
An investigation into the 

contribution of flavin containing 

monooxygenases to the development 

and prevention of thiourea-induced 

pulmonary toxicity in the rat 

 

 

 

Thesis submitted in accordance with the requirements of the 

University of Liverpool for the degree of Doctor of Philosophy 

By 

Giovanni Pellegrini 

November, 2013  



DECLARATION 

This thesis is the result of my own work. The material contained within 

this thesis has not been presented, nor is currently being presented, either 

wholly or in part for any degree or other qualification. 

 

 

 

 

 

 

Giovanni Pellegrini 

 

 

 

 

 

 

This research was carried out in the Department of Pharmacology and 

Therapeutics, The University of Liverpool.  



 

iii 

Abstract 

NR678, a small thiourea-based rodenticide candidate, is lethal to rats when 

administered orally at relatively small doses (5 and 10 mg/kg) and causes rapid 

life-threatening respiratory impairment, characterised by severe hydrothorax and 

pulmonary oedema. However, rats are protected from a normally lethal dose of 

NR678, after prior exposure to a low dose (0.5 mg/kg). Similar to other molecules 

containing the thiourea moiety, NR678 is mainly metabolised by flavin containing 

monooxygenases (FMOs), a class of enzymes involved in the detoxification, or 

more rarely, bioactivation of N- or S-containing molecules during phase I 

metabolism. Rat FMO2, the main FMO expressed in the lungs, like the 

correspondent human isoform, exhibits a genetic polymorphism which may 

influence the responses of this organ to NR678 and other drugs metabolised by 

FMOs. The aims of this thesis were to assess the morphological and functional 

aspects of NR678-induced acute lung injury (ALI) and to investigate the role of 

the adaptive pulmonary defence response involved in the prevention of the 

oxidative injury. In addition, the wild rat, which, in contrast to the laboratory rat, 

possesses a functional pulmonary FMO2, was explored as a possible animal 

model to evaluate the metabolic and toxicologic consequences of FMO2 

polymorphism in humans. It was shown that pulmonary endothelial cells are the 

main target of acute NR678 oxidative injury and exhibit ultrastructural alterations, 

which, coupled with a marked depletion of glutathione (GSH) levels, are likely 

responsible for the perturbation of pulmonary vascular permeability. The lungs of 

tolerant animals showed mild and transient changes of the vascular permeability 

and mildly increased cellularity in the lungs, which was characterised by 

increased numbers of alveolar macrophages and immature pneumocytes within 

24 h after dosing, followed by a rise in the number of mature type II pneumocytes 

one week later. The microscopic changes resolved by the end of the second week, 

when rats were found to be again susceptible to a lethal dose of NR678. It was 

speculated that the adaptive response of the lungs to NR678 could be related to 

irreversible inhibition of FMOs, rather than increased clearance of the oedema 

fluid by macrophages and type II pneumocytes, down-regulation of FMOs, 

evaluated by in situ hybridisation and qPCR, or decreased GSH levels. In 

addition, it was found that the presence of an active FMO2 isoform enhances 

pulmonary FMO catalytic activity and leads to increased susceptibility to the toxic 

effects of NR678. In conclusion, the work presented here contributes evidence 

that FMO2 polymorphism may be relevant to humans and provides an animal 

model which can be used to study its implications. NR678 represents an 

interesting and unique approach to investigate the pathogenesis of ALI and, at the 
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same time, understanding the defence mechanisms involved in adaptation may 

bring new insight into potential therapeutic strategies of lung diseases.  
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1.1 Need for novel rodenticides 

Statutory requirements regulating use, sale, supply and storage of pesticides have 

been in place in Europe for decades. In Great Britain, the control on pesticides was 

disciplined under FEPA (British Parliament, Food and Environment Protection Act, 

1985) and implemented, one year later, through COPR (Minister of Agriculture, The 

Control of Pesticide Regulation; amended in 1997). Non-agricultural pesticides, 

including rodenticides, are regulated by the Health and Safety Executive, which 

ensures that every rodenticide can be used with a realistic certainty of no harm to 

human health and without posing unreasonable risks to the environment. 

Anticoagulant compounds, derived from either 4-hydroxycoumarin (e.g., warfarin, 

bromadiolone) or indane-1,3-dione (e.g., diphacinone, chlorophacinone), have been 

employed as rodenticides worldwide for more than fifty years and are still among the 

most commonly used products for pest control (Watt et al., 2005). The mechanism of 

action of these molecules is based on the impairment of blood coagulation caused by 

the inhibition of vitamin K 2,3-epoxide reductase (Ishizuka et al., 2008). 

Anticoagulant rodenticides, including the more recent “superwarfarins” 

(brodifacoum, bromadiolone, flocoumafen and difenacoum), are currently regulated 

within Europe under the Biocidal Products Directive (European Parliament and 

European Council, 1998). Despite being very effective, several concerns have 

recently arisen regarding certain technical and regulatory aspects which could 

compromise the long-term future use of these compounds. Superwarfarins possess 

long half lives and have shown high levels of environmental persistence (Watt et al., 

2005). Because of these undesirable features, coumarin-based rodenticides pose a 

serious risk of poisoning for non-intended target species and may represent potential 

dangerous contaminants of the food chain. Furthermore, similarly to certain classes 

of insecticides, the repeated use of warfarins has caused the onset of drug resistance 

in several wild rodent species worldwide (Ishizuka et al., 2008). The development of 

resistance has often been associated with the presence of single nucleotide 

polymorphisms (SNPs) in the genes of numerous enzymes involved in the 

metabolism of anticoagulants: specific variations in the DNA sequences coding for 

these proteins have been linked to increased expression and activity and, in turn, to 

accelerated detoxification of the rodenticide, including the more potent 
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superwarfarins (Kohn et al., 2003). Several concerns exist that the overuse of 

superwarfarins will exponentially increase genetic adaptation, leading to even 

broader resistance. Hence, research in this field has recently resumed and the 

development of new and potentially more toxic rodenticides with safer and more 

selective profiles has been included in the product pipeline of several agrochemical 

companies. 

When a new product for pest control is being developed, appropriate studies need to 

be carried out by the applicants to support safety, efficacy and, where relevant, 

humaneness of their candidate. While regulations dealing with the later steps of 

rodenticide development are inevitably tailored to the specific field of rodent control, 

the earlier discovery phase mimics the analogous developmental process in place for 

the research on new human and veterinary drug candidates (FEPA and COPR). 

Potential candidate selection is carried out through preliminary acute toxicity studies, 

which are then followed by short term multiple dosing oral (gavage and diet) toxicity 

studies. Palatability studies conclude the first stage of rodenticide development, 

providing a preliminary overview of the manageability, efficacy and mode of action 

of the new products, which are subsequently refined through the identification of 

potential rodent resistance, evaluation of consequences on human health and the 

assessment of poisoning of non target species and environmental impact (Health and 

Safety Executive, 2012).  

In 2008, “BASF Pest Control Solutions-UK” started an extensive screening 

programme to test several compounds (more than 800 molecules) belonging to 

different chemical classes and labelled as hazardous or potentially hazardous to 

human health (personal communication). These molecules were already on the 

market or were obtained through substitution or addition of small chemical groups to 

the original structure. The aim of the project was to identify among these screened 

entities those that were most toxic to rodents and could represent potential 

rodenticide candidates. The toxicity of these compounds was evaluated using the 

median lethal dose (LD50), i.e. the dose required to cause the death of half the 

members of the population tested by a fixed time interval (Eaton and Gilbert, 2008), 

as primary screening method. The efficacy of these molecules was tested on 
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laboratory rats and mice in dietary oral studies. Briefly, the test article was offered ad 

libitum to five animals for 3 days, with a starting dose of 25 mg/kg. Mortality checks 

were carried out daily and clinical signs recorded several times during the working 

hours. When death of more than 50% of the animals occurred, scalar decreasing 

dosages were tested with similar study design, until a LD50 range was determined. 

More than 800 different molecules were screened and reclassified into different 

groups, according to the LD50 values obtained: > 1-< 5 mg/kg, ≥ 5-< 10 mg/kg, ≥ 10-

< 25 mg/kg and ≥ 25 mg/kg. Six molecules showed an LD50 between 1 and 5 mg/kg 

and were selected for further development (Table 1.1). All selected molecules 

contained a thiourea moiety (CH4N2S), together with phenyl groups or indazole rings 

in different positions. 

The clinical signs recorded in the acute studies in rats given the thiourea-derived 

compounds (Table 1.1) were consistent with severe generalised distress and some of 

them (rapid breathing, red pigment around nose) suggested selective impairment of 

the respiratory function. The investigation conducted in this thesis focused on 

NR678, as it had adequate potency and reasonable manufacturing costs. NR678 is a 

phenylthiourea with a methyl group substitution in position 6. Rats that had received 

a dose of 2 mg/kg showed non life-threatening clinical signs including mild 

piloerection, slight rapid breathing and hunched posture, which resolved within 24 h 

after dosing. Rats administered a dose of 5 mg/kg instead had decreased motor 

activity, hunched posture and severe respiratory distress and were euthanased within 

8 h after dosing according to humane end points, as defined by the Code of Practice 

for the Humane Killing of Animals under Schedule 1 (British Parliament, 1986). The 

estimated LD50 for NR678 therefore fell between 2 and 5 mg/kg (personal 

communication).   
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Table 1.1. Novel rodenticide candidates selected for further development during a 

preliminary screening conducted at BASF Pest Control Solutions. The LD50 and the clinical 

signs occurring in Wistar rats after the oral administration of different doses of the six 

molecules are presented (personal communication). 

Molecule ID  Chemical structure LD50 (mg/kg) Clinical signs 

NR237 

 

>1, <2 

At 1 mg/kg: no clinical signs observed. 

At 2 mg/kg: splayed gait, half closed 

eyes, flattened posture, dark eyes, 

decreased motor activity, severe rapid 
breathing, piloerection, no food 

consumption. E 

NR678 

 

>2, <5 

At 2 mg/kg: mild piloerection, slight 
rapid breathing, hunched posture. Back 

to normal between 7-24 h. 

At 5 mg/kg: severe rapid breathing, 
piloerection, decreased motor activity, 

hunched posture, closed eyes, mild 

oligaemia, red pigment around nose. E 

NR713 

 

>2, <5 

At 2 mg/kg: mild rapid breathing. Back 

to normal by 24 h. 

At 5 mg/kg: severe rapid breathing, 
piloerection, anaergia, hunched posture, 

closed eyes, mild oligaemia. E 

NR760 

 

>2, <5 

At 2 mg/kg: mild rapid breathing. Back 

to normal between 5-36 h. 

At 5 mg/kg: severe rapid breathing, 

piloerection, decreased motor activity, 

hunched posture, closed eyes, mild 

phonation. E 

NR770 

 

>2, <5 

At 2 mg/kg: no clinical signs observed. 

At 5 mg/kg: severe rapid breathing, 

piloerection, decreased motor activity, 

hunched posture, closed eyes, mild 

oligaemia. E 

NR783 

 

>2, <5 

At 2 mg/kg: no clinical signs observed. 

At 5 mg/kg: severe rapid breathing, 

piloerection, decreased motor activity, 

hunched posture, closed eyes, mild 

oligaemia. E 

ID: identification. E: euthanasia (culled according to humane end points).  
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1.2 Current use and application of thioureas 

Thiourea and its derivates are manufactured globally on a large scale, as they are 

extensively used in several industrial applications, including metal cleaning and 

refinement, the modification of flame retardant resins and the production of copy 

paper, textile and dyeing auxiliaries and explosives (Ziegler-Skylakakis, 2003). As 

these numerous appliances may represent important sources of potential human and 

environmental exposure, the safety of thiourea has been studied extensively in 

preclinical animal studies. It has been known for a long time that, in several 

laboratory animal species, a single high (between 10 to 500 mg/kg) dose of thiourea 

induces severe toxic changes in the lung, characterised by pulmonary oedema and 

pleural effusion (Dieke et al., 1947). In repeated dose toxicity studies in rodents, the 

major adverse health effect of this molecule consisted of an inhibitory effect on 

thyroid function (Mackenzie and Mackenzie, 1943). Histologically, hyperplasia of 

follicular cells, associated with decreased levels of thyroid hormones, has been a 

consistent finding in oral (gavage or diet) chronic toxicity studies in rodents (Ziegler-

Skylakakis, 2003). Altered levels of T3 and T4, alongside morphological changes in 

the thyroid gland, have been documented also in humans exposed to thiourea at the 

workplace (Ziegler-Skylakakis, 2003). In carcinogenicity studies conducted more 

than 50 years ago, administration of thiourea had been related to the development of 

thyroid follicular neoplasia, at least in rats (Farid, 2004). Genotoxicity of thiourea 

was assessed using a standard test battery for mutagenicity and the vast majority of 

assays were negative, ruling out a genotoxic potential for this molecule (Ziegler-

Skylakakis, 2003). Accordingly, the International Agency for Research on Cancer 

(IARC) concluded in 2001 that there was unsatisfactory evidence for the 

carcinogenicity of thiourea in humans and that the higher incidence of thyroid 

tumours observed in rats was likely related to a non-genotoxic thyroid tumour 

induction mechanism, to which the rat, unlike humans, is particularly sensitive 

(Greaves, 2007a; Ziegler-Skylakakis, 2003). The goitrogenic properties of thiourea 

have been formerly used in the treatment of thyroid gland hyperactivity (Graves’ 

disease), until this drug was replaced by other molecules, such as methimazole (MI) 

and propylthiouracil, which still contain the thiourea moiety, but have less severe 

toxic effects (Franklyn, 2009). Several other drugs currently on the market contain 
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thiourea within their pharmacophore, including histamine H3 receptor antagonists 

[used for the treatment of Alzheimer’s disease and schizophrenia (Vollinga et al., 

1995)] and non-nucleoside inhibitors of HIV-1 reverse transcriptase (Cantrell et al., 

1996). Bone marrow toxicity, characterised by agranulocytosis and reduction in 

circulating erythrocytes, leukocytes and platelets has been reported in several 

patients administered thiourea-containing drugs and is the main reason for the 

withdrawal of some of them (Chang and Morrison, 1979; Forrest et al., 1975; Young 

and Vincent, 1980). Adverse effects of thiourea-containing drugs, in addition to 

hypothyroidism and bone marrow toxicity, included also hypersensitivity reactions 

and hepatotoxicity (Heidari et al., 2013; Onderwater et al., 1998; Woeber, 2002).  

1.3 Thiourea-based molecules as rodenticide candidates 

As briefly mentioned above, single dose toxicity of thiourea in laboratory rodents 

and dogs is characterised by severe pulmonary oedema, which is achieved at 

relatively low doses, in the order of a few milligrams (Ziegler-Skylakakis, 2003). As 

the acute effects of thiourea are specifically targeting the lungs, thiourea-derived 

molecules have been used as an experimental model to induce non-inflammatory 

pulmonary oedema and investigate the physiology and pathogenesis of increased 

vascular permeability in the lung (Vivet et al., 1983). Besides this, the low LD50 

combined with the low costs of manufacturing, made thiourea an excellent candidate 

for the development of chemicals for pest control on a commercial basis. 

Investigation on this subject was mainly conducted during the years surrounding 

World War II, when the risk of rat-borne epidemics was extraordinarily high and led 

to the synthesis of alpha-naphthylthiourea (ANTU), an organosulphur compound 

containing the thiourea moiety and a naphthalene group (Richter, 1945). ANTU was 

first tested in the early 1940s in Baltimore, Maryland US, which was experiencing in 

those years unprecedented rat infestations (Keiner, 2005). Since then, several studies 

aimed to characterise the pathological changes and the mechanism of toxicity of 

ANTU in rats. The fluid accumulating in the lungs and in the thoracic cavity was 

seen to contain high levels of protein and was essentially devoid of inflammatory 

cells (Richter, 1952). Histological and ultrastructural assessment ascribed ANTU-

related pulmonary changes to severe perturbation of vascular permeability and injury 
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to endothelial cells (Cunningham and Hurley, 1972; Meyrick et al., 1972; Rutili et 

al., 1982; Scott et al., 1990; Vivet et al., 1983). ANTU proved to be an effective 

rodenticide and it was claimed to have reduced significantly the urban rodent 

population in the Baltimore trial; however, despite its efficacy, ANTU suffered from 

several major drawbacks, identified in a survey conducted a few months after its first 

employment (Keiner, 2005). One of these limitations was that rats that had survived 

a sublethal dose of the rodenticide were able to withstand subsequent lethal amounts 

(Dieke and Richter, 1946). Similarly, rats up to 3-4 weeks of age were markedly less 

susceptible to ANTU-induced pulmonary oedema than older rats (Dieke and Richter, 

1946).  

1.4 Tolerance to thiourea(s) 

The terms “tolerance” and “resistance” are often used interchangeably to indicate the 

decreased susceptibility of an organism to the effect of toxicants. More accurately, 

the term “resistance” should be reserved for those adaptive changes which involve 

the modification of a genetic trait, poorly or not expressed in a population prior to the 

exposure to the toxicant (Hodgson and Levi, 2001). “Tolerance” instead better 

applies to individual adaptive responses which do not depend on new genetic tracts 

acquired through selection, but are based on an acquired physiological state. The 

rapid development of tolerance on repeated administration at very short space 

intervals of a drug or poison has been defined as tachyphylaxis or acute tolerance 

(Cannon, 2007). Numerous studies have attempted to explain the mechanism 

underlying the decreased responsiveness to ANTU in young rats or animals 

previously exposed to sublethal doses (Barton et al., 2000; Boyd and Neal, 1976; 

Van Den Brenk et al., 1976). Interestingly, ANTU induces cross-tolerance to several 

other molecules which cause lung damage, including noxious gases and bleomycin 

(Barton et al., 2000). In the same way, other molecules chemically related to ANTU 

including non-toxic thioureas and certain sulphydryls are able to elicit the same 

protective response in the rat lung (Van Den Brenk et al., 1976). As the 

administration of certain molecules containing iodine was seen to induce tolerance to 

ANTU, a role for the thyroid gland in the induction of protection was implicated, but 

immediately excluded following investigation using thyroidectomised rats (Van Den 
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Brenk et al., 1976). Preliminary experiments undertaken by a group of researchers at 

the University of California found that the alteration of vascular permeability caused 

by a high dose of thiourea in the rat lung was associated with increased levels of 

histamine (Giri et al., 1991a) and suggested that tolerance resulted in reduced plasma 

concentration of this vaso-active amine (Giri et al., 1991b). More recently, 

proliferation of epithelial cells in the lung was investigated as a possible mechanism 

underlying tolerance to ANTU, following the observation that administration of 

keratinocyte growth factor (KGF) to rats attenuated the pulmonary oedema caused by 

the rodenticide (Mason et al., 1996). However, the literature in this field has failed to 

characterise in detail the morphological aspects of the pulmonary proliferative events 

associated with tolerance and a definitive conclusion on the mechanism underlying 

the innate and acquired tolerance to thiourea has not been reached. On the other 

hand, the acute toxicity itself of thiourea-related compounds has not been completely 

understood. Metabolic activation of thiourea, which mainly occurs through oxidation 

of the sulphur atom present in the structure, has proven to be an essential condition 

for the occurrence of lung toxicity (Boyd and Neal, 1976). Activation of the 

thionocarbonyl moiety is mostly carried out during phase I metabolism by flavin 

containing monooxygenases (FMOs), of which thiourea is known to be an excellent 

substrate (Krueger and Williams, 2005). 

1.5 The role of flavin containing monooxygenases (FMOs) 

in xenobiotic metabolism 

Biotransformation, the chemical modification of a substance carried out by a living 

organism, is a key role in the metabolism of those compounds which are not part of 

the normal biochemical constituents of the body (xenobiotics), such as drugs and 

poisons (Haschek et al., 2009d). Drug metabolism relies on a complex set of 

enzymatic pathways responsible for the detoxification of exogenous compounds and 

is classically divided into two phases. Enzymes responsible for phase I metabolism 

catalyse oxidative, reductive and hydrolytic reactions and aim to introduce reactive 

or polar groups into lipophilic xenobiotics to facilitate their conjugation to polar 

molecules (carried out by by phase II metabolic enzymes) and, in turn, their 

excretion (Kalgutkar et al., 2005). Cytochrome P450 (CYP) is assumed to be the 
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major enzyme superfamily involved in phase I metabolism (Guengerich, 2001). 

Oxidative metabolism of xenobiotics, however, is not confined to the P450 

monooxygenases and may be carried out by other phase I enzymes, including those 

belonging to the multi-gene FMO family (Cashman and Zhang, 2006). 

1.5.1 History of the FMO enzyme family 

FMO was initially discovered in 1964 (Pettit et al., 1964) and was then purified to 

homogeneity in porcine liver by Dr. Daniel Ziegler and colleagues at the University 

of Texas in 1971 (Ziegler and Mitchell, 1972). Biochemical properties and metabolic 

activity toward xenobiotics of the porcine hepatic FMO were characterised in the 

following years and shown to be very similar to the then recently characterised 

cytochrome P450 monooxygenase (Ziegler and Poulsen, 1978). However, FMO was 

demonstrated to be a distinct enzyme with no haem and a single flavin adenine 

dinucleotide [FAD; (Ziegler and Mitchell, 1972; Ziegler and Poulsen, 1978)]. In the 

early 1980s, a different FMO was isolated independently by two different research 

groups from rabbit pulmonary microsomes, providing evidence of the existence of 

multiple enzymatic forms (Tynes et al., 1985; Williams et al., 1984). It has been 

proven subsequently that the newly purified FMO isoform (then renamed FMO2) is 

the major FMO found in the lung of most mammals and has distinct substrate and 

immunological specificity when compared to the original hepatic isoform (FMO1) 

purified by Ziegler (Tynes et al., 1985). Since the isolation of the hepatic and 

pulmonary FMO enzymes, other FMO proteins and genes have been purified and 

cloned from different tissues in several species. Currently, five functional FMO 

isozymes, named FMO1 to 5, are known to be expressed in humans and several 

mammals, including most laboratory species (Krueger and Williams, 2005). 

1.5.2 Differences from and similarities with cytochrome P450 

The main role of FMOs is considered to be xenobiotic detoxification (Ziegler, 1990). 

It has been proposed that, similarly to other flavoproteins, FMOs appeared early in 

the evolutionary process to protect mammals from lipophilic plant-derived 

nucleophiles present in the diet (Cashman and Zhang, 2006). FMOs, as well as CYP 

monooxygenases, are able to oxidise a broad spectrum of substrates containing a 
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nucleophilic heteroatom, such as sulphur and nitrogen and, in some cases, selenium, 

iodine, phosphorus and even carbon (Cashman, 1995). These include a plethora of 

endogenous products as well as thousands of synthetic therapeutic drugs, toxicants 

and carcinogens, which have not necessarily common structural features, apart from 

most being lipophilic soft nucleophiles. CYP and FMO utilise nicotinamide adenine 

dinucleotide phosphate (NADPH) and/or nicotinamide adenine dinucleotide (NADH) 

as reducing agents and catalyse oxidative reactions to incorporate molecular oxygen 

into the substrate (Krueger and Williams, 2005). Both enzymatic families developed 

versatile substrate specificity during evolution at the expense of turnover rates 

(Krueger et al., 2002b). As a consequence, FMOs and CYPs show similar cellular 

and tissue location, both being present at the highest concentration in the liver and in 

all tissues most exposed to xenobiotics and involved in detoxification processes 

(Cashman and Zhang, 2006). CYP-mediated metabolism of heteroatom-containing 

compounds often results in bioactivation and produces metabolites which are more 

likely to have toxic or carcinogenic properties, e.g., an epoxide, oxon, or primary aryl 

N-hydroxylamine (Cashman and Zhang, 2006). On the other hand, FMO oxygenation 

of lipophilic compounds containing heterophilic atoms produces more polar, readily 

excreted metabolites with reduced pharmacological and toxicological properties. 

Notable exceptions to this rule have been documented, as FMO itself is able to 

bioactivate certain molecules. FMO-mediated S-oxygenation of thioureas to a 

sulfenic acid, which can undergo redox cycling and covalent binding to tissue 

proteins, is one such example (Cashman and Zhang, 2006). 

1.5.3 Structure of FMOs 

Similarly to CYP, FMOs are membrane-bound, highly lipophilic enzymes found in 

the endoplasmic reticulum of several cell types (Cashman and Zhang, 2006). In 

humans, they are composed of approximately 500 amino acids and have a molecular 

weight of about 60 KDa (Cashman and Zhang, 2006). Although their 3-dimensional 

structure has not been completely resolved yet, FMO proteins appear almost identical 

when evaluated using crystallographic models (Ziegler, 2002). Amino acid identity 

across different FMO isoform sequences sits around 55% and increases to at least 

80% when analogous proteins from different species (human, rabbit, rat and mouse) 
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are compared (Lattard et al., 2002a). The configurational homology across isoforms 

is supported by the similarities found between FMO mRNA sequences, such as the 

presence of a common translation initiation site and numerous repetitive motifs 

which code for the cofactor (NADPH and FAD) binding sites (Cashman and Zhang, 

2006). 

A typical FMO enzyme structure consists of a protein dimer composed of identical 

subunits [Figure 1.1; (Ziegler, 2002)]. The active site of FMO, where the catalytic 

reactions take place, appears to be a narrow (4.5 Å in diameter) cleft and represents 

the least conserved region between different flavoproteins. Krueger and Williams 

(2005) suggest that small variations in the amino acid side chain sequence 

controlling the access to this channel may account for the differences in antigenicity 

and physical properties found across FMO members, such as thermolability and 

inhibition by detergents. To list a few examples, rabbit FMO2 has enhanced thermal 

stability when compared to porcine FMO1: the former in fact is relatively stable at 

45-50°C, especially when NADPH is present, while porcine FMO1 is readily 

inactivated at these temperatures (Kaderlik et al., 1991; Lawton et al., 1991). Also, 

antibodies directed against FMO1 do not recognise FMO2 and, at the same time, 

anti-mouse hepatic FMO1 antibodies for example do not cross react with FMO1 in 

porcine livers (Krueger and Williams, 2005). This indicates that substrate specificity 

data or physical properties of a particular FMO family member should be 

extrapolated carefully across species (Cashman and Zhang, 2006). 
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Figure 1.1. Ribbon diagram of the structural domains of the FMO protein. FAD coenzyme is 

depicted in green. Obtained from previously published work (Eswaramoorthy et al., 2006). 

1.5.4 FMO catalytic cycle 

Despite the presence of different species- and tissue-specific isoforms, all FMOs 

share a unique sequential catalytic cycle, in line with the broad substrate specificity 

that characterises this class of enzymes (Ziegler, 2002). FMOs activate molecular 

oxygen through the formation of a C4α hydroperoxyflavin intermediate (FADOOH), 

which functions as an oxidising agent for soft nucleophilic molecules gaining access 

to the active site (Cashman and Zhang, 2006; Krueger and Williams, 2005). This 

potentially reactive intermediate is preformed in the presence of oxygen and 

NADPH, but in the absence of a substrate (Cashman and Zhang, 2006). FMOs work 

therefore like a “cocked gun”: when a potential substrate enters the active site of the 

flavo-enzyme in its reduced form, it is rapidly oxidised and released (Krueger and 

Williams, 2005). On the contrary, CYP-catalysed reactions require binding of the 

substrate early in the cycle, followed by the formation of an unstable intermediate 

derived from the interaction between O2 and the ferrous ion contained in the haem 

group (Cashman and Zhang, 2006). The mechanism of oxygenation of FMO relies 

on the transfer of two electrons, whereas CYP employs only one (Ziegler, 2002). 

The major steps of the catalytic cycle of the FMO may be summarised as follows 

(Figure 1.2): 

Step one: The FAD (FADOX) incorporated in the prosthetic group of the enzyme is 

reduced (FADH2) by NADPH through a two electron transfer. 

Step two: FADH2 reacts with molecular oxygen at the 4α position of the tricyclic 

ring of the riboflavin to form a flavin hydroperoxide (FADOOH).  

Step three: The flavin hydroperoxide intermediate uses one atom of oxygen to 

oxidise suitable substrates (i.e., containing a soft nucleophilic group) which gain 

access to the active site (3a), while the other atom of oxygen is incorporated into 

H2O (3b), in order to return the FAD to an oxidised status with the loss of H2O and 

NADP+. The binding of NADPH starts a new cycle. Decomposition of the FAD-
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intermediate, which represents the regeneration of the enzyme catalytic potential, is 

slower than the other steps and, in most cases, rate limiting (Ziegler, 2002). 

 

Figure 1.2. The catalytic cycle of FMOs. Redrawn from Ziegler, 2002. 

Unlike the case with other monooxygenases, the FADOOH intermediate is relatively 

stable, suggesting that the protein catalytic cleft protects the metabolite from 

decaying and circumvents the formation of reactive oxygen species [ROS; (Ziegler, 

2002)]. The mechanism by which the FMO active site is isolated from the attack of 

biological reducing agents, such as cysteine and glutathione (GSH), has not been 

fully elucidated: Cashman (2008) proposes that the configuration of the active site 

pocket wall and its access channel, low in nucleophilic amino acids which could 

interact with the electrophilic intermediates formed in the catalytic site or with 

FADOOH, may represent a likely explanation. 

 

1.5.5 Endogenous and exogenous substrates of FMOs 

Several nitrogen- and sulphur-containing endogenous substrates and xenobiotics are 

metabolised by FMOs (see Table 1.2), mainly via N- or S-oxygenation (Krueger and 

Williams, 2005). In order to access the catalytic cleft of the flavo-enzyme, potential 

substrates must be soft nucleophilic molecules, with specific charge, size and shape 

limitations, depending on the FMO isoform (Cashman and Zhang, 2006). Uncharged 

molecules and compounds with a single positive charge are usually excellent 

substrates, whereas chemical entities containing a negatively-charged or more than 

one positively-charged group are poorly metabolised or completely excluded from 



 

15 

the FMO active site (Ziegler, 2002). These limitations related to the charge of the 

substrate are important to avoid unnecessary turnover of numerous endogenous 

molecules containing a nucleophilic atom (Cashman, 2008). In addition, shape and 

overall dimensions appear to be major determinants of substrate accessibility to the 

catalytic pocket, as detailed below (Ziegler, 2002).  

FMOs have broad and overlapping substrate specificity, however, several substrate 

range peculiarities are found within the FMO family and the examples that follow 

may not apply to all isoforms. FMO1 (except human FMO1) and, to a lesser extent, 

FMO3 have a wider substrate acceptance range than the other members (Cashman, 

2000; Kim and Ziegler, 2000; Krueger and Williams, 2005). FMO2 has the most 

restricted substrate specificity due to the peculiar steric properties, as demonstrated 

in experiments using different size tertiary amines and thioureas, which are not 

metabolised by FMO2 when carrying a side chain shorter than 5 carbons or when 

bigger than 1,3-diphenylthiourea, respectively (Guo et al., 1992). It has been 

proposed that the increased substrate selectivity of rabbit FMO2 and its inability to 

carry out the oxygenation of typical FMO substrates such as imipramine and 

chlorpromazine may depend on the conformation of the active site of the protein, 

which is characterised by a narrower access channel, compared to FMO1 (Nagata et 

al., 1990). Similar restrictions apply to human FMO2 (Henderson et al., 2004a). 

FMO5 also has a weak catabolic activity against MI, trimethylamine (TMA) or 

ranitidine, which are all typical FMO substrates, whereas it is reported to S-

oxygenate long-chain phenothiazene analogs, n-octalamine and thioethers, which are 

not normally metabolised by other FMOs (Krueger and Williams, 2005; Motika et 

al., 2012). Similarly, FMO4 also has a limited substrate range together with low 

levels of expression (Itagaki et al., 1996).  

1.5.5.1 Nitrogen-containing drugs as FMO substrates 

Several nitrogen-containing drugs are excellent substrates of FMOs [(Cashman, 

1995); see Table 1.2]. Pheniramine and olopatadine (antihistamines), zimelidine 

(selective serotonin reuptake inhibitor, used as an antidepressant), ranitidine 

(histamine H2-receptor antagonist used as a gastric antacid), itopride 

(gastroprokinetic agent) and the antiseptic benzydamine are only a few examples of 
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commonly prescribed drugs for which FMO oxygenation represents a primary 

metabolic pattern (Krueger and Williams, 2005). Most of these drugs are tertiary 

amines which are normally metabolised to the correspondent amine oxide by FMO1 

and/or FMO3 (Krueger and Williams, 2005). This intermediate typically exhibits less 

pharmacological and/or toxicological properties than the parent amine or CYP-

mediated metabolites obtained through N-dealkylation (Cashman and Zhang, 2006). 

Several tertiary amines exert their action on the nervous system, such as the 

antipsychotic compounds imipramine, clozapine, fluoxetine and chlorpromazine or 

the local anaesthetics bupivacaine and lidocaine; the activity and tissue-specific 

distribution of FMOs in the nervous system may, therefore, influence the levels of 

detoxification of these drugs (Bhamre et al., 1995; Cashman and Zhang, 2006). Also 

in the brain, FMO appears to inactivate through N-oxygenation the neurotoxin 

1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), a component of certain 

pesticides which causes permanent symptoms of Parkinson’s disease by destroying 

dopaminergic neurons in the substantia nigra (Cashman and Ziegler, 1986). When 

MPTP is metabolised instead by monoamine oxidases of glial cells into the toxic 

cation MPP+, it is neurotoxic (Cashman and Ziegler, 1986). In several cases, the N-

oxide produced by FMOs is reconverted to the parent form by CYP or other 

monooxygenases through a mechanism known as retro reduction (Cashman et al., 

2008). Although not completely understood, it has been proposed that this 

mechanism would allow FMOs to temporarily “inactivate” tertiary amines and 

prolong their action (Krueger and Williams, 2005). Retro reduction has been well 

characterised by studying the pharmacokinetics of tamoxifen (Krueger and Williams, 

2005), a selective oestrogen receptor modulator (SERM) extensively used as 

adjuvant therapy in breast cancer treatment (Teunissen et al., 2010). This drug is 

mainly hydroxylated by CYP into a reactive metabolite (4-hydroxytamoxifen) which 

binds competitively to oestrogen receptors and accounts for the cytostatic activity of 

the drug on tumours cells (Hemminki et al., 1996). Another important metabolic 

pathway, although secondary to the previous one, is the conversion of tamoxifen into 

the correspondent inert amine oxide, which is predominantly carried out by FMO1 

and, to a lesser extent, by FMO3 (Krueger et al., 2006). The therapeutic efficacy of 

tamoxifen may therefore be influenced by the levels of expression of FMO1 and 

FMO3 in the host tissues and in neoplastic cells and the balance between 
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bioactivation and detoxification also may vary according to the abundance and 

genetic polymorphism of CYP and FMO in the target organs (Parte and Kupfer, 

2005). Accordingly, it has been argued that the adult human liver, which contains 

high amounts of CYP and virtually no FMO1, may be at increased risk of developing 

toxic changes compared to the kidney, where levels of FMO1 approach those of 

CYP34A (Shimada et al., 1994), the most abundant CYP isoform present in the 

human liver (Guengerich, 2003). Secondary amines, including methamphetamine 

and propanolol, are turned into the correspondent primary amines by both CYP and 

FMOs (Krueger and Williams, 2005). Unlike the N-oxygenation of tertiary amines, 

FMO-mediated metabolism of secondary amines does not always result in 

detoxification, but may lead to noxious metabolites, such as the neurotoxic N-

hydroxy-3,3’-Iminodipropionitrile (Nace et al., 1997) and N-deacetyl ketoconazole 

(Rodriguez and Miranda, 2000). Secondary N-alkylarylamines are oxygenated by 

FMOs to metabolites which are considered primarily responsible for the carcinogenic 

potential of aromatic amines (Vineis and Pirastu, 1997; Ziegler, 1991). Primary 

amines such as amphetamine and N-octylamine are normally metabolised by FMOs 

to the correspondent oxymes, which are pharmacologically less active (Krueger and 

Williams, 2005).  

1.5.5.2 Sulphur-containing drugs as FMO substrates 

FMOs readily catalyse the oxygenation of several sulphur-containing drugs, 

including phenothiazine-derived histamine H2-receptor antagonists (cimetidine and 

ranitidine, the latter is both N- and S-oxygenated by FMOs), thioridazine, 

theophylline, clindamycin, fenbendazole and MI (Krueger and Williams, 2005). 

More examples are presented in Table 1.2. It has already been mentioned that FMOs 

normally function as a detoxification system able to transform lipophilic molecules 

into less toxic hydrophilic compounds. While exceptions to this rule occur very 

infrequently for N-containing FMO substrates (see paragraph 1.5.5.1), more 

examples are available of S-oxides produced by FMOs which are more reactive than 

the parent compounds and potentially harmful. FMO-mediated S-oxygenation of 

small chemical groups such as sulphides and disulphides, thioethers, thiols and 

thioureas results in the formation of a sulphoxide, often through an intermediate 

sulphenic acid (Krueger and Williams, 2005). Sulphenic acids, which can be further 
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oxidised to sulphinic and sulphonic acids, are extremely reactive electrophiles and 

are thought to react promptly with the parent drug or with nucleophiles present in the 

medium, such as GSH or other sulphydryls to produce disulphides (Mansuy and 

Dansette, 2011). In line with this, sulphenic acids formed during the in vitro and in 

vivo metabolism of thiourea and thioamides, such as thioacetamide or its derivatives 

(e.g.; the thyrotoxic drugs MI, carbimazol and propylthiouracyl) have been 

considered to be primarily responsible for the development of the pulmonary and 

hepatic toxicities associated with the administration of these classes of compounds 

(Heidari et al., 2013; Henderson et al., 2004b; Krueger and Williams, 2005; Ziegler, 

1978). The formation of sulphenic acids has been documented in the metabolism of 

several other drugs such as the antithrombotic drug Prasugrel and the glitazones 

(Mansuy and Dansette, 2011); however, as the isolation of these highly reactive 

intermediates is often unsuccessful due to their lack of stability, not much is known 

regarding the fate and the toxicologic consequences of sulphenic acids in preclinical 

species and in humans. Another S-containing drug extensively oxidised by FMOs is 

ethionamide, a pro-drug antibiotic used as a second choice in the treatment of 

tuberculosis (Henderson et al., 2008). Ethionamide needs to be converted to the 

correspondent S-oxide by a mycobacterial FMO in order to exert its therapeutic 

action (Qian and Ortiz De Montellano, 2006). At the same time, FMO-dependent 

S-oxygenation of the drug also occurs in the liver (FMO3) and the lung (FMO2) of 

patients and has been claimed to be the cause of the hepatotoxicity occurring in the 

25% of individuals that have to discontinue the treatment (Henderson et al., 2008).  
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1.5.5.3 Endogenous substrates of FMOs 

Similarly to drugs, selected endogenous molecules may also be suitable for FMO 

turnover. It needs to be said, however, that the definition of “endogenous” has been 

used somewhat arbitrarily to include chemical entities synthesized exclusively in the 

body or also xenobiotic and dietary components which undergo conjugation with 

cysteine, mediated by glutathione S-transferase during phase II metabolism, after 

which they may be accepted by FMOs (Krueger and Williams, 2005). Biogenic 

amines such as tyramine (Niwa et al., 2011) and phenethylamine are examples of 

endogenous amines N-oxygenated by FMOs (mostly FMO3) to trans-oximes, which 

have little pharmacological activity (Lin and Cashman, 1997). Another example of a 

typical endogenous substrate of FMOs is represented by the extremely odorous 

molecule, TMA, which is present in the diet or formed in the gut from the breakdown 

of choline, carnitine and other dietary components and it is N-oxygenated by FMO3 

to the correspondent odourless N-oxide (Lambert et al., 2001). Impairment of FMO-

mediated N-oxygenation of TMA is the cause of the genetic disease known as 

trimethylaminuria (TMAU; Fish-Odour Syndrome), characterized by an excess of 

TMA in the urine, sweat, and breath of patients (Shephard et al., 2012). Endogenous 

molecules containing sulphur, such as lipoic acid and cysteamine, are also suitable 

targets of FMO-oxygenation (Krueger and Williams, 2005). Similarly to S-

containing drugs, cysteamine is S-oxygenated to its correspondent disulfide 

cystamine, which is in turn excreted from the cell. It has been suggested that the 

action of FMOs prevents cysteamine from accumulating intracellularly and forming 

hydrogen peroxide (Jeitner and Lawrence, 2001), providing a mean of detoxification 

and, more speculatively, contributing to the regulation of cellular levels of reducing 

equivalents (O'connor et al., 2013; Ziegler et al., 1979).  

1.5.6 Tissue- and species-specific differences in the expression of 

FMOs 

The expression of the FMO genes across different animal species shows considerable 

variability. This conflicts with the relatively low number of genes and allelic variants 

which characterise this family of proteins. Several studies suggest that the expression 

of FMOs is also influenced by physiological factors, such as species, sex, age and 
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tissue, cofactor availability and diet (Cashman and Zhang, 2006). A large and 

growing body of literature has investigated the distribution of FMO isoforms in 

different animal species (mainly humans, mice, rats, and rabbits), assessing it 

through different methods, such as RNase protection assays [man (Dolphin et al., 

1996) and mouse (Janmohamed et al., 2004)], Western blot analysis (Koukouritaki et 

al., 2002), quantitative polymerase chain reaction [man (Zhang and Cashman, 2006) 

and mouse (Siddens et al., 2008)] and in vitro microsomal activity tests (Overby et 

al., 1997). The outcome of these investigations revealed the existence of a marked 

tissue- and species-specific expression pattern, which may influence the metabolic 

and toxicologic responses of the organism to the numerous FMO substrates present 

in the diet and in the environment or that are used as therapeutic drugs in human or 

veterinary medicine (Krueger and Williams, 2005). Interspecific differences in FMO 

expression in particular need to be taken into consideration when extrapolating data 

obtained from laboratory animals to man. We have mentioned already that FMO 

expression has been reported to be highest in the tissues which are most involved in 

the metabolism of xenobiotics, such as the liver and the kidney, but also the lung and 

the small intestine (Cashman et al., 2008). Only limited data are available concerning 

localisation of FMOs within the brain, where FMO activity toward the numerous 

biogenic amines present in this tissue is deemed to have an important role in 

neurotransmission and other essential biological functions (Cashman and Zhang, 

2002). FMO proteins have been detected in specific areas of the rat and human brain 

and are reported to oxygenate typical substrates, including the psychoactive drugs 

chlorpromazine and imipramine (Bhamre et al., 1995; Bhamre et al., 1993; Kawaji et 

al., 1995; Kawaji et al., 1994). In a study comparing the expression of FMOs in 

different areas of the central nervous system of C57BL/6J and SOD1 (G93A) 

transgenic mice, all FMO genes were detected except FMO3 (Gagliardi et al., 2011). 

However, overall FMO mRNA levels observed in the human CNS are extremely low 

compared to those found in other major organs (approximately 1%), posing the 

question of what is the actual contribution of FMOs to xenobiotic metabolism in this 

tissue (Krueger and Williams, 2005). 

