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Abstract

Medical image analysis and recognition is one of the most important tools in mod-

ern medicine. Different types of imaging technologies such as X-ray, ultrasonography,

biopsy, computed tomography and optical coherence tomography have been widely used

in clinical diagnosis for various kinds of diseases. However, in clinical applications, it

is usually time consuming to examine an image manually. Moreover, there is always

a subjective element related to the pathological examination of an image. This pro-

duces the potential risk of a doctor to make a wrong decision. Therefore, an automated

technique will provide valuable assistance for physicians. By utilizing techniques from

machine learning and image analysis, this thesis aims to construct reliable diagnostic

models for medical image data so as to reduce the problems faced by medical experts

in image examination. Through supervised learning of the image data, the diagnostic

model can be constructed automatically.

The process of image examination by human experts is very difficult to simulate,

as the knowledge of medical experts is often fuzzy and not easy to be quantified.

Therefore, the problem of automatic diagnosis based on images is usually converted to

the problem of image classification. For the image classification tasks, using a single

classifier is often hard to capture all aspects of image data distributions. Therefore,

in this thesis, a classifier ensemble based on random subspace method is proposed to

classify microscopic images. The multi-layer perceptrons are used as the base classifiers

in the ensemble. Three types of feature extraction methods are selected for microscopic

image description. The proposed method was evaluated on two microscopic image sets

and showed promising results compared with the state-of-art results.

In order to address the classification reliability in biomedical image classification

problems, a novel cascade classification system is designed. Two random subspace

based classifier ensembles are serially connected in the proposed system. In the first

stage of the cascade system, an ensemble of support vector machines are used as the

base classifiers. The second stage consists of a neural network classifier ensemble. Using

the reject option, the images whose classification results cannot achieve the predefined

rejection threshold at the current stage will be passed to the next stage for further

consideration. The proposed cascade system was evaluated on a breast cancer biopsy

image set and two UCI machine learning datasets, the experimental results showed that

v



the proposed method can achieve high classification reliability and accuracy with small

rejection rate.

Many computer aided diagnosis systems face the problem of imbalance data. The

datasets used for diagnosis are often imbalanced as the number of normal cases is

usually larger than the number of the disease cases. Classifiers that generalize over the

data are not the most appropriate choice in such an imbalanced situation. To tackle

this problem, a novel one-class classifier ensemble is proposed. The Kernel Principle

Components are selected as the base classifiers in the ensemble; the base classifiers are

trained by different types of image features respectively and then combined using a

product combining rule. The proposed one-class classifier ensemble is also embedded

into the cascade scheme to improve classification reliability and accuracy. The proposed

method was evaluated on two medical image sets. Favorable results were obtained

comparing with the state-of-art results.
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Chapter 1

Introduction

1.1 Motivation

Computer-aided diagnosis (CAD) aims to assist medical physicians for making diag-

nostic decisions with computers. As an interdisciplinary research area, CAD covers

technologies in signal processing, pattern recognition, computer vision and machine

learning. Medical imaging is one of the most important tools in modern medicine,

different types of imaging technologies such as X-ray imaging, ultrasonography, biopsy

imaging, computed tomography, and optical coherence tomography have been widely

used in clinical diagnosis for various kinds of diseases. However, in clinical applications,

it is usually time consuming to examine an image manually. Moreover, there is always

a subjective element related to the pathological examination of an image, this produces

the potential risk for a doctor to make a wrong decision. Therefore, an automated

technique will provide valuable assistance for physicians. By utilizing techniques from

machine learning and image analysis, this research aims to construct reliable diagnostic

models for medical image data to relieve the problems faced by medical experts in im-

age examination. Through supervised learning of the image data, the diagnostic model

can be constructed automatically and then applied in disease diagnosis.

The process of image examination by human experts is very difficult to simulate, as

the knowledge of medical experts is often fuzzy and not easy to be quantified. Therefore,

the problem of automatic diagnosis based on images is usually converted to the problem

of image classification. Feature extraction is the process of creating a representation for

the original image data. By extracting the image features which are suitable to indicate

the symptoms of diseases, the quantization of medical knowledge can be realized. The

different image feature degrees related to different disease situations can be used to

train a classifier, then the trained classifier will be able to categorize new image cases.

In this research, different image feature descriptors are investigated and combined to

produce effective and efficient description for typical types of medical images.

A great number of machine learning methods have been proposed to design accurate

classification systems for various medical images. Among them, ensemble learning has

1



attracted much attention due to good performance from many applications in medicine

and biology. Ensemble learning is concerned with mechanisms to combine the results

of a number of classifiers. In the case of ensemble classification, ensemble learning is

concerned with the integration of the results of a number of classifiers (often called ‘base

classifiers’) to develop a strong classifier with good generalization performance. In this

research, ensemble learning strategies are investigated in medical image classification

schemes to improve the classification performance.

In previous studies of medical image classifications [161, 68], accuracy was the only

objective; the aim was to produce a classifier that featured the smallest error rate

possible. In many applications, however, it is more important to address the reliability

issue in classifier design by introducing a reject option which allowed for an expression of

doubt. The objective of the reject option is thus to improve classification reliability by

leaving the classification of “difficult” cases to human experts. Since the consequences

of misclassification may often be severe when considering medical image classification,

clinical expertise is desirable so as to exert control over the accuracy of the classifier in

order to make reliable determinations.

Cascading is a scheme to support multi-stage classification. At the first stage of

a cascading system, the system constructs a simple rule using a properly generalized

classifier. Using its confidence criterion, it is likely that the rule will not cover some

part of the space with sufficient confidence. Therefore, at the next stage, cascading

builds a more complex rule to focus on those uncovered patterns. Eventually there will

remain few patterns which are not covered by any of the prior rules, these patterns

can then be dealt with using an instance-based nonparametric technique which is good

at unrelated and singular points. Many cascading multi-stage classifier architectures

have been proposed and plenty of promising results have been achieved in medical

and biological classification applications [185]. This motivates the development of new

cascade classification schemes to address both classification accuracy and reliability. In

this thesis, a two-stage cascade classification model is constructed; each stage in the

cascade includes a classifier ensemble. Such a classification model takes advantages of

both ensemble learning and cascading so that it can improve classification accuracy

and reliability simultaneously.

One challenge in many automatic medical diagnosis applications is that the datasets

used for diagnosis are often imbalanced. As the number of normal cases is usually much

larger than the number of disease cases, classifiers that generalize well over the balanced

data may not be the most appropriate choice in such an unbalanced situation. For

example, decision trees tend to over-generalize the class with the most examples; Naive

Bayes requires enough data for the estimation of the class-conditional probabilities

[119]. One-Class Classifiers (OCC) [192] are more appropriate for such a task. One-class

classification is also often called outlier (or novelty) detection as the learning algorithms
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are used to differentiate between data that appears normal and abnormal with respect to

the distribution of the training data. One-class classification is appropriate with respect

to medical diagnosis, i.e., disease versus no-disease problems, where the training data

tends to be imbalanced. This motivates us further to develop new types of cascade

classification algorithms, which exploit one-class classifiers to tackle the imbalanced

data problem, together with the ensemble and cascade learning strategies. Such a

cascade classification scheme is expected to improve the classification performance in

many medical image classification applications.

1.2 Objectives

The major objective of this research is to develop and evaluate new classification

schemes to improve classification accuracy and reliability of many medical image di-

agnosis applications, such as breast cancer biopsy image classification, 3D OCT retina

image classification and fluorescence microscope image classification.

The following aspects of medical image classification problem are investigated and

discussed in the thesis:

• Random subspace classifier ensemble for biomedical image classification.

• The cascade classification scheme for reliable medical image classification.

• One-class classifier ensemble to tackle with the imbalanced data distribution in

medical image diagnosis.

• Effective image feature description methods for microscopic images.

These novel techniques were implemented and evaluated using the benchmark biomed-

ical image datasets described in the following section (Section 1.3).

1.3 Datasets and Evaluation Methods Used in the Thesis

1.3.1 Datasets

• Three benchmark fluorescence microscopy image datasets in [113] were used in

our study, which are RNAi, CHO and 2D-Hela.

The RNAi dataset is a set of fluorescence microscopy images of fly cells (D.

melanogaster) subjected to a set of gene-knockdowns using RNAi. The cells are

stained with DAPI to visualize their nuclei. Each class contains 20 1024 × 1024

images of the phenotypes resulting from knockdown of a particular gene. Ten

genes were selected, and their gene IDs are used as class names. The genes

are CG1258, CG3733, CG3938, CG7922, CG8114, CG8222, CG 9484, CG10873,

CG12284, CG17161.
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2D HeLa dataset, a collection of HeLa cell immunofluorescence images contain-

ing 10 distinct subcellular location patterns. The subcellular location patterns in

these collections include endoplasmic reticulum (ER), the Golgi complex, lyso-

somes, mitochondria, nucleoli, actin microfilaments, endosomes, microtubules,

and nuclear DNA. The 2D HeLa image dataset is composed of 862 single-cell

images, each with size 382× 512.

CHO is a dataset of fluorescence microscope images of CHO (Chinese Hamster

Ovary) cells. The images were taken using 5 different labels. The labels are:

anti-giantin, Hoechst 33258 (DNA), anti-lamp2, anti-nop4, and anti-tubulin. The

CHO dataset is composed of 340 images, each with size 512× 382.

• A breast cancer benchmark biopsy image dataset from the Israel Institute of

Technology 1. The image set consists of 361 samples, of which 119 were classified

by a pathologist as normal tissue, 102 as carcinoma in situ, and 140 as invasive

ductal or lobular carcinoma. The samples were generated from breast tissue

biopsy slides, stained with hematoxylin and eosin. They were photographed using

a Nikon Coolpix R⃝ 995 attached to a Nikon Eclipse R⃝ E600 at magnification

of ×40 to produce images with resolution of about 5µ per pixel. No calibration

was made, and the camera was set to automatic exposure. The images were

cropped to a region of interest of 760× 570 pixels and compressed using the lossy

JPEG compression. The resulting images were again inspected by a pathologist

to ensure that their quality was sufficient for diagnosis.

• A 3D OCT retinal image set was collected at the Royal Hospital of University

of Liverpool, the image set contains 140 volumetric OCT images, in which 68

images from normal eyes and the remainders are from eyes have Age-related

Macular Degeneration (AMD).

• Two datasets from UCI machine learning repository (archive.ics.uci.edu/ml/):

Breast cancer Wisconsin and Heart disease.

The Wisconsin breast cancer image sets were obtained from digitized images of

fine needle aspirate (FNA) of breast masses. They describe characteristics of

the cell nuclei present in the image. Ten real-valued features are computed for

each cell nucleus: radius, texture, perimeter, area, smoothness, compactness,

concavity, concave points, symmetry and fractal dimension. The 569 images in

the dataset are categorized into two classes: benign and malignant.

The Heart disease dataset contains of 270 patterns, each pattern has 13 attributes.

The dataset consists of two categories: normal and disease.

1ftp://ftp.cs.technion.ac.il/pub/projects/medic-image
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1.3.2 Evaluation Methods

The performance metrics used in the thesis are listed as follows:

• Classification Accuracy = number of correctly recognized images / number of

testing images.

• Recognition rate (RR) = number of correctly recognized images / (number of

testing images - number of rejected images).

• Rejection rate (RejR) = number of rejected images /number of testing images.

• Reliability (RE) = (number of correctly recognized images + number of rejected

images)/ number of testing images.

• Error rate (ER): = 100% - reliability.

• ROC: Receiver Operating Characteristic graph.

• AUC: Area under an ROC curve.

1.4 Major Contribution of the Thesis

In this thesis, the random subspace method [78] for classifier ensemble is used for

combining different classifiers trained by multiple image features, and a new cascade

classification scheme with reject option is developed to improve the classification accu-

racy and reliability for medical image classification. In order to address the problem

of imbalanced data in many medical image diagnosis applications, a new ensemble of

one-class classifiers is developed, where the reject option is also included to construct

a cascade classifier. The proposed methods were evaluated on several real medical

imaging applications and benchmark medical image datasets.

The major contributions of this thesis are summarized as follows:

• A novel automatic microscope image classification scheme based on multiple fea-

tures and random subspace classifier ensemble. The image features are extracted

using the Curvelet Transform, statistics of Gray Level Co-occurrence Matrix

(GLCM) and the Completed Local Binary Patterns (CLBP), respectively. The

three different features are combined together and used for the random subspace

ensemble generation, with a set of neural network classifiers aggregated for pro-

ducing the final decision. Experimental results on the phenotype recognition from

three benchmark fluorescence microscopy image sets (RNAi, CHO and 2D Hela)

and a benchmark breast cancer biopsy image set show the effectiveness of the

proposed approach. The ensemble model produces better performance compared

to any of individual neural networks (Multi-Layer Perceptron, MLP).
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This part of our work is described in Chapter 3 of the thesis. The work can also

be seen in our published papers [227, 228, 218].

• A new cascade classification scheme of Random Subspace ensembles with reject

options is proposed. The classification system is built as a serial fusion of two

different Random Subspace classifier ensembles with rejection options to enhance

the classification reliability.

The first ensemble consists of a set of Support Vector Machine (SVM) classifiers

that converts the original K-class classification problem into a number of K 2-

class problems. The second ensemble consists of a Multi-Layer Perceptron (MLP)

ensemble, that focuses on the rejected samples from the first ensemble. For both

of the ensembles, the rejection option is implemented by relating the consensus

degree from majority voting to a confidence measure, and abstaining to classify

ambiguous samples if the consensus degree is lower than a predefined threshold.

The proposed cascade system was evaluated on a benchmark microscopic biopsy

image dataset and two UCI machine learning benchmark datasets.

This part of the work is described in Chapter 4 of the thesis. The work can also

be seen in the published papers [223, 224].

• A new cascade classifier ensemble is proposed, with the prospective of one-class

classification to address the imbalanced data distribution in medical applications.

The first ensemble consists of a set of Kernel Principle Component Analysis

(KPCA) one-class classifiers trained for each image class with different image

features. The second ensemble consists of a Random Subspace Support Vector

Machine (SVM) ensemble, that focuses on the rejected samples from the first

ensemble. For both of the ensembles, the reject option is implemented so that

an ensemble abstains from classifying ambiguous samples if the consensus degree

is lower than a threshold. The proposed system was evaluated on a benchmark

biopsy image dataset and a 3D OCT retinal image dataset.

This part of the work is described in Chapter 5 of the thesis. The work can also

be seen in the published papers [226, 225].

1.5 Organization of the Thesis

The thesis is organized as follows:

• In Chapter 2, a review of classifier ensemble methods, classification with reject

option and one-class classification is presented. Section 2.2 introduces the theory

of combining multiple classifiers and some popular classifier ensemble methods.

A review of classification with reject option is given in Section 2.3, where the
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multi-stage (cascade) classifiers are also introduced. In Section 2.4, an overview

of the one-class classification is given.

• Chapter 3 presents the applications of multiple image features and Random Sub-

space ensemble of neural networks on microscopic images. The proposed multi-

ple features and classifier ensemble was evaluated on a benchmark biopsy image

dataset and microscopic fluorescence images.

• In Chapter 4, a cascade system consisting of two Random Subspace ensembles

is introduced. The first stage of the cascade is an ensemble of support vector

machines, the second stage contains a neural networks ensemble. Both of the

ensembles are constructed by random subspace method. The reject option is

employed in the ensembles to improve the classification reliability. The proposed

cascade classifier was evaluated on the biopsy image dataset and a real 3D OCT

retinal image dataset.

• Chapter 5 describes a cascade classifier, which is built up on the One-Class classi-

fication theory to address the imbalanced problem in many medical applications.

The first stage of the cascade is an ensemble of one-class classifiers and the sec-

ond stage is an “one-versus-all” SVM ensemble. The proposed system was also

evaluated on the biopsy image dataset and the 3D OCT retinal image dataset.

• Conclusions and future work are summarized in Chapter 6.

7



Chapter 2

Literature Review

2.1 Introduction

In supervised learning, classification tasks are usually executed by classification models

(classifiers), which are constructed from the preclassified instances (samples classified by

humans in advance). The preclassfied instances are usually called as training set. The

goal of the classification model construction is to obtain classifiers from the pre-labeled

training sets, then the trained classifiers are able to label the unknown instances.

A number of supervised learning methods have been introduced in the last decades,

for example, SVMs [200], neural networks [33], logistic regression [135], naive Bayes

[163], random forests [15] and decision trees [135]. The pursuit of higher accuracy has

been the main motivation in classifier research. In many real classification tasks, the

use of a single classifier often fails to capture all aspects of the data. Therefore, a

combination of classifiers (an ensemble) is often considered to be an appropriate mech-

anism to address this shortcoming. Ensemble learning generates a set of base classifiers

using different distributions of training data and then aggregates their outputs to clas-

sify new samples [89]. These ensemble learning methods enable users to achieve more

accurate predictions with higher generalization abilities than the predictions generated

by individual models or experts on average [127].

In recent years, there is a growing demand from many real classification applications

that classifiers should have a higher reliability on the classification results. For example,

in medical diagnosis applications, making a wrong diagnosis can be very dangerous.

Such applications need the classification systems to keep their classification error as low

as possible. Accordingly, the classifiers should have the ability to make no judgement

on the ambiguous instances. One way to endow a classifier with such an ability is to

implement reject option [30].

Classification with a rejection option has been a topic of interest in pattern recog-

nition. Multi-stage classifiers are serial ensembles where individual classifiers have a

reject option [151]. Cascading [50] is a scheme to support multi-stage classification.

At the first stage of a cascading system, the system constructs a simple rule using a
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Figure 2.1: Decision boundaries of (a) two class classifier and (b) one-class classifier.

properly generalized classifier based on its confidence criterion. It is likely that the rule

will not cover some part of the space with sufficient confidence. Therefore, at the next

stage, cascading builds up a more complex rule to focus on those uncovered patterns.

Eventually there will remain few patterns which are not covered by any of the prior

rules, these patterns can then be dealt with using an instance-based nonparametric

technique which is good at unrelated, singular points [95]. The concept of rejection

gives the classifiers the ability to postpone the pattern classification than to take the

risk of making an error.

One-class classification is also known as novelty detection and outlier detection [189].

Compared with the conventional two-class classification classifiers like SVM, one-class

classifiers assume that only the information of one of the classes (the target class) is

available, and there is no information about other classes (the outlier class). In Fig.

2.1 (a), a two class classifier is trained by the data from both two classes, the aim of the

classifier is to obtain a classification boundary discriminating the two classes. While in

one-class classification scenario, the classifier is trained by the data only from one class

(the target class), the goal of the one-class classifiers is to estimate a decision boundary

of the target class and exclude the data of the outlier classes as much as possible (Fig.

2.1 (b)).

Like many automatic medical diagnosis applications, the datasets used for diagnosis

is often imbalanced as the number of normal cases is usually larger than the number of

the disease cases. Moreover, to label the training samples by human experts are costly.

Classifiers that generalize well over balanced data are not the most appropriate choice

in such an unbalanced situation. One-Class Classifiers (OCC) are more appropriate for

such a task. One-class learning algorithms can differentiate between data that appears

normal and abnormal. It is thus significant to investigate one-class classification in

medical diagnosis, disease versus no-disease problems, where the training data tends to

be imbalanced and limited.
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Figure 2.2: Classifier fusion to design an ensemble system

2.2 Ensemble Learning

The idea of ensemble learning was first introduced in the late of 1970’s. Two linear

regression models were combined to fit the original data and the residuals respectively

[201]. The concept of ensemble learning was greatly improved in 1990’s, mainly due to

the foundation work on boosting [51] and Adaboost algorithm [211], which shows that a

strong classifier can be generated by the combination of several weak classifiers. Many

researchers have verified the advantages of ensemble learning. Nowadays ensemble

learning has been widely used in many pattern recognition applications. Ensemble of

classifiers is the focus of this thesis.

2.2.1 Framework of Multiple Classifier Ensemble

Multiple classifier ensemble is also known as mixture of experts, classifier fusion and

combination of multiple classifiers, etc [105]. The classifier ensembles aim to combine

a set of classifiers to produce better classification performance than each individual

classifier can provide. According to Woods et al. [207], a multiple classifier system can

be categorized into one of the two categories: classifier fusion or classifier selection. In

classifier fusion, the outputs of the individual classifiers are aggregated to make the

final decision, the individual classifiers are trained in parallel (Fig 2.2). In classifier

selection, only the output of the classifier with the best performance in the ensemble

will be selected as the final decision.

Ensemble strategies can be categorized as the dependent framework and indepen-

dent framework [166]. In a dependent framework, the output of a classifier is used in

construction of the next classifier, therefore it is possible to take advantage of knowl-

edge obtained in the previous iterations to guide the learning in the next iterations.

Such a framework is called model guided instance selection [177] (Fig. 2.3). In the

independent framework, each classifier in the ensemble is built up independently and

their results are then combined with some fusion rules.

10



Figure 2.3: Model guided instance selection diagram [166].

2.2.2 Ensemble methods

Boosting

Boosting [51] is the most well known dependent ensemble method based on the re-

sampling technique. Resampling is a widely used technique for generating classifier

ensemble. In resampling based ensemble methods, such as boosting and bagging [111],

subsets of data are generated for training classifiers, and a learning algorithm is used

to obtain multiple predictions on these different training sets. The resampling based

methods are effective with unstable classifiers, which are classifiers sensitive to small

changes in the training data, such as neural networks and decision trees [53].

Boosting aims to improve the performance of individual classifiers (base classifiers)

by repeatedly running the classifiers on various distributed training data. The out-

puts of individual classifiers are then combined to produce a strong classifier, which is

expected to have a better performance than any of the base classifiers.

Freund and Schapire introduced the AdaBoost (adaptive boosting) in 1996 [211].

