seen in the ALT levels 

alongside the mir-122 levels and the increases seen in in vitro readouts would strongly 

indicate the involvement of the adaptive immune system in hepatocyte damage in response 

to flucloxacillin. Upon repeating of this experiment on a larger scale, the increase in ALT 

levels in blood serum after two days of exposure to oral flucloxacillin was reproducible. 

Significant amounts of ALT were also detectable after four days of oral dosing with 

flucloxacillin-sensitised mice having over four times higher ALT levels than their respective 

controls; however, ALT levels in serum returned to baseline after ten days of oral dosing. 

The ALT levels from this method of systemic elicitation challenge peaked at around ~120 U/L 

which is not outstanding in the field of liver toxicity where ALTs can be ten times this level 

(Imaeda et al. 2009). However, in regards to cholestasis and mouse models of cholestasis 

where the bile-duct is surgically ligated, ALT levels of ~250U/L and 10 fold increased over 

respective controls have been published in high impact journals as significant (Gujral et al. 

2004a).  

Another hypothesis which could explain the retention of bile in the gall bladder and its 

distension is dysfunction of the sphincter of Oddi (Torsoli et al. 1990). The sphincter of Oddi 
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is a band of muscle at the end of the biliary tree which controls the flow of bile into the 

duodenum (Torsoli et al. 1990). Dysfunction in the sphincter of Oddi can lead to gall bladder 

distension due to the build-up of pressure. The main pathophysiology of sphincter of Oddi 

dysfunction is through the action of gall stones or damage caused during previous surgeries. 

Infections of the common bile duct are also capable of narrowing the bile duct however 

these are also strongly associated with the development of gall stones (Kinney 2007). 

Further analyses of blood serum biomarkers of liver damage (mir-122) were also negative, 

indicating a lack of specific hepatocyte damage. This was further confirmed in the 

immunohistochemical analyses of caspase-3 in the liver sections, which showed very little 

hepatocyte apoptosis. The presence of increased ALT with little to no evidence of damage in 

histological analyses has been described previously by researchers in attempting to develop 

animal models of DILI (Ng et al. 2012). As a measurement of cholestasis, ALP levels were 

measured and found to be basal in all mice. 

Although not showing large scale liver damage, intriguing morphological-changes were 

observed on day 4 and 10 of mice exposed to flucloxacillin after painting with RA and 

flucloxacillin. A large swelling of the gall bladder was observed after 10 days of oral dosing, 

pointing to a bile duct obstruction and the possible development of flucloxacillin-induced 

cholestasis in the same manner as humans (vanishing bile duct) (Russmann et al. 2005) 

(Miros et al. 1990). This hypothesis was further tested through histological examination of 

the liver and bile ducts. This analysis did not reveal increases in apoptotic hepatocytes but 

did show significant leukocyte infiltrate. As previously discussed, infiltrating 

leukocytes/neutrophils have been strongly linked with the development of cholestasis 

induced through bile duct ligation (Gujral et al. 2003) (Gujral et al. 2004b). Although 

caspase-3 levels in the liver were negative, the early stages of cholestasis consist of very 
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limited apoptosis due to the induction of anti-apoptotic proteins (Li Z. et al. 2007). 

Furthermore, the administration of anti-caspase inhibitors were effective in Fas antibody-

induced apoptosis models of liver injury although did very little in a mouse model of 

cholestatic liver injury via bile-duct ligation (Gujral et al. 2004a). In this model, the cell death 

in the liver is mainly attributed to necrosis. This is due to infiltrating immune cells, mainly 

neutrophils, which cause cell death via generating reactive oxygen species (Jaeschke 2011). 

Taken collectively, the depletion of CD4+ T-cells and sensitisation to flucloxacillin has caused 

an increase in liver damage biomarkers, a swelling in gall bladder size, and an infiltration of 

the liver by immune cells which tentatively points to the very early stages of cholestasis 

through vanishing bile duct syndrome. 

Future experiments to test this hypothesis should be conducted to fully dissect the possible 

potential of this model. For example: 

(1) The reproducibility or the positive results and a comprehensive monitoring of the 

gall bladder swelling. 

(2) The ability of RA painted onto skin to induce clonal expansion of drug-specific CD8+ 

T-cells in the mesenteric LN. 

(3) The infiltrating immune cells seen in the livers of mice orally exposed to flucloxacillin 

should be analysed to: 1. determine their phenotype 2. Explore which cytokines they 

are secreting (if any), and 3. assess whether flucloxacillin-specific CD8+ T-cells are 

present. 