Table 1.2. Selected examples of drugs which are metabolised by FMOs to a significant 

extent. 
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Therapeutic 

category 
Drug substrate 

Predominant 

FMO isoforms 

involved 

FMO 

product 
Reference 

(Meta)amphetamines 
Dimethylamphetamine, 

Amphetamine 

FMO1 

(FMO3: ×10 

less) 

N-oxide (Lee et al., 2009) 

Tobacco alkaloids/ 

smoking cessation 
Nicotine FMO3 N-oxide (Benowitz et al., 2009) 

Antifungal agents 
Voriconazole FMO1, FMO3 N-oxide (Yanni et al., 2008) 

Ketoconazole FMO1-3 N-oxide 
(Rodriguez and 

Buckholz, 2003) 

Tricyclic 

antipsychotic agents 

Imipramine, Orphena-

drine, Chlorpromazine, 

Desipramine, Acepro-

mazine, Amitriptylene 

FMO1 N-oxide 
(Hernandez et al., 

2009; Kim and 

Ziegler, 2000) 

Beta blockers Propranolol FMO1 N-oxide (Wu et al., 2004) 

Local anaesthetics Bupivacaine, lidocaine FMO3 N-oxide (Wu et al., 2004) 

Histamine H2-

receptor antagonists 

Cimetidine 

Ranitidine 
FMO1 

S- and N-

oxides 

(Cashman et al., 

1993b; Kim and 

Ziegler, 2000) 

Antihistaminics 

Promethazine, Olopa-

tidine, 

Brompheniramine 

FMO1, FMO3 N-oxide 

(Cashman et al., 

1993a; Clement et al., 
1993; Kajita et al., 

2002) 

Non steroidal 

antinflammatory 

drugs 

Sulindac sulphate FMO1-3 S-oxide (Xie et al., 2012) 

Benzydamine FMO1, FMO3 N-oxide (Stormer et al., 2000) 

Insecticides 

Aldicarb, Methiocarb, 

Demeton, Fenthion, 

Disulfoton, Fonofos, 

Phorate 

FMO1 

(less FMO3) 
S-oxide 

(Furnes and Schlenk, 
2005; Henderson et 

al., 2004a; Leoni et al., 

2008; Schlenk et al., 
1992) 

Antioestrogen 

compounds 
Tamoxifen 

FMO1 (much 

less FMO3) 
N-oxide (Krueger et al., 2006) 

Antihelmintics 
Albendazole 

Fenbendazole 
Not specified S-oxide (Virkel et al., 2004) 

Antibiotics Ethionamide FMO2, FMO3 S-oxide 
(Henderson et al., 

2008) 

Antithyroid drugs 
Methimazole 

Carbimazole 
FMO1-3 S-oxide (Cashman, 1995) 

Gastroprokinetic 

drugs 
Itopride FMO1, FMO3 N-oxide 

(Mushiroda et al., 

2000) 

 

1.5.6.1 FMO expression in humans 

A detailed review of the patterns of tissue distribution and expression of FMOs in 

humans, which have been fully characterised through qualitative and quantitative 

assessment, is beyond the scope of this chapter and only the information necessary to 

understand the importance of animal models in the evaluation of FMO metabolism is 

provided. A schematic overview of the current knowledge on this subject is 

presented in Appendix I, where the expression of FMOs in humans and mice are 

compared. FMO3 is the most abundant isoform found in the human adult liver, in 

contrast to the majority of the species where FMO1 predominates, and it is 
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recognised as the most important contributor to hepatic FMO-dependent drug and 

chemical metabolism (Cashman and Zhang, 2006). Hepatic FMO1 and FMO3 

exhibit a developmental pattern of expression: FMO1 is present in the foetus but then 

suppressed 72 hours after birth (Dolphin et al., 1991), whilst FMO3 mRNA is 

detected only after birth and is found at the highest levels at the end of puberty 

(Koukouritaki et al., 2002). A similar developmental shift is reported for CYP3A, 

although the decrease of CYP3A7 occurs in parallel with the increase of CYP3A4 so 

that the overall hepatic level of CYP3A remains relatively constant at any age 

(Krueger and Williams, 2005). An issue which has not been fully addressed yet is 

whether the developmental changes in FMO and CYP expression may influence drug 

pharmacokinetics and therapeutic outcome in children compared to adults (De Wildt, 

2011). FMO activity in fact is deemed to be very low in the liver of neonates, due to 

the “switch off” of FMO1 expression and the slow rise in FMO3, suggesting that 

extrahepatic FMO-mediated metabolism of drugs and endogenous substrates may be 

more relevant in children than in adults (Shephard and Phillips, 2010). Due to the 

high concentration of FMO1 and the broad substrate specificity of this isoform, the 

kidney is likely to represent a relevant site of FMO-dependent extrahepatic 

xenobiotic metabolism (Cashman and Zhang, 2006).  

To date, only FMOs 1-3 have been seen to contribute substantially to the metabolism 

of xenobiotics (Cashman and Zhang, 2006). FMO4 is very unstable and, despite 

several attempts, its purification has proven to be fastidious and mostly unsuccessful 

(Lattard et al., 2003). Not much is known, therefore, regarding the involvement of 

FMO4 in xenobiotic oxygenation. Equally, the contribution of FMO5 to drug 

metabolism has not been fully elucidated yet, mainly due to a paucity of selective 

substrates and the peculiar features of this enzyme, which is classified as an FMO 

based on its primary structure but shows different catalytic cycle and physical 

properties [e.g. pH dependence; (Jeitner and Lawrence, 2001)]. Nevertheless, the role 

of FMO5 as an active catalyst of metabolic reactions is currently not deemed 

important, because of the narrow substrate specificity (see paragraph 1.5.5) and the 

low activity rate (Krueger and Williams, 2005; Ziegler, 2002). 

1.5.6.2 FMO expression in mice 
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A key difference in the expression pattern of FMOs between man and mouse is the 

sex-dependent expression of FMO3 in the liver of the latter. As previously described, 

FMO3 is expressed in the liver of humans only after birth, in a gender-independent 

fashion and becomes the predominant FMO isoform in this organ at puberty (see 

paragraph 0). Interestingly, the liver of the adult male mouse (and dog) lacks FMO3, 

the expression of which is suppressed at 6 weeks of age, whilst in other murine 

tissues, levels of FMO3 are comparable between sexes (Cherrington et al., 1998; 

Falls et al., 1997; Lickteig et al., 2009; Ripp et al., 1999). FMO1 mRNA in mice is 

present in the liver of both sexes, although at higher levels in females; FMO5 levels 

on the other hand are comparable between sexes (Falls et al., 1997). FMO mRNA 

localisation and abundance have been fully characterised in mice (129/SV and 

C57BL/6J strains) using in situ hybridisation (ISH) and RNAse protection assays 

(Janmohamed et al., 2004). According to this study, the distribution of FMO mRNA 

in the liver follows a lobular pattern: FMO1 and FMO5 mRNA are more abundant in 

the periacinar (centrilobular) hepatocytes and decrease gradually toward the 

periportal regions. Vice versa, FMO2, FMO3 (female only) and FMO4 mRNA are 

more copiously present in periportal hepatocytes. According to Janmohamed et al. 

(2004), all five FMO isoforms are expressed in the mouse kidney, where they are 

seen to localise primarily in the cortical distal tubules, and to a lesser extent, in the 

proximal tubules and collecting ducts. In the glomeruli, only FMO1 mRNA is 

detected. This concurs with the fact that the tubular epithelium is the main site of 

xenobiotic metabolism in the kidneys and expresses several other enzymes involved 

in drug bioactivation and detoxification (Lock and Reed, 1998). As stated by 

Janmohamed, pulmonary FMO mRNA is found in the bronchiolar epithelial cells 

and in the alveoli: however, the exact cellular localisation of FMOs within the 

alveolar unit has not been characterised in this paper. All FMO isoforms appear to be 

present in the murine lung, except FMO4 and all are strongly expressed, apart from 

FMO2, whose signal is weak. In the brain, cerebral neurons and choroid plexuses are 

positive for FMO1 and/or FMO5. Janmohamed et al. (2004) compared also mRNA 

abundance of the different FMOs in the liver and described that FMO5 mRNA is 

predominant in both sexes, followed by FMO1 in males (5× lower than FMO5) and 

FMO3 in females (2.5× lower). Levels of FMO2 and FMO4 mRNA in this organ are 

comparatively much lower than those of the other FMOs. FMO1 was found to be the 
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most abundant transcript in the lung and kidney, followed by FMO5. Tissue 

distribution of FMO mRNA in the male and female mouse is depicted in 

Appendix I. 

1.5.6.3 FMO expression in rats 

Less information is available concerning the distribution and localisation of FMOs in 

rat organs and tissues and data concerning the quantitative assessment of mRNA are 

not available. Evidence of the expression of FMO1 and FMO3 in the rat liver has 

been shown by different authors (Cherrington et al., 1998; Kimura et al., 1983; 

Moroni et al., 1995). More recently, FMO1 mRNA bands with similar intensity were 

detected in liver, kidney and lung using Northern blot analysis (Lattard et al., 2002c). 

The same manuscript reported the expression of FMO3 mRNA in the liver, the 

kidneys (stronger signal than the liver) and the lung (negligible expression). In the 

brain, the signal for FMO mRNA was either very faint (FMO1) or not present at all 

(FMO3). These results were confirmed using Western blot (Lattard et al., 2002c) . 

FMO4 mRNA has been found by Northern blot or reverse transcription polymerase 

chain reaction (PCR) in the rat kidney and the small intestine, and, to a lesser extent 

in the brain and the liver (Lattard et al., 2003). In the rat lung, FMO1 and FMO2 

have been detected using Western blot analysis and are likely to represent the only 

FMO members expressed in this organ at significant levels (Hugonnard et al., 2004). 

Immunoreactivity of FMO1, FMO3 and FMO4 was studied in the liver and kidney of 

male animals using immunohistology with custom-made antibodies (Novick et al., 

2009). Similarly to the FMO mRNA distribution pattern in the liver of mice, the 

results suggest that FMO1 and FMO4 are expressed at the highest levels in the 

centrilobular and periportal areas, respectively. Data on FMO4 expression provided 

by Novick and co-authors contrast with the low to negligible detection of the 

correspondent mRNA in the rat liver (Lattard et al., 2003). Rat hepatic FMO3 has 

been detected with higher intensity in the centrilobular hepatocytes (Novick et al., 

2009), whereas in the mouse, the correspondent mRNA was predominantly detected 

in the periportal areas (Janmohamed et al., 2004). According to Novick, FMO1, 

FMO3 and FMO4 are all expressed with similar intensity in the renal distal tubules. 

The brush border of the proximal tubules was strongly positive for FMO1, slightly 

less for FMO4 and very weakly for FMO3. Glomeruli stained intensely for FMO3 
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and FMO4 and showed no reactivity for FMO1. No assumption has been made 

concerning the localisation of FMOs in the rat lung. 

1.5.7 Evaluation of FMO activity in drug development 

In vitro human metabolism studies are routinely conducted at an early phase of 

preclinical development to identify the metabolic stability of new drug candidates 

and investigate their most likely metabolic pathways (Cashman, 2008). These studies 

employ microsomal incubations which are generally carried out with CYP enzyme 

systems and CYP inhibitors. Screening for FMO oxidative activity against new 

molecules is also part of the standard test battery, although is not conducted as 

extensively (Harper and Brassil, 2008). The thermal instability shared by most FMO 

isoforms, together with the lack of specific inhibitors of FMO activity, has 

represented a limitation that prevented FMO screening from being conducted on a 

large scale. Loss of FMO activity during tissue collection or microsome preparation 

occurs proportionally to the length of time that the tissue remains at an elevated 

temperature or NADPH-deficient conditions during these procedures (Cashman, 

2008). The inhibition of FMO activity is achieved using competitive substrates such 

as MI or heat inactivation. Differently from CYP, antibodies directed against FMOs 

are unable to inhibit the catalytic activity of the enzyme and cannot be used in 

reaction phenotyping studies (Cashman, 2008). Inadequacy of analytical methods 

used to identify the products of FMO-oxygenation, which at times can be extremely 

unstable, and the occurrence of retro reduction, as described in paragraph 1.5.5.1, 

may also have limited the study on FMO contribution to drug metabolism (Shephard 

and Phillips, 2010). Nowadays, standard assays for FMO oxidative activity are 

usually limited to the investigation of FMO3 (Cashman, 2008), which, together with 

FMO5, is the most abundant FMO isoform expressed in adult human liver [(Krueger 

and Williams, 2005); see paragraph 0]. Recombinant human FMOs, expressed in 

baculovirus-infected insect cell membranes or cloned by other means, have recently 

been made available, although most of the metabolic profiling studies conducted in 

drug development are still carried out using microsomal suspensions (Cashman and 

Zhang, 2006; Catucci et al., 2012).  
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1.6 FMO genetic variability 

FMO enzymes are encoded by the FMO gene family, which is relatively small and 

probably derived from reduplication of a single ancestral gene, before the evolution 

of mammals, as demonstrated by the presence of FMO sequences in the genome of 

several prokaryotic and non-mammalian eukaryotic species (Hernandez et al., 2004). 

Despite their broad substrate specificity, FMOs are genetically less diverse (five 

functional members only), when compared to other classes of drug metabolising 

enzymes (Lawton et al., 1994). Genes encoding CYP enzymes for instance are more 

numerous (beyond 100 functional genes and pseudogenes) and their expression is 

characterised by extensive inter-individual variability and polymorphism, which have 

been associated with different responses to drugs and therapeutic outcomes (Singh et 

al., 2011). CYP monooxygenase genetic variability is further complicated by the fact 

that their expression is selectively modulated in response to several environmental 

influences, including the administration of numerous xenobiotics (Parkinson and 

Ogilvie, 2008). FMO genes are clustered together on the long arm of chromosome 1 

in all species and consist of five functional members (designated FMO1 through 5), 

and, in humans, a sixth pseudogene, which lacks protein-coding ability (Cashman 

and Zhang, 2006). A second cluster has been discovered also on chromosome 1 and 

is composed, at least in humans, only of pseudogenes [FMO6P-11P; (Krueger and 

Williams, 2005)].  

Recent developments in the identification of the factors affecting FMO gene 

expression have heightened the need for a more thorough understanding of the 

molecular mechanisms involved in the control of FMO transcription. The promoter 

regions regulating this process are not known, with the exception of a few 

preliminary data collected on human FMO3 (Klick and Hines, 2007) and the 

developmental expression of human FMO1 (Shephard et al., 2007). Future research 

needs to focus on the identification of the factors implicated in the promotion or 

inhibition of FMO transcription, which is an essential step for the further 

understanding of the tissue-specific differences in the distribution of these proteins 

and the modulation of their expression induced by certain drugs or diseases. 
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1.6.1 FMO genetic variants and polymorphism 

The number of known genetic variants of the five FMOs in Homo sapiens 

chromosome 1 ranges from 30 (FMO4) to 57 (FMO3) and translates into 1 to 19 

modifications of the FMO coding region (Cashman, 2002). Despite these 

considerable numbers, the in vitro and in vivo consequences of FMO inter-individual 

variability have not been fully elucidated. Discrepancies in the frequencies of single 

or multiple FMO alleles in the human FMO genome and their repercussion on 

enzyme functionality have been best characterised for FMO3, due to the direct 

causative association between small base changes in this gene and TMAU, a human 

autosomal recessive inherited disease [(Cashman and Zhang, 2006), see paragraph 

1.5.5.3]. FMO3 is selectively involved in the metabolism of TMA, toward which it 

has the highest activity among FMOs (Li et al., 2011). Several variants in the allelic 

frequencies of FMO3 have been documented in different ethnic groups and some of 

them have been associated with decreased enzyme activity toward reference 

substrates, such as TMA and benzydamine, and reduced formation of the 

correspondent N-oxide (Cashman, 2004). Defective metabolism in individuals 

carrying FMO3 mutations may cause variable amounts of TMA to accumulate in 

body fluids and breath, which results in affected individuals displaying an unpleasant 

odour. The primary and best-known genetic form of TMAU which is detected in the 

vast majority of cases, is characterised by a restricted number of FMO3 sequence 

mutations (i.e., P153L, M66I and E305X) that lead to significant enzymatic 

dysfunction, build up of unmetabolised urinary TMA and subsequent severe clinical 

disease (Zhou and Shephard, 2006). On the other hand, transient TMAU has been 

described in young children and it is likely due to the low levels of FMO3 found 

during infancy (Krueger and Williams, 2005). The ratio between TMA and TMA N-

oxide in the urine is used as a phenotyping tool in patients challenged with a standard 

dose of choline and a clinical parameter to evaluate the severity of the disease 

(Krueger and Williams, 2005). Inherited genetic defects of TMA metabolism have 

been documented also in certain breeds of chicken (Ward et al., 2009) and dairy 

cows (Lunden et al., 2002). Decreased function of mutated FMO3 has also been 

related to enhanced anticancer activity of sulindac, a cyclooxygenase 2 inhibitor 

(Cashman and Zhang, 2006). This drug, after being activated by bacteria in the gut 
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into sulindac sulfide, is converted into an S-oxide and, in turn, to a sulphone by 

FMO3, and then excreted as such (Xie et al., 2012). Defective FMO3 detoxification 

has been related to an increase in the circulating levels of sulindac sulfide and 

therefore to an overall increase in its antineoplastic efficacy. FMO3 genotype and 

allelic variances were also associated with decreased responses due to increased 

clearance of the drug olanzapine in schizophrenic patients, where specific symptoms 

of the disease occurred with higher incidence in individuals carrying certain alleles 

(Cashman et al., 2008). 

Similarly to FMO3, several FMO1 SNPs have been identified in the corresponding 

human gene (Cashman and Zhang, 2006). Most of these variants encode for identical 

proteins or generate occasional amino acid substitution with similar amino acids 

which are unlikely to modify the functionality of the enzyme or have toxicological 

consequences. This is also supported by the fact that human FMO1 is characterised 

by limited substrate selectivity compared to FMO1 in other species (Cashman, 2000) 

and it is expressed mainly in the kidneys and other tissues that possess significantly 

less metabolic capacity than the human liver (Cashman and Zhang, 2006). However, 

FMO1 has been proven to represent an important extrahepatic metabolism pathway 

in humans for certain xenobiotics, such as carbamate and organophosphate thioether 

pesticides (Furnes and Schlenk, 2005) and further investigation is warranted to rule 

out a possible contribution of FMO1 polymorphism to altered responses to drugs in 

humans, above all in the foetus. In a genetic association study evaluating three 

enzyme families involved in the metabolism of nicotine, FMO1 genetic 

polymorphism has been identified as a risk factor that may contribute to the 

development of nicotine dependence (Hinrichs et al., 2011). 

In addition to SNPs and other rarer types of mutations in the genome, alternative 

splicing has also been seen to contribute to the generation of FMO variants in several 

foetal and adult tissues (Cashman and Zhang, 2006). The full length FMO form is 

generally the most abundant transcript present, except for FMO4 which is fully 

expressed in human liver and kidney, whilst it is present in the brain as a shorter 

spliced inactive isoform (Lattard et al., 2003). Due to the paucity of substrates, the 

proteolytic instability of the expressed protein and the generally low enzymatic 
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activity, the prediction of changes deriving from the presence of FMO4 variants, 

which have been documented though, is challenging and is more likely to be better 

understood once more information is available regarding the role of this enzyme. 

1.6.2 FMO2 genetic polymorphism 

Shortly after being sequenced, human FMO2 was seen to be highly polymorphic 

(Dolphin et al., 1998). All Caucasians and Asians genotyped to date have a nonsense 

mutation in both FMO2 alleles, characterised by a C (cytosine)  T (thymidine) 

transition at position 472 of the genomic sequence, leading to the conversion of a 

glutamine-codon into a premature stop codon (Furnes et al., 2003; Krueger and 

Williams, 2005). The product of this mutated allele, named FMO2*2, is a truncated 

472 amino acid protein that is not active, since it is unable to incorporate FAD 

(Whetstine et al., 2000). The truncated misfolded protein is catabolised rapidly after 

synthesis and does not appear to be expressed in the human lung, based on Western 

blotting, although the correspondent mRNA is present (Hugonnard et al., 2004). 

Interestingly, approximately 13% to 27% (Cashman and Zhang, 2006; Hugonnard et 

al., 2004; Krueger and Williams, 2005) of individuals of African-American ethnicity 

and up to 7% (Cashman and Zhang, 2006) of Hispanic descent possess at least one 

normal allele (FMO2*1) coding for the full length, enzymatically active protein. 

Although the data on allelic frequencies reported in the different studies vary 

substantially, the percentages above should correspond to more than 200 million 

people worldwide possessing a full length, catalytically active FMO2 in the lungs 

and kidneys (Veeramah et al., 2008), both tissues where FMO2 is expressed at the 

highest levels (see paragraph 0). Other FMO2 variants have been detected and are 

considered of minor importance, as most consist of SNPs of FMO2*2, which 

codifies for an inactive protein anyway (Krueger et al., 2009).  

Interestingly, FMO2 is also truncated in the laboratory rat, whereas it is intact in the 

wild rat (Lattard et al., 2002b). In Sprague Dawley and Wistar rats, as in the major 

part of the human population, FMO2 encodes a truncated protein of only 432 amino 

acid residues. Different from humans who carry a single mutation, these rats exhibit 

a double-deletion, leading to a premature stop codon and a catalytically inactive 

protein (Hugonnard et al., 2004). In contrast, the FMO2 isozyme present in the lungs 
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of Rattus rattus, the wild black rat, is a 535 amino acid peptide and is catalytically 

active. Rattus norvegicus, the wild species from which all laboratory rat strains are 

derived, displays a FMO2 genetic polymorphism similar to humans and has been 

proposed as a suitable model to study the implications of FMO2 allelic variability in 

the metabolism of drugs catalysed by this isoform (Hugonnard et al., 2004). 

Hugonnard and co-authors investigated the allelic frequencies of FMO2*1 and 

FMO2*2 in a colony of R. norvegicus bred in captivity and found that their levels of 

expression were comparable (48% versus 52%, respectively). FMO2*1 appeared 

indeed to occur with a much higher incidence in R. norvegicus than in humans. 

However, these results might depend on the influence of consanguinity in the 

specific population of rats examined and no data are available on the frequency of 

the two alleles in wild rats. FMO2 is differently expressed in the lung of R. 

norvegicus, according to the correspondent genotype: a 535 amino acid-FMO2 is 

found at high levels in the lung of homozygotes for the wild-type FMO2, while low 

levels or no protein at all are detected in the lungs of heterozygotes and homozygotes 

for the mutant FMO2, respectively (Hugonnard et al., 2004). In contrast, the inactive 

432 amino acid-FMO2 is not present in the lung of R. norvegicus, even in the rats 

carrying only the mutant isoform. According to Hugonnard and co-authors, this is 

likely due to altered translation or protein instability rather than transcription 

impairment, because the level of mRNA in the lung is similar in mutant and wild 

type rats and not influenced by the FMO2 genotype. Normally, translationally 

inactive transcripts that contain premature stop codons are eliminated via nonsense 

mRNA decay (NMD), carried out by exoribonucleases (Alberts et al., 2008). The 

mechanism by which the mRNA encoding the inactive FMO2 isoform eludes mRNA 

degradation is not known. However, mRNA transcripts carrying nonsense mutations 

which are insensitive to NMD have occasionally been reported (Neu-Yilik et al., 

2011), and FMO2 may represent another example of this poorly characterised 

anomaly of cellular surveillance pathways. 

Only limited knowledge has been gleaned to date regarding the metabolic 

consequences of FMO2 polymorphism. FMO-mediated oxidative metabolism in the 

lung of R. norvegicus has been found to be dependent on the FMO2 genotype 

(Hugonnard et al., 2004). No assumption has so far been made concerning the 
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toxicological significance of FMO2 polymorphism in humans. Individuals with the 

FMO2*1 allele may in fact metabolise xenobiotics differently than individuals with 

no functional FMO2 in the lung. Human FMO2, for instance, is very active in 

catalysing the bioactivation of thioureas with low molecular weight and one would 

predict that individuals expressing the FMO2*1 allele would be at enhanced risk of 

toxicity following exposure (Henderson et al., 2004b). On the other hand, the 

presence of the FMO2*1 allele may protect from the toxic effect of thioether-

containing organophosphate pesticides, such as phorate and disulfuton, metabolised 

by FMO2 to the correspondent sulphoxide. Organophosphates are instead 

bioactivated by CYP to the oxon, a metabolite that is orders of magnitude more 

potent in cholinesterase inhibition, and the presence of an active FMO2 may result in 

increased detoxification (Henderson et al., 2004a). 

1.6.3 Modulation of FMO expression 

Unlike the cytochromes P450 and many of the phase II conjugating enzymes, 

modulation of FMO expression has not been fully characterised. Early research on 

this subject reported that transcription of FMOs was predominantly regulated by 

genetic factors and not markedly influenced by endogenous, dietary or environmental 

factors (Cashman, 1995). However, there is growing evidence that several variables 

may influence FMO expression and be partly responsible for the different species- 

and tissue-dependent distribution patterns described in paragraph 1.5.6. It has already 

been mentioned that insight into the translational and post-translational regulation of 

the FMO genes has started to be gained only in the last few years: however, evidence 

exists since a long time that age, sex and sex steroids, hormones, nutritional status 

and circadian rhythms may influence the expression of different FMO members in 

different tissues (Coecke et al., 1998b; Dixit and Roche, 1984; Falls et al., 1997). 

Testosterone levels influence the expression of FMOs in both mice and rats, but in 

opposite ways. The hormone down-regulates the expression of FMO3, and to a lesser 

degree FMO1, FMO2 and FMO5 in the mouse liver; castration, on the other hand, 

leads to up-regulation of these isoforms (Falls et al., 1997; Novick et al., 2010). In 

contrast, rat FMO3 activity is enhanced by testosterone, as demonstrated by the 

increase in FMO3 activity levels detected during puberty, and reduced after 
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castration (Lattard et al., 2002a; Lemoine et al., 1991). As a consequence, overall 

FMO enzymatic activity in rat hepatic microsomal incubations is higher in males 

than in females (Coecke et al., 1998b). Tissue- and species-specific testosterone-

dependent repression of FMO3 in the liver of the mouse has to be taken into 

consideration when this species is selected to investigate the metabolism of drugs 

that may represent suitable substrates for this isozyme (Ripp et al., 1999). The female 

mouse may represent a more reliable animal model to investigate FMO-dependent 

xenobiotic metabolism in the human liver, which is rich in FMO3 (Cashman, 2008). 

Oestrogen and progesterone appear less able to influence FMO activity in rodents 

(Falls et al., 1997), but have been implicated in the modulation of FMO expression in 

rabbits (Lee et al., 1993) and pigs (Cashman and Zhang, 2006). However, 17 β-

oestradiol as well as thyroid hormones have been seen to down-regulate the 

expression of FMOs in co-cultured hepatocytes from male rats (Coecke et al., 1998a; 

Coecke et al., 1998b). Dixit and Roche (1984) reported higher FMO activity in the 

liver of fed mice compared to animals starved for 24 hours and in the hepatic 

microsomes prepared from mice euthanased in the afternoon compared to those 

euthanased in the morning.  

Drugs have also been seen to alter the level of FMO expression in different tissues. 

Oral administration of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), a compound 

acting through the aryl hydrocarbon receptor (AHR), causes long-lasting induction of 

FMO2 and FMO3 in the liver of C56BL/6J mice (Novick et al., 2010). Additional 

studies have demonstrated that several other chemical entities binding to AHR, such 

as methylcholanthrene (Chung et al., 1997; Tijet et al., 2006), consistently upregulate 

FMO. Nitric oxide, overproduced during inflammatory conditions, was seen to 

suppress FMO1 transcription in the liver of rats treated with lipopolysaccharide (Park 

et al., 1999). Administration of the bactericidal antibiotic rifampicin up-regulates the 

expression of several metabolic enzymes, including FMO4 (Rae et al., 2001). Very 

recently, paracetamol has been seen to modulate FMO3 levels in the mouse liver 

(O'connor et al., 2013). 

Recently, researchers have shown an increased interest in investigating the 

association between altered FMO expression and several pathological conditions. In 
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most cases, the link between FMO down-regulation or over-expression and the 

disease has not been elucidated; yet, it appears fundamental to know that 

pharmacokinetics of drugs cleared by FMOs may vary considerably in certain 

disorders leading to different therapeutic outcomes (Krueger and Williams, 2005). 

To list only a few examples, up-regulation of FMOs in the central nervous system 

has been detected in a mouse model of amyotrophic lateral sclerosis (Gagliardi et al., 

2011). Patients with atrial fibrillation were found to express significantly increased 

levels of FMO1 (Kim et al., 2003). Abnormal expression of FMOs has been 

described in sideroblastic anaemia (Barber et al., 2000) and has been hypothesised in 

a number of neoplastic conditions (Krueger et al., 2006). Variations of hepatic FMO 

expression have been described in rodent models of type I and type II diabetes and in 

humans with type II diabetes (Rouer et al., 1987; Wang et al., 2000). Genetic 

variations of FMOs have been found to influence the progress of cardiovascular 

disease in a mouse model of atherosclerosis and hyperlipidaemia (Wang et al., 2011). 

FMO expression appeared consistently down-regulated in the liver of mice during 

lipopolysaccharide (LPS) induced systemic inflammation or experimental infection 

with Citrobacter rodentium (Zhang et al., 2009). FMO1 expression and activity were 

increased in the kidney of rats subjected to hyperosmotic conditions (Rodriguez-

Fuentes et al., 2009). Investigations into the relationship between FMO deficiency or 

over-expression and certain diseases represent a fairly new topic in FMO research 

which may bring new insights into the therapy and prevention of these conditions. 

1.7 Current research on FMOs 

Shortly after the first description and isolation of FMOs in the 70s, a considerable 

amount of literature was published on the structure of these enzymes and their role in 

phase I metabolism. During the following two decades much more information 

became available concerning the catalytic mechanism and structure-function 

relations within the FMO family. General consensus was achieved that FMO 

contribution to drug metabolism appeared relatively limited compared to CYP. This 

conclusion was supported by the fact that these proteins were regulated by a small 

number of genes and their expression was scantly influenced by drugs and 

endogenous factors (Krueger and Williams, 2005). The advent of new molecular 
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biology technologies and global gene expression approaches has led to a renewed 

interest in this subject and to reconsideration of the role attributed to this class of 

enzymes; indeed more drugs, previously thought to be metabolised exclusively by 

CYP, have been recognised as suitable substrates for FMOs (Cashman and Zhang, 

2006) and several studies have documented a relationship between altered FMO 

expression levels and the administration of xenobiotics or the occurrence of certain 

pathological conditions, as detailed already in the previous paragraph.  

Toxicological consequences of FMO genetic variability have been poorly addressed, 

mainly because of the lack of appropriate small animal models with FMO functional 

activity comparable to humans. We have already mentioned that FMO hepatic 

metabolism in the adult female mouse resembles that in humans, where FMO3 and 

FMO5 predominate. For other isoenzymes, such as FMO1 and FMO2, the 

identification of suitable animal models has proved to be more complicated. 

Engineered mouse lines that lack the genes encoding for FMO1, FMO2 and FMO4 

have been recently developed and used to compare the effect of the antidepressant 

imipramine, a specific substrate of FMO1, in knockout (KO) and wild-type (WT) 

animals (Shephard and Phillips, 2010). The lack of FMO1 in KO mice was reported 

to influence the metabolism of imipramine and lead to behavioural changes: the 

administration of the drug in fact caused sedation in WT mice as expected, but 

resulted in severe tremors and spasms in KO mice (Shephard and Phillips, 2010). 

The authors reported that plasma and tissue concentrations of the parent drugs were 

increased in KO mice compared to the controls as expected, along with a dramatic 

reduction in the levels of imipramine N-oxide, the product of FMO1-mediated 

oxygenation. Interestingly, the amount of desipramine, which results from the CYP-

mediated metabolism of imipramine, was increased in the brain of KO mice. The 

shift from a detoxification pathway represented by FMOs to bioactivation carried out 

by CYP was considered responsible for the behavioural changes seen in KO mice. 

Shephard and Philips (2010) concluded that “studies using a knockout mouse line 

have identified a more important role for FMO1-mediated metabolism of imipramine 

than has been predicted from other studies”. 
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The toxicological consequences of FMO2 polymorphism in humans are currently 

unknown. The mouse does not represent an ideal animal model as the levels of 

FMO2 in this species appear quite low, including in the lung, where FMO2 is instead 

predominant in other species. The rat in contrast, whose FMO2 is characterised by a 

genetic polymorphism identical to that occurring in humans, would be an excellent 

model to reproduce the effects of the different FMO2 genotypes on drug metabolism. 

Unfortunately, the aggressive behaviour of the wild rat, which is homozygous for the 

functional FMO2 allele, limits its use as a laboratory animal and has prevented 

researchers from investigating this subject in more detail.  

1.8 Aims of this work 

The work conducted in this thesis aims to investigate the contribution of FMOs to the 

development and adaptation to the acute pulmonary toxicity of NR678, a 

phenylthiourea-based rodenticide candidate, in rats. The dissertation seeks to address 

some of the questions which have so far not been fully answered in the literature 

concerning the toxicity of thiourea-related molecules and the contribution of FMOs 

to drug metabolism and adverse drug reactions.  

Initially, the research within this thesis focused on the assessment of the target organ 

toxicity of NR678 and provided a means of investigating the consequences of drug-

induced oxidative stress in the lungs. Investigation on the acute toxicity of NR678 

allowed to a) identify the morphological changes associated with the increased 

vascular permeability caused by this molecule in the rat lung and b) determine the 

cellular targets most exposed to thiourea-related oxidative injury. An attempt was 

also made to isolate NR678 metabolites using liquid chromatography. 

Subsequently, we investigated the development and the morphological 

characterisation of the adaptive response of the rat lungs to sublethal doses of 

NR678. The elucidation of the mechanism underlying tolerance to thiourea-related 

molecules was considered an interesting research field that could bring new insight 

into the therapeutic approach of pulmonary conditions characterised by increased 

vascular permeability and oxidative stress, such as acute respiratory distress 

syndrome (ARDS) or adverse drug reactions (e.g. bleomycin). The questions which 
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were addressed in this part are: 1) does the administration of low doses of NR678 

lead to decreased susceptibility to further lethal doses, similarly to other thiourea-

derived molecules?; and 2) is the mechanism of tolerance associated with increased 

clearance of oedema fluid, increased levels of sulphydryl reducing agents and/or 

altered expression of FMOs in the rat lungs? 

A molecular approach was used to further characterise NR678-induced pulmonary 

acute toxicity and tolerance, studying the localisation of FMO2 mRNA in the tissues 

of the rat using a RNA ISH technique. This aimed to provide new insight into the 

tissue distribution of FMOs in this species, a subject which has not been fully 

characterised. The expression of FMO1 and FMO2 was then assessed in the lung of 

tolerant rats by ISH and quantitative PCR (qPCR) to investigate a potential role of 

these enzymes in the development of tolerance.  

The final part of the experimental chapter aimed to address the toxicological 

implications of FMO2 polymorphism in humans, by using R. norvegicus, whose 

colonies were available at BASF Pest Control Solutions. R. norvegicus was 

considered a suitable model to explore this topic, because the polymorphism seen in 

this species represents a natural knockout of FMO2. This investigation was 

conducted using NR678 as a test article, as uncharged small thioureas are known to 

be excellent substrates of FMO2. Results of this analysis may apply virtually to all 

molecules which are known to be metabolised by FMO2, including drugs containing 

a thiourea moiety.   
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Chapter 2  Materials and Methods 

2.1 Experimental animal work 

2.2 Experimental procedures 

2.3 Molecular biology 

2.4 Enzyme assay and metabolic analysis 

2.5 Statistical analysis   
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2.1 Experimental animal work  

Four studies were conducted, all with oral (gavage) administration of the test 

substance, NR678 [(2,6-dimethyl-phenyl)-thiourea; for detail on the test article, see 

paragraph 1.1]. All animal experiments were undertaken at the BASF Widnes 

laboratory, a designated Scientific Procedures Establishment under the Animals 

(Scientific Procedures) Act (British Parliament, 1986), which implements in the UK 

the EU Directive 86/609/EEC. The protocols described below were approved by the 

University of Liverpool Animal Ethics Committee. Details on title, objective and 

main specifications of these studies are provided in Table 2.1. A summary of the 

main experimental procedures conducted in each study is presented in Appendix II. 

Table 2.1. List of in vivo animal experiments conducted in this work.  

Study Study title 

Rats Duration 

(d) 
Objective 

Strain n. 

1 

NR678: single dose 

acute oral toxicity study 

in male Wistar rats 

Wistar 5 1 

To identify the target organs and 

the toxicological changes induced 

by a lethal dose of NR678 

2 

NR678: tolerance 

development study in 

male Wistar rats 

Wistar 10 7 

To determine the development of 

tolerance to NR678 in rats pre-

treated with a low, non-lethal dose 

and then challenged with a lethal 

dose 

3 

NR678: chrono-

tolerance study in male 

Wistar rats 

Wistar 36 14 

To investigate the morphologic 

and mechanistic aspects of 

tolerance to NR678 at different 

time points post treatment 

4 

NR678: tolerance 

development study in 

male Welsh rats 

Welsh 12 2 

To determine the development and 

the patterns of tolerance in a rat 

strain that expresses a functional 

pulmonary FMO2 isoform 

The time interval between the day of (first) dosing and the day of euthanasia defines the duration of 

the study. n.: overall number of animals used in the study. d: day(s).  
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2.2 Experimental procedures 

For studies 1, 2 and 3, male Wistar rats [age range: 6-7 weeks (w), weight range: 

200-250 g] were obtained from Charles River Laboratories (Margate, UK). In study 

4, male rats (age range: 10 to 18 w, weight range: 200-300 g) of the so called “Welsh 

strain”, a warfarin-resistant strain of the Norway rat (R. norvegicus), derived from a 

wild population of rats native to Wales, was used. These rats were from an inbred 

colony that has been maintained at the BASF Widnes laboratory for several years. 

The “Welsh strain” was selected as rats from the colony were seen to carry a 

functional FMO2 copy in both alleles, according to the genotyping analysis. 

All rats were maintained in environmentally controlled rooms with 12 h dark-and-

light cycles. They were caged in groups, with tap water and commercial rat food 

available ad libitum. On day 1 (start day of the experiment), prior to dosing with 

NR678, all animals were weighed and tail-marked. NR678 was formulated on the 

same day and administered by oral intubation at different doses (Table 2.2), while 

control rats received only the vehicle, which was polyethylene glycol 200 (PEG-200) 

diluted in black tea. In study 1 (acute single dose toxicity study), three male Wistar 

rats received a known (see paragraph 1.1) lethal oral dose (10 mg/kg) of NR678 and 

were euthanased at 6 h post dosing, after they had developed severe clinical signs. 

Controls (two animals) were culled 8 h after the administration of the vehicle. In 

study 2, male Wistar rats received an oral dose of 0.5 mg/kg of NR678 and, 3 h later, 

a dose known to be lethal upon first administration (5 mg/kg of NR678). Clinical 

signs and mortality were monitored during the following 7 d. The design of the 

chronotolerance study (study 3) is illustrated in Table 2.2 and Figure 2.1. In study 4, 

Welsh rats received an oral dose of 0.5 mg/kg of NR678 and were euthanased at 3, 6 

and 24 h post dosing.  

In all studies, clinical signs were recorded at 0, 0.5, 1, 2, 4, 6 and/or 8 h after dosing 

and then once or twice daily, until the end of the experiment. They were graded 

based on their severity, from mild (clinical observation at its least discernible extent) 

to severe (when the clinical sign caused major distress to the animal and/or impaired 

normal physiologic functions). Moderate was used to describe intermediate grades. 



 

40 

Any animal that exhibited severe clinical signs such as severe tachypnoea and 

dyspnoea was constantly monitored and was culled according to the standard 

operating procedures in force before experiencing severe pain, distress or death.  

Table 2.2. Experimental design and animal details of the in vivo studies. Study 1: single dose 

acute toxicity study. Study 2: tolerance development study in Wistar rats. Study 3: 

chronotolerance study. Study 4: tolerance development study in Welsh rats.  

Study 1 

Group Treatment Dose (mg/kg) n. Euthanasia Animal ID 

1 Vehicle - 2 8 h 10L-1245, 10L-1246 

2 NR678 10 3 6 h 10L-1247 to 10L-1249 

Study 2 

Group Treatment Dose (mg/kg) n. Euthanasia Animal ID 

1 NR678 
0.5 (time 0) + 5 

(3h) 
5 7 d 10L-4742 to 10L-4746 

Study 3 

Group Treatment Dose (mg/kg) n. Euthanasia  Animal ID 

1 Vehicle - 3 24 h 11L-2402 to 11L-2404 

2 NR678 5 3 6 h 11L-2405 to 11L-2407 

3 NR678 

0.5 

3 3 h 11L-2420 to 11L-2422 

3 6 h 11L-2423 to 11L-2425 

3 24 h 11L-2426 to 11L-2428 

3 7 d 11L-2429 to 11L-2431 

3 14 d 11L-2435 to 11L-2437 

0.5 (time 0) + 5 

(d 14) 
3 14 d 11L-2432 to 11L-2434 

4 NR678 
0.5 (time 0) + 5 

(3 h) 
3 24 h 11L-2408 to 11L-2410 

   3 7 d 11L-2411 to 11L-2413 

  

 3 14 d 11L-2417 to 11L-2419 

0.5 (time 0) + 5 

(3 h) + 5 (d 14) 
3 14 d 11L-2414 to 11L-2416 

Study 4  

Group Treatment Dose (mg/kg) n. Euthanasia Animal ID 

1 Vehicle - 3 24 h 12L-2251 to 12L-2253 

2 

NR678 0.5 

3 3 h 12L-2254 to 12L-2256 

3 3 6 h 12L-2257 to 12L-2259 

4 3 24 h 12L-2260 to 12L-2262 

Animal ID (identification) refers to the case numbering system used by the Histology Laboratory, 

Veterinary Laboratory Services, School of Veterinary Science, University of Liverpool, where the 

tissue samples were processed for the histological examination. n: total number of animals in the 

group.  
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Figure 2.1. Experimental design of the chronotolerance study (study 3). Rats (n = 36) were divided 

in 4 groups according to the treatment received. Group 1: vehicle control; group 2: oral NR678 

administration at a dose of 5 mg/kg (high dose, HD); group 3: oral NR678 administration at a dose of 

0.5 mg/kg (low dose, LD); group 4: oral NR678 administration of  LD, followed after 3h by the HD. 

Rats were euthanased at different time points (3 rats per time point; diamonds). Separate cohorts of 

rats from both groups 3 and 4 were challenged on day 14 with the HD. Arrowheads represent the time 

of dosing (with LD or HD). 

2.2.1 Post mortem examination 

2.2.1.1 Necropsy, tissue sampling, processing and histology 

For euthanasia, rats were anaesthetised with carbon dioxide (CO2), followed by 

exsanguination. Body weights were collected at necropsy to allow calculation of 

organ to body weight ratios. A complete necropsy, including a thorough external and 

internal gross post mortem examination was performed on each rat. Blood was 

sampled from the abdominal vena cava, using a 5 mL syringe connected to a 

butterfly intravenous cannula (23 G). Any fluid that was present in the thoracic 

cavity of treated animals (study 1) was aspirated through a syringe, quantified and 

cytological specimens prepared, stained with May Grunwald Giemsa and examined. 

Liver, lung and brain from each rat of study 3 were weighed after exenteration. 

Representative samples of the organs and tissues listed in Table 2.3 from all animals 
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and, when present, any tissue exhibiting a macroscopic abnormality were fixed in 4% 

buffered paraformaldehyde (PFA) for histological examination. Further samples of 

brain, heart, liver, lung, kidney and/or spleen were rapidly frozen in liquid nitrogen 

and stored at -80°C for further analyses (glutathione measurements and RNA 

isolation). 

Table 2.3. Alphabetical list of organs and tissues that were examined macroscopically and 

histologically.  

Adrenal glands (cortex and medulla)a 

Aorta (thoracic) 

Bone and joint (femoral-tibial joint) 

Bone marrow (sternum) 

Braina, b,c 

Caecum 

Colon 

Duodenum 

Epididymides 

Oesophagus 

Eyes 

Gut associated lymphoid tissue 

Harderian gland 

Hearta, b 

Ileum 

Jejunum 

Kidneysa, b 

Livera, b, c 

Lungsa, b, c 

Lymph nodes (mandibular and mesenteric) 

Mammary gland 

Optic nerves 

Pancreasa 

Peripheral nerve (sciatic) 

Pituitary gland 

Prostate gland 

Salivary gland (submandibular) 

Seminal vesicles 

Skeletal muscle (thigh, diaphragm) 

Skin 

Spinal cord (cervical and lumbar) 

Spleena, b 

Stomach (forestomach and glandular) 

Testes 

Thymusa, b 

Thyroid/parathyroid glands 

Tongue 

Trachea 

Urinary bladder 

All tissues listed (except the femoro-tibial joint) were processed and examined histologically in 

study 1. a: Organs and tissues processed for histological examination in study 3. b: organs and 

tissues processed for histological examination in study 4. c: organs weighed in study 3. 

According to the literature published on the acute toxicity of thiourea, the main 

pathological changes following the administration of the thiourea-based molecule 

NR678 were expected in the lungs (Ziegler-Skylakakis, 2003). In order to achieve 

optimal fixation and preservation of the lung, a specific fixation and sampling 

protocol was developed and applied (Figure 2.2), taking into consideration the 

known literature on the methods for routine lung fixation in rodents. Lungs were 
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exenterated and fixed through gentle intratracheal instillation of PFA in all studies, 

except study 1, which represented the initial full pathological screening. Instillation 

of the broncho-alveolar unit with fixative washes out the cells located within the 

alveolar lumen and alters their original distribution, confounds the presence and the 

quantification of pulmonary fluid and may lead to damage and rupture of the thin 

alveolar septa (Braber et al., 2010; Renne et al., 2001). However, early fixation of the 

lower broncho-alveolar tract allows clear identification of pulmonary cell types and 

eliminates several artefacts associated with a crushed, non inflated lung parenchyma 

(Renne et al., 2001). Precautions were taken to avoid over-inflation and thereby 

artefactual emphysematous changes. 

 

Figure 2.2. Sketch illustrating the sampling protocol for the lungs (ventral view). Light and 

electron microscopy were performed on the left (LL) and the right cranial (RCrL) lobes, 

respectively. The remaining right lobes (RML: right median lobe, RCaL: right caudal lobe, 

AL: accessory lobe) were snap frozen in liquid nitrogen and stored at -80°C. In study 3, the 

right hilus was ligated (line) and the right lobes were dissected free from the bronchi and 

vessels and removed. The wet weight of the whole right lung was then recorded. Tr: trachea. 