Compared with the traditional boosting algorithm, AdaBoost tries to improve the final

performance by focusing on the patterns that are hard to discriminate. Initially, all

the patterns in the training set will be assigned a same weight. Then in each iteration
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of the algorithm, the weights of the misclassified patterns will be increased, on the

contrary, the weights of the correctly recognized patterns will be decreased. Thus, the

base classifiers will give more focus on the hard patterns. At the end of the iterations,

each classifier in the ensemble will be assigned a weight, which indicates the overall

accuracy of the classifier. The more accurate classifiers will obtain higher weights. The

final assigned weights will be used in the classification of new patterns.

The AdaBoost algorithm is first designed to tackle the binary classification prob-

lems. Freund and Schapire also proposed two variants of the AdaBoost to address the

multiclass classifications. They are named as AdaBoost.M1 and AdaBoost.M2. In Ad-

aBoost.M1, the multiclass classification is achieved by simply aggregating all outputs

of the base classifiers. AdaBoost.M2 uses a label weighting function to a probability

distribution to each training pattern. Thus, the base classifiers will not only obtain

a weight distribution of the classifier but a label weight to describe the quality of the

hypothesis. The AdaBoost.M2 requires the base classifiers to minimize the pseudo loss

σt, which is a function of the classifier weights and the label weights. A different version

of AdaBoost, Real AdaBoost [55], was proposed by Friedman et al. in 2000. By using

an additive logistic regression model in a forward stagewise manner, the output class

probability is produced from base classifiers.

A distributed version of AdaBoost, P-AdaBoost is developed by Merler et al. in

2007 [133]. Compared with AdaBoost, P-AdaBoost can work on a network of computing

nodes. Zhang and Zhang proposed a new boosting-by-resampling version of AdaBoost,

which is called the Local Boosting [37]. In the Local Boosting algorithm, for each

pattern, a local error is calculated to determine the probability that the pattern should

be selected in the next iteration or not. This is different from the AdaBoost, where

a global error is calculated at the end of each iteration. By locally investigating each

pattern in the training set, the Lobal Boosting is able to filter the noisy patterns,

thus acquiring better performance than AdaBoost. Leistner et al. proposed a novel

boosting algorithm, On-line GradientBoost [19], which outperformed On-line AdaBoost

on standard machine learning problems and common computer vision applications.

Bühlmann and Hothorn proposed Twin Boosting [148], which involves a first round of

classical boosting followed by a second round of boosting which is forced to resemble the

one from the first round. The method has much better feature selection behavior than

boosting, particularly with respect to reducing the number of false positives (falsely

selected features).

AdaBoost and its variants have achieved great successes in many applications for

two reasons:

1. By combining an ensemble of classifiers, the final performance can be improved.

2. The variance of the combined classifier is much lower than the variances of the

base classifiers.
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However, AdaBoost may still fail to improve the performance of the base classi-

fiers, due to overfitting, which could be induced by a large number of iterations of the

algorithm.

Bagging

Bagging is an abbreviation of bootstrap aggregating [111]. The bagging algorithm

obtains the final classification result by aggregating the outputs of base classifiers.

Each base classifier is trained by a sample in the training set with replacement scheme.

The replacement scheme replaces the training sample with a new one in each iteration

of training (Algorithm 1). Using the voting strategy, the most often predicted label

will be assigned to a pattern. Bagging can usually provide better performance than the

individual base classifier, especially when the base classifiers are unstable ones, because

Bagging can eliminate the instability of base classifiers.

Algorithm 1 Bagging algorithm

Input:
I: a base classifier
T : the number of iterations
S: the training set
µ: the subsample size

Output:
{Mt}: the ensemble; t = 1, ..., T
t← 1
Repeat
st ← Sample µ instances from S with replacement
Build classifier Mt using I on st
t++
until t > T

Different from Boosting, Bagging is an independent ensemble method, the base

classifiers are trained in parallel. While instances in boosting are selected based on

their assigned weights, instances in bagging are chosen with equal probability. In [40],

AdaBoost and Bagging were compared in different scenarios, the authors pointed out

that, in general Bagging has better performance than AdaBoost, however, in a low noise

situation, AdaBoost outperforms Bagging. Skurichina and Duin [126] discovered that

Bagging is more appropriate for small training sample sizes, while boosting is better

for large training sample sizes.

The trimmed bagging is proposed in [36], which aims to exclude the bootstrapped

classification rules that yield the highest error rates, as estimated by the out-of-bag

error rate, and to aggregate over the remaining ones. On the basis of numerical experi-

ments, the authors concluded that trimmed bagging performs comparably to standard

bagging when applied to unstable classifiers as decision trees, but yields better results

when applied to more stable base classifiers, like support vector machines. In [60], the
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authors applied an analytical framework for the analysis of linearly combined classi-

fiers to ensembles generated by Bagging. The novel result of the paper is that the

authors related the ensemble size with the bagging misclassification probability, thus

giving a ground guideline for choosing bagging ensemble size. A new heterogeneous

Bagging models [34] were proposed by Coelho and Nascimento in 2008. The model

aims at further increasing the diversity levels of the ensemble models produced by Bag-

ging. The authors presented an evolutionary approach for optimally designing Bagging

models composed of heterogeneous components. Their experiment results shown that

the evolutionary heterogeneous Bagging are matched against standard Bagging with

homogeneous components. In a more recent research [209], Bagging and Boosting are

used for constructing ensembles in machine translation systems. A Negative Boostrap

model was proposed by Li et al. [117] to tackle the visual categorization problem.

Given a visual concept and a few positive examples, the Negative Boostrap algorithm

iteratively finds relevant negatives. In each iteration, a small proportion of many user-

tagged images are used for training, yielding an ensemble of meta classifiers. Compared

with the state-of-the-art, the authors obtained better performance.

Random Forest

Algorithm 2 gives the pseudo-code of random forest [15]. A random forest is constructed

from a number of decision trees. Each decision tree is trained by a randomly chosen

proportion of attributes of the training instances. The classification of a new instance

is given by majority voting.

Algorithm 2 The random forest algorithm

Input:
IDT : a decision tree
T : the number of iterations
S: the training set
µ: the subsample size
N : Number of attributes used in each node

Output:
{Mt}: the forest; t = 1, ..., T
t← 1
Repeat
st ← Sample µ instances from S with replacement
Build classifier Mt using IDT on st(N)
t++
until t > T

Random forest was first designed for decision trees, but it can also be used for other

classifiers. The two advantages of random forest make it a popular ensemble method.

The first is the efficiency of the algorithm; the second one is the good scalability as it

can handle large attributes data.
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Random forest have been widely used in various fields, for example, segmentation of

video objects [26], computed tomography data analysis [161], protein disorder detection

[73], spatial context modeling for visual discrimination [142] and human action detection

[214].

Diversity Based Methods

Many researchers in ensemble learning have a consensus that diversity is an important

factor to obtain a successful ensemble [108]. Base classifiers with wide diversity can

lead to uncorrelated classification results, which can improve the performance of an

ensemble. The diversity generation methods can be mainly divided into two classes:

diversity generation from base classifier manipulation and diversity from training data

manipulation.

Diversity generation from base classifier manipulation :

In this type of method, the diversity of base classifiers are usually generated by two

methods: (i) giving different parameters to the base classifier or, (ii) using different

types of base classifiers in the ensemble. For example, the decision tree C4.5 of [160]

can be run for several times with different parameters values, the ensemble then can

be constructed from the diversified decision trees. By using different number of nodes

in neural networks, the diversity can be obtained [125]. In [190], seven different types

of classifiers were combined for handwritten digits recognition.

Diversity from training data manipulation :

The main method in this category are feature subset based techniques. Feature

subset based ensemble methods are those that manipulate the input feature set for

creating the base classifiers [144, 104, 198, 75]. Some researchers use different partitions

of training data, which is capable of producing an ensemble of diverse classifiers [43].

Through randomly partitioning, the original training data can be grouped into some

pairwise disjoint subsets, then each base classifier will be trained by an individual

subset. Many research results have shown the effectiveness of this approach. Rokach

showed that the feature partition is appropriate for classification task with a large

number of features [112]. Resampling the original dataset can also be used in Bagging

or Boosting [173, 97]. For example, the Attribute Bagging (AB) [157] was proposed

by Bryll et al. in 2003. By a random search, AB first finds a suitable size for feature

subsets, then the feature subsets are chosen randomly for training base classifiers.

Random Subspace Based Method : Another straightforward strategy to create

feature subset based ensemble is random sampling based technique. In this strategy, the

feature subsets are obtained by randomly selecting samples from the original training

data. Ho proposed the random subspace method in 1998 [78]. A forest of decision trees

is produced by pseudo-random selection of subsets from the original training data.

Each decision tree is constructed from an individual subset, the forest is obtained
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by repeating the constructions of decision trees. Ho showed that the simple random

selection of feature subsets is an effective way for constructing ensembles, this is due

to the diversity of the base classifiers compensate each other.

The random subspace ensemble method and its variants are widely used in various

applications in machine learning and computer vision. A random feature subset based

ensemble of Bayesian classifiers was proposed for medical applications [2]. Rodŕıguez et

al. developed the Rotation Forest [164] for classifier ensemble. To create the training

data for a base classifier (decision tree), the feature set is randomly split into K sub-

sets (K is a parameter of the algorithm) and Principal Component Analysis (PCA) is

applied to each subset. Their experiments showed that rotation forest is more accurate

than AdaBoost and Random Forest, and more diverse than these in Bagging, sometimes

more accurate as well. In [106], Kuncheva and Rodŕıguez proposed a Random Linear

Oracle ensemble method. Each classifier in the ensemble is replaced by a miniensemble

of a pair of subclassifiers with a random linear oracle to choose between the two. It

is argued that this approach encourages extra diversity in the ensemble while allowing

for high accuracy of the individual ensemble members.

2.2.3 Classifier Output Combination

The methods to combine the base classifiers’ outputs can be divided into two classes:

weighting and meta-learning [166]. When using weights to combine base classifiers,

each base classifier has a proportional contribution to the final decision, the proportion

of a classifier is determined by the weight assigned to it. The weight can be fixed or

dynamically assigned. Meta-learning is also called as “learning to learn” [136]. If a

base learner (classifier) fails to perform efficiently, the meta-learning mechanism itself

will adapt in case the same task is presented again.

Weighting Methods

Majority Voting : An instance is assigned to the label which has the highest number

of votes from base classifiers in the ensemble. The majority voting can be described by

Eqn. (2.1):

label(x) = argmaxci∈Y (
∑
k

δ(yk(x), ci)) (2.1)

where yk(x) is the classification result of the k-th base classifier, Y is the domain of

y(x), ci is the label for the i-th class, and δ(y, c) is the function that:

δ(y, c) =

{
1 if y(x) = c
0 if y(x) ̸= c

(2.2)

Performance Weighting : Using a validation data set, the weights of base clas-

sifiers can be tuned based on its classification performance [39]:
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α(i) =
1− Ei∑T

j=1(1− Ej)
(2.3)

where Ei is a normalization factor which is obtained by the performance of classifier i

on a validation data set.

Distribution Summation : The conditional probability vector of each base clas-

sifier will be summed up. The instance will be assigned to the class which obtains the

highest value from Eqn. (2.4), see [149].

label(x) = argmaxci∈Y
∑
k

P̂Mk
(y = ci|x) (2.4)

where P̂Mk
is the probability of x belongs to class ci produced by classifier Mk.

There is another distribution summation method for posterior probability called

Bayesian Combination:

label(x) = argmaxci∈Y
∑
k

P (Mk|S) · P̂Mk
(y = ci|x) (2.5)

where P̂ (Mk|S) is the probability that classifier Mk is correct, given the training set S.

Vogging : The vogging (Variance Optimized Bagging) method tries to reduce the

variance of base classifiers and preserve the pre-defined classification accuracy simulta-

neously. This is achieved by optimizing a linear combination of base classifiers. The

Markowitz Mean-Variance Portfolio Theory is used for obtaining low variance [150].

Meta-learning methods

Stacking : Stacking is a typical meta-learning combination method. It aims to obtain

the highest generalization accuracy [70]. The method discriminates base classifiers’

reliability by using a meta-learner. The method maintains a meta-dataset, each tuple

of this meta-dataset contains the classification predictions from all base classifiers for

an instance of the training data. During training, the original data set is partitioned

into two subsets, one subset is used to produce the meta-dataset, which is then used for

constructing a meta-learner. Another subset is used for constructing base classifiers.

A new instance will be first classified by all base classifiers, the predictions will be fed

into the meta-leaner to make the final decision.

In [170], the authors pointed out that ensembles with stacking can compete with

the best classifier that is selected out from an ensemble by cross-validation. In order

to improve the performance of stacking, several variants of the stacking method have

been proposed, for example, a weighted combination of stacking and dynamic integra-

tion is developed for regression problems [167]. In Troika [132], a new stacking method

is proposed by Menahem et al., the new scheme is built from three layers of combined
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classifiers. According to the authors, the Troika outperforms traditional stacking, es-

pecially in multiclass classification tasks. Jorge et al. proposed the EVOR-STACK [61]

method for remote sensing data fusion, the EVOR-STACK uses an evolutionary algo-

rithm for feature weighting, a support vector machine and a weighted kNN stacking is

used for classification.

There are other meta-learning combination methods in the literature, for example,

grading [176], combiner trees [91] and arbiter trees [90]. However, due to its simplicity

and generality, stacking has become a popular selection in meta-learning combination

methods.

2.2.4 Ensemble Selection Methods

When constructing an ensemble, one important question is how many base classifiers

should be used and which classifiers should be included in the final ensemble. Many

researchers insist that a small ensemble can be constructed rather than a larger one,

while the classification accuracy and the diverse of the ensemble still can be main-

tained. The famous “many-could-be-better-than-all” theorem [71] further illustrates

that theoretically it is possible to construct small ensembles as strong as the big ones.

Ensemble selection is important due to two reasons: efficiency and predictive perfor-

mance [196]. Ensemble selection has two major approaches: Ranking-based methods

and Search-based methods.

Ranking-based Methods

Ranking-base methods set up a criteria to rank the base classifiers, and the classifiers

with high ranks will be selected. An agreement-based ensemble selection method was

proposed by Margineantu and Dietterich in [38], where the Kappa statistics is used

to select pairs of classifiers until the predefined ensemble size is reached. A forward

stepwise selection algorithm was proposed in [158], the algorithm selects the classifiers

with better performance from thousands of classifiers. Later, a similar algorithm, FS-

PP-EROS [153] was proposed by Hu et al., which executes an accuracy-driven forward

search to choose the rough subspace classifiers to construct ensemble. Giacinto and

Roli developed a dynamic classifier selection (DCS) [62] method to select appropriate

classifiers for different instances. In a more recent work, Xiao et al. presented a

dynamic classifier ensemble selection method GDES-AD (Group Dynamic Ensemble

Selection-Accuracy and Diversity) [208], by using a group method of data handling

(GMDH) to DCS, the GDES-AD considers both accuracy and diversity in the process

of ensemble selection. The experimental results shown that the GDES-AD has stronger

noise-immunity ability than other strategies. Ko et al. proposed a dynamic ensemble

selection method [100], the oracle concept was used in their selection scheme, instead

of selecting classifiers, their method selects different ensembles for different instances.
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Search-based Methods

Being different from ranking, a heuristic search in all possible ensemble subsets is per-

formed using search-based methods. The most representative work in search-based

methods is GASEN [71]. GASEN is a selective ensemble method using Genetic Algo-

rithm (GA) to select a subset of neural networks to compose an ensemble, which is

better than directly combining all the neural networks. Initially, each neural network

is randomly assigned a weight, then GA is used to evolve the weights. After the GA

finishes the evolving, the weights will represent classifiers’ fitness to join the ensemble.

The classifiers have the weights larger than a predefined threshold will be selected into

the ensemble. Later, a revised version of GASEN, called GASEN-b [217] was developed

to construct ensemble of decision trees, where the weights assigned to classifiers are re-

placed by bits to indicate their fitness to join the ensemble. In a recent work, a hybrid

genetic algorithm (HGA) [98] was proposed for classifier ensemble selection. The HGA

is obtained by embedding two local search operations (sequential and combinational) in

the standard genetic algorithm. The experiments showed that HGA can obtain better

performance than the standard GA.

2.3 Classification with Reject Option andMulti-Stage Clas-
sification

In supervised learning, instead of taking a hard decision, allowing for the reject option

(no decision made) is of great importance in practice. For instance, in cases of auto-

matic medical diagnosis, it is better to avoid the risk of making a wrong decision when

the classifiers cannot make a reliable judgement. Many research results on classification

with reject option have shown that a rejection scheme embedded in classification pro-

cedure can improve the reliability of classifiers. The multi-stage classification is one of

the selection to build a classification system when reject option is employed. When the

rejection is not acceptable as a final result, the rejected patterns can be processed at an-

other “higher-stage” pattern recognition system, which would utilize more informative,

though more costly measurements [151].

2.3.1 Classification with Reject Option

The theoretical foundation of classification with reject option was built by Chow [29, 30].

In [30], the optimum classification rule with reject option was defined. Suppose f :

Rk :→ {0, 1, R} is a classifier with reject option, which change a binary classification

task Y = {0, 1} to a three-class situation, where R represents the class of rejection.

Denote the probability of assigning an instance x into a class (0 or 1) in Y as η(x),

the reject probability of f for x is: p(f(x) = R). The misclassification probability is

p(f(x) ̸= Y, f(x) ̸= R). Given a threshold d, the optimum classification rule with reject
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Figure 2.4: Optimum classification rule with threshold d

option can be defined as in Eqn. (2.6) and illustrated in Fig. 2.4:

f⋆(x) =


0 if 1− η(x) > η(x) and 1− η(x) > 1− d
1 if η(x) > 1− η(x) and η(x) > 1− d
R if max(η(x), 1− η(x)) ≤ 1− d

(2.6)

Chow’s rule rejects an instance if its maximum posterior probability is smaller than a

predefined threshold. The maximum posterior probability can be used as the reliability

measurement of classification. However, it is very hard to get posterior probability in

real applications, the posterior probability is often approximated by various types of

classifiers such as neural networks [56]. Therefore, finding a reject rule which achieves

the best trade-off between error rate and reject rate is undoubtedly of practical interest

in real applications.

There are many other rejection rules proposed in literature. Le et al. proposed

three different parameters for measuring classification reliability [212]. The most active

output, the second most active output and the distance between them are calculated,

then three different thresholds are applied on them respectively. Similar rules are also

proposed in [122, 183]. A class-relative rejection rule was presented in [59], where

the authors suggest that using different rejection thresholds for different classes can

obtain better error-reject trade-off. These approaches are proposed to improve the

non-optimum estimation of the posterior probability of Chow’s rule in real applications.

However, the effectiveness of these rules are not theoretically proven. A different type of

rejection rule, called class-selective rejection was proposed in [195]. Instead of rejecting

ambiguous patterns directly, the class-selective remains a list of candidate classes that

the pattern more possibly belongs to, i.e. the most possible classes are selected and

others are rejected. This is important for some applications such as face recognition,

when there is an unrecognized face, people may wish to match it with several possible

candidate face images first rather than deny it directly.

Instead of thresholding on the outputs of classifiers, some researchers attempted

to embed the reject option into the classifiers, the reject option is determined during

classifier training. Most of these attempts focus on support vector machines. In [57],

as an extension of SVM, a pair of parallel hyperplanes delimits the rejection region
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are provided. The parameters of the hyperplanes can be obtained during the training

phase. A similar RO-SVM [222] was proposed by Zhang and Metaxas in 2006, the RO-

SVM uses a slight different optimization algorithm to work in the Multiple Instance

Learning for image categorization. Bartlett and Wegkamp proposed the optimization

of a certain convex loss function φ [8], analogous to the hinge loss used in support

vector machines to embed the reject option in SVMs, they showed that minimizing the

expected surrogate loss, the φ-risk, also minimizes the risk of misclassification. This

work was further extended by Wegkamp in [203] by a generalization of the hinge loss.

The rejection rules for multiple classifier systems have also been proposed in liter-

ature. In [54], Foggia et al. proposed to use a unique reliability parameter ϕ ∈ [0, 1] to

determine if an instance should be rejected or not. They considered a multiple classi-

fier system where the classifiers are combined using Bayesian rule. Suppose π1 is the

highest estimated posterior probability and π2 is the second highest one. By combining

π1 and π2 with appropriate rules to obtain ϕ, the higher value of ϕ indicates more

reliable classification. Similar to Chow’s rule, a predefined threshold can be used on

the value of ϕ to activate rejection. Fumera and Roli analyzed the error-reject trade-off

of linearly combined classifiers [58], the conditions under which the weighted average

can provide a better error-reject trade-off than the simple average are discussed. When

distance-based classifiers are used, or distance-based classifiers and density-based clas-

sifiers are combined, their outputs are hard to be compared and combined. Tax and

Duin proposed a non-linear transformation o-norm for normalizing the outputs of any

type of classifiers [193]. In a more recent work [179], the authors studied the possibility

to provide ECOC (Error Correcting Output Coding) [44] systems with a tailored reject

option carried out through two different schemes: an external and an internal approach.

The external approach obtains classification reliability without making any changes on

the ECOC system; While in the internal approach, the classification reliability is ob-

tained by estimating the reliability of the internal dichotomizers and implying a slight

modification in the decoding stage.

2.3.2 Multistage Classification

When reject option is employed in classification, one has to face the problem of how to

deal with the rejected patterns. One way to solve this problem is to pass the rejected

patterns to another classifier, which would use more information to treat the rejected

patterns. The whole idea of multi-stage classification is to use some more informative

measurements by adding them to the set of less informative measurements used in the

previous stage. At the final stage a decision is taken in any case, so eventually no

rejects remain [151] (Fig. 2.5).

