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Abstract 

Microplasma Technology for Influencing Cell-Surface Interactions by Kyle George Doherty 

Cataracts are the most common cause of preventable blindness worldwide. During cataract 

surgery a polymeric intraocular lens (IOL) is used to replace the cloudy natural lens. The 

most common post-operative complication is posterior capsule opacification (PCO). PCO is 

a wound healing response related to scarring, in which cellular changes disrupt the light 

path to the back of the eye through various processes, requiring a costly surgery to restore 

vision. The material of the IOL has been shown to affect PCO and it is hypothesised that the 

surface modification of IOL materials may be able to reduce the incidence of PCO. The use 

of plasmas established in the field of biomaterials modification and atmospheric pressure 

processes have significant benefits over the previous low pressure systems. In this work 

investigates the use of an atmospheric pressure plasma jet to modify the surface properties 

of polymeric materials, with the aim of developing a surface treatment method for use on 

IOLs. 

 

Materials and Methods 

The centre of polystyrene (PS) and poly(methyl methacrylate)(PMMA) surfaces were 

treated with an atmospheric pressure microplasma jet. The modification of surfaces was 

characterised by spatially resolved water contact angle, x-ray photoelectron spectroscopy 

(XPS) and atomic force microscopy (AFM). LECs were seeded onto surfaces and grown for 1-

7 days. Cell attachment, growth and morphology were examined microscopically. The 

concentrations of some cytokines implicated in PCO (transforming growth factor-β2, basic 

fibroblast growth factor, interleukin-1, interleukin-6, and tumour necrosis factor-α) in 

culture medium were examined at specific time points. Tissue culture polystyrene and 

untreated materials served as controls. Atmospheric pressure plasma polymerisation of 

amine containing monomers using a plasma jet was also investigated. 

 

Results and Discussions  

The size of surface treatment could be tailored by altering flow rate and sample-nozzle 

distance. Surface treatment was due to an increase in surface oxygen content and plasma 

treatment did not cause a significant change in surface roughness. Plasma treatment 

increased the LEC adhesion to substrates. LECs were densely populated in the centre of 
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treated materials and cells lacked the cobblestone morphology typical of epithelial cells. 

The secretion of inflammatory cytokines by LECs grown on plasma treated surfaces did not 

appear to be up-regulated in comparison to tissue culture polystyrene, however these 

results are preliminary. This work demonstrated that atmospheric pressure plasma 

polymerisation can be achieved using the plasma jet system to incorporate nitrogen 

functionalisation onto PS surfaces; however oxygen was also incorporated onto surfaces. 

 

Conclusions 

This work demonstrates that an atmospheric pressure microplasma jet can be used to 

modify surfaces in a spatially defined manner, without damaging the polymer surfaces. The 

increase in surface oxygen promotes cell adhesion which can be confined to an area <3mm. 

This treatment size is too large to be used to create different spatially defined treatments 

on IOL optics as the typical optic diameter is only 6mm. The large treatment size is possibly 

due to gas convection spreading reactive species across the surface of samples when the 

plasma jet reaches the surface. Plasma polymerisation could possibly be used to 

incorporate functional groups which promote LEC growth which maintains an epithelial 

morphology. 
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Figure 3.1 Representative micrographs of antibody staining (green) and DAPI nuclear staining (blue) 
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and human lens epithelial cells (B3) on tissue culture polystyrene (TCPS). aRPE-19 cells 

served as a positive control for both αB-crystallin and NCL-5D3 anti-bodies. Scale bar = 
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Figure 3.2 Representative fluorescent micrographs of aRPE-19 cells seeded onto tissue culture 

polystyrene (PS), untreated PS, treated PS and half-treated PS. Cell cytoskeletons were 

stained with phalloidin (green) and nuclei were stained with propidium iodide (red). 

Dotted line represents the boundary of the treated region. Scale bar = 100µm. ............ 99 

Figure 3.3 Line graph of contact angle profiles taken across polystyrene (PS) samples treated with a 

plasma jet. Samples were placed 10mm from the plasma jet nozzle and paper barriers of 

various width (0.2-3mm) were placed 7mm from the nozzle. Contact angle 

measurements were taken across central axes of samples at a resolution of 0.25mm. 

Profiles were from single samples. ................................................................................. 102 

Figure 3.4 Line graph of contact angle profiles taken across polystyrene (PS) samples treated with a 

plasma jet. Samples were placed 10mm from the plasma jet nozzle and plastic barriers 

of various width (1.2mm and 3mm) were placed 8mm from the nozzle. Contact angle 

measurements were taken across central axes of samples at a resolution of 0.25mm. 

Profiles were from single samples. ................................................................................. 103 

Figure 3.5 Line graph of contact angle profiles taken across polystyrene (PS) samples treated with a 

plasma jet. Samples were placed 10mm from the plasma jet nozzle and a 2mm wide 

plastic barriers was placed 4mm, 6mm and 8mm from the nozzle. Contact angle 

measurements were taken across central axes of samples at a resolution of 0.25mm. 

Profiles were from single samples. ................................................................................. 104 

Figure 3.6 Line graph of contact angle profiles taken across polystyrene (PS) samples treated with a 

plasma jet. Samples were placed 25mm from the plasma jet nozzle and a 2mm wide 

plastic barriers was placed 5mm, 10mm, 15 and 20mm from the nozzle. Contact angle 

measurements were taken across central axes of samples at a resolution of 0.25mm. 

Profiles were from single samples. ................................................................................. 105 

Figure 3.7 Line graph of contact angle profiles taken across polystyrene (PS) samples treated with a 

plasma jet. Samples were placed 25mm from the plasma jet nozzle and a 3mm outer 

diameter glass capillary barrier was placed 10mm, 12mm, 14mm, 16mm, 18mm and 

20mm from the nozzle. Contact angle measurements were taken across central axes of 

samples at a resolution of 0.25mm. Profiles were from single samples. ....................... 106 

Figure 3.8 Phase contrast micrographs of N/N1003A rabbit LECs grown on tissue culture polystyrene 

(TCPS), untreated polystyrene (UT-PS) and polystyrene (PS) treated with or without a 
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glass capillary barrier. Micrographs were taken in the centre of samples at days 1, 4 and 

7. Scale bar = 100µm. ..................................................................................................... 107 

Figure 3.9 Photographs of methylene blue staining of tissue culture polystyrene (TCPS), untreated 

polystyrene (UT-PS), polystyrene (PS) treated without a barrier and PS treated with a 

barrier. Samples were fixed and stained at days 1, 4 and 7 and photographs were taken 

with a Nikon D5 camera, however the lighting conditions on the day 7 plate could not be 

matched to the earlier time points. Samples were approximately 20x20mm. .............. 109 

Figure 3.10 Line graph of contact angle profiles taken across polystyrene (PS) samples treated with a 

plasma jet. Samples were placed 10mm from the plasma jet nozzle and a 1mm diameter 

blackened glass rod barrier was placed 2mm, 4mm, 6mm and 8mm from the nozzle. 

Contact angle measurements were taken across the central axes of samples at a spatial 

resolution of 0.5mm. Profiles are the mean of 3 samples. Error bars are ± 1 standard 

deviation. ........................................................................................................................ 111 

Figure 3.11 Line graph of contact angle profiles taken across polystyrene (PS) samples treated with a 

plasma jet. Samples were placed 10mm from the plasma jet nozzle and a 2mm diameter 

blackened glass rod barrier was placed 2mm, 4mm, 6mm and 8mm from the nozzle. 

Contact angle measurements were taken across central axes of samples at a resolution 

of 0.5mm. Profiles are the mean of 3 samples. Error bars are ± 1 standard deviation. . 112 

Figure 3.12 Line graph of contact angle profiles taken across polystyrene (PS) samples treated with a 

plasma jet. Samples were placed 10mm from the plasma jet nozzle and a 3mm diameter 

blackened glass rod barrier was placed 2mm, 4mm, 6mm and 8mm from the nozzle. 

Contact angle measurements were taken across central axes of samples at a resolution 

of 0.5mm. Profiles are the mean of 3 samples. Error bars are ± 1 standard deviation. . 113 

Figure 3.13 Line graph of contact angle profiles taken across polystyrene (PS) samples treated with a 

plasma jet. Samples were placed 20mm from the plasma jet nozzle and a 1mm diameter 

glass rod barrier was place 2mm, 6mm, 10mm, 14mm and 18mm from the nozzle. 

Contact angle measurements were taken across central axes of samples at a resolution 

of 0.5mm. Profiles are the mean of 3 samples. Error bars are ± 1 standard deviation. . 114 

Figure 3.14 Line graph of contact angle profiles taken across polystyrene (PS) samples treated with a 

plasma jet. Samples were placed 20mm from the plasma jet nozzle and a 2mm diameter 

blackened glass rod barrier was place 2mm, 6mm, 10mm, 14mm and 18mm from the 

nozzle. Contact angle measurements were taken across central axes of samples at a 

resolution of 0.5mm. Profiles are the mean of 3 samples. Error bars are ± 1 standard 

deviation. ........................................................................................................................ 115 

Figure 3.15 Line graph of contact angle profiles taken across polystyrene (PS) samples treated with a 

plasma jet. Samples were placed 20mm from the plasma jet nozzle and a 3mm diameter 
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blackened glass rod barrier was place 2mm, 6mm, 10mm, 14mm and 18mm from the 

nozzle. Contact angle measurements were taken across central axes of samples at a 

resolution of 0.5mm. Profiles are the mean of 3 samples. Error bars are ± 1 standard 
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air for 0 days, 1 day, 4 days, 7 days, 2 weeks, 4 weeks, 8 weeks and 52 weeks. Contact 

angle measurements were taken across central axes of samples at a resolution of 

0.5mm. Profiles are the mean of 3 samples. Error bars are ± 1 standard deviation. ..... 117 
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deionised water for 0 days, 1 day, 4 days, 7 days, 2 weeks, 4 weeks, 8 weeks and 52 

weeks. Contact angle measurements were taken across central axes of samples at a 

resolution of 0.5mm. Profiles are the mean of 3 samples. Error bars are ± 1 standard 
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Figure 3.18 Line graph of contact angle profiles of plasma treated polystyrene (T-PS) samples stored 

in air for 0 days, 1 day, 4 days, 7 days, 2 weeks, 4 weeks, 8 weeks and 52 weeks. Contact 

angle measurements were taken across central axes of samples at a resolution of 

0.5mm. Profiles are the mean of 3 samples. Error bars are ± 1 standard deviation. ..... 119 
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in deionised water for 0 days, 1 day, 4 days, 7 days, 2 weeks, 4 weeks, 8 weeks and 52 

weeks. Contact angle measurements were taken across central axes of samples at a 

resolution of 0.5mm. Profiles are the mean of 3 samples. Error bars are ± 1 standard 
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Figure 3.20 Bar chart displaying mean number of N/N1003A rabbit lens epithelial cells (LECs) per 

field of view at the centre of samples and 1.5mm, 3mm and 4mm from the centre of 

samples at 1 hour post-seeding. Untreated polystyrene (PS) was stored in air (Air) or 

water (H2O) for 0 days (0d), 4 days (4d), 1 week (1w) or 1 month (1m). Tissue culture PS 

(TCPS) served as a control. Profiles are the mean of 3 samples. Error bars are ± 1 
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field of view at the centre of samples and 1.5mm, 3mm and 4mm from the centre of 
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(Air) or water (H2O) for 0 days (0d), 4 days (4d), 1 week (1w) or 1 month (1m). Tissue 
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1 Introduction 

 

Plasma technology has been used extensively to alter the surface chemistry of materials to 

achieve a desired cellular response. With the emergence of atmospheric pressure low 

temperature microplasmas spatially defined surfaces chemistries can be tailored efficiently 

and cost effectively on materials with low melting points. The fibrotic change to ocular 

tissue known as posterior capsule opacification (PCO) following an implantation of an 

intraocular lens (IOL) is a major concern in ophthalmology. It has been hypothesised that 

the promotion of a lens epithelial cell (LEC) monolayer which retains its phenotype or 

inhibition of LEC migration may reduce or eradicate PCO. This study evaluated the use of a 

microplasma system to influence cell-surface interactions on polymer materials.  

 

1.1 Biomaterials 

A biomaterial can be defined as, “Any substance, other than a drug, or combination of 

substances, synthetic or natural in origin, which can be used for any period of time, as a 

whole or as a part of a system which treats, augments, or replaces any tissue, organ or 

function of the body.” [1] 

 

Biomaterials are used throughout the body in implants for various functions such as: joint 

replacement, vascular prostheses, dental implants, neural guidance conduits, ophthalmic 

implants and many others. Many different biomaterials are used within, and on, the eye to 

improve vision, repair structures and alleviate the effects of injury and disease [2]. 

Biomaterials and their properties must be chosen to suit their application, for example 

strong materials for load bearing joint replacements and optically clear materials for those 

used in the visual pathway. One property which applies to all biomaterials is 

biocompatibility. Biocompatible material refers to, ”the ability to locally trigger and guide 

non-fibrotic wound healing, reconstruction and tissue integration.” [3] Biocompatibility 

must be demonstrated for a material prior to its clinical use and this is outlined in the 

various parts of ISO standard 10993.  
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There will inevitably be a biological response to an implanted biomaterial yet a material 

with good biocompatibility should not elicit an adverse biological reaction; however a 

positive reaction may be induced. For example foreign body reaction is required for the 

integration of an implant, or perhaps a strong immune response is required to quickly 

degrade a biomaterial, if its function requires it. Only the material’s surface interacts with 

the body and the cells within, therefore an understanding of the interface between cells 

and surfaces are essential to the field of biomaterials. 

 

1.2 Cell-Surface Interactions 

Cells only interact with biomaterial surfaces via an adsorbed protein layer. This protein 

adsorption occurs almost immediately [4], however competition between different proteins 

for adsorption sites on surfaces can take longer [4-7]. Vroman outlined that smaller 

proteins initially adsorb onto the surface which are later replaced by larger proteins. This 

has become known as the Vroman effect [6]. Proteins are long chains of amino acids which 

a changeable 3D structure, referred to as the protein conformation. Each of the amino acids 

in the protein have individual physiochemical properties in their side chains, such as: 

charged, non-charged polar and hydrophobic (or non-polar). The 3D structure of proteins 

within a given environment is governed by thermodynamic processes, by which the 

proteins change their shape to achieve the lowest possible interfacial energy with their 

immediate surrounding medium [7, 8]. The adsorption of proteins onto surfaces and their 

subsequent conformation are dependent on the composition of a surface – its 

physiochemical properties – and the structure of the proteins, particularly their polar/non-

polar characteristics [9]. Polar (or nondispersive) interactions are a major factor in protein 

adsorption [10], they can affect specific protein adsorption, the amount of adsorption and 

the conformation of the adsorbed protein. In an aqueous polar solution, such as water, a 

protein will form a globular structure with the hydrophilic (water attracting) components 

on the outside and the hydrophobic (water repelling) components shielded from the water 

on the inside of the structure. When they encounter a material surface they aim to 

minimise interfacial energy and attempt to reach thermodynamic equilibrium. This is 

sometimes achieved by altering their conformation such that a specific site within their 

amino acid chain may bind with the surface [7, 11, 12]. If the surface is relatively 

hydrophobic, or non-polar, then hydrophobic components of the protein will attempt to 
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bind to the surface, whereas the hydrophilic components will interact with the water, 

shielding the hydrophobic surface and amino acids beneath. 

 

Proteins are folded to a specific conformation within the body so that they may bind to 

certain molecules, such as other proteins or receptors on cell surfaces. Some of these 

receptors on cell surfaces are integrins, cell adhesion molecules (CAMs), cadherins and 

selectins [13-16]. These receptors are proteins which span across the cell membrane (trans-

membrane) and are responsible not only for cell adhesion but also cell signalling by 

transmission of information across the cell membrane [15]. They bind to specific sequences 

of amino acids within a protein [11, 17](Figure 1.1). One such sequence of amino acids is 

the arginine-glycine-aspartic acid (RGD) sequence, which is present on various extracellular 

matrix (ECM) proteins such as: fibronectin, collagens, vitronectin, fibrinogen and laminin 

[14]. For cells to bind to biomaterial surfaces, the biomaterial must have surface properties 

which will cause the necessary proteins to adsorb in a confirmation which presents 

peptides such as RGD to the cells. Once cells adhere to a surface (via the proteins) they can 

secrete and deposit their own ECM molecules to spread, attach more strongly or to engage 

in processes such as migration and mitosis; however the initial adsorption of proteins, 

governed by the biomaterial’s surface properties, is crucial. It has often been shown that 

cells tend to adhere more strongly to proteins adsorbed to more hydrophilic surfaces than 

more hydrophobic surfaces [5, 10, 11, 18]. The greater amount of polar groups in more 

hydrophilic surfaces increases the adsorption of proteins responsible for cell adhesion. Cells 

tend to have greater spreading across high surface energy hydrophilic surfaces than across 

lower energy hydrophobic surfaces, however it is of note that very hydrophilic surfaces do 

not promote cell adhesion. Therefore surface modification to increase hydrophilicity to a 

degree, by incorporation of polar groups, should increase cell adhesion. Atmospheric 

pressure plasmas operated in air are a proven method of achieving this as they tend to 

increase polar oxygen groups on the surfaces and have been shown to promote cell 

adhesion [5, 18, 19]. Cells are also be influenced by a surface directly, not just the adsorbed 

protein layer, but this occurs following initial adhesion to the protein layer [4]. Factors 

which influence protein adsorption and cell interactions include chemistry (including 

charge), topography, and stiffness [7, 20-24]. 
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The processes of protein adsorption and cell attachment are complex. These will be 

discussed with relevance to plasma-based surface modification and replacement lenses 

throughout this chapter. 

 

 

Figure 1.1 Illustration of cell adhesion to a material surface via the binding of a integrin, a 

trans-membrane protein, to specific amino acids (A) of an adsorbed protein layer (B) [25]. 

 

1.3 Anatomy of the Eye  

The purpose of the eye is to focus light on the retina where it can be converted to electrical 

impulses which are sent to the brain. The structures involved in this process will be 

discussed in this section and are shown on Figure 1.2. 
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A small portion of the eyes surface, approximately 7% [26], is covered by the transparent 

cornea. The cornea permits light to enter the eye, protects the internal structures and 

provides the majority of the focal strength of the eye.  

 

 

Figure 1.2 Schematic diagram representing the gross anatomy of the eye [27].  

 

Between the cornea and the iris is the aqueous humour. It is a transparent fluid secreted by 

the vascularised ciliary processes, which are located behind the opaque iris. This fluid 

passes through the pupil into the anterior chamber where it is then drained via the 

trabecular meshwork and Schlemm’s canal [28]. Its functions included supplying the 

avascular cornea and lens with nutrients and also maintaining intraocular pressure, the 

latter is a balance of fluid secretion and drainage which must be maintained in a healthy 

eye. The iris controls the amount of light which enters the eye. This mechanism is 

controlled by the pupillae muscles [26]. The crystalline lens provides a fine focus function in 

the eye in an action known as accommodation. The structure and focus of the lens will be 

discussed in more detail in the following section. The lens separates the anterior and 

posterior chambers of the eye, the former has been outlined above and the structures in 

the latter are discussed below. 

 

The vitreous is a gel-like substance that is posterior to the lens and is the largest part of the 

eye. The posterior of the vitreous is attached to the retina and its anterior by the ciliary 

body and lens capsule. It is 99% water but its viscosity has been attributed to the relatively 

large amount of hyaluronan throughout it [26, 28]. The retina lines most of the posterior 

surface of the eye and it is here that the eye aims to focus the light which enters it. It 

contains photoreceptors which detect light and send the information via the optic nerve to 
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the brain. The photoreceptors also perform a pre-computation function before sending 

impulses on. They can detect variations in light and dark as well as movement [2]. Within 

the retina are the macula, an area with many ganglion cells (eye neural cells) and the fovea, 

an area in the central macula with a high density of photoreceptors responsible for sharp 

central vision. 

 

1.3.1 Anatomy of the Lens 

The crystalline lens is a biconvex structure and the radius of curvature is larger on the 

posterior side than the anterior. It is contained within the lens capsule. The lens capsule is a 

continuous basement membrane which separates the lens from the surrounding orbital 

structures.  It is a strong structure yet allows the exchange of nutrients and waste between 

the aqueous humour and the lens cells [29]. The lens capsule is primarily composed of 

interacting laminin and collagen IV networks; nidogen and proteoglycans stabilise the 

independent networks [29]. Lens epithelial cells (LECs) reside on the anterior capsule. The 

cells which reside in the equatorial region proliferate and differentiate into lens fibre cells. 

During this process they elongate along the anterior epithelium and posterior basement 

membrane toward the respective poles with the nuclei remaining near the equator. As 

more lens epithelial cells differentiate they are extended along the epithelium beneath 

older cells, pushing them deeper into the lens and away from the epithelium. These cells 

begin to lose their ability for protein synthesis and their organelles (Figure 1.3).   

 

 



 

 

7 

Chapter 1: Introduction 

 

Figure 1.3 Diagram of meridional section of a lens showing the lens capsule and the 

various layers of cells [30]. 

 

After this the cells lose their nuclei and, having separated from the epithelium, the cells 

become almost like hexagonal pipes. They bind together tightly by tongue and groove-like 

joints when the flat surfaces meet, and by ball and socket connections at the apices of their 

hexagonal morphology [26, 28, 31] (Figure 1.4). The cell fibre membranes fuse at their ends 

in a very ordered fashion displaying distinct fissures or “sutures” in the overall lens [32]. 

These very tight connections leave very little intercellular space which is a main function of 

transparency, along with the loss of organelles and de-nucleation. 
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Figure 1.4 Diagram of 3D projection of an equatorial section of the lens showing a 

traverse hexagonal structure of a lens fibre with intercellular connections [31]. 

 

The lens fibres can be divided into regions; the cortical region and the nucleus. The cortical 

region contains the newer fibre cells and the nucleus consists of the smaller and more 

densely packed fibres formed in the embryonic and foetal stages, which can be subdivisions 

of the nucleus. This process happens continuously throughout life causing the lens to 

become thicker with age. The equatorial diameter changes from 6.5mm to up to 9.5mm 

after 90 years and the axial length can increase by 1.5mm from 3.5mm from birth to the 

age of 95 [26]. The increasing thickness and decreasing pliability results in reduced 

accommodative power with age. 

 

The lens fibres have a very high protein concentration, which gives the lens a high refractive 

index [32]. The predominant proteins in the lens are known as the crystallins. These 

proteins tend not to form into aggregates which would cause the scattering of light and are 

therefore another key function of transparency.  
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1.3.2 Development of the Lens 

In humans the lens placode is formed from the surface ectoderm at the 4mm embryo stage. 

The surface ectoderm is in contact with the neural ectoderm, which forms the optical 

vesicle from a monolayer of cuboidal cells. Invagination of the lens placode to form the lens 

pit begins at the 5mm stage. The optical vesicle invaginates to form the optical cup, which 

surrounds the lens placode. The lens placode separates from the surface ectoderm by the 

9mm embryonic stage after which the lens appears as a hollow sphere with a diameter of 

~0.2mm. A monolayer of columnar cells lines the outer wall, this will become the lens 

epithelium. A basal wall envelops the vesicle and a thin basal lamina is synthesised that 

thickens to form the lens capsule. 

 

The lens becomes more oval shaped between the 10mm and 13mm embryonic stages. The 

columnar cells on the posterior capsular differentiate into early lens fibre cells. Over time 

these fibres are forced towards the centre of the lens and form the nucleus, as stated 

previously. LEC differentiation continues in the equatorial region and newer fibres 

encapsulate the nucleus and are referred as the cortex [33-39].  

 

1.3.3 Fine Focusing using the Lens 

By changing the curvature of the lens, objects at different distances can be focused onto 

the retina to provide a clear image. This process is conducted by the ciliary muscle, which 

alters the angle curvature of the lens and thus changing its focal length. By increasing the 

lens curvature the focal length is shortened bringing near objects into focus, this is known 

as accommodation. By decreasing the curvature the focal distance increase thus bringing 

distant objects into focus, this is known as disaccommodation. The ciliary body is connected 

to the sclera spur at its anterior and to the choroid at its posterior. The zonule fibres, or 

zonules, connect the lens capsule to the ciliary body [40-43]. 

 

1.3.3.1 Accommodation 

Accommodation is an active process in which the ciliary muscle contracts. As it contracts it 

thickens in the area near the ciliary process, to which the zonules fibres are attached. As it 

thickens here the zonules fibres relax and are not under tension. This allows the lens to 
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thicken in the anterior-posterior axis and decreases the equatorial diameter, which 

increases the angle of curvature on the anterior and posterior surfaces. The anterior 

surface moves towards the cornea as the posterior surface is confined by the vitreous, thus 

decreasing the size of the anterior chamber. These processes alter the refractive index of 

the eye (Figure 1.5)[40-43]. 

 

 

Figure 1.5 Cartoon of accommodation. The ciliary muscle is contracted which causes the 

zonules fibres to relax. This allows the lens to become more circular. Its anterior-posterior 

axis thickness increases whilst the equatorial diameter decreases. 

 

1.3.3.2 Disaccommodation 

Disaccommodation is obviously the reverse of accommodation. The ciliary muscle relaxes 

which causes it to be pulled along the surface of the choroid by its posterior anchor. This 

thins the ciliary body and creates tension in the zonules fibres. The zonules fibres pull on 

the capsular bag, stretching the lens. This decreases the anterior-posterior lens thickness 

and increases the equatorial diameter, as this occurs the anterior of the lens moves further 

away from the cornea. These processes decrease the refractive index of the eye to focus on 

distant objects (Figure 1.6)[40-43]. 
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Figure 1.6 Cartoon of disaccommodation. The ciliary muscle is relaxed which causes the 

zonules fibres to be under tension. This stretches the lens to a more oblong shape. Its 

anterior-posterior axis thickness decreases whilst the equatorial diameter increases. 

 

1.3.3.3 Changes with Age 

The ability of the eye to focus on near objects diminishes with age, this is known as 

presbyopia, which from the Greek origins means “old eye”. The process is not fully 

understood but several reasons have been suggested, such as a decrease in the elasticity of 

Bruch’s membrane. This membrane is behind the retina and it has been suggested that an 

increase in its stiffness inhibits the ciliary body from moving forward fully when it contracts. 

Another hypothesis is that an increase in the size of the lens causes a decrease in the 

anterior chamber size (Figure 1.7). A decrease in the viscosity of the vitreous may mean 

that the lens could move posteriorly during accommodation. The lens nucleus also hardens 

with age. These factors may all contribute to presbyopia [34-36, 43]. 
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Figure 1.7 Photograph demonstrating the difference in lenses with age. Measurements 

are cross-sections of the lenses and the lenses may have swollen during fixation, thus do 

not accurately represent the lens in vivo. The lens from the younger donor (A) is clearer 

and smaller than the lens from the older donor (B) [44]. 

 

1.3.4 Cataracts 

Cataracts are a clouding or opacification of the natural crystalline lens (Figure 1.9). They 

have been attributed to approximately 50% of global blindness (Figure 1.8)[45, 46]. The 

World Health Organisation believes there are over 124 million people in the world suffering 

from blindness due to cataracts [47].  
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Figure 1.8 Pie chart demonstrating the global causes of blindness as a percentage of total 

blindness. Data are from World Health Organisation - “Global estimates of visual 

impairment: 2010” report [48]. AMD, age-related macular degeneration; RE, uncorrected 

refractive errors; DR, diabetic retinopathy. 

 

There are 3 main types of cataracts:  

1. Nuclear – the most common form, which begin in the centre of the lens.  

2. Cortical – which originate in the periphery of the lens and appear like spokes. 

3. Subcapsular – these occur near the lens capsule. They can be posterior or 

anterior, the former is more common.  

The most common form of cataract is the senile cataract which develops with age [49]. 

Cataracts can also be caused by trauma, steroid use or they may be congenital. There are 

many factors that have been attributed to the development of cataracts such as: near-UV 

radiation [50], smoking [51], alcohol consumption [52], socio-economic factors [51], diet 

and diabetes [46](Figure 1.9). It has been suggested that avoidance of smoking and from 

exposure to near-UV radiation are the only avoidable factors [45]. Alcohol consumption is 

excluded from this as it has been shown that there is a greater prevalence of cataracts in 

heavy drinkers and abstainers than in moderate drinkers [46, 52]. 

 

Costello et al. [53] have shown that there is degradation in the plasma membranes of 

nuclear fibres with ageing and it is more pronounced in opaque lenses. Using transmission 
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electron microscopy they have shown that the plasma membrane forms undulating curves, 

some areas suffer degradation, extracellular spaces widen and that protein deposits form in 

the extracellular spaces. They have shown that increased extracellular space reduces the 

transparency of the lens nucleus due to frequent changes in refractive index. They also 

believe that the protein aggregates may cause light scattering. It has been shown previously 

that the molecular weight of protein aggregates in the lens nucleus increases with age and 

is greater in cataractous lenses [54]. The unfolded protein response is a cellular response 

due to aggregation of unfolded proteins in the endoplasmic reticulum. This response can 

create reactive oxygen species, with or without apoptosis, and is also strongly linked to 

oxidative stress [55]. The creation of oxidation species could exacerbate several of the 

previously mentioned cataract causes, which are also related to oxidative stress [45, 50, 

51]. This protein degradation and aggregation may be responsible for cataract formation 

but there are many contributing factors and the mechanisms are not fully understood [34, 

40, 53, 56-60]. 
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Figure 1.9 Photographs of cataractous lenses. Image A. is a slit lamp photograph of a 

peripheral cataract taken from a patient in the Royal Liverpool University Hospital prior 

to surgery [44]. Image B shows a mature cortical cataract, which begins at the lens 

periphery and is characterised by its spoke like appearance [61]. This is a sudden onset in 

a patient with Type 1 (juvenile) diabetes. Image C shows a very mature age-related 

cortico-nuclear cataract [62]. Images B. and C. are extreme cases and would most likely 

treated before this stage in developed countries. 
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1.3.4.1 Cataract Surgery 

Cataract surgery is the most common ophthalmic procedure [63-66]. Typically the surgery is 

performed on an outpatient basis and over 70% of UK cataract surgeries are performed 

under local anaesthesia [67]. The opacified natural lens is removed and a synthetic 

polymeric lens, called an intraocular lens (IOL) is implanted (Figure 1.10). A brief overview 

of the surgery will be outlined in the following paragraph. The importance and 

development of surgical technique on post-operative complications will be address in more 

detail in Section 1.4.1.1. 

 

 

Figure 1.10 Photographs of various intraocular lenses. A. Alcon Acrysof®, B. Alcon 

Acrysof® with UV filter, C. Rayner C-Flex® and D. Artisan anterior chamber IOL [44]. 

 

The surgeon firstly makes an incision in the limbal region of the eye, where the clear cornea 

meets the white sclera (Figure 1.11A). With modern foldable IOLs which can be rolled allow 

incisions smaller than 3mm. This small size allows self-healing without the use of sutures. 

These smaller incisions can reduce the wound healing response and post-operative 

complications due to this [67]. After this the surgeon must create an opening in the lens 
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capsule to access the cataractous lens fibres. A procedure called a continuous curvilinear 

capsulorhexis (CCC) is typically used. This method can also reduce post-operative 

complications compared to previous techniques but this will be addressed in Section 

1.4.1.1. Essentially the procedure involves making an incision and then tearing the capsule 

using shear forces in the direction of the desired tear [67]. Now with access to the lens 

fibres a phacoemulsification probe is inserted into the lens capsule. This is an ultrasonic 

probe which is used to break down and aspirate the cataractous lens, leaving the lens 

capsule intact (Figure 1.11B). The surgeon will attempt to remove all of the LECs from the 

anterior section of the lens capsule however this is rarely, if ever, achievable [68]. Following 

this an intraocular lens is placed in the remaining capsular bag (Figure 1.11C&D). Careful 

surgery with minimal corneal incisions can decrease or prevent the breakdown of the 

blood-aqueous barrier (BAB). Breakdown of the BAB introduces cytokine signalling 

molecules to the lens environment; these have been implicated in a post-operative 

complication associated with wound healing and scarring, known as posterior capsule 

opacification. 

A B 
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Figure 1.11 Cartoon of cataract surgery. A. The clear corneal incision is made in the limbal 

region. B. The cataractous lens is removed from the capsular bag by phacoemulsification. 

C. An intraocular lens (IOL) replaces the focusing function of the natural lens and is 

composed of haptics which keep it in situ and an optic portion. D. The IOL is placed within 

the capsular bag and held in situ by the haptics. Courtesy of R. Lace [44](adapted from 

Healthwise Inc. [69]). 
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1.4 Posterior Capsule Opacification 

Posterior capsule opacification (PCO) is the main post-operative complication following IOL 

implantation. It stems from a wound healing response to the damage caused by cataract 

surgery and implantation of an IOL. As stated previously it is highly unlikely that the 

surgeon will be able to remove all of the LECs from the anterior of the lens capsule during 

cataract surgery. These residual LECs are stimulated by the injury caused during surgery to 

proliferate and migrate. These cells migrate to the posterior capsule where they often 

dedifferentiate into fibroblast-like cells. This dedifferentiation causes a morphological 

change in the cells, which results in a wrinkling of the posterior capsule to which they are 

attached (Figure 1.12). The cells are also known to form into islets which later migrate to 

the optical axis, as well as undergo lenticular fibre differentiation. The former are known as 

Elsching’s pearls [70, 71] and the latter as Sommerring’s ring [71, 72]. The above 

mechanisms disrupt the path of light to the retina and cause scattering, thus impairing 

vision. As the name suggests the posterior capsule becomes opacified. This is also known as 

a secondary cataract. 
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Figure 1.12 Cartoon depicting the basic mechanism of posterior capsule opacification 

(PCO). Residual  lens epithelial cells (LECs) which remain following cataract surgery 

proliferate and migrate to the previously cell free anterior capsule. Here these LECs 

dedifferentiate into fibroblast-like cells. During this dedifferentiation the LECs undergo 

morphological changes which cause them to pull on the posterior capsule to which they 

are attached and cause it to wrinkle. This wrinkling scatters light as it travels to the 

retina, impairing sight [25]. 

 

Through various methods of study including in vivo observation, post-mortem examination 

[73], in vivo animal studies, capsular bag models [74] and cell culture studies, researchers 

have been attempting to elucidate and understand the mechanisms of PCO [37, 75-77]. 

Through these various methods it has been shown that PCO results from paracrine and 
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autocrine signalling systems. Paracrine signalling comes from other ocular tissues, 

particularly the aqueous humour. During surgery the blood-aqueous barrier is disrupted, 

this barrier normally prevents some molecules from entering the aqueous, which allows 

increased protein levels in the aqueous. These molecules include transforming growth 

factor-βs (TGF-β), (TGF-β2 is the isoform of particular interest), basic fibroblast growth 

factor (FGF) and epidermal growth factor (EGF) [70, 76]. Although TGF-β2 is present in the 

aqueous normally it is mostly in its latent form. Following surgery increased levels are 

found in an active state [78, 79]. TGF-β2 is believed to be one of the main proteins 

responsible for epithelial cell dedifferentiation into fibroblast-like cells which are one of the 

causes of posterior capsule wrinkling [70, 75, 76]. This change is often known as epithelial-

mesenchymal transition (EMT) [36, 71, 80-84]. This was shown by increased dose-

dependent expression of mesenchymal or fibroblast marker α-smooth muscle actin 

(αSMA), and the deposition of fibronectin with the addition of TGF-β2 in LECs using the 

capsular bag model [85].  TGF-β2 has also, paradoxically, been attributed to apoptosis of 

LECs however, basic FGF has been shown to mediate this effect [86]. Similarly, FGF has 

been shown to increase proliferation and migration rates of LECs in in vitro and ex vivo 

capsular bags [87-89]. EGF has been shown to increase proliferation and it is believed to be 

able to cause differentiation into lens fibre cells, thus a possible cause of Sommerring’s 

rings [76]. It is of note that not only are these growth factors available in the aqueous but 

that the lens capsule acts as a storage mechanism for them [29]. It has been suggested that 

other cytokines, typically involved in inflammation, may play a role in the development in 

PCO [88, 90-95]. Interleukins 1 & 6 (IL-1 and IL-6) have also been detected in the aqueous 

humour during and after cataract surgery [94, 96-99]. IL-1 and IL-6 have been implicated in 

the proliferation of LECs, the increased deposition of collagen and the inflammatory 

response [88, 90, 91, 96]. 

 

Autocrine signalling, which is the expression of growth factors, cytokines and proteins by 

the LECs themselves, also plays a role in the development of PCO. IL-1 and IL-6 have been 

secreted by explanted anterior capsules [90, 91, 93, 96]. Shigamitsu et al. observed positive 

antibody staining for IL-6, IL-1 receptor II, FGF, FGF receptor, EGF, TGF-β, TGF-β receptor II, 

TNF-α and others in the fibrous tissue on lens capsules after cataract surgery [100]. Prada 

et al. detected IL-1α and tumour necrosis factor-alpha (TNFα) mRNA in LECs [93]. TNF-α has 
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also been detected in the aqueous humour [93] and it has also been detected in Elsching’s 

pearls [100]. Wormstone et al. demonstrated the de novo production of basic FGF and the 

presence of FGF receptor I in lens capsule explants grown in serum free media [87]. The 

lens has also been shown to secrete TGF-β2 [78]. TGF-β2 and TGF-β receptor II have been 

found in LECs by Saika et al. using immunohistochemistry [101].  

 

These signalling systems are not necessarily independent and there are many other factors 

which contribute. For example it has been hypothesised that matrix metalloproteinases 

(MMPs)(particularly MMP2 and MMP9) play a role in the remodelling of the ECM on IOLs 

and in capsular bags, and these changes in ECM may signal different cellular responses such 

as dedifferentiation  [70, 75, 76]. It has been suggested that fibronectin induces MMP-9 

expression, which causes expression of MMPs-2 and -14 [102]. As stated earlier TGF-β2 

induces fibronectin deposition [85], it has also been reported that MMP-2 is involved in 

TGF-β2-induced matrix remodelling [103], once activated by MMP-14 [102], and that basic 

FGF may be required to inhibit the apoptotic effect of TGF-β2 [86]. PCO is therefore not 

fully understood and research is still underway to understand the mechanisms of this post-

surgical response. This research may also find targets for therapeutic agents to inhibit PCO. 
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Figure 1.13 Photograph of a donor eye with an implanted intraocular lens (IOL) with 

posterior capsule opacification (PCO) and Sommerring’s ring [44]. 

 

The incidence of PCO between studies varies [104]. This may be in part due to the lack of a 

universal metric for the onset or degree of PCO. The incidence of PCO is often grouped by 

IOL material in studies, and Schaumberg et al. reported a meta-analysis of PCO reports 

published between 1979-1996. The authors reported the Nd:YAG capsulotomy rates at 1, 3 

and 5-years post-cataract surgery. They were “11.8% (range, 9.3%-14.3%) at 1 year (n = 

13,183; 31 articles), 20.7% (range, 16.6%-24.9%) at 3 years (n = 66,496; 19 articles), and 

28.4% (range, 18.4%-38.4%) at 5 years (n = 1866; 5 articles)” [105]. A study conducted in 10 

centres across France by Boureau et al. reported the rates of PCO for 3 square edge design 

IOLs: Zeiss-IOLtech’s XL-Stabi (n=263),  Advanced Medical Optic’s AR40E (n=254) and the 

gold standard, Alcon’s Acrysof SA620 (n=250). By 3 years post-surgery PCO had occurred in 

eyes with 45.4% of XL-Stabi IOLs, 23.3% of AR40E IOLs and only 13.1% of Acrysof IOLs. Using 

2005 figures for the number of cataract interventions and the market share of each of the 3 

lenses, the authors calculated the total cost of post-capsulotomy complications for the 3 
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types of lenses to be ~€51.9-54.3 million, i.e. the cost of complications from 2005 until 2031 

due to the implantation of the 3 types of lenses in 2005 [106]. 

 

1.4.1 Current Treatment Options 

There is currently only one treatment option for PCO, that is Nd:YAG (neodymium doped 

yttrium aluminium garnet) laser capsulotomy. This treatment ablates the opacified 

posterior capsule, however this procedure is expensive and not without risk. In 5% of 

patients complications will arise [107]. These include IOL damage, cystoid macular oedema, 

increased intraocular pressure, retinal detachment or dislocation of the IOL. Due to the 

expense and technology required this treatment is not available to most of the developing 

world. 

 

There are various research strategies to prevent or reduce the incidence and onset of PCO 

which include:  

1. Surgical treatment - the improvement of cataract surgery to reduce the wound 

healing response and clean up residual LECs. 

2. Drug delivery - the delivery of various drugs to inhibit the mechanisms of PCO.  

3. IOL material and design - the modification of IOL shapes, materials and surfaces. 

These research areas are not mutually exclusive and are interconnected; for example drugs 

can be applied during cataract surgery or IOLs could be used as drug delivery vehicles. 

These will be discussed in the following sections with a greater focus on IOL material and 

design. 

 

1.4.1.1 Surgical Treatment 

An early area of research into the surgical treatment of cataracts and subsequent PCO was 

the positioning and fixation of the IOLs. Lenses were placed in the anterior capsule in work 

mostly conducted in the 1950’s, however these lenses caused inflammation due to abrasion 

of the cornea. Suturing of IOLs to the iris was also investigated however these suffered 

from iris erosion and IOL dislocation. Following this IOLs were placed posteriorly, i.e. behind 

the iris and were fixed using the “j”-shaped haptics. These were originally placed in the 

sulcus; between the iris and the lens capsule. This positioning resulted in abrasion of the iris 

and IOL dislocation [43, 75]. This led to the development of “c”-shaped haptics (Figure 
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1.10A&B), capsulorhexis in “in-the-bag” fixation is still used today (Figure 1.11). This 

method prevents abrasion with other tissues, and is disputed to create a barrier to cell 

migration onto the posterior capsule by adhesion of the IOL and posterior capsule [37, 43, 

75]. The latter will be discussed further in section 1.4.1.3 below.  

 

One of the benefits of the development of CCC include the improved clean-up of LECs from 

the equator and anterior capsule. The reduced number of LECs following cataract surgery 

not only decreases the LECs which can proliferate but also decreases the number which can 

secrete inflammatory cytokines [37]. This was further aided by “hydrodissection”, the 

injection/aspiration of a solution into the capsular bag [37, 108]. This has been reported to 

decrease surgical time [108, 109]. The decrease in size of CCC is also said to be beneficial as 

it decreases the interaction with the aqueous humour [109, 110]. The development of 

foldable intraocular lenses, fixed in-the-bag, as well techniques such as hydrodissection, 

phacoemulsification and CCC have reduced the invasiveness of the surgery and the 

inflammatory response; however PCO is still prevalent. Research into the use of drugs to 

target specific cytokines implicit in PCO, e.g. TGF-β2; or more general cellular responses 

involved, e.g. proliferation, is still underway. 

 

1.4.1.2 Drug Delivery 

Anti-proliferative drugs, cell adhesion blockers [111, 112] and apoptosis inducing drugs 

have been proposed to combat PCO, however the efficacy of these options has not been 

shown in patients [68, 75, 113, 114]. There is also the danger that these drugs could affect 

other ocular tissues. Some of the drugs used include thapsigargin [115, 116], 5-fluorouracil 

(5-FU) [116, 117], mitomycin-C [112], and deoxorubicin [113, 114]. Thapsigargin has been 

used to inhibit intracellular calcium signalling, a key regulator of lens cell function. It has 

been demonstrated that it causes increased cell death and reduced proliferation [75, 115]. 

MG132, a proteosome inhibitor, has been shown to decrease lens cell proliferation and 

migration even in the presence of various growth factors [75, 118]. Work by Wormstone’s 

laboratory has investigated the use of TGF-β2 antibody, CAT-152, to reduce EMT in lens 

cells, and the expression of α-smooth muscle actin [77, 85, 119, 120]. The results show that 

application of CAT-152 at early time points alleviates the effects of TGF-β2 on LECs, 

however no work on this has been published since 2006 [120]. 



 

 

26 

Chapter 1: Introduction 

 

The delivery and sustained release is one of the barriers to the use of pharmacological 

agents. Duncan et al. bound thapsigargin to PMMA IOLs via hydrophobic bonding by 

immersing the IOLs in thapsigargin dissolved in dimethyl sulfoxide (DMSO). In an in-vitro 

capsular bag model [121]  they demonstrated reduced growth of LECs on the posterior 

capsule at low concentrations and complete cell death at high concentrations [115]. This 

work does not discuss the effects thapsigargin may have in surrounding tissue nor any 

possible release kinetics [115]. Pandey et al. used an intracapsular ring to prevent 

contraction of the capsular bag and to deliver 5-FU. Results indicated that the migration of 

LECs on the centre of the posterior capsular bag was reduced, however the authors suggest 

it may be due to a mechanical effect of the intracapsular ring rather than the presence of 5-

FU [117]. A biodegradable implant, Surodex, was developed to slowly release 

pharmacological agents. It was implanted during cataract surgery and released 

dexamethasone with the aim of reducing post-operative inflammation [68, 114]. Tan et al. 

compared the implantation of the Surodex device to conventional 0.1% dexamethasone 

eye drops in two studies. The first stated that Surodex decreased anterior flare compared 

to the conventional eye drops up to 30 days post-operatively [122]. The second study, 

which implanted 2 Surodex devices per eye states that flare was only significantly reduced 

up to 15 days post-operatively, however the authors mention that the Surodex treatment 

reduced discomfort, photophobia and lacrimation [122, 123]. Further study of the Surodex 

implant by Wadood et al. demonstrated that there was no significant difference in flare or 

subjective inflammation when comparing the Surodex device to normal dexamethasone 

eye drops [124]. Although various pharmacological agents, and their delivery, have been 

investigated none have yet shown to been clinically conclusive in the fight against PCO [68, 

75, 114, 123]. 

 

1.4.1.3 Intraocular Lenses 

The idea of intraocular lenses was first proposed by Harold Ridley in 1949 [125]. In essence 

an IOL is a polymeric disc, which provides the optical function of the lens, held in-situ by the 

capsular bag. Typically, IOLs are held in place in the capsular bag by polymeric haptics which 

press against the equatorial region of the capsular bag.  
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 Intraocular Lens Materials 1.4.1.3.1

IOLs were originally made from poly(methyl methacrylate) (PMMA). During World War II 

doctors noticed that shards of PMMA left in pilots eyes after attack elicited very little 

foreign body reaction, giving Harold Ridley the idea for their use as an ocular implant. There 

have been many developments in the materials used for the manufacture of IOLs. Mainly in 

the use of hydrophobic or hydrophilic acrylics (and their co-polymers) and silicone i.e. 

poly(dimethyl siloxane) (PDMS). The acrylics typically used for hydrophobic lenses are 

phenylethyl methacrylate (PEMA) or phenylethyl acrylate (PEA), whereas hydrophilic lens 

have a poly(hydroxyethylmethacrylate) (PHEMA) base [2, 125]. The chemical structure of 

the different lens materials can be seen below in Figure 1.14. 

 

 

Figure 1.14 Chemical Structures of Common IOL Materials. 

 

PMMA is not often used as a lens material in the developed world, however due to its low 

cost is still commonly used in developing countries. It is a homopolymer that is a rigid and 

glassy material at room temperature. Clinicians now tend to prefer the acrylic copolymers, 

or silicone, over PMMA as they are flexible and can be inserted through smaller corneal 

wounds.  

 

Hydrophilic hydrogel lenses are generally made from PHEMA and copolymers with water 

content ranging from about 18% to 38% [75]. It is the hydroxyl group (OH) within the 
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monomer which gives them their hydrophilic nature (Figure 1.14). This polar functional 

group allows the monomer to orientate itself so that it can more readily form hydrogen 

bonds when in contact with polar liquids such as water, increasing its hydrophilicity [126]. 

As the monomers are present throughout the polymer, water is absorbed into the material. 

 

Hydrophobic acrylic IOL’s are made from combinations of PMMA, PEMA, PEA and 

(poly)trifluorethylmethacrylate (PTFEMA) [127]. The phenyl ring within PEMA and PEA 

monomers is a stable, low energy structure that does not readily share electrons. It is this 

that causes the materials hydrophobicity. Alcon’s Acrysof® hydrophobic IOL is considered 

the gold standard in the UK and favoured by many surgeons. 

 

Silicone is a highly hydrophobic foldable material [75]. It is also a highly elastic and an 

oxygen permeable material [2, 125]. The low refractive index of silicone is said to reduce 

glare, compared to acrylic materials [125], but the acrylics’ high refractive index allows for 

thinner lenses and thus smaller incisions [107].  

 

Material used in IOL design has a varying effect on the incidence of PCO. There is markedly 

less cell and matrix deposition on silicone than PMMA yet there tends to be a greater 

amount of fibrotic tissue on silicone IOLs. Saika (2004) proposes that silicone induces a 

greater cellular response than PMMA [75]. A study by Hollick et al. (2000) has shown that 

implanted silicone lenses have a mean percentage area of opacified capsule of 17%, in 

comparison to 46% for PMMA and 63% for hydrogel lenses after a 2 year period. It also 

states that of the patients with silicone IOL implants none required Nd:YAG capsulotomy at 

2 years post implantation [128]. 