After 48 h fixation in PFA, the selected (Table 2.3) organs and tissues from all rats 

were trimmed, dehydrated in graded alcohol and routinely paraffin wax embedded. 

Sections (3-5 µm thick) were prepared, mounted on glass slides, deparaffinised in 

xylene, rehydrated through graded alcohols and stained with haematoxylin and eosin 

(HE) for the histological examination. In addition, a range of routine special stains 

for the demonstration of fibrin and eosinophils were performed on consecutive 
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sections from the lungs of all animals from study 1 (Table 2.4). The Masson 

Trichrome stain was applied for the visualisation of collagen fibres in the lungs of 

selected animals from studies 1 and 3 (Appendix II). All stains were performed by 

the technicians in the Histology Laboratory, Veterinary Laboratory Services, School 

of Veterinary Science, University of Liverpool, according to routine staining 

protocols. Appropriate control tissues were stained alongside to monitor the 

conditions and the quality of the staining procedure. 

Table 2.4 List of special stains carried out for the visualisation of specific tissue components 

(fibrin and collagen) and the identification of eosinophils.  

Special stain Target Staining pattern 

Martius Scarlet Blue Fibrin 
Muscle and fibrin: red. Nuclei: brown/black. 

Collagen: blue. Erythrocytes: yellow 

Phosphotungstic acid-

haematoxylin 
Fibrin 

Nuclei, erythrocytes, fibrin: blue. Cytoplasm: 

pink to brown red. Collagen: brown-pink 

Fraser Lendrum 
Eosinophils and 

fibrin 

Fibrin, keratin, some cytoplasmic granules: 

orange/red. Collagen: green 

Masson Trichrome Collagen 
Nuclei: black. Muscle, cytoplasm: red. 

Collagen: blue to green 

 

The histological findings were classified with standard pathological nomenclature 

and severities were graded on a scale of 1 to 5 as slight, mild, moderate, marked or 

severe with “slight” applied when the finding was the least extent discernible and 

“severe” the greatest extent possible. Microscopic findings that are not usually 

graded were listed as present. The findings were reviewed by Prof. Anja Kipar, 

Dr.med.vet.habil., Dipl. ECVP, MRCVS. 

2.2.1.2 Immunohistology of the lungs of NR678-treated rats 

For the characterisation of the cell types populating the alveolar unit (Figure 2.3) and 

to determine the presence of apoptotic and proliferating cells in alveoli, 

immunohistology (IH) was employed.  
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Figure 2.3. Cell types in the alveoli and their identification based on the expression of cell 

markers by immunohistology (boxed). E: endothelial cells; M: macrophages; I: type I 

pneumocytes; II: type II pneumocytes. 

A rabbit polyclonal antibody reacting with rat aquaporin 5 (AQP-5) was used as a 

specific marker of type I pneumocytes. AQP-5 is a water channel protein involved in 

membrane osmotic water permeability and is found on the apical membranes of 

glandular epithelium in the airways, in the salivary glands and in type I pneumocytes 

of several species (Raina et al., 1995). Surfactant protein C (SP-C), a small 

hydrophobic protein found in the lamellar bodies of type II pneumocytes (Beers and 

Lomax, 1995), was employed as a selective marker for type II pneumocytes (Kasper 

and Singh, 1995). Lysozyme is an antibacterial peptide found in several secretions 

(tears, sweat, saliva) and in the lysosomal granules of leukocytes (Mitchell and 

Cotran, 2007a). Rat alveolar macrophages are strongly positive when stained with 

immunohistological methods for the detection of lysozyme (Klockars and Osserman, 

1974). However, in the rat, lysozyme is also synthesised by type II pneumocytes, 

which is in contrast to man, where the protein can be detected in the cytoplasm of 

submucosal glandular epithelial cells, but not in type II pneumocytes (Singh et al., 

1988). Endothelial cells were identified using immunohistology for von Willebrand 

factor (factor VIII-related antigen), which is expressed in specific cytoplasmic 

organelles known as Weibel-Palade bodies. This antigen is considered a sensitive 

marker of normal and activated endothelial cells (Zhang et al., 2010). Apoptotic cells 
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were labelled using an antibody against cleaved caspase 3, an executioner caspase of 

the apoptotic cascade (Mitchell and Cotran, 2007b). Proliferating cell nuclear antigen 

(PCNA) is a protein expressed in the nucleus of cells during DNA synthesis and in 

the cytoplasm during mitosis; it was used in this work as a marker of cell 

proliferation (Whitfield et al., 2006). IH was performed on PFA-fixed and paraffin-

embedded lung sections, using the peroxidase anti-peroxidase (PAP) method, as 

previously described (Kipar et al., 1998). Briefly, sections were deparaffinised in 

xylene (2 × 5 min) and rehydrated in decreasing concentrations of ethanol (2 × 3 min 

washes in 100% ethanol, followed by 1 × 3 min wash in 96% ethanol). Endogenous 

peroxidase was inactivated by incubation at room temperature (RT) for 30 min with 

0.5% (v/v) hydrogen peroxide dissolved in methanol. Sections were washed twice 

with Tris-buffered saline (TBS, 0.1 M Tris–HCl with 0.9% NaCl, pH 7.4) and 

underwent antigen retrieval by incubation with 10 mM citrate buffer [0.9% (v/v) 

0.1 M citric acid and 1% (v/v) 0.1 M sodium acetate] at pH 4.0 or 6.0 or with 

protease. Slides were then washed with TBS and incubated with 50% swine serum in 

TBS (10% rat serum for PCNA) for 10 min at RT to prevent any non-specific 

binding of the antiserum. Subsequently, sections were incubated for 15–18 h at 4°C 

with the primary antisera, followed by incubation with secondary antisera at RT for 

30 min and a final 30 min incubation with rabbit or mouse PAP (1:100 in TBS) at RT 

(Table 2.5). Between each incubation step, slides were washed with TBS. Sections 

were then incubated for 10 min at RT with 0.05% 3,3′-diaminobenzidine 

tetrahydrochloride (DAB) and 0.01% H2O2 in 0.1 M imidazole buffer (0.1 M 

imidazole, 0.1 M HCl pH 7.1), washed 3 × in TBS and 1 × in distilled water and 

counterstained for 1 min with Papanicolaou's haematoxylin (Merck, Darmstadt, 

Germany; 20 mL in 400 mL distilled water), followed by rinsing for 5 min in tap 

water and dehydration in ascending alcohols, clearing in xylene, coverslipping and 

mounting. All immunohistological stains were performed by Ms Valerie Tilston, 

research technician at Histology Laboratory, Veterinary Laboratory Services, School 

of Veterinary Science, University of Liverpool.  
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Table 2.5. Summary of the antibodies and other reagents used for immunohistology. 

Antibody 
Antigen 

retrieval 
Block 

Primary 

antibody 

dilution 

Secondary antibody 

dilution 
Detection 

Caspase 3 

(Cell Signaling 

9664) 

Citrate pH 6.0 
20% ss in 

TBST 
1:50 in 20% ss 

in TBST 

Swine anti Rabbit IgG 

1:100 in 20% ss in 

TBST (Dako Z0196) 

PAP Rabbit 

1:20 in 20% ss in 
TBST 

(Covance SMI) 

PCNA 

(Dako M0879) 
Citrate pH 4.0 

10% rat 
serum in 

TBST 

1:100 in TBST 

Rat anti Mouse 1:100 
in TBST (Jackson 

Immuno Research 415-
005-166) 

PAP Mouse 

1:500 in TBST 

(Jackson Immuno 

Research) 

Aquaporin 5 

(Abcam ab78486) 
None 

20% ss in 
TBST 

1:100 in 20% ss 
in TBST 

Swine anti Rabbit 

1:100 in 20% ss in 
TBST 

PAP Rabbit 

1:20 in 20% ss in 

TBST 

Factor VIII 

(Dako A0082) 
Protease 

ss:TBST 

1:2 

1:1000 in 20% 

ss in TBST 

SP-C 

(Santa Cruz  

sc-13979) 

None 
20% ss in 

TBST 
1:50 in TBST 

Lysozyme 

(Dako A0099) 
Protease 

ss:TBST 

1:2 

1:1000 in 20% 
ss in TBST 

ss = swine serum. TBST = 1× TBS Buffer + 0.05% Tween 20 

An attempt was made to quantify the number of alveolar macrophages and type II 

pneumocytes in the lung of rats from study 3. This was done based on the number of 

SP-C expressing cells, which are known to be type II pneumocytes (Kasper and 

Singh, 1995). Cells that expressed lysozyme were identified in the alveolar lumen 

(alveolar macrophages) and lining the alveoli (type II pneumocytes and 

macrophages). Cell counts were performed as follows. Each stained slide was placed 

on the optical photomicroscope (Nikon Eclipse 80i, Kingston upon Thames, UK) and 

examined with the 40 × objective (400-fold magnification). Ten fields were selected 

(five fields from each lung section on the slide), avoiding areas at the periphery of 

the section or regions containing large bronchial and vascular structures, to examine 

comparable numbers of alveoli. Immuno-stained cells for both SP-C and lysozyme, 

as defined above, were calculated as a percentage of the total cells counted in each 

field. For the quantification of PCNA-positive proliferating cells in the lung of rats 

from study 3, twenty random fields (ten fields from each lung section on the slide) 

were evaluated at the 40 × magnification and the PCNA proliferative index was 

expressed as the average number of positive cells/field. Occasional positive cells 

other than alveolar lining cells, such as bronchial or bronchiolar epithelial cells, 
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endothelial cells in arteries and veins as well as inflammatory cells were not included 

in the counts. 

2.2.1.3 Transmission electron microscopy of the lung of NR678-trated rats 

From selected rats (one rat/group; study 3), approximately 1 cm3 samples of lung 

tissue were rapidly removed from the cranial right lobe (see figure Figure 2.2), placed 

in approximately 2 mL of 2.5% glutaraldehyde in 0.1 M sodium cacodylate buffer 

(pH 7.4) and sliced with a stainless steel razor blade into 1-2 mm3 cubes. These 

specimens were fixed in glutaraldehyde at 4°C and subsequently processed for 

transmission electron microscopy (TEM) by Ms Marion Pope, Electron Microscopy 

Unit, Veterinary Laboratory Services, School of Veterinary Science, University of 

Liverpool. Briefly, specimens were washed in 0.1 M sodium cacodylate buffer and 

fixed in 1% osmium tetroxide in phosphate buffer/distilled water for 90 min. After 

rinsing in distilled water, specimens were stained with 2% uranyl acetate in 0.69% 

maleic acid for 90 min and dehydrated in ascending concentrations of ethanol, 

followed by acetone. Tissues were subsequently infiltrated with resin (TAAB 

Laboratories Equipment Ltd, Aldermaston, UK) in acetone at concentrations of 30%, 

70% and 100% (w/v) for 1 h each. The specimens were transferred into polyethylene 

embedding capsules filled with fresh 100% resin, where they were left overnight for 

the polymerisation step. Semi-thin sections (1 μm) were prepared from resin-

embedded blocks using an ultramicrotome (Reichert-Jung Ultracut; Munich, 

Germany) with a diamond knife (Diatome Ltd.; Biel, Switzerland), then stained with 

toluidine blue and examined under the light microscope, to choose areas of interest 

(those exhibiting the main findings identified in the HE stained sections) for the 

preparation of ultrathin sections. Ultrathin sections (60 nm) were prepared with a 

diamond knife, mounted on copper grids, stained with Reynold’s lead citrate and 

examined with a transmission electron microscope (Philips EM208S, Cambridge, 

UK).  
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2.2.1.4  Determination of the cellular localisation of FMOs in rat tissues by in 

situ hybridisation (ISH) 

In situ hybridisation (ISH) was undertaken to investigate the distribution and 

localisation of FMO mRNA in the tissues of untreated rats from studies 3 and 4. 

Among the riboprobes prepared for FMO1 to 5, only the riboprobe complementary to 

the mRNA of FMO2 yielded satisfactory signals. Once optimised, RNA-ISH was 

used to compare the localisation of FMO2 mRNA between control rats and those 

receiving NR678 (5 mg/kg and 0.5 mg/kg) in study 3. Details on the synthesis of 

RNA probes for RNA-ISH are provided in paragraph 2.3.6. 

2.2.1.4.1 Preparation of tissue sections for RNA in situ hybridisation 

Sections (3-5 µm) from PFA-fixed, paraffin wax-embedded tissues were mounted on 

slides and deparaffinised in xylene (2 × for 5 min), then washed twice in 100% 

ethanol (5 min), once for 5 min in 96% ethanol in diethylpyrocarbonate (DEPC) 

water and once in 70% ethanol in DEPC water (5 min). Slides were then rinsed for 5 

min in DEPC water and transferred into a nuclease-free coplin jar containing DEPC 

water (1 min). They were then washed in 1 × phosphate buffered saline (PBS, VWR 

International; Lutterworth, UK) for 5 min and incubated for 20 min in 0.2 M HCl at 

RT to reduce cross-linking of proteins. Proteolysis was continued with two 30 min 

washes with 2 × salt sodium citrate (SCC, VWR International) plus 5 mM EDTA at 

50⁰C and exact 15 min incubation at 37⁰C with proteinase K solution [1 M Tris, 

0.1 M CaCl2, DEPC water, proteinase K (Roche; Burgess Hill, UK)]. The proteinase 

K concentration was determined empirically and varied from 1 to 5 µg/mL; for the 

final FMO2 RNA-ISH, a concentration of 2 µg/mL was used. The reaction was 

stopped by washing the slides in 0.2% (v/v) glycine in PBS at RT for 5 min. Sections 

were post-fixed in 4% PFA at RT for 4 min and then washed twice in 1 × PBS for 1 

min and once in 1 × PBS plus 5 mM magnesium chloride (MgCl2) for 15 min. In 

order to reduce the background and inactivate RNases, slides were immersed in 

0.25% (v/v) acetanhydride in 0.1 M triethanolamine (pH 7.5, VWR International) for 

10 min and then rinsed twice in 1 × PBS at RT for 1 min each and then once for 

15 min.  
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2.2.1.4.2 Prehybridisation and hybridisation 

As a prehybridisation step, sections were incubated for 1 h at 52°C in 

prehybridisation buffer, the composition and preparation of which are detailed in 

Appendix III. Hybridisation was carried out by covering each section with 40 µL of 

the appropriate digoxigenin-labelled riboprobe, diluted 1:200, 1:100 or 1:50 (final 

concentration of FMO2 riboprobe: 1:200) in hybridisation buffer mix (see Appendix 

III). Once the hybridisation solution was added, the sections were covered with 

hydrophobic gel-bond film and sealed with rubber glue (Fix-O-Gum; Marabu, 

Bucks, UK) to prevent evaporation, then placed in a hybridisation chamber and 

incubated overnight at 37ºC or 52 ºC (37ºC for the FMO2 riboprobe). The coverslip 

was then removed and the sections were returned to a coplin jar, where they 

underwent a series of stringent post-hybridisation washes [2 × 15 min wash in 6 × 

SCC with 45% (v/v) formamide at 42°C; 2 × 5 min wash in 2 × SCC at RT; 2 × 

15 min wash in 0.2 × SCC at 50°C] to remove unbound probes.  

2.2.1.4.3 Detection of hybridised probes 

After equilibration in Buffer 1 (see Appendix III) for 1 min, non-specific binding 

was blocked by incubation with blocking solution [2% (v/v) sterile normal sheep 

serum (Sigma), 0.3% (v/v) Triton X-100 in Buffer 1] at RT for 30 min. For the 

demonstration of probe bound to tissue mRNA, slides were incubated in alkaline 

phosphatase-coupled anti-digoxigenin antibody (anti-DIG-AP Fab fragments, Roche; 

1:200 in blocking solution) for 2 h at RT. They were then washed twice in Buffer 1 

at RT for 15 min and equilibrated for 2 min at RT in Buffer 3 (see Appendix III). 

Finally, sections were incubated at RT in the dark with staining solution, composed 

of Buffer 3, three SIGMAFAST™ BCIP®-NBT tablets [containing 0.15 mg/mL of 5-

bromo-4-chloro-3-indolyl phosphate (BCIP) and 0.30 mg/mL of 4-nitro tetrazolium 

chloride (Nitro blue tetrazolium, NBT)] and 0.05% (w/v) levamisole. The 

development of the signal was monitored regularly using a microscope and the 

reaction was stopped after 4 to 8 h by submerging the sections in Buffer 4 (see 

Appendix III) for 10 min and subsequent rinsing in nuclease-free water for at least 

5 min. The sections were counterstained for 10 sec using Papanicolaou’s 

haematoxylin diluted 1:20 in distilled water (see paragraph 2.2.1.2) before mounting 
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with glycer-gel (Dako; Ely, UK) and coverslipped. The slides were left to dry in the 

dark until microscopic examination. Positive hybridisation resulted in a dark 

brown-black cytoplasmic precipitate. Intensity of the signal was defined as weak 

(light brown granular staining that could however be clearly differentiated from 

background staining) or strong (diffuse intense dark brown-black cytoplasmic 

staining, often obscuring the nucleus); intermediate degrees were classified as 

moderate.  A probe with known hybridisation pattern was included in each run to 

confirm the correct performance of the protocol. For this purpose, a DIG-labelled 

probe complementary to murine herpesviral tRNA, which has been optimised in our 

laboratory, was selected. Control tissues included cell pellets obtained from viral 

cultures or sections of lungs and upper airways from mice infected with the virus. 

FMO2 RNA-ISH was applied to sections from liver, lung, kidney and brain of 

control rats from studies 3 and 4. In each run, sections were hybridised with the 

FMO2 antisense probe and with the correspondent FMO2 sense probe. The 

expression of FMO2 mRNA in the lungs of control rats and those receiving NR678 

(5 mg/kg and 0.5 mg/kg) was compared in a single run, where the lungs of all 

animals from study 3, except those challenged on day 14 with a dose of 5 mg/kg of 

NR678, were hybridised with the FMO2 antisense riboprobe; the sense probe was 

applied to the lung sections of one animal/ each endpoint (1/3 rats). The staining 

reaction in this run was stopped in all sections at 5 h after the start of the incubation. 

2.2.2 Determination of hepatic and pulmonary glutathione levels and 

protein concentration in NR678-treated rats 

Total (oxidised and reduced) glutathione and protein amounts were determined in the 

liver and the lungs of all animals in study 3. Briefly, approximately 50 mg of liver 

tissue (right lateral lobe) or 200 mg of lung tissue (right caudal lobe) was 

homogenised in 200 µL 6.5% (w/v) 5-sulfosalicylic acid and 800 µL GSH stock 

buffer (143 mM NaH2PO4  and 6.3 mM EDTA in distilled water, pH 7.4), using a 

manual glass homogeniser. The homogenates were incubated on ice for 10 min and 

then pelleted through centrifugation at 20,000 g for 5 min. The supernatant was 

collected and 1 mL of 1 M NaOH was added to each protein pellet and incubated at 



 

52 

60°C for 1 h. Samples were then stored at -80°C until the Lowry assay was carried 

out. The supernatant was used for the GSH assay which represented modified, 

previously published methods (Owens and Belcher, 1965; Vandeputte et al., 1994). It 

is based on the addition of 5-5'-dithiobis[2-nitrobenzoic acid] (DTNB, Ellman’s 

Reagent) to the sample which triggers a chemical reaction in which GSH is 

constantly recycled (see below). DTNB reacts with thiols, including reduced GSH, 

leading to their oxidation to a disulphide (GSSG or GS-TNB) with the stoichiometric 

formation of 5-thio-nitrobenzoic acid (TNB). The latter is a chromophore, whose rate 

of formation can be detected at 412 nm with a spectrophotometer and is proportional 

to the sum of GSH and GSSG present. The GS-TNB or GSSH are subsequently 

reduced to GSH by the highly specific enzyme glutathione reductase, in the presence 

of NADPH, releasing a second TNB molecule and recycling the GSH (Rahman et 

al., 2006). The principle of the colorimetric determination of GSH levels using 

DTNB is exemplified as follows:  

2GSH + DTNB → GSSG + TNB (a) 

GSSG + NADPH + H+   → 2GSH + NADP+ (b) 

In the presence of NADPH, glutathione reductase re-converts GSSG (or the GSH 

adduct GS-TNB) into the reduced form (GSH; b). This in turn reduces DTNB to 

TNB (a). The formation of TNB is evaluated by measuring the absorbance at 412 nm 

(Anderson, 1985). 

For the assay, 20 µL of supernatant diluted 1:10 and 1:20 or GSH standards (0-

80 nM/mL) were added in duplicate to a 96-well microplate, followed by the 

addition of 20 µL GSH stock buffer to neutralise the pH. 200 µL of daily assay 

reagent (1 mM DTNB, 0.34 mM NADPH in GSH stock buffer) was added to each 

well. This was followed by an exact 5 min incubation at RT. The enzymatic reaction 

described above was initiated by the addition of 50 µL GSH reductase (6.96 U/mL in 

GSH stock buffer). GSH formation was followed at 412 nm for 2.5 min in a MRX 

microplate reader (Dynotech Laboratories, Billinghurst, UK). All reagents were 

covered in aluminium foil to protect them from light. Soluble protein levels were 

measured using the Lowry assay (Lowry et al., 1951), which is based on the 
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reactivity of the protein N terminus with divalent cupric ions under alkaline 

conditions. Monovalent Cu+ and the aromatic protein residues cause the reduction of 

a phenol reagent (Folin and Ciocalteu’s phenol reagent, Sigma), resulting in 

differential, protein concentration dependent colour intensity, which can be measured 

at 750 nm. 50 µL of the liver and lung protein pellet dissolved in NaOH or standard 

bovine serum albumin (BSA) dilutions (1-200 µg/mL) were added in duplicate to a 

96-well clear plate, together with 50 µL Lowry reagent (0.5 mL 1% copper sulphate, 

0.5 mL 2% sodium potassium tartrate, 10 mL sodium carbonate in 0.5 M NaOH). 

150 µL of Folin reagent (1:10 in water) was added to each well. After incubating at 

RT for 30 min, the absorbance was read at 750 nm with a MRX microplate reader. 

2.3 Molecular biology 

2.3.1 Extraction of RNA from the lung 

Total RNA was extracted from the lung right lobes of all animals from studies 3 and 

4 that had been stored at -80°C. Approximately 50-100 mg of tissue was placed in 

RNase-free 2 mL Eppendorf tubes and 200 µL of Trizol Reagent (Sigma) was added 

to each sample. Tissues were homogenised thoroughly using disposable RNase-free 

Eppendorf micropestles. After the addition of further 800 µL of Trizol Reagent, the 

samples were incubated for 5 min at RT to facilitate precipitation of non-RNA 

cellular components. 200 µL of 100% chloroform was added to each sample, 

followed by vigorous shaking by hand for 15 sec and vortexing for 15 sec. The tubes 

were left to incubate for 2-3 min at RT and then centrifuged at 12,000 × g for 15 min 

at 4ºC to allow separation of the mixture into different phases, the uppermost of 

which being a colourless aqueous layer, containing the RNA. The aqueous phase was 

transferred, without disturbing the interphase, into a new 2 mL Eppendorf tube and 

500 µL of isopropyl alcohol was added to precipitate the RNA from the solution. The 

mixture was incubated at RT for 10 min until a white top layer had formed and then 

centrifuged for 10 min (13,000 × g, 4⁰C). The supernatant was carefully removed 

without disturbing the gel-like pellet of precipitated RNA and 1 mL of chilled 75% 

ethanol was added to the pellet which was then spun for 5 min (7,500 × g, 4⁰C). The 

supernatant was again discarded and the pellet air-dried for 5-10 min. Finally, the 
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pellets were dissolved in 44 µL (or multiples for the most concentrated samples) of 

RNase-free water. An aliquot of the resultant RNA from each sample was quantified 

using a NanoDrop spectrophotometer (Labtech International; Uckfield, UK) and the 

RNA either stored at -80⁰C or subjected to DNase treatment. 

2.3.2 DNase treatment of RNA 

Rigorous DNase treatment was performed on RNA samples on the same day or the 

day after RNA isolation, using a DNA-free DNase kit [Life Technologies Ltd. 

(Ambion®); Paisley, UK] according to the manufacturer’s instructions. Briefly, 10 × 

DNase buffer and 0.5 µL of DNase I were added to the tubes containing the isolated 

RNA, proportionately to the volume of the RNA solution (44 µL or multiples). 

Samples were incubated at 37ºC for 20 min in a water bath, followed by addition of 

further 0.5 µL of DNase I and further incubation at 37ºC for 20 min. Afterwards, 

1/10 of the volume of DNase inactivation reagent was added to each tube, which was 

then incubated at RT for 2 min while it was mixed frequently. The tubes were 

centrifuged at 10,000 ×g for 1.5 min and the resultant RNA was transferred to new 

RNase-free 500 µL tubes. An aliquot of RNA from each tube was quantified using 

the NanoDrop spectrophotometer. All RNA samples with a ratio of adsorption at 

260 nm vs 280 nm (A260/280) between 1.9 and 2.1 were deemed suitable for reverse 

transcription, whereas samples with ratio values outside this range were discarded. 

The integrity of total RNA was assessed running an aliquot of the RNA (selected 

samples only) on agarose gel stained with SYBR® Safe DNA Gel Stain (Life 

Technologies, Paisley, UK). Sharp, clear 28S and 18S RNA bands, with the former 

twice as intense as the 18S band, were considered a reliable indicator of RNA 

integrity (Bustin et al., 2009). 

2.3.3 Reverse transcription of RNA into complementary cDNA 

The Improm-II Reverse Transcriptase kit (Promega; Southampton, UK) was used for 

the synthesis of cDNA from isolated and DNAse-treated RNA. A starting volume 

equivalent of 2.5 µg RNA and 1.0 µL of Oligos (dT16) were added to RNase-free 

water (25 µL reaction) and heated at 70ºC for 5 min on a heating block to promote 

their annealing to the 3´ end of any polyadenylated RNA molecule and its priming 
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for cDNA synthesis. Afterwards, the tubes were immediately stored on ice and 10 µL 

5 × RT buffer, 8 µL MgCl2 (25 mM), 1 µL dNTP mix (10 mM), 2.5 µL reverse 

transcriptase enzyme and nuclease-free water were added to make up a total volume 

of 50 µL. The solutions were incubated in a thermal cycler using the following 

conditions: 25ºC for 5 min, 42ºC for 60 min and 70ºC for 15 min. The resultant 

cDNA was diluted by adding 200 µL nuclease-free water to each sample to achieve a 

final concentration of 10 ng/µL. cDNA samples were stored at -20ºC until they were 

used in the PCR. Control reactions were run in parallel in order to reveal the 

presence of contaminating templates (negative control, no template) or to verify the 

absence of contaminating DNA template (negative reaction, no reverse 

transcriptase).  

2.3.4 Conventional polymerase chain reaction (PCR) 

PCR was used for the amplification of the cDNA. The PCR products then served as 

templates for the synthesis of RNA probes for RNA-ISH (molecular subcloning, see 

paragraph 2.3.6). In addition, conventional PCR was used to test the specificity of the 

primers and optimise the efficiency of the amplification prior to performing qPCR. In 

addition, a nested PCR method was employed for the characterisation of FMO2 (see 

paragraph 2.3.7.3). The list of the primers used for cloning purposes is provided in 

Table 2.6. Primer pair sequences were designed using Primer3Web, Version 3.0.0, a 

free online primer designing tool (Rozen and Skaletsky, 2000). The basic local 

assignment search tool (BLAST) search engine (Altschul et al., 1990) was used to 

test the specificity of the primers against the whole rat genome database. The 

following parameters were taken into consideration for primer selection whenever 

possible: primer length [18-23 base pairs (bp)], desired product length (350-450 bp), 

melting temperature (between 52°C and 65°C), GC content (40-65%) and the lack of 

secondary structures (hairpins, self and cross primer dimers) and cross homology. 

Primer pair sequences for FMO2 were obtained from Hugonnard et al. (2004).  
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Table 2.6. Primers used in conventional PCR (for subcloning). 

Primer 

name 

NCBI 

reference 

sequence 

Primer Sequence 5’ → 3’ 
Melting 

t°C 

GC

% 

Product 

length 

(bp) 

FMO1 

forward 
NM_012792.1 

GATGACCTCCTGACCTCG 60.9 61.1 

401 
FMO1 

reverse 
GGGGTTGGGTGTCTCTGG 65.7 66.6 

FMO2 

forward 
NM_144737.2 

TCAAAGACCCTAAACTGGCTGTG 60.7 47.8 

282 
FMO2 

reverse 
AGGCGGTGATGGAGAAAAGTG 60.6 52.3 

FMO3 

forward 
NM_053433.2 

TGCCATCCCCACAACCGACCTG 67.0 63.6 

449 
FMO3 

reverse 
ACAAAGCAATGAGCACTGGAACA 61.5 43.4 

FMO4 

forward NM_144561.2 

(variant 2) 

GGACGGAGCCAGAAATGCCA 62.8 60 

364 
FMO4 

reverse 
GCCTTGCTTTATGACAACCTGCCCT 65.7 52 

FMO5 

forward 
NM_144739.1 

GGACAGCCAGCGTCATAC 57.8 61.1 

370 
FMO5 

reverse 
AGTGGAAGCGGGAGCATTG 60.3 57.8 

 

Reactions were carried out using the GoTaq® Flexi DNA Polymerase kit (Promega). 

The PCR mixture contained: 5 µL of 10 × green or colourless (for cloning) buffer, 

4 µL of 25 mM MgCl2, 1 µL of 10 mM dNTPs, 0.25 μl GoTaq® DNA Polymerase 

(5 u/μl), 2 µL of both upstream and downstream primers (10 µM stock), 10 µL 

(100 ng) of template cDNA and nuclease-free water to a final volume of 50 µL. 

Master mixes were prepared in a dedicated cabinet, which was decontaminated prior 

to each use by UV irradiation. The reaction conditions for each target gene amplified 

for cloning purpose are reported in Table 2.7. Annealing temperatures were 

optimised for each primer pair based on the melting temperatures. To ensure that all 

3' ends of the product were adenylated and to optimise the cloning reaction (see 

paragraph 2.3.6.1), the final extension step was prolonged to 10 min.  
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Table 2.7. Thermal cycling conditions of FMO gene PCR amplification for subcloning.  

Step t°C Time (min) Number of cycles 

Initial denaturation 94 2 1 

Denaturation 94 0.5 

35 Annealing 
63 

except FMO5 (59) and FMO2 (60.6) 
1 

Extension 72 1 

Final extension 72 10 1 

Soak 4 indefinite 1 

 

To check whether the PCR generated the anticipated amplicon, PCR products were 

separated by agarose gel electrophoresis and visualised with ethidium bromide 

(EtBr) or the SYBR® Safe DNA Gel Stain (Sigma). Samples (10 µL) were mixed 

with 5 × New England Biolab (Herts, UK) loading buffer (only when colourless 

GoTaq® Flexi buffer was used) and loaded into agarose gels, composed of 1.5% 

(w/v) agarose, TAE buffer (40 mM Tris-base, 20 mM glacial acetic acid and 1 mM 

EDTA) and 0.1 µg/mL nucleic acid stain (EtBr or SYBR® Safe DNA Gel Stain). 

Products were electrophoresed at 70 or 120 V (depending on the size of the gel) in a 

horizontal electrophoresis tank (BioRad; Hemel Hempstead, UK), filled with TAE 

buffer. The size of the amplicons obtained was compared with the bands generated 

by 100 bp or 1 Kb DNA ladders (New England Biolab). Gels were examined for 

band detection under UV light and digital images taken. PCR products producing a 

single, discrete band of the expected size were considered to reflect a satisfactorily 

optimised PCR amplification. 

2.3.5 Quantitative fluorescence real-time PCR (qPCR) 

The qPCR experiments were carried out following MIQE guidelines (Bustin et al., 

2009) and using an Opticon Monitor 2 real time PCR machine (MJ research, Biorad). 

The analysis was conducted on the pulmonary cDNA of all rats from study 3, except 

for the two cohorts challenged on day 14 with the high dose of NR678. Reactions 

were carried out in 200 µL transparent plastic thin-walled tube strips. The set-ups 
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included 14.2 µL master mix (SYBRGreen JumpStart Taq ReadyMix, Sigma, see 

Appendix III), 0.4 µL upstream and downstream primers (10 µM) for the genes of 

interest and 5 µL of cDNA (10 ng/µL), to a final reaction volume of 20 µL. Target 

gene (FMO1 and FMO2) primer sequences (Table 2.8) were designed using the 

Beacon Designer 3.0 software (Premier Biosoft, Palo Alto, CA, USA), following the 

same criteria as those used for conventional PCR primer selection, except for a 

different desired amplicon length (50-150 bp). Two reference gene (GAPDH; 

glyceraldehyde 3-phosphate dehydrogenase) primer pairs (primer sets GAPDH1 and 

GAPDH2) were selected in order to match the annealing temperatures of FMO1 and 

FMO2 primer pairs and maximise the efficiency within the same run. Both reference 

gene primer sets were obtained from previously published sequences. Set 1 was from 

published work (Myers et al., 2010), whereas set 2 was available online (Shinegene 

Molecular Biotech, 2012). No-reverse transcription and no-template negative 

controls were included in each run. 

Table 2.8. Primers used in qPCR.  

Primer 

name 

NCBI 

reference 

sequence 

Primer Sequence 5’ → 3’ 
Melting 

t°C 
GC% 

Product 

length 

(bp) 

FMO1 

forward 
NM_012792.1 

GATGACCTCCTGACCTCG 60.9 61.1 

142 
FMO1 

reverse 
CTCCTTCCCACTTTCCTG 59.8 55.5 

FMO2 

forward 
NM_144737.2 

TCAAAGACCCTAAACTGGCTGTG 60.7 47.8 

103 
FMO2 

reverse 
ATGGCATTCCTGGCTCCTTC 67.5 55 

GAPDH1 

forward 

NM_017008 

CCCATCACCATCTTCCAGGAG 67.9 57.1 

285 
GAPDH1 

reverse 
GTTGTCATGGATGACCTTGGC 66.6 52.3 

GAPDH2 

forward 
TGGAGTCTACTGGCGTCTT 60.1 52.6 

138 
GAPDH2 

reverse 
TGTCATATTTCTCGTGGTTCA 60.6 38.0 

 

The thermal cycling parameters for target and reference gene qPCR reactions are 

reported in Table 2.9. The optimal annealing temperature for each reaction was 

assessed in a single experiment testing a range of annealing temperatures above and 
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below the calculated melting temperature of the primers. A melting curve analysis 

step was added at the end of each single run in order to assess the presence of 

unintended double stranded DNA products. 

Table 2.9 Thermal cycling conditions of target and reference gene qPCR amplification.  

Step t C° Time  
Number of 

cycles 

Initial denaturation 94 10 min 1 

Denaturation 94 30 sec 

35 

Annealing 

60 (FMO1 and GAPDH2) 

63.5 (FMO2 and GAPDH1) 
30 sec 

Extension 72 30 sec 

Primer dimer melt off 75 1 sec 

Plate reading - - 

Final extension 72 5 min 1 

Melting temperature 65-95 (increment 0.2/sec)  1 

Soak 4 indefinite 1 

 

Results were evaluated using the Opticon Monitor software v.3.1.32 (MJ Research, 

Biorad), normalised against the reference gene according to the formula below 

(Pfaffl, 2001) and analysed statistically (one-way ANOVA). 

𝑟𝑎𝑡𝑖𝑜 =
𝐸𝑓𝑓(𝑡𝑎𝑟𝑔𝑒𝑡)∆𝐶𝑞 𝑇𝑎𝑟𝑔𝑒𝑡 (𝐶𝑜𝑛𝑡𝑟𝑜𝑙−𝑇𝑟𝑒𝑎𝑡𝑒𝑑)

𝐸𝑓𝑓(𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒)∆𝐶𝑞 𝑅𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒 (𝐶𝑜𝑛𝑡𝑟𝑜𝑙−𝑇𝑟𝑒𝑎𝑡𝑒𝑑)
 

The difference in Cq (cycle of quantification) values (ΔCq) between target and 

reference genes was calculated in control samples and then compared to that 

obtained from different treatment groups (ΔΔCq). The formula accounted for the 

different efficiencies (Eff) between target and reference genes.  
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2.3.6 Molecular subcloning and synthesis of riboprobes for in situ 

hybridisation 

Riboprobes were synthesised in an in vitro transcription reaction using the FMO 

DNA template obtained from a commercially available ribovector plasmid. 

2.3.6.1 Ligation of the PCR product 

The first step of the cloning method was the direct insertion of the Taq-polymerase 

PCR-amplified FMO fragments into a plasmid vector, containing vaccinia virus 

topoisomerase I (TOPO cloning). Ligation of the PCR product into the pCRII-TOPO 

vector (Life Technologies Ltd.) was carried out as follows: 4 µL of fresh (same day) 

PCR product (FMO1 to 5) was incubated for 10 min at RT with 1 µL salt solution 

(1.2 M NaCl, 0.06 M MgCl2) and 1 µL vector (10 ng/ linearised plasmid DNA), 

which were both supplied with the kit. The reaction tube was kept on ice until 

transformation.  

2.3.6.2 Cloning and transformation of bacteria 

The plasmid containing the ligated amplicon was then transferred to bacteria in a 

process known as transformation. The insertion of new genetic material into 

competent Escherichia coli (Top 10 One Shot Cells, Life Technologies Ltd.) was 

carried out by adding the cloning reaction product (2 µL) to the cells (50 µL), thawed 

on ice. The samples were gently mixed, incubated on ice for 30 min, heat shocked at 

42⁰C for exactly 30 sec and placed on ice for 5 min. Then, 800 µL of Luria-Bertani 

(LB) medium containing 50 µg/mL ampicillin was added to the tubes. The cells were 

incubated at 37⁰C for 45 min at 200 rpm in an orbital shaker. A 100 µL aliquot of 

each sample was plated on LB agar. The remaining culture was centrifuged at 

2,000 × g for 5 min and 100 µL of the sediment was plated as well. LB agar plates, 

containing 100 µg/mL ampicillin and 40 µL 5-bromo-4-chloro-3-indolyl β-D-

galactopyranoside (X-Gal, Sigma) were incubated at 37⁰C overnight. Up to six white 

to light blue colonies, representing bacteria with ampicillin resistance and successful 

ligation of the PCR product, were added each to 10 mL tubes with 50 µg/mL 

ampicillin and incubated at 37⁰C at 200 rpm in an orbital shaker overnight. 250 µL 
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of the culture was added to 750 µL 60% (v/v) glycerol and stored at -80°C, while the 

remaining broth was used for plasmid DNA extraction. 

2.3.6.3 Small scale isolation of plasmid DNA (miniprep) 

In order to test the efficacy of the cloning reaction, a small amount of plasmid DNA 

was extracted from the bacterial broth and sequenced. The tubes containing the 

culture broth were centrifuged (4,000 × g, 10 min) and the supernatant discarded. 

Pellets were resuspended in 200 µL glucose solution (Appendix III) until all clumps 

were dissolved and the solution transferred to 1.5 mL Eppendorf tubes which were 

incubated at RT for 5 min. 400 µL of denaturation solution (Appendix III) was 

added to the tubes, which were gently mixed until the solution became viscous and 

slightly clear. After incubation on ice (exactly 5 min), 300 µL of neutralisation 

solution (Appendix III) was added, followed by further incubation on ice for 5 min. 

The tubes were centrifuged (20,000 × g, 7 min) and the supernatant transferred to 

new tubes. DNA precipitation was initiated with the addition of 500 µL isopropyl 

alcohol, followed by 15 min incubation on ice and centrifugation at 20,000 × g for 

5 min. The pellet was air-dried for 10 min, and then 200 µL TE buffer (pH 8.0) and 

100 µL 7.5 M sodium acetate was added and the solution mixed until the pellet was 

completely dissolved. This was followed by incubation on ice for 15 min, 

centrifugation at 20,000 × g for 5 min and addition of 600 µL 100% ethanol to the 

supernatant after it had been transferred into a new tube. The vials were incubated at 

-20°C for 1 h and then spun at 20,000 × g for 10 min. The resulting pellet (plasmid 

DNA) was air-dried for 10 min, then resuspended in 100 µL TE buffer and stored at 

4°C. 

2.3.6.4 Restriction enzyme digestion and DNA sequencing 

Plasmid DNA was linearised by restriction endonuclease digestion to confirm the 

successful insertion of the PCR product. Three separate reactions were set up, using 

two different restriction enzymes, BamH1 and XhoI (New England Biolabs), which 

cut at specific recognition sites situated on opposite ends of the PCR product insert 

loci in the plasmid. For each reaction, 2 µL plasmid DNA was added to 2 µL of the 

appropriate 10 × restriction enzyme buffer, 0.2 µL of 100 × BSA, 1 µL RNase A 

with no (uncut), one (single cut) or two (double cut) restriction enzymes (1 µL each) 
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and made up to a total volume of 20 µL with nuclease-free water. The reaction mix 

was incubated at 37⁰C for 1 h and the resulting products were visualised on an 

agarose gel. Successful transformation was considered to have occurred when the 

product visualised on the agarose gel obtained through double digestion appeared 

clearly smaller than the one formed by the single cut (Figure 2.4). Samples of the 

miniprep plasmid DNA deemed to carry the insertion were sent to a sequencing 

laboratory (Beckman Coulter Genomics; Takeley, UK) and sequences obtained from 

the laboratory were compared to those published for the genes of interest using 

BLAST. 

 

Figure 2.4. Gel electrophoresis of miniprep plasmid DNA. Uncut (U) or linearised DNA 

(FMO4 in this specific example) cut with one or both restriction enzymes were visualised on 

an electrophoresis gel. The lane for plasmid DNA which had been cut with both 

endonucleases (2) is appreciably distinct from lane 1, which corresponds to single cut DNA 

(1). The different band size is due to the presence of the PCR insert, which is eliminated 

from the plasmid sequence by the double cut (arrowhead). 

2.3.6.5 Large scale isolation of plasmid DNA (maxiprep) 

Large quantities of plasmid DNA were obtained from the samples which were 

successfully sequenced using QIAGEN Plasmid Maxi Kit (Qiagen; Manchester UK). 

Composition of the buffers contained in this kit is reported in Appendix III. Either 

5 µL of glycerol stock or a single colony were added to 10 mL LB broth containing 

50 µg/mL ampicillin and incubated at 37°C in an orbital rotator for 4-8 h, until the 

solution became cloudy. The prestarter culture was then put in a 2 L flat-bottomed 

flask with 400 mL LB broth containing 50 µg/mL ampicillin and incubated overnight 

at 37°C in an orbital shaker. After centrifugation (6,000 × g, 5 min), the bacterial 

pellet obtained was resuspended with 10 mL Buffer P1, lysed through the addition of 

10 mL Buffer P2, followed by gentle mixing and incubation at RT for exactly 5 min. 
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Neutralisation was carried out with the addition of 10 mL Buffer P3, followed by 

incubation on ice for 20 min and two centrifugations (20,000 × g, 15 min, 4°C). The 

supernatant was then added to a Qiagen-tip 500 that had been equilibrated with 

Buffer QBT, and allowed to decant by gravity flow. The DNA linked to the tip 

special filter was washed twice with 30 mL Buffer QC and finally eluted with 15 mL 

Buffer QF. Plasmid DNA isolation from the eluate was obtained through the addition 

of 10.5 mL isopropanol and centrifugation (15,000 × g, 15 min, 4°C), followed by 

addition of 5 mL 70% ethanol to the supernatant and further centrifugation 

(15,000 × g, 10 min). The resulting pellet was air-dried, resuspended with 500 µL TE 

buffer and a sample of DNA quantified using the NanoDrop spectrophotometer. 