Although the effectiveness of multi-stage classifier was already stressed by some re-

searchers in the late of 1980’s and the beginning of 1990’s [109, 151], the cascade scheme
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Unlabeled patterns Classifier 1 Classified patterns

Rejected patterns

Classifier 2 Classified patterns

Rejected patterns

Classifier m Classified patterns

Figure 2.5: A typical multi-stage classification system with m stages

had been almost neglected until the influential work of Viola and Jones [199] published

in 2001. The Viola-Jones cascade was developed in the context of face detection, this

architecture was used to design the first real time face detector with state-of-the-art

accuracy. However, the Viola-Jones architecture does not address the problem of how

to automatically determine the optimal cascade configuration, e.g. the numbers of

cascade stages and weak learners per stage, or even how to design individual stages

so as to guarantee optimality of the cascade as a whole. Therefore, there have been a

great number of new cascade systems proposed based on Viola-Jones cascade [123, 171].

Most of these new cascade systems are proposed to solve the problems in face detection

[221, 210, 205], object detection [28, 194] and remote sensing image analysis [197, 18].

In many biological and medical applications, people expect high confidence from

classifiers. To this end, different cascade schemes can be used to improve the classi-

fication reliability. The goal of the first stage is to reduce the number of patterns by

rejecting samples with a low confidence. In the following stages, dedicated classifiers

are used to determine more difficult patterns. A three-stage classification scheme for

ElectroCardioGram (ECG) signal classification was proposed by Hosseini et al. [80].

The first stage is a neural network classifier which detects three types of ECG signals,

the signals not in these three classes are rejected and passed into the next stage. The

second stage is a similar neural network classifier trained by different types of features,

which handles the rejected signals from stage 1. At the last stage, a Self-Organizing

Map (SOM) is used to cluster the remaining signals. A similar three-stage framework

was proposed by Acır et al. [159] for discriminating electroencephalogram (EEG) sig-

nals. A two-stage cascade system for iris image classification was proposed by Sun et

al. in 2005 [185]. In order to recognize various iris images efficiently, their proposed

cascading scheme uses a local feature classifier (LFC) in the first stage, when the LFC

is uncertain of its decision, in the second stage, the LFC and an iris blob matcher are

combined to make the final decision. Two cascaded relevance vector machine (RVM)

are used in [204] to detect microcalcifications (MC) in digital mammograms. A com-
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putationally much simpler linear RVM classifier is applied first to quickly eliminate the

overwhelming majority, non-MC pixels in a mammogram from any further consider-

ation. Then another RVM in the second stage is used to determine at each location

in the mammogram if an microcalcification object is present or not. The recent ap-

plications of reject option and multi-stage classifiers in biomedicine can be found in

disease diagnosis [155, 188, 35] and in various types of medical image analysis problems

[168, 66, 47, 48, 52].

2.4 One-Class Classification

The term One-Class Classification (OCC) was first proposed by Moya et al. [137], and

many approaches have been presented in the literature [192]. Following the taxonomy

in the survey papers of [96, 130, 131], the algorithms used in OCC can be categorized as

follows: (i) boundary methods, (ii) density estimation and (iii) reconstruction methods.

Tax and Duin tried to separate the positive class from all other patterns in the

pattern space; the positive class data was surrounded by a hyper-sphere which en-

compassed almost all positive patterns within the minimum radius [189, 191]. Their

method of Support Vector Data Description (SVDD) was different with that proposed

by Schölkopf et al. [175] who used a separating hyper-plane instead of a hyper-sphere

to separate the pattern space with data from the space containing no data. Manevitz

and Yousef [129] proposed another version of one-class SVM to identify the outlier data

as representative of the second class with the standard Reuters1 dataset. They noted

that their SVM methods was quite sensitive to the choice of representation and kernel.

Although one-class classifiers, such as OCSVM, have been widely used, the estimated

boundary can be sensitive to the nature of the data [169]. When noisy data, or many

outliers, are contained in the training set, OCSVM will generate a large boundary that

encloses regions of the feature space where the positive class has low density, often

resulting in many false positives [79]. This can be highly problematic for many applica-

tions, especially for medical diagnosis where the percentage of outliers must be kept to

a minimum, since an accidental diagnosis of a patient as healthy may result in serious

consequences.

Density estimation methods estimate the density of the target class to form a model

to represent the data. The generally used models include Parzen, Gaussian and Gaus-

sian mixture models. A test point is classified by the maximum posterior probability.

Density estimation methods work well if the number of training samples is sufficient

enough to estimate data distributions. However, when the models cannot fit the data

distribution very well, a large bias may be generated. Details and some comparisons of

these methods can be found in [162, 202].

1http://www.daviddlewis.com/resources/testcollections/reuters21578
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When it is not feasible to obtain large training sets, which are required by the density

estimation or support vector based methods, the reconstruction models can be used to

approximate the target class. The reconstruction models aim to produce prototypes

of the original data, and new objects are projected onto the prototypes. The distance

between the original object x and the projected object p(x) (Reconstruction Error)

indicates the similarity of a new object to the original target distribution. When the

training data has a very high dimensionality, some distance based methods like nearest

neighbor tend to perform poorly [12]. In such cases it can often be assumed that

the target data is distributed in subspaces of much lower dimensionality. Principle

Component Analysis [186] is a linear model that has the ability to project the original

data into orthogonal space which can capture the variance in the data. In order to

approximate nonlinear data distributions, many nonlinear subspace models have also

been proposed, such as Self-Organizing Map (SOM), auto-encoders, auto-associative

networks and Kernel PCA.

It has been demonstrated that combining classifiers can also be effective for one-

class classifiers. The existing classifier combination strategies can be used in one-class

classifiers. However, since there is only information from one class, it is more difficult

to combine one-class classifiers. Tax and Duin investigated the influence of feature sets

and the types of one-class classifiers for the best choice of the combination rule [190].

A bagging based one-class support vector machine ensemble method was proposed in

[178]. A dynamic ensemble strategy based on Structural Risk Minimization [86] was

proposed by Goh et al. for multiclass image annotation [65]. Recently, some research

results have revealed that creating a one-class classifier ensemble from different feature

subsets can provide better performance. Perdisci et al. [152] also used an ensemble of

one-class SVMs to create a “high speed payload-based” anomaly detection system, the

features were first extracted and clustered, the OCSVM ensemble was then constructed

based on the clustered feature subsets. A biometric classification system combining dif-

ferent biometric features was proposed by Bergamini et al. [10], where the one-class

SVMs in the ensemble were trained by the data from different people. The feature

subset strategy provides diversity with respect to the base classifiers, some researchers

emphasis the importance of measuring diversity in ensembles so as to improve classifi-

cation performance [72, 102].

Combining one-class classifiers has also shown promising performance in medicine

and biology [213]. Peng Li et al. [116] proposed a multi-size patch-based classifier

ensemble, which provides a multiple-level representation of image content, the proposed

method was evaluated on colonoscopy images and ECG beat detection [115]. The k-

nearest neighbor classifier was selected as the base classifier in the work of Okun and

Priisalu [146]; majority voting was chosen as the combination rules for the ensemble;

the method was evaluated on gene expression cancer data.
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Chapter 3

Random Subspace Ensemble of
Neural Networks for Microscope
Image Classification

The content of this chapter has been published in the following papers:

• Yungang Zhang, Bailing Zhang and Wenjin Lu. Breast Cancer Classification

From Histological Images with Multiple Features and Random Subspace Classifier

Ensemble, CMLS 2011, AIP Conf. Proc. Vol. 1371, pp. 19-28, Toyama, Japan,

June 2011.

• Yungang Zhang, Bailing Zhang and Wenjin Lu. Breast Cancer Histological Im-

age Classification with Multiple Features and Random Subspace Classifier En-

semble, T.D. Pham, L.C. Jain (eds): Innovations in Knowledge-based Systems in

Biomedicine, Springer-Verlag, SCI 450, pp. 27-42, 2013. (book chapter).

• Bailing Zhang, Yungang Zhang, Wenjin Lu and Guoxia Han. Phenotype Recogni-

tion by Curvelet Transform and Random Subspace Ensemble. Journal of Applied

Mathematics & Bioinformatics, Vol.1, No.1, pp. 79-103, 2011.

3.1 Introduction

Automated microscopic image analysis has become a fundamental tool for scientists

to make discovery in biological and medical science. Modern robotic fluorescence mi-

croscopes are able to capture thousands of images from massively parallel experiments

such as RNA interference (RNAi) or small-molecule screens. High-content screening

has become a drug discovery method that uses images of living cells as the basic unit

for molecule discovery, which permits the identification of small compounds altering

cellular phenotypes. As such, efficient computational methods are required for auto-

matic cellular phenotype identification capable of dealing with large image data sets.
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The classification or identification of cellular phenotype is often a rate limiting task

because of the high dimensionality and small sample size of the microscopy images.

Complex cellular structures such as organelles within the eukaryotic cell can be

studied by fluorescence microscopy images of cells with appropriate staining techniques.

By robotic systems, thousands of images from cell assays can be acquired from the

so-called High-Content Screening (HCS), which often yields high-quality, biologically

relevant information. Many biological properties of the cell can be further analyzed from

the images, for example, the size and shape of a cell, amount of fluorescent label, DNA

content, cell cycle, and cell morphology [84]. On the other hand, High-Throughput

Screening or HTS allows a researcher to quickly conduct millions of biochemical, genetic

or pharmacological tests using robotics, data processing and control software, liquid

handling devices, and sensitive detectors. The high-content, high-throughput screening

has greatly advanced biologists’ understanding of complex cellular processes and genetic

functions [124]. With the aid of computer vision and machine learning, scientists are

now able to carry out large-scale screening of cellular phenotypes, at whole-cell or

sub-cellular levels, which are important in many applications, e.g., delineating cellular

pathways, drug target validation and even cancer diagnosis [216, 88].

The high-content screening has also significantly facilitated genome-wide genetic

studies in mammalian cells. With the combination with RNA interference (RNAi),

sets of genes involved in specific mechanisms, for example cell division, can be identi-

fied. By observing the downstream effect of perturbing gene expression, genes’ normal

operations that function to produce proteins needed by the cell can thus be assessed

[138]. RNAi is a phenomenon of degrading the complementary mRNA by introduc-

tion of double-stranded RNA (dsRNA) into a diverse range of organisms and cell types

[87, 64]. The discovery of RNAi and the availability of whole genome sequences allow

the systematic knockdown of every gene or specific gene sets in a genome [31] . Li-

braries of RNAis, covering a whole set of predicted genes inside the target organisms

genome can be used to identify relevant subsets, facilitating the annotation of genes for

which no clear role has been established beforehand. Image-based screening of the en-

tire genome for specific cellular functions thus becomes feasible by the development of

Drosophila RNAi technology to systematically disrupt gene expression. Genome-wide

screens, however, produce huge volumes of image data which is beyond human’s capa-

bility of manual analysis, and automating the analysis of the large number of images

generated in such screens is the bottleneck in realizing the full potential of cellular and

molecular imaging studies.

Microscope imaging is also an important tool in the diagnosis of many types of

diseases. For example, histopathologic biopsy images are widely accepted as a power-

ful gold standard for prognosis in critical diseases such as breast, prostate, kidney and

lung cancers, allowing to narrow borderline diagnosis issued from standard macroscopic
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non-invasive analysis such as mammography and ultrasonography [83], and histopathol-

ogy slides provide a comprehensive view of disease and its effect on tissues, since the

preparation process preserves the underlying tissue architecture [68].

In this chapter, an approach based on multiple image feature descriptions and ran-

dom subspace ensemble for microscopic image classification is investigated. Three types

of image feature descriptors are used for microscopic image description: the curvelet

transform, the gray level co-occurrence matrix (GLCM), and the completed local binary

patterns (CLBP). The curvelet transform is a multiscale directional transform which

allows an almost optimal nonadaptive sparse representation of objects with edges [20],

which is particularly appropriate for many microscopy images. The GLCM and CLBP

give the textural descriptions for the microscopic images. The ensemble classification

approach, called Random Subspace Ensemble, contains a set of base neural network

classifiers which are trained using subsets of curvelet features randomly drawn from the

available RNAi images. The component classifiers are then selected and aggregated by

following the Majority Voting Rule. Experimental results on the phenotype recognition

from three benchmark fluorescence microscopy image sets(RNAi, CHO and 2D-Hela)

and a breast cancer biopsy image set show the effectiveness of the proposed approach.

The ensemble model produces better performance compared to any of individual neural

networks trained. The proposed Random Subspace Ensemble offers the classification

rate 87.4% on the RNAi image dataset, which compares sharply with the published

result 82%, and the classification results on the other two groups of fluorescence mi-

croscopy images (CHO and 2D-Hela) certify the effectiveness of the proposed approach

as well. The performance of the proposed classification method also superior than the

published results on a breast cancer biopsy image set.

The chapter is organized as follows: In Section 3.2, some related works are presented.

Section 3.3 introduces the image data used. The image feature extraction methods

are described in Section 3.4 and the random subspace ensemble of neural networks is

introduced in Section 3.5. Section 3.6 presents the experimental results, the conclusion

is drawn in Section 3.7.

3.2 Related Works

Most of the microscopic image analysis systems consist of several components: cellular

segmentation, cellular morphology and texture feature extraction, cellular phenotype

classification, and clustering analysis [84]. With appropriate cellular segmentation re-

sults, phenotype recognition can be studied in a multi-class classification framework,

which involves two interweaved components: feature representation and classification.

Efficient and discriminative image representation is a fundamental issue in any bioim-

age recognition task. Most of the proposed approaches for microscopic images employ

feature set which consist of different combinations of morphological, edge, texture, ge-
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ometric, moment and wavelet features [113], and most of these systems employ SVM

or neural networks as their classifiers, graphical models are also used for classification

[154, 27].

In a early work of Boland et al. in 1998 [139], the Zernike moments and Haralick

texture features are combined for fluorescence microscope image classification, using

a backpropagation neural network, an averaged accuracy of 88% was obtained on a

Chinese Hamster Ovary (CHO) cells images. In 2001, Boland and Murphy further ex-

tended their feature description method in [139], besides Zernike moments and Haralick

texture features, the Subcellular Location Features (SLF) was first proposed for micro-

scope image classification [140], which is a combination of features from the whole image

and cellular structures. Using a neural network classifier, they obtained 83% classifica-

tion accuracy on a 10-class microscope image set ‘Hela’. The author also demonstrated

that SLF have better description ability than other frequently used features like Zernike

moments and Haralick texture features. Zhao et al. used clustering methods for object

type recognition in micrscopic images, k-means is first used to cluster the subcellular

location patterns, then a linear discriminant analysis (LDA) classifier is employed to

discriminate different objects in subcellular location patterns, 83% recognition rate was

obtained. In these works, SLF achieves better performance than other image features.

However, in SLF, some features cannot be obtained without segmentation of images,

this makes SLF not suitable for all types of microscopic images.

The classification of microscopic images without image segmentation has been ad-

dressed by many researchers. In 2004, Huang et al. proposed to use only the global

features from SLF to solve the ‘type-specific’ problem in SLF [92], the stepwise dis-

criminant analysis is used to select the most discriminative features, better classifica-

tion results were obtained on multicell images than single-cell images. The authors

further improved the performance of their non-segmentation method by adding Gabor

and wavelets features and ensemble learning [93]. The 13 statistic features from co-

occurrence matrix are used in [81, 82] for time series microscopic image classification,

the features are calculated for all images, then the mean and variance across the series

are used as the final features of the images. Recently, some researchers have utilized

multiresolution image features in microscopic image classification [1, 46, 14, 187]. These

works have showed that the multiresolution features are very suitable for describing

subtle structures in microscopic images.

3.3 Microscope Image Data

Three benchmark fluorescence microscopy image datasets in [113] were used in our

study, which are RNAi, CHO and 2D-Hela. A benchmark breast cancer biopsy image

dataset was also used for evaluation.
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3.3.1 Fluorescence microscope image data

The RNAi dataset is a set of fluorescence microscopy images of fly cells (D. melanogaster)

subjected to a set of gene-knockdowns using RNAi. The cells are stained with DAPI

to visualize their nuclei. Each class contains 20 1024× 1024 images of the phenotypes

resulting from knockdown of a particular gene. Ten genes were selected, and their

gene IDs are used as class names. The genes are CG1258, CG3733, CG3938, CG7922,

CG8114, CG8222, CG 9484, CG10873, CG12284, CG17161. According to [113], the

images were acquired automatically using a Delta-Vision light microscope with a 609

objective. Each image is produced by deconvolution, followed by maximum intensity

projection (MIP) of a stack of 11 images at different focal planes. Samples of the images

are illustrated in Fig. 3.1.

Figure 3.1: RNAi image set of fluorescence microscopy images of fly cells (D.
melanogaster).

2D HeLa dataset, a collection of HeLa cell immunofluorescence images containing

10 distinct subcellular location patterns. The subcellular location patterns in these

collections include endoplasmic reticulum (ER), the Golgi complex, lysosomes, mito-

chondria, nucleoli, actin microfilaments, endosomes, microtubules, and nuclear DNA

(Fig. 3.2). The 2D HeLa image dataset is composed of 862 single-cell images, each

with size 382× 512.

CHO is a dataset of fluorescence microscope images of CHO (Chinese Hamster

Ovary) cells. The images were taken using 5 different labels. The labels are: anti-

giantin, Hoechst 33258 (DNA), anti-lamp2, anti-nop4, and anti-tubulin (Fig. 3.3). The

CHO dataset is composed of 340 images, each with size 512× 382.

3.3.2 Breast Cancer Biopsy Image Set

We used a breast cancer benchmark biopsy image dataset from the Israel Institute of

Technology 1. The image set consists of 361 samples, of which 119 were classified by

a pathologist as normal tissue, 102 as carcinoma in situ, and 140 as invasive ductal

1ftp://ftp.cs.technion.ac.il/pub/projects/medic-image
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Figure 3.2: Representative images from the 2-D HeLa image collection. The image
classes represent the distributions of (a) an endoplasmic reticulum (ER) protein, (b) the
Golgi protein giantin, (c) the Golgi protein GPP130, (d) the lysosomal protein LAMP2,
(e) a mitochondrial protein, (f) the nucleolar protein nucleolin, (g) the filamentous form
of the cytoskeletal protein actin, (h) the endosomal protein transferrin receptor, (j) the
cytoskeletal protein tubulin, and (k) the fluorescent probe DAPI bound to DNA [113].

Figure 3.3: Examples of the images in CHO dataset. These images have had background
fluorescence subtracted and have had all pixels below threshold set to 0. Representative
images are shown for cells labeled with antibodies against giantin (A), LAMP2 (B),
NOP4 (C), tubulin (D), and with the DNA stain Hoechst 33258 (E) [113].
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Figure 3.4: (a) carcinoma in situ: tumor confined to a well-defined small region; (b)
invasive: breast tissue completely replaced by the tumor; (c): healthy breast tissue.

or lobular carcinoma. The samples were generated from breast tissue biopsy slides,

stained with hematoxylin and eosin. They were photographed using a Nikon Coolpix
R⃝ 995 attached to a Nikon Eclipse R⃝ E600 at magnification of ×40 to produce images

with resolution of about 5µ per pixel. No calibration was made, and the camera was

set to automatic exposure. The images were cropped to a region of interest of 760×570

pixels and compressed using the lossy JPEG compression. The resulting images were

again inspected by a pathologist to ensure that their quality was sufficient for diagnosis.

Three typical sample images belong to different classes can be seen in Fig. 3.4.

3.4 Feature Extraction

Shape feature and texture feature are critical factors for distinguishing one image from

another. For the microscopic image discrimination, shapes and textures are also quite

effective. As we can see from Fig. 3.1 to Fig. 3.4, different kinds of microscope images

have visible differences in cell externality and texture distribution. Thus, we use Local

Binary Patterns (LBPs) for extracting local textural features, Gray Level Co-occurrence

Matrix (GLCM) statistics for representing global textures and the Curvelet Transform

for multiresolution shape description.

3.4.1 Curvelet Transform for Image Feature Description

Although wavelets have been widely used in image analysis, traditional wavelets per-

form well only at representing point singularities, since they ignore the geometric prop-

erties of structures and do not exploit the regularity of edges. Curvelet transform was

proposed in order to overcome the drawbacks of conventional wavelet transform, the

curvelet transform has an almost optimal sparse representation of objects with C2–

singularities [24], combined with other methods, superior performance of the curvelet

transform has been shown in image processing [128].
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The Continous Curvelet Transform

In this section we briefly introduce the continuous curvelet transform (CCT) in [21, 22].

Curvelets functions can be constructed from two window functions V (t) and W (r)

(for example, the scaled Meyer windows [42]), which satisfy the following admissibility

conditions:

∞∑
l=−∞

V 2(t− l) = 1, t ∈ R, (3.1)

∞∑
j=−∞

W 2(2jr) = 1, r > 0, (3.2)∫ ∞

0
W 2(r)

dr

r
= ln 2, (3.3)∫ 1

−1
V 2(t)dt = 1. (3.4)

With three parameters, the scale a ∈ (0, 1], the location b ∈ R2 and the orientation θ ∈
[0, 2π), using the polar coordinates(r, ω) in frequency domain, the a-scaled window can

be defined as:

Ua(r, ω) := a
3
4W (ar)V (

ω√
a
) (3.5)

Let the Fourier transform for a function f ∈ L2(R2) be defined by:

f̂(ξ) :=
1

2π

∫
R2

f(x)e−i⟨x,ξ⟩dx. (3.6)

Designate the window Ua as the Fourier transform of the curvelet function Φa,0,0,

we can get:

Φ̂a,0,0(ξ) := Ua(ξ). (3.7)

The curvelet family can be constructed by translation and rotation of Φa,0,0,

Φa,b,θ := Φa,0,0

(
Rθ(x− b)

)
, (3.8)

where the translation b ∈ R2 and Rθ =

(
cos θ − sin θ
sin θ cos θ

)
is the rotation matrix with

angle θ. Fig. 3.5 is an example graph of a curvelet function.

The continuous curvelet transform Γf of the function f ∈ L2(R2) is given as:

Γf (a, b, θ) := ⟨Φa,b,θ, f⟩ =
∫
R2

Φa,b,θ(x)f(x)dx, (3.9)

Γf is the product of a given function f with every curvelet element Φa,b,θ.
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Figure 3.5: Graph of a curvelet function with Φa,b,θ, a = 210, b = 0, θ = 120 ◦

The Discrete Curvelet Transform

It is necessary to discretize the continuous curvelet transform, since we usually work

with discrete data. The idea of discretizing the continuous curvelet transform is

simple—choose a suitable sampling at the range of scales, locations and directions.