 

Hydrophilic acrylic IOLs tend to have an increased degree of PCO compared to PMMA, 

silicone or hydrophobic acrylics (determined by “objective image analysis software”) [75, 

128] and a high rate of Nd:YAG laser posterior capsulotomy (28%) at 2 years post 

implantation [128]. Hydrogel lenses were introduced as the efficacy as a biomaterial had 

been demonstrated previously. Authors often refer to the good “biocompatibility” of 

hydrogel lenses without defining what they mean by biocompatible, which is a term that is 

dependent upon the application. Most likely authors are referring to minimal immune 
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response to the material, however the high rates of PCO would suggest that it is not as 

biocompatible for the use as an IOL as other materials. The terms “hydrogel IOL” and 

“hydrophilic IOL” are generally used to refer to lenses based on PHEMA. The properties of 

the lenses can be tuned by the addition of different monomers and crosslinking agents 

[107]. A paper by Tognetto et al. demonstrated that adhesion of various cell types and the 

extent of anterior capsule opacification differed for 3 commercially available “hydrophilic” 

lenses [129]. 

 

 Intraocular Lens Shape 1.4.1.3.2

There have been changes in IOL design, most notably the progression from rigid IOLs to 

foldable IOLs allowing for smaller incisions in cataract surgery. The employment of the 

square-edge design made Alcon Acrysof® the leading IOL. The basis of the design 

effectiveness is that the square edge forms a physical barrier with the lens capsule, 

inhibiting the migration of the LECs [130-133]. A barrier is formed when the optic portion of 

the IOL binds to the collagenous capsule (Figure 1.15). This is typically done via a layer of 

fibronectin. This IOL-fibronectin-cell monolayer-fibronectin-capsule binding has been 

termed the “sandwich theory” but Linnola et al., who conducted various 

immunohistochemical and laboratory studies on this principle [73, 134-138]. Linnola et al. 

histologically examined autopsy eyes from donors who had had cataract surgery and 

implantation of PMMA, silicone, Alcon Acrysof® and Alcon hydrogel lenses for fibronectin, 

laminin, vitronectin and collagen IV. They demonstrated that this sandwich structure was 

typically observed with Acrysof® lenses, and that the other ECM proteins were typically not 

present in this sandwich structure. The authors discuss that as the main binding sites in 

fibronectin are for cells and collagen then fibronectin functions as a mediator to bind the 

IOL to the capsule [73]. In a previous study Linnola et al. demonstrated by radiolabelling 

proteins that more fibronectin binds Acrysof® hydrophobic acrylic lenses compared to 

lenses of other materials. The difference in fibronectin adsorption was significant when 

Acrysof® were compared to hydrophilic acrylic and silicone lenses, but not PMMA. As 

PMMA is a relatively hydrophobic acrylic this is not unexpected [138]. Johnston et al. also 

reported similar concentrations of fibronectin adsorbed to Acrysof® and PMMA lenses at 

early time points yet greater concentrations on Acrysof® following 7 days of incubation 

[139]. The efficacy of the square edge design is widely accepted. In Linnola and co-authors’ 
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sandwich theory the “sandwich” prevents the migration of LECs onto the posterior capsule. 

The authors state that the sandwich typically contains LECs and is strongly related to 

fibronectin, however the authors do not discuss how LECs within this sandwich are 

inhibited from migrating to the posterior capsule [73, 134]. The deposition of fibronectin 

has also been implicated in EMT [83], and its deposition by LECs is also induced in the 

presence of TGF-β2 [85]. 

 

 

Figure 1.15 Cartoon of the square edge principle. The square edge forms a barrier 

between the IOL optic and the posterior capsule which inhibits the migration of residual 

LECs onto the posterior capsule [44]. 

 

Since the inception of the design, other square-edge IOLs have been made from different 

materials such as silicone and hydrophilic acrylics [132]. They have shown reduced 

incidence of PCO yet the Acrysof® still shows marked improvement over its competitors. In 

the study reported by Boureau et al. mentioned previously, the Nd:YAG capsulotomy rates 

of 3  square edge lenses were compared. The rates of Nd:YAG capsulotomy were much 

higher for hydrophilic acrylic lenses (45.4%, Zeiss-IOLtech’s XL-Stabi lenses) compared to 

hydrophobic acrylic lenses (13.1%, Alcon’s Acrysof® and 23.3% AMO’s AR40E lenses) [106].  

A. 

B. 
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Although some studies do report that square edge silicone lenses have reduced PCO 

compared to hydrophobic acrylic lenses [132, 140, 141], Alcon’s Acrysof® lenses are often 

stated as the gold standard [2, 75]. This may be in part due to the fact that silicone IOLs 

may have a higher rate of anterior capsule opacification, or contraction of the CCC [71, 132, 

142], and also that silicone IOLs tend to stick to silicone oils used as a tamponade agent in 

vitreoretinal surgery and are therefore not suitable in these cases [71, 143]. Another 

possible reason is that silicone lenses unfold in the capsular bag quicker than hydrophobic 

acrylic lenses, which may result in increased trauma or a greater chance of decentration 

[107]. 

 

 Intraocular Lens Surface Modification 1.4.1.3.3

Although the development of foldable intraocular lenses, which allowed smaller incisions, 

and the square edge IOL optic design helped to reduce the incidence of PCO, it is still a 

major burden on the worlds’ health care systems and the quality of life of those afflicted. 

PCO is also particularly prevalent in children and young adults who undergo cataract 

surgery. These patients typically have the posterior capsule ablated prior to the onset of 

PCO as it is often considered inevitable with young patients [144]. Differences regarding 

PCO and other complications have been associated with the lens material [70, 75, 142, 

144]. As stated previously the body only interacts with a biomaterial’s surface, therefore 

the surface modification of intraocular lens materials could be a strategy to reduce the 

incidence and clinical burden of PCO. There are 2 hypotheses for the implementation of this 

strategy: create a surface which allows LEC growth but stimulates LECs to form a monolayer 

and maintain their epithelial phenotype, or create a surface which inhibits the attachment 

and migration of LECs completely. In the following section some of the research in this field 

will be outlined briefly. 

 

Early research into the modification of IOL materials involved the immobilisation of heparin 

onto surfaces in the late 1980’s [145, 146]. A recent 12-year follow-up study in which 

Rønbeck et al. studied the PCO rates in patients who either had heparin-surface-modified 

(HSM) PMMA (Pharmacia & Upjohn, 809C), silicone (Allergan, SI-40NB) or acrylate (Alcon, 

Acrysof®). Of the patients with HSM PMMA lenses 57% underwent Nd:YAG capsulotomy 
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prior to the follow-up period compared to 29% for the silicone lenses and 32% for the 

acrylate lenses [147]. In a related study the authors report that the incidence of 

“glistenings”, which are microbubbles or microcavities in the lenses, was lowest on the 

HSM PMMA lenses [148].  

 

More recent methods of surface modification of IOL materials, or materials potentially used 

as IOLs, include the binding of phospholipids to silicone [149-151] and the binding of 

selenium to PHEMA [152]. Research conducted in Zhejiang University, People’s Republic of 

China demonstrated that MPC-modified-silicone decreased macrophage, platelet and LEC 

adhesion [149]; decreased adhesion and colonisation of bacteria [150], and decreased the 

adhesion of silicone oil [151]. The studies were conducted in vitro and unmodified silicone 

was used as a control. No clinical studies have yet been published. Pot et al. demonstrated 

using an ex vivo canine lens capsular bag model that the binding of selenium decreased the 

degree of PCO [152]. 

 

Much of the other current research into the modification of the surface of IOLs utilises 

physical processes such as UV or plasma-modification. Various different functional groups 

can be added to surfaces using different plasma gases [5, 18, 64, 127, 153], plasma pre-

treated surfaces can be used to bind other molecules [154, 155] or thin films can be created 

on surfaces by plasma polymerisation [156, 157]. In the following section the basic 

structure and formation of plasmas, plasma surface modification and plasma 

polymerisation will be discussed. 
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1.5 Plasma Technology 

1.5.1 Plasma - The Fourth State of Matter 

Plasmas are often referred to as the fourth state of matter. They consist of electrons and 

energised atoms and molecules, such as radicals and metastables, as well as photons in the 

visible and UV spectrum, contained in a background gas (i.e. the gas that was ionised). 

Atoms and molecules are often collectively referred to as “species”. Plasmas are generally 

electrically neutral. Plasma makes up a large part of the matter in the known universe. 

Examples are the stars, Earth’s ionosphere, some interstellar medium and the auroras [156, 

158]. Naturally occurring examples on Earth include lightning and flames. 

 

Research into plasmas began with the ionisation of gases in the late 19th century but the 

term plasma was not used until Irvine Langmuir coined it in 1929 [156, 159]. The 

application of plasma technology accelerated in the 1950’s with the development of 

integrated circuits. Plasma technology is still used today for the manufacture of electrical 

systems. Plasmas are formed in the lab by the ionisation of gas, often by applying a voltage 

across the gas [160].  

 

 

Figure 1.16 Simplified diagram of ionisation cascade by electron-atom collision. (-) is an 

electron, (A) is an atom, (+) is a positive ion and (A/+) is an atom which becomes an ion 

following collision. 

 

In the laboratory the gases which will be ionised (sometimes called breakdown gas or 

operating gas) are often confined in a space between electrodes. The electrodes can be 
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positive and negative, powered and grounded or a singular, powered electrode. The 

application of a high voltage to these electrodes creates an alternating electric field which 

can transfer energy to the gas. This causes the atoms or molecules within the gas to 

increase their vibration and movement. The species collide with each other, transferring 

energy between one another and increasing the momentum of some particles. When a 

collision occurs with enough energy it can cause the release of an electron from the outer 

shell of the atom, which also creates a positive ion (ionisation). These free electrons and 

ions are influenced further by the electric field, causing more collisions with greater 

momentum and greater energy. This can cause other reactions in the gas, such as 

molecular dissociation (e.g. the dissociation of molecular O2 into atomic O), the creation 

negative ions or the removal of protons to create free radicals. The reactions which occur 

are dependent upon the chemistry of the breakdown gas and the energy supplied. This 

process cascades and causes the breakdown of the gas (Figure 1.16). During this 

thermodynamically favourable reactions are also occurring, such as recombination of 

positive and negative ions, or electrons in excited species which may drop to their low-

energy ground states by emission of excess energy as a photon. The wavelength of the 

emitted photons are dependent on the gas chemistry and are observed in the characteristic 

glow of plasmas, e.g. aurora borealis or neon lights. Photons can be in the visible or more 

energetic, i.e. in the UV range. These emitted photons can strike other species and provide 

them with energy causing more reactions to occur [160, 161]. Due to all the varied 

processes occurring in plasmas, and the varied chemical and physical states they create, has 

lead authors to describe plasmas as a “soup” of energetic species and photons. 

 

There are a huge number of design variations in plasma systems; this large degree of 

variability can make comparisons difficult. The electrode material, design and positions can 

all be changed. The power source can be altered, whether AC, DC, microwave or radio 

frequencies. The voltage applied to the electrodes and its direction can be changed, as well 

as the frequency. The operating gas also affects the plasma properties, especially the 

reactive species contained created. The gas can be inert (such as helium, argon and neon), 

molecular (such as oxygen, nitrogen and air) or mixtures of these [158, 162]. The multitude 

of designs affords plasma technology many applications. Some examples are polymer 

deposition, sputtering (the coating of a surface by the release of atoms from an electrode), 
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sterilisation, altering of surface chemistry, spectroscopy, arc welding, ignition source in 

combustible engines, thermonuclear experiments, gas clean-up, luminescent lamps and 

more [163]. 

 

1.5.2 Atmospheric Pressure Low Temperature Plasmas 

For many years plasmas for materials surface modification were typically operated at low 

pressures. The low pressures meant that there were fewer gas atoms present, which 

allowed the excited species more room to travel and gain momentum, i.e. the species had 

longer mean free paths. These low pressure systems required expensive equipment such as 

vacuum chambers and pumps to decrease the pressure, but the plasmas were more stable 

in the evacuated environments [162].  In recent years plasmas operating in higher pressure, 

including atmospheric pressure, have been investigated extensively [158, 164, 165]. From 

an applications perspective atmospheric pressure is more beneficial. The lack of vacuum 

equipment means that plasma systems are less expensive to construct and maintain, they 

are more portable, and they can be more easily incorporated into in-line manufacturing 

processes.  

 

 

Figure 1.17 High vacuum plasma sputtering system. 

 

Another area of increasing interest is what is often referred to as cold or low-temperature 

plasmas. Cold or low-temperature is a broad undefined term, but often the cold nature of 

these plasmas are attributed to their non-equilibrium state. The non-equilibrium state 

refers to the difference in temperature between the larger ions and the smaller electrons. 

In non-equilibrium plasmas the electrons typically have a much higher temperature than 
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the heavier ions and the neutral species, which can be approximately, or close to, room 

temperature (~300K) [166, 167]. This is in part due to the fact that electrons have around 

104 – 105 times less mass than ions yet are effected by electrical charge equally (in opposite 

polarity), this causes the electrons to be accelerated 104 – 105 more than the ions [156]. 

Cold atmospheric pressure plasmas can be used to modify the surfaces of materials with 

low melting points, such as various polymers [168-170], or even treated cells and tissue and 

sterilise surfaces by non-thermal methods[19, 171-174]. These latter applications have 

recently been dubbed “Plasma Medicine” [164, 175, 176]. 

 

1.5.3 Microplasmas 

When operating in atmospheric pressure the distance between the electrodes, or geometry 

of ring electrodes, on a plasma system can be key to obtaining a plasma discharge. This is 

due Pachen’s law which states that the breakdown voltage required to create a discharge in 

a gas between two electrodes is a function of pressure and the distance between the 

electrodes: application of this principle is sometimes referred to as “pd scaling” [158, 160, 

162, 177, 178]. For this reason atmospheric pressure plasma systems tend to have 

electrode separations or geometries in the mm range or in the µm range. Plasma systems 

with discharge regions in the order of ~1mm or less are often referred to “microplasmas”. 

Scientific interest in atmospheric pressure plasmas and microplasmas has increased greatly 

over the past decade. Typical of plasma systems there are a multitude of microplasma 

system designs. One such design is the plasma jet. 

 

1.5.4 Plasma Jets 

Atmospheric pressure plasma jets have been used recently to create discharges at the mm 

scale [179, 180] and to create microdischarges [170, 181, 182]. They typically have an open 

ended capillary through which a gas is passed. Using various designs the gas is ionised as it 

leaves or before it exits the capillary. Often systems operate using a dielectric barrier 

discharge (DBD) configuration. DBD is a system in which the electrodes (or electrode and 

gas medium) are separated by a dielectric material. A dielectric is an insulating material 

that undergoes polarisation when influenced by an electric field. As a voltage is generated 

by the plasma system's electrodes, the charges (positive and negative) separate in the 

dielectric material. Dielectric barriers can be used in atmospheric pressure plasmas to limit 
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current arcing between electrodes and the creation of “streamers” (filamentary arcs)[177]. 

Arcing can be destructive to materials. 

 

A plasma jet can be operated using the dielectric barrier glow discharge principle. In the 

diagram below, the electrode is around the outside of a quartz capillary. Quartz is a 

dielectric material. Two interfaces are of interest in this system: the electrode-capillary 

interface on the outside of the capillary, and the capillary-gas interface on the inside of the 

capillary. When a positive charge is created in the electrode it will polarise the charges in 

the quartz capillary; the negative charges in the quartz capillary will be attracted to the 

electrode-capillary interface (see notation A in Figure 1.18). This results in a positive charge 

being created at the capillary-gas interface (see notation B in Figure 1.18). This creates an 

electric field across the gas which increases the momentum of the gaseous species, e.g. 

helium atoms. If the electrode voltage is high enough it will ionise the gas passing through 

the capillary creating a plasma. The charged species within the gas, e.g. positive ions and 

negative electrons, are affected by the electrode via the dielectric material. When the 

electrode is positive the ions will be repelled to the centre of the gas and the electrons will 

be attracted to the capillary-gas interface (see notation C in Figure 1.18). When the power 

source alternates polarity i.e. becomes negative, all the charged particles switch places. The 

plasma electrons that were held at the inner wall of the capillary are repelled and collide 

with other particles within the plasma. It is this mechanism of attraction and repulsion with 

an alternation in electrode polarity that aids DBD systems in maintaining a plasma 

discharge. A mechanism of repulsion and release can occur with a pulsed DC voltage. In this 

example only interactions at a single electrode are presented for the sake of clarity, 

however a grounded electrode may also be present [168, 179, 183-189] 
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Figure 1.18 Cartoon of dielectric barrier discharge mechanism. Quartz capillary is 

polarised by the positive electrode causing a negative charge to build at the electrode-

capillary interface (A), which causes positive charges to accumulate at the capillary-gas 

interface (B). As the current to the electrode alternates the energy is supplied to the gas 

which becomes ionised (C), thus forming a plasma. 

 

The flow of gas can carry the reactive, excited species created in this discharge region out 

of the capillary (Figure 1.18), for example towards a surface to be treated. This area is often 

referred to as the afterglow. It has been shown that plasma jets such as this do not create a 

continuous stream of reactive species but in fact, the reactive species are created in groups 

and carried from the discharge region. These have been termed plasma bullets and are 

created at particular times of the wave form of the supplied voltage (Figure 1.19) [186, 188, 

190, 191]. 
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Figure 1.19 A time series of photographs of a plasma bullet exiting a quartz capillary 

taken with an intensified charged coupled device (ICCD) camera. Image adapted from 

[188]. 

 

1.5.5 Pin Plasmas 

Pin plasmas (sometimes referred to as plasma needles) are another type of plasma system 

which are based on coronal discharge, rather than the glow discharge of a DBD plasma jet 

outlined above. In these systems a high voltage is applied to a pin or “needle”. The 

geometry of this type of electrode presents a sharp tip at which charge can accumulate. 

When the voltage is large enough charges at the pin tip ionise the surround gas and can 

create a coronal plasma discharge. The pins at which the plasma is formed often have 

diameters of a couple of hundred microns [167, 192-194]. These systems have recently 

been used as sources of surface ionisation for spectrometry [192, 195] but have also been 

used to treat tissues and cells, which can result in membrane permeabilisation and 

apoptosis [167, 194] 
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1.6 Plasma Modification of Polymers 

Plasmas have been used for a long time to modify the surface properties of materials in a 

wide range of applications. Due to the nature and energy of the species created within 

plasmas they only penetrate the first few atomic layers of material surfaces; this makes 

them excellent tools for surface modification, leaving the properties of the bulk material 

intact.  This section will investigate the surface modification of polymeric materials with 

(typically atmospheric pressure) plasmas. Many physicochemical processes play a role in 

surface modification and these processes are not necessarily independent of each other 

[160, 196]. The surface modification by plasmas will be grouped into 2 fields in this section: 

 Surface Treatment - the treatment of a surface by species created by the ionisation 

of a gas.  

 Plasma Polymerisation - the creation or deposition of thin films onto surfaces by 

the polymerisation of a gaseous suspension of monomers in a plasma. 

 

1.6.1 Surface Treatment 

Many of the varied species within a plasma (ions, electrons, radicals and photons) can alter 

the surface of a polymer (Figure 1.20). The extent at which these species affect the polymer 

surface depends on many things. These include the energy, density and chemistry of the 

species, the wavelength of the photons, the distance they need to travel and the chemistry 

of the polymer surface. When the species reach a polymer surface they can change the 

structure provided they have enough energy. Ions are known to cause etching of a surface 

(typically from molecular gases e.g. O2, N2…), UV photons can break surface bonds or cause 

cross-linking, radicals and ions can be incorporated into the surface [162, 169, 197, 198].  
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Figure 1.20 Cartoon of the species involved in plasma treatment including UV photons 

(hv), ions, electrons and radicals. 

 

When a surface is treated with a plasma created from “inert” gases such as helium, argon 

and neon it often results in the addition of oxygen, even if the surface is treated in vacuum. 

This phenomenon is due to radical implantation on the sample surface. These surface 

radicals act as intermediates in the changing surface chemistry. Their free electrons quickly 

combine with other atoms or molecules in thermodynamically favourable reactions. Most 

often the surface radicals react with oxygen in the air to create hydroxyl, carboxyl and other 

oxygen containing functional groups. Radicals created on the surface of materials by inert 

gas plasmas in vacuum can combine with oxygen species (such as molecular oxygen or 

water vapour) when they are removed from the vacuum into air (Figure 1.21). This post-

processing reaction has often been observed, even when gases such as nitrogen have been 

used, or following plasma polymerisation [169, 197-200]. When plasmas are generated in 

air or with the addition of oxygen, it is difficult to distinguish whether the oxygen present 

on the surface following treatment was incorporated directly during treatment, or was due 

to radicals created on the surface, however it is likely to be a combination of these effects. 

The incorporation of polar oxygen functional groups onto polymer surfaces is typically 

characterised by a reduction in contact angle and the observation of these species by x-ray 

photoelectron spectroscopy (XPS).  
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Figure 1.21 Cartoon of post-treatment functionalisation by air creating hydroxl and 

carboxyl functional groups. 

 

A study by Yuen et al. (2006) investigated the plasma treatment (low pressure) of common 

IOL materials: PMMA, silicone and hydrophobic acrylic (Alcon’s Acrysof® lenses). PMMA 

was treated with a nitrogen plasma, whereas silicone and Acrysof® were treated with air 

plasmas. All samples were placed in water following treatment to initiate oxygen 

functionalisation via interaction with water and surface radicals as outlined in previous 

work [201]. Plasma treatment decreased the contact angle of all materials and also 

significantly increased the number of primary bovine LECs observed on treated materials at 

16 and 24 days post-seeding. Yuen and co-authors also comment that the morphology of 

LECs on treated PMMA and silicone were more epithelial than those on untreated materials 

[64]. 

 

Matsushima et al. (2006) treated acrylic IOLs (Hoya’s VA-60 BB lenses) with either a 

UV/ozone system or an argon plasma (pressure not stated). The authors demonstrated the 

presence of hydroxyl (-OH) and carboxyl (COOH) groups, not present on untreated surfaces, 

following either treatment. The treatment of lenses increased the adhesion of fibronectin 

and primary rabbit LECs. Untreated and treated lenses were also implanted in rabbits 

following phacoemulsification. After 2 weeks the animals were sacrificed and the thickness 

of the LEC growth between the posterior capsule and lenses was examined. There was a 

significantly thinner layer of LECs on the central portion of the capsule/lens when treated 

lenses were implanted compared to untreated lenses [202]. 
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D’Sa et al. (2010) demonstrated that atmospheric pressure DBD plasma treatment in air of 

polystyrene (PS) and PMMA increased the surface oxygen of these polymers. This 

corresponded to the adsorption of albumin in a different conformation on treated surfaces 

compared to untreated surfaces. In a competitive protein adsorption study the authors 

noted that serum proteins replaced some of the albumin which had adhered on the 

surface, but only on treated surfaces [5]. The authors also demonstrated that the difference 

in the protein adsorption on treated and pristine PS and PMMA resulted in a greater 

number of adhered B3 LECs on the treated surfaces. The LECs on treated surfaces also had 

a more spread morphology compared to LECs on untreated surfaces [5, 18]. In other work 

D’Sa and co-authors demonstrate that the hydroxyl groups bound to the surface following 

plasma treatment can be used in wet chemical reactions, to bind both poly(ethylene glycol) 

methyl ether methacrylate [203] and hyaluronic acid [155]. In this latter experiment the 

authors demonstrated that plasma treatment enabled the chemisorption of 3-

aminopropyltrimethoxysilane (APTMS) which created an amine surface functionality. 

Hyaluronic acid could then be immobilised to the amine functionality. Whereas APTMS 

encouraged LEC adhesion (as amine functionalised surfaces are known to increase cell 

adhesion) the immobilised hyaluronic acid inhibited LEC adhesion to the PS [155]. If the 

amine or plasma treated surfaces could be used to encourage an epithelial monolayer 

which retained it phenotype, then any of these surfaces (plasma treated, amine and 

hyaluronic acid) could be used to combat PCO. 

 

Similarly, Zhang et al. (2009) bonded poly ethylene glycol (PEG) and/or heparin to PMMA 

IOL surfaces following low pressure argon plasma treatment. The authors suggest the 

plasma treatment with argon created surface radicals which formed oxygen functionalities 

when the samples were removed from vacuum to air. Following this samples were soaked 

in PEG or heparin solutions then treated with the plasma again. This is known as plasma-

induced polymerisation. The resultant PEG and/or heparin surfaces were demonstrated to 

reduce the adhesion of platelets [154]. The attachment of LECs was not investigated. 

 

An atmospheric pressure argon plasma was used by Wang et al. (2009) to modify the 

surface of hydrophobic acrylic lenses (66 Vision Tech Co.’s FV-60A lenses). Again, the 

authors believe exposure to air following treatment introduced the increased concentration 
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of oxygen and nitrogen (nitrogen increased by only 0.3%), and subsequent reduction in 

contact angle from 92° to 70-77° (depending on storage time). The authors demonstrate 

that the plasma treatment of acrylic IOLs significantly decreased the number of platelets 

and macrophages, when examined 24hrs after the cells were seeded. When B3 LECs were 

seeded onto untreated and treated lenses there were significantly fewer LECs on the lenses 

treated for the longest times (180 and 360s treatment times) compared to untreated at 

24hrs; however there was no difference between the number of LECs on untreated lenses 

and those plasma treated for shorter durations (10 and 60s treatment times). At 72hrs 

post-seeding there was no significant difference between the numbers of LECs on treated 

or untreated surfaces. The LEC morphologies were also similar between materials [153]. 

 

1.6.1.1 Spatial Resolution 

The use of atmospheric pressure microplasma jets for functionalising surfaces is a research 

topic of growing interest. Yet there are not many current publications which investigate the 

spatial confinement of the treat areas. Even fewer papers have reported the spatially 

resolved cellular attachment onto surfaces treated with microplasma jets.  

 

It has been demonstrated that microplasma jets can be used to encourage spatially defined 

cell growth on polymeric materials [19, 170]. In both studies plasma jets, with nozzles 

diameters of 100-150µm, were scanned in a line across a polymer surfaces. The authors 

demonstrated that cells (human aortic endothelial and HeLa cells) adhered to tracks with 

widths of a few hundred micrometers. Yet these reports have vague methodology and 

possibly lack of repetition. The spatial modification of the surface also lacks detailed 

characterisation [19, 170]. 

 

In 2007 Soba et al. reported surface functionalisation by a helium/ammonia with an area of 

~500µm by XPS imaging. In this study however the pressure was “near atmosphere” (720-

730Torr; 760Torr = 1atm), and a reaction chamber with various pumps were used. Although 

operating in the same pressure range this system still required a plasma reactor chamber 

and pumping mechanisms [204]. The smallest spatial modifications induced by atmospheric 

pressure plasma jets reported, to the best of the authors knowledge, has taken place in 

Shizuoka University, Hamamatsu, Japan. Kakei et al. (2010) reported etching of acrylic resin 
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resist films in tracks of 500-700nm, using a jet with a 500nm nozzle. The track widths were 

measured by AFM. The change in the surface chemistry was not studied and could possibly 

be wider than these etched tracks [181]. Motrescu et al. (2012) et al. used a 2-step process 

to create amine functionalised dots as small as 20µm in diameter. Polymer surfaces 

(polyethylene and polyurethane) are first pre-treated with a helium plasma for 0.01-0.1s 

and subsequent treated with helium + 3% ammonia plasmas for 3s. The size of the resultant 

amine functionalisation was determined using a fluorescent microscope and a fluorescently 

tagged sulfodicholorphenol ester which binds to amines. The authors were able to achieve 

dots of 20µm with a 1µm ID nozzle [205]. The size of the oxygen functionalisation was not 

investigated and would be of interest from a biomaterial perspective. These results may be 

promising for biomaterial applications yet no work in this field has yet been published. 

 

1.6.2 Plasma Polymerisation 

Plasma polymerisation is the deposition of thin films onto surfaces from monomers 

suspended in the gas phase. Some examples of monomer precursors used include 

heptylamine (C7H17N) [189, 200], octafluorocyclobutane (C4F8) [206], acrylic acid 

(CH2=CHCO2H) [207, 208] and hexamethyldisiloxane (HMDSO, O[Si(CH3)3]2) [209]. Many 

other forms of monomer can and have been used. The polymerised film does not have the 

same chemistry as a typical polymer synthesised from the monomer, which can be due to 

fragmentation [160]. Reactions with ions and monomer units in the gas phase can lead to 

polymerisation of the monomers [210]. The variables in plasma systems outlined previously 

persist in plasma polymerisation systems yet there is the added variables of the monomer 

chemistry, structure, flow rate etc. Monomers to be polymerised are often incorporated 

into an inert gas (helium, argon etc.) to which the discharge voltage is applied [189, 206, 

209, 211, 212], although monomers can be placed on a surface prior to treatment with a 

plasma [154]. The monomers can form into oligomer units in the gas phase before bonding 

to a surface [189].  

 

Although atmospheric pressure plasma polymerisation is a field of growing scientific 

interest, little has been published on the  plasma polymerisation of surfaces using plasma 

jet systems. Benedikt et al (2006, 2007) have demonstrated the deposition of carbon [212] 

and siloxane [209] surfaces using atmospheric pressure microplasma jets. The authors did 
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not report the size of modification and oxygen was also incorporated into the carbon films. 

The deposition of fluorocarbon films in areas with diameters of ~7-10mm has been 

demonstrated by Vogelsang et al (2012). The main drawback of this study was the use of a 

pump to purge the air species from the reaction chamber, which was subsequently filled 

with nitrogen [206]. 

 

In recent work by Carton et al. (2012) acrylic acid was deposited onto glass surfaces using 

an atmospheric pressure jet system operated in air. The authors seeded human ovarian 

carcinoma cells onto surfaces. The numbers of cells on the treated surfaces were similar to 

glass and tissue culture polystyrene controls at 24hrs, however there were fewer cells on 

treated surfaces compared to controls at 48 and 72hrs. The authors state that this may in 

part be due to instability of the coatings in culture medium but that similar results are 

reported in the literature for comparisons of acrylic acid films and glass controls [208]. 
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1.7 Hypothesis and Aims of this Thesis 

It has been demonstrated that atmospheric pressure microplasma jets can be used to 

modify the topography and chemistry of polymer surfaces and may be used to encourage 

the attachment of cells when operated in air. Plasma polymerisation using plasma jets has 

also been demonstrated. Microplasma jet systems may prove to be a useful tool for cost 

effective surface modification of polymeric biomaterials, however little research has yet 

been published on the use of systems for modification in a spatially defined manner. 

 

The overall aim of the project was to determine if an atmospheric pressure microplasma jet 

could be used to create a spatially defined treatment on polymeric surfaces to control cell-

surface interactions, which can be applied to IOLs to inhibit the advancement of PCO. This 

can be divided into 2 smaller aims, which are: 

1. A surface treatment which can inhibit LEC attachment to the lens material, and 

thus prevent LECs from migrating onto the posterior capsule and developing 

into PCO. 

2. A surface treatment which will encourage LEC growth and the formation of a 

monolayer of cells which maintain their characteristic epithelial phenotype and 

thus morphology. This would prevent the cells from wrinkling the posterior 

capsule or forming multi-layered sheets, thus allowing light to pass 

uninterrupted to the retina. 

 

The main objectives of this project were: 

 To develop and optimise an atmospheric pressure microplasma jet to create 

spatially defined treatments, without the use of a mask. 

 To investigate the use of the microplasma jet to modify acrylic materials, for 

possible applications in IOLs. 

 To investigate and develop the use of a plasma jet system for plasma 

polymerisation of monomers onto surfaces at atmospheric pressure. 

 To demonstrate that the surface modification influenced cell attachment to the 

polymer surface. 

 To demonstrate that the surface modification influenced the LEC response to the 

polymer surface. 
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 To demonstrate that a pin plasma device could be used to modify polymer surfaces 

in a non-destructive manner. 
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2 Materials and Methods 

This chapter will explain the methods and materials used through-out this thesis. Firstly, the 

various techniques used will be summarised, followed by explanations of specific 

experiments and the details of the techniques used within them. 

 

2.1 Materials 

For preliminary experiments 240µm thick polystyrene, pre-cut into 20x20mm squares were 

used (Goodfellow Cambridge Ltd., UK). Subsequently, polystyrene was obtained as a 1.2mm 

thick sheet (Goodfellow Cambridge Ltd., UK) and was cut into 10x10mm or 20x20mm 

squares. PMMA was purchased as 1mm thick 10x10mm squares (Advent Plastics, UK). An 

“R” symbol was etched into the top left corner of the rear side of the samples. The reverse 

side of the sample was not used for any analysis. This “R” symbol appeared reversed in the 

top left side of the sample when viewed from the front (Figure 2.1). All axes and 

coordinates used to describe positions on a sample throughout this thesis will be assumed 

to be from the front perspective.  

 

Sample surfaces were cleaned by rinsing in 100% isopropanol (Fisher Scientific, UK), 

followed by ultrasonication in isopropanol for 3 minutes at 42kHz and 70W. Samples were 

given a final rinse in isopropanol then dried under compressed N2 (BOC, UK) flow.  Samples 

were allowed to relax for a minimum of 24hrs before use, or used directly after 

preparation. 
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Figure 2.1 3-Plan view diagram displaying the axes and position terms of the sample that 

will be used throughout the thesis in relation to the "R" symbol. The “R” symbol etched 

into the rear of the sample, and hence is reversed in the front view, allowed repeatable 

orientation during treatment and analysis. 

 

2.2 Plasma Systems and Experimental Design 

2.2.1 Surface Modification by Atmospheric Pressure Plasma Jet 

Various plasma system setups were used throughout this study, outlined in the following 

sections. In brief, the plasma setups consisted of a quartz glass tube (Robson Scientific, UK) 

through which helium gas (purity: 99.996%, BOC, UK) flowed. Flow rate was controlled by 

either rotameter(s) (Influx Measurements Ltd., UK), or by digital mass flow meter and 

controller (MKS, UK). The energy required to dissociate the helium gas was supplied via a 

powered copper ring electrode (8mm length) around the quartz tube, with or without a 

grounded electrode. The electrode was powered by high AC voltages (peak-peak) of either 

6kV or 8kV, at a frequency of 10kHz. The frequency was generated by a function generator 

(TG2000, AIM-TTI Instruments, UK), which drove a commercial audio amplifier (HQ power, 

Belgium) used to alter the voltage. Throughout this thesis voltage is expressed as the peak-

to-peak voltage - the absolute amplitude of the signal. Following the audio amplifier, a 

voltage step-up transformer (Express Transformers, UK) generated the high voltages 
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required to ignite the plasma. Once plasma discharge was achieved, systems were allowed 

to run for at least 15 minutes prior to treatment, this allowed possible contaminants and air 

remnants to be flushed from the tubing. Samples were placed at a set distance(s) from the 

opening, or nozzle, of the quartz capillary from which the jet exited. Defined as the distance 

from the nozzle to the front surface of the sample, and referred to as the sample-nozzle 

distance. 
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2.2.1.1 Preliminary Epithelial Cell Culture on Plasma Jet Treated Samples 

A preliminary study using ARPE-19 cell line as an epithelial model was conducted. ARPE-19 

cells were grown on TCPS, untreated PS, treated PS and half-treated PS. PS samples were 

20x20mm and 240µm thick. To create the half-treated PS the top half of a PS sample was 

masked by another larger piece of PS, which was removed following plasma treatment 

(Figure 2.2). 

 

 

 

 

 Plasma Jet 2.2.1.1.1

In this study the plasma jet was ignited within a quartz tube with a 1mm internal diameter 

(ID) and a 3mm outer diameter (OD). A forward powered electrode was positioned 10mm 

from the tube nozzle; a grounded electrode was positioned 20mm back away from the 

forward powered electrode. Flow rate was controlled by a rotameter ( Figure 2.3). The 

following plasma parameters were used: 

 6kVpeak-peak 

 482sccm flow rate 

 60 second treatment time 

 5mm sample-nozzle distance 

 

Figure 2.2 Illustration of half-treated sample masking. A larger piece of PS was used to 

mask the top half of samples during treatment. This mask was removed following 

treatment. 
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 Cell Culture 2.2.1.1.2

ARPE-19 cells were seeded at a density of 1x104cells/cm2 onto 3 samples per experimental 

condition.  Samples were placed in a 6-well plate and grown for a total of 5 days. Cells were 

fixed with NBF and stained with PI and phalloidin (sections 2.4.2.2 and 2.4.2.4). Images 

were taken in the centre of the samples, with x10 and x5 objectives, on the Zeiss Axiovert 

200 to illustrate the effect of plasma jet treatment on LEC attachment and growth.  

  

Figure 2.3 Schematic of plasma system setup for ARPE-19 preliminary study. Plasma jet 

parameters were:  6kVp-p, 10kHz, 482sccm, 60s treatment, 5mm sample-nozzle distance. 
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2.2.1.2 “Shadowing” Experiments 

In an attempt to elucidate possible mechanisms by which the plasma jet modifies the 

surface barriers, or “shadows”, were placed between the jet and samples. This was to 

interrupt the gas flow from the jet, which carries reactive species, and also to halt UV 

photons which only travel in a straight line. Both UV photons and reactive species could 

possibly break surface chemical bonds and allow surface modification. Various shadow 

materials, shapes, sizes and positions were investigated at multiple sample-nozzle 

distances. All “shadows” were positioned vertically in the centre of the gas flow (example in 

Figure 2.4). All treated samples were 20x20mm, 1.2mm thick PS. Experiments will be 

grouped by shadow material. Samples were analysed by contact angle. 

 

 

Figure 2.4 Schematic of the orientation and position of a “shadow” relative to a sample 

and the plasma capillary. 

 

 Plasma Jet 2.2.1.2.1

The following plasma jet configuration was used for all subsequent “shadowing 

experiments”. The plasma jet was ignited within a quartz tube with a 1mm internal 

diameter (ID) and a 3mm outer diameter (OD). In this study the forward electrode was 

grounded and positioned 10mm from the tube nozzle; a powered electrode was separated 

from the ground electrode by 20mm. Flow rate was controlled by a rotameter and maintain 

at 138sccm throughout the subsequent experiments. (Figure 2.5). The following plasma 

parameters were used: 

 6kVpeak-peak 

 138sccm flow rate 

 20s treatment time 
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Figure 2.5 Schematic of plasma system setup used throughout “shadowing” experiments. 

Plasma discharge was created in 1mm ID tube, with an 8kVp-p voltage input and 

138scmm flow rate. 

 

 Paper Shadows 2.2.1.2.2

Initial preliminary tests used paper strips, cut to different widths, which were held in the jet 

flow path. Paper “shadows” were positioned 7mm from the nozzle, whilst PS samples were 

positioned 10mm from the samples. 

 

 

Figure 2.6 Schematic illustration sample and “shadow” positions for paper “shadowing” 

experiment. 
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 Plastic Shadowing 2.2.1.2.3

In this experiment the distances of the sample and shadow relative to the nozzle were 

investigated, as well as the shadow thickness. Shadows of width 1.2mm, 2mm and 3mm 

were cut from 1.2mm thick PS. With this shadow, 2 sample-nozzle positions (10mm and 

25mm) were investigated with various shadow-nozzle positions. The shadow-nozzle 

distance was defined as the distance from the nozzle to the surface of the shadow facing 

the nozzle. When the sample was placed 10mm from the nozzle, the various shadow sizes 

were placed 8mm from the nozzle (Figure 2.7.A). The 2mm width shadow as also positioned 

at 4 and 6mm from the nozzle (Figure 2.7.B). When the sample was positioned 25mm from 

the nozzle, the 2mm width shadow as placed at 5, 10, 15 and 20mm from the nozzle (Figure 

2.7.C). 

 

 

Figure 2.7 Schematic representing the 2 sample positions and the various sample-shadow 

widths and distances used in this experiment. (A) When the sample was 10mm from the 

nozzle the shadows of 1.2mm and 3mm width were placed 8mm from the nozzle. (B)  A 

2mm width shadow was also positioned at nozzle-shadow distances of 4, 6 and 8mm. (C) 

When the sample was at a distance of 25mm the 2mm width shadow was placed 5, 10, 15 

and 20mm from the nozzle. 

 

 Quartz Capillary Shadows 2.2.1.2.4

Both the paper and plastic shadows displayed a flat-edged barrier to the plasma gas flow. 

The following experiment used a quartz capillary, placed at a fixed distance (centre of the 

capillary was 2mm from the nozzle), which presents a smooth, rounded barrier to the gas 

flow. The quartz capillary was the same as used in the plasma jet system and thus had a 

3mm OD and a 1mm bore. As the quartz capillary was transparent it was possible that 

photons could pass through it, therefore paper was placed in the bore as an opaque photon 
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blocker. Various sample-nozzle distances were investigated; these were 10, 12, 14, 16, 18 

and 20mm. 

 

 

Figure 2.8 Schematic of the 3mm OD quartz capillary shadow and shadow with paper 

insert. The shadows were fixed at 2mm from the nozzle and samples were placed at 10, 

12, 14, 16, 18 and 20mm from the nozzle. 

 

2.2.1.2.4.1 Cell Culture 

N/N1003a LECs were seeded onto samples to observe the effect of the shadowing on the 

cell growth area. Samples were placed 10mm from the nozzle and a capillary shadow with 

paper inset was fixed at 2mm from the nozzle. Samples were also treated without a shadow 

and untreated PS and TCPS served as controls. Cells were seeded at 1x104cells/cm2 and 

cultured for 7 days. Representative phase contrast micrographs were taken at days 1, 4 and 

7. Cells were also fixed with methanol and stained with methylene blue (section 2.4.2.1) at 

these time points. 

 

 Blackened Glass Rod Shadows 2.2.1.2.5

To ensure the blocking of photons blackened glass rods of varying diameters were obtained 

and used as shadows. Blackened glass rods of 3 diameters were used: 1mm, 2mm and 

3mm. These were used as shadows when samples were placed at 2 different distances from 

the nozzle: 10mm and 20mm. When describing the distance of blackened rods it is intended 

that the distance is from the nozzle to the centre of the rods. When the 10mm sample-

nozzle distance was used blackened rods were placed at 2mm, 4mm, 6mm, and 8mm from 

the nozzle (Figure 2.9.A-C). When samples were placed 20mm from the nozzle shadows 

were positioned at 2mm, 6mm, 10mm, 14mm and 18mm from the nozzle. 
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Figure 2.9 Schematic illustration the various experimental conditions used for the 

blackened glass rod shadowing experiment. Rods of various thicknesses, 1-3mm, were 

placed at a variety of positions (2-8mm) at a sample distance of 10mm relative the jet 

nozzle, and 2-18mm when the samples were 20mm from the nozzle. 
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2.2.1.3 100µm ID Microplasma Jet 

Using a plasma jet with a capillary opening of ≈100µm the effect of flow rate and sample-

nozzle distance was investigated.  The effect of sample ageing post treatment was also 

investigated. All samples were cut to a size of 10x10mm2 from 1.2mm thick PS. 

 

 Ageing 2.2.1.3.1

To examine the stability of the plasma treatment samples were treated then aged in air and 

water for various time lengths ranging from 0 days to up to 1 year. The effect of ageing time 

and condition was investigated by contact angle analysis and cell culture. The ageing 

conditions used for contact angle analysis and cell culture around outlined below in 

sections 2.2.1.3.1.3 and 2.2.1.3.1.4 respectively. 

 

2.2.1.3.1.1 Vessel Cleaning for Storage in Water 

Prior to ageing glass vessels (Agar Scientific, UK), used to store treated and untreated 

samples in water, were cleaned.  Vessels were rinsed 3 times with 10% nitric acid (Sigma-

Aldrich, UK) then left submerged in 10% nitric acid overnight. Vessels were removed from 

nitric acid and rinsed thoroughly in deionised water. Vessels were then half filled with 

deionised water for sample storage. 

 

2.2.1.3.1.2 Plasma Jet 

The 100µm capillary opening was created from a 1mm ID, 3mm OD quartz tube. The tube 

was heated and turned until the lumen closed. The closed lumen was the filed until it 

opened. An image of the lumen opening was taken using a CCD camera and the size 

calculated using a reference of a known size. The forward grounded electrode was 

positioned ≈10mm from the tip. A powered electrode followed, with an electrode gap 

separation of ≈20mm. Flow rates were set by the manual rotameter. To ignite the plasma 

jet the voltage supplied to the powered electrode was increased to 8kV peak-to-peak. A 

schematic of the plasma setup is detailed in Figure 2.10. The following plasma conditions 

were used:  

 8kVpeak-peak 

 ≈130sccm flow rate 

 20s treatment time 
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 10mm sample-nozzle distance 

 

 

 

 

Following treatment samples were either placed in Petri dishes and sealed with parafilm 

(Fisher Scientific, UK), or samples were placed in individual glass vessels containing water. 

Untreated samples were stored under the same conditions. 

 

2.2.1.3.1.3 Water Contact Angle 

Contact angle profiles were analysed from treated and untreated polystyrene, stored both 

in air and water for various time periods. Prior to analysis samples stored in water were 

dried under pressurised N2 flow. Samples were analysed on the day of treatment, one set of 

samples was briefly dipped in water and dried at this time point. Contact angle profiles 

were also measured at the following time points: 0 days, 1 day, 4 days, 7 days, 2 weeks, 4 

weeks, 8 weeks and 1 year. The DSA100m “micro-drop” contact angle system ( section 

2.3.1.3) was used. The spatial resolution between each drop was 500µm. Each condition 

was measured in triplicate.  

 

2.2.1.3.1.4 Cell Culture 

The effect of sample storage in air and water for various periods of time was investigated 

by cell culture. N/N1003A rabbit LECs were seeded onto samples at 1x104cells/cm2. 

Figure 2.10 Schematic of plasma setup for 100µm ID jet preliminary study. The plasma 

parameters were: 8kVpeak-peak, 10kHz, flow rates of ≈130sccm and sample-nozzle distance 

10mm. 
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Samples were fixed with NBF at 1hr, 4hrs and 24hrs post-seeding and stained with PI 

(section 2.4.2.2) and phalloidin (section 2.4.2.4) to examine the effect of storage on cell 

attachment.  Samples were mounted inverted on glass slides and marked coverslips were 

mounted on top of adhered cells inside TCPS wells. Micrographs were taken with the Zeiss 

Axiovert 200. Triplicate samples were used for each experimental condition. The sample 

storage times and media are detailed in Table 2.1 below.  

 

Table 2.1 details the storage times and media of aged samples investigated by cell 

culture. It also includes designations which will be used later in this thesis. TCPS served as 

a control. 

Treatment Storage Media Storage Time Designation 

Tissue Culture 

Treatment 

NA NA TCPS 

Treated Air 0 days Treated-Air-0d 

Treated Air 4 days Treated-Air-4d 

Treated Air 1 week Treated-Air-1w 

Treated Air 1 month Treated-Air-1m 

Treated Deionised Water 4 days Treated-H2O-4d 

Treated Deionised Water 1 week Treated-H2O-1w 

Treated Deionised Water 1 month Treated-H2O-1m 

Untreated Air 0 days Untreated-Air-0d 

Untreated Air 4 days Untreated-Air-4d 

Untreated Air 1 week Untreated-Air-1w 

Untreated Air 1 month Untreated-Air-1m 

Untreated Deionised Water 4 days Untreated-H2O-4d 

Untreated Deionised Water 1 week Untreated-H2O-1w 

Untreated Deionised Water 1 month Untreated-H2O-1m 

 

 Preliminary Study of Flow Rate and Sample-Nozzle Distance 2.2.1.3.2

A preliminary study to examine the effect of flow rate and sample-nozzle distance was 

investigated to determine which parameters would be best suited for further examination. 
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2.2.1.3.2.1 Plasma jet 

The 100µm capillary and electrode positions (section 2.2.1.3.1.2) were used. Flow rates 

were set by the manual rotameter. A schematic of the plasma setup can be n in Figure 2.11. 

The following plasma conditions were used:  

 8kVpeak-peak 

 22sccm (low),  150sccm (medium) and 300sccm (high) flow rates 

 20s treatment time 

 1mm, 5mm and 10mm sample-nozzle distance 

The various experimental conditions are  

 

Figure 2.11 Schematic of plasma setup for 100µm ID jet preliminary study. The plasma 

parameters were: 8kVpeak-peak, 10kHz, flow rates of ≈22-300sccm and sample-nozzle 

distances of 1, 5 and 10mm. 
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Table 2.2 outlines various experiment parameters, parameter designations and methods 

of analysis for the preliminary 100µm ID jet study. 

Parameter Flow Rate Sample-Nozzle 

Distance 

Analysis Designation 

Untreated 

Polystyrene 

NA NA Contact Angle UT 

Low flow – 1mm ≈22scmm 1mm Contact Angle L1 

Low flow – 5mm ≈22scmm 5mm Contact Angle L5 

Low flow – 

10mm 

≈22scmm 10mm Contact Angle L10 

Medium flow – 

1mm 

≈150scmm 1mm Contact Angle M1 

Medium flow – 

5mm 

≈150scmm 5mm Contact Angle M5 

Medium flow – 

10mm 

≈150scmm 10mm Contact Angle M10 

High – 1mm ≈300scmm 1mm Contact Angle H1 

High – 5mm ≈300scmm 5mm Contact Angle H5 

High – 10mm ≈300scmm 10mm Contact Angle H10 
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 Investigation of the Effect of Flow Rate and Sample-Nozzle Distance 2.2.1.3.3

Following the preliminary examination (section 2.2.1.3.1) further investigation was 

conducted. Digital mass flow meter and controller allowed for accurate control of lower 

flow rates required for the 100µm ID nozzle. 