2.3.6.6 Preparation of DNA template for RNA transcription 

The DNA template obtained from the maxiprep extraction was prepared for the 

generation of RNA transcripts. 5 µg plasmid DNA extracted from the maxiprep was 

linearised in two separate reactions, using 5 µL BamH1 or XhoI endonucleases, 5 µL 

of 10 × restriction enzyme buffer, 0.5 µL of 100 × BSA and nuclease-free water up 

to a total volume of 50 µL. BamH1 and XhoI generated the sense and the antisense 

probes, respectively, for all FMOs, except for FMO3. The reaction mix was 

incubated at 37⁰C for 2 h. To remove salts and protein, an equal volume of 

phenol:chloroform:isoamyl alcohol (25:24:1) was added to the DNA template. After 

vigorous vortexing and centrifugation (20,000 × g, 1 min), the upper aqueous layer 

was transferred into a new tube without disturbing the underlying organic phase and 

the steps were repeated once more with phenol:chloroform:isoamyl alcohol (25:24:1) 

and then once with chloroform:isoamyl alcohol (24:1). Precipitation of DNA was 

carried out with 1/10 volume of 3 M sodium acetate and 3 × volume of ice-cold 

100% ethanol, followed by incubation at -20⁰C for at least 1 h and centrifugation at 

20,000 × g for 10 min. The supernatant was discarded and the same steps were 

repeated with 70% alcohol. The pellet was then dissolved in 30 µL nuclease-free 

water.  
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2.3.6.7 Labelling of the riboprobes with digoxigenin 

Standard RNA labelling was carried out with a RNA labelling kit (Roche), using 

digoxigenin-11-UTP as the label molecule. 1 µg of purified template DNA (each 

sense and anti-sense) was added to an RNase-free vial with nuclease-free water up to 

a volume of 13 µL and subsequently mixed with 2 µL of 10 × transcription buffer, 

1 µL protector RNase inhibitor, 2 µL of 10 × NTP labelling mixture (10 mM ATP, 

CTP, GTP, 6.5 mM UTP, 3.5 mM digoxigenin-11-UTP) and 2 µL SP6 (anti-sense 

probe for all FMOs, except FMO3) or T7 (sense probe for  all FMOs, except FMO3) 

RNase polymerase. The mixture was incubated at 37⁰C for 2 h. Any remaining DNA 

template was removed by adding 2 µL DNase I to the sample, which was incubated 

at 37⁰C for 15 min. The reaction was stopped by the addition of 2 µL of 0.2 M 

EDTA. 1 µL 1 mg/mL of yeast tRNA (Roche) was added to the DNase digested 

probes, and the RNA was precipitated by addition of 1/10 volume of 3 M sodium 

acetate (pH 5.2) and 2.5 × volume of 100% ethanol. The vials were incubated 

at -80⁰C for 30 min and then centrifuged at maximum speed for 20 min. The 

supernatant was discarded and the pellet was washed with 70% ethanol, followed by 

centrifugation at maximum speed for 5 min at RT. The supernatant was carefully 

removed, the pellet air-dried for 10 min and then resuspended in 45 µL of nuclease-

free water. Alkaline hydrolysis was used to shorten selected probes (FMO1, FMO3 

and FMO5) to 200 bp when no signal was detected with the originally designed, 

longer probes. 5 µL of 0.4 M sodium bicarbonate (NaHCO3)/0.6 M sodium 

carbonate (Na2CO3) at pH 10.2 was added to the probe and incubated at 60⁰C for an 

exact number of minutes depending on the probe (not done for the FMO2 probe). 

The mixture was neutralised by adding 5 µL of 3 M sodium acetate (NaAc; pH 4.6) 

and the previous ethanol precipitation and wash step was repeated. The pellet was 

air-dried for 10 min and then resuspended in 50 µL nuclease-free water. 

2.3.6.8 Dot blot analysis of riboprobes 

A dot blot analysis was carried out to determine empirically the concentration of the 

newly synthesised probes. For this purpose, the probes were diluted 10 × in 

10 µg/mL yeast tRNA (Roche) and 5 µL of each of the five serial dilutions prepared 

spotted onto a Hybond N+ membrane (Amersham Biosciences; Little Chalfont, UK) 



 

65 

and allowed to dry before cross linking using a UV Stratalinker (Stratagene; 

Cambridge, UK). The membrane was then incubated on a shaker in washing buffer 

(0.1 M maleic acid, 0.15 M NaCl, pH 7.5, 0.3% v/v Tween 20) for 2 min and placed 

in blocking solution (10 × blocking solution in maleic acid buffer) for 30 min, 

followed by incubation with the sheep polyclonal anti-digoxigenin antibody also 

used in the RNA-ISH [Anti-DIG-AP (Roche), 1:5000 in blocking solution] for 

30 min. After being rinsed twice with washing buffer for 15 min, the membrane was 

incubated for 3 min in detection buffer (0.1 M Tris HCl, 0.1M NaCl, pH 9.5) and 

then placed in the dark without shaking in 10 mL of staining buffer, made with one 

SIGMAFAST™ BCIP®-NBT tablet dissolved in water. The signal developed over 

the following hour and the reaction was stopped by placing the membrane in 50 mL 

TE buffer for 5 min. 

2.3.7 Genotyping of rats for FMO2 polymorphism  

A nested PCR was carried out to investigate wild rats and different laboratory rat 

strains for a polymorphism in FMO2 and to discriminate between mutant and wild-

type alleles.  

2.3.7.1 Animals and tissue collection 

Genotyping analysis was conducted in two phases, in the first part, the aim was to 

characterise the frequency of truncated and full-length FMO2 alleles in wild rats, 

whereas the objective of the second part was to determine the allelic frequencies of 

this gene in laboratory rat strains derived from a common wild rat ancestor.  

A total of 35 wild male and female rats captured in the North-West of England were 

examined. Four of these [two each R. norvegicus (brown rat) and R. rattus (black 

rat)], identified on the basis of morphological features, i.e. size, shape of the ears and 

length of the tail, were trapped in Cheshire by a professional exterminator 

commissioned by the BASF Widnes laboratories. Animals were euthanased with 

CO2, followed by exsanguination. A complete post mortem examination was 

performed on each rat and representative samples of liver, lung, kidney, heart, brain, 

spleen and thymus were fixed in formalin and routinely processed for histological 

examination to assess the general health of the rats. Two aliquots of the organs listed 
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above and from the tail were stored at -20°C and -80°C. The remaining 31 rats (all R. 

norvegicus) had been trapped in the Liverpool urban area as part of the PhD project 

of Kieran Pounder (Department of Integrative Biology, University of Liverpool) to 

examine the prevalence of hantaviruses and Ljungan virus in wild rodents. Rats had 

been anaesthetised with isoflurane immediately after trapping and killed by cervical 

dislocation. Organ samples had been collected shortly after euthanasia and stored 

at -80°C and samples of lungs or liver were kindly provided for this project. 

The second part of the analysis was conducted on two colonies of laboratory rats 

(named Welsh and Berkshire), which have been maintained at the BASF Widnes 

laboratories for several years. Both colonies were generated by the mating of wild 

and laboratory rat ancestors and subsequent brother/sister mating for several 

generations. Animals (12 male and 12 female Welsh rats and 13 male Berkshire rats) 

were identified through ear punching, which also allowed the collection of an 

adequate tissue sample for the DNA analysis (Cinelli et al., 2007). Briefly, a small 

circle (approximately 1 mm diameter) of external ear tissue was collected using an 

ear punch, which was cleaned and disinfected between animals to minimise the risk 

of infection and DNA contamination. Each rat was identified with a unique code 

obtained from the initials of the gender and group (MW: male Welsh; FW: female 

Welsh; MB: male Berkshire), followed by a number assigned depending on the 

number and position of the hole/notches (Figure 2.5). 

2.3.7.2 Extraction of DNA from tissue 

DNA was extracted from all captured wild rats (33 R. norvegicus and 2 R. rattus 

specimens) and from the first 5 rats/gender in both Welsh and Berkshire colonies. 

DNA was also obtained from three laboratory rats (Wistar strain), which belonged to 

the control group of study 3. Isolation of total DNA was carried out using the 

QIAamp DNA Mini Kit (Qiagen). Most solutions used in this procedure are 

proprietary components of the kit and information regarding their actual composition 

has not been made available, unless specified. Briefly, approximately 20 mg of tissue 

(lung, liver or ear) were weighed, cut into small pieces and placed in a 1.5 mL tube 

with 180 µL of ATL Buffer (tissue lysis buffer).   
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Figure 2.5. Ear punching numbering system to identify rats for genotyping. According to the 

number and position (medial, central or lateral region of the left or right external ear) of the 

holes, rats were assigned a unique identification number. Image (mouse head drawing) 

source: National Institutes of Health, courtesy of 

www.theodora.com/rodent_laboratory, used with permission. 

Complete lysis of samples was obtained by the addition of 20 µL of proteinase K 

[> 600 milli absorbance units (mAU), contained in the kit] and an overnight 

incubation at 56°C. 200 µL of AL Buffer (lysis buffer) was added to the tubes, 

followed by incubation at 70°C for 10 min, after which 200 µL of ethanol was added. 

The mixture was applied to a QIAamp Mini spin column and centrifuged at 

6,000 × g for 1 min. The column was washed and centrifuged, once with 500 µL 

Buffer AW1 (6,000 × g for 1 min) and twice with 500 µL Buffer AW2 (20,000 × g 

for 3 min). DNA was extracted eluting the column twice with 200 µL AE Buffer 

(10 mM Tris-Cl and 0.5 mM EDTA; pH 9.0), followed by incubation at RT for 

10 min and centrifugation at 6,000 × g for 1 min. DNA concentrations and quality 

were evaluated with a NanoDrop spectrophotometer. Samples with A260/280 ratio 

between 1.6 and 1.8 were deemed suitable for PCR amplification. DNA samples 

were stored at -20°C until further use. 

2.3.7.3 Characterisation of FMO2 by nested PCR 

Frequencies of FMO2 alleles were determined using a nested PCR technique, 

modified from Hugonnard et al. (2004), that allowed efficient targeting of the point 

mutation which differentiates the truncated FMO2 allele from its full length 

counterpart. The nested PCR was conducted with all DNA samples extracted as 

http://www.theodora.com/rodent_laboratory
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specified above. Samples of DNA derived from Wistar rats and R. rattus were used 

as positive controls, since these animals are known to be homozygous for the 

mutated (FMO2*2) and the full-length (FMO2*1) FMO2, respectively (Hugonnard et 

al., 2004).  

Both amplifications were carried out using the GoTaq® Flexi DNA Polymerase kit 

(Promega) and primer pairs designed from R. norvegicus and R. rattus FMO2 gene 

sequences were obtained from Hugonnard et al., 2004 (Table 2.10). 

Table 2.10. Primers used in nested PCR. Primers used in the first amplification were 

FMO2F1 (forward) and FMOR1 (reverse). In the second amplification step, a common 

forward primer (FMO2F2) was used together with two reverse primers, targeting the mutant 

truncated (FMO2R2m) or the wild full-lenght (FMO2R2w) FMO2 sequence.  

Primer 

name 

Gene 

bank 

accession 

number 

Primer Sequence 5’ → 3’ 
Melting 

t C° 

GC

% 

Product 

length 

(bp) 

FMO2F1 

AF458414 

CGCTTGCCTTCGGAGACG 61.1 66.7 
1313 

FMO2R1 TCTGGGTGAGGATGGCATTC 59.5 55.0 

FMO2F2 CACGAGCATTTGCATCAATACCTG 58.0 45.8 

236 FMOR2m ATCTGGCTCTGGCTTTCCAA 59.3 50.0 

FMO2R2w CTGGCTCTGGCTTTTCCC 55.0 61.1 

 

Exactly 100 ng of genomic DNA was amplified with 2 µL of the correspondent 

upstream (FMO2F1) and downstream (FMO2R1) primers (10 µM stock) and 5 µL of 

10 × green buffer, 4 µL of 25 mM MgCl2, 1 µL of 10 mM dNTPs, 0.25 μl GoTaq® 

DNA Polymerase (5 u/μl) and nuclease free water to a final volume of 50 µL. The 

second amplification was carried out using 1 µL of the amplification product of the 

first PCR and the same mixture as above, divided in two tubes, one for each reverse 

primer (FMO2-R2m and FMO2-R2w, recognising specifically the mutant or the full 

length FMO2, respectively; see Figure 2.6). The conditions of amplification were 

identical to those previously described by Hugonnard et al. (2004; Table 2.11).  
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Figure 2.6. Nested PCR method for rat FMO2 genotyping. Genomic DNA (gDNA) was first 

amplified with a primer pair (FMO2-F1 and -R1) that generates a 1313 bp amplicon 

(spanning exons). The second amplification was conducted with a common forward primer 

(FMO2-F2) and two different downstream primers (FMO2-R2m and FMO2-R2w) that 

anneal to either the mutant or wild-type FMO2 sequence, respectively. The double mutation 

targeted by the specific reverse primers is displayed in red. Modified from Hugonnard et al. 

(2004). 

Table 2.11 Thermal cycling conditions for the FMO2 gene amplification with a nested PCR 

(Hugonnard et al., 2004).  

a) Parameters of the first amplification. 

Step t C° Time Number of cycles 

Initial denaturation 94 3 min 1 

Denaturation 94 20 sec 

35 Annealing 62 30 sec 

Extension 72 90 sec 

Final extension 72 5 min 1 

Soak 4 indefinite 1 

b) Parameters of the second amplification. 

Step t°C Time Number of cycles 

Initial denaturation 94 2 min 1 

Denaturation 94 20 sec 

21 Annealing 
70 (mutant) 

64 (wild) 
30 sec 

Extension 72 30 sec 

Final extension 72 5 min 1 

Soak 4 indefinite 1 

EXON 8 EXON 9

> > > > > >

Amplification 1

1313 bp

FMO2 gDNA

Rattus

1340   AAAGAATTGACCTGTTTGGAAAGCCAGAGCCAGATTCTGCAGACCAATTACATTGATT  1399

1261  GAAGAATTGACCTGTTTGGGAAAAGCCAGAGCCAGATTCTGCAGACCAATTACATTGACT  1320

Amplification 2

326 bp

AACCTTTCGGTCTCGGTCTA

Rattus rattus

Rattus norvegicus

CCCTTTTCGGTCTCGGTC

FMO2F1 FMO2R1

FMO2F2
FMO2R2m

FMO2R2w

FMO2R2m

FMO2R2w
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2.4 Enzyme assay and metabolic analysis 

All chemicals and reagents mentioned in this section were obtained from Sigma; 

Poole, UK, unless otherwise specified. 

2.4.1 Preparation of rat liver and lung microsomes 

Rat liver and lung microsomes were prepared as described (Gill et al., 1995; Philpot 

et al., 1975). Briefly, liver and lung were removed from twelve adult male Wistar 

rats (age range: 6-8 w, weight range: 150-170 g), obtained from Charles River 

Laboratories (Margate, UK) and used as control animals in other studies conducted 

in our laboratory based on the specifications detailed above (gender, age, weight, 

euthanasia, no treatment). Liver and lung microsomes were also prepared from eight 

Welsh male rats, different from those used in study 4. Due to the thermal lability of 

several FMO isoforms (Krueger and Williams, 2005), organs were rapidly chilled 

after removal and procedures such as homogenisation and centrifugation were 

carefully monitored to avoid raises in temperature which can lead to inactivation and 

loss of FMO activity. Livers and lungs were rinsed with ice-cold 0.067 M phosphate 

buffer (pH 7.4), containing 1.15% (v/w) KCl. Lung lobes were carefully separated 

from connective tissue and major bronchi. Pooled specimens of liver and lung were 

chopped with scissors and homogenised with both manual and motor-driven 

(Kinematica Polytron PT3000, Phillip Harris, Manchester, UK) tissue homogenisers 

in ice-cold buffered KCl (3 × the volume of the tissue). This was followed by 

differential centrifugation, using an Optima L-60 preparative ultra centrifuge 

(Beckman-Coulter; High Wycombe, UK). With the first spin, conducted at 

10,000 × g for 25  min at 4°C, sedimentation of unbroken cells, nuclei and 

mitochondria was achieved, while the second spin at 105,000 × g for 65 min at 4°C 

precipitated the microsomal component. A further centrifugation with the same 

parameters was conducted on the microsomal pellet resuspended in the same buffer. 

Finally, the pellet was dissolved in phosphate buffer without KCl, split into 1 mL 

aliquots and stored at -80°C.  
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2.4.2 Determination of protein content and enzyme activity of liver 

and lung microsomes 

Hepatic microsomal cytochrome P450 activity was measured according to a 

previously described method (Omura and Sato, 1964). Briefly, microsomes were 

diluted in phosphate buffer without KCl at a concentration of 1 mg/mL and divided 

in two cuvettes. A few grains of sodium dithionate (Na2S2O4) were added to both in 

order to reduce iron contained in the haem group of cytochrome P450 from the ferric 

(Fe3+) to the ferrous (Fe2+) form. CO2 was then gassed through the sample cuvette 

only, at one bubble/second speed for 1 min. Levels of the haemoprotein were 

measured calculating the difference spectrum between the reference and the sample 

cuvettes at 450-490 nm, corrected for an extinction coefficient of 91 mM/cm. Values 

obtained were > 0.3 nmol/mg protein. Concurrently, the protein content of the 

microsomes was measured by the Lowry assay (Lowry et al., 1951), using BSA as a 

standard (see paragraph 2.2.2). 

Liver and lung microsomal FMO activity was evaluated by measuring the 

S-oxygenation of MI, a rather specific substrate for FMO enzymes, through a 

spectrophotometric method, as described by Dixit and Roche (1984). The MI assay 

method, used to evaluate FMO activity in whole cell homogenates or subfractions, is 

based on the high affinity of MI for the FMO active site, by which it is metabolised 

to the correspondent sulphoxide (1) in the presence of oxygen and NADPH: 

MI-SH + NADPH + O2 = MI-SOH + H2O + NADP+ (1) 

The sulphoxide reacts with the parent molecule (2a) or TNB (2b) to produce a 

disulphide: 

MI-SOH + MI = MI-S-S-MI (2a) 

MI-SOH + TNB = MI-S –S-TNB (2b) 

The disulphide is able to oxidise TNB to DTNB, with the formation of one (3a) or 

two (3b) molecules of MI: 
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MI-S-S-MI + 2TNB = DTNB + 2MI (3a) 

MI-S-S-TNB + TNB = DTNB + MI (3b) 

When dithiothreitol (DTT), a strong reducing agent, is added to the standard reaction 

(without MI), it converts all DTNB to TNB. The disappearance of TNB, converted 

back to DTNB after the addition of MI, is measured at 412 nm with a 

spectrophotometer. 

A standard reaction mixture (final volume: 1 mL) was set up for each pool of 

microsomes, containing 0.1 M tricine/KOH (pH 8.3), 0.06 mM DTNB, 0.02 mM 

DTT, 0.1 mM NADPH and 100 mg of microsomal protein. The reactions were 

incubated at 37°C in an optical polystyrene spectrophotometer cuvette and the 

substrate-independent rate of oxygenation was monitored at 412 nm for 3 min. 

Subsequently, MI (1 mM) was added and the rate of decrease of optical density was 

recorded for 5 min. In a set of experiments, microsomes were previously heated at 

55ºC to inhibit FMO activity and investigate the contribution of P450 to the 

oxygenation of MI. 

2.4.3 Incubation of NR678 in rat liver and lung microsomal 

suspensions  

Liver and lung microsomes were incubated with NR678 at 37°C, for up to 1 h. 

Standard reactions were carried out in a final volume of 1 mL phosphate buffer, 

pH 7.4, containing 1 mg/mL rat hepatic microsomal protein, NR678 (500 μM), 

MgCl2 (5 mM), with or without the addition of NADPH (1 mM). As no NR678 

turnover was detected using this set-up, step-by-step modifications to the conditions 

described above were introduced, including changes in the reagent type and 

concentration, temperature, pH and incubation times, as shown in Table 2.12. 
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 Table 2.12. Standard microsomal incubation conditions and optimisation attempts.  

Incubation parameters Standard  Modifications 

Reagents and 

cofactors 

MgCl2 5 mM 500 μM-20 mM 

NADPH 1 mM 500 μM-5 mM 

  

Or replaced with NADPH-regenerating 

system (0.5 mM NADP+; 5 mM glucose-

6-phosphate; 1.5 U glucose-6-phosphate 

dehydrogenase) 

Microsomal 

protein  

(rat liver) 

1 mg/mL 0.5-20 mg/mL 

  
Or replaced with rat lung microsomes or 

mouse liver microsomes 

NR678 500 μM 50 μM-100 mM  

  Dissolved in distilled water or methanol 

FAD - 0.5-5 mM 

GSH - 0.5-5 mM 

Incubation 

conditions 

Incubation 

temperature 

37ºC 35-42 ºC 

Incubation time 15 min 30 sec – 1 h 

pH 7.4 7.0-8.9 

 

The reaction was stopped by the addition of an equal volume of ice-cold acetonitrile. 

Samples were then cooled at -20°C for 2 h, centrifuged (4°C, 10 min, 2200 rpm) and 

the supernatant was gassed to dryness using N2. Samples were resuspended in 

200 μL methanol (50%), centrifuged again (4°C, 5 min, 2200 rpm) and the 

supernatant was analysed by high-performance liquid chromatography (HPLC). 

Phenylthiourea, (PTU) whose chromatographic trace has been previously 

characterised (Henderson et al., 2004b), was used as a positive control to test the 

ability of the in vitro system to catalyse S-oxygenation of thiourea-related molecules. 

Incubations prepared without NR678 or without the microsomal proteins were 

included in each run. Samples were prepared at least in triplicate. 

2.4.4 HPLC method development and validation 

Analysis was performed using the Dionex Summit HPLC system (Dionex 

Corporation, Sunnyvale, CA, USA). The samples were resolved with a Gemini-NX 
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5µm C18 (250 mm by 4.60 mm, Phenomenex; Macclesfield, UK). The mobile phase 

consisted of methanol and distilled water. A sample aliquot of 50 µL was injected 

into the column and eluted at different flow rates (0.8-1.1 mL/min). A gradient of 

10% to 60% methanol was set up for 20 min, maintaining 60% methanol for 5 min, 

and finally reverting to 10% over 5 min. The analytes were detected by a UVD170S 

UV detector (Dionex) at 240 nm or 254 nm. Method validation was carried out in 

accordance with guidelines set out by the FDA (Food and Drug Administration, 

2001). Parameters evaluated throughout this process included accuracy, precision, 

stability, sensitivity and reproducibility. Stability of the analytes was investigated 

after long-term (frozen at -20°C) and short-term (RT) storage, and after several 

freeze and thaw cycles. A calibration curve was generated using a blank sample, a 

zero sample (containing the internal standard phenylthiourea) and six different 

concentrations (0.001 mM to 10 M) of NR678 (5 samples/each), covering the 

expected range, including the lowest limit of quantification (LLoQ). 

2.4.5 Comparative FMO activity metabolism assay with and without 

competitive substrate inhibition 

FMO activities of the different microsomal pools (Wistar rat liver and lung and 

Welsh rat lung) were compared, using the MI assay (see paragraph 2.4.2). 

Differences in absorbance, i.e. the rate of formation of DTNB, were recorded at 

412 nm with a spectrophotometer at four consecutive 1 min intervals following the 

addition of MI to the incubations. The reaction rate (reaction velocity, V0) was 

expressed as nmol per min per mg of microsome protein, after conversion of the 

mean difference in optical density (ΔOD) into nmol, using the molar absorption 

coefficient for DTNB at 37ºC (Eyer et al., 2003). Enzyme kinetics were determined 

using nine scalar concentrations (ranging from 5 µM to 1 mM) of the substrate, and 

were calculated by plotting V0 as a function of the ratio between V0 and the substrate 

(S) concentration (Eadie–Hofstee diagramme). The data sets were analysed by 

GraphPad Prism version 6.00 for Windows (GraphPad Software, La Jolla California 

USA, www.graphpad.com, demo version) with a non linear regression method which 

fits the Michaelis-Menten equation. The experiments were conducted in triplicate. 

Once the kinetic parameters were determined, FMO activity against MI over time 
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(7 min) was compared among the different microsomal incubations, selecting a 

single substrate concentration (500 mM). The experiment was conducted in 

triplicate, at three different days. Negative controls, omitting the microsomal protein 

or MI, or composed exclusively of buffer, were included in each run. Enzyme 

inhibition was investigated, repeating the same experiment with the addition of 

NR678 (500 µM).  

2.5 Statistical analysis  

Statistical analysis was applied to data sets obtained from study 3 and was conducted 

using StatsDirect statistical software (StatsDirect Ltd, Altrincham, UK). The 

normality for each data subset was tested using the Shapiro-Wilk test. As normality 

was indicated, parametric one-way analysis of variance (ANOVA) was applied, 

followed by the Dunnett multiple component test. Statistical evaluation was 

conducted on mean organ weights (paragraph 2.2.1.1), IH cell counts (paragraph 

2.2.1.2), GSH liver and lung measurements (paragraph 2.2.2) and relative expression 

of pulmonary FMO1 and FMO2 mRNA (paragraph 2.3.5). All results were 

expressed as mean ± standard deviation or standard error of the mean (SEM) 

Statistical significance was set at p < 0.05.  
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Chapter 3 Results  

3.1 In vivo investigation into the acute toxic effects of NR678 and an attempt to 

elucidate its metabolism in vitro 

3.2 In vivo investigation into the pulmonary defence responses involved in the 

prevention of NR678-induced lung injury 

3.3 Characterisation of FMO1 and FMO2 expression profiles in untreated rats and 

rats that had received NR678 

3.4 Assessment of R. norvegicus as a suitable animal model to investigate the 

metabolic and toxicological consequences of FMO2 polymorphism in humans  
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3.1 In vivo investigation into the acute toxic effects of NR678 

and an attempt to elucidate its metabolism in vitro 

Data from several sources have shown that the lungs represent the main target for the 

acute toxic effect of thiourea (reviewed in Ziegler-Skylakakis, 2003) and selected 

thiourea-related molecules, such as phenylthiourea (Greaves, 2007d; Scott et al., 

1990) and the rodenticide ANTU (Dieke et al., 1947; Dieke and Richter, 1946; 

Meyrick et al., 1972). Fatal pulmonary oedema and pleural effusion have been 

described consistently across several laboratory animal species, including mice, rats 

and dogs, following the oral administration of high doses (Ziegler-Skylakakis, 2003). 

We hypothesised that NR678, a phenylthiourea derivate that has been investigated as 

a potential rodenticide candidate (see paragraph 1.1), might exert its lethal effect in a 

similar way and therefore carried out a single dose acute toxicity study (study 1) in 

which rats received by oral gavage a known lethal dose (10 mg/kg) of NR678. All 

rats succumbed within a few hours of administration of the compound, showing 

dyspnoea and gross and post mortem findings consistent with severe pulmonary 

oedema and hydrothorax. These findings were further investigated as part of study 3 

(tolerance study), where a cohort of 3 rats received NR678 at a dose of 5 mg/kg. The 

results obtained from this animal cohort are included in this section as they are 

consistent with the acute dose-limiting toxicity of NR678 (DL50 of NR678 was 

within 2 to 5 mg/kg; see paragraph 1.1). An attempt was also made to isolate the 

metabolite(s) of NR678 using rat liver and lung in vitro microsome systems. 

3.1.1 Clinical assessment of rats that had received a high dose of 

NR678 

All rats receiving NR678 at a dose of 10 mg/kg (study 1) were electively euthanased 

starting at 6 h after dosing, due to severe, worsening clinical signs. Clinical signs 

were first observed at 2 h after dosing, when rat 10L-1248 showed hunched posture 

and decreased motor activity (Table 3.1). At 3 h, animals 10L-1248 and 10L-1249 

exhibited mild laboured and rapid breathing, respectively. These clinical 

observations, suggestive of respiratory distress, increased in severity (from mild over 

moderate to severe) within the following hours and were consistently observed in all 
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treated animals. At 6-7 h after dosing, the severity of the respiratory clinical signs 

prompted elective euthanasia. Additional clinical signs included half closed eyes and 

piloerection. Most animals were not eating or drinking from 3 h after dosing 

onwards. Animals that had received a dose of 5 mg/kg (study 3) developed similar 

clinical signs, but later (at about 4 h after dosing) and with generally lower severity. 

One rat (11L-2406) exhibited only mild clinical signs (piloerection and hunched 

posture) and was euthanased at the end of the experiment (7-8 h post dosing). 

Dehydration was observed in two animals at 7 h after dosing. The hydration status 

was checked empirically by pinching up the skin over the neck, which should relax 

without delay into its normal position in normally hydrated animals. The vehicle-

control rats from both studies did not develop any clinical signs and were euthanased 

immediately after the necropsies of animals dosed with NR678 were completed 

(> 7 h post dosing). 

Table 3.1. Clinical signs observed in rats administered a high dose (5 or 10 mg/kg) of 

NR678. Rats were euthanased (E) within 7 h after dosing. 

Rat ID 9 am 930 am 10 am 11 am 12 pm 1 pm 2 pm 3 pm 330 pm 4 pm 

11L-

2405 

NR678 
5 mg/kg 

NCSO NCSO NCSO NCSO 

HP, 

DMA, 

PE, 
LB(2) 

HP, 

DMA, 

PE, 
LB(2) 

HP, 

DMA, 

PE, 
LB(2) 

HP, 

DMA, 
PE, 

LB (3), 

DH. E 

- 

11L-

2406 

NR678 

5 mg/kg 
NCSO NCSO NCSO NCSO NCSO NCSO PE PE, HP 

PE, 

HP. E 

11L-

2407 

NR678 

5 mg/kg 
NCSO NCSO NCSO NCSO 

HP, 

DMA, 
PE 

HP, 
DMA, 

PE, 

LB(2) 

HP, 
DMA, 

PE, 

LB (2) 

HP, 

DMA, 

PE, 
LB (3), 

DH. E 

- 

10L-

1247 

NR678 

10 mg/kg 
NCSO NCSO NCSO NCSO 

HP, 

DMA, 
PE, 

RB (1) 

HP, 

DMA, 
PE, 

RB (2) 

HP, 

DMA, 
PE, 

RB (2) 

HP, 

DMA, 
PE, 

RB (2) 

HP, 
DMA, 

PE, 

RB (3)
.E 

10L-

1248 

NR678 

10 mg/kg 
NCSO NCSO 

HP, 

DMA 

HP, 

DMA, 
PE, 

LB (1) 

HP, 
DMA, 

PE, 

LB (2), 
HCE 

HP, 
DMA, 

PE, 

LB (2), 
HCE 

HP, 
DMA, 

PE, 

LB (2), 
HCE 

HP, 
DMA, 

PE, 

LB (3), 
HCE. E 

- 

10L-

1249 

NR678 

10 mg/kg 
NCSO NCSO NCSO RB(I) 

HP, 
DMA, 

PE, 

LB (2) 

HP, 
PE, 

LB (3), 

HCE 

HP, 

PE, 
LB (3), 

HCE. 

E 

- - 

ID: identification. NCSO: no clinical signs observed; HP: hunched posture; DMA: decreased motor 

activity; PE: piloerection; RB: rapid breathing (tachypnoea); LB: laboured breathing (dyspnoea); 

HCE: half-closed eyes; DH: dehydration. Numbers in brackets indicate the severity of tachypnoea and 

dyspnoea (mild: 1, moderate: 2 and severe: 3). 
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3.1.2 Gross post mortem findings in rats that had received a high 

dose of NR678 

In rats that had received NR678 at a dose of 5 mg/kg, the absolute and relative (to 

body and to brain) weights of the lungs (right lobes) were measured and compared to 

those of the controls. An approximately 20% increase in mean absolute and relative 

to brain lung weights (Figure 3.1) was observed in treated rats, which was not 

statistically significant . 
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Figure 3.1. Absolute and relative lung weights in rats administered a high dose (5 mg/kg) of 

NR678. Treated rats: black bars. Control rats: white bars. Data are presented as mean ± 

standard deviation for n=3. Relative to body weights were calculated according to the 

formula: (absolute lung weight/body weight) ×100. 

NR678-treated rats, regardless of the dose (5 or 10 mg/kg), all exhibited a pleural 

effusion (hydrothorax), represented by the presence of 3 to 6 mL of clear, transparent 

fluid. The lungs were uncollapsed and generally showed diffuse dark red 

discolouration and wet appearance, consistent with pulmonary hyperaemia and 

oedema (Figure 3.2). The amount of blood collected from the abdominal vena cava 

shortly after euthanasia was consistently lower in treated animals than in the controls 

(approximately 1.5-2.5 mL vs. 3.5-5 mL) and the blood of the treated animals 

appeared darker and more viscous, indicating dehydration. In addition, treated 

animals exhibited relatively small prostate glands and seminal vesicles and a 
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distended stomach (due to the presence of a large amount of ingesta). The 

significance of these findings is not clear, but it is most likely that they are indirect 

effects of the primary, toxic pulmonary changes. Food impaction in the stomach may 

have been caused by reduced amounts of water in the gastric content due to 

dehydration together with decreased gastric motility related to the deteriorating 

health. Reduction in size of the male genital accessory glands is a common finding in 

rodents during debilitating conditions (Greaves, 2007c) and may have been caused 

again by dehydration and consequent reabsorption of water from glandular secreta. 

 

Figure 3.2. Macroscopic findings in rats administered a high dose (5 or 10 mg/kg) of 

NR678. (a) Rat 10L-1248 (10 mg/kg of NR678, euthanased at 6 h post dosing). The pleural 

cavity contains a moderate amount of clear fluid (*). (b) Rat 11L-2405 (5 mg/kg of NR678, 

6 h post dosing). The lungs appear wet and exhibit mottled to diffuse red discolouration. 

3.1.3 Cytological and histological findings in rats that had received a 

high dose of NR678 

The cytological specimens prepared from sediments of the thoracic fluid of rats 

receiving 10 mg/kg exhibited low cellularity. They showed occasional 

individualised, non reactive mesothelial cells within a moderately proteinaceous 

background, suggesting the fluid was a transudate. 
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The histological changes observed in NR678-treated rats were restricted to the lungs 

and liver. Compared to control rats (Figure 3.3a,c), the main histological feature in 

the lung of treated animals was a multifocal alveolar oedema, characterised by the 

presence of moderate to high amounts of eosinophilic, homogenous or faintly 

granular material filling the alveolar lumen (Figure 3.3b). Alveoli located 

immediately beneath the pleura were most intensely affected. Similar proteinaceous 

material was diffusely present in the interstitium surrounding bronchi and blood 

vessels (interstitial oedema; Figure 3.3d). Lymphatic vessels were dilated and 

contained large amounts of similar eosinophilic material. Pulmonary blood vessels 

and capillaries appeared markedly dilated and engorged with red blood cells 

(hyperaemia). The alveolar and interstitial fluid did not stain positive for fibrin using 

special stains (MSB Trichrome, PTAH and Fraser-Lendrum). NR678-induced 

microscopic changes were not dose-related as they occurred with similar incidence 

and severity in both treatment groups. However, rat 11L-2406 that had been given 

NR678 at a dose of 5 mg/kg and had shown less severe clinical signs (Table 3.1), 

also exhibited less intense pulmonary alveolar oedema (graded as mild), whereas the 

remaining treated animals all had moderate or marked alveolar oedema. Several 

treated rats also exhibited mild changes in the alveoli, represented by scattered cells 

showing dark condensed and fragmented nuclei (Figure 3.4a, b). These cells, which 

were most likely consistent with endothelial cells, type I or, less frequently, type II 

pneumocytes, based on their morphology and location within the alveolus, were 

shown to undergo apoptosis based on their expression of cleaved caspase 3 (Figure 

3.4d). Increased numbers of macrophages, characterised by abundant eosinophilic 

foamy cytoplasm, were present within the alveoli of treated rats. They were mainly 

found within the alveolar lumen (Figure 3.4a). In both treated groups (5 and 

10 mg/kg), these cells often exhibited increased cytoplasmic eosinophilia and 

karyolysis (necrosis).  
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Figure 3.3. Histological demonstration of alveolar and interstitial oedema in the lungs of rats 

administered a high dose (10 mg/kg) of NR678. (a) Rat 10L-1246 (control, euthanased at 8 h 

post dosing). The alveolar lumen (*) is empty. (b) Rat 10L-1247 (10 mg/kg of NR678, 7 h 

post dosing). Alveolar lumina (*) contain abundant faintly eosinophilic homogenous 

proteinaceous fluid. Small vessels and alveolar capillaries are engorged with erythrocytes 

(hyperaemia). (c) Rat 10L-1246 (control). There is virtually no separation between the 

outline of an artery (double-headed arrow: perivascular space) and the adjacent parenchyma. 

(d) Rat 10L-1247 (10 mg/kg of NR678, 6 h after dosing). The perivascular space (double-

headed arrow) is markedly distended due to the presence of fluid (interstitial oedema). 

Scattered eosinophils (arrowheads) are present in the expanded perivascular space. HE stain. 

Bars: 20 µm. Lung tissue was fixed by immersion in formalin, without previous instillation. 
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Figure 3.4. Histological and immunohistological demonstration of apoptotic cells within the 

alveolar lining in rats administered a high dose (5 mg/kg) of NR678. (a and b) Rat 11L-2405 

(5 mg/kg of NR678, euthanased at 6 h post dosing). (a) Scattered cells lining the alveoli 

show nuclear condensation and fragmentation (arrowheads). The alveolar lumen (*) contains 

proteinaceous fluid and alveolar macrophages (arrows). HE stain. (b) Alveoli filled with 

proteinaceous fluid (*) and apoptotic lining cells (arrowhead) are seen in more detail in 

semithin sections stained with Toluidine blue. (c and d). Immunohistology for cleaved 

caspase 3. (c) In the control animal (11L-2402, 24 h post dosing), no positive cells are found. 

(d) In the treated rat (11L-2405), alveolar cell death is via apoptosis, as indicated by the 

presence of occasional alveolar cells (likely type I and II epithelial and vascular endothelial 

cells; arrowheads) expressing cleaved caspase 3. Peroxidase anti-peroxidase method, rabbit 

anti-human cleaved caspase 3, Papanicolaou's haematoxylin counterstain. Bars: 10 µm.  
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Staining for aquaporin 5 to highlight type I pneumocytes confirmed the presence of a 

continuous alveolar lining (Figure 3.5a,b). Apart from the scattered apoptotic 

changes mentioned above, endothelial cells did not exhibit evident morphological 

changes and immunohistological staining for the endothelial cell marker von 

Willebrand factor (factor VIII-related antigen) confirmed the presence of an intact, 

non activated endothelial cell lining of blood vessels (Figure 3.5c,d). 

Histological changes in the liver of treated animals were represented by scattered 

individual necrotic centrilobular hepatocytes, surrounded by a few mononuclear 

inflammatory cells, mainly lymphocytes and macrophages. No evidence of single 

cell necrosis was detected in the control rats (Figure 3.6a). Dying hepatocytes were 

characterised by increased cytoplasmic eosinophilia and dark condensed nuclei 

(Figure 3.6b) and did not express cleaved caspase 3 (data not shown), suggesting 

necrosis as the main mechanism of death rather than apoptosis. In the control livers, 

the centrilobular and midzonal hepatocytes exhibited a clear rarefied cytoplasm 

(Figure 3.6a) consistent with the accumulation of a moderate amount of glycogen. 

Diffuse glycogen loss was evident in all treated animals (Figure 3.6b), as suggested 

by the condensed, homogeneously eosinophilic cytoplasm of the centrilobular and 

midzonal hepatocytes in these rats. This finding is likely a consequence of the 

decreased food consumption observed in treated rats which was seen from 3 h post 

dosing onwards.  

The incidence and severity of microscopic changes in the lungs and liver of NR678-

treated rats are shown in Table 3.2.   
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Figure 3.5. Immunohistological demonstration of type I pneumocytes and endothelial cells 

in the lungs of rats administered a high dose (5 mg/kg) of NR678. (a and b) 

Immunohistology for aquaporin 5. (a) Rat 11L-2402, (control, euthanased at 24 h post 

dosing). Aquaporin 5-positive type I pneumocytes form a continuous layer (arrowhead). (b) 

Rat 11L-2405 (5 mg/kg of NR678, 6 h post treatment). Like in the control animal, aquaporin 

5-positive type I pneumocytes form a continuous layer. Peroxidase anti-peroxidase method, 

rabbit anti-rat aquaporin 5, Papanicolaou's haematoxylin counterstain. (c and d) 

Immunohistology for factor VIII-related antigen. (c) Rat 11L-2402. The endothelial lining 

(arrow) consists of a continuous layer of flat cells. (d) Rat 11L-2405. Like in the control 

animal, the endothelial lining is represented by a continuous layer of flat cells. Peroxidase 

anti-peroxidase method, rabbit anti-human factor VIII, Papanicolaou's haematoxylin 

counterstain). Bars: 20 µm.  
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Figure 3.6. Histological features of the liver of rats administered a high dose (5 mg/kg) of 

NR678. (a) Rat 11L-2402 (control, euthanased at 8 h post dosing). The centrilobular 

hepatocytes are all viable and show abundant clear rarefied cytoplasm, consistent with the 

accumulation of glycogen. (b) Rat 11L-2405 (5 mg/kg of NR678, 6 h post dosing). Scattered 

necrotic hepatocytes (arrows), characterised by increased cytoplasmic eosinophilia and 

nuclear pyknosis, are observed in a centrilobular area, surrounded by occasional 

mononuclear inflammatory cells (open arrowhead). Hepatocytes have a homogeneous 

eosinophilic cytoplasm, indicating that they are devoid of glycogen. CV: centrilobular vein. 

HE stain. Bars: 20 µm. Inset: 10 µm.  

 

Table 3.2. Summary of the key histological findings in lungs and liver of rats administered a 

high dose (5 and 10 mg/kg) of NR678. 

NR678 

dose (mg/kg) 

Histological findings 

Lungs Liver 

Alveolar and 

interstitial 

oedema 

Increased 

alveolar 

macrophages 

Alveolar cell 

apoptosis 

Single hepatocyte 

necrosis 

5 3/3 (2.7) 3/3 (1.5) 2/3 (1.0) 3/3 (1.3) 

10 3/3 (3.6) 3/3 (2) 2/3 (1.5) 3/3 (1.6) 

Results are expressed as number of animals showing the histological finding/number of animals per 

group. The average severity of each finding (in brackets) was calculated by summing the severity 

grades and dividing the total by the number of animals affected by that finding. Severities of 

histological findings were graded on a scale of 1 to 5 as slight, mild, moderate, marked or severe. 
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NR678-related microscopic changes were observed also in the lymphoid organs. In 

control animals, lymphatic tissues (thymus, spleen, mesenteric lymph nodes and gut-

associated lymphoid tissue) generally exhibited only rare apoptotic cells, mostly 

consistent with lymphocytes. In the thymus, apoptotic lymphocytes were mostly 

observed within the cortex (Figure 3.7a,b); the spleen and lymph nodes showed 

moderately sized primary lymphoid follicles with very occasional apoptotic 

lymphocytes in the centre. The number of apoptotic lymphocytes was increased in 

the lymphoid tissues of treated rats. In animals administered a dose of 10 mg/kg, 

lymphocyte apoptosis was mainly seen in the cortex of the thymus (marked severity; 

Figure 3.7c,d) and in the lymphoid follicles of the mesenteric lymph nodes; low or 

moderate numbers of apoptotic lymphocytes were also observed in the splenic white 

pulp (lymphoid follicles, marginal zone and periarteriolar lymphoid sheaths) and in 

the lymphoid follicles of the gut-associated lymphoid tissue. In addition, scattered 

apoptotic lymphocytes were also detected in the lamina propria of duodenum, 

jejunum and ileum. Mild to marked lymphocytic apoptosis was also present in the 

spleen (white pulp) and the thymus (cortex) of rats given a dose of 5 mg/kg; the 

remaining lymphoid organs were not examined in this cohort. The incidence and 

severity of microscopic changes in the lymphatic tissues of NR678-treated rats are 

shown in Table 3.3. 

In addition, both control and treated animals occasionally exhibited slight to mild 

interstitial infiltration by eosinophils around the main pulmonary vessels and 

bronchi. Eosinophils were moderately increased in number in the lungs of rat 10L-

1247 dosed with 10 mg/kg of NR678, where they infiltrated the interstitium 

surrounding small calibre vessels. These findings were not NR678-related effects 

because they were distributed randomly among groups or their appearance was 

similar to findings detected in controls from this and other studies using rats from the 

same strain and supplier (study 3).  
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Figure 3.7. Histological features of the thymus of rats administered a high dose (10 mg/kg) 

of NR678. (a and b) Rat 10L-1245 (control, euthanased at 7 h post dosing). (a) The thymus 

has a normal microscopic appearance with clear distinction between cortex (C) and medulla 

(M). (b) Apoptotic lymphocytes (arrowhead), characterised by a dark condensed nucleus, are 

extremely rare in the thymic cortex. (c and d) Rat 10L-1247 (10 mg/kg of NR678, 7 h post 

dosing). (c) The thymic cortex exhibits decreased cellularity. (d) In the cortex, numerous 

apoptotic lymphocytes are seen. HE stain. Bars: 200 µm (a and c) and 20 µm (b and d). 

Table 3.3. Summary of the key histological findings in the lymphoid tissues of rats 

administered a high dose (5 and 10 mg/kg) of NR678. 

NR678 

dose (mg/kg) 

Lymphocytic apoptosis 

Thymus Spleen 
Mesenteric 

lymph nodes 

Gut-associated 

lymphoid tissue 

5 3/3 (4.0) 3/3 (2.3) NE NE 

10 3/3 (4.0) 3/3 (2.0) 1/3 (4.0) 3/3 (2.3) 

Results are expressed as number of animals showing the histological finding/ number of animals per 

group. The average severity of each finding (in brackets) was calculated by summing the severity 

grades and dividing the total by the number of animals affected by that finding. NE: not examined. 

Severities of histological findings were graded on a scale of 1 to 5 as slight, mild, moderate, marked 

or severe. 
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3.1.4 Ultrastructural findings in rats that had received a high dose of 

NR678 

Since the light microscopic examination of the lung did not provide any evidence of 

overt vascular damage as a cause for the observed marked pulmonary oedema, an 

ultrastructural examination was undertaken.  

