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ABSTRACT 

With phenomenal rise in world population as well as robust economic growth in China, India 

and other emerging economies; the global demand for energy continues to grow in 

monumental proportions. Owing to its wide end-use capabilities, petroleum is without doubt, 

the world‘s number one energy resource. The present demand for oil and credible future 

forecasts – which point to the fact that the demand is expected to increase in the coming 

decades – make it imperative that the E&P industry must device means to improve the 

present low recovery factor of hydrocarbon reservoirs. Efficiently tailored model-based 

optimization, estimation and control techniques within the ambit of a closed-loop reservoir 

management framework can play a significant role in achieving this objective. 

 

In this thesis, some fundamental reservoir engineering problems such as field development 

planning, production scheduling and control are formulated into different optimization 

problems. In this regard, field development optimization identifies the well placements that 

best maximizes hydrocarbon recovery, while production optimization identifies reservoir 

well-settings that maximizes total oil recovery or asset value, and finally, the implementation 

of a predictive controller algorithm which computes corrected well controls that minimizes 

the difference between actual outputs and simulated (or optimal) reference trajectory. We 

employ either deterministic or metaheuristic optimization algorithms, such that the choice of 

algorithm is purely based on the peculiarity of the underlying optimization problem.  

 

Altogether, we present a unified metaheuristic and system-theoretic framework for petroleum 

reservoir management. The proposed framework is essentially a closed-loop reservoir 

management approach with four key elements, namely: a new metaheuristic technique for 

field development optimization, a gradient-based adjoint formulation for well rates control, 

an effective predictive control strategy for tracking the gradient-based optimal production 

trajectory and an efficient model-updating (or history matching) – where well production data 

are used to systematically recalibrate reservoir model parameters in order to minimize the 

mismatch between actual and simulated measurements.  

 

Central to all of these problems is the use of white-box reservoir models which are employed 

in the well placement optimization and production settings optimization. However, a simple 

data-driven black-box model which results from the linearization of an identified nonlinear 

model is employed in the predictive controller algorithm. The benefits and efficiency of the 

approach in our work is demonstrated through the maximization of the NPV of waterflooded 

reservoir models that are subject to production and geological uncertainty. Our procedure 

provides an improvement in the NPV, and importantly, the predictive control algorithm 

ensures that this improved NPV are attainable as nearly as possible in practice.  
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CHAPTER 1 
A man who pays respect to the great paves way for his own greatness – Chinua Achebe  
 

 
INTRODUCTION 

In this introductory chapter, detailed background information required to understand the need 

for this research is presented. The age-long dependence of mankind on diverse energy 

resources is highlighted, and the relationship between energy utilization capacity and 

economic prosperity is highlighted with the focus on petroleum. Finally, the motivations, 

objectives and contributions of this thesis are presented. 

 

1.1 Energy Utilization and Quality of Life  

Without fear of contradiction, it can be said with some degree of accuracy that the history of 

mankind is a story of a continual search of energy and better means of livelihood. Over the 

centuries, man‘s quality of life has been measured in terms of increased availability at the 

point of need, the basic essentials of life – food, clothing and shelter. This goes hand-in-hand 

with better healthcare services, more effective and efficient transportation, better means of 

communication and telecommunication, more availability of potable water, better leisure and 

entertainment services, as well as reliable municipal services. The quest for better living has 

resulted in the invention and manufacture of a wide variety of tools and equipment; it has led 

to the birth of an incredible array of devices, gadgets and machines that aim to make life easy 

and enjoyable. These devices and machines would be nothing but lifeless chunks of matter if 

some driving impetus were not provided – Eze (2002). That driving impetus is energy. It is 

available in variety of forms, and can be broadly classified into – renewable (wind, solar, 

biomass) and non-renewable (natural gas, oil, coal, nuclear
1
) energy. 

 

                                                           
1
 Although nuclear energy is a low carbon power generation source, its categorization as a renewable energy 

power source has been the subject of much debate. In this work, we categorize it as non-renewable.  
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In rural parts of the developing world for example, life is nothing but a simple affair. Most 

communities are largely without electricity, and the common fuels are dry vegetative 

material, wood, charcoal, and kerosene. Very few activities are mechanized, and as a result, 

the standard of living is pretty low. Agriculture is the predominant occupation, and the tools 

used for this purpose are simple hoes and machetes; thus, the primary source of energy is 

manual labour. Although animal-drawn farm implements are increasingly available, there is 

no gainsaying that the amount of arable land that can be cultivated by these sources of energy 

(on a per capita basis) is minimal. It is accepted that an increased availability of more energy 

resources (in this case, for mechanization of agriculture) will no doubt bring those part of the 

world much closer to achieving the all-important goal of self-sufficiency in food production. 

This is so because productivity is always enhanced upon the substitution of muscular effort 

with machines. In other words, the mechanization of human activities often leads to 

tremendous improvements in productivity, economic development and empowerment. It 

therefore follows by logic that the level of economic empowerment in any given society, as 

measured in monetary terms by its per capita income, correlates quite well with the per capita 

energy utilization of that society – Eze (2002). 

 

Available data from Key World Energy Statistics (KWES) show that the developed nations 

of the world have much higher per capita income as well as higher per capita energy 

utilization than the less developed nations of sub-Saharan Africa and indeed the Third World. 

Therefore, one can infer that the living standard and quality of life of any given economy go 

pari-passu with its per capita energy usage. A good illustration of this point is highlighted if 

we undertake a historical survey of energy demand and utilization across different geo-

political regions of the world. In 1973, the approximately 750 million citizens of the 

Organization for Economic Co-operation and Development (OECD)
2
 bloc (which constitute 

about 19% of the world‘s total population at that time) consumed no less than 11.12×10
16 

BTU of the world‘s total energy supply. This represents over 60% of total global energy 

(18.5×10
16 

BTU) supply, and a per capita energy utilization of 150×10
6 

BTU. Thirty-five 

years later, the OECD bloc consumed 14.7×10
16 

BTU – which represents 44% of total global 

                                                           
2 The Organization for Economic Co-operation and Development (OECD) consist of 24 countries as at 1973. 

They include: Australia, Austria, Belgium, Canada, Denmark, Finland, France, Germany, Greece, Iceland, 

Ireland, Italy, Japan, Luxembourg, Netherland, New Zealand, Norway, Portugal, Spain, Sweden, Switzerland, 

Turkey, UK and USA. By the year 2008, countries such as Czech, Hungary, South Korea, Mexico, Poland and 

Slovakia had become member countries of the OECD. 
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energy supply (33.4×10
16 

BTU), and a per capita energy utilization of 122.5×10
6 

BTU for 

the 1.2 billion citizens of the bloc. 

 

In 1973, China and her 882 million citizens consumed 1.46×10
16 

BTU – which represents 

7.9% of global energy supply, and a per capita energy utilization of 16.57×10
6 

BTU. With a 

population of 1.33 billion citizens in 2008, China‘s energy consumption rose to 5.48×10
16 

BTU – i.e. 16.4% of the global energy supply; and by all indications, an energy utilization 

increase of monumental proportions. In other words, China‘s energy consumption more than 

tripled between the periods 1973 and 2008; and within the same time frame, the per capita 

energy utilization of the average Chinese more than doubled from 16.57×10
6 

BTU to 

41.2×10
6 

BTU.  

 

28.3%

60.1%
7.9%

13.2%

70.8%

7.8%

8.2%

33.9%

44%

16.4%

5.7%

16.2%
56%

18.8%

9%
3.7%

Africa
China

OECD
Others

(a) Energy consumption 

1973

(b) Per capita energy utilisation  

1973

(c) Energy consumption 

2008

(d) Per capita energy utilisation  

2008

Figure 1.1: Global energy utilization at geo-political and per capita level in 1973 and 2008  

 

Interestingly, this historical survey and comparison get a lot more meaningful if we throw-in 

the energy consumption and per capita energy utilization of Africa into the mix. With a 

population of 390 million inhabitants, Africa consumed 0.68×10
16 

BTU or 3.7% of global 

energy supply in 1973. This translates to a per capita energy utilization of 17.5×10
6 

BTU, 

which was marginally better (or at least comparable) to the per capita energy utilization of 

China at that time.  However, the 975 million individuals that peopled Africa in 2008, 

consumed 1.9×10
16 

BTU (or 5.7%) of the entire global energy supply for that year. This 

represents a per capita energy utilization of 19.62×10
6 

BTU – which is less than half the per 

capita energy utilization of China, and less than a sixth of the per capita energy utilization of 

the OECD countries at that time. Figure 1.1 shows a pictorial representation of the global 

energy utilization at geo-political and per capita levels in 1973 and 2008. If we put the above 

statistical analyses side-by-side with the tremendous technological and economic growth that 

China has recorded in the past quarter-of-a-century; one does not struggle to understand why 

China‘s energy consumption almost quadrupled in the period between 1973 and 2008. It 
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underscores the point that technological advancement is coterminous with demand for, and 

usage of, more and more energy. It also reinforces the logic that the level of economic 

empowerment of any given society correlates quite well with the per capita energy utilization 

of that society. 

 

1.2 Energy Resources  

There are a number of energy resources; and in many instances, these energy resources are 

often classified into two broad classes as depicted in Figure 1.2. One class is made of all 

those resources which are derived from natural processes that are replenishable in ‗real-time‘. 

This energy class is not subject to any threat of depletion; and is therefore, referred to as 

renewable energy resources – a testimony of the fact that they are constantly replenished, or 

perhaps in recognition of the fact that these energy resources are in a continual state of flux, 

Eze (2002). Examples include: solar energy, wood
3
, biomass, wind, hydropower

4
, etc. 

 

Energy 

Resources

Renewable
Non-

Renewable

Wind
Others

(geothermal, tidal,  

hydropower, etc)

Solar Wood/Biomass Nuclear Fossil

Coal Petroleum/OilNatural Gas

 Figure 1.2: Classification of Energy Resources  

 

                                                           
3
 The membership of wood in the class of renewable energy resources is suspect. When carefully exploited with 

effective afforestation and re-forestation programmes in place, wood is a renewable energy resource. However, 

experience in various parts of the world has shown quite clearly that if these conditions are not strictly met, 

wood would fail to qualify as a renewable energy resource. Desertification would be a natural consequence of 

an extreme case of an indiscriminate exploitation of this energy resource. 

 
4
 In principle, hydropower would appear at any rate to be a renewable energy resource (so long as it is as a result 

of the natural hydrologic cycle of evaporation and precipitation). However, the issue of siltation which naturally 

accompanies the creation of large artificial lakes (by impounding a rapidly-flowing river) is of enormous 

significance. The siltation process gradually accumulates silts which tend to decrease the effective depth of the 

man-made lake, and consequently, the suitability of the site in question for hydro-electric power generation. For 

this reason, hydropower sites must be carefully chosen; otherwise that energy resource would fail to be truly 

renewable. 
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The second class include all the energy resources that are found in the earth‘s crust in the 

form of material substances that are known to occur in specific or unspecific finite quantities. 

Though neither the deposits of these materials on a global basis, nor the actual quantities to 

be found in the deposits or reserves may be completely known; what is known with certainty 

is the fact that there is only a finite quantity of each of the energy resources in this class. An 

indiscriminate exploitation poses a risk of complete depletion; therefore, the resources in this 

class are the energy resource equivalent of ‗endangered species‘. As it were, they stand the 

risk of ‗extinction‘, because the rate of their exploitation far out-weighs the rate at which they 

are replenished by relevant natural processes.  

 

On account of this great discrepancy between the rate of replenishment and exploitation, 

these energy resources are referred to as non-renewable energy resources – a nomenclature 

which clearly underscores their proneness to depletion. Examples of this category of energy 

resources include nuclear and fossil fuels such as coal, natural gas and oil. As the title of this 

thesis suggests, the scope of this work is on non-renewable energy; and the focus is primarily 

on petroleum or crude oil.   

 

 

1.2.1 Liquid Petroleum (Crude Oil) 

Petroleum, also known as crude oil, is a fossil fuel and liquid mineral whose origin has been 

ascribed to marine organisms that were deposited in the earth crust many eons ago. These 

deposited organisms were subsequently transformed (under anaerobic and extreme high 

temperature and pressure conditions) into the mineral which is at present so valuable to 

modern technology and to world economy that it is often referred to as liquid gold. The word 

‗petroleum‘, which literally means ‗rock oil‘, is a combination of two Latin words petrus 

(meaning rock) and oleum (meaning oil) – an allusion to the fact that the earliest finds of this 

energy resource were in the form of seepages from sedimentary rock outcrops.  

 

Besides the well-known conventional crude oil, petroleum also occurs in the form of tar 

sands (oil sands or bituminous sands) and oil shale. The former occur in commercial 

quantities in Venezuela (Orinoco), Canada (Alberta), Russia, the USA and Madagascar to 

name but a few; and the latter is found in commercial quantities at various locations across 

the globe. Global reserves of oil in 2012 are estimated at 1600 billion barrels, Oil & Gas 
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Journal (2011) and USEIA (2011). Table 1.1 shows the distribution of the reserves in 

different geographical regions.  

 

 

 

 

 

 

 

 

 

 

 

Table 1.1: Geographical distribution of global oil reserves 

 

Over the past half a century, the global economy and indeed mankind have become addicted 

to oil; and to satisfy this ‗addiction‘, this non-renewable resource is exploited at a 

phenomenal rate. With this neck-breaking rate at which known reserves are depleted, and the 

enormous challenge of finding new ones, serious concerns have been raised to the effect that 

global reserves could run out in less than a century. To this end, a lot of research has been 

dedicated to finding alternative energy sources that would wean the world of its dependence 

on oil. More importantly, a greater number of researches are firmly focused on finding and 

developing newer and effective techniques and methodologies that would improve production 

and enhance recoverability of this essential energy resource. 

 

1.2.2 Natural Gas 

Natural gas is a finite energy resource which shares a common geological history with oil. 

Depending on the prevailing temperature and pressure condition (with respect to the fluid 

critical temperature and oil bubble point pressure respectively) at which the hydrocarbon 

maturation or catagenesis occurred; natural gas could exists together with oil (gas-cap oil 

reservoirs) and can therefore be referred to as associated gas.  

 

Geographic 

Regions 

Oil Reserves  

(109 bbl of Oil) 

% of Global 

Reserve 

Africa 144 9.0 

America (North) 234 14.6 

America (Others)  237 14.8 

Asia + Eurasia 140 8.7 

Middle East
 

834 52.1 

OECD Europe 11 0.7 

Total 1600 99.9 
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In situations where the prevailing reservoir temperature is greater than the fluid critical 

temperature, natural gas occur as non-associated gas as evident in various isolated gas fields 

across the world. The main constituent of this energy resource is methane (CH4) – which 

constitutes no less than 80% by volume of natural gas. The remainder is made of varying 

percentages of ethane (C2H6), propylene (C3H6), hydrogen (H2), carbon dioxide (CO2), 

carbon monoxide (CO) and other gases. The global reserves for natural gas are estimated at 

6,675 trillion cubic feet, Oil & Gas Journal (2010); and the distribution is given in Table 1.2. 

 

Geographic Regions Natural Gas 

Reserves (1012) ft3 
% of Global 

Reserve 

Africa 518 7.7 

America (North) 346 5.2 

America (South + Central)  269 4.0 

Asia + Eurasia + Europe 2856 42.8 

Middle East 2686 40.2 

Total 6675 99.9 

 

Table 1.2: Geographical distribution of global natural gas reserves 

 

1.3 Global Demand of Energy Resources 

From the foregoing, it has been clearly established that man and energy are inseparable. We 

highlighted in section 1.1 that global energy consumption almost doubled from 18.5×10
16 

BTU in 1973 to 33.4×10
16 

BTU in 2008. This pattern of increase in global energy demand 

and consumption is not expected to change anytime in the distant future; in fact, the trend is 

expected to increase.  According to the 2011 International Energy Outlook, the US Energy 

Information Agency (USEIA) posits that global energy consumption will significantly 

increase in the next quarter of a century. This unprecedented rise in demand of energy will be 

as a result of robust economic growth in China and India; as well as increased usage in other 

rapidly developing economies. Figure 1.3 depicts a summary of the projected energy demand 

for various energy resources as contained in the USEIA 2011 report.  

 

For reasons bordering on environmental friendliness, and need to implement the United 

Nation (UN) Kyoto Protocol, renewable energy resources are becoming more and more 
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economically competitive with fossil fuels (coal, natural gas and oil) – as evident in Figure 

1.3. However, oil, coal and natural gas will certainly remain the dominant source of energy 

until 2035, and possibly beyond. The reason behind this reality is not far-fetched. The 

developmental stage and capacity of most renewable-resource technologies are still in their 

infancy; and others like wood-fuel (biomass) have low calorific value and thermal efficiency 

which rules them out as serious alternatives. On its part, nuclear energy is both unpopular and 

unattractive – no thanks to its potential hazards and the enormous problem associated with 

radioactive waste disposal. The 1979 Three Mile Island nuclear melt-down, the Chernobyl 

nuclear disaster of 1986, and the recent Fukushima nuclear accident are all pointers to how 

dangerous and problematic nuclear energy technology can be.  
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Figure 1.3: Global energy use by energy type, 1990 – 2035, raw data courtesy of USEIA (2011) 

 

In effect, this makes the fossil fuels – oil, natural gas and coal – the most viable or feasible 

energy resources that can meet man‘s ever-growing demand for energy. Moreover, with its 

enormous direct-end-use capacity and on the evidence of Figure 1.3; it is pretty clear that oil 

is the number one energy resource in the world. Indeed, the global economy is dependent on 

oil; the demand for this energy commodity has continued to rise in significant proportions.  
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To meet the projected increase in global oil demand by 2035, the exploration and production 

(E&P) industry must fashion out ways to increase the present (2012) global output of 87.4 

million barrels per day by another 23 million barrels per day. In the light of the fact that the 

industry is already struggling to meet present day demand, it is easy to see that the challenge 

of meeting the projected increase in demand is by all ramifications, an onerous task. The 

problem becomes even more exacerbated if we consider the fact that most of the existing 

oilfields are already at a mature stage, and the discovery of large new oilfields are becoming 

fewer and far between. This reality is perfectly captured in the words of the CEOs of two of 

the world‘s leading E&P companies (Total SA and Royal Dutch Shell) who posit that the 

days of easy oil are gone, Voss and Patel (2007).  
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Figure 1.4: Prices of crude oil from May 1987 to July 2012 (raw data courtesy of http://www.eia.gov) 

 

 

Inevitably, this has led to a disproportionate relationship in the market forces of demand and 

supply; and therefore, it has resulted in significant increase in the price of crude oil in the 

global market – as shown in Figure 1.4. It is against this backdrop that we underline the 

imperativeness to devise means that would help bridge the gap between global demand and 

supply of oil. In other words, it is essential to develop effective techniques that would 

improve the recovery factor of existing and new oilfields. A rapidly emerging methodology 

to achieving this goal is the application of mathematical optimization techniques in order to 

improve decision-based inputs from the cradle of petroleum reservoirs to its grave. 
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Particularly promising in this context is the use of intelligent computing, high end reservoir 

modelling and simulations, estimation, control and optimization techniques. In the oil 

industry, this technology is known under various names such as smart fields (Shell), 

intelligent fields (Chevron), e-field (BP), closed-loop reservoir management – Jansen et al. 

(2005) or real-time reservoir management – Sarma et al. (2006). 

 

1.4 Natural Occurrence of Hydrocarbon 

Both oil and natural gas share a common geological history (they are usually referred to as 

geological cousins); they originate from the remains of pre-historic plants and animals 

organic materials deposited underneath earth materials at different sites. Over a period of 

eons, these layers or sediments containing organic materials gradually stacked up from a few 

centimetres to hundreds and in some cases, thousands of meters. The resultant increase in 

temperature and pressure, as well as other severe environmental and geological activities 

transformed them into kerogens. The thermal maturation of these kerogens (catagenesis) 

yielded oil, gas and water; with the hydrocarbon components (oil and gas) separated from 

water by gravity. Because oil and gas are less dense than water, they tend to migrate from the 

source rocks where they are formed; however, these hydrocarbon component forms an 

accumulation (or a reservoir) if during the course of their migration, they get entrapped under 

a layer of low-permeable or impermeable rock material, which acts as a seal rock – thereby 

forming a system referred to as a petroleum trap. 

 

1.5 Hydrocarbon Reservoir Life Cycle 

The lifecycle of a hydrocarbon reservoir, from its cradle (exploration) to its grave 

(abandonment) is in the order of decades. Beginning from the exploration phase, it passes 

through the appraisal phase, development phase, production phase, and ends in the 

abandonment phase as depicted in Figure 1.5. It must be noted that this process diagram can 

be further refined to display sub-activities at deeper levels of each phase, Currie and Jansen 

(2004). In other words, Figure 1.5 is too simplistic a representation, as the lifecycle is not a 

simple sequential process devoid of feedback and iterative repetition of activities. Take for 

example, several cycles of appraisals and re-appraisals (based on production performance or 

new seismic data), development and re-development (through completion of wells, or in-fill 

drilling of new ones), and production may take place during the life time of a typical oilfield.  
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Figure 1.5: Petroleum lifecycle illustrating the cradle-to-grave process of an oil field 

 

Though we will briefly discuss all five phases; we note however, that the main focus and 

contributions in this thesis are centred on the development and production phases. 

 

1.5.1 Exploration Phase 

The exploration phase involves finding and locating oil and gas reservoirs. Exploration can 

be very challenging because subsurface reservoirs can be located at great depths beneath the 

earth surface, and sometimes in some of the most politically unstable, or environmentally 

unfriendly or inaccessible areas of the world. Usually, sound waves generated by exploding 

dynamite in shallow holes or from vibrator trucks (or with the aid of airguns in offshore sites) 

are sent through the subsurface; and the refraction and reflection of such waves are measured 

(with geophones or hydrophones) and analyzed to determine if the subsurface structures 

therein can serve as a hydrocarbon trap. With the aid of a velocity model of the rock and the 

seismic velocity log obtained via well bores, the arrival times are subsequently converted into 

depths. Geoscientists interpret these seismic data and create 3D maps of the subsurface in a 

process called seismic imaging. If a promising reservoir structure is on the card, an 

exploration well is drilled to ascertain if indeed petroleum is present. It is important to note 

that an exploration well is not the same as a discovery well. This is so because the exploration 

well may indeed not contain oil; however, the exploration well is referred to a discovery well 

only if it contains oil. As a high risk venture, risk assessment and risk management expertise 

are fundamental to successful exploration portfolio management. 
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1.5.2 Appraisal Phase 

In the appraisal phase, various feasibility studies are performed, and the major concerns are 

the economic as well as technical and environmental cost of producing the content of the 

reservoir. Appraisal and delineation wells are drilled to determine the size of the oilfield and 

how to develop it most efficiently. The core samples and logs from wells are combined with 

available seismic data to form models which can be used to roughly predict how field 

development decisions affect future production. Obviously, a reservoir or field (a collection 

of reservoirs related to the same geological structure) will only be developed if these 

assessments are promising enough. 

 

1.5.3 Development Phase 

The key objective of field development and indeed during the entire lifecycle of the oil 

reservoir is the maximization of economic or financial value of the assets, subject to 

prevailing project constraints. Well placements and configuration as well as design of surface 

facilities from which produced oil can be stored and transported, and other key operational 

logistics are determined at this phase.  

 

FDP

 

Figure 1.6: Visual Description of field development phase – no single discipline fits the bill (courtesy   

       Schlumberger public) 

 

It often involves the comparison of large number of development scenarios, usually in 

combination with a large number of subsurface models to account for the effects of 
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geological uncertainty in the working reservoir model. As no single discipline fits the bill, 

immense cross-fertilization of ideas between the geophysicists, geologists, reservoir 

engineers, and well production engineers is common at this phase; they are usually supported 

with appropriate and integrated work-flow systems (software) as depicted in Figure 1.6. 

 

1.5.4 Production Phase  

The production phase involves all the processes that are aimed at depleting or draining the 

reservoir. Economically, it is by far the most important phase of the hydrocarbon reservoir 

lifecycle, as oil and gas are produced at this phase. Thus, it is the phase that brings return on 

investment (ROI) to fruition, as the previously mentioned phases (exploration, appraisal and 

development) as well as the last phase (abandonment) are capital expenditures. Therefore, it 

is during the production phase that the project can break even, and more importantly, make 

profit. Usually, the recovery of oil in the production phase is divided into primary, secondary 

and tertiary recovery processes.  

 

In its initial state, the reservoir and its content are in a state of high pressure equilibrium that 

has been established for eons. When a well is drilled through the impermeable seal rock and 

into hydrocarbon bearing reservoir rock, this equilibrium is disturbed; and if not properly 

controlled by pressure valves (connecting reservoir to wells, and surface facilities), can lead 

to blow-out which can be catastrophic. The hydrocarbon is subsequently produced as a result 

of the existence of high differential in pressure which drives the fluid toward the wellbore 

and surface facility in a process referred to as primary recovery by natural drives. The drive 

mechanisms that powers primary recovery include – depletion drive (solution gas drive and 

gas cap drive), water drive (from active aquifer or artesian water), compaction drive, gravity 

drainage and combination drives. During this recovery stage, only a small percentage of the 

original oil in place is produced. Referred to as the recovery factor, this is perhaps about 20% 

for most oil reservoirs; after which there is a significant drop in the reservoir pressure. This 

drop in pressure leads to reduced flow of oil; and eventually, the production process will no 

longer be economically sustainable – as a new equilibrium is attained in which the reservoir 

pressure is equivalent or near-equivalent to surface pressure.  

 

This marks the beginning of secondary recovery by engineered drives. Secondary recovery 

often involves the injection of water or gas into the reservoir. Waterflooding, which involves 
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the injection of water (via injection wells) into the subsurface reservoir, is arguably the most 

commonly deployed secondary recovery operation. The reason for water injection is twofold 

– to re-build the lost reservoir pressure, and to sweep out more hydrocarbons from the 

injection wells towards designated production wells. Depending on the formation of the 

reservoir, it is perhaps possible to produce another 15-35% of the original oil-in-place by this 

process, Rossi et al. (2002), Golder Associates (2000). Waterflooding engineered drives are 

standard procedure at most E&P locations around the world, this recovery procedure is the 

focus in this thesis. 

 

Finally, in order to produce even more oil, tertiary recovery or enhanced oil recovery (EOR) 

techniques are employed. This refers to techniques that alter the original properties of oil; for 

example, using chemicals such as solvents and polymers, or steam heating the reservoir. At 

present, such EOR techniques are considered too expensive for large scale commercial use. 

Several studies and research are being conducted in this area, with a view of investigating its 

mathematical foundations and economic viability, Aarnes et al, (2007). 

 

1.5.5 Abandonment Phase 

In broad terms, hydrocarbon reservoirs are said to have reached their economic limit when the 

most efficient production rate does not cover the operating expenses and the prevailing tax 

regime. When the economic limit is reached, the project becomes a liability and the process 

which involves reversing the field (as close as possible) to its initial environmental condition 

is initiated. Because there is often a significant amount of ‗unrecoverable‘ oil left in the 

reservoir at this stage, physical abandonment is often deferred for extended period of time. 

The reason for deferment is the overriding hope that the price of oil may shoot-up to justify 

production, or that newer and effective recovery techniques will emerge. In some jurisdiction, 

however, lease provisions as well as governmental regulations usually require complete 

physical abandonment.  

 

1.6 Field Development Plan and Production Optimization 

As mentioned earlier in section 1.5, the phases that are relevant to this work are the 

development and production phases. Field development planning or FDP encompasses all 

activities and processes required to develop a field. Often, the economic and technical targets 
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as well as development and production strategies are clearly defined at this stage. The goal is 

simply to maximize an economic criterion such as return on investment (ROI) or net present 

value (NPV) of the asset, while minimizing capital expenditure and environmental impact. 

FDP involves critical investment and operational decisions that can potentially make or mar 

the project. These decisions are based on field constraints, company‘s policy, technical 

information, economic judgments and even political factors.  

inputs outputs
     water flow rates 

oil flow rates   

              bottom hole pressure

             tubing well pressure 

   well configuration 

surface facilities   

               transport infrastructures

         artificial lift processes 

Figure 1.7: An open-loop input-reservoir-output representation of a reservoir system, SINTEF 

reservoir

 

Therefore, to ensure the highest return on investment, optimal operational decisions are 

crucial in FDP. These critical decisions are generally referred to as inputs, and they include 

well type, spacing, completion design, lift strategies, surface facilities and infrastructure. The 

effects of these inputs (which are referred to as outputs) include the pressures in the wells and 

the flow rates of the produced fluid. Thus, the inputs represent external functions, forces or 

sequences that are acting upon the reservoir; while the outputs represent the measurable or 

observable behaviour of the reservoir. In this sense, the input and output constitutes a cause–

effect relationship; and this is schematically illustrated in Figure 1.7. To facilitate the study of 

the interaction between the inputs, the reservoir, and corresponding outputs; the reservoir is 

often conceptualized as a dynamical system
5
. This system represents the reservoir in terms of 

some mathematical relationships between the inputs, the outputs, and the states – which are 

the time-varying properties of the reservoir. In the context of reservoir engineering, the states 

are usually the pressures and saturations. The fluid properties (viscosities and densities) as 

well as the geological properties (permeability and porosity) are assumed to be time-

invariant; they are generally referred to as parameters. Making appropriate input decisions 

that will maximize the potential output of a reservoir is by no means trivial. One possible 

                                                           
5
 In this context, a system is a mathematical abstraction that is devised to serve as a model of a dynamic 

phenomenon of interest. 
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approach to tackle this challenge is through a wide array of techniques collectively termed 

production optimization, Sarma (2006).  

 

In this regards, production optimization refers to the overall maximization of the performance 

of hydrocarbon reservoirs through optimal development and production decision inputs. 

Thus, production optimization is closely knitted to FDP as it is pretty much impossible to 

divorce one from the other. Production optimization and FDP are iteratively related in the 

sense that they involve repetition of sequence of activities that transform measured or 

collected data into optimal decision-inputs for enhanced reservoir productivity as 

schematically illustrated shown in Figure 1.8. Clearly, at the heart of the success or otherwise 

of the iterative processes in field development (or redevelopment) planning and production 

optimization is the reservoir simulation model. These reservoir models are of crucial 

importance, as they often play key roles in all the activities and sub-activities of FDP and 

production optimization alike. They seek to describe the effect of decisions on petroleum 

reservoirs and are firmly based on physical conservation laws as well as other simplifying 

assumptions. 
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Figure 1.8: Illustration of the iterative relationship between FDP and production optimization 

 

Although reservoir model parameters are considered to be time-invariant, it is important to 

note that these parameters (especially the geological properties) are spatial-varying. In other 

words, they vary quite significantly over the space of the reservoir. These variations are 
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usually referred to as heterogeneities, and in a waterflooding production secondary recovery 

operation, these heterogeneities can result to preferential flow paths as shown in Figure 1.9.  

 

Indeed, significant quantities of oil can be bypassed inside the reservoir as a result of the 

irregular water-oil front that characterizes preferential flow path. In order to reduce this 

phenomenon and its attendant effects, it is essential to factor-in these geological 

heterogeneities in reservoir modelling. To this end, it is common to divide the reservoir 

model into a finite number of coarse grids blocks whose geological and fluid properties are 

assumed to be homogeneous, Aarnes et al. (2007).  

 

 

Figure 1.9: A simple waterflooding production operation – water is injected through the injection well on 

       the left in order to flood the reservoir and sweep the oil to the production well on the right – 

      adapted from Jansen et al. (2005). 

 

 

However, it should be noted that this measure only serves to mitigate the issues associated 

with the effects of heterogeneities; it does not remove them entirely. The idea of mitigating or 

containing the effects of heterogeneities stems from the fact that it is impossible to obtain a 

complete and accurate characterization of rock parameters and dynamical states that 

influence flow in porous media. And even if we did, it would be impossible to simulate 

reservoir models that are based on precise geological grid blocks. This would certainly 

require a tremendous amount of computational resources which would exceed by far the 

capabilities of modern multi-processor computers. Thus, coarse grid models with grid-blocks 

that are typically ten to hundred times larger than actual geological grid models are built 

using some kind of up-scaling of the geophysical parameters, Aarnes et al. (2007). In other 
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words, it is fair to say that reservoir simulation models are only but a crude approximation of 

subsurface geological reality. Their predictions of reservoir performance viz-a-viz field 

(re)development decisions as well as production optimization and the resulting oil production 

profiles are prone to errors and uncertainties. 

 

1.6.1 Production Operation and Reservoir Management 

In production operation, the primary concern is usually to meet some pre-defined daily 

production targets; while the primary concern in reservoir management is the maximization 

of reservoir‘s recovery or project‘s asset value during its entire lifecycle. In other words, the 

time-scale in the production operation domain is in the order of days or weeks, while the 

time-scale in reservoir management domain is in the order of years or decades. A clear 

distinction in the spatial and time domains of these processes is depicted in Figure 1.10.  
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Figure 1.10 E&P activity spatial and temporal domain as adapted from ISAPP–TNO  

 

Each domain provides both the objectives and the constraints to the domain below it in the 

sequence, and at the same time providing historic data and forecasts to the domain above it. If 

for example, we consider the simple waterflooding production strategy shown in Figure 1.9; 

the task in production operation would be to meet a stipulated daily production target; 

whereas that of reservoir management would be to maximize total oil production or reservoir 

recovery, while minimizing total cost of production or staying within operational constraints. 
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Usually, the production operation decisions which include individual well production 

settings, well workovers and interventions; are performed in a manual or ad-hoc fashion, 

which is often based on rule-of-thumb, operator‘s experience and the prevailing production 

scenario realities. This invariably translates to the fact that production operations decisions 

are implemented in an open-loop (input-reservoir-output as illustrated in Figure 1.7) manner; 

therefore, for the simple waterflooding production operation scenario illustrated in Figure 1.9, 

such open-loop production system means that water would eventually breakthrough at the 

producer, even as unproduced oil is bye-passed parts of the reservoir. 

 

Thus, traditional production operation strategies as described above are generally reactive, 

unreliable and sub-optimal. In an attempt to move from reactive production operation, field 

data gathered over long periods of production operations, via reservoir surveillance, are 

subsequently incorporated into the reservoir model in a special ‗feedback‘ mechanism known 

as production history matching. History matching is a notorious time-consuming exercise; it 

is often carried out only when the underlying reservoir is considered for re-development. The 

aim is to tune the reservoir model so that it is consistent with field performance, and the 

ultimate goal is to have a re-calibrated reservoir model with high prediction capability. 

 

1.6.2 Closed-loop Reservoir Management 

In the last sub-section, the goals and operational time-scales that are relevant in production 

operation and reservoir management domains were underscored. It was also highlighted that 

data gathered from daily production operation via reservoir surveillance are incorporated into 

the reservoir model to re-calibrate it for better performance. In Chierici (1992), the need to 

bridge the gap between the goals and time-scales by some kind of continuous feedback 

mechanism was underscored. The author posits that a ―continuous feedback process‖ is 

required throughout the lifecycle of the field (as against the campaign-based approach of 

traditional reservoir management) in order to maximize its recovery factor.  

 

It is therefore important to underline that it is the essence to bridge the short-term production 

operation goals and long-term reservoir management goals that gave birth to the concept of 

closed-loop reservoir management. Also referred to as intelligent fields, smart fields, self-

learning reservoir management or real-time reservoir management; the underlying principle is 

based on the theory that there exists a significant potential to increase hydrocarbon recovery 
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through continuous optimization and continuous updating of the reservoir model – see Jansen 

et al. (2005, 2009). Depicted in Figure 1.11, closed-loop reservoir management draws 

inspiration from basic concepts in system and control theories, as successfully applied in the 

process and chemical industry. 
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Figure 1.11: Closed-loop Reservoir Management (CLoReM) courtesy Jansen (2009) 

 

Although the fundamental idea behind closed-loop reservoir management can be traced back 

to Chierici (1992), the fact cannot be overlooked that the ‗reawakening‘ of this concept is 

credited to Jansen et al. (2005). Prior to this reawakening, the idea of and research in closed-

loop reservoir management was as it were, in a state of dormancy. This is mainly because 

practical implementation of a continuous feedback mechanism in reservoir management 

cannot be feasible if its underlying components – field development plan, production 

operation and history matching – are not efficient. This is clearly understandable because the 

reason why continuous feedback is not applied in the first place is that they are notoriously 

time-consuming, a testimony of the fact that the techniques or algorithms employed for that 

purpose are not suitable. Using Figure 1.11 as a point of reference, the closed-loop reservoir 

management framework begins with the optimization loop (marked in blue colour) that is 

performed on the current reservoir model. Using well rates and bottom hole pressures (BHP) 

as control variables, the objective of the optimization is often to maximize a performance 

measure such as net present value (NPV) of the reservoir. In other words, the optimization 
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provides optimal settings of the controls for the next step. These optimal control settings are 

subsequently applied to the physical reservoir as input; and the corresponding outcome of 

these inputs are measured outputs such as BHP, oil production profile or water cuts. 

 

With the aid of these output measurements, new information about the reservoir model can be 

inferred; and the reservoir model is subsequently updated or re-calibrated on the basis of the 

inference made from the measured outputs. The model-updating or history matching loop 

(marked in red) is a feedback estimation process; it serves the purpose of updating or 

estimating the reservoir model so as to enhance its performance. In the next control step, the 

optimization loop is performed on the updated model, the resulting control is applied to the 

real reservoir as inputs, and the model is again updated using information or data from the 

measured output. This process continues iteratively throughout the production life of the 

reservoir. It is however important to note that this continuous optimization and estimation 

approach to reservoir management (i.e. closed-loop reservoir management) is generally 

impracticable. The complex nature of the physics behind porous media flow and the inherent 

geological uncertainties in reservoir models are significant debilitating factors.    