The scales aj := 2−j , j ≥ 0; the equidistant sequence of rotation angles θj,l:

θj,l :=
πl2−⌈j/2⌉

2
, l = 0, 1, . . . , 4 · 2⌈j/2⌉ − 1; (3.10)

the positions: bj,lk = bj,lk1,k2 := R−1
θj,l

(k1
2j
, k2
2j/2

)T , with k1, k2 ∈ Z and Rθ denotes the

rotation matrix with angle θ.

This choice leads a discrete curvelet transform (DCT) forms a tight frame, hence the

discrete curvelet transform will be invertible. The choice of positions yields a parabolic

scaling of the grids with the relationship length≈ 2−j/2 and width≈ 2−j (Fig. 3.6).

Figure 3.6: Curvelet transform: Fourier frequency domain partitioning (left) and spatial
domain representation of a wedge (right)

However, in practical implementation, we prefer Cartesian arrays to the polar tiling

of the frequency plane, therefore, a construction of coronae based on concentric squares
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and shears can be seen in Fig. 3.7 [25].

Figure 3.7: Discrete curvelet tiling coronae

We demonstrate DCT applied to an image given by f(x1, x2),x1 = 0, 1, . . . , N1 −
1,x2 = 0, 1, . . . , N2 − 1, whose discrete Fourier transform is

f̂(n1, n2) =

N1−1∑
x1=0

N2−1∑
x2=0

f(x1, x2)e
−2πi(n1x1/N1+n2x2/N2). (3.11)

The discrete curvelet transform Φjlk decomposites the image f into the curvelet coef-

ficients cjlk,

f(x1, x2) =

J∑
j=1

Lj−1∑
l=0

Kjl,1−1∑
k1=0

Kjl,2−1∑
k2=0

cjlkΦjlk(x1, x2), (3.12)

where k = (k1, k2) and Φjlk is the curvelet on level j with orientation l and spatial

translation k. The discrete curvelet transform thus provides a decomposition of the

image f into J detail sub-bands(scales), with Lj directions on each level, and Kjl,1 ×
Kjl,2 spatial translations for each of these directions [23].

The discrete curvelet transform can be defined through its discrete Fourier trans-

form as

Φ̂j0k(n1, n2) = Uj(n1, n2)e
−2πi(k1n1/Kj0,1+k2n2/Kj0,2) (3.13)

and

Φ̂jlk = ST
θl
Φ̂j0k. (3.14)

Sθl is a shearing matrix, which shears the grid on which the curvelet is evaluated by an

angle θl. The slopes defined by the angles θl are equispaced. Uj is a frequency window

function with compact support and defined as∑
j

∑
l

∣∣[SθlUj ](n1, n2)
∣∣2 = 1. (3.15)
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Therefore, the discrete curvelet transform decomposites the frequency space into dyadic

rectangular coronae, each of which is divided into wedges, the number of wedges doubles

with every second level. This is how the frequency coronae in Fig. 3.7 be constructed.

Two different digital (or discrete) curvelet transform (DCT) algorithms are intro-

duced in [25]. The first algorithm is the Unequispaced FFT Transform, where the

curvelet coefficients are found by irregularly sampling the fourier coefficients of an im-

age. The second algorithm is the the Wrapping transform, using a series of translations

and a wraparound technique. Both algorithms having the same output, but the Wrap-

ping Algorithm gives both a more intuitive algorithm and faster computation time. In

this thesis the Wrapping DCT method is used. The Wrapping DCT algorithm can be

briefly described as follows:

1. Take FFT(Fast Fourier Transform) of the image.

2. Divide FFT into collection of Digital Corona Tiles (Fig. 3.7).

3. For each corona tile

(a) Translate the tile to the origin.

(b) Wrap the parallelogram shaped support of the tile around a rectangle centered at

the origin.

(c) Take the Inverse FFT of the wrapped support.

(d) Add the curvelet array to the collection of curvelet coefficients.

The inverse Wrapping DCT algorithm is:

1. For each curvelet coefficient array

(a) Take the FFT of the array.

(b) Unwrap the rectangular support to the original orientation shape.

(c) Translate to the original position.

(d) Store the translated array.

2. Add all the translated curvelet arrays.

3. Take the inverse FFT to reconstruct the image.

The details of the algorithms can be found in [25]. Fig. 3.8(b) shows the curvelet

coefficients of a 6-level decomposition of a 512 × 512 Lena in Fig. 3.8(a). On the

coarsest level, j = 1, the curvelets are isotropic, the low-pass image is located at the

center of the coronae, the sub-bands curvelet coefficients located around the low-pass

image according to their scales and orientations, and on the finest level, j = J (j = 6 in

Fig. 3.8(b)), one can choose to use curvelet or wavelet in the implementation, we have

used wavelets on the finest level since the shorter execution time and smaller memory

requirements. Actually, there is a rule to determine the decomposition levels according

to the size of the image, the number of decomposition levels DL can be calculated as

DL = log 2(n)− 3, where n = min(M,N) for a M ×N size image.
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(a) Lena (b) Decomposition Coefficients

Figure 3.8: 6-level DCT decomposition

Multiresolution Feature Extraction Through Curvelet Transform

Fig. 3.9 gives an example of applying curvelet transform on a microscopic image.

The top image is the original one. The first image in second row is the approximate

coefficients and others are detailed coefficients at eight angles from three scales. All

the images are rescaled to same dimension for demonstration purpose.

Figure 3.9: Curvelet transform of a RNAi miscroscopy image

Once the curvelet coefficients have been obtained from DCT, the mean values and

standard deviations of each curvelet sub-band are computed as the features for the

curvelet, since these features have shown good capability in description of wavelet and

curvelet sub-bands [7, 184]. If n curvelets are used for the transform, 2n features

G = [Gµ, Gδ] are obtained, where Gµ = [µ1, µ2, · · · , µn], Gδ = [δ1, δ2, · · · , δn]. The 2n

dimension feature vector can be used to represent each image in the dataset.

3.4.2 Completed Local Binary Patterns for Texture Description

Local Binary Patterns (LBPs) were first introduced as a texture descriptor for summa-

rizing local gray-level structures [145], LBPs are generated by taking a local neighbor-

hood around each pixel into account, thresholding the pixels of the neighborhood at
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the value of the central pixel and then using the resulting binary-valued image patch

as a local image descriptor. In other words, a binary code of 0 or 1 is assigned to each

neighborhoods pixel. The binary code of each pixel in the case of a 3×3 neighborhoods

would form an 8 bits code. In this manner, a single scan through an image can generate

LBP codes for each pixel.

Formally, the LBP operator takes the form

LBPP,R =

P−1∑
p=0

s(gp − gc)2
p, s(x) =

{
1 if x ≥ 0
0 if x < 0

(3.16)

where gc is the gray value of the central pixel, gp is the value of its neighbors, P is the

total number of neighbors and R is the radius of the neighborhood.

A useful extension to the original LBP operator is the so-called uniform patterns

[145]. An LBP is “uniform” if it contains at most two bitwise transitions from 0 to 1 or

vice versa when the binary string is considered circular. For example, 11100001 (with

2 transitions) is a uniform pattern, whereas 11110101 (with 4 transitions) is a non-

uniform pattern. The uniform LBP describes those structures which contain at most

two bitwise (0 to 1 or 1 to 0) transitions. Uniformity represents important structural

features such as edges, spots and corners. Ojala et al. [145] observed that although

only 58 of the 256 8-bit patterns are uniform, nearly 90 percent of all observed image

neighborhoods are uniform. We use the notation LBPu
P,R for the uniform LBP operator,

meaning a neighborhood of P sampling points on a circle of radius R. The superscript

u stands for using uniform patterns and labeling all remaining patterns with a single

label. The number of labels for a neighborhood of 8 pixels is 256 for standard LBP and

59 for LBPu
8,1.

A common practice when applying an LBP coding over an image is to generate a

histogram of the labels, where a 256-bin histogram represents the texture description

of the image and each bin can be regarded as a micro-pattern. The distribution of

these patterns represents the whole structure of the texture. The number of patterns

in an LBP histogram can be reduced by only using uniform patterns without losing

much information. As noted above, there are 58 different uniform patterns in an 8-bit

LBP representation, the remaining patterns can be assigned in one non-uniform binary

number, thus representing the texture structure with a 59-bin histogram instead of

using 256 bins.

LBP has been shown to be an efficient image texture descriptor. Recently, a com-

plete modeling of the local binary pattern operator was proposed and the associated

Complete LBP (CLBP) scheme developed for texture classification [67]. Different to

traditional LBP, in CLBP, a local region is represented by its center pixel and a Local

Difference Sign-Magnitude Transform (LDSMT). With a global thresholding, the center

pixel is coded by a binary code and the binary map is called CLBP C (complete local

binary patterns of centers). Two other complementary components are also obtained
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Figure 3.10: Framework of CLBP

by LDSMT: the difference signs and the difference magnitudes, two operators CLBP S

(complete local binary patterns of signs) and CLBP M (complete local binary patterns

of magnitudes) are used to code them. The framework of CLBP is presented in Fig.

3.10. The CLBP could achieve much better rotation invariant texture classification

than conventional LBP based schemes.

We briefly review three operators in CLBP here, namely CLBP S, CLBP M and

CLBP C. Given a central pixel gc and its P neighbors gp, p = 0, 1, . . . , P − 1, the

difference between gc and gp can be calculated as dp = gp−gc. The local difference vector
[d0, . . . , dP−1] describes the image local structure at gc, dp can be further decomposed

into two components:

dp = sp ∗mp, and

{
sp = sign(dp)
mp = |dp|

(3.17)

where sp = 1, when dp ≥ 0, otherwise, sp = 0. mp is the magnitude of dp. Eqn. 3.17 is

called the local difference sign-magnitude transform (LDSMT).

The CLBP S operator is defined as the original LBP operator in Eqn. 3.10.

The CLBP M operator is defined as:

CLBP MP,R =

P−1∑
p=0

t(mp, c)2
p, t(x, c) =

{
1 if x ≥ c
0 if x < c

(3.18)

where c is a threshold set as the mean value of mp from the whole image.

The CLBP C operator is coded as:

CLBP CP,R = t(gc, cI) (3.19)

where t is defined in Eq. 3.18 and cI is a threshold set as the average gray level of the

whole image.

In this work, we have used the 3D joint histogram of these three operators to

generate textural features of breast cancer biopsy images, according to [67], the joint

combination of the three components gives better classification than conventional LBP

and provides a smaller feature dimension.
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Table 3.1: Features extracted from Gray Level Co-occurrence Matrix
Index Features Index Features

1 Energy 12 Sum of Squares
2 Entropy 13 Sum Average
3 Dissimilarity 14 Sum Variance
4 Contrast 15 Sum Entropy
5 Inverse Difference 16 Difference Variance
6 Correlation 17 Difference Entropy
7 Homogeneity 18 Information Measure of Correlation (1)
8 Autocorrelation 19 Information Measure of Correlation (2)
9 Cluster Shade 20 Maximal Correlation Coefficient
10 Cluster Prominence 21 Inverse Difference Normalized
11 Maximum Probability 22 Inverse Difference Moment Normalized

Statistics from Gray Level Co-occurrence Matrix

Global texture distribution is one of the important characteristics used for image de-

scription. The co-occurrence probabilities provide a second-order statistics for generat-

ing texture features [76]. The basis for features used here is the gray level co-occurrence

matrix, which is square with dimension Ng, where Ng is the number of gray levels in

the image. Element [i, j] of the matrix is generated by counting the number of times a

pixel with value i is adjacent to a pixel with value j and then dividing the entire matrix

by the total number of such comparisons made. Each entry is therefore considered to

be the probability that a pixel with value i will be found adjacent to a pixel of value j

[13], the matrix can be seen in Eqn. 3.20.

C =


p(1, 1) p(1, 2) · · · p(1, Ng)
p(2, 1) p(2, 2) · · · p(2, Ng)

...
...

. . .
...

p(Ng, 1) p(Ng, 2) · · · p(Ng, Ng)

 (3.20)

With respect to the work described in this paper, a total of 22 features were ex-

tracted from gray level co-occurrence matrices in our work, these are listed in Table

3.1. Each of these statistics has a qualitative meaning with respect to the structure

within the GLCM, for example, dissimilarity and contrast measure the degree of tex-

ture smoothness, uniformity and entropy reflect the degree of repetition amongst the

gray-level pairs, and correlation describes the correlation between the gray-level pairs.

For details of these statistical features, see [76, 13, 32, 182].

3.4.3 The Combined Features

Each feature extracted from the above three descriptors characterizes individual as-

pects of image content. The joint exploitation of different image descriptions is often

necessary to provide a more comprehensive description in order to produce higher clas-
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sification accuracy. Using five levels of the curvelet transform, 82 sub-bands of curvelet

coefficients are computed, therefore, a 164 dimensional curvelet feature vector is gen-

erated for each image. With a 64 gray-level quantization, we used 10 different relative

interpixel distances to generate 10 different gray level co-occurrence matrices for each

image. The 22 statistics listed in Table 3.1 are computed for each of these 10 gray level

co-occurrence matrices, thus, we have a 220 dimensional GLCM feature vector for each

image. The CLBP feature vector of each image has a dimension of 200. The three

feature vectors are normalized respectively into the range of [−1, 1], then concatenated

together to produce a 584 dimensional feature vector of each image for classification.

One of the difficulties of multiple feature aggregation lies in the high dimensionalities

of the feature space. However, by using Random Subspace classifier ensembles (see

Section 3.5) this problem can be resolved due to its dimension reduction capability.

3.5 Random Subspace Ensemble of Neural Networks

The idea of classifier ensemble is to individually train a set of classifiers and appro-

priately combine their decisions [108]. The variance and bias of classification can be

reduced simultaneously because the collective results will be less dependent on pecu-

liarities of a single training set while a combination of multiple classifiers may learn

a more expressive concept class than a single classifier. Classifier ensembles gener-

ally offer improved performance. There are many ways to form a classifier ensemble.

A mainstream methodology is to train the ensemble members on different subsets of

the training data, which can be implemented by re-sampling (bagging) [111] and re-

weighing (boosting) [211] the available training data. Bagging (an abbreviation of

“bootstrap aggregation”) uses the bootstrap, a popular statistical re-sampling tech-

nique, to generate multiple training sets and to train base classifiers for an ensemble.

Boosting generates a series of component classifiers whose training sets are determined

by the performance of former ones. Training instances that are wrongly classified by

the former classifiers will play more important roles in the training of later classifiers.

Though different classifiers can be applied in ensemble learning, in this chapter we

will mainly consider neural classifiers as the base learners with the following reasons.

First of all, it has been proven that a simple three-layer back propagation neural network

(BPNN) can approximate any continuous function if there are sufficient number of

middle-layer units [77]. Secondly, the generalization performance of neural networks is

not very stable in the sense that different settings such as different network architectures

and initial conditions may all influence the learning outcome. The existence of such

differences between base classifiers is pre-requisite for the success of a classifier ensemble

[108].

The multilayer perceptron (MLP) trained with the back propagation algorithm has

been successfully applied to many classification problems in bioinformatics, for exam-
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ple, subcellular protein location patterns [139, 93, 140]. With a set of source nodes

forming the input layer, one or more hidden layers of computation nodes, and a layer

of output nodes, an MLP constructs input–output mappings and the characteristics of

such input–output relationship are determined by the weights assigned to the connec-

tions between the nodes in the two adjacent layers. Changing the weight will change

the input-to-output behavior of the network. An MLP learning or training is often

implemented by gradient descent based back-propagation algorithm [77] to optimize a

derivable criterion, such as the Mean Squared Error.

The performance improvement can be expected from an MLP ensemble by taking

advantages of the disagreements among a set of MLP classifiers. An important issue

in constructing the MLP ensemble is to create the diversity of the ensemble [78]. The

main idea of Random Subspace is: for a p-dimensional training set, choose a fixed p∗

(p∗ < p), randomly select p∗ features according to the uniform distribution. Thus,

the data of the original p-dimensional training set is transformed to the selected p∗-

dimensional subspace. The resulting feature subset is then used to train a suitable

base classifier. Repeat this process for m times, then m base classifiers are trained

on different randomly chosen feature subsets, the resulting set of classifiers are then

combined by majority voting. Random Subspace simultaneously encourages diversity

and individual accuracy within the ensemble: random feature sets selection results in

diversity among the base classifiers and using the corresponding data set to train each

base classifier prompt the accuracy. The details of Random Subspace Ensemble can be

further described as follows:

Consider a training set X = {X1, X2, . . . , Xn} with n samples, each sample is

assigned into one of m classes, m ≥ 2. Each training sample Xi is described by

a p-dimensional vector, Xi = {xi1, xi2, . . . , xip}(i = 1, . . . , n). We randomly select

p∗ < p features from the original p-dimensional feature vector to obtain a new p∗-

dimensional feature vector. Now the original training sample set X is modified as

Xr = {Xr
1 , X

r
2 , . . . , X

r
n} , each training sample in Xr is described by a p∗ feature

vector, Xr
i = {xri1, xri2, . . . , xrip∗}(i = 1, . . . , n), where each feature component xrij(j =

1, . . . , p∗) is randomly selected according to the uniform distribution. Then we construct

R classifiers in the random subspace Xr and aggregate these classifiers in the final

majority voting rule. This procedure can be formally described as:

1. Training phase. Repeat for r = 1, 2, . . . , R.

(a) Select the p∗-dimensional random subspaceXr from the original p-dimensional

feature space X. Denote each p∗-dimensional feature vector by x.

(b) Construct a classifier Cr(x) (with a decision boundary Cr(x) = 0) in Xr.

2. Classification phase. Combine classifiers Cr(x), r = 1, . . . , R by majority voting

to a final decision rule β(x) = argmaxy∈{1,...,m}
∑

r δsgn(Cr(x)),y, where δi,j = 1,
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if i = j. Otherwise, δi,j = 0. y ∈ {1, . . . ,m} is a decision (class label) of the

classifier.

3.6 Experiments and Results

For the curvelet feature extraction process, fast discrete curvelet transform was applied

to each of the images in the database using the CurveLab Toolbox (http://www.curvelet.org).

By following the four steps described in Section 3.4.1: application of a 2-dimensional

FFT of the image, formation of a product of scale and angle windows, wrapping this

product around the origin, and application of a 2-dimensional inverse FFT. The dis-

crete curvelet transform can be calculated to various resolutions or scales and angles.

Two parameters are involved in the digital implementation of the curvelet transform:

number of resolutions and number of angles at the coarsest level. For our images of

1024×1024, five scales were chosen which include the coarsest wavelet level. At the 2nd

coarsest level 16 angles were used. With five levels analysis, 82 sub-bands of curvelet

coefficients are computed. Therefore, a 164 dimension feature vector is generated for

each image in the database.

We first evaluated several different and commonly used supervised learning methods

to the multi-class classification problem, including k-nearest neighbors (kNN), multi-

layer perceptron neural networks, SVM, Random Forest and random subsapce en-

semble. kNN classifier is prototype-based, with an appropriate distance function for

comparing pairs of data samples. It classifies a sample by first finding the k closest

samples in the training set, and then predicting the class by majority voting. We simply

chosen k = 1 in the comparisons. Multiple layer perceptron (MLP) is configured as a

structure with one hidden layer with a few hidden units. The activation functions for

hidden and output nodes are logistic sigmoid function and linear function, respectively.

We experimented with MLP with 20 units in the hidden layer and 10 linear units repre-

senting the class labels. The network is trained using the Conjugate Gradient learning

algorithm for 500 epochs.

Support Vector Machines (SVM) is a developed learning system originated from the

statistical learning theory [200]. Designing SVM classifiers includes selecting the proper

kernel function and choosing the appropriate kernel parameters and C value. The popu-

lar library for support vector machines, LIBSVM(www.csie.ntu.edu.tw/~cjlin/libsvm))

was used in the experiment. We use the Radial Based Function (RBF) kernel for the

SVM classifier. The parameter γ that defines the spread of the radial function was set

to be 5.0 and parameter C that defines the trade-off between the classifier accuracy

and the margin (the generation) to be 3.0.

A random forest (RF) classifier [15] consists of many decision trees and outputs the

class that is the mode of the classes output by individual trees. The RF algorithm

combines “bagging” idea to construct a collection of decision trees with controlled
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variations. In the comparison experiments, the number of trees for random forest

classifier was chosen as 300 and the number of variables to be randomly selected from

the available set of variables was selected as 20.

As there are only about 20 images in each of the 10 classes of all the image data

sets, we designed holdout experiments in the following setting. In each experiment, we

randomly picked up 2 samples from each class as a testing and validation, respectively,

while leaving the remaining data as training. The classification accuracies are calculated

as the averaged accuracies from 100 runs, such that each run used a random splitting

of the data.

Fig. 3.11 presents a comparison of the results achieved from each of the above single

models on the three microscopy image datasets (RNAi, 2D-Hela and CHO). It appears

that for each image dataset, the best result was obtained by using MLP. For RNAi, the

best result from MLP is 85.3%, which is better than the published result 82% [113]. The

accuracies from other three classifiers are 71.0% (kNN), 72.3% (random forest), and

74.5% (SVM). For 2D-Hela and CHO, the best results obtained by MLP are 84.7% and

93.2%, respectively, which are also very competitive. The results for these two datasets

obtained by Shamir et al. are 84% for 2D-Hela and 93% for CHO [113]. The MLP

obtained the best performance on the breast cancer biopsy images with classification

accuracy of 93.33%. The results obtained by MLP contrast to the generally accepted

perception that SVM classifier is better than neural network in classification. The

most reasonable explanation for the better performance of MLP from our experiments

is that MLP as a memory-based classifier is more resistant to insufficient data amount

comparing the margin or distance-based SVM.