Examination of a control animal confirmed the normal lung morphology in rats of 

this age group (Figure 3.8). Alveolar capillaries were lined by one continuous layer 

of endothelial cells (unfenestrated endothelium; Figure 3.8a,b). The amount of 

cytoplasm displayed by the endothelial cells varied according to the topographical 

distribution of the capillary (Figure 3.8b). Endothelial cells exhibited abundant 

cytoplasm and therefore appeared thick at the interface with the pulmonary 

interstitium and contained a moderate amount of organelles and caveolae. The 

cytoplasm of the endothelial cells opposing the alveolar lumen appeared markedly 

attenuated and almost devoid of organelles and intercellular junctions. A thin, 10-

15 nm continuous electron-dense rim (basement membrane) was visible beneath the 

endothelium, separating it from the pneumocytes (Figure 3.8c). The endothelial cells 

opposing the type I alveolar epithelial cells, from which they are separated by the 

basement membrane, form the alveolar-capillary (air-blood) barrier, through which 

gases are exchanged (Gil, 2011; Meyrick, 1990). 

In the lungs of the rat euthanased at 6 h after the administration of NR678, the 

general architecture of the alveolar unit was preserved and comparable to that of the 

control animal (Figure 3.9a). However, sub-endothelial or endothelial cytoplasmic 

bleb formation was detected within the alveolar capillaries (Figure 3.9a,b,c). The 

blebs appeared to result from the separation of the cytoplasm of the endothelial cell 

from the underlying basal lamina (subendothelial bleb; Figure 3.9b) or to have 

developed within the cytoplasm itself. Blebs ranged from 100 nm to 1 μm in 

diameter and had a segmental distribution, being more frequent in the thin portion of 

the alveolar-capillary unit. They usually contained material that, due to its electron 

density being similar to that in the capillary lumen, was interpreted as proteinaceous 

material consistent with plasma. In addition, the endothelial lining appeared 
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multifocally discontinuous (Figure 3.9c). This finding was characterised by an 

irregular endothelial cell surface and occasional gap formation, often in areas 

adjacent to the intercellular junctions. In proximity to the gaps within or between 

endothelial cells, the alveolar lumen contained proteinaceous material with an 

electron-density similar to that of plasma (alveolar oedema; Figure 3.9d). Similarly, 

collagen fibres in the interstitium were separated by analogous proteinaceous 

material (interstitial oedema). Endothelial cells often appeared swollen (Figure 3.9d) 

and showed rarefaction or swelling of organelles and caveolae (Figure 3.10a) as well 

as formation of round electron-dense bodies (Figure 3.10c), interpreted as 

aggregates of RNA (Meyrick et al., 1972). Rarely, endothelial cells exhibited signs 

of irreversible injury, characterised by nuclear pyknosis and fragmentation 

(interpreted as apoptotic cells, Figure 3.10d). Ultrastructural evidence of cell death 

was not detected in other cell types, suggesting that those alveolar cells that were 

identified as apoptotic in the HE stained sections and due to their expression of 

cleaved caspase 3 (Figure 3.4) were almost exclusively endothelial cells. A few 

binucleated endothelial cells were also observed (Figure 3.10d). 

3.1.5 Bioanalytical method validation of NR678 and lack of 

metabolic turnover at HPLC 

NR678 was found to elute at 16.2 min (Figure 3.11). A calibration curve was 

generated (concentrations: 0.001–5 mM; Figure 3.11 inset) and the LLoQ was 

determined to lie between 0.005 and 0.01 mM. Mean test values were within 10% of 

the actual value when different replicates (accuracy) and batches (precision) were 

run. NR678 gave consistent elution times and total absorbance values when it was 

stored at different temperatures (RT, 4°C and -20°C) for different amounts of time 

(6 h, 24 h, 48 h and 7 d) or after freeze and thaw cycles. In both liver and lung rat 

microsomal suspensions, no discernible metabolite of NR678 was detected at either 

low or high concentrations. HPLC analysis of liver and lung microsomal incubations 

of the reference standard PTU revealed a single metabolic peak (Figure 3.12), 

presumably consistent with PTU-sulphenic acid as previously described (Henderson 

et al., 2004b).  



 

91 

 

Figure 3.8. Ultrastructural features of the air-blood barrier in the normal rat lung. Rat 11L-

2402 (Control, euthanased at 8 h post dosing). (a) The alveolar lumen (*) is lined by type I 

(black arrows) and type II (black solid arrowheads) pneumocytes and contains capillaries 

lined by endothelial cells (white arrows). (b) Type I pneumocytes (black arrow) are 

separated from the underlying capillary endothelial cells by a fused continuous basal lamina 

(white arrowhead). Endothelial cells are flat where they interact with type I pneumocytes, 

whereas they are thicker (white arrow indicates endothelial cell cytoplasm) at the interface 

with the alveolar interstitium (#). (c) Closer view of the air-blood barrier. The basement 

membranes of the type I pneumocyte (black arrow) and the endothelial cell (white arrow) are 

fused and form a single layer (white arrowhead). The cytoplasm of both cell types contains a 

small quantity of organelles (+). (d) Closer view of a portion of an endothelial cell (white 

arrow) opposing the interstitium (#). Rough endoplasmic reticulum and mitochondria are 

seen within the cytoplasm (+).   
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Figure 3.9. Ultrastructural features of the air-blood barrier in the lung of a rat administered a 

high dose (5 mg/kg) of NR678. Rat 11L-2405 (euthanased at 6 h post dosing). (a) The 

architecture of the alveolar unit is preserved, however, endothelial cells appear partially 

detached from the basement membrane and protrude into the capillary lumen to form up to 

1 µm blebs (solid black arrowheads). A degenerate macrophage (open white arrowhead) is 

seen within the alveolar lumen (*). (b) Closer view of a subendothelial bleb. The cytoplasm 

of the endothelial cell is separated from the underlying basement membrane, forming a 1 µm 

in diameter cleft (solid black arrowhead). (c) The endothelial lining appears multifocally 

discontinuous and exhibits occasional gaps (open black arrowhead). Endothelial cells with a 

fragmented nucleus (apoptosis; solid black arrow) are observed infrequently. Inset: gap 

formation (open black arrowhead) occurs in the vicinity of the cellular junction (solid white 

arrowhead) (d) The alveolar lumen (*) is filled with granular proteinaceous material similar 

to the material present in the capillary lumen (plasma). Similar material multifocally expands 

the air-blood barrier (white arrows) and the interstitium (#).  
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Figure 3.10. Ultrastructural features of the endothelial cell lining in the alveolar capillaries 

of the lung of a rat administered a high dose (5 mg/kg) of NR678. Rat 11L-2405 (euthanased 

at 6 h post dosing). (a) The basement membrane is multifocally discontinuous (black 

arrows). The cytoplasm of the endothelial cell is distended and contains swollen 

mitochondria (solid white arrowheads) and dilated caveolae (open black arrowheads). (b) 

Closer view of the cytoplasm of an endothelial cell (N; nucleus) exhibiting swollen 

mitochondria (solid white arrowheads) and dilated caveolae (open black arrowheads). (c) 

Multifocal round or oval electron dense aggregates (open white arrowhead) are seen within 

the cytoplasm of an endothelial cell. (d) Occasional apoptotic (solid black arrowhead) and 

binucleated (white arrow) endothelial cells are seen. The adjacent alveolar lumen is filled 

with granular proteinaceous fluid (*).  
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Figure 3.11. Overlaid HPLC UV chromatograms of different standard concentrations of NR678 

dissolved in methanol. Inset: linear calibration curve. The mobile phase is methanol and distilled 

water at a flow rate of 0.9 mL/min. UV: 230 nm. 

 

Figure 3.12. HPLC UV chromatograms of phenylthiourea incubated in rat lung microsomes. A 

single metabolite peak is discernible at approximately 12.7 min. The mobile phase is methanol and 

distilled water at a flow rate of 0.9 mL/min. UV: 230 nm.  
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3.2 In vivo investigation into the pulmonary defence 

responses involved in the prevention of NR678-induced lung 

injury  

As mentioned before, the administration of low non-lethal doses of the thiourea-

based rodenticide ANTU to rats resulted in the development of tolerance to normally 

lethal doses (Barton et al., 2000; Dieke and Richter, 1946; Van Den Brenk et al., 

1976). In order to investigate whether this was the also case for NR678, a pilot study 

(study 2) was undertaken in which rats received a low dose (0.5 mg/kg) of NR678, 

followed 3 h later by a dose that had been previously shown to be lethal (5 mg/kg, 

see paragraph 1.1). Rats did not succumb to the high dose, suggesting they had 

developed the expected tolerance. Subsequently, a more extensive study (study 3) 

was carried out to investigate the morphological changes associated with the 

development of tolerance to NR678 over a period of 14 d. This study comprised rats 

that received the low dose alone (group 3) and rats administered the low dose, 

followed 3 h later by the high dose (group 4). 

3.2.1 Clinical assessment of NR678 tolerogenic dose regimen (study 2) 

In study 2, five rats received NR678 at a dose of 0.5 mg/kg, followed, after 3 h, by a 

dose of 5 mg/kg. All rats survived until the end of the study (day 7). No clinical signs 

were observed after the administration of the LD, within the 3 h prior to 

administration of the HD. The first clinical signs were evident at 3-4 h after the 

administration of the HD, when rat 10L-4742 exhibited mildly decreased motor 

activity (Table 3.4). On day 2, all rats showed mild clinical signs, including 

decreased motor activity, piloerection, hunched posture and rapid breathing. Two rats 

still exhibited mild rapid breathing and piloerection during the morning of day 3, but 

recovered completely by midday. After this, no clinical signs were observed until the 

end of the experiment. Animals gained weight during the study (data not shown) and 

showed normal food consumption. The clinical observations described in these 

animals are suggestive of minor respiratory distress and mild general illness, when 

compared with the clinical signs of severe respiratory distress seen after the 
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administration of the HD alone (see paragraph 3.1.1 and Table 3.1). The resolution 

of these signs within less than 48 h confirms the development of tolerance. 

Table 3.4. Clinical signs observed in rats that had received a low dose (0.5 mg/kg) of 

NR678, followed by a high dose (5 mg/kg) after 3 h (study 2). Euthanasia (E) was performed 

on day 7.  

Rat 

ID 

Day 1 Day 2 Day 3 Days  

4 to 7 
930am 12pm 3pm 430pm 8am 12pm 3pm 9am 12pm 3pm 

10L-4742 NCSO NCSO DMA DMA 

DMA, 

PI, HP, 

RB (1) 

DMA, 

PI, HP, 

RB (1) 

DMA, 

PI, HP, 

RB (1) 

RB (1) NCSO NCSO NCSO. E  

10L-4743 NCSO NCSO NCSO NCSO DMA DMA DMA NCSO NCSO NCSO NCSO. E  

10L-4744 NCSO NCSO NCSO NCSO NCSO SL SL NCSO NCSO NCSO NCSO. E  

10L-4745 NCSO NCSO NCSO NCSO 

DMA, 

PI, HP, 

RB (1) 

DMA, 

PI, HP, 

RB (1) 

DMA, 

PI, HP, 

RB (1) 

PI, 

RB (1) 
NCSO NCSO NCSO. E 

10L-4746 NCSO NCSO NCSO NCSO DMA 
DMA, 

SL  

DMA, 

SL 
NCSO NCSO NCSO NCSO. E  

NCSO: no clinical signs observed; HP: hunched posture; DMA: decreased motor activity; PI: 

piloerection; RB: rapid breathing (tachypnoea); SL: salivation; ID: identification. Numbers in brackets 

indicate the severity of tachypnoea (mild: 1). 

3.2.2 Assessment of tolerance in NR678-treated rats (study 3) 

In study 3, rats received the low dose of NR678 (group 3) or, as in study 2, the low 

dose followed by the high dose after 3 h (group 4) and were culled at different time 

points (see Table 2.2 and Figure 2.1). The results obtained from these two groups 

were compared with those of rats administered the vehicle (controls, group 1) or the 

high dose (group 2). 

3.2.2.1  Changes observed in rats administered a low dose (0.5 mg/kg) of NR678 

(group 3) 

3.2.2.1.1 Clinical assessment 

All rats survived until the end of the study (day 14). No clinical signs were recorded 

in these animals at any time point. 
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3.2.2.1.2 Gross post mortem findings 

There was no evident difference in lung weights (right lobes only) between rats that 

had received a dose of 0.5 mg/kg of NR678 (group 3) and control animals (Figure 

3.13). There were no relevant gross findings in these rats.  

(a) Absolute lung weights 

 

b) Relative to body lung weights [(absolute lung weight/body weight) × 100] 

 

(c) Relative to brain lung weights 

Figure 3.13. Absolute and relative lung weights after the administration of NR678 at a dose 

of 0.5 mg/kg (LD; group 3) or 0.5 mg/kg, followed 3 h later by 5 mg/kg (LD + HD; group 

4). Group 3 and 4 rat cohorts challenged with a dose of 5 mg/kg of NR678 on day 14 and 

euthanased 6 h later are highlighted (bold outlines). Data are presented as mean ± standard 

deviation for n=3. Data from the controls (group 1) and rats administered 5 mg/kg (HD; 

group 2) are reported here for comparison purposes.   
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3.2.2.1.3 Histological and immunohistological findings 

The histological changes observed in rats that had received a dose of 0.5 mg/kg of 

NR678 (group 3) were restricted to the lungs. No relevant changes were found in the 

other organs examined microscopically, i.e. liver, kidneys, heart, brain, spleen and 

thymus.  

In the lungs, there was no evidence of alveolar and interstitial oedema, as it was seen 

with the acute pulmonary toxicity of NR678 observed in rats administered a dose of 

5 mg/kg (group 2; see paragraph 3.1.3.). Rats that had received a dose of 0.5 mg/kg 

of NR678 exhibited slight to mild type II pneumocyte hyperplasia; histological 

evidence of it was first seen at 24 h (Figure 3.14b). Pneumocyte hyperplasia was 

most obvious at day 7 post dosing (Figure 3.14c) and no longer present on day 14 

(Figure 3.14d). Type II pneumocyte hyperplasia was characterised by a diffuse mild 

thickening of the alveolar septa due to the presence of large cuboidal cells with 

abundant pale eosinophilic cytoplasm and a large round euchromatic nucleus with a 

single prominent nucleolus. Most of these cells were located at the junction between 

alveolar septa (alveolar “corners”) and were confirmed to be type II pneumocytes by 

their expression of SP-C, as shown by IH. Similarly to rats administered a high dose 

of NR678 (5 or 10 mg/kg; see Table 3.2), increased numbers of macrophages 

(graded slight to mild) were present free in the alveolar lumen. Only occasional 

macrophages, characterised by an average diameter of 15 µm and homogenous 

eosinophilic cytoplasm, were seen in the control animals (Figure 3.14a); in treated 

rats, alveolar macrophages were more numerous and larger (up to 30 µm diameter), 

with abundant finely vacuolated clear cytoplasm (Figure 3.14b). The increase in 

macrophages was pronounced in all animals at the early time points (3, 6 and 24 h), 

whereas it was less frequently observed (one rat of three), and if, then only with a 

slight degree, at 7 and 14 d after dosing.  
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Figure 3.14. Histological findings in the lungs of rats euthanased at different time points 

after the administration of NR678 at a dose of 0.5 mg/kg. (a) Rat 11L-2402 (control, 

euthanased at 24 h). Thin alveolar septa are shown, lined by type I and type II (arrowhead) 

alveolar epithelial cells. Occasional macrophages (arrow) are seen free in the alveolar lumen. 

(b) Rat 11L-2428 (0.5 mg/kg of NR678, 24 h). Alveolar septa are thickened by increased 

numbers of cells, several of which exhibit morphological features consistent with type II 

pneumocytes (arrowheads). The number of macrophages present in the alveolar lumina 

(arrows) is increased. Macrophages are large (up to 30 µm in diameter) and foamy. (c) Rat 

11L-2429 (0.5 mg/kg of NR678, 7 d). Increased numbers of type II pneumocytes are evident. 

Only very few macrophages are noted, similarly to controls. (d) Rat 11L-2436 (0.5 mg/kg of 

NR678, 14 d). The numbers of macrophages within the alveolar lumina and type II 

pneumocytes are comparable to those in the control animals. HE stain. Bars: 10 µm.  

Histological findings in rats receiving a dose of 0.5 mg/kg of NR678 are summarised 

in Table 3.5.   
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Table 3.5. Summary of the key histological findings in the lungs of rats that had received a 

low dose (0.5 mg/kg) of NR678 (group 3).  

 

G
ro

u
p

 

 

 

Dose 

(mg/kg) 

 

Time of 

death post 

treatment 

Histological findings 

Alveolar and 

interstitial 

oedema 

Increase in 

alveolar 

macrophages 

Type 2 

pneumocyte 

hyperplasia 

Alveolar cell 

apoptosis 

1 0 24 h 0/3 0/3 0/3 0/3 

2 5 6h 3/3 (2.6) 3/3 (2) 0/3 2/3 (1.5) 

3 0.5 

3 h 0/3 3/3 (1.6) 0/3 0/3 

6 h 0/3 3/3 (2) 0/3 0/3 

24 h 0/3 3/3 (2) 2/3 (1) 0/3 

7 d 0/3 1/3 (1) 3/3 (1.3) 0/3 

14 d 0/3 1/3 (1) 0/3 0/3 

Results are expressed as number of animals showing the histological finding/ number of animals per 

group. The average severity of each finding (in brackets) was calculated by summing the severity 

grades and dividing the total by the number of animals affected by that finding. Data from the controls 

(group 1) and rats administered the high dose (group 2) are reported here for comparison purposes. 

A Masson Trichrome stain for the detection of collagen was performed on the lungs 

of selected rats euthanased on days 7 and 14 after dosing. This did not provide 

evidence of increased amounts of collagen in these animals when compared to the 

controls (results not shown). 

An attempt to confirm the increased numbers of type II pneumocytes and 

macrophages seen histologically was conducted using IH for SP-C and lysozyme. 

Staining for SP-C antigen in control animals consisted of a faint brown granular 

cytoplasmic reaction; the positive granules within the cytoplasm are likely consistent 

with immunolabelled lamellar and multivesicular bodies which represent the cellular 

storage compartment of mature SP-C (Conkright et al., 2001). These granules were 

generally low in number (one to three per cell) and were predominantly seen in the 

perinuclear cytoplasm (Figure 3.15a). In the treated animals, a similar granular 

pattern of positivity was observed, although the staining intensity appeared generally 

stronger, the granules were more numerous and often tended to coalesce forming a 

crescent-shaped brown area around the nucleus, in particular in the lungs of rats 

euthanased on day 7 (Figure 3.15d). Rare immune-stained cells were detected within 

the alveolar lumen and were interpreted as desquamated type II pneumocytes or as 
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macrophages containing SP-C as a result of surfactant degradation (Fehrenbach, 

2001). The vast majority of cells that were free in the alveolar lumen did not express 

SP-C and were consistent with alveolar macrophages (Figure 3.15b,c). In the lungs 

of the control animals, the lysozyme expression was seen in numerous cells lining 

the alveoli, several of which had the morphology of type II pneumocytes, and in cells 

present in the alveolar lumen (interpreted as alveolar macrophages; Figure 3.16a). 

The latter generally exhibited a stronger staining intensity than type II pneumocytes, 

which was due to the presence of numerous cytoplasmic dark-brown dense granules 

[likely consistent with lysosomes, where lysozyme is mainly stored (Gibson and 

Phadke, 1994)], in addition to the diffuse light brown cytoplasmic staining that was 

seen in all positive cells. In treated rats, lysozyme-expressing alveolar cells 

consistent with type II pneumocytes were similar in size and morphology to those of 

control animals, but alveolar macrophages generally appeared larger as seen also 

with histology and exhibited a stronger staining (Figure 3.16b,c).   

In order to corroborate the histological results, the SP-C- and lysozyme-positive cell 

populations were counted separately in all treated groups (expressed as the average 

proportion of total cells present in the field/10 fields) and compared to those found in 

the control lungs. In the latter, type II pneumocytes expressing SP-C represented 

approximately 7% of total cells in the alveolar unit field (Figure 3.17a). Type II 

pneumocyte hyperplasia observed histologically (see Table 3.5) was confirmed by 

the statistical analysis, which demonstrated a highly significant (p < 0.001) increase 

(compared to controls) in the proportion of cells expressing SP-C in rats euthanased 

on day 7 after dosing, where type II pneumocytes represented approximately 18% of 

the total cells in the alveolar unit (Figure 3.17a). No significant differences were 

found at earlier time points, including in rats euthanased at 24 h after the 

administration of NR678, in contrast to the histopathological results (see Table 3.5). 

The proportions of SP-C labelled type II pneumocytes in rats euthanased on day 14 

were still slightly higher than in control rats, although no statistical significance was 

observed. On the other hand, in the lungs of the control animals, lysozyme positive 

cells represented approximately 16% of the total alveolar cells (Figure 3.17b), and 

those within the alveolar lumen (free alveolar macrophages) were detected and 

represented less than 2% of total cells per field (Figure 3.17c). Accordingly, 
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lysozyme-positive alveolar lining cells accounted for approximately 14% of all cells 

in the alveolar unit (Figure 3.17d), half of which may be assumed to represent type 

II pneumocytes, according to SP-C immunohistology (7%; see Figure 3.17a). A 

time-dependent increase in the total number of lysozyme positive cells was detected 

in treated rats (Figure 3.17b). The proportion of positive cells progressively 

increased from as early as 3 h after dosing (approximately 19% of total cells) until 

day 7. The increase was statistically significant at the 6 h (p < 0.05) and day 7 

(p < 0.01) time points (22% and 23% of total cells, respectively). The rats euthanased 

on day 14 exhibited scores similar to the controls (17%). Already at 3 h after the 

administration of the LD, the percentage of macrophages free in the lumen of the 

alveoli was twice as high as in the controls (approximately 4% of total cells, see 

Figure 3.17c). The increase was statistically significant (p < 0.01) at the 6 h and 24 h 

time points, where macrophages in the alveolar lumen represented approximately 6% 

of the total cells. From 24 h onwards, the number of desquamated macrophages 

decreased progressively (4.3% at day 7) to reach at day 14 levels similar to controls 

(2.3%). The proportion of lysozyme-positive cells lining the alveoli was only slightly 

increased or similar to that of controls (approximately 14% of total cells in the 

alveolar unit) in treated rats euthanased at early time points (3, 6 and 24  h) after 

dosing (Figure 3.17d). These data paralleled those obtained at these time points with 

the SP-C staining, suggesting that the increase in cellularity observed in the early 

stage of NR678-induced pulmonary injury mainly represents a raise in the numbers 

of alveolar macrophages. On day 7, rats exhibited a significant (p < 0.05) increase in 

the proportion of lysozyme-expressing alveolar cells, accounting for approximately 

18% of all cells. The results obtained from the SP-C staining in rats euthanased at 

this time point suggested that the lysozyme-containing alveolar cells are mostly type 

II pneumocytes. At the 14 d time point, percentages of lysozyme-positive alveolar 

cells were decreased to approximately 15%.  
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Figure 3.15. Immunohistological demonstration of SP-C expressing cells (type II 

pneumocytes) in the lungs of rats euthanased at 24 h and 7 d after the administration of 

NR678 at a dose of 0.5 mg/kg (group 3), compared to control rats and rats that had received 

a high dose (5 mg/kg) of NR678. (a) Rat 11L-2403 (control, euthanased at 24 h). Scattered 

type II pneumocytes in the alveolar wall are seen, they are identified based on their 

morphology in combination with the expression of SP-C (arrowheads). Type II pneumocytes 

exhibit localised faint cytoplasmic staining. (b) Rat 11L-2405 (5 mg/kg of NR678, 6 h). The 

number of SP-C positive type II pneumocytes is comparable to those of the controls. 

Numerous large cells (arrows) that do not express SP-C are present within the alveolar 

lumen (consistent with alveolar macrophages). (c) Rat 11L-2428 (0.5 mg/kg of NR678, 

24 h). Alveoli exhibit numbers of SP-C positive type II pneumocytes similar to the controls 

or only slightly increased. (d) Rat 11L-2430 (0.5 mg/kg of NR678, 7 d). The number of SP-

C positive cells is increased. Type II pneumocytes can be identified based on their strong 

perinuclear granular cytoplasmic staining. Peroxidase anti-peroxidase method, rabbit anti-

human SP-C, Papanicolaou's haematoxylin counterstain. Bars: 10 µm.  
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Figure 3.16. Immunohistological demonstration of lysozyme-expressing cells (type II 

pneumocytes and macrophages) in the lungs of rats euthanased at 24 h and 7 d after the 

administration of NR678 at a dose of 0.5 mg/kg (group 3), compared to control rats and rats 

that had received a high dose (5 mg/kg) of NR678. (a) Rat 11L-2402 (control, euthanased at 

24 h). Numerous lysozyme-positive cells are seen lining the alveoli (type II pneumocytes; 

arrowhead). Only scattered positive cells are seen within the alveolar lumen (alveolar 

macrophages; arrow). (b) Rat 11L-2405 (5 mg/kg of NR678, 6 h). Lysozyme-positive cells 

within the alveolar lumen (alveolar macrophages) are slightly increased in number compared 

to controls and exhibit strong granular cytoplasmic staining. (c) Rat 11L-2428 (0.5 mg/kg of 

NR678, 24 h). Alveolar macrophages are clearly increased in number and are larger than 

those in the controls. They also exhibit a stronger staining intensity than type II 

pneumocytes. (d) Rat 11L-2431 (0.5 mg/kg of NR678, 7 d). Lysozyme-positive cells lining 

the alveoli are more numerous than in the control lungs. Peroxidase anti-peroxidase method, 

rabbit antibody against human lysozyme, Papanicolaou's haematoxylin counterstain. Bars: 

20 µm.   
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Figure 3.17. Immunohistological assessment of the percentage of cells expressing SP-C and 

lysozyme in the lungs of rats after the administration of NR678 at a dose of 0.5 mg/kg (LD; 

group 3). (a) Percentages of total cells expressing SP-C (type II pneumocytes). (b) 

Percentages of total cells expressing lysozyme, including both free alveolar macrophages 

(bottom bar) and alveolar lining cells (top bar). Error bars refer to the overall percentage of 

lysozyme positive cells. (c) Percentages of cells within the alveolar lumen expressing 

lysozyme (alveolar macrophages). (d) Percentages of alveolar cells expressing lysozyme 

(macrophages and type II pneumocytes). Data are presented as mean percentage of positive 

cells/total cells/field/animal ± standard deviation for n=3. * p < 0.05, ** p < 0.01, *** p < 

0.00 (ANOVA, Dunnett’s multiple comparison test). Data from the controls (group 1) and 

rats administered 5 mg/kg (HD; group 2) are reported here for comparison purposes.    
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In an attempt to assess whether the treatment initiated proliferation of cells in the 

alveoli, IH for PCNA was performed. In control animals, PCNA expression in 

alveolar lining epithelial cells was either rare or not detected at all (Figures 3.18 and 

3.19a). Similarly, treated rats euthanased at early time points (3, 6 and 24 h) showed 

negligible PCNA expression (Figure 3.18). However, at day 7 post dosing, a distinct 

statistically significant (p < 0.01) increase in PCNA-positive, proliferating cells was 

observed (Figures 3.18 and 3.19a). Based on their morphology, many PCNA-

positive, alveolar lining cells were identified as type II pneumocytes (Figure 3.19b, 

inset). By day 14, the number of PCNA-positive alveolar cells had decreased to 

levels similar to those in controls (Figure 3.18). 

 

 

Figure 3.18. Amount of PCNA-positive alveolar cells in the lungs of rats after the 

administration of NR678 at a dose of 0.5 mg/kg (LD; group 3). Data are presented as 

average number of positive cells /field/animal ± standard deviation for n=3. ** p < 0.01 

(ANOVA, Dunnett’s multiple comparison test). Data from the controls (group 1) and rats 

administered 5 mg/kg (HD; group 2) are reported here for comparison purposes.  
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Figure 3.19. Immunohistological demonstration of PCNA-positive, proliferating cells in the 

lungs of a control rat and a rat euthanased 7 d after the administration of NR678 at a dose of 

0.5 mg/kg (group 3). (a) Rat 11L-2402 (Control, 24 h). Rare positive cells (arrowhead) are 

seen in the alveolar lining. Inset: higher magnification, demonstration of the homogenous 

nuclear staining, representing the presence of PCNA in the nucleus. (b) Rat 11L-2429 

(0.5 mg/kg of NR678, 7 d). Several PCNA-positive alveolar lining cells are present. Inset: 

higher magnification to highlight the positive cells. Peroxidase anti-peroxidase method, 

mouse antibody against rat PCNA, Papanicolaou's haematoxylin counterstain. Bars: 50 µm. 

3.2.2.1.4 Ultrastructural findings 

TEM was carried out on the lungs of individual rats representative of animals 

euthanased at different time points after the administration of NR678 at a dose of 

0.5 mg/kg (group 3). The ultrastructural findings were compared with those obtained 

from the control animal and those of the acute toxicity study (see paragraph 3.1.4) to 

confirm and characterise the pulmonary changes that develop in rats in response to a 

tolerogenic dose of NR678. 

In rats administered NR678 at a dose of 0.5 mg/kg, endothelial cell alterations were 

observed at early time points (3, 6 and 24 h) in combination with the occurrence of 

increased numbers of alveolar macrophages (at 6 and 24 h; Figure 3.20). Endothelial 

cell changes were represented by the formation of variably-sized blebs in the 

endothelial cells lining the alveolar capillaries, which were identical to those 

described in rats that had received the high dose of NR678 (group 2, see paragraph 
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3.1.4), but less frequently observed. At 3 h post dosing, blebs were only occasionally 

seen (Figure 3.20a), at 6 h, they were observed in several endothelial cells (Figure 

3.20b), and at 24 h, they were only very rarely found (Figure 3.20c,d). They were 

not detected at later time points (7 and 14 d post dosing). As in animals receiving the 

high dose, the blebs appeared to be produced by the separation of the endothelial cell 

from the underlying basement membrane or to develop within the cytoplasm of the 

endothelial cell itself and were filled with proteinaceous material showing an 

electron-density similar to that of plasma. Further changes, like those observed after 

administration of the high dose (discontinuous endothelial lining, gap formation 

between endothelial cells, endothelial cell degeneration or necrosis; see paragraph 

3.1.4.) were not present.  

Consistently with the histological and immunohistological findings, increased 

numbers of alveolar macrophages were obvious in rats euthanased at 6 and, 

especially, 24 h after dosing. Ultrastructurally, alveolar macrophages were generally 

characterised by an irregular, mostly triangular or polygonal shape and a variable 

size (up to 30 µm in diameter). They were found free in the alveolar lumen or, more 

often, adhered to the surface of the alveolar lining (Figure 3.20c,d). They possessed 

small pseudopods that appeared to make contact with the alveolar epithelial cell and 

a variety of cytoplasmic organelles such as mitochondria, endoplasmic reticulum and 

lysosomes that showed no alteration.  

In rats euthanased at 24 h and 7 d post dosing, mature type II pneumocytes were 

more frequent than in control rats and animals examined early after treatment. 

Mature type II alveolar epithelial cells in control rats appeared as cuboidal cells 

scattered in the alveolar epithelium, with a preferential location at the alveolar 

corners (Figure 3.21a). Their cytoplasm contained lamellar bodies, tightly packed 

concentric membrane lamellae, surrounded by an outer membrane, varying in size 

from 100 nm to 2 µm (average diameter: 1 µm). More often, lamellar bodies 

appeared as round empty cytoplasmic vesicles containing only a few disarranged 

electron dense lamellae [likely the consequence of suboptimal fixation; (Williams, 

1990); Figure 3.21a]. The luminal surface of type II pneumocytes was covered by 

short microvilli. Numerous mitochondria and rough endoplasmic reticulum (Figure 
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3.21a), as well as small amounts of smooth endoplasmic reticulum were seen in the 

cytoplasm. The morphology of mature type II pneumocytes was identical in control 

and treated animals, but in treated rats at the 7 d time point, they contained an 

increased number of lamellar bodies that often coalesced and reached a diameter of 

up to 3 µm (Figure 3.21d). Undifferentiated cells with morphological features 

normally seen in either type I or type II pneumocytes were found with increased 

frequency in rats euthanased at 24 h and 7 d post dosing (Figure 3.21c,d). These 

cells were characterised by a large oval to elongated, sometimes slightly indented, 

electron lucent nucleus with finely stippled chromatin and a small amount of 

cytoplasm, devoid of lamellar bodies or other organelles, except for endoplasmic 

reticulum. They were interpreted as immature pneumocytes, as previously described 

(Adamson and Bowden, 1974; Evans et al., 1975). Such immature pneumocytes were 

very rare in the controls animals (Figure 3.21b), where up to 3 cells/ultrathin section 

were found. In rats at 24 h and still at 7 d they post treatment, they were seen in 

almost every alveolar unit.   
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Figure 3.20. Ultrastructural features of the lung of rats administered NR678 at a dose of 

0.5 mg/kg and euthanased at early time points. (a) Rat 11L-2420 (euthanased at 3 h). An 

endothelial cell within the alveolar capillary appears to separate from the underlying 

basement membrane forming a large bleb (solid arrowhead). The bleb is partially filled with 

electron dense granular material. (b) Rat 11L-2424 (6 h). Endothelial blebs are frequently 

observed within the alveolar capillaries (arrowheads). (c and d) Rat 11L-2427 (24 h). 

Individual capillary endothelial cells with bleb formation. Increased numbers of 

macrophages (arrows) are present free in the alveolar lumen or in contact with the alveolar 

epithelial cells. Open black arrowheads: pseudopods of the alveolar macrophages. Open 

white arrowheads: lysosomes within the alveolar macrophages. 
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Figure 3.21. Ultrastructural features of the lung of rats euthanased at 24 h and 7 d after the 

administration of NR678 at a dose of 0.5 mg/kg (group 3), compared to controls. (a and b) 

Rat 11L-2402 (control, euthanased at 24 h). (a) A typical type II alveolar epithelial cell 

(arrow) protruding into the alveolar lumen and containing multiple, variably-sized lamellar 

bodies (solid arrowheads). Inset: the detail of a portion of the cytoplasm of the type II 

pneumocyte is shown. In addition to the lamellar bodies, rough endoplasmic reticulum (*) is 

seen. Note the junctional complex (#) with a neighbouring cell. (b) An immature type II 

pneumocyte precursor cell (“intermediate cell”; open arrowhead) protrudes into the alveolar 

lumen. It is characterised by scant cytoplasm and a large electron lucent nucleus containing 

low amount of granular chromatin. (c) Rat 11L-2427 (0.5 mg/kg of NR678, 24 h). Numerous 

immature pneumocytes (open arrowheads) are present in the alveolar unit, together with 

mature type II pneumocytes (arrows). (d) Rat 11L-2430 (0.5 mg/kg of NR678, 7 d). 

Numerous mature type II pneumocytes (arrows) are present and often contain several 

enlarged lamellar bodies (solid arrowhead).  
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3.2.2.2  Changes observed in rats administered a low dose (0.5 mg/kg) of NR678, 

followed by a high dose (5 mg/kg) 3 h later (group 4) 

3.2.2.2.1 Clinical assessment 

All rats that had received a low dose of NR678 followed 3 h later by the high dose 

survived until the end of the study (up to day 14), but exhibited mild clinical signs 

consistent with minor respiratory distress (dyspnoea) and mild general illness 

(piloerection, hunched posture and decreased motor activity; Table 3.6). These 

clinical observations were similar to those observed in animals administered the high 

dose alone (group 2, see paragraph 3.1.1 and Table 3.1), though far less intense. 

They were also transient and observed only on days 1 and 2 post treatment. One rat 

(11L-2408) remained asymptomatic until the scheduled time of euthanasia (24 h post 

treatment). 

3.2.2.2.2 Gross post mortem findings 

There was no evident difference in lung weights (right lobes only) between the 

challenged rats from group 4 and the controls (Figure 3.13). The only significant 

macroscopic finding was observed in rat 11L-2410, euthanased at 24 h after dosing. 

This animal exhibited 3 mL of clear fluid in the thoracic cavity (moderate 

hydrothorax), similar to, though less marked than animals treated with the high, 

lethal dose alone (see paragraph 3.1.2).  

3.2.2.2.3 Histological and immunohistological findings 

The histological changes observed in the challenged rats were restricted to the lungs 

and were consistent with those detected in rats that had received a dose of 0.5 mg/kg 

of NR678 without challenge. However, one rat (11L-2410), euthanased at 24 h post 

dosing, exhibited mild alveolar and interstitial oedema and mild apoptosis of alveolar 

lining cells, most likely consistent with endothelial cells (Table 3.7). This animal had 

also shown clinical signs of moderate dyspnoea (Table 3.6) and moderate 

hydrothorax at the gross examination.   
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Table 3.6. Clinical signs observed in rats administered NR678 at a dose of 0.5 mg/kg, 

followed 3 h later by a dose of 5 mg/kg (group 4). Rats were eutanased (E) at 24 h (11L-

2408 to 11L-2410), 7 d (11L-2411 to 11L-2413) or 14 d (11L-2417 to 11L-2419) after the 

first dose.  

Rat ID 

Day 1 Day 2 
Day 3 

to 6 

Day 7 
Day 8 

to 13 

Day 

14 

9 am 12 pm 3 pm 4 pm 9 am 3 pm 9 am 9 am 

11L-

2408 
LD 

NCSO, 

HD 
NCSO NCSO NCSO.E - - - - - 

11L-

2409 
LD 

NCSO, 

HD 

PI, HP, 

LB (1) 

PI, HP, 

LB (1) 

HP, LB (1). 

E 
- - - - - 

11L-

2410 
LD 

NCSO, 

HD 

PI, HP, 

LB (2) 

PI, HP, 

DMA, 

LB (2) 

HP. LB (2). 

E 
- - - - - 

11L-

2411 
LD 

NCSO, 

HD 
PI, HP  

PI, DMA, 

HP 
HP, LB (1) 

PI, HP, 

LB (1) 
NCSO NCSO. 

E - - 

11L-

2412 
LD 

NCSO, 

HD 
NCSO PI NCSO 

PI, HP, 

LB(1) 
NCSO 

NCSO. 

E 
- - 

11L-

2413 
LD 

NCSO, 

HD 
NCSO NCSO NCSO 

PI, HP 

LB (1) 
NCSO 

NCSO. 

E 
- - 

11L-

2417 
LD 

NCSO, 

HD 
NCSO NCSO 

PI, HP, 

LB (1) 
NCSO NCSO NCSO NCSO 

NCSO. 

E 

11L-

2418 
LD 

NCSO, 

HD 
NCSO NCSO 

PI, HP, 

LB (1) 
NCSO NCSO NCSO NCSO 

NCSO.

E 

11L-

2419 
LD 

NCSO, 

HD 

PI, 

LB  (1) 
PI, LB (1) HP, LB (1) 

PI, HP, 

LB (1) 
NCSO NCSO NCSO 

NCSO.

E 

ID: identification; NCSO: no clinical signs observed; HP: hunched posture; DMA: decreased motor 

activity; PE: piloerection; LB: laboured breathing (dyspnoea); LD: low dose (0.5 mg/kg); HD: high 

dose (5 mg/kg). Numbers in brackets indicate the severity of dyspnoea (mild: 1, moderate: 2). 

Table 3.7. Summary of the key histological findings in the lungs of rats that had received a 

low dose (0.5 mg/kg) of NR678, followed 3 h later by a dose of 5 mg/kg (group 4).  

 

G
ro

u
p

 

 

 

Dose 

(mg/kg) 

 

Time of 

death post 

treatment 

Histological findings 

Alveolar and 

interstitial 

oedema 

Increase in 

alveolar 

macrophages 

Type 2 

pneumocyte 

hyperplasia 

Alveolar cell 

apoptosis 

1 0 24 h 0/3 0/3 0/3 0/3 

2 5 6h 3/3 (2.6) 3/3 (2) 0/3 2/3 (1.5) 

4 

0.5 + 5 

(3 h 

later) 

24 h 1/3 (2) 3/3 (3) 2/3 (1.3) 1/3 (2) 

7 d 0/3 2/3 (1.5) 3/3 (2) 0/3 

14 d 0/3 2/3 (1) 1/3 (1) 0/3 

Results are expressed as number of animals showing the histological finding/ number of animals per 

group. The average severity of each finding (in brackets) was calculated by summing the severity 

grades and dividing the total by the number of animals affected by that finding. Data from the controls 

(group 1) and rats administered the high dose (group 2) are reported here for comparison purposes. 
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Similar to rats administered 0.5 mg/kg of NR678 (group 3), increased numbers of 

alveolar macrophages and type II pneumocytes were observed histologically in the 

lungs of the challenged rats. SP-C immunohistology revealed a significant (p < 0.05) 

increase (14.1% of total alveolar cells) in type II pneumocytes at 7 d after dosing, 

which doubled the number observed in the control rats (7.1%; Figure 3.22a). 

Percentages decreased, reaching values similar to those of untreated rats, in animals 

euthanased on day 14. Accordingly, the average proportion of lysozyme positive 

cells was significantly increased at 24 h (p < 0.001) and 7 d (p < 0.05) after dosing 

(approximately 24% of the total cells), compared to that observed in the controls 

(16%; Figure 3.22b). On day 14, the proportion of alveolar macrophages and type II 

pneumocytes expressing lysozyme had decreased to 19%, suggesting some degree of 

recovery. Similarly to rats receiving a dose of 0.5 mg/kg of NR678, the increases in 

lysozyme-positive alveolar cells were mainly represented by alveolar macrophages at 

24 h (Figure 3.22c), whilst those seen at 7 d mostly consisted of type II pneumocytes 

lining the alveolar wall and macrophages (Figure 3.22d). An increase of PCNA-

positive pneumocytes, although not statistically significant, was observed in animals 

euthanased at 7 d after dosing (Figure 3.23), with a pattern similar to that observed 

in animals administered the low dose of NR678 (Figure 3.18).  
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Figure 3.22. Immunohistological assessment of the percentage of cells expressing SP-C and 

lysozyme in the lungs of rats after the administration of NR678 at a dose of 0.5 mg/kg, 

followed by a dose of 5 mg/kg 3 h later (LD + HD; group 4). (a) Percentages of total cells 

expressing SP-C (type II pneumocytes). (b) Percentages of total cells expressing lysozyme, 

including both alveolar macrophages (bottom bar) and alveolar lining cells (top bar). Error 

bars refer to the overall percentage of lysozyme positive cells. (c) Percentages of cells in the 

alveolar lumen expressing lysozyme (alveolar macrophages). (d) Percentages of alveolar 

lining cells expressing lysozyme (macrophages and type II pneumocytes). Data are presented 

as mean percentage of positive cells/total cells/field/animal ± standard deviation for n=3. * 

p < 0.05, ** p < 0.01, *** p < 0.001 (ANOVA, Dunnett’s multiple comparison test). Data 

from the controls (group 1) and rats administered 5 mg/kg (HD; group 2) are reported here 

for comparison purposes.   
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Figure 3.23. Amount of PCNA-positive alveolar cells in the lungs of rats after the 

administration of NR678 at a dose of 0.5 mg/kg followed 3 h later by 5 mg/kg (LD + HD; 

group 4). Data are presented as average number of positive cells/field/animal ± standard 

deviation for n=3. Data from the controls (group 1) and rats administered 5 mg/kg (HD; 

group 2) are reported here for comparison purposes. 

3.2.2.2.4 Ultrastructural findings 

The ultrastructural findings in rats that had received a dose of 0.5 mg/kg of NR678 

followed by 5 mg/kg were similar to those described for the other groups. However, 

the changes in the endothelial cells of rats euthanased at 24 h (Figure 3.24) were 

more pronounced than in rats administered NR678 at a dose of 0.5 mg/kg and 

euthanased at the same and earlier time points (3 and 6 h; see paragraph 3.2.2.1.4). 

Endothelial blebs were frequent (Figure 3.24a,b), whilst endothelial gap formation 

was rarely detected. In several fields, the alveolar lumen contained proteinaceous 

material consistent with plasma (alveolar oedema; Figure 3.24a). Different from rats 

that had received the high, lethal dose alone (see paragraph 3.1.4), there was no 

evidence of endothelial cell injury, such as swelling, degeneration or death. 

Additional ultrastructural findings consisted of an increase in alveolar macrophages 

(at 24 h post dosing) and type II pneumocytes (at 24 h and 7 d) and are identical to 

those described in animals that had received only the low dose of NR678 (see 

paragraph 3.2.2.1.4) 
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Figure 3.24. Ultrastructural features in the lungs of a rat (11L-2408) administered NR678 at 

a dose of 0.5 mg/kg, followed 3 h later by 5 mg/kg and euthanased at 24 h. (a) Several 

endothelial blebs (solid arrowheads) are observed within the alveolar capillary. The alveolar 

lumen (*) is filled by granular proteinaceous material. (b) Close-up of an endothelial defect 

showing the multifocal separation of the thin cytoplasm of the endothelial cell from the 

underlying basement membrane (solid arrowheads). Arrows: alveolar macrophages.  