 

1.7 Research Aims and Motivations 

In the light of the foregoing, a number of points have been established. These include: 

1. Man and civilization are inseparable from energy, as the energy utilization capacity of 

any given population or economy is strongly correlated to its quality of life  

2. Global energy demand would continue to rise in the foreseeable future 

3. Owing to its enormous direct-end-use capacity and its high caloric value, there is no 

realistic hope that oil would relinquish its position as the number one energy resource 

in the next quarter-of-a-century, and maybe beyond 

4. As long as the E&P industry continues to struggle to meet the ever increasing demand 

for oil, price will continue to rise and 

5. As far as primary recovery is concerned, the current industry average for recovery 

factor is between 15% (for naturally fractured reservoirs) and 35% (for reservoirs with 

favourable production conditions) 

 

Having established the above, it is now imperative to explain in clear terms the underlying 

motivation for this work. The motivation for this research is borne out of the desire to 
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develop reliable and efficient tools that would lead to an increase in the present meager 

recovery factor of existing and new petroleum reservoirs, so as to increase the cumulative 

production of oil. This, in the opinion of the author is imperative, if meeting the challenges of 

rising global demand of oil is anything to go by.  

 

Surely, the use of innovative solutions and advanced technology are crucial to achieving this 

goal. Thus, many commercial E&P companies have over the past decades invested heavily in 

the research of innovative solutions and the development of state-of-the-art technology that 

are geared towards enhancing reservoir fluid recovery, and improving the overall efficiency 

of the many processes a typical reservoir is subjected to during its operational life span. In 

this regard, the high price of crude oil (which is as a result of the disproportionate 

relationship in the market forces of demand and supply) has been the saving grace of the 

industry. It has provided the availability of funds for the research and development of 

innovative solutions. In this work, we focus squarely on deploying reliable optimization, 

control and estimation tools that would make the constituting elements of reservoir 

management as efficient as possible. Although we acknowledged that there are various 

techniques (such as enhanced oil recovery, development of non-conventional resources, etc.) 

that can equally lead to increased cumulative production of oil on the global stage; it is 

however noted, that all such techniques fall outside the scope of this thesis. 

 

1.7.1 Research Objective 

Having highlighted the motivation of this work, the research objective is therefore 

summarised as follows: 

to develop and deploy efficient optimization, control and estimation 

techniques that would lead to the maximization of hydrocarbon 

reservoir recovery factor within the ambit of  model-based closed-

loop reservoir management framework.  

 

1.7.2 Research Approach 

As stated earlier, the guiding principle of the thesis is centred on the maximization of 

recovery factor of petroleum reservoirs within an efficiently tailored optimization, control 

and estimation framework. In other words, we seek to develop efficient decision support 
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work flows for optimizing reservoir performance via model-based optimization, control and 

estimation techniques. To this end, we propose a metaheuristic and system-theoretic 

framework as illustrated in Figure 1.12. Modified from the original closed-loop reservoir 

management (Figure 1.11) and Jansen (2010); the fundamental ideas behind this framework 

are described as follows.  
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Figure 1.12: A metaheuristic and system-theoretic reservoir management framework as modified from 

         Jansen (2010) 

 

Firstly, we underline that continuous optimization and frequent updating of the working 

reservoir model (the cornerstone of the closed-loop reservoir management framework) are 

cumbersome and almost impracticable. The blue and magenta loops in Figure 1.12 is 

basically the same as Figure 1.11 – the iterative optimization and estimation processes are 

carried out as described in sub-section 1.6.2. The green loop is a predictive controller which 

serves the purpose of tracking the ‗optimal‘ profile resulting from the production settings 

optimization based on updated reservoir model (blue loop). The goal of the green loop is to 

stay as close as possible to the profiles resulting from the blue loop. Evidently, the working 

model of the blue and the green loops are correspondingly updated via the magenta and red 
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loops respectively. The key difference however, is the time-scale at which these updating 

processes are performed. While the working model of the blue loop is updated periodically 

(because of computational cost associated with physics-based white box model), the model of 

the green loop – which is a linearized nonlinear model obtained via system identification – is 

updated frequently. Hence, it follows that the key elements of this framework are – field 

development optimization (with degree of freedom restricted to well configuration), 

production settings optimization, model predictive control and production history matching
6
. 

 

Upon close observation and scrutiny of the aforementioned key elements, one can invariably 

infer that they are centred on the theories of optimization, estimation and control. Although 

there are numerous optimization, control and estimation techniques that are mature viz-a-viz 

their applicability and effectiveness in the chemical process industry; it is important however, 

to underline that their applicability in reservoir engineering problems is severely handicapped 

by the very nature of reservoir models. In the light of the above facts, it is therefore essential 

that any candidate optimization, estimation and control techniques that is deployed in this 

work, and in reservoir engineering applications as it were, must explicitly take into account 

that hydrocarbon reservoir models are generally a physics-based multiple input multiple 

output (MIMO) system of nonlinear equations with large number of time-varying states and 

time-invariant parameters. Unsurprisingly, many optimization, estimation and control 

techniques are usually not applicable to reservoir models; this underscores the need to tailor 

them towards suitability for and applicability in reservoir modelling and engineering.  

 

1.7.3 Original Contribution 

At this juncture, we highlight the original contribution of this thesis. The contributions as 

contained in this work are as follow:  

 

 implementation of  a novel hybridized metaheuristic algorithm for field development 

optimization (where the degree of freedom is on well placement optimization) 

 

 use of a novel predictive control algorithm which is based on a linearized nonlinear 

model for tracking optimal production trajectory 

 
                                                           
6
  It is important to state that we did not carry out the history matching component of this work 
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1.8 Summary and Thesis Outline 

In this introductory chapter, it was established that global energy demand and per capita 

energy utilization have continued to grow from one age to another; it was further established 

that the rate of increase has been more significant in the most technologically advanced and 

most technologically advancing culture in each particular age. Besides Malthusian
7
 growth of 

human population, a number of factors were attributed to the unprecedented rise in energy 

demand. These include the ever-increasing number and variety of energy-using contrivances, 

as well as phenomenal economic growth in China, India and other rapid emerging economies. 

Of the diverse energy resources that man can harness today, oil is the most demanded and 

utilized – no thanks to its tremendous direct-end-use capacity. Considering that oil is a non-

renewable energy resource which depletion rate is alarmingly worrying, and the fact that the 

so-called ‗easy oil‘ (i.e. cheap and quick-to-recover oil) has been produced; the need to 

develop efficient techniques that would maximize the recovery factor of existing and new oil 

reservoirs becomes crucial and essential. It is noted that there are other ways to increase the 

cumulative production of oil; but for all intents and purposes, the focus of this thesis is on 

optimization and control techniques within a metaheuristic and system-theoretic closed-loop 

reservoir management framework. This work is structured as follow – in chapter 2, we 

undertake an in-depth review of literature with the view of highlighting the strengths and 

weaknesses of the techniques that have already been deployed in the problems set out in this 

thesis; and reservoir modelling is presented in Chapter 3. Chapter 4 deals with field 

development optimization, where the degree of freedom is on well placement optimization 

problem; while Chapter 5 is on production settings optimization and control technique for 

effective tracking of simulated optimal production profile. The thesis ends in Chapter 6 where 

we draw conclusions, make recommendations and suggest future work directions. 

 

 

 

 

                                                           
7
 The Malthusian model is basically a simple exponential growth model that is named after Reverend Thomas 

Malthus who authored ―An Essay on the Principle of Population‖. 
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CHAPTER 2 
Those whose palm kernels have been cracked by a benevolent spirit should not forget to be 
humble – Chinua Achebe 

 
LITERATURE REVIEW 

In this chapter, we will take a look at the literature as it relates to the relevant elements of the 

framework upon which this work is based. Thus, the literatures on key elements of the 

framework are reviewed with respect to their applicability or otherwise in reservoir 

engineering problems as well as other closely related fields. The aim is to note the gaps and 

weaknesses therein, with the view to explore the strengths and exploit same.  

 

2.1 Well Placement Optimization 

During field development planning, determining the optimal number, type, location and 

drilling sequence of wells is arguably the most important decision input. It is generally a non-

trivial task which has a significant bearing on the asset value of the project, as it can 

potentially determine the recoverability (or otherwise) of the hydrocarbon in place. The fact 

however, is that the very nature of subsurface reservoirs make well configuration
8
 

optimization a very challenging problem. 

 

Usually, it is common practice in reservoir engineering to associate wells to reservoir grid 

block cell centres where they are represented as source or sink terms – depending on whether 

they produce fluid from, or inject fluid into the reservoir. Hence, the optimization of the well 

trajectory and its location is typically an integer problem as established in Bangerth et al. 

(2006). Since determining the number of wells is an integer problem, the combination of this 

optimization problem with the optimization of the wells‘ production settings invariably leads 

to a mixed-integer nonlinear problem (MINLP), Kosmidis et al. (2005). However, due to 

                                                           
8 Well configuration often entails the number, type, location and possibly the drilling sequence of hydrocarbon 

reservoir wells.  
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issues bothering on non-convexity, such MINLPs are extremely difficult to solve as 

elaborated in Haus et al. (2008). Another drawback with the application of MINLPs is that 

they require far too many evaluations of the objective function (which entails full reservoir 

simulation), and this renders it less-effective in reservoir engineering applications. To this 

end, most well optimization solution methods in the literature are either gradient-based local 

optimization methods (which require the computation of derivatives of the objective function 

using some numerical finite difference schemes, or the adjoint formulations) or derivative-

free stochastic optimization techniques (which employ heuristic or metaheuristic algorithms). 

 

Local optimization methods attempt to find the optimum by iteratively improving upon an 

initial guess (well placement) until the optimal, albeit local, is determined. The main 

drawback of these methods is the challenge of finding improving directions in which to alter 

the initial guess. Bangerth et al. (2006) compared three local techniques – the finite difference 

gradient (FDG), the simultaneous perturbation stochastic approximation (SPSA) and the very 

fast simulated annealing (VFSA) – in optimising the placement of vertical wells in a 2D 

reservoir model. The FDG method attempts to find improving directions by perturbing each 

of the well location by one grid block in every direction. The obvious drawback of this 

method is that in order to compute an improving direction for any n to-be-placed wells, there 

is a minimum requirement of 2n+1 number of objective function evaluations. The SPSA 

method which was earlier employed in Spall (1992) is basically an approximate gradient-

based technique. To compute the derivative, a random direction in which to alter the wells is 

generated, and if this change in position of the wells does not yield an improvement in the 

objective function, then the opposite direction is automatically assumed. This algorithm was 

shown to perform better than genetic algorithm (GA) in the optimization of vertical wells; 

and it is noted that the computational requirement for this method is less-expensive, as the 

maximum number of reservoir simulation required to determine improving direction is found 

in at most two reservoir simulations. However, the disadvantage of the SPSA algorithm is 

that the assumed optimal configuration may generally not be the ‗steepest‘ one. Another 

drawback appears in the calculation of new solutions; the step size must be carefully chosen, 

otherwise there is a risk of finding ‗solutions‘ that are not feasible. Thus, the assumed 

efficiency of this method is both suspect and questionable. The VFSA method is based on 

standard simulated annealing (SA). It had been previously deployed in a number of 

geophysical inversion applications – see Ingber (1989), and it has close semblance to most 
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stochastic approximation algorithms. In all cases considered, both the VFSA and SPSA 

outperformed the FDG method. 

 

Wang et al. (2007) applied a gradient-based steepest descent algorithm in optimizing the 

number and placement of injection wells in a 2D reservoir model; while Sarma and Chen 

(2008) applied a gradient-based algorithm where the derivative of the objective function is 

computed with respect to continuous well locations, thereby allowing for arbitrary step size 

and search directions. A gradient-based algorithm was utilized in Zandvliet et al. (2008) for 

the optimal placement of vertical wells in a 2D reservoir model. It is important to note that 

the methods employed in Sarma and Chen (2008) and Zandvliet et al. (2008) are based on the 

same principle. The difference however, is in the derivatives used and the method of its 

computation. While the derivative of the objective function in Sarma and Chen (2008) is with 

respect to continuous well locations, the derivative in Zandvliet et al. (2008) is with respect to 

flow rates. At each discrete time step, an adjoint formulation was used to compute the ―rate 

gradients‖ for each of the low rate ―pseudowells‖ that are placed at the eight neighboring grid 

blocks surrounding a current well position. The derivatives (with respect to flow rate) at the 

pseudowells are then summed, and the well is moved in the direction of the pseudowell with 

the largest summed gradient. In terms of computational efficiency, these gradient-based 

approaches are highly efficient because they often require fewer number of objective function 

evaluations. For example, the gradient-based methods where adjoint formulation is used for 

the computation of derivatives require only two objective function evaluations irrespective of 

the number of decision variables. 

 

Nevertheless, it is important to note that these gradient-based techniques have their own 

drawbacks. The non-convex nature of the underlying optimization problem inevitably means 

that they generally contain multiple optima; hence, the gradient-based methods are prone to 

be trapped in local solutions. In addition, discontinuous derivatives arising from the non-

smooth nature of the optimization surface may also pose significant problems. It is also 

important to recognize the fact that gradient information is often not readily available. 

Adjoint formulations, which are a popular and efficient way of computing derivatives, are 

invasive with respect to the flow simulator; they are therefore only feasible with full access 

to, and detailed knowledge of, the simulator source code, Ciaurri et al. (2011). Besides, the 

objective function value may be computed with some noise, and this therefore means that any 

computation of derivative estimates is susceptible to lots of inaccuracies. 
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The derivative-free stochastic optimization techniques by their very nature are generally non-

invasive with respect to the flow simulator. They treat the simulator as a black-box, as only 

cost function values are required and no explicit gradient computations are involved. These 

methods are therefore easier to implement than, for example, the adjoint-based techniques. 

However, in a typical ‗no free lunch‘ fashion – see Wolpert and Macready (1997); this 

advantage is counterbalanced by a significant deterioration in computational efficiency when 

compared to gradient-based approaches. In other words, the derivative-free global methods 

will tolerate lower performance measures in the hope of finding the global optimum, as 

opposed to the computationally efficient gradient-based local optimal solutions. This appears 

to be the reason why there are many applications of gradient-free metaheuristic optimization 

algorithms in well placement optimization literature. In this regard, GA appears to be the 

most frequently used technique.  

 

Beckner and Song (1995) employed simulated annealing (SA) algorithm in the optimization 

of the placement and schedule of horizontal wells.  The optimization problem was cast as a 

traveling salesman problem in which the potential well locations are represented as cities on 

the salesman‘s tour, and the drilling schedule was represented as the sequence for visiting 

those cities. The ensuing travel salesman problem was subsequently solved using the SA 

algorithm. In the study of Centilmen et al. (1999), a neuro-simulation technique that is based 

on fully trained artificial neural networks (ANNs) was employed. The network neurons are 

trained using data arising from simulation results of randomly selected well placement 

scenarios that are entirely based on rule of thumb but supported by engineering judgment. 

The authors applied this technique in well placement problems of different complexities, and 

the results showed that the use of simulated-results trained ANNs was effective in terms of 

reducing computational cost and maintaining accurate predictive capabilities. As stated 

earlier, GA appears to be most utilized stochastic algorithm in the well placement 

optimization literature. In this regards, the studies by Bittencourt and Horne (1997), 

Guyaguler et al. (2000), Montes et al. (2001), Aitokhuehi et al. (2004), Onwunalu (2006) and 

Farshi (2008) were reviewed. In Bittencourt and Horne (1997), a hybrid GA that is based on 

polytope search and tabu search was developed and applied in the development of a real oil 

field; and the result led to a reduction in the total number of well originally earmarked for the 

project – thereby leading to a 6% rise in the profit of the project.  Another hybrid GA which 

is based on the polytope method and the kriging algorithm (proxy approach) was deployed by 

Guyaguler et al (2000) for the optimal placement of wells in the GOM Pompano field. The 
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authors reported that the hybridization of the GA introduces hill-climbing capabilities in the 

algorithm, and this significantly reduces the number of simulations required; and therefore, 

computational time is effectively reduced. In the study of Montes et al. (2001), a simple GA 

was developed and applied to two well placement optimization case studies; afterwards, the 

authors investigated the effects of GA control parameters on the performance of the 

algorithm. The primary focus of the study of Aitokhuehi et al. (2004) was on the use of GAs 

in nonconventional well types (monobore, dual-lateral, tri-lateral, multi-lateral) and trajectory 

optimization problems. Basically, the approach involves the coding of well type and 

trajectory information on binary strings (or chromosomes) of the algorithm; and allowing the 

encoded information on the chromosome to evolve through the probabilistic steps of 

crossover, mutation and elitism over the course of the GA optimization process. In the studies 

of Onwunalu (2006) and Farshi (2008), a kriging algorithm was used as a proxy in the 

application of GA in nonconventional well optimization problems. A combination of ANN 

and GA was applied in Yeten et al. (2003) in the optimization of nonconventional wells. It is 

important to note that the study by Yeten et al. (2003) was more or less similar to the work by 

Aitokhuehi et al. (2004). However, the only difference was that the authors in Yeten et al. 

(2003) included the use of ANNs as proxy algorithm; and this significantly reduced the 

amount of computation required. Thus, the combination of ANN and GA in Yeten et al. 

(2003) led to an efficient optimization process. Onwunalu and Durlofsky (2010) and Dong et 

al. (2011) employed the use of particle swarm optimization (PSO) in the placement of 

conventional and nonconventional wells in reservoir models of varying complexities; and 

compared the NPV attained by this technique with results from binary GA algorithm. On the 

average, it was found that the PSO algorithm outperformed the GA algorithm in all the cases 

considered. Using PUNQ-S3 benchmark reservoir case, Bouzarkouna et al. (2011) applied 

covariance matrix adaptation evolution strategy (CMA-ES) to a number of well location and 

trajectory optimization problems and compared the results from this approach to that 

resulting from the use of GA. The authors demonstrated that CMA-ES generally 

outperformed GA in terms of net present value (NPV) attained, and importantly, the approach 

also led to a significant reduction in the number of function evaluations needed to reach a 

good well configuration.  

 

Therefore, it follows that the use of derivative-free stochastic or metaheuristic algorithms are 

quite popular in well optimization problem solutions. The popularity of these methods are 

largely enhanced by the fact that the previously mentioned high computational demand 
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associated with them are substantially reduced by employing multiple and parallel processors. 

This notwithstanding, a computational efficient metaheuristic algorithm that require limited 

number of simulations (objective function evaluation) is still lacking. 

 

2.2 Production Optimization 

In this thesis, all reference to the production phase is implicitly restricted to secondary 

recovery, unless otherwise stated. Again, it is worth noting that the relevant production 

operation strategy is the waterflooding process. For a given reservoir model with a specified 

well configuration; the well schedule that maximizes the recovery factor over its production 

life can be posed as a dynamic optimization problem. In every practical sense, this dynamic 

optimization problem is centred on finding the time-varying input settings (such as well rates, 

bottom-hole-pressures (BHP), valve or choke settings, etc.) that maximizes the recovery 

factor. Generally, there are three distinct approaches to dynamic optimization problems. 

These include the classical approach (which is based on the calculus of variations, and has 

been developed into the well-known optimal control theory), the dynamic programming 

approach (which is based on the principle of optimality and the Hamilton-Jacobi-Bellman 

(HJB) equation), and finally the Lagrangian approach – which is basically an extension of the 

Lagrangian technique of static optimization.  

 

The classic approach for solving dynamic optimization problems is extremely attractive 

because the optimization problem is approached in its original form without any 

mathematical transformations, Feehery et al. (1997). It therefore follows that considering the 

large-scale nature of reservoir models, the classic approach i.e. optimal control theory, would 

be the best solution approach to production optimization problems. Interestingly, Brouwer 

(2004) posits that optimal control theory makes it possible to calculate the control strategy 

which forces the state from its initial value to its final value along a physically feasible 

trajectory. Regardless of this, the fact that the recovery factor of a reservoir cannot be 

formulated or cast into a simple quadratic objective function is a non-trivial challenge. This 

non-quadratic nature of the objective function is further exacerbated by the fact that the 

underlying dynamics of reservoirs are governed by equations that are linear in the control, but 

nonlinear in the state, Zandvliet (2008).  
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In mathematical optimization literature, the solution methods for optimal control problems 

involving nonlinear systems with non-quadratic objective functions can be broadly divided 

into direct methods (which involves the maximization or minimization of the objective 

function subject to prevailing constraints); and indirect methods whereby a solution that 

satisfies the maximum principle or related necessary conditions is sought.  

 

Depending on how the underlying states equations are discretized, the solution techniques in 

the direct method approach can be simultaneous or sequential. The simultaneous technique 

involves a complete discretization of the states and control variables, and it is often achieved 

through collocation. A severe drawback that is often associated to this method is that it 

usually creates a multitude of additional variables which ultimately leads to large, unwieldy 

nonlinear programmes (NLPs) whose numerical solution is often difficult or impracticable. 

Thus, the use of simultaneous method requires awareness of the tradeoff between 

approximation and the optimization problem, Logson and Biegler (1992). The sequential 

method is usually achieved through control parameterization in which the control variable 

profiles are approximated by a series of basic functions in terms of a finite set of real 

parameters – see Teo et al. (1991). The parameters are then used as decision variables in a 

dynamic embedded nonlinear programme (NLP). Although this method has the advantage of 

yielding a relatively small NLP; however, its applicability in large-scale problems such as 

reservoir models suffers severe performance limitations.  

 

The indirect methods often involve the reformulation of the optimal control problem using 

the Pontryagin's Maximum Principle (PMP). It is important to underscore that the so-called 

necessary condition is fundamental to the implementation of the indirect method. Essentially, 

the solution techniques under this method include the shooting and gradient-based 

techniques. With the aid of the PMP, the original optimal control problem is modified into a 

Hamiltonian function – see Bryson and Ho (1975) and Luenberger (1979). On one hand, this 

provides a closed-form expression for the optimal input as a function of the state and adjoint 

variables – which are essential in the shooting technique; while on the other hand, it provides 

derivative information which is used to generate the search directions that are required in the 

gradient-based technique. Usually, the state and adjoint equations are solved simultaneously, 

even though the boundary conditions for the state and adjoint equations are split – i.e. the 

initial conditions of the state equations and the terminal conditions of the adjoint equations 

are known. A major limitation associated with this approach is the stability of solutions, 
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Murthy et al. (1980). Furthermore, unless good initial guesses of the adjoint states are 

available (which is rarely the case as the adjoint represent sensitivity functions), it is 

computationally expensive to find the optimal solution. It also suffers performance 

limitations if there are discontinuities in the adjoints, which is typical in the presence of state 

constraints. The gradient-based technique closely resembles the sequential approach of the 

direct formulation except that the derivatives are calculated using the necessary condition. It 

has been used in large-scale nonlinear systems, and it possesses an advantage to the effect 

that an initial guess of the decision variables is not detrimental to its convergence. For this 

reason, this method is the most viable technique – even though the computation of derivatives 

can be exceptionally demanding, not the least, in large-scale systems. 

 

There are essentially three approaches in the computation of the derivatives of an objective 

function – the finite differences, the forward sensitivity equation, and the backward adjoint 

formulation. The finite difference approach has the drawback of requiring far too many 

objective function evaluations. In fact, a minimum of 2m+1 objective function evaluations are 

required for m decision variables; and since each function evaluation entails a full reservoir 

simulation run, this limitation makes it impracticable in large-scale systems like reservoir 

models. With the forward sensitive equation approach, one simulation run of the model is 

required in addition to m sensitivity models. In large-scale systems, the obvious drawback of 

this approach is the computational memory requirement for the storage of the huge sensitivity 

information that is inevitably required for the computation of the objective function 

derivatives. Regardless of the number of decision variables, the computation of derivatives 

via the backward adjoint formulation requires two simulation runs only. Therefore, it is 

efficient and can be applied in large-scale nonlinear systems as evident in its vast application 

in the field of metrology and oceanography.  

 

The use of gradient-based adjoint formulation in production optimization is not entirely new 

in the oil industry. Indeed, it was applied in Ramirez (1987) for enhanced oil recovery of a 

surfactant-flooded reservoir. Asheim (1987, 1988) applied the same principle to achieve 

increased sweep efficiency that led to 2–11% improvement in the NPV of different water-

flooded reservoirs. In Zakirov et al. (1996), optimal well-rate allocation and improved 

waterflooding performance were achieved using a conjugate gradient-based optimal control 

technique where the derivatives are computed via adjoint formulation. However, many 

researchers in reservoir engineering acknowledge Sudaryanto and Yortos (2000, 2001) to be 
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the first to systematically address the waterflooding problem using derivative-based adjoint 

model. By optimally allocating well rate in the injectors, the authors used optimal control 

theory to maximize the sweep efficiency of a multiple-injection single-producer system. They 

also investigated the shape of the optimal solutions, and were able to show that a bang-bang
9
 

control strategy was achievable in practice; however, the authors were silent on how and 

under what conditions the bang-bang control are achieved. This important question was 

addressed in Zandvliet et al. (2007), where the conditions under which bang-bang optimal 

solutions are attained were established. It was shown that bang-bang control has obvious 

advantage (over smooth solutions) in the sense that they can be implemented with simple on-

off valves. This is important, because variable-setting valves are much more expensive than 

simple on-off ones, Zandvliet (2008). 

 

At this juncture, it is important to note that most of the works mentioned above assumed 

constant production rates. However, Brouwer and Jansen (2004) underscored the fact that this 

was hardly common practice. They therefore investigated the problem further by comparing 

the constant production rate scenario with the constant bottom-hole-pressure (BHP) scenario. 

Both scenarios were argued to illustrate the two extremes of well operating conditions – thus, 

practical production planning need to take both into consideration. Brouwer and Jansen 

(2004) also focused on the production potential of using smart well control. They considered 

optimizing individual rates and valve settings in the waterflooding problem, and 

demonstrated the possibility to significantly increase recovery by using smart wells in 

reservoirs with heterogeneous permeability fields. There have been numerous applications 

ever since, and the problem has been extended to include the notoriously difficult issue of 

path constraints (state or output constraints) handling – i.e. bounds on reservoir pressure or 

amount of water produced in the production wells. In this regard, Montleau et al. (2006) and 

Kraaijevanger et al. (2007) employed a generalised reduced gradient (as proposed in Mehra 

and Davis (1972)), by using a control-input and state variable combination of well rates and 

bottom hole pressure (BHP). The apparent limitation of this method is the difficulty (or 

impracticability) of extending it to other control-input or state variable combination, such as 

reservoir saturation or total amount of water produced in the production wells. A feasible 

direction optimization in combination with state constraint ―lumping‖ approach was applied 

                                                           
9
 In systems and control theory, a bang-bang control strategy often entails a feedback controller that switches 

between two – on and off – states.  
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by Sarma et al. (2008a); while a Lagrangian barrier method which uses Lagragian multipliers 

estimate to identify active constraints was applied by Suwartadi et al. (2010).  

 

Despite these aforementioned developments in waterflooding production optimization, it is 

virtually next to impossible for the physical reservoir to attain the resultant optimal trajectory. 

In other words, the supposed optimal production profile is not attainable in reality. 

 

2.3 Model Predictive Control 

Model Predictive Control (MPC) encompasses a wide array of control algorithms that make 

explicit use of process data-driven models to obtain corrected control input by minimizing an 

objective function; and using a receding strategy such that after each sampling instance, the 

horizon is displaced towards the future. In other words, an optimal control problem is solved 

repeatedly at specific sampling instants of the current system state. The first part of the input 

is applied to the system until the next sampling instant, at which the optimal control problem 

for the new system state is solved again. Since the optimal control problem is solved at every 

sampling instant for one fixed initial condition, the solution is much easier to obtain than to 

derive a solution of the HJB partial differential equation (for all possible initial conditions) of 

the original optimal control problem, Findeisen et al. (2007).  

 

Introduced as a control algorithm in the 1970s, MPC was at that time considered a major 

advancement in process control; and it is presently considered to be a matured technology in 

the chemical process and petrochemical industries where it originated. Over the years, it has 

grown to become one of the most popular and attractive control strategy for linear and near-

linear processes; and its application has been well-established in the downstream sector of the 

oil industry. The main reason for its widespread acceptance is tied to the fact that MPC 

combines the principles of optimality with robustness of closed-loop control, while efficiently 

handling constraints on system inputs and outputs at the same time, Meum et al. (2008). 

Besides this, it was shown in Keerthi and Gilbert (1988) that the MPC algorithms provides an 

efficient way to obtain constrained optimal control while avoiding the notoriously difficult 

HJB partial differential equations.   

 

Crucial to effective and successful implementation of MPC are validated linear empirical 

models, which are developed (usually via system identification) specifically for the type of 
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dynamic process to be controlled, and efficient state observers for real-time model state 

estimation. Note that both the model and state estimation components are inter-twined in the 

sense that the performance of the observer is strongly dependent on the accuracy and validity 

of the identified model. In other words, the MPC performance is strongly dependent on how 

accurate the identified model describes the real process. Most process models, which are 

developed from limited quality and quantity of experimental observations, are often 

inaccurate; it is therefore, important to factor-in model uncertainty in the analysis and design 

of MPC controllers. 

 

In upstream research, the first application of MPC was in the study of Saputelli et al. (2006). 

Using a 30-day control horizon, the authors implemented a moving horizon MPC where the 

performance measure – defined over 2200 days – is maximized by varying the production 

settings in the wells. A similar MPC strategy was also employed in Gildin and Wheeler 

(2008) to show that production is improved when compared to an uncontrolled reactive 

waterflooding scenario. In Rezapour (2009), a simple LTI-based MPC strategy was used to 

enhance the performance of waterflooding operation in homogenous 2D and heterogeneous 

3D reservoir models. A similar approach was employed in van Essen et al. (2010) where an 

MPC-based proactive flooding strategy was implemented by introducing feedback into the 

control structure by using locally identified linear models.  

 

It is important to note that the dynamics of the waterflooding process is highly nonlinear, 

thus, it is essential that such nonlinearities are reflected in the underlying models for MPC 

controllers deployed in this process. However, the identification of nonlinear models for 

MPC strategies generally leads to the more computationally demanding nonlinear model 

predictive control (NMPC) – the nonlinear extension of MPC. The high computational cost of 

NMPC stems from the fact that the often easy-to-solve quadratic programming (QP) control 

problem that results from linear MPC changes to a more challenging nonlinear programming 

(NLP) control problem when the underlying model is nonlinear. Thus, as much as we 

underscore the importance of employing nonlinear models (from the view point of accuracy); 

it is however, attractive, from the view-point of control, to employ simple linear models that 

possess easy-to-implement controller-design properties. Striking the appropriate balance 

between accuracy and control is still lacking in reservoir engineering applications where 

predictive control strategies has been deployed.  
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Across process engineering academic literature, a number of techniques have been developed 

for the sole purpose of circumventing the computationally demanding NLP that results from 

NMPC. Generally speaking, these techniques are based on the linearization of the nonlinear 

models. One of the techniques involves the use of a prediction horizon that is equal to one, 

Wang and Hendriksen (1994) and Haber et al. (1998). Thus, for a single input process (whose 

nonlinearity is a polynomial) with no input, state and output constraints, the optimal solution 

can be found by solving a polynomial equation in one variable. However, the requirements of 

a control horizon equal to one and the absence of constraints are very restrictive for practical 

purposes – see Bloemen (2002). Another possibility is the sequential quadratic programming 

approach. This technique involves the linearization of the problem around a control sequence, 

obtained from previous iterations. In other words, the supposed NLP problem becomes a 

quadratic programming problem. Note that the linearization error (the difference between the 

calculated optimal input sequence and the output sequence around which the predictions are 

linearized) can be decreased by using several iterations within one sampling interval as 

shown by Gerksic et al. (2000). Again, it is important to underline that this approach is 

vulnerable to local optima convergence as well as slow convergence when trying to reduce 

the linearization error. In another technique, the structural property of a specific class of 

nonlinear models known as Hammerstein-Wiener models are exploited in circumventing the 

computational demand of NLPs. This method which involves the inversion of the static 

nonlinearity in these nonlinear models was employed in the studies of Norquay et al. (1998) 

and Kouvaritakis et al. (2000). It effectively removes the nonlinearity in the control problem; 

hence, provided there are no constraints, a linear MPC technique can be applied to the 

remaining linear block. A major drawback in inverting the static nonlinearity is that the effect 

of the nonlinearity on the input-output behavior of the process is lost, and therefore, not taken 

into account by the controller. In Bloemen (2002), an algorithm which takes into account the 

effect of the input and output nonlinearities of Hammerstein-Wiener model, while still 

retaining a convex optimization problem was presented. This was achieved through the 

transformation of the static nonlinearities into some form of polytopic descriptions. The 

nonlinear model is therefore, represented as an uncertain linear model in which a robust 

linear MPC strategy can be applied. Therefore, it is safe to say that there exist ample 

techniques that could be employed to plug the gap between accuracy and control in reservoir 

engineering applications where these control strategies are deployed. 
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2.3.1 System Identification 

In applied mathematics, and indeed, systems theory, the building of mathematical models 

from measured experimental data of dynamical systems is generally referred to as system 

identification. It is an important sub-set of statistics; hence, many identification techniques as 

well as the tools for analyzing their inherent properties are very much rooted in statistical 

theory. A review of the literature suggests that research in this area of system theory can be 

traced back to the mid-1960s – perhaps to the works of Åström and Bohlin (1965), and Ho 

and Kalman (1965). In the former, the very fundamental principle behind the maximum 

likelihood methods for parametric input-output models (which later became known as 

prediction error identification) was presented; while the latter presented the first known 

solution of state-space realization theory, which subsequently led to stochastic realization 

and finally to the birth of subspace identification methods. Ever since, system identification 

has experienced tremendous growth, which can rightly be said to have been spurred by the 

enormous interest in model-based control strategies as well as the advancements in optimal 

control theory by Rudolf Kalman and his peers.  

 

Evidently, building mathematical models from first principles material and energy 

conservations often require considerable expert knowledge, and can be expensive in terms of 

man-hour requirements. The resulting models are referred to as white-box, and are often 

characterized by high complexity which makes them very unsuitable for real-time model-

based control applications. In other words, physics-based white-box models are able to 

capture process behavior over a wide range of operation; they are however, not suitable in 

applications where small computation times are crucial. In contrast, systems identification 

provides a suitable alternative to these so-called first principle models. It results in simple 

compact models that can be used in real-time model-based controllers; it also provides an 

enablement for the construction of process models that are able to reproduce process data and 

therefore exhibit accurate description of the local behavior of the system. To this end, 

identified models are often used in control design, in the adjustment of free parameters in first 

principle models, in fault detection techniques and process monitoring, Larimore (1997). 

Based on the physical interpretation of the parameters of the identified model, the resulting 

model may be referred to as black-box (if there is no physical interpretation of parameters), 

or grey-box (i.e. if there is little meaning of model parameter).  
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System identification of linear time-invariant (LTI) models can be broadly classified as 

parametric or non-parametric. The parametric approach includes the prediction error methods 

– which have strong relations to maximum likelihood estimation, the output error methods – 

where the governing criterion is to minimize the error of the output measurements, and the 

subspace methods – which intersect system theory, numerical linear algebra and geometry. 

The idea behind SubID is based on the possibility of retrieving certain subspaces which are 

related to the system state-space matrices, according to block-Hankel matrices, structured 

from input output data, Overschee and de Moor (1996) and Verhaegen and Verdult (2007). 

Non-parametric approach to system identification includes frequency domain identification 

techniques such as the correlation and spectral analysis methods, Brillinger (1981) and 

Pintelon and Schouken (2012). By and large, the theory of systems identification LTI systems 

is considered mature, Ljung (1987, 1999). One reason attributed to this fact is the simplicity 

of modeling and implementation of black-box linear models in several control applications. 

 

However, it is important to note that the dynamics of most industrial processes, for example, 

the waterflooding process, are governed by highly nonlinear equations; therefore, the use of 

data-driven LTI models for model-based control strategy in such nonlinear dynamical 

processes suffer severe performance limitations. Thus, while LTI models can be sufficient for 

the purpose of control in some nonlinear dynamical systems, they usually come short in 

situation where the underlying system is highly nonlinear, or where the dynamics of the 

system varies a lot for different operating point, Tayamon (2012). To this end, nonlinear 

system identification is becoming popular, and the identification of nonlinear black-box 

model has received much attention in the past decade. 

 

The resulting models from nonlinear system identification include the Nonlinear 

AutoRegressive eXogenous input (NARX) model, Nonlinear AutoRegressive Moving 

Average eXogenous input (NARMAX) model, Volterra model; which are considered to be 

the nonlinear extension of the popular AutoRegressive eXogenous input (ARX), 

AutoRegressive Moving Average eXogenous input (ARMAX) and Finite Impulse Response 

(FIR) models respectively. A special sub-group of nonlinear models often referred to as 

block-oriented class include the Hammerstein, Wiener and Hammerstein-Wiener model 

structures. This family of nonlinear models consist of linear dynamic and nonlinear static 

blocks connected in series; it is important to note that the nomenclature of the resulting model 

structure is solely based on the relative position of the linear dynamic block with respect to 
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the nonlinear static block. If the linear dynamic block is preceded by a static input nonlinear 

block, the model is referred to as a Hammerstein; however, if the linear dynamic block is 

followed by the static output nonlinear block, the model is referred to as a Wiener. Because 

both Hammerstein and Wiener models are basically composed of the same components 

connected in reverse order, one is in every sense the dual of the other. When the linear 

dynamic block of the model is sandwiched in between the static nonlinear blocks, we obtain a 

Hammerstein-Wiener model.  

 

Generally, the various system identification techniques often involve the following steps: 

 

1. An appropriate experiment is designed and executed on the system such that those 

properties that are deemed to be relevant for the model are excited. 

 

2. A set of candidate models or model structure has to be chosen which consists usually 

of a dynamic model that connects the excited inputs with the measured outputs and 

contains unknown parameters or free variables on various locations inside the model. 

 

3. To determine the best model in the set, some criterion function is chosen that 

measures the distance between model predictions and the process measurements as a 

function of the free variables. By some mathematical optimization procedure this cost 

function is minimized to find optimal parameter values. 