(4) As ALT levels were increased after two days of exposure to flucloxacillin, readouts at 

day one of oral dosing should be taken to clarify when ALT levels begin to rise and 

perhaps more importantly, why, in regards to which particular cell are causing the 

increase. 
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(5) A long-term experiment with readouts being taken after three weeks of oral dosing 

should be organised. In humans, cholestatic liver injury induced by flucloxacillin only 

presents observable outward symptoms a minimum of three weeks after the initial 

dose (Andrews and Daly 2008). 

In conclusion, a mouse model of flucloxacillin-induced liver injury via cholestasis may have 

been developed here but further experimentation is required as to whether the model 

could be developed to reproduce the severe liver damage seen in humans. 
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Drug hypersensitivity is a serious off-target effect associated with exposure to drugs. A high 

incidence of hypersensitivity reactions can lead to the drug being withdrawn from the 

market or restrictions to its use. The majority of hypersensitivity reactions have an immune 

aetiology.  

Drug hypersensitivity reactions have historically been investigated through the use of blood 

and tissue samples from hypersensitive patients. In early experiments, plasma from 

hypersensitive patients was screened for expression of anti-drug antibodies. Such 

antibodies were detected in patients with haematological reactions (Moeschlin and Wagner 

1952), which led to the suggestion that they were directly involved in the pathogenesis of 

drug-induced idiosyncratic disease. Patients suffering from isoniazid hepatotoxicity also 

displayed antinuclear antibodies (Salazar-Paramo et al. 1992) which have recently been 

linked directly to isoniazid-induced liver injury (Metushi et al. 2014). 

Despite, these data, it is now widely believed that antigen-specific T-cells ultimately control 

whether a patient will develop a hypersensitivity reaction and the nature/severity of the 

symptoms following drug exposure. In patients with cutaneous hypersensitivity, T-cells have 

been isolated from inflamed skin and shown to be drug-specific (Nassif et al. 2004) (Nassif et 

al. 2002) (Pichler et al. 2011) (Schmid et al. 2002) (Pichler et al. 2002). Furthermore, it is 

possible to isolate circulating T-cells from blood of the same patients many years after 

clinical manifestations of the reaction subside. By cloning individual T-cells from patients 

with different forms of cutaneous hypersensitivity reactions it has been possible to 

characterize drug hypersensitivity  in terms of cellular phenotype and functionality (Pichler 

et al. 2011) (Pichler 2003). Interestingly, such T-cells express skin-homing chemokine 

receptors that would allow them to migrate back to skin if the hypersensitive patient was 

inadvertently exposed to the culprit drug (Wu et al. 2007). Recently, several forms of 
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cutaneous drug hypersensitivity reaction have been found to be strongly associated with 

expression of particular HLA class I molecules e.g., abacavir hypersensitivity  and HLA-

B*57:01 (Mallal et al. 2002), carbamazepine and HLA-B15:02 (Chung et al. 2004), and 

allopurinol and HLA-B*58:01 (Hung et al. 2005). These data imply that the drug antigens 

interact in some way with the specific HLA-molecule to active T-cells. Indeed, this has now 

been shown to be the case. Chessman et al (2008) demonstrated that abacavir 

hypersensitivity was dependant on cytokine producing cytotoxic CD8+ T-cells and was 

uniquely restricted to HLA-B*57:01.  Direct binding of carbamazepine to HLA-B*57:01 leads 

to activation of CD8+ T-cells in patients displaying the most severe cutaneous hypersensitive 

responses (SJS/TEN) (Hsiao et al. 2014). Finally, Yun et al (2003) have recently shown via in 

vitro experimentation with T-cell clones that activation is dependent on the both the 

presence of HLA-B*58:01 allele and high concentration of drug. 

The role of T-cells in patients with liver injury is less well defined. A delayed onset in certain 

forms of liver injury is indicative of an immunological mechanism.  It must be noted however 

that many people develop liver reactions several months after drug exposure. For example, 

the median time to onset of hepatic adverse events following exposure to the tyrosine 

kinase inhibitor lapatinib is 110 days (Spraggs et al. 2012) (Spraggs et al. 2011). This time-

course is very different to a classical drug hypersensitivity reaction (e.g., maculopapular 

eruption, SJS/TEN), which develops 1-4 weeks after initial drug exposure (Romano et al. 