3.2.2.3 Changes observed in rats after the administration of a high dose 

(5 mg/kg) of NR678 on day 14 after previous administration of 0.5 mg/kg or 

0.5 mg/kg followed 3 h later by 5 mg/kg 

In an attempt to determine whether animals previously dosed with NR678 exhibited 

prolonged decreased susceptibility to a lethal dose of the compound, two cohorts of 

rats that had previously been administered NR678 at a dose of 0.5 mg/kg (group 3) 

or 0.5 mg/kg followed by 5 mg/kg 3 h later (group 4) received a further dose of 

5 mg/kg in the morning of day 14 post initial treatment.  

3.2.2.3.1 Clinical assessment 

After the challenge on day 14, all rats that had previously received a dose of 

0.5 mg/kg of NR678 (group 3) exhibited moderate dyspnoea (Table 3.8a). Also, two 

of three animals that had previously received a dose of 0.5 mg/kg of NR678, 

followed after 3 h by 5 mg/kg (group 4) exhibited mild dyspnoea, whereas the 

remaining rat (11L-2415) had no symptoms (Table 3.8b). Overall, the clinical signs 

were less severe than in animals that had received the high, lethal dose alone (see 

Table 3.1). In particular the animals from group 4 challenged on day 14 showed only 

minor clinical signs. Also, challenge with the high dose on day 14 post initial 
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treatment resulted in more severe clinical signs (Table 3.8a) than challenge after 

only 3 h (see paragraph 3.2.1 and Table 3.4 and Table 3.6). 

Table 3.8. Clinical signs observed after the administration of NR678 on day 14 at a dose of 

5 mg/kg in rats that had previously received a dose of 0.5 mg/kg (group 3) or 0.5 mg/kg, 

followed 3 h later by 5 mg/kg (group 4). 

a) Clinical signs in rats administered NR678 at a dose of 0.5 mg/kg (day 1, at 9 am) and challenged in 

the morning of day 14 with 5 mg/kg 

Rat ID 

Day 1 Day 2 
Day 3 

to 13 

Day 14 

9 

am 
12 pm 3 pm 4 pm 9 am 3 pm 9 am 12 pm 2 pm 4 pm 

11L-

2432 
LD NCSO NCSO NCSO NCSO NCSO NCSO 

NCSO, 

HD 

PI, HP, 

DMA, 

LB (2) 

PI, HP, 

DMA, 

LB (2) 

PI, HP, 

DMA, 

LB (2). E 

11L-

2433 
LD NCSO NCSO NCSO NCSO NCSO NCSO 

NCSO, 

HD 
NCSO 

PI, HP, 

DMA, 

LB (2) 

PI, HP, 

DMA, 

LB (2). E 

11L-

2434 
LD NCSO NCSO NCSO NCSO NCSO NCSO 

NCSO, 

HD 

PI, HP, 

DMA,  

PI, HP, 

DMA, 

LB (2) 

PI, HP, 

DMA, 

LB (2). E 

b) Clinical signs in rats administered NR678 at a dose of 0.5 mg/kg (day 1, at 9 am), followed by 

5 mg/kg at 12 pm and re-challenged in the morning of day 14 with 5 mg/kg 

Rat 

ID 

Day 1 Day 2 
Day 3 to 

13 

Day 14 

9 am 12 pm 3 pm 4 pm 9 am 3 pm 9 am 12 pm 2 pm 4 pm 

11L-

2414 
LD 

NCSO, 

HD 

PI, 

LB (1) 

PI, 

HP, 

DMA, 

LB (1) 

NCSO NCSO NCSO 
NCSO, 

HD 

PI, HP, 

LB (1) 

PI, HP, 

LB (1) 

HP, DMA, 

LB (1). E 

11L-

2415 
LD 

NCSO, 

HD 
NCSO NCSO NCSO NCSO NCSO 

NCSO, 

HD 
NCSO NCSO NCSO. E 

11L-

2416 
LD 

NCSO, 

HD 
NCSO NCSO NCSO NCSO NCSO 

NCSO, 

HD 

PI, HP, 

DMA 

PI, HP, 

LB (1) 

HP, DMA, 

LB (1). E 

ID: identification; NCSO: no clinical signs observed; HP: hunched posture; DMA: decreased motor 

activity; PE: piloerection; LB: laboured breathing (dyspnoea); E: euthanasia; LD: low dose; HD: high 

dose. Numbers in brackets indicate the severity of dyspnoea (mild: 1, moderate: 2). 

3.2.2.3.2 Gross post mortem findings 

The two cohorts challenged with a high dose of NR678 on day 14 after initial 

treatment with NR678 at a dose of 0.5 mg/kg (group 3) or 0.5 mg/kg, followed after 

3 h by 5 mg/kg NR678 (group 4) exhibited an increase in absolute lung weights 

and/or lung weights relative to brain weights (Figure 3.13a,c), whereas the lung 

weights relative to body lung weights were unchanged (Figure 3.13b). These weight 

increases resembled those observed in rats that had received the high, lethal dose of 
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NR678 alone (Figure 3.1). The lung weight increases, however, were not statistically 

significant (p: 0.0045). 

All rats in the group 3 cohort challenged on day 14 after initial treatment with a dose 

of 0.5 mg/kg of NR678 exhibited a moderate to severe hydrothorax, represented by 

accumulation of clear fluid (3-5 mL) in the thoracic cavity, moderate diffuse 

pulmonary hyperaemia and oedema, characterised by diffuse dark red discolouration 

and wet appearance of the lungs, and slight dilation of the stomach due to impacted 

ingesta. The same gross findings occurred with similar incidence in the group 4 

cohort challenged with the high dose of NR678 on day 14, i.e. all three rats exhibited 

moderate to severe hydrothorax (3-6 mL of clear fluid; Figure 3.25), moderate 

diffuse hyperaemia of the lungs and slight distention of the stomach with ingesta in 

one rat. 

 

Figure 3.25. Macroscopic findings observed at 6 h post administration of a high dose 

(5 mg/kg) of NR678 on day 14 in rats that had previously received a dose of 0.5 mg/kg, 

followed 3 h later by 5 mg/kg NR678 (group 4; rat 11L-2414). The thoracic cavity contained 

3 mL of clear fluid (*), consistent with moderate hydrothorax. The lungs exhibit diffuse dark 

red discolouration, representing moderate hyperaemia. The label in the picture refers to the 

original animal number.   
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3.2.2.3.3 Histological findings 

The histological changes observed in rats challenged on day 14 with a lethal dose of 

NR678 were restricted to the lungs. Pulmonary oedema was seen histologically in all 

rats (Table 3.9 and Figure 3.26), with similar incidence and severity as in rats 

receiving the high dose alone (see Figure 3.3). Like rats from group 2, the animals 

challenged with the high dose on day 14 exhibited slightly increased numbers of 

alveolar macrophages and slight apoptosis of alveolar endothelial cells. 

Table 3.9. Summary of key histological findings in the lungs after administration of NR678 

at a dose of 5 mg/kg on day 14 in rats that had previously received a dose of 0.5 mg/kg 

(group 3) or 0.5 mg/kg followed 3 h later by 5 mg/kg NR678 (group 4).  

G
ro

u
p

 Dose 

(mg/kg) 

(day 1) 

Dose 

(mg/kg) 

(day 14) 

Time of 

death after 

last 

treatment 

Histological findings 

Alveolar and 

interstitial 

oedema 

Increased 

alveolar 

macrophage 

Alveolar cell 

apoptosis 

2 5 - 6 h 3/3 (2.6) 3/3 (2) 3/3 (1.3) 

3 0.5 5 6 h 3/3 (2.6) 2/3 (1) 2/3 (1) 

4 
0.5 + 5 

(3 h later) 
5 6 h 3/3 (3) 1/3 (1) 1/3 (1) 

Results are expressed as number of animals showing the histological finding/ number of animals per 

group. The average severity of each finding (in brackets) was calculated by summing the severity 

grades and dividing the total by the number of animals affected by that finding. Data for rats 

administered a dose of 5 mg/kg (group 2) are reported here for comparison purposes. 
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Figure 3.26. Histological features in the lungs of rats administered a dose of 5 mg/kg of 

NR678 on day 14 after they had previously received a dose of 0.5 mg/kg (group 3) or 

0.5 mg/kg followed 3 h later by 5 mg/kg (group 4). (a and b) Rat 11L-2414 (group 4, 

rechallenged on day 14 with 5 mg/kg of NR678 and euthanased 6 h later). (a) Multifocally, 

alveoli are filled with a large amount of faintly eosinophilic material (*; alveolar oedema). 

The interstitial space surrounding bronchi and vessels is markedly expanded (#; interstitial 

oedema). Bar: 50 µm. (b) Higher magnification of an area where the alveolar units contain 

eosinophilic material arranged in a meshwork of fibrils (*, consistent with fibrin). Bar: 

10 µm. (c and d) Rat 11L-2435 (group 3, challenged on day 14 with 5 mg/kg of NR678 and 

euthanased 6 h later). (c) There is a low amount of homogeneous to fibrillar eosinophilic 

material within alveolar lumina (*, alveolar oedema). Alveolar capillaries and small calibre 

veins are filled with erythrocytes (solid arrowheads; moderate to marked diffuse 

hyperaemia). Bar: 20 µm (d) Higher magnification of (c). Arrow: alveolar macrophage. HE 

stain. Bar: 10 µm.  



 

122 

3.2.2.4 Effects of NR678 on hepatic and pulmonary GSH contents in vivo 

GSH levels were measured in the liver and lung of all rats in study 3, including those 

challenged on day 14 with the high dose of NR678. In the liver of rats administered 

the high dose alone (group 2) and in the two cohorts of rats that had received the high 

dose of NR678 on day 14, GSH levels were reduced to approximately 70% of those 

measured in the control rats (Figure 3.27a). Hepatic GSH levels in rats that had been 

administered the low dose of NR678 without challenge were generally lower than 

those observed in the controls. No meaningful differences were seen in rats 

administered a dose of 0.5 mg/kg of NR678 followed by 5 mg/kg 3 h later compared 

to control rats.  

The levels of pulmonary GSH in rats that had received the high dose and in the 

cohorts challenged on day 14 were reduced to approximately 10% of those measured 

in the controls (Figure 3.27b). Lung GSH levels in rats administered the low dose or 

the low dose followed by the high dose 3 h later were generally comparable or 

moderately lower than those observedin the controls. 

 

Figure 3.27. GSH contents in the liver and lung of NR678-treated rats. Hepatic (a) and pulmonary 

(b) GSH levels are shown in rats administered the high dose (HD, 5 mg/kg; group 2) of NR678, the 

low dose alone (LD, 0.5 mg/kg; group 3) or the low dose, followed 3 h later by the high dose (LD + 

HD; group 4). Group 3 and 4 rat cohorts challenged with the high dose on day 14 and euthanased 6 h 

later are highlighted (bold outlines). Data are presented as mean ± standard deviation for n=3. * 

p < 0.05 ** p < 0.01 *** p < 0.001 (ANOVA, Dunnett’s multiple comparison test). 
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3.3 Characterisation of FMO1 and FMO2 expression 

profiles in untreated rats and rats that had received NR678  

Compared to other species, available data concerning the distribution of FMO 

isoforms in the rat are scant and focus predominantly on the expression of FMO1 and 

FMO3 in the liver and kidneys [(Novick et al., 2009); see paragraph 1.5.6.3]. In the 

rat lung, FMO1 and FMO2 are the predominant FMO isoforms, as shown by 

Western blot analysis (Hugonnard et al., 2004). However, no research has been 

conducted to identify the cells expressing these proteins or the correspondent mRNA 

in this organ. Our main interest was to characterise the localisation of FMO2 mRNA 

in the rat lungs as a mean to assess the potential role of FMO2 in the onset of the 

acute toxic effect of thiourea-based molecules and in the development of tolerance. 

Thus, in this chapter, we investigate the expression profile of FMO2 in untreated 

male Wistar and Welsh rats using isoform-specific antisense RNA probes, as detailed 

in paragraph 2.2.1.4.3. We show that FMO2 mRNA is present in selected cell types 

in the brain, liver, kidneys and, to the highest extent, in the lungs. We use RNA-ISH 

to compare the tissue- and cell-specific expression of FMO2 in the lungs of untreated 

rats with that observed in rats that had received NR678, either at high (5 mg/kg) or 

tolerogenic (0.5 mg/kg) doses. In addition, we explore the potential role of FMO1 

and FMO2 in the development of thiourea-related toxicity and tolerance comparing 

the mRNA levels of these two isoforms in the lungs of control and treated rats using 

a qPCR technique, as described in paragraph 2.3.5. 

3.3.1 Determination of cellular localisation of expression of FMO2 in 

tissues from untreated rats by in situ hybridisation 

RNA-ISH was applied to sections from liver, lung, kidney and brain of control rats 

from study 3 (male Wistar rats) and study 4 (male Welsh rats). As no meaningful 

difference was noted in the expression of FMO2 in the different tissues between the 

two strains, the results that are subsequently described apply to both. In all tissues, a 

positive signal resulted in a black or dark brown cytoplasmic precipitate. A 

hybridisation signal was occasionally detected in sections hybridised with the 
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correspondent FMO2 sense RNA probe; however, this was generally weak and 

limited to specific anatomic locations, as described below. 

In a transverse section of the brain taken at the level of the transition between the 

diencephalon and the mesencephalon, a moderate to strong signal was observed in 

the cerebral cortex, mostly in the superficial laminae, and the hippocampus (Figure 

3.28a). Cortical neurons (Figure 3.28b) exhibited a strong diffuse uniform 

cytoplasmic signal, whilst in the hippocampus the signal intensity varied among the 

different layers: neurons located in layers CA2 and CA3 [Cornu Amonis 2 and 3 

(Witter and Amaral, 2004)] were intensely positive, whilst only occasional positive 

neurons with a signal of moderate intensity were observed in layer CA1 and in the 

gyrus dentatus (Figure 3.28a,c). Scattered ependymal cells lining the choroid plexus 

showed a moderately intense signal (Figure 3.28d). No expression of FMO2 mRNA 

was observed in the endothelial cells of the meningeal vessels (Figure 3.28b). 

Similarly to the results obtained by RNA-ISH in mice (Janmohamed et al., 2004), 

there was no evidence of FMO2 expression in astrocytes. In the brain sections 

hybridised with the sense probe, cortical neurons exhibited a weak/moderate signal, 

whilst no signal was detected in the hippocampus (data not shown). 

In the kidneys, FMO2 mRNA localised predominantly to the proximal tubules (PT) 

in the outer cortex and in the collecting ducts (Figure 3.29). The adluminal portion 

of the PT epithelial cells exhibited a diffuse light brown cytoplasmic precipitate, 

whilst a more intense signal was present at their lumenal brush border (Figure 

3.29a,b). However, overall only a small proportion of the PTs, approximately 

corresponding to 30% of PTs in the section, exhibited FMO2 mRNA expression. The 

reason for the lack of a uniform staining pattern is unknown, but it is possible that the 

presence of FMO2 is limited to specific portions of the PT. The PT, which can be 

recognised in HE stained sections because the epithelial cells exhibit a brush border, 

is divided in a convoluted portion (PCT), which begins at the urinary pole of the 

glomerulus and a straight part (pars recta, PR), predominantly located at the junction 

between cortex and medulla (Haschek et al., 2009b). 
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Figure 3.28. RNA-ISH for the demonstration of FMO2 mRNA in the male rat brain. Rat 

11L-2404 (control, euthanased at 24 h). (a) An intensely dark brown precipitate in the 

cytoplasm of cortical (arrow) and hippocampal neurons represents the positive signal; in the 

hippocampus, FMO2 mRNA expression is mainly seen in neurons in the CA2 and CA3 

layers, and to a lesser extent, in the CA1 layer and the gyrus dentatus (GD). Bar: 200 µm. (b) 

Higher magnification (bar: 20 µm) of the positive cortical neurons in the superficial laminae. 

The endothelial cells lining a meningeal vessel (solid arrowhead) are negative (c) 

Hippocampus, highlighting of FMO2 mRNA expression in the CA2 and CA3 layers. Inset: 

detail of the positive neurons in CA3. (d) Scattered positive cells expressing FMO2 in the 

choroid plexus (open arrowheads; bar: 20 µm). Inset: higher magnification (bar: 10 µm). 

Paraffin-embedded tissue sections, antisense probe for mRNA encoding FMO2, 

Papanicolaou's haematoxylin).   
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In several species, including humans, non human primates and laboratory rodents, 

the PT comprises three different segments (P1, P2 and P3): P1 is the short initial tract 

continuous to the Bowman epithelium, which is thought to possess the highest rate of 

metabolic activity; P2 is the largest part and consists of the more distal part of the 

PCT, whilst segment P3 (approximately corresponding to the PR) starts at the level 

of the outer stripe of the medulla and ends at the loop of Henle (Haschek et al., 

2009b). The cortical location and the distribution of positive cells may suggest that 

FMO2, like other metabolic enzymes, is mostly expressed in the P1 segment. 

Collecting ducts in the inner medulla and in the papilla exhibited a strong diffuse 

cytoplasmic signal (Figure 3.29c,d), whereas weak or no FMO2 mRNA expression 

was observed in the distal tubules and the glomeruli, respectively (Figure 3.29a). 

Pelvic urothelial cells generally exhibited a strong signal; however, a moderately to 

strongly intense dark brown precipitate was observed in the same location in sections 

hybridised with the sense probe (Figure 3.29e, f), despite abundant stringent 

attempts at clearing the supposedly non-specific reaction. Accordingly, the signal in 

the pelvic epithelium was not considered as specific and further interpretation 

avoided. 

In the liver, FMO2 mRNA was detected in the cytoplasm of bile duct epithelial cells, 

with a moderate signal intensity (Figure 3.30a,b). No discernible signal was 

observed for FMO2 mRNA in the hepatocytes. Kupffer cells and endothelial cells 

did not exhibit any positive signal. Also, no signal was observed in the liver sections 

hybridised with the sense probe (negative controls).  
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Figure 3.29. RNA-ISH for the demonstration of FMO2 mRNA in the male rat kidney. Rat 

11L-2404 (control, euthanased at 24 h). (a) Positive scattered proximal tubules in the renal 

cortex (arrowheads). Glomeruli (*) are negative. Bar: 50 µm. (b) Higher magnification of the 

positive tubules (bar: 20 µm). (c) Epithelial cells lining the collecting ducts exhibit a strong 

positive cytoplasmic signal (arrow). Bar: 50 µm. (d) Higher magnification of the positive 

collecting ducts (bar: 20 µm). (e) The urothelium of the renal pelvis shows an intense diffuse 

cytoplasmic signal. (f) Sections incubated with the sense probe (supposed negative controls) 

exhibit a diffuse cytoplasmic signal of the renal pelvic urothelium similar to that obtained 

with the antisense probe after the same incubation time (bar: 200 µm). Paraffin-embedded 

tissue sections, antisense (sense: f) probe for mRNA encoding FMO2, Papanicolaou's 

haematoxylin). 
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Figure 3.30. RNA-ISH for the demonstration of FMO2 mRNA in the male rat liver. Rat 

11L-2404 (control, euthanased at 24 h). (a) The bile duct epithelial cells (solid arrowhead) 

exhibit a positive signal of moderate intensity. No signal is detected in the hepatocytes and in 

the endothelial cells lining the periportal vascular structures. Bar: 50 µm. (b) Higher 

magnification. Bar: 10 µm. Vein: #; artery: open arrowhead; and lymphatic vessel: arrow. 

Paraffin-embedded tissue sections, antisense probe for mRNA encoding FMO2, 

Papanicolaou's haematoxylin. 

In the lungs, FMO2 mRNA localised to the bronchiolar epithelium and to the 

alveolar unit (Figure 3.31a), with a variable distribution pattern. Nonciliated 

bronchiolar epithelial cells (Clara cells), identified on the sections by their dome 

shape and the lack of cilia, exhibited an intense signal in the apical portion of their 

cytoplasm (Figure 3.31b,c). In the rat, Clara cells are mainly seen in the more distal 

bronchioles and, in particular, in the terminal bronchioles (Jeffery and Reid, 1975). 

Accordingly, FMO2 positive cells had the same distribution pattern, while large 

bronchioles and bronchi exhibited only scattered or no positive cells, respectively, 

indicating that the ciliated respiratory epithelium does not express FMO2. Within the 

alveolar unit, type II pneumocytes exhibited strong signals, represented by a diffuse 

cytoplasmic precipitate that often obscured the nucleus (Figure 3.31d,e). Moderate 

FMO2 mRNA expression was observed in cells lining the alveoli/alveolar capillaries 

(Figure 3.31e). These cells displayed a small amount of cytoplasm, but could not be 

fully identified based on their morphology. However, they are likely consistent either 

with endothelial cells and/or type I pneumocytes. Alveolar macrophages showed an 

intense diffuse cytoplasmic signal (Figure 3.31e). In addition, endothelial cells lining 

small and mid calibre pulmonary vessels were also found to be positive (Figure 

3.31f), a result which differed from that seen in venous and arterial endothelial cells 

in any other tissues.   
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Figure 3.31. RNA-ISH for the demonstration of FMO2 mRNA in the male rat lung. Rat 11L-2404 

(control, euthanased at 24 h). (a) Positive bronchiolar epithelial lining cells (arrow) and scattered cells 

within the alveolar septa (solid arrowheads). Bar: 50 µm. (b). A strong signal is detected in the distal 

bronchioles, in cells with a morphology consistent with Clara cells (CC). Endothelial cells (open 

arrowhead) are also positive. Bar: 10 µm (c) More proximal bronchioles exhibit only scattered 

intensely positive cells (CC), whilst the vast majority of the lining cells (ciliated respiratory 

epithelium; arrow) are negative. Mononuclear inflammatory cells within the lamina propria (white 

solid arrowhead) express FMO2 mRNA. Bar: 20 µm. (d) Within the alveolar septa, FMO2 mRNA is 

expressed predominantly by type II pneumocytes (II). Bar: 50 µm. (e) Alveolar macrophages (M) 

exhibit diffuse intense signal. Scattered cells within the alveolar unit (type I pneumocytes or 

endothelial cells; arrows) express FMO2. Bar: 10 µm. (f) Detail of a mid-sized artery lined by positive 

endothelial cells (arrows). Bar: 10 µm. Paraffin-embedded tissue sections, antisense probe for mRNA 

encoding FMO2, Papanicolaou's haematoxylin.  
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3.3.2  Comparative assessment of FMO2 expression by in situ 

hybridisation in the lungs of control and NR678-treated rats  

In order to identify potential changes in the degree and distribution of the pulmonary 

FMO2 mRNA expression in rats that had received a high dose (5 mg/kg) or a 

tolerogenic dose (0.5 mg/kg) of NR678, lungs of all animals from study 3 were 

examined by RNA-ISH. Similarly to the controls, FMO2 mRNA in treated rats 

localised predominantly to Clara cells, type II pneumocytes and alveolar 

macrophages. This distribution pattern was observed in all treatment groups (group 

2: 5 mg/kg of NR678; group 3: 0.5 mg/kg; and group 4: 0.5 mg/kg, followed by 

5 mg/kg after 3 h) and at all end points (3, 6 and 24 h, 7 and 14 d). However, in line 

with the increases in type II pneumocytes and alveolar macrophages observed after 

dosing (see paragraphs 3.2.2.1.3 and 3.2.2.2.3), the cells expressing FMO2 in the 

alveolar unit of the lungs of treated animals were generally more numerous than in 

the controls. No difference was noted in the number of bronchiolar cells expressing 

FMO2. Although not characterised quantitatively, the increases of FMO2-positive 

alveolar cells in treated animals can be summarised as follows: 

- In rats treated with a high dose of NR678 (group 2), numerous cells within the 

alveolar lumen expressed FMO2. These were interpreted as alveolar macrophages, 

which, according to the histological and immunohistological results, were 

moderately increased in this group compared to the controls (Figure 3.32b).  

- In the lungs of rats administered a low dose (0.5 mg/kg) of NR678 (group 3), no 

difference in the expression of FMO2 was found at the 3 and 6 h end points, 

compared to the controls. In rats euthanased at 24 h and 7 d post dosing, there was an 

evident increase in the number of FMO2 positive cells within the alveolar unit, 

predominantly consistent with type II pneumocytes and alveolar macrophages 

(Figure 3.32c). At the 24 h end point, the large intra-alveolar macrophages observed 

at HE exhibited an intensely positive signal for FMO2 mRNA. In the lungs of rats 

euthanased at 24 h and 7 d after dosing, cells with a morphology consistent with type 

II pneumocytes exhibited variable amounts of FMO2 mRNA. Type II pneumocytes, 

characterised by a large amount of cytoplasm, contained an intense dark brown 
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diffuse precipitate. At the 14 d end point, there was no appreciable difference in the 

FMO2 expression compared to the controls. 

- Similarly to rats that had received a low dose (0.5 mg/kg) of NR678, animals 

administered a low dose of NR678 followed by a high dose (5 mg/kg) 3 h later 

(group 4) exhibited an evident increase in the number of alveolar cells containing 

FMO2 mRNA at the 24 h and the 7 d end points. FMO2 expression at 14 d post 

dosing was comparable to the controls. 

 

Figure 3.32. RNA-ISH for the demonstration of FMO2 mRNA localisation in the lungs of male 

untreated rats compared to those that had received NR678 (a) Rat 11L-2404 (control, euthanased at 

24 h). Numerous alveolar lining cells, predominantly consistent with type II pneumocytes (II) express 

FMO2. Bar: 20 µm. (b). Rat 11L-2405 (5 mg/kg of NR678, 6 h). The numerous desquamated alveolar 

macrophages (M) present in the section express FMO2 mRNA. Bar: 10 µm (c). Rat 11L-2427 

(0.5 mg/kg of NR678, 24 h). Increased numbers of FMO2-labelled type II pneumocytes (II) and 

alveolar macrophages (M) are evident. (d) Rat 11L-2429 (0.5 mg/kg of NR678, 7 d). Positive cells are 

mildly increased in number compared to the controls. Bar: 50 µm. Paraffin-embedded tissue sections, 

antisense probe for mRNA encoding FMO2, Papanicolaou's haematoxylin.  
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3.3.3  Comparative assessment of the levels of FMO1 and FMO2 

mRNA in the lungs of control and NR678-treated rats using qPCR 

qPCR was used to quantify the FMO1 and FMO2 transcription in the lungs of rats 

from study 3 (see paragraph 2.3.5), which allowed the comparison of the pulmonary 

FMO1 and FMO2 mRNA levels from animals that had received a lethal (5 mg/kg; 

group 2) or a tolerogenic (0.5 mg/kg; groups 3 and 4) dose of NR678 with those of 

control rats. 

In treated rats euthanased at ≥ 24 h, regardless of the dose administered, FMO1 

mRNA levels were significantly increased (Figure 3.33a). In rats that had received 

the low dose of NR678 or the low dose followed 3 h later by the high dose, FMO1 

transcription was increased by 2.2- and 2.3-folds respectively after 24 h, with further 

elevation by 3.0 fold for both after 7 d. After 14 d from the administration of NR678, 

an approximately 3 × increase of the FMO1 mRNA levels compared to the controls 

was still observed. mRNA levels were unchanged compared to controls in rats 

euthanased at 6 h that had received the high dose (group 2) or the low dose (group 3) 

of NR678. In rats given the low dose and euthanased after 3 h, FMO1 mRNA was 

reduced by 0.3-fold; however, the decrease was not statistically significant (p: 0.05). 

In all treated animals, including those euthanased at the earliest end points (3 and 

6 h), FMO2 mRNA levels were significantly (p < 0.001) higher than in controls 

(Figure 3.33b). The amount of FMO2 transcripts in the lungs of treated animals 

tended to increase progressively with time, independent of the dose of NR678 that 

had been administered. In the lungs of rats administered the low dose (group 3), 

FMO2 mRNA levels were increased by approximately 2.3-fold compared to controls 

at 3 h, with further increase to 2.8 × at 6 h, 4.1 × at 24 h, 4.7 × at 7 d and 6.5 × at 

14 d. In rats administered the low dose of NR678, followed 3 h later by the high dose 

(group 4), the levels of FMO2 mRNA elevated by 2.2-fold at 24 h and 4.8-fold at 

7 d, after which they did not increase further (4.6 ×) at the 14 d end point. 
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a) FMO1 

 

b) FMO2 

 

Figure 3.33. qPCR analysis showing the levels of relative expression (fold change) of FMO1 

(a) and FMO2 (b) in the lungs of rats following exposure to high and low doses of NR678. 

Data are presented as mean ± standard errors for 3 different experiments. *** p < 0.001 

(ANOVA, Dunnett’s multiple comparison test).   
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3.4 Assessment of R. norvegicus as a suitable animal model 

to investigate the metabolic and toxicological consequences 

of FMO2 polymorphism in humans 

It has already been mentioned that human FMO2 is highly polymorphic (Dolphin et 

al., 1998) and encodes for a truncated inactive protein in all the Caucasians and 

Asians genotyped to date (Furnes et al., 2003; Krueger et al., 2002b). However, in a 

small proportion of individuals of African-American and Hispanic ethnicities, the 

gene is not mutated and an enzymatically active protein is expressed in several 

tissues, especially in the lungs, where FMO2 is most abundant (Cashman and Zhang, 

2006; Hugonnard et al., 2004; Krueger and Williams, 2005). A similar 

polymorphism occurs in rats, where the FMO2 gene has been shown to encode for a 

shorter inactive protein in laboratory strains, but not in wild rats (Lattard et al., 

2002b). A genetic polymorphism for FMO2 has been demonstrated in R. norvegicus 

(Hugonnard et al., 2004), the wild ancestor of laboratory rat strains. Accordingly, R. 

norvegicus may represent a suitable model to study metabolic and toxicological 

consequences of FMO2 polymorphism in humans. 

In this study, we investigate the distribution of FMO2 allelic frequencies in a 

population of wild rats trapped in the Liverpool urban area and in two colonies of 

rats (Welsh and Berkshire rats) housed at the BASF Pest Control Solutions facility. 

Subsequently, we show that the lungs of rats expressing a functional FMO2 have 

increased metabolic activity towards small thiourea-based molecules and are at 

increased risk of developing the acute toxic effects of NR678, when compared to the 

lungs of rats possessing the truncated isoform. 

3.4.1 Detection of FMO2 polymorphism among a wild rat population 

using a nested PCR method 

Genomic DNA was extracted from the liver or lungs of 33 wild rats (R. norvegicus), 

trapped in Cheshire (n = 2) or in the Liverpool urban area (n = 31). FMO2 

polymorphism in these animals was characterised using the nested PCR method 

described by Hugonnard et al. (2004; see paragraph 2.3.7.3).  
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The first PCR amplification generated in all animals an amplicon with an 

approximate size of 1300 bp (Figure 3.34a). These PCR products were re-amplified 

using a common upstream primer (FMO2-F2) and two different downstream primers 

(FMO2-R2m and FMO2-R2w), which recognise specifically the mutant or the full 

length FMO2, respectively (see paragraph 2.3.7.3). Subsequent visualisation of the 

PCR products by agarose gel electrophoresis yelded sharp, single bands of 

approximately 300 bp (Figure 3.34b) and provided the following results: (1) a single 

band with FMO2-R2m and none with FMO2-R2w; (2) a single band with FMO2-

R2w and none with FMO2-R2m; and (3) a single band with each reverse primer. 

Rats were therefore classified as homozygous for the mutant FMO2 (1; n = 4, 

12.1%), homozygous for the full length FMO2 (2; n = 17; 51.1%) or heterozygous 

(3; n = 13, 36.4%). The allelic frequencies for FMO2*1 (full length form) and 

FMO2*2 (mutated inactive form) in the wild population of rats examined in the 

present study were 69.7% and 30.3%, respectively. 

 

Figure 3.34. Characterisation of FMO2 by nested PCR in wild caught R. norvegicus. (a) The 

product of the first PCR amplification, carried out using FMO2-F1 and FMO2-R1 primers, 

generated a fragment of approximately 1300 bp in size. Each lane is loaded with a different 

sample. (b) In case 1 (rats homozygous for the mutant form), a fragment of approximately 

300 bp was amplified using the primer pair FMO2-F2/FMO2-R2m (lane 1) and none using 

FMO2-F2/FMO2-R2w (lane 2). In case 2 (rats homozygous for the full length form), no 

amplification was detected using the primer pair FMO2-F2/FMO2-R2m (lane 3), while a 

fragment of approximately 300 bp was recognised using the primer pair FMO2-F2/FMO2-

R2w (lane 4). In heterozygous rats (case 3), both FMO2-F2/FMO2-R2m and FMO2-

F2/FMO2-R2w generated the expected amplicon. 
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3.4.2 Characterisation of FMO2 allelic frequencies in two colonies of 

laboratory rats (Welsh and Berkshire) using a nested PCR method 

FMO2 genotyping analysis by the same nested PCR method was carried out in two 

colonies of laboratory rats (Welsh and Berkshire), that had been established at the 

BASF Widnes laboratories several years ago by cross breeding of wild rats with 

laboratory rats. Genotyping aimed to establish whether a FMO2 polymorphism was 

present in these two populations of rats. 37 rats (12 male and 12 female Welsh rats, 

13 male Berkshire rats) were available for genotyping. DNA extraction and analysis 

of 5 rats/gender from each the Welsh and Berkshire colonies did identify all 15 

animals homozygous for FMO2*1 (Figure 3.35). This result was deemed adequate 

to confirm the lack of FMO2 polymorphism in these colonies, and no further analysis 

was conducted in the remaining rats. 

 

Figure 3.35. Characterisation of FMO2 by nested PCR in two rat colonies (Welsh and 

Berkshire) housed at BASF Widnes Laboratories. Only the results from the first five 

genotyped males (identified as 0, 1, 2, 3 and 20 based on ear punching) of the Welsh rat 

colony are shown. An approximately 300 bp-sized band is amplified using FMO2-

F2/FMO2-R2w (even lanes). No amplification product is seen using FMO2-F2/FMO2-R2m 

(odd lanes).   
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3.4.3 Enzyme assay 

We hypothesized that the presence of a functional FMO2 in the rat lungs may lead to 

different metabolic activities towards molecules which undergo FMO-mediated 

oxygenation. In order to prove this, we analysed FMO-dependent S-oxygenation of 

MI in liver and lung microsomes following the method described by Dixit and Roche 

(1984) and compared the catalytic properties of FMOs between pulmonary 

microsomes prepared from Welsh (homozygous for FMO2*1) and Wistar 

(homozygous for FMO2*2) rats.  

3.4.3.1 Determination of the enzymatic parameters of the S-oxygenation of 

methimazole carried out by rat liver and lung microsomes 

The oxidation of MI catalysed by FMOs was first investigated in three different 

microsomal pools (Wistar rat liver and lungs, Welsh rat lungs) using nine scalar 

concentrations of the substrate (ranging from 5 µM to 1 mM) and measuring the 

reaction velocity (V0; see paragraph 2.4.5). MI S-oxidase activity was observed in all 

three microsomal preparations (Figure 3.36). MI oxidation in liver and lung 

microsomes that were previously heated at 55ºC to inhibit FMO activity was 

negligible, confirming that the reaction is mainly conducted by FMOs (data not 

shown).  
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Figure 3.36. Effect of methimazole concentration on enzyme velocity in different rat 

microsomal preparations (Wistar rat liver and lungs and Welsh rat lungs). Reaction velocity, 

obtained by reading of the optical density at 412 nm, is plotted against MI concentration. 

Data are presented as mean ± standard deviation of three independent measurements. 

The data obtained were plotted using an Eadie-Hofstee diagram (Figure 3.37) and 

the kinetic parameters were calculated for each microsomal pool. The Eadie-Hofstee 

graphical representation of the enzymatic reaction of the Wistar rat liver (Figure 

3.37a) and lung (Figure 3.37b) microsomes consisted of a straight line, suggesting 

that oxygenation of MI in these preparations was predominantly a monophasic 

reaction. In Welsh rat lung microsomes (Figure 3.37c), two distinct kinetic 

components were involved in the oxygenation of MI. The Vmax (1.875 nmol/min/mg) 

and Km (34.22 µM) of the first enzyme were similar to those (1.581 nmol/min/mg 

and 20.58 µM, respectively) seen in the monoenzymatic rection of the Wistar rat 

lungs. The second kinetic component exhibited high activity also at the lowest 

substrate concentrations, as demonstrated by the Vmax (4.605 nmol/min/mg) and the 

Km (215.9 µM), which were respectively 2.5× and 6× higher than those of the first 

phase.
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a) Wistar rat lung microsomes                              b) Wistar rat liver microsomes 

 

c) Welsh rat lung microsomes 

 

 

 

 

 

 

Figure 3.37. Enzyme kinetics of the sulphoxygenation of methimazole deduced from the 

Michaelis Menten equation in different rat microsomal preparations. (a) Wistar rat lung 

microsomes (b) Wistar rat liver microsomes and (c) Welsh rat lung microsomes. Reaction 

velocity is plotted in an Eadie-Hofstee diagram against the ratio between velocity and 

substrate concentration. Data are presented as mean ± standard deviation obtained from three 

different measurements. Vmax: maximum velocity of the reaction. Km: Michaelis-Menten 

constant. 
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3.4.3.2 Comparison of the oxygenation of methimazole catalysed by different rat 

microsomes and enzyme inhibition using NR678 

Catalytic activities were further investigated in Wistar and Welsh rat microsomes 

monitoring the change in absorbance at 412 nm for 7 min after the addition of a 

single concentration (500 mM) of MI to the incubations (Figure 3.38). Formation of 

DNTB measured at 7 min after the addition of MI was highest in Welsh rat lung 

microsomes, followed by Wistar rat liver microsomes. S-oxygenation of MI 

catalysed by Wistar rat lung microsomes instead was approximately 2 × slower than 

that carried out by the Welsh rat lung microsomal preparations. 

 

Figure 3.38. Comparison of methimazole (500 mM) oxygenation rates over time (7 min) 

among different rat microsomal preparations (Wistar rat liver and lungs and Welsh rat 

lungs). Difference in absorbance (ΔOD) is plotted against time (7 min). Data are presented as 

mean ± standard deviation for n=9 (three different measurements obtained from three 

independent experiments). 

The experiment above was repeated with 500 mM of NR678 added to the 

incubations and comparing the curves obtained to those generated by incubations 

containing only MI or buffer. Non competitive inhibition of NR678 occurred in all 

three microsomal preparations (Figure 3.39). 
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a) Wistar rat lung microsomes                       b) Wistar rat liver microsomes 

 c) Welsh rat lung microsomes 

 

 

 

 

 

 

Figure 3.39. Inhibitory activity of NR678 on the sulphoxygenation of methimazole carried 

out in different rat microsomal preparations. (a) Wistar rat lung microsomes (b) Wistar rat 

liver microsomes and (c) Welsh rat lung microsomes. Difference in absorbance (ΔOD) is 

plotted against time (7 min). Data are presented as mean ± standard deviation obtained in 

three independent measurements.  
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3.4.4  Characterisation of the in vivo effects of a low dose (0.5 mg/kg) 

of NR678 administered to rats homozygous for FMO2*1 (Welsh 

rats) 

The general increase of FMO activity toward the test molecule observed in the Welsh 

rat lungs compared to the Wistar strain may result in increased susceptibility of this 

organ to the toxic effects of NR678. In order to confirm this hypothesis, the Welsh 

rat colony genotyped as described above was used in a toxicity study (study 4), 

where male Welsh rats received a dose of 0.5 mg/kg of NR678 and were euthanased 

at 3, 6 and 24 h after dosing. The objective of the study was to assess drug-related 

morphological changes and compare the development and dynamics of tolerance in 

rats homozygous for FMO2*1 (Welsh) with those obtained from Wistar rats 

(homozygous for FMO2*2) in study 3; for this reason, the selected dosage and time 

points in study 4 were identical to those employed in the low dose group of study 3. 

3.4.4.1 Clinical assessment 

All rats administered a dose of NR678 of 0.5 mg/kg survived until the scheduled 

euthanasia. Most animals were asymptomatic, however, two rats (12L-2257 and 12L-

2258) exhibited mild or moderate dyspnoea, respectively, together with piloerection 

and decreased motor activity, starting at 5 h after dosing. Both rats were euthanased 

at the scheduled time point (6 h). Another animal (12L-2262) showed mild dyspnoea 

and decreased motor activity at 6 h post dosing. These symptoms were no longer 

present on the following day at the time of scheduled euthanasia (24 h).  

3.4.4.2 Gross post mortem findings 

The two rats that had shown mild dyspnoea (scheduled euthanased at 6 h after 

dosing), exhibited mild hydrothorax (characterised by the presence of 1.5 mL clear 

fluid in the thoracic cavity) and moderate diffuse hyperaemia in the lungs. No 

macroscopic findings were observed in the remaining rats. 

3.4.4.3 Histological findings 

The histological changes observed in Welsh rats that had received a dose of 

0.5 mg/kg of NR678 (study 4) were restricted to the lungs (Table 3.10). The main 
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histological finding was a moderate or marked alveolar and interstitial oedema 

(Figure 3.40), which had similar features to that observed in Wistar rats receiving a 

high dose (5 and 10 mg/kg; see paragraph 3.1.3). Pulmonary oedema occurred in rats 

euthanased at 3 h (1/3 animals) and 6 h after dosing (2/3 animals) and was not 

detected in the three rats euthanased at 24 h. Scattered apoptotic cells (severity: 

slight) were present in the alveolar lining in one rat euthanased at the 3 h time point. 

A mild or moderate increase in the number of alveolar macrophages occurred in all 

rats euthanased at 3 and 6 h post treatment and in 1/3 rats at 24 h. This finding had 

been seen previously in Wistar rats receiving NR678 at low (see paragraph 3.2.2.1.3) 

and high (see paragraph 3.1.3) doses. 

Table 3.10. Summary of the key histological findings in the lungs of Welsh rats 

administered a low dose (0.5 mg/kg) of NR678 (study 4). 

 

G
ro

u
p

 

 

NR678 

dose 

(mg/kg) 

 

Time of 

death 

post 

treatment 

Histological findings 

Alveolar and 

interstitial oedema 

Increased alveolar 

macrophage 

Alveolar cell 

apoptosis 

1 0 24 h 0/3 0/3 0/3 

2 

0.5 

3 h 1/3 (4) 3/3 (2.6) 1/3 (1) 

3 6 h 2/3 (3.5) 3/3 (2) 0/3 

4 24 h 0/3 1/3 (2) 0/3 

Results are expressed as number of animals showing the histological finding/ number of animals per 

group. The average severity of each finding (in brackets) was calculated by summing the severity 

grades and dividing the total by the number of animals affected by that finding. 

In addition to the treatment-related findings described above, there was evidence of 

an inflammatory reaction in the lungs of the Welsh rats (Figure 3.41), with an 

incidence and severity that was similar in all different groups, including the controls. 

This was represented by a slight to moderate multifocal perivascular and interstitial 

granulomatous inflammatory infiltration, composed of lymphocytes, fewer 

macrophages and plasma cells and occasional neutrophils, with scattered 

multinucleated giant cells; and moderate to severe proliferation of the bronchus-

associated lymphoid tissue (BALT). These findings were considered spontaneous, 

i.e. not treatment related, and were likely caused by an infectious agent affecting the 

Welsh rat colony, which is conventionally, rather than barrier, -maintained. Although 

serological tests were not undertaken in these animals or other animals in the colony 

and the specific aetiologic agent involved in the inflammatory process could not be 
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identified, such histological lesions, in particular the BALT hyperplasia and the 

lymphocytic-dominated inflammatory infiltrate, are highly suggestive of the early 

stage of Mycoplasma pulmonis infection (Percy and Barthold, 2007; Schoeb et al., 

2009). 

 

Figure 3.40. Histological features of alveolar and interstitial oedema in the lungs of Welsh 

rats that had received a dose of 0.5 mg/kg of NR678, compared to concurrent controls. (a) 

Rat 12L-2251 (control, euthanased at 24 h post dosing). The alveolar lumen (*) is filled with 

air and appears as a clear space. There is virtually no separation between the outline of 

vessels (double-headed arrow: perivascular space) and the adjacent parenchyma. (b) Rat 

12L-2257 (0.5 mg/kg of NR678, 6 h after dosing). Alveolar lumina (*) contain abundant 

eosinophilic homogenous proteinaceous fluid. The perivascular space (double-headed arrow) 

is markedly distended by the presence of fluid (interstitial oedema). (c) Rat 12L-2251. Closer 

view of the normal alveoli. (d) Rat 12L-2257. Higher magnification of the pale eosinophilic 

proteinaceous fluid filling the alveoli. There is an increased number of macrophages within 

the alveolar lumen (arrows).  