 

4. The last step is the model validation step. This aims to assess whether the model is 

―good enough‖ for its purpose. Common validation tools are residual analysis and the 

so-called cross-validation – where the identified model is simulated using new data 

and the output compared to the measured output.  

 

Note that if the initial model fails to pass the validation tests, some or all of the above steps 

have to be repeated iteratively, until a model that passes the validation tests is found.  

 

2.3.2  State Estimation  

Usually, current estimate of the model state is a sine-quo-non for effective implementation of 

MPC strategies. In other words, since MPC is based on a mathematical model that represents 
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or describes a physical process, the model state is necessary for prediction and therefore has 

to be known. In some cases it is accessible through measurements, but in other cases, a state 

observer must be explicitly included in the control loop for effective state estimation. This is 

exactly the case for most MPC controllers, and the idea is simple – at each sampling time, the 

model is updated from new measurements and state variable estimates. The manipulated 

variable are calculated over a finite prediction horizon with respect to some defined cost 

function, the manipulated variables for the subsequent prediction horizon are implemented 

and then the prediction horizon is shifted by one sampling time into the future for the 

previous steps to be repeated.  

 

The choice of an appropriate observer can ultimately influence the performance of the 

controller; therefore, it is essential to use suitable state estimation algorithm or observer while 

bearing in mind the uniqueness of the underlying process and process model. In linear 

systems, the most commonly used state estimation technique is the Kalman Filter, Kalman 

(1960). By minimizing the mean square estimation error, Kalman Filters are capable of 

giving estimate of the state models of linear systems whose only source of uncertainty are 

states and measurements Gaussian noise. It is based on the assumption that the initial 

condition of the system and the measurement noise processes are independent of each other; 

thus, the measurements can be sequentially assimilated into the system. Another commonly 

used observer for state estimation in MPC strategies is the simple Luenberger observer – see 

Luenberger (1971), and Alessandri and Coletta (2001). The wide usage of Kalman Filters is 

centered on its optimality and low computational cost, as optimal estimate and corresponding 

error covariance is computed recursively via simple matrix multiplications.  

 

However, it should be noted that if the underlying model is nonlinear, and the conditional 

probability of uncertain parameters is non-Gaussian, the Kalman Filter suffers severe 

performance limitations. For the sake of completeness, it is important to state that a 

straightforward extension of the Kalman Filter referred to as Extended Kalman filter (EKF) 

was developed to address this issue. The basic idea of the EKF is to linearize and 

approximate at each time step the nonlinear system as a time-varying system affine in the 

variables to be estimated, and then subsequently apply the Kalman Filter. For more review on 

EKF as well as other modifications of the Kalman Filters (such as Unscented Kalman Filters 

and Ensemble Kalman Filter), see sub-section 2.4.2.   
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2.4 History Matching 

History matching is the process of reconditioning a working reservoir simulation model to 

available field data. Its primary purpose is to improve the predictive power of reservoir 

models as well as to reinforce the robustness of the development and production decisions 

they serve. The importance of history matching in reservoir engineering stems from the 

generally accepted fact that any model that can realistically predict unknown future 

production profile, should also be able to reproduce known historical production data. Thus, 

the fundamental idea behind history matching is simple – a reservoir simulation model that 

can capture the past behaviour of the physical reservoir is most likely to make robust and 

accurate predictions.  

 

Mathematically, history matching is an ill-posed inverse problem; it therefore, has no unique 

solution. In other words, available field data may yield good matches or multiple realizations 

that match the same physical reservoir. These ‗purportedly‘ history-matched models are 

likely to exhibit different future production behaviours; therefore, they can be employed as an 

important tool for reservoir uncertainty prediction and quantification. Again, since history 

matching involves finding reservoir model parameters from measured data, it is invariably a 

system identification problem. And since a number of combinations of different solution 

(reservoir parameter values) can equally yield good matches of the same physical reservoir, it 

can be said that reservoir model parameters are not uniquely identifiable.  

 

Over the years, a number of history matching techniques have been developed, implemented 

and reported across the reservoir engineering academic literature. Generally, the problem is 

often approached by defining an objective function (which is usually the weighted squared 

difference between the predicted and the observed output) and minimizing the function over 

all possible parameter values, while obeying the constraints imposed by the reservoir model. 

However, the ill-posed nature of the mathematical problem inevitably leads to a number of 

combinations of different reservoir parameters that yield same minimum value of the 

objective function. To limit the solution space, the problem is often ‗regularized‘ (i.e. made 

less ill-posed and more well-posed) by adding a data-independent term (prior knowledge) to 

the objective function; thereby allowing only models that are ‗proximal‘ in some pre-defined 

sense to the underlying reservoir model to be selected. Thus, the process of history matching 

is notoriously demanding and time-consuming.  
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The solution techniques or approaches to history matching can be divided into variational, 

sequential, parameterization and metaheuristic. These approaches are reviewed in the 

following sub-sections, with the view of highlighting their advantages and underscoring the 

inherent limitations in them. 

 

2.4.1 Variational Approach to History Matching 

In the variational approach, the history matching problem is treated as an optimal control 

problem (the unknown model parameters are considered the control variable) where the 

objective function is minimized subject to prescribed model constraints. Usually, the problem 

is solved with the aid of a gradient-based optimization algorithm; where the gradients of the 

objective function with respect to the model parameters are computed via an adjoint or co-

state formulation. Like in the production settings optimization problem (see section 2.2), the 

necessary conditions for optimality are essential for the computation of the gradients. The use 

of adjoint-based gradient methods in the history matching problem can be traced as far back 

as the 1970s. Slater and Durrer (1970) employed a gradient-based technique to solved history 

matching problems, and Chen et al. (1974) applied an optimal control approach (adjoint-

based technique) in the characterization of a real reservoir. These works were closely 

followed by Chavent et al. (1975), Wasserman et al. (1975), Watson et al. (1980), Lee and 

Seinfeld (1987), and Yang et al. (1988). In the last decade, Li et al. (2003) and Oliver et al. 

(2008) applied the adjoint-based gradient method in the history matching of 3-dimensional 

multiphase reservoir models, as well as reducing the uncertainty in the estimates of reservoir 

parameters. The advantage of this method lies in its computational efficiency as the gradients 

are computed using the so-called adjoint model which allows the computation of all 

sensitivities (irrespective of the number of parameters) in two simulation runs – one forward 

and the other backward in time. However, as highlighted in section 2.1, the implementation 

of partial derivatives (gradients) of the system requires detailed knowledge of the simulation 

source code. Thus, the use of adjoint-based gradient methods is invasive with respect to the 

flow simulator; and therefore, the implementation can be challenging. Another gradient-based 

algorithm that has been employed in the history matching problem domain is the Gauss-

Newton method. This basically calculates the first and approximates the second derivative of 

all measurement predictions with respect to parameters being estimated. Although similar to 

the adjoint-based gradient methods, the Gauss-Newton method differ in the sense that more 
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than one adjoint model simulations are required for the computation of the sensitivities, 

Tarantola (1987) and Douma (2009).  

 

2.4.2 Sequential Approach to History Matching 

The sequential approach to history matching is based on the well-known Kalman Filters 

which have been widely deployed in linear models where the only source of uncertainty is 

Gaussian noise on the states and parameters. It is based on the assumption that the initial 

condition of the system and the measurement noise processes are independent of each other; 

thus, the measurements can be sequentially assimilated into the system, Kalman (1960).  

However, if the underlying model is nonlinear, and the conditional probability of uncertain 

parameters is non-Gaussian, the Kalman Filter suffers severe limitations. This is because 

linear models with Gaussian distribution of unknown states and parameters can be completely 

characterized by the first and second moments (i.e. the mean and the covariance matrix), 

whereas nonlinear models with non-Gaussian distribution of unknown parameters would 

normally be characterized by an infinite number of moments. To this end, a number of 

modifications of the Kalman Filters have been developed for nonlinear models. These include 

the Extended Kalman Filters (EKF), the Unscented Kalman Filters (UKF) and the Ensemble 

Kalman Filters (EnKF).  

 

The EKF was presented in the study of Jazwinski (1970). In this technique, the estimate and 

corresponding error covariance are recursively computed via linearization of the underlying 

nonlinear model equations. Owing to the huge number of to-be-estimated states and 

parameters in a typical reservoir model, and the enormous computational requirement that is 

associated with computing the covariance matrices of the state variables and parameters each 

time new observations become available; the EKF is not an effective technique for large-

scale nonlinear systems like reservoir models.  

 

The first application of UKF was presented in Julier and Uhlmann (1997); and it is more 

capable of dealing with nonlinearities. It uses a deterministic sampling technique called 

unscented transform to select a minimal set of sample points (referred to as sigma points) 

around the mean, and these sigma points are subsequently propagated through nonlinear 

functions, from which the mean and covariance of the estimate are then computed. However, 
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it requires two simulations for each to-be-estimated element in order to compute an estimate 

and corresponding error covariance, Zandvliet (2008).  

 

The EnKF is much more effective for large-scale nonlinear systems. It was developed by 

Evensen (1994) for applications in oceanography, and is fundamentally a Monte-Carlo or 

stochastic (as against the deterministic EKF and UKF) approach of computing the error 

covariance through an ensemble of possible realizations. It appears that the first application 

of EnKF in history matching was by Lorentzen et al. (2003), where it was employed in the 

calibration of the parameters for a two-phase reservoir flow model; and enhanced well 

pressure behavior predictions were obtained by applying the full-scaled experimental data. 

This was later followed by Nævdal et al. (2005) – where the permeability field of a synthetic 

2D model was estimated, Gu and Oliver (2005) – where it was used to estimate permeability 

and porosity field of the Production forecasting with UNcertainty Quantification (PUNQ–S3)  

model, Rommelse et al. (2006) – where the performance of the EnKF was compared with the 

so-called representer method, and Skjervheim et al. (2007) – where it was used in matching 

time-lapse (4D) seismic data from a North Sea oil field. A good review of EnKF in reservoir 

engineering is contained in Aanonsen et al. (2009), and rich information on current trends is 

available in Emerick and Reynolds (2012). Relative to the performance of other versions or 

modifications of the Kalman Filters for nonlinear models, the popularity of EnKF stems from 

its very simple conceptual formulation and easy-implementation property. The ensemble is a 

reflection of the uncertainty and probability distribution of the estimated variables. It is noted 

that the computational requirement associated with EnKF is directly proportional to the 

ensemble size; therefore, the size of the ensemble should be as small as possible, but not too 

small a size that would result in inaccurate or unstable results. Usually, the choice of an 

ensemble size of less than 100 realizations is quite common in history matching and other 

reservoir engineering applications.  

 

2.4.3 Parameterization Approach to History Matching 

Another approach to history matching is the parameterization methods. This involves all the 

techniques that seek to reduce or re-parameterize the huge number of reservoir unknown 

parameters. Thus, the aim is to express reservoir model parameters by a fewer number of new 

variables while preserving important geological variability. The parameterization techniques 
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include zonation, pilot point, principal component analysis (PCA), discrete cosine transform 

(DCT) and the representer method. 

  

In the zonation method, the reservoir is divided into a manageable number of zones where the 

properties are assumed to be uniform, and model parameters are adjusted for each zone from 

dynamic data measurements. It was introduced in the study of Jacquard and Jain (1965), and 

this was quickly followed by Jahns (1966). The gradzone method – Bissell (1994), and the 

adaptive multi-scale method – Grimstad and Mannseth (2000) draw inspiration from the 

zonation method. The pilot point method involves choosing locations (or pilot point) of the 

reservoir model where the parameters are to be adjusted and subsequently interpolated to 

neighboring points by kriging. It was proposed by de Marsily et al. (1984), and was applied 

in Cartes and de Marsily (1991), and RamaRao et al. (1995).  

 

The PCA (also known as Karhunen-Loéve Expansion) are differentiable parameterization 

techniques that have been employed in history matching. In the standard PCA approach, the 

model grid-block parameter of interest (e.g. permeability and porosity) is expressed as a 

linear combination of some deterministic basis functions weighted by uncorrelated random 

coefficients. More details of this approach is available in Gavalas et al. (1976), Reynolds et 

al. (1996) and Oliver (1996) where it was used for reservoir model permeability and porosity 

parameterization. The kernel PCA method is basically an extension of the standard PCA. 

This technique preserves higher order statistics (unlike the standard PCA which preserves 

only second order moment or covariance matrix), and can therefore, be deployed in the 

parameterization of complex geological models with non-Gaussian distributed fields. Details 

of this approach is available in Sarma et al. (2007, 2008b). 

 

The DCT parameterization approach to history matching draws inspiration from image 

processing. In this approach the permeability field is expressed as a linear combination of 

some predefined basis functions (equal to the number of permeability values) weighted by 

uncorrelated random coefficients. Thus, the permeability field is expanded into predefined 

basis functions that do not depend on the covariance matrix and do not need to be estimated 

from data as shown in Jafarpour and McLaughlin (2007a). Efficient history matching was 

achieved in Jafarpour and McLaughlin (2007b) by the application of a hybrid EnKF-DCT 

algorithm. The representer technique to history matching is inspired from meteorology and 

oceanography, Bennett et al. (1996) and Bennett (2002). This method allows for reduction of 
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the number of unknown states/parameters to the number of measurements used in the 

inversion process, and this is achieved by expanding the parameter field into a finite set of 

basis functions called representers. The only unknowns are the expansion coefficients that 

need to be adjusted to match the available data. In this way the number of independent 

estimation parameters is reduced to the number of measurements used in the assimilation (as 

there is one representer defined per each measurement) while still providing a solution to a 

full inverse problem. It has been employed in Rommelse et al. (2006) and Przybysz-Jarnut 

(2010) for the estimation of the permeability in reservoir models. 

 

2.4.4 Metaheuristic Approach to History Matching 

Metaheuristics, which include evolutionary and swarm intelligence algorithms have become 

very popular in the history matching problem domain. Sen et al. (1995) applied and compared 

the duo of simulated annealing (SA) and genetic algorithm (GA), while Romero et al. (2000a, 

2000b) employed GA in history matching problems of different complexities. Since then, 

other metaheuristic algorithms have been deployed in various history matching problems. 

Wang and Buckley (2006) and Hajizadeh et al. (2011) applied differential evolution (DE), 

Schulze–Riegert and Ghedan (2007) and Schulze–Riegert et al. (2009) employed 

evolutionary strategies (ES), while Mohamed et al. (2010) used a PCA-based model 

parameterization to apply particle swarm optimization (PSO) in the history matching of the 

Brugge field. Of course, it can be said that the popularity of metaheuristic algorithms in 

history matching stems from their simplicity, parallel implementation capabilities, and the 

fact that they do not require any gradient information from the optimization problem. The 

algorithms often use the objective function value to determine new search steps; and can 

therefore, be used in cases where gradient information are unavailable, or where traditional 

techniques fail due to significant nonlinearities or discontinuities in the search space. 

 

2.4.5 Other Approaches to History Matching 

It is important to note that there are other methods for matching observed and predicted data 

that have been mentioned in the reservoir engineering literature. These methods are not 

discussed in details, they are only mentioned for the sake of completeness; therefore, the 

interested reader is referred to the applicable references. The streamline simulator methods – 

Vasco and Datta-Gupta (1997), Wen et al. (1998), Vasco et al. (1999), Wu and Datta-Gupta 
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(2002) and Cheng et al. (2004) is a computationally efficient approach to history matching. It 

is basically based on rapid inversion of multiphase production data. Usually, the high 

permeability flow paths in the reservoir model (or parts of the reservoir model with greatest 

influence on flow to production wells) are identified; and the parameters (permeability and 

porosity) in those parts are adjusted to match production data. Other methods worth 

mentioning are the gradual deformation method (GDM) and the probability perturbation 

method (PPM) – both of which are iterative and stochastic algorithms. The GDM is an 

iterative geostatistical technique that perturbs a realization from a few parameters (referred to 

as deformation parameters), while preserving the spatial variability or geostatistical 

constraints. It was proposed in Roggero and Hu (1998), and was applied in Gallo and 

Ravalec-Dupin (2000), Roggero et al. (2002) and Hu and Jenni (2005). The PPM approach 

employs a training image to approximate the multiple point statistics of the facies 

distribution, while maintaining the prevailing geostatistical constraints, Caers (2003).  

 

2.5 Summary 

In this chapter, we undertook an in-depth review of the literature as it relates to the major 

problems considered in this thesis. We highlighted the strengths and weaknesses of various 

optimization, control and estimation techniques that have been applied in reservoir 

engineering and other related domains. In the well placement optimization problem, it was 

established that most algorithms that have been employed in the domain can be broadly 

categorized into local deterministic and global stochastic algorithms. We further underscored 

the fact that although the local deterministic algorithms such as gradient-based algorithms 

(where the gradients are computed via adjoint formulations) are computationally less 

demanding than the gradient-free global stochastic methods; they are usually difficult to 

implement because they often require full access to the flow simulator source code as well as 

detailed knowledge of the code. It was pointed out that the gradient-free stochastic algorithms 

possess easy–to–implement properties which arise from the fact that they are generally non-

invasive with respect to the flow simulator. It was further highlighted that their inherent 

weakness (high computational cost of objective function evaluation) can be substantially 

overcome by deploying the implementation over multiple parallel processors. In production 

optimization and control, we established the fact that adjoint-based techniques appear to be 

the best option in the optimization of production settings. This has been significantly helped 

by the fact that most commercial and in-house reservoir simulators now have built-in adjoint 



49 
 

functionalities for the purpose of effective production optimization tasks. However, owing to 

reservoir model uncertainties, it is virtually next to impossible for the physical reservoir to 

attain the optimal trajectory resulting from production optimization. In other words, the 

supposed optimal production profile is not always attainable in practice. To this end, a 

predictive control loop that is based on a simple data-driven model is coupled to the 

production optimization problem, for the sole purpose of tracking the optimal trajectory that 

results from the production optimization loop. The type of data-driven model upon which the 

predictive control strategy is based is of crucial importance. Certainly, the use of nonlinear 

models enhances accuracy; however, simple linear models that possess easy-to-implement 

controller-design properties are attractive from the control point of view. Striking the 

appropriate balance between accuracy and control is still lacking in reservoir engineering 

applications where predictive control strategies are deployed. Finally, we ended the chapter 

by reviewing the various approaches to history matching as reported in the literature. 
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CHAPTER 3 
For a man's life from birth to death was a series of transition rites which brought him 
nearer and nearer to his ancestors – Chinua Achebe 

 
RESERVOIR MODELLING 

This chapter provides the fundamental mathematical concepts upon which the remaining 

chapters are built. We present the notations and the general laws governing the equations that 

describe fluid flow behaviour in porous media. We will also provide the reservoir model and 

constraints within our defined framework.  

 

3.1 Flow In Porous Medium  

The three main ingredients in modelling fluid flow in porous medium are mass conservation 

for each of the phases, an empirically determined constitutive equation relating the average 

mass flux of each phase to the corresponding fluid potential gradient, and the equation of 

state (thermodynamic or compressibility equation). The second equation which accounts for 

the conservation of momentum is governed by the Navier-Stokes equation, and is basically an 

extension of the Darcy‘s law. In other words, the governing equations describing flow in a 

porous medium are based on mass conservation, momentum conservation and the 

thermodynamic equation of state. For more details on the mathematics and modelling of flow 

in porous media, the interested reader is referred to Peaceman (1977, 1978), Aziz and Settari 

(1979), Ahmed (2001), Chen et al. (2006), Aarnes et al. (2007), Chen (2007) and Jansen 

(2012). This chapter is largely based on the aforementioned publications. 

 

3.2 Single-Phase Flow Formulation  

The mathematical formulation of flow in porous media is firmly based on a number of 

fundamental principles. These include: 
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 Mass balance (i.e. mass accumulated = mass inflow – mass outflow) 

 Thermodynamic or compressibility equation (accounts for changes in fluid and rock 

properties as a result of changes in pressure) 

 Darcy‘s law (momentum conservation) 

 Initial and boundary conditions 

 

Consider the porous medium domain Ω represented by the cube in Figure 3.1. Assuming that 

its faces are parallel to the coordinate axes, the centroid given by (x, y, z), and that the 

dimension in the x-, y- and z- coordinate directions are ,x y   and z  respectively. If the 

spatial variable is given by ( , , ),x x y z  the time variable by ,t  the porosity of the medium is 

given by ,  the density of the fluid is represented by ,  the Darcy velocity is given by 

( , , ),x y zu u u u  and q  is the external sources and sinks. 

 

Since the mass flow per unit area per unit time (mass flux) is given by iu  (where i = x, y, z); 

the mass inflow across a surface at position 2x x  per unit time is given by: 

 

                                                         
2, ,( )x x x y zu y z                                                          (3.1) 

 

and by extension, the mass outflow at a point 2x x  which is directly opposite and in the 

same coordinate as 2x x  is given by: 

 

                                                        2, ,( )x x x y zu y z                                                           (3.2) 

(x, y, z)
• 

∆x

∆y

∆z

inward flow outward flow

 
Figure 3.1: A porous medium domain Ω in 3-dimensional space courtesy Chen (2007) 



52 
 

By the same token, the mass inflow and outflow across the surfaces in the y- and z- 

coordinates are respectively given by: 

 

                                                        
, 2,( )y x y y zu x z                                                           (3.3) 

                                                        
, 2,( )y x y y zu x z                                                           (3.4) 

                                                        
, , 2( )z x y z zu x y                                                           (3.5) 

                                                        
, , 2( )z x y z zu x y                                                           (3.6) 

 

Mass accumulation due to compressibility per unit time and sink are respectively given by: 

 

                                                          ( ) x y z
t



  


                                                           (3.7) 

                                                          q x y z                                                                      (3.8) 

 

For mass balance, the difference between mass inflow and outflow must equal the sum of 

mass accumulation in the volume; i.e.  

  

     2, , 2, , , 2, , 2,( ) ( ) ( ) ( )x x x y z x x x y z y x y x z y x y x zu u y z u u x z              

 , , 2 , , 2

( )
( ) ( )z x y z x z x y z xu u x y q x y z

t


  

 
         

 
                                         (3.9) 

 

Now, dividing both sides of Eq. 3.9 by the bulk volume ( ),x y z    we obtain: 

 

2, , 2, , , 2, , 2,( ) ( ) ( ) ( )x x x y z x x x y z y x y x z y x y x zu u u u

x y

          
    

    
 

, , 2 , , 2( ) ( ) ( )z x y z x z x y z xu u
q

z t

      
     

   
                                                              (3.10) 

 

As 0, , , ;i i x y z    we obtain a continuity equation describing mass conservation: 

 

                                           ( ) .( )u q
t
 


  


                                                             (3.11) 
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where .  is the divergence operator, which is given by: . .
yx z

uu u
u

x y z

 
   

  
 

 

The conservation of momentum is governed by the Navier-Stokes equation, but is usually 

modeled for low velocity filtration through porous media by the semi-empirical Darcy‘s law; 

which states that the total volumetric flow rate Q of a fluid through a porous medium is 

dependent on the cross-sectional area of the medium A, the pressure gradient along the 

medium p and the fluid frictional property or viscosity .  

 

∆p

x

Q in Q out

 
Figure 3.2: Illustration of Darcy’s law 

 

Accordingly, this can be expressed as ,
A p

Q k
x


 


 where the constant k is referred to as the 

permeability of the medium. The permeability of the medium represents the ability (or 

otherwise) of the medium to allow the flow of fluid. It is analogous to the electric resistance 

in Ohm‘s law of electrical conduction and the heat conductivity tensor in Fourier‘s law of 

thermal conduction. Usually, k is a diagonal tensor, and depending on the geometry of the 

porous medium, k is given by: 

1–D: ,xk k  2–D:  
0

diag , ,
0

x

x y

y

k
k k k

k

 
  
 

 3–D:  
0 0

0 0 diag , , ;

0 0

x

y x y z

z

k

k k k k k

k

 
 

  
 
 

 

and for a 2-D and 3-D isotropic medium, ( )x yk k  and ( )x y zk k k   respectively. 

 

Since  ,u Q A  we can therefore express momentum conservation (Darcy‘s law) as: 

                                                
k

u p g z


                                                               (3.12) 

where g is the magnitude of acceleration due to gravity, z is the depth, and   is a gradient 

operator.  
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Note that whereas there is only one force property in both electrical (potential difference) and 

thermal (heat) conduction, there are two driving forces in porous media flow – gravity and 

the pressure gradient. However, if we assume that there are no gravitational effects, and that 

permeability is isotropic; then we need only the reservoir field pressure as our primary 

unknown, and this can be solved by substituting the Darcy‘s law (3.12) into the continuity 

equation (3.11). This leads to a linear equation in the form: 

 

                                                    ( ) . k p q
t






 
    

  
                                             (3.13) 

 

 

3.3 Two-Phase Flow Formulation  

It is important to underline that the working models used throughout this work is based on 

two-phase oil (o) and water (w) flow, where the oil is the non-wetting phase and water the 

wetting phase. In these flow situations, the macroscopic conservation laws that were derived 

for a single-phase fluid flow in porous media are augmented by empirical material-dependent 

constitutive relationships describing saturation and relative fluid permeability, which 

represents a reduction in the permeability of one phase due to its interference with the other 

phase.  Importantly, we underline that the flow model formulation are based on the following 

underlying assumptions: 

 

 the reservoir contains two-phase (oil and water) isothermal weakly compressible 

immiscible fluid 

 there are no aquifer  

 there are no capillary pressure effects 

 there are no gravity effects in the formulation, although the effects of gravity is taken 

into account in the applications that follow in later chapters 

 besides the sink and source terms, there are no flow across the reservoir geometry, i.e. 

Neumann boundary condition 

  reservoir pressures are above the bubble point pressure of the oil phase; in other 

words, the reservoir is under-saturated and there is no mass transfer between the oil 

and gas phases 

 

The mass and momentum conservation for the phases are given by: 
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                                                        , ,S u q o w
t

      


   


                  (3.14) 

 

                                                                 , ,rk
u k p o w
 






                     (3.15) 

where t is time, , , , andS u p       are respectively density, saturation, velocity, viscosity 

and pressure of phase ;  while , , , . andrk k     are porosity, permeability of the medium, 

relative permeability of the individual phase ,  a divergence operator and a gradient operator 

respectively. Because of the assumed no-flow boundary condition across the reservoir 

geometry over which Eq. 3.14 is defined, q represents the sink/source terms of phase .  

 

Substituting the momentum conservation equation (3.15) into the mass conservation equation 

(3.14); we obtain two flow equations with four unknowns ( , , and ),o w o wS S p p  viz: 

 

                                                    ro
o o o o o

o

k
S k p q

t
 



 
    

  
                                   (3.16) 

 

                                                   rw
w w w w w

w

k
S k p q

t
 



 
    

  
                                 (3.17) 

 

Consequently, two additional equations are required for the complete description of the 

model. These equations are the closure equation, which requires that the oil and water phases 

jointly fill the void space; and the capillary pressure equation, which expresses the pressure 

due to interfacial forces across the interface between immiscible fluids. 

 

                                                    1o wS S                                                                      (3.18) 

 

                                                          cow o wp p p                                                          (3.19) 

 

Recall that one of our key assumptions is the absence of capillary pressure effects; and on 

that evidence, (3.19) becomes .o wp p   Substituting o wp p p   and the closure equation 

(3.18) into the flow equations lead to: 

                                          1 ro
o o o

o

k
S k p q

t
 



 
     

  
                                    (3.20) 



56 
 

                                                  rw
w w w

w

k
S k p q

t
 



 
    

  
                                   (3.21) 

where S (water saturation) and p (oil pressure) are dynamic state variables. 

 

Note that flow equations parameters such as porosity, permeability, phase density and phase 

viscosities are generally dependent on the pressure (p); while the relative permeabilities are 

strongly dependent on saturation. Since the pressure dependency of permeability and phase 

viscosities are very weak (negligible); they are often ignored by treating the parameters as 

pressure independent; while the other pressure-dependent parameters (porosity and phase 

density) are expressed in the following isothermal relationships: 

 

                                                         
1

, ,
T

c p o w
p












 


                       (3.22) 

 

                                                       
1

r

T

c p
p









                                                            (3.23) 

where  and rc c  are compressibility  of the phase   and rock compressibility respectively. 

 

Therefore, (3.20) – (3.23) results to the following nonlinear equations: 

 

                                  1 ro
o r o

o

kp
S c c k p q

t




 
      

  
                                         (3.24) 

 

                                          rw
w r w

w

kp
S c c k p q

t




 
     

  
                                        (3.25) 

 

3.3.1 Relative Permeabilities  

The concept of relative permeability is consequent upon the fact that the flow ability of one 

phase at any location is dependent on the prevailing environment at that location. In other 

words, the permeability of one phase is dependent on the saturation of the other phase at that 

location. Therefore, besides the permeability of the porous medium, relative permeability 

represents an additional resistance to flow of a phase – it is caused by the presence and 

interference of the other phase. It is important to underline that the relative permeabilities are 

highly dependent on the water saturation, and therefore accounts for a major source of 

nonlinearity in the two-phase flow model. This nonlinearity also means that the sum of the 
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phase permeabilities is not necessarily equal to one. In this work, we employ the Corey 

model for relative permeability to describe the dependency between relative permeabilities on 

water saturation, and this is given by:  

                                                              0 wn

rw rwk k S                                                           (3.26) 

                                                               0 1
on

ro rok k S                                                    (3.27) 

with 

                                                               
 

, 0 1
1

w wc

or wc

S S
S S

S S


  

 
                          (3.28) 
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Figure 3.3: Relative permeability curve for oil and water 

 

where 0

rok  and 0

rwk  are respectively the end point relative permeabilities for oil and water, 

on and wn  are the Corey exponents, wcS  and orS  are respectively the connate water and 

residual oil saturations. The relative permeability curve used in the applications in this work 

is depicted in Figure 3.3. 

 

3.3.2 Two-Phase Flow Equation Solution Methods 

Equations 3.24 and 3.25 constitute a system of nonlinear partial differential equations, which 

are coupled through the saturation-dependent phase mobilities , (i.e. rk    ). These 

coupled nonlinear partial differential equations are impossible to solve analytically; therefore, 

we approximate solutions by some numerical methods. In many cases, this involves 
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discretization of each equation and simultaneously solving for the relevant state variable or 

primary unknowns – which in this case are p and S. 

 

3.3.3 Spatial Discretization and State-Space Representation 

Spatial discretization is the first step in this numerical solution of the flow equations. Usually, 

the reservoir is divided into a finite number of grid-blocks (as illustrated in Figure 3.4) in 

which the geological properties are assumed to be homogeneous. 

 

Since, the dynamic state of each grid-block i is given by the grid-block‘s pressure and 

saturation, we can define the reservoir state as a vector x such that:  

 

                                                              
T

T T   x p S                                                       (3.29) 

 

  with                                                  
,1,1p x y

T
n n

p p 
 

                                                 

                                                           
,1,1S x y

T
n n

S S 
 

                                                

where  and x yn n  are respectively the finite number of grid-block elements in the x- and y- 

directions. 

 
Figure 3.4: A spatially discretized 2-dimensional nx x ny heterogeneous reservoir model 

 

In Jansen (2012), it is demonstrated that two-phase flow equations yield a continuous-time 

state-space equation of the form: 

 

                                           ( ( )) ( ) ( ( )) ( ) ( ( )) ( )E x x A x x B x ut t t t t t                                  (3.30) 

                                                      0(0)x x                                                                     (3.31) 

where E is a sparse state-dependent accumulation matrix that consists of four sub-matrices 

, ,V V Vwp ws op  and ;Vos  and have entries that are dependent on grid-block dimensions, grid-

block porosity, compressibility and saturations. 
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i.e.                                                     
V V

E
V V

wp ws

op os

 
  
 

                                                     (3.32) 

 

where                                               , ,0 0 0 0V
i j i j

wp w rV c c S                             

                                                         , ,0 0 (1 )0 0V
i j i j

op o rV c c S                      

                                                       ,0 0 0 0V
i j

ws                                                    

                                                        ,0 0 0 0V
i j

os                                                 

 

Note that V is the grid-block volume, and ,i j  is the porosity in grid-block i, j corresponding 

to the x- and y- directions respectively.  

 

The matrix A  contains transmissibility and fractional flow terms – both have entries which 

are dependent on the saturation (via relative permeability). While transmissibilities depend on 

grid-block dimension, permeability, relative permeability and viscosity; fractional flow terms 

are dependent on viscosity and relative permeability. Matrix A  is defined as: 

 

                                                  
T F J 0

A
T F J 0

w w p

o o p

 
   

 
                                                     (3.33) 

where T  and F  are respectively the phase transmissibility and fractional flow ( { , }o w ), 

while J p  is a diagonal matrix containing well indices. The transmissibilities are given by: 

 

 1 1 1 1 1 1 1 1, , , , , , , ,
2 2 2 2 2 2 2 2

0 0T
i j i j i j i j i j i j i j i j

T T T T T T T T        
       

        
  

     (3.34) 

 

where                                     
1 , 1 ,2 2

( ) , { , }
i j i j

r

y z
T kk S o w

x
 




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
 


                      

                                               
1, 1,2 2

( ) , { , }
i j i j

r

y z
T kk S o w

x
 




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
 


                      

 

and x  and y are respectively the grid-block sizes along the x- and y- directions, and z is 

the height of the reservoir. Accordingly, the relative permeabilities are approximated based 

on upstream weighing which describes a convective behaviour, Aziz and Settari (1979); and 

the absolute permeability is computed by harmonic averages in accordance to:  
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            (3.35) 

 

                                                     

, 1,

2

1 1

i j i j

k

k k 





                                                         (3.36) 

 

The sub-matrices oF  and Fw  are diagonal matrices containing the fractional flows of  for oil 

and wf  for water at diagonal elements corresponding to grid-blocks with prescribed bottom 

hole pressure and flow rates. 

                                                    , ,
o w

f o w





 
 


                                     (3.37) 

where   is the phase mobility, which is defined as rk    for each phase. 

 

Matrix J p
 is a diagonal matrix containing well indices 

pj  placed at diagonal elements 

corresponding to the grid-blocks with prescribed bottom hole pressure such that  
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                                            (3.38) 

where pcj  is a constant part of the well index, and is mathematically calculated by: 
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                                                     (3.39) 

where z is the height of the reservoir or height of the grid-block model, er  is the well external 

radius which is given by 2 2 ,er x y   wellr  is the well bore radius, and S is the well skin 

factor which is generally assumed to be zero, Peaceman (1978). Multiplying Fw  and 

J p yields a diagonal matrix with non-zero elements corresponding to grid-blocks with defined 

bottom hole pressure; and these non-zero elements of the diagonal matrix .F Jw p  are: 
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By the same token, .F Jo p
 is also a diagonal matrix with non-zero elements corresponding to 

grid-blocks with prescribed bottom hole pressure, and the non-zero elements are generally 

given by: 

                                                             
( )ro

pc

o

k S
j


             (in all production wells)          (3.42) 

The matrix B  is defined as: 

                                                      
F

B I J
F

w

q p

o

 
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                                                   (3.43) 

where matrix Iq
 is a partial identity matrix – which is a diagonal matrix with unity elements 

in all grid-blocks with prescribed flow rates, and 
*

J p  is a block matrix with zeros and J p  as 

sub-matrices. Multiplying Fw  and Iq  yields a diagonal matrix with non-zero elements in 

grid-blocks that are defined by flow rates  q { , } .o w    

 

The input vector u  represents the non-zero elements of vector qt  – which is the vector of the 

total flow rates for all grid-blocks. The continuous-time state-space equation (3.30) can be 

represented in a partitioned form as follows: 
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              (3.44) 

 

It is noted that the accumulation matrix E is invertible as long as the fluids are compressible 

and the porosity in all the grid-blocks is non-zero. We can therefore re-write (3.30) and (3.44) 

in the following state-space format:  

                                                              ( ) ( ( )) ( ) ( ( )) ( )x A x x B x ut t t t t                           (3.45) 

                                                             0(0)x x                                                                (3.46) 

where                                                      
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For more on the mathematical formulation of reservoir equations in control format, the 

interested reader is referred to Jansen (2012), from which this sub-section was adapted.  
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3.3.4 Temporal Discretization 

After spatial discretization, performing a reservoir simulation requires discretization of the 

time derivative ( ).x t  Since the initial condition value is known, the time derivative ( )x t  is 

approximated by a first-order Euler scheme, viz: 

 

                                                       
( ) ( )

( )
x x

x
t t t

t
t

 



                                                (3.47) 

 

In so doing, it is important to select appropriate instances at which the time-dependent inputs 

and parameters are evaluated, as the choice can significantly influence the computational 

efficiency as well as the stability. Numerical temporal discretization schemes may be fully 

explicit, fully implicit, IMplicit Pressure Explicit Saturation (IMPES) or Adaptive Implicit 

Method (AIM).  

 

If the inputs and parameters are evaluated at the current time instance k, the discretization is 

referred to as fully explicit; thus, the state vector at the next time-step 1xk  can be obtained as 

an explicit expression in terms of state vector at current time-step .xk  Because there is no 

need to solve any system of equations, this discretization approach often results into fast 

computation of variables. However, stability issues arising from time-step restrictions can be 

problematic; and this can considerably increase the computational requirements. The explicit 

temporal discretization leads to the nonlinear discrete-time state-space equation, viz:  

                1 ( ) ( )x A x x B x uk k k k k                                    (3.48) 

                                                                  ( ) ( )y C x x D x uk k k k k                                    (3.49) 

For a reservoir model of N grid-blocks, with m inputs, p outputs and n state variables, the 

vectors ,x  u  and y  are defined as follows: 
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Note that the state vector 2n N

k

x represents the state variables i.e. pressure and water 

saturation values in all the grid-blocks, the input vector m

ku  contains the designated flow 
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rates and bottom-hole pressure in the wells, and the output vector p

ky  include measured 

flow rates and bottom-hole pressure in each well.  