2011). A case report describing a patient with DRESS has shown that a hypersensitivity 

reaction can develop into fulminant liver failure (Mennicke et al. 2009). Histological 

investigations revealed infiltration of granzyme B secreting CD3+ lymphocytes in close 

proximity to apoptotic hepatocytes suggesting that T-lymphocytes participate in the liver 

reaction. 
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Isolation of drug-specific T-cells from DILI patients, but not drug-exposed controls, provides 

direct evidence that they participate in the disease pathogenesis. Early studies using the 

lymphocyte transformation test – a simple in vitro assay based on assessment of 

lymphocyte proliferative responses in drug-treated and vehicle control cultures - detected 

drug-specific lymphocyte responses in approximately 50% of patients with DILI (Maria and 

Victorino 1997). Drugs to which T-cell reactivity was detected in more than one patient 

included co-trimoxazole, allopurinol, fentiazac, captopril, phenytoin, and carbamazepine. 

More recently, similar data has been reported in Chinese patients with DILI. The lymphocyte 

transformation test was reported to have a sensitivity (% of DILI patients with a positive 

lymphocyte transformation test) and specificity (% of control patients with a negative 

lymphocyte transformation test) of 47.5 and 95.9%, respectively (Chen G. Y. et al. 2012). 

Importantly, the phenotype and function of the T-cells were not defined in either 

manuscript and additional studies have not been forthcoming. 

Liver dysfunction occurs in approximately 20% of patients exposed to isoniazid. As such, its 

ability to activate drug-specific T-lymphocytes has been studied in detail. Warrington et al 

(1982) reported that the lymphocyte transformation test was positive in 95% of DILI cases, 

whereas lymphocyte responses were not detected in patients receiving isoniazid without 

evidence of liver damage. Interestingly, the patients’ T-cells were activated with the parent 

compound and/or an isonicotinic acid HSA conjugate. The predictive value of the LTT in 

isoniazid-induced hepatitis was studied in a cohort of 61 patients receiving isoniazid for 

chemotherapy. Liver injury was detectable in 58% of the LTT positive group, but also 23% of 

the LTT negative group (Warrington et al. 1982). From this brief discussion it is clear that 

there is still much to learn regarding the role of T-cells in DILI. With this in mind, researchers 

in Liverpool have isolated and fully characterized the function of flucloxacillin-responsive T-
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cells from patients with DILI. CD8+ T-cell clones expressing CCR4, CCR9, CCL17, and CCL25, 

and secreted IFN-gamma, perforin, granzyme B, and FasL following drug stimulation 

(Monshi et al. 2013). These studies define the immune basis for flucloxacillin-induced liver 

injury; however additional studies are needed to explore the drug-specific T-lymphocyte 

response in other forms of DILI.  

For an increasing number of hepatotoxic drugs (e.g., flucloxacillin, (Daly et al. 2009) 

augmentin (Donaldson et al. 2010), lumiracoxib (Singer et al. 2010), lapatinib (Spraggs et al. 

2011), ximelagatran (Kindmark et al. 2008), and isoniazid (Daly and Day 2012), genome-wide 

association studies have identified specific HLA alleles as important susceptibility factors. 

These data suggest that a highly restricted drug-derived antigen interacts with the protein 

encoded by HLA risk allele to activate T-cells in susceptible patients. For flucloxacillin, it has 

been shown that the CD8+ T-lymphocyte response is HLA-B*57:01 restricted, which 

effectively links the genetic association to the tissue injury. Furthermore, naive 

CD45RA+/CD8+ T-cells from volunteers expressing HLA-B*57:01 were found to be activated 

with flucloxacillin when DCs presented the drug-antigen (Monshi et al. 2013). Similarly, 

Wuilleman et al (2013) found that it was possible to isolate flucloxacillin-responsive T-cells 

directly from healthy donor blood lymphocytes using extended 3-8 week culture protocols 

that involved weekly stimulation with drug and autologous APCs. It should be emphasized 

that flucloxacillin is the only example to date where it has been possible to define the 

immunogenetic basis of the liver reaction. It should also be noted that even for flucloxacillin, 

(1) the majority of individuals who carry the known HLA risk allele do not develop clinically 

relevant reactions when exposed to the culprit drug and (2) many patients that develop DILI 

will not carry the risk allele. Thus, HLA associations are not absolute indictors of risk.  There 

is therefore an urgent need to characterize the immunological parameters that are 



185 
 

superimposed on the HLA association and indeed HLA-restricted T-cell activation to 

determine why particular individuals develop DILI.  