 

2.2.1.3.3.1 Plasma Jet 

The 100µm capillary and electrode positions (section 2.2.1.3.2.1) were used. In these 

experiments flow rates were set by the digital mass flow meter and controller and are 

therefore accurate. Schematic of the plasma setup can be n in Figure 2.12. The plasma 

system has previously been described by Doherty et al. (2013)[168]. The following plasma 

conditions were used:  

 8kVpeak-peak 

 30sccm (low) and 150sccm (high) flow rates 

 20s treatment time 

 1mm and 10mm sample-nozzle distance 

 

 

 

 

Figure 2.12 Schematic of plasma system setup for flow rate-distance study. Plasma jet 

parameters were: 8kVpeak-peak, 10kHz, 30-150sccm, 20s treatment, 1-10mm sample-nozzle 

distance. 
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Table 2.3 lists the various parameters, parameter designations and which methods of 

analysis were used within the study to determine the effects of flow rate and distance on 

treatment size. 

 

  

Parameter Flow Rate Sample-Nozzle 

Distance 

Analysis Designation 

Tissue Culture 

Polystyrene 

NA NA Contact Angle, 

Cell Culture, 

ELISA, Multiplex 

TCPS 

Untreated NA NA Contact Angle, 

AFM, XPS, Cell 

Culture, ELISA, 

Multiplex 

UT 

Low flow – 1mm Low 1mm Contact Angle, 

AFM, XPS, Cell 

Culture, ELISA, 

Multiplex 

L1 

Low flow – 10mm Low 10mm Contact Angle, 

AFM, Cell Culture, 

ELISA, Multiplex 

L10 

High flow – 1mm High 1mm Contact Angle, 

AFM, Cell Culture, 

ELISA, Multiplex 

H1 

High flow – 

10mm 

High 10mm Contact Angle, 

AFM, Cell Culture, 

ELISA, Multiplex 

H10 
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2.2.1.4 Microplasma Jet Treatment of Poly(Methyl Methacrylate) 

To investigate the possible use of a microplasma jet for modification of IOLs PMMA was 

used as a model acrylic material. 10x10mm PMMA (1mm thick) and PS samples (1.2mm 

thick) were treated with a plasma jet at 1mm with a low flow rate from a 100µm ID nozzle. 

Previous testing confirmed that these conditions created the smallest treatment area.  

 

 Plasma Jet 2.2.1.4.1

The 100µm ID quartz tube outlined in section 2.2.1.3.2.1 was used. The forward grounded 

electrode was positioned ≈10mm from the tip. A powered electrode followed; the 

electrode gap separation was ≈20mm. Flow rate was controlled by the digital flow meter 

and controller. All treated samples were positioned 1mm from the nozzle. A schematic of 

the plasma setup can be n in Figure 2.13. The plasma parameters were as follows: 

 8kVpeak-peak 

 30sccm 

 20s treatment time 

 1mm sample-nozzle distance 

 

 

Figure 2.13 Schematic of plasma system setup used to treat PMMA and PS samples. 

Plasma jet parameters were: 8kVpeak-peak, 10kHz, 30scmm flow rate, 20s treatment 

time and 1mm sample-nozzle distance. 
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Table 2.4 lists the various substrates, including designations assigned to them, and 

analysis techniques used throughout the PMMA study. 

Parameter Analysis Designation 

Tissue Culture Polystyrene Cell Culture, ELISA, 

Multiplex 

TCPS 

Untreated Poly(methyl 

methacrylate) 

Contact Angle, AFM, XPS, 

Cell Culture, ELISA, 

Multiplex 

UT-PMMA 

Untreated Polystyrene Contact Angle, AFM, XPS, 

Cell Culture, ELISA, 

Multiplex 

UT-PS 

Treated Poly(methyl 

methacrylate) 

Contact Angle, AFM, XPS, 

Cell Culture, ELISA, 

Multiplex 

T-PMMA 

Treated Polystyrene Contact Angle, AFM, XPS, 

Cell Culture, ELISA, 

Multiplex 

T-PS 

 

2.2.1.5 Plasma Polymerisation - Pre-Discharge Mixing 

Various plasma jet set-ups were used during plasma polymerisation. Plasma polymerisation 

is the formation of a polymer thin film on a surface from monomers, using a plasma source 

to polymerise these monomers. In this work monomers were stored in a round-bottom 

flask; helium was passed through the round-bottom flask to carry a suspension of 

monomers to the plasma discharge recharge region between the electrodes. The flow of 

monomers mixes with a main helium flow, which typically has a flow rate an order of 

magnitude higher than the monomer containing flow. In the initial preliminary work the 

flow of monomers mixed with the main helium flow rate prior to reaching the plasma 

discharge region, this has been termed “pre-discharge mixing”. 

 

 Plasma System 2.2.1.5.1

The plasma was generated in a quartz capillary of 1mm ID and 3mm OD with the grounded 

electrode downstream. Electrodes were separated by ~12mm. Approximately 10ml of 
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monomer solution, allylamine (Allyl, Sigma-Aldrich, UK) or heptylamine (Heptyl, Sigma-

Aldrich, UK), was placed in a round-bottom flask. Helium gas, at a flow rate of ≈20sccm, was 

passed through this flask following which it mixed with a main helium gas stream with a 

flow rate of ≈500sccm. Manual rotameters were used in this work. Rotameters and 

electrode power supply were as previously described (section 2.2.1). The mixed helium 

flows then passed into the quartz capillary and the plasma discharge region. Some samples 

were pre-treated for 3mins with just a ≈500sccm main helium flow rate to produce a 

functionalised surface, and subsequently treated for 5s with helium:monomer mixture. A 

schematic of the plasma setup is detailed in Figure 2.14. The following plasma conditions 

were used: 

 6kVpeak-peak 

 ≈500sccm main helium flow rate; ≈20sccm helium:monomer mixture flow rate 

 3mins Helium treatment time; 5s helium:monomer treatment time 

 5mm sample-nozzle distance 
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Figure 2.14 Schematic of plasma system setup used for preliminary plasma 

polymerisation experiment. Allylamine and heptylamine monomers were used for 

polymerisation. Main helium flow and helium:monomer flows were mixed prior to 

reaching the plasma discharge region. Plasma jet parameters were: 6kVpeak-peak, 10kHz, 

500sccm main helium flow rate; 20sccm helium:monomer flow rate, 3min helium only 

pre-treatment time, 5s helium:monomer treatment time and 5mm sample-nozzle 

distance. 
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Table 2.5 lists the various conditions, including designations assigned to them, and 

analysis techniques used throughout the preliminary plasma polymerisation (pre-

discharge mixing) study. 

Condition Analysis Designation 

Untreated  Polystyrene Contact angle, XPS UT-PS 

Helium Treated Polystyrene Contact Angle, XPS He Treated PS 

Allylamine on Untreated 

Polystyrene 

Contact Angle, XPS Allyl on UT-PS 

Allylamine on Helium Pre-

Treated Polystyrene 

Contact Angle, XPS Allyl on He Treated PS 

Heptylamine on Untreated 

Polystyrene 

Contact Angle, XPS Heptyl on UT-PS 

Heptylamine on Helium Pre-

Treated Polystyrene 

Contact Angle, XPS Heptyl on He Treated PS 

 

 

2.2.1.6 Plasma Polymerisation - Pre-Discharge Mixing (Chamber) 

Following the previous study polymerisation was attempted in a helium atmosphere to 

exclude oxygen. A small chamber which contained a gas inlet and outlet was constructed. 

The helium was flowed into the chamber and the pressure was maintained around 1 

atmosphere. Helium was allowed to flow into the chamber for 10mins prior to treatment to 

evacuate the oxygen. The chamber was constructed by Mr Alan Roby of the Department of 

Electrical Engineering and Electronics in the University of Liverpool. 

 

 Plasma System 2.2.1.6.1

The plasma system design was similar to the previous work (section 2.2.1.5.1) however 

there were some differences. Only a forward powered electrode was used and samples 

were treated in a chamber filled with helium. Samples were inset in a sample holder which 

could be removed from the side of the chamber. A barrier was positioned between the 

sample and the jet whilst the chamber was allowed to fill with helium for 10mins prior to 

treatment. At the time of treatment the barrier was slid out of the path of the plasma jet. 



 

 

71 

Chapter 3: Results 

Samples were treated for 20s.  Samples were placed ~10mm from the nozzle. Samples were 

also treated without the ignition of the plasma jet to investigate if monomers were 

deposited on the surface from the gas flow alone. The monomer flow was mixed with the 

main helium flow pre-discharge similar to the previous work. A schematic of the plasma 

setup is detailed in Figure 2.15. The following plasma conditions were used: 

 6kVpeak-peak 

 ≈500sccm main helium flow rate; ≈20sccm helium:monomer mixture flow rate 

 20s helium:monomer treatment time 

 5mm sample-nozzle distance 

 

Figure 2.15 Schematic of plasma system setup used for preliminary plasma 

polymerisation experiment. Allylamine and heptylamine monomers were used for 

polymerisation. Main helium flow and helium:monomer flows were mixed prior to 

reaching the plasma discharge region. Samples were treated in a chamber containing a 

helium atmosphere. Plasma jet parameters were: 6kVpeak-peak, 10kHz, 500sccm main 

helium flow rate; 20sccm helium:monomer flow rate, 20s treatment time and 10mm 

sample-nozzle distance. 
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Table 2.6 lists the various conditions, including designations assigned to them, and 

analysis techniques used throughout the preliminary plasma polymerisation (pre-

discharge mixing - chamber) study. 

Condition Analysis Designation 

Tissue Culture Polystyrene Cell Culture TCPS 

Untreated  Polystyrene Contact angle, XPS, Cell 

Culture 

UT-PS 

Allylamine with Plasma 

Ignition 

Contact Angle, XPS, Cell 

Culture 

Allyl with plasma 

Allylamine without Plasma 

Ignition 

Contact Angle, Cell Culture Allyl without plasma 

Heptylamine with Plasma 

Ignition 

Contact Angle, XPS, Cell 

Culture 

Heptyl with plasma 

Heptylamine without Plasma 

Ignition 

Contact Angle, Cell Culture Heptyl without plasma 
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2.2.1.7 Plasma Polymerisation - Post-Discharge Mixing 

Following previous work a new approach was taken to polymerisation. The addition of 

heptylamine directly to an active plasma discharge was investigated. This has been termed 

“post-discharge mixing”. 

 

 Plasma System 2.2.1.7.1

A new Y-shaped quartz capillary was made by melting one 2.4mm ID, 4mm OD capillary 

onto another an angle of ≈30°, approximately 25mm back from the nozzle the plasma was 

to exit. A single powered electrode was approximately 40mm back from the capillary 

nozzle. Helium was flowed, at a rate of 500sccm, into the primary capillary and was 

dissociated into plasma near the electrode. This flow carried the excited species along the 

capillary towards the nozzle. Downstream from the electrode a mixture of 

helium:heptylamine was added to the plasma at a velocity of 20sccm. Rotameters and 

electrode power supply were as previously described (section 0). The plasma set-up has 

also been described by Oh and Bradley (2013)[189]. PS squares of 10x10mm, 1.2mm thick 

were placed 5mm from the nozzle and treated for 10 minutes with helium alone or 

helium:heptylamine mixture (Figure 2.16). Untreated polystyrene served as a control. A list 

of plasma parameters are as follows: 

 8kVp-p 

 500sccm He and 20sccm He:heptylamine mixture 

 10min treatment time 

 5mm sample-nozzle distance 
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Figure 2.16 Schematic of plasma system setup, with photograph inset, used to add 

heptylamine to an active plasma.  The Y-configuration capillary allowed addition of a 

He:heptylamine mixture downstream from the powered electrode.  Plasma jet 

parameters were: 8kVpeak-peak, 10kHz, 500scmm primary He flow and 20sccm 

He:heptylamine mixture, 10min treatment time and 5mm sample-nozzle distance. 
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Table 2.7 outlines the treatment parameters, analysis techniques used and parameter 

designations. 

Parameter Analysis Designation 

Tissue Culture Polystyrene Cell Culture, ELISA, 

Multiplex 

TCPS 

Untreated Polystyrene Contact Angle, XPS, AFM, 

Cell Culture, ELISA, 

Multiplex 

UT 

He Treated Polystyrene Contact Angle, XPS, AFM, 

Cell Culture, ELISA, 

Multiplex 

He 

He:Heptylamine Mixture 

Treated Polystyrene 

Contact Angle, XPS, AFM, 

Cell Culture, ELISA, 

Multiplex 

He:Heptyl 

 

 

2.2.1.8 Treatment of Polystyrene with a Pin Plasma System 

An alternative microplasma source, a “pin plasma”, was also investigated. This plasma 

system generated a coronal plasma discharge at the point of a 200µm diameter tungsten 

wire. This small plasma source was used to modify 10x10mm, 1.2mm thick, PS surfaces 

which were investigated by contact angle analysis, AFM and cell culture. An initial contact 

angle experiment was conducted to investigate the effect of different treatment 

parameters on polystyrene. Following this fewer conditions were chosen for further 

investigation by cell culture and AFM analysis. 

 

 Pin Plasma 2.2.1.8.1

A 200µm diameter tungsten wire was passed through a 300µm bore in a ceramic tube with 

an OD of 4mm. The tungsten wire protruded approximately 5mm from the base of the 

ceramic tube. The tungsten wire was powered by a purpose built high voltage generator, 

which was driven by  a signal generator (TG2000, AIM-TTI Instruments, UK) set to the + 

square wave function. A grounded copper ring electrode was positioned at the base of the 
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ceramic tube approximately 3mm above the tip of the tungsten wire (Figure 2.17). Samples 

were position ≈1.3mm from the tip of the tungsten wire and treated at 15-20kHz and 13-

17kVpeak-peak; these values represent the lowest levels at which a stable discharge could be 

maintained and the upper limit of the equipment. The plasma was ignited in air at 

atmospheric pressure and unlike the plasma jets there is no gas flow. The pin plasma 

system was constructed by Mr. Alan Roby and operated by Dr. Andrew Bowfield of 

Department of Electrical Engineering and Electronics, University of Liverpool [192]. The 

following plasma conditions were used: 

 15-20kHz 

 13-17kVpeak-peak 

 ≈1.3mm sample-tip distance 

 20-40s treatment times 

 

 

 Initial Water Contact Angle Study 2.2.1.8.2

Using the DSA100m “micro-drop” contact angle system (section 2.3.1.3) water contact 

angle profiles were analysed on various combinations of treatment parameters outlined in 

Table 2.8 below. The spatial resolution between each drop was 500µm, 3 samples for each 

experimental condition were used.  

  

Figure 2.17 Annotated photograph of the pin plasma system with a schematic 

representation. A corona discharge was created at the end of a tungsten wire 

which passed through ceramic dielectric barrier tube. The wire was powered by 

digital function generator in + square wave mode which drove a high voltage 

generator. 
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Table 2.8 details the various parameters used in the initial pin plasma contact angle study 

including treatment conditions and designations. 

Parameter Frequency Voltage Treatment 

Time 

Designation 

Tissue Culture 

Polystyrene 

NA NA NA TCPS 

Untreated 

Polystyrene 

NA NA NA UT 

15kHz – 13kVp-p 

-20s Treated 

Polystyrene 

15kHz 13kVp-p 20s 15kHz–13kVp-

p-20s 

15kHz – 13kVp-p 

– 40s Treated 

Polystyrene 

15kHz 13kVp-p 40s 15kHz–13kVp-

p-40s 

15kHz – 17kVp-p 

– 20s Treated 

Polystyrene 

15kHz 13kVp-p 20s 15kHz–17kVp-

p-20s 

15kHz – 17kVp-p 

– 40s Treated 

Polystyrene 

15kHz 13kVp-p 40s 15kHz–17kVp-

p-40s 

20kHz – 13kVp-p 

– 20s Treated 

Polystyrene 

20kHz 17kVp-p 20s 20kHz–13kVp-

p-20s 

20kHz – 13kVp-p 

– 40s Treated 

Polystyrene 

20kHz 17kVp-p 40s 20kHz–13kVp-

p-40s 

20kHz – 17kVp-p 

– 20s Treated 

Polystyrene 

20kHz 17kVp-p 20s 20kHz–17kVp-

p-20s 

20kHz – 17kVp-p 

– 40s Treated 

Polystyrene 

20kHz 17kVp-p 40s 20kHz–17kVp-

p-40s 
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 Further Investigation 2.2.1.8.3

Following initial contact angle analysis it was determined that 20 seconds treatment time 

was sufficient therefore samples in the following work were treated for 20 seconds. 

 

Table 2.9 details the various parameters used in the follow-up pin plasma experiments, 

treatment conditions, analysis methods and designations. 

Parameter Frequency Voltage Analysis Designation 

Tissue Culture 

Polystyrene 

NA NA Cell Culture TCPS 

Untreated 

Polystyrene 

NA NA Contact Angle, 

AFM, Cell 

Culture 

UT 

15kHz – 13kVp-p 

Treated 

Polystyrene 

15kHz 13kVp-p Contact Angle, 

AFM, Cell 

Culture 

15kHz – 13kVp-p 

15kHz – 17kVp-p 

Treated 

Polystyrene 

15kHz 13kVp-p Contact Angle, 

Cell Culture 

15kHz – 17kVp-p 

20kHz – 13kVp-p 

Treated 

Polystyrene 

20kHz 17kVp-p Contact Angle, 

Cell Culture 

20kHz – 13kVp-p 

20kHz – 17kVp-p 

Treated 

Polystyrene 

20kHz 17kVp-p Contact Angle, 

AFM, Cell 

Culture 

20kHz – 17kVp-p 
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2.3 Physical and Chemical Analysis 

 

2.3.1 Contact Angle 

Contact angle measurements were taken with two different systems throughout the course 

of this research. These systems and the methods will be detailed in the following sections. 

 

2.3.1.1 CAM100 Instrument 

The CAM100 contact angle meter (KSV Instruments Ltd., Finland) was used as a quick 

method to determine if a sample had been treated.  This system was operated manually 

and a short video was taken using a CCD camera controlled by CAM100 software (KSV 

Instruments Ltd., Finland), 10 frames at 1 frame per second (fps) were captured. The centre 

of a sample was positioned approximately beneath the needle. A ≈0.3µl drop of deionised 

water was forced from the needle tip. The sample stage was then raised until the drop 

contacted the sample. When the stage was lowered the drop remained on the sample 

surface. After a baseline was manually set the contact angle was automatically calculated 

by the CAM100 software using a tangent method. The mean contact angle for each set of 

10 frames was calculated. 

 

2.3.1.2 DSA100 Instrument 

Initial spatially resolved contact angle was performed using the DSA100 drop shape analysis 

system (Krüss GmBH, Germany). In this system 0.2µl drops of deionised water were 

dispensed from a needle and syringe via DSA3 software (Krüss GmBH, Germany). Water 

drops were placed across the horizontal axis of a treated sample at a resolution of 2.5mm 

using a micro-step x-y stage controlled by the DSA3 software. 10 frames at 1fps were 

captured using a CCD camera controlled by the DSA3 software. The baseline was set 

manually and images were analysed by the DSA3 software using the circle method. The 

mean contact angle for each set of 10 frames was calculated. 

 

2.3.1.3 DSA100m Instrument Modification 

DSA100m “micro-drop” modification to the Krüss DSA100 was also conducted. This 

modification included additional lenses on the camera to improve magnification, an LED 

illuminator which provided an illumination source closer to the sample and piezoelectric 
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dosing unit capable of dispensing drops in the picolitre range [220]. The volume of 

deionised water dispensed was controlled by altering the signal voltage and pulse time sent 

to the piezoelectric dosing unit; 80V and 200µs were used for these experiments. Drops 

were placed upon samples with a spatial resolution of 250µm or 500µm depending on 

experiment. A video was recorded at 25fps and began recording as soon as the drop was 

dispensed. The first frame containing a steady drop on the sample surface was measured 

using the circle method. Subsequent frames of each video were not measured as water 

drops very quickly evaporated, altering the contact angle.  

 

 

 

 

 

Contact angle profiles were taken across the horizontal axis of samples through the centre 

of the treatment (example in Figure 2.18). As the 1.2mm thick PS was cut by hand samples 

were not always exactly 10x10mm. Therefore, the focus of the plasma jet was aligned to be 

centred 5mm from the bottom of the sample, and 5mm in from the left edge of the sample. 

The mean contact angle corresponding to each position along the profile was calculated. 2-

D contact angle maps were taken by placing drops in a grid pattern with spatial resolution 

of 250µm or 500µm between points (example in Figure 2.19). 

Figure 2.18 Illustration depicting an example of 

drop positions for a contact angle profile with 

a 0.5mm resolution on a 10x10mm sample. 
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Figure 2.19 Illustration of the drop positions for a 2-D contact angle map. Spatial 

resolution of drops was 500µm. 

 

2.3.2 X-Ray Photoelectron Spectroscopy (XPS) 

The spectrometer used in this study was designed in Liverpool and constructed in 

Manchester by KSV, UK. The instrument used for these studies has been described 

previously[221]. The x-ray source was a “multicrystal Al Kα monochromator on a 0.7m 

Rowland circle which subtends a solid angle of ~0.1 sterradian at the specimen thus 

providing high sensitivity and high resolution (< 0.5eV) XPS capability at 1486.6eV” [221]. 

The sample holder accommodated relatively large sample sizes (12 × 12 mm2) and was 

mounted on an x-y-z stage which also had the capability of being rotated through 360°. The 

x-ray ‘spot’ focused on a sample surface was ≈1.5 × 7mm2 in size.  

 

Single broad scan or high resolution spectra were taken in the centre of the sample. For 

spatially resolved XPS samples were translated through the x-ray ‘spot’ along the horizontal 

axes of samples, and broad scans were taken every mm. The edge of the sample was 

determined by the presence of spectra from the sample holder. Broad scan and high 

resolution spectra were acquired at pass energies of 100eV and 50eV respectively. The C1s 

of all spectra were calibrated to a binding energy of 285eV. All peak components were 

fitted with a 70% Guassian: 30% Lorentzian function and the position restricted by ±0.5eV. 

Full width at half maximum (FWHM) was limited between 0.5-2eV.  

 



 

 

82 

Chapter 3: Results 

2.3.3 Atomic Force Microscopy (AFM) 

A Multimode 8 AFM with NanoScope V controller was used in normal tapping mode with a 

silicon cantilever of spring constant 40N/m. A 500 x500nm2 region was scanned at a rate of 

1Hz with 512 samples/line with the NanoScope software (ver. 8.10). Using the NanoScope 

analysis software (ver. 1.4). scans were subjected to 0th order plane fit, to remove centre 

data and 0th and 1st order flattening, to centre data and remove tilt. The mean roughness 

(Ra) and root mean square roughness (Rq) for each parameter were averaged from 4 scans 

in the centre of the samples. All equipment, probes and software were supplied by Bruker, 

UK. 

 

2.4 In Vitro Studies 

2.4.1 Cell Culture 

All cell culture was conducted within a class II microbiology laminar flow cabinet. Prior to 

use the cabinet was opened and switched on to allow the air to be circulated, surfaces were 

cleaned with 1% virkon (DuPont, UK) and 70% ethanol (University of Liverpool, Chemistry 

Department, UK) at the beginning and end of each work session. All items were sprayed 

with 70% ethanol immediately before being placed in the cabinet. All cell culture flasks and 

well plates were made from polystyrene (PS) and treated with proprietary CELLSTAR® 

treatment (Griener Bio-One, UK) for adherent cells. 

 

2.4.1.1 Cell Lines and Medium 

Three cell lines were used throughout this study (table 1). Cell lines were used in this study 

as the provide a greater reproducibility compared to primary cells, are readily available and 

do not require donors and can allow larger samples sets compared in ex vivo models. 

Retinal pigmented epithelial cell line (ARPE-19) [213](American Type Culture Collection 

(ATCC), USA), obtained from Dr. Victoria Kearns, University of Liverpool, UK; was used as a 

preliminary cell model prior to the obtainment of lens epithelial cells.  ARPE-19 cells were 

maintained with 1:1 (vol/vol) mixture Dulbeccco’s Modified Eagles’s Medium (DMEM, 

Sigma-Aldrich, UK) and Nutrient Mixture F-12 Ham (F-12, Sigma-Aldrich, UK) supplemented 

with 2mM L-glutamine (L-Glut), 100U/ml penicillin G, 100µg/ml streptomycin, 2.5µg/ml 

amphotericin B (all from Sigma-Aldrich, UK) and 10% foetal calf serum (FCS, Biosera, UK).  A 

rabbit lens epithelial cell (LEC) line, N/N1003A[214], was kindly donated by Prof. John R. 
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Reddan of Oakland University, USA.  N/N1003A rabbit LEC line was maintained using 

minimum essential medium eagle (MEM, Sigma-Aldrich, UK) supplemented with 2mM L-

glut, 8% rabbit serum (RS, Sigma-Aldrich, UK). A human LEC line, B3[215], was used as a 

model for human LECs once obtained. The B3 LEC line (ATCC, USA) was kindly donated by 

Prof. Barbara Pierscionek of University of Ulster, Northern Ireland. Human B3 LECs were 

maintained with MEM supplemented with 2mM L-glut and 10% FCS. 

 

Table 2.10 details cell lines used during this study, the people who provided the cells and 

culture medium in which they were grown. 

Cell Type Code Origin Culture Medium 

Retinal Pigmented 

Epithelium 

ARPE-19 Provided by Dr. Victoria 

Kearns, University of Liverpool, 

UK - originally from ATCC, USA 

DMEM:F-12 (1:1) + 

10% FCS, 2mM L-

Glut, 100U/ml 

penicillin G, 

100µg/ml 

streptomycin, 

2.5µg/ml 

amphotericin 

Rabbit LEC N/N1003A Provided by Prof. John 

Reddan, Oakland University, 

USA 

MEM + 8% RS + 2mM 

L-Glut 

Human LEC B3 Provided by Prof. Barbara 

Pierscionek, University of 

Ulster, UK - originally from 

ATCC, USA 

MEM + 10% FCS + 

2mM L-Glut 

 

All cells were incubated at 37°C and 5% CO2 and fed every 3-4 days. During feeding 

approximately ⅔ of the medium was removed from the vessel and replaced with fresh 

medium.  Cells were passaged, frozen or plated for experiments following the protocols 

outlined below. 
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2.4.1.2 Passaging Cells 

Cells were passaged at approximately ~70% confluency; to do this the medium was 

removed and discarded. Cells were washed with calcium and magnesium free phosphate 

buffered saline (PBS, Dulbecco A, Oxoid, UK) to remove non-adherent and dead cells.  A 

solution of 0.5mg/ml porcine trypsin and 0.2mg/ml EDTA (trypsin/EDTA 10X, Sigma-Aldrich, 

UK) in PBS was applied to the remaining adherent cells. These were incubated at 37°C with 

5% CO2 for 2-4 minutes until most cells had detached from the surface of the vessel. An 

equal volume of serum containing medium was added to the cell suspension to inactivate 

the trypsin. This solution was centrifuged (SIGMA 3K15, Phillip Harris Scientific) at ~180xg 

for 5 minutes then the supernatant was discarded. Following these steps cells were 

passaged, frozen (section 2.4.1.3) or plated for experiments ( section 2.4.1.4). To passage 

cells were resuspended in fresh medium and split into new vessels at 1:5 ratio, this required 

cells to be split every 6-7 days. No cell line was used after 45 passages. 

 

2.4.1.3 Freezing and Thawing of Cells  

A stock of cryopreserved cells was created to maintain lower passages and a reserve of cells 

for use at later dates. Cells were detached from culture vessels using trypsin/EDTA solution 

as outlined above (section 2.4.1.2). Following centrifugation the supernatant was discarded 

and cells were resuspended in 900µl of medium containing 20% serum. Specific medium 

and serum used depended upon the cell line (section 2.4.1.1). The 900µl cell suspension 

was transferred to a labelled cyrovial and 100µl dimethyl sulphoxide was added as a 

cyroprotectant. Cyrovials were placed in a “Mr. Frosty” freezing container (Fisher Scientific, 

UK) and subsequently placed in a -80°C freezer for 4hrs to allow a controlled decrease in 

temperature. Cyrovials were moved to liquid nitrogen Dewars (-196°) for long term storage. 

 

To thaw cells a cyrovial was removed from liquid nitrogen and defrosted in a water bath at 

37°C for 1-2 minutes. The defrosted cell suspension was quickly transferred to a centrifuge 

tube containing 10ml warmed medium specific to the cell line, and centrifuged at 180g for 

5 minutes. The supernatant was discarded and cells were resuspended in fresh medium. 

The cell suspension was transferred to a new culture vessel and placed in the incubator at 

37°C with 5% CO2. 
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2.4.1.4 Seeding Cells 

During experiments cells were seeded at a known density expressed as cells per cm2. To 

achieve a known cell density cells were counted on a haemocytometer. A glass coverslip 

was fixed over the gridded counting area of the haemocytometer. Following trypsinisation 

and resuspension in culture medium, 10µL of cell suspension was pipetted onto the 

haemocytometer. Cells were counted in each quadrant of the grid, the mean of which 

represented the number of cells x104/ml of cell suspension.  A dilution factor was 

calculated by dividing the number of cells/ml by the desired cells/cm2. Using the area of the 

substrate, the required the volume of cell suspension was calculated. The remaining 

required volume of medium was added to the cell suspension and mixed well prior to ding, 

this volume depended upon sample size and/or working volume of well. 90µl/cm2 of cell 

suspension was pipetted across the surface of 10x10mm coverslips which were incubated 

for 2 hours to allow cells to settle and adhere (Figure 2.20). After 2 hours more media was 

added to achieve the working volume of the well (typically 1ml for a 24 well plate). To 

tissue culture polystyrene (TCPS) wells, cells suspended in the working volume of the well 

were pipetted directly into the wells, and then placed in the incubator. Prior to cell seeding 

all samples were sterilised by UV treatment using CL-1000 crosslinker (UVP) for 5 minutes 

at 1500mJ/cm2. Cells were seeded at 1x104cells/cm2, unless otherwise stated. 

 

 

Figure 2.20 Schematic of cell suspension pipetted onto the surface of polymer samples. 

Following 2hrs incubation the culture well was filled with the working volume of medium. 

 

 

 

  

 

 

Cell Suspension 

Sample 
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2.4.2 Immunocytochemistry 

Various immunocytochemical stains were used throughout this thesis. The protocols for 

these are outlined in the sections below (2.4.2.1 - 2.4.2.5). After staining PS or PMMA 

coverslip samples were either mounted inverted onto glass slides using VECTASHIELD® 

HardSet™ fluorescent mounting medium containing 4’,6-diamidino-2-phenylindole (DAPI) 

dihydrochloride (Vector Laboratories, UK), mounted with a mounting medium not 

containing DAPI, or wells were filled with PBS. For TCPS well samples one of the 

aforementioned mounting media was placed in the wells, followed by a coverslip (Agar 

Scientific, UK) which was marked at specific positions with a diamond tip pen to create a 

counting grid ( section 2.4.3). 

 

2.4.2.1 Methylene Blue 

Cells were stained with 0.05% (w/v) methylene blue (Sigma-Aldrich, UK) to allow 

visualisation of cell growth without a microscope using the following protocol: 

1. Culture medium was removed. 

2. Cells were washed 3 times with PBS. 

3. Cells were fixed with absolute methanol (Chemistry Department, University of 

Liverpool, UK) for 5 minutes. 

4. Cells were washed 3 times with PBS. 

5. Cells were incubated with methylene blue for ~5 minutes. 

6. Cells were washed with water until the water ran clear. 

 

2.4.2.2 Propidium Iodide 

Propidium Iodine (PI) (Sigma-Aldrich, UK) intercalates between the helices of DNA and 

causes cell nuclei to fluoresce red (excitation 491-496nm: emission 636-642nm). A PI 

working solution of 10% ribonuclease (RNase, Sigma-Aldrich, UK), 89.5% PBS and 0.5% PI 

was used. The final PI concentration was 500µg/ml. The following protocol was used to 

stain nuclei with PI: 

1. Culture medium was removed. 

2. Cells were washed 3 times with PBS. 

3. Cells were fixed with 10% neutral buffered formaldehyde (NBF, BIOS Europe Ltd., 

UK) at room temperature for 10 minutes. 
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4. NBF was discarded. 

5. Cells were washed 3 times with PBS. 

6. Cells were incubated at room temperature, not in direct light, for 5 minutes with PI 

solution.  

7. Cells were washed 3 times with 0.1% tween 20/PBS. 

 

2.4.2.3 DAPI 

DAPI dihydrochloride (Life Technologies, UK) is a blue fluorescent dye (excitation 358nm: 

emission 461nm) which binds to adenosine-thiamine clusters of DNA. DAPI was diluted at a 

ratio of 1:3000 into PBS to create a working stock which was stored in that dark at 4°C for 

up to 1 month. Stain solution was made by diluting the working stock 1:10 with PBS. The 

final concentration of DAPI was ~167ng/ml. Staining procedure was similar to PI protocol 

(Section 2.4.2.2) and is as follows:  

1. Culture medium was removed. 

2. Cells were washed 3 times with PBS. 

3. Cells were fixed with 10% NBF at room temperature for 10 minutes. 

4. Cells were washed 3 times with PBS. 

5. Cells were incubated at room temperature, not in direct light, for 5mins with DAPI 

staining solution. 

6. Cells were washed 3 times with 0.1% tween 20/PBS. 

 

2.4.2.4 Phalloidin 

Phalloidin is a phallotoxin which binds to the F-actin filaments of a cell cytoskeleton. 

Throughout this study Alexa Fluor® 488 (excitation 495: emission 518) conjugated 

phalloidin (Life Technologies, UK) was used.  Phalloidin was dissolved in 1.5ml methanol 

and stored at 4°C. Prior to use phalloidin was diluted 1:40 in PBS:tween 20 (Sigma, UK) to a 

final concentration of 5U/ml. The following staining protocol was used: 

1. Culture medium was removed. 

2. Cells were washed 3 times with PBS. 

3. Cells were fixed with 10% NBF at room temperature for 10 minutes. 

4. Cells were washed 3 times with PBS. 
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5. Cells were permeabilised with 1%(v/v) triton X-100 (Sigma-Aldrich, UK) in PBS for 5 

minutes.  

6. Triton X-100 solution was removed and cells were washed three times with 0.1% 

tween 20/PBS. 

7. Cells were incubated with phalloidin at room temperature for 30 minutes away of 

direct light. 

8. Cells were washed 3 times with 0.1% tween 20/PBS. 

 

2.4.2.5 Primary and Secondary Antibody Staining 

N/N1003A and B3 lens epithelial cell lines were stained for the presence of αB-crystallin 

and various cytokeratin proteins as markers for lens epithelial cells [214, 216-218]. A mouse 

monoclonal anti-αB crystallin primary antibody (Abcam, UK) was used. Various cytokeratin 

antibody clones, each of which binds to specific cytokeratins, were used and are outlined 

below in Table 2.11. 

 

Table 2.11 outlines the clone and manufacturer of cytokeratin antibodies and the specific 

cytokeratins they bind to. 

Clone, Manufacturer, Country Cytokeratins Concentrations Used 

NCL-5D3 anti-mouse, Santa 

Cruz, USA 

8 and 18 2µg/ml 

C11 anti-mouse, Santa Cruz, 

USA 

4, 5, 6, 8, 10, 13 and 18 2µg/ml 

AE1/AE3 anti-mouse, Dako, 

UK 

1, 2, 3, 4, 5, 6, 7, 10, 13, 14, 

15, 16 and 19 

975ng/ml 

MNF116 anti-mouse, Dako, 

UK 

5, 6, 8, 17 and probably 19 1.7µg/ml 

RCK108 anti-mouse, Dako, UK 19 200ng/ml 

 

 The primary antibodies were fluorescently tagged with an Alexa Fluor® 488 goat anti-

mouse IgG secondary antibody (Life Technologies, UK). As a negative control mouse IgG 

(Dako, UK) was substituted in place of the primary antibody. As a blocking agent 10%(v/v) 
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goat serum (Sigma-Aldrich, UK) solution was made in 1%(w/v) BSA:PBS. The staining 

procedure was as follows: 

1. Culture medium was removed. 

2. Cells were washed three times with PBS. 

3. Cells were fixed with methanol for 5 minutes or 10% NBF for 10 minutes. 

4. Cells were washed three times with PBS. 

5. Cells were permeabilised with 1% triton X-100 (Sigma-Aldrich, UK) in PBS for 5 

minutes at 4°C.  

6. Cells were washed three times with 0.1% tween 20/PBS. 

7. Cells were incubated with 10% goat serum at 37°C for 30 minutes. 

8. Goat serum was not washed and samples were incubated with primary antibody or 

IgG negative control, at a concentration of 1:100 (2µm/ml) in 1% BSA/PBS, at 4°C 

overnight.  

9. Cells were washed three times with 0.1% tween 20/PBS. 

10. Secondary antibody was added at a concentration of 1:100 or 1:250 in 1%BSA:PBS 

and incubated at 37°C for 30 minutes. 

11. Cells were washed three times with 0.1% tween 20/PBS. 

 

2.4.3 Cell Growth Study and Cell Growth Area Montages 

Representative images were taken of live cells throughout the growth period in cell culture 

using an inverted phase contrast microscope (Diaphot, Nikon, UK) with a Nikon D1 digital 

SLR camera, at various time points. To quantify cell growth across the various experimental 

conditions micrographs were taken at defined points across the sample. Micrographs of 

fluorescently stained cell nuclei were taken with x10 objective lens in the centre of the 

sample, 1.5mm, 3mm and 4mm away from the centre of the sample. Images were taken in 

both the x and y axes, in both positive and negative sides of the centre point. Therefore 4 

images for 1.5mm, 3mm and 4mm were taken on each sample (Figure 2.21). 
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To perform cell growth analysis on TCPS control samples, coverslips used to mount samples 

were marked with a diamond tip pen at the various positions, to create positions for 

counting cells (Figure 2.22).  

 

 

 

 

 

To determine the diameter of the cell growth area, micrographs of stained cell nuclei or 

cytoskeleton were taken across each axis with an x5 objective. Each micrograph overlapped 

Figure 2.21 Diagram depicting 

micrograph positions on a sample 

for cell growth analysis. 

Figure 2.22 Diagram depicting the process of marking coverslips to be mounted in TCPS 

control wells for cell growth analysis. A. A 13mm glass coverslip to fit a 24-well plate, was 

placed on a (B.) 10x10mm graticule with a 0.5mm resolution. Scratches were made on the 

coverslip at (C.) various positions using the graticule for reference. The coverslip was 

mounted in the TCPS well and the scratch positions could be n using transmitted light 

microscopy. 
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the adjacent micrograph, allowing for image stitching and a montage across each axis to be 

produced (Figure 2.23). Each axis was stitched individually due to software/hardware 

constraints. The diameter of cell growth area was then measured. 

 

 

 

 

2.4.4 Image Analysis 

All micrographs, excluding those for the pin plasma experiment, for cell growth and 

montage analysis were taken with an Axiovert 200 inverted microscope (Zeiss, UK), and 

captured using Axiovision software (Zeiss, UK). Micrographs for the pin plasma experiments 

were captured using an Observer Z1 inverted microscope (Zeiss, UK), and captured using 

Zen software (Zeiss, UK). All cell nuclei were counted using ImageJ software package 

version 1.43m (National Institutes of Health, USA). Within the ImageJ package cells were 

either counted manually using the “cell counter” plug-in, or a macro was written which 

converted the image to binary and utilised the “analyse particles” function. Cells were 

assumed to be mononuclear. 

 

To create montage images from which the diameter of cell growth could be calculated 2 

software packages were used. Images taken using the Axiovision software were stitched 

using the MosiacJ[219] plugin for ImageJ. Images taken during the pin plasma experiment 

Figure 2.23 Diagram displaying 

overlapped fields of view used in 

creating montage image to measure 

the diameter of the cell growth area. 
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were stitched within the Zen software at the time of capture. The diameter of the cell 

growth area was measured from the composite montage images using the “measure” 

function in either Axiovision software, or Zen software for the pin plasma experiment. The 

“measure” functions in each software were calibrated to the optics of the corresponding 

microscope. High magnification fluorescent images were taken with  a x40 objective lens on 

both the Zeiss Axiovert 200 and Observer Z1 microscopes. 

 

2.4.5 TGF-β2 ELISA 

To determine the level of TGF-β2 secreted by the LECs in culture an enzyme-linked immune 

sorbent assay (ELISA, R&D Systems, UK) was performed on the cell culture supernatants. At 

various cell growth time points culture medium was removed from cells, during routine 

feeding.  The medium for each different substrate condition was pooled. Samples were 

centrifuged at 1000xg for 15mins at 4°C and stored at -20°C. A summation of the 

manufacturer’s protocol is outlined below. Volumes are per well on a 96 well plate. 

1. To activate TGF-β2 within supernatant. 

1.1. 25µL of 1N HCl was added to 125µL of sample and incubated for 10mins at room 

temperature. 

1.2. 25µL of 1.2N NaOH/0.5M HEPES was added. 

1.3. 800µL of Calibrator Diluent was added and samples were assayed within 2hrs. 

2. TGF-β2 standard series was prepared. 

2.1. TGF-β2 stand was reconstituted with 2ml Calibrator Diluent and placed on a 

rocker for 15 minutes. 

2.2. A 6-point 1:2 series dilution was made using the reconstituted standard and 

Calibrator Diluent. Reconstituted standard served as the high standard and the 

Calibrator Diluent served as the zero standard, making a total of 8 points for the 

standard curve. 

3. Assay procedure was followed. 

4. Wash buffer was diluted following manufacturer’s instructions. 

4.1. 100µL of Assay Diluent was added to each well. 

4.2. 100µL of standard, controls or activated samples were added to wells. 

4.3. Plate was covered with adhesive strip and allowed to incubate for 2hrs at room 

temperature. 
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4.4. Wells were emptied and washed with wash buffer three times. 

4.5. 200µL TGF-β2 Conjugate was added. 

4.6. Plate was covered with an adhesive strip and incubated for 2hrs at room 

temperature. 

4.7. Substrate solution was prepared by mixing colour reagents “A” and “B” in equal 

volumes. Solution was protected from light and used within 15mins. 

4.8. Wells were washed 3 times. 

4.9. 200µL of substrate solution was added. 

4.10. Plate was protected from light and incubated for 20mins at room temperature. 

4.11. 50µL of the stop solution was added to each well and thoroughly mixed. 

4.12. The absorbance of each well was measured at 450nm and 570nm using a 

µQuant™ microplate spectrophotometer (BioTek Instruments Inc., USA) . 

Readings for each standard, control and sample were taken in duplicate. The duplicate 

readings were averaged. The readings taken at 570nm were subtracted from the 450nm 

mean, to correct for optical imperfections in the plate. The zero standard optical density 

was subtracted from all measurements. The response values from the spectrophotometer 

and the independent standard series concentration values were input to ReaderFit (Hitachi 

Solutions, USA). This calculated a 4-parameter logistical curve-fit for the standard curve and 

calculated the TGF-β2 concentration for the samples and controls. The calculated TGF-β2 

concentrations for controls and samples were multiplied by 7.8 to compensate for dilution 

during the activation stage (step 1). 

 

2.4.6 Cytokine Multiplex Assay 

A magnetic bead-based multiplex assay was used to determine the concentration of 

inflammatory cytokines: interleukin-1α (IL-1α), interleukin-6 (IL-6), basic fibroblastic growth 

factor (basic-FGF) and tumour necrosis factor-α (TNF-α) in cell culture supernatants. The 

multiplex assay kit and each of the cytokines were purchased from Bio-Rad, USA. IL-1α was 

from the human cytokine group II and the remaining cytokines were from human cytokine 

group I; this required the mixing of standards and detection antibodies which are detailed 

in the protocol below. During feeding, culture medium was removed from cells and 

reserved at various time points. Samples were centrifuged at 1000xg for 15 minutes at 4°C 

and stored at -20°C. The manufacturer’s protocol was followed and is summarised below. 
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During incubation sealing tape was placed of the wells. In the washing steps a magnetic 

plate holder was used to retain the beads in the wells. 

1. Standards were prepared 

1.1. Standards for human cytokine groups I and II were reconstituted in 250µL each. 

1.2. Standards were gently vortex and incubated on ice for 30 minutes. 

1.3. Nine polypropylene tubes were labelled “S1” –“S8” and “blank”. 

1.4. 72µl of standard diluent was pipetted into tube “S1” and 150µL into the 

remaining tubes. 

1.5. 64µl from each standard was pipetted into tube “S1”. 

1.6. 50µL from tube “S1” was pipetted into tube “S2”; a 1:4 serial dilution was 

continued until tube “S8”. 

2. Beads coupled with capture antibodies for each cytokine were prepared. Each vial of 

coupled beads was specific to a cytokine. 

2.1. Beads were vortexed for 30 seconds each. 

2.2. 3.45mL assay buffer was pipetted into a polypropylene tube. 

2.3. 575µL of each set of coupled beads was added to the assay buffer. This allowed 

50µL of bead suspension per well, plus 20% excess. 

3. 50µL of coupled beads were added to each well. 

4. Wells were washed twice with wash buffer. 

5. 50µL of standards, controls and samples were added to wells. 

6. The plate was incubated on a shaker for 30 minutes at room temperature. 

7. Detection antibodies were prepared during incubation. Each vial of detection antibody 

was specific to a single cytokine. 

7.1. 1.8mL of detection antibody diluent was pipetted to a polypropylene tube. 

7.2. 300µL of each detection antibody was added to the detection antibody diluent. 

This allowed 25µL of diluted detection antibody per well with 20% excess. 

8. Sealing tape was removed and wells were washed three times. 

9. 25µL of diluted detection antibodies were added to each well. 

10. The plate was sealed and incubated on a shaker at room temperate for 20 minutes. 

11. During incubation streptavidin-phycoerythrin(PE) was prepared. 

11.1. Streptavidin-PE tube was vortexed for 30 seconds. 
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11.2. 60µL of streptavidin-PE was mixed with 2.97mL assay buffer and protected from 

light until ready to use. 

12. After detection antibody incubation sealing tape was removed and plate was washed 

three times. 

13. 50µL of streptavidin-PE was added to each well. 

14. The plate was incubated on a shaker at room temperate for 10 minutes. 

15. Following incubation the plate was washed 3 times. 

16. 125µL of assay buffer was added to each well. 

17. The plate was sealed then shaken at 1,100rpm for 30 seconds. 

18. Sealing tape was removed and plate was placed in the Bio-plex 200 system (Rio-Rad, 

USA) for analysis. 

 

Bio-Plex Manager 5.0 software (Bio-Rad, USA) was used to read and analyse the data. A 

protocol was set within the software, such that the software could extrapolate data from 

the information provided and the readings from the plate. Information provided included 

positions of standards, controls and samples on the plate; which cytokines and 

corresponding bead fluorescent regions were used; which standards, base concentrations 

for each cytokine and dilution factors were used. Readings for each standard, control and 

sample were measured in duplicate; duplicate readings were averaged. The readings from 

the blank standard for each cytokine were subtracted from all other readings for that 

specific cytokine. The Bio-Plex Manager 5.0 software used a 5-parameter logistic regression 

method to determine a standard curve for each cytokine, from these standard curves the 

software calculated observed cytokine concentrations. 
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2.5 Statistical Analysis 

Statistical analysis was performed using IBM SPSS v. 20 statistics software (IBM, USA,) and 

results are reported as means ± standard deviation. Statistical significance was measured by 

one-way ANOVA unless otherwise stated. One-way ANOVA’s were followed by Tukey’s test 

or Dunnett’s T3 test if homogeneity of variances was upheld or violated, respectively. 

Statistical significance was assumed when p<0.05. 
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3 Results 

3.1 Antibody Characterisation 

To characterise lens epithelial cells (LECs) they were stained with αB-crystallin, a common 

lens cell marker[214, 217], and various cytokeratin clones. Cytokeratin antibody clones and 

the specific cytokeratins each clone binds to are outlined in Table 3.1 below. Rabbit 

N/N1003a[214] and human B3[217] LEC lines were stained. Mouse IgG was used as a 

negative control and retinal pigmented epithelial cell line (aRPE-19) was used as a positive 

control. All cell lines were negative for mouse IgG staining (Figure 3.1). αB-crystallin staining 

was observed in all cell lines. The aRPE-19 cell line[213] was positive for cytokeratin 

however both LEC lines were negative for all cytokeratin clones. Very few individual B3 cells 

appeared to express cytokeratin. Only the NCL-5D3 clone is displayed in Figure 3.1 to avoid 

repetition. 

 

Table 3.1 outlines the clone and manufacturer of cytokeratin antibodies and the specific 

cytokeratins they bind to. 

Clone, Manufacturer Cytokeratins 

NCL-5D3 anti-mouse, Santa Cruz 8 and 18 

C11 anti-mouse, Abcam 4, 5, 6, 8, 10, 13 and 18 

AE1/AE3 anti-mouse, Dako 1, 2, 3, 4, 5, 6, 7, 10, 13, 14, 15, 16 and 19 

MNF116 anti-mouse, Dako 5, 6, 8, 17 and probably 19 

RCK108 anti-mouse, Dako 19 
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Figure 3.1 Representative micrographs of antibody staining (green) and DAPI nuclear 

staining (blue) of retinal pigmented epithelial cells (aRPE-19), rabbit lens epithelial cells 

(N/N1003A) and human lens epithelial cells (B3) on tissue culture polystyrene (TCPS). 

aRPE-19 cells served as a positive control for both αB-crystallin and NCL-5D3 anti-bodies. 

Scale bar = 100µm. 