 

The state-space equation presented in (3.48) and (3.49) can be represented schematically as 

shown in Figure 3.5 

u

k

y

Input uk Output yk

State xk

System Model

ABCD

xk+1 =A(xk)xk + B(xk)uk yk =C(xk)xk + D(xk)uk

k

 
Figure 3.5: A schematic representation of reservoir model state space equation 

 

In systems and control literature, matrix A n n  is often referred to as the ‗system matrix‘ 

or ‗dynamics matrix‘ as it contains the dynamic properties of the system; matrix B n m  is 

the ‗input matrix‘ as it maps the inputs to the states; matrix C p n  is the ‗output matrix‘ 

since it maps the states to the output, and matrix D
p m  is the ‗feedthrough matrix‘. 

 

Under the assumption of no capillary pressure (as we have earlier underlined), Eq. 3.48 can 

be represented in the form: 
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             (3.50) 

showing that the reservoir dynamic states (grid-blocks pressures and saturations) are driven 

by the pressures of the previous time step. Again, because of the saturation dependency of 

relative permeability in the system matrix A21, the saturation part of the grid-block states are 

also driven by the saturations of the previous time step.  

 

For the fully implicit scheme, the dependent variables and inputs are evaluated at the next 

time-step i.e. at time k+1. The computation of the variables at the next time-step requires that 

a system of N nonlinear equations (where N denotes the total number of grid-blocks) is solve 

simultaneously; and this is often carried out through some iterative procedure such as the 

Newton–Raphson method. Fully implicit discretization scheme are usually robust and 
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unconditionally stable. In other words, they yield a stable solution for large time-steps; the 

only restrictions on time-step size are those necessary to ensure convergence of the iteration 

scheme employed. However, because of the huge number of nonlinear system of equations 

(equal to the number of reservoir grid-blocks) involved in this approach, they are usually 

computationally expensive. The fully implicit scheme results to a coupled system of 

nonlinear equations of the format: 

                                             1, ,g u x x 0k k k k                                                                   (3.51) 

                                               , ,h u x y 0k k k k                                                                   (3.52) 

where g  and h are nonlinear vector-valued functions.  

 

The IMplicit Pressure Explicit Saturation (IMPES) scheme employs a splitting approach 

which capitalizes on the physics or nature of the coupled systems of flow equations. Under 

this scheme, the coupled system of partial differential equations is decoupled into the two 

fundamentally different equations – pressure and saturation equations; and each of the 

equation is solved using different discretization methods. The pressures are subsequently 

determined by solving the pressure equations implicitly, while the saturations are determined 

explicitly by solving the material balance equations. In other words, after solving for 

pressures, the two-phase saturations are updated explicitly by computing Darcy‘s velocity 

from the pressure distribution obtained earlier. Now, it is important to note that since the time 

scales of the dynamic behavior of the two-phase flow model differ remarkably (the changes 

in pressure are less rapid than the changes in saturation); it is therefore, logical to assign 

different time-sizes to the decoupled equations. While the implicit pressure update can deal 

with large time-step sizes, there is a time-step size restriction on the explicit saturation 

updates so as to guarantee stability. It is noted that the instability of the IMPES approach is as 

a result of the explicit treatment of the capillary pressure and the decoupling between the 

pressure equation and the saturation equation, Kou and Sun (2010). This means that the 

IMPES approach is conditionally stable; hence, its application in highly heterogeneous 

permeable media (where capillary pressure effects play a significant role in fluid flow path) 

must be restricted to very small time-step sizes. Because saturation dependent parameters 

such as relative permeabilities and capillary pressures are often assumed to be constants at 

each time-step, the formulation and implementation of IMPES are relatively easy; its low 

memory and CPU time requirements also makes it quite attractive, Markovinovic (2009). 
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Another popular discretization scheme is the approach known as adaptive implicit method 

(AIM). Under this scheme, the time-dependent variables in some grid blocks are solved fully 

implicitly while the rest are solved using IMPES. Thus, this scheme assigns different levels 

of implicitness to the grid-blocks, and these levels are appropriately adjusted (as required) in 

space and time to maintain stability. The method therefore gives robustness in problematic 

areas with large changes in pressure and saturations (like near a wellbore), while at the same 

time giving high computational efficiency away from problem regions, Aarnes et al. (2007).  

 

3.4 Model Nonlinearity 

The nonlinearity in the reservoir flow model represented in (3.48) stems from the system 

matrices which have coefficients that are functions of the saturations. As we pointed out 

earlier, the system matrix A contains transmissibilities which are functions of the water 

saturation through their relationship with relative permeabilities. Again, it is important to 

point out that the transmissibilities are also functions of pressure due to the upstream 

weighting approach used for the computation of relative permeabilities as indicated in (3.35). 

Any change in neighboring grid-blocks pressures would inadvertently lead to change in the 

upstream relative permeability. Because the input matrix B contains entries that are based on 

the fractional flows of oil and water, it constitutes another source of nonlinearity. The 

fractional flows of oil fo and water fw which are required for the computation of matrix B are 

functions of the saturation through the oil and water mobilities as shown in (3.37). 

 

3.5 Model Uncertainty 

The reservoir model described so far in this chapter has been modelled under a number of 

simplifying assumptions that we have noted. Therefore, they inherently contain some degrees 

of uncertainty. Loosely speaking, uncertainty in reservoir models can be categorized into 

those that are introduced as a result of modelling simplifications, and those that are 

introduced as a result of limited knowledge of reservoir geology or sparsity of data. Below 

are some of the sources of uncertainty in numerical and computational reservoir models. 

 

3.5.1 Assumptions and Simplifications 

The many simplifying assumptions used in deriving the flow model are a major source of 

uncertainty. Although the reservoir flow model equations are generally based on the physics 
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of multiphase flow, the underlying governing equations are not without some assumptions as 

clearly spelt out in section 3.3 of this chapter. For reasons bothering on computational 

resource affordability, the black-oil formulation is often used instead of a formulation that 

takes care of all the components that are present in the reservoir. In the same vein, the semi-

empirical Darcy‘s law which only approximates the true physics behind the multiphase flow 

is used. Also, gravity and capillary pressures effects are often neglected in order to simplify 

the model. After spatial discretization, the fact that the states (pressures and saturations) and 

the geological properties in each of the coarse-sized (approximately in the order of 

100m×100m×10m) grid-block are assumed to be homogenous brings with it an unknown 

degree of model uncertainty. And besides that, the reservoir geometry is also uncertain; thus, 

the boundary conditions applied in the discretized model may be highly inaccurate. These 

uncertainties would one way or the other influence the reliability of the underlying numerical 

reservoir model.  

 

3.5.2 Limited and Sparse Data 

One major source of reservoir model uncertainty is model parameters. These parameters 

manifest as geological properties (grid-block permeability and porosity) and fluid properties 

(relative permeability, density and viscosity). Some of these parameters are based on 

laboratory experiments on core samples taken from the field, while others are often inferred 

from sparse measurements that are taken at the wells or at locations that are in the proximity 

of the wells. Thus, the parameter values in the formation are often unknown and have to be 

determined by some kind of extrapolation. Also, the initial conditions of the reservoir 

dynamic states (pressures and saturations) are usually uncertain as they are often computed 

from very limited set of data gathered from wells and locations in close vicinity of wells. This 

means that the contact depths of the fluids and indeed the initial oil in place are to a large 

extent very unknown and uncertain. Finally, it is important to note that the presence of an 

active aquifer can be a source of uncertainty in the reservoir model. Though the presence of 

such active aquifer can be desirable – as they can slow down reservoir pressure decline, there 

is no gainsaying that they can have a significant impact on the predictions purposes the 

models serve. Generally speaking, all these uncertainty types are not explicitly taken into 

account in the reservoir model, and are therefore difficult to assess. 
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3.6 Model Limitations 

In the previous section, the inherent uncertainty in reservoir models were described; we 

further highlighted the various sources of the uncertainty. The presence of these uncertainties 

inevitably translates to the fact that reservoir models are only a (very) crude approximation of 

the real physical reservoir. In other words, they have limitations which can adversely affect 

their prediction capabilities. For reasons bothering on these limitations, multiple reservoir 

models are often employed when making future production predictions. The spread in the 

predictions arising from the different models of the same reservoir, together with their 

probabilities can be used to assess the impact of model uncertainty within a statistical 

framework. However, this spread in the probabilities of the different models of the same 

physical reservoir can be very large and cumbersome; invariably, this could constitute a 

major impediment or limitation in the deployment of reservoir models as a tool for field 

development decisions. In this regard, a large spread would be a thing of concern – it implies 

significant financial risk in the development and production of the field. Nevertheless, 

reservoir models are widely used in the E&P industry as an essential tool during the 

development, production and re-development exercises of oil and gas fields. There are quite a 

number of reservoir model simulators which basically implement equations of the form 

(3.48). Some of these simulators are commercially available – ECLIPSE
® (Schlumberger), 

VIP
® (Halliburton), IPM

® (Petroleum Experts); others are proprietary – CHEARS
® (Chevron), 

MoReS
® (Shell), PSim

® (ConocoPhillips); and some are open source – MRST
® (SINTEF). In 

this thesis, we employed MRST
® as well as ECLIPSE

® in our implementations. 

 

3.7 Summary 

In this chapter, we presented the basic concepts that describe flow in porous media, as well as 

the notations that would be employed in the remainder of this thesis. The equations governing 

the flow of each phase in a porous medium are a combination of a mass balance, momentum 

conservation and compressibility equations as well as boundary and initial conditions. The 

resulting reservoir model is a system of coupled nonlinear partial differential equations (with 

large number of dynamic states and physical parameters) that cannot be solved analytically. 

Numerical solution of these coupled equations often involve spatial and temporal 

discretization, and this leads to a large number of ordinary differential equations which can 

be written in state-space form. The states in the resulting state-space equation are the grid-
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block pressures and saturations, the inputs are the production settings of the wells, while the 

physical parameters include fluid and geological properties such as grid-block permeabilities 

and porosities, density, viscosity, and relative permeabilities. We noted that the reservoir 

models contain a significant quantity of uncertainty arising from various sources, and that 

these uncertainties invariably translate to limitations in the predictive power and capability of 

the models. Often, the effect or impact of this uncertainty can be assessed by considering 

multiple realizations of the physical reservoir and analyzing their probability within a 

statistical framework.  
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CHAPTER 4 
When a man is at peace with the gods and his ancestors, his harvest will be good or bad 
according to the strength of his arm – Chinua Achebe 

 
WELL PLACEMENT OPTIMIZATION 

The focus in this chapter is the optimization of well locations in reservoir models of varying 

complexities. Well placement optimization often entails determining the optimal number, 

type, location (and possibly the drilling sequence) of wells for a hydrocarbon reservoir. It is 

arguably the most important decision-input of field development planning. We will describe 

in detail, three metaheuristic algorithms viz: differential evolution (DE), particle swarm 

optimization (PSO) and hybrid particle swarm differential evolution (HPSDE) – which is a 

hybrid of DE and PSO; and we will discuss the application of these algorithms in the well 

placement optimization problem.  

 

4.1 Well Placement Problem Formulation 

For any given hydrocarbon reservoir of the form of Eq. 3.45, determining the optimal well 

configuration that maximizes the recovery factor over a time interval [0, T] can be posed as 

an optimization problem. In every practical sense, the maximization of the recovery factor 

(objective function) for a water-flooded reservoir is equivalent to any of the following:  

1. maximizing the cumulative volumes of hydrocarbon produced at terminal time T 

2. maximizing the water saturation of the reservoir at terminal time T or 

3. minimizing the volume of hydrocarbon in place at terminal time T 

However, the objective for most E&P companies is to maximize the economic value of their 

asset. The commonly used economic criterion for this purpose is the net present value (NPV) 

as employed by Beckner and Song (1995), Montes et al. (2001), Yeten (2003), Aitokhuehi et 

al. (2004), Bangerth et al. (2006), van Essen et al. (2006), Sarma and Chen (2008), Zandvliet 

et al. (2008), Onwunalu and Durlofsky (2010), Bouzarkouna et al. (2011), Ciaurri et al. 
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(2011) and Dong et al. (2011). Therefore, NPV is designated as objective function in all the 

problems considered in this chapter; and for all potential well configuration (solutions), the 

NPV is computed from the fluid production profiles generated as a result of simulation run 

associated with corresponding well placements. In other words, the NPV is a measure of the 

cash flow (CF) generated from sale of produced volumes of oil.  

Following a slight modification of the economic model described in Onwunalu and Durlofsky 

(2010), we define the NPV as the total oil revenues minus the capital expenditure (CAPEX) 

and the operation cost (OPEX), in combination with a discount factor d – which represents 

the time value of money (interest rate or inflation). This is represented mathematically as: 

 

                                    

( )

1

CF
NPV CAPEX

(1 d)

T
t

t
t

 


                                                             (4.1) 

 

where T is the terminal time or total production years, d is the discount factor, and CF(t) 

represents the cash flow at time t. The cash flow at any time is given by: 

 

                                  ( ) ( ) ( )CF REV OPEXt t t                                                                   (4.2) 

where ( ) REV t is the revenue accrued from sale of products at time ;t and ( ) OPEX t  represents 

the operating expenditure (or cost of production) at time t. Both quantities are measured in 

US dollars ($). 

 

For a two-phase (oil and water) flow reservoir model, the values of ( ) REV t and ( ) OPEX t  
at 

any time (t) are respectively given by: 

 

                               
oil oil

( ) ( ) ( )REV t t tp                                                                                      (4.3) 

                            
w,p w,p w,i w,i

( ) ( ) ( ) ( ) ( )OPEX t t t t tp p                                                                      (4.4) 

where oil

( )tp
 
is the price of oil at time t, w,p

( )tp
 
is the cost of producing water in the production 

wells, and w,i

( )tp
 
is the cost of injecting water in the injection wells at time t – all three 

quantities are measured in dollars per barrel. On the other hand, oil

( )t
 
(measured in barrels) is 

the total volume of oil produced at time t, while w,p

( )t and w,i

( )t
 
(both measured in barrels) 
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represents the total volumes of water produced (from production wells) and injected (in 

injection wells) respectively. 

 

The CAPEX represents the total cost to drill and complete all wells; it is noted that as far as 

production is concerned, CAPEX is incurred at time 0.t   It is computed as follows: 

                   
 

w

top main drill

w w

w=1

CAPEX C L C
n

                                                                         (4.5) 

where wn is the total number of wells, top

wC is the cost of drilling the main bore to the top of 

the reservoir (in $), main

wL is the length of the main bore (in meters) and 
drillC is the cost of 

drilling within the reservoir (in dollar per meter).  

 

There have been a number of publications which have attempted to solve well placement 

optimization problem akin to that described in (4.1). Broadly speaking, most of the solution 

techniques employed in this problem domain can be categorized either into the gradient-

based local optimization methods, where the derivatives of the objective function are 

computed using some numerical finite difference schemes or the adjoint formulations, or 

derivative-free stochastic optimization techniques, which often involves the use of heuristics 

or  metaheuristic algorithms. A review of these techniques is highlighted in section 2.1 of this 

thesis. With the benefit of this review, it follows that the use of derivative-free stochastic or 

metaheuristic algorithms are quite popular in well optimization problem domain. This 

notwithstanding, a computational efficient metaheuristic algorithm that require limited 

number of simulations (objective function evaluation) is still lacking. Based on experimental 

results, we propose a hybrid algorithm of differential evolution and particle swarm 

optimization referred to as hybrid particle swarm differential evolution for well placement 

optimization problems.  

 

4.2 Differential Evolution (DE) 

In Storn and Price (1995), an encoded floating point population-based metaheuristic 

algorithm was introduced as a computational intelligence paradigm for global optimization; 

and the new algorithm was named differential evolution (DE). It derived its name from a 

special kind of differential operator which they invoked when creating new offspring of its 

population, Das et al. (2008). Being an evolutionary algorithm, DE is based on the Darwin‘s 
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principle of ―survival of the fittest‖, a strategy in which the individuals in a population evolve 

by improving their fitness value through the probabilistic operations of mutation, 

recombination and selection. The individuals are evaluated with respect to their fitness 

against a defined objective function, and those with superior fitness are selected to compose 

the population of the next generation. 

  

Like the well-known genetic algorithm (GA), DE is based on the theory of natural selection 

and in both algorithms, the selection operator is the sole mechanism for choosing the best 

individuals from the population in every generation (or iteration); thus, many researchers 

have reported DE as an improved version of GA. However, it is important to note that there 

are salient differences between both algorithms. While GA relies either on binary or real-

valued (continuous) strings, DE operates directly on floating point vectors; whereas GA 

maintain a genetic link from one generation to another, DE is an abstraction of evolution at 

individual behavioral level; and most importantly, GA relies mainly on the crossover operator 

to explore the search space, while a special form of mutation operator effects the working of 

DE. In other words, crossover and mutation mechanisms are the dominant operator in GA 

and DE algorithms, respectively. Over the past years, DE has been shown to be a simple but 

versatile metaheuristic algorithm for real-parameter optimization, Storn and Price (1997), 

Rogalsky et al. (2000), Das et al. (2008); it is arguably one of the main advancements in 

computational intelligence research domain; and the spurt in interest in this subject is evident 

from the wide array of application areas (science, engineering, statistics, economics and 

finance) in which it has been deployed.  

STEP 1:

Population 

Initialization

STEP 2:

Mutation

STEP 3:

Crossover or 

Recombination

STEP 4:

Selection

 

Figure 4.1: Basic DE algorithm procedure 

 

Since inception, several DE strategies have evolved, and a comprehensive naming notation to 

classify these strategies is presented in Storn and Price (1997). The standard nomenclature of 

the various DE strategies is consistent with the DE/a/b/c format; where a represents a string 

denoting the target of the mutation operation, b defines the number of difference vectors used 
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in the mutation, and c stands for the type of crossover employed. Based on the standard and 

notations defined above, the most widely used DE strategy is the DE/rand/1/bin. This strategy 

indicates that the mutation target is randomly selected from the population, and the mutation 

is performed using a single difference vector, as well as a uniform binomial crossover. The 

basic DE algorithm consists of four distinct events which are as represented in Figure 4.1. 

The first step is the initialization of a population of candidate solutions pN  at iteration k = 1, 

and this is given by: 

                     1 2( ), ( ),..., ( )p NpN k X k X k X k                                                                 (4.6) 

where each candidate solution ( ),iX k is a D-dimensional vector containing as many real-

valued parameters as the problem dimension D. Each of the candidate solution is given by: 

 

                          
, , ,( ) ( ), ( ),..., ( )i i j i j i DX k x k x k x k                                                                 (4.7) 

where 1,2,..., pi N  and 1,2,..., .j D  

Typically, each decision parameter in every candidate solution of the initial population is 

assigned a randomly chosen value from a pre-defined feasible numerical bound. In other 

words, the -thj component of the -thi population member at the initialization step is given by: 

                        , (1) rand 0,1L U L

i j j j jx x x x                                                                  (4.8) 

where L

jx and U

jx are respectively the lower and upper bound of the -thj parameter, and  rand 

(0,1) is a uniformly distributed random number between 0 and 1. 

 

Once the population has been initialized, the corresponding fitness value is evaluated and 

stored in memory for future reference. In each generation, a mutant vector is created for each 

-thi population member by randomly choosing three parameter vectors from the current 

population. A scalar number F is used to scale the difference of any two of the three random-

chosen vectors; and the scaled difference is added to the third one. We can express the 

mutation process of the -thj component of each vector as follows: 

                    
 1, 2, 3,( ) ( ) ( ) ( )i r j r j r jv k x k F x k x k                                                                  (4.9) 

where  0,1F  is a user-defined constant known as the scaling (or mutation) factor, and 

vector indices r1, r2 and r3 are randomly chosen with r1, r2 and r3 {1,2,..., }.pN   
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Note that 1 2 3 ,r r r i    and that 1 2,r rx x  and 3rx are selected anew for each parent vector in 

every generation. The magnitude and direction of the mutation step is defined by the 

difference between two of the three random-chosen population vectors; and this makes the 

mutation operation to exhibit a self-adaptive behavior, such that the average mutation length 

decreases as the population converges, Storn and Price (1997). The third step is the crossover 

or recombination scheme. The main purpose of this process is to increase the potential 

diversity of the population by mixing the parameters of the mutant vector with the target 

vector according to a selected probability distribution. There are mainly two kinds of 

crossover schemes – binomial and exponential. The result of the crossover step at iteration k 

is the birth of a trial vector which is defined as: 

 

                               , , ,( ) ( ), ( ),..., ( )i i j i j i DU k u k u k u k                                                             (4.10) 

 

For a maximization problem, the binomial crossover scheme is performed on each of the D-

dimensional variables according to the equation: 

 

                  

    
,

,

,

( ), if rand (0,1)
( )

( ), else

i j

i j

i j

v k CR
u k

x k


 


                                                         (4.11) 

where CR is a user-defined crossover rate which is usually in the range [0,1].  

 

The crossover rate controls the diversity of the population and aids the algorithm to avoid 

getting stuck in local optima. At the end of the iteration, the selection operator is applied to 

determine which one of the target and the trial vectors would survive in the next iteration, i.e. 

at iteration 1.k k   This operator compares the fitness of the trial vectors against the 

corresponding target vectors and selects the better solution according to the equation: 

 

                  

( ), if ( ( )) ( ( ))
( 1)

( ), else

i i i

i

i

U k f U k f X k
X k

X k


  


                                                        (4.12) 

where ( )f x is a fitness value.  

 

Thus, if the new trial vector yields a better fitness value, it automatically replaces its target in 

the next iteration; otherwise the target vector is retained in the population. In other words, the 

population must either get better (with respect to the fitness value) or remain constant, it 
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never deteriorates. Figure 4.2 is a simple flowchart that illustrates the DE algorithm; its 

control parameters are mutation factor F, crossover rate CR and population size .pN  

 

start

set k = 1

define D, Np, F, CR, K

initialize Xi (k) = []

i ≤ Np

k ≤ K

end

compute f (Xi (k)),   i

select indices r1, r2, r3

generate Vi (k),    i

generate Ui (k) using CR 

and binomial crossover

apply selection process   

form new population Xi (k+1)

evaluate f (Xi (k + 1)),   i

i = i + 1

k = k + 1

yes

yes

no

no

A

A

A

 

Figure 4.2: Flowchart showing the DE algorithm. 

 

4.2.1 Treatment of Infeasible Solutions 

Evolutionary algorithms such as DE were originally proposed to solve unconstrained 

optimization problems. The application of these algorithms on boundary-constrained 
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problems such as well placement optimization problem may result in solutions that violate 

the physical boundary of the search space. All such bound offending values are termed 

infeasible solutions; and a comprehensive review of methods for preserving feasibility of 

solutions is available in the study of Michalewicz and Schoenauer (1996). In this work 

however, we employ the ―out-of-bound value‖ technique, Lampinen (2002) and Davendra et 

al. (2009).  This involves the use of specialized operators to create and retain candidate 

solutions that are feasible. Accordingly, to ensure that bound offending values are reset to 

boundary values, the following equation is implemented:  

                                  

min min

, , ,

max max

, , , ,

,

if ( )

( ) if ( )

( ) otherwise

i j i j i j

i j i j i j i j

i j

x x k x

x k x x k x

x k

 


 



                                                         (4.13)                           

where min

,j ix and max

,j ix are respectively the minimum and maximum bound of the -thj component 

of the -thi population member. 

 

4.2.2 Implementation of DE in Well Placement Problem 

We describe the implementation of the DE algorithm for a well placement optimization 

problem.  Algorithm 4.1 presents the steps in the DE /1/rand/bin strategy for a maximization 

problem. It is adapted and modified from Storn and Price (1997), and implemented in 

MATLAB
®. The first step signifies the beginning of the algorithm; and step 2 assigns values to 

DE parameters – , , , and .pN F CR D K  In step 3, the population vector is initialized such that 

each component , ( ), {1,2,..., }, {1,2,..., }i j px k i N j D    are made of random elements drawn 

from predefined lower (L) and upper (U) bounds in accordance to Equations 4.7 and 4.8. Step 

4 computes the objective function of the initialized population, and the evaluated objective 

function is saved in step 6 for future reference. Steps 9–11 compute a mutant vector ( )iv k in 

accordance with Eq. 4.9. Step 12 is used in order to generate a trial vector iU  in accordance 

with Eq. 4.11. Following the birth of the trial vector, if any elements of the ‗newly born‘ 

vector are outside the feasible region of the search space, step 13 is activated to modify and 

adjust the trial vector within the feasible region. Step 14 evaluates the objective function of 

the trial vectors. Steps 18–25 describe the selection process; the objective function of the trial 

vector is compared against the target vector in order to determine the population of the next 

iteration index. The algorithm terminates when the maximum iterations K is reached. 
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Algorithm 4.1 DE Algorithm 

   1: Set iteration index 1k   

   2: Define , , 0.5, 0.1,pD N F CR K   

   3: Initialize ,( ) : ( ) ~ rand ( , ) ,i i j j jX k x k L U j i    

   4: Compute objective function, ( ( )),if X k i  

   5: while k K do 

   6:       Save, ( ( )),if X k i  

   7:      1i   

   8:       while pi N do 

   9:             Select 1 2 3 1 2 3, , {1,2,..., },pr r r N r r r i                     

 10:             Randomly select {1,2,..., }j D     

 11:             Compute mutant vector ( ),iv k i       

 12:             Apply (4.11) to generate trial vector ( ),iU k i                            

 13:             Apply (4.13) if necessary 

 14:             Compute objective function, ( ( )),if U k i  

 15:             1i i   

 16:       end while 

 17:       1i   

 18:       while pi N do 

 19:             if ( ( )) ( ( ))i if U k f X k then 

 20:                    ( 1) ( )i iX k U k   

 21:             else 

 22:                    ( 1) ( )i iX k X k   

 23:             end if 

 24:             1i i   

 25:       end while 

 26:       1k k   

 27: end while 

  

 

4.3 Particle Swarm Optimization (PSO) 

It can be said that the basic idea behind the PSO algorithm is the simulation of the social 

behavior metaphor of bird flocks and fish schools. It is another population-based 

biologically-inspired stochastic algorithm which has been widely and efficiently deployed in 

non-linear optimizations of varying complexities, and across diverse engineering and 

computational science disciplines. Introduced in 1995 in Eberhart and Kennedy (1995) and 

Kennedy and Eberhart (1995); its popularity has gained momentum because of its low 

memory requirement, high computational efficiency and easy-to-implement properties. Being 

a population based algorithm, the individuals of the population are referred to as particles, 
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and a collection of particle at any given iteration is called the swarm. The particles are flown 

through the search space, with each particle representing a possible or potential solution of 

the optimization problem. In any given iteration, a particle‘s fitness is based on a 

performance function related to the optimization problem; or in other words, the position of 

each particle is continually adjusted according to its relative fitness and position to other 

particles that make up the swarm.  

 

The movement of the particles across the search space is influenced by two factors – 

information from iteration-to-iteration, and information from particle-to-particle interactions. 

Based on iteration-to-iteration information, the particle stores in its memory the best solution 

attained so far, and it experiences an attraction towards this solution (pbest) as it traverses 

across the problem search space. On the other hand, the outcome of the particle-to-particle 

information is that each particle stores in its memory, the best solution (gbest) attained by any 

particle in the swarm, and experiences an attraction towards this solution. These factors are 

respectively referred to as the cognitive and social components of the algorithm. At the end of 

each iteration, the pbest and gbest are updated for each particle, and this update process 

continues iteratively until the desired result is converged upon, or it is determined that an 

acceptable solution cannot be found within available computational limit, or the predefined 

maximum number of iterations have been attained. 

  

At iteration k, if the position of the -thi particle of the swarm across the search space is 

represented by a D-dimensional vector ( ), xi k  and the velocity of this particle is given by 

vector if ( ),vi k  the best position found in the search space by particle i up to iteration index k 

is represented by another vector ( ), yi k  and if the best position found by any of the particles 

in the neighborhood of particle i up to iteration index k  is represented by yet another vector 

*( );y k  then we can mathematically represent all four vectors as:  

 

                            ,1 ,2 ,( ), ( ),..., ( )xi i i i Dk x k x k x k                                                               (4.15) 

 

                            ,1 ,2 ,( ), ( ),..., ( )vi i i i Dk v k v k v k                                                              
 (4.16) 

 

                            ,1 ,2 ,( ), ( ),..., ( )yi i i i Dk y k y k y k                                                              (4.17) 
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                          * * * *

,1 ,2 ,( ), ( ),..., ( )y i i i Dk y k y k y k                                                               (4.18) 

 

At the next iteration index, the position and velocity vectors are updated accordingly, and the 

new position of particle i can be computed with respect to its previous position ( ), xi k  by 

adding an updated velocity vector to the previous position vector: 

 

                                    1 1x x vi i ik k k                                                                   (4.19) 

 

The elements of the updated velocity vector ( 1)vi k   are given by: 

 

                                

 

 

, , 1 1, , ,

*

2 2, ,

( 1) ( ) ( ) ( )

( ) ( )

i j i j j i j i j

j j i j

v k v k c r y k x k

c r y k x k

   

 
                                               (4.20) 

where 1,2,...,j D  represents the components or dimension of the search space, c1 and c2 are 

constants respectively called cognitive and social scaling parameters, and 1, jr and 2, jr are 

random numbers drawn from a uniform distribution between 0 and 1. 

 

Equations 4.19 and 4.20 represent the classical version of the PSO algorithm as reported in 

Deep and Bansal (2009). The concept of an inertia weight ( ) was developed to better 

control the exploration and exploitation abilities of the PSO algorithm. It was incorporated 

into the algorithm, and was first reported in the literature by Shi and Eberhart (1998). The 

resulting velocity update equation is given by: 

 

                                

 

 

, , 1 1, , ,

inertia term cognitive term

*

2 2, ,

social scaling term

( 1) ( ) ( ) ( )

( ) ( )

i j i j j i j i j

j j i j

v k v k c r y k x k

c r y k x k

   

 
                                          (4.21) 

 

Equations 4.19 and 4.21 define the standard version of the PSO algorithm. A close look Eq. 

4.21 shows it is the sum of three components namely – the inertia, the cognitive and the 

social scaling components. The inertia component (in apparent reference to its relationship 

with the inertia weight ω), defines the particle‘s momentum and it causes the particle to 

continue in the direction in which it is moving at iteration index k in accordance to the second 

law of motion. The cognitive component (in apparent reference to its relationship with the 

cognitive parameter c1) captures the particle‘s memory with respect to its previously attained 
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best position; it provides a velocity component in this direction, and is responsible for local 

search. The third term, which is called the social component (in apparent reference to its 

relationship with the social scaling parameter c2), represents information stored in memory 

about the best position of any particle in the neighborhood of particle i, and causes movement 

towards this particle. This component is responsible for global search. Thus, the position of 

each particle at every instance is determined by its momentum, its memory, and the collective 

experience of other particles in the swarm. Of these three components, it appears the social 

component have the greatest influence on the overall performance of the PSO algorithm. This 

is because an individual particle (on its own) has little or no power to solve any problem 

whatsoever; problem-solving can only take place when the particles in the swarm interact. In 

other words, the effectiveness or otherwise of problem-solving by PSO is a population-wide 

phenomenon, emerging from the individual behaviors of the particles through their 

interactions with one another, and in accordance to some sort of communication structure 

called neighborhood topologies. 

 

The topology typically consists of bi-directional edges connecting pairs of particles, so that if 

a particle j is in the neighborhood of another particle i, then particle i is also in j‘s 

neighborhood. Each particle communicates with some other particles and is affected by the 

best point found by any member of its topological neighborhood. Several types of PSO 

neighborhood topologies have been reported; however, it is noted that PSO algorithms with 

small neighborhoods perform better on complex problems while PSO algorithms with large 

neighborhoods perform better for simple problems, Kennedy (1999).  

 

 (a) Star topology  (b) Ring or Circular  (c) Wheel topology 

 topology 
 

Figure 4.3: Examples of PSO neighborhood topologies, Das et al. (2008) 
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The basis of the k-best topology as proposed in Kennedy (1999) is to connect every particle 

to the k nearest particles in its topological space. Generally speaking, there are as many 

neighborhoods as there are particles in a given swarm. This is so because each of the particles 

can form its own neighborhood in its own right.  

 

start

set k = 1

define ω, c1, c2, Np, D, K

initialize xi (k), vi (k)

compute f (xi (k)),   i

i ≤ Np

k ≤ K

end

A

rearrange particles

generate neighbourhoods

i = 1

determine best particle in 

the neighbourhood of i

compute xi (k + 1)

compute f (xi (k + 1))

update previous best if 

necessary

i = i + 1

k = k + 1

yes

yes

no

no

 

Figure 4.4: Flowchart showing the PSO algorithm 

 

However, when k = 1, the neighborhoods of individual particles are the same for all particles. 

In this special case, we have one neighborhood which has a star topology where each particle 
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has a direct link to every other particle in the neighborhood as shown in Figure 4.3a. 

Although they have fast convergence properties, PSO algorithms using this topology are 

susceptible to premature convergence, and are generally referred to as ―global best‖ or 

―gbest‖ algorithms, Eberhart and Kennedy (1995), Kennedy (1999) and Engelbrecht (2005). 

With k = 2, this becomes the circle (or ring) topology where each particle is directly linked to 

two adjacent particles in its topological space as shown in Figure 4.3b. There are diverse 

neighborhood topologies that have been reported in the PSO literature – this includes the 

wheel topology, which effectively isolates the particles from one another, as information is 

communicated to other particles through a focal (or central) particle as shown in Figure 4.3c. 

We note that besides the star topology, PSO algorithms using other topologies are referred to 

as ―local best‖ or ―lbest‖ algorithms, Engelbrecht (2005). The Figure 4.4 depicts a flowchart 

illustrating the PSO algorithm. 

 

4.3.1 Treatment of Infeasible Solutions 

Like in DE, one of the challenges in implementing PSO in boundary-constrained 

optimization problems is the issues that arise from infeasible solutions. Direct use of 

Equations 4.19 and 4.21 on boundary-constrained problems may result in ‗solutions‘ that 

violate the physical boundary. To handle this issue, we employ the ―absorb‖ technique – 

Clerc (2006) and Onwunalu and Durlofsky (2010) – by applying the following equations. 
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where jl  and ju  are the lower and upper bounds of the -thj component of the search space.  

 

While Eq. 4.22 has the effect of moving infeasible solutions to the nearest boundary by 

setting all variables outside the feasible region to the nearest bound; Eq. 4.23 has the effect of 

halting the affected particles by setting their velocities to zero. In any case, the ―absorb‖ 

technique works in a very similar fashion with the ―out-of-bound value‖ technique that we 

employ in the DE algorithm. 
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4.3.2 Implementation of PSO in Well Placement Problem 

The implementation of the PSO algorithm in well placement optimization problem is given 

below; it is adopted from Onwunalu and Durlofsky (2010). Algorithm 4.2 presents the steps 

as implemented in MATLAB
®. Like Algorithm 4.1;  the PSO algorithm  presented here is for a 

 

Algorithm 4.2 PSO Algorithm 

   1: Set iteration index 1k   

   2: Define 1 2, 0.721, 1.193,pN c c K     

   3: Initialize ,( ) : ( ) ~xi i jk x k U( , ) ,j jl u j i                      

        4: Initialize ,( ) : ( ) ~vi i jk v k U(0,1) ,j i    

        5: Compute objective function, ( ( )),xif k i  

   6:  ( ) ( ),y xi ik k i   

   7:  while k K do         

   8:       Permute the particle indices 

   9:       Generate neighborhood for each particle             

 10:       1i                    

 11:       while pi N do                   

 12:             Determine best particle in neighborhood of particle i  

 13:             Compute ( 1)vi k  using Eq. 4.21 

 14:             1j          

 15:             while j D do 

 16:                    , , ,( 1) ( ) ( 1)i j i j i jx k x k v k                            

 17:                    Apply Eqs. 4.22 and 4.23 if necessary 

 18:                    1j j   

 19:             end while 

 20:             Compute objective function, ( ( 1)),xif k i   

 21:             1i i   

 22:       end while 

 23:       1i   

 24:       while pi N do 

 25:             if ( ( 1)) ( ( ))x yi if k f k  then 

 26:                    ( 1) ( 1)y xi ik k    

 27:             else 

 28:                    ( 1) ( )y yi ik k   

 29:             end if 

 30:             1i i   

 31:       end while 

 32:       1k k   

 33: end while  
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maximization problem. Step 1 signifies the beginning of the algorithm. Step 2 initializes the 

values of the PSO parameters 1 2, , , pc c N  and .K  Step 3 initializes each component of the 

particle position, , ( ) i jx k  with random elements drawn from a uniform distribution U, such 

that U, {1,2,..., }, {1,2,..., }.pj D i N     Step 4 initializes the components of the velocity 

vector, , ( ),i jv k  in a similar fashion as step 3. Step 5 computes the objective function of all 

particles. Step 6 updates the previous best position for each particle. The particle indices 

(positions of particles in the array of particles) are permuted in step 8, and the neighborhoods 

for each particle are generated in step 9. Step 12 determines the best particle in the 

neighborhood of particle i. The elements of the updated velocity vector of new 

particle , ( 1),vi j k   are computed in accordance with (4.21) in step 13. Steps 15–19 update all 

components of the position of particle i. In step 17, infeasible solutions are modified using 

(4.22) and (4.23). Step 20 evaluates the objective function ( ( 1))xif k   based on the new 

particle position. Steps 24–31 update the previous best positions for each particle, ( ),yi k if 

the new objective function value, ( ( 1)),xif k   is better than that at the previous best 

position, ( ( )).yif k  The algorithm terminates at K – the maximum number of iterations. 

 

4.4 Hybridization of Metaheuristic Algorithms and Hybrid Particle 

Swarm Differential Evolution (HPSDE) 

 

Though classified as global optimization techniques, DE and PSO have their own drawbacks. 