In the next experimental part of this study, we seek to show that using random sub-

space ensemble of MLP can achieve better classification results than the single MLP

classifiers used in the previous experiment. And we also try to answer the question

that how many MLP should be aggregated in the ensemble to achieve a better result.

The result obtained by MLP random subspace ensemble was compared with the re-

sults obtained by other two ensemble methods: Dynamic Classifier Selection [207] and

Rotation Forest [164].

The settings for all the experiments are as follows: in each run of the experiment,

we randomly picked up 80% samples from each class as the training samples, and left

10% samples for validation and 10% for testing, respectively, such that each run used

a random splitting of the data. The classification accuracies are calculated as the

averaged accuracies from 100 runs. The numbers of MLP tested in the experiment are

from 10 to 80. To ensure the diversity among the MLPs in an ensemble, we varied

the number of hidden units in the component networks by randomly choosing it from

a range of 30 ∼ 50. The classification results obtained by the ensemble has twenty

components can be seen in Table 3.2.

43



Figure 3.11: Barplots comparing the classification accuracies from four classifiers on
microscope image sets

Table 3.2: Improvement of classification accuracy by using Random Subspace MLP
Ensemble

Classifier RNAi 2D-Hela CHO Biopsy

MLP 85.30% 84.70% 93.20% 93.33%
MLP-RSE (ensemble size=20) 86.60% 86.30% 93.70% 94.61%
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Figure 3.12: Barplots comparing the classification accuracies from different ensemble
sizes on fluorescence image sets

From Table 3.2, one can see that for all the four image data sets, the random

subspace MLP ensemble does bring the improvement on the classification accuracy, for

the RNAi data set, the ensemble brings an increase approaching 1% on classification

accuracy, from 85.3% upgraded to 86.6%. The classification accuracies for the other

three data sets also be improved, for 2D-hela, it has been enhanced from 84.7% to 86.3%;

for CHO, the classification accuracy has been upgraded to 93.7%. The breast cancer

biopsy image set achieved 94.61% comparing to the non-ensemble accuracy 93.33%.

To answer the question whether more component neural networks included in an

ensemble could further enhance the classification performance, we go on the experiment

by varying the sizes of the ensemble from 10 components networks to 80 networks in

each of the ensemble. The results of the averaged classification accuracies are shown

in Fig. 3.12 and Fig. 3.13. It seems that for fluorescence image sets, bigger ensemble

size does bring better classification performance. As can be seen from Fig. 3.12, at

the ensemble size 70, for all of the three image data sets, we reach better classification

accuracies than other ensemble sizes. But such improvement becomes marginal after

the size exceed a limit and the bigger ensemble sizes bring heavy computational burden

on the training phase. This is also true for the breast cancer biopsy image set, the best

performance for biopsy image set was obtained at the ensemble size 40 (Fig. 3.13. The

classification results of these three data sets are enhanced comparing to the results in

Shamir et al. 2008 [113].

In Table 3.3, Table 3.4, Table 3.5 and Table 3.6, the top-5 classification results from

single MLPs and the best ensemble results were listed for comparison, an apparent
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Figure 3.13: Classification accuracies from different ensemble sizes on breast cancer
biopsy image set

Table 3.3: Performance from Random Subspace Ensemble of RNAi
Indices Accuracy (mean) Standard Deviation

1 86.40% 0.1265
2 86.30% 0.1243
3 85.90% 0.1280
4 85.90% 0.1215
5 85.90% 0.1248
Ensemble (size=70) 87.13% 0.1202

Table 3.4: Performance from Random Subspace Ensemble of 2D-Hela
Indices Accuracy (mean) Standard Deviation

1 85.12% 0.0583
2 84.86% 0.0512
3 84.79% 0.0570
4 84.72% 0.0563
5 84.70% 0.0494
Ensemble (size=70) 87.98% 0.0518

Table 3.5: Performance from Random Subspace Ensemble of CHO
Indices Accuracy (mean) Standard Deviation

1 93.85% 0.0635
2 93.63% 0.0597
3 93.55% 0.0577
4 93.35% 0.0543
5 93.35% 0.0595
Ensemble (size=70) 94.67% 0.0542

conclusion is that the average classification results of 100 runs obtained by random

subspace MLP ensemble are superior than any result obtained by one single MLP, and

the ensemble offers relatively smaller standard deviations.

In the following, we evaluated three different types of MLP ensembles for classifi-

cation. The ensemble methods we compared are Random Subspace, Rotation Forest

46



Table 3.6: Performance from Random Subspace Ensemble of Breast Cancer Biopsy
Indices Accuracy (mean) Standard Deviation

1 94.39% 0.0590
2 94.39% 0.0588
3 94.33% 0.0647
4 94.22% 0.0615
5 94.11% 0.0623
Ensemble (size=40) 95.22% 0.0523

Figure 3.14: Classification accuracies from different ensemble methods on microscope
image sets

and Dynamic Classifier Selection. Rotation Forest ensemble and dynamic classifier se-

lection are two ensemble method proposed recently, details of these two methods can

be seen in [164] and [207]. The experiment settings for these three ensemble methods

are similar, the comparison result of these three ensemble methods are shown in Fig.

3.14. In Fig. 3.14, for RNAi, Hela and CHO image sets, the ensemble size is set as 70,

for breast cancer biopsy image set, the comparison is made on size 40.

Although in Fig. 3.14, we only listed the best results under the fixed ensemble sizes,

in our experiment we found that for each the ensemble size we tested, the performance

of the random subspace ensemble is superior than the performance of rotation forest. In

the cases that the ensemble sizes are less than 40, dynamic classifier selection can obtain

better result than random subspace, but when the ensemble size keeps growing, random

subspace ensemble gave the best classification result among these three methods. The

other traditional ensemble methods such as Bagging and Boosting were not included

in this comparison since it has been proven that in linear classifier situations, random

subspace always give better result than Bagging and Boosting [180].

The confusion matrix that summarizes the details of the above random subspace
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Table 3.7: Averaged confusion matrix for RNAi
% 1 2 3 4 5 6 7 8 9 10
1 (CG10873) 0.96 0.02 0 0.02 0 0 0 0 0 0
2 (CG1258) 0.01 0.87 0 0.02 0.03 0 0.07 0 0 0
3 (CG3733) 0 0.01 0.96 0 0 0 0 0.01 0 0.02
4 (CG7922) 0.05 0 0 0.82 0 0 0 0.13 0 0
5 (CG8222) 0 0.03 0 0 0.89 0 0 0 0 0.08
6 (CG12284) 0 0 0 0 0 0.88 0.04 0 0.08 0
7 (CG17161) 0 0.05 0 0 0 0 0.91 0 0.04 0
8 (CG3938) 0.01 0 0 0.12 0.03 0 0 0.84 0 0
9 (CG8114) 0 0.03 0 0.02 0 0.02 0 0 0.93 0
10 (CG9484) 0 0 0.01 0.04 0.11 0.17 0 0.02 0 0.65

Table 3.8: Averaged confusion matrix for 2D-Hela
% 1 2 3 4 5 6 7 8 9 10
1 (Actin) 0.97 0 0 0 0 0 0 0.02 0.01 0
2 (Dna) 0 0.78 0.03 0 0 0.15 0.01 0.03 0 0
3 (Endosome) 0 0.06 0.9 0.02 0 0 0 0.01 0 0.01
4 (Er) 0 0 0 0.85 0.15 0 0 0 0 0
5 (Golgia) 0 0 0 0.14 0.82 0.02 0 0 0.02 0
6 (Golgpp) 0 0.06 0 0 0.04 0.86 0 0.03 0.01 0
7 (Lysosome) 0.01 0.04 0.03 0 0 0.03 0.84 0.04 0 0.01
8 (Microtubules) 0 0.04 0.04 0.03 0 0.03 0.02 0.84 0 0
9 (Mitochondria) 0 0 0 0.02 0 0 0 0 0.98 0
10 (Nucleolus) 0 0 0.02 0.02 0 0 0 0 0 0.96

Table 3.9: Averaged confusion matrix for CHO
% 1 2 3 4 5
1 (Giantin) 0.92 0 0.08 0 0
2 (Hoechst) 0.02 0.98 0 0 0
3 (Lamp2) 0.01 0 0.99 0 0
4 (Nop4) 0 0 0 0.97 0.03
5 (Tubulin) 0.02 0.01 0.03 0.05 0.89

ensemble on RNAi image data set is given in Table 3.7. For the total number of 10

testing samples (one for each category) in each run of the experiment, the 10-by-10

matrix records the number of correct predictions (the diagonal elements in the matrix)

and incorrect predictions (the non-diagonal elements) made by the classifier ensemble

compared with the actual classifications in the testing data. The matrix are averaged

from the results of 100 runs. It is apparent that among the 10 classes, CG10873,

CG7922, CG1258 and CG3733 types are the easiest to be correctly classified while the

CG9484 is the difficult category. The confusion matrices for 2D-Hela, CHO and breast

cancer biopsy data sets are given in Table 3.8, Table 3.9 and Table 3.10, respectively.
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Table 3.10: Averaged confusion matrix for the image dataset (ensemble size=40)
% Healthy Tumor insitu Invasive carcinoma
1 (Healthy) 0.9517 0.0393 0.0090
2 (Tumor insitu) 0.0240 0.9412 0.0348
3 (Invasive carcinoma) 0.0120 0.0243 0.9637

3.7 Conclusion

Ensemble of classifiers is an effective method for machine learning and can improve

the classification performance of a standalone classifier. A combination aggregates

the results of many classifiers, overcoming the possible local weakness of the individ-

ual classifier, thus producing a more robust recognition. In this work, we aimed at

improving the challenging multi-class microscopic image classification problem. Two

contributions are presented. Firstly, we proposed to apply the combination of curvelet

transform, gray level co-occurrence matrix and completed local binary patterns to effi-

ciently describe microscopic images, which exhibit very high directional sensitivity and

are highly anisotropic. Secondly, we have examined a novel method to incorporate ran-

dom subspace based multi-layer perceptron ensemble. The designed paradigm seems to

be well-suited to the characteristics of microscopic image data. It has been empirically

confirmed that considerable improvement in the classification can be produced by using

the random subspace neural network ensembles. Experiments on the benchmark RNAi

datasets showed that the random subspace MLP ensemble method achieved higher

classification accuracies (∼ 87.1%). Compared to the published result 82%, a 4.9%

improvement on the classification accuracy was obtained. The classification results of

other three groups of microscopy image data sets using random subspace MLP also

support the effectiveness of the proposed method. The random subspace MLP ensem-

ble obtained 86.6% classification accuracy on the 2D Hela dataset, and 93.7% on the

CHO dataset, providing the improvements of 0.7% and 2.6% on the classification accu-

racy, respectively. A classification accuracy of 95.22% was obtained from the proposed

ensemble method on the biopsy image sets, which obtains an 1.82% improvement on

the published result on the same image sets.
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Chapter 4

A Two-stage Classification
Scheme for Reliable Breast
Cancer Diagnosis

The content of this chapter has been published in the following papers:

• Yungang Zhang, Bailing Zhang, Frans Coenen and Wenjin Lu. Breast Cancer

Diagnosis from Biopsy Images with Highly Reliable Random Subspace Classifiers

Ensemble. Machine Vision and Applications, Vol. 24, No. 7, pp. 1405-1420,

2013.

• Yungang Zhang, Bailing Zhang, Frans Coenen and Wenjin Lu. Highly Reliable

Breast Cancer Diagnosis with Cascaded Ensemble Classifiers, Proceedings of the

International Joint Conference on Neural Networks 2012 (IJCNN 2012), pp. 1-8,

Brisbane, Australia, June 2012.

4.1 Introduction

Breast cancer accounts for nearly 1 in 4 cancers diagnosed in US women, it is also the

most common type of cancer in women and the fifth most common cause of cancer

death worldwide [181]. There is substantial evidence that there is a worldwide increase

in the occurrences of breast cancer, especially in Asia. For example, China, India and

Malaysia have recently experienced rapid increase in breast cancer incidence rates [3].

A recent study predicted that the cumulative incidence of breast cancer will increase

to at least 2.2 million new cases among women across China over the 20-year period

from 2001 to 2021 [118].

The most noticeable symptom of breast cancer is typically a lump or a tumor that

feels different from the rest of the breast tissue. However, it is not easy to distinguish

a malignant tumor from a benign one because there are structural similarities between

the two. To accurately identify the structural differences, physicians have to cautiously

study a patient’s clinical history and make various medical examinations supported by
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imaging using mammography or ultrasonics. However, the precise diagnosis of a breast

tumor can only be obtained through some form of biopsy where by a small sample of

cells or tissue is removed for examination. Typical biopsy processes for breast cancer

analysis include Fine-Needle Aspiration (FNA), core needle, and excisional biopsy [6].

Among these FNA is the most convenient because it involves the use of very small

needles (smaller than those used for blood tests) [16]. This deterministic diagnosis is

vital as the potency of the cytotoxic drugs administered during treatment can be life

threatening.

As there is always a subjective element related to the pathological examination

of a biopsy, an automated technique will provide valuable assistance for physicians.

Recent years have witnessed a large increase in research related to computer assisted

breast cancer diagnosis. The focus with respect to biopsy image analysis has been on

automated cancer type classification. Many recent studies have revealed that biopsy

images can be properly classified, without requiring perfect segmentation if suitable

image feature descriptions are chosen [14, 121, 147]. Tabesh et al. aggregated color,

texture, and morphometric cues at the global and histological object levels for clas-

sification, achieving 96.7% classification accuracy in classifying tumor and non-tumor

images [187]. The wavelet package transform coupled with local binary patterns were

used for meningioma subtype classification in [156]. This research, and similar work,

demonstrated that by combining different image description features it is possible to

improve medical image classification performance.

A great number of machine learning methods have been proposed to design accurate

classification systems for various medical images [68]. Among them, ensemble learning

has attracted much attention due to the good performance from many applications in

medicine and biology [213]. In the case of ensemble classification, ensemble learning is

concerned with the integration of the results of a set of classifiers (often called as ‘base

classifiers’) [108] to develop a strong classifier with good generalization performance,

therefore, ‘base classifiers’ are also referred as ‘weak classifiers’.

Among the representatives of ensemble learning, the Random Subspace (RS) method

[78] is often quoted as an efficient way of combining the results of a set of classifiers. A

recent application of RS for functional Magnetic Resonance Imaging (fMRI) classifica-

tion has shown promising results [107]; here RS outperformed single classifiers as well

as some of the most widely used alternative classifier ensemble techniques such as bag-

ging, Adaboost, random forests and rotation forests. The same outcome has also been

reported in the context of RS ensemble based gene expression classification [11]. RS

divides the input feature space into subspaces; each subspaces is formed by randomly

picking features from the entire space, features may be repeated across subspaces.

In previous studies of medical images classification, accuracy was the only objective;

the aim was to produce a classifier that achieves the smallest error rate. In many
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applications, however, it is more important to address the reliability issue in classifier

design by introducing a reject option which allows for an expression of doubt. The

objective is thus to improve classification reliability by leaving the classification of

“difficult” cases to human experts. Since the consequences of misclassification may often

be severe when considering medical image classification, clinical expertise is desirable

so as to exert control over the accuracy of the classifier in order to make reliable

determinations.

Classification with a reject option has been a topic of interest in pattern recog-

nition. Multi-stage classifiers are the ensembles that each individual classifier in the

ensemble has a reject option [151]. Cascading [50] is a scheme to support multi-stage

classification. Many cascading multi-stage classifier architectures have been proposed

[151, 63, 56] and plenty of promising results have been achieved in medical and bio-

logical classification applications, such as microarray data classification [141] and gene

expression data classification [74].

In this chapter, we propose and evaluate a novel cascade scheme, comprised of two

random subspace ensembles, to be applied to microscopic biopsy image classification.

The first stage of our cascade scheme consists of an ensemble of SVMs with reject

option to classify patterns with high level of confidence. The more complex and slower

second stage, which is an ensemble of MLPs, deals with the rejected patterns from

stage 1, and is designed to make further classifications or rejections. Compared with

some earlier cascading classifier paradigms, our proposed system is composed of two

different ensembles. In the first stage, an one-vs-all SVM ensemble is employed to

classify “straight forward” samples (thus obtaining high accuracy) and reject those

which are less straight forward or ambiguous. Only samples for which the ensemble’s

confidence score, in terms of consensus degree, is greater than a certain threshold will

be classified. The second stage consists of a random subspace ensemble of MLPs which

operates using majority voting, any samples that have a low consensus degree will be

rejected for further consideration by human experts. It is suggested that classification

with the proposed cascaded ensembles will provide an efficient means to simultaneously

reduce the error rate and enhance the reliability by controlling the accuracy-rejection

trade-off.

We also investigated the effectiveness of a feature description approach by combining

Local Binary Pattern (LBP) texture analysis, statistics derived from the Gray Level

Co-occurrence Matrix (GLCM) and the Curvelet Transform. While the LBP analy-

sis efficiently describes local texture properties and the GLCM reflects global texture

statistics, the Curvelet Transform is particularly appropriate for the representation of

piece-wise smooth images with rich edge information. The combined feature description

thus provides a comprehensive biopsy image characterization by taking advantages of

their complementary strengths. Using a benchmark microscopic biopsy image dataset,
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obtained from the Israel Institute of Technology, a high classification accuracy of 99.25%

was obtained (with a rejection rate of 1.94%) using the proposed system.

The rest of this chapter is organized as follows: In Section 4.2, some related works on

biopsy image analysis and classification are presented. In Section 4.3, we describe and

theoretically analyze the proposed two-stage ensemble cascading system in detail. In

Section 4.4, the experimental results are given based on the adopted benchmark image

dataset. We compared the proposed cascading system with its component classifiers as

well as some widely used aggregation techniques, such as bagging and Adaboost. The

paper ends with some conclusions in Section 4.5.

4.2 Related Works

The automated classification of biopsy images involves the identification of multiple

classes, including benign, cancerous and confounder classes. The energy and entropy

features from multiwavelet coefficients of the biopsy images were used in [85], the leave-

one-out technique was used for error estimation, a 97% classification rate was reported

in their paper. Zhu et al. [230] used fluorescence spectroscopy of breast tissues for 121

biopsy images, the tissue spectra were analyzed using a partial least-squares analysis

and a set of Principle Components were used for feature selection. SVM was then used

for classification, a cross-validated sensitivity and specificity of up to 81% and 87%

was reported. Dalle et al. [41] proposed a multiresolution approach for breast cancer

grading. Cells were segmented using Gaussian color models and classified using the

Gaussian distribution. Doyle et al. [45] used a combination of graph-based, morpho-

logical and textural features for prostate cancer classification. The SVM classifier was

used and an accuracy of 92.8% reported when distinguishing between Gleason grade 3

and Stroma. The aggregation of color, texture and morphology features were also used

by Tabesh et al. [187] for prostate cancer biopsy image classification, the mixed fea-

tures together with linear Gaussian and kNN classifiers achieved an accuracy of 96.7%.

Basavanhally et al. [9] investigated lymphocytic infiltration in HER2+ breast cancer, a

total of 50 image-derived features describing the arrangement of the lymphocytes were

extracted from each biopsy image, a classification accuracy of 90% was obtained by

SVM. In [49], a Multiple Instances Learning SVM (MILSVM) was proposed for intra-

ductal breast lesion classification, quantitative features of 327 regions of interests from

62 patient biopsy cases was used for classifier training, 84.6% classification accuracy was

obtained from 149 test ROIs. A cascade classification scheme for prostate cancer biopsy

images was proposed in [48], the biopsy cases were first classified into cancerous and

non-cancerous cases, then a grading system was used to categorize the cancerous cases

into different cancer grades, a positive predictive value of 86% was reported. Krishnan

et al. [103] extracted textural features of images to train and select the best classi-

fier from five different kinds of classifiers, the best recorded classification accuracy was
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95.7% obtained from the combined features coupled with fuzzy classification. In most

of these papers, the authors provide a consensus that using multiple image features is

an effective way for biopsy image classification. In a more recent study by Kothari et al.

[101], Fourier shape descriptors were used to capture the distribution of stain-enhanced

cellular and tissue structures, the authors claimed that the Fourier shape descriptors

produced better performance than other textural image features, however they also

admitted that the time cost for their algorithm was much higher than in the case of

other feature extractors.

Due to the multiple image scales at which relevant information may be extracted

from biopsy images, the use of an ensemble of classifiers as opposed to an individual

classifier has been proposed. A multiclass system was used by Sboner et al. [172] for

skin biopsy image classification, 38 geometric and colorimetric features were extracted

from digital images of skin lesions, three different kinds of classifiers, namely linear dis-

criminant analysis (LDA), k-NN and a decision tree classifier were combined to produce

a final classification result using a voting scheme. This work suggested that a suitable

combination of different kinds of classifiers can improve the performance of an auto-

matic diagnostic system. A local patch-based subspace ensemble method was proposed

in [120] for brain MRI image classification, which built multiple individual classifiers,

based on different subsets of local patches, and then combined them for more accurate

and robust classification. They obtained a 90.8% classification accuracy, demonstrat-

ing a very promising performance compared with other state-of-the-art methods for

AD/MCI classification of MR images. Doyle et al. [46] presented a boosted Bayesian

multiresolution (BBMR) system to identify regions of prostate cancer on digital biopsy

slides. The Adaboost ensemble method was used for feature selection. Their experimen-

tal results demonstrated that the proposed system outperformed individual classifiers

and a Bagging Random Forest.

4.3 Serial Fusion of Random Subspace Ensembles

Although many supervised learning algorithms such as neural networks, the k-nearest

neighbor algorithm and SVM have been extensively applied to many medical image

classification problems, few of them have addressed the issue of classification reliability

(the extent that one can rely upon a given prediction). Note that we are interested in

the assessment of a classifier’s performance on a single example such as the diagnosis

associated with an individual patient. In such cases an overall quality measurement of a

classifier (e.g. classification accuracy) would not provide the desired information, even

where good accuracies are achieved using some state-of-art methods. With respect to

some real applications, such as medical diagnosis, highly reliable classifiers are required

so that a correct therapeutic strategy can be selected. Therefore, it is desirable to have

a reject option in order to avoid making a wrong decision when classifier is presented
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with ambiguous input, i.e. an option to withhold a classifier decision.