 

3.2 Preliminary Epithelial Cell Culture on Plasma Jet Treated Samples 

aRPE-19 were seeded onto TCPS wells had wide-spread morphology after 5 days of growth, 

whereas only a few cells were attached to untreated polystyrene (UT-PS). Treated 

polystyrene (PS) demonstrated cell growth similar to TCPS. Samples that were half-treated 

using a mask displayed a distinct boundary of cell growth at the interface of masked and 

unmasked regions. Cells on TCPS, treated and half-treated PS had not yet formed an 

epithelial monolayer but areas of higher cell density on treated samples displayed typical 

epithelial cobblestone morphology. This preliminary study exhibited that treatment with a 

He plasma jet enables epithelial cell attachment and proliferation (see Figure 3.2). 
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Figure 3.2 Representative fluorescent micrographs of aRPE-19 cells seeded onto tissue 

culture polystyrene (PS), untreated PS, treated PS and half-treated PS. Cell cytoskeletons 

were stained with phalloidin (green) and nuclei were stained with propidium iodide (red). 

Dotted line represents the boundary of the treated region. Scale bar = 100µm. 

 

3.3 Shadowing Experiments 

To elucidate possible mechanisms of plasma jet surface modification, barriers of different 

geometries were placed between the sample and nozzle in the flow of helium gas. This 

blocked the path of bond-breaking photons and disrupted the gas flow carrying species 

(electrons, ions, atoms and molecules) which could alter the surface chemistry. These 

barriers created a “shadow” effect on treated surfaces, i.e a reduction in treatment on the 
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sample in an area behind the barrier.  In these experiments the jet parameters were fixed 

(10kHz, 6kVpeak-peak) but the barrier widths, geometries and materials were changed; as 

were the distances of both samples and shadows from the jet nozzle. This section mostly 

deals with contact angle profiles taken across the surface of treated PS; for this section and 

the subsequent contact angle sections some nomenclature and assumptions are outlined 

below:  

 positions were discrete points on the surface of a sample and will be referred to 

with respect to the centre of the profile/sample; the centre of the profile/sample is 

0mm on all contact angle line graphs  

 “…across the sample” refers to the contact angle profile across the entire surface of 

a single parameter 

 Reference to the “edge” of samples/profiles are the left and right side of the 

contact angle line graphs, typically the 3-4mm positions (for 10x10mm samples) 

 “section” or “region” refers to multiple positions of a single profile 

  “untreated region” refers to the section in which contact angle was approximately 

the same as untreated polystyrene (~80°)(or approximately 59° in the case of 

untreated PMMA, see section 3.5.1), this was typically at the edge (3-4mm from 

the centre) of a treated sample 

 “more untreated” means that the contact angle was tending toward 80° (for PS) 

 “more treated” means that the contact angle was tending toward 0° 

  “treated region” refers to the section of a contact angle profile in which contact 

angle was less than ~75-80° 

 “maximum/minimum (maxima/minima)” refers to the highest and lowest contact 

angle(s) of a profile respectively 

  “maximum treatment” refers to the lowest contact angle 

  a “level” contact angle profile refers to a profile which varies by <5° between 

positions (e.g. 4mm = 80.1°, 3.5mm = 79.3°, 3mm = 76.7°, 2.5mm = 82° etc.) 

 It was assumed plasma jet treatment created a circular treated area 

 the “width” of a treated area (or “diameter”, as treated areas were assumed to be 

circular)  will be defined as the distance along a contact angle profile at which 

contact angle was ~x°, where x was dependent on treatment condition and will be 

defined in each section 
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 treatment with a plasma jet will decrease the contact angle in the centre of a 

sample, i.e. the contact angle will be lower in the positions closer to the centre 

compared to the contact angle at the edges; creating a “treated region” 

 

3.3.1.1 Paper Shadowing 

In initial tests barriers of various widths were cut from paper. The paper barriers and 

samples were placed 7mm and 10mm from the nozzle respectively. When barriers were 

placed within the gas stream they created a shadow effect within the treated region; a 

shadow effect was a section within the treated region of a sample which was more 

untreated than the areas surrounding it. For example the peak in contact angle observed in 

the centre of the 0.2mm wide barrier parameter was considered an effect of the barrier 

(Figure 3.3). 

 

No discernible shadow effect was observed on PS with the presence of 0.5mm and 1mm 

wide paper barriers, however clear shadow effects were observed when the barrier width 

was 1.2mm or 1.5mm; these created a wider shadow effect compared to the 0.2mm 

parameter (Figure 3.3). The contact angle across the entire surface of samples with the 

2mm and 3mm parameters was ~80° indicated that these barriers blocked all treatment. 

When barriers with widths larger than the internal diameter (ID) of the jet nozzle (1mm) 

were used broad shadow effects were observed. 
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Figure 3.3 Line graph of contact angle profiles taken across polystyrene (PS) samples 

treated with a plasma jet. Samples were placed 10mm from the plasma jet nozzle and 

paper barriers of various width (0.2-3mm) were placed 7mm from the nozzle. Contact 

angle measurements were taken across central axes of samples at a resolution of 

0.25mm. Profiles were from single samples. 

 

3.3.1.2 Plastic Shadowing 

Paper was considered too weak to present a stable flat barrier therefore plastic barriers 

were investigated. Samples were treated (at a 10mm sample-nozzle distance) with the 

presence of a plastic barrier in the focus of the jet, which provided a sturdy flat edged 

barrier to the helium flow. Treatment without a shadow resulted in a decrease in contact 

angle from approximately 50° at the sample edge, to ≈30° in the centre of the sample, thus 

creating a broad trough in the contact angle profile (Figure 3.4). When a 1.2mm wide 

barrier was placed in the path of the jet no discernible effect was observed; the contact 

angle profile was similar to samples treated without a barrier. When a 3mm wide barrier 

was placed in the path of the plasma jet a very broad shadow effect could be observed in 

the contact angle profile. This broad shadow was slightly left of the centre position resulting 

in the asymmetry observed in the troughs. 
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Figure 3.4 Line graph of contact angle profiles taken across polystyrene (PS) samples 

treated with a plasma jet. Samples were placed 10mm from the plasma jet nozzle and 

plastic barriers of various width (1.2mm and 3mm) were placed 8mm from the nozzle. 

Contact angle measurements were taken across central axes of samples at a resolution of 

0.25mm. Profiles were from single samples. 

 

In an additional test a plastic shadow of 2mm width was placed 4mm, 6mm and 8mm from 

the nozzle; the samples were fixed at 10mm from the nozzle. When PS was treated without 

a barrier the contact angle profile was >65° at the edges and decreased to ~25° ± 10° in the 

centre region (Figure 3.5). When the barrier was placed 4mm from the nozzle no clear 

shadow effect was observed; however the narrowness of the central trough, and the rise 

and fall of contact angle observed at the right 3-9mm section of the profile suggested that 

the barrier may have been misaligned. A small peak in contact angle was observed within 

the treated area when the barrier was placed 6mm from the nozzle. This appeared 

symmetrical and was most likely a shadow effect. When the barrier was placed at 8mm 

from the nozzle a peak, of similar width to that observed for the 4mm parameter, was 

present. These results indicate that the position of the barrier affected the extent of the 

shadowing, with a greater blockage of treatment when the barrier was closer to the 

sample. 
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Figure 3.5 Line graph of contact angle profiles taken across polystyrene (PS) samples 

treated with a plasma jet. Samples were placed 10mm from the plasma jet nozzle and a 

2mm wide plastic barriers was placed 4mm, 6mm and 8mm from the nozzle. Contact 

angle measurements were taken across central axes of samples at a resolution of 

0.25mm. Profiles were from single samples. 

 

Similar to the previous experiment PS samples was fixed at a set distance, 25mm from the 

nozzle, and a 2mm width barrier was positioned at various distances relative to the nozzle 

(5mm, 10mm, 15mm and 20mm). When PS was treated without a barrier the contact angle 

was reduced from approximately 80° at the edges to ~20° in the centre (Figure 3.6). When a 

barrier was placed 5mm from the nozzle no treatment was observed on PS samples 

(contact angle at all positions was >80°). When the barrier was positioned at 10mm and 

15mm from the nozzle the contact angle decreased to <70° to the left of the centre 

indicating that they may have been slight treatment but the shadow was misaligned. A 

shadowing effect was observed to the left of the centre position on PS when the barrier 

was placed 20mm from the nozzle. The right side of sample was clearly more treated, 

adding further evidence that the barrier may have been misaligned or asymmetric (Figure 

3.6). 
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Figure 3.6 Line graph of contact angle profiles taken across polystyrene (PS) samples 

treated with a plasma jet. Samples were placed 25mm from the plasma jet nozzle and a 

2mm wide plastic barriers was placed 5mm, 10mm, 15 and 20mm from the nozzle. 

Contact angle measurements were taken across central axes of samples at a resolution of 

0.25mm. Profiles were from single samples. 

 

3.3.1.3 Glass Capillary Shadowing 

Glass capillaries were used as barriers to the plasma gas flow which presented a circular 

geometry as opposed to a flat-faced barrier in the previous experiments. Cells were also 

seeded on samples treated with and without capillary shadows and grown for 7 days.  

 

 Contact Angle 3.3.1.3.1

A 3mm diameter quartz capillary barrier was placed 2mm from the jet nozzle. Samples 

were treated at 10, 12, 14, 16, 18 and 20mm from the nozzle with the barrier in-situ. When 

a sample was positioned 10mm from the nozzle the contact angle gradually decreased from 

~80° at the edge of the sample to a minimum of 24.7° in the central treated region. The 

central treated region displayed an asymmetry that was not present in the other 

parameters, which presented a smooth decrease in contact angle toward the centre of the 

profile (Figure 3.7). As the samples were positioned further from the nozzle and shadow the 

extent of treatment decreased, i.e. the trough in the contact angle profile became more 
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narrow and shallow with distance from the nozzle. No distinct shadow effect, as defined as 

a peak in contact angle within a treated region, was observed.  

 

 

Figure 3.7 Line graph of contact angle profiles taken across polystyrene (PS) samples 

treated with a plasma jet. Samples were placed 25mm from the plasma jet nozzle and a 

3mm outer diameter glass capillary barrier was placed 10mm, 12mm, 14mm, 16mm, 

18mm and 20mm from the nozzle. Contact angle measurements were taken across 

central axes of samples at a resolution of 0.25mm. Profiles were from single samples.  

 

 Cell Culture 3.3.1.3.2

N/N1003A LECs seeded onto TCPS had attached after 1 day of culture and had a spread 

morphology. By day 4 confluent patches of LECS became apparent on TCPS wells and cells 

in confluent areas beginning to develop an epithelial cobblestone morphology. By day 7 a 

confluent epithelial monolayer had formed within TCPS wells. On UT-PS few cells were 

attached by day 1 and attached cells typically displayed a rounded morphology, with some 

cells having slightly more spread or spindle morphology. By day 4 cells on UT-PS had formed 

poorly attached clumps of rounded cells, with some cells having a spindle morphology. 

Some small patches of spread cells had grown on untreated PS by day 7 yet many cells still 

displayed a rounded morphology. Cells on samples treated without and with a barrier 

appeared similar to each other. In the centre of the samples there were more attached cells 

with a well spread morphology compared to TCPS. By day 4 most of the central area of 
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treated samples had confluent growth of LECs, and by day 7 the central areas had confluent 

monolayers with cobblestone morphologies. 

 

 

Figure 3.8 Phase contrast micrographs of N/N1003A rabbit LECs grown on tissue culture 

polystyrene (TCPS), untreated polystyrene (UT-PS) and polystyrene (PS) treated with or 

without a glass capillary barrier. Micrographs were taken in the centre of samples at days 

1, 4 and 7. Scale bar = 100µm. 

 

Due to the low cell density on TCPS at day 1 most cells were not visible when photographs 

of cells stained with methylene blue taken with a handheld camera. At day 4 it was 

observed that cells covered most of the area of the TCPS wells. Methylene blue staining of 

TCPS wells at day 7 appeared similar to the day 4 staining, however it was difficult to match 

the lighting conditions. At day 7 LECs covered the whole of the tissue culture wells. No cells 

could be seen on UT-PS when stained with methylene blue. On samples treated both with 
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and without a glass capillary barrier a small concentration of cells could be seen in 

approximately the centre of the samples on day 1. At day 4 there was a dense staining in a 

circular pattern, with a distinct boundary, in the centre of samples treated without a 

barrier. There was some spotted staining around this dense area. Samples treated with a 

barrier were similar at this time point however the dense circular staining in the sample 

centre had smaller diameter and a less define boundary. Spotted staining around the dense 

area covered a larger area compared to samples treated without a barrier. At day 7 a 

monolayer of cells covered most of the samples treated without a barrier, which was 

demonstrated by a uniform blue staining across the centre of the samples. The staining of 

samples treated with a barrier did not cover as large an area, compared to samples treated 

without a barrier. 
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Figure 3.9 Photographs of methylene blue staining of tissue culture polystyrene (TCPS), 

untreated polystyrene (UT-PS), polystyrene (PS) treated without a barrier and PS treated 

with a barrier. Samples were fixed and stained at days 1, 4 and 7 and photographs were 

taken with a Nikon D5 camera, however the lighting conditions on the day 7 plate could 

not be matched to the earlier time points. Samples were approximately 20x20mm. 

 

3.3.2 Blackened Glass Rod Shadows 

Blackened glass rods were obtained to prevent the transmission of photons, which could 

possibly modify the surface, through the barriers. These rods presented a barrier with a 

circular geometry to the plasma gas flow. Rods of 1mm, 2mm and 3mm diameter were 

obtained and placed at various positions from the nozzle. In this experiment, two sample 
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positions were used: 10mm and 20mm. For clarity, results will be grouped into 6 figures 

each with a single rod diameter and sample-nozzle-distance, e.g. 1mm diameter-10mm 

sample distance, 2mm diameter-10mm sample distance, 3mm diameter-20mm sample 

distance. Within each figure variation in treatment will be the position of the rod relative to 

the nozzle. 

 

When samples were placed 10mm from the nozzle and no barrier was placed in the jet 

stream contact angle decreased from >40° at the left side of the sample to 20°, which 

continued across the sample (Figure 3.10). When the 1mm width barrier was placed at 

various distances from the sample the only appreciable change in the contact angle was at 

the right of the profile. The contact angle in this region was higher when the barrier was 

closer to the nozzle. This indicates that as the barrier was closer to the nozzle it caused a 

reduction of the treatment effect on the surface and the effect of the barrier on treatment 

decreased as the barrier was moved further from the nozzle, i.e. the profiles became more 

similar to the “No Barrier” condition (Figure 3.10). As more treatment was observed on the 

right side of the profiles it is possible that the samples/sample holder was misaligned with 

respect to the plasma jet. 

 

This reduction of treatment was observed for larger diameter barriers also (Figure 3.11 and 

Figure 3.12). The reduction of treatment effect created by the larger diameter barriers can 

be characterised as a narrowing of the trough in the contact angle profiles (i.e. reduction of 

the width of treatment), and an increase in the minimum contact angle of a profile (i.e. a 

decrease of the maximum treatment). The reduction in treatment also increases with the 

diameter of the barrier (Figure 3.10, Figure 3.11 and Figure 3.12). 
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Figure 3.10 Line graph of contact angle profiles taken across polystyrene (PS) samples 

treated with a plasma jet. Samples were placed 10mm from the plasma jet nozzle and a 

1mm diameter blackened glass rod barrier was placed 2mm, 4mm, 6mm and 8mm from 

the nozzle. Contact angle measurements were taken across the central axes of samples at 

a spatial resolution of 0.5mm. Profiles are the mean of 3 samples. Error bars are ± 1 

standard deviation. 
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Figure 3.11 Line graph of contact angle profiles taken across polystyrene (PS) samples 

treated with a plasma jet. Samples were placed 10mm from the plasma jet nozzle and a 

2mm diameter blackened glass rod barrier was placed 2mm, 4mm, 6mm and 8mm from 

the nozzle. Contact angle measurements were taken across central axes of samples at a 

resolution of 0.5mm. Profiles are the mean of 3 samples. Error bars are ± 1 standard 

deviation. 
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Figure 3.12 Line graph of contact angle profiles taken across polystyrene (PS) samples 

treated with a plasma jet. Samples were placed 10mm from the plasma jet nozzle and a 

3mm diameter blackened glass rod barrier was placed 2mm, 4mm, 6mm and 8mm from 

the nozzle. Contact angle measurements were taken across central axes of samples at a 

resolution of 0.5mm. Profiles are the mean of 3 samples. Error bars are ± 1 standard 

deviation. 

 

When samples were positioned 20mm from the nozzle the contact angle decreased from 

≥39° at the edges to ~20° in the centre region. When a 1mm diameter barrier was placed 

2mm from the nozzle there was almost no treatment at the sample 20mm from the nozzle 

(Figure 3.13). When the 1mm diameter barrier was placed 6mm and 10mm there was 

clearly treatment to the right of the sample centre. When the barrier was placed 14mm 

from the centre a shadowing effect, or peak within the treated area, was observed. When 

the barrier was placed close to the sample at 18mm the contact angle profile was similar to 

the no barrier parameter, however the contact angles in the centre were not as low.  

 

When a wider barrier was used (2mm diameter) severe reduction of treatment was 

observed at the 2mm, 6mm and 10mm positions. The contact angle in the centre of the 

14mm and 18mm parameters did decrease to ~20° similar to the no barrier parameter, 

however the contact angles at the edges where higher indicating a reduction in the effect 

of treatment. 
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The a large reduction in treatment was observed when the barrier was positioned 2mm, 

6mm and 10mm with the 2mm diameter barrier was also observed for the 3mm diameter. 

When the barrier was positioned 14mm from the nozzle the profile was also similar to the 

2mm diameter - 14mm distance parameter. However when the barrier was positioned 

close to the sample at 18mm from the nozzle a shadow effect was observed. 

 

 

Figure 3.13 Line graph of contact angle profiles taken across polystyrene (PS) samples 

treated with a plasma jet. Samples were placed 20mm from the plasma jet nozzle and a 

1mm diameter glass rod barrier was place 2mm, 6mm, 10mm, 14mm and 18mm from the 

nozzle. Contact angle measurements were taken across central axes of samples at a 

resolution of 0.5mm. Profiles are the mean of 3 samples. Error bars are ± 1 standard 

deviation. 
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Figure 3.14 Line graph of contact angle profiles taken across polystyrene (PS) samples 

treated with a plasma jet. Samples were placed 20mm from the plasma jet nozzle and a 

2mm diameter blackened glass rod barrier was place 2mm, 6mm, 10mm, 14mm and 

18mm from the nozzle. Contact angle measurements were taken across central axes of 

samples at a resolution of 0.5mm. Profiles are the mean of 3 samples. Error bars are ± 1 

standard deviation. 
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Figure 3.15 Line graph of contact angle profiles taken across polystyrene (PS) samples 

treated with a plasma jet. Samples were placed 20mm from the plasma jet nozzle and a 

3mm diameter blackened glass rod barrier was place 2mm, 6mm, 10mm, 14mm and 

18mm from the nozzle. Contact angle measurements were taken across central axes of 

samples at a resolution of 0.5mm. Profiles are the mean of 3 samples. Error bars are ± 1 

standard deviation. 
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3.4 100µm Microplasma Jet 

3.4.1 Ageing 

To examine different storage methods samples were either aged in water or air for a 

maximum of 52 weeks. As this experiment was conducted once, statistical analysis could 

not be conducted.  

 

3.4.1.1 Contact Angle 

When untreated polystyrene (UT-PS) samples were stored in air the contact angle generally 

remained similar to each other and constant across the sample surface throughout the 

storage time, however there was a noticeable drop in contact angle of ~10° on the left side 

of the week 52 profile (Figure 3.16). The average contact angle for all positions at all time 

points was 83.4° ± 3.4°. At 4 weeks storage in air the contact angle profile had the highest 

average of 88.2° ± 0.7°, week 52 the lowest average contact angle of 77.8° ± 2.2°. 

 

 

Figure 3.16 Line graph of contact angle profiles of untreated polystyrene (UT-PS) samples 

stored in air for 0 days, 1 day, 4 days, 7 days, 2 weeks, 4 weeks, 8 weeks and 52 weeks. 

Contact angle measurements were taken across central axes of samples at a resolution of 

0.5mm. Profiles are the mean of 3 samples. Error bars are ± 1 standard deviation. 

 

When UT-PS samples were stored in deionised water the contact angle across the surface 

of a single parameter remained approximately constant (Figure 3.17). The average contact 
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angle across each parameter decreased with storage duration. Standard deviations were 

also larger at later time points. The average contact angle for the profiles taken at day 0 

and day 1 were very similar at 80° ± 1.7° and 78.2° ± 2.7° respectively. By day 4 the average 

contact angle dropped to 71.1° ± 5°. The average contact angle for 7 days and 2 weeks 

storage in water were similar: 65.8° ± 7.4° and 64.8° ± 4.8° respectively. The average 

contact angle measurements at 4 and 8 weeks were also similar: 49.9° ± 6.3°and 49° ± 10.3° 

respectively. Following 52 weeks in storage the average contact angle of UT-PS stored in 

water had dropped to 39.7° ± 3.9°, ~40° lower than the original day 0 contact angle value of 

80° ± 1.7°. 

 

 

Figure 3.17 Line graph of contact angle profiles of untreated polystyrene (UT-PS) samples 

stored in deionised water for 0 days, 1 day, 4 days, 7 days, 2 weeks, 4 weeks, 8 weeks and 

52 weeks. Contact angle measurements were taken across central axes of samples at a 

resolution of 0.5mm. Profiles are the mean of 3 samples. Error bars are ± 1 standard 

deviation. 

 

The contact angle of treated PS (T-PS) samples stored in air showed little difference 

between day 0 – 8 weeks at both treated (centre) regions (~20 – 37°) and untreated (edge) 

regions (>80°) (see Figure 3.18). The lowest contact angle was observed at day 0, which 

reached <20° in the central treated area. Samples stored for 1, 4, 7 days and 8 weeks had 

contact angles ranging from 20-30° in the central treated regions, however when samples 
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were stored for 2 and 4 weeks the contact angle in the central treated regions was 

approximately 35-37°, with standard deviations <2°. When samples were stored for 52 

weeks in air the contact angle drastically increased in the central treated region, compared 

to earlier time points. At week 52 the contact angles across the sample had a lesser 

variance compared to earlier time points.  Shown by a reduced contact angle in the 

untreated region  from >80° to less than 70° on the left side, and the central treated region 

increasing in contact angle to approximately 60°, with a minimum contact angle of 56.3°± 

5°. 

 

 

Figure 3.18 Line graph of contact angle profiles of plasma treated polystyrene (T-PS) 

samples stored in air for 0 days, 1 day, 4 days, 7 days, 2 weeks, 4 weeks, 8 weeks and 52 

weeks. Contact angle measurements were taken across central axes of samples at a 

resolution of 0.5mm. Profiles are the mean of 3 samples. Error bars are ± 1 standard 

deviation. 

 

When T-PS samples were stored in deionised water the contact angle at the edge untreated 

regions decreased with age. The standard deviations at the edges of the sample also 

generally increased with storage duration (Figure 3.19). At day 0 the contact angle at the 

untreated edge region was between 75° and 80°. After 8 weeks in water storage, the 

contact angle at the untreated edge regions ranged from 36.9° ± 13.7° (left side) to 41.5° ± 

12.4° (right side). The contact angle in the central treated region on days 0, 1, 4, 7 and week 
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8 remained between 20-26°. The contact angle in the treated centre area at week 2 and 4 

were approximately 30° - 35°, similar to the centre treated region of samples stored in air. 

Following storage in water for 52 weeks the contact angle profile became almost level 

ranging between ~40° in the centre to ~50° at the edge. Peculiarly the contact angles at the 

untreated edge were not as low as the contact angle observed at week 8. Treated PS 

samples stored in deionised water for 4 weeks, 8 weeks and 52 weeks in general had a less 

varied contact angle profile across the sample compared to other time points, also the 

distinct central treatment region was not as pronounced.   

 

 

Figure 3.19 Line graph of contact angle profiles of plasma treated polystyrene (T-PS) 

samples stored in deionised water for 0 days, 1 day, 4 days, 7 days, 2 weeks, 4 weeks, 8 

weeks and 52 weeks. Contact angle measurements were taken across central axes of 

samples at a resolution of 0.5mm. Profiles are the mean of 3 samples. Error bars are ± 1 

standard deviation. 

 

3.4.1.2 Cell Culture 

N/N1003A rabbit lens epithelial cells were seeded onto both treated and untreated PS 

samples stored in either air or water for various lengths of time; for a list of parameters and 

parameter designations see Table 2.1, Section 2.2.1.3.1.3. Samples were fixed at 1 hour, 

4hours and 24 hours. The numbers of LECs per field of view were counted in the centre of 

samples and at 1.5mm, 3mm and 4mm from the centre, which will be referred to as 
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“positions”. The following results will be grouped by incubation time points; at each time 

point untreated and treated parameters will be discussed separately and with separate 

charts: this was due to the large number of variables. The scale of the y-axis of charts 

containing untreated and treated conditions within a time point will be the same. TCPS 

control appears on both untreated and treated charts for ease of comparison. Within each 

chart the substrate parameters (e.g. Unteated-H2O-1w) will be discussed individually, in 

terms of the number of cells at each position. Statistical analysis was excluded as the 

experiment was only conducted once. 

 

 Ageing Cell Culture - 1 Hour 3.4.1.2.1

The number of LECs on TCPS ranged from 28-41 cells per field of view across all positions 

after 1 hour. There was a smaller intra-parameter variation across positions compared to 

any other parameter at the 1 hour incubation time point (Figure 3.20). The number of LECs 

on untreated PS was typically highest in the central position (Untreated-Air-4d being the 

only exception) and deceased with distance from the centre. The number of cells in the 

centre of the Untreated-Air-0d parameter (96 ± 20 cells per field of view) was much higher 

than all other parameters at this time point, included treated samples: for the remaining 

untreated parameters the number of LECs in the centre ranged from 30-61 cells per field of 

view. By 4mm from the centre the number of cells on the all untreated air-stored samples 

ranged from 6-10 cells per field of view. There was no clear difference between neither 

storage duration nor storage medium for untreated PS at this time point, particularly with 

the lack of statistical analysis. 
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Figure 3.20 Bar chart displaying mean number of N/N1003A rabbit lens epithelial cells 

(LECs) per field of view at the centre of samples and 1.5mm, 3mm and 4mm from the 

centre of samples at 1 hour post-seeding. Untreated polystyrene (PS) was stored in air 

(Air) or water (H2O) for 0 days (0d), 4 days (4d), 1 week (1w) or 1 month (1m). Tissue 

culture PS (TCPS) served as a control. Profiles are the mean of 3 samples. Error bars are ± 

1 standard deviation. 

 

As mentioned above TCPS had 28-41 cells per field of view across all positions at the 1hr 

incubation time point. As with untreated PS, the number of cells on treated PS was 

generally higher in the centre and decreased with distance from the centre (Figure 3.21). 

There was a larger variation in the number of cells in the centre of treated PS (24-69 cells 

per field of view) compared to untreated PS, if the anomalous untreated-air-0d was 

excluded. The number of cells at the 4mm position on treated samples ranged from 4-14 

cells per field of view. The numbers and pattern of LECs; i.e. the reduction of cells from the 

centre to the edge, were similar for both treated and untreated PS, stored in both air and 

water, at the 1 hour incubation time point, however without repetition and statistical 

analysis the results are inconclusive.  
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Figure 3.21 Bar chart displaying mean number of N/N1003A rabbit lens epithelial cells 

(LECs) per field of view at the centre of samples and 1.5mm, 3mm and 4mm from the 

centre of samples at 1 hour post-seeding. Samples were treated polystyrene (PS) stored 

in air (Air) or water (H2O) for 0 days (0d), 4 days (4d), 1 week (1w) or 1 month (1m). Tissue 

culture PS (TCPS) served as a control. Profiles are the mean of 3 samples. Error bars are ± 

1 standard deviation. 

 

 Ageing Cell Culture - 4 Hours 3.4.1.2.2

After 4 hours of growth the numbers of LECs on TCPS ranged from 129-157 cells per field of 

view, more than 3 times the amount observed at the 1 hour incubation time point (Figure 

3.22). LEC growth in the centre of untreated PS increased similarly to TCPS. The number of 

cells more than doubled at each position in comparison to day 1, which resulted in a larger 

difference in the number of LECs in the centre and the 4mm position; however, this 

excludes the Untreated-Air-1m parameter, which had low cell numbers (<50 cells per field 

of view) at all positions. The number of cells in the centre of untreated samples ranged 

from 98-193 cells per field of view (excluding the Untreated-Air-1m parameter), and the 

number of cells at the 4m position ranged from 17-24 cells per field of view on all 

parameters. There was typically greater number of LECs on water stored samples compared 

the relative positions on air stored samples. Shorter storage times also resulted in higher 

numbers of LECs in the centre position. 
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Figure 3.22 Bar chart displaying mean number of N/N1003A rabbit lens epithelial cells 

(LECs) per field of view at the centre of samples and 1.5mm, 3mm and 4mm from the 

centre of samples at 4 hours post-seeding. Untreated polystyrene (PS) samples were 

stored in air (Air) or water (H2O) for 0 days (0d), 4 days (4d), 1 week (1w) or 1 month (1m). 

Tissue culture PS (TCPS) served as a control. Profiles are the mean of 3 samples. Error bars 

are ± 1 standard deviation. 

 

As stated above the numbers of cells on TCPS ranged from 129-157 cells per field of view at 

the 4 hour incubation time point (Figure 3.23). There were more cells in the centre and 

1.5mm positions than the 3mm and 4mm positions on treated PS samples stored in air or 

water. Strikingly, the increase in number of LECs in the centre of treated samples stored in 

air (163-455 cells per field of view) was much higher than those stored in water (82-148 

cells per field of view), however the standard deviations were large on the air stored 

parameters. On the Treated-Air-1w and Treated-Air-1m there were much more LECs in the 

centre position compared to samples stored in air for shorter durations. At the 3mm and 

4mm positions there was much less variation in the number of LECs on treated PS 

compared to the centre and 1.5mm positions. At 4mm from the centre the number of LECs 

on all treated PS ranged from 10-26 cells per field of view, which was similar to the 4mm 

position on untreated PS. Storage duration in water seemed to have little effect on cell 

number, however there were more cells in the centre and 1.5mm positions of the Treated-

H2O-1m parameter compared to the other water storage parameters. 
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Figure 3.23 Bar chart displaying mean number of N/N1003A rabbit lens epithelial cells 

(LECs) per field of view at the centre of samples and 1.5mm, 3mm and 4mm at 4 hours 

post-seeding. Treated polystyrene (PS) samples were stored in air (Air) or water (H2O) for 

0 days (0d), 4 days (4d), 1 week (1w) or 1 month (1m). Tissue culture PS (TCPS) served as a 

control. Profiles are the mean of 3 samples. Error bars are ± 1 standard deviation. 

 

 Ageing Cell Culture - 24 Hours 3.4.1.2.3

Following 24 hours of incubation, the numbers of cells across all positions of TCPS (43-58 

cells per field of view)(Figure 3.24) was less than half  the cell number observed for TCPS at 

the 4 hour incubation time point, similar to the number of cells observed at the hour 1 

incubation time point. The number of cells in the centre of untreated samples ranged from 

45-100 cells per field of view; this resulted in a smaller difference in LEC number between 

the centre and 4mm position (13-32 cells per field of view) on the untreated parameters, 

compared to the 4 hours incubation time point. Inversely to the 4 hour time point there 

were fewer cells in the centre and 1.5mm positions of samples stored in water, compared 

to the equivalent samples stored in air; however, this difference was small. No obvious 

pattern due to storage time was observed. 
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Figure 3.24 Bar chart displaying mean number of N/N1003A rabbit lens epithelial cells 

(LECs) per field of view at the centre of samples and 1.5mm, 3mm and 4mm from the 

centre of samples at 24 hours post-seeding. Untreated polystyrene (PS) samples were 

stored in air (Air) or water (H2O) for 0 days (0d), 4 days (4d), 1 week (1w) or 1 month (1m). 

Tissue culture PS (TCPS) served as a control. Profiles are the mean of 3 samples. Error bars 

are ± 1 standard deviation. 

 

There were a large number of LECs in the central position of treated samples following 24 

hours of growth (247-524 cells per field of view)(Figure 3.36), irrespective of storage 

medium. There were also many LECs in the 1.5mm position of treated PS (155-262 cells per 

field of view). Little cell attachment and growth remained to be seen at the 4mm position 

(7-34 cells per field of view), at which the number of LECs were similar to those observed 

on untreated PS at the 4mm position. There was no clear link between samples stored in air 

and cell attachment; however the number of LECs in the centre of treated samples stored 

in water increased with storage time. 
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Figure 3.25 Bar chart displaying mean number of N/N1003A rabbit lens epithelial cells 

(LECs) per field of view at the centre of samples and 1.5mm, 3mm and 4mm from the 

centre of samples at 24 hours post-seeding. Samples were treated PS stored in air (Air) or 

water (H2O) for 0 days (0d), 4 days (4d), 1 week (1w) or 1 month (1m). Tissue culture PS 

(TCPS) served as a control. Profiles are the mean of 3 samples. Error bars are ± 1 standard 

deviation. 

 

In summation; there was a notable increase in the number of LECs on TCPS at the 4 hour 

incubation time point, however this reduced by 24 hours of incubation. Both untreated and 

treated samples stored either in air or water for any duration typically had the highest 

number of LECs in the central position, and the number of LECs decreased with distance 

from the centre. In some conditions in the 1hr and 4hr time points there were more cells in 

the centre of untreated samples compared to the treated counterparts. Similar to TCPS, 

there was an increase in the number of cells in the centre of untreated PS between the 1 

and 4 hour incubation periods but this decreased again by an extent by 24 hours. The 

number of LECs in the centre and 1.5mm position of treated PS generally increased with 

incubation time. There was no clear link between cell attachment and storage methods.  
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3.4.2 Preliminary Study of the Effects of Flow Rate and Distance 

Three different flow rates: low, medium and high, with increasing distance away from the 

jet nozzle at 1mm, 5mm and 10mm distance were investigate. These various parameters 

were investigated to determine the size of treatment, with the aim of reducing the number 

of variables for further examination. Smaller treatment areas were preferable. PS coverslips 

were used for this study. Results will be grouped together and discussed in terms of the 

flow rates: low, medium and high. 

 

3.4.2.1 Contact Angle 

 Low Flow Rate 3.4.2.1.1

When PS samples were placed 1mm from the microplasma jet nozzle, and treated with the 

low flow rate (~22sccm) a sharp decrease in contact angle was observed in the centre of 

the samples. The contact angle decreased from ≥80° at the edges, to <20° in the central 

treated area (Figure 3.26). The length of the contact angle profile with <20° was 1.5mm. 

When samples were positioned 5mm from the nozzle, the reduction in contact angle from 

the sample edges toward the centre was more gradual. Only one point on the contact angle 

profile was <20°. When samples were positioned 10mm from the nozzle, the decrease of 

contact angle became less pronounced, with the central treated region having a minimum 

contact angle of 43.5°. Large standard deviations (10mm) were observed within this central 

treated region. 
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Figure 3.26 Line graph of contact angle profiles taken across plasma treated polystyrene 

samples at distances of 1mm, 5mm and 10mm from the nozzle. A low flow rate of 

~22sccm was used. Contact angle measurements were taken across the central axes of 

treated polystyrene samples with a spatial resolution of 0.5mm. Profiles are the mean of 

3 samples. Error bars are ± 1 standard deviation. 

 

 Medium Flow Rate 3.4.2.1.2

When a medium flow rate (~150sccm) was used to treat samples the width of the 

treatment was larger than that observed for the low flow rate. Typically samples did not 

have an untreated region at the edge characterised by a contact angle of ~80° or greater, 

excluding a single point on the 1mm profile which reached 80° ± 4.6° (Figure 3.27). Samples 

treated at 1mm, 5mm and 10mm all had treatments in the centre resulting in contact 

angles of ≤20°, however the width of these regions of treatment differed between the 

parameters. The diameter where the contact angle profile had a contact angle of ≤20° was 

3.5mm for the 1mm and 5mm parameters and 1.5mm for the 10mm parameter. The 1mm 

parameter displayed a sharper decrease in contact angle and higher maximum contact 

angle on the left side compared to the 5mm and 10mm parameters. 
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Figure 3.27 Line graph of contact angle profiles taken across samples placed at 1mm, 

5mm and 10mm away from the nozzle. A medium flow rate of ~150sccm was used. 

Contact angle measurements were taken across the central axes of treated polystyrene 

samples with a spatial resolution of 0.5mm. Profiles are the mean of 3 samples. Error bars 

are ± 1 standard deviation. 

 

 High Flow Rate 3.4.2.1.3

Samples treated with the high flow rate (~300sccm) did not have contact angles which were 

80° indicating the entire surface of the samples were treated. The contact angles at the 

edges of the 1mm parameter were higher than those of the 5mm and 10mm parameters 

(Figure 3.28). The contact angle in the centre of samples treated with the high flow rate had 

a greater variance than those of the low and medium flow rates. The maximum treatment 

in the centre was observed to be ~20-30° for all high flow rate parameters, whereas with 

low and medium flow rates this was ≤20°. The length of the profile which indicated 

maximum treatment (<30°) was 3.5mm for the 1mm parameter, 5mm for the 5mm 

parameter and 4.5mm for the 10mm parameter.  
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Figure 3.28 Line graph of contact angle profiles taken across samples which were 

positioned 1mm, 5mm and 10mm distance away from the nozzle. A flow rate of 

~300sccm was used. Contact angle measurements were taken across the central axes of 

treated polystyrene samples with a spatial resolution of 0.5mm. Profiles are the mean of 

3 samples. Error bars are ± 1 standard deviation. 

 

In summation; when treated with a low flow rate the width of the treatment was smaller 

than those observed at the higher flow rates, however the change in contact angle due to 

treatment with the low flow rate decreased as samples were positioned further from the 

nozzle. When samples were treated with the medium flow rate the width of the treatment 

area was smaller on the 10mm parameter compared to the 1mm and 5mm parameters. 

With a high flow rate the 1mm distance had the smallest width of treatment. In samples 

treated a low and high flow rate the 1mm distance had the most defined treatment area, 

however when samples were treated with the medium flow rate the 10mm distance had 

the most defined treatment area. 
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3.4.3 Investigation of the Effects of Flow Rate and Distance 

Following the previous preliminary flow rate and distant work further in-depth investigation 

using various cell culture and surface analysis techniques was conducted. It was decided to 

continue with fewer parameters to make analysis of various techniques manageable. Low 

and high flow rates at 1mm and 10mm sample-nozzle distances were investigated as the 

preliminary results indicated distinct treatment areas and they represented the minimum 

and maximum capabilities of the plasma setup. 

 

3.4.3.1 Contact Angle 

The average contact angle of TCPS and UT-PS was 35° ± 2.3° and 77° ± 6° (Figure 3.29), 

respectively. The contact angle of UT-PS decreased to 63.6° ± 14.5° at the left side of the 

sample, between the 4mm-3mm position.  

 

There was a distinct decrease in contact angle in the central treated area of low flow rate - 

1mm sample-nozzle distance (L1) parameter, from approximately 77° at the untreated 

edges to <30° in the centre of the sample. This central treated area was 1.5mm wide. The 

contact angle of L1 parameter was significantly lower (p<0.05) than UT-PS between the 

positions of left-2mm and right-1.5mm (total 3.5mm). 

  

 When samples were placed 10mm from the nozzle and treated with a low flow rate (L10) 

there was a reduction in the effect of the treatment, shown by a higher contact angle in the 

central area compared to L1 parameter. The contact angle reduced from >70° at the edges 

to a minimum of 55° ± 15.9° in the central region. Large standard deviations were observed 

in the centre of the L10 parameter profile. The contact angle of L10 parameter was 

significantly lower (p<0.05) than UT-PS between the positions of left-2mm and right-4mm 

(total 6mm). 

 

When samples were treated with the high flow rate at either 1mm (H1) or 10 mm (H10) 

sample-nozzle distance the contact angle never exceeded 70°. The average contact angle in 

the centre treated region for both of these parameters reduced to ~25°. When samples 

were positioned 1mm away from the nozzle a very wide treatment region in the centre was 

observed.  The contact angle in this central region which was ~25° spanned 4.5mm across 
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the H1 profile. The width of this centre region decreased to 2.5mm when samples were 

positioned 10mm away from the nozzle. The contact angle of both the H1 and H10 

parameters was significantly lower (p<0.05) than UT-PS between the positions of left-

3.5mm and right-4mm (total 7.5mm). 

 

 

Figure 3.29 Line graph of contact angle profiles taken across polystyrene (PS) samples 

treated with a plasma jet at 1mm and 10mm distance from the nozzle with low (30sccm) 

and high (150sccm) flow rates. Tissue culture polystyrene (TCPS) and untreated PS (UT-

PS) served as controls. Contact angle measurements were taken across central axes of 

samples at a resolution of 0.5mm. Error bars are ± 1 standard deviation. 

 

From the 2D contact angle maps it was observed that there was little change in the contact 

angle across the surface of UT-PS which had an average contact angle of 78.2° ± 4.3° (Figure 

3.30). The 2D contact angle maps for L1 parameter demonstrated the treatment area was 

approximately circular. The treated area of the L10 parameter was much more irregular in 

shape compared to the other treatment parameters. The minimum contact angle in the 

central treated area (56.3°) for L10 was also higher than that of the other treated 

parameters. The contact angle profile of the H1 parameter demonstrated an almost circular 

pattern, however this was wider than that of the L1 parameter. The H10 parameter contact 

angle profile was smaller and more circular than the H1 parameter map, yet it was still 

larger than that of the L1 parameter map.  
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Figure 3.30 2D Contact angle plots of untreated polystyrene (UT-PS) and PS treated with a 

microplasma jet. Contact angle measurements were made with a spatial resolution of 

0.5mm. Maps are from single samples. 

 

3.4.3.2 Atomic Force Microscopy 

AFM analysis of UT-PS determined the root mean squared roughness (Rq) to be 0.9 ± 0.6nm 

and the average roughness (Ra) to be 0.6 ± 0.3nm. The micrographs appeared relatively 

smooth with a few small features. When surfaces were treated with the microplasma jet 

the Ra and Rq values increased. For L1 parameter the Rq was 0.9 ± 0.5nm and the Ra was 
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0.7 ± 0.3nm. These samples typically had a greater density of features compared to UT-PS.  

The Rq and Ra of samples treated with L10 parameter were 1.1 ± 0.7nm and 0.7 ± 0.4nm 

respectively. These samples appeared similar to the UT-PS. Samples treated with high flow 

rate, 1mm and 10mm sample-nozzle distance had the highest roughness values of all 

parameters and displayed a higher number of features, similar to the L1 distance 

parameter. For the H1 parameter the Rq was 1.1 ± 0.9nm and the Ra was 0.9 ± 0.7nm. 

When the samples were placed 10mm (H10) from the nozzle the Rq and Ra values were 1.3 

± 0.5nm and 0.9 ± 0.3nm, respectively.  

 

Figure 3.31 AFM micrographs with average roughness (Ra) and root mean squared 

roughness (Rq) values ± standard deviations for untreated polystyrene (UT-PS) and PS 

treated with a microplasma jet. Mean Ra and Rq were determined from 4 measurements 

in the centre of 4 samples per parameter. The mean AFM was preformed in tapping mode 

at a frequency of 1Hz with 512samples/line, using silicone cantilever with a spring 

constant of 40N/m.  

Although there were changes in roughness between the parameters, these were not 

statistically significant (p>0.05). 
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3.4.3.3 X-Ray Photoelectron Spectroscopy 

Broad scan spectra of UT-PS and T-PS were taken, as were high resolution spectra of the 

C1s and O1s peaks. C1s high resolution peaks for UT-PS and T-PS were resolved into 5 

components: C-C/C-H at 285eV, C-O at 285.7eV, C=O/O-C-O at 287.3, O=C-O at 289.7 and π-

π* shake-up satellite peak at 291.7eV. The O1s high resolution scans were resolved into 2 

components on treated PS: O=C at 532.1eV and O-C at 533.9eV [5]. 

 

The broad scan x-ray photoelectron spectra indicate that the presence of O1s was difficult 

to detect on UT-PS (Figure 3.32). The high resolution O1s peak could not be resolved into 

components due to the high level of noise. The large contribution from the C-C/C-H was 

evident in the high resolution C1s spectra; however there was a large contribution from the 

C-O component, but this was mostly beneath the envelope of the C-C/C-H component.  

 

The presence of oxygen was clearly demonstrated on the broad scan spectra of T-PS (Figure 

3.32). The high resolution spectra for the O1s peaks on T-PS indicated that the single bond 

O-C component contributed slightly more than the double bond O=C component. The high 

resolution spectra of C1s for T-PS demonstrated that although C-C/C-H contributed to most 

of the area under the peak, there was a large C-O component. The other oxygen containing 

components contributed little and there was a small π-π* shake-up peak. From the high 

resolution spectra of UT-PS and T-PS it was evident that there was an asymmetry to the 

peak shape, therefore and asymmetric function was added to the Gaussian:Lorentzian line 

shape for the contributions in this experiment. 
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Figure 3.32 X-ray photoelectron spectrographs of untreated polystyrene (UT-PS) and 

treated polystyrene (T-PS). Broad scans were taken at pass energy of 100eV; C1s and O1s 

high resolution scans were taken at 50eV.  An asymmetry, resulting in a tail on the low 

binding energy side, was observed on the high resolution scans therefore a asymmetric 

function was added to the Gaussian:Lorentzian line functions. 

 

The surface atomic concentration UT-PS and T-PS were determine from the areas under the 

peak on broad scan XPS spectra and presented as % ± standard deviations. High resolution 

spectra were used to determine the contribution of various peak components to the total 

area. The broad scan spectra of UT-PS demonstrated that 3.9 ± 1.1% oxygen was present, 

carbon was the only other element present on the spectra. Despite the presence of oxygen 

from the broad scans, on UT-PS samples the O1s peaks could not be resolved into 

components due to high levels of noise. The high resolution C1s spectra for UT-PS were 

resolved into various components, with the largest contribution from C-C/C-H structure 

(74.3 ± 2.8%). The C-O component contributed 17.8 ± 1.4%, whilst C=O/O-C-O and O=C-O 

contributed a total of 1.8 ± 1.2%. The π-π* shake-up component contributed 6.1% to the 

C1s peak. 
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Following plasma treatment (T-PS), the broad scan spectra indicated that oxygen 

contributed 20.5 ± 4.7% of the total surface atomic concentration. The high resolution 

spectra of the O1s peaks demonstrated that the O-C single bond contributed 53.8 ± 1.1% 

compared to 46.1 ± 1.1 for the double bond O=C contribution. High resolution C1s spectra 

demonstrated that the C-C/C-H component provided the main contribution to the C1s peak 

(52.7 ± 6.1%). The second largest contribution was from C-O component (42.2 ± 5.8%). The 

C=O/O-C-O comprised 1.2 ± 1.3% of the total C1s peak, whilst the O=C-O did not contribute 

to the C1s peak. The π-π* shake-up peak was 4% of the total area for the C1s peak. The 

difference in the O/C ratio demonstrates that there was a 6.5 fold increase in the surface 

atomic oxygen concentration following plasma treatment. 

 

Table 3.2 Atomic concentrations determined from x-ray photoelectron spectroscopy as 

percentages ± standard deviation of oxygen and carbon for untreated polystyrene (UT-PS) 

and treated polystyrene (T-PS). Total concentration was derived from the area of peaks in 

broad scan spectra (pass energy of 100eV), whereas the peak components were derived 

from high resolution spectra (pass energy of 50eV). Mean concentrations determined 

from 3 samples. 

  
UT-PS T-PS 

O1s 
(at%) 

Total 
3.9 ± 1.1 

20.5 ± 
4.7 

O=C 
0.0 

46.1 ± 
1.1 

O-C 
0.0 

53.8 ± 
1.1 

C1s 
(at.%) 

Total 
96.1 ± 

1.1 
79.5 ± 

4.7 

C-C/C-H 
74.3 ± 

2.8 
52.7 ± 

6.1 

C-O 
17.8 ± 

1.4 
42.21 ± 

5.8 

C=O/O-
C-O 

1.5 ± 1 1.2 ± 1.3 

O=C-O 0.3 ± 0.2 0 ± 0 

π-π* 
6.1 ± 0.6 4 ± 0.5 

  
O/C 
ratio 

0.04 0.26 
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Broad scan spectra were taken across the surface of treated polystyrene with a spatial 

resolution of 1mm to determine if the concentration of oxygen altered with distance. The 

oxygen concentration at the centre of the sample was 23.8% and this decreased with 

distance to <5% at the edges, which was within the range of oxygen observed on UT-PS. 

  

 

Figure 3.33 Line graph of the atomic oxygen concentration, as determined from x-ray 

photoelectron spectroscopy broad scan spectra (100eV pass energy), across the surface of 

a single sample of microplasma jet treated polystyrene (PS). Concentrations determined 

from a single sample. 

 

3.4.3.4 Cell Culture 

The number of N/N1003A rabbit LECs was counted in the centre of the sample and also 

1.5mm, 3mm and 4mm away from the centre point.  

 

 Cells Counts - Day 1 3.4.3.4.1

At day 1 LEC counts were similar (69-77 cells per field of view) at all positions on TCPS 

(Figure 3.34) and were not significantly different from each other (p=0.102). There was 

almost no cell attachment on UT-PS regardless of position (2-8 cells per field of 

view)(p=0.44). UT-PS had significantly fewer cells than TCPS at all positions (p≤0.001). 
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On samples treated with the L1 parameter there was a high number of LEC attachment in 

the centre position (484 ± 28 cells per field of view) and almost no cells at the 4mm position 

(2 ± 3 cells per field of view). The decrease in cell number at each subsequent position was 

significant from the previous (p<0.005) until the 3mm position. The samples treated with 

the L1 parameter had significantly more cells than TCPS at the centre and 1.5mm positions 

(p≤0.001), and had significantly fewer cells at the 3mm and 4mm positions (p<0.001). The 

samples treated with L1 parameter had significantly more cells than UT-PS at the centre 

and 1.5mm positions (p<0.001), however there was no significant difference at the 3mm 

and 4mm positions (p>0.1) indicating the samples treated with the L1 parameter were 

untreated at these positions. 