The data outlined above indicate that the use of human cells has been extremely important 

in defining the cellular phenotype and cytokine profile of drug-specific cells; however, this 

work does not lend itself to interpretation of the in vivo situation at the time of a 

hypersensitivity reaction. In the field of autoimmune disease, animal models have been 

used to dissect the mechanisms of how the immune reaction develops in vivo and strategies 

to prevent such reactions. As an example, rheumatoid arthritis is a disease involving auto-

reactive T-cells. Animal models of the disease have been developed through proteoglycan-

induction of rheumatoid arthritis where the adaptive immune system causes joint 

inflammation (Hanyecz et al. 2004). Investigations using this and other animal models of the 

disease have lead to numerous human clinical trials (Keystone 2002). From these, a strategy 

of T-cell inhibition through blockage of signalling through the co-stimulatory molecule CD28 

using a fusion protein (known as Abatacept) has demonstrated efficacy in clinical trials 

leading to the registration of Abatacept for the treatment of rheumatoid arthritis (Genovese 

et al. 2005). 

In the field of drug hypersensitivity, researchers have worked extensively to develop animal 

models that reproduce the clinical situation in humans. However, the development of an 

animal model of drug hypersensitivity which fits these criteria has proven to be elusive. 

Amodiaquine induced liver injury in humans has an immune aetiology and is associated with 

agranulocytosis and hepatotoxicity which, upon discontinuation of the drug leads to a 

prompt recovery. Re-challenge with the drug leads to a rapid increase in ALT levels 

indicating the involvement of the adaptive immune system (Neftel et al. 1986) (Uetrecht J. 

2005). Many attempts to create an animal model of amodiaquine have ended in failure. 
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Dosing the drug at high concentrations for four days in rats revealed an increase in ALT 

levels but no accompanied histological changes (Gruppi et al. 1995). Administration of the 

drug alongside a glutathione-synthesis inhibitor revealed centri-lobular necrosis 6h post 

dose in mice however, this does not resemble the human condition. Administration of a 

clinically relevant dose of the drug yielded promising results where ALT increased in both 

rats and mice after 2-3 weeks which was consistent with human data. However, unlike the 

human condition, continued dosing of the drug lead to a decrease in the ALT levels and 

instead of exacerbation of injury, adaptation and immune tolerance to the drug was 

witnessed (Shenton et al. 2004). 

Isoniazid is a first line drug for the treatment of Mycobacterium tuberculosis however is it 

associated with liver injury mediated most likely through the actions of the adaptive 

immune system (Ng et al. 2012). Administration of the drug to both rabbits and rats leads to 

mild liver damage but neither form of the toxicity is similar to the liver injury witnessed in 

humans. Rats and rabbits displayed a direct toxicity to an isoniazid metabolite where serum 

levels of the metabolite correlated directly with increased ALT levels (Mitchell et al. 1976) 

(Sarich et al. 1999) indicating that these species were not suitable as model of human 

isoniazid liver injury. In mice, the covalent binding of isoniazid to proteins was detected 

(Metushi et al. 2011). Mice were immunised with supernatant of liver homogenate in 

complete Freund’s adjuvant in combination with isoniazid in an attempt to develop an 

immune response. This did lead to auto-immune hepatitis however, when oral 

administration of isoniazid (which was hypothesised to aggravate the condition) was 

started, the drug not only did not cause increased DILI, it reduced the hepatitis (Metushi et 

al. 2011) (unpublished observation) (Ng et al. 2012), suggesting that the drug in this model 

induces tolerance. 
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Through the number of failed attempts at developing an animal model of drug 

hypersensitivity which closely mimics the human condition, there has been one model 

which did not. Nevirapine is a drug used to treat HIV-1 infection and causes drug mediated 

skin rash in a minority of patients (Pollard et al. 1998). The incidence of hypersensitivity 

reaction is higher in females (Wong et al. 2001). When female brown Norway rats are fed 

nevirapine at 150mk/kg/day they develop red ears after about seven days and skin rash 

after 14-21 days with an incidence of 100% (Shenton et al. 2003). With this rat model of 

nevirapine induced rash it was discovered that if the starting dose of nevirapine was 

lowered before the full dose was administered the rash was prevented, which is indicative 

of some form of desensitisation (Shenton et al. 2003). 

The development of the murine LLNA (Kimber et al. 1989) was an important milestone for 

the prediction of the sensitisation potential of chemicals and has been used for over 20 

years to investigate CHS reactions to haptens. Recently, researchers have used a C57Bl/6 

mouse with  mutation in the αβ gene encoding for MHC II molecules to sensitise mice to 

weak sensitisers such as the β-lactam antibiotic amoxicillin (Vocanson et al. 2006) (Rozieres 

et al. 2010). The mice have vastly reduced numbers of CD4+ T-cells but retain a small 

population of regulatory T-cells which are CD4+ CD25+. Amoxicillin sensitization in these 

mice was achieved through direct painting of the drug onto the skin, but only when the 

residual CD4+ T-cells were depleted. Five days after the last drug exposure, the dLN were 

removed from the mice to allow isolation and characterization of drug-specific CD8+ T-cells. 