They are susceptible to premature convergence which can lead to potential solutions being 

trapped in local optima. This disadvantage is much more pronounced in domains where the 

search space is nonlinear, non-continuous and non-smooth, as often the case in many 

reservoir engineering applications. To overcome these drawbacks, researchers have over the 

years employed various hybridization techniques to create hybrid metaheuristic algorithms 

that are more robust and effective in problem solving. In a general sense, hybridization is 

simply an attempt at combining the good traits of participating algorithms or concepts, with 

the ultimate view of improving the efficiency and capabilities of the newly created ‗hybrid‘ 

algorithm. We justify the use of hybridization as a direct consequence of the so called ―no 

free lunch‖ theorem. In Wolpert and Macready (1997), it was established that any elevated 

performance over one class of problem by any algorithm, is offset by performance over 
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another class of problem. This underlines the fact that no single optimization technique can 

solve all optimization problems optimally.  

 

Generally speaking, most of the hybrid metaheuristics that have been published in the 

literature can be loosely grouped into three categories – those created by combining one 

metaheuristic algorithm with another metaheuristic algorithm; those developed by combining 

a standard metaheuristic algorithm with mathematical operators; and those developed by 

incorporating evolutionary operators (selection, mutation and crossover) into non-

evolutionary metaheuristic algorithms.  

 

Among the three evolutionary operators, mutation appears to be the most commonly applied 

operator in the hybridization of non-evolutionary metaheuristic algorithms such as PSO. The 

purpose of applying mutation to PSO is to increase the diversity of the population and enable 

the PSO to escape local optima, Blackwell and Bentley (2002), Krint et al. (2002), Lovbjerg  

and Krink (2002), Miranda and Fonseca (2002), Higashi and Iba (2003)  and Ratnawera et al. 

(2004). In Juang (2004), mutation alongside crossover and elitism is incorporated into PSO; 

and the resulting algorithm outperformed both PSO and GA in recurrent network design 

problem. The selection operator (which entails copying the particles with the best 

performance into the next generation) was applied to a PSO algorithm in Angeline (1998), 

and this led to a continuous retention of the best performing particles; and Lovbjerg  and 

Rasmussen (2001) showed that incorporating the crossover operation in PSO algorithms 

effect information-swap between individual particles. A quadratic approximation (QA) 

operator was used to hybridize a binary GA and PSO in Deep and Das (2008) and Deep and 

Bansal (2009) respectively. In both cases, the QA operator is used to update a part of the 

population while the remaining of the population is updated by either GA or PSO as the case 

may be. In Poli et al. (2005a, 2005b), a hybrid PSO based on genetic programming (GP) was 

proposed. The GP is used to evolve new laws for the control of particles‘ movement for 

specific classes of problems. Ant colony optimization (ACO) was combined with PSO by 

Hendtlass and Randall (2001); while DE and PSO are combined by Hendtlass (2001). The 

particles in the swarm drift according to position update equation, but occasionally DE is 

applied to replace poorly performing particles while retaining their velocity. The DEPSO 

algorithm in Zhang and Xie (2003) involves the use of DE and PSO operators in alternate 

iterations. The hybrid achieved better results than PSO in problems with high dimensionality. 
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From the foregoing, it is evident that a wide array of hybridized metaheuristic algorithms 

have been designed and implemented for the purpose of improving the performance and 

problem-solving capabilities of the participating algorithms. A comprehensive (but not 

exhaustive) review is available in Banks et al. (2008).  

 

start
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Figure 4.5: Flowchart illustrating the HPSDE algorithm 
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In this work however, we employ a hybrid of DE and PSO referred to as hybrid particle 

swarm differential evolution (HPSDE). This is a modified version of the algorithm proposed 

by Zhang and Xie (2003) and Thangaraj et al. (2011). It starts off as a standard DE algorithm 

up to the point where the trial vectors are generated. If the fitness of the trial vector is better 

than the corresponding target vector, then it is included in the population; otherwise, the 

algorithm activates the PSO phase and generates a new candidate solution using the position 

and velocity update equations. The method is repeated iteratively with the hope of finding 

better solutions or until the maximum number of iteration is reached. The inclusion of PSO 

loop creates a perturbation in the population; this in turn helps in maintaining diversity of the 

population and producing better solutions, Thangaraj et al. (2011). The HPSDE flowchart is 

depicted in Figure 4.5. 

  

4.4.1 Treatment of Infeasible Solutions 

Like in DE and PSO algorithms, a major challenge with the implementation of HPSDE 

algorithm and indeed most metaheuristic algorithms in boundary-constrained optimization 

problems is the issue arising from infeasible solutions. This is an inevitable consequence of 

the stochastic nature of these algorithms. Since HPSDE is a hybrid of DE and PSO 

algorithms, solutions that violate the real physical search space are treated by calling Eq. 

4.13, or Equations 4.22 and 4.23 as the case may be. Depending on the stage of the algorithm 

at which the bound-offending solution occurs; Eq. 4.13 is utilized if it occurs at the DE stage, 

or Equations 4.22 and 4.23 if we have to deal with it in the PSO stage of the algorithm. 

 

4.4.2 Implementation of HPSDE in Well Placement Problem 

The HPSDE algorithm is a hybrid of DE and PSO. It begins with DE algorithm up to the 

point where the trial vectors are generated. The fitness of the trial vector is compared with 

that of the corresponding target vector to determine if it is included in the population of the 

next iteration or if it is updated using a global best PSO algorithm. By so doing, we combine 

the global information obtained via PSO algorithm into DE algorithm, thereby maintaining a 

fair balance between the exploration and exploitation factors of the algorithms. Algorithm 4.3 

presents the steps in HPSDE for a maximization problem. It is adapted and modified from 

Thangaraj et al. (2011), and implemented in MATLAB
®. The algorithm begins in step 1 with 

the initialization of the first iteration index 1.k   Step 2 assigns values to DE and PSO 
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parameters. Step 3 initializes a population of vectors ( )iX k  such that each component 

, ( ), {1,2,..., }, {1,2,..., }i j px k i N j D   
 
are made of random elements drawn from the pred–  

Algorithm 4.3 HPSDE Algorithm 

        1: Set iteration index 1k   

        2: Define 1 2, , , , , , ,pD N F K CR c c  

        3: Initialize ,( ) : ( ) ~ rand ( , ) ,i i j j jX k x k L U j i                             

        4: Compute objective function, ( ( )),if X k i  

        5: while k K do 

        6:       Save, ( ( )),if X k i  

        7:       1i   

        8:       while pi N
 
do 

        9:             Select 1 2 3 1 2 3, , {1,2,..., },pr r r N r r r i                

      10:             Randomly select {1,2,..., }j D     

      11:             while j D  do      

      12:                    Compute mutant vector ( ),iv k i          

      13:             end while 

      14:             Apply Eq. 4.11 to generate trial vector ( ),iU k i         

      15:             Apply Eq. 4.13 if necessary 

      16:             Compute objective function, ( ( )),if U k i  

      17:             1i i   

      18:       end while 

      19:       1i   

      20:       while pi N  do 

      21:             if ( ( )) ( ( ))i if U k f X k then 

      22:                    ( 1) ( )i iX k U k   

      23:             else activate PSO algorithm 

      24:                    1j   

      25:                    while j D  

      26:                         ( 1)vi k  1 1( ) ( ( ) ( ))i i iv k c r pbest k X k   2 2( ( ) ( ))i ic r gbest k X k   

      27:                         ( ) ( ) ( 1)vi i iX k X k k    

      28:                    end while 

      29:             end if 

      30:             if ( ( )) ( ( ))i if X k f X k  then 

      31:                    ( 1) ( )i iX k X k   

      32:             else 

      33:                    ( 1) ( )i iX k X k   

      34:             end if 

      35:             1i i   

      36:       end while 

      37:       1k k   
      38: end while 
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efined lower (L) and upper (U) bounds in accordance to Equations 4.7 and 4.8. Step 4 

computes the objective function of the initialized population, and the computed objective 

function is saved in step 6 for future reference. In steps 9–12, we compute a mutant vector 

( )iv k  in accordance with Eq. 4.9; while a trial vector iU  is generated in step 14 in 

accordance with Eq. 4.11. If any element of the trial vector is outside the feasible region of 

the search space, step 15 is activated in order to modify and adjust the trial vector within the 

feasible region. In step 16, the objective function of the trial vectors is evaluated. Steps 21 

and 22 compare the objective function of the trial vector with that of the corresponding target 

vector in order to determine the population of the next iteration. The fitness value of the trial 

vector must be greater than the fitness value of the target vector in order to make it to the next 

iteration index; otherwise, the algorithm uses the PSO velocity and position update equation 

to generate new candidate solution as illustrated in steps 23–27. In steps 30–33, the objective 

function of the newly generated vectors ( )iX k  is evaluated and compared with the fitness of 

corresponding target vectors to determine the population of the next iteration. The algorithm 

continues iteratively until it terminates when the maximum number of iterations K is attained. 

 

4.5 Objective Function Evaluation and Applications 

The objective function employed in the well placement applications in this work is the net 

present value (NPV) as presented earlier in the problem formulation section, and as 

mathematically stated in Eq. 4.1. The values of the parameters for the NPV computation are 

given in Table 4.1; and we assume that all time-dependent parameters such as d, oil w,p

( ) ( ),t tp p  

and w,i

( )tp  are constant over the operational interval [0, T].  

 

Table 4.1: NPV Computation Parameters 

Parameters Symbol Value 

Price of oil oilp  $50 / bbl  

Water production cost w,pp  $10 / bbl  

Water injection cost w,ip  $5 / bbl  

Discount factor d  0.1 

Drilling cost per meter drillC  
4$5.3 10 /m  

Drilling cost to reservoir top top

wC  
6$50 10  

 

Table 4.1: NPV computation parameters 
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In the first application, five optimization runs of the algorithms are performed, while thirty 

optimization runs of the algorithms are performed in the second and third applications. The 

results are subsequently averaged over the number of runs corresponding to each application 

so as to reflect the relative performance of each algorithm. The choice of five runs for the 

first application is based on suggestion in Vasiljevic and Golobic (1996) and Ciaurri et al. 

(2011); while the choice of thirty runs in the second and third applications rests on the need 

to carry out a more systematic and reliable performance evaluation of the algorithms using 

well-established statistical indices.  

 

It is noted that the importance of comparing the average performance (over multiple 

optimization runs) of these algorithms stems from their non-deterministic nature; and the 

need to reduce the effects caused by different distribution of the initial solutions, as well as 

the randomness resulting from the probabilistic operators in the algorithms. To further 

reinforce fairness in the comparisons; the control parameters used in each of the three 

algorithms are the same in all the problems considered. By and large, these factors afford us 

the level-playing platform to draw a more general conclusion with respect to the performance 

of each of the algorithms.   

 

Also, it is noted that all applications in this chapter are model-based, and the simulations are 

performed using MRST
®. Since the applications are model-based, we note the inevitable 

presence of geological uncertainty – a direct consequence of the fact that reservoir models are 

a ‗crude‘ approximation of real physical petroleum reservoirs – as highlighted in chapter 3. 

To address this mismatch between the physical reservoir and the reservoir model, we employ 

a robust optimization strategy in the first two applications.  

 

By robust optimization, the optimization procedure is carried out over a set of realizations 

which explicitly accounts for the geological uncertainty in the models – see van Essen et al 

(2006). The robust optimization objective adopted is the max-mean objective – which 

basically seeks to maximize the average performance measure associated with each of the 

realizations. It is given by: 

                                       1

1
NPV NPV

R

i

iR 

 
    

 
                                                                (4.24) 

where NPV  is the expected NPV, and R is the number of geological realization. 
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4.5.1 Application 1: Placement of a Single Producer 

In the first application, we consider optimizing the placement of a single producer well in a 

2D reservoir model with 45 45 1   grid-blocks of dimensions10m 10m 10m  as shown in 

Figure 4.6. In order to address the mismatch between the model and the physical reservoir; 

we incorporate geological uncertainty by considering 10 realizations of the model. Usually, it 

is common to decide upon a few sources of uncertainty that presumably have the largest 

impact on the model; in this regard, we choose the permeability distribution in the grid-

blocks of the reservoir model. Thus, the realizations are generated based on varying 

permeability distribution, the remaining nine realizations of the reservoir model are depicted 

in Figure 4.7.  

0
5

10
15

20
25

30
35

40
45

0

5

10

15

20

25

30

35

40

45

0
1

 

 -12.7

-12.6

-12.5

-12.4

-12.3

-12.2

-12.1

-12

-11.9

-11.8

 
Figure 4.6: Reservoir model of 45×45×1 grid-blocks used in Application 1.    

 

The system contains oil and connate water; the initial pressure and saturation (connate water 

saturation) are 5350 10 Pa  and 0.2 respectively; and both are uniform throughout the 

reservoir model. There are no aquifers, and no water injection; thus, only oil is produced. The 

remaining system properties are given in Table 4.2. The reservoir is simulated for 10 years; 

with the single producer placed in grid block position corresponding to the results obtained 

from five runs of each of the algorithms, and constrained to operate at a bottom hole pressure 

(BHP) of 
565 10 Pa.  The cumulative volume of oil produced is used to compute the NPV 

(by applying Eq. 4.1) corresponding to each optimization run of the algorithms, and the 

computed NPVs are averaged over the number of runs to reflect the relative performance of 

each algorithm. In the same way, the average NPV achieved by each of the algorithm is 
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computed for the remaining realizations; and using Eq. 4.24, NPV   of the reservoir model 

is computed for each of the algorithm. 
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Table 4.2 Systems properties 

Properties Symbol Value 

Porosity   0.3 

Oil Viscosity 
o  10

-3 
Pas 

Oil Compressibility         co 10
-10

 Pa
-1 

Rock Compressibility         cr
 1.8×10

-10
 Pa

-1
 

 

Table 4.2: System Properties and their values 

 

We perform a sensitivity analyses in order to examine the effect of different population size 

and iteration number combination on the performance of the three algorithms. To this end, we 

consider six population size and iteration combinations – (5,10), (10,10), (20,10), (10,20), 

(10,40) and (10,80) respectively. Note that in three of the six population size and iteration 

combinations, the number of iteration is held constant (while the population size is varied); 

and the population size is held constant (while the maximum number of iteration is varied) in 

the remaining three combinations.  For each of the population size and iteration combination, 

we perform five optimization runs of the algorithms, and compute the average NPV relating 

to each algorithm. Figure 4.8 shows the corresponding NPV  for each algorithm against the 

Figure 4.7: Remaining realizations of Application 1 model – realizations are based on varying permeability 

distribution 
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total number of simulations per realization, which is given by pN K . It is obvious in all six 

population size and iteration number combinations that HPSDE (red line) algorithm outperf– 

ormed both DE (blue line) and PSO (green line) algorithms. 

 

The advantage of HPSDE algorithm over DE and PSO algorithms was much pronounced in 

cases where the population size and iteration combination were low. For example, at the 

respective population size and iteration combination of 5 and 10; an NPV   of 
6$175.8 10  

was attained for HPSDE. This represents a 24% increase in the NPV  of 
6$141.7 10 ,  and a 

52% increase in the NPV  of 
6$115 10  achieved by PSO and DE algorithms respectively. 

The comparative advantage of the performance of HPSDE over PSO and DE algorithms 

becomes less remarkable as the total number of simulations per realization (given by pN K ) 

increases from 50 to 800. For a population size of 10, and maximum iteration of 80; HPSDE 

algorithm achieved an NPV  of 6$303.7 10 ,  whereas PSO and DE algorithms attained a 

near-convergence NPV  of 
6$261 10 and

6$259.9 10  respectively. This performance of 

PSO and DE algorithms is 14% less than the performance of HPSDE. 
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Figure 4.8:  <NPV> of DE, PSO and HPSDE versus number of simulations per realization for 

         different population size and maximum iteration number combinations 
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Another interesting observation from the view points of the DE and PSO algorithms is that 

the performance of one algorithm over the other in this problem appears to be dependent on 

the total number of simulations. In all six population size and iteration number combinations, 

the DE algorithm attained higher NPV  than the PSO algorithm at very low simulation per 

realization. For example, in the first population size and iteration combination 

(i.e. 5, 10pN K  ), DE outperforms PSO algorithm from the start till 15 simulations per 

realization. Beyond this ‗threshold‘ number of simulations, PSO achieved better NPV  than 

DE. This pattern is observed in all six population size and iteration number combination.  

However, the ‗threshold‘ number of simulation after which PSO outperforms DE varies from 

one population size and iteration number combination to the other. In the last population size 

and iteration combination (i.e. 10, 80pN K  ), although the PSO outperformed the DE from 

simulation per realization of 22, both algorithms achieved near-convergent NPV  of 

6$261 10 and 
6$259.9 10 from a total simulation per realization of 744 to 800. In any case, 

however, the HPSDE algorithm outperforms both the DE and PSO algorithms.  

 

4.5.2 Application 2: Placement of a Producer and an Injector 

In this application, we consider optimizing the placement of a producer and an injector in a 

2D reservoir model where the oil is to be replaced by water in a simple waterflooding 

production operation. The reservoir model has 50 50 1   grid-blocks, each grid-block has 

dimensions10m 10m 10m   as shown in Figure 4.9, and the residual oil and connate water 

saturation is 0.2.  
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Figure 4.9: Reservoir model of 50×50×1 grid-blocks used in Application 2 
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Unlike in application 1 (which did not require relative permeability), we employ the Corey 

model for relative permeability, with Corey exponents 2.45o wn n  and relative 

permeability endpoints for oil and water 0.9 and 0.65 respectively. The relative permeability 

curve used is as depicted in Chapter 3 – see Figure 3.3; the water viscosity ( w ) is 10
-3

 Pa
-1

, 

and the remaining system properties are same as given in Table 4.2. Thirty optimization runs 

of the algorithms are performed in this problem, and the solutions from each of the run is 

applied on five realizations of the model – this ensures that results are robust against 

geological uncertainty. Figure 4.10 depicts the remaining realizations of the reservoir.  
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In mathematical probability, we often encounter occupancy problems where the task is to find 

the total number of possible placement of m different balls into n bins (read: placement of 

two non-identical wells in 2500 possible grid-blocks). However in this case, we are not 

interested in the total number of possible outcomes; we are only interested in the outcome 

that yields the highest NPV in each realization of the reservoir model.  

 

For each of the wells, there are three optimization variables { , , },x y I  which results in a total 

of six variables. The Cartesian coordinates of each well location is represented by the 

variables x and y while the variable (0,1)I  is a binary indicator that represents the well type 

(i.e. 0I  designates a production well, and 1I  designates an injection well). Such binary 

Figure 4.10: Remaining realizations of Application 2 model – realizations are based on varying permeability 

distribution 
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indicator was employed in Yeten (2003); and we have adopted it in this work because of 

simplicity and ease of implementation. 

 

Using a population size of 25 and maximum iterations of 120; thirty optimization runs of DE, 

PSO and HPSDE algorithms are performed to determine the placement of the injector and 

producer. It is instructive to note that the choice of this large population and iteration size 

combination is informed on the basis of the inference made from the sensitivity analyses 

performed in the first application – where it was observed that the comparative advantage of 

HPSDE over PSO and DE algorithms was less remarkable as pN K  increases.  

 

Subsequently, both wells are placed at locations corresponding to the solutions from each run 

of the algorithms; and the system is simulated for ten years, with the producer constrained to 

operate at a BHP of 565 10 Pa, and the injector operating at a BHP of 
5140 10 Pa.  The 

initial pressure map of from a model realization with best performance of the algorithms is 

shown in Figure 4.11. 
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Figure 4.11: Initial pressure map from realization with best performance of DE, PSO and HPSDE runs 

 

The volumes produced are used to compute the NPV in accordance with Eq. 4.1; and the 

computed NPVs are averaged over the number of runs to determine the average NPV 

associated with each algorithm. Accordingly, this is repeated for each of the five realizations 

of the model; and the NPV  for the reservoir model corresponding to each algorithm is 

computed using Eq. 4.24. The results are plotted and shown in Figure 4.12.  

 

The DE and the PSO algorithms yielded NPV  of 
6$544.2 10  and 

6$534.7 10  

respectively, and both performance values were below the NPV  of 6$575.4 10 that was 

achieved using the HPSDE algorithm. In fact, the performance of HPSDE is 5.7% higher 

than DE; and 7.6% higher than PSO. Again, it was observed that DE achieved better results 

than PSO when the number of simulation was below a threshold value. This is consistent with 
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the pattern observed in the first application.  Beyond this threshold number of simulations 

(118 in this case), PSO outperforms DE until after 2058 simulations, when both algorithms 

begin to converge to same-value NPV .   
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Figure 4.12: <NPV> of DE, PSO and HPSDE algorithms versus number of simulations for application 2  

 

We also note that DE attained nominally better NPV  than PSO after 2452 simulations. In 

any case however, HPSDE achieved better NPV  values than both DE and PSO algorithms. 

The water saturation maps of the reservoir from the best run of the algorithms are shown in 

Figure 4.13.  
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Figure 4.13: Water saturation map from realization with best performance of DE, PSO and HPSDE runs  

 

Now, since this application involves five realizations of the reservoir model, there is a total of 

450 NPVs resulting from the optimization runs of all three algorithms under consideration. 

With the aid of statistical indices such as best performance, worse performance, mean 

performance and standard deviation; these performance measures are further analyzed based 

on the underlying algorithm from which they emanated, and the result of this analysis is 

presented in Table 4.3. The HPSDE algorithm achieved both the best and worst NPVs and 

these were attained in the twenty-seventh and eighth run of the algorithm respectively. The 
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fact that the NPV resulting from the eighth run of HPSDE in one of the realizations of the 

model was lower than all the NPVs resulting from each of the thirty runs of both DE and PSO 

algorithms reinforces the importance and need of multiple runs.  

 

 Statistical Indices ($× 10
6
) 

Algorithms Best NPV Worse NPV Mean NPV STD 

DE 594.6281 354.3367 503.9902 66.7238 

PSO 591.1008 355.9117 509.9053 70.9002 

HPSDE 618.8412 351.6558 521.8678 64.7480 

 

Table 4.3: Statistical analysis of results from 30 optimization runs of each algorithm 

 

Of interest again is the fact that the HPSDE algorithm yielded the lowest standard deviation 

over the entire number of runs. Invariably, this means that the data points in HPSDE 

algorithm tends to be close to the arithmetic mean of its distribution than those of DE and 

PSO. Thus, it can be inferred that for all three algorithms under consideration, the probability 

of attaining near-average result is higher when HPSDE is employed in this problem domain. 

 

4.5.3 Application 3: Placement of 9 Wells in 3D Reservoir 

A 3D reservoir model is considered in this application. It contains 50 50 8  grid blocks of 

dimensions10m 10m 10m.   The fluid and geological properties of this model are same as 

those in application 2; and Figure 4.14 shows the permeability distribution of the model. The 

task is to determine the optimal type and placement of 9 well for a waterflooding operation. 

In this example, we ignore the effects of geological uncertainty; therefore, only one 

realization of the model is employed, and the performance measure is the simple NPV 

resulting from the fluid profile generated.  

 

Like in application 2, each of the nine wells has three optimization variables{ , , },x y I  and 

these results in a total of 27 variables. The variables x and y represent the Cartesian 

coordinates of each well location; and the variable (0,1)I   is a binary indicator that 

represents the well type (producer or injector). Using a population size of 60 and maximum 

iterations of 150; thirty runs of DE, PSO and HPSDE algorithms are used to determine the 

placement of the wells. The system is simulated for 10 years, with the producers constrained 

to operate at a BHP of 565 10 Pa, and the injectors at 
5100 10 Pa.   
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Figure 4.14: Permeability field for application 3 

 

Interestingly, it was observed that there were more producers than injectors in the best 

optimization runs of the algorithms. In this regard, the well split of the producers to injectors 

in the best optimization run for all three algorithms is 6:3; and these best runs were achieved 

in the nineteenth, fourth and twenty-second run of DE, PSO and HPSDE algorithms 

respectively. The 2D and 3D pressure and water saturation maps from well location obtained 

from best runs of the algorithms are shown in Figures 4.15 and 4.16 respectively. 
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Figure 4.15: 2D maps of initial pressure (top row) and water saturation (bottom row) from best optimiz-

         ation runs of DE, PSO and HPSDE  
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The generated fluid profiles are used to compute the NPV corresponding to each optimization 

run of the algorithms by applying Eq. 4.1. Subsequently, the computed NPVs are averaged 

over the number of optimization runs to determine the average performance or NPV 

associated with each of the algorithm. The results are plotted and shown in Figure 4.17. 
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 Figure 4.16: 3D maps of initial pressure (top row) and water saturation (bottom row) from best optimiz-

          ation runs of DE, PSO and HPSDE  

 

At the end of the total number of simulations, the performance of DE algorithm was higher 

than that of PSO algorithm. It achieved a maximum NPV of 
9$47.87 10 ;  which represents a 

2.6%  increase in the NPV of 
9$46.67 10  attained by PSO algorithm. And  with  an NPV of  
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Figure 4.17: NPV of DE, PSO and HPSDE algorithms for application 3 
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9$49.71 10 ,  the result achieved by HPSDE represents a 3.8% rise in the performance of DE, 

and a 6.5% increase in the performance of PSO. Like in application 2, there were periods 

where DE and PSO converge to near and same NPV measure; in this application, this trend 

was observed between 5210 and 5903 simulations. Besides, it was also noted that DE 

outperformed PSO algorithm at very low and very high numbers of simulation; the better 

performance of DE over PSO at low number of simulation was consistent with the pattern 

observed in applications 1 and 2.  Although the exact reason for this is unknown at this time, 

we note that the overall performance of PSO was better than the overall performance of DE 

over reasonable number of simulations. In all cases however, both algorithms did not achieve 

better NPV than the HPSDE algorithm. This result is also consistent with the results from the 

first and second applications where max-mean objective robust optimization was performed. 

 

 Statistical Indices ($× 10
9
) 

Algorithms Best NPV Worse NPV Mean NPV STD 

DE 48.3368 26.3855 45.0748 3.8736 

PSO 49.8117 29.0037 45.4302 3.9884 

HPSDE 49.7912 29.1131 48.4138 3.4919 

 

Table 4.4: Statistical analysis of results from 30 optimization runs of each algorithm 

 

Table 4.4 shows the result of the statistical analyses of the NPV accrued from the solution of 

the thirty optimization runs of each of the algorithms. Although the best NPV (attained via 

the fourth run of PSO) was marginally better than the best NPV attained by HPSDE, the 

mean NPV attained by the latter was much better than the mean NPV of the other algorithms. 

It is noted that the better NPV attained by the fourth run of the PSO algorithm over the best 

HPSDE and DE runs underscores the need, and reinforces the importance for multiple runs of 

the algorithms – perhaps in the order of tens, as thirty was carried out in this example.  

 

This is imperative because the distribution of the initial solutions (initialization of candidate 

solutions) in stochastic algorithms often affects the performance of the algorithms. It is 

further noted that even the same initial solutions are used across the different algorithms (DE, 

PSO and HPSDE); the randomness resulting from the stochastic operations in the algorithms 

culminates to a ‗non-zero-sum‘ effect on the performance of each algorithm. To this end, the 

relative performance of stochastic algorithms cannot be fairly compared on the basis of 
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results arising from a single optimization run of the algorithms. It is only fair to compare and 

draw conclusions on the basis of results averaged over multiple runs of the algorithms. Thus, 

despite the better NPV accrued from the fourth run of the PSO algorithm, we conclude that 

HPSDE outperforms both PSO and DE; and this conclusion is firmly based on the fact that 

the average NPV accrued by HPSDE over thirty optimization runs was better than the mean 

NPV for DE and PSO over the number of runs. Interestingly, the standard deviation 

associated with the HPSDE algorithm was lower than those of DE and PSO algorithms; this 

is consistent with the pattern observed in Application 2.  

 

Furthermore, we compared the performance of these stochastic algorithms against the 

computed NPV for a number of specific well patterns. In this regard, the inverted five-spot, 

the inverted seven-spot and the inverted nine-spot arrangements were considered. These 

specific well arrangements yielded the NPV of 
9$32.27 10 ,  

9$38.98 10  and 
9$41.90 10  

respectively. In other words, the three stochastic algorithms attained higher NPVs than the 

specific well patterns considered. Specifically, the performance of the HPSDE algorithm 

represents an increment of 54%, 27% and 19% in the NPV attained by the inverted five-spot, 

the inverted seven-spot and the inverted nine-spot patterns respectively.  

 

However, we must note with caution that the above comparison of the performance of the 

stochastic algorithms on one hand, against the performance of the inverted five-spot and 

inverted seven-spot arrangements on the other hand, is unfair. The unfairness stems from the 

overriding discrepancy in the economic constraints in both scenarios. This discrepancy is as a 

result of the CAPEX variable in the objective function (Eq. 4.1) – the difference in the value 

of this economic constraint for a five-well system, a seven-well system and a nine-well 

system is simply not negligible. As such, for this reservoir model, it is only fair to compare 

the performance of the stochastic algorithms against the performance of specific well pattern 

of same economic constraint. Thus, it can be said that the comparison of the stochastic 

algorithms against the inverted nine-well arrangement is the only fair comparison. Since the 

inverted nine-well pattern yielded an NPV of 
9$41.90 10 ;  it reinforces the belief that 

metaheuristic algorithms are able to provide better results than specific well pattern 

arrangement of same economic constraints (i.e. same number of wells). 
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Subsequently, the result arising from HPSDE algorithm is compared with results emanating from 

more established optimization techniques such as linear programming (LP) and binary genetic 

algorithm (bGA), subsequently referred to as genetic algorithm (GA). Though LP is a mathematical 

optimization method used for determining the optimum of linear objective functions that are 

subject to linear equality and/or linear inequality constraints; the GA is a population-based 

evolutionary algorithm proposed in 1975 by John Holland, it is perhaps the most popular and 

most used evolutionary algorithm in the well optimization problem as presented in section 2.1 

of this thesis.  

STEP 1:

Population 

Initialization

STEP 4:

Selection

STEP 3:

Mutation

STEP 2:

Crossover

  

Figure 4.18: Basic GA procedure 

 

The appeal for GAs across diverse problem domains stems from their simplicity and easy-to-

implement properties, Farshi (2008). The implementation of the algorithm involves the steps 

shown in Figure 4.18; thus, this procedure basically differs from the DE procedure illustrated 

in Figure 4.1 by virtue of the relative positions of steps 2 and 3 above. For this reason, many 

researchers have reported DE as a deviant and improved version of GA, Konar (2005), Das et 

al. (2008). Like other population-based stochastic algorithm, GA begins with the initialization 

of a population of candidate solutions or phenotypes; these proposed solutions are usually 

parameterized variables encoded as binary strings referred to as chromosomes. Next, the 

fitness values of these potential solutions are evaluated with the view of selecting better-fit 

candidates as ―parents‖ for reproduction or recombination – a process which involves the 

swapping of genetic material between the reproducing parents in accordance to a pre-defined 

crossover rate. Following the reproduction stage is a mutation process in which an individual 

(or individuals) of the population is randomly altered; and in so doing, prevents the algorithm 

from premature convergence by exploring new regions in the problem search space. This 

ultimately leads to the birth of new offspring chromosomes that are genetically different from 

the parent chromosomes. The algorithm continues iteratively until the maximum number of 

iteration is reached; a flowchart depicting the algorithmic process is shown in Figure 4.19.  
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Note that the control parameters of this algorithm are the population size ( ),pN  the crossover 

rate (CR) and the mutation rate (MR). In this application, 0.6 and 0.017 (the inverse of the 

population size) were employed for crossover rate and mutation rates respectively; and the 

choice of these values for CR and MR is informed from previous applications in Goldberg et 

al. (1991), Guyaguler (2002), Podnar and Kapov (2003) and Brain and Addicoat (2010). 

 

start

set k = 1

define D, Np, CR, MR, K

initialize Ai (k) = []

i ≤ Np

k ≤ K

end

compute f  (Ai (k)),    i

select parents population

using CR and MR generate 

offspring population

apply selection process form 

new population Ai(k+1)

evaluate f (Ai (k+1)),     i

i = i + 1

k = k + 1

yes

yes

no

no

A

A

 

Figure 4.19: Flowchart showing the genetic algorithm (GA) 
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In the application of LP in this problem, we espoused a technique modified from Guyaguler 

and Gumrah (1999). We denote  1 2 9, ,...,W w w w  as a vector of nine wells to be placed on 

a reservoir model with square grid-blocks of index defined by the set   1,2,...,2500 ,  the 

Cartesian coordinate of each placed well is defined by
 

,i ix y   and  0,1io   is a binary 

indicator that defines the well type – 0 for production wells and 1 for injection wells. The LP 

problem was solved using LPLOG solver, and the resulting solution used as indices for the 

placement for the nine wells in the reservoir system. The wells are constrained to operate at 

BHPs of 565 10 Pa  and 5100 10 Pa  for producers and injectors respectively; and the 

system simulated for a period of 10 years. Using fluid profile generated, the NPV was 

computed in accordance to (4.1); in this regard, an NPV of 9$37.91 10  was computed. 

 

Using an initial population size of 60 and a maximum iteration of 150 generations; thirty 

optimization runs of the GA algorithm were performed in MATLAB
® and the results were 

used for placing the wells in the reservoir. Like in the previous metaheuristic algorithms, the 

wells are constrained to operate at BHPs of 565 10 Pa  and 5100 10 Pa  for producers and 

injectors respectively. The system is simulated and the fluid profiles are used to compute the 

NPV corresponding to each optimization run of the GA by applying Eq. 4.1; and when the 

computed NPVs accruing from the thirty runs were averaged, the resulting NPV was 

9$46.33 10 .  The results accruing from the application of LP and GA are tabulated and 

presented in Table 4.5 below. 

 

 Statistical Indices ($× 10
9
) 

Algorithms Best NPV Worse NPV Mean NPV STD 

LP 37.9118 37.9118 37.9118 – 

GA 46.9269 28.0251 44.8917 4.3601 

 

Table 4.5: Results of LP and GA algorithms 

 

Thus, the result achieved from the application of GA was comparable to the NPV of 

9$46.67 10  that was achieved by the PSO algorithm; however, this performance represents a 

3.2% and a 6.8% reduction in the performance attained by DE and HPSDE algorithms 

respectively. Interestingly, the NPV of 9$37.91 10  that was accrued from the application of 

LP fell short of the performance of all the stochastic algorithms considered in this 

application. As a matter of fact, it performed lower than the specific well arrangement of 
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equal well (the inverted nine-spot arrangement); and this shows that LP is not a suitable 

optimization technique for this problem type. Also, it is important to note the fact that the 

search space in this problem (objective function) is non-smooth and nonlinear; to a large 

extent, this may be the reason behind the relative poor performance of LP in this problem. It 

is noted that LPs are often deployed in problems with linear objective functions that are 

subject to linear equality and inequality constraints. 

 

Now, owing to the fact that HPSDE involves the hybridization of two global optimization 

algorithms – DE and PSO; we further compare its performance with a hybrid algorithm that 

combines a global optimization algorithm and a local search algorithm. In this regard, the 

PSO algorithm was combined with tabu search (TS) to form a hybrid algorithm referred to as 

PSOTS. The TS algorithm was proposed and formalized as an extension of local search 

technique by Fred Glover in Glover (1986) and Glover (1989) respectively. The algorithm 

originated from the simulation of human intelligence progress; the most salient feature of this 

local search technique is its ability to self-mark the searched local minima and avoid them as 

much as it is possible. The populations with good fitness are marked in the tabu list to prevent 

cycling or re-visitation, and the algorithm guarantees diversity by implementing a flexible 

tabu list and a well-planed tabu strategy, Wang et al. (2007). In order words, it avoids local 

minima entrapment through a strategy that prohibits certain previously search directions. 

Usually, an aspiration criterion is incorporated into the algorithm so as to override promising 

solutions that may have been excluded or consigned to the tabu list. A simple and commonly 

used aspiration criterion is to adopt solutions with tabu status which are better than the ―best 

so far‖ solution. That is to say that if a candidate has a higher fitness value than the ―best so 

far‖ solution, its tabu status is ignored and adopted as the current solution. The hybridization 

of this algorithm with PSO (to form PSOTS), and its implementation in this problem was 

adapted from the study of Talbi and Belarbi (2011). 

 

The basic idea of the PSOTS is to update the PSO with TS at any iteration where the updated 

particle position objective function value, ( ( 1)),xif k   is less than the previous best 

position, ( ( )),yif k  of the particle. The algorithm is as illustrated in Algorithm 4.4; it starts 

with the PSO algorithm and continues until the point where the objective function value of 

the updated particle position is compared with that of the previous position. At that stage, a 

number of candidates of the current solution are determined. If a candidate on the tabu list is 
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Algorithm 4.4 PSOTS Algorithm 

   1: Set iteration index 1k   

   2: Define 1 2, 0.721, 1.193,pN c c K     

   3: Initialize ,( ) : ( ) ~xi i jk x k U( , ) ,j jl u j i                      

        4: Initialize ,( ) : ( ) ~vi i jk v k U(0,1) ,j i    

        5: Compute objective function, ( ( )),xif k i  

   6:  ( ) ( ),y xi ik k i   

   7:  while k K do         

   8:       Permute the particle indices 

   9:       Generate neighborhood for each particle             

 10:       1i                    

 11:       while pi N do                   

 12:             Determine best particle in neighborhood of particle i  

 13:             Compute ( 1)vi k  using Eq. 4.21 

 14:             1j          

 15:             while j D do 

 16:                    , , ,( 1) ( ) ( 1)i j i j i jx k x k v k                            

 17:                    Apply Eqs. 4.22 and 4.23 if necessary 

 18:                    1j j   

 19:             end while 

 20:             Compute objective function, ( ( 1)),xif k i   

 21:             1i i   

 22:       end while 

 23:       1i   

 24:       while pi N do 

 25:             if ( ( 1)) ( ( ))x yi if k f k  then 

 26:                    ( 1) ( 1)y xi ik k    

 27:             else 

 28:                    initialize the tabu list 

 29:                    initialize the aspiration criterion 

 30:                    while pi N do  

 31:                          generate solutions randomly 

 32:                          evaluate each neighborhood 

 33:                          choose best neighbor 

 34:                          update the tabu list and aspiration criterion 

      35:                     end while   

 36:             end if 

 37:             1i i   

 38:       end while 

 39:       1k k   

 40: end while  
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better than the prevailing best solution at that time, the tabu attribute of the candidate on the 

tabu list is neglected. Therefore, the prevailing best solution is substituted by the candidate on 

the tabu list, and consequently, the tabu list is updated accordingly. If the candidate 

mentioned above does not exist, the original PSO candidate solution is preferentially selected 

while ignoring its strengths and weaknesses to the current solution and modifying the tabu list 

at the same time. This process is repeated iteratively until the end criteria are met. 