 

The samples treated with the L10 parameter had the highest density of cells in the centre 

position compared to all other parameters on day 1 (585 ± 136 cells per field of view). The 

number of LECs decreased with distance from the centre, to 14 ± 24 cells per field of view 

at the 4mm position. Similar to the L1 parameter, the decrease in cell number at each 

subsequent position was significant (p<0.05) until the 3mm position. The samples treated 

with the L10 parameter had significantly more cells than TCPS at the centre and 1.5mm 

positions (p≤0.05), a similar number of cells at the 3mm position (p=0.8) and significantly 

fewer cells at the 4mm positions (p<0.001). Compared to UT-PS, samples treated with the 

L10 parameter had significantly more cells in the centre and 1.5mm positions (p≤0.001), 

however there was no significant difference in the number of LECs between samples 

treated with the L10 parameter and UT-PS at the 3mm and 4mm positions (p>0.1), 

therefore samples treated L10 could be said to be untreated at the 3mm and 4mm 

positions. 

 

There was also a high density of LECs in the centre of samples treated with the H1 

parameter (484 ± 128 cells per field of view), which decreased to 57 ± 86 cells per field of 

view at 4mm from the centre. The centre and 1.5mm positions were not significantly 

different from each other (p=0.591) but both positions had significantly more LECs than the 

3mm and 4mm positions (p<0.05). The 3mm and 4mm positions were not significantly 

different from each other (p=0.157). The samples treated with the H1 parameter had 

significantly more cells than TCPS at the centre and 1.5mm positions (p<0.05) but were not 
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significantly different to the TCPS at neither the 3mm nor 4mm positions (p>0.1). UT-PS had 

significantly fewer cells than samples treated with the H1 parameter at the centre, 1.5mm 

and 3mm from the centre (p<0.05). The samples treated with the H1 parameter were not 

significantly different to UT-PS at the 4mm position; although, as stated there were not 

significantly fewer cells at the 4mm position than TCPS; therefore the samples treated with 

H1 parameter were not untreated at the 4mm position. 

 

The samples treated with the H10 parameter decreased from 565 ± 60 cells per field of 

view in the centre, to 51 ± 59 cells per field of view at 4mm from the centre. Similar to 

samples treated with the H1 parameter, the centre and 1.5mm positions had significantly 

more cells than the 3mm and 4mm positions (p<0.001), but there was no significant 

difference within these groups (p>0.05). The samples treated with the H10 parameter had 

significantly more cells than both TCPS and UT-PS at the centre, 1.5mm and 3mm positions 

(p<0.05), however H10 samples was neither significantly different from TCPS nor UT-PS at 

the 4mm position and cannot be considered untreated at this position. 

 

 

Figure 3.34 Bar chart displaying mean number of DAPI stained N/N1003A rabbit lens 

epithelial cells (LECs) per field of view at the centre of samples and 1.5mm, 3mm and 

4mm from the centre of samples at day 1. Significant differences are only graphically 

displayed for intra-parameter differences. * indicates significant difference of p<0.05, as 

determined by one-way ANOVA. Error bars are ± 1 standard deviation. 
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 Cells Counts - Day 7 3.4.3.4.2

By day 7 the cell number had increased to 867-941 cells per field of view across all positions 

on TCPS, there was no significant difference between the positions (p=0.35)(Figure 3.35). 

There was no significant difference in the number of LECs on any positions on UT-PS (1-8 

cells per field of view) (p=0.158). There were significantly more cells on TCPS than UT-PS at 

every position on day 7 (p<0.001). 

 

The L1 parameter showed a similar pattern across all positions as day 1. There were 1661 ± 

104 cells per field of view in the centre position and only 4 ± 4 cells at the 4mm position. 

The centre position and 1.5mm position were significantly different to all other positions 

(p<0.01), but the 3mm and 4mm positions were similar (p=0.864). The L1 parameter had 

significantly more cells at the centre position compared to TCPS (p<0.001). There were 

slightly more cells on the L1 positions compared to TCPS at 1.5mm from the centre but 

there was a large degree of viability and this was not significant (p=1). The L1 parameter 

had significantly fewer cells than TCPS at the 3mm and 4mm positions (p<0.001). The L1 

parameter had significantly more cells than UT-PS at the centre and 1.5mm positions 

(p<0.001), however L1 parameter was not significantly different to UT-PS at the 3mm and 

4mm positions (p=1) indicating the L1 parameter was untreated at these positions. 

 

The L10 parameter had a large number of cells in the centre (1784 ± 114 cells per field of 

view) which decreased with distance from the centre to a minimum at the 4mm position (7 

± 11 cells per field of view). The centre and 1.5mm positions on L10 were similar and not 

significantly different to each other (p=0.112). There was a large and significant decrease in 

number of LECs from the 1.5mm position to the 3mm and 4mm positions (p<0.001). The 

L10 parameter had significantly more cells than TCPS at the centre and 1.5mm positions 

(p<0.001), and significantly fewer cells than TCPS at the 3mm and 4mm positions (p<0.001). 

The L10 parameter also had significantly more cells than UT-PS at the centre and 1.5mm 

positions (p<0.001), but was not significantly different to UT-PS at the 3mm and 4mm 

positions (p>0.5) and therefore may be considered untreated at the 3mm and 4mm 

positions. 
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The H1 had a high number of cells at all positions but the number of LECs did decrease with 

distance from the centre. There were 1731 ± 64 cells per field of view in the centre, and 993 

± 343 cells per field of view at the 4mm position. The centre and 1.5mm position were not 

significantly different from each other (p=0.221), however the 3mm and 4mm positions 

were significantly different to all other positions (p≤0.001). The H1 parameter had 

significantly more cells than TCPS at the centre, 1.5mm and 3mm positions (p>0.001). There 

was no significant difference between H1 and TCPS at the 4mm position (p=1). There were 

significantly fewer cells on UT-PS than the H1 parameter at all positions on day 7 (p>0.001), 

and therefore no position can be considered untreated. 

 

The H10 parameter was similar to the H1 parameter. There were 1600 ± 69 cells per field of 

view at the centre, and 705 ±511 cells per field of view at the 4mm position. The centre and 

1.5mm positions had a very similar number of LECs (p=0.989), whereas the 3mm and 4mm 

positions were significantly different to all other positions (p<0.05). Similarly to H1, the H10 

parameter had significantly more cells than TCPS at the centre, 1.5mm and 3mm position 

(p>0.05) and there was no significant difference at the 4mm position (p=0.677). The H10 

parameter had significantly more cells than UT-PS at all positions (p<0.001) and therefore 

no position was considered untreated. 
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Figure 3.35 Bar chart displaying mean number of DAPI stained N/N1003A rabbit lens 

epithelial cells (LECs) per field of view at the centre of samples and 1.5mm, 3mm and 

4mm from the centre of samples after 7 days of growth. Significant differences were 

graphically displayed for intra-parameter differences. * indicates significant difference of 

p<0.05, as determined by one-way ANOVA. Error bars are ± 1 standard deviation. 

 

 Cell Montages 3.4.3.4.3

The diameter of cell growth on treated samples was determined from stitched micrographs 

taken with a 4x objective. As TCPS and UT-PS had homogenous growth across the surfaces 

they were excluded. LECs typical bound to the central treated region of treated samples, 

forming an approximately circular area of growth. The diameter of cell growth area was 

defined as the distance between the boundaries of a confluent or densely populated LEC 

growth situated in the centre of treated samples. Samples treated with the L1 parameter 

had the smallest diameters of cell growth, of all parameters, on both day 1 and day 7: on 

day 1 the diameter was 3.4 ± 0.4mm (Figure 3.36). The treated L10 parameter had the 

second smallest diameters of cell growth (4 ± 0.5mm) and was not significantly different to 

the L1 parameter, nor was it different to the treated H1 and H10 parameters (p>0.05) at 

day 1. The diameter of cell growth for H1 and H10 were 5.6 ± 1.6mm and 6.3 ± 1.6mm 

respectively at day 1, and were significantly larger than the L1 parameter (p=0.032 for H1 

parameter and p=0.027 for the H10 parameter).  
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At day 7 the diameter of cell growth for the L1 parameter was similar to that of day 1 (3.3 ± 

0.2mm) (Figure 3.36 and see example in Figure 3.37a), and had a significantly smaller 

diameter of cell growth than all other treatment parameters (p<0.001). At day 7 the 

diameter of cell growth on the L10 parameter had increased (4.5 ± 0.4mm)(example in 

Figure 3.37b), however this was still significantly smaller than the high flow rate parameters 

(p<0.001).  By day 7 LECs had spread across virtually the whole sample for high flow rate 

parameters and were not significantly different from each other (p>0.05) The diameter of 

cell growth was 8.8 ± 0.4mm for the H1 parameter, and 8.1 ± 0.7mm for the H10 parameter 

(examples in Figure 3.37c and d). 

 

 

Figure 3.36 Bar chart of diameters of cell growth across samples measured from stitched 

micrographs of fluorescently stained N/N1003A lens epithelial cells (LECs) at day 1 and 

day 7 on treated polystyrene (PS) samples. Significant differences were graphically 

displayed for differences within time points. * indicates significant difference of p<0.05, 

as determined by one-way ANOVA. Error bars are ± 1 standard deviation. 
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Figure 3.37 Stitched micrographs from individual micrographs taken across the centre of 

treated samples at day 7. The cytoskeleton of N/N1003A lens epithelial cells were 

fluorescently stained with phalloidin (green), on samples treated with the low flow rate - 

1mm distance (a), low flow rate - 10mm (b), high flow rate - 1mm (c) and high flow rate - 

10mm (d) parameters. 

 

 High Magnification 3.4.3.4.4

High magnification micrographs were taken within the centre of the samples to display the 

cellular morphology (Figure 3.38). LECs grown on TCPS for 7 days displayed the typical 

“cobblestone” epithelial morphology with strong actin localisation at the cell boundaries 

(Figure 3.38a).  UT-PS had a low LEC density and those cells present had a rounded 

morphology suggesting poor adhesion (Figure 3.38b). Micrographs of treated samples 

showed the presence of LECs, however although the cells appeared well spread they had 

high actin density and the presence of directional stress fibres (Figure 3.38c-f) and thus do 

not demonstrate the typical ‘cobblestone’ morphology. 
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Figure 3.38 High magnification micrographs of phalloidin f-actin staining (green), DAPI 

nuclear staining (blue) and merged micrographs on tissue culture polystyrene (TCPS), 

untreated polystyrene (UT-PS) and polystyrene treated with low and high flow rates, at 

1mm and 10mm sample-nozzle distances at day 7. * = actin localisation at cell periphery, 

+ = actin stress fibres. Scale bar = 50µm. 
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Figure 3.39 High magnification micrograph of phalloidin f-actin staining of lens epithelial 

cells grown on polystyrene, treated with the low flow rate - 1mm distance parameter on 

day 7.  + = actin stress fibres. Scale bar = 50µm. 

 

3.4.3.5 Preliminary TGF-β2 ELISA 

The level of transforming growth factor-beta 2 (TGF-β2) in culture medium removed from 

wells containing LECs grown on treated PS and UT-PS and TCPS controls was examined 

using an enzyme-linked immunosorbant assay (ELISA). Due to a small number of samples 

this work was preliminary and therefore the data lacks standard deviations and statistical 

analysis as it was conducted once. Medium from 4 wells were pooled for each parameter 

and each measurement was analysed in duplicate. Only the control samples were within 

the detection limits of the assay at day 1: the levels of TGF-β2 present in medium taken 

from TCPS and UT-PS wells was 42pg/ml and 80pg/ml, respectively (Figure 3.40). At day 7 

the TGF-β2 concentration in medium removed from TCPS wells had increased to 

1372pg/ml. The TGF-β2 concentration in medium removed from UT-PS wells had also 

increased to 430pg/ml. On day 7 the level of TGF-β2 was detectible in medium taken from 

wells containing all treated samples, however the concentrations of TGF-β2 were lower 

than those observed in medium from TCPS and UT-PS wells. By day 7 medium from wells 
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containing samples treated with L1 and L10 parameters had concentrations of TGF-β2 of 

184 and 284pg/ml respectively, whereas wells containing samples treated with H1 and H10 

parameters had higher concentrations of 544 and 487pg/ml respectively. 

 

 

 

 

 

Figure 3.40 Bar chart depicting the concentration of transforming growth factor-β2 (TGF-

β2) in culture medium from wells containing N/N1003A rabbit lens epithelial cells grown 

on tissue culture polystyrene (TCPS), untreated polystyrene (UT-PS) and polystyrene 

treated with low and high flow rates, at 1mm and 10mm sample-nozzle distances as 

determined by ELISA. N/N1003a lens epithelial cells were grown for up to 7 days. Medium 

was removed at day 1 or at day 7. In the case of day 7 cells had been fed at day 4. 

Medium from 4 wells for each parameter were pooled and values are the mean of 2 

measurements. 

 

3.4.3.6 Cytokine Multiplex Assay 

The concentration of IL-1α, IL-6, basic FGF and TNF-α in medium taken from wells 

containing LECs grown on TCPS, UT-PS and treated PS was determined by magnetic bead-

based multiplex assay. Due to a small number of samples this work was preliminary and 
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therefore the data lacks standard deviations. Medium from 4 wells were pooled for each 

parameter and each measurement was analysed in duplicate. Medium was collected at 

days 1 and 7. The concentrations of IL-1α and IL-6 in medium were below the detection 

limits of the assay. The concentration of basic FGF in medium from TPCS wells was 0.6pg/ml 

on day 1, and 2pg/ml on day 7. Medium from wells containing LECs grown on UT-PS had 

higher levels of basic FGF at 1.2pg/ml and 8.3pg/ml at days 1 and 7 respectively. At day 7 

medium from wells in which LECs were grown on PS treated with the L1 parameter had the 

highest concentration of basic FGF in medium at 11.4pg/ml. The concentrations of basic 

FGF in medium from wells in which LECs were grown on PS treated with the L10, H1 and 

H10 parameters ranged between 1.9-3.2pg/ml. 

 

All concentrations of TNF-α were below the standard range. Concentration of TNF-α at day 

1 was similar to the basic FGF concentration at day 1, ranging between 0.2-1.1pg/ml. On 

day 1 medium removed from the H1 parameter had the lowest concentration with 

0.2mg/ml and L10 parameter had the highest concentration of 1.1pg/ml. By day 7 the 

concentrations of TNF-α in medium removed from wells containing TCPS, UT-PS and L1 

treatment parameters were ≤0pg/ml following normalisation of data. The concentrations of 

TNF-α in medium detected for the L10, H1 and H10 parameters were 0.7, 1.4 and 1.2pg/ml 

respectively at day 7.  
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Figure 3.41 Bar Chart demonstrating  concentrations of basic fibroblastic growth factor 

(FGF) and tumour necrosis factor-α (TNF-α) in medium, as determined by magnetic bead-

based multiplex assay, at day 1 and day 7. Medium was taken from wells in which 

N/N1003a lens epithelial cells were grown on tissue culture polystyrene (TCPS), untreated 

polystyrene (UT-PS) and polystyrene treated with low and high flow rates, at 1mm and 

10mm sample-nozzle distances. Medium from 4 wells for each parameter were pooled 

and values are the mean of 2 measurements. 

 

3.4.3.7 Seeding Density 

 Seeding Density Cell Counts 3.4.3.7.1

LECs were seeded onto materials at various densities and the number of cells at discrete 

positions determined from micrographs. The results are grouped by the seeding density 

and displayed in a single graph (Figure 3.42). 

 

 

Figure 3.42 Bar chart displaying mean number of N/N1003A rabbit lens epithelial cells 

(LECs) per field of view at the centre of samples and 1.5mm, 3mm and 4mm from the 

centre of samples after 7 days of growth. The number of cells was determined from 

micrographs of nuclei stained with DAPI. Cells were assumed to be mononuclear. LECs 

were seeded onto tissue culture polystyrene (TCPS), untreated polystyrene (UT-PS) and 

polystyrene treated with low and high flow rates, at 1mm and 10mm sample-nozzle 

distances. LECs were seeded onto materials at various seeding densities: 1x103cells/cm2 
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(1.E+03), 5x103cells/cm2 (5.E+03) and 1x104cells/cm2 (1.E+04). Values are the mean of 3 

samples. Error bars are ± 1 standard deviation. 

 

3.4.3.7.1.1 1x103cells/cm2 Seeding Density 

There were few LECs on materials seeded with a density of 1x103cells/cm2 after 7 days of 

growth. On TCPS wells there were 14-22 cells per field of view at day 7 and on UT-PS the 

number of LECs ranged from 1-4 cells per field of view.  

 

On the L1 parameter there were very few cells attached at day 7; there were 21 ± 18 cells 

per field of view in the centre which decreased to 0 ± 1 cells per field of view at the 4mm 

position. In the centre of the L1 parameter the number of cells was similar to TCPS, 

whereas at the 4mm position the number of LECs was similar to UT-PS. 

 

 On the L10 parameter there were 410 ± 215 cells per field of view in the centre, this was 

the largest number of cells per field of view observed on materials seeded at density of 

1x103cells/cm2. The number of cells on L10 decreased with distance to 8 ± 11 cells per field 

of view at the 4mm position. There were more cells in the centre, 1.5mm and 3mm 

positions of L10 compared to TCPS and fewer cells at the 4mm position. At the 4mm 

position there were only slightly more cells on L10 than UT-PS, however without statistical 

analysis it was not possible to determine if the L10 parameter could be considered 

untreated at this position. 

 

The high flow rate parameters were similar to each other: there were 230 and 278 cells per 

field of view in the centre of the H1 and H10 parameters respectively, which had decreased 

to 39 and 32 cells per field of view at the 4mm position, for H1 and H10 respectively. There 

were more cells in the central positions of the high flow rate parameters than TCPS and at 

the 4mm position there were still slightly more cells than TCPS. At all positions on high flow 

rate parameters there were more cells than on UT-PS. 

 

3.4.3.7.1.2 5x103cells/cm2 Seeding Density 

When LECS were seeded onto materials at a density of 5x103cells/cm2 there were more 

LECs on TCPS and the central positions of treated materials than the samples seeded at 
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1x103cells/cm2. On TCPS the number of cells increased slightly with distance from the 

centre. There were 186 ± 55 cells per field of view in the centre position, which had 

increased to 276 ± 101 cells per field of view at the 4mm position. There were slightly more 

LECs on UT-PS when seeded with 5x103cells/cm2 compared to 1x103cells/cm2 following 7 

days of growth. When seeded with 5x103cells/cm2 the number of LECs observed on UT-PS 

ranged from 8-43 cells per field of view, however there were large variances observed on 

the positions with the higher cells counts. 

 

On the L1 parameter there were 596 ± 402 cells per field of view in the centre position, and 

the number of cells decreased with distance to 9 ± 19 cells per field of view at the 4mm 

position. There were more cells at the centre and 1.5mm positions on the L1 parameter 

compared to TCPS, and fewer cells on 3mm and 4mm positions compared to TCPS. There 

were more cells on the L1 parameter on the centre, 1.5mm and 3mm positions compared 

to UT-PS and a similar number of cells at the 4mm position. It is likely that the L1 parameter 

was untreated at the 4mm position. 

 

Similar to the 1x103cells/cm2 density there were more cells in the centre of L10, H1 and H10 

compared to the L1 parameter. There were 1370 ± 182 cells per field of view in the centre 

of the L10 parameter, which decreased with distance from the centre to 127 ± 139 cells per 

field of view at the 4mm position. There were more cells on the L10 parameter at the 

centre, 1.5mm and 4mm positions compared to TCPS and there were fewer cells at the 

4mm position on the L10 parameter. There were more LECs on L10 parameter than UT-PS 

at all positions indicating that no position was untreated.  

 

The number of LECs in the centre of the H1 parameter was similar to the L10 parameter 

(1336 ± 104 cells per field of view), however there were more cells at the 4mm position of 

H10 (411 ± 212 cells per field of view) compared to the L10 parameter. On the H10 

parameter there were 1147 ± 268 cells per field of view in the centre position. The number 

of LECs decreased with distance from the centre to 537 ± 161 cells per field of view at the 

4mm position. Both the high flow rate parameters had more cells at all positions when 

compared to TCPS or UT-PS. 
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3.4.3.7.1.3 1x104cells/cm2 Seeding Density 

When cells were seeded onto TCPS at a density of 1x104cells/cm2 (1078-1185 cells per field 

of view after 7 days of growth) there were more cells compared to the 5x103cells/cm2. On 

UT-PS there were 21-57 cells per field of view and the number of cells increased with 

distance from the centre, however the variance also increased with distance from the 

centre.  

 

On the L1 parameter there were 952 ± 574 cells per field of view in the centre position. The 

number of cells on the L1 parameter decreased with distance from the centre to 23 ± 32 

cells per field of view, which was similar to UT-PS.  

 

On the L10 parameter the number of LECs in the centre was 952 ± 243 cells per field of view 

and the number of cells decreased with distance from the centre to 200 ± 193 cells per field 

of view at the 4mm position. L10 parameter had a similar number or slightly more LECs 

than TCPS at the centre and 1.5mm positions, however there were fewer LECs than TCPS at 

the 3mm and 4mm position. There were more cells on the L10 parameter compared to UT-

PS at all positions indicating that no position on L10 parameter was untreated. 

 

The numbers of LECs on the high flow rate parameters were similar to each other. There 

were 1446 and 1527 cells per field of view in the centre of the H1 and H10 parameters 

respectively. The number of LECs decreased with distance from the centre to 837 and 878 

cells per field of view at the 4mm position, on the H1 and H10 parameters respectively. 

There were more cells in the centre of the high flow rate parameters than TCPS and by the 

4mm position there were fewer LECs on than TCPS; however there were still more LECs on 

the high flow rate parameters at all positions compared to UT-PS, indicating the entire 

sample surfaces were untreated. 

 

 Seeding Density Cell Growth Diameter 3.4.3.7.2

The diameter of cell growth following 7 days of culture was calculated for treated PS from 

stitched images taken across the centre of the samples. Each of the seeding densities were 

grouped together, and for each seeding density the L1 parameter had the smallest 

diameter and L10 parameter the second smallest.  The diameter of cell growth was difficult 
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to determine on materials which were seeded with the 1x103cells/cm2 density due to the 

low number of LECs and the fact that a monolayer had not formed; therefore, the data for 

this seeding density are more subjective.  

 

When LECs were seeded at 1x103cells/cm2 the L1 parameter had a diameter of cell growth 

of 4.1 ± 0.7mm, which was the smallest diameter of cell growth observed for all materials 

and seeding densities. The L10 parameter had a diameter of cell growth of 5.5 ± 0.9mm 

after 7 days. The high flow rate parameters had diameters of cell growth of 7.1 ± 0.9 and 

6.8 ± 0.9mm for the H1 and H10 parameters respectively. 

 

When LECs were seeded at a density of 5x103cells/cm2 the diameter of cell growth 

observed for the L1 parameter increased 1mm (5.1 ± 0.9mm) compared to the 

1x103cells/cm2 density, and the diameter for the L10 parameter had increase 2mm (7.5 ± 

0.9). The diameter of cell growth for the H1 parameter was 8.4 ± 0.7mm and the diameter 

of the H10 parameter was larger yet at 9.4 ± 0.3mm. 

 

When LECs were seeded at 1x104cells/cm2 the diameter of cell growth on the L1 parameter 

(5.1 ± 0.7mm) was the same as that when LECs were seeded with 5x103cells/cm2. The 

diameter of cell growth observed for the L10 parameter was slightly smaller (7.5 ± 0.9mm) 

than the diameter observed at the lower seeding density 5x103cells/cm2. The diameters of 

cell growth for the high flow rate parameters were similar to each other: 8.8 ± 0.3 and 9 ± 

0.4mm for the H1 and H10 parameters, respectively. 
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Figure 3.43 Bar chart of diameters of cell growth across samples measured from stitched 

micrographs of fluorescently stained N/N1003A lens epithelial cells (LECs) at day 1 and 

day 7 on treated polystyrene (PS) samples with various seeding densities: 1x103cells/cm2 

(1.E+03), 5x103cells/cm2 (5.E+03) and 1x104cells/cm2 (1.E+04). Polystyrene was treated 

with low and high flow rates, at 1mm and 10mm sample-nozzle distances. Values are the 

mean of 3 samples. Error bars are ± 1 standard deviation. 

 

  Seeding Density High Magnification 3.4.3.7.3

There were very few LECs attached to UT-PS at day 7 for any seeding density; cells which 

had attached typically had a rounded morphology. When seeded at 1x103cells/cm2 LECs 

were not confluent on any material by day 7, however LEC density appeared greater on PS 

treated with L10, H1 and H10 parameters compared TCPS. When seeded at 5x103cells/cm2 

cells on TCPS had not reached confluence and actin stress fibres were present. LECs in the 

centre of plasma treated substrates appeared confluent and some cuboidal LECs were 

present on these surfaces, particularly L10, H1 and H10; however actin stress fibres were 

also visible. When seeded at 1x104cells/cm2 LECs on TCPS were confluent and appeared 

epithelial with strong actin localisation present at the cell boundaries, however some stress 

fibres were still observed. A higher density of LECs was observed on plasma jet treated 

samples compared to the 5x103cells/cm2 seeding density. There was a greater presence of 
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actin stress fibres compared to the lower seeding density and some cells may have been 

growing on top of others.  
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Figure 3.44 Representative high magnification micrographs of phalloidin f-actin staining 

(green), DAPI nuclear staining (blue) and merged micrographs on tissue culture 
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polystyrene (TCPS), untreated polystyrene (UT-PS) and polystyrene treated with low and 

high flow rates, at 1mm and 10mm sample-nozzle distances. LECs were seeded at 

densities of 1x103cells/cm2, 5x103cells/cm2 and 1x104cells/cm2. Micrographs were taken 

at day 7. * = actin localisation at cell periphery, + = actin stress fibres.  Scale bar = 50µm. 
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3.5 Microplasma Treatment of Poly(Methyl Methacrylate) 

Following optimisation of the flow rate and sample-nozzle distance, to achieve the most 

defined and smallest treatment area, the effect of microplasma jet treatment on 

poly(methyl methacrylate)(PMMA) was investigated as a model for acrylic based IOLs. 

 

3.5.1 Contact Angle 

To characterise the extent of treatment and the treatment area contact angle 

measurements were taken across the centre of samples with a resolution of 0.5mm. The 

average contact angle of TCPS was 35° ± 2.3° (Figure 3.45). The average contact angle 

measured across the surface of untreated PMMA (UT-PMMA) was 58.9° ± 1.8°. Treated 

PMMA (T-PMMA) had a similar contact angle to UT-PMMA at the edge of the samples 

(~59°). Treatment with a microplasma jet reduced the contact angle of PMMA to ~35° (in 

the centre region). The region in which contact angle was ~35° spanned of 0.5mm. The 

contact angle of T-PMMA was significantly lower than UT-PMMA between the positions of 

left-1mm and right-1.5mm (2.5mm total).  UT-PS had an average contact angle of 81.1° ± 

3.6°. The contact angle at the edge of treated PS (T-PS)(~79°) samples was similar to UT-PS; 

again treatment with a microplasma jet successfully decreased this contact angle in the 

centre to ~25° and this contact angle spanned 1.5mm of the central region. The contact 

angle of T-PS was significantly lower than UT-PS between the positions of left-2mm and 

right-3mm (total distance of 5mm). 
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Figure 3.45 Line graph of contact angle profiles of tissue culture polystyrene (TCPS), 

untreated poly(methyl methacrylate)(UT-PMMA), treated poly(methyl methacrylate)(T-

PMMA), untreated polystyrene (UT-PS) and treated polystyrene (T-PS). Contact angle 

measurements were taken across central axes of samples at a resolution of 0.5mm. Error 

bars are ± 1 standard deviation. 

 

2D contact angle profiles demonstrated that UT-PMMA had a homogenous surface with an 

average contact angle of 63.9° ± 1.7° (Figure 3.46). The edge regions of T-PMMA samples 

had a similar contact angle to UT-PMMA, >60°, which reduced to <50° in the central treated 

area. This centre treatment area was approximately circular. UT-PS also had a homogenous 

surface with a contact angle of 78.9° ± 2.7°. The edge regions of the T-PS (~79°) had a 

similar contact angle to the UT-PS control. The central treated area was approximately 

circular and had a minimum contact angle of ~28°. 
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Figure 3.46 2D contact angle plots of untreated poly(methyl methacrylate)(UT-PMMA), 

treated poly(methyl methacrylate)(T-PMMA), untreated polystyrene (UT-PS) and treated 

polystyrene (T-PS).  Contact angle measurements were made with a spatial resolution of 

0.5mm. Plots were from single samples. 

 

3.5.2 X-ray Photoelectron Spectroscopy 

Broad scan and high resolution spectra were obtained to determine the chemical 

modification of the surface resulting from plasma treatment. XPS spectra demonstrated 

similarities between UT-PMMA and T-PMMA. There were 2 distinct peaks in the broad 

scans (excluding the auger peaks): O1s and C1s. The ratio of O1s and C1s peaks for UT-

PMMA and T-PMMA appeared to be similar. C1s high resolution scans for UT-PMMA and T-

PMMA were resolved into 4 components: C-C/C-H at 285eV, C-C-O at 285.8eV, C-O at 

286.9eV and O=C-O at 289.2. The C1s peak for UT-PS and T-PS were resolved into 5 

components: C-C/C-H at 285eV, C-O at 285.7eV, C=O/O-C-O at 287.3, O=C-O at 289.7 and π-
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π* shake-up satellite peak at 291.7eV. The O1s high resolution scans for both materials 

were resolved into 2 components: O=C at 532.1eV and O-C at 533.9eV [5]. 

 

The high resolution spectra also demonstrate that the component ratios are similar 

between the UT-PMMA and T-PMMA. There was no O1s was observed in the broad scan 

spectra of UT-PS as expected. When the O1s peak region was analysed at high resolution 

only a slight raise in background noise was detected: this could not be resolved into 

components. The C1s high resolution spectra of UT-PS demonstrated that the C-C/C-H 

component contributed the greatest to the peak, although there were small contributions 

from oxygen containing peaks and the π-π* shake-up satellite peak from the aromatic 

portion of PS. The presence of oxygen was clearly demonstrated from the broad scan 

spectra of T-PS. The high resolution spectra indicated that the O1s was composed of O=C 

and O-C bonds, the latter being the majority. The presence of a large C-O component was 

observed in the high resolution C1s spectra for T-PS, yet the C-C/C-H component was still 

the largest. The presence of the C=O/O-C-O, O=C-O and π-π* components were also 

observed. 
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Figure 3.47 Representative x-ray photoelectron spectrographs of untreated poly(methyl 

methacrylate)(UT-PMMA), treated poly(methyl methacrylate)(T-PMMA), untreated 

polystyrene (UT-PS) and treated polystyrene (T-PS). Broad scans were taken at a pass 

energy of 100eV; C1s and O1s high resolution scans were taken at 50eV.  

 

The total surface atomic concentrations were determine from the areas under the peak on 

broad scan XPS spectra and presented as % ± standard deviations. High resolution spectra 

were used to determine the contribution of various peak components to the total area.  

XPS data were obtained on one occasion and therefore have not be subjected to statistical 

analysis. XPS spectra of UT-PMMA and T-PMMA did not show a large difference in surface 
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oxygen concentration; oxygen accounted for 51.7 ± 0.3% on UT-PMMA, and 52.7 ± 0.5% of 

the surface atomic concentration on T-PMMA (see Table 3.3). High resolution spectra 

demonstrated that the component contributions for the O1s of UT-PMMA and T-PMMA 

differed by only 0.1%. There was also little change between UT-PMMA and T-PMMA in the 

contribution of C1s components. The only change greater than 1% were for the C-C-O 

component which increased 3.3% following plasma jet treatment, and the C-O component 

which decreased 2.4% following plasma jet treatment. 

 

Table 3.3 Atomic concentrations as percentages ± standard deviation of oxygen and 

carbon for untreated poly(methyl methacrylate)(UT-PMMA) and treated poly(methyl 

methacrylate)(T-PMMA). Total concentration was derived from the area of peaks in 

broad scan spectra (100eV pass energy), whereas the peak components were derived 

from high resolution spectra (50eV pass energy). Atomic concentrations were taken from 

3 samples. 

  
UT-PMMA T-PMMA 

O1s 
(at.%) 

Total 51.7 ± 0.3 52.7 ± 0.5 

O=C 40 ± 1.1 39.9 ± 1.4 

O-C 60 ± 1.1 60.1 ± 1.4 

C1s 
(at.%) 

Total 48.3 ± 0.3 47.3 ± 0.5 

C-C/C-H 38.3 ± 2.1 38.1 ± 3.7 

C-C-O 21 ± 1.3 24.3 ± 1.9 

C-O 20.6 ± 1.5 18.2 ± 5.3 

O=C-O 20.1 ± 0.2 19.5 ± 0.3 

O/C ratio 1.07 1.11 

 

The XPS spectra for UT-PS showed that there was no O1s peak: following plasma treatment 

(T-PS) an O1s was present and accounted for 11.4 ± 2.7% of the surface atomic 

concentration (see Table 3.4). In the O1s high resolution spectra for UT-PS only a slight raise 

in the noise level was detected, therefore it could not be resolved into components. In the 

O1s high resolution spectra of T-PS the O=C peak accounted for 34.5 ± 5.4%, whereas the 

single-bound O-C component contributed 65.5 ± 5.8%. In the C1s peak of UT-PS the largest 

proportion was C-C/C-H component (78.1 ± 15.1%) followed by π-π* component (17.2 ± 

10.6%). The remaining oxygen containing peaks contributed approximately 4.6%. In the C1s 
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of T-PS the C-C/C-H component was only 54 ± 1.8% of the area. The π-π* component had 

also reduced following treatment to 7.5 ± 2.9%. The oxygen containing components 

contributed 38.5% of the C1s, however most of this can be attributed to the C-O 

component (37 ± 1.8%).  

 

Table 3.4 Atomic concentrations as percentages ± standard deviation of oxygen and 

carbon for untreated polystyrene (UT-PS) and treated polystyrene (T-PS). Total 

concentration was derived from the area of peaks in broad scan spectra (100eV pass 

energy), whereas the peak components were derived from high resolution spectra (50eV 

pass energy). Atomic concentrations were taken from 3 samples. 

  
UT-PS T-PS 

O1s (at%) 

Total 0 11.4 ± 2.7 

O=C 0 34.5 ± 5.4 

O-C 0 65.5 ± 5.8 

C1s 
(at.%) 

Total 100 88.6 ± 2.7 

C-C/C-H 74.4 ± 11.3 54.0 ± 1.8 

C-O 5.1 ± 0.3 37.0 ± 1.8 

C=O/O-C-O 2.8 ± 0.2 1.3 ± 1.3 

O=C-O 0.6 ± 0.6 0.2 ± 0.2 

π-π* 17 ± 10.9 7.5 ±  2.9 

O/C ratio 0.00 0.13 

 

3.5.3 Atomic Force Microscopy 

AFM showed UT-PMMA and T-PMMA to have significantly higher roughness values (Rq and 

Ra) than UT-PS and T-PS (p<0.001). There was no significant difference in the Rq of UT-

PMMA and T-PMMA (both 1.7 ± 0.3nm)(Figure 3.48) and Ra values (1.3 ± 0.3nm and 1.2 ± 

0.2nm respectively) (p>0.05). There was also no significant difference in the Rq or Ra values 

between UT-PS and T-PS (Rq 0.7 ± 0.5nm, and 0.7 ± 0.3nm respectively, and Ra values of 0.5 

± 0.3nm and 0.5 ± 0.2nm respectively) (p>0.05). 
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Figure 3.48 AFM micrographs including root mean squared roughness (Rq) and average 

roughness (Ra) values of untreated poly(methyl methacrylate)(UT-PMMA), treated 

poly(methyl methacrylate) (T-PMMA), untreated polystyrene (UT-PS) and treated 

polystyrene (T-PS). Ra and Rq were determined from 4 measurements in the centre of 4 

samples per parameter. AFM was preformed in tapping mode at a frequency of 1Hz with 

512samples/line, using silicon cantilever with a spring constant of 40N/m. The mean AFM 

was preformed in tapping mode at a frequency of 1Hz with 512samples/line, using 

silicone cantilever with a spring constant of 40N/m. 

 

3.5.4 Cell Culture 

The numbers of attached B3 human LECs were counted in the centre of the sample and also 

1.5 mm, 3 mm and 4mm away from the centre point. These results were grouped by 

substrate, and the number of cells at each position compared. In addition to comparison of 

position for each substrate, treated parameters (T-PMMA and T-PS) will compared to TCPS 

and the respective untreated control. 
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3.5.4.1 Cell Counts - Day 1 

At day 1 LEC counts on TCPS were similar (50-64 cells per field of view) at all positions 

(p=0.342) across the sample (Figure 3.49). There were very few LECs on UT-PMMA at any 

position (8-18 cells per field of view) (p=0.94). Very few cells attached to UT-PS regardless 

of position with an average of <1 cell per field of view on day 1 (p=0.789). 

 

 T-PMMA had a high density of LECs attached in the central position (0mm) (365 ± 233 cells 

per field of view) which decreased to 10 ± 12 cells per field of view at the 4mm position. 

The sequential decrease in cell number became significantly different at the 3mm position 

onwards (p≤0.01). T-PMMA had significantly more cells than TCPS in the centre and 1.5mm 

positions (p<0.05), and significantly fewer cells than TCPS, as the distance from the centre 

increased, at the 3mm and 4mm positions (p<0.05). T-PMMA had significantly more cells 

than UT-PMMA at the centre and 1.5mm positions (p>0.05), however there was no 

significant difference between UT-PMMA and T-PMMA at the 3mm and 4mm positions 

(p>0.1), therefore T-PMMA was deemed untreated at these positions.  

 

T-PS had a high density of LECs in the centre (248 ± 184 cells per field of view), similar to T-

PMMA, which decreased to an average of 1 cell per field of view at the 3mm and 4mm 

positions. The centre and 1.5mm positions were not significantly different to each other 

(p=0.116), yet both positions had significantly more cells than the 3mm and 4mm positions 

(p<0.05); with cell counts at 3mm and 4mm not significantly different from each other 

(p=0.999). T-PS was not significantly different to TCPS at the centre and 1.5mm positions 

(p>0.1) but had significantly fewer cells at the 3mm and 4mm positions (p<0.001). T-PS had 

significantly more cells than UT-PS at the centre and 1.5mm positions (p>0.05), however 

there was no significant difference at the 3mm and 4mm positions (p>0.5), therefore T-PS 

was deemed untreated at these positions. 
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Figure 3.49 Bar chart displaying mean number of B3 lens epithelial cells (LECs) per field of 

view at the centre of samples and 1.5 mm, 3 mm and 4 mm from the centre of samples at 

day 1. Cell counts were determined from micrographs of cell nuclei stained with DAPI, 

seeded onto tissue culture polystyrene (TCPS), untreated poly(methyl methacrylate)(UT-

PMMA), treated poly(methyl methacrylate) (T-PMMA), untreated polystyrene (UT-PS) 

and treated polystyrene (T-PS). Significant differences are only graphically displayed for 

intra-parameter differences. * indicates significant difference of p<0.05, as determined by 

one-way ANOVA. Error bars are ± 1 standard deviation. 

 

3.5.4.2 Cell Counts - Day 4 

After 4 days the number of LECs across the various positions on TCPS samples ranged from 

129-186 cells per field of view, with the number of cells slightly increasing at the 3mm and 

4mm positions. This resulted in the 1.5mm and 4mm positions being significantly different 

from each other (p=0.02). There was no significant difference in the remaining positions 

(p>0.1) (Figure 3.50). UT-PMMA ranged from 236 ± 135 cells per field of view in the centre 

position, to only 70 ± 46 cells per field of view at the 4mm position. The centre position was 

not significantly different to any other position (p>0.1), however the following positions 

had sequentially significantly fewer cells (p<0.01). The average number of LECs on any 

position of UT-PS was 1-2 cells per field of view and there was no significant difference 

between positions (p=0.518). 
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The number of LECs on T-PMMA decreased as a function of distance from the centre. In the 

centre of T-PMMA the number of attached LECs was 758 ± 368 cells per field of view, 

whereas there were 58 ± 11 cells per field of view at the 4mm position. There was no 

significant difference between the centre and 1.5mm position (p=0.391), however the 

sequential decrease in cell number became significantly different at the 3mm position 

onwards (p<0.05). T-PMMA had significantly more cells than TCPS in the centre and 1.5mm 

positions (p<0.05), no significant difference at the 3mm position (p=0.447) and significantly 

fewer cells than TCPS at the 4mm position (p<0.001). There was no significant difference 

between the T-PMMA and UT-PMMA at the centre (p=0.064) despite the large difference in 

cell number, however the p value was close the 0.05. There was, however, significant 

difference between T-PMMA and UT-PMMA at 1.5mm from the centre (p=0.005). The 

average cell numbers at 3mm and 4mm positions of T-PMMA were similar to the number of 

LECs at 3mm and 4mm positions on UT-PMMA (p=0.417 and p=0.575 respectively), 

indicating that these positions were untreated.  

 

The average cell number on T-PS decreased from 897 ± 227 cells per field of view in the 

centre position to an average of 1-2 cells at 3mm and 4mm from the centre. The decrease 

in cell number was significant for each step (p<0.001) until the 3mm position. T-PS had 

significantly more cells in the centre and 1.5mm positions than TCPS (p<0.05).  At both 

3mm and 4mm from the centre T-PS had significantly fewer cells than TCPS (p<0.001). T-PS 

had significantly more cells in the centre and 1.5mm positions than UT-PS (p<0.001). At 

3mm and 4mm from the centre T-PS was no longer significantly different from UT-PS (p=1) 

and therefore could be considered untreated at these positions. 
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Figure 3.50 Bar chart displaying mean number of B3 lens epithelial cells (LECs) per field of 

view at the centre of samples and 1.5 mm, 3 mm and 4 mm from the centre of samples at 

day 4. Cell counts were determined from micrographs of cell nuclei stained with DAPI, 

tissue culture polystyrene (TCPS), untreated poly(methyl methacrylate)(UT-PMMA), 

treated poly(methyl methacrylate) (T-PMMA), untreated polystyrene (UT-PS) and treated 

polystyrene (T-PS). Significant differences are only graphically displayed for intra-

parameter differences. * indicates significant difference of p<0.05, as determined by one-

way ANOVA. Error bars are ± 1 standard deviation. 

 

3.5.4.3 Cells Counts - Day 7 

At day 7 samples were fixed and stained for phalloidin and DAPI, micrographs were taken 

for cell counts however the density of LECs in the centre of T-PS was too great to accurately 

count cell number. LECs did not appear to be monolayer and individual nuclei were too 

difficult to distinguish, therefore cell counts for day 7 have been omitted. 

 

3.5.4.4 Cell Growth Area Montages 

The diameter of cell growth on T-PMMA and T-PS was determined from stitched 

micrographs taken at days 1, 4 and 7 with a 4x objective. At day 1 the diameter of cell 

growth on T-PMMA was 3.8 ± 0.6mm and this was significantly smaller than the diameter of 

cell growth observed at days 4 and 7 (p<0.001). After 4 days the diameter of cell growth on 

T-PMMA had increased to 6.1 ± 1.6mm. At day 4 more LECs attachment was observed in 
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the centre of T-PMMA samples with scattered cell growth outside this central treated 

region (Figure 3.52a). The diameter of cell growth on T-PMMA at day 7 had increased 

further to 7 ± 1.3, however this was not significantly different to diameter of  cell growth at 

day 4 (p=0.259). By day 7 LECs were spread across most of the surface of T-PMMA, with the 

highest LEC density in the centre of the samples (Figure 3.52c).  

 

The diameter of cell growth on T-PS was 2.5 ± 0.6mm on day 1, by day 4 this diameter had 

increased to 3 ± 0.4mm. The diameter of cell growth at day 4 was significantly larger than 

both day 1 (p=0.013) and day 7 (p=0.013). A high density of LECs was observed in the centre 

of T-PS at day 4, with scattered cell growth outside this region (Figure 3.52b). The diameter 

of cell growth observed on T-PS decreased by 0.6mm to 2.4 ± 0.7mm on day 7. LECs were 

mainly present in very high density in the central treated area of T-PS samples by day 7, this 

growth area displayed a very defined boundary region (Figure 3.52d). At all time points T-

PMMA had a significantly larger diameter of cell growth compared to T-PS (p<0.001)(Figure 

3.51). 

 

Figure 3.51 Bar chart displaying the diameters of cell growth areas measured from 

stitched micrographs of B3 lens epithelial cells (LECs) fluorescently stained with DAPI at 

days 1, 4 and day 7 on treated poly(methyl methacrylate)(T-PMMA) and treated 

polystyrene (T-PS) samples. Significant differences are only graphical displayed for intra-

material differences. * indicates significant difference of p<0.05, as determined by one-

way ANOVA. Error bars are ± 1 standard deviation. 
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Figure 3.52  Representative stitched images of B3 human lens epithelial cells (LECs) from 

micrographs taken with an x4 objective, across the centre of treated poly(methyl 

methacrylate) (T-PMMA) at days 4(a) and 7(b), and treated polystyrene (T-PS) at days 4 

(a) and 7 (b). Nuclei were stained with DAPI (blue).  

 

3.5.4.5 High Magnification Cell Morphology 

High magnification micrographs of phalloidin and DAPI staining were taken within the 

centre of the samples to examine the cellular morphology. At day 4 actin staining of human 

B3 LECs on TCPS indicated that cells had a well spread morphology but had not yet formed 

a monolayer, and thus did not display typical epithelial cobblestone morphology (Figure 

3.53). UT-PMMA had a greater density of LECs attachment on day 4 compared to TCPS. 

Despite the higher density of LECs cells did not display a cobblestone morphology; 

directional actin stress fibres were present. T-PMMA had a higher density of LECs on day 4, 

compared to UT-PMMA. Similar to UT-PMMA a large amount of actin stress fibres were 

present in cells on T-PMMA and LECs did not display actin localisation at the cell boundaries 

typical of epithelial cells. Very few cells were present on UT PS and those present were not 
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well spread with either a rounded or spindle morphology. LECs on T-PS on day 4 appeared 

similar to cells on T-PMMA. 

 

Figure 3.53 Representative high magnification micrographs of human B3 lens epithelial 

cells (LECs) with phalloidin 488 f-actin staining (green), DAPI nuclear staining (blue) and 

merged images taken on tissue culture polystyrene (TCPS), untreated poly(methyl 

methacrylate)(UT-PMMA), treated poly(methyl methacrylate)(T-PMMA), untreated 

polystyrene (UT-PS) and treated polystyrene (T-PS) at day 4. * = actin localisation at cell 

periphery, + = actin stress fibres. Scale bar = 50µm. 
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Figure 3.54 High magnification micrograph of phalloidin f-actin staining of lens epithelial 

cells grown on treated polystyrene on day 7.  + = actin stress fibres. Scale bar = 50µm. 

 

By day 7 a monolayer of cell growth had formed on TCPS, however actin localisation at cell 

boundaries and cobblestone morphology were not observed. Although some cells appeared 

to have a cuboidal morphology directional stress fibres were present in other cells on TCPS 

(Figure 3.55). Similar to day 4 there were a greater number of cells present in the centre of 

UT-PMMA compared to TCPS; overlapping stress fibres were present. A greater number of 

LECs were observed on T-PMMA compared to UT-PMMA. T-PMMA also had a very high 

density of overlapping directional actin stress fibres in addition to circular actin 

configurations, however these latter configurations were less frequent.  Few cells were 

present on UT-PS at day 7 and those that were observed had either a poorly attached 

rounded morphology or spindle appearance. Cell density on T-PS was so great that 

individual nuclei could not be distinguished, demonstrating the difficulty posed in cell 

counting. Despite the presence of strong actin staining identifying individual cells was 

difficult, although there appeared to be rounded cells and the presence of directional stress 

fibres. 
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Figure 3.55 Representative high magnification micrographs of human B3 lens epithelial 

cells (LECs) with phalloidin f-actin 488 staining (green), DAPI nuclear staining (blue) and 

merged images taken on tissue culture polystyrene (TCPS), untreated poly(methyl 

methacrylate)(UT-PMMA), treated poly(methyl methacrylate)(T-PMMA), untreated 

polystyrene(UT-PS) and treated polystyrene(T-PS) at day 7. * = actin localisation at cell 

periphery, + = actin stress fibres. Scale bar = 50µm. 
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Figure 3.56 High magnification micrograph of phalloidin f-actin staining of lens epithelial 

cells grown on treated poly(methyl methacrylate) on day 7.  * = actin localisation at cell 

periphery, + = actin stress fibres. Scale bar = 50µm. 

 

3.5.5 Preliminary TGF-β2 ELISA 

A preliminary TGFβ2 ELISA showed the level of TGF-β2 to be highest in medium surrounding 

LECs grown on TCPS wells at all time points. On day 1 the concentration of TGF-β2 in 

medium from TCPS wells was 252pg/ml (Figure 3.57). The concentration of TGFβ2 in 

medium wells containing LECs grown on UT-PMMA and T-PMMA was 134pg/ml and 

67pg/ml respectively.  In addition the medium taken from wells containing LECs grown on 

UT-PS and T-PS wells had concentrations of 72pg/ml and 229pg/ml respectively. 