 

145 

 

Figure 3.41. Histological features of the spontaneous inflammatory changes occurring in the 

lungs of Welsh rats from study 4, including the controls. (a) Rat 12L-2260 (0.5 mg/kg of 

NR678, euthanased at 24 h post dosing). There is a periarteriolar aggregate of lymphocytes 

(solid arrowhead) and a more diffuse interstitial infiltration of mononuclear cells (open 

arrowheads), composed predominantly of macrophages, with fewer lymphocytes and plasma 

cells (bar: 20 µm). (b, c and d) Rat 12L-2253 (control, 24 h post dosing). (b) Closer view of 

the inflammatory infiltrate in a control animal. Macrophages (open arrowhead) are large and 

characterised by abundant eosinophilic cytoplasm (bar: 20 µm). (c) Surrounding a bronchus 

(*), there is a large accumulation of lymphocytes, consistent with hyperplasia of BALT 

(bar: 200 µm). (d) At higher magnification, lymphocytes infiltrate the bronchial wall and 

there is marked lymphocytic exocytosis in the epithelium (arrow). Bar: 50 µm.   
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Chapter 4 Discussion 

4.1 NR678 as a model of acute lung injury (ALI) 

4.2 Morphological characterisation of the adaptive response of the rat lung to 

sublethal doses of NR678 

4.3 Assessment of R. norvegicus as a suitable animal model to investigate the 

relationship between FMO2 polymorphism in humans and differences in response to 

thiourea-based drugs  

4.4 Potential issues and limitations 

4.5 Concluding remarks  
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The results presented in chapter 3 focused on three main subjects: 1) the 

investigation of the acute toxicity of the thiourea-related rodenticide candidate 

NR678 in the rat lung, as an example of drug-induced oxidative stress in this organ, 

2) the characterisation of the morphological adaptive changes occurring in the rat 

lungs in response to sublethal doses of NR678 and 3) the preliminary assessment of 

the possible metabolic and toxicological implications of FMO2 polymorphism in rats 

as a model of the human polymorphism. Following this order, we will interpret here 

the results of the experiments, discussing their main limitations alongside their 

implications for future research.  

4.1 NR678 as a model of acute lung injury (ALI) 

In the first part of this work, we assessed the acute target organ toxicity of a single 

oral dose of NR678 in the rat. The compound was administered at two different 

doses, 5 or 10 mg/kg, which both exceeded the maximum tolerated dose (MTD) 

determined in the preliminary LD50 studies conducted at BASF Pest Solutions. 

4.1.1 Morphological features and cellular targets of NR678 

pulmonary toxicity 

NR678-treated rats developed severe respiratory clinical signs, including tachypnoea 

and dyspnoea within 6 h post dosing, prompting elective euthanasia (see paragraph 

3.1.1). The cause of the clinical signs was a multifocal rather than diffuse, moderate 

to marked alveolar and interstitial pulmonary oedema with hydrothorax (see 

paragraphs 3.1.2-3), which confirmed that NR678, as several other thiourea 

derivates, is a potent selective pulmonary toxicant in rats at a dosage of ≥ 5 mg/kg. 

Pulmonary oedema was considered the cause of moribundity of the rats, in 

concurrence with the increased pressure exerted on the lung by the severe 

hydrothorax (compression atelectasis). Hypoxaemia resulting from impairment of 

gas exchange in flooded and compressed alveoli, coupled with the depression of 

blood volume caused by the shunting of considerable amounts of fluid from the 

vascular to the extracellular compartments, may explain the rapidly-establishing 

moribundity of NR678-treated rats. Interestingly, fluid accumulation in the lung, 

even in episodes of severe pulmonary oedema, is rarely uniform (Mirza et al., 2011), 
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but occurs with a multifocal distribution pattern, as in NR678-treated rats, where 

only patchy alveolar areas were affected, mostly beneath the pleura. The reason for 

the lack of an uniform distribution of alveolar oedema is unknown and may be 

related to a highly efficient, rat-specific mechanism of fluid drainage from the 

alveolar and interstitial parenchyma to the pleural compartment, mediated by the 

lymphatic system (Vivet et al., 1983). This would explain the severe extent of pleural 

effusion in the absence of diffuse alveolar flooding. These findings are consistent 

with the acute pulmonary toxicity previously reported for molecules containing a 

thiourea moiety (Dieke and Richter, 1946; Richter, 1945; Richter, 1946), including 

the thiourea-based compound ANTU, marketed to fight rat-borne epidemics during 

World War II [(Keiner, 2005); see paragraph 1.3]. These molecules have been 

extensively used as a means to investigate the pathogenesis and mechanisms of acute 

pulmonary oedema in several animal species (Haschek et al., 2009e; Hurley, 1978; 

Vivet et al., 1983). However, the mechanism leading to pulmonary oedema is not 

completely understood yet. 

Injury to the pulmonary parenchyma may be directed to a specific cell type, most 

often endothelial cells and type I pneumocytes, or target several cell types 

indiscriminately (Haschek et al., 2009e). Injury of type I pneumocytes following the 

administration of ANTU has been described only after the administration of very 

high doses (Smith, 1986). Accordingly, it is unlikely that the epithelial compartment 

represents a primary target of NR678 toxicity. In NR678-treated rats, the pulmonary 

architecture was well preserved and no alteration of the alveolar lining epithelium 

integrity was observed when lung sections were stained with an antibody against 

AQP-5, a water channel protein constitutively present on the membrane of type I 

pneumocytes (see paragraph 3.1.3). Scattered apoptotic cells lining the alveoli of rats 

given NR678 were positive for cleaved caspase 3 by IH and most were identified as 

endothelial cells at ultrastructural examination (paragraph 3.1.4). Sporadic 

pneumocytic apoptosis may have been caused by hypoxia following alveolar 

flooding by extravasated fluid and consequent impairment of gas exchange (Martin 

et al., 2005), rather than being a direct effect of the drug. 
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Oedema in NR678-treated rats is likely to be related to the primary effacement of 

endothelial cells, as supported by the histological and ultrastructural changes. 

Pulmonary vascular endothelium comprises one of the largest capillary networks of 

the body and, among several other functions, it plays a major role in regulating lung 

fluid balance and solute transport, in response to a plethora of physiologic and 

pathologic stimuli (Haschek et al., 2009e). Increased permeability of the vascular 

endothelium has been classically ascribed to two different mechanisms, namely 1) 

the loss of integrity of endothelial cells by direct or immune cell-mediated damage or 

2) the increased function of the transport pathways, both across the endothelial cell 

(transcellular pathway) or between neighbouring cells (paracellular pathway), as 

depicted in Figure 4.1 (Chiang et al., 2011; Mitchell and Cotran, 2007a).  

 

Figure 4.1. Main mechanisms leading to increased vascular permeability. (1) In the absence 

of pathological stimuli, the vascular endothelium, composed of a monolayer of endothelial 

cells (En) separated from the extravascular space by a continuous basement membrane 

(BM), is semipermeable to plasma proteins (yellow dots) and leukocytes (purple cells). (2) 

Increased vascular permeability may occur following contraction of endothelial cells 

resulting in widened intercellular spaces (paracellular pathway). (3) Direct damage to 

endothelial cells, causing degeneration and necrosis, is responsible for disruption of the 

vascular barrier and fluid leakage into the interstitium. (4) Endothelial injury may be also 

mediated by inflammatory cells, resulting in a similar outcome. (5) Movement of fluid and 

macromolecules into the extravascular space may occur via the transcellular pathway, 

characterised by albumin-mediated vesicular transport of solutes and proteins through the 

endothelial cell. Modified from Mitchell and Cotran, 2007a. 
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Direct injury to endothelial cells (Figure 4.1, 3 and 4) has been described as a cause 

of pulmonary oedema in numerous pathological conditions, including physical injury 

(burns), sepsis and several vasculitides with different aetiologies (Mitchell and 

Cotran, 2007a). This may have occurred in NR678-treated rats as well, which 

exhibited ultrastructural subcellular alterations in the endothelium, such as 

rearrangement and rarefaction of cytoplasmic organelles and the formation of 

endothelial and subendothelial blebs (see paragraph 3.1.4). However, the integrity of 

the pulmonary endothelial cell layer was not affected in NR678-treated rats, as 

confirmed by IH for factor VIII-related antigen (see paragraph 3.1.3) and the 

frequency of truly degenerate or apoptotic endothelial cells observed in the ultrathin 

sections (see paragraph 3.1.4) was too low to justify a substantial alteration of 

vascular permeability. This suggests that direct damage to endothelial cells may have 

contributed only to a minor extent to NR678-induced increased vascular 

permeability. Immune-mediated endothelial cell injury was also excluded, as there 

was no evidence of increased numbers of neutrophils and/or lymphocytes, targeting 

the endothelium.  

Movement of fluid through the transcellular pathway (Figure 4.1, 5) is mediated by 

an active process of transcytosis, whereby albumin-filled uncoated vesicles are 

transported from one side to the other in the endothelial cell (Mitchell and Cotran, 

2007a). This is probably a minor way of fluid exchange compared to the paracellular 

pathway (Figure 4.1, 4), in which connections between adjacent endothelial cells 

widen and let fluid, proteins, and/or cells pass through the gap. There was no 

evidence of increased formation of transcytotic vesicles in rats receiving NR678, 

which should not be confused with the blebs seen in the endothelial cells using TEM 

(see paragraph 3.1.4). Similar endothelial and subendothelial blebs have been 

described ultrastructurally in several models of lung oedema (Lopez et al., 1988) and 

their significance is unknown. 

There was strong evidence that paracellular gap formation may represent the most 

plausible explanation of the increased permeability associated with NR678 

administration, as supported by the presence of ultrastructural intercellular gaps 

between the pulmonary capillary endothelial cells (see paragraph 3.1.4). This is a 
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common pathway employed by endothelial cells to permit paracellular transport, in 

which they dramatically modify their shape as a consequence of rearrangement and 

contraction of the actin-based anchor filament system (Chiang et al., 2011). A variety 

of bioactive agonists (e.g.; histamine and thrombin), cytokines (TNF-α and IL-1β), 

growth factors (VEGF) and mechanical stress itself are known to influence different 

components of the cytoskeletal system of the endothelial cell (Mitchell and Cotran, 

2007a). Inflammatory mediators act through the activation of several protein kinase 

C isoforms, which in turn control the phosphorylation of actin and its linking 

proteins at the cell-to-cell junction (Lum and Malik, 1994). Phosphorylation causes a 

rearrangement of the cytoskeletal proteins leading ultimately to retraction of the 

microtubular system, the rounding-up of the cell and the widening of intercellular 

gaps. Opening of the intercellular gaps does not only occur in response to 

physiological conditions, but can also be elicited by different types of pathological 

insults, such as oxidative injury, which is the most likely event leading to disruption 

of the microfilaments and microtubules of endothelial cells in NR678-induced lung 

damage (Hinshaw et al., 1986).  

Though the consequences of free radical damage on individual pulmonary cell types 

may be extremely variable (Smith, 1986), selective damage to endothelial cells and 

increased vascular permeability have been observed with a number of drugs causing 

oxidative stress. Bleomycin-induced acute lung endothelial injury is probably one of 

the best examples of the above, although not as extensively characterised as the more 

commonly described chronic findings of bleomycin pulmonary toxicity. In cultured 

lung vascular endothelial cell monolayers, this drug has been shown to cause 

cytoskeletal reorganisation and alteration of the intercellular junctions, which was 

associated with a decrease in the GSH levels and reversed by thiol-redox protectants 

(Patel et al., 2012). Similar findings have been described in other models of oxidative 

lung injury, such as the intestinal ischaemia-reperfusion (Zhao et al., 2001) and 

endotoxin-induced (Ishii et al., 1992) injury models. Previous studies have reported 

that the loss of GSH increases significantly the susceptibility of cultured endothelial 

cells to injury by H2O2 (Harlan et al., 1984) and hyperoxia (Suttorp et al., 1991). 

Bovine pulmonary artery endothelial cells exposed to high doses of H2O2 exhibited a 

dose-dependent depletion of GSH and ATP, disarrangement of microfilaments into 
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shortened bundles, cell membrane alteration and the formation of large F actin 

bundles (Hinshaw et al., 1988; Hinshaw et al., 1986). Loss of GSH in the lung of 

mice after treatment with a GSH-depleting agent has been shown to cause swelling 

and decreased numbers of mitochondria in endothelial cells (Owens and Belcher, 

1965). Analogously to oxidative damage caused by bleomycin and H2O2, NR678 

may act through this pathway and cause contraction and shape alteration of 

endothelial cells which result in intercellular gap formation. Swelling of the 

cytoplasm and the basement membrane, and loss and/or dilation of subcellular 

organelles have been described in the endothelial cells of NR678-treated rat lung 

capillaries (see paragraph 3.1.4). However, in contrast to the ultrastructural changes 

reported in the endothelial cells of rats administered ANTU (Cunningham and 

Hurley, 1972), no clear evidence of cytoskeletal alteration was detected in NR678 

rats.  

There is no current explanation for the specific susceptibility of the lungs, and 

especially of the pulmonary endothelium, to thiourea-induced damage. There are 

several examples in the literature of drugs which accumulate in the lung, such as 

amiodarone (Reasor et al., 1990), paraquat and numerous anaesthetics (Boer, 2003; 

Foth, 1995) to cite but a few. The reason for preferential pulmonary clearance of 

these compounds, known as “pneumophilic” drugs, has been related to a high grade 

of diffusion and/or a specific active transport mechanism through the alveolar 

barrier, which are both favoured by peculiar chemical properties of the afore-

mentioned compounds (Foth, 1995). Most of these drugs in fact are either highly 

lipophilic compounds or amphophilic molecules and/or contain amine groups. 

NR678, however, does not appear to share any of these features. As the drug is 

absorbed in the gastrointestinal tract and then reaches the systemic circulation, 

endothelial cells are the first cell type exposed to NR678 effects in the lungs. 

Interestingly, only the pulmonary endothelium appears to be injured by the test 

article, as, at least by light microscopy, there was no evidence of morphological or 

functional impairment of the endothelium in other body compartments. The 

endothelium lining the alveolar capillaries may represent a direct target of NR678 

toxicity due to a peculiar metabolic potential of this cell type or it may be indirectly 

affected by a reactive metabolite produced nearby that diffuses to endothelial cells. 
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The first hypothesis would imply that endothelial cells are endowed with higher 

enzymatic oxidative activity toward NR678 and other thiourea-based molecules, 

namely with higher levels of FMOs, the enzymes which are mostly responsible for 

the biotransformation of this class of molecules. RNA-ISH for FMO2 mRNA 

revealed that this isoform is expressed by several cell types within the lungs, 

including, but not exclusively, endothelial cells lining the alveolar capillaries (see 

paragraph 3.3.1). Although not evaluated quantitatively, the distribution and the 

intensity of the signal for FMO2 mRNA in the lungs was higher than in the other 

organs examined (brain, kidney and liver) and, interestingly, the cells lining the 

pulmonary capillaries were the only endothelial cells exhibiting FMO2 expression. 

Unfortunately, due to technical issues, it was not possible to obtain data concerning 

the expression of FMO1, the other major FMO isoform in the rat lung, which, in 

contrast to FMO2, is functionally active in the laboratory rat. The localisation of 

FMOs and the consequential formation of reactive metabolites within endothelial 

cells or other alveolar cell types in close proximity with them may partially explain 

the selective injury to this cell type observed when exposed to small thioureas. On 

the other hand, endothelial cells may be more susceptible than other pulmonary cells 

to oxidative injury owing to an intrinsic sensitivity to thiol-redox alterations (ie, GSH 

depletion) as discussed below, rather than owing to an increased production of 

intermediate metabolites within the cells or in their vicinity.  

4.1.2 NR678 pulmonary toxicity as a model of drug-induced 

oxidative stress  

The lung is permanently exposed to the environment and is constantly in contact with 

xenobiotics present in aerosol (Haschek et al., 2009e). Additionally, any compound 

reaching the blood stream following parenteral administration, ingestion, or skin 

exposure, necessarily enters the lung, as this organ, differently from any other 

compartment in the body, receives the entire cardiac output at each pulse. These 

features enable the pulmonary alveolar-capillary unit to interact with xenobiotics 

before they reach the systemic circulation yet, at the same time, expose the lungs to 

toxicologically important consequences (Smith, 1986). Toxic lung damage often 

results from direct interaction between the parent molecule and its cellular target, as 
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happens with the inhalation of noxious gases, such as oxygen, ozone, nitric oxide and 

hydrochloric acid (Haschek et al., 2009e). More commonly, toxicity relies on the 

metabolic activation of the xenobiotic to a reactive intermediate, in the lung itself or 

elsewhere in the body; most frequently in the liver. In both cases, reactive 

intermediates and oxygen metabolites, such as hydroxyl radical, superoxide and 

hydrogen peroxide, play an integral role in the development of lung injury. In 

addition, toxic lung damage may be mediated or amplified by a secondary 

inflammatory response with further release of reactive oxygen and nitrogen species 

(Smith, 1986). 

In order to prevent the risk of oxidative stress on a large surface area constantly 

exposed to oxygen, the lungs are endowed with integral antioxidant systems 

(Comhair and Erzurum, 2002; Haschek et al., 2009e). Cells use a plethora of 

enzymatic antioxidants including catalase, superoxide dismutase (SOD) and, more 

importantly, glutathione peroxidase (GPx) to remove oxygen intermediates and 

repair damaged molecules. In addition, intracellular levels of soluble scavengers, 

such as α-tocopherol and GSH are crucial components in buffering ROS production 

and protecting the lung from oxidative insult. Surfactant also appears to have 

antioxidant properties (Matalon et al., 1990) and the alveolar lining fluid contains 

GSH levels 100 × higher than those detected in plasma (Comhair and Erzurum, 

2002). When exposed to oxidative stress, the lung may respond to imbalance 

between physiological antioxidant resources and reactive species by increasing the 

levels of reducing equivalents. Increased expression of SOD and GPx and altered 

levels of pulmonary scavengers have been described as a feature of several lung 

conditions dominated by oxidative stress, such as pulmonary idiopathic fibrosis, 

acute respiratory distress syndrome and cancer (Rahman et al., 2006). Drugs which 

upset the oxidant-antioxidant status quo through antioxidant enzyme inhibition, 

consumption of scavengers or reactive oxygen and nitrogen intermediate formation 

may initiate oxidative stress and lead to damage of major cellular components, such 

as proteins, DNA and membrane lipids (Haschek et al., 2009e).  

Variation in the levels of endogenous GSH in the lung is known to influence the 

toxic outcome of certain drugs which specifically target this organ and cause 



 

155 

oxidative stress, such as 3-methyl-indole, ipomeanol and naphthalene (Smith, 1986). 

Pulmonary GSH and sulphydryl-group depletion has been reported in previously 

conducted studies in rats administered thiourea (Hollinger et al., 1976), although in 

other works this drug has been claimed to have opposite effects (Hardwick et al., 

1991). When rats were pretreated with GSH-depleting agents such as diethyl 

maleate, toxicity and/or covalent binding of ANTU and other thiourea-derived 

molecules in the lung were increased (Hollinger et al., 1976; Tate and Flory, 1993; 

Tate et al., 1991). Phorone on the other hand causes an initial depletion of GSH in 

both liver and lungs, followed after 2 d by an elevation of non-protein sulphydryl 

levels above the reference levels reported in literature: rats challenged with ANTU 

48 h after phorone administration showed decreased lethality and less severe 

hydrothorax compared to those receiving ANTU alone (Hardwick et al., 1991). 

A dose of 5 mg/kg of NR678 administered to rats caused a statistically significant 

depletion of GSH in lung and liver tissue homogenates (see paragraph 3.2.2.4). 

Decreases in endogenous GSH levels observed in rats that have been administered 

NR678 may have been caused by a “futile” redox cycling mechanism, in which the 

continuous production of an unidentified NR678 reactive intermediate leads to the 

consumption of antioxidant resources. Accordingly, the depletion of reducing 

equivalents in the cell impedes further protection from the metabolite, which is 

therefore able to interact with lung subcellular components and cause irreversible 

modification of their structure through covalent binding (Smith, 1986). This 

mechanism has been exemplified for several compounds, including PTU 

[(Henderson et al., 2004b; Smith and Crespi, 2002), Figure 4.2], to which NR678 is 

structurally similar, and other thiols which are transformed to sulphoxides by 

monooxygenases via the formation of an intermediate sulfenic acid (Mansuy and 

Dansette, 2011). The oxidation of thiols to sulfenic acids requires NADPH and O2 as 

well and may further progress to generate the corresponding sulfinic acid and then 

sulfonic acids according to the general formula reported by Mansuy and Dansette 

(2011): 

RSH (thiol)  RSOH (sulfenic acid)  RSO2H (sulfinic acid)  RSO3H (sulfonic 

acid) 
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Figure 4.2. Scheme of the FMO-mediated S-oxidation of phenylthiourea. Phenylthiourea (1) 

is transformed into a phenylthiourea sulfenic acid (2) with consumption of NADPH, O2 and 

GSH. Further oxidation to sulfinate (3) may occur. Redrawn from Smith and Crespi (2002) 

Due to their unstable nature, sulfenic acids may react with the parent thiol or with 

other sulphydryl groups, including GSH. The reducing scavengers present in the 

medium reconvert the sulfenic acid to the parent compound with the formation of 

mixed disulphides, such as glutathionyl adducts. This cycle ends when all GSH 

reserve is consumed and the reactive metabolite interacts permanently with 

constitutive components of the cell (Mansuy and Dansette, 2011). In studies 

conducted with 35S- and 14C-labeled ANTU in rats (Lee et al., 1980), occurrence of 

covalent binding was demonstrated in lung and liver microsomes. Toxicity and 

covalent binding were markedly reduced when rats were dosed with α-naphthylurea 

(ANU), proving that the sulphur atom contained in ANTU is essential for the toxic 

manifestations of thiocarbamides and the formation of a reactive metabolite (Boyd 

and Neal, 1976). 

No NR678 sulfenic or sulfinic acids were detected in vitro in our microsomal 

incubations. An attempt to address the lack of an observable NR678 metabolite has 

been made. Adequacy of the in vitro system in use was considered of potential 

concern and was investigated in the first instance. Liver microsomes were prepared 

according to a procedure which has been in place for several years in our laboratory 

(see paragraph 2.4.1); however, quality check of the microsomal homogenates has 

FMO FMO

(1) (2) (3)
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always focused on determining whether they possessed adequate CYP rather than 

FMO activity rates. It has already been mentioned that the contribution of P450 to 

the metabolism of small thioureas is minor (Onderwater et al., 1999), whilst FMOs 

appear to be responsible for most of the catalytic turnover for this class of molecules 

(Ziegler-Skylakakis, 2003). Accordingly, MI assay, as described by Dixit and Roche 

(1984), was set up to determine the FMO activity of our microsome preparations. MI 

S-oxidation activity was observed in both liver and lung microsomal homogenates 

(see enzyme kinetics parameters in paragraph 3.4.3.1). Although several 

modifications to the standard incubations (see paragraph 2.4.3) and the HPLC 

parameters (see paragraph 2.4.4) were introduced, no NR678 metabolite peaks were 

identified in the chromatograms. Indirect proof of NR678 metabolic turnover 

occurred in enzyme inhibition experiments (see paragraph 3.4.3.2): when NR678 

(500 µM) was added to liver and lung microsomal incubations, the activity of FMOs 

towards MI (500 µM) was substantially reduced, suggesting that the compound is 

metabolised by the in vitro system. In addition, a discernible metabolite peak was 

present in the HPLC chromatogram when PTU, structurally similar to NR678, was 

incubated using the same conditions (see paragraph 3.1.5). It was concluded that, 

despite the structural similarity between PTU and NR678, the metabolite/s of the 

latter could not be observed in an HPLC chromatogram. This is supported by the 

observation that direct measurement of sulfenic acid kinetics is difficult due to their 

high reactivity (Mansuy and Dansette, 2011). In most cases, sulfenic acids are not 

easily detectable as such and trapping agents such as the nucleophilic probe β-

dicarbonyl dimedone or different and more sophisticated detection systems, like real 

time mass spectrometry and x-ray crystallography, have to be employed. 

Uneven distribution of GSH in the lung should be taken into consideration when 

speculating on possible effects of oxidative stress on cell targets. When GSH levels 

are measured in liver homogenates, it is assumed that hepatocytes contribute most to 

the actual values, as they comprise approximately 80% of the hepatic volume 

(Haschek et al., 2009c). The lung has a less homogeneous structure and contains 

more than 40 different cell types (Haschek et al., 2009e). As such, changes in GSH 

levels measured from whole lung homogenates need to be carefully examined and 

always related to the pattern of injury and the cell type mainly affected by the 
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oxidative insult. Even more caution applies to the interpretation of the GSH 

measurements presented in this work, as the different texture and water content of 

the lungs of rats exhibiting pulmonary oedema may have affected the levels of 

reduced and oxidised glutathione. The herbicide paraquat is an excellent example of 

a lung toxicant which surprisingly, despite causing oxidative injury via the 

establishment of a futile redox cycling, does not alter thiol pulmonary levels 

(Hardwick et al., 1990). A possible explanation for this relies on the selective uptake 

of paraquat by epithelial cells, which accordingly represent the primary target of the 

herbicide toxicity. Type I and II pneumocytes comprise only about 20% of 

pulmonary cell population (Haschek et al., 2009e) and possibly contribute only a 

small proportion of the total lung GSH (Hardwick et al., 1990). On the other hand, 

endothelial cells are believed to be one of the main contributors to total pulmonary 

GSH contents (Hardwick et al., 1990) and it can be hypothesised that oxidative 

injury to this cell type may result in a more evident decrease in thiol levels. This is 

thought to be the case with NR678, which targets primarily the pulmonary 

endothelium and leads to a significant drop in GSH levels in the lungs. 

4.1.3 Extra-pulmonary NR678-related effects 

In addition to the lung, NR678-related toxicity was detected also in the liver, where 

individual necrotic hepatocytes were observed in the centrilobular areas. The 

morphology of the change (swelling of the hepatocyte cytoplasm with loss of detail 

of the nucleus) is consistent with necrosis, rather than apoptosis, as confirmed by the 

lack of positivity using cleaved caspase 3 IH. Hepatocellular necrosis has been 

described previously with compounds containing a thiourea moiety, such as MI and 

propylthiouracyl and has been ascribed to the formation of reactive intermediates in 

the hepatocytes (Woeber, 2002).  

Apoptotic lymphocytes were increased in number in the lymphoid organs and tissues 

of rats that had been given NR678, when compared to vehicle-controls (see 

paragraph 3.1.3). Some degree of apoptosis is generally expected in control animals 

and considered within normal limits in tissues such as the lymphoid organs, in which 

rapid cell turnover occurs (Haschek et al., 2009a). In treated animals, overall 

numbers of apoptotic lymphocytes were increased, especially in specific lymphoid 
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compartments such as the thymic cortex and the germinal centres of lymphoid 

follicles in the spleen, the examined lymph nodes and the gut-associated lymphoid 

tissue. The lamina propria of the small intestine segments in treated animals also 

contained scattered apoptotic cells (presumably apoptotic lymphocytes), which are 

not normally seen as a background change in laboratory rats. Microscopic changes in 

the lymphoid organs and tissues of treated animals are attributed to NR678, although 

it can be difficult to make a clear distinction between a direct compound-related 

immunomodulating effect and a non-specific result of stress/debilitation caused by 

the test item. A variety of factors and conditions, including background physiological 

influences, result in decreased cellularity of the lymphoid organs (Pearse, 2006). 

Normal age-associated decrease in cellularity occurs in the thymus (involution), 

whereas other factors such as inadequate nutrition, body weight loss and decreased 

food intake, stress, or toxicity may also cause decreased cellularity in several other 

lymphoid tissues. Stress in particular, through stimulation of the hypothalamic-

pituitary-adrenal gland axis, leads to elevated levels of circulating 

glucocorticosteroids, which in turn induce lymphocytic apoptosis. Such changes are 

common following acute debilitating diseases, especially in moribund animals 

requiring elective euthanasia and can be seen within hours from the onset of the 

debilitating condition (Greaves, 2007b). These effects are often indistinguishable 

from immunotoxicity caused by a test article. In some cases, a dose-response 

relationship may be helpful in deciding whether decreased lymphoid cellularity is a 

direct or indirect effect of a toxicant. Selective immunomodulating test articles 

usually show effects on the lymphoid system at low dosages as well, while 

stress/debilitation-induced lymphoid changes often occur only at the highest dose 

regimens, where signs of generalised distress are usually well evident (Greaves, 

2007b). Decreased lymphoid organ cellularity was seen in rats administered NR678 

at high dosages (5 or 10 mg/kg), at which debilitation occurred and was not present 

in rats given a lower dose such as 0.5 mg/kg (study 3, see paragraph 3.2.2.1.3), 

supporting the hypothesis of a secondary corticosteroid-induced mechanism as a 

major contributor to lymphocytic apoptosis. Further investigation of these lymphoid 

organ changes, needed to clarify this issue, was beyond the aims of the present work. 
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4.2 Morphological characterisation of the adaptive response 

of the rat lung to sublethal doses of NR678 

In the second part of this work, we assessed the establishment of tachyphylaxis in the 

lung of rats administered sublethal doses of NR678 and investigated the pulmonary 

changes that are thought to contribute to the decreased susceptibility of tolerant rats 

to high, normally lethal doses of this thiourea-derived compound. 

4.2.1 Onset and duration of tolerance to NR678 in the rat lungs 

Rats develop tachyphylaxis in response to the administration of various thiourea-

based molecules, as reported in previous studies where tolerance was induced 

through the oral or parenteral administration of low doses of thiourea or ANTU, 

administered up to six times per day or twice weekly for a few weeks (Van Den 

Brenk et al., 1976). Barton et al. (2000) achieved complete protection from a lethal 

dose of ANTU (70 mg/kg) in rats administered a low, single dose (5 mg/kg) 24 h 

before the challenge with the high dose. In order to set up a tolerogenic regimen for 

NR678 (pilot study 2), a tolerogenic:lethal dose ratio similar to that reported in 

Barton et al. (2000) was used and the rats were initially dosed with a dose 

(0.5 mg/kg) of NR678 which was 10 × lower than the LD50 (5 mg/kg). We did not 

expect this dose to induce significant clinical signs, since in previous LD50 

investigations undertaken at BASF, a dose of 2 mg/kg of NR678 was seen to cause 

only mild transient clinical signs (see Table 1.1). Indeed, rats that were administered 

a dose of 0.5 mg/kg of NR678, followed after 3 h by the high dose, exhibited only 

mild and transient respiratory distress (see clinical assessment in paragraphs 3.2.1 

and 3.2.2.2.1). This is in contrast to the effect of the high dose (5 or 10 mg/kg) of 

NR678 when administered without prior tolerance induction, which caused severe 

respiratory clinical signs that required euthanasia of the rats approximately 6 h after 

dosing (see paragraph 3.1.1). In contrast to previous studies (Barton et al., 2000; 

Dieke and Richter, 1946; Van Den Brenk et al., 1976), in which rats had been 

challenged with a lethal dose no less than 24 h after tolerance induction, we found 

that protection against the NR678 high dose challenge was already effective as early 

as 3 h after the administration of the tolerogenic dose. This indicates that 
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tachyphylaxis induced by thiourea-based molecules may represent an extremely 

effective, timely protective mechanism that develops more rapidly than previously 

thought. 

As expected, the milder clinical signs in tolerant animals were paralleled by 

macroscopic and microscopic observations that were similar but considerably less 

severe than those observed in the animals that had received only the lethal dose. In 

the cohort of rats from group 4 (0.5 mg/kg of NR678, followed by 5 mg/kg after 3 h) 

euthanased at 24 h post dosing, only one of three rats in this end point exhibited the 

gross and histological changes consistent with acute toxicity, i.e. hydrothorax and 

pulmonary hyperaemia and oedema, which occurred though with a mild severity (see 

paragraphs 3.2.2.2.2-3). The ultrastructural examination of the lungs of the rats 

euthanased at this time point revealed endothelial injury (endothelial bleb formation, 

irregular endothelial lining and rare paracellular gap formation), consistent with that 

observed with the acute toxicity (see paragraph 3.2.2.2.4); however, these 

ultrastructural findings were scattered rather than present in virtually every alveolar 

unit, and no evidence of endothelial degeneration or necrosis was observed. This 

suggests that the mechanism supposedly responsible for the lung injury (gap 

formation between endothelial cells leading to increased pulmonary vascular 

permeability) is unaltered during the tolerogenic response, but that the severity of the 

change is reduced, producing milder effects on the air blood barrier. This was further 

confirmed by the fact that in rats given the low dose (0.5 mg/kg) of NR678, which 

had no gross or microscopic observations consistent with altered vascular 

permeability in the lungs, ultrastructural endothelial cell findings were still observed 

(see paragraph 3.2.2.1.4), but were less frequent and seen only within a few hours 

after dosing (at 3 and 6 h), being almost absent at 24 h. Electron microscopical 

changes at these time points consisted exclusively of blebs within or beneath the 

endothelial cell cytoplasm, whereas the other endothelial changes that are likely 

responsible for the increased vascular permeability associated with acute toxicity, 

such as discontinuous endothelial lining and paracellular gap formation, were not 

observed in rats receiving the low dose.  
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In view of the fact that tolerance to the oedematogenic effects of thiourea may 

represent a possible therapeutic approach against pulmonary conditions characterised 

by increased permeability and oxidative stress in humans, it seemed of interest to 

investigate the duration of the protection conferred by a low dose of NR678 in rats. 

Previous studies have shown that tolerance to molecules containing the thiourea 

moiety is long lasting. Protection from ANTU in tolerant rats was reported to persist 

for approximately 3 w after the administration of the high dose (Van Den Brenk et 

al., 1976). Similarly, Barton et al. (2000) showed that rats were fully protected from 

the acute toxicity acquired with a low dose of ANTU for approximately 10 d post 

dosing. Protection, according to these authors, decreased progressively until day 20, 

when a rechallenge with a high dose led to 100% mortality yet again. Duration of 

tolerance to NR678 was assessed in study 3, where two cohorts of rats receiving 

either the low dose (group 3) or the low dose followed by the high dose (group 4) 

were challenged with the high dose on day 14 (see paragraph 3.2.2.3.1). Confirming 

the findings reported previously in the literature, partial tolerance to NR678 was 

possibly still evident on day 14, as demonstrated by the generally decreased 

incidence and severity of the respiratory clinical signs occurring in these animals 

when compared to those receiving the high dose only (group 2; see paragraph 3.1.1). 

However, the degree of hydrothorax and pulmonary oedema in these cohorts (see 

paragraphs 3.2.2.3.2-3) appeared identical to those of rats from group 2 (paragraphs 

3.1.2-3), suggesting that the level of protection conferred by a tolerogenic dose of 

NR678 may be phasing out after 2 w. Similarly to a previous report (Van Den Brenk 

et al., 1976), tachyphylaxis to NR678 appeared to be dose-dependent, with a higher 

dosage (0.5 + 5 mg/kg) of NR678 leading to increased protection compared to a 

lower one (0.5 mg/kg only, see paragraph 3.2.2.3).  

4.2.2 The morphological characterisation of cell proliferation in the 

lungs of rats tolerant to NR678 

Cell proliferation that followed the administration of the low dose of NR678 was 

assessed using histology, a combination of different immunohistological markers and 

ultrastructural examination. Both histology and IH concurred to demonstrate a 

substantial increase in the number of macrophages and type II pneumocytes in the 
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lungs of tolerant rats when compared to controls. It is interesting to note the different 

kinetic behaviour of these cell populations: macrophages free in the alveolar lumen 

were increased at early time points (3, 6 and 24 h), whilst type II pneumocytes began 

to increase at 24 h after dosing and reached maximum levels on day 7. This occurred 

both in rats receiving only the low dose of NR678 (group 3, see Table 3.5 and 

Figures 3.14-16) and in those challenged 3 h later with the high dose (group 4, see 

Table 3.7 and Figure 3.22). On day 14, the number of alveolar macrophages and 

type II pneumocytes had almost completely returned to the levels observed in the 

controls. The rise in macrophages and type II pneumocytes appeared to be time- 

rather than dose-dependent, as the increases had similar severity degree in both 

groups 3 and 4.  

To our knowledge, this is the first work to have characterised the pulmonary 

ultrastructural findings associated with thiourea-induced tachyphylaxis. The 

ultrastructural examination of type II epithelial cells proliferating at 24 h and 7 d 

after dosing in both groups 3 and 4 allowed an important distinction: whilst the lungs 

of the tolerant rats at day 7 were predominantly populated by mature type II 

epithelial cells exhibiting numerous large lamellar bodies, the alveolar septa of rats 

euthanased at 6 and 24 h post dosing exhibited numerous immature epithelial cells, 

with intermediate features between type I and type II pneumocytes (see paragraph 

3.2.2.1.4 and Figure 3.21). These cells were interpreted as recently divided type II 

pneumocytes, not fully differentiated yet into type I or type II cells. Although the 

presence of a specific stem cell population in the lung is still a matter of debate, it is 

generally accepted that type II pneumocytes are in charge of the dynamic regulation 

of alveolar epithelial cell regeneration, in virtue of their almost unlimited capacity of 

renewal (Kasper and Haroske, 1996). During normal cell turnover type II cells divide 

and differentiate into type I pneumocytes, contributing to the remodelling the 

alveolar unit and the mantainance of its homeostasis (Fehrenbach, 2001). 

The dynamics of type II pneumocyte hyperplasia seen in rats tolerant to NR678 are 

consistent with the data found in the literature. The patterns of cell renewal following 

ALI were first investigated in a rat model of pulmonary injury induced by nitrogen 

dioxide [NO2; (Evans et al., 1974)] and then extensively studied in other models of 
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acute toxic injury (Katzenstein et al., 1990), and were compared with the processes 

of lung development and alveolar differentiation in the foetus and the newborn rat 

(Brody and Williams, 1992). Type II cell proliferation has a particularly rapid onset 

when it is prompted by injury of the alveolar epithelium, developing 3 to 7 d after 

exposure to the noxious stimulus and persisting for a variable period (Katzenstein et 

al., 1990). For example, it occurs after 3 d in the lung of mice exposed to hyperoxic 

injury (Adamson and Bowden, 1974) or following in vivo instillation of KGF, which 

represents a powerful mitogen for type II alveolar cells (Barazzone et al., 1999; 

Fehrenbach et al., 1999). Evans (Evans et al., 1975), in a pioneer study evaluating the 

injury to the alveolar epithelium caused by NO2 in rats, reported an even shorter time 

frame between inhalation of the gas and the proliferative event: type II pneumocytes 

began replicating a few hours after exposure, reached the highest extent in the 

following 2-3 d and decreased to the levels seen in controls by 5 d after exposure. 

When the same authors examined the levels of incorporation of tritiated-thymidine 

([3H]-TdR) in the NO2-injured rat lung, they found that several cells in the alveolar 

epithelium were labelled after only 1 h, most of which (approximately 90%) had a 

morphology consistent with type II pneumocytes; less than 1% were type I 

pneumocytes and 11.5% had an undetermined morphology (seen to belong to the 

“intermediate” cell type described above). At 24 h from the inhalation of NO2, the 

number of labelled cells remained constant, while the proportion of type II 

pneumocytes decreased to approximately 60% of total labelled cells. Concurrently, 

there was an increase in the proportion (approximately 36%) of intermediate 

undifferentiated cells labelled with [3H]-TdR. The number of labelled type I 

pneumocytes remained low (approximately 4%). At 48 h after dosing, a substantial 

increase (to approximately 33%) in the number of type I epithelial cells that had 

incorporated [3H]-TdR was noted: labelled type II pneumocytes and intermediate 

cells were approximately 46% and 21% of total labelled cells, respectively. The total 

number of labelled cells and the proportions between the different cell types 

remained unaltered during the following days, until day 14. Similar results were 

observed in the lungs of mice exposed to 90% O2 (Adamson and Bowden, 1974) and 

using pneumonectomized mice (Brody and Williams, 1992). It is likely that the 

proliferative event elicited by epithelial injury in the models of ALI mentioned above 

and in the NR678 experiment resolves with the differentiation of type II 
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pneumocytes into type I epithelial cells (Fehrenbach et al., 1999) or partly through 

apoptosis (Bardales et al., 1996) and the restoration of the alveolar epithelial surface. 

One is tempted to conclude that the proliferation of type II pneumocytes in rats 

administered NR678 is delayed a few hours when compared to the kinetics of 

alveolar epithelial cell turnover reported in other types of ALI (Chapman et al., 2002; 

Evans et al., 1974; Evans et al., 1975; Panos et al., 1995). This is consistent with the 

fact that traditional models of lung injury usually target the alveolar epithelium, 

primarily or in combination with the vascular endothelium (Matute-Bello et al., 

2008). NR678 instead primarily exerts its toxic effects on the endothelium, with 

relative sparing of type I pneumocytes (see paragraph 3.1.4). Accordingly, the type II 

epithelial cell response to thiourea-mediated injury may be delayed compared to 

other models of lung injury. 

4.2.3 An investigation into the mechanisms underlying tolerance to 

thiourea-based molecules 

As briefly mentioned in the introductory chapter, a considerable amount of literature 

has been published looking into the defence mechanisms which are supposed to play 

a role in the adaptive response of the lungs following exposure to sublethal doses of 

thiourea-based molecules (Barton et al., 2000). Following the observation that 

administration of KGF to rats attenuated the pulmonary oedema caused by ANTU 

(Mason et al., 1996), the role of epithelial cell proliferation in the lungs has been 

investigated as a possible condition underlying tolerance to the rodenticide. Several 

reports suggested that alveolar epithelial hyperplasia protects rodents from oxidative 

injury induced by hyperoxia (Panos et al., 1995), bleomycin (Deterding et al., 1997; 

Sugahara et al., 1998) and hydrogen peroxide (Chapman et al., 2002); however, the 

mechanism underlying this phenomenon has not been elucidated in these studies. A 

significant attempt to characterise and interpret the proliferative event occurring in 

the lungs after the administration of a low dose of ANTU was made by Barton et al. 

(2000). Similarly to the morphological changes observed with NR678, the authors 

described an increased number of alveolar macrophages in their tolerant rats, starting 

at 24 h after dosing and lasting until the end of the study (day 14), but they did not 

mention the presence of other proliferating cell types, such as type II pneumocytes. 
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Barton also investigated the levels of proliferation in the lungs of rats administered a 

low dose of ANTU studying the incorporation of [3H]-TdR and 5-bromo-

2’deoxyuridine (BrdU) into the DNA of pulmonary cells. Both labelling systems are 

used to estimate the proportion of cells in the S phase of the cell cycle (Lin and 

Allison, 1993). Barton showed that the number of labelled cells in the lungs of 

tolerant rats increased progressively, beginning at 24 h after administration of the 

low dose, but did not provide a conclusive identification of the cells incorporating 

BrdU. The full morphological work-up conducted in rats administered a low dose of 

NR678 aimed to further characterise the findings reported by Barton and attempted 

to address how an overall increase in the cells populating the alveolar unit may result 

in decreased susceptibility to oxidative damage.  

Increased cellularity in the alveolus may strengthen the alveolar barrier, enhance the 

clearance of alveolar fluid (Guery et al., 1997; Sznajder et al., 1998) and/or influence 

the levels of inflammatory mediators and the oxygen radical scavengers in the lung 

(Mason et al., 1996). Mason proposed that an increase in the number of type II 

pneumocytes leads to enhanced synthesis of surfactant and, in turn, to an overall 

improvement of the antioxidant defences of the lung. KGF was seen to promote the 

active transport of sodium across the alveolar epithelium, undertaken in part by the 

Na,K-adenosine triphosphatase (Na,K-ATPase) and, by doing so, to facilitate the 

clearance of the oedema fluid caused by ANTU (Guery et al., 1997). Macrophages 

and type II pneumocytes may both cooperate in clearing the alveolar space of the 

excess of fluid. Type II pneumocytes are equipped with membrane-bound water 

channels and ion pumps which are thought to control various properties of the 

alveolar fluid (Fehrenbach, 2001). Alveolar macrophages, despite being cells with a 

great endocytic capacity and often reported to increase in number in the early stages 

of pulmonary conditions which alter vascular permeability (Misharin et al., 2011), 

are not deemed to play a significant role in the clearance of the alveolar fluid 

accumulated during pulmonary oedema, at least in the first 24-48 h from its onset 

(Hastings et al., 2004). For example, in a study conducted in sheep administered 

autologous serum by instillation, the number of alveolar macrophages was 

dramatically increased by the first 48 h, but the rate of protein clearance remained 

unaffected and the amount of radio-labelled albumin recovered from the alveolar 
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macrophages appeared minimal (Berthiaume et al., 1989). However, the same 

authors provided evidence that the recruitment of macrophages may influence the 

rate of alveolar fluid reabsorption in a later stage, between 3 and 7 d from the 

instillation of serum. Accordingly, it has been demonstrated that these cells 

contribute significantly to the clearance of pulmonary surfactant (Forbes et al., 

2007). Our work showed that protection from a lethal dose of NR678 is achieved 

after only 3 h from the administration of a tolerogenic dose, when there is no 

morphologic evidence of an increased number of cells in the lungs (see paragraph 

3.2.2.1.3). This suggests that clearance of alveolar fluid by increased numbers of 

alveolar macrophages and type II pneumocytes in the lungs of rats tolerant to NR678 

may contribute to the amelioration of the respiratory distress observed after the first 

few hours, but it is unlikely the primary mechanism associated with the development 

of tolerance. 