These data indicate that CD8+ T-cells are the primary mediators of sensitization, while CD4+ 

T-cells (down) regulate the antigen-specific T-cell response.  

The three β-lactam antibiotics used in this study (amoxicillin, flucloxacillin, and piperacillin) 

are known to bind to lysine residues on protein and in particular, Lys 190 on human serum 
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albumin. Adduct formation is dependent on opening of the β-lactam ring following 

nucleophilic attack to allow the formation of stable protein adducts (Whitaker et al. 2011) 

(Monshi et al. 2013) (Jenkins et al. 2009) (Ariza et al. 2012) (Meng et al. 2011). 

The primary aim of this thesis was the use two of these β-lactam antibiotics, amoxicillin and 

flucloxacillin, which are associated with a high incidence of skin and liver reactions, 

respectively, to explore antigen-specific immunogenicity in the CD4+ T-cell depleted MHC II 

KO C57Bl/6 mouse. With knowledge of the flucloxacillin-specific sensitization process we 

then explored whether it was possible to direct the T-cells to liver and detect evidence of 

immune-mediated tissue injury.   

The development of the mouse model was centred around the work performed by the 

group of JF Nicolas in Lyon and in particular, around the published papers by Vocanson et al 

(2006) and Rozieres et al (2010). They were able to show that β-lactam specific CD8+ T-cells 

generated in this mouse model are drug-specific but demonstrated a degree of cross-

reactivity to other β-lactam antibiotics. The constraints of this model were that due to the 

mouse model being devoid of MHC II molecules and the mice being further depleted of CD4+ 

T-cells, the mouse model is only capable of analysing effector CD8+ T-cell responses and not 

CD4+ T-cell responses, whether they be inhibitory or not. Furthermore, as the background of 

the mice were C57Bl/6 mice, the responses are biased towards a TH1 phenotype (Mills et al. 

2000). 

Mice were sensitised to amoxicillin using published protocols; however, drug-specific T-cells 

were not detected and evidence of sensitisation (i.e. ear selling responses) was not 

obtained. Thus, a series of experiments were conducted in Lyon in attempt to resolve this 

issue. After several modifications to the sensitisation protocols it was possible to 
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characterise amoxicillin-specific CD8+ T-cells that could mediate a contact allergic reaction 

(chapter 2), successfully repeating the published data by Rozieres et al (2010) and 

highlighting the effector functions of both Tregs and CTL in amoxicillin hypersensitivity. 

Similar experiments were then conducted with two additional β-lactam antibiotics 

flucloxacillin and piperacillin. Topical exposure to flucloxacillin was associated with the 

activation of naive CD8+ T-cells. Following ex vivo stimulation a concentration dependant 

proliferative response and IFNγ secretion were readily detectable. Other than being the first 

instance of a mouse being successfully sensitised to flucloxacillin, the flucloxacillin-specific 

T-cells generated displayed the same Tc1 phenotype as flucloxacillin-specific T-cells isolated 

from human allergic patients (Monshi et al. 2013) (Wuillemin et al. 2013). The comparability 

between mouse and human continued when attempting to sensitise to piperacillin. In 

contrast to flucloxacillin, piperacillin stimulated only a weak CD8+ T-cell response which may 

relate to the fact that piperacillin preferentially activates CD4+ T-cells in hypersensitive 

patients and induces TH2 polarised cytokine secretions (El-Ghaiesh et al. 2011). Work 

performed using human T-cell clones from β-lactam hypersensitive patients also displayed 

drug-specificity however with accompanied cross-reactivity. The trends of cross-reactivity 

differed between mouse and human drug-specific T-cells but the overall reactivity of the 

cells displaying antigen-specificity was similar, indicating core similarities between the drug-

specific CD8+ T-cells generated in the mouse model and the human T-cell clones generated 

from drug hypersensitive patients (Whitaker et al. 2011) (El-Ghaiesh et al. 2011). 

The importance of DCs in activating drug-specific CD8+ T-cells has been demonstrated in the 

work performed in chapter 4 of this thesis. Flucloxacillin-specific CD8+ T-cells required the 

presence of DCs to launch a full T-cell response (i.e. proliferation and IFNγ secretion) when 

cultured with flucloxacillin ex vivo. If the co-culture concentration of DCs was decreased 
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when incubating flucloxacillin-specific CD8+ T-cells, a full T-cell response was not induced. 