 

By day 4 the TGF-β2 concentration in medium taken from TCPS wells had increased to 

831pg/ml, which was again much higher than concentrations observed in the other 

parameters. The concentration of TGF-β2 in medium taken from wells containing LECs 

grown on UT-PMMA and T-PMMA had become similar at day 4 (190pg/ml and 145pg/ml 

respectively). Additionally the concentration of TGF-β2 in medium from wells containing 
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LECs grown on UT-PS and T-PS was 39pg/ml for both parameters: for T-PS this was a 

considerable lower concentration than that observed on day 1.  

 

The TGF-β2 concentration from in medium from wells containing LECs grown on TCPS 

increased further by day 7 to 942pg/ml. The concentration observed for medium taken 

from wells containing LECs grown on UT-PMMA had decreased to 145pg/ml, whereas the 

concentration of TGF-β2 in medium taken from wells containing LECs grown on T-PMMA 

had increased to 422pg/ml on day 7. The largest increase was seen in the medium taken 

from wells containing LECs grown on UT-PS and T-PS where the levels of TGF-β2 had risen 

~3-fold to 122pg/ml and 111pg/ml, respectively. 

 

 

Figure 3.57 Bar Chart showing concentrations of transforming growth factor-β2 (TGF-β2) 

in medium taken from wells containing LECs grown on tissue culture polystyrene (TCPS), 

untreated poly(methyl methacrylate)(UT-PMMA), treated poly(methyl methacrylate)(T-

PMMA), untreated polystyrene (UT-PS) and treated polystyrene (T-PS) at days 1, 4 and 7. 

Medium from 4 wells for each parameter were pooled and values are the mean of 2 

measurements. 

 

3.5.6 Preliminary Cytokine Multiplex Assay 

A magnetic bead based assay was run to examine the concentration of inflammatory 

cytokines present in the medium surrounding cells grown on PMMA and PS. Pooled 
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medium from each substrate in a single experiment and samples were measured in 

duplicate, therefore the following data are preliminary. 

 

Cytokine multiplex assay illustrated the concentrations of IL-1α were below the detection 

limit for all parameters at day 1 and day 4. Values of <1pg/ml were extrapolated from 

below the standard range for medium from wells containing LECs grown on TCPS and T-

PMMA at day 7 (Figure 3.58). 

 

The highest concentrations of cytokines measured by the magnetic bead assay were for IL-

6. At day 1 the concentration of IL-6 in medium from wells containing LECs grown on TCPS 

was 60pg/ml, this was almost twice the concentration observed for medium taken from 

wells containing LECs grown on any other parameter. Medium taken from wells containing 

LECs grown on UT-PMMA had a concentration of 17pg/ml, whereas medium taken from 

wells containing LECs grown on T-PMMA had a concentration of 31pg/ml. Medium taken 

from wells containing LECs grown on UT-PS had a lower concentration (14pg/ml) compared 

to the medium taken from wells containing LECs grown on T-PS (21pg/ml) at day 1.  

 

By day 4 the concentration of IL-6 in medium from wells containing LECs grown on TCPS 

had decreased to 49pg/ml. The concentration of IL-6 in medium from wells containing LECs 

grown on UT-PMMA had increased to 33pg/ml compared to day 1, however the 

concentration in medium from wells containing LECs grown on T-PMMA decreased slightly 

to 29pg/ml. There was an increase in IL-6 concentration in medium from wells containing 

LECs grown on both UT-PS and T-PS to 21 and 37pg/ml respectively at day 4. At day 7 the 

concentration of IL-6 in medium removed from wells containing LECs grown on TCPS was 

similar to that at day 4 (52pg/ml). The concentration of IL-6 in medium from wells 

containing LECs grown on UT-PMMA remained the same as day 4 (33pg/ml), and the 

concentration of IL-6 in medium from wells containing LECs grown on T-PMMA increased to 

53pg/ml. At day 7 medium from wells containing LECs grown on UT-PS and T-PS both had 

increased IL-6 concentrations compared to day 4 at 40pg/ml, and 50pg/ml respectively. 

 

The observed basic FGF concentrations in growth medium were very low for all parameters 

at days 1, 4 and 7. The concentrations of basic FGF in medium taken from wells containing 



 

 

180 

Chapter 3: Results 

LECs grown on TCPS were 1, 3 and 5pg/ml for days 1, 4 and 7 respectively. The basic FGF 

concentration in medium from wells containing LECs grown on all other substrates and all 

time points ranged from 0-3pg/ml. 

 

TNF-α was not detectable in the medium from wells containing LECs grown on any 

substrate at any time point excluding T-PMMA at days 4 and 7, which was extrapolated 

from below the standard range to be <1pg/ml. 

 

 

Figure 3.58 Bar Chart showing concentrations of interleukin-1α (IL-1α), interleukin-6 (IL-

6), basic fibroblastic growth factor (FGF) and tumour necrosis factor-α (TNF-α) in medium 

taken from wells containing B3 human lens epithelial cells grown on tissue culture 

polystyrene (TCPS), untreated poly(methyl methacrylate)(UT-PMMA), treated 

poly(methyl methacrylate)(T-PMMA), untreated polystyrene (UT-PS) and treated 

polystyrene (T-PS) at days 1, 4 and 7. Medium from 4 wells for each parameter were 

pooled and values are the mean of 2 measurements. 
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3.6 Plasma Polymerisation 

The aim of the plasma polymerisation was to prove that helium could but used as a carrier 

gas for monomers which could be polymerised onto substrates at atmospheric pressure 

using the plasma jet system. This would enable the greater control of the chemical species 

incorporated onto polymer substrates. In the following work large bore plasma jet nozzles 

(≥1mm ID) were used as these did not require tempered tips and could be disposed of if 

there was contamination from the monomer mixture after use. PS was used in all 

experiments as a model substrate as the hydrocarbon composition made analysis simpler. 

Allylamine and heptylamine were used as model monomers as the presence of nitrogen 

was not previously detected on plasma treated surfaces, which was also of interest from a 

cellular perspective. 

 

3.6.1 Preliminary Polymerisation – Pre Discharge Mixing 

In the following work the allylamine or heptylamine, in helium carrier gas, were mixed with 

the main helium flow within the capillary before the plasma discharge region. The 

monomer containing plasma jet was focused on either UT-PS, or PS previously treated for 

3min with helium plasma to create a surface with a high wettability. Statistical analysis was 

excluded as the experiment was performed once. 

 

3.6.1.1 Contact Angle 

The average contact angle across the surface of UT-PS was 75.3 ± 3.1° (Figure 3.59). The 

average contact angle across the surface of helium treated PS was 22.3 ± 1.1°. When UT-PS 

was treated with allylamine the width of treatment was larger than that observed for 

heptylamine treated UT-PS. On the left side of the allylamine on UT-PS profile the contact 

angle had a maximum of 63.4 ± 10.2°, whilst on the right side of the profile contact angles 

were similar to UT-PS (~75°). In the centre of allylamine treated UT-PS the contact angle 

was <25°. The section of the profile in which contact angle was <25° spanned 4.5mm. When 

heptylamine was deposited on UT-PS the contact angle decreased from ≥75° at the edges 

to <20° in the centre region. The width of the region in which contact angle was <25° was 

2.5mm. Treatment of PS, which had been pre-treated with a helium plasma, with either 

allylamine or heptylamine caused the contact angle to decrease. For both monomer 

treatments the contact angle decreased to below 20° in the central region. The width of the 
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profile for which contact angle was <20° for allylamine and heptylamine, on treated PS, was 

4.5mm for each parameter. 

 

 

Figure 3.59 Line graph of contact angle profiles taken across untreated polystyrene (UT-

PS) and polystyrene (PS) treated with helium (He) plasma for 3min. Either UT-PS or He 

treated PS samples were also treated with allylamine (Allyl) or heptylamine (Heptyl) 

polymerisation plasma jet for 5s. Contact angle measurements were taken across central 

axes of samples at a resolution of 0.5mm. Profiles were taken from 3 samples. Error bars 

are ± 1 standard deviation. 

 

3.6.1.2 X-ray Photoelectron Spectroscopy 

Broad scan XPS spectra were used to obtain approximate atomic concentrations (%) of 

carbon, nitrogen and oxygen on the surface of samples; concentrations were determined 

from the area under the the C1s, N1s and O1s peaks. Only the nitrogen and oxygen 

concentrations are stated as the remainder was carbon.  On UT-PS no nitrogen and only 

1.5% oxygen were observed (Table 3.5 and Figure 3.60). Following He treatment for 3min 

there was 2.6% nitrogen and 25.1% oxygen on the surface of samples. When UT-PS was 

treated with an allylamine plasma the surface contained 4% nitrogen, and the O1s peak 

contributed 27.9%, which was an increase in comparison to helium treatment alone. Little 

nitrogen or oxygen, 1.4% and 5.4% respectively, was observed on heptylamine treated UT-

PS. When samples previously treated with helium was subjected to monomer containing 
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plasma the concentrations of nitrogen and oxygen increased: again the values were highest 

on allylamine treated PS. The N1s and O1s peaks on allylamine treated PS contributed 6.2% 

and 31.5% to the atomic composition respectively, whereas these values were lower on 

heptylamine treated PS (3.7% and 31.7% for N1s and O1s respectively). However, the 

presence of a small F1s peak on the allylamine on treated PS sample indicates 

contamination. The O/C ratios were highest on the allylamine and heptylamine on treated 

PS samples. The N/C ratio was highest on the allylamine on treated PS sample. 

 

Figure 3.60 X-ray photoelectron spectrographs of untreated polystyrene (UT-PS), helium 

(He) treated polystyrene (PS), allylamine (Allyl) or heptylamine (Heptyl) deposited on UT-
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PS, and Allyl or Heptyl on He pre-treated PS. Broad scans were taken at pass energy of 

100eV in the centre of samples.  

 

 

Table 3.5 Atomic concentrations as percentages ± standard deviation of oxygen and 

carbon for untreated polystyrene (UT-PS), polystyrene (PS) treated with Helium (He) for 

3mins, also on allylamine (Allyl) or heptylamine (Heptyl) deposited on UT-PS or He pre-

treated PS. Total concentration was derived from the area of peaks in broad scan spectra 

(100eV pass energy). Atomic concentrations were taken from single samples. 

  
UT-PS He 

Allyl on 
Untreated 

Heptyl on 
Untreated 

Allyl on 
Treated 

Heptyl 
on 
Treated 

A
to

m
ic

 C
o

n
ce

n
tr

at
io

n
 %

 C1s 98.5 72.3 68.1 93.2 55.1 64.4 

N1s 0 2.6 4 1.4 6.2 3.7 

O1s 1.5 25.1 27.9 5.4 31.5 31.7 

F1s 0 0 0 0 7.2 0 

O/C 
ratio 

0.02 0.35 0.41 0.06 0.57 0.49 

N/C 
ratio 

0.00 0.04 0.06 0.02 0.11 0.06 

 

Analysis of high resolution C1s spectra are not present in this preliminary work as it was 

difficult to distinguish between contributions from C-O and C-N. 

 

3.6.2 Polymerisation Chamber – Pre Discharge Mixing (Chamber) 

In the following section the plasma jet was operated in a helium atmosphere. All 

treatments were performed on UT-PS. The jet system was operated with and without the 

plasma ignited; i.e. without the application of a voltage to the electrodes. This was to 

investigate whether there was a deposition of unpolymerised monomer from the gaseous 

mixture. 

 

3.6.2.1 Contact Angle 

The average contact angle of UT-PS was 80.9 ± 1.4° (Figure 3.61). Samples treated with both 

allylamine and heptylamine, without ignition of the plasma, had contact angle profiles 

similar to UT-PS. The averages for allylamine and heptylamine without plasma were 80.9 ± 
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3° and 82.4 ± 1.9° respectively. When surfaces were treated with an allylamine plasma 

there was a decrease in contact angle across the whole surface, indicating the entire 

sample surface was treated. The majority of the profile ranged between 30-50°. The 

contact angle reached two minimum points of ~31° at 1.5-2mm each side of the central 

position; from these positions the contact angle increased to 44.7 ± 3.7° in the centre. 

When samples were treated with a heptylamine plasma the entire sample surface was 

treated (i.e <~80°). The contact angle of heptylamine treated surfaces quickly decreased 

from 54-59° at the edges to ~20°.  The region of the profile in which contact angle was ~20° 

spanned 5.5mm. 

 

 

Figure 3.61 Line graph of contact angle profiles taken across untreated polystyrene (UT-

PS) and polystyrene samples treated with allylamine (Allyl) or heptylamine (Heptyl) jets, 

with or without the ignition of a plasma. Contact angle measurements were taken across 

central axes of samples at a resolution of 0.5mm. Profiles were taken from 3 samples. 

Error bars are ± 1 standard deviation. 

 

3.6.2.2 X-ray Photoelectron Spectroscopy 

The concentration of carbon, nitrogen and oxygen were determined on UT-PS and PS 

treated with allylamine and heptylamine plasmas from the area under the C1s, N1s and O1s 

peaks observed in broad scan spectra. The parameters in which the plasma was not ignited 

were omitted as the contact angle appeared the same as UT-PS. Nitrogen was absent from 
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the surface of UT-PS and there was a 2.2% surface atomic concentration of oxygen (Table 

3.6)(Figure 3.62). Following treatment with allylamine plasma there was a 3.7% increase in 

nitrogen and the concentration of oxygen was 9.2%, indicating that treatment within the 

chamber reduced the oxygen functionalisation. Despite the lowered concentration of 

oxygen observed for allylamine treated PS the O1s contributed 25.8% to the heptylamine 

treated PS, in addition the area of the N1s peak for heptylamine (5.1%) was larger than that 

observed for allylamine, which was an inversion of the previous observations without the 

chamber (see section 3.6.1.2). The O/C and N/C ratios were highest for the heptylamine 

treated PS. 

 

Figure 3.62 X-ray photoelectron spectrographs of untreated polystyrene (UT-PS) and 

polystyrene treated allylamine (Allyl) or heptylamine (Heptyl) plasma. Broad scans were 

taken in the centre of samples at pass energy of 100eV.  
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Table 3.6 Atomic concentrations as percentages ± standard deviation of oxygen and 

carbon for untreated polystyrene (UT-PS), polystyrene  treated with allylamine (Allyl) or 

heptylamine (Heptyl) plasma jets. Total concentration was derived from the area of peaks 

in broad scan spectra (100eV pass energy. Atomic concentrations were taken from single 

samples. 

  
UT-PS Allyl Heptyl 

A
to

m
ic

 
C

o
n

ce
n

tr
at

io
n

 %
 

C1s 97.8 87.1 69.1 

N1s 0.0 3.7 5.1 

O1s 2.2 9.2 25.8 

O/C ratio 0.02 0.11 0.37 

N/C ratio 0.00 0.04 0.07 

 

 

3.6.2.3 Cell Culture 

At day 1 B3 human lens epithelial cells had attached onto TCPS. These LECs displayed a 

spread morphology. By day 4 the number of cells on TCPS had increased and these cells 

were beginning to form confluent areas within the wells. At day 7 LECs had formed a 

confluent monolayer. On UT-PS at all time points very few cells attached to the sample 

surface. Those LECs which did attached had a very rounded or spindle morphology. There 

was a tendency for LECs on UT-PS to form clumps. LECs on samples treated with allylamine 

or heptylamine without plasma ignition were similar to UT-PS at all time points. Samples 

treated with allylamine plasma were also similar to UT-PS; however, there were more 

attached cells with a spindle morphology present at day 7. When LECs were seeded onto PS 

treated with heptylamine with plasma ignition a monolayer formed in the centre of the 

sample by day 1. At day 1 there was LEC attachment in a distinct central region, with little 

or no cellular attachment at the edges. At days 4 and 7 the population of LECs in the centre 

of PS treated with heptylamine, with an active plasma, appeared to increase and the size of 

individual cells appeared to decrease. 
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Figure 3.63 Representative phase contrast micrographs of B3 human lens epithelial cell 

(LEC) line on tissue culture polystyrene (TCPS), untreated polystyrene (UT-PS) and PS 

samples treated with allylamine or heptylamine jets, with or without the ignition of a 

plasma. Micrographs were taken in the centre of samples at days 1, 4 and 7. Scale bar = 

100µm. 
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3.6.3 Polymerisation – Post Discharge Mixing 

In the following work PS surfaces, positioned 5mm from the nozzle, were treated for 

10mins with helium (500sccm) or with a helium:heptylamine mixture of various flow rates 

(500:20, 50 or 100sccm). The 50sccm and 100sccm flow rates were only examined by XPS to 

determine which flow rate most efficiently polymerised heptylamine; the efficiency was 

determined by the quantity of nitrogen observed on the surface. The heptylamine mixture 

was introduced into the plasma system post-discharge (see methods section), rather than 

pre-discharge mixing conducted in the previous experiments. Samples were positioned 

5mm from the nozzle. This work was not carried out in a chamber as a large oxygen 

concentration was observed on samples treated with heptylamine within a chamber in the 

previous work. 

 

3.6.3.1 Contact Angle 

The average contact angle of UT-PS was 77.2 ± 3.9° (Figure 3.64). Following treatment with 

helium for 10mins the entire sample surface was treated. The contact angle ranged from 

~31° at the edges to a minimum of 20.3 ± 5° at 0.5mm right of the centre position. The 

contact angle of helium treated PS was significantly lower (<0.001) than UT-PS at all 

positions. The contact angle for heptylamine treated surfaces had a larger difference in 

contact angle from the edge to the centre compared to helium treated PS. At the edges the 

contact angle was >40° which decreased <20° in the central region. Although heptylamine 

treatment causes a treatment of the whole sample surface there was a greater effect in the 

central region. The contact angle of heptylamine treated PS was significantly lower (<0.001) 

than UT-PS at all positions. The contact angle of heptylamine was significantly higher 

(p<0.05) than helium treated PS at the 4mm-3mm positions at each side, and heptylamine 

treated PS had a significantly lower (p<0.05) contact angle at the 2mm-0.5mm positions 

(total 1.5mm) right of the centre: this indicates that treatment with heptylamine creates a 

different surface in comparison to treatment with helium. 
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Figure 3.64 Line graph of contact angle profiles taken across untreated polystyrene (PS) 

and PS samples treated with just helium (He) or a helium:heptylamine (Heptyl) mixture. 

Contact angle measurements were taken across central axes of samples at a resolution of 

0.5mm. Error bars are ± 1 standard deviation. 

 

2D contact angle mapping of helium treated PS demonstrated that the entire sample 

surface was treated. The average contact angle on helium treated PS was 24.3 ± 1.9°. The 

contact angle heptylamine treated PS was higher at the edge regions (~45°) compared to 

helium treated PS, whereas the contact angle in some areas closer to the centre had 

contact angle of <20°. 
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Figure 3.65 2D Contact angle plots of polystyrene (PS) treated with a helium (He) plasma 

jet with a flow rate of 500sccm, and PS treated with a helium:heptylamine (Heptyl) 

plasma jet with flow rates of 500sccm:20sccm. Contact angle measurements were made 

with a spatial resolution of 0.5mm. 2D plots were from single samples. 

 

3.6.3.2 X-ray Photoelectron Spectroscopy 

Broad scan spectra were obtained for UT-PS and PS treated with heptylamine plasma jets 

which had heptylamine mixtures of 20, 50 and 100sccm combined with a fixed helium flow 

of 500sccm. Broad scan spectra were resolved into 3 peaks: C1s, N1s and O1s. The broad 

scan spectra of UT-PS only contains a large carbon C1s peak, whereas when PS is treated 

with a helium plasma a considerable O1s peak was observed in the spectra (Figure 3.66). 

On the spectra for the 20sccm Heptylamine treated parameter there was clearly a higher 

oxygen content compared to the helium treated PS (as seen from the O1s/C1s ratio), also a 

substantial nitrogen peak was observed. The presence of both nitrogen and oxygen were 

observed on the 50sccm and 100sccm heptylamine treatments, however the relative peak 

intensities were smaller than those observed on the 20sccm parameter. 
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Figure 3.66 X-ray photoelectron spectrographs of untreated polystyrene (UT-PS), helium 

treated polystyrene (He) and polystyrene (PS) treated with heptylamine plasma of 

various flow rats: 20sccm, 50sccm and 100scmm. Broad scans were taken in the centre of 

samples at pass energy of 100eV. Single samples were used. 
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From the area beneath the C1s, N1s and O1s peaks the total atomic concentration was 

determined. Only the nitrogen and oxygen concentrations are stated and expressed as 

percentages. Broad scan XPS spectra taken in the centre of UT-PS demonstrated that there 

was very little surface nitrogen (0.3%) and oxygen content (1.8%)(Table 3.7). When PS was 

treated with just helium there was <1% nitrogen (0.8%) but the oxygen concentration had 

increased to 23.2%. When PS was treated with a gas mixture of helium: 20sccm 

heptylamine 13.9% surface nitrogen content was observed, as well as 40.8% surface oxygen 

content: these were the highest concentrations of nitrogen and oxygen observed for all 

samples. When the flow rate of heptylamine was increased to 50sccm the surface nitrogen 

and oxygen concentrations were 10.1% and 26.8% respectively. When the heptylamine 

flow rate was increased further to 100sccm the surface nitrogen and oxygen concentrations 

were similar to the 50sccm flow rate condition (10.7% and 23.9% for the nitrogen and 

oxygen concentrations respectively).  The O/C and N/C ratios were highest on the 20sccm 

sample. 

 

Table 3.7 Atomic concentrations as percentages of carbon, nitrogen and oxygen for 

untreated PS (UT-PS), polystyrene treated for 10mins with helium (He), polystyrene 

treated with a mixture of helium and 20sccm heptylamine (20sccm), 50sccm heptylamine 

(50sccm) and 100sccm heptylamine (100sccm). Total concentration was derived from the 

area of peaks in broad scan spectra taken in the centre of samples (100eV pass energy). 

Single samples were used. 

  
UT-PS 20sccm 50sccm 100sccm 
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C1s 97.9 45.4 63.1 65.4 

N1s 0.3 13.9 10.1 10.7 

O1s 1.8 40.8 26.8 23.9 

O/C ratio 0.02 0.90 0.42 0.37 

N/C ratio 0.00 0.31 0.16 0.16 

 

XPS broad scans were also obtained across sample surfaces with a spatial resolution of 

1mm. Surface atomic concentration was determined from these for each position and 

results will displayed in 2 charts; one plotting nitrogen concentration and the other plotting 

oxygen concentration. Almost no nitrogen was observed at any position on UT-PS (Figure 
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3.67). The surface concentration of nitrogen on the 20sccm parameter was >10% at all 

positions and reached a maximum of 14.6% at 2mm left of the centre. When treated with a 

50sccm heptylamine flow rate the maximum nitrogen concentration, observed in the 

centre position, was 12.6%: this decreased with distance from the centre to a minimum of 

2.3% at the edge. The 100sccm parameter displayed a similar pattern of nitrogen 

concentration to the 50sccm however; the concentrations on 100sccm parameter were 

slightly lower. On the 100sccm parameter a maximum nitrogen concentration of 10.7% was 

observed in the centre of the sample and a minimum nitrogen concentration of <1% was 

observed at the edge. 

 

Very little oxygen was observed at any position on UT-PS (≤2.3%)(Figure 3.68). The oxygen 

concentration on all heptylamine treated parameters decreased with distance from the 

centre. The 20sccm parameter had the highest concentration of oxygen at all positions 

which ranged from 40.8% in the centre, to 23.9% at the edge. The oxygen concentration on 

the 50sccm parameter decreased from 32.7% in the centre to a minimum of 12.7% at the 

edge. The 100sccm parameter had an oxygen concentration of 25.2% in the centre region 

which decreased to a minimum of 7.6% at the edge. These data demonstrate the entire 

surface of samples were treated and the extent of treatment, i.e. the concentration of 

nitrogen and oxygen, decreases with an increase in heptylamine flow rate.  
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Figure 3.67 Line graph of the atomic nitrogen concentration, as determined from x-ray 

photoelectron spectroscopy broad scan spectra (100eV pass energy), across the surface of 

untreated polystyrene (UT-PS) and polystyrene treated with a mixture of 500sccm helium 

and 20sccm heptylamine (20sccm), 50sccm heptylamine (50sccm) and 100sccm 

heptylamine (100sccm). Spectra were taken with a spatial resolution of 1mm. Single 

samples were used. 
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Figure 3.68 Line graph of the atomic oxygen concentration, as determined from XPS 

broad scan spectra (100eV pass energy), across the surface of untreated polystyrene (UT-

PS) and polystyrene treated with a mixture of 500sccm helium and 20sccm heptylamine 

(20sccm), 50sccm heptylamine (50sccm) and 100sccm heptylamine (100sccm). Spectra 

were taken with a spatial resolution of 1mm. Single samples were used. 

 

3.6.3.3 Atomic Force Microscopy 

The roughness values of UT-PS were Rq = 0.6 ± 0.4nm, and Ra = 0.4 ± 0.2nm (Figure 3.69). 

The Rq roughness of UT-PS was not significantly different to either helium nor heptylamine 

treated PS (p>0.5), however the Ra value was significantly lower than helium treated PS 

(p=0.18). The Rq and Ra values of helium treated PS were the highest of all 3 parameters 

(Rq=0.8 ± 0.2nm, Ra=0.6 ± 0.2nm). Helium treated PS had a significantly higher Rq than 

heptylamine (p<0.001). Helium treated PS also had a significantly higher Ra than both UT-PS 

(p<0.018) and heptylamine treated PS (p<0.001). 
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Figure 3.69 AFM micrographs including root mean squared roughness (Rq) and average 

roughness (Ra) values of untreated polystyrene (UT-PS), helium treated poylstyrene (He) 

and heptylamine treated polystyrene (Heptyl) (20sccm flow rate). Ra and Rq were 

determined from 4 measurements in the centre of 4 samples per parameter. AFM was 

performed in tapping mode at a frequency of 1Hz with 512 samples/line, using silicon 

cantilever with a spring constant of 40N/m. 

 

3.6.3.4 Cell Culture 

 Cell Counts - Day 1 3.6.3.4.1

On TCPS the numbers of B3 human LECs ranged from 62-104 cells per field of view across 

all positions, with the highest number of cells in the centre. There were significantly more 

cells in the centre position compared to the 3mm position by a small margin (p=0.45). 

There was no significant difference between any other positions (p>0.05).  On UT-PS there 

were very few attached cells as expected (2-5 cells per field of view), and there was no 

significant difference between the positions (p=0.386). There were fewer cells on UT-PS 

than TCPS at all positions (p<0.01). 

 

The number of LECs on helium treated PS was highest in the central position and decreased 

with distance from the centre. At the centre position there were 462 ± 458 cells per field of 

view, which had decreased to 23 ± 30 cells per field of view by the 4mm position. Due to 

the large variance the centre position was not significantly different to any other position 

(p>0.1). There was a significant decrease in number of LECs for each subsequent position 

(p<0.05). Again, due to the large variation helium treated PS was not significantly different 

to neither TCPS nor UT-PS at the centre position; however, it did have significantly more 

cells than TCPS and UT-PS at the 1.5mm position (p<0.05). At the 3mm position helium 
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treated PS was not significantly different to TCPS (p=0.999), yet it had significantly fewer 

cells than TCPS at the 4mm position (p<0.001). Helium treated PS had significantly more 

LECs than UT-PS at the 3mm and 4mm positions (p<0.01); therefore helium treated PS 

could not be considered untreated at any position. 

 

Heptylamine treated PS had the most LECs in the centre position compared to all other 

parameters (848 ± 361 cells per field of view). The number of cells on heptylamine treated 

PS decreased significantly at each subsequent position (p<0.05) from the centre, decreasing 

to 6 ± 10 cells per field of view at the 4mm position. At the centre and 1.5mm positions 

heptylamine treated PS had significantly more LECs than TCPS (p<0.01), however there 

were significantly fewer cells on heptylamine treated PS at the 3mm and 4mm positions 

(p<0.05). Heptylamine had significantly more LECs than UT-PS at the centre, 1.5mm and 

3mm positions (p<0.01). At 4mm from the centre heptylamine treated PS was not 

significantly different to UT-PS (p=0.209) and therefore could be said to be untreated at this 

position. 

 

Figure 3.70 Bar chart displaying mean number of DAPI stained B3 human lens epithelial 

cells (LECs) per field of view at the centre of samples and 1.5mm, 3mm and 4mm from the 

centre of samples at day 1. Cells were assumed to be mononuclear. Significant differences 

are only graphically displayed for intra-parameter differences. * indicates significant 

difference of p<0.05, as determined by one-way ANOVA. Error bars are ± 1 standard 

deviation. 

0

200

400

600

800

1000

1200

1400

TCPS UT-PS He Heptyl

M
e

an
 n

u
m

b
e

r 
o

f 
ce

lls
 p

e
r 

fi
e

ld
 o

f 
vi

e
w

 

0mm

1.5mm

3mm

4mm

* 

* 

* 



 

 

199 

Chapter 3: Results 

 

 Cell Counts - Day 4 3.6.3.4.2

Following 4 days of growth the number of LECs on TCPS ranged from 130-314 cells per field 

of view across all positions. There was no significant difference between these positions 

(p>0.1). The average number of LECs on any position of UT-PS was 1 (p=0.841). Due to the 

large variation of cells in the centre position of TCPS there was no significant difference 

between TCPs and UT-PS at the centre (p=0.086). At all other positions there were 

significantly fewer cells on UT-PS than TCPS (p<0.001). 

 

The number of LECs on helium treated PS decreased with distance from the centre. There 

were 557 ± 428 cells per field of view in the centre, which decreased to 114± 109 cells per 

field of view at the 4mm position. Similar to the day 1 time point there was no significantly 

difference between the centre and 1.5mm position (p=0.976); however, there was a 

significant decrease in number of LECs for each subsequent position (p<0.05). Helium 

treated PS did not have significantly more LECs in the centre position than TCPS (p=0.703); 

however there were significantly more at the 1.5mm and 3mm positions (p<0.01). Helium 

treated PS and TCPS had a similar number of LECs at the 4mm position (p=0.982). Helium 

treated PS had significantly more LECs at each position compared to UT-PS (p>0.05) and 

could therefore not be considered untreated at any position. 

 

Heptylamine treated PS had 483 ± 349 cells per field of view in the centre position on day 4. 

This decreased at each position to 3 ± 4 cells per field of view at the 4mm position. The 

decrease from the centre to the 1.5mm position was not significantly different (p=0.331), 

but each subsequent decrease was significant (p≤0.1). There was no significant difference 

between heptylamine treated PS and TCPS at the centre or 1.5mm positions on day 4, yet 

there were significantly fewer cells on heptylamine treated PS at the 3mm and 4mm 

positions (p<0.001). There were significantly more cells on heptylamine treated PS than UT-

PS at the centre, 1.5mm and 3mm positions (p<0.05), yet there was no significant 

difference between the parameters at the 4mm position (p<0.001); therefore heptylamine 

treated PS could be considered untreated at this position. 
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Figure 3.71 Bar chart displaying mean number of DAPI stained B3 human lens epithelial 

cells (LECs) per field of view at the centre of samples and 1.5mm, 3mm and 4mm from the 

centre of samples at day 4. Significant differences are only graphically displayed for intra-

parameter differences. * indicates significant difference of p<0.05, as determined by one-

way ANOVA. Error bars are ± 1 standard deviation. 

 

 Cell Counts - Day 7 3.6.3.4.3

At day 7 there were 512-795 cells per field of view across all parameters of TCPS. There 

were significantly more cells in the centre position compared to the 3mm position (p=0.03) 

and there was no significant difference between any other position (p>0.1). Similar to the 

previous time points, there were almost no cells at any position on UT-PS (~1 cell per field 

of view, p=0.545). There were significantly fewer cells on UT-PS than TCPS at every position 

on day 7 (p<0.001). 

 

On helium treated PS there were 1065 ± 250 cells per field of view in the centre position, 

which was more than any other parameter at this position. The pattern of cell growth on 

helium treated PS was the same as the previous time points: there was no significantly 

difference between the centre and 1.5mm position (p=0.586); yet there was a significant 

decrease in number of LECs for each subsequent position (p<0.01). Helium treated PS had 

significantly more cells than TCPS at the 1.5mm position only (p<0.001). There were 
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significantly fewer cells on UT-PS compared to helium treated PS at every position 

(p<0.001), therefore the entire sample surface was treated. 

 

There were 472 ± 397 cells per field of view in the centre position of heptylamine treated 

PS at day 7. This number decreased to 14 ± 19 cells per field of view at the 4mm position. 

The decrease from the centre to the 1.5mm position was not significant (p=0.845) yet each 

subsequent decrease was significant (p<0.05). There was no significant difference in the 

number of LECs between heptylamine treated PS and TCPS in the centre position (p=0.313). 

There were significantly fewer cells on heptylamine treated PS on the remaining positions 

(p<0.001). There was no significant difference between the number of cells on heptylamine 

treated PS and UT-PS at the centre position on day 7 (p=0.59): this was most likely due to 

the large standard deviation observed in the centre position of heptylamine treated PS. 

There were significantly more cells on heptylamine treated PS than UT-PS was significantly 

different at the 1.5mm and 3mm positions (p<0.005). Although there was only a difference 

of 13 cells per field of view between UT-PS and heptylamine treated PS at the 4mm 

position, this was significantly different (p=0.004), therefore heptylamine treated PS cannot 

be considered untreated at any position following 7 days of culture. 
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Figure 3.72 Bar chart displaying mean number of DAPI stained B3 human lens epithelial 

cells (LECs) per field of view at the centre of samples and 1.5mm, 3mm and 4mm from the 

centre of samples at day 7. Significant differences are only graphically displayed for intra-

parameter differences. * indicates significant difference of p<0.05, as determined by one-

way ANOVA. Error bars are ± 1 standard deviation. 

 

 Cell Montage 3.6.3.4.4

The diameters of cell growth for helium and heptylamine treated PS were similar on day 1 

(2.6 ± 0.7mm and 2.5 ± 0.8mm, respectively)(p=0.841)(Figure 3.73). At day 4 the diameter 

of cell growth on helium treated PS (5.6 ± 1.9mm) was significantly larger than heptylamine 

treated PS (3.6 ± 1.4mm)(p=0.002). The increase in the diameter of cell growth on helium 

treated PS from day 1 to day 4 was significant (p<0.001). The diameter of cell growth on 

heptylamine treated PS was also significant (p=0.043). The diameter of cell growth on 

helium treated PS (8.3 ± 1.3mm) was significantly larger than heptylamine treated PS (4.3 ± 

1mm) on day 7 also (p<0.001)). The diameter of cell growth on helium treated PS increased 

significantly from day 4 to day 7 (p<0.001), however the increase on heptylamine was not 

significant (p=0.116). 
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Figure 3.73 Bar chart of diameters of cell growth across samples measured from stitched 

micrographs of fluorescently stained B3 lens epithelial cells (LECs) at day 1 and day 7 on 

treated polystyrene (PS) samples. Significant differences are only graphically displayed for 

differences at each time point. * indicates significant difference of p<0.05, as determined 

by one-way ANOVA. Error bars are ± 1 standard deviation. 

 

 

Figure 3.74 Representative stitched micrographs of individual micrographs taken across 

the centre of treated samples at day 7. B3 lens epithelial cell nuclei were fluorescently 

stained with DAPI (blue). Cell growth was across a much wider area on helium treated PS 

(a), compared to heptylamine treated PS (b).  

 

 High Magnification 3.6.3.4.5

Cells on TCPS had a well spread morphology and although they appeared cuboidal under 

phase contrast microscopy did not have strong localisation of actin at the cell boundaries. 
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Some cells on TCPS did appear cuboid, however actin stress fibres were present in the LECs 

and some cells did appear to be growing over others (Figure 3.75). Few cells were observed 

on UT-PS and those present had a rounded morphology suggesting poor attachment. Most 

cells on helium treated PS were well spread and appeared to have a cobblestone 

morphology although some actin stress fibres were observed. LECs on heptylamine treated 

PS were more densely populated and a large presence of actin stress fibre was observed. 

 

 

Figure 3.75 Representative high magnification micrographs of human B3 lens epithelial 

cells (LECs) with phalloidin 488 f-actin staining (green), DAPI nuclear staining (blue) and 

merged images taken on tissue culture polystyrene (TCPS), untreated polystyrene (UT-

PS), helium treated polystyrene (PS), and heptylamine treated PS at day 7. * = actin 

localisation at cell periphery, + = actin stress fibres. Scale bar = 50µm. 
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Figure 3.76 High magnification micrograph of phalloidin f-actin staining of lens epithelial 

cells grown on polystyrene treated with a helium plasma on day 7.  + = actin stress fibres. 

Scale bar = 50µm. 

 

3.6.3.5 Preliminary TGF-β2 ELISA 

The level of transforming growth factor-beta 2 (TGF-β2) was examined using ELISA on 

culture medium surrounding cells grown on helium and heptylamine treated PS, as well as 

on UT-PS and TCPS controls. The following work was preliminary as it was only conducted 

once. On day 1 the highest concentration of TGF-β2 was observed in medium from wells 

containing LECs grown on TCPS wells (52pg/ml). The concentration of TGF-2 in medium 

from wells containing LECs grown on UT-PS was lower than TCPS at 39pg/ml, yet medium 

taken from wells containing LECs grown on helium treated PS wells had the lowest 

concentration of TGF-β2 at 16pg/ml. The concentration of TGF-β2 in medium from wells 

containing LECs grown on heptylamine treated PS was similar to UT-PS (41pg/ml). 

 

By day 7 the centration of TFG-β2 observed in medium from wells containing LECs grown 

on heptylamine treated PS (224pg/ml) was much higher than the other parameters. Culture 
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medium from wells containing LECs grown on TCPS, UT-PS and helium treated PS had 

concentrations of 79, 56 and 87 pg/ml respectively. 

 

 

Figure 3.77 Bar chart depicting the concentration of transforming growth factor-β2 (TGF-

β2) in culture medium from wells containing B3 human lens epithelial cells grown on 

tissue culture polystyrene (TCPS), untreated polystyrene (UT-PS) and polystyrene (PS) 

treated with either helium (He) or heptylamine (Heptyl) plasmas, as determined by 

enzyme-linked immunosorbant assay (ELISA). B3 lens epithelial cells were grown for up to 

7 days. Medium was removed at day 1 or at day 7. Cells had been fed at day 4. Medium 

from 4 wells for each parameter were pooled and values are the mean of 2 

measurements. 

 

3.6.3.6 Cytokine Multiplex Assay 

A magnetic bead based assay was run to examine the concentration of inflammatory 

cytokines present in the medium surrounding cells grown on TCPS, UT-PS, helium and 

heptylamine treated PS. Pooled medium from wells containing each substrate was from 

single experiment and samples were measured in duplicate, therefore the following data 

are preliminary. 

 

The presence of IL-1α was not detected on day 1. By day 7 only small concentrations of IL-

1α (3pg/ml) were detected in medium from wells containing LECs grown on TCPS, UT-PS 
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and helium treated PS; whereas, a concentration of 1pg/ml in medium from wells 

containing LECs grown on heptylamine treated PS was extrapolated from below the 

standard range. 

 

Medium from wells containing LECs grown on TCPS had the highest concentration of IL-6 

(30pg/ml) at day 1 compared to the other parameters. The concentrations of IL-6 in 

medium from wells containing LECs grown on UT-PS, helium and heptylamine treated PS 

were 7, 10 and 12pg/ml respectively. By day 7 the concentration of IL-6 in medium from 

wells containing LECs grown on TCPS had increased almost 4-fold to 118pg/ml. Medium 

from wells containing LECs grown on UT-PS had the highest concentration of IL-6 on day 7 

of 134pg/ml: a 19-fold increase compared to day 1. The concentrations of IL-6 in medium 

from wells containing LECs grown on treated materials were lower: helium treated PS had 

~6-fold increase from day 1 to 62pg/ml and heptylamine treated PS increased ~3-fold to 

37pg/ml. 

 

Very little basic FGF was detected in the medium from wells containing LECs grown on any 

material at either time point. On day 1 the concentrations ranged from 0-2pg/ml, in 

medium from wells containing LECs grown on each of the controls had a concentration of 

1pg/ml, and medium from wells containing LECs grown on helium and heptylamine treated 

had concentrations of 0pg/ml and 2pg/ml respectively. The concentrations for basic FGF in 

medium were still low on day 7. The concentrations in medium from wells containing LECs 

grown on TCPS, UT-PS and helium treated PS each increased by 3pg/ml by day 7; there was 

a 4pg/ml increase for medium from wells containing LECs grown on heptylamine treated 

PS. 

 

Little or no TNF-α was detected in medium from wells containing LECs grown on any 

material at either time point. 0pg/ml was detected in medium from wells containing LECs 

grown on any surface on day 1. On day 7 concentrations of 0-2pg/ml in medium from wells 

containing LECs grown on all surfaces were extrapolated from below the standard range. 
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Figure 3.78 Bar Chart demonstrating  concentrations of interleukin-1α (IL-1α), interleukin-

6 (IL-6) basic fibroblastic growth factor (FGF) and tumour necrosis factor-α (TNF-α), as 

determined by magnetic bead-based multiplex assay, at day 1 and day 7. Medium was 

taken from wells in which B3 lens epithelial cells were grown on tissue culture 

polystyrene (TCPS), untreated polystyrene (UT-PS), helium (He) treated polystyrene (PS) 

and heptylamine treated PS. Medium from 4 wells for each parameter were pooled and 

values are the mean of 2 measurements. 
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3.7 Treatment of Polystyrene with a Pin Plasma System 

As a short investigation into the use of an alternative atmospheric pressure plasma system 

to spatially modify surfaces, PS samples were treated with a “pin plasma” system. This 

consisted of a powered tungsten wire, encased within a ceramic tube and a ring electrode, 

at the tip of which a coronal plasma discharge was formed. The tip of this tungsten was 

placed ~1.3mm from 10x10mm PS samples. Initially, various parameters were investigated 

by contact angle, following which the numbers of parameters were reduced and further 

analysis carried out. 

 

3.7.1 Initial Contact Angle Study 

In the initial contact angle study variation in 3 parameters were investigated: frequency 

(20kHz and 15kHz), voltage (17kV and 13kV) and treatment time (20s and 40s). In the 

following section results will be grouped by frequency into 2 separate figures. 

 

There was very little change in the contact angle of UT-PS between positions. The average 

contact angle of UT-PS was 81.8° ± 1.6° (Figure 3.79). The entire sample surface for the 

20kHz-17kV-20s parameter was treated (<80°); contact angle ranged from ~38 degrees at 

the edges to ~21° in the centre. The region which was <25° on the 20kHz-17kV-20s 

parameter spanned 6mm. The profile for the longer treatment time (20kHz-17kV-40s) was 

similar, however there was a slight decrease in contact angle at the edges (~5-10°) 

indicating a broadening of the treatment region, compared to the 20s treatment time.  

 

When samples were treated with the 20kHz-13kV-20s parameter the contact angle at the 

edges was much higher (56.1-68.1°): this decreased to ~22° in the centre region. The 

section in which contact angle was <25° spanned 5mm, and therefore a smaller central 

treated than the 17kV parameters. When samples were treated with the 20kHz-13kV-40s 

parameter the contact angle profile was very similar to the 20kHZ-17kV-20s profile. These 

results indicated that an increase in treatment time caused a broadening of the treatment 

region; i.e. the contact angle reduced outward from the centre. It was also evident from 

comparison of 20kHz-17kV-20s and 20kHz-13kV-20s that a reduction in voltage also 

decreases the treatment area. 
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Figure 3.79 Line graph of contact angle profiles taken across untreated polystyrene (UT-

PS) and polystyrene (PS) samples treated with a pin plasma system. The frequency of the 

plasma system was fixed at 20kHz, the voltage was varied between 17kV and 13kV and 

samples were treated for either 20s or 40s. Contact angle measurements were taken 

across central axes of samples at a resolution of 0.5mm. Profiles were the mean of 3 

samples. Error bars are ± 1 standard deviation. 

 

As stated above the average contact angle for UT-PS was 81.8 ± 1.6°. The contact angles at 

the edges of the 15kHz-17kV-20s parameter were between 60-80°, which decreased to 

<25° in the centre region (Figure 3.80). The width of the section of the profile in which 

contact angle was <25° spanned 4.5mm, which was smaller than that observed for the 

20kHz-17kV-20s parameter. With 40s treatment time (15kHz-17kV-40s) the treatment 

region was slightly broader than the 20s parameter (15kHz-17kV-20s), i.e. the section in 

which contact angle was <25° was 5mm. When the voltage was reduced to 13kV the central 

treated region was much more defined. At the edges of the samples the contact angle was 

~80° indicating untreated regions, and the section in which contact angle was <25° was 

1.5mm for both the 15kHz-13kV-20s and 15kHz-13kV-40s parameters. 
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Figure 3.80 Line graph of contact angle profiles taken across untreated polystyrene (UT-

PS) and polystyrene (PS) samples treated with a pin plasma system. The frequency of the 

plasma system was fixed at 15kHz, the voltage was varied between 17kV and 13kV and 

samples were treated for either 20s or 40s. Contact angle measurements were taken 

across central axes of samples at a resolution of 0.5mm. Profiles were the mean of 3 

samples. Error bars are ± 1 standard deviation. 

 

From the above data it was observed that an increase in frequency, voltage or time caused 

a broadening of the treatment region in almost all cases. Variation in time had the smallest 

effect therefore it was decided to fix treatment time at 20s for all subsequent work. 

 

3.7.2 Contact Angle 

The contact angle of UT-PS was approximately the same across the surface of the samples 

and was an average of 82.5 ± 2.3° (Figure 3.81). The maximum contact angle at the edges of 

the 20kHz-17kV sample was between 56-66° indicating that all of the sample surface was 

treated. This contact angle reduced to 25-30°, which spanned a distance of 5.5mm. The 

contact angle in the centre was slightly higher than the previous work (<25°). The contact 

angle at the edges of the 20kHz-13kV parameter was ~66°, which decreased to ≤25°. The 

contact angle which was ≤25° spanned 4mm. The reduction of the voltage (with frequency 

fixed at 20kHz) decreased the contact angle in the centre but also caused the width of 

treated region to decrease, making a more defined treatment region. The contact angle at 
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the edges of 15kHz-17kV had increased compared to the 20kHz parameters and was >70°. 

The width of the section in which contact angle was ≤25° for the 15kHz-17kV parameter 

was 3mm. The 15kHz-13kV parameter followed a similar trend: the contact angle at the 

edges increased to >75°, however this was still less than the average of UT-PS; the section 

in the centre of the profile in which contact angle was ≤25° decreased to 2mm. 

 

 

Figure 3.81 Line graph of contact angle profiles taken across untreated polystyrene (UT-

PS) and polystyrene (PS) samples treated with a pin plasma system. The frequency of the 

plasma system was either 20kHz or 15kHz, and the voltage was varied between 17kV and 

13kV. Contact angle measurements were taken across central axes of samples at a 

resolution of 0.5mm. Profiles were the mean of 4 samples. Error bars are ± 1 standard 

deviation. 

 

These results confirm that a reduction in the frequency or voltage reduces the width of the 

treatment region. It was observed that the reduction in frequency had the greatest affect. 

 

3.7.3 Atomic Force Microscopy 

From AFM analysis the Rq and Ra values for UT-PS were 0.6 ± 0.4nm and 0.3 ± 0.2nm, 

respectively (Figure 3.82). Following pin plasma treatment the roughness values increased. 

The Rq values for pin plasma treated substrates ranged from 0.8-1nm, and the Ra values 
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ranged from 0.6-0.8nm. They was very little difference observed in the between all the 

parameters. 

 

 

Figure 3.82 AFM was performed in tapping mode at a frequency of 1Hz with 512 

samples/line, using silicon cantilever with a spring constant of 40N/m. The root mean 

square roughness (Rq) and average roughness (Ra) were calculated for untreated 

polystyrene (UT-PS), and polystyrene treated with a pin plasma operated at either 20kHz 

or 15kHz frequency and 17kV or 13kV voltage. Ra and Rq were determined from 4 

measurements in the centre of 4 samples per parameter. AFM was performed in tapping 

mode at a frequency of 1Hz with 512 samples/line, using silicon cantilever with a spring 

constant of 40N/m.  

 

3.7.4 Cell Culture 

Human B3 LECs were grown on pin plasma treated substrates to determine if treatment 

could enable spatially defined cell attachment. 
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3.7.4.1 Cell Counts - Day 1 

The number of LECs observed on TCPS ranged from 69-127 cells per field of view across all 

positions, with the largest number of cells observed in the centre position (Figure 3.83). UT-

PS had an average of 0 cells per field of view at each position.  

 

The samples treated with 20kHz pin plasma had a large number of cells in the centre which 

decreased as a function of distance in the centre. The 20kHz-17kV parameter had 433 cells 

per field of view in the centre, this number reduced with an increase in distance from the 

centre to 16 cells per field of view in the 4mm position. 

 

 Samples treated with the 20kHz-13kV parameter had 482 cells per field of view in the 

centre region. This reduced with distance from the centre; however the centre and 1.5mm 

positions were similar. The average number of cells at the 4mm position was 24 cells per 

field of view. 

 

The 15kHz-17kV parameter had a much larger number of cells at the 1.5mm position 

compared to the centre position (288 and 655 cells per field of view at the centre and 

1.5mm positions respectively). By the 4mm position the number of cells had reduced to 5 

cells per field of view.  

 

The 15kz-13kV parameter had fewer cells at all positions compared to all other parameters. 