 

Like in the previous stochastic algorithms, multiple runs of this hybrid algorithm is 

performed using an initial population size of 60 and a maximum iteration of 150 generations; 

the results were used to place reservoir wells constrained at BHPs of 565 10 Pa  and 

5100 10 Pa  for producers and injectors respectively. The system is simulated and the fluid 

profiles are used to compute the NPV corresponding to each optimization run of the PSOTS 

by applying Eq. 4.1; and when the computed NPVs accruing from the thirty runs were 

averaged, the resulting average NPV was 9$48.42 10 .  Figure 4.20 shows how GA and 

PSOTS compare against HPSDE; and importantly, the result also highlights the effect of tabu 

search on the convergence of PSO algorithm.  
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Figure 4.20: NPV of GA, PSOTS and HPSDE algorithms for application 3 

 

It was observed in our earlier analysis that the PSO algorithm converged to a steady NPV 

from 5113 simulations (see Figure 4.17), however, the hybrid PSO (PSOTS) algorithm 

converged at about 7902 simulations. In other words, the propensity of the PSO algorithm 

towards premature convergence was very much reduced by the hybridization of the algorithm 
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with TS. However, this hybrid algorithm did not attain a better NPV than the HPSDE. The 

average performance of the PSOTS represents a reduction of 9$1.29 10  in the NPV attained 

by HPSDE algorithm. The relative performance of all five stochastic algorithms employed in 

this problem are plotted and shown in Figure 4.21. But for the HPSDE, the hybrid PSOTS 

outperformed the rest of the algorithms (DE, PSO and GA in that order). In cases where the 

HPSDE was compared with DE and PSO algorithms, the performance of PSO fell behind the 

other algorithms; we believe that the reason behind this is perhaps the inclination or natural 

tendency of PSO towards premature convergence. This often makes the algorithm susceptible 

to missing better solutions by converging or stagnating at local minima. A thorough analysis 

of the result arising from the PSOTS algorithm underscores the fact that this issue of 

premature convergence was to an extent addressed by the hybridization of the PSO algorithm 

with a local tabu search algorithm.  
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Figure 4.21: Comparison of the NPV of DE, GA, PSO, PSOTS and HPSDE algorithms for application 3 

 

As a result of these observations, we infer that that the number of function evaluation 

required to attain optimal result in PSO algorithm was lower than those of DE and HPSDE 

algorithms. In other words, the PSO algorithm requires the fewest enumeration of the entire 

search space of the problem as against the DE and HPSDE algorithms. This inference 

corroborates findings of previous studies reported in the literature. Thus, PSO algorithms lack 

exploitation abilities, they possess the ability to quickly go down to good, promising regions 

of the search space; however, they usually lack the ability to refine solutions, Li et al. (2010). 
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4.6 Benchmark Tests and Computational Complexity 

In addition to their easy-to-implement properties, biologically inspired algorithms are 

generally popular because of their efficiency at finding approximate solutions in optimization 

problems. However, it is instructive to note that the performance of these algorithms across 

optimization problems of different complexities exhibit varying degrees of limitations in 

accordance to the no free lunch theorem. Thus, the effectiveness or otherwise of HPSDE over 

DE and PSO in the well placement problems as considered in this chapter are not sufficient 

conditions for making far-reaching conclusions. In this section, all three metaheuristic 

algorithms are subjected to benchmark problems of different complexities. The complexity of 

the test problems depends on the number and distribution of local optimums as well as the 

number of variables. In this regard, the algorithms are tested using six benchmark problems 

including, namely: Ackley Problem, De Jong F1 Function, Griewangk Problem, Rastringin 

Problem, Rosenbrock Problem and Schaffer F6 Function. 

 

Besides the fact that these six test functions exhibits different degrees of complexities, we 

justify their selection in the light of the fact that they reflect opposite sides of fundamental 

complexity factors, such as modality, separability and scalability. Modality refers to the 

number of local optima a problem possesses. Most real life applications are multimodal (i.e. 

contains more than one local optima) as against unimodal or convex problems which have 

one optimum only. A function of variables p is said to be a separable problem if it can be 

expressed as a sum of y functions of one variable. In other words, separability entails that the 

optimization problem can be re-partitioned into sub-problems of lower dimensionality and 

therefore, is considerably easier to solve. Scalability refers to the ability to suitably and 

efficiently apply the algorithm to problems of larger dimensionality. Thus, scalability is the 

property of the problem which determines its behavior in different dimensions. 

 

With respect to the benchmark problems considered here, De Jong F1 Function is unimodal, 

while Griewangk‘s Problem is multimodal; Rastringin‘s Problem is separable, while the 

Rosenbrock Problem is non-separable, and Ackley‘s Problem is scalable while the Schaffer 

F6 Function is non-scalable. Note that these benchmark problems are often characterized by 

more than one complexity factor. Take for example, besides the Sphere Function, the 

remaining five benchmark problems are multimodal; again, besides the Rastringin‘s Problem, 
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all other problems are inseparable. A general description of the benchmark problems 

employed in this complexity analyses is presented below. 

 

1. De Jong‘s F1 Function (also known as the Sphere Function) is a smooth, symmetrical, 

unimodal and strongly convex function. This function is not a complex problem 

because it has only one solution; its usefulness stems from the fact that it is a simple 

test function that allows one to check that the algorithms are in good working 

condition and that there are no coding mistakes. It is given by 2

1

min ( )
n

i
x

i

f x x


  and 

the test area is often restricted to the hypercube 5.12 5.12, 1,2,..., .ix i n      

 

2. The Rosenbrock Problem is characterized by a very narrow and sharp ridge which 

rotates around a parabola; hence, it is considered a difficult problem. Algorithms with 

weak exploration capabilities (i.e. not able to search new and better regions of the 

search space) suffer severe limitation when deployed to this problem. Mathematically, 

the problem is given by  
1

2
2 2

1

1

min ( ) 100 ( 1)
n

i i i
x

i

f x x x x






    
    and the test area is 

usually restricted to 2.048 2.048, 1,2,..., .ix i n     

 

3. With a large search space and high number of local minima, the Rastrigin's function is 

multimodal and fairly complex. It has a linearithmic complexity, and the surface of 

the function is determined by the amplitude (A) and the modulation frequency ( ).  

With A=10 (as is the case in this work) the selected domain is dominated by the 

modulation, and the local minima are located at a rectangular grid with size 1. The 

fitness values of the local minima increases with increasing distance to the global 

minimum; the function is represented as 2

1

min ( ) 10 10cos(2π )
n

i i
x

i

f x n x x


      and 

like the Sphere Function, the test area is restricted to 5.12 5.12, 1,2,..., .ix i n     

 

4. Like the Rastrigin‘s problem, the Griewangk problem is a multimodal function which 

has a linearithmic complexity of ( ln( )),O n n  where n is the number of the function's 

parameters. The function is given by 2

1 1

1
min ( ) 1 cos

4000

nn
i

i
x

i i

x
f x x

i 

 
    

 
   and its 

test area is restricted to the hypercube 600 600, 1,2,..., .ix i n     The terms in the 
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summation produce a parabolic solution space, while the local optima (created by the 

cosine function) are above the parabola. The dimensions of the search range increase 

on the basis of the product, which results in the decrease of the local minima. It is also 

noted that the function gets flatter the more the search range is increased. Thus, most 

algorithms have difficulties to converge close to the minima of this function; and this 

is because the probability of making progress rapidly decreases as the minima is 

approached, Diglakis and Margaritis (2000).  

 

5. The Ackley‘s Problem is a widely used multimodal test function which is defined by    

1 2 1

1 1

min ( ) 20exp 0.2 exp cos(2π ) 20 .
n n

i i
x

i i

f x n x n x e 

 

   
            

 
 

The presence 

of an exponential term in this function creates numerous local optima that covers its 

surface; it is noted in Domingo et al. (2005)  that algorithms with strong exploratory 

and exploitative properties yield good results when tested on Ackley‘s Problem. The 

test area of this benchmark test is within the hypercube 30 30, 1,2,..., .ix i n     

6. Schaffer‘s F6 Function is given as 
2 2 2

2 2 2

(sin ) 0.5
min ( , ) 0.5 ,

(1.0 0.001( ))x

x y
f x y

x y

 
 

   

and its 

test area is often restricted to the hypercube 100 100, 1,2,..., .ix i n     The main 

difficulty of the Schaffer's F6 test function is that the size of the potential optimum 

that need to be overcome to get to a minimum increases the closer one gets to the 

global minimum, Pohlheim (2006). 

 

Having described the benchmark test functions and the reason behind the choice of the 

selected functions, we carry out benchmark tests with the view to ascertain the comparative 

performance of the algorithms. In our analyses of the efficiency of the algorithms, we use 

well established statistical quality indicators (or indices) such as best values, mean values and 

standard deviation of the results obtained. To this end, 25 independent runs were performed 

with randomly initialized populations of all three algorithms, and a common termination 

criterion of 5000 function evaluations is set for the algorithms. The termination criterion set 

out above (i.e. same function evaluation) serves as a level playing ground for all three 

algorithms – it restricts the window in which our inferences are made; and the choice of 25 

runs is based on established rule of thumb as highlighted in Mersmann et al. (2010). 
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A summary of the best and mean function values of the experimental results are shown in 

Tables 4.6 and 4.7 respectively; whereas Table 4.8 shows the standard deviation – a statistical 

indicator which represents the extent of dispersion or variation of the data points from the 

arithmetic mean. 

 

 Benchmark Tests Functions 

Algorithms De Jong’s F1 

Function 

Rosenbrock’s 

Problem 

Rastrigin’s 

Problem 

Griewangk’s 

Problem 

Ackley’s 

Problem 

Schaffer’s 

F6 Function 

DE 0.193E+00 –2.899E+01 –3.114E+01 –2.750E+01 3.66E+02 1.40E+01 

PSO 0.190E+00 –2.705E+01 –4.192E+01 –2.767E+01 1.03E+02 1.31E+01 

HPSDE 0.043E+00 –3.131E+01 –3.511E+01 –2.899E+01 1.71E+02 1.22E+01 

 

Table 4.6: Best values of 25 runs after 5000 function evaluations of algorithms on benchmark problems 

 

 Benchmark Tests Functions 

Algorithms De Jong’s F1 

Function 

Rosenbrock’s 

Problem 

Rastrigin’s 

Problem 

Griewangk’s 

Problem 

Ackley’s 

Problem 

Schaffer’s 

F6 Function 

DE 2.852E+00 –2.578E+01 –2.834E+01 –2.020E+01 5.78E+02 1.46E+01 

PSO 2.069E+00 –2.523E+01 –3.125E+01 –2.441E+01 1.09E+02 1.45E+01 

HPSDE 1.813E+00 –2.678E+01 –3.381E+01 –2.583E+01 1.93E+02 1.31E+01 

 

Table 4.7: Mean values of 25 runs after 5000 function evaluations of algorithms on benchmark problems 

 

 Benchmark Tests Functions 

Algorithms De Jong’s F1 

Function 

Rosenbrock’s 

Problem 

Rastrigin’s 

Problem 

Griewangk’s 

Problem 

Ackley’s 

Problem 

Schaffer’s 

F6 Function 

DE 2.254E+02 2.416E-01 1.910E-02 1.211E+01 2.506E-02 2.76E+01 

PSO 3.734E+01 2.030E-01 1.393E-02 1.541E+01 1.753E-02 6.10E+01 

HPSDE 2.223E+01 1.383E-01 1.093E-02 1.150E+01 1.024E-02 1.15E+01 

 

Table 4.8: Standard deviation after 5000 function evaluations of the algorithms on benchmark problems 

 

On the strength of the results of the benchmark test functions given in Tables 4.6 and 4.7; we 

can infer that on the average, HPSDE algorithm outperformed both DE and PSO algorithms 

in all of the benchmark test function but for Ackley‘s Problem in which the PSO algorithm 

yielded better results for both the best function value as well as the mean function value. It is 

also noted that although the PSO algorithm yielded the best function value in the Rastrigin‘s 

Problem; the mean value attained by HPSDE over the 25 optimization runs was better than 

those of the other algorithms in the same benchmark test (Rastrigin‘s Problem). Interestingly, 

the lowest standard deviation in all six benchmark functions were those associated with 
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experimental results emanating from HPSDE algorithm. In statistical theory and indeed in the 

theory of probability, low standard deviation indicates that the data points tend to be in or 

around the proximity of the arithmetic mean of the distribution; whereas a high standard 

deviation indicates that the data points are well spread out over a large range of values. 

Consequently, it is safe to infer that for fewer number of optimization runs; the probability of 

attaining near-average optimal results is higher when HPSDE algorithm is employed than the 

other two algorithms. This corroborates the trends in the standard deviation resulting from the 

statistical analyses of the NPVs accruing from the fluid profile generated from 30 

optimization runs of the algorithms as was carried out in applications 2 and 3 (sub-sections 

4.5.2 and 4.5.3) – see Tables 4.3 and 4.4 respectively.  

 

Furthermore, we compare the computation complexity of the three algorithms. As a valuable 

and qualitative insight into algorithmic efficiency, the objective of computational complexity 

is to determine the feasibility of an algorithm by estimating an upper bound on its usability. It 

also provides an avenue for relative comparison of algorithms in order to decide algorithmic 

suitability for any given problem. In this regards, algorithmic efficiency or computational 

complexity is measured in terms of time complexity – a measure of the amount of time 

required to execute the algorithm and its space complexity – which is a measure of the 

number of memory cells or nodes it requires for its execution. The selection and deployment 

of algorithms for any given problem often involve some kind of time-space-tradeoff; this is 

because most computational problems cannot be solved with short computing time and low 

memory space, Ziegler (2002). 

 

Generally speaking, the better the time complexity of an algorithm, the faster the algorithm is 

in practice; and the better the space complexity, the lower the risk of running out of memory 

cells. Over the years, the big O notation has been a convenient way of expressing the 

computational complexity of problem-solving algorithms. This notation provides a simple but 

qualitative insight into how changes in the input of the algorithm N affect the algorithmic 

performance as N grows larger. In other words, it provides the window for understanding 

how the performance of an algorithm responds to changes in problem input size. 

 

In Zielinski et al. (2006), it was demonstrated that the control parameters of DE algorithm 

(i.e. population size ,pN  crossover rate CR and mutation factor F) have a direct bearing on 
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the computational complexity of the algorithm. Since each iteration of the algorithm involves 

a loop of pN  conducted over another loop D; and the mutation and crossover operations are 

performed at the component level for each DE vector, it therefore, follows that the number of 

fundamental operations in the algorithm (DE/rand/1/bin) is proportional to the total number 

of loops conducted until the maximum number of iterations K is reached. Thus, the runtime 

complexity of the algorithm is given by ( ).pO N D K   For this algorithm, the space 

requirements is in the order of ( ) ( ),pO N K O E   where E is the number of fitness 

evaluations required by the algorithm in a given problem. The space complexity of DE is low 

when compared to other popular metaheuristic algorithms; perhaps this explains why DE has 

been extensively employed in large scale optimization problems across a broad range of 

disciplines, Das and Suganthan (2011). 

 

For the PSO algorithm, the runtime complexity is given by ( ),pO N M K   where ,pN  M 

and K are population size, number of neighborhood and maximum number of iteration 

respectively. According to Liu et al. (2011), the worst case scenario in this algorithm occurs 

when the number of sub-swarms (or neighborhood) remains unchanged, and the number of 

iteration reaches the designated maximum iteration number. In that situation, the runtime 

complexity is given by ( );pO N M K   however, if the number of sub-swarms is reduced 

after some iterations, the runtime complexity reduces to 
1

, where 1 .
K

p

i

O L N L M


 
   

 
  

The space complexity of the PSO algorithm is in the order of ( ),pO N K  and this 

complexity increases to the order of ( )pO Q N K   when Q number of particles ( )pQ N  

overlap on the same node, as pointed out in Gheitanchi et al. (2008). 

 

The time and space complexities of HPSDE algorithm are in the order of ( )pO N D M K    

and ( )pO N K  respectively. The flowchart of the algorithm as depicted in Figure 4.5 shows 

that in every iteration, there is an extra function evaluation that is absent in both the DE and 

PSO algorithms. The resources required to carry out this additional function evaluation in 

each iteration of the algorithm constitutes an increased computational burden vis-à-vis the 

resources required in each iteration of DE and PSO. In order words, although the use of 

hybrid algorithms may be desirable from a performance point of view; it however, 
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exacerbates computational efficiency by virtue of the fact that it increases runtime 

computational complexity, and to some extent, the space complexity. Therefore, it is needful 

to develop simple adaptation rules for algorithmic control parameters so as to improve 

performance without imposing considerable computational burden when hybrid algorithms 

such as HPSDE are deployed.  

 

Finally, we end this section by analyzing the ratio of the function evaluations required by 

each of the algorithms with respect to full enumeration of the search space in each of the well 

placement optimization scenario considered in this chapter. Exhaustive enumeration of the 

search space is often undesirable and can be computationally prohibitive; particularly in large 

scale engineering problems where they can easily become intractable, regardless of the 

computational resource availability.  

 

Using brute-force or exhaustive search as a baseline, we compared the number of function 

evaluations performed by DE, PSO and HPSDE algorithms; with the view of understanding 

the relative advantage of one algorithm over the other in this problem domain. In the first 

application considered in this chapter, the problem involved optimal placement of a single 

producer in a 2–D reservoir model with 45 45 1   grid-blocks. Theoretically, there are 2025 

(or 
2025

C1) different possible placement of the single well; and this means that a full 

enumeration of the search space (i.e. sampling the entire search space) would require 2025 

function evaluations. In this problem, however, the DE, PSO and HPSDE algorithms began 

to converge to near-optimum solutions after 740, 591 and 772 iterations respectively. Note 

that there is an extra function evaluation in each iteration of the HPSDE algorithm; thus, the 

minimum numbers of function evaluations required in this problem scenario (Application 1) 

are 740, 591 and 1544 for DE, PSO and HPSDE algorithms respectively. Therefore, using the 

theoretical maximum required function evaluation as a baseline, the ratio of the actual 

objective function evaluations for these algorithms are 0.3654, 0.2919 and 0.7625 for DE, 

PSO and HPSDE respectively. 

 

In the second application considered, the defined problem statement was to optimize the 

placement of two wells in a 2–D reservoir model of 50 50 1   grid-block. Theoretically, 

there are 3123750 (or 
2500

C2) possible placement for both wells; in other words, the 

computational cost of an exhaustive enumeration of the search space would entail over three 

million function evaluations. However, the DE, PSO and HPSDE algorithms attained near-
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optimal solutions after 2632, 1459 and 5726 objective function evaluations respectively. 

Indeed, these numbers are much fewer than the theoretically required 3123750 objective 

function evaluations required for full enumeration of the search space; in fact, the numbers 

represent a ratio (with respect to the brute force baseline) of 8.4258×10
-4

, 4.6707×10
-4

 and 

1.8331×10
-3

  for DE, PSO and HPSDE algorithms respectively. 

 

For the nine wells placement problem considered in application 3, a full enumeration of the 

search space requires 1.036182146×10
25

 (or 
2500

C9) function evaluations; whereas DE, PSO 

and HPSDE algorithms converged to near-optimal solutions after 7010, 5097 and 17126 

objective function evaluations respectively. This application clearly underscores the 

desirability of metaheuristic algorithms in this problem domain; it highlights their ability to 

yield approximate solution without exhaustive enumeration of the search space. It further 

highlights the fact that full enumeration of the search space in the well placement 

optimization problem becomes intractable as the number of decision variables (number of 

wells) increases; thus brute-force algorithms would suffer severe performance limitations in 

this domain. For this problem, the ratio of the actual number of objective function evaluations 

needed to reach near-optimum solutions to full enumeration of the search space pales into 

insignificance; they are 6.7652×10
-22

, 4.9190×10
-22

 and 1.6528×10
-21

 for DE, PSO and 

HPSDE algorithms respectively. The computed results for the ratio of the number of actual 

objective function evaluations required to reach near-optimum solutions to the theoretical 

maximum number of objective function evaluations for all three problem scenarios are 

tabulated and presented in Table 4.9 below. 

 

Expectedly, the algorithms attained near-optimal solutions with fewer function evaluations as 

against the prohibitive number of function evaluations required for full enumeration of the 

search space; and the comparative advantage of the algorithms in terms of the ratio of the 

number of actual objective function evaluations required to reach near-optimum solutions to 

the theoretical maximum number of objective function evaluations become much pronounced 

as the decision variables of the underlying optimization problem increases. Interestingly, 

however, of the three metaheuristic algorithms; the PSO consistently converged to near-

optimum solution with the fewest number of objective function evaluations in all the 

applications. This evidence is also reflected in the fact that the computed ratio of the number 

of actual objective function evaluations required to reach near-optimum solutions to the 
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theoretical maximum number of objective function evaluations for the PSO algorithm was 

lowest amongst the algorithms. On the other hand, the computed ratio of the number of actual 

objective function evaluations required to reach near-optimum solutions to the theoretical 

maximum number of objective function evaluations for the HPSDE algorithm was the highest 

in all the applications. 

 

Algorithms App. 1 App. 2 (×10
-4

) App. 3 (×10
-22

) 

DE 0.3654 8.4258 6.7652 

PSO 0.2919 4.6707 4.9190 

HPSDE 0.7625 18.3310 16.5280 

 
Table 4.9: Ratio of number of actual FEs required to reach near-optimum solutions to brute force FEs 

 

In fact, one of the salient points that can be deduced from Table 4.9 is that the computed 

ratios of the actual objective function evaluation performed by the PSO algorithm to the full 

enumeration of the search space represent a respective reduction of 20.1% and 61.7% in the 

computed ratio of actual function evaluation to full enumeration of the search space for DE 

and HPSDE in application 1, a respective reduction of 44.5% and 74.5% in the computed 

ratio of actual function evaluation to full enumeration of the search space for DE and HPSDE 

in application 2, and a respective reduction of 27.3% and 70.2% in the computed ratio of 

actual function evaluation to full enumeration of the search space for DE and HPSDE in 

application 3. The ability of PSO algorithm to converge quickly to near-optimal solutions as 

highlighted above is consistent with previous findings in the literature; see Li et al. (2010).  

 

Hence, none of the algorithms requires exhaustive enumeration of the search space; however, 

of all three algorithms, HPSDE requires the highest number of function evaluation while the 

PSO requires the fewest. The comparative higher number of function evaluation associated 

with HPSDE is perhaps as a result of the extra function evaluation that is present in every 

iteration of the algorithm as evident in Figure 4.5. Since full enumeration of the search space 

is prohibitive and undesirable; algorithms that require fewer objective function evaluations 

are most desirable. Thus, on the strength of the ratio of actual function evaluations required to 

achieve near-optimal solutions to full enumeration of the search space; it could be said that 

PSO outperformed both DE and HPSDE algorithms. Although the HPSDE algorithm 

achieved better results (NPV) than DE and PSO in the well placement problem; it could be 

said that its performance in this problem domain came at a price.  
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By and large, since the number of function evaluation performed by HPSDE is within 

computational resource affordability; its performance in the well optimization problem 

outweighs the undesirability associated with its higher ratio of actual function evaluations to 

full enumeration of the search space as against the PSO. Ultimately, it is reasonable to give 

up the desirability of fewer search space enumeration associated with PSO in exchange for 

the high performance measure or NPV associated with HPSDE since such solutions are 

attained within non-prohibitive polynomial time. 

  

4.7 Discussion 

In the well placement optimization applications considered in this work, HPSDE algorithm 

yielded higher NPV than DE and PSO algorithms. While we note that these findings and 

results are interesting and potentially useful, we acknowledge that there are issues or 

limitations that need to be addressed. Chief among these limitations is the issue of control 

parameters tuning. For instance, in the second and third examples, there are instances where 

DE outperformed PSO, and vice versa. It is important to understand how these behaviors are 

influenced by relevant control parameters of the algorithm. We note that DE parameters (F = 

0.5, CR = 0.1) used in this work were adapted from Storn and Price (1997), and the PSO 

parameters 1 2( 1.193, 0.721)c c     were adapted from Onwunalu and Durlofsky (2010). 

For reasons bothering on fair comparison of results, all three algorithms were used without 

parameter tuning of any kind. Although the population size and the maximum number of 

iteration are largely dependent on the complexity of the underlying well optimization 

problem, as well as the number of optimization variables; we believe that effective parameter 

tuning (which will be computationally expensive, as it will require extra function evaluations) 

would further enhance the performance of the algorithms. This is so because generalized 

adjustment of metaheuristic control parameters cannot be achieved from theoretical analyses 

on the algorithms alone. Thus, an effective mechanism for control parameter tuning would 

depend on the demands of the underlying optimization problem as well as the experience and 

background knowledge of the user. 

 

A closely related limitation is the issue of usability in practical field optimization problem. 

Indeed, a hybridized metaheuristic optimization algorithm such as HPSDE is potentially a 

viable and promising alternative in reservoir engineering optimization problems; however, 

issues of usability have to be addressed before it can be deployed for practical use in the 
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industry. To some degree, the usability limitation is intertwined with parameter tuning. We 

note that usability of metaheuristic algorithms would be greatly enhanced if the issue of 

parameter tuning is sorted out at the design-end, and not at the user-end of the algorithms. 

This is so because it is generally unrealistic for industrial end-users to waste expensive 

function evaluations in correcting the weakness of the design phase of an algorithm. We also 

note that the performance of HPSDE algorithm, and indeed other hybridized stochastic 

algorithms; could be further improved by incorporating into the algorithms, prior knowledge 

and relevant information about the optimization problem.  

 

4.8 Summary 

In this chapter, the importance of well optimization was highlighted; we showed that it is a 

field development decision input that can ultimately determine a reservoir‘s production 

profile, and therefore, the recoverability of the reservoir. For all intents and purposes, the 

recoverability is a direct measure of the economic value of the portfolio or NPV of the asset. 

In this work, we employed three metaheuristic algorithms in this problem domain; one of the 

algorithms (HPSDE) is a ‗hybrid‘ of the other two algorithms – DE and PSO. With NPV as 

performance measure, we considered three examples involving the placement of one, two and 

nine vertical wells in reservoir models of varying complexities. 

 

Based on suggestions from Vasiljevic and Golobic (1996) and Ciaurri et al. (2011), five runs 

of each of the algorithms are performed in the first application; owing to the need to carry out 

a more detailed, reliable and systematic analyses of the algorithms, thirty optimization runs of 

the algorithms were performed in the second and third applications. In all cases, the results 

were averaged over the number of optimization runs so as to determine the relative strength 

of each algorithm. The HPSDE algorithm consistently outperformed DE and PSO algorithms. 

In two of the examples, we factored in geological uncertainty by addressing the discrepancies 

between physical reservoir and reservoir model. To this end, we performed a max-mean 

objective robust optimization of the performance measure; and HPSDE yielded better results 

than DE and PSO. In the third example, we compared the performance of the metaheuristic 

algorithms with the NPVs attained via different specific well pattern arrangements; and the 

stochastic algorithms yielded higher NPV than the specific well pattern arrangements. We 

also showed that the performance of DE and PSO was dependent on the total number of 

simulations – in other words, there was a variation in performance in the early, mid and later 



121 
 

stages of simulation. DE attained higher NPV than PSO at very low and very high number of 

total simulation. However, in all examples considered, the overall performance of PSO was 

better than that of DE. More importantly, we note that HPSDE outperformed both algorithms 

in all cases. Besides, the performance of the HPSDE algorithm was compared with the 

performance achieved by more established optimization techniques such as LP and GA; and 

HPSDE outperformed both algorithms. Although the result attained by GA was comparable 

to that of PSO and DE, the result emanating from LP fell way behind those attained by the 

stochastic algorithms. Because HPSDE algorithm was created as a result of the hybridization 

of two global stochastic algorithms – DE and PSO; we compared its performance with results 

from another hybrid algorithm created by the hybridization of a global algorithm (PSO) and a 

local search algorithm (TS). In this regards, HPSDE was compared with PSOTS algorithm; 

and the result showed that the performance of PSOTS was 2.6% less than the performance of 

HPSDE. Interestingly, the PSOTS algorithm outperformed the remaining metaheuristic 

algorithms in the order DE, PSO and GA respectively.   

 

Furthermore, with the aid of statistical tools, we used a collection of six benchmark tests of 

varying complexity to gain further insight into the relative performance of the algorithms. 

Based on the analyses of the results from the benchmark tests, the effectiveness of HPSDE 

algorithm over DE and PSO as demonstrated in the well placement optimization problems 

was reinforced. Also, due to the fact that computational complexity of population-based 

stochastic algorithms are critical to understanding relative algorithmic efficiency, the runtime 

and space complexity of the algorithms were analyzed by evaluating fundamental arithmetic 

and logical operations performed by the algorithms. By and large, these tools afforded us the 

ability to draw conclusions on the relative performance of the algorithms. 

 

Despite the limitations that were highlighted in terms of usability of metaheuristic algorithms 

in the industry; this work demonstrates the potential benefit of hybridized metaheuristic 

algorithms over more established stochastic techniques in reservoir engineering applications. 

Besides the fact that these findings are promising, the applicability of HPSDE algorithm in 

well placement optimization problem shows that hybridization could be key to unlocking 

some of the challenging optimization problems in field development planning and reservoir 

engineering in general.  
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CHAPTER 5 
But let the slave who sees another cast into a shallow grave know that he will be buried in 
the same way when his day comes – Chinua Achebe 

 

PRODUCTION OPTIMIZATION AND CONTROL 

In this chapter, the focus is on optimization and control of the production settings of a 

waterflooded reservoir. The working model is a two-phase immiscible reservoir flow model, 

and the implementation of the optimization and control strategies is such that the controller 

algorithm is embedded in the optimization algorithm. In other words, the optimization loop is 

fundamental in substance than the control loop – which is essentially a means for achieving 

as close as possible, the optimal trajectory resulting from the optimization loop. Although it 

has been mentioned that the working model is a two-phase immiscible reservoir flow model, 

it is important to note that the physics of the working models employed in the optimization 

and control loops are significantly different. Whereas a physics-based white-box reservoir 

model is employed for the optimization strategy, the embedded control strategy is carried out 

with the aid of a data-based black-box model. In the optimization loop, we espouse a 

technique presented in Sarma et al. (2005) and Jansen (2012) by employing a gradient-based 

algorithm in which the derivatives of the objective function are computed using an adjoint 

formulation. However, the control loop is based on a model predictive control (MPC) 

algorithm that employs linearized data-driven nonlinear models.  

 

5.1 Well Flooding Optimization Formulation 

Given the solution to the well placement problems presented in the previous chapter, we 

attempt in this chapter to find the dynamic production settings that maximizes the recovery 

factor of a water-flooded reservoir over a time interval [0, T]. For the avoidance of doubt, it is 

important to note that the applications considered in this chapter are direct follow-ups to sub-

sections 4.5.2 and 4.5.3 of Chapter 4.  
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In every practical sense, the maximization of the recovery factor of a waterflooded petroleum 

reservoir is equivalent to any of the following: 

 maximizing the cumulative volumes of hydrocarbon produced at terminal time T 

 maximizing the water saturation of the reservoir at terminal time T or 

 minimizing the volume of hydrocarbon in place at terminal time T    

 

However, for conformity reasons, we choose to express the objective function in terms of an 

economic criterion such as net present value (NPV) of the asset. In this case, the NPV is a 

measure of the cash flow (CF) generated from produced volumes of hydrocarbon.  

 

Mathematically, the NPV is defined as the total oil revenues minus the total cost of 

production, in combination with a discount factor – i.e. the time value of money. This can be 

represented in the equation below: 

 

                             
 

( )

1

CF
NPV  =  

1 d

T
t

t
t 
                                                                                (5.1)  

where T is the terminal time or total production period (in days), d is the discount factor and 

( )CF t
 represents the cash flow at time t. The cash flow at any time t, is given by: 

 

                             ( ) ( ) ( )CF REV OPEXt t t                                                                      (5.2) 

where ( )REV t is the revenue accrued from sale of products at time t; and ( )OPEX t represents 

the operating expenditure at time t. Both quantities are usually measured in US dollars. 

 

For a two-phase (oil and water) flow reservoir model, the values of ( ) REV t and ( ) OPEX t  
at 

any time (t) are respectively given by: 

 

                           
oil oil

( ) ( ) ( )REV t t tp                                                                                          (5.3) 

                        
w,p w,p w,i w,i

( ) ( ) ( ) ( ) ( )OPEX t t t t tp p                                                                         (5.4) 

where oil

( )tp
 
is the price of oil at time t, w,p

( )tp
 
is the cost of producing water in the production 

wells, and w,i

( )tp
 
is the cost of injecting water in the injection wells at time t – all three 
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quantities are measured in dollars per m
3
. On the other hand, oil

( )t
 
is the total volume of oil 

produced at time t, while w,p

( )t
 
and w,i

( )t
 
(all measured in m

3
) represents the total volumes of 

water produced (from production wells) and injected (in injection wells) respectively.  

 

Equations (5.1) to (5.4) can be cast in the form of the optimization problem below:  

                             
 

prod prod inj

oil oil w,p w,p w,i w,i

( ) ( ) ( ) ( ) ( ) ( )

1 1 10NPV

REV production cost injection cost

OPEX

CF

1
( )

1 d
u

T

t t t t t t t
J p p p dt  

  

 
  
  
    
   

   
  

                (5.5) 

where prod  and inj  represent the total number of production wells and injection wells 

respectively, and u is a vector containing all the manipulated or input variables. 

 

Using a discrete-time formulation, the performance measure J (u) in Eq. 5.5 can be cast into 

the following optimization problem:  

                                             1: 1: 1:

1

, ( ) ,u y u u y
K

K K K k k k

k

J J


                                              (5.6) 

where y is a vector containing the outputs, and kJ  is the contribution (i.e. REV, OPEX) to 

J in each discrete time-step k.  

 

In (5.6), it is important to highlight that the elements of the manipulated vector uk are often 

subject to operational constraints. A bound constraint of the form min max ,u u uk  underlines 

the fact that the inputs must come from within a specified feasible or admissible bound; there 

may be additional constraints in the form of maximum and minimum production rates (within 

the bounds of the handling capacity of the surface facility), water-cut thresholds, etc.  

 

Following a slight modification of the formulation presented in the works of Sarma (2005) 

and Jansen (2012), the optimization problem cast in Eq. 5.6 can be re-formulated into the 

following optimal control problem: 

 

                                         
1:

1: 1: 1:max , ( )
u

u y u
K

K K KJ                                                                   (5.7) 

                          over 𝒰  min max:u u u u
m

k k     
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                    subject to:    1, , , 1,2, ,g u x x 0k k k k k K                             (system equation) 

                                                       0(0)x x                                                    (initial condition) 

                                                          uk  𝒰 , (1,2, , )k k K                        (allowable input) 

                                         , ,h u x y 0k k k k                                                       (output equation) 

                                               ,c u y 0k k k                                                  (equality constraint) 

                                               ,d u y 0k k k                                              (inequality constraint) 

where ,x
n  ,u m  ,y p  c q  and .d

r                                                                                 

 

The interpretation of the optimization problem in Eq. 5.7 is self-explanatory; however, for the 

sake of clarity it is worth explaining. The unknown we seek to find is the manipulated 

variable 1:u K and this control input must be from the allowable input within the definitive 

bound min max .u u uk   Once this variable is obtained, it determines the resulting output from 

which we can subsequently determine a value for the objective function J. In other words, the 

problem is finding the control 1:u K which satisfies all prevailing constraints, and leads to the 

highest possible value of the objective function J. 

 

A number of techniques have been employed in attempts at solving well production settings 

optimization problems cast in the format of Eq. 5.7; and of these techniques, the gradient-

based methods have generally proved computationally friendly. Broadly speaking, gradient-

based algorithms are iterative algorithms which often require derivative information of the 

objective function with respect to defined control variables. Essentially, there are three main 

techniques for computing gradients – the finite differences, forward sensitivity equation, and 

backward adjoint formulation. The finite difference approach has the drawback of requiring 

far too many objective function evaluations. In fact, a minimum of 2 1m objective function 

evaluations are required for m  decision variables; and since objective function evaluation in 

reservoir engineering problems often entails reservoir simulation run; the applicability of 

finite difference approach in large-scale systems like reservoir models suffer severe 

limitations. With the forward sensitive equation approach, one simulation run of the model is 

required in addition to m sensitivity models. Again, it is also important to underscore that 

many objective function evaluation is necessary in order to obtain the sensitivities of the 

control and state variables; and these sensitivities are subsequently used for the computation 
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of the sensitivities to the outputs by applying the chain rule, Ringset et al. (2011). The 

obvious drawback of this approach in large-scale systems is the computational memory 

required for the storage of the huge sensitivity information that is required for the 

computation of the objective function derivatives. The computation of gradients via adjoint 

formulation is fundamentally based on the introduction of extra variables (to satisfy some 

special condition known as the adjoint equations) into the underlying optimization problem, 

and using these variables to circumvent certain parts of the derivative information 

calculations. In other words, by solving the adjoints equations, we circumvent the onerous 

computational task of computing the sensitivities of both the control and state variables. 