In this chapter a new two-stage classification method for biopsy image classification,

consisting of a random subspace ensembles with reject option, is proposed. We adopted

the definitions of recognition rate, rejection rate and reliability proposed in [220], as

presented below, so as to facilitate the performance evaluation of classifiers with a reject

option:

• Recognition rate (RR) = no. of correctly recognized images / (no. of testing

images- no. of rejected images).

• Rejection rate (ReR) = no. of rejected images /no. of testing images.

• Reliability (RE) = (no. of correctly recognized images+ no. of rejected images)/

no. of testing images.

• Error rate (ER): = 100% - reliability.

According to this definition of reliability, high reliability can be achieved with an

appropriate trade-off between error rate and rejection rate.

4.3.1 Reject Option for Classification

The optimal classification rule with reject option was defined by Chow [30]. Consider

a binary classification task with an instance dataset X = {x1, x2, . . . , xm} and a class

label set C = {−1, 1, 0} where class 0 is the reject option. We need to seek a clas-

sification rule, L (X ⇒ C) such that L(x) = 0 indicates that no definite judgement

will be made for x and a reject option should be taken. Chow’s rule rejects a pattern

if the maximum of its a posterior probabilities is lower than a predefined threshold t,

the pursuit of maximum of the posterior probabilities can be identified as a measure of

classification reliability. Such a rule can be expressed as:

f(x) =


argmaxCi(p(Ci|x)) if maxCi (p(Ci|x)) ≥ t

reject if ∀i p(Ci|x)< t
(4.1)

where p(Ci|x) is the posterior probability, which can be obtained by Bayes formula.

The rejection rate is the probability that the classifier rejects a given example:

p(reject) =

∫
reject

p(x)dx = p(max(p(Ci|x)) < t). (4.2)

In Chow’s theory, an optimal classifier can be found only if the true posterior proba-

bilities are known. This is rarely reachable in real applications.

The key issue with respect to the reject option is to define the threshold t, in our

work, we do not deeply consider the optimal error-reject trade-off. We used different

rejection thresholds and the results of rejection against accuracies and reliabilities were

compared.
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4.3.2 A Cascade Two-stage Classification Scheme

As already noted, it has been demonstrated that classification accuracy can be enhanced

by using an ensemble of classifiers. Over the last few years a number of successful en-

semble methods have been proposed. The most popular method for creating a classifier

ensemble is to build multiple parallel classifiers, and then to combine their outputs ac-

cording to some fusion strategy. Alternatively, a serial architecture can be adopted with

different classifiers arranged in cascade form such that the output of a classifier acts as

the input to another classifier. In this chapter, we will propose a hybrid classification

scheme which serially connects two parallel random subspace ensembles of classifiers

(Fig. 4.1). Note that all classifiers have a reject option.

In our current implementation the first ensemble (Classifier Ensemble 1 in Fig. 4.1)

consists of a collection of SVM classifiers, the second (Classifier Ensemble 2 in Fig. 4.1)

consists of a collection of MLP classifiers. From Fig. 4.1 it can be seen that rejected

samples from Classifier Ensemble 1 are passed to Ensemble 2, any samples that remain

rejected once Classifier Ensemble 2 has been applied are passed to a human expert for

“adjudication”.

Classifier Ensemble

2

Classifier Ensemble

1

Breast Cancer

Biopsy Images
Rejected

Images

Rejected

Images

Easy Objects

Classified

More Difficult

Objects Classified

Human

Expert

Figure 4.1: Operation of the hybrid classification scheme comprising a cascade of two
Random Subspace classifier ensembles.

SVM and MLP have obtained satisfactory performance in many medical image

analysis tasks, especially in histopathological image analysis [69], therefore, they have

been selected as the base classifiers in our two ensembles. The proposed cascade system

here is consistent with a principle in statistical pattern recognition that an improved

classification performance can be expected when a local classifier is appended after a

global one [200]. The SVM ensemble in the first stage is trained as a global classifier.

Compare with SVM, the MLP is relatively local, since it has been proven that a feed

forward network of just two layers (not including the input layer) is enough to approx-

imate any continuous function [33]. Note that the classification performance of the

whole system will not change too much if we use another SVM ensemble in the second

stage, because under the same training strategy, the obtained support vectors in stage

1 and stage 2 will be very similar.

Another reason we use different base classifiers for the two ensembles is to achieve
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“diversity” between classifiers, which is also deemed as an important factor for the

success of ensemble learning [108]. Making use of different individual classifiers in an

ensemble can improve the performance, here we expand the concept to employ different

base classifiers for the two ensembles to enhance the “diversity” between the ensembles.

The major issue for designing the above classification system is to decide when a

pattern is covered by a rule and should be classified accordingly, and when it should be

rejected and either passed on to the second ensemble or the human expert (depending

on which stage in the process we are at). The reject option has been formalized in

the context of statistical pattern recognition according to the minimum risk theory

presented in [30] and [193]. Intuitively, a suggested classification should be rejected if

the confidence in that classification is below a threshold.

The standard approach to rejection in classification is to estimate the class pos-

teriors, and to reject classifications that have a low class posterior probabilities. To

simplify the design of the SVMs in the first ensemble with appropriate posteriors esti-

mation, we decompose the multi-label classification problems with K classes (K = 3

in current work) into K independent two-class problems (the one-versus-all approach

where each classifier classifies records as belonging or not belonging to a class). The

desired multiclass classification can then be conducted according to the output of the

binary classifiers.

To estimate class posteriors from SVM’s outputs, a mapping can be implemented

using the following sigmoid function [189]:

P (y = +1|x) = 1

1 + exp(aρ(x) + b)
(4.3)

where the class labels are denoted as y = +1,−1, while a and b are constant terms to be

defined on the basis of sample data. Such a method provides estimates of the posterior

probabilities that are monotonic functions of the output ρ(x) of an SVM. This implies

that Chow’s rule applied to such estimates is equivalent to the rejection rule obtained

by directly applying a reject threshold on the absolute value of the output ρ(x) [57].

In our scheme, K binary SVM classifiers are constructed for K different image

classes (K = 3). And we term such K collection of binary SVMs an expert to avoid

the confusion with ensemble. The ith SVM output function Pi is trained taking the

examples from i-th class as positive and the examples from all other classes as negative.

In another word, each binary SVM classifier was trained to act as a class label detector,

outputting a positive response if its label is present and a negative response otherwise.

Therefore, for example, a binary SVM trained as a “in situ detector” would classify

between in situ and not in situ. For a new sample x, the corresponding SVM assigns

it to the class with the largest value of Pi following

Class = arg max Pi, i = 1, . . . ,K (4.4)
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where Pi is the signed confidence measure of the ith SVM classifier.

Such a SVM expert can then act as a base classifier in the stage 1 ensemble, trained

with randomly chosen subsets of all available features (i.e. random subspace) following

the Random Subspace strategy [78]. In the random subspace method, base classifiers

are learned from random subspaces of the data feature space. In other words, the

ensemble is trained by dividing the feature space randomly into subsets and uses each

one to train a base SVM expert.

As we aim to construct a serially fused, cascade classifier ensembles in order to

produce a high confidence classification, it is essential to examine the output from the

SVM ensemble consisting of the base SVM experts. In combining the decisions from

the M experts, a sample is assigned the class for which there is a predefined consensus

degree, or when at least t of the experts are agreed on the label, otherwise, the sample

is rejected. The threshold t can be decided in advance.
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2

SVM

K
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Expert MExpert 2

Majority Voting

Classified

Images
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Figure 4.2: SVM ensemble with rejection option in stage 1, which consists of a set of
binary SVMs (experts)

Since there can be more than two classes, the combined decision is deemed to be

correct when a majority of the experts are correct, but wrong when a majority of the

decisions are wrong. Obviously, t is a tunable threshold that controls the rejection rate,

and we use t to relate the consensus degree from the majority voting to the confidence

measure, and abstain from classifying ambiguous samples. A rejection is considered

neither correct nor wrong, so it is equivalent to a neutral position or an abstention

[114]. Fig. 4.2 further explains the principle of the SVM ensemble in stage 1.

The rejected samples from the SVM ensemble in stage 1 will be handled by the

second ensemble, which is a Random Subspace ensemble of neural network classifiers,

simultaneously trained with the stage 1 SVM ensemble. The neural network classifier

is a Multiple Layer Perceptron (MLP), which has one hidden layer with a few hidden

58



neurons and K output nodes, each representing a class label. The activation functions

for the hidden and output nodes are a logistic sigmoid function and linear function,

respectively. Following the principle of RS, a number of individual MLP models are

trained on randomly chosen subsets of all available features. That is, an ensemble of

MLP classifiers is created with each base classifier trained on an individual subspace

by randomly selecting features from the entire space.

The last step of the second Random Subspace ensemble is to combine the base

MLP models to give final decisions following the similar procedure of majority voting

as in the first stage, as shown in Fig. 4.3. In combining the decisions from the M

base MLPs, a sample (selected from the collection of rejected samples from stage 1)

is assigned the class label when at least t of the MLPs are agreed on the decision.

Otherwise, the sample is rejected. Again, t is the threshold that decide the rejection

rate. The consensus degree from the ensemble acts as confidence measure to switch

between acceptance and rejection.

MLP 1

MLP 2

MLPM

Majority

Voting

Random Subspace MLP Ensemble

Rejected Images

From Stage 1

Rejected Images

Classified Images

Figure 4.3: Illustration of the stage 2 Random Subspace classifier ensemble which
consists of a set of MLPs

4.3.3 Theoretical Analysis of the Ensemble Cascade

If we have p(Ci) as the prior probability of observing class Ci, the posterior probability

of class Ci when given an instance vector x can be calculated as:

p(Ci|x) =
p(x|Ci)p(Ci)

p(x)
=

p(x|Ci)p(Ci)∑M
i=1 p(x|Ci)p(Ci)

(4.5)

where M is the number of classes, p(x|Ci)is the conditional probability of x given a

class Ci, and p(x) is the probability of x.

We adopted the mechanism proposed in [63] to derive the error rate of our system.

For both stages in our scheme, given an input instance x, the proposed classification is

accepted or rejected according to the highest posterior probability for all the classes:

maxj∈[1,...,N ]p(Cj |x). Since the result of our classifiers is only an approximation of the
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real situation, we use Si (i=1,...,N) to denote the approximation posterior probability

for each class obtained by our system. Assume MAX1
p = maxj∈[1,...,N ]p(Cj |x) de-

note the real posterior probabilities for all classes given an instance x, and MAX1
S =

maxi∈[1,...,N ]S
1
i represents the approximation posterior probabilities obtained by stage

1 of our system. The error rate of stage 1 ϵ1 can be obtained by:

ϵ1 =

∫
A
(1−MAX1

S)p(x)dx (4.6)

where A is the region composed of all accepted instances. Using some simple manipu-

lations on Equation 4.6 , we then get the following:

ϵ1 =

∫
A
(1−MAX1

S)p(x)dx

=

∫
A
(1−MAX1

p +MAX1
p −MAX1

S)p(x)dx

=

∫
A
(1−MAX1

p )p(x)dx

+

∫
A∩IS

(MAX1
p −MAX1

S)p(x)dx

where IS is the region composed of all the instances that satisfy MAX1
p −MAX1

S ̸= 0,

which means that for some input instances, the results of our classifiers are different

from the real ones. Notice that the first term of ϵ1 is in fact the optimal Bayes error∫
(1 − p(x))p(x)dx. The second term comes from the errors generated during stage

1. This situation can be illustrated as in Fig. 4.4, where R represents the rejected

patterns, A represents the patterns accepted by the classifier and the crosses represent

erroneous classifications made by the ensemble of stage 1.

R

Bayes 

Error

A

Figure 4.4: Error rate of stage 1

The same procedure can be used to analyze the error rate of stage 2. Instead of

a wide input instance space, stage 2 only processes the rejected instances from stage

1. Let R denote the region composed by all the rejected instances from stage 1, R =
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{x|max(p(Ci|x)) < t}, MAX2
p = maxj∈[1,...,N ]p(Cj |x) and MAX2

S = maxi∈[1,...,N ]S
2
i .

The error rate of stage 2 can then be obtained by:

ϵ2 =

∫
R
(1−MAX2

p )p(x)dx

+

∫
R∩IM

(MAX2
p −MAX2

S)p(x)dx (4.7)

where IM = {x|MAX2
p −MAX2

S ̸= 0}, which represents the errors generated by the

stage 2 ensemble.

Given the above, the error rate of the whole system can be calculated as:

ϵ = ϵ1 + ϵ2

=

∫
A
(1−MAX1

p )p(x)dx+

∫
R
(1−MAX2

p )p(x)dx

+

∫
A∩IS

(MAX1
p −MAX1

S)p(x)dx

+

∫
R∩IS

(MAX2
p −MAX2

S)p(x)dx

= ϵBayes +

∫
A∩IS

(MAX1
p −MAX1

S)p(x)dx

+

∫
R∩IM

(MAX2
p −MAX2

S)p(x)dx. (4.8)

From Eqn. 4.8, for approaching the goal that ϵ = ϵBayes, we must set A∩IS = ∅ and
R ∩ IM = ∅. This means that even if both stages are not optimal, we still have chance

to reach the optimal classification error rate. However, this can rarely be expected in

real classification tasks.

Different from many existing cascade systems, we use classifier ensembles in our

architecture. As has already been pointed out in [220], under the sum voting ensemble

schemes, the variance of the ensemble is less than that of the individual classifier and

a smaller variance in an ensemble will lead to a lower error rate than any individual

classifier. From the above theoretical analysis, with a cascade system composed of

two ensembles, a lower error rate can be expected than when using non-ensemble or

non-cascade methods.

4.4 Experiments

MATLAB 7.0 was used to implement the algorithms in the current work. Six different

individual classifiers were applied to the image dataset first, their results are compared

and analyzed. Then several popular classifier ensemble methods were employed to con-

struct the ensemble classifiers. In order to ascertain the effectiveness of the proposed
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feature combinations, several different feature combinations were computed and com-

pared. The performance (accuracy and reliability) of the proposed two-stage ensemble

cascade scheme was evaluated using different ensemble sizes and different rejection

rates.

4.4.1 Image Sets and Feature Extraction

One breast cancer benchmark biopsy image dataset from the Israel Institute of Tech-

nology1 was used. The image set consists of 361 samples, of which 119 were classified

by a pathologist as normal tissue, 102 as carcinoma in situ, and 140 as invasive ductal

or lobular carcinoma. The samples were generated from breast tissue biopsy slides,

stained with hematoxylin and eosin. For the details of the image sets, see Section 3.3.2.

Three image feature extractors were used for quantitatively describing biopsy im-

ages. Local Binary Patterns (LBPs) was used for extracting local textural features,

Gray Level Co-occurrence Matrix (GLCM) statistics for representing global textures

and the Curvelet Transform for multiresolution shape description. See Section 3.4 for

details of these feature extraction methods.

The mean µ, the standard deviation δ and the entropy H for each curvelet sub-band

are used as the curvelet features. If n curvelets are used for the transform, 3n features

G = [Gµ, Gδ,H] are obtained, where Gµ = [µ1, µ2, · · · , µn], Gδ = [δ1, δ2, · · · , δn] and
H = [h1, h2, · · · , hn] . A 3n dimensional feature vector can be used to represent each

image in the dataset. Using 5 levels of the curvelet transform, 82 sub-bands of curvelet

coefficients are computed, therefore, a 246 dimensional curvelet feature vector is gen-

erated for each image. With a 64 gray-level quantization, we used 10 different relative

interpixel distances to generate 10 different gray level co-occurrence matrices for each

image. The 22 statistics listed in Table 3.1 are computed for each of these 10 gray level

co-occurrence matrices, thus, we have a 220 dimensional GLCM feature vector for each

image. The CLBP feature vector of each image has a dimension of 200. The three

feature vectors are normalized respectively into the range of [−1, 1], then concatenated

together to produce a 666 dimensional feature vector of each image for classification.

4.4.2 Comparison among Single Classifiers

In this section, we show the results obtained using six different classifiers on the biopsy

image dataset where each image was described in terms of the three kinds of features

introduced in Section 2. The six classifiers were (i) kNN, k = 3, (ii) single MLP,

(iii) single SVM, (iv) Logistic Regression, (v) Fisher Linear Discrimination and (vi)

Naive Bayes Classifier [165]. For MLP, we experimented with a three-layer network.

Specifically, the number of inputs is the same as the number of features, one hidden

layer with 20 units was used and a single linear unit representing the class label. The

1ftp://ftp.cs.technion.ac.il/pub/projects/medic-image
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network was trained using the Conjugate Gradient learning algorithm for 500 epochs.

The library for support vector machines, LIBSVM2, was used for the experiments. We

used the radial basis function kernel for the SVM classifier. The parameter γ that

defines the spread of the radial function was set to 5.0 and the parameter C that

defines the trade-off between the classifier accuracy and the margin to 3.0. For the

microscopic biopsy images, we randomly split it into training and testing sets, each

time with 20% of each class’ images reserved for testing while the rest was used for

training. The classification results were then averaged over 100 runs, such that each

run used a random split of the data for the training and testing sets.

In Fig. 4.5, we compared the classification accuracies with respect to the six clas-

sifiers. The averaged classification accuracies of the MLP and SVM were 94.90% and

94.85% respectively, which are far beyond the other four classifiers. The standard devi-

ations of the classification accuracies are also compared in Fig. 4.5. Although the FLD

has the smallest averaged standard deviation (0.0571) on its classification accuracy, it

has the lowest classification performance. The averaged standard deviations of MLP

and SVM are 0.0934 and 0.1040, respectively, which are relatively smaller than that

of the other classifiers, which means they are more stable with respect to classification

performance.
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Figure 4.5: Classification accuracies and standard deviations from applying kNN, single
MLP, single SVM, Logistic Regression (LR), Fisher Linear Discrimination (FDL), and
Naive Bayesian (NB)

Fig. 4.6 presents a box plot of the classification results obtained by these six single

classifiers on the biopsy image dataset. From the figure it can be seen that the MLP

and SVM classifiers have small variance ranges in classification results, and their aver-

aged classification accuracies are quite close to each other. The results here contrast

to the generally accepted perception that SVM classifiers outperform neural network

2www.csie.ntu.edu.tw/ cjlin/libsvm
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classifiers. The most reasonable explanation for the better performance of MLP with

respect to our experiment is that MLP, as a memory-based classifier, is more resistant

to errors introduced from insufficient data than the margin or distance-based SVM.

Given a limited amount of data, Naive Bayes classifier, Linear Discriminant and Lo-

gistic Regression perform worse than SVM and MLP. This is because these classifiers’

performances depends on the amount of training data, correlations between features,

and the probability distribution of each feature, which may vary with empirical data.

The experimental results are consistent with other research works, that in general SVM

and MLP can achieve better classification performance on biopsy image analysis [69].
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Figure 4.6: Boxplot of classification accuracies from applying single MLP, single SVM
expert, Random Subspace SVM ensemble (RS-SVM) and Random Subspace MLP en-
semble (RS-MLP)

4.4.3 Evaluation of Random Subspace Ensembles

Table 4.1 shows the classification accuracies obtained using 7 different ensemble clas-

sifiers with different image feature combinations. The classifier ensemble methods

compared here are: (i) Bagging [111] with SVM (BagSVM), (ii) Bagging with MLP

(BagMLP), (iii) AdaBoost [211] with SVM (BoostSVM), (iv) AdaBoost with MLP

(BoostMLP), (v) Random Forest [15] with decision trees (RandF), (vi) Random Sub-

space with MLP (RSMLP) and (vii) Random Subspace with SVM (RSSVM). The three

different image feature types introduced earlier were considered: Curvelet, GLCM, and

LBP, which are represented by the letters C, G, and L in Table 4.1 respectively. Each

image has a 666 dimensional feature vector with all of these three features. Each ran-

domly selected subspace used 80 percent of the features for the training phase of the

classifiers. For example, a 532-dimensional (666×0.8) feature vector is used for training

when three kinds of features are all used (C, G and L in Table 4.1). In order for com-

parison, the full (100%) feature vectors were also used for classifier training, the results
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of using full feature vectors are listed in the last column of the table. The ensemble

size is fixed as 25 for all the classifiers in Table 4.1.

Table 4.1: Classification Accuracy (%) of 7 Ensemble classifiers on the Biopsy Image
Data with different image feature combinations

Ensemble
Features Used

C G L C&G C&L G&L C&G&L 100%

BagSVM 87.56 87.21 88.53 89.65 90.06 90.48 92.04 91.67
BagMLP 87.56 87.42 88.84 90.75 90.58 90.67 93.44 93.02
BoostSVM 86.81 86.06 87.54 89.25 89.54 90.70 92.70 92.88
BoostMLP 87.72 87.21 88.44 90.17 90.22 90.44 93.22 93.56
RandF 82.73 82.61 83.25 85.81 84.61 87.03 89.81 92.44
RSMLP 90.43 90.82 91.79 92.58 93.39 93.89 95.05 94.88
RSSVM 90.13 90.09 90.44 92.08 92.51 92.78 94.85 94.12

One can note from Table 4.1 that the use of ensembles does improve the classifica-

tion accuracy. RSSVM and RSMLP produced the best performance regardless of the

types of image features used for the training, both obtained classification accuracies

around 95% with the combined feature (C&G&L), which is much better than the results

obtained by other feature combinations. The results of the Random Subspace ensemble

(RSSVM, RSMLP) using 80% features for training are also better than the results of

using the whole feature vector in the training phase, which means the classification

task benefits from Random Subspace ensemble.

The results on the same image dataset from using other kinds of features are also

compared in the experiment, as in [16], the level set method was used to extract image

features, and a 42-bins histogram was constructed to represent information of connected

components; a 6.6% classification error rate was obtained.