Indeed, when DCs were removed from the ex vivo culture conditions, the T-cell response to 

flucloxacillin was ablated indicating the necessity of APCs when presenting the drug-derived 

antigen to mouse CD8+ T-cell. The activation of CD8+ T-cells by APC with no soluble drug 

present is indicative of a peptide haptenisation mechanism. However, the discovery of HLA-

B*57:01 being associated with flucloxacillin allergic patients (Daly et al. 2009), opened the 

door for flucloxacillin to be linked to the pi-concept, which recently gained experimental 

evidence (Wuillemin et al. 2013). This being said, patients can still develop flucloxacillin 

hypersensitivity via a hapten-mediated mechanism (Wuillemin et al. 2013). Furthermore, 

priming of naive human T-cells against flucloxacillin hapten has also been demonstrated 

(Monshi et al. 2013). Genetic screening before administration of a drug is looking to become 

a large part of future clinical practice. For example, HLA-B*57:01 screening before 

administration of abacavir is now performed routinely and has decimated the numbers of 

abacavir induced hypersensitivity reactions (Mallal et al. 2008). Flucloxacillin does not 

currently require a genetic screen before administration due to a prevalence of only 8.5 in 

100,000 patients and HLA-B*57:01 not certifying the development of flucloxacillin DILI 

(Russmann et al. 2005). The implications of this are that flucloxacillin is going to continue to 

be prescribed to both HLA-B*57:01+/- patients, highlighting the importance of investigating 

both the hapten and pi mechanisms regarding onset of liver injury. 

If the experiments performed in this thesis were repeated with a CD8+ T-cell deficient 

mouse where CD4+ T-cells were left un-altered, the continued presence of Tregs would 

assumedly have a negative impact on what effector functions may be elicitated; as has been 

reported in other animal models of CD4+ T-cell mediated diseases like nevirapine 

hypersensitivity (Ng et al. 2012). 
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The mouse model has been developed and utilised in this thesis to demonstrate that upon 

first contact with flucloxacillin, protein binding occurs on at least one peptide (see chapter 

5) to create a haptenic peptide capable of inducing T-cell activation (Monshi et al. 2013) and 

sensitisation in vivo (see chapter 4). The haptenic chemical, if introduced via the skin, is 

likely detected by CD103+ DCs present in the dermis which preferentially present to CD8+ T-

cells (Bedoui et al. 2009). These modified peptides are detectable in the blood serum of 

systemically dosed animals and more importantly in respect to flucloxacillin, in the liver 

cytosol (see chapter 5). This detection of modified albumin peptides in the liver cytosol of 

systemically dosed mice corroborates the work performed by Carey and Van Pelt (2005) 

who published findings very similar to this, in rat. Demonstration of killing of flucloxacillin-

modified hepatocytes by CD8+ T-cells was beyond the scope of this thesis as in vitro 

incubation of flucloxacillin with hepatocytes was not able to yield detectable protein 

modifications (data not shown). However, this experimental course would provide direct 

evidence that an intracellular protein conjugate activates the immuno-allergic 

hepatotoxicity. 

Hepatocytes, when infected with foreign antigen (i.e. parasites) are known to be targeted by 

cytotoxic CD8+ T-cells. For example, upon culture of malaria parasite infected hepatocytes 

with CD8+ T-cells from a vaccinated mouse, the CD8+ T-cells were discovered to kill the 

infected hepatocytes via contact-mediated perforin secretion (Trimnell et al. 2009). With 

regards to DILI, the mechanisms of hepatocyte cell death is somewhat varied from drug to 

drug with very little direct evidence of an adaptive immune response. Examples include 

amodiaquine-induced liver injury where in rats dosed for 6 weeks with the drug, a mild 

increase in CD4+ T-cells, NK cells, and TH17 cells was documented alongside mild increases in 

ALT levels (Shenton et al. 2004). For flucloxacillin-induced liver injury, the main evidence of 
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damage to the liver by the adaptive immune system stems from flucloxacillin-specific CD8+ 

T-cells being isolatable from hypersensitive patients suffering liver injury (Monshi et al. 