Regardless of the number of decision variables, the use of the adjoint formulation method for 

computation of derivatives requires only two simulation runs. Importantly, optimal control 

theory offers a very reliable and efficient method of solving the adjoint equation as 

demonstrated in Luenberger (1979). In other words, this method reduces the computation cost 

of the objective function gradient information computation; it is therefore efficient, and can 

be applied in large-scale nonlinear systems (as evident in its application in metrology and 

oceanography) such as reservoir models.  

 

In reservoir engineering, the use of gradient-based adjoint formulation in production 

optimization dates back to the 1980s; a non-exhaustive review of its application in this field 

is presented in section 2.2. In the past decade, the implementation of this technique in the oil 

and gas industry has gained considerable popularity – this is evident in the fact that most 

reservoir flow simulators now possess adjoint functionality for the computation of the 

derivatives of the objective function with respect to control variables.   

 

5.1.1 Necessary Conditions for Optimality  

One of the issues associated with optimal control problems is the fundamental question of 

characterizing an optimal solution. Put differently, how and when do we adjudge or designate 

a particular control vector as optimal? In seeking to answer this question, we exploit the fact 

that both classical and modern optimal control theories are natural extension of the calculus 

of variation. In many respects, optimal control and the maximization of a function of a single 

variable as contained in the study of calculus share a lot of similarities among which include 

the fact that the conditions for optimization are derived by considering the effect of small 

changes in the control near the optimal point. Therefore, to characterize a control vector u at 
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time-step k as optimal, there is need to trace the effect of an arbitrary change in uk  on the 

objective function, and importantly, there is a requirement that the resulting performance 

index J is non-improving – see Luenberger (1979).  

 

However, in this problem, the computation of the derivatives of the objective function J with 

respect to the manipulated variable 1:u K  is a difficult task. As pointed out in Jansen (2012), 

the difficulty arises because of the indirect dependence of the variation in the objective 

function ( )J  on the variation of elements of the input vector. This is the case because a 

variation in any element i  of the input at any arbitrary time-step ( ),iku  does not only 

influence the outcome of J  at ,k it also influences the states : ,xk K  the outputs :yk K  and 

consequently, J  at subsequent time-steps.  

 

Thus, the variation has a ―knock-on‖ effect which only makes sense if it is computed by the 

chain rule of differentiation as follows: 

 

                                  

y y x

u u y u x u

K
j j j jk

j kk k j k j k

JJdJ

d 

     
            

                                            (5.8) 

 

Since the output equation ( , , )h u x y 0k k k k   generally forms a system of explicit nonlinear 

algebraic equations, output terms such as y uj k  and y xj j   in Eq. 5.8 can be computed 

directly. Also, the terms uk kJ  and yj jJ  can also be computed without problems. 

However, computing the term x uj k   in Eq. 5.8 causes a lot of difficulties because of the 

need to solve the recursive system of discrete-time differential equations and connect the 

state vector x j  (where , 1, , )j k k K   to the input uk . 

 

Consequently, there is need to employ an indirect approach in order to overcome the 

difficulties arising from the complex temporal dependence of elements in .x uj k   The 

‗trick‘ is to modify the objective function by ‗adjoining‘ additional terms (constraints) which 

has a net zero-sum effect on the modified objective function. In this regard, the initial 

condition of the system 0(0) ,x x the systems equation 1( , , ),g u x xk k k k  
the output 

equation ( , , )h u x yk k k k  and the equality constraint ( , )c u yk k k  
are ‗adjoined‘ to the objective 
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function using distinct vectors of Lagrange multipliers 0 1: 1: 1:, , andλ λ μ υK K K  
respectively. In 

other words, a vector of Lagrange multiplier is required for each of the adjoining constraint 

with which the original objective function is augmented; thus, the total number of Lagrange 

multipliers is equal to the product of the dynamic states and control steps, Sarma (2005). To 

this end, a modified objective function J  is defined as follows:  

  

 
0 0

1: 0: 1: 0: 1: 1: 1

1

( , )

( (0) )

, , , , , ( , , )

( , , )

( , )

u y

λ x x

u x y λ μ υ λ g u x x

μ h u x y

υ c u y

k k k

T

K
T

K K K K K K k k k k k

k T

k k k k k

T

k k k k

J

J 



 
 
 
 
 
 
 
  

                                              (5.9)
 

 

Since the additional terms that are ‗adjoined‘ to the original objective function J  has a net 

zero-sum for any trajectory, it therefore follows that the value of the modified objective 

function J  is the same as the value of J  for any allowable uk  that satisfies the original 

optimization problem. Thus, a necessary condition for an optimum of the modified objective 

function J  is the requirement that any variations of the input control must be non-improving, 

i.e. all derivatives of J  with respect to the dependent variables are equal to zero. In Jansen 

(2012), it was demonstrated that (5.9) can be rearranged into a set of derivatives of J which 

represent the Karush-Kuhn-Tucker (KKT) or first-order necessary conditions for an 

optimum. These equations include: 
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                           , , (1,2, , )c u y 0
υ

T T
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k
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Upon close observation, it is easy to see that (5.15), (5.16), (5.17) and (5.18) are respectively 

identical to the initial condition, systems equation, output equation and equality constraint, 

and are therefore automatically satisfied. 

 

5.1.2 Computation of the Lagrange Multipliers  

In most in-house, commercial and open source reservoir flow simulator; there is often an in-

built strategy that enforces  ,c u y 0k k k 
 
(i.e. the equality constraint) via the implementation 

of the so-called voidage replacement. Thus, if we temporarily set aside the equality 

constraint, then Eq. 5.14 allows us to compute the Lagrange multiplier 1: .μ K  Next, we use Eq. 

5.13 to compute the Lagrange multiplier λK  for the final discrete time-step K; and thereafter, 

Eq. 5.12 can be used to compute the Lagrange multipliers λ k for 1, 2, ,1,k K K    (i.e. 

recursively or backward in time). Eq. 5.11 allows us to compute the Lagrange multiplier 0λ ; 

and finally Eq. 5.10 represents the effect of any change in the control input uk  
on the value 

of the objective function, while keeping all other variables fixed. In other words, Eq. 5.10 is 

the expression needed to trace the effect of any arbitrary change in uk  on the objective 

function; uk  
is adjudged optimal if the effect of its arbitrary change on J  is non-improving.  

 

Thus, in this technique, the states and outputs are computed using a forward simulation, while 

the Lagrange multipliers are recursively computed (first for the last time-step K and then 

K−1, K−2… k) using a backward simulation. Note that the computation of the Lagrange 

multipliers as represented can be interpreted as the solution of an ‗adjoint‘ system of discrete-

time differential equations, and the magnitude of the Lagrange multipliers is a first-order 

measure of the effect of violating the corresponding constraints on the value of the objective 

function, Jansen (2012). Optimal control theory therefore, provides an effective mechanism 

for the efficient computation of the gradients of the objective function with respect to the 

manipulated variables. The efficiency of this technique hinges on the fact that irrespective of 

the number of decision variables, the gradients are computed in as little as two simulation 
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runs – a forward simulation for the computation of the dynamic states and outputs, and a 

backward simulation for the computation of the vectors of Lagrange multipliers which are 

subsequently used to determine the gradients. Algorithm 5.1 is a step-by-step procedure of 

the production optimization problem as adapted from Jansen (2012), and Figure 5.1 depicts a 

simple schematic flowchart of the process. Owing to its computational efficiency, modern 

numerical reservoir simulators have in-built adjoint model capabilities for the implementation 

of this optimization technique. 

 

Algorithm 5.1 Adjoint and Gradient Computation  Algorithm 

1. Choose an initial control vector 1: ,u K  and solve the forward model 

equation using the given initial condition 0(0) .x x  

2. Compute the states 1:x K  and the outputs 1:y K  using the system 

equation 1( , , )g u x x 0k k k k   and the  output equation 

( , , )h u x y 0k k k k 
 
respectively 

3. Store the computed dynamic states 

4. Compute the objective function of the forward simulation J using Eq. 

5.6; if converged stop, else continue 

5. Solve the adjoint model equation by computing the Lagrange 

multipliers 1: 1: 1:, , andμ λ υK K K  using equations (5.14), (5.13), and 

(5.12) 

6. Using the computed Lagrange multipliers, calculate the gradients of 

the objective function with respect to the controls 1:u KdJ d  in 

accordance to Eq. 5.11   

7. With the aid of the computed gradients, determine improved search 

direction and improved control vector 1: ,u K using a quasi-Newton 

algorithm (or any gradient-based algorithm of choice) 

8. Revert to step 2, and repeat all steps until all gradients are zero (or as 

close to zero as possible) 

 

Despite the popularity and computational efficiency of this technique, it is important to note 

that the optimal production trajectory resulting from the production optimization problem 

above is hardly attainable in practice, Saputelli et al. (2006), Rezapour (2009). Issues ranging 

from under-modeling to over-modeling of physics-based reservoir model; and the inherent 

range of geological uncertainty within the model translates to the inevitable reality that 

model-based optimal production trajectory are not realizable. To this end, a predictive control 

strategy that is based on data-driven model is employed in tracking the optimal trajectory that 

results from the well production optimization problem described above. 
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Figure 5.1: Flowchart showing the gradient-based optimization using the adjoint formulation. 

 

5.2 Embedded Trajectory Tracking and Control  

The embedded trajectory tracking is based on the control strategy known as model predictive 

control (MPC). The implementation of this control strategy rests on the fundamental control 

principle in which future control inputs and future process responses are predicted with the 

aid of data-driven models, and the results are optimized at regular sampling intervals with 

respect to an objective function.  In other words, the controller uses output measurements at 

sampling time k  to predict the dynamic behavior of the system over a finite control or 

prediction horizon and determines the input such that deviations from the performance 
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objective is minimized. For more information on MPC and its nonlinear extension – 

nonlinear model predictive control (NMPC), interested readers are referred to Allgower et al. 

(2000, 2004), Maciejowski (2002), Qin and Badgwell (2003), Camacho and Bordons (2007a, 

2007b), Findeisen et al. (2007), Huang and Kadali (2008) and Rawlings and Mayne (2009). 

 

Figure 5.2 shows a pictorial illustration of the control principle from the input and output 

viewpoints. The corrected control inputs 
2

1: 1 1
, ,...,u u u uK k k k k k N k  

  for a given prediction 

horizon are computed based on the well production settings optimization highlighted in the 

previous section, and the dynamic behavior of the process x
k i k

 is predicted for a control 

horizon as measurements y
k i k

 become available. 

FuturePast

FuturePast

input constraint

input constraint

output constraint

output constraint

u

3N

k 1k  2k  3k  4k  6k 2k  1k 3k  5k  7k 

Prediction Horizon
2N

Reference Profile

 Measured Output

Predicted Output

 

Figure 5.2: Illustrative representation of Model Predictive Control (MPC) from the input (upper) and 

        output (lower) viewpoints, adopted from Currie, (2011). 
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Note that , andu x y
k i k k i k k i k  

 respectively denote the input, state and output vectors at time 

,k i  predicted or measured (as the case may be) at time k. Feedback is technically 

incorporated by applying the obtained open-loop input until the next sampling time 1,k   at 

which the entire process of prediction and optimization is repeated. The MPC procedure is 

summarized in Algorithm 5.2. 

 

Algorithm 5.2 Model Predictive Control Algorithm 

1. Compute the estimates of the current state of the system at sampling 

time k  

2. Compute an admissible optimal input by minimizing the desired cost 

function over a prediction horizon using the system model and the 

current state estimate for prediction  

3. Implement the computed optimal input until the next sampling time 

1k   

4. Revert back to step 1  

 

Since MPC makes explicit use of a model to predict the future behavior of the process, it 

cannot be implemented without the identification of appropriate mathematical model of the 

process. To this end, nonlinear models are identified using MATLAB
®
 system identification 

toolbox. These data-driven nonlinear models have the ability to capture process nonlinearities 

when deployed in MPC strategies; however, they lead to computationally demanding NMPC. 

The high computational cost associated with NMPC stems from the fact that the often easy-

to-solve quadratic programming (QP) problem that results from linear MPC changes to a 

more challenging nonlinear programming (NLP) problem when the underlying model is 

nonlinear. Hence, it is imperative to strike a balance between the need to deploy data-driven 

nonlinear models that are capable of capturing the inherent nonlinear dynamics of the 

waterflooding process, and the need to avoid the computational cost of the challenging NLP 

problem that results from the use of nonlinear models and the ensuing NMPC. Consequently, 

the identified nonlinear model (which captures the salient nonlinearities of the process) is 

linearized into a state-space model about an operating regime defined by the state. This 

linearization is achieved by computing a first-order Taylor series approximation of the 

nonlinear model; and subsequently, the input, state and output operating points are included 

as biases inside the MPC controller. The resulting linearized models are often accurate in the 

neighborhood of the operating points, and importantly, they achieve better simulation fit 

when compared with simple linear models. Ultimately, this enables the controller to 

formulate the control problem in computationally friendly quadratic programming format. 
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In addition, it is noted that the evolving dynamic states of the identified model are of crucial 

importance in the implementation of MPC strategy. This is because a system usually evolves 

according to its state vector equations; therefore, any control strategy that is aimed at 

influencing future behavior must be based on the current dynamic state of the system. To this 

end, a Kalman Filter is introduced as an observer for state estimation of the linearized 

nonlinear model. 

 

5.2.1 Model Identification  

Developing a model that can adequately describe the relationship between the input and 

output data of the waterflooding process is the first step in this control problem. In system 

identification, the accuracy of the identified model to a large extent depends on the ―quality‖ 

of the original input-output experimental data. In other words, there is need for proper design 

of the input signal, and this should be tailored along the characteristics of the underlying 

physics of the first-principle white-box reservoir model. To achieve this, the experimental 

design espoused the procedure outlined in Andersson et al. (1998) and van Essen et al. 

(2010). In this regard, preliminary step-response and impulse-response experiments are 

carried out to assess the dynamics of the system. These preliminary investigations afford us 

the necessary information required to determine the system‘s time constant, time delay and 

nonlinearity. Thus, the input signals are excited with various step functions, and the 

corresponding outputs are measured accordingly. The experiment duration and the bandwidth 

of the system are determined by rule of thumb; such that the minimal time adopted for 

experiment duration is five-times the largest time constant, and the system bandwidth is equal 

to 1/(TsM) – where Ts is the sampling interval, and M is the number of sampling intervals. 

Furthermore, experimental data is pre-processed, and divided into distinct identification and 

validation data sets. In this regard, two-third of the experimental data was assigned for 

identification of the data-driven nonlinear model; while the remaining third is designated for 

validation purposes. 

 

5.2.2 State Estimation  

For effective MPC strategy, the evolving dynamic state of the linearized model is estimated 

using a state observer which estimates the current state of the model. Usually, Bayesian 

methods provide a general framework for state estimation, and the approach involves the use 
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of measurement datasets to estimate the probability density function (PDF) of the state. Thus, 

many state estimation algorithms involve the estimation of the PDF of system states that are 

not directly observable. Based on the current state, the next state is predicted and 

subsequently updated from available measurements. Because of their high efficiency, the 

Kalman Filter (KF) algorithm is employed for this purpose. State estimation of linear models 

using KF is a popular and well-known technique, Kailath et al. (2000). It is a recursive 

estimation procedure that uses sequential datasets in such a way that prior knowledge of the 

state (expressed by the covariance matrix) is improved at each step by taking the prior state 

estimates and new measurement data for subsequent state estimation, Tayamon (2012). 

 

Consider the discrete-time state space equation of the reservoir model in (3.48) and (3.49). If 

we recast the equations in the form:  

                                          1 ( ) ( )x A x x B x uk k k k k kw                                                    (5.19) 

                                            
( ) ( )y C x x D x uk k k k k kv                                                    (5.20) 

with  

                                  (0, ), (0, )k k k kw N Q v N R   

                                  ( ) ( )E
T

i j iw w Q i j    

                                    ( ) ( )E
T

i j iv v R i j    

                                   ( )E 0
T

k kw v    

 

where the vectors n

kw   and p

kv   are process noise and measurement noise – both 

vectors are uncorrelated white noises with zero mean value, E denotes the expected value 

operator,   is the Kronecker delta, and the matrices 
n nQ   and p pR   are the 

covariance matrices of the noise sequences of kw  and .kv  

 

According to Therrien (1992), the state and output are Gaussian if the model is linear and the 

input is Gaussian. Thus, the state and output PDFs will always be normally distributed, and 

what this means is that the mean and covariance are sufficient statistics. In other words, it is 

not necessary to calculate a full state PDF in order to estimate the state; a mean vector x̂  and 

covariance matrix P for the state will be sufficient. This is the underlying principle of the 

Kalman Filter. It is basically a Bayesian estimator decomposed into two steps, namely: the 

prediction step and the updating step, Orderud (2005). 
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The Kalman Filtering process is as follows: 

 

1. Prior to measurements or observation, the next state (priori estimate) is predicted 

according to the equation: 

 

                                              
1 1 1

ˆ ˆ( ) ( )x A x x B x uk k kk k k k  
                                               (5.21) 

                                              
1 1 1

( ) ( )A x A x
T

k k kk k k k
P P Q

  
                                             (5.22) 

 

2. After measurements become available, the state is updated (posteriori estimate) in 

accordance to the equation: 
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where K is the Kalman gain matrix, used in the update observer, and P is the covariance 

matrix for the state estimate, containing information about the accuracy of the estimate.  

 

5.2.3 MPC Problem Formulation  

In formulating the MPC problem, we consider the discrete-time state space equation of the 

reservoir model in (3.48). On the basis of the state-space equation, the dynamic state of the 

reservoir model x
k i k

 evolves according to the prediction model:  

                           1
( ) ( ) , 0,1,...x A x x B x u

k i k k i k k i k k i k k i k
i

     
                                   (5.26) 

                               ˆx xkk k
                                                                                                (5.27) 

where (5.27) defines the initial condition at the beginning of the prediction horizon. 

 

The control law is computed by minimizing a performance function which is given by:  

       
              

   

32
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
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 
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Q R

                                    (5.28) 

where y k  is a vector of measured outputs, N1 accounts for any possible delays in the input, 

and uk  is a vector of corrected inputs which effect is to minimize the discrepancy between 
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the actual measured output ,yk  and the reference trajectory rk . For all intents and purposes, 

the reference trajectory corresponds to the optimal output resulting from the well production 

settings optimization; the entire set up is illustrated in Figure 5.3.  

 

Note that Q and R are appropriate matrices that account for penalty weights in states and 

control prediction respectively. In this case, the cost function penalizes any deviations of the 

measured outputs from the expected output (reference trajectory); N2 and N3 are the 

prediction and control horizon respectively. Note that we assume that the horizon 3 2 ,N N  so 

that in all cases ˆu u 0
k i k k i k 

   for 3.i N   
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Figure 5.3: Schematic illustration of the working of MPC controller as modified from Currie (2011)  

 

If the predictive controller is expressed in control terms such that ˆ ˆ ;u u u
k k k k k k

    then Eq. 

5.28 can be reduced to:  

 

                      

2 2
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 and the matrices and are the 

extended weighing matrices which are respectively defined as follows: 
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By defining the variables as above, one can show that the controlled variables vector can take 

the form:  

                                    1
ˆ

k k kk k    x u                                                              (5.30)      

where the matrices ,   and   are appropriate functions of the state-space model.  

 

If we define a vector of future predicted errors by 1
ˆ ,x uk k kk k  Ψ R  then Eq. 5.29 can 

be expressed as: 

                                   1 2( )u
T

k k k kV const                                                (5.31) 

where 1 2 ,T

k Θ  2  Θ Θ  and neither 1  nor 2  depends on .k  

 

Given constraints in the form of: ; ;
0 0 0

1 0 1 0 1 0

k k k
E F G

           
                
             

(for 

appropriate matrices E, F and G); the constrained MPC problem becomes an optimization 

(minimization) problem as follows: 

                                                        1 2min T

k k k                          (5.32) 

                                                        subject to:      k    

where and   are derived from the constraints. Note that Eq. 5.32 is solved as a QP, as it 

has the general form: 

                                                        
1

min
2

T T                                           (5.33) 

                                                        subject to:          

 

The identification of nonlinear models from the process data is relatively easy, and so is the 

linearization (which is required to circumvent the complications associated with nonlinear 

models, and the challenges of NLP that result from NMPC) of the model. These properties 

were exploited because of the relative ease of solving the resulting QP. 
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5.3 Applications  

In this section, we consider two examples of the application of the well-rate optimization and 

control strategy in the maximization of the NPV of waterflooded reservoirs. In both cases, we 

begin with the well production optimization problem using a gradient optimization technique 

where the gradients are computed via the adjoint formulation as presented in section 5.1. 

Here, the input vector 1: 1 2, ,...u u u uK K  is iteratively adjusted until such a vector 

1: 1 2
ˆ , ,...u u u uK K

 
(optimal input vector) which maximizes the NPV (objective function) is 

attained. The associated output or total flow rates at the producers that yields a maximum 

value of the objective function corresponds to the optimal output 1: 1 2
ˆ , ,... ;y y y yK K  and for 

intents and purposes, this vector is set as the reference trajectory r of the predictive control 

strategy. With the aid of Eq. 5.28, the controller computes corrected input vector 

1: 1 2, ,...u u u uK K  such that any deviation between the measured output (resulting from the 

corrected inputs u ) and the reference trajectory r is as minimal as possible. 

 

5.3.1 Example 1: Reservoir model with an injector and a producer 

In the first example, we consider the optimization and control of the well settings in a 2-D 

reservoir model with two wells – an injector and a producer – which placements correspond 

with results from the second optimization run of HPSDE algorithm in sub-section 4.5.2. The 

2-D reservoir model has 50 50 1   grid-blocks of dimension 10m 10m 10m;   and this is 

depicted in Figure 5.4. The system contains oil and connate water with initial pressure and 

connate water saturation of 5150 10 Pa  and 0.2 respectively; both properties are assumed to 

be uniform throughout the reservoir model, and negligible capillary pressure effect is also 

assumed. The water injection well is constrained to operate between the bottom-hole pressure 

of 575 10 Pa   and  5100 10 Pa;  while the bottom hole pressure of the production wells are 

constrained to operate between 530 10 Pa  and 545 10 Pa.  Since the reservoir system is a 

two-phase oil and water flow model, we employ the Corey model for relative permeability. 

The Corey exponents are 2.45;o wn n  with relative permeability endpoints for oil and 

water 0.9 and 0.65 respectively. The relative permeability curve used is as depicted in 

Chapter 3 – see Figure 3.3; and the remaining system properties are given in Table 5.1.  
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With the aid of these information and the economic parameters given in Table 5.2; the 

reservoir is simulated for 500days at five time-steps of 100days, and the NPV for the well-

rate optimization is computed using gradient formulation as described in section 5.1. A total 

NPV of $2.371×10
6
 was attained in this example; this resulting NPV as well as the optimal 

control inputs for the simulation duration are shown in Figures 5.5 and 5.6 respectively. 

 

Figure 5.4: 2–Dimensional reservoir model 50×50×1 grid-blocks with two wells – an injector (blue) and a 

      producer (red) 

 

Table 5.1 Reservoir systems properties 

Properties Symbol Value 

Porosity   0.3 

Oil viscosity μo 10
-3 

Pas 

Water viscosity         μw 10
-3

 Pas
 

Oil density ρo 859 kgm
-3

 

Water density ρw 1014 kgm
-3

 

Oil compressibility         co 10
-10

 Pa
-1 

Water compressibility         cw 10
-10

 Pa
-1 

Rock compressibility         cr
 1.8×10

-10
 Pa

-1
 

 

Table 5.1: Reservoir system properties and their values 

 

Table 5.2 NPV computation parameters 

Parameters Symbol Value 

Price of oil p
oil

 $300∕m
3
 

Water production cost p
w,p

 $50∕m
3
 

Water injection cost p
i,p

 $25∕m
3
 

Discount factor D  0.1 

 

Table 5.2: NPV computation parameters for life-cycle optimization 



142 
 

0 1 2 3 4 5
2.28

2.3

2.32

2.34

2.36

2.38
x 10

6

Simulation time-step

N
e

t 
P

re
s
e

n
t 
V

a
lu

e
 (

N
P

V
) 

[$
]

Figure 5.5: Optimal NPV for BHP-constrained rate optimization of example 1 reservoir model  

 

Subsequently, the predictive control strategy is deployed to track actual production along the 

reference optimal NPV attained. This is necessary because as earlier explained; attaining the 

optimal NPV resulting from production optimization is not readily achievable by mere 

implementation of simulated optimal control inputs. To this end, a nonlinear model (a1) is 

identified using the system identification toolbox. The experimental design for identification 

data was carried out using ECLIPSE
®
 simulator, as this provided the enablement for easy grid-

block refinement which is required for the generation of persistently exciting signals. This 

signal type is of crucial importance in the identification of the data-driven model for the MPC 

strategy; it is more so if the salient nonlinearities of the process is to be captured.   

 

 

Figure 5.6: BHP control for duration of flooding of example 1 reservoir model 
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Following the system identification process, the identified nonlinear model is linearized into 

a state-space model (a2) by computing a first-order Taylor series approximation of the model. 

Using the same experimental data, a linear model (a3) is identified via subspace identification 

technique, the simulation fit of all three models (with respect to the measured output data) are 

plotted and shown in Figure 5.7 below. Interestingly, the simulation fit of the linearized 

nonlinear model with respect to measured data was better (albeit marginally) than  that of the 

linear subspace model. 
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a3; fit: 88.38%

Figure 5.7: Simulation fit of identified and linearized models with respect to measured output 

 

Now, designating the fluid rates at the producer as reference trajectory r, the predictive 

controller algorithm described in sub-section 5.2.3 is employed for the computation of 

corrected inputs such that the discrepancy between the actual measured outputs yk and the 

reference trajectory r is minimized. In so doing, the designated reference trajectory is fed (as 

input) into a model predictive control algorithm as pictorially described in Figure 5.3. It is 

instructive to note that the computed corrected inputs are based on the linearized nonlinear 

model – this linearized model strikes a good balance between process nonlinearity accuracy 

and computational affordability. Finally, the measured fluid rates resulting from the 

application of the corrected inputs on the physical reservoir and the fluid profile resulting 

from the direct application of the control inputs that resulted from the production 

optimization are used to compute NPV for the different scenarios. The computed NPVs from 

both scenarios are compared to the original optimal NPV that resulted from the production 

optimization; and the result of the comparison is shown in Figure 5.8. 
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Figure 5.8: NPV accrued from the application of MPC via linearized nonlinear model and NPV accrued

       from direct application of optimal control resulting from production optimization 
 

5.3.2 Example 2: Reservoir model with nine wells – three injectors 

           and six producers 
 

In this application, the physical reservoir model is a 3-D model with nine (3 injection and 6 

production) wells – with placements corresponding to results from the fifth optimization run 

of HPSDE algorithm in sub-section 4.5.3. The model has 50 50 8   number of grid-blocks 

of dimensions of 10m 10m 10m;   with nine vertically placed wells as depicted in Figure 

5.9. The reservoir system contains oil and connate water with initial pressure and saturation 

of 
5350 10 Pa  and 0.2  respectively; both  properties are  assumed to be uniform  throughout  

 

Figure 5.9: 3–Dimensional reservoir model 50×50×8 grid-blocks with nine wells – 3 injectors (blue) and 

                    6 producers (red) 
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the reservoir model, and negligible capillary pressure effect is also assumed. The water 

injection wells are constrained to operate between the bottom-hole pressure of 5100 10 Pa   

and  5140 10 Pa;  while the bottom hole pressure of the production wells are constrained to 

operate between 550 10 Pa  and 585 10 Pa.  Like in Example 1, relative permeability is 

based on Corey model, the exponents are given by 2.45;o wn n  and relative permeability 

endpoints for oil and water are 0.9 and 0.65 respectively. The remaining fluid and geological 

properties are same as given in Table 5.1.  
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Figure 5.10: Optimal NPV for BHP-constrained rate optimization of the reservoir model  

 

Figure 5.11: BHP control for duration of flooding of the reservoir 
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Now, using the above reservoir system properties and the economic parameters given in 

Table 5.2; the reservoir is simulated for 1000days at ten time-steps of 100days, and the NPV 

for the well-rate optimization is computed using the gradient method. The resulting NPV for 

this production optimization as well as the optimal control inputs are shown in Figures 5.10 

and 5.11 respectively. From Figure 5.10, the NPV attained after 1000days of production is 

$1.7850×10
8
; and the production wells fluid production profile that led to this NPV is shown 

in Figure 5.12. 

 

Figure 5.12: Optimum fluid production profile at the production wells 

 

In order to track the fluid production profile of the physical reservoir along this optimal NPV, 

a nonlinear model (b1) was identified. Like in the preceding example, the production 

optimization simulation was performed using MRST
®
 simulator; however, because of the 

non-availability of grid-refinement functionality on MRST
® platform, the data-driven model 

identification experimental design was conducted using the ECLIPSE
®
 simulator – as this 

provides the enablement for easy grid refinement, a requirement for generation of persistently 

exciting signals. The identification of the model is followed by a linearization process in 

which the nonlinear model is linearized into a state-space model (b2); and a linear model (b3) 

is identified from the same experimental data using subspace identification technique. Figure 

5.13 shows the simulation fit of b1, b2 and b3 with respect to the measured output data. 
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Figure 5.13: Simulation fit of identified and linearized models with respect to measured output 

 

Now, the production optimization output that yielded the maximum NPV is subsequently 

designated the reference trajectory and fed into the predictive controller as described in 

Figure 5.3; for the purpose of computing corrected inputs which minimizes the difference 

between the actual measured outputs and the reference trajectory. Note that the data-driven 

model employed for the computation of corrected input in the MPC strategy is the linearized 

nonlinear model. The simulation fit shown in Figure 5.13 indicates that this model strikes a 

good balance between model accuracy and computational complexity. 

 

The measured fluid rates resulting from the MPC-based control are recorded and plotted. For 

comparison purposes, the producers‘ fluid profile resulting from the direct application of the 

uncorrected control inputs that resulted from the production optimization are recorded and 

plotted as well. The production wells fluid profile for both scenarios are shown in Figures 

5.14 and 5.15 respectively. These fluid profiles are used for the computation of the NPVs that 

correspond to the different scenario. While a total NPV of $177.91×10
6
 was attained from 

the scenario that involved embedding an MPC controller, the NPV accrued from the scenario 

that was devoid of MPC strategy – i.e. that which involves the direct application of the 

uncorrected optimal control inputs resulting from the production optimization loop – was 

$176.67×10
6
.  The improvement in the value of the objective function and the nearness of 
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this value to the original NPV resulting from the production optimization exercise reinforces 

the needfulness of this control strategy within production optimization framework. 

 

 

Figure 5.14: Measured fluid production profile at the production wells via linearized nonlinear model 

 

 
Figure 5.15: Measured fluid production profile at the production wells via the direct application of the 

        optimal control input resulting from production optimization and devoid of MPC  
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Finally, the resulting NPV from the produced volumes arising from the different scenarios, 

are plotted and compared with the original optimal NPV arising from the production 

optimization; this is shown in Figure 5.16.  
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Figure 5.16: NPV accrued from the application of MPC based on linearized nonlinear model and NPV 

        accrued from direct application of optimal control resulting from production optimization 

 

 

 

5.4 Discussion 

In the two examples considered in this chapter, the NPV attained by the implementation of 

the corrected controls resulting from MPC strategies based on linearized nonlinear models are 

$2.368×10
6
 and $177.91×10

6
 for Examples 1 and 2 respectively. Although these values are 

smaller than the optimal simulated NPV; they represent an improvement when compared to 

the NPV of $2.367×10
6
 (for Example 1), and $176.67×10

6
 (for Example 2) that was 

achieved by direct application of the control inputs emanating from the two production 

optimization examples. On the evidence of Figures 5.8 and 5.16, it can be inferred that an 

embedded linearized nonlinear model based MPC loop in production optimization problems 

can significantly enhance the potential to attain as near as possible, the optimal production 

trajectory resulting from the simulated production optimization loop. 

 

Although the improvement recorded in the reservoir model with a single injection well and a 

single production well was not as remarkable as the improvement recorded in Example 2; the 

fact remains that there is a scope for the improvement of cumulative oil production and 
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therefore, the NPV of oil field assets, by the application of corrected control inputs resulting 

from the implementation of MPC. With respect to the NPV accrued by direct application of 

the control input from the production optimization loops, there was an improvement of 0.04% 

in the NPV in first application, and the improvement in the NPV recorded in the second 

application is in the tune of 0.7%. To put these figures or percentages into perspective, it is 

worthy to note the fact that the E&P industry is an industry where an improvement in 

recovery or economic outcome by as little as a fraction of 1% translates into profits in the 

order of tens or hundreds of millions of dollars. Against this backdrop, an improvement in 

NPV by as little as 0.04% as recorded in Example 1 is by no means trivial.  

 

5.5 Summary 

The focus on this chapter was production optimization and control for waterflooded reservoir 

models with a defined well configuration. It was pointed out that a number of techniques 

have been employed in attempts at solving production optimization problem in the petroleum 

industry, and of these techniques, the most reliable is the gradient-based approach – where 

the gradients of the objective function with respect to control variables are computed using 

adjoint formulations. The reliability of this approach stems from the fact that the computation 

of the derivatives requires only two simulation runs, regardless of the number of decision 

variables. In implementing this computational-friendly approach, we espoused the approach 

presented in Sarma (2005) and Jansen (2012).  

 

However, because the optimal trajectory resulting from production optimization exercises is 

hardly attainable, there is need to employ a path tracking control strategy that computes 

corrected control inputs that minimize the difference between actual production profiles and 

the optimal simulated results. To this end, an MPC algorithm was used to compute corrected 

inputs that minimize the discrepancy between the optimal trajectory (resulting from 

production optimization) and actual production profile. Usually, such predictive control 

strategy is implemented with the aid of simple data-driven linear models which leads to easy-

to-implement QP problems. However, since the dynamics of the waterflooding process is 

inherently nonlinear, it is essential that such nonlinearities are reflected in the underlying 

models for the predictive controller strategy. Despite their higher accuracy, the use of such 

data-driven nonlinear models lead to more complex NMPC and challenging NLP problems. 

In other words, inasmuch as the importance of employing nonlinear models (from the view 
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point of accuracy) is underscored; one must not lose sight of the fact that it is much attractive 

(from the computational cost view-point) to employ simple linear models that possess easy-

to-implement controller-design properties. Striking the appropriate balance between accuracy 

and complexity necessitated the use of linearized nonlinear models. The choice of this model 

type stems from their ability to capture process nonlinearity and importantly, the fact that 

they can be deployed in linear MPC if they are adequately linearized in the local 

neighborhood of an operating point defined by the state of the physical system. 
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CHAPTER 6 
No matter how strong or great man is, he should never challenge his chi – Chinua Achebe 

 

CONCLUSION AND FUTURE WORK DIRECTION 

As outlined at the outset of this thesis, the main objective of this research is to develop and 

deploy efficient optimization, control and estimation techniques that would lead to the 

maximization of hydrocarbon reservoir recovery factor within the ambit of model-based 

closed-loop reservoir management framework. In this chapter, a summary of the findings of 

this work is presented as conclusion, the limitations and scope for improvements are spelt-out 

and finally, we end by outlining future work directions. 

 

6.1 Conclusions 

In this thesis, it was established that one of the fall-outs of the unprecedented rise in world 

population and robust economic growth in China, India and other emerging economies is the 

monumental and continuing rise in global energy demand and per capita energy utilization. 

Considering that oil is the most sought-after energy resource and the fact that it is a non-

renewable resource; there is need to develop efficient techniques that would maximize the 

recovery factor of existing and new oil reservoirs. In addition, the need to develop efficient 

techniques and strategies for improved recovery of oil from reservoirs is further reinforced if 

we consider the fact that all credible forecasts on projected global energy demand point to the 

inevitability of further increase in the demand of this energy resource in the coming decades. 

 

Although it was noted that there are quite a number of ways that would ultimately lead to 

increased cumulative production of oil, the focus in this research is on defined optimization, 

control and estimation techniques within a closed-loop reservoir management framework. 

The two foci of this work are field development optimization (well placement problem) and 

production settings optimization and control. 
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6.2 Well Placement Optimization 

The importance of well placement optimization was highlighted; it was argued that it is by far 

the most important field development decision input – as it can ultimately determine the 

reservoir‘s production profile, and therefore, the recoverability of the reservoir. Overall, three 

different problems involving the placements of vertical wells in reservoir models of varying 

complexities were considered. The differential evolution (DE) and particle swarm 

optimization (PSO) algorithms were applied in all of these problems, and the results 

emanating from both algorithms were compared with the results obtained via the application 

of a third metaheuristic algorithm – hybrid particle swarm differential evolution (HPSDE) – 

which is a product of the hybridization of DE and PSO algorithms. Using a discounted net 

present value (NPV) as objective function, the hybrid algorithm consistently outperformed 

both the DE and PSO algorithms in all three problems considered in this problem domain. In 

addition, the issue of geological uncertainty arising from the discrepancy between the real 

physical reservoir and the reservoir model was considered in two of the three problems. In 

this regards, a max-mean objective robust optimization of the objective function was 

performed; and in both cases, the HPSDE algorithm yielded better results than the duo of DE 

and PSO. In one of the problems considered, the performance measures of the metaheuristic 

algorithms were compared with the NPV attained via a number of specific well pattern 

arrangements. In this regard, the inverted five-spot, inverted seven-spot and the inverted nine-

spot patterns were considered; and the interestingly, all three stochastic algorithms yielded 

higher NPV than the specific well pattern arrangements. The HPSDE algorithm was further 

compared with more established optimization techniques such as linear programming (LP) 

and genetic algorithm (GA); but none of both algorithms achieved results that are comparable 

to HPSDE. However, the GA attained results that were comparable with PSO and to an 

extent DE; the performance of LP fell way behind the performance of all the stochastic 

algorithms considered in this work. Also, because the ‗parent‘ algorithms that gave birth to 

HPSDE are both global algorithms; we further compared the performance of HPSDE against 

the results from another hybrid algorithm created by the hybridization of a global algorithm 

(PSO) and a local search (TS) algorithm. Although the new hybrid algorithm outperformed 

DE, PSO and GA algorithms (in that order); its performance fell behind HPSDE by 2.6%. It 

was also demonstrated that the relative performance of any one of DE and PSO with respect 

to the other is fundamentally dependent on the total number of simulations as there was a 

marked variation in their performance in early, mid and later stages of simulation. In this 



154 
 

regard, DE often attained higher performance value than PSO at very low and very high 

number of total simulation. To further investigate the performance of these stochastic 

algorithms, their computational complexities were analyzed in terms of runtime and space 

complexities. The algorithms were also tested on six benchmark problems which reflected 

opposite sides of complexity factors such as modality, separability and scalability. Using 

statistical indices as quality indicators, HPSDE algorithm outperformed both DE and PSO 

algorithms in all but one of the benchmark test functions. Also, the experimental results 

emanating from HPSDE algorithm yielded the lowest standard deviation in all six benchmark 

tests; this implies that the probability of attaining better results is higher with HPSDE 

algorithm than the other two algorithms.  