There were 206 cells per field of view in the centre position. Cells decreased as a function of 

distance from the centre to 1 cell per field of view at the 4mm position. 
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Figure 3.83 Bar chart displaying mean number of B3 human lens epithelial cells (LECs) per 

field of view at the centre of samples and 1.5mm, 3mm and 4mm from the centre of 

samples at day 1. The number of cells was determined from micrographs of nuclei stained 

with DAPI. Cells were assumed to be mononuclear. LECs were seeded onto tissue culture 

polystyrene (TCPS) untreated polystyrene (UT-PS) or polystyrene treated with a pin 

plasma operated at 20Khz or 15kHz frequency and 17kV or 15kV voltage. Mean number 

of cells were from 4 samples. Error bars are ± 1 standard deviation. 

 

3.7.4.2 Cell Counts - Day 4 

The number of cells on TCPS had increased compared to day 1 (257-389 cells per field of 

view across all positions) but there were still more LECs in the central position compared to 

the other positions (Figure 3.84). There was an average of 0 cells per field of view across all 

positions on UT-PS at day 4. 

 

There was little change in the centre position of the 20kHz-17kV parameter compared to 

day 1 (455 ± 289 cells per field of view on day 4); however, there was a more pronounced 

increase in the number of LECs for the remaining positions. The number of cells still 

decreased with distance from the centre and there were 75 cells per field of view at the 

4mm position. 
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 The 20kHz-13kV parameter was similar to day 1 with a slight increase to number of LECs at 

each position. The number of LECs decreased with distance from the centre. The number of 

cells in the centre and 1.5mm positions were 542 and 25 cells per field of view respectively. 

 

There were much more cells in the 1.5mm position than at the centre of the 15kHz-17kV 

parameter (263 and 799 cells per field of view respectively). From the micrographs in which 

cells were counted this appeared to be due gaps in the cell growth in the centre position. At 

the 4m position there were almost no cells (4 ± 12 cells per field of view).  

 

The 15kHz-13kV parameter was similar to day 1 however there was an increase in number 

of cells in the centre and 1.5mm positions at day 4 (499 and 386 cells per field of view 

respectively). The number of cells at the 3mm and 4mm positions increased minutely, and 

there were 2 ± 4 cells per field of view at the 4mm position on day 4. 

 

 

Figure 3.84 Bar chart displaying mean number of B3 human lens epithelial cells (LECs) per 

field of view at the centre of samples and 1.5mm, 3mm and 4mm from the centre of 

samples at day 4. LECs were seeded onto tissue culture polystyrene (TCPS) untreated 

polystyrene (UT-PS) or polystyrene treated with a pin plasma operated at 20Khz or 15kHz 

frequency and 17kV or 15kV voltage. Mean number of cells were from 4 samples. Error 

bars are ± 1 standard deviation. 
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3.7.4.3 Cell Montage 

The diameters of cell growth, as measured by stitching of micrographs, demonstrate that 

each reduction in frequency and/or voltage decreases the diameter of cell growth, 

observed on pin plasma treated samples at day 4. The diameter of cell growth for the 

maximum frequency and voltage (20kHz-17kV) was 7.2 ± 1mm; whereas, for the minimum 

frequency and voltage (15kHz-13kV) the diameter of cell growth was 4 ± 0.6mm. 

 

 

Figure 3.85 Bar chart of diameters of cell growth across samples measured from stitched 

micrographs of fluorescently stained B3 lens epithelial cells (LECs) at day 4 on pin plasma 

treated polystyrene (PS) samples. The pin plasma was operated a frequencies of either 

20kHz or 15kHz and voltages of 17kV or 13kV. Mean number of cells were from 4 samples. 

Error bars are ± 1 standard deviation. 

 

From the stitched micrographs it was observed that the density of LECs gradually decreased 

with distance from the centre of 20kHz parameters, with a greater number of scattered 

LECs in the edge regions of samples. This was in comparison to the more defined boundary 

of cell growth observed for LECs grown on PS treated with pin plasmas operating at 15kHz. 

Beyond this boundary there was very little cell growth. Occasionally either gaps in cell 

growth or clumps of cell growth were observed within the treated area, indicating that LECs 

were not forming an epithelial monolayer. Examples of gaps in cell growth can be observed 

at the intersection of the +x and +y axes on the 20kHz-17kV parameter, Figure 3.86; an 
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example of  a clump of cells can be observed directly above the aforementioned gap on the 

+y axis of 20kHz-17kV, Figure 3.86. The gaps were most often present near the centre of 

samples, particularly on the 15kHz-17kV parameter, accounting for the lower number of 

LECs observed in the centre position compared to the 1.5mm position (sections 3.7.4.1 and 

3.7.4.2). 

 

 

Figure 3.86 Representative stitched micrographs from individual micrographs taken 

across the centre of treated samples at day 4. B3 human lens epithelial cells (LECs) were 

fluorescently stained with DAPI. Polystyrene (PS) samples were treated with a pin plasma 

system operating with frequencies of 20kHz or 15kHZ and voltages of 17kV or 13kV.  
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4 Discussion 

The aim of this study was to modify polymer materials, in a spatially defined manner, to 

tailor the cellular response of lens epithelial cells (LECs), with the aim of reducing or 

inhibiting the incidence of posterior capsule opacification (PCO). This work has clearly 

shown that polystyrene can be modified to encourage cellular attachment and growth in a 

spatially defined manner [168]. Although polystyrene is not typically used as an implant, it 

is often used as a model surface to study surface modification due to its hydrocarbon 

structure [5, 19, 168, 222, 223]. Tissue culture polystyrene (TCPS), which is treated with a 

proprietary method but most likely to be treated with UV, ozone or plasma methods to 

incorporate oxygen and/or nitrogen onto the surface, is typically used for cell culture 

vessels in most laboratories.  TCPS provides a good positive control for cell attachment and 

growth [224, 225]. It was hypothesised that the plasma jet could be used to modify the 

surface on the same length scale as the cells, to control the response of individual cells; 

however it has been shown that the area treated by the microplasma jet was much larger 

than the internal diameter (ID) of the jet nozzle. The area of treatment was controlled by 

parameters such as flow rate and by varying the distance from the microplasma jet nozzle 

to the sample surface, yet treatment areas were still on the millimetre scale, even for a 

nozzle ID of 100µm. Surface functionalisation was characterised by a decrease in contact 

angle and an increase in the surface oxygen content, as observed by XPS. Treatment with 

the helium plasma jet caused little change in the surface roughness, suggesting that the 

method does not affect the polymers’ roughness. Further work on the modification of 

poly(methyl methacrylate)(PMMA) demonstrated that the principles of microplasma jet 

treatment could be applied to other materials. Experiments were conducted to investigate 

the use of the plasma jet design for atmospheric pressure plasma polymerisation. It was 

hypothesised that this technique could be used to incorporate a wide variety of surface 

functional groups, depending on the monomer (or molecule) incorporated, onto polymer 

surfaces. 
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4.1 Possible Mechanisms of Surface Modification and Optimisation 

of the Microplasma Jet 

Treatment areas of various sizes, created by altering the flow rate and sample-nozzle 

distance, were observed by spatially resolved contact angle and cell culture studies. The 

effect of flow rate and sample distance on the size of the treatment areas is related to the 

basic principles of microplasma jet surface modification. In the plasma jet system helium 

flows down a quartz capillary toward an electrode powered by ≥6kV and 10-20kHz 

sinusoidal signal, with or without the presence of a grounded electrode. The powered 

electrode provides energy to the helium atoms which cause them to vibrate and collide. 

These collisions cascade and cause the helium atoms to dissociate, losing their electrons 

[158]. Excited helium atoms and ions are created within the main discharge region of the 

plasma [160].  The gas flow carries these excited species (atoms and molecules) from the 

discharge region into ambient air, then these primary species: He+, He2
+ and excited He* 

(the 23S state metastable helium), or electrons collide with molecules and atoms in air 

(oxygen, nitrogen, H2O etc.) to create secondary ions and radicals [160, 183, 187]. Photons 

are also created, in the discharge region and in the plasma plume beyond the electrodes, by 

the photoelectric effect. The photoelectric effect is the emission of the remaining energy 

from dissociating collisions as a photon, or an electron dropping to a lower energy orbital 

from an excited state [226, 227]. Charged and excited species, as well as photons in the UV 

range, can be used to modify material surfaces. These reactive species break the chemical 

bonds on the surface of materials following which other atoms and molecules can be 

incorporated onto the surface. 

 

Photons of various wavelengths are emitted from plasmas, for example the visible glow of 

the plasma plume, however it is the invisible high energy photons which can break surface 

bonds. So called Vacuum UV photons (VUV), of wavelengths of <200nm, are often 

attributed to surface modification [156]. Although these photons are referred to as vacuum 

UV they can propagate through nitrogen atmospheres, however there are quickly absorbed 

by oxygen molecules. This is one reason why UV photons are unlikely to have played a large 

part in the surface modification using the atmospheric pressure plasma jet outlined in this 

work. Most of the high energy UV photons would have been absorbed by oxygen molecules 

in the air before reaching the surface [227, 228]. In some “shadowing” experiments 
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samples were treated at distances of up to 20/25mm from the nozzle, (Figure 3.7) twice the 

distance of the longest visible plasma plume: therefore high energy UV photons would have 

been absorbed by oxygen molecules before reaching this distance, which suggests that 

changes measured on sample surfaces must be due to other processes. Reuter et al. 

demonstrated that photons are created in the discharge region of the plasma jet (between 

and near the electrodes which surround the quartz tubing) and propagate along the flow of 

helium and excited oxygen [227]. As photons are electromagnetic radiation they can be 

assumed to travel in a straight line within a single medium, in this case a gaseous mixture of 

helium and air. As the photons travel in a straight line from their point of creation within 

the capillary, the beam of photons can only be as wide as the ID of the plasma capillary. 

Even if a small expansion angle were allowed, all treatment areas were still much larger 

than the ID of the plasma capillary meaning that UV photons could not be the only 

mechanism of functionalisation (Figure 3.4). Further evidence that photons were unlikely to 

have been the main cause of surface functionalisation was the barriers used within the 

“shadowing” experiments. The “shadowing” experiments (Section 3.3) demonstrated that 

samples surfaces were treated by the plasma jet even when a barrier was placed in the 

plasma path. This barrier, when larger than the internal diameter of the jet nozzle, would 

have blocked all photons from reaching the sample surface. These points therefore suggest 

that the effect of high energy UV photons functionalising the surface can be discounted. 

These photons may have contributed, however, to the creation of secondary ions and 

excited species responsible for surface modification. Various studies have reported little or 

no optical emission in the 200-300nm UV range [166, 183, 229]. In these studies it is 

unclear in the methodology whether the spectrometric readings were taken of the 

discharge region (where Reuter et al. state that UV photons are created [227]), or whether 

measurements were taken of the plasma plume, for example at angles perpendicular to the 

plasma flow which would not be observed the discharge region.  

 

Ionic species were also unlikely to have directly caused surface modification. Oh et al. 

demonstrated ionic species could not survive outside the visible plasma plume [187]. When 

PS was treated with a 100µm ID microjet (Section 2.2.1.3), which had a plasma plume 

length of ~1.2mm from the nozzle opening, when the surface was at distance of 10mm 

from the nozzle ions would not be able to reach the sample. It is therefore assumed that it 
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was radical or metastable species, which could survive in the extended regions of the gas 

flow, for example metastable He, OH, On
* and Nn

*, that may provide enough energy to 

break surface bonds and enable surface modification [166, 168, 183, 229, 230]. A radical is 

“a molecular entity containing an unpaired electron”[231] and they are typically highly 

reactive. Metastable atoms or molecules are those that have not received sufficient energy 

to be ionised yet have received enough that electrons are promoted to higher energy 

orbitals, thus having a greater potential energy than their ground state counterparts[160]. 

These species typically have longer half-lives than ions because although they are excited 

they are typically neutrally charged. Metastable species will, however, return to their 

ground state upon collision with lower energy atoms and molecules in the air. As these 

species are not charged they cannot be observed by mass spectrometry. Optical emission 

spectroscopy, capable of observing the UV spectrum, could possibly be used to observe the 

photons emitted from these species as they return to their ground state at distances down-

stream from the plasma plume. 

 

If the assumption that the radicals and metastables are responsible for the surface 

modification, and that they can be carried by the gaseous flow of the plasma, then the 

various treatment patterns observed for different flow rates and sample-nozzle distances 

can be explained (Figure 3.30). Other assumptions must first be made: it is assumed that 

the gas propagates from the jet nozzle in a circular pattern, due to the circular shape of 

capillary tip, and that the gas has a small expansion angle [232]. Bradley et al. 

demonstrated using schlieren photography, an imaging technique with which gas density 

and thus flow can be observed, that the helium gas flows much further from the jet nozzle 

than the visible plasma plume. This gas initially has a laminar flow but becomes turbulent as 

it travels further from the jet [232](Figure 4.1). It is assumed that this turbulences results in 

entrainment of slow-moving, low energy species into the jet of fast-moving, high energy 

species which were generated by the plasma jet, and subsequent reactions. It is also 

assumed that an increase in turbulence will result in an increase of this entrainment. These 

assumptions could perhaps be demonstrated by computer modelling of the fluid dynamics. 
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Figure 4.1 (a) Schlieren photograph demonstrating the laminar and subsequent turbulent 

flow of a helium plasma jet as the exits the plasma jet nozzle. The laminar flow was 

approximately the size of the nozzle capillary internal diameter (ID) with a slight 

expansion angle. (b) An intensified charge-coupled device (ICCD) is inset demonstrating 

the optical emission of the plasma plume. Image altered and reproduced with 

permission[232]. 

 

The gas flows until it meets a flat barrier (a sample) positioned perpendicular to the 

direction of flow. When the gas, carrying excited species, strikes the sample it spreads 

across the sample surface (Figure 4.2). It is assumed that the gas expands radially from the 

point of impact or focus of the jet. This can carry the excited species a few millimetres from 

the focus of the plasma creating the larger treatment areas. Spatially resolved contact angle 

measurements were taken across the centre of treated samples, and therefore display a 

cross section of the treatment pattern. Spatially resolved 2-dimensional contact angle 

mapping supports the assumption that the gas expands radial and creates a circular 

treatment pattern (Figure 3.30 and Figure 3.46). The reactive species, e.g. metastables 

and/or radicals, were likely to revert to their lower energy states by interactions with atoms 

or molecules in the air surrounding the plasma gas flow. If a high energy species collides 

with a lower energy atom or molecule it is likely that the high energy species will lose some 

of its energy, by the transfer of kinetic energy to the other atom, and thus revert to its low 

energy ground state. As the gas flow from the jet becomes more turbulent, more 

atmospheric species will be mixed with the excited species causing them to revert to their 

ground state. This will be referred to as “quenching” of the energetic species. As the plasma 
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gas flow strikes a sample and spreads across the surface it is possible that the flow 

experiences turbulences as it spreads across the surface (Figure 4.2). 

 

 

Figure 4.2 Schlieren photograph demonstrating a gaseous jet flow spreading across a flat 

surface. Wall turbulences are created as the gas spreads across the surface. Image 

courtesy of Jun-Seok Oh. 

 

It is hypothesised that the momentum of the plasma gas, determined by the flow rate, was 

a large determinant in the size of the treatment area. If the flow of gas carries the reactive 

species and turbulence results in a quenching of the reactive species, it is possible that a 

higher flow rate would carry reactive species further from the nozzle than a lower flow rate. 

It may be the case that a higher flow rate could result in increased pressure within the 

100µm ID plasma jet capillary as the flow of gas would be restricted by the diameter of the 

nozzle opening. If this were the case the velocity of the gas exiting the nozzle at higher flow 

rates may be faster than the gas exiting at lower flow rates. When the digital flow meter 

 

10 mm 

Gas flow 

Laminar 
flow 

Wall 
turbulence 



 

 

225 

Chapter 4: Discussion 

was used an audible hiss was present at flow rates above 150sccm (“high flow rate”), this 

indicates that the pressure did in fact increase with higher flow rates; however this was not 

measured. In future work it may be of interest to measure the flow of helium from the 

nozzle for each flow rate, prior to experimentation. It is possible that a higher, faster flow 

rate could maintain a laminar concentrated stream of reactive species for a greater 

distance than a lower flow rate. It is also assumed that the higher flow rate carried the 

reactive species further across the sample surface when the gas flow met the perpendicular 

samples, compared to the lower flow rate. It is possible that the momentum of gas flow 

would decrease with distance from the nozzle (Figure 4.3). 
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Figure 4.3 Cartoons of gas flow (low and high flow rates) exiting 100µm nozzle and 

travelling to sample surfaces a 1mm and 10mm from the nozzle. Contact angle profiles for 

each treatment condition are inset. Nozzle exit, sample size and contact angle profile size 

are approximately in the same scale. 
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Contact angle results demonstrated a very distinct treatment region in the centre of 

samples treated with a plasma microjet (100µm ID nozzle) with a low flow rate - 1mm 

sample nozzle-distance (L1) parameter (Figure 3.29). The contact angle decreased from 

~80° to ~25° in the centre of the samples. A contact angle of ~20-25° seems to suggest a 

saturation for PS treated with a helium plasma, as the contact angle does not decrease 

further even with a treatment time of up to 10mins (Figure 3.64). The results suggest that 

the low flow rate was capable of carrying the reactive species several hundreds of microns 

radial from the focus of the microplasma jet. It is hypothesised that at distances further 

than this the gas spreading from the centre was slowed by turbulence and that mixing with 

atmospheric air increased: this may have caused the reactive species to be quenched by 

atoms and molecules in the air. 

 

When the sample was positioned 10mm from the nozzle and treated with a low flow rate 

(L10) the lowest contact angle was 55°. There were also large variations in the contact 

angles in the centre of samples treated with the L10 parameter. It is possible that the 

plasma jet with a low flow rate experienced a large amount of turbulence prior to reaching 

samples positioned 10mm from the nozzle, and many reactive species may have reverted 

to a ground state due to interaction with the air. The preliminary contact angle analysis of 

flow rate and distance support this (Figure 3.26). When a sample was positioned at 5mm 

from the nozzle and treated with low flow rate only one position in the centre of the 

sample had a contact angle about ~20°. It is possible that the edges of the gaseous stream 

exiting the nozzle are affected by turbulence first, reducing the treatment at the edges, 

thus creating the appearance of “smoothing” of the treatment profile of the low flow - 

5mm sample (Figure 3.26).  

 

When samples were positioned 1mm from the nozzle and treated with a high flow rate (H1) 

the treatment region was much wider than observed for the L1 parameter. A “treated 

region (or area)” refers to the section of a contact angle profile in which contact angle was 

less than ~75-80° (the contact angle of UT-PS). This could be because the high flow rate had 

a greater momentum to carry the excited species further from the focus of the 

microplasma jet when the gas stream strikes the sample. When samples were positioned at 

10mm from the nozzle (H10) the flow rate was strong enough to carry reactive species to 
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the sample and reduce the contact angle to ~25° (Figure 3.29). The section of maximum 

treatment (~25°) was smaller on the H10 parameter compared to the H1 parameter. 

Perhaps the excited species were not spread as far from the focus of the jet by the high 

flow rate when samples were positioned 10mm from the nozzle compared to 1mm. This 

may be because momentum of the gaseous stream of excited species decreased due to 

resistance with air when travelling 10mm from the nozzle. Perhaps this reduction in 

momentum meant that the reactive species could not be pushed as far across the samples 

surface, prior to being quenched by turbulence with atmospheric air. 

  

Tan et al. have also demonstrated that an increased flow rate creates a wider treatment 

area [170]. In their work a plasma jet was passed over a poly(dimethylsiloxane) surface in a 

line at various speeds and O2 flow rates. They reported that a reduction in scan speeds 

resulted in an increase in treated line widths. This was observed by spatially resolved 

contact angle. In a similarly designed experiment Yonson et al. reported that lower sweep 

velocities increased treated track widths, however the results were not shown [19]. Yonson 

et al. hypothesised that at lower sweep velocities gas convection pushed reactive species 

further from the focus of the jet, and a similar conclusion could be reached from the work 

of Tan et al. [19, 170]. These results are in agreement with those reported in this thesis and 

in Doherty et al. (2013)[168]. 

 

When x-ray photoelectron spectroscopy (XPS) was performed it clearly demonstrated that 

there was an increase in surface oxygen content (Figure 3.32, Figure 3.60, Figure 3.62, 

Figure 3.66), and an increase in the O:C ratio (Table 3.3, Table 3.4, Table 3.5, Table 3.6, and 

Table 3.7). This increase in oxygen, and the fact that most oxygen observed was single-

bonded (C-O), was expected for a plasma operating in air [5, 18]. When spectra were taken 

across the surface, at a spatial resolution of 1mm, it was demonstrated that oxygen content 

was lowest at the edges and increased toward the centre position; which suggests that the 

contact angle was related to the surface oxygen content. As oxygen has a high 

electronegativity, meaning it has a greater attraction on the electrons within its bonds, it 

creates a semi-polarity on the surface of the PS. This induced polarity made the surface 

more hydrophilic via polar interactions, and these polar interactions most likely also caused 

proteins to adsorb in a confirmation which induced greater cell attachment and growth, 
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compared to non-polar UT-PS. The spatially resolved XPS in this thesis was determined from 

broad scan spectra only; this is due to the acquisition and analysis times required for 

obtaining multiple high resolution spectra. Another factor was that on occasion it was 

observed that oxygen concentration decreased following long beam exposure 

times/prolonged exposure to high vacuums. It may be noted that nitrogen was typically not 

observed on surfaces, despite the high percentage of nitrogen present in atmospheric air. 

This was probably due to the fact that molecule nitrogen, N2, requires large amounts of 

energy to modify it into an available form, due to its strong triple bond. In nature nitrogen 

fixation generally only occurs during lightning storms and by very specialised bacteria and 

fungi found on the roots of plants. The Haber-Bosch process for converting molecular 

nitrogen and hydrogen into ammonium was one of the most important inventions of the 

20th century, but is performed at high pressures and temperatures. Fitz Haber received the 

Noble prize in chemistry 1918 for his work on the fixation process [233] and Carl Bosch 

received it in 1931 for scaling up the process [234]. Work by a Oh et al. shows that only very 

small concentrations of ionic atomic nitrogen or ions containing single nitrogen species are 

present in the plasma jet effluent [187] unless the nitrogen is within a heptylamine 

monomer unit during polymerisation experiments [189]. 

 

Atomic force microscopy (AFM) demonstrated treatment with the microplasma jet created 

very little change in the surface roughness, i.e. <1nm. This also suggests that treatment is 

not the result of ions striking the surface as these typically create etching on a surface, 

increasing its roughness [235].  

 

From these results it is assumed that cellular adhesion and subsequent attachment and 

growth was, indirectly, due to the addition of oxygen onto the surface. It is well 

documented that creating a more hydrophilic polystyrene surface, by the addition of 

oxygen, will cause the adsorption of proteins in a conformation expressing specific amino 

acid sequences to increase cellular attachment [4, 5, 9, 18, 224, 225]. For example, work by 

Underwood et al. clearly demonstrated that although more fibronectin was observed on 

untreated PS (which contains no oxygen), the arginine-glycine-aspartic acid (RGD) peptide 

responsible for cell attachment was only detected via antibody staining on tissue culture 

polystyrene (TCPS)[225]. The increase in cell attachment due to plasma jet modification was 
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clearly observed in preliminary work using the retinal pigmented epithelial cell line (aRPE-

19) (Figure 3.2). The difference in cell attachment is clearly represented when aRPE-19 cells 

were present on the treated side of a half-treated sample, whereas no cells were present 

on the untreated half. The aRPE-19 cell line is well-established [213] and was used as a 

model for ophthalmic epithelial cell attachment, prior to the receipt of lens epithelial cells 

(LECs). When LECs lines were received they were characterised by antibody staining for αB-

crystallin. 

 

Staining for αB-crystallin was positive for both the rabbit N/N1003A lens epithelial cell (LEC) 

line and the human B3 LEC line (Figure 3.1). Dr. John Reddan kindly donated the N/N1003A 

and in the paper originally published by Reddan et al. (1986) the cell line was characterised 

by the presence of both αA and αB-crystallin subunits[214]: this was supported by Sax et al. 

(1995)[236]. Meakin et al. (1988) did not detect αA- or αB- transcripts in the N/N1003A line 

[237]. Later work by Krausz et al. (1996), in which the authors examined the expression of 

crystallins and other markers in lens-derived cell lines, noted that αA-crystallin gene 

expression was not observed in the N/N1003A line by PCR, but that the αB-crystallin gene 

was observed [218]. αB-crystallin was the only protein observed in both human and rabbit 

lens and all lens-derived cell lines which the authors investigated. 

  

The B3 cell line was originally created by Andley et al. (1994) and characterised by the 

expression of βH- and γ-crystallins [215]. In future work Fleming et al. (1998) reported the 

absence of γC- and γD-crystallins, the only γ-crystallins of appreciable quantity in humans, 

but the presence of αA- and αB- transcripts; however a large decrease in the presence of 

αA- was observed following 10 passages [217]. Wang-su et al. (2003) reported the presence 

of αB-crystallin as well as the absence of αA (passages 11-14 and 20-25) in the B3 LEC line 

[216]. Other commonly used LEC lines have been characterised with crystallin proteins, 

such as the NKR-11 mouse LEC line (γ-crystallin)[238] and αTN-4 mouse LEC line (αA-, αB-

)[239]. The work by Krausz et al. (1996) did not show the presence of γ-crystallin in the 

NKR-11 line but did note the presence of αB- crystallin [218].  

 

It is acknowledged that αB-crystallin is an imperfect lens cells marker due its presence in 

other tissues; such as heart, lung and kidney [240, 241]; however, the literature is not in 
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agreement on a lens epithelial cell specific marker. αB-crystallin is also present in the retina 

[32], hence the use of aRPE-19 retinal pigmented epithelial cell line as a positive control. 

The characterisation of LECs could perhaps have been supported by the detection of other 

markers such as Pax6, occasionally referred to as a master eye gene or master control gene 

for eye development, which is present in the lens but also other tissues within the eye [216, 

218, 242, 243]. 

 

Both the N/N1003A and B3 LECs were tested for cytokeratin as a marker for epithelial cell 

lines; however no expression was observed. It is suggested that LECs express cytokeratins 7, 

8, 18 and possibly 19 but only during development [244-247]. Cytokeratin is expressed in 

the human lens epithelium until 8-9 weeks post conception[244, 245], or about 16 days 

post conception in rabbits [245] and may disappear during the invagination of the lens 

placode. Cytokeratin was not detected by proteome analysis of B3 LEC line or in the lenses 

of donors aged 60-70 years old [216]. Cytokeratins 8 and 18 have been shown to be 

expressed in human retinal pigmented epithelial cells [248] therefore the aRPE-19 cell line 

was used as a positive control. The expression of cytokeratin is often supressed in cells 

undergoing epithelial-mesenchymal transition (EMT), whereas vimentin (an intermediate 

filament found in cells of mesenchymal origin) expression is increased [82, 84]. The 

presence of vimentin (and lack of cytokeratin) has been reported by several authors in lens 

epithelium and/or cultured lens cells [216, 246, 249, 250]. 

 

Cells undergo a series of steps during attachment to synthetic substrates, Grinnell (1976) 

outlined these as: “adsorption of serum components onto the substratum, contact 

between the cells and substratum, initial attachment, and progressive attachments leading 

to cell spreading and an increased strength of cell attachment” [251]. The first of these is 

the adsorption of proteins onto material surfaces which occurs almost immediately (Figure 

1.1) [4]. Secondly cells settle onto the surface from the cell suspension. Thirdly cells initially 

bind to the adsorbed proteins, if protein conformation is such that the necessary amino 

acid sequences are available to the cells. This initial attachment will be referred to as 

adherence throughout this discussion and cells at this stage typically have a rounded 

morphology. Following this, cells may “spread” across a surface, becoming flatter and 

extending across a larger area of the surface. These cells will also form a more apical-basal 
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polarity compared to the loosely bound, more rounded adhered cells. Once cells spread 

they will bind to the surface (or the adsorbed protein layer)  more strongly via interactions 

such as focal adhesion points [4]. Cells at this stage will be referred to as attached cells. 

Each of these processes are dependent upon the surface properties of the material such as 

surface roughness, stiffness and chemistry. Some of these stages are also interdependent. 

Other terms which may be used in the following paragraphs are cell migration and motility, 

meaning the movement of cells across surfaces. 

 

 

Figure 4.4 Cartoon of cell adhesion, spreading and subsequent attachment. Cell 

adherence is preceded by the adsorption of proteins onto the substrate. 

 

Following characterisation LECs were seeded onto materials treated with microplasma jets 

operated with low and high flow rates and positioned either 1mm or 10mm from the 

nozzle. As these materials had treatment regions of various sizes the presence of LECs was 

analysed spatially by cell counting at discrete positions (the centre and 1.5mm, 3mm and 

4mm from the centre) and by stitching low magnification images to give an overview of the 
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diameter of the area of cell growth. It was observed by phase contrast microscopy that cells 

attached to the centre of treated PS surfaces in a much higher density than TCPS in less 

than 2 hours (results not shown).  

 

It was clearly observed when cells are counted at day 1 (Figure 3.34, Figure 3.49 and Figure 

3.70) that there were >3 times the number of LECs in the centre of treated samples 

compared to TCPS wells. There were typically many more LECs at the 1.5mm position of 

treated materials compared to TCPS also, depending on treatment conditions. This was also 

supported by the slightly higher number of cells on treated PS compared to TCPS at 1 and 4 

hours post-seeding, observed in the sample storage experiments (Figure 3.21 and Figure 

3.23); however this work was only conducted once. The number of LECs decreased from 

the centre region toward the edge at all time points, irrespective of plasma treatment 

condition (Figure 3.34 and Figure 3.35). The altering of flow rate and sample-nozzle 

distance did, however, change the extent of the decrease in cell number from the centre to 

the edge, and the minimum number of LECs observed furthest from the centre, at the 4mm 

position. For example: the number of cells on samples treated with the low flow rate – 

1mm distance (L1) parameter decreased to almost 0 cells per field of view after the 1.5mm 

position, and the low flow rate – 10mm (L10) parameter resulted in samples with similar 

yet with slightly more cells at the 3mm and 4mm positions, whereas samples treated with 

the high flow rate parameters (H1 and H10) had many more cells on the 3mm and  4mm 

positions compared to samples treated with low flow rates. 

 

An untreated position is defined by significantly fewer LECs compared to TCPS, and no 

significant difference in the number of cells compared to untreated polystyrene (UT-PS). 

The positions meeting these criteria for samples treated with the L1 parameter would be 

3mm and 4mm from the centre at both day 1 and day 7 (Figure 3.34 and Figure 3.35); 

therefore there is only treatment with a radius of <3mm from the centre, implying a cell 

growth area and treatment diameter of <6mm. Results were similar for samples treated 

with the L10 parameter however the 3mm position did not have significantly fewer cells 

than TCPS on day 1. This is most likely due to the low number of cells on TCPS by day 1 and 

the relatively large standard deviations at the 3mm position on the L10 parameter. The 

samples treated with the high flow rate parameters (at 1mm and 10mm positions, H1 and 
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H10 respectively) did not have significantly fewer cells than TCPS in any position, at either 

time point. This implies under the conditions outlined above that the entire sample surface 

was treated, or at least the diameter of the cell growth/treatment area was >8mm (4mm 

from the centre being the furthest position at which cells were counted).  

 

These constrictions of cell growth area, as defined by cell counts, were in agreement with 

montage data for day 7 (Figure 3.36 and Figure 3.51). From the image montages the 

diameter of cell growth area was defined as the distance between the boundaries of a 

confluent or densely populated LEC growth situated in the centre of treated samples. The 

montage results demonstrate that there were untreated regions on the surface of high flow 

rate treated samples, as diameters of cell growth for the H1 and H10 treated samples were 

only 8.8mm and 8.1mm respectively (sample size was 10x10mm). The agreement in results 

was not present on the data collected on day 1. At the 3mm position on samples treated 

with the L10 parameter the number of LECs was not significantly lower than TCPS: under 

the conditions defined this meant the treatment area was >6mm, however it was only 4mm 

± 0.5mm as defined by stitched micrographs. This may indeed be due to the low number of 

LECs on TCPS and the high variability observed on day 1, as stated in the previous 

paragraph. Similarly, on day 1 the cell counts suggest the diameter of treatment on high 

flow rate treated samples to be >8mm, yet the samples treated with the H1 and H10 

parameters had diameters of cell growth of <7mm determined from stitched images. The 

cell growth montages were defined by the areas of confluent cells growth, and as the cell 

growth did not have perfectly smooth or flat boundaries there was inherent subjectivity in 

this measurement. This was more apparent at day 1 as there was less homogeneity 

between samples at this time point compared to day 7, reflected in the size of the standard 

deviations in reference to the total diameter on days 1 and 7 (Figure 3.36). It is also of note 

that some scattered cell growth was observed outside the “cell growth area”, however UT-

PS was not completely free of cell growth and patches were observed. The morphology of 

the cells outside the cell growth areas was typically similar to LECs on UT-PS. This 

morphology was typically rounded, but occasionally LECs on UT-PS and at the edges of 

treated samples had spindle morphologies. The rounded morphology suggests that cells did 

not receive the correct cues from the adsorbed protein layer on these materials to spread 

and fully attach, and hence remained in the adherence stage (Figure 4.4). Perhaps an 
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algorithm for automated determination of the diameter of cell growth could have been 

created to provide more objectivity. It is accepted that neither cell counts nor cell montages 

were a perfect measure of the diameter of the cell growth area on treated samples, and on 

occasion conflicted with each other; however these methods did provide quantitative and 

qualitative results. It is perhaps difficult to conclude the size of the treatment area at the 

day 1 time point as the number of LECs on TCPS is very low, making it difficult to distinguish 

from low cells numbers and an “untreated” region.   

 

It could be argued that the patches of cells observed outside the cell growth area, 

particularly on the high flow rate treated samples, (Figure 3.37) were due to some random 

modification within the tail-end of the turbulence, created after the laminar flow of the jet 

interacted with the perpendicular sample surface [232]. Spatially resolved XPS analysis, 

however, demonstrated that the concentration of oxygen near the edges of the samples 

was ~4% or less (Figure 3.33), which was similar to the concentration of oxygen observed 

on UT-PS (Table 3.2), however no oxygen was observed by XPS on UT-PS in the PMMA 

experiment (Table 3.4). The concentration of oxygen on UT-PS, from contamination, 

typically observed in the literature is ~0.5% [5]. This suggests possible contamination or the 

presence of adsorbed oxygen and demonstrates the requirement of repeat XPS 

experiments.  

 

From contact angle analysis the samples treated with high flow rate parameters had 

significantly lower contact angles than UT-PS at all positions excluding the left-4mm 

position (Figure 3.29), however the contact angle at the left-4mm position on UT-PS was 

significantly lower than all other positions on UT-PS (p=0.041-0.012, paired samples t-test). 

As the contact angle was significantly lower on samples treated with high flow rate 

parameters than UT-PS (Figure 3.29), yet the oxygen content was approximately the same 

(Figure 3.33 and Table 3.2) it cannot be ruled out that some random treatment on the outer 

regions of samples may cause scattered cell growth. Repetition of XPS analysis, particularly 

with a reduced beam size, could help to answer this question. 

 

In this experiment, and others, it can be noted that the contact angle at the left-4mm, and 

sometimes left-3.5mm positions, were noticeably lower than the corresponding right 
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position. It is believed this was due to either contamination or damage which occurred 

when samples were cut by hand. The phenomenon was not observed on PMMA as these 

were machine cut by Advent Plastics Ltd. In future work it would preferable to obtain 

machine cut PS.  

 

When the contact angle results are compared to the cell growth area it is evident that a 

large decrease in contact angle was not required to elicit cellular attachment. This is most 

evident from samples treated with the L10 parameter (Figure 3.29 and Figure 3.37) which 

had a minimum contact angle of 55° ± 15.9°. This treatment had a large degree of variability 

in the centre, most likely due to break-up of the laminar flow and quenching of the 

energetic species, capable of breaking surface bonds, in the turbulence. Similar cell 

adherence and attachment (Figure 3.34) was observed in the centre of samples treated 

with the L10 parameter compared to samples treated with the other parameters which had 

minimum contact angles of ~25°. The samples treated with L10 parameter also had contact 

angles considerably higher than TCPS which had an average of 35° ± 2.3°. The L10 

parameter had contact angles significantly lower (p<0.01) than the UT-PS on the entire right 

side of the samples/profiles however this was not reflected by either cell counts (statistical 

comparison of cells counted on left or right has not be conducted but no discernible pattern 

was observed in the data) or cell growth areas. On the high flow rate samples the contact 

angles at almost all positions were significantly reduced compared to UT-PS; however cells 

did not attach and grow on the entire surface at day 1. For these high flow rate parameters 

the diameter of cell growth area expanded significantly from day 1 to day 7, covering more 

than the 8mm diameter observed by contact angle, yet not the entire sample. This suggests 

that the protein interactions within the central treated area provided the necessary binding 

sites for cellular adherence in the central region very quickly. Following adherence cells 

may have laid endogenous extracellular matrix (ECM) molecules or remodelled the existing 

protein adsorbed layer at the boundary region of initial cell adherence, which enabled cell 

spreading, attachment and growth further from the centre [224, 225].  

 

When the cytoskeletal structure of the LECs was investigated by phalloidin staining and high 

magnification microscopy, differences in morphology between LECs on TCPS and 

microplasma treated surfaces were observed (Figure 3.38). On day 7 LECs on TCPS 
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displayed actin localisation (phalloidin staining) around the cell boundaries and LECs 

displayed a cobblestone-like morphology. This is indicative of epithelial cells. On 

microplasma treated surfaces some cobblestone-like structures were present however 

there was a large number of actin stress fibres and cells appeared to grow on top of one 

another in certain places: depth profiling by confocal microscopy could have clarified this 

latter point.  The cause of the morphological differences is unknown. Some possible causes 

and the methods to test for them will be discussed in the following paragraphs.  

 

The presence of these stress fibres may be due to phenotypic changes within the LECs. 

Perhaps the fibres suggest that LECs may have been beginning to differentiate towards a 

lens-fibre lineage, however the cells do not display a fibrotic morphology. LEC 

differentiation toward a lens fibre lineage display directional stress fibres, this was 

demonstrated by Chen et al. (2006) at the edge of lens explants, and could be induced in 

LECs deeper within the explant by the addition of basic FGF [254]. The stress fibres in this 

study did not appear to have a uniform direction (Figure 3.38). Differentiation toward lens 

fibres could be investigated by the presence of Aquaporin 0, or the expression of its gene 

MIP26 [217]. The increased expression of β- and γ- crystallins could also be used [216, 249].  

The actin stress fibres could be involved in cell contraction, characteristic of myofibroblast-

like cells, resulting from EMT, which causes contraction of the lens capsule and thus PCO 

[75]. Staining for α-smooth muscle actin (αSMA) or α5β1 integrin could have supported this 

theory and could be conducted in future work [75, 82, 84, 85, 119].  

 

Another possibility is that LECs may react differently as they have adhered at a higher 

density in the central areas on microplasma jet treated samples compared to TCPS (Figure 

3.34). Although cells were seeded onto TCPS wells and treated samples at the same density 

(1x104cells/cm2), the area in which cells attached on treated samples was much smaller, as 

mentioned previously. Perhaps this was due to the size of the initial functional growth area. 

For example, if the functional growth area for samples treated with the L1 parameter was 

determined by calculating the area of a circle (a=πr2) from diameters of cell growth on days 

1 and 7 (Figure 3.36) it would be 0.85-0.91 cm2, whereas there area of an entire sample was 

1cm2. The effect of functional growth area could perhaps be investigated by treating a 

material with a large ID jet; treating the entire sample surface and thus providing a 1cm2 
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functional growth area. This was in effect done during the post-discharge polymerisation 

experiments (Section 2.2.1.7.1), in which the helium gas control samples had a contact 

angle across the entire surface of 20-30° (Figure 3.64). XPS analysis demonstrated that 

surface oxygen concentrations were similar (20.5-23.2%), however these preliminary XPS 

results need repeating. Human B3 LECs were seeded onto the polymerisation helium 

control substrates and demonstrated a cobblestone morphology by day 7, although some 

stress fibres were present (Figure 3.75). As this was a different cell line (B3) it cannot be 

directly related to the results observed for the N/N1003A rabbit LEC line used during the 

investigation of flow rate and distance. When the B3 line was seeded onto PS samples 

treated with the L1 parameter, as a control to the PMMA experiments (Table 2.4), the 

density of LECs by day 7 was so great that nuclei could not be counted from the 

micrographs (Figure 3.55). There was also the presence of actin stress fibres and cells 

appeared to be multi-layered (Figure 3.55). On day 4 B3 cells were confluent yet cells did 

not appear epithelial (Figure 3.53). These cells appeared to have a smaller area and a “less-

epithelial” morphology (particularly on day 7) compared to cells seeded onto treated 

PMMA(T-PMMA)( (Figure 3.55)) or onto PS with a large treatment area (Figure 3.75). The 

latter two surfaces presented less spatial confinement (defined by contact angle results) to 

B3 cells compared to those seeded onto PS samples treated with the L1 parameter. If the 

functional growth area of PS treated with the L1 parameter (from the PMMA experiment) 

were determined from diameter of cell growth at day 7 (Figure 3.51) it would be 4.52mm2, 

whereas the functional growth determined for helium treated PS in the post-discharge 

polymerisation experiment was 54.1mm2 (determined from diameter of cell growth at day 

7)(actual sample area was 100mm2 in both cases). There is a clear difference between the 

morphology of B3 LECs on these substrates at day 7, however as these were treated with 

different parameters it cannot be concluded that differences observed are due to 

functional growth area (Figure 4.5).  Comparisons between these treatments seem to 

suggest that over population or cell crowding may contribute to the morphological 

differences between cells attached to TCPS and microplasma treated substrates; however 

more work is required to determine this.  
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Figure 4.5 High magnification micrographs human B3 lens epithelial cells (LECs) seeded 

onto polystyrene treated with helium jets. LECs were fixed at day 7 and stained for f-actin 

(phalloidin, green) and nuclei (DAPI, blue). Samples were treated with a 30sccm - 1mm 

sample nozzle distance, 100µm internal diameter (ID) jet for 20s (a), or a 500sccm - 5mm 

sample nozzle distance, 2.3 ID jet for 10mins (b). The functional growth areas were 

determined by calculating the area of a circle (a=πr2) and using half the diameter of cell 

growth for r. Scale bar = 500nm. 

 

The higher density of LECs in the centre could also be due to the seeding method: 90µL of 

cell suspension was retained on the surface of the sample by surface tension created at the 

sample edges (Section 2.4.1.4). Using this method a dome-like drop of cell suspension was 

created on the sample surface (Figure 4.6), the dome height was highest in the centre 

therefore there was a larger volume of cell suspension in the centre. This may have resulted 

in a higher population of cells settling and adhering in the centre of samples. This second 

possibility may have accounted for the larger number of LECs observed in the centre of 

untreated samples on the early time points of the ageing experiments (Figure 3.20 and 

Figure 3.22), as cell number should be homogenous across UT-PS. 
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Figure 4.6 Cartoon representing the seeding method used within this PhD. A suspension 

of cells in culture medium was placed onto sample surfaces such that the liquid was 

retained on the surface by surface tensions created at the edge of the samples. Using this 

method the cell suspension covers the entire surface of the sample for cells to settle prior 

to culture wells being filled with medium. This reduces the number of LECs growing 

beneath samples. In this method the volume of cell suspension was greatest in the centre 

of samples which may have caused a higher density of cell attachment in this region. 

 

There is a higher density of cells in the equatorial region of the natural lens, where 

differentiation into lens fibres occurs, compared to the central lens epithelium. It was 

proposed that this cell crowding in the lens equator encourages the differentiation of LECs 

into fibres [33, 249]. It is possible that a similar mechanism occurred on microplasma 

treated PS. Another possibility is that although LECs on treated materials appeared spread, 

perhaps there was insufficient room for them to fully spread prior to contacting 

neighbouring cells, which may hinder the ability of some cells to achieve proper contact 

inhibition and thus correct monolayer formation [168]. The presence of the stress fibres 

may suggest cell motility and thus lack of contact inhibition [255].  

 

The seeding density of 1x104cells/cm2 had been optimised for TCPS [44], yet due to the 

results observed lower seeding densities on microplasma jet treated surfaces were 

investigated, and the morphology of LECs at day 7 were observed. The hypothesis was that 

the greater amount of space afforded the LECs would allow them to spread fully before 

coming into contact with neighbouring cells. This did not result in a more epithelial 

phenotype in LECs seeded onto treated samples. By day 7 both the 5x103cells/cm2 and 

1x104cells/cm2 conditions had confluent monolayers yet the presence of actin stress fibres 

was still observed (Figure 3.44). The LECs seeded at 1x103cells/cm2 were not confluent at 

day 7; however observation until they reached confluence may have presented interesting 

results. Cells seeded on TCPS were only confluent by day 7 when seeded at 1x104cells/cm2 

and appeared cuboidal however the presence of some stress fibres were detected. Some 
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small gaps were also visible in the monolayer on TCPS wells and with slightly longer growth 

these may have closed, reducing the presence of stress fibres due to full contact inhibition 

or lack of motility. It is of note that observation, by phase contrast microscopy, at 2 hours 

post-seeding demonstrated that cells on treated materials (5x103cells/cm2 or 

1x104cells/cm2 only) were often in contact, whereas cells were well spaced and had a wider 

area on TCPS. Observations at day 1 were similar (results not shown). This experiment was 

only conducted once, however, and could benefit from repetition. In future work a single 

treatment parameter (possibly L10) could be used, to reduce sample requirements, and 

cells could be examined at various time points, e.g. day 1 and day 4. Time lapse microscopy 

could also be beneficial [5, 18]. 

  

The preliminary results stated above seem to suggest that morphological differences 

between LECs on TCPS and treated samples were not due to inadequate space provided to 

LECs (although much further investigation is required to draw a conclusion). It was 

discussed in Doherty et al. (2013) that the differences in morphology may be related to 

changes in the surface chemistry and thus contact angle [168]. The contact angle of TCPS 

was 35° ± 2.3° whereas the contact angle in the centre of samples treated with the L1, H1 

and H10 parameters was ~25° (Figure 3.29). This lower contact angle may have created a 

less stable protein adlayer, due to an increase in weaker hydrophilic-hydrophilic 

interactions, compared to TCPS. Highly wettable surfaces are often used to prevent protein 

adsorption, in this case it may result in a protein layer with a greater degree of reversibility. 

The higher contact angle on samples treated with the L10 parameter is in conflict with this 

rationale, as LECs on this were morphologically similar to those on L1, H1 and H10; 

quantification with markers for EMT/fibre differentiation may have shown LECs on PS 

treated with the L10 parameter to be more similar to those on TCPS than the other 

treatment parameters. It is assumed that the reduction in contact angle on TCPS is due to 

an increase in oxygen, however this is unknown. It is possible that nitrogen is present on 

the surface and the chemical difference between TCPS and treated materials may account 

for the difference in morphology. All culture vessels used in this work are Griener Bio-One 

CellStar® which are treated with a proprietary “physical” method to make the surfaces 

“hydrophilic”. Contact angle was performed on discs cut from 12-well plates; this process 

may produce some damage on the surface and may result in contamination, which could 
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pose problems for highly sensitive XPS analysis. Seven TCPS samples from two different 

plates were used for contact angle analysis (average contact angle differed between plates 

by 2.2°), if more time and samples were available contact angle measurements could be 

repeated and XPS analysis could be attempted. If future work were permitted a more 

detailed analysis of XPS, including the difference in oxygen concentration between samples 

treated with L10 and the other parameters, could be investigated. It is possible that the 

effect of overcrowding and the nature of the modification contribute to the difference in 

morphology observed on treated samples compared to TCPS and the above paragraphs 

have outlined possible routes in which these questions could be investigated further. 

 

Whatever the cause of the observed morphological differences it was possible that they 

coincide with the release of cytokines, involved in inflammation or EMT such as: TGF-β2, 

interleukin-1α (IL-1α), IL-6, basic fibroblastic growth factor (FGF) or Tumour Necrosis 

Factor-α (TNFα). Due to the nature of the localised cell growth on microplasma jet treated 

surfaces it is difficult determine the number of cells on each parameter to compare the 

preliminary cytokine results, particularly to TCPS. TGF-β2 is perhaps the most important 

and well-studied cytokine relating to PCO [37, 70, 75, 76, 85]. If cell number is not 

considered, the TGF-β2 data (Figure 3.40) demonstrates that there was less expression in 

wells containing LECs grown on microplasma jet treated samples, or UT-PS than in TCPS 

wells on both time points. At day 1 there was little or no detection of TGF-β2 in medium 

from wells containing LECs grown on plasma treated samples following subtraction of the 

values for basal medium, suggesting that there was no endogenous secretion from cells on 

these samples at this time point (Figure 3.40). On day 7 the values observed for wells 

containing LECs grown on treated samples ranged from 184-544pg/ml and the change in 

concentrations approximately matched the change in diameters of cell growth (Figure 

3.43). These concentrations were still much lower than that observed in medium taken 

from TCPS wells (1372pg/ml). If the concentration is determined for every 10,000 cells 

present in the wells/on materials (number of cells on treated samples determined from the 

mean across all positions) the concentration of TGF-β2 excreted by cells on treated 

materials (≤21pg/104cells) would be half the concentration excrete from cells on TCPS 

(45pg/104cells). Using this method of calculation, however, results in very high 

concentrations of TGF-β2 for UT-PS yet this is inaccurate as it was unlikely that 10,000 cells 
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were present on UT-PS. The values observed are also much lower than the values present in 

the aqueous humour either pre- or post-cataract surgery (1-4ng/ml)[79, 256, 257](Section 

1.4). These preliminary results suggest that autocrine production of TGF-β2 was not 

responsible for the observed change in morphology. These results also suggest that 

microplasma jet treated samples inhibit the secretion of TGF-β2 in comparison to TCPS, 

however much more work is required to prove these results and there are some limitations 

which could be addressed in future work. For example, the ELISA did not differentiate 

between latent and active TGF-β2, so it is possible that the TGF-β2 in TCPS wells was latent 

whereas the TGF-β2 in wells containing treated materials, although in lesser concentration, 

may have been in the active form. TGF-β2 is present in its latent form within the aqueous 

humour and the lens capsule, yet does not cause differentiation until activated [29]. During 

cell culture the growth of LECs on the TCPS plates underneath treated and UT-PS samples 

was occasionally observed. There were few LECs beneath treated samples if any, however 

patches of LECs were observed beneath UT-PS, these were most likely washed from the 

surface when medium was added to the well following the 2 hour attachment period 

(Section 2.4.1.4). In future agar could be used to prevent this [5, 18]. 