2013). In the experiments performed here, a kit designed to look at three readouts of cell 

viability simultaneously was chosen to analyse the potential-drug-specific killing of 

hepatocytes by flucloxacillin pulsed CD8+ T-cells from flucloxacillin-sensitised mice. The 

hepatocyte viability, cytotoxicity, and apoptosis was measured simultaneously through use 

of Promega’s Apotox Glo Triplex assay which has been successfully used as a readout in a 

variety of cell types (Prasad et al. 2012) (Arnault et al. 2013). The results obtained from the 

co-culture of hepatocytes with flucloxacillin-pulsed CD8+ T-cells from the dLNs of 

flucloxacillin-sensitised mice is the first direct evidence for the drug-specific killing of 

hepatocytes by actions of the adaptive immune system. In support of the cytotoxicity data 

CD8+ T-cells were found to secrete high levels of granzyme B following T-cell receptor 

triggering. Granzyme B initiates apoptosis through triggering of the caspase cascade (Chung 

et al. 2008). 

A mouse model of immune-mediated hepatitis has recently been developed where mice 

were engineered so that exposure to tamoxifen (an oestrogen receptor antagonist) induces 

partial expression of ovalbumin in hepatocytes (Cebula et al. 2013). Antigen-specific CD8+ T-

cells were then adoptively transferred to cause symptoms mimicking immune-mediated 

hepatitis. These symptoms involved the clearance of antigen expressing hepatocytes 

through cytotoxic actions of the CD8+ T-cells. This included CD8+ T-cell proliferation and 

subsequent cytotoxic actions leading to an increase in ALT levels in blood serum. 

Immunohistochemistry revealed increases in intracellular caspase 3, in ovalbumin 

expressing hepatocytes (Cebula et al. 2013). Although this animal model is fashioned on 

immune-mediated hepatitis instead of drug hypersensitivity, the mechanisms of CD8+ T-cell-
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mediated hepatocyte killing after presentation of foreign antigen is strikingly similar to the 

results discovered in vitro here with flucloxacillin.  

Upon an in vivo challenge, flucloxacillin-specific CD8+ T-cells did not demonstrate a 

clearance of hepatocytes as reported in the mouse model of immune hepatitis (Cebula et al. 

2013). However, swelling of the gall bladders and infiltration of leukocytes did tentatively 

suggest the development of early cholestasis through biliary atresia (see chapter 5). The 

development of cholestasis by flucloxacillin could be due to the presentational ability of the 

liver cell subsets (Ebrahimkhani et al. 2011).  This “antigen presenting ability” has been 

gauged through analysing presentation of OVA peptide and subsequent CD8+ T-cell 

proliferation and activation. Results from this study demonstrated that liver hepatocytes 

and hepatic stellate cells were not efficient at presenting foreign antigen to CD8+ T-cells. 

However, Kuppfer cells and perhaps more importantly, hepatic sinusoidal epithelial cells, 

were capable of presenting foreign antigen which was comparable to the amount of 

presentation demonstrated by mature spleen DCs (Ebrahimkhani et al. 2011). This is 

interesting in respect to flucloxacillin-induced liver injury, where injury in human patients is 

mainly mediated through cholestatic liver damage which involves damage towards the 

epithelial cells of the bile duct. This may perhaps develop through bile epithelial cells being 

efficient at presenting flucloxacillin altered peptides to cytotoxic CD8+ T-cells, which in turn 

destroy the epithelial cells to allow bile build-up and subsequent cholestatic liver damage. A 

possible mechanism of gall bladder swelling through downstream biliary damage by 

flucloxacillin could be explained through flucloxacillin creating an immunogenic haptenic 

protein in the liver. This could lead to bile duct damage through effective antigen 

presentation by biliary epithelial cells to effector lymphocytes. This ductal damage through 

cytotoxic CD8+ T-cells could lead to further T-cell-mediated inflammation and through 
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activation of these T-cells, IFN-stimulation of macrophages could follow. This macrophage 

activation could lead to the release of nitric oxide, ROS, and TNF with subsequent epithelial 

cell death via apoptotic and/or necrotic pathways (Sokol and Mack 2001) (Sokol et al. 2003). 

This inflammatory action could lead to the stenosis of the downstream bile ducts and 

increase of biliary pressure. This immunological domino effect could explain the apparent 

biliary atresia and gall bladder swelling seen here. 

To fully dissect the potential of the mouse model developed so far in this thesis, several 

future investigations should be initiated. The possibility of cholestatic liver damage after 

extended oral dosing (>3 weeks) combined with to assessment of whether the biliary atresia 

witnessed in the mice would continue and/or cause complications. The killing of specific 

subsets of liver cells by flucloxacillin-specific CD8+ T-cells should be investigated through ex 

vivo co-culture. Furthermore, measurement of cell death bio-markers should be 

investigated to analyse whether other liver cells subsets (e.g. bile duct epithelial cells) are 

preferentially targeted by flucloxacillin-specific CD8+ T-cells. The presence of liver-infiltrating 

leukocytes also needs to be analysed to determine whether flucloxacillin-specific CD8+ T-

cells migrate into hepatic tissue. 