With this in mind, we speculated that an increased number of cells in the alveolar 

unit may have resulted in an enhancement of the antioxidant defense system, which, 

in turn, may have contributed to the decreased susceptibility of the tolerant lungs to 

thiourea-induced oxidative injury. It is well known that the lungs are able to 

upregulate their protective antioxidant scavenging systems when exposed to mild 

oxidative injury, as occurs for instance in the lungs of chronic smokers (Comhair and 

Erzurum, 2002). This is usually achieved by increasing the expression of antioxidant 

enzyme such as SOD or, more frequently, GPx, which leads to higher levels of GSH 

available to counteract the oxidative insult. This mechanism is unlikely to have an 

important role in the adaptive process which occurs in NR678-tolerant lungs, as 

suggested by the fact that GSH levels in tolerant rats at all time points were similar to 

or lower than those found in the control rats (see paragraph 3.2.2.4).  

As discussed in paragraph 1.6.3, several drugs are able to modulate the levels of 

expression of FMOs in different tissues, either directly or through stimulation of an 

inflammatory response and production of inflammatory mediators, such as NO. Only 

very recently, upregulation of FMO3 has been described as a possible factor 

contributing to the development of resistance to hepatotoxicity caused by 

paracetamol in mice (O'connor et al., 2013). We thought this could be the case for 
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NR678 and we hypothesised that tolerance to thioureas might depend on the 

downregulation of FMO expression in the lungs and consequent decreased levels of 

the enzymes that are able to catalyse the oxygenation of these molecules to the 

reactive intermediates responsible for the oxidative injury. Also, we speculated that 

the pulmonary cells proliferating in response to mild oxidative injury might not 

possess the same metabolic activity as the corresponding mature type and be unable 

to metabolise NR678 efficiently. In order to investigate this theory, we analysed the 

distribution of FMO2 mRNA by RNA-ISH and evaluated the levels of expression of 

FMO1 and FMO2 in the lungs of tolerant rats. We found that the macrophages and 

type II pneumocytes in the tolerant rats were strongly positive for FMO2 (paragraph 

3.3.2) and that the levels of FMO1 and FMO2 mRNA were significantly increased 

compared to those observed in the controls (paragraph 3.3.3). According to these 

results, the decreased susceptibility to oxidative injury which characterises the lungs 

of tolerant rats does not seem to rely on the downregulation of the enzymes 

responsible for the metabolism of thiourea-based molecules. It remains to be 

explored then whether this outcome can be consistent with a mechanism of 

noncompetitive inhibition of FMOs, according to which the metabolic products of 

NR678 would have an inhibitory effect on the enzyme, even directly or through the 

formation of protein adducts or complexes with FMOs, leading to inactivation. Time-

dependent inhibition has not been described for FMOs, but it is a well known 

mechanism which can alter the potency and influence the activity of CYP. It is 

characterised by irreversible or quasi-irreversible inactivation of the enzymes, which 

causes lack of function of CYP until new protein is synthesised, typically after 

several days (Riley et al., 2007). The transient (approximately 14 d) duration of 

NR678-induced tolerance, coupled with increased synthesis of FMO1 and FMO2 

mRNA, may be consistent with time-dependent inhibition of FMOs, which recovers 

progressively with synthesis of new protein. The possible mechanisms responsible 

for tolerance to NR678 which were investigated in this work are summarised in 

Figure 4.3. 
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Figure 4.3. Possible mechanisms underlying tolerance to NR678.  

4.3 Assessment of R. norvegicus as a suitable animal model 

to investigate the relationship between FMO2 

polymorphism in humans and differences in response to 

thiourea-based drugs  

The discovery of the genetic variability of FMO2 dates back to 1998, when Dolphin 

et al. reported the presence of a premature stop codon in the cDNA of human FMO2 

leading to a truncated and inactive FMO2 enzyme, which is rapidly catabolised 

(Dolphin et al., 1998). This observation explains the lack of a FMO2 protein in the 

human lung, whilst in the majority of other species FMO2 is the major FMO 

pulmonary isoform (Krueger and Williams, 2005). However, a full length FMO2 was 

detected by Dolphin et al. (1998) in a few individuals belonging to specific ethnic 

groups, revealing the existence of a genetic polymorphism. Since the first 

description, numerous studies have attempted to characterise the allelic frequencies 

and the ethnic distribution of FMO2 in humans. Genotyping of a large number of 
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individuals of different ethnicities showed that the full-length gene, FMO2*1, 

encoding for the functional protein, is present in approximately 26% of individuals of 

African descent (Furnes et al., 2003; Whetstine et al., 2000) and 5% of those of 

Hispanic descent (Krueger et al., 2004; Krueger et al., 2002b). Mutations in the 

FMO2 sequence similar to those found in individuals of Caucasic and Asian 

ethnicities have been described in the laboratory rat, where the FMO2 expressed in 

the lungs is truncated and inactive (Lattard et al., 2002b). Wild rats that belong to R. 

rattus species instead possess a full length catalytically active pulmonary FMO2. 

Interestingly, a polymorphism for the FMO2 gene has been documented in R. 

norvegicus (Hugonnard et al., 2004). The investigation conducted in the last part of 

this work aimed to characterise the metabolic and toxicological consequences of 

FMO2 polymorphism in the rat and to evaluate the relevance of this animal model to 

man.  

The first step of our genotyping analysis, summarised in Figure 4.4, aimed to 

confirm the occurrence of FMO2 polymorphism in R. norvegicus and to determine 

whether variation existed for a polymorphism in a population of wild rats trapped in 

the Liverpool urban area. Data available concerning the allelic frequency of FMO2 in 

this species are limited to one study (Hugonnard et al., 2004), in which a population 

of wild rats (R. norvegicus) bred in captivity in Lyon, France was genotyped for 

FMO2: according to the authors, the frequency of FMO2*1 was comparable to that 

of the mutant (FMO2*2) form; 48% versus 52%, respectively), and much higher than 

that described in humans. To our knowledge, our work represents the first study 

reporting the presence of a polymorphic FMO2 gene in a wild population of rats and 

the allelic frequencies expressed by these individuals. The frequency of FMO2*1 in 

these rats was much higher than that detected in humans and in the colony of 

laboratory-mantained R. norvegicus examined by Hugonnard et al. (2004), being 

approximately 70% (see paragraph 3.4.1). These data may have important 

implications for the development of rodenticides that are metabolised primarily by 

FMOs, and specifically those in which the toxicity occurs mainly in the lungs and 

depends on the bioactivation of the molecule by pulmonary FMOs, such as NR678.  
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In the second part of our genotyping project, we investigated the allelic frequencies 

of FMO2 in two colonies of rats (R. norvegicus, Welsh and Berkshire strains) that 

were available at the BASF facility. These colonies were originally generated by the 

cross-breeding of wild and laboratory ancestors and they had been maintained under 

conventional laboratory conditions for several years to be used in studies 

investigating warfarin-resistance. The number of animals was maintained over the 

years by brother × sister and parent × offspring mating, with occasional introduction 

of new wild or laboratory rats. All animals tested (15 out of 37) were homozygous 

for the allele coding for the functional FMO2 (see paragraph 3.4.2), suggesting that 

prolonged inbreeding across these populations had reduced the genetic variability. 

Despite the lack of genetic polymorphism in the colony, we proceeded to compare 

the metabolic activity of the microsomal suspensions of lungs homozygous for 

FMO2*1 (Welsh rats) to those homozygous for FMO2*2 (Wistar rats) toward MI. 

 

Figure 4.4. Summary of FMO2 genotyping results. Similarly to humans, wild rats trapped in 

the North West of England exhibit FMO2 polymorphism, but the frequency of the full length 

(FMO2*1) allele is much higher compared to humans. Welsh rat colonies housed at BASF, 

similarly to the black rat (R. rattus) were homozygous for FMO2*1.  

100% wild rats (Rattus rattus)

+

16% African-Americans

4% Hispanics

FUNCTIONAL ENZYME

(FMO2*1)

100% laboratory rats

+

The vast majority of 

human populations

INACTIVE ENZYME

(FMO2*2)

Rattus norvegicus

Liverpool urban area rats: 

FMO2*1 frequency: 69.7

FMO2*2 frequency: 30.3

Welsh and Berkshire rats 

(BASF colonies)

FMO2*1 frequency: 100%

FMO2*2 frequency: 0
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4.3.1 Metabolic consequences of FMO2 polymorphism 

It has already been mentioned that FMO1 and FMO2, the latter only when expressed 

according to its genetic polymorphism, are the major isoforms detected in the rat 

lungs using Northern and Western blot analyses (see paragraph 1.5.6.3). The 

remaining FMO isoforms are either not expressed or found at negligible levels 

(Hugonnard et al., 2004). Thus, it has been hypothesised that FMO catalytic activity 

in the lungs may vary considerably in the presence of FMO2*1, which should result 

in some degree of FMO2-dependent xenobiotic metabolism (Hugonnard et al., 2004). 

This is supported by numerous studies showing that baculovirus-expressed purified 

FMO2 catalyses efficiently the oxygenation of a number of xenobiotics, including 

small thioureas (Henderson et al., 2004b), the thioether insecticides disulfoton and 

phorate (Henderson et al., 2004a) and the antituberculosis prodrug ethionamide 

(Henderson et al., 2008). 

We compared the catalytic activities of FMOs in different microsomal pools using 

MI, a highly specific substrate for FMO enzymes (Dixit and Roche, 1984). In our 

study, the lack of DNTB formation in microsomes that were previously heated at 

55ºC to inhibit FMO activity confirms that the contribution of P450 to the 

oxygenation of MI is negligible, if any (see paragraph 3.4.3.1). Published data 

indicate that the S-oxygenation of MI in hepatic microsomes produced from 

laboratory rats is represented by a monoenzymatic reaction exhibiting a low Km (in 

the order of 10 to 30 μM), compatible with either FMO1 or FMO3 kinetic parameters 

(Lattard et al., 2001; Moroni et al., 1995). Our results show that the Km of the 

enzyme(s) carrying out the oxygenation of MI in Wistar rat liver and lung 

microsomes fall within the above interval range, suggesting that both FMO1 and 

FMO3 may be involved in the catabolism of MI in the laboratory rat liver and lung 

microsomes (see paragraph 3.4.3.1 and Figure 3.37a,b). Due to the negligible levels 

of FMO3 found in the rat lungs (Lattard et al., 2001), it is assumed that the 

oxygenation of MI is conducted solely by FMO1. This was confirmed by Hugonnard 

et al. (2004), who showed that the addition of imipramine, a selective inhibitor of 

FMO1, to the incubations obtained from rat lungs expressing FMO2*1 depressed 

severely the rate of the reaction. In Welsh rat lung microsomes (Figure 3.37c), the S-
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oxygenation of MI proceeded in two phases. The kinetic parameters of the first 

component of the reaction were similar to those found in the monoenzymatic rection 

carried out by the Wistar rat lungs and were assumed to represent FMO1-mediated 

oxygenation of MI. The Km of the enzyme involved in the second phase was 6 × 

higher than that of FMO1 and, based on the lack of other FMO isoforms in the rat 

lung expressed in significant amounts, certainly corresponds to the functional FMO2. 

The presence of a functional FMO2 is therefore associated with a substantial increase 

in the S-oxidative metabolism of MI in the lungs. This was confirmed by monitoring 

the metabolic rate of a standard concentration of MI in the three different microsomal 

preparations for several minutes; the change in absorbance during this time was most 

pronounced in the Welsh rat lung microsomes, slightly smaller in the hepatic 

microsomes and approximately half the magnitude in the Wistar rat lung microsomes 

(see paragraph 3.4.3.2). The addition of NR678 to the incubation inhibited the S-

oxygenation in all three in vitro systems. It needs to be pointed out that our data are 

based exclusively on the kinetic parameters of the enzymes involved in the S-

oxygenation of MI and do not take into account the relative concentrations of FMO1 

and FMO2 in the rat lungs, as this information is not available in literature, or FMO 

substrates different from MI. However, these results suggest that the pulmonary 

metabolism of MI is enhanced by the presence of a functional FMO2 and it is likely 

that increased turnover may occur with several other S-containing nucleophilic 

molecules. Preliminary data describing increased metabolism of the drug 

ethionamide by human lung microsomes from an individual expressing the 

functional FMO2 (Henderson et al., 2008) seem to support this statement.  

4.3.2 Toxicologic consequences of FMO2 polymorphism 

The hypothesis that individuals with the FMO2*1 allele may carry an increased risk 

of developing adverse effects to drugs and xenobiotics compared to those lacking a 

functional FMO2 in the lung has been formulated by several authors (Cashman and 

Zhang, 2006; Hugonnard et al., 2004; Krueger and Williams, 2005; Philips et al., 

2007; Shephard and Phillips, 2010), but never specifically addressed. It has been 

predicted for instance that the toxicity caused by small thiourea-based molecules may 

be enhanced in individual possessing a functional pulmonary FMO2 isoform 
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(Cashman and Zhang, 2006; Krueger et al., 2002b). FMO2 is very active toward 

bioactivation of thioureas with low molecular weight (see paragraph 1.5.5.2), which 

are S-oxygenated to highly reactive sulfenic and/or sulfinic acid intermediates 

capable of GSH oxidation and FMO-dependent redox cycling, resulting in GSH 

depletion in vitro (Henderson et al., 2004b). This is thought to be the mechanism 

responsible for the pulmonary and hepatic adverse effects observed in patients 

administered drugs or exposed to environmental molecules which belong to this class 

of chemical entities (Cashman and Motika, 2010). As another example, investigation 

into the metabolism of ethionamide, a second-line drug for the treatment of 

tuberculosis caused by multi-drug resistant mycobacteria, has drawn attention to the 

importance of understanding the implications of FMO2 polymorphism on the 

efficacy and toxicity of xenobiotics (Qian and Ortiz De Montellano, 2006). 

Ethionamide has numerous side effects, including severe hepatotoxicity and is used 

in regions of the world where the FMO2*1 allele occurs at high frequency [ie, Sub-

Saharan Africa, where almost 50% of individuals have at least one FMO2*1 allele 

(Phillips and Shephard, 2008)]. The drug is S-oxygenated to the correspondent S-

oxide predominantly by FMOs, and to a lesser extent, by CYP. The rate of this 

reaction is markedly higher in human lung microsomes obtained from individuals 

possessing FMO2*1 compared to those expressing FMO2*2 (Henderson et al., 

2008), but the authors have not investigated whether individuals expressing a 

functional FMO2 exhibit toxicologically distinct responses to the drug. The presence 

of the FMO2*1 allele has also been predicted to have in certain instances the 

opposite (protective) effect. This could be the case for thioether-containing 

organophosphates, such as phorate and disulfoton, which are commonly used 

pesticides and are excellent substrates of FMOs (Hodgson et al., 1998; Tynes and 

Hodgson, 1985). S-oxygenation of organophosphates by the flavoenzymes results in 

detoxification (Kinsler et al., 1988), while the oxon produced by CYP is 

predominantly responsible for acetylcholinesterase inhibition, the main toxic effect 

of these compounds (Levi and Hodgson, 1988). In this case, individuals expressing 

the FMO2*1 allele may be more protected from the risk of developing 

organophosphate toxic effects in the lungs than those expressing the mutant allele.  
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To our knowledge, the work presented in this thesis represents the first attempt to 

address this issue. We compared the clinical and post mortem findings obtained in 

two different populations of rats (Wistar and Welsh rats), administered the same dose 

(0.5 mg/kg) of NR678 and euthanased at the same time points. The difference in the 

susceptibility of the two populations to NR678 was pronounced. Rats possessing a 

mutant pulmonary FMO2 isoform had no clinical signs or gross and 

histopathological findings consistent with increased vascular permeability, such as 

pulmonary oedema and hydrothorax, which characterise the acute toxicity of NR678 

(see paragraph 3.2.2.1.3). Rats expressing the ancestral gene instead developed 

transient mild or moderate dyspnoea, which correlated with hydrothorax and 

pulmonary alveolar and interstitial oedema (see paragraphs 3.4.4.1-3.4.4.3), similar 

to that observed in Wistar rats that had received a dose of NR678 10 × higher (see 

paragraphs 3.1.1-3.1.3). These results suggest that the toxicity of the small thiourea-

derived molecule NR678 in rats expressing the FMO2*1 allele is markedly increased 

compared to those which lack an active FMO2 enzyme.  

4.4 Potential issues and limitations  

Here we list questions, problems and limitations that we have identified in our 

approach and suggest ways in which the results obtained could be improved and 

further characterised.  

The data collected in the studies conducted in this thesis appeared reasonably 

uniform between animals within the same group or time point, although a certain 

level of variability was inevitably observed. This, coupled with the small number of 

animals/group and/or time point in most of the experiments (most often n = 3), 

complicated at times the interpretation of the results and statistical analyses. 

The evaluation of the results obtained using IH was particularly challenging. In 

recent years, there has been an increasing amount of literature studying the processes 

involved in the differentiation of pulmonary alveolar epithelial cells, with particular 

emphasis to the markers which allow their identification (Brody and Williams, 1992; 

Fehrenbach, 2001). While the list of the potential markers has been growing 

exponentially, the gold standard for pneumocyte identification appears still to be the 
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ultrastructural examination (Kasper and Singh, 1995). Some of the 

immunohistological markers in fact are exclusive to type II pneumocytes, such as 

SP-C (Kasper et Singh, 1995), while others are shared with different cells in the lung 

and/or in the body [e.g, lysozyme; (Singh et al., 1988)]. Also, the expression of 

markers may be influenced by the developmental stage: early in lung embryonic 

development, epithelial cells express several antigens which are then progressively 

restricted to specific cell types during the differentiation process (Joyce-Brady and 

Brody, 1990). For example, SP-C mRNA is present in all epithelial cells in the early 

development of the rat lung to become uniquely expressed by type II pneumocytes at 

the end of gestation (Brody and Williams, 1992). Marker expression finally can be 

influenced by pathogenic processes (Kasper and Singh, 1995). For these reasons, the 

data obtained from the immunohistological evaluation of NR678 tolerant rat lungs 

need to be interpreted with caution. The antigen SP-C for example was expressed by 

approximately 7% of the total alveolar cells in the control rats from the current study 

(see paragraph 3.2.2.1.3). Data from several sources (Haschek et al., 2009e; 

Williams, 1990) indicate that type II alveolar epithelial cells represent approximately 

14% and 16% of the alveolar cells in the rat and human lung, respectively. The 

antigen SP-C in the current study therefore appears to be present only in half of the 

cells that should express it. It needs to be said that, despite the relatively high 

concentration (1:50) of antibody used in the study, type II pneumocytes expressing 

SP-C exhibited a generally weak staining intensity, which may have influenced the 

level of signal detection for the cell counts. The reason for this discrepancy is not 

known, but might depend on the lower affinity for the rat SP-C protein of the 

antibody (Santa Cruz), which is raised against the full length human isoform.  

Regarding the time-course of the proliferative response occurring in the lungs of 

tolerant rats, the addition of an intermediate time point between the 24 h and 7 d 

intervals would probably have been beneficial to fully appreciate the proliferative 

event, which appears to be only just emergent at the former end point, but already 

phasing out at the latter. This was particularly evident using immunohistology for 

PCNA, a multifunctional protein which is essential for progression into the cell cycle 

(Whitfield et al., 2006). Negligible numbers of proliferating cells were consistently 

detected at all time points, except in rats from groups 3 and 4 euthanased on day 7, 
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where a substantial increase in cells expressing PCNA was noted (see paragraphs 

3.2.2.1.3 and 3.2.2.2.3). According to the dynamycs of type II pneumocyte 

hyperplasia following oxidative injury that we discussed in paragraph 4.2.2, analysis 

of a day 2 or 3 time point would have probably registered the highest peak in 

pneumocyte proliferation and PCNA-positive cells. 

We attempted for the first time to characterise the expression of FMO2 in the rat by 

RNA-ISH. We were particularly interested in the distribution of this isoform within 

the lungs, to investigate a possible relationship between its expression and the 

development of NR678 toxicity and tolerance. We also characterised the cellular 

localisation of FMO2 mRNA in other organs, such as the brain, kidneys and liver. 

Tissue-specific expression profiles of FMO2 in the rat paralleled those obtained in 

mice (Janmohamed et al., 2004), but also showed meaningful differences. In the 

mouse brain, FMO2 is expressed at very low levels and its localisation within this 

tissue has not been specifically addressed in Janmohamed (2004) work. Although not 

quantitatively assessed, we detected a moderate to strong hybridisation signal in 

different areas of the rat brain (cortical and hippocampal neurons and choroid plexus 

epithelium; see paragraph 3.3.1); this pattern of distribution is similar to that 

described for other FMO isoforms (FMO1 and 5) in the mouse brain (Janmohamed et 

al., 2004) and may suggest that cerebral FMO2 mRNA is particularly abundant in the 

rat. In the rat kidneys, the distribution of FMO2 in proximal and distal tubules and 

collecting ducts coincided with the results obtained in mice. In the rat liver, FMO2 

localised exclusively to the bile duct epithelium (see paragraph 3.3.1). This appears 

to be an interesting unique feature of the rat, in contrast to the mouse liver where 

FMO2 is mainly expressed in the periportal hepatocytes (Janmohamed et al., 2004). 

Similarly to the mouse lung, rat pulmonary FMO2 was mainly expressed in the 

epithelial lining of terminal bronchioles (mostly in Clara cells) and within the 

alveolar unit (type II pneumocytes, endothelial cells and alveolar macrophages; see 

paragraph 3.3.1). The FMO2 ISH signal in the rat lung was widespread and strong, 

according to the fact that FMO2 is a major pulmonary isoform in this species. This 

differs from that found in the mouse lung, where FMO2 is expressed at low levels 

(see Appendix I). Of particular interest was the localisation of FMO2 to the 

endothelium of the pulmonary vessels and capillaries, whilst endothelial cells in 
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other organs did not show a positive signal. It is difficult to interpret this finding 

without quantitative data or similar information concerning the localisation of FMO1 

in the rat lung; however, the pulmonary endothelium may be endowed with higher 

levels of FMOs, which can be responsible for its susceptibility to thiourea-induced 

injury. As a result, this is an area that would need further investigation either in in 

vivo and in vitro studies comparing the activity of endothelial cells derived from 

different tissues toward thiourea-based compounds and their susceptibility to 

oxidative injury. We originally planned to develop RNA-ISH probes for all five 

FMO isoforms in order to have a more comprehensive understanding of their 

distribution in the rat and determine whether this species shares analogies with man 

and can be used efficiently in reaction phenotyping assessment during drug 

development. Unfortunately, technical difficulties arose during the design and the 

preparation of the riboprobes, which, together with time limitations, forced us to 

concentrate only on the set up of the FMO2 riboprobe. Information on the expression 

of the other isoforms, especially FMO1 in the lung, would have helped in 

formulating hypotheses concerning the relationship between FMOs and the 

development of oxidative injury and/or tolerance to NR678. In addition, we have 

qualitatively and quantitatively assessed the levels of FMO1 and/or FMO2 mRNA, 

but we did not explore the expression and distribution of the correspondent proteins. 

Unfortunately, this was not possible due to the lack of commercial antibodies 

targeting the rat FMO isoforms. Therefore, differences in the pulmonary expression 

of FMO1 and FMO2 proteins during thiourea-induced toxicity and tolerance remain 

to be investigated. 

Our genotyping work allowed us to identify a colony of rats (Welsh rats) which 

expressed a functional FMO2 and to compare the metabolic and toxicological 

responses of these rats to Wistar rats carrying an inactive FMO2 gene. We found that 

the toxicity of NR678 in rats expressing FMO2*1 was increased compared to those 

which lack an active FMO2 enzyme. We believe that the relevance of this animal 

model to humans is likely to be meaningful, however, we acknowledge that these 

findings represent only preliminary evidence of this potential increased susceptibility 

to drug-induced oxidative injury and that this approach requires further experimental 

investigation. First of all, speculation concerning the translation of these findings to 
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man should take into consideration the abundance of FMO2 in the rat and human 

lungs. Unfortunately, quantitative data relative to the concentration of FMOs in the 

rat lung are not available; however, both humans and rats have similar FMO 

distribution in the lung, FMO2 being the most abundant FMO isoform, followed by 

FMO1 (see paragraph 1.5.6.3 and Appendix 1) and they both share a naturally 

occurring FMO2 polymorphism. It has been proven that human microsomes obtained 

from the lungs of individuals expressing a functional FMO2 are able to catalyse the 

oxygenation of FMO-specific substrates more efficiently than those containing an 

inactive isoform (Henderson et al., 2008). These observations imply that a direct 

comparison between the two species may still be valid. Another drawback of this 

approach is that differences in the genetic background other than the mutations of 

FMO2, the health status and the environmental conditions between the two rat 

populations tested may have influenced the outcome of the study. For example, the 

presence of pulmonary inflammatory lesions in rats from study 4 (see paragraph 

3.4.4.3), which were likely spontaneous in nature and reminiscent of M. pulmonis 

infection, was a major concern for the interpretation of the outcome of the study, as it 

may have contributed to the increased susceptibility of the Welsh rats to NR678-

induced acute lung injury by impairing the physiological pulmonary defences. 

However, the spontaneous inflammatory lesions were generally limited in 

distribution and were not recorded in all animals. Also, there were cases in which 

NR678-induced alveolar and interstitial oedema was observed, in the absence of 

spontaneous granulomatous inflammation and BALT hyperplasia, which may 

suggest that the contribution of these incidental findings to the general picture was 

possibly minor. 

During our genotyping analysis, we found that all rats genotyped in the Welsh 

colony were homozygous for FMO2*1. The presence of FMO2 polymorphism in 

these animals would have been ideal for the set up of a toxicity study aimed to 

compare the toxicological responses to thiourea of rats belonging to the same colony 

and strain, but with different FMO2 genotypes. Reintroduction of the mutant FMO2 

allele in the Welsh colony could have been obtained by crossing these rats with 

Wistar rats, which express FMO2*2; however, this could not have been done without 

prior monitoring of the colony health status and rederivation. Our experience stresses 
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once again the imperative need for laboratory animals used in experimental studies to 

be constantly screened for infectious agents and free of diseases that can cause 

difficulties in the interpretation of the results. 

4.5 Concluding remarks 

The work presented in this thesis has investigated the morphological and functional 

aspects of the pulmonary toxicity and tolerance associated with the administration of 

NR678, a small thiourea-based rodenticide candidate, to rats and has aimed to 

improve the understanding of FMO2 polymorphism in rats and humans (Figure 4.5). 

It was found that NR678 was lethal to rats at relatively small doses and caused life-

threatening respiratory impairment within a few hours of administration, 

characterised by extensive hydrothorax and pulmonary oedema. The acute toxicity of 

NR678 represented an opportunity to elucidate the morphology and cellular targets 

of oxidative stress, which it is a main injury pathway observed in several models of 

pulmonary adverse drug reactions and in pulmonary conditions, such as idiopathic 

fibrosis and ARDS (Comhair and Erzurum, 2002). We have shown that NR678 is 

metabolised by FMOs, presumably to a highly reactive intermediate, which was not 

detected by HPLC. We assumed that this reactive compound, similarly to other small 

thiourea intermediates (Mansuy and Dansette, 2011; Smith and Crespi, 2002), causes 

a rapid decrease of reducing equivalent levels through a “futile” redox cycling 

mechanism, as suggested by the decreased levels of hepatic and pulmonary GSH 

found in our studies and then attacks constitutional components of the cells. 

Pulmonary endothelial cells are the main target of NR678 oxidative injury and 

exhibit a reversible impairment of their function, distinguished by a perturbation of 

vascular permeability through paracellular gap formation. We have concluded that 

the susceptibility of endothelial cells to NR678-induced injury may represent a 

specific pathway of this cell type to react to a sudden change in the redox 

environment and/or may depend on the amount of reactive metabolite produced by 

FMOs in the endothelial cell cytoplasm or in the adjacent cells. The different 

susceptibility of pulmonary cells to oxidative injury appears an interesting field of 

research, which may bring new insight into the understanding of acute lung injury 

and its prevention. In vitro models based on pneumocyte and endothelial cell cultures 
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may represent a useful tool to study how these cells respond to oxidative stress and 

how the degree of injury can be modulated by altering the levels of antioxidant 

resources. 

 

Figure 4.5. A system biology approach to the investigation of NR678-induced toxicity and 

adaptation. 

The model of acute lung injury caused by NR678 shares numerous features in 

common with ARDS, a severe human pulmonary condition characterised by diffuse 

acute oxidative damage of the alveolar unit, which is not completely understood to 

date and difficult to treat (Matute-Bello et al., 2008). After we established that rats 

administered a low dose of NR678 had no clinical respiratory distress and were 

protected from a normally lethal dose after only 3 h, we were intrigued by the 

effectiveness and the quick onset of this adaptive response and we proceeded to fully 

characterise for the first time the morphology of this change, to improve our 

understanding of the pulmonary defences which are involved in the prevention of 

lung oxidative injury. In contrast to the animals that had received the high dose only, 

tolerant rats exhibited mild, infrequent ultrastructural changes in the endothelial cells 

lining the pulmonary capillaries, which explained the lack of severe gross and 

microscopic findings consistent with increased vascular permeability. The lungs 
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reacted to the toxic insult exhibiting at first increased numbers of alveolar 

macrophages and immature type II pneumocytes, followed by a rise in the number of 

mature type II pneumocytes one week after dosing. The microscopic changes 

resolved by the end of the second week, when rats were found to be again susceptible 

to a lethal dose of NR678. The mechanism involved in the protection of the lungs 

from oxidative injury remained unclear; however, based on our results, we excluded 

that tolerance was primarily due to increased clearance of the oedema fluid by 

macrophages and type II pneumocytes, altered levels of FMO mRNA or GSH. The 

hypothesis that irreversible inhibition of FMOs may be implicated in the adaptive 

response of the lungs to NR678 needs further investigation. All available animal 

models aim to reproduce the mechanisms and consequences of ALI in humans by 

inducing a significant damage to the alveolar epithelium, which is followed by a 

reparative process (Matute-Bello et al., 2008). NR678 may represent an interesting 

and unique model of ALI, where the primary injury affects the endothelial cells 

rather than the epithelial compartment. Future trials should assess the significance of 

the responses of the lungs to this type of injury and determine whether they still 

represent a reparative process or are instead an adaptive reaction, aimed to confer 

protection to further injury. With this in mind, the investigation of these defence 

mechanisms may bring new perception into the therapeutic approach of acute lung 

injury. 

To our knowledge, this was the first study to have addressed the possible 

toxicological consequences associated with a FMO2*1 homozygous genotype in rats. 

We showed that pulmonary microsomes possessing an active FMO2 isoform catalyse 

the S-oxygenation of MI at a higher rate compared to those homozygous for the 

inactive form. This correlated in an in vivo model with the increased susceptibility of 

FMO2*1 homozygous rats toward NR678 toxicity. We hypothesised that this animal 

model could be relevant to humans, where similar FMO distribution and FMO2 

polymorphism are observed (Shephard and Phillips, 2010).  

An example of future research on the implications of FMO polymorphisms is 

represented by pyrrolizidine alkaloids, compounds synthesized by several plants 

belonging to a few Angiosperm families which act as toxins in several domestic 
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animal species, including ruminants and horses (Cheeke, 1988). The toxic principles 

in these plants consist of pyrrolic esters, which are derived from bioactivation of the 

parent compounds by hepatic P450 isoforms CYP3A and CYP2B, whilst FMO 

catalyses the N-oxygenation, leading to a more soluble, nontoxic N-oxide. 

Interestingly, susceptibility to PA toxicity varies greatly among vertebrates and 

differences in the toxic outcome has been ascribed to different expression levels of 

enzymes involved in the activation and detoxification of the parent compound (Huan 

et al., 1998a; Huan et al., 1998b). For example, the well-known resistance of guinea 

pig to PA toxicity has been related to the higher levels of FMO-mediated oxidation. 

Studying the distribution of hepatic FMOs in the horse for example, whose entire 

genome has been only recently published (Wade et al., 2009), and investigating the 

presence of FMO polymorphism in this species may provide significant advances in 

the prevention of this type of injury.  

To conclude, a polymorphism for a specific enzyme, drug transporter or receptor 

may result in enhanced activity of the protein, decreased activity or no function or 

may not lead to any change. Research on this field applied to drug metabolism has 

been the main objective of pharmacogenomic, a branch of pharmacology which aims 

to investigate the influence of genetic variation on drug response (Ma et al., 2012). 

The extraordinarily diverse CYP gene family has been the object of countless 

publications in the last decade due to the prominent role of cytochrome P450 in 

phase I metabolism. In several cases, the genetic variability documented for 

numerous xenobiotic metabolising enzymes has been related to increased toxicity 

and side effects, altered pharmacokinetics and different disease susceptibility 

(Ginsberg et al., 2010). In recent years there has been a growing amount of literature 

aiming to characterise the consequences of genetic polymorphism in the FMO 

enzyme family, especially FMO3 (Cashman and Zhang, 2006). The present study 

contributes additional evidence that suggests that FMO2 polymorphism may be 

relevant to humans and provides an animal model which can be used to study its 

implications.  
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Appendix I – FMO expression in humans and mice 

Table I.1. Tissue-specific expression of FMOs in humans. 

Isoform Expression Reference 

FMO1 

FMO1 is found at extremely low levels in the adult liver. Its expression is detected in the liver of the foetus, but 

then suppressed 72 hours after birth 

(Dolphin et al., 1991; Dolphin et al., 

1996; Krueger and Williams, 2005; 

Mccarver and Hines, 2002) 

In the adult, FMO1 is primarily expressed in the kidneys, at a higher concentration than CYP. (Jakobsson and Cintig, 1973) 

FMO1 is present, to a minor extent, in the gastrointestinal system and endocrine tissues 

(Cashman et al., 2008; Dolphin et al., 

1991; Dolphin et al., 1996; Phillips et 

al., 1995) 

Similarly to the liver, FMO1 gene expression in the human lung and brain is switched off after birth (levels are 

less than 3% and 1%, respectively, of that in the kidneys) 

(Cashman and Zhang, 2006; Dolphin 

et al., 1996) 

FMO2 

FMO2 is the major form present within the human lung and in most species. (Krueger et al., 2002a) 

FMO2 mRNA is also expressed in the kidneys (7 × less than the lung), liver, small intestine and brain (50 to 

100 × less). 
(Zhang and Cashman, 2006) 

FMO3 

The amount of FMO3 isolated from the adult liver (both sexes) is approximately 65% of that typically obtained 

for CYP3A4 and approximately equivalent to that of CYP2C9, which in turn represents 20% of total CYP levels 

in the liver. 

(Koukouritaki et al., 2002; Shimada 

et al., 1994) 

Levels of FMO3 mRNA in lung, kidney and small intestine are less than 5% of those found in the adult liver. 

The brain contains less than 1% of the total FMO3 detected in the adult liver. 
(Zhang and Cashman, 2006) 
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(Cont.) 

Isoform Expression Reference 

FMO4 

FMO4 mRNA is present in the liver and the kidney at the same low level (Dolphin et al., 1996) 

FMO4 contents in the lung, small intestine and foetal liver are approximately 10% of those in the adult liver and 

the brain contains a much lower amount (1% of adult liver) 
(Zhang and Cashman, 2006). 

FMO5 

FMO5 is present in several foetal and adult tissues in a gender-independent pattern. (Cashman and Zhang, 2006) 

FMO5 mRNA is the most abundant FMO transcript isolated from the adult human and mouse liver, followed by 

FMO3. 

(Furnes et al., 2003; Janmohamed et 

al., 2004) 

FMO5 mRNA is present also in the following tissues: foetal liver (approximately 20% of adult liver amounts), 

small intestine and kidney (approximately 10%), lung (4%) and brain (less than 1%). 
(Zhang and Cashman, 2006) 

It has been argued that FMO5 mRNA levels may not correlate well with actual FMO5 protein levels (Krueger and Williams, 2005) 
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Figure I.1 Tissue-dependent FMO mRNA distribution in humans. Abundance and 

proportion of FMO mRNA are displayed according to the FMO isoform (a) or the tissue 

considered (b). The values displayed in the data labels refer to the number of copies of the 

correspondent FMO transcript/µg mRNA in the different tissues, followed by the percentage 

distribution of the isoform in the specific tissue. Data are obtained from Zhang and 

Cashman, 2006.  
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(b) Cont. 
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Figure I.2. Tissue-dependent FMO mRNA distribution in male (a) and female (b) mice. 

Abundance and proportion of FMO mRNA are displayed according to the FMO isoform 

(left) or the tissue considered (right). The values displayed in the data labels refer to the 

molecules of the correspondent FMO transcript/ µg of total mRNA in the cell. Data are 

obtained from Janmohamed et al. (2004).  

a) Male mice 
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b) Female mice (cont.) 
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Appendix II – Summary of in vivo analyses 

Table II.1. Summary of analyses conducted in each in vivo study.  

Study G 
NR678 

(mg/kg) 
End point HE 

Special stains 

IH IH cell countsa TEM ISH GSH qPCR nPCR MSB, 

PTAH, LF 

MT 

1 
1 Control  6 h F all all AQP-5, FVIII, Cas3 (all) - - - - - - 

2 10 6 h F all - AQP-5, FVIII, Cas3 (all) - - - - - - 

3 

1 Control 24 h P - all AQP-5, FVIII, Cas3, SP-C, Lys, PCNA (all) all 11L-2402 allb all all all 

2 5 6 h P - - AQP-5, FVIII, Cas3, SP-C, Lys, PCNA (all) all 11L-2405 allc all all - 

3 

 

0.5 3 h P - - SP-C, Lys, PCNA (all) all 11L-2420 allc all all - 

0.5 6 h P - - SP-C, Lys, PCNA (all) all 11L-2424 allc all all - 

0.5 24 h P - - SP-C, Lys, PCNA (all) all 11L-2427 allc all all - 

0.5 7 d P - 11L-2430 SP-C, Lys, PCNA (all) all 11L-2430 allc all all - 

0.5 14 d P - 11L-2432 SP-C, Lys, PCNA (all) all - allc all all - 

0.5 + 5 14 d + 6 h P - - - - - - all - - 

4 

0.5 + 5 24 h P - - SP-C, Lys, PCNA (all) all 11L-2408 allc all all - 

0.5 + 5 7 d P - 11L-2411/12 SP-C, Lys, PCNA (all) all 11L-2411 allc all all - 

0.5 + 5 14 d P - 11L-2417/18 SP-C, Lys, PCNA (all) all - - all all - 

0.5 + 5 + 5 14 d + 6 h P - - - - - - all - - 

4 

1 Control 24 h P - - - - - - - - all 

2 0.5, 3h 3 h P - - - - - - - - all 

3 0.5, 6h 6 h P - - - - - - - - all 

4 0.5, 24h 24 h P - - - - - - - - all 

 
G: group. HE: haematoxylin and eosin stain. F: full histopathological examination. P: partial histopathological examination. MSB: Martius Scarlett blue stain. PTAH: Phosphotungstic acid-haematoxylin 

stain. FL: Fraser Lendrum stain. MT: Masson Trichrome. IH: immunohistology. AQP-5: aquaporin 5. FVIII: factor VIII-related antigen (von Willebrand factor); Cas3: cleaved caspase 3; SP-C: surfactant 
protein C; Lys: lysozyme; PCNA: proliferating cell nuclear antigen. ISH: in situ hybridisation using FMO2 RNA antisense probe. GSH: measurement of glutathione in liver and lung homogenates. qPCR: 

quantitative polymerase chain reaction for FMO1 and FMO2. nPCR: nested PCR technique for FMO2 genotyping. 

a: cell counts were applied to immunohistological stains for SP-C, Lys and PCNA 
b: ISH was evaluated on brain, kidney, liver and lung sections 

c: ISH was evaluated on lung sections only.  
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Appendix III – Additional reagents and solutions 

 

Solutions and reagents used for ISH 

 

Prehybridisation buffer (PHB-buffer): 

6 × SCC, 45% [v/v] deionised formamide, 5 × Denhardt’s solution in DEPC-treated 

water. 

Recipe: 

20 × SSC (VWR International, Lutterworth, UK): 150 mL 

100% formamide, deionised (VWR International) : 225 mL 

50 × Denhardts solution (VWR International): 50 mL 

DEPC (Sigma, Poole, UK) treated water: 70 mL 

Stored at –20°C. 

Before use, 0.25 mg/mL baker yeast tRNA (Roche, Burgess Hill, UK) and 0.1 

mg/mL single strand salmon sperm DNA (Sigma) dissolved in Buffer 4 was added to 

50 mL of PHB buffer. 

 

Hybridisation buffer (HB-buffer): 

60% [v/v] deionised formamide, 6 × Denhardt’s solution, 30 mM EDTA [pH 8.0], 

30 nM piperazin-N,N’bis(2-ethanesulfate-acid) (PIPES, pH 7.0), 0.9 M NaCl, 0.01% 

[v/v] Triton X-100, 8000 U heparin. 

Recipe : 

100% formamide, deionised : 16 mL 

20 × hybridisation salts : 8 mL [solution made with EDTA (Sigma) 0.1 M, PIPES 

(Sigma) pH 7.0,  0.1 M and NaCl (Sigma) 5 M] 

50 × Denhardts solution: 3.2 mL 

Heparin (20,000 U; VWR International) diluted in 1 mL of distilled water: 400 μL 

10% Triton X-100 : 320 μL 

Aliquoted (696 μL) and stored at –20°C. 
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Before use, 0.2 mg/mL baker yeast tRNA, 0.25 mg/mL single strand salmon sperm 

DNA and 62.5 mg/mL dextransulfate (Fisher, Loughborough, UK) solution (250 mg 

dextransulfate dissolved in 400 µL distilled water). 

 

Buffer 1: 

100 mM Tris, 100 mM NaCl, pH 7.5 

Recipe: 

Tris (Sigma): 12.11 g  

NaCl: 8.77 g 

Diluted in 1000 mL distilled water 

 

Buffer 3: 

100 mM Tris, 100 mM NaCl, 50 mM MgCl2.6H2O, pH 9.5 

Recipe (prepared fresh): 

Tris: 2.422 g  

NaCl: 1.168 g 

MgCl2 + 6H20 (add just before use): 2.034 g 

Diluted in 200 mL distilled water 

 

Buffer 4: 

10 mM Tris, 1 mM EDTA, pH 8 

Recipe: 

Tris: 1.21 g  

EDTA: 0.37 g 

Diluted in 1000 mL distilled water. 

 

Solutions and reagents used for qPCR 

 

SYBRGreen JumpStart Taq ReadyMix (Sigma, Poole, UK) 

 20 mM Tris-HCl, pH 8.3, 100 mM KCl, 7 mM MgCl2, 0.4 mM each of dNTP 

[dATP, dCTP, dGTP, TTP], stabilizers, 0.05 unit/mL Taq DNA Polymerase, 

JumpStart Taq antibody, and SYBR Green I 
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Solutions and reagents used for molecular cloning 

 

Glucose solution (miniprep) 

50 mM glucose, 25 mM Tris-HCl [pH 8.0], 10 m M EDTA and 1 mg/mL lysozyme 

(Sigma) 

 

Denaturation solution (miniprep) and Buffer P2 (maxiprep)  

200 mM NaOH and 1% (w/v) sodium dodecyl sulphate 

 

Neutralisation solution (miniprep) 

3 M potassium acetate and 11% (v/v) glacial acetic acid (pH 5.5) 

 

Buffer P1 (maxiprep) 

50 mM Tris-Cl, pH 8.0, 10 mM EDTA, 100 ug/mL RNase A  

 

Buffer P3 (maxiprep) 

3 M potassium acetate, pH 5.5  

 

Buffer QBT (maxiprep) 

750 mM NaCl, 50 mM 3-(N-morpholino) propanesulfonic acid (MOPS), pH 7.0, 

15% isopropanol, 0.15% Triton X-100  

 

Buffer QC (maxiprep) 

1 M NaCl, 50 mM MOPS, pH 7.0, 15% isopropanol  

 

Buffer QF (maxiprep)  

1.25 M NaCl, 50 mM Tris-Cl, pH 8.5, 15% isopropanol  

 

TE Buffer (maxiprep) 

10 mM Tris-Cl, pH 8.0, 1 mM EDTA  
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