 

The presence of IL-1α and IL-6 were below the detection limits of the assay in medium from 

wells containing all materials. Nishi et al. reported in 2 studies that no IL-1α secretion was 

detected in human anterior capsule explants, taken during cataract surgery, after 1 week of 

culture. The authors did report  ~100-200pg of IL-1α was detected for every 106 LECs in 

some cases, but not all, following 2, 3 and 4 weeks of growth[90, 91]. Other work by Nishi 

showed that concentrations of 1 and 10pg/ml of IL-1α did not have a significant effect on 

LEC mitosis [88].  

 

The concentrations of basic FGF detected in medium containing LECs grown on all materials 

on day 1 were very low (≤1.2pg/ml). The minimum levels of basic FGF in the aqueous and 

used experimentally are >100pg/ml [89, 258] however basic FGF is typically used in the ng 

range[86, 88]. By day 7 the concentration of basic FGF detected in culture medium had 

increased to a maximum of 11.4ng/ml (L1 parameter, Figure 3.41). It is unlikely that these 

concentrations of basic FGF would affect LEC growth, differentiation or morphology, 

however further experimentation of a dose dependant response would be required. 
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The concentrations of TNFα in medium surrounding LECs was <2pg/ml for all materials at 

both time points, and were extrapolated beyond the standard range of the assay (Figure 

3.41). These concentrations are in agreement with the concentration observed in the 

aqueous humour extracted during cataract surgery [98] yet Nishi et al. report that no TNFα 

was secreted by LECs cultured from explants [91]. Although the presence of TNFα has been 

reported in lens cells as well as Sommering’s rings and Elsching’s pearls following cataract 

surgery it was not quantified in these reports [93, 100].  As the concentrations of TNFα 

were similar to those observed in aqueous humour during, rather than after, cataract 

surgery, it is unlikely that these low concentrations contributed to the morphological 

changes observed in N/N1003A cells grown on microplasma treated surfaces. As stated 

previously these results are preliminary and require repetition to confirm the validity, also 

the nature of the heterogeneous cell growth on treated materials creates difficulties when 

comparing observed concentrations to TCPS controls.   
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4.2 PMMA 

PMMA was the main material used for intraocular lenses until the development of foldable 

acrylic hydrogels and it is still often used in developing countries [75, 128, 140, 142, 259]. It 

provides an affordable and stable (due to its stiff structure compared to acrylic hydrogels) 

model acrylic based material, and is often used in biomaterials/IOL research [5, 18, 146, 

203, 260, 261]. PMMA was treated with the L1 parameter outlined previously (Section 0) as 

this created the most defined treatment area as demonstrated by contact angle (Figure 

3.45 and Figure 3.46) and cell growth studies (Section 3.4.3.4)[168]. PS was used as a 

control to ensure that the treatment conditions were the same. When the contact angle 

profiles for the L1 parameters were compared from the optimisation experiment and the 

PMMA experiment some significant differences were observed in the “untreated” regions 

between 3mm-4mm from the centre. The reason for this is unclear but may be the result of 

damage introduced when cutting by hand. As the material was scored to create a trough 

then snapped to separate pieces of PS, some strain forces may have created 

heterogeneities on the surface of polystyrene near the edges. On each of the positions 

which displayed statistical differences, the mean contact angles from the optimisation 

experiment were lower. Interestingly the mean contact angle of UT-PS (77° ± 6°)(Section 

3.4.3.1) from the optimisation was lower than the UT-PS from the PMMA experiments 

(81.1° ± 3.6°)(Section 3.5.1), although the former mean was reduced by the low contact 

angle observed on the left-4mm position of the profile (Figure 3.29).  

 

Within the “treated” regions of the PS from each experiment only the right-1.5mm 

positions were significantly different (p=0.002). This position was near the boundary of the 

treatment and thus had large standard deviations in each experiment, however the mean 

difference was 26.6° and the treatment from the PMMA experiment was lower. This 

suggests the diameter of treatment area during the PMMA experiment was slightly larger. 

Possible causes of this observed difference could be miniscule differences in the alignment 

or positioning of the samples/sample holder respective to the nozzle, changes in 

temperature or moisture content in the atmosphere depending on the time of year 

experiments and repeats were conducted. Further repetition under a more controlled 

environment may remove this observed difference. Contact angle analysis with a smaller 

spatial resolution could maybe give an indication if the observed difference was due to 
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error in sample placement or the atmospheric conditions of the microplasma jet. It is also 

possible that this difference observed at the boundary was inherent to the microplasma jet 

system itself; no statistical analysis was performed between repeats within an experiment, 

although the mean contact angle profiles between repeats appeared qualitatively similar 

from graphical comparison.  

 

The contact angle in the centre of the PMMA decreased following treatment. The XPS data 

suggest that the surface oxygen content of T-PMMA and UT-PMMA were similar (52.7 ± 0.5 

and 51.7 ± 0.3%, respectively)(Table 3.3). The oxygen concentration observed on UT-PMMA 

and T-PMMA differed by only 1%. D’Sa et al. reported an increase in oxygen content in the 

range of 5.7-8.4%, following treatment with a dielectric barrier discharge (DBD) plasma 

reactor operating in air[5]. The reduction in contact angle on PMMA observed in this work 

must be due to an increase in oxygen functionalisation as there was no change in root 

mean square roughness (Rq), and only a difference of 0.1nm in average roughness (Ra) 

determined from AFM analysis, also no other elements were observed on broad scan 

spectra. UT-PMMA and T-PMMA also looked topographically similar (Figure 3.48). One 

possible reason for the small observed change in oxygen concentration may have been the 

size of the x-ray beam used to excite electrons from the surface. This beam spot was 7mm x 

1.5mm and information gathered from electrons emitted from this region was averaged to 

obtain the XPS spectra. This gathered information from areas outside the treated region 

(Figure 4.7). From the contact angle results it can be assumed that the diameter of the 

treated area was 2.5mm on T-PMMA, where treatment is assumed to cause a significant 

decrease in contact angle compared to UT-PMMA (Section 3.5.1). If a circle of 

diameter=2.5mm and rectangle of dimension 7mm x 1.5mm were centred, the overlapping 

area (as determined by ImageJ) would be 3.5mm2. This area of intersection is 

approximately 0.333% of the total beam area (10.5mm2). The observed oxygen 

concentration is an average of the treated and untreated regions. Even in the treated 

region the oxygen content would not consistent as the contact angle varied from 60-35° 

(Figure 3.46); therefore XPS could not measure a difference in the oxygen content. This may 

be the cause of the similarities in oxygen content observed between UT-PMMA and T-

PMMA. 
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Figure 4.7 Two-dimensional contact angle maps of treated poly(methyl methacrylate) (T-

PMMA) and treated polystyrene (T-PS) with an overlaid representation of the x-ray beam 

size from x-ray photoelectron spectroscopy (XPS). The colour scale of the T-PMMA 

contact angle map ranges between 30-80° to provide greater detail. The average contact 

angle of untreated PMMA was 58.9°.The colour scale of the T-PS contact angle map 

ranges from 0-90°. The average contact angle of untreated PS was 81.1°. Data from the 

entire x-ray beam area are used to create XPS spectra, the figure demonstrates that only 

a small portion of the x-ray beam area overlaps the treated regions. This results in lower 

observed oxygen concentrations than those which might physically be present in the 

centre of the treated area. 

 

For the reason outlined above the oxygen content observed on T-PS in this instance (Table 

3.4) was ~9% smaller compared to the previous XPS results (Table 3.2) obtained from 

samples treated with a high flow rate. These XPS results require repetition, preferably with 

a smaller x-ray beam size and, if equipment with a smaller beam size were obtainable, 

spatially resolved analysis[262]. Despite the restrictions of analysing small treatment areas 

with the equipment used within this thesis it was demonstrable that functionalisation on PS 

was due to an increase in oxygen and that nitrogen was absent (Figure 3.47). It is likely that 

a similar process occurs on PMMA. In future work PMMA samples could be treated with 

either a large ID jet, or with a high flow rate parameter, to provide a larger treatment area 

for XPS analysis. 
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When surfaces were analysed by AFM there was little or no change in roughness following 

treatment (Figure 3.48). Following plasma treatment the roughness of PMMA typically 

increases [5, 263-266] however these was not observed. The reported roughness values of 

pristine PMMA vary but the values are typically less than 10nm. These values will depend 

upon the source of the material, sensitivity and methodology of the AFM analysis. The 

roughness values of both UT-PS and T-PS were also the same. The roughness of UT-PS and 

T-PS (which was treated with the L1 parameter) were lower than those in the previous 

experiment (Figure 3.31), however the difference was only 0.2nm which was within the 

standard deviations. In the previous experiment the Rq and Ra of UT-PS and PS treated with 

the L1 parameter were the same or similar also: this supports the case the L1 parameter 

does not appear to cause damage to the polymer surfaces.  

 

When B3 human LECs were seeded onto the materials, on day 1, there was a large number 

of cells in the centre of treated materials which decreased with distance from the centre, 

whereas TCPS and untreated materials had few cells and similar number of LECs across all 

positions (Figure 3.49). The increased number of LECs at day 1 on plasma treated PMMA 

and PS compared to untreated is most likely due to an increase in surface oxygen [5, 18]. 

On day 4 there were more LECs in the centre and 1.5mm position of UT-PMMA than the 

3mm and 4mm positions. There were significantly more in the 1.5mm position. It is possible 

that the higher number of cells was due to biased cell settling due to the seeding method as 

discussed previously (Figure 4.6). On day 7 the decrease in the number of cells with 

distance from the centre on UT-PMMA was also observed and was more pronounced 

(results not shown). On both day 1 and 4 T-PMMA had more LECs in the centre and 1.5mm 

positions than UT-PMMA, and a similar number of LECs at the 3mm and 4mm positions, 

which indicates spatially confined treatment on T-PMMA. The diameter of cell growth on T-

PMMA increased with time. This is possibly because UT-PMMA can support LEC growth, 

however plasma jet treatment encourages an increase in cell adhesion and subsequent 

attachment in the centre region, as demonstrated by the cell counts on day 1 (Figure 3.49). 

 

By day 7 the concentration of LECs in the centre of T-PS was so dense that nuclei could not 

be distinguished and counted (Figure 3.55). As stated previously this may be due to the 

functional growth area - the area of the PS surface which was functionalised to allow LEC 
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attachment and growth (Figure 4.5). This area was smaller on T-PS compared to T-PMMA as 

LECs will attach on pristine PMMA [5, 18, 64], which may be a reason this was not observed 

on T-PMMA. The diameters of cell growth, as determined by stitched image montages, on 

T-PS at all time points ranged from 2.4-3mm and was largest at day 4. The cell counts 

indicate that the diameter of cell growth should be larger than 3mm, as the 1.5mm 

positions were not considered untreated by the definitions outlined previously.  This 

discrepancy was possibly due to slight variation in sample size and/or positioning, or small 

error in alignment of the graticule (Figure 2.21). As the boundary of cell growth on T-PS was 

very defined, and these boundaries would have been close to the 1.5mm position (due to 

cell growth diameters of 2.4-3mm) small errors may have resulted in either very high 

numbers of cells, or very low numbers of cells. This is reflected in the cell counts and the 

large standard deviations observed at the 1.5mm position of T-PS (Figure 3.49). 

 

It appeared from the high magnification micrographs that the LEC density on T-PMMA was 

greater than UT-PMMA suggesting that plasma jet had increased growth, although this may 

be due to the increase in initial cell adhesion and subsequent attachment on T-PMMA. LECs 

on TCPS secreted higher or similar concentrations of TGF-β2, IL-6 and basic FGF compared 

to those on UT-PMMA and T-PMMA (Figure 3.57 and Figure 3.58). LECs on both UT-PMMA 

and T-PMMA had actin stress fibres; however they were present in cells on TCPS also. Cells 

on TCPS had a larger area than cells on any other material. From phase contrast microscopy 

(not shown) cells on TCPS appeared closely packed and did not appear to be multi-layered. 

Cells on UT-PMMA, T-PMMA and T-PS were more closely packed and some cells did appear 

to be growing on top of others.  

 

Following 7 days of growth there was a significant difference in the cell growth area, as 

determined by the stitched image montages, of B3 LECs grown on T-PS (2.4mm, Figure 

3.51) compared to N/N1003A LECs grown on T-PS (3.2mm, Figure 3.51): in both cases the 

PS was treated with the L1 parameter. The contact angle results suggest that the treatment 

area may have been slightly larger on the samples upon which B3 LECs were seeded. It is 

possible then, that the observed difference in the cell growth diameter was due to the 

difference in the LEC lines. During the fixation process there was occasionally an error 

where the edge of the cell monolayer would begin to lift. This most frequently occurred on 
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very defined boundaries of cell growth, i.e. samples treated with the L1 parameter. Perhaps 

this occurred more frequently on B3 seeded samples due to the very high density of B3 cells 

at day 7. This dense, well-defined monolayer (Figure 3.52) may have lifted more easily than 

N/N1003A cells biasing the results. To avoid this in future, different methods of fixation 

could be investigated. For example: the submersion of samples into wash buffers and 

fixative, rather than the filling of wells containing samples with reagents. The different 

species of cell lines may have differed slightly in terms of their mechanisms for binding to 

surfaces, or rather the adsorbed protein layer. This could be investigated by antibody 

staining for protein adhesion and conformation on treated surfaces. Integrin expression of 

the LEC lines could also be investigated. The N/N1003A cell line has been shown to express 

α5 integrin (of α2, α3, α5 and β2 investigated), suggesting adhesion to fibronectin [267]. 

The B3 line has been shown to express α2, α3, α5 and β1 (all investigated), suggesting 

adhesion to laminin, fibronectin, and some collagens; however the level of expression is not 

mentioned [268]. Human primary LECs have been shown to express α3 and β1 (of α2, α3, 

α5, α6 and β1 investigated) [16, 111]. However, α5 and β1 integrins (including investigation 

as α5β1 dimer) have been linked to EMT induced by TGF-β2 [36, 83]. A more detailed study 

would be required to elucidate whether the growth areas observed were due to the protein 

adsorption and conformation in specific areas. Further investigation of the integrins 

involved in the adhesion and attachment of both cells lines would also be required. The 

difference in cell growth area observed for each of the cell lines may have been due to 

error in the treatment of the materials at different times. These errors could include 

temperature of the laboratory and moisture content in the air, as mentioned previously.  

 

The B3 LECs secreted IL-6 (tens of pg/ml) whereas no IL-6 was detected in medium 

surrounding N/N1003A LECs. Although IL-6 is implicated in increased proliferation there 

were a greater number of N/N1003A LECs on TCPS at day 7 than B3 LECs (Figure 3.35 and 

Figure 3.72) [92], and a similar number of adhered cells were observed on day 1. 

Conversely, there were more N/N1003A cells in the centre of T-PS on day 1 than B3 cells 

(Figure 3.35 and Figure 3.49), yet there were many more B3 cells by day 7. The secretion of 

TGFβ-2 was higher from N/N1003A  LECs grown on TCPS compared to B3 cells (Figure 3.40 

and Figure 3.57), however the N/N1003A LECs appeared more epithelial, with more distinct 

cobblestone morphologies compared to B3 cells. This indicates that perhaps the levels of 
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TGF-β2 were not a major contributing factor to the observed morphologies on treated 

materials. The concentrations of basic FGF secreted from N/N1003A cells were also slightly 

higher on day 7  than the B3 LECs(Figure 3.41 and Figure 3.58). Basic FGF has been reported 

to mediate the apoptotic effect of TGF-β2 [86].  

 

In summary, plasma jet treatment increased the adhesion and attachment of B3 LECs in the 

centre of PMMA. This is possibly due to an increase in oxygen yet little change in the O1s 

area was observed from the XPS spectra, which may be due to the large beam size 

compared to the small treatment area. The cell growth area and density of B3 cells in the 

centre of T-PS was much higher than for N/N1003A LECs. Much further work is required to 

elucidate the cause of this. Such work could include: measurement of proliferation and 

metabolic activity, spatially resolved investigation of the adsorption and conformation of 

proteins on the treated surfaces, analysis of the cell-surface binding mechanisms of each 

cell line such as expression of integrins, also adhesion and attachment to specific ECM 

proteins. 
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4.3 Plasma Polymerisation 

The aim of the plasma polymerisation was to incorporate atoms or molecules, other than or 

in addition to oxygen, onto sample surfaces using an atmospheric pressure jet to 

polymerise monomers onto surfaces. Amine (-NH2) containing monomers, allylamine (Allyl), 

CH2=CHCH2NH2 and heptylamine (Heptyl), CH3(CH2)6NH2, (Figure 4.8) were used as model 

monomers and were deposited onto PS. XPS detection of nitrogen was used to confirm the 

presence of amine on sample surfaces. Capillaries with large IDs (≥1mm) were used to 

determine the efficacy of an atmospheric pressure plasma jet for polymerisation. Future 

work could examine the spatial confinement of treatment. 

  

 

Figure 4.8 Skeletal formulae of allylamine and heptylamine. 

 

In preliminary tests helium gas was passed through flasks containing monomers, at 

relatively low flow rates, after which the helium containing suspended monomers joined 

with a main helium flow. The main helium flow rate was typically an order of magnitude 

higher than the monomer containing flow rate. The combined gas flows then travelled into 

the quartz capillary and the plasma discharge region, this is referred to as pre-discharge 

mixing. In the following paragraphs the flow rate of the monomer will be denoted as Xsccm 

Heptyl, where X is the flow rate, however this does not mean a Xsccm flow of pure 

heptylamine but rather a Xsccm flow of helium containing suspended heptylamine 

monomers. Oh et al. (2013) calculated the flow of monomers to be ≈10sccm at the highest 

flow rate [189].  

 

In the initial preliminary polymerisation experiment Allyl or Heptyl were polymerised onto 

UT-PS or helium pre-treated PS. The pre-treated PS was treated for 3mins at a high flow 

rate so that the entire surface was treated and had a contact angle of ~20° (Figure 3.59). It 

was hypothesised that pre-treatment, which would lead to an oxygenated surface, may 

increase adhesion due to increased polar interactions. The treatment of UT-PS with Allyl 

and Heptyl containing plasmas created defined treated regions in the centre of samples. 

The width of the treatment (the trough in the contact angle profile) was wider on samples 
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treated with the Allyl containing plasma compared to the Heptyl containing plasma. This 

may be due to the fact that the Allyl monomer has a lower molecular weight (57.09Da) than 

the Heptyl monomer (115.22Da). The helium gas stream may have carried the Allyl 

molecules further from the focus of the jet, than the Heptyl molecules due to their lower 

molecular weight.  

 

Treatment of UT-PS with Allyl also resulted in a much higher increase in the area of N1s and 

O1s peaks observed by XPS, compared to Heptyl treatment (Table 3.5 and Figure 3.60). The 

concentration of oxygen and nitrogen on Heptyl treated UT-PS was very low yet the 

decrease in contact angle (in the centre of samples) due to treatment was similar to Allyl. It 

is unlikely that the dissociation or polymerisation of Heptyl would require greater energy. 

The absence of a large oxygen peak, which should occur due to the interactions with helium 

and air as stated previously (Section 4.1), seem anomalous. When Heptyl was deposited on 

helium pre-treated PS there was also little change in the N1s and O1s. The lower oxygen 

and nitrogen concentrations also cannot be attributed to the x-ray beam size as the contact 

angle results indicate similar treatment areas. As the XPS data is from single samples it is 

possible that there was error and these would require repetition. When Allyl was deposited 

onto pre-treated PS there was a slight increase in the N1s and O1s peaks. As single samples 

were used it is difficult to determine if the small changes in nitrogen observed were due to 

polymerisation and repetition with larger sample numbers would be required for statistical 

analysis. It is also unclear if pre-treatment did increase adhesion of polymerised amines, 

large sample sizes and statistical analysis could elucidate this. For the true study of the 

adhesive interactions of the surfaces and mono/polymers techniques such as AFM, perhaps 

with modified tips could possibly be used. As this work was preliminary high resolution 

spectra were not analysed. The spectra would also be difficult to analyse because the 

differences in binding energy, between carbon-oxygen and carbon-nitrogen can be difficult 

to determine within high resolution of C1s peaks, as the components have similar binding 

energies (e.g. 0.2-0.3eV difference for C-O and C-N [155, 269]).  

 

Large amounts of oxygen were present when allylamine was deposited onto UT-PS in the 

preliminary pre-discharge mixing experiments (Figure 2.14). With the aim of reducing the 

oxygen functionalisation, polymerisation (using pre-discharge mixing) was conducted in a 
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helium atmosphere (Figure 2.15). In this experiment Allyl and Heptyl jets were also 

operated without ignition of the plasma. This was to investigate if unpolymerised monomer 

units were adhering to the surface.  When the jet was operated without plasma ignition it 

caused no change in the contact angle compared to UT-PS, therefore it appeared that 

unpolymerised monomers were not adhering to the surface (Figure 3.61). As no change in 

contact angle was observed these samples were not investigated using XPS. Following 

ignition of the jet a large decrease in contact angle was observed in the centre of the 

treated samples. The decrease in contact angle was most likely due to an increase in oxygen 

and nitrogen concentration observed from XPS analysis (Figure 3.62 and Table 3.6). The 

increase in oxygen and nitrogen was greater when samples were treated with the Heptyl 

plasma, compared to the Allyl plasma, which is the inverse of the observation in the 

experiment conducted in air (Table 3.5). Large oxygen functionalisation (25.8%) was 

observed on Heptyl treated surfaces despite being treated within a helium atmosphere. 

The lower oxygen and nitrogen concentrations on Allyl, compared to Heptyl, may have 

contributed to the higher contact angle.  Although the chamber was not tested for helium 

purity or leaks it is possible that the oxygen observed on surfaces was due to a post-

treatment oxidation when the sample was returned to air. This is possibly due to radicals, 

trapped within the plasma polymer film interacting with air [270].  

 

When B3 LECs were seeded onto materials treated with Allyl and Heptyl, with and without 

plasma ignition, they only adhered and grew on samples treated with Heptyl and plasma 

ignition. The lack of LECs on samples treated without plasma ignition supports the 

assumption that monomer units were not adhering to the surfaces. The reduction of 

contact angle on Allyl treated surfaces indicated that cells would likely adhere however no 

cell growth was observed on these surfaces. It is possible that the reason for this was a 

cytotoxic effect of unpolymerised or aggregated Allyl on the samples surfaces, which may 

have dissolved in the culture medium. During contact angle analysis droplets of liquid were 

observed in the centre of samples treated with Allyl with plasma ignition (Figure 4.9). 

Cytotoxicity could be measured using assays outlined in ISO10993 part 5, including the 

extraction method; this could be quantified by a measure of metabolic activity, for example 

by resazurin or MTT assays. Due to this observed cellular response allylamine was not 
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studied further. The use of the chamber was also not used in further work as large 

concentrations of oxygen were observed on Heptyl treated surfaces. 

 

 

Figure 4.9 Single frame images taken from DSA100m contact angle system showing 

surfaces treated with allylamine and heptylamine with (w/) and without (w/o) plasma 

ignition. Images were taken prior to deposition of water droplets for contact angle 

measurement. Liquid allylamine droplets can be observed on surfaces treated allylamine 

with ignition of the plasma. 

 

Following elimination of Allyl and the chamber apparatus the plasma jet was modified. The 

monomer gas stream was introduced post-discharge. That is, the helium gas was passed 

through the electrode region and was dissociated by the energy supplied, following this the 

helium flow containing monomers was added to the dissociated main stream (Figure 2.16). 

Several authors report an increase in jet stability when introducing larger species (typically 

oxygen) downstream from the discharge region [206, 209, 212, 229]. It was also observed 

Allylamine w/ ignition Allylamine w/o ignition 

Allylamine w/ plasma montage 

Heptylamine w/ ignition Heptylamine w/o ignition 
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that plasma discharge was more difficult to maintain when monomers were introduced 

pre-discharge and difficulty increased with flow rate, but this was not studied. Even when 

the monomer mixture was introduced post-discharge it was difficult to maintain discharge 

when the Heptyl mixture flow rate approached 100sccm (main helium flow was fixed at 

500sccm).  

 

Various Heptyl mixture flow rates were studied by preliminary spatially resolved XPS. The 

lowest flow rate (20sccm) appeared to be the most efficient, with the highest 

concentrations of nitrogen and oxygen at all positions. If the jet becomes less stable at 

higher flow rates perhaps the transfer of energy and degree of polymerisation is decreased 

at higher flow rates. This may be a possible reason why the lowest flow rate was the most 

efficient at adding nitrogen functionalisation. Contradictorily, Oh et al. (2013) reported 

maximal ionic oligomer concentrations in the jet effluent, where the oligomers were 

polymerised monomer units, at medium flow rates (40-60sccm) [189]. In the work by Oh et 

al. only the positive ionic oligomers were studied but perhaps negatively charged ionic 

oligomers, or even neutral species, play a role in surface polymerisation. Oh et al. (2011) 

previously reported that many negatively charged species are present in the effluent of a 

helium plasma jet [187]. Preliminary mass spectroscopy conducted by Oh and time-of-flight 

secondary ion mass spectroscopy, conducted in collaboration with the University of 

Nottingham (both unpublished), demonstrated that negative species were present in 

Heptyl containing plasma jets. Repetition of the XPS data and mass spectroscopy of the 

negative ionic species in the plasma effluent may elucidate the cause of the higher nitrogen 

and oxygen concentrations on the low flow rate surfaces. Analysis of the mass spectra at 

different distances from the nozzle may also provide interesting results. In the work 

published by Oh et al. (2013) the mass spectrometer sampling orifice was positioned 2mm 

from the plasma nozzle [189], whereas samples analysed by XPS in this thesis were 

positioned 5mm from the nozzle. The mass spectrometry orifice also acted as an electrode, 

thus there was a difference in the operation of the jet.  The work by Oh et al. does not 

report the concentration of oligomer units of different sizes for each flow rate. Perhaps the 

lower flow rate, and thus lower concentration of monomer units, results in a greater 

number of smaller oligomer units compared to higher flow rates. Smaller and lighter units 

may travel further from the jet nozzle, or may travel further before collisions reduce their 
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energy making them less likely to bind to surfaces. Much further work is required to 

understand the processes of atmospheric pressure polymerisation using a plasma jet. 

 

Further work was conducted using the 20sccm Heptyl flow rate. A 2.7mm ID nozzle was 

used in this work as it was easier to create the y-shaped configuration jet with larger 

capillaries (Figure 2.16). When surfaces were treated for 10mins with either a helium jet or 

a jet containing Heptyl the entire surface was treated. The contact angle across the surface 

of samples treated with helium was 20-30°, however the contact angle at the edges of 

samples treated with Heptyl was 40-50° (Figure 3.64). The difference in surface treatment 

between helium and Heptyl plasmas was clearly demonstrated by the 2D contact angle 

maps (Figure 3.65). A cross shaped region in which the contact angle was higher (by 10-20°) 

than surrounding positions was observed on the map of the sample treated with Heptyl. 

The cause of this is unknown, yet as the maps were of single samples repetition would be 

required to determine if the observed effect was erroneous or reproducible. The higher 

contact angles at the edges of Heptyl treated surfaces, compared to helium treated 

surfaces, may be because the polymerised Heptyl species decreased the overall velocity of 

the gas flow and may not have spread as far across the surface. Measurements of the gas 

velocity as it exits the nozzle at various monomer flow rates could be investigated in future 

work. Perhaps fluid dynamics computer modelling could also assist. The contact angle in 

the centre of Heptyl treated surfaces was also significantly lower than helium treated 

surfaces (by ~5°). A possible cause for this observed difference is that plasma polymerised 

surfaces are known to have a degree of mobility about their bonds [270]. Perhaps the 

Heptyl surface was thickest in the centre and had a greater degree of mobility, which 

altered to minimise the surface energy when in contact with water. XPS depth profiling and 

determination of surface energy, by examining the contact angle of Heptyl surfaces with 

liquids other than water, could be conducted in future work to investigate this difference. 

The contact angle results suggest that a Heptyl jet may create a smaller treated area 

compared to a helium jet if the 100µm nozzle were used. 

 

LECs preferentially adhered to the centre of both helium and Heptyl treated surfaces, 

despite the entire surface being treated (Figure 3.70 and Figure 3.73): this again suggests 

that the seeding method possibly encouraged cell adhesion in the centre of samples. The 
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boundaries of cell growth area were much more defined on Heptyl treated surfaces (Figure 

3.74), and the cell counts indicated that no position could not be considered untreated on 

helium treated surfaces. The Heptyl treated samples surprisingly displayed confinement of 

cell growth despite considerable concentrations of oxygen, nitrogen and reduced contact 

angles near the edges (Figure 3.67, Figure 3.68 and Figure 3.64).  

 

There was no significant difference in the cell adhesion or growth of LECs in the centre of 

samples treated with helium or Heptyl plasmas until day 7, at which point there were 

significantly fewer LECs on Heptyl treated surfaces. Perhaps the presence of nitrogen 

inhibits LECs from over-proliferation. As there was a larger “functional growth area” on 

helium treated surfaces this was not due to greater room to spread. It is possible that the 

presence of nitrogen results in protein adsorption which inhibits this, or once LECs have 

attached they may deposit ECM which provides cues to halt proliferation. To study if in fact 

the rate of proliferation is different on these materials a BrdU assay could be performed. 

The time lapse microscopy and analysis of ECM protein and/or cell-surface binding outlined 

previously could also yield interesting results for these materials. 

 

LECs grown on surfaces treated with helium within the polymerisation experiment 

appeared to have a greater degree of actin localisation at the cell periphery and less actin 

stress fibres compared LECs to TCPS (Figure 3.75), although this was not quantified. Perhaps 

the chemistry induced on the surface resulted in more favourable protein adsorption 

compared to TCPS. The large treatment area may also have contributed as stated 

previously (Figure 4.5). The B3 LECs on TCPS at day 7 appeared similar to the B3 LECs on 

TCPS at day 7 in the PMMA experiment (Figure 3.55). Both displayed the strong presence of 

actin stress fibres. Concentration of TGF-β2 secreted by B3 LECs at day 7 in the 

polymerisation experiment (Figure 3.77) was 4-fold smaller than the concentration secreted 

by B3 LECs during the PMMA experiments (Figure 3.57). As the TGF-β2 ELISAs were 

preliminary and conducted at different times this indicates the need for repetition, yet this 

may suggest that the actin stress fibres were not a result of the presence of TGF-β2.  The 

concentrations of TGF-β2 secreted from cells grown on helium treated surfaces was similar 

to the concentration observed secreted from cells grown on TCPS, which supports the 

conclusion that TGF-β2 at these concentrations were not the cause of, nor were the 
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concentrations a result of the observed differences in morphology. The concentration of 

TGF-β2 in medium surrounding LECs grown on Heptyl treated surfaces was >2-fold larger 

than other parameters. TGF-β2 has been stated to have an apoptotic effect and perhaps 

this higher concentration was related to the lower cell number observed in the centre of 

Heptyl treated surface compared to Helium treated surfaces, as mentioned previously. 

Much further work would be required to investigate this such as: repetition of the ELISA, 

TUNEL assay to investigate apoptosis, aforementioned BrdU assay, dose response to TGF-

β2 and longer growth periods to check if LECs become quiescent.  

 

The secretion of IL-6 by B3 LECs on TCPS was also different between the PMMA and 

polymerisation studies at both day 1 and day 7. The concentration was highest in the 

PMMA experiment on day 1, whereas on day 7 the observed concentration was highest for 

the polymerisation experiment. The polymerisation experiment was not analysed on day 4. 

These differences in results demonstrate the need for repetition. 

 

In summary, this work demonstrates that the atmospheric pressure plasma jet can be used 

for polymerisation. Due to the nature of the jet the surface was also functionalised with 

oxygen. Further work is required to determine if lower monomer flow rates are more 

efficient, and to determine if LECs interact with nitrogen containing surfaces differently to 

surface with only oxygen incorporation. 

 

 

  



 

 

260 

Chapter 4: Discussion 

4.4 Pin Plasma 

A preliminary investigation was conducted to examine the possible use of a pin plasma, or 

plasma needle, system to spatially modify the surface of polymers. The pin plasma system 

was originally designed for plasma-assisted desorption/ionisation (PADI) applications. The 

pin plasma system in this application was to be used as an ionisation source to desorb 

molecules from a material for analysis by mass spectroscopy; therefore its original purpose 

was surface analysis rather than surface modification. When in operation a coronal 

discharge is formed at the tip of a tungsten wire. The desorption and ionisation of the 

surface occurs due to the bombardment of ions, photons, electrons, molecules or atoms 

from the plasma source. It was hypothesised that the species created in this discharge 

could be used to alter the surface chemistry of polymers. Bowfield et al. demonstrated that 

the pin plasma could desorb and ionise PTFE molecules and units, a process which most 

likely occurs via chain scission [192]. It is possible that ionised species in air around the 

coronal discharge, and other energetic species likely to be present, could be incorporated 

into these surfaces during this process.  One of the benefits of this system is that it is 

operated in ambient conditions with no additional gas flow; therefore the spreading of 

reactive species by the artificial flow of a gaseous plasma medium, as outlined previously in 

this discussion, would not occur [192]. 

 

The main concern presented by treatment with a pin plasma system was damage to the 

surface, as it was initially designed for desorption. AFM analysis of the centre of the 

samples indicated that the roughness following treatment only increased by 0.5nm at the 

most (Figure 3.82). Although no statistical analysis was conducted as this work was 

preliminary, the roughness values between UT-PS and pin plasma treated PS were very 

similar. The surface topographies also appeared similar, although the treated samples may 

have had a greater density of features. It is possible, however, that damage only occurred 

in a very small area directly under the pin plasma, which could be missed by the AFM scan 

areas (500nm2) as the sample was positioned beneath the tip by hand, although 4 areas in 

the approximate centre of each sample were analysed. This would in effect be a 2µm2 area. 

In future single line scans could be taken across the centre of samples on a single axis at the 

maximum distance on the piezoelectric positioning unit (125µm for the equipment used in 

this thesis), similar to contact angle profiles. These data could help to demonstrate if 
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surface roughness altered in a spatially defined manner. The nozzle of the polymerisation 

experiments had an ID of 2.7mm and therefore had a large jet area, which probably 

enabled enough room within which to position the AFM tip accurately by hand. The results 

from this experiment (Figure 3.69) were similar to those observed with the microplasma jet 

(Figure 3.31 and Figure 3.48) and with the pin plasma (Figure 3.82), therefore it is likely that 

previously reported AFM results were indicative of the treatment in the centre of samples. 

 

Various operating parameters of the pin plasma were optimised. These were: treatment 

time, voltage and frequency. The voltage and frequency were limited by the equipment and 

the minimum values required to initiate a plasma, therefore only these maximum and 

minimum values were investigated. From the initial contact angle tests it was demonstrated 

that all of these factors altered the width of the treatment in the contact angle profile 

(Section 3.7.1). Time had the smallest effect, whereas frequency had the greatest effect. As 

the values of these parameters were increased the width of the treatment profile increased 

also. As the frequency and voltage applied to the tungsten wire were increased, this may 

have increased the kinetic energy of the plasma species created around it. These high 

kinetic energies may have allowed excited species to travel further from the source thus 

increasing the treatment area. Perhaps the greater energy supplied to the species near the 

wire enabled the plasma cascade process to propagate across more atoms and molecules, 

and thus a larger area surrounding the tungsten wire. The minimum frequency (15kHz) and 

the minimum voltage (13kV) created the smallest treatment area and therefore the system 

is limited by these factors. The length of the contact angle profile which had a contact angle 

of ~20° was 2mm (Figure 3.81) which is similar to treatment with the microplasma jet 

operated with the L1 parameter (Figure 3.29). Optical emission spectroscopy of the pin 

plasma under various operating parameters could be conducted in future and may prove if 

a larger discharge is created with higher operating frequency and voltage. Spatially resolved 

ambient mass spectroscopy may also demonstrate if ionic species or ionisation processes 

occur further from the source at higher voltages or frequency. Various other parameters 

which could be altered were not investigated, and these could be studied in future work 

with the aim of reducing treatment size further. These include wire diameter, sample-wire 

distance and the angle between the sample and wire; in this work the length of wire was 

normal to the sample surface. 
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Similar to the work conducted with plasma jets the minimum contact angle observed on pin 

plasma treated samples was ~20°. This supports the previous hypothesis that saturation 

was reached. This may also suggest that the mechanisms of treatment are similar between 

the plasma jets and the pin plasma operating in atmospheric air. If this reasoning is correct 

then pin plasma treatment is most likely due to incorporation of oxygen species. Although 

molecular nitrogen is difficult to incorporate onto surfaces from atmospheric processes, 

without the addition on ammonia or amine monomers, coronal discharges tend to have 

higher power densities than glow discharges (such as those in the plasma jets); therefore 

there may be small concentrations of nitrogen. Ambient mass spectroscopy of the pin 

plasma and XPS analysis of the treated surfaces could demonstrate the species created and 

incorporated onto surfaces. 

 

When B3 LECs were seeded onto pin plasma treated PS, and counted at discrete positions, 

the results were similar to microplasma jet treated surfaces. There were a large number of 

cells in the centre which decreased with distance. On samples treated with the 15kHz 

parameters there were little or no LECs at the 3mm and 4mm positions. This was expected 

as this was observed on PS treated with the L1 parameter, and the contact angle profiles of 

samples treated with the 15kHz pin plasma parameters and the L1 parameter were similar.  

The contact angle profiles of the high flow rate microplasma jet treated samples and the 

20kHz pin plasma treated samples were also similar (Figure 3.29 and Figure 3.81). Despite 

this very few LECs were observed at the 4mm position of the 20kHz pin plasma treated 

parameters, however as day 4 counts are not available for the high flow rate treated PS 

samples, and as different cell lines were used, it is difficult to compare these treatments. 

The number of LECs at the 3mm and 4mm position on pin plasma treated surfaces may also 

increase with longer growth times. It was observed that there was less variability in the 

regions where the contact angles were ~30-60°, i.e. the regions at the boundary of the 

central treatment, on samples treated with the pin plasma compared to the microplasma 

jet. This may indicate that treatment area caused by the pin plasma is more reproducible, 

which may be a result of the unpredictability of turbulence involved in plasma jet 

treatment. The number of LECs at the 3mm and 4mm positions of pin plasma treated PS 

reduced with both frequency and voltage, as did the cell growth diameters observed from 
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stitched montage images. These results are similar to those observed by contact angle. In 

future work LECs could be grown on substrates for at least 7 days to investigate whether 

the cell growth area expanded with time, as observed on previous substrates (Figure 3.37 

and Figure 3.52). 

 

One interesting observation from the cell counts is that the number of LEC in the centre of 

PS treated with the 15kHZ-17kV pin plasma, was much less than the number of LECs at the 

1.5mm position. Although statistical analysis was not conducted the difference in cell 

number between positions was considerable. Gaps in cell growth were observed by 

microscopy in the centre of these samples. This can be observed in the stitched images 

(Figure 3.86). Perhaps the cause of this was due to damage of the sample, however AFM 

and contact angle results for samples treated with this parameter were similar to the other 

treatments. XPS and ToF-SIMS could elucidate whether differences in the surface chemistry 

caused this and could be performed in future work.  

 

No examination of cell morphology was conducted in this work however it was observed 

that the LECs within the treated areas had not formed monolayers by day 4 (Figure 3.86), 

whereas confluence was observed on PS treated with the L1 parameter at day 4 (Figure 

3.52). Gaps in cell growth, such as those present on the 15kHz-17kV treated samples, as 

well as clumping of LECs was observed with the treated regions. These patterns of cell 

growth were typically not observed in LECs on PS treated with the plasma jets. Much 

further work, including repetition, is required to determine conclusions from these 

observations. Further work could include 2D contact angle maps, XPS (spatially defined), 

ToF-SIMS, longer cell growth periods, high magnification microscopy, time-lapse 

microscopy and antibody staining for ECM/cell markers as outlined previously in this 

discussion. 

 

In summary, this preliminary work has demonstrated that a pin plasma system is capable of 

modifying PS surfaces in a spatially defined manner, which can be tailored by various 

operational parameters. This treatment also appears to be non-destructive to the polymer 

surface. LEC adhesion and growth area also seems to be tailored by the operationally 
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parameters, however repetition and much further work is required to develop this 

instrumentation for polymer surface modification for biomaterial applications.
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5 Conclusions 

In this body of work the surfaces of various materials were treated with an atmospheric 

pressure plasma jet. The surface modifications were analysed and the attachment and 

growth of lens epithelial cells (LECs) on modified surfaces were investigated. The main aim 

of the project was “…to determine if an atmospheric pressure microplasma jet could be 

used to create a spatially defined treatment on polymeric surfaces to control cell-surface 

interactions…”. This work clearly demonstrated that this was achieved, specifically that 

plasma treatment, including polymerisation, increased cell attachment and growth in a 

spatially defined manner. 

 

The following conclusions were drawn from this work: 

1. Atmospheric Pressure Microplasma  Jet Treatment 

 The atmospheric pressure microplasma jet system was optimised and could 

be used to modify the surface of polystyrene (PS) in a spatially defined 

manner, which could be tailored by changing the flow rate and sample-

nozzle distance. Contact angle analysis and measurement of cell growth 

areas indicate that the minimum size of the treatment was limited to ~1.5-

3mm diameter when the 100µm internal diameter capillary was used. 

 XPS analysis indicated that the surface modification was due to the 

incorporation of oxygen, and this was likely due to reactive species carried 

within the gas flow of the plasma jet. Spatially resolved XPS analysis 

indicated that an increase in oxygen corresponded to a decrease in contact 

angle. Higher spatial resolution XPS could provide a better correlation 

between the XPS and contact angle results. 

 The plasma jet was not destructive to the polymer surface as evidenced by 

AFM analysis which demonstrated no significant change in surface 

roughness following treatment. 

 LEC grown on plasma treated surfaces did not display typical epithelial 

cobblestone morphology.  LECs appeared confined to treated areas 

however they displayed actin stress fibres not present in LECs grown on 

TCPS. 
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2. Microplasma Jet Modification of Poly(Methyl Methacrylate)(PMMA) 

 Similarly to PS, the microplasma jet could be used to create spatially 

defined modification of PMMA in a non-destructive manner. This indicates 

that the surface treatment could be used on acrylic-based IOLs. 

 Surface modification was likely due to incorporation of oxygen but this was 

not demonstrated for PMMA. Due to the presence of oxygen in pristine 

PMMA and the large x-ray spot size, in comparison to the treatment size, it 

was difficult to determine differences in oxygen concentration between 

untreated and treated PMMA. 

 Surface treatment increased the initial attachment of LECs onto PMMA 

surfaces compared to untreated PMMA. This result and the insignificant 

change in surface roughness following treatment indicates that the cellular 

response was due to a change in surface chemistry. There was a greater 

presence of actin stress fibres on both treated and untreated PMMA 

compared to TCPS. 

 Spatially-defined microplasma jet treatment of the periphery of an 

intraocular lens (IOL) optic may increase the rate of adhesion of the IOL to 

the lens capsule, thus preventing LEC migration to the central portion of 

the IOL optic. 

 

3. Atmospheric Pressure Plasma Jet for Plasma Polymerisation 

 An atmospheric pressure plasma jet system, operating in air, can be used to 

polymerisation heptylamine films onto surface, however the method 

incorporates oxygen also. The incorporation of oxygen, either during or 

following treatment, may be a limiting factor in this treatment process. 

 Plasma polymerised films increased the attachment and growth of LECs 

compared to untreated PS, however further work is required to elucidate a 

difference in cellular response on plasma polymerised surfaces (containing 

nitrogen and oxygen functionalisation) and plasma treated surfaces 

(containing oxygen functionalisation). 

 

4. Surface Modification using a Pin Plasma Device 
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 Non-destructive spatially defined surface modification of PS can be 

achieved using a pin plasma device. 

 Treatment size can be tailored by altering the voltage and frequency 

supplied to the pin plasma. 

 The surface treatment increases the LEC adhesion and growth in a spatially 

defined manner. Further examination is required. 
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6 Future Work 

 

In the following section the key areas of future work which would greatly complement this 

thesis will be outlined. 

 

One of the key areas of future work would be repetition and further investigation of XPS. 

Some of the XPS contained within this thesis was based on single samples. It would be 

valuable to repeat these experiments. Spatially resolved XPS analysis of samples treated 

with the various flow rates and sample nozzle distances may provide clues to the cause of 

the difference in cell growth on samples treated with the various parameters. Analysis of 

high resolution spectra of C1, O1s and N1s peaks of the plasma polymerised samples would 

demonstrate the various functional groups present. One of the limiting factors of the XPS 

equipment was the size of the x-ray beam, which was 1.5mm wide and 7mm in height. The 

size of the spot meant that there was overlap between the positions taken and spectra 

were in fact an average of the electrons emitted from a 10.5mm2 area. Ideally an x-ray 

photoelectron spectrophotometer with small beam size could be used to obtain data with a 

higher spatial resolution. 

 

Other spectroscopic techniques could help in the understanding of the process by which 

the plasmas modify the surfaces and thus influence cellular response in a spatially defined 

manner. ToF-SIMS could be used to map chemical changes on a surface. Mass spectroscopy 

and optical emission spectroscopy could further demonstrate which species are present 

within the plasma plume and further down-stream. 

 

Another limitation in the methodology in this thesis is the determination of the cell growth 

area from stitched images. This was a subjective measure and would benefit from an 

algorithm/macro within a software package which could determine this more objectively. 

An increased number of positions taken during cell counts, i.e. greater spatial resolution, 

could also provide a more accurate measure. A form of qualitative analysis such as staining 

for phenotypic markers at each position may also yield interesting results. These methods 

could benefit greatly from computer automation of the microscopy.  
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Time lapse microscope could be conducted in future work. From this time lapse microscopy 

the spreading, migration and growth of cells could be observed. This may elucidate whether 

cells initially adhered to a central region then migrated further out, or whether cells 

adhered outside this central region in a lower density and proliferated more slowly there, 

due to the lower density. This may indicate whether initial protein adsorption only permits 

adhesion and attachment in specific areas, and if so, does it take the LECs longer to grow on 

regions which did not allow initial cell adhesion? If it were observed that cells initially 

adhered in the centre, then after some time migrated towards the edges, this information 

could indicate time points at which ECM remodelling could be investigated. The 

quantification of the density, orientation and position of ECM proteins on the substrates 

prior to cell seeding, could also elucidate the reason for the initial cell attachment in the 

centre [225, 252, 253]. The study of initial protein adsorption may also provide interesting 

results in comparison to TCPS, due to the much higher cell density observed on 

microplasma treated surfaces. Time lapse microscopy could also provide information on 

whether LECs are migrating on top of one another and how LECs settle and spread on the 

surface.  

 

Staining with an antibody for alpha smooth muscle actin (αSMA), along with phalloidin, 

would also be very useful in future work. αSMA is a marker for epithelial-mesenchymal 

transition (EMT) and may  explain the presence of stress fibres in LECs on plasma treated 

surfaces. 

 

It is suggested that the seeding method may have caused a greater number of cells to settle 

in the centre of the PS and PMMA coupons contributing to the high cell counts in the centre 

of samples. The cell suspension was placed on the samples such that surface tension at the 

edge of the samples held the drop on the surface in a dome, or bubble, shape. As the 

bubble effect may have cause more cells to settle in the centre (Figure 4.6), in future work 

it may be beneficial to mount samples within a well with soft agar such that the sample 

surface and agar surfaces are approximately level (Figure 6.1). Then the cell suspension 

could be seeded into the entire well, rather than just on the sample surface as done 

previously. Cells which settle on the agar should not grow. 
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Figure 6.1 Example of seeding with agar. Agar and sample surfaces are approximately 

level. Cell suspension seeded into entire well. 

 

Much further work is required in the investigation of the secretion and effect of cytokines. 

One of the difficulties was comparing concentrations between samples, which had different 

numbers of cells. In future additional samples could be seeded from which cells could be 

trypsinised and counted to help correlate excretion with cell number. It may also be of 

interest to examine the expression of the genes of these cytokines and their receptors by 

quantitative polymerase chain reaction (qPCR). Immunocytochemical staining of the 

receptors may then suggest whether LECs in the centre or periphery of the cell growth area 

on treated samples are influenced by these cytokines. 

 

Finally, work could be undertaken to use the plasma polymerisation process, following 

further optimisation, to create surface functional groups which inhibit the attachment of 

LECs. This is one of the smaller aims stated in section 1.7 and a possible route to overcome 

PCO outlined in the literature. 
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