If fully elucidated and verified, a mouse model of cholestatic flucloxacillin-induced liver 

injury which truly mimics the human condition would be an invaluable tool in attempting to 

dissect the mechanisms of disease pathogenesis. Possibilities of use could also include: 

1) Using the model to experiment towards a preventative of flucloxacillin-induced liver 

injury. As flucloxacillin-induced liver injury is usually only detected after the onset of 

jaundice (Andrews and Daly 2008), the damage has essentially already been done. 

Therefore, a preventative measure seems a more feasible goal than a cure. This 



195 
 

could perhaps be achieved through up-regulation of Tregs, as the adoptive transfer of 

Tregs in mice has been used to successfully prevent diseases such as autoimmune 

haemolytic anaemia (Mqadmi et al. 2005), and the development of cholestatic-

mediated flucloxacillin-induced liver damage is linked to CD8+ T-cells (Monshi et al. 

2013) (Wuillemin et al. 2013) (chapter 5). 

2) Antibiotic-resistance is a very real threat to the way humans currently live 

(Balsalobre et al. 2014). It is imperative that new antibiotics, or new ways of using 

them, are developed to combat antibiotic-resistant bacteria. If the new antibiotics 

that are developed are similar to the ones currently used (small protein-reactive 

molecules), then this model could be used as an early warning system for whether 

these new molecules could be immunogenic and/or capable of causing cholestatic 

liver damage. 

3) For nevirapine-induced skin rash, it was discovered that in a rat model of the drug-

induced disease, a slow increase in concentration of the drug prevented the disease 

from progressing (Shenton et al. 2003). This discovery was instrumental in changing 

the way nevirapine was prescribed to humans. The mouse model could be used to 

investigate whether this particular method of drug introduction could induce 

flucloxacillin tolerance, leading to the prevention of liver injury. 

 

To summarise, amoxicillin, piperacillin, and flucloxacillin have proven to be of invaluable use 

when attempting to dissect the mechanisms of drug-specific sensitisation and elicitation, 

drug-protein binding, and analysis of the processes involved in delayed-type hypersensitivity 

reactions. Use of a mouse model of CHS altered through CD4+ T-cell depletion to analyse 

drug hypersensitivity, has shown to be invaluable in investigating the pathways of drug-
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specific CD8+ T-cell activation. For the first time, mice have been sensitised to piperacillin 

and flucloxacillin and furthermore, flucloxacillin-specific CD8+ T-cells have been shown to kill 

hepatocytes in vitro. An in vivo oral flucloxacillin challenge did not lead to a mode of 

flucloxacillin –induced cholestatic liver injury mediated through the actions of CD8+ T-cells. 

However, un-expectedly, this challenge did demonstrate symptoms consistent with early 

stages of cholestasis. Further experimentation using the methods developed herein, should 

be embarked upon in an effort to develop what would be the first animal model of DILI able 

to demonstrate injury mediated by the adaptive immune system. 
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Appendix 

Supplementary figure 1. Flucloxacillin oral dosing of mice adoptively transferred 

flucloxacillin-specific CD8+ T-cells and flucloxacillin-exposed CD11c+ DCs show no increases 

in hepatocyte apoptosis. 

Supplementary figure 2.  Flucloxacillin oral dosing of mice painted with RA induces gall 

bladder swelling in mice sensitised with flucloxacillin after four days of oral dosing and in all 

mice after ten days of oral dosing. 

Supplementary figure 3. Flucloxacillin oral dosing of mice painted with RA/flucloxacillin 

does not induce increases in hepatocyte apoptosis. 

Supplementary figure 4. Flucloxacillin oral dosing of mice painted with RA/flucloxacillin 

induces infiltration of leukocytes into the liver. 
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Supplementary figure 1. Flucloxacillin oral dosing of mice adoptively transferred flucloxacillin-specific CD8
+
 T-

cells and flucloxacillin-exposed CD11c
+
 DCs show no increases in hepatocyte apoptosis. 
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Supplementary figure 2.  Flucloxacillin oral dosing of mice painted with RA induces gall bladder swelling in 

mice sensitised with flucloxacillin after four days of oral dosing and in all mice after ten days of oral dosing. 
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Supplementary figure 3. Flucloxacillin oral dosing of mice painted with RA/flucloxacillin does not induce 

increases in hepatocyte apoptosis. 
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Supplementary figure 4. Flucloxacillin oral dosing of mice painted with RA/flucloxacillin induces infiltration of 

leukocytes into the liver. 

 