 

6.2.1 Limitations  

Although it is noted that the findings regarding the deployment of HPSDE algorithm in field 

development optimization are interesting and potentially useful; it is acknowledged that there 

are limitations that still have to be addressed. Chief among these limitations is the issue of 

control parameters tuning. In the three problems considered, all three algorithms were 

deployed without any form of parameter tuning. It is noted that the DE parameters (F = 0.5, 

CR = 0.1) used in this work are adopted from Storn and Price (1997) and the PSO parameters 

1 2( 1.193, 0.721)c c     are adopted from Onwunalu and Durlofsky (2010). For instance, 

in the second and third examples, there are instances where DE outperformed PSO, and vice 

versa. It is important to understand how these behaviors are influenced by relevant control 

parameters of the underlying metaheuristic algorithm. 

 

Another limitation is the issue of usability in practical field development optimization 

scenarios. This is so because the viability of hybridized metaheuristic optimization algorithm 

such as HPSDE as a serious alternative in practical field development scenarios and indeed in 

other reservoir engineering problem domains; depends to some extent on their relative ease-

of-implementation in practice. Thus, the issues of usability have to be addressed before these 

algorithms can be deployed for practical use in the industry. In a sense, the usability 

limitation is intertwined with parameter tuning. It is noted that the usability of HPSDE 

algorithms would be greatly enhanced if the issue of parameter tuning is sorted out at the 

design-end (against the user-end) of the algorithm. This is so because it is generally 
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unrealistic for industrial end-users to waste expensive function evaluations in correcting the 

weakness of the design phase of an algorithm. 

 

Also, while it is acknowledged that there are many sources of uncertainty in petroleum 

reservoir models; this work assumed that the only source of uncertainty is the permeability 

distribution of the reservoir model. It is important to investigate the effects of other sources of 

uncertainty. Finally, it is important to point out that the reservoir models in all of the three 

applications considered in this problem domain were synthetic or laboratory model. The use 

of real reservoir models would surely bring the deployment of HPSDE algorithm in real field 

development optimization scenarios closer to fruition.  

 

6.2.2 Recommendations and Scope for Improvement 

Based on the limitations highlighted above, the following recommendations are suggested as 

they would invariably improve the scope of the deployment of the algorithm in practical 

reservoir engineering field development optimization problems  

 effective control parameter tuning to further improve algorithmic performance 

 incorporation of prior-knowledge such as problem structure and other relevant 

information about the underlying optimization problem into the algorithm 

 since this algorithm is population based, it is desirable to incorporate techniques or 

mathematical concepts that would increase the diversity of the population 

 deployment of the algorithm in real reservoir models at the development stage of its 

life-cycle 

 the use of the algorithm in conjunction with 4-D seismic data for optimal placement 

of infill wells 

 besides the placement optimization for vertical wells, well trajectory optimization for 

deviated wells may also be tackled using HPSDE algorithm    

 it is important to investigate the effects of other sources of uncertainty in the reservoir 

models, a situation where the permeability distribution of the reservoir is assumed to 

be the only source of uncertainty is certainly fraught with inaccuracies  

 it is equally important to re-define the system and the system boundary so that the 

system is not restricted to our assumption of two-phase flow; and the system 

boundary may be extended to include the surface facilities as well as the interaction 
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between the fluid flowing from the reservoir into the wellbore and indeed into the 

surface facilities 

 

6.3 Production Optimization and Control  

In production optimization and control, the focus was on hydrocarbon production 

optimization and control for waterflooded reservoir models with defined well configuration. 

We pointed out that a number of techniques have been employed in attempts at solving this 

optimization problem, and that of these techniques; the most reliable is the gradient-based 

approach where the gradients of the objective function with respect to control are computed 

using adjoint formulations. The reliability of this approach stems from the fact that the 

computation of the derivatives requires only two simulation runs, irrespective of the number 

of decision variables. In implementing this computationally-friendly approach, we espoused 

the approach advocated in Sarma (2005) and Jansen (2012). Despite the aforementioned 

computational efficiency of this approach, the optimal trajectory arising from the production 

optimization is hardly attainable. To this end, a predictive controller algorithm was used to 

compute corrected inputs such that the discrepancy between the optimal trajectory (resulting 

from production optimization) and actual production profile is minimized. Usually, such 

predictive control strategy is implemented with the aid of simple data-driven linear models. 

However, the dynamics of the waterflooding process is nonlinear, it is essential that such 

nonlinearities are reflected in the underlying models for any predictive controller strategy. 

The use of linear models in MPC strategies leads easy-to-implement QP problems, while 

nonlinear data-driven models lead to NMPC and its associated complex NLP problems. In as 

much as nonlinear models are good for accuracy reasons, there is need to ‗circumvent‘ the 

hassles associated with NLPs. Striking the appropriate balance between accuracy and 

complexity necessitated the use of linearized nonlinear models. In the examples considered, 

improved NPVs were achieved by the implementation of the corrected control inputs 

resulting from this control strategy as against the results obtained by direct application of the 

controls resulting from production optimization exercise. Therefore, an MPC strategy which 

is based on linearized nonlinear models enhances the opportunity to attain as near as possible, 

the optimal production trajectory resulting from simulated production optimization. Although 

the results were promising and potentially useful, there are limitations and issues that still 

need to be addressed; these are issues and limitations are discussed in the next sub-section. 
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6.3.1 Limitations  

The use of model predictive control strategy to attain optimal or near optimal production 

trajectory can potentially play a significant role in waterflooding production operations and 

indeed in other production operation strategies, as have been the case in the downstream 

refining and marketing sector.  However, there are limitations that still need to be addressed. 

These limitations include simplifications such as the assumption that process noise and 

measurement noise are absent. It is important to note that this is an ideal condition that is 

hardly the case in practical field production situations. With the introduction of measurement 

and process noise, it will be interesting to study the outcomes resulting from the identification 

of different sets of model structures, as well as other linearization techniques to see if they 

will be provide better approximations of the underlying process model. Also, in espousing 

Andersson et al. (1998) in the experimental design, the use of rules of thumb as suggested 

therein is a limitation of its own. Indeed, there is need to avoid such trial-and-error approach 

during design of experiment for the identification of ‗acceptable‘ models, as this would 

inevitable enhance the quality of the models. 

 

Another limitation in this work is the use of total fluid rate at the producers as output. In our 

view, it will be interesting to investigate the use of fractional flow rates of oil by introducing 

fractional flow meters or separators in the flow system. Again, it is important to point out that 

the reservoir models in the applications considered in this chapter were synthetic models. The 

implementation of this optimization and control approach on real reservoir models would be 

of interest in terms of making more generalized and far-reaching conclusions.  

 

6.3.2 Recommendations and Scope for Improvement 

Based on the limitations highlight above, the following recommendations are suggested:  

 introducing process noise and measurement noise into the system as these are 

inevitable realities in real oil field waterflooding production scenario  

 the deployment of predictive control strategy in real reservoir models 

 it is equally important to re-define the system and the system boundary so that the 

system is not restricted to our assumption of two-phase flow, and the system boundary 
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is extended to include the surface facilities and the prevailing interaction between the 

fluid flowing from the reservoir into the wellbore and indeed into the surface facilities  

 the use of other model structures and other linearization approaches  

 other ways of achieving non-prohibitive computational complexity without sacrificing 

accuracy and easy-to-implement properties 

 

6.4 Future Work Directions 

In the future, we intend to improve this work by implementing dual-purpose optimization 

strategies in the well placement optimization problem. Dual-purpose optimization strategies 

consist of superficial and ultimate optimization procedures. The purpose of the ‗superficial‘ 

optimization is to determine optimum values for the HPSDE algorithm control parameters, 

after which the ‗ultimate‘ optimization is activated for solving the well configuration 

problem. In other words, the optimum control parameter values resulting from the embedded 

‗superficial‘ optimization are subsequently used in the ‗ultimate‘ optimization loop to solve 

the given well configuration problem. This algorithm will also be extended to well trajectory 

optimization. In this regard, we will explore its applicability and effectiveness in multilateral 

and deviated wells problems. Furthermore, we intend to explore the application of HPSDE 

algorithm in a combined well placement and well rate optimization problem. Although the 

potential computational cost of the combined optimization problem could be prohibitive; it is 

however, expected that such high computational cost would be met by the deployment of 

surrogate models and the use of multi-processor parallel computing resources. 

 

We also intend to carry out further study in data-driven identification of other nonlinear 

model structures that would not sacrifice process nonlinearities.  We will also investigate the 

potential benefit of other linearization techniques, with the view that resulting linearized 

models are compact, accurate and robust. This will no doubt improve the use of data-driven 

MPC strategies in reservoir production operations. With the recent release of the Brugge 

Field data (as made available to us by The Netherlands Organization for Applied Scientific 

Research) we intend to apply these techniques to a real reservoir model; importantly, since 

the production history data is available, we will investigate the performance of HPSDE at 

finding reservoir model parameter values that minimizes an objective function that represents 

the mismatch between simulated and measured production.  
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Overall, this thesis promotes a non-discriminant use of system-theoretic concepts as well as 

metaheuristic and deterministic based algorithms within the ambit of a closed-loop reservoir 

management framework. All these will in no small way create the enablement for the 

transition of this approach from laboratory to field applications. 
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APPENDICES 

function [xpt, ftp, stat] = wellopt1(objfct,D,K,Xmin,Xmax,param,strategy) 

% source code for differential evolution algorithm 

% for a D-dimensional maximization problem with the search space % bounded by a box 

% 

% Input: 

% objfct - a handle to the objective function 

% D - the number of dimensions 

% Xmin - the lower bounds of the box constraints 

% Xmax - the upper bounds of the box constraints 

% K - the number of function evaluations used 

% by the optimization algorithm 

% epsilon - not applicable: set it to -1 

% strategy – rand/1/bin 

% involves a process where mutation target is randomly selected from target and mutation  

% performed using a single vector as well as a uniform binomial crossover 

% param - a MATLAB structure containing algorithm 

% control input parameters 

%   Np – population of candidate solution 

%   F – scaling factor 

%   CR – crossover rate  

% 

% Output: 

% xpt - a vector containing the location of the optimum 

% fpt - the objective function value of the optimum 

% stat - a MATLAB structure containing algorithm 

% specific output statistics 

%   histf - the best objective function value history 

% 

% Parameter Settings 

if epsilon ~= -1 

    warning ('pso : epsilon_ignored', 'epsilon is ignored') 

end 

% Np (population number) >= 10 

if isfield (param,'Np') 

    Np = param.Np; 

else 

    Np >= 10; 

end 

% F (scaling factor) = 0.5 

if isfield (param, 'F') 
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    F = param.F; 

else 

    F = 0.5; 

end 

% CR (crossover rate) = 0.1 

if isfield (param, 'CR') 

    CR = param.CR; 

else 

    CR = 0.1; 

end 

% Population Initialization 

for i=1:Np 

    for j=1:D 

        A(1,i,j)=Xmin(j) + (rand*(Xmax(j)-Xmin(j))); 

    end 

end 

for i=1:Np 

    sum(1,i) = 0; 

    for j=2:D 

        sum(1,i)= sum(1,i)+A(1,i,j); 

    end 

    objfct1(1,i)= A(1,i,1); 

    objfct2(1,i)= g(1,i).*(1-(sqrt(A(1,i,1)/g(1,i)))); 

end 

for k = 1:K 

    for i=1:Np 

        sum(k,i) = 0; 

        for j=2:D 

            sum(k,i)= sum(k,i)+A(k,i,j); 

        end 

        g(k,i) = 1 + ((9/(D-1)).*sum(k,i)); 

        objfct2(k,i)= g(k,i)*(1-((objfun1(k,i)/g(k,i))^2)); 

        objfct1(k,i)= A(k,i,1); 

        objfct2(k,i)= g(k,i).*(1-(sqrt(A(k,i,1)/g(k,i)))); 

        %Mutation Process 

        r=randperm(Np); 

        if (r(1)==i) 

            r(1)=r(Np-n); 

        end 

        if (r(2)==i) 

            r(2)==r(Np-(n+1)); 

        end 

        if (r(3)==i) 
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            r(3)=r(Np-(n+2)); 

        end 

        for j=1:D 

            if str == 1 

                U(k,i,j)=A(k,r(1),j)+F*((A(k,r(2),j))-(A(k,r(3),j))); 

            end 

            if U(k,i,j)<lb(j) 

                U(k,i,j)=Xmin(j);%+ (rand*(Xmax(j)-Xmin(j))); 

            end 

            if U(k,i,j)>Xmax(j) 

                U(k,i,j)=Xmax(j);%Xmin(j)+ (rand*(Xmax(j)-Xmin(j))); 

            end 

        end 

    end 

    %Binomial Crossover Process 

    % 

    for i = 1:Np 

        if crossover == 2 

            for j=1:D  

                p=rand; 

                w=randperm(D-1); 

                if ((p<=CR)|(j==w(1))) 

                    T(k,i,j)=U(k,i,j); 

                else 

                    T(k,i,j)=A(k,i,j); 

                end 

            end 

        end 

    end 

    %Evaluating Objective Function for Selection 

    for i=1:Np 

        for j=1:D 

            A(1,i,j)=lb(j) + (rand*(ub(j)-lb(j))); 

        end 

    end 

    for k = 1:K 

        for i=1:Np 

            if str == 1 

                U(k,i,j)=A(k,r(1),j)+F*((A(k,r(2),j))-(A(k,r(3),j))); 

            end 

            if U(k,i,j)<Xmin(j) 

                U(k,i,j)=Xmin(j);%+ (rand*(Xmax(j)-Xmin(j))); 

            end 
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            if U(k,i,j)>Xmax(j) 

                U(k,i,j)=Xmax(j);%Xmin(j)+ (rand*(Xmax(j)-Xmin(j))); 

            end 

        end 

    end 

end 

end 
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function [xpt, fpt, stat] = wellopt2(objfct, D, lb, ub, nfe, epsilon, param) 

  

% source code for particle swarm optimization algorithm 

% for a D-dimensional maximization problem with the search space % bounded by a box 

% 

% Input: 

% objfct - a handle to the objective function 

% D - the number of dimensions 

% lb - the lower bounds of the box constraints 

% ub - the upper bounds of the box constraints 

% nfe - the number of function evaluations used 

% by the optimization algorithm 

% epsilon - not applicable: set it to -1 

% param - a MATLAB structure containing algorithm 

% control input parameters 

%   Np - number of particles in the swarm 

%   c1 - cognitive parameter 

%   c2 - social parameter 

%   nbh - neighborhood incidence matrix of the swarm population 

%   inw – inertia weight  

% 

% Output: 

% xpt - a vector containing the location of the optimum 

% fpt - the objective function value of the optimum 

% stat - a MATLAB structure containing algorithm 

% specific output statistics 

%   histf - the best objective function value history 

% 

% Parameter Settings 

if epsilon ~= -1 

    warning ('pso : epsilon_ignored', 'epsilon is ignored') 

end 

% Np (particle count) >= 10 

if isfield (param,'Np') 

    Np = param.Np; 

else 

    Np >= 10; 

end 

% inw (inertia weight) = 0.721 

if isfield (param, 'inw') 

    inw = param.inw; 

else 

    inw= 0.721; 
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end 

% c1 (cognitive parameter) = 1.193 

if isfield (param, 'c1') 

    c1 = param.c1; 

else 

    c1 = 1.193; 

end 

% c2 (social parameter) = 1.193 

if isfield (param, 'c2') 

    c2 = param.c2; 

else 

    c2 = 1.193; 

end 

% nbh (neighbourhood matrix) initialization at local best topology 

if isfield (param,'nbh') 

    nbh = param.nbh; 

else 

    nbh = nbh_local_best (Np); 

end 

% Swarm Population Initialization 

% Initialize v (velocity) uniform and randomly between lb and ub 

v = repmat (lb', Np, 1) + repmat (ub'-lb', Np, 1).*rand (Np, D); 

% 

% Initialize x (position) uniform randomly between lb and ub 

x = repmat (lb', Np, 1) + repmat (ub'-lb', Np, 1).*rand (Np, D); 

% 

% Initially the personal best position is the starting position 

p = x; 

% 

% Initialize the personal best objective function evaluation to infinity to always allow 

improvement 

p_best = ones (Np, 1)*Inf; 

% 

% Initialize the number of objective function evaluations to one 

evalcount = 1; 

% 

% Preallocate an array that will hold the objective function evaluations 

f = zeros (Np, 1); 

% 

% Preallocate the stat.histf array 

stat = struct (); 

stat.histf = zeros (nfe, 1); 

% 
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% Loop while number of objective function evaluations does not exceeds the stop criterion 

while evalcount < nfe 

    % 

    % Evaluate for all particles the objective function 

    for i = 1 : Np 

        f(i) = feval (objfct, x(i, :)); 

        % 

        % Update stat.histf array 

        stat.histf (evalcount + i) = max (f); 

    end 

    % 

    % Update the personal best positions if the current position is better than the current 

personal best position 

    p = repmat (f < p_best, 1, N).*x + repmat (~( f < p_best ), 1, D).*p; 

    % 

    % Update the personal best objective function evaluation 

    p_best = max(f, p_best); 

    % 

    % Calculate the best particle in each neighborhood 

    [l_best, g] = max( repmat (p_best, 1, Np).*nbh); 

    % 

    % Update the velocities using velocity update equation 

    for i = 1 : Np 

        v = inw*(v +(p - x).*rand(Np,D)*c1+(p(g,:)- x).*rand(Np,D) * c2); 

    end 

    % Update the positions 

    x = x + v; 

    % Update the number of objective function evaluations used 

    evalcount = evalcount + Np; 

end 

% Select the optimum from the personal best objective function evaluations 

[fopt , g] = min (p_best ); 

% Select the optimum solution 

xopt = p(g, :) 

end 
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function [nbh] = nbh_local_best (Np) 

  

% source code for generating local best ring topology neighborhood in PSO  algorithm 

% for a swarm population Np 

  

% [nbh] = nbh_local_best (Np) 

% Local Neighborhood Incidence Matrix Generator 

% creates an incidence matrix of a ring topology of size NpxNp 

% note: incidence is reflexive 

% 

% Input: 

% Np - the number of particles 

% 

% Output: 

% nbh - the incidence matrix:  

% 0 represents no incidence 

% 1 represents an incidence 

nbh = diag (ones (Np, 1)) + diag (ones (Np - 1, 1), 1) + diag ( ones (Np - 1, 1), -1) + ... 

diag ( ones (1, 1), Np - 1) + diag ( ones (1, 1), -(Np - 1)); 

end 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



183 
 

function [xpt, ftp, stat] = wellopt3(objfct,D,K,Xmin,Xmax,param,strategy) 

  

% source code for hybrid particle swarm differential evolution algorithm 

% for a D-dimensional maximization problem with the search space % bounded by a box 

% 

% Input: 

% objfct - a handle to the objective function 

% D - the number of dimensions 

% Xmin - the lower bounds of the box constraints 

% Xmax - the upper bounds of the box constraints 

% K - the number of function evaluations used 

% by the optimization algorithm 

% epsilon - not applicable: set it to -1 

% strategy – rand/1/bin 

% involves a process where mutation target is randomly selected from target and mutation is 

% % performed using a single vector as well as a uniform binomial crossover 

% param - a MATLAB structure containing algorithm 

% control input parameters 

%   Np – population of candidate solution 

%   F – scaling factor 

%   CR – crossover rate 

%   c1 - cognitive parameter 

%   c2 - social parameter 

%   nbh - neighborhood incidence matrix of the swarm population 

%   inw – inertia weight  

% 

% Output: 

% xpt - a vector containing the location of the optimum 

% fpt - the objective function value of the optimum 

% stat - a MATLAB structure containing algorithm 

% specific output statistics 

%   histf - the best objective function value history 

% 

% Parameter Settings 

if epsilon ~= -1 

    warning ('pso : epsilon_ignored', 'epsilon is ignored') 

end 

% Np (population number) >= 10 

if isfield (param,'Np') 

    Np = param.Np; 

else 

    Np >= 10; 

end 
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% F (scaling factor) = 0.5 

if isfield (param, 'F') 

    F = param.F; 

else 

    F = 0.5; 

end 

% CR (crossover rate) = 0.1 

if isfield (param, 'CR') 

    CR = param.CR; 

else 

CR = 0.1; 

end  

  

% inw (inertia weight) = 0.721 

if isfield (param, 'inw') 

    inw = param.inw; 

else 

    inw= 0.721; 

end  

  

% c1 (cognitive parameter) = 1.193 

if isfield (param, 'c1') 

    c1 = param.c1; 

else 

    c1 = 1.193; 

end 

% c2 (social parameter) = 1.193 

if isfield (param, 'c2') 

    c2 = param.c2; 

else 

    c2 = 1.193; 

end 

% nbh (neighbourhood matrix) initialization at local best topology 

if isfield (param,'nbh') 

    nbh = param.nbh; 

else 

    nbh = nbh_local_best (Np); 

end 

  

% Population Initialization 

for i=1:Np 

    for j=1:D  

        A(1,i,j)=Xmin(j) + (rand*(Xmax(j)-Xmin(j))); 
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    end 

end 

for i=1:Np 

    sum(1,i) = 0; 

    for j=2:D 

        sum(1,i)= sum(1,i)+A(1,i,j);  

    end 

    objfct1(1,i)= A(1,i,1); 

    objfct2(1,i)= g(1,i).*(1-(sqrt(A(1,i,1)/g(1,i)))); 

end 

for k = 1:K 

    for i=1:Np 

        sum(k,i) = 0; 

        for j=2:D 

            sum(k,i)= sum(k,i)+A(k,i,j); 

        end 

        g(k,i) = 1 + ((9/(D-1)).*sum(k,i)); 

        objfct2(k,i)= g(k,i)*(1-((objfun1(k,i)/g(k,i))^2)); 

        objfct1(k,i)= A(k,i,1); 

        objfct2(k,i)= g(k,i).*(1-(sqrt(A(k,i,1)/g(k,i)))); 

         

        %Mutation Process 

        r=randperm(Np); 

        if (r(1)==i)  

            r(1)=r(Np-n); 

        end 

        if (r(2)==i) 

            r(2)==r(Np-(n+1)); 

        end 

        if (r(3)==i) 

            r(3)=r(Np-(n+2)); 

        end 

        for j=1:D 

            if str == 1 

                U(k,i,j)=A(k,r(1),j)+F*((A(k,r(2),j))-(A(k,r(3),j))); 

            end 

            if U(k,i,j)<lb(j) 

                U(k,i,j)=Xmin(j);%+ (rand*(Xmax(j)-Xmin(j))); 

            end 

            if U(k,i,j)>Xmax(j) 

                U(k,i,j)=Xmax(j);%Xmin(j)+ (rand*(Xmax(j)-Xmin(j))); 

            end 

        end 
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    end 

    %Binomial Crossover Process 

    % 

    for i = 1:Np  

        if crossover == 2 

            for j=1:D 

                p=rand; 

                w=randperm(D-1); 

                if ((p<=CR)|(j==w(1))) 

                    T(k,i,j)=U(k,i,j); 

                    else p = repmat (f < p_best, 1, N).*x + repmat (~( f <  p_best ), 1,D).*p; 

                        % 

                        % Update the personal best objective function evaluation 

                        p_best = max(f, p_best); 

                        % 

                        % Calculate the best particle in each neighborhood 

                        [l_best, g] = max( repmat (p_best, 1, Np).*nbh); 

                        % 

                        % Update the velocities using velocity update equation 

                        for i = 1 : Np 

                            v = inw*(v + (p - x).* rand (Np, D) * c1 + (p(g, :) -   x) .*rand (Np, D) * c2); 

                        end 

                        % Update the positions 

                        x = x + v; 

                        % Update the number of objective function evaluations used 

                        evalcount = evalcount + Np; 

                end 

                % Select the optimum from the personal best objective function evaluations 

                [fopt , g] = min (p_best ); 

                % Select the optimum solution 

                xopt = p(g, :); 

            end 

        end 

    end 

end 

end 
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function [xpt, ftp, stat] = wellopt4(objfct,D,K,Xmin,Xmax,param) 

  

% source code for genetic algorithm  

% for a D-dimensional maximization problem with the search space % bounded by a box  

%  

% Input:  

% objfct - a handle to the objective function  

% D - the number of dimensions  

% Xmin - the lower bounds of the box constraints  

% Xmax - the upper bounds of the box constraints  

% K – maximum iteration by the optimization algorithm  

% param - a MATLAB structure containing algorithm  

% control input parameters  

%   Np – Population of candidate solution  

%   CR – crossover rate 

%   MR – mutation  rate   

%  

% Output:  

% xpt - a vector containing the location of the optimum  

% fpt - the objective function value of the optimum  

% stat - a MATLAB structure containing algorithm specific output statistics  

% histf - the best objective function value history  

% 

if ~exist('DisplayFlag', 'var') 

    DisplayFlag = true; 

end 

  

Xover_Type = 1; % crossover type: 1 = single point, 2 = two point, 3 = uniform 

param.pcross = 0.6; % crossover probability 

param.pmutate = 0.017; % mutation probability 

  

% Begin the evolution loop 

for GenIndex = 1 : K 

    % Compute the inverse of the cost. Fitness increases with inverse cost. 

    Cost = []; 

    for i = 1 : Np 

        Cost = [Cost, 1 / Np(i).cost]; 

    end 

    for k = Keep+1 : 2 : Np % begin selection/crossover loop 

        % Select two parents to mate and create two children - roulette wheel selection 

        mate = []; 

        for selParents = 1 : 2 

            Random_Cost = rand * sum(Cost); 
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            Select_Cost = Cost(1); 

            Select_index = 1; 

            while Select_Cost < Random_Cost  

                Select_index = Select_index + 1; 

                if Select_index >= param.popsize 

                    break; 

                end 

                Select_Cost = Select_Cost + Cost(Select_index); 

            end 

            mate = [mate Select_index]; 

        end 

        Parent(1, :) = Np(mate(1)).chrom; 

        Parent(2, :) = Np(mate(2)).chrom; 

        % Crossover 

        switch Xover_Type 

            case 1 

                % single point crossover 

                if param.pcross > rand 

                    % crossover the parents 

                    Xover_Pt = ceil(rand * param.numVar); 

                    % x = genes in parent 1 that are not in parent 2 (after crossover point) 

                    x = setdiff(Parent(1, Xover_Pt:param.numVar), Parent(2, 

Xover_Pt:param.numVar)); 

                    % y = genes in parent 2 that are not in parent 1 (after crossover point) 

                    y = setdiff(Parent(2, Xover_Pt:param.numVar), Parent(1, 

Xover_Pt:param.numVar)); 

                    child(k-Keep, :) = [Parent(1, 1:param.numVar-length(y)), y]; 

                    child(k-Keep+1, :) = [Parent(2, 1:param.numVar-length(x)), x]; 

                else 

                    % clone the parents 

                    child(k-Keep, :) = Parent(1, :); 

                    child(k-Keep+1, :) = Parent(2, :); 

                end 

            case 2 

                % multipoint crossover 

                if param.pcross > rand 

                    Xover_Pt1 = ceil(rand * param.numVar); 

                    Xover_Pt2 = ceil(rand * param.numVar); 

                    if Xover_Pt1 > Xover_Pt2 

                        temp = Xover_Pt2; 

                        Xover_Pt2 = Xover_Pt1; 

                        Xover_Pt1 = temp; 

                    end 
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                    child(k-Keep, :) = [Parent(1, 1:Xover_Pt1) Parent(2, Xover_Pt1+1:Xover_Pt2) 

Parent(1, Xover_Pt2+1:param.numVar)]; 

                    child(k-Keep+1, :) = [Parent(2, 1:Xover_Pt1) Parent(1, 

Xover_Pt1+1:Xover_Pt2) Parent(2, Xover_Pt2+1:param.numVar)]; 

                else 

                    child(k-Keep, :) = Parent(1, :); 

                    child(k-Keep+1, :) = Parent(2, :); 

                end 

            case 3  

                % uniform crossover 

                for i = 1 : param.numVar 

                    if param.pcross > rand 

                        child(k-Keep, i) = Parent(1, i); 

                        child(k-Keep+1, i) = Parent(2, i); 

                    else 

                        child(k-Keep, i) = Parent(2, i); 

                        child(k-Keep+1, i) = Parent(1, i); 

                    end 

                end 

        end 

    end % end selection/crossover loop 

    % Replace the non-elite Np members with the new children 

    for k = Keep+1 : 2 : param.popsize 

        Np(k).chrom = child(k-Keep, :); 

        Np(k+1).chrom = child(k-Keep+1, :); 

    end 

    % Mutation 

    for individual = Keep + 1 : param.popsize % Don't allow the elites to be mutated 

        for parnum = 1 : param.numVar 

            if param.pmutate > rand 

                Np(individual).chrom(parnum) = floor(Xmin + (Xmax - Xmin + 1) * rand); 

            end 

        end 

    end 

    % Make sure the Np does not have duplicates.  

    Np = ClearDups(Np, Xmax, Xmin); 

    % Make sure each individual is legal. 

    Np = FeasibleFunction(param, Np); 

    % Calculate cost 

    Np = CostFunction(param, Np); 

    % Sort from best to worst 

    Np = PopSort(Np); 

    % Compute the average cost of the valid individuals 
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    MaxCost = [MaxCost Np(1).cost]; 

    AvgCost = [AvgCost AverageCost]; 

    if DisplayFlag 

        % Select the optimum from the personal best objective function evaluations 

                [fopt , g] = max (sol, g); 

                % Select the optimum solution 

                xopt = p(g, :); 

    end 

end 

end 
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function [xpt, fpt, stat] = wellopt5(objfct, D, lb, ub, nfe, epsilon, param) 

  

% source code for particle swarm optimization algorithm 

% for a D-dimensional maximization problem with the search space % bounded by a box 

% 

% Input: 

% objfct - a handle to the objective function 

% D - the number of dimensions 

% lb - the lower bounds of the box constraints 

% ub - the upper bounds of the box constraints 

% nfe - the number of function evaluations used 

% by the optimization algorithm 

% epsilon - not applicable: set it to -1 

% param - a MATLAB structure containing algorithm 

% control input parameters 

%   Np - number of particles in the swarm 

%   c1 - cognitive parameter 

%   c2 - social parameter 

%   nbh - neighborhood incidence matrix of the swarm population 

%   inw – inertia weight  

% 

% Output: 

% xpt - a vector containing the location of the optimum 

% fpt - the objective function value of the optimum 

% stat - a MATLAB structure containing algorithm 

% specific output statistics 

%   histf - the best objective function value history 

% 

% Parameter Settings 

if epsilon ~= -1 

    warning ('pso : epsilon_ignored', 'epsilon is ignored') 

end 

% Np (particle count) >= 10 

if isfield (param,'Np') 

    Np = param.Np; 

else 

    Np >= 10; 

end 

% inw (inertia weight) = 0.721 

if isfield (param, 'inw') 

    inw = param.inw; 

else 

    inw= 0.721; 
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end 

% c1 (cognitive parameter) = 1.193 

if isfield (param, 'c1') 

    c1 = param.c1; 

else 

    c1 = 1.193; 

end 

% c2 (social parameter) = 1.193 

if isfield (param, 'c2') 

    c2 = param.c2; 

else 

    c2 = 1.193; 

end 

% nbh (neighbourhood matrix) initialization at local best topology 

if isfield (param,'nbh') 

    nbh = param.nbh; 

else 

    nbh = nbh_local_best (Np); 

end 

% Swarm Population Initialization 

% Initialize v (velocity) uniform and randomly between lb and ub 

v = repmat (lb', Np, 1) + repmat (ub'-lb', Np, 1).*rand (Np, D); 

% 

% Initialize x (position) uniform randomly between lb and ub 

x = repmat (lb', Np, 1) + repmat (ub'-lb', Np, 1).*rand (Np, D); 

% 

% Initially the personal best position is the starting position 

p = x; 

% 

% Initialize the personal best objective function evaluation to infinity to always allow 

improvement 

p_best = ones (Np, 1)*Inf; 

% 

% Initialize the number of objective function evaluations to one 

evalcount = 1; 

% 

% Preallocate an array that will hold the objective function evaluations 

f = zeros (Np, 1); 

% 

% Preallocate the stat.histf array 

stat = struct (); 

stat.histf = zeros (nfe, 1); 

% 
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% Loop while number of objective function evaluations does not exceeds the stop criterion 

while evalcount < nfe 

    % 

    % Evaluate for all particles the objective function 

    for i = 1 : Np 

        f(i) = feval (objfct, x(i, :)); 

        % 

        % Update stat.histf array 

        stat.histf (evalcount + i) = max (f); 

    end 

    % 

    % Update the personal best positions if the current position is better than the current 

personal best position 

    p = repmat (f < p_best, 1, N).*x + repmat (~( f < p_best ), 1, D).*p; 

    % 

   nbr_cost = inf(dim12);  

  

   for i=1:dim1-2  

  

     for j=i+1:dim1-1  

  

       if i==1  

  

          if j-i==1  

  

            nbr_cost(crnt_position(i),crnt_position(j))=crnt_position_cost-

d(1,crnt_position(i))+d(1,crnt_position(j))-

d(crnt_position(j),crnt_position(j+1))+d(crnt_position(i),crnt_position(j+1));  

            best_i=i;  

            best_j=j;  

            best_nbr_cost = nbr_cost(crnt_position(i),crnt_position(j));  

            tabu_node1 = crnt_position(i)  

            tabu_node2 = crnt_position(j)  

          else  

            nbr_cost(crnt_position(i),crnt_position(j))=crnt_position_cost-

d(1,crnt_position(i))+d(1,crnt_position(j))-

d(crnt_position(j),crnt_position(j+1))+d(crnt_position(i),crnt_position(j+1))-

d(crnt_position(i),crnt_position(i+1))+d(crnt_position(j),crnt_position(i+1))-

d(crnt_position(j-1),crnt_position(j))+d(crnt_position(j-1),crnt_position(i));  

          end  

       else  

          if j-i==1  
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nbr_cost(crnt_position(i),crnt_position(j))=crnt_position_cost-d(crnt_position(i-

1),crnt_position(i))+d(crnt_position(i-1),crnt_position(j))-

d(crnt_position(j),crnt_position(j+1))+d(crnt_position(i),crnt_position(j+1));  

        else  

           nbr_cost(crnt_position(i),crnt_position(j))=crnt_position_cost-d(crnt_position(i-

1),crnt_position(i))+d(crnt_position(i-1),crnt_position(j))-

d(crnt_position(j),crnt_position(j+1))+d(crnt_position(i),crnt_position(j+1))-

d(crnt_position(i),crnt_position(i+1))+d(crnt_position(j),crnt_position(i+1))-

d(crnt_position(j-1),crnt_position(j))+d(crnt_position(j-1),crnt_position(i));  

        end  

     end  

     if nbr_cost(crnt_position(i),crnt_position(j)) < best_nbr_cost  

        best_nbr_cost = nbr_cost(crnt_position(i),crnt_position(j));  

        best_i=i;  

        best_j=j;  

        tabu_node1 = crnt_position(i);  

        tabu_node2 = crnt_position(j);   

     end  

   end  

   end 

end 

while (tabu_tenure(tabu_node1,tabu_node2))>0  

  

   if best_nbr_cost < best_obj      %(TABU solution better than the best found so far)  

         fprintf('\nbest nbr cost = %d\t and best obj = %d\n, hence breaking',best_nbr_cost, 

best_obj);   

     break;   

   else  

     nbr_cost(tabu_node1,tabu_node2)=nbr_cost(tabu_node1,tabu_node2)*1000;  

     best_nbr_cost_col = min(nbr_cost);  

     best_nbr_cost = min(best_nbr_cost_col);  

     [R,C] = find((nbr_cost==best_nbr_cost),1);  

     tabu_node1 = R;  

     tabu_node2 = C;  

   end   

end 

if best_nbr_cost > crnt_position_cost  

   min_d_col = min(d);   

   penal_nbr_cost = nbr_cost + min(min_d_col)*frequency;   

   penal_best_nbr_cost_col = min(penal_nbr_cost);  

   penal_best_nbr_cost = min(penal_best_nbr_cost_col);   

   [Rp,Cp] = find((penal_nbr_cost==penal_best_nbr_cost),1);  

   tabu_node1 = Rp;  
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   tabu_node2 = Cp;  

   best_nbr_cost = nbr_cost(tabu_node1,tabu_node2);  

end   

for row = 1:dim1-1  

   for col = row+1:dim1   

     if tabu_tenure(row,col)>0   

        tabu_tenure(row,col)=tabu_tenure(row,col)-1;  

        tabu_tenure(col,row)=tabu_tenure(row,col);  

     end  

   end  

end 
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