Two important parameters for Random Subspace ensembles are ensemble size (L)

and the cardinality of the feature vectors (M). A “rule of thumb” has been put for-

ward with respect to the fMRI data classification problem [107], in which the authors

proposed a feature subset size M = n
2 and a consequent ensemble size of L = n

10 , where

n is the dimension of the original feature vector. In order to find the appropriate val-

ues for the ensemble size and feature vector cardinality for the current biopsy image

classification work, the size of the ensembles was varied from 5 to 145 with a step size

of 10. For each ensemble value size, the cardinality of the feature vectors used for

training was changed from 10% of the original dimension to 100%, with equally spaced

intervals of 10%. The classification results using RSSVM and RSMLP with different

ensemble sizes and different feature vector cardinalities are shown in Fig. 4.7 and Fig.

4.8, respectively.

The same conclusion as in [63] can be drawn from Fig. 4.7 and Fig. 4.8. The clas-

sification performance does not rely on the increase of the ensemble size. The different

cardinalities of the feature vectors produced different performances. The Random Sub-
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Figure 4.7: Classification results of the RSSVM ensemble with different ensemble sizes
and different cardinalities of training feature

5 15 25 35 45 55 65 75 85 95 105 115 125 135 145
0.8

0.82

0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

Ensemble Size

C
la

ss
if

ic
a

ti
o

n
 A

cc
u

ra
cy

 

 

10% 20% 30% 40% 50% 60% 70% 90% 100% 80%

Figure 4.8: Classification results of the RSMLP ensemble with different ensemble sizes
and different cardinalities of training feature
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space MLP ensemble obtains its best classification accuracy of 96.83% using M = 4n
5

and ensemble size L = 105. The Random Subspace SVM ensemble also achieved good

performance with an accuracy 96.56% at 80% feature cardinality; however, different

from the MLP ensemble, the SVM ensemble has the same top performance for ensem-

ble sizes 85 to 115. Therefore, the most appropriate feature cardinality of M = 4n
5 and

ensemble size L = 105 were identified for both of the Random Subspace MLP ensemble

and the SVM ensemble.

4.4.4 Results of the Proposed Ensemble Cascade System

In this experiment, we first use the RSSVM-ensemble and the RSMLP-ensemble to

construct different cascade classification systems. Four different two-stage cascade clas-

sifiers were built: RSSVM-RSSVM, RSMLP-RSMLP, RSSVM-RSMLP, and RSMLP-

RSSVM; where RSSVM-RSSVM indicates that a RSSVM ensemble was employed in

both stages 1 and 2, RSSVM-RSMLP indicates that a RSSVM ensemble was used in

stage 1 and a RSMLP ensemble in stage 2, and so on.

The parameters for the RSSVM and RSMLP ensembles were determined as in the

previous experiment, with ensemble sizes equal to 105 and feature cardinality set to

80%. A rejection threshold 84 (0.8× 105) was set for both ensembles (stage 1 and 2),

which means that only when more than 80% of the classifiers agree on some decision will

the decision be adopted, otherwise, the instance will be rejected by the ensemble. This

relatively high threshold was used because we wished to ensure a high level of reliability

with respect to classification decisions. The results of different cascade schemes on the

biopsy image dataset are listed in Table 4.2.

Table 4.2: Classification Accuracy and Reliability of Different Cascade Schemes on the
Biopsy Image Data with rejection threshold of both stages equal to 84, RR stands for
Recognition Rate, Re for Reliability, ReR for Rejection Rate, and ER represents Error
Rate, see Section 3 for details

Cascades RR (%) Re (%) ReR (%) ER (%)

RSSVM-RSSVM 97.19 97.63 1.43 2.38
RSMLP-RSMLP 97.39 98.22 1.19 1.78

RSSVM-RSMLP 98.61 98.65 0.53 1.35
RSMLP-RSSVM 97.89 98.40 1.71 1.60

From Table 4.2, it can be observed that all the two-stage cascade classifiers obtain

a better classification performance than the non-cascade ensembles tested in the last

experiment. This confirms the effectiveness of the cascade classification system, which

benefits from the fact that the samples rejected by the first ensemble still have the

chance to be correctly classified by the second ensemble. Among the four different cas-

cade classifiers, the RSSVM-RSMLP cascade classifier obtained the best classification

accuracy with a relatively low rejection rate. The reasonable explanation is that use
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of different base classifiers in the ensembles increase the diversity of the whole cascade

system, and compared with SVM, MLP is a more ‘localized’ classifier which is more

suitable to be put in stage 2 to achieve better performance [63].

To have a closer look at how the rejection rate influences the classification accuracy,

we adjusted the threshold t2 for the majority voting of the stage 2 ensemble (t2-out-of-

L, L = 105), while fixing the threshold in stage 1 at t1 = 84 (0.80× 105), resulting in

average rejection rates at stage 2 of between 14.29% and 26.36% from t2 = 85, . . . , 95.

The corresponding overall rejection rates were then in the range of 0.68%, . . . , 1.94%.

The plots of stage 2 accuracies and corresponding overall accuracies from the varying

rejection rates are displayed in Fig. 4.9 and Fig. 4.10, respectively. It is not difficult to

appreciate that higher accuracy could be expected from higher rejection rate. However,

it is worth noting that when the rejection rate of stage 2 is 26.36%, the classification

accuracy of stage 2 is 100%, as we continued increasing the value of the threshold t2,

the increased rejection rate did not bring any more improvement with respect to the

classification performance.
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Figure 4.9: Averaged stage 2 accuracies with 10 varying stage 2 rejection rates
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With t1 = 84 and t2 = 95, the classification accuracies and reliabilities from stage

1, stage 2 and the whole system can be seen in Table 4.3. Compared with the results in

Table 4.2, where the same thresholds t1 = t2 = 84 was set for both stages, the overall

classification accuracy and reliability were improved by increasing the value of t2, and

the corresponding error rate drops. However, this improved performance is obtained

at the cost of an augmented rejection rate, which means there will be more images left

for human experts to analyze. The trade-off between accuracy and rejection rate could

be empirically decided in practice.

Table 4.3: Averaged Classification performance of the Cascade Schemes on the Biopsy
Image Data with rejection threshold t1 = 84 and t2 = 95

RR (%) Re (%) ReR (%) ER (%)

Stage 1 (RSSVM) 98.61 99.31 7.73 0.69
Stage 2 (RSMLP) 1 83.64 26.36 0

Cascade 99.25 97.65 1.94 1.25

The confusion matrix from the overall performance that summarize the detailed

situations of rejection rate 1.94% were displayed in the Table 4.4. In the confusion

matrix representation, the rows and columns indicate the true and predicted classes

respectively. The diagonal entries represent correct classification while the off-diagonal

entries represent incorrect ones.

4.4.5 Results on UCI Datasets

In order to further evaluate our proposed system, we compared our proposed method

with Negative Correlation Learning (NCL) proposed in [17], which is also a neural

network ensemble classifier, the classifiers in the ensemble are trained with NCL. For

the two methods compared here, we fixed the ensemble sizes as 105. The rejection

threshold for stage 1 and stage 2 were set as t1 = 84 and t2 = 95 for our two ensembles

trained with Random Subspace.

Table 4.5 shows the classification error rates of two empirical tests, on the Wisconsin

breast cancer dataset from the UCI repository (699 patterns), and the Heart disease

dataset from Statlog (270 patterns).

Table 4.4: Averaged confusion matrix with overall rejection rate 1.94% (%)
insitu normal invasive

insitu 97.97 0.74 1.29
normal 0 100 0
invasive 0.22 0 99.78
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Table 4.5: Averaged Error Rate of Two Methods on Two UCI Datasets (%)
Dataset NCL Proposed

Breast Cancer 3.12 0.74 (with rejection rate 0.89%)
Heart Disease 17.33 14.54 (with rejection rate 1.67%)

4.5 Conclusion and Future Work

In this chapter, a reliable classification scheme based on serial fusion of Random Sub-

space ensembles has been proposed for the classification of microscopic biopsy images

for breast cancer diagnosis. Rather than simply pursuing classification accuracy, we

emphasized the importance of a reject option in order to minimize the cost of misclas-

sifications so as to ensure high classification reliability. The proposed two-stage method

used a serial approach where the second classifier ensemble is only responsible for the

patterns rejected by the first classifier ensemble. The first stage ensemble consists

of binary SVMs which were trained in parallel, while the second ensemble comprises

MLPs. During classification, the cascade of classifier ensembles received randomly sam-

pled subsets of features following the Random Subspace procedure. For both of the

ensembles the rejection option was implemented by relating the consensus degree from

majority voting to a confidence measure and abstaining to classify ambiguous samples

if the consensus degree was lower than the threshold.

The effectiveness of the proposed cascade classification scheme was verified on a

breast cancer biopsy image dataset. The combined feature representation from LBP

texture description, Gray Level Co-occurrence Matrix and Curvelet Transform exploits

the complementary strengths of different feature extractors; the combined feature was

proved efficient with respect to the biopsy image classification task. The two-stage en-

semble cascade classification scheme obtained a high classification accuracy (99.25%)

and simultaneously guaranteed a high classification reliability (97.65%) with a small

rejection rate (1.94%). The proposed method obtained a 5.6% improvement on the

classification accuracy compared with the best published result. Moreover, the cascade

architecture provides a mechanism to balance between classification accuracy and re-

jection rate. By adjusting the rejection threshold in each ensemble, the classification

accuracy and reliability of the system can be modulated to a certain degree according to

the specification of specific applications. For example, medical diagnosis tasks usually

require high accuracy and reliability, therefore the rejection thresholds in each stage

will be set to a high level in order to guarantee the correctness of the diagnosis.

Although the proposed system has shown promising results with respect to the

biopsy image classification task, there are still some issues that need to be further

investigated. The benchmark images used in this work were cropped from the original

biopsy scans and only cover the important areas of the scans. However, often it is

difficult to find Regions of Interest (ROIs) that contain the most important tissues in

70



biopsy scans, more efforts therefore needs to be put into detecting ROIs from biopsy

images. In this chapter, the parameters for the cascade system, such as ensemble size

and rejection threshold, were decided empirically; this may not have produced the most

satisfactory performance with respect to all application contexts. Therefore, some self-

adaptive rules or algorithms for automatically optimizing these parameters would be

desirable.
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Chapter 5

Cascading One-Class Kernel
Subspace Ensembles for Reliable
Medical Image Classification

The content of this chapter has been published in the following papers:

• Yungang Zhang, Bailing Zhang, Frans Coenen and Wenjin Lu. One-Class Kernel

Subspace Classifier Ensemble for Medical Image Classification, Eurasip Journal

on Advances in Signal Processing, 2014:17, pp. 1-13, 2014.

• Yungang Zhang, Bailing Zhang, Frans Coenen and Wenjin Lu. Cascading One-

Class Kernel Subspace Ensembles for Reliable Biopsy Image Classification, Jour-

nal of Medical Imaging and Health Informatics, Vol.4, pp. 1-12, 2014.

5.1 introduction

In many automatic medical diagnosis applications, the datasets used for diagnosis is

often imbalanced as the number of normal cases is usually larger than the number of

the disease cases. Classifiers that generalize well over balanced data are not the most

appropriate choice in such an unbalanced situation. For example, decision trees tend to

over-generalize the class with the most examples; Naive Bayes requires enough data for

the estimation of the class-conditional probabilities [119]. One-Class Classifiers (OCC)

[192] are more appropriate for such a task.

Using of a single classifier often fails to capture all aspects of the data in many

real classification tasks, therefore, a combination of classifiers (an ensemble) is often

considered to be an appropriate mechanism to address this shortcoming. The main

idea behind the ensemble methodology is to use several classifiers, and combine the in-

dividual results in order to produce a classification that outperforms the outcomes that

would have been produced were the classifiers to operate in isolation [166]. Ensembles of

one-class classifiers have also been shown to perform better than when using individual

classifiers [65, 10, 72]. There are many strategies for constructing a classifier ensemble,
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examples include: using different training data sets, different feature subsets, various

types of individual classifiers and different fusion rules. Among these, the feature subset

strategy has shown better performance when the dimensionality of the feature vector

is high compared to the number of the data samples [157, 104, 219, 215]. It is thus sug-

gested that the feature subset ensemble strategy is consequently well suited to medical

image classification problems, as various types of image features are generally extracted

for medical image classification tasks, which in turn means that the dimensionality of

the vector space is typically larger than the number of image samples, i.e., the “curse

of dimensionality”. Using the feature subset strategy can avoid such a problem.

Classification with a rejection option has been a topic of interest in pattern recog-

nition. Multi-stage classifiers are ensembles where individual classifiers have a reject

option [151]. Cascading [50] is a scheme to support multi-stage classification. At the

first stage of a cascading system, a generalized classifier is used, for each pattern, a

classification confidence is given by the system, the patterns with low confidence will

not be classified, instead, the system will pass on these uncovered patterns to the next

stage. At the next stage, a more complex rule is constructed to focus on these uncovered

patterns.

In previous studies of medical images classification, accuracy was the only objective;

the aim was to produce a classifier that featured the smallest error rate possible. In

many applications, however, it is more important to address the classification reliability

issue by introducing a reject option which provides for an expression of doubt. The

objective is thus to improve classification reliability by leaving the classification of

“difficult” cases to human experts. Since the consequences of misclassification may

often be severe when considering medical image classification. Clinical expertise is

desirable so as to exert control over the accuracy of the classifier in order to make

reliable determinations.

In this chapter, we propose and evaluate a novel classification scheme for breast

cancer biopsy images. To stress the reliability of the automatic medical diagnosis, the

proposed classification scheme utilizes a cascade of two classifier ensembles. The first

stage of the cascade consists of an ensemble of One-Class Classifiers, the ensemble is

built with the feature subset strategy; each One-Class classifier is trained with one

type of features extracted from the biopsy image training set. The Kernel Principle

Component Analysis (KPCA) model was chosen as the base classifier of the first stage.

For each image category, n KPCA models can be trained from n types of image features.

Therefore, the ensemble size of the first stage is determined by both the number of image

classes and the number of image feature types, for example, given am-class classification

task and n different kinds of image features, then the ensemble will consist of m × n

KPCA models. Given an unlabeled image, its n types of features will first be mapped

into the kernel space by the corresponding n trained KPCA models from each class.
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The mapped features will then be reconstructed from the high dimensional kernel space

into the original space by Preimage learning [110], the distances between the original

features and the reconstructed features will be measured. The distances given by the

KPCA models will be combined to output a confidence score describing the probability

of the sample belonging to a class. For a m-class classification task, m confidence

scores will be obtained, one for each class. Then a rejection rule will be used to judge

if the image should be classified or rejected and passes on to the next stage for further

consideration.

The second stage consists of a random subspace [78] ensemble of Support Vector

Machines (SVM) which operate using majority voting, any samples that have a low

consensus degree will be rejected for further consideration by human experts. The

classification with the proposed cascaded ensembles will provide an efficient means

to simultaneously reduce the error rate and enhance the reliability by controlling the

reliability-rejection trade-off. The proposed classification system was evaluated on two

medical image datasets, promising results were obtained.

The rest of this paper is organized as follows: Some related work is considered in

Section 5.2. In Section 5.3, we described the proposed two-stage ensemble cascading

system in detail. In Section 5.4, some experimental results are presented based on two

synthetic datasets and the adopted two real medical image datasets. The paper ends

with some conclusions in Section 5.5.

5.2 Related Works

In this section, we will first introduce some related works on one-class classification.

Then one-class classifier ensembles will be discussed.

5.2.1 One-Class Classification

The term of One-Class Classification was first proposed by Moya et al. [137]. Many

approaches to one-class classification have been presented in the literature [192]. Fol-

lowing the taxonomy in the survey papers of [96, 130, 131], the algorithms used in OCC

can be categorized as follows: (i) boundary methods, (ii) density estimation and (iii)

reconstruction methods.

Tax and Duin tried to separate the positive class form all other patterns in the

pattern space; the positive class data was surrounded by a hyper-sphere which encom-

passed almost all positive patterns within the minimum radius [189, 191]. The proposed

Support Vector Data Description (SVDD) tries to separate the pattern space with data

from the space containing no data. Manevitz and Yousef [129] proposed another ver-

sion of one-class SVM to identify the outlier data as representative of the second class,
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and applied their method to the standard Reuters1 dataset and noted that their SVM

methods was quite sensitive to the choice of representation and kernel. Although One-

class classifiers, such as OCSVM, have been widely used, the estimated boundary can

be sensitive to the nature of the data [169]. When noisy data, or many outliers, are

contained in the training set, OCSVM will estimate a large boundary that encloses

regions of the feature space where the positive class has low density, often resulting

in many false positives [79]. This can be highly problematic for many applications,

especially for medical diagnosis where the number of false positives must be kept to a

minimum, since an accidental diagnosis of a patient as healthy may result in serious

consequences.

Density estimation methods estimate the density of the target class to form a model

with which to represent the data. Density estimation methods work well if the number

of training samples is sufficient enough to estimate data distributions. However, when

the models cannot fit the data distribution very well, a large bias may be generated.

Details and some comparisons of these methods can be found in [162, 202].

When it is not feasible to obtain large training sets, the reconstruction models can

be used to approximate the target class. The reconstruction models aim to produce

prototypes of the original data, new objects are projected onto the prototypes. The

distance between the original object x and the projected object p(x) (Reconstruction

Error), indicates the similarity of a new object to the original target distribution.

When the training data has a very high dimensionality, some distance based methods

like nearest neighbor tend to perform badly [12]. In such cases it can often be assumed

that the target data is distributed in subspaces of much lower dimensionality. Principle

Component Analysis [186] is a linear model that has the ability to project the original

data into orthogonal space which can capture the variance in the data. In order to

approximate nonlinear data distributions, many nonlinear subspace models have also

been proposed, such as Self-Organizing Map (SOM), auto-encoders, auto-associative

networks and Kernel PCA.

5.2.2 Ensemble of One-Class Classifiers

The existing classifier combination strategies can also be used in one-class classifiers.

However, since there is only information from one class, it is more difficult to combine

one-class classifiers. Tax and Duin investigated the influence of feature sets and the

types of one-class classifiers for the best choice of the combination rule [190]. A bagging

based one-class support vector machine ensemble method was proposed in [178]. A

dynamic ensemble strategy based on Structural Risk Minimization [86] was proposed

by Goh et al. for multiclass image annotation [65]. Recently, some research results

have revealed that creating a one-class classifier ensemble from different feature subsets

1http://www.daviddlewis.com/resources/testcollections/reuters21578
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can provide better performance. Perdisci et al. [152] also used an ensemble of one-class

SVMs to create a “high speed payload-based” anomaly detection system, the features

were first extracted and clustered, the OCSVM ensemble was then constructed based

on the clustered feature subsets. A biometric classification system combining different

biometric features was proposed by Bergamini et al. [10], where the one-class SVMs

in the ensemble were trained by the data from different people. The feature subset

strategy provides diversity with respect to the base classifiers.

Combining one-class classifiers has also shown promising performance in medicine

and biology [213]. Peng Li et al. [116] proposed a multi-size patch-based classifier

ensemble, which provides a multiple-level representation of image content, the proposed

method was evaluated on colonoscopy images and ECG beat detection [115]. The k-

nearest neighbor classifier was selected as the base classifier in the work of Okun and

Priisalu [146]; majority voting was chosen as the combination rules for the ensemble;

the method was evaluated on gene expression cancer data.

5.3 Serial Fusion of One-Class Kernel Subspace Ensem-
bles

Although many supervised learning algorithms, such as neural networks and SVM,

have been extensively applied to many medical image classification problems, few of

them have addressed the issue of classification reliability (the extent that one can rely

upon a given prediction). Note that we are interested in the assessment of a classifier’s

performance on a single example such as the diagnosis associated with an individual

patient. In such cases an overall quality measure of a classifier (e.g. classification

accuracy) would not provide the desired information, even where good accuracies are

achieved using some state-of-art methods. With respect to some real applications, such

as medical diagnosis, highly reliable classifiers are required so that a correct therapeutic

strategy can be selected. Therefore, it is desirable to have a reject option in order to

avoid making a wrong decision when classifier is presented with ambiguous input, i.e.

an option to withhold a classifier decision.

In this chapter a new two-stage classifier for medival image classification is proposed.

In the first stage, an ensemble of Kernel PCA models are combined to determine if an

image should be classified or rejected, the KPCA models are trained individually from

different image features. The rejected images will further be investigated in the second

stage, which is an ensemble of ‘one-versus-all ’ Support Vector Machines, based on

the rejection option, the images will either be classified at this stage or deferred for

classification by a human expert (Fig. 5.1).

The construction of the KPCA ensemble will be first introduced in Section 5.3.1,

then the reject option for classification will be discussed. The SVM ensemble for the

second stage will be considered in Subsection 5.3.2 below.
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Figure 5.1: Operation of the proposed hybrid classification scheme comprised of a
cascade of two classifier ensembles.

5.3.1 One-Class Kernel PCA model Ensemble

In this section the one-class kernel PCA model ensemble will be introduced. This

ensemble is the first stage of the proposed cascaded classification system. An individual

KPCA model in the ensemble is trained based on an individual image feature. When a

new image is to be classified, its features will be reconstructed by corresponding KPCA

models, the reconstruction errors from all KPCA models will then be combined and

a rejection option will be used to determine whether the image should be classified or

rejected.

The theory of Kernel PCA and pattern reconstruction via pre-image will first be

introduced, then the proposed KPCA ensemble will be described.

KPCA and Pattern Reconstruction via Pre-image

The traditional (linear) PCA tries to preserve the greatest variations of data by ap-

proximating data in a principle component subspace spanned by the leading eigen-

vectors, noises or less important data variations will be removed. Kernel PCA in-

herits this scheme, however kernel PCA performs linear PCA in the kernel feature

space Hκ. Suppose X ⊂ Rn is the original input data space, Hκ is a Reproducing

Kernel Hilbert Space (RKHS) (also called feature space) associated to a kernel func-

tion κ(x, y) =< φ(x), φ(y) >, where x, y ∈ X. φ(·) is a mapping induced by κ that

φ(x) : X → Hκ. Given a set of patterns {x1, x2, . . . , xN} ∈ X. Kernel PCA performs

the traditional linear PCA in Hκ. The same as the linear PCA, KPCA also has the

eigen decomposition:

HKH = UΛU ′ (5.1)

where K is the kernel matrix such that Kij = κ(xi, xj), and

H = I − 1

N
11′ (5.2)

is the centering matrix, where I is theN×N identity matrix, 1 = [1, 1, . . . , 1]′ is anN×1
vector, U = [α1, . . . ,αN ] is the matrix containing eigenvectors αi = [αi1, . . . , αiN ]′ and

Λ = diag(λ1, . . . , λN ) contains the corresponding eigenvalues.
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Denote the mean of the φ-mapped patterns by φ̄ = 1
N

∑N
j=1 φ(xj). Then for a

mapped pattern φ(xi), the centered map φ̃(xi) can be defined as:

φ̃(xi) = φ(xi)− φ̄. (5.3)

The kth eigenvector Vk of the covariance matrix in the feature space is a linear

combination of φ̃(xi):

Vk =

N∑
i=1

αkiφ̃(xi) = φ̃αk, (5.4)

where φ̃ = [φ̃(x1), φ̃(x2), ..., φ̃(xN )]. If we use βk to denote the projection of the φ-

image of a pattern x onto the kth component Vk, then:

βk = φ̃(x)′Vk =
N∑
i=1

αkiφ̃(x)
′φ̃(xi)

=

N∑
i=1

αkiκ̃(x, xi), (5.5)

where:

κ̃(x, y) = φ̃(x)′φ̃(y)

= (φ(x)− φ̄)′(φ(y)− φ̄)

= κ(x, y)− 1

N
1′kx −

1

N
1′ky +

1

N2
1′K1 (5.6)

where kx = [κ(x, x1), . . . , κ(x, xN )]′. Denote

κ̃x = [κ̃(x, x1), . . . , κ̃(x, xN )]′

= kx −
1

N
11′kx −

1

N
K1+

1

N2
11′K1

= H(kx −
1

N
K1), (5.7)

then βk in Eqn.(5.5) can be rewritten as: βk = α
′
kκ̃x.

Therefore, the projection P (φ(x)) of φ(x) onto the subspace spanned by the first

M eigenvectors can be obtained by:

P (φ(x)) =
M∑
k=1

βkVk + φ̄ =
M∑
k=1

(α′
kκ̃x)(φ̃αk) + φ̄

= φ̃Lκ̃x + φ̄, (5.8)

where L =
∑M

k=1αkα
′
k.
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PCA is a simple method whereby a model for the distribution of training data can

be generated. For linear distributions, PCA can be used, however many real world

problems are nonlinear. Methods like Gaussian Mixture Models and auto-associative

neural networks have been used for nonlinear problems. These methods, however, need

to solve a nonlinear optimization problem and are thus prone to local minima and sen-

sitive to the initialization [79]. KPCA runs PCA in the high dimensional feature space

through the nonlinearity of the kernel, this allows for a refinement in the description

of the patterns of interest. Therefore, Kernel PCA was chosen to model the non-linear

distribution of the training samples here.

Kernel PCA has been widely used for classification tasks. A straightforward method

using Kernel PCA for classification is to directly use the distances between the mapped

patterns in the feature space Hκ to obtain the classification boundaries [174, 79]. How-

ever as pointed out in [79], for Kernel PCA, their experimental results showed that

the classification performance highly depends on the parameters selected for the kernel

function, and there is no guideline for parameter selection in real classification tasks.

It is also demonstrated in a more recent work that it is not sufficient to use feature

space distance for unsupervised learning algorithms, the distances in the input space

are more appropriate for classification [94].

In this paper, we focus on the distances between a pattern x and its reconstruction

results by the kernel PCA models trained from different classes. As kernel PCA is used

as an one-class classifier here, which means for each class, at least one KPCA model is

trained. Suppose there is an m-class classification task, there will be m KPCA models,

one for each class. Given an unlabeled pattern x, every KPCA model will produce

a projection P (φ(x))i, i = 1, . . . ,m. During classification, x will be reconstructed in

the input space by every P (φ(x))i, then m reconstruction results x
′
1, . . . , x

′
m can be

obtained, the distance between x and each x
′
i (also called reconstruction error) is cal-

culated, x will be assigned to the class whose KPCA model produces the minimum

reconstruction error. Ideally, the KPCA model trained from the class which x also

belongs to will always give the minimum reconstruction error. In our proposed classi-

fication scheme, multiple KPCA models are trained for each class, the reconstruction

errors of KPCA models from different classes are combined for classification.

In order to obtain the input-space distance between x and its reconstruction result,

it is necessary to map P (φ(x)) back into the input space. The reverse mapping from

feature space back to input space is called the preimage problem (Fig. 5.2). However,

the preimage problem is ill-posed, the exact preimage x
′
of P (φ(x)) in the input space

does not exist [134], instead, one can only find an approximation x̂ in the input space

such that

φ(x̂) = P (φ(x)). (5.9)
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Figure 5.2: Illustration of KPCA preimage learning: the sample x in the original space
is first mapped into the kernel space by kernel mapping φ(·), then PCA is used to
project φ(x) into P (φ(x)), which is a point in a PCA subspace. Preimage learning is
used to find the preimage x̂ of x in the original input space from P (φ(x)).

In order to address the pre-image learning problem, some algorithms have been

proposed. Mika et al. [134] proposed an iterative method to determine the preim-

age by minimizing least square distance error. Kwok and Tsang proposed a Distance

Constraint Learning (DCL) method to find preimage by using a similar technique in

Multi-Dimensional Scaling (MDS) [110]. In a more recent work, Zheng et al. [229] pro-

posed a weakly supervised penalty strategy for preimage learning in KPCA, however

their method needs information for both positive and negative classes. As we are only

interested in one-class scenarios, the distance constraint method in [110] was selected

with respect to the work described in this paper. We briefly review the method here:

For any two patterns xi and xj in the input space, the Euclidean distance d(xi, xj)

can be easily obtained. Similarly, the feature-space distance d̃(φ(xi), φ(xj)) between

their φ-mapped images in the feature space can also be obtained. For many commonly

used kernels, such as the Gaussian kernels, there is a simple relationship between the

feature-space distance and the input-space distance [206]:

d̃2ij = Kii +Kjj − 2κ(d2ij). (5.10)

Therefore,

κ(d2ij) =
1

2
(Kii +Kjj − d̃2ij). (5.11)

As κ is invertible, d2ij can be obtained if d̃2ij is known.

Given a training set has n patterns X = {x1, . . . , xn}. For a pattern x in the input

space, the corresponding φ(x) is projected to P (φ(x)), then for each training pattern xi

in X, P (φ(x)) will be at a certain distance d̃(P (φ(x)), φ(xi)) from φ(xi) in the feature

space. This feature-space distance can be obtained by:

d̃2(P (φ(x)), φ(x)) = ∥P (φ(x))∥2 + ∥φ(xi)∥2 − 2P (φ(x))′φ(xi). (5.12)
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The Eqn.(5.12) can be solved by using Eqn.(5.5) and Eqn.(5.8). Therefore, the input-

space distances in Eqn.(5.11) between P (φ(x)) and each xi can be obtained now. De-

note the input-space distance between P (φ(x)) and xi as:

d2 = [d21, d
2
2, . . . , d

2
n]. (5.13)

The location of x̂ will be obtained by requiring d2(x̂, xi) to be as close to the values in

Eqn. (5.13) as possible, i.e.,

d2(x̂, xi) ≃ d2i , i = 1, . . . , n. (5.14)

To this end, in DCL, the training set X is constrained to the n nearest neighbors of x,

the least square optimization is used to obtain x̂.

Construction of One-Class KPCA Ensemble

PCA is a simple method whereby a model for the distribution of training data can

be generated. For linear distributions, PCA can be used, however many real world

problems are nonlinear. Methods like Gaussian Mixture Models and auto-associative

neural networks have been used for nonlinear problems. These methods, however,

need to solve a nonlinear optimization problem and are thus prone to local minima

and sensitive to the initialization [79]. Kernel PCA was chosen to model the non-linear

distribution of training samples. KPCA runs PCA in the high dimensional feature space

through the nonlinearity of the kernel, which allows for a refinement in the description

of the patterns of interest.

Given an image set of m classes, the proposed one-class KPCA ensemble is built as

follows: (i) for each image category, n types image features are extracted; (ii) a KPCA

model will be trained for each individual type of extracted features; and therefore (iii)

for each image class, n KPCA models will be constructed. For a m-class problem,

there will be m× n KPCA models in the ensemble. The construction of the proposed

one-class KPCA ensemble is illustrated in Fig. 5.3.

Multiclass Prediction Using an Ensemble of One-Class KPCA Models

Our classification scheme is designed to produce a reliable prediction for unlabeled

images. Classification confidence score is used to describe the probability of the image

belonging to each class. The confidence score can provide a quantitative measure of the

predictions produced by KPCA models. To disambiguate the competing predictions, a

reject option is proposed to evaluate the combined classification result and determines

if an unlabeled image should be classified or rejected and passed on to the next stage.

Given an unlabeled image x with n extracted features F = {f1, f2, . . . , fn}, let

KPCAj
i represent the KPCA model belonging to class i and trained from the j-th

feature fj , where i ∈ {1 . . .m} is the class label and j ∈ {1 . . . n} is the feature label.
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Figure 5.3: Construction of one-class KPCA ensemble from different image feature sets,
KPCAj

i represents the KPCA model trained from the jth image feature of class i.

For classification, each image feature fj ∈ F will be reconstructed by all the KPCA

models trained from the jth feature. For example, f1 will be reconstructed by the

models KPCA1
i , i = 1, . . . ,m, each of these m KPCA models belongs to one image

class. Denote the reconstruction of feature fj as f
′
j = {f ′1

j , f ′2
j , . . . , f ′m

j }, we simply use

the squared distance Dj between fj and f ′
j as the reconstruction error, thus:

Dj = [d1j , d
2
j , . . . , d

m
j ], (5.15)

where dji = ∥fj − f ′i
j ∥2, i = 1, . . . ,m. In the same way, all the features in F will be

reconstructed, thus a distance matrix D is obtained, which has the dimensions n×m,

where n is the number of KPCA models used for the reconstruction, and m is the

number of image classes. Each row of D represents the reconstruction errors of a

feature in F by m KPCA models from each class.

D =


D1

D2
...

Dn

 =


d11 d21 · · · dm1
d12 d22 · · · dm2
...

... · · ·
...

d1n d2n · · · dmn

 (5.16)

Note that each column in D represents the reconstruction errors of F using the

KPCA models from the same class, these values provide a measure of how x is described

by the models from one class. We try to find the KPCA models from one class which

give the minimum reconstruction error, this indeed is a 1-nearest neighbor search, as

we wish to find the best reconstruction preimage of x in m preimages. Such a distance

measure can improve the speed of the classification, moreover, it is also in line with the

ideas in metric multidimensional scaling, in which smaller dissimilarities are given more

weight, and in locally linear embedding, where only the local neighborhood structure

needs to be preserved [110].
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In order to combine the reconstruction errors from the KPCA models belonging to

the same class, the reconstruction errors in D are normalized using Eqn. (5.17):

d̃ji = exp(−dji/s), (5.17)

which models a Gaussian distribution from the square distance. The scale parameter s

can be fitted to the distribution of dji . Moreover, Eqn. (5.17) has the feature that the

scaled value is always bounded between 0 and 1.

The normalized reconstruction errors are then combined to produce the Confidence

Scores (CS) of x classified to each class. Let CS = {cs1, cs2, . . . , csm} denote the

confidence scores for x with respect to each image class. The confidence scores are

computed from the distance matrix D̃ using a variant of the product rule [99] in Eqn.

(5.18):

csk(x) =

∏
k Pk(x|wT )∏

k Pk(x|wT ) +
∏

k Pk(x|wO)
, (5.18)

where k is the number of the combined classifiers. Pk(x|wT ) is the probabilities of

classifying x into the target class obtained from k classifiers, and Pk(x|wO) represents

the probabilities of x belonging to the outlier class. In [190], the authors investigated

different mechanisms for combining one-class classifiers, their results showed that the

“product rule” outperforms other combining mechanisms for one-class classifiers.

As noted in [190, 99], when using the product combining rule, Pk(x|wT ) should be

available and a distance should be transformed to a “resemblance” by some heuristic

mapping as in Eqn. (5.17). However, when an image feature is reconstructed by a

number of KPCA models from different image classes, some models will give big recon-

struction errors, which will become relatively small, approaching 0 after the mapping

of Eqn. (5.17), this makes the item
∏

k Pk(x|wO) in Eqn. (5.18) meaningless. There-

fore, we propose to use a variant of the product combining rule in (5.18). Instead of

using the mapping values from all KPCA models, for the KPCA models trained by

the same type of image feature, only the model that gives the biggest mapping value

will be chosen to produce
∏

k Pk(x|wO). The proposed product combining rule can be

described as:

csk(x) =

∏
k Pk(x|wT )∏

k Pk(x|wT ) +
∏

k maxPk(x|wO)
. (5.19)

This maximum value selection procedure is illustrated in Fig. 5.4 by a simple

example. In Fig. 5.4, there is a 4-class classification task (I, II, III, IV in the figure),

four types of features are extracted from image x. For one type of image feature, there

are four trained KPCA models, each from a different class, giving four reconstruction

results for the same feature of x (one row in matrix D̃). If we consider class I as the

‘target’ class (first column in the figure), the four values in the first column are used to
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Figure 5.4: Illustration of KPCAmodel selection to produce outlier probability product.

produce the item
∏

k Pk(x|wT ) in (5.19). The other three column of values are deemed

as the outlier probabilities produced by the KPCA models from the other three classes.

The proposed combining rule selects the maximum mapping value from each row to

produce the outlier probability product
∏

k Pk(x|wO).

The proposed combining rule is in line with the basic idea of one-class classification,

as in the one-class scenario one only needs to know if a pattern should be assigned to

the target class or to the outlier class. If one or more outlier models is able to produce a

high outlier probability product, the current target class should be doubted. Moreover,

by combining the outliers value from different feature-derived models, the diversity

of the ensemble will be improved, which is an important factor to make an ensemble

learning method successful [108].

To classify an unlabeled image, each class will be regarded as the target class in

turn, using the proposed product combining rule, a classification confidence score can

be obtained for assigning x to each class. The procedure of obtaining the confidence

scores is described in Algorithm 3.

Once the CS set has been obtained, the decision to classify or reject can be made.

We first give two parameters that will be used later:

Definition 1 (Top Confidence Score)

CFT = max{CS}

Definition 2 (Class Confidence Margin)

CFM = CFT −max{CS − {CFT }} (5.20)

Although CFT is the highest confidence score from the combination of m KPCA

models, it is suggested that using only CFT for classification is not sufficiently accurate.

In [65], the authors demonstrated that during classification, the correct predictions tend

to have both high CFT and CFM , whereas the wrong predictions may have high CFT

but smaller CFM . Therefore, to use both CFT and CFM as classification measures can

decrease the appearance of wrong predictions.
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Algorithm 3 Calculation of confidence scores for classifying x into each class

Input:
M = {1, . . . ,m}: Class label set
D: Distance matrix
i = 1 . . .m: Class label index
j = 1 . . . n: Image feature index
I: Target class label set
L: Outlier class label set
PTi: Product of target class probabilities
POi: Product of outlier class probabilites

Output:
CS = {cs1, cs2, . . . , csm}: Confidence scores for assigning x into each class

1: CS = ∅;
2: for (i = 1; i ≤ m; i++) do
3: PTi = 1;POi = 1; I ← i;L = M − I;
4: for (j = 1; j ≤ n; j ++) do
5: PTi = PTi × d̂ij ;

6: POi = POi ×max{d̂Lj };
7: end for
8: csi = (PTi/PTi + POi);
9: CS = CS ∪ csi;

10: end for
11: return CS

5.3.2 Reject Option for Classification

As already noted, in order to obtain a reliable classification system, the rejection option

is used here. The optimal classification rule with reject option was defined by Chow [30].

Consider a binary classification task with an instance dataset X = {x1, x2, . . . , xm}
and a class label set C = {−1, 1, 0} where class 0 is the reject option. We need to

seek a classification rule, L (X ⇒ C) such that L(x) = 0 indicates that no definite

judgement will be made for x and a reject option taken. Chow’s rule rejects a pattern

if the maximum of its a posterior probabilities is lower than a predefined threshold

t, the maximum posterior probabilities can be identified as a measure of classification

reliability. Such a rule can be expressed as:

f(x) =


argmaxCi(p(Ci|x)) if maxCi (p(Ci|x)) ≥ t

reject if ∀i p(Ci|x)< t
(5.21)

where p(Ci|x) is the posterior probability, which can be obtained by Bayes formula.

The rejection rate is the probability that the classifier rejects a given example:

p(reject) =

∫
reject

p(x)dx = p(max(p(Ci|x)) < t). (5.22)

In Chow’s theory, an optimal classifier can be found only if the true posterior proba-
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bilities are known. This is rarely reachable in real applications.

The key issue with respect to the reject option is to define the threshold t, in our

work, when the two confidence parameters CF and CFM are obtained, two thresholds

t1 and t2 are selected to control the reliability-rejection trade-off. An image will be

rejected if its confidence CFT (x) and CFM (x) cannot satisfy the rejection rule in Eqn.

(5.23):

CFT (x) ≥ t1 and CFM (x) ≥ t2. (5.23)

We will not pursue the optimal error-reject trade-off, as different image sets will have

different optimal rejection thresholds. The value of t1 will be set as a fixed number

and the value of t2 for each class is determined by a simple rule so that the selected

threshold t2 results in the max difference between classification reliability and rejection

rate.

5.3.3 Random Subspace Ensemble of One-versus-All SVMs

The rejected samples from the KPCA ensemble in Stage 1 will be handled by the second

ensemble, which is a Random Subspace ensemble of one-versus-all SVMs. The Random

Subspace (RS) method [78] is often quoted as an efficient way of combining the results

of a number of classifiers. RS divides the input feature space into subspaces; each

subspaces is formed by randomly picking features from the entire space, features may

be repeated across subspaces.

In our scheme, the multiclass classification problems with K classes are decom-

posed into K independent two-class problems (the one-versus-all approach where each

classifier classifies records as belonging or not belonging to a class). The multiclass

classification task can then be conducted based on the outputs of the binary SVMs.

Denote the output of a SVM as ρ(x) for an unlabeled pattern x, to estimate class

posteriors from the SVM’s output, a mapping can be implemented using:

P (y = +1|x) = 1

1 + exp(aρ(x) + b)
(5.24)

where the class labels are denoted as y = +1,−1, while a and b are constant terms

to be defined on the basis of the sample data. Such a method provides estimates of

the posterior probabilities that are monotonic functions of the output ρ(x) of an SVM.

This implies that Chow’s rule applied to such estimates is equivalent to the rejection

rule obtained by directly applying a reject threshold on the absolute value of the output

ρ(x).

Therefore, K binary SVM classifiers are constructed for K different image classes.

We refer to such a K collection of binary SVMs as an expert to avoid the confusion with

ensemble. The ith SVM output function Pi is trained taking the examples from the i-th
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class as positive and the examples from all other classes as negative. In other words,

each binary SVM classifier was trained to act as a class label detector, outputting a

positive response if its label is present and a negative response otherwise. For a new

sample x, the corresponding SVM assigns it to the class with the largest value of Pi as

follows:

Class = arg max Pi, i = 1, . . . , n (5.25)

where Pi is the signed confidence measure of the ith SVM classifier.

Such a SVM “expert” can then act as a base classifier in the Stage 2 ensemble,

trained with randomly chosen subsets of all available features (i.e. random subspaces)

following the Random Subspace strategy. In the random subspace strategy, base classi-

fiers are learned from random subspaces of the data feature space. In other words, the

ensemble is trained by dividing the feature space randomly into subsets and submitting

each one to a base SVM expert.

As we aim to construct a serially fused, cascade classifier ensembles in order to

produce a high confidence classification, it is essential to examine the output from the

SVM ensemble consisting of the base SVM experts. In combining the decisions from

the M experts, a sample is assigned the class for which there is a predefined consensus

degree, or when at least t3 of the experts are agreed on the label, otherwise, the sample

is rejected, the threshold t3 can be decided in advance. For example, a simple rule as

follows can be used to decide the value of t3:

t3 ≥
{

M
2 + 1 if M is even
M+1
2 if M is odd.

(5.26)
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Figure 5.5: SVM ensemble with rejection option in Stage 2, which consists of a set of
binary SVMs (experts).

Since there can be more than two classes, the combined decision is deemed to be

correct when a majority of the experts are correct, but wrong when a majority of the

decisions are wrong. Obviously, t3 is a tunable threshold that controls the rejection
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rate, and we use t3 to relate the consensus degree from the majority voting to the

confidence measure, and abstain from classifying ambiguous samples. Fig. 5.5 further

explains the principle of the SVM ensemble in stage 2.

5.4 Experiments and Results

The effectiveness of the proposed method is illustrated using a biopsy breast cancer

benchmark image set and a 3D OCT retinal image set, the details of the biopsy image

set are introduced in Section 3.3.2. The feature extraction methods of the biopsy images

are introduced in Section 3.4.

The 3D OCT retinal image set was collected at the Royal Hospital of University

of Liverpool [5], the image set contains 140 volumetric OCT images, in which 68 im-

ages from normal eyes and the remainders are from eyes have Age-related Macular

Degeneration (AMD). Fig 5.6 shows the example images.

Figure 5.6: Examples of two 3D OCT images showing the difference between a “normal”
and an AMD retina [4].

The OCT images are preprocessed by using the Split Bregman Isotropic Total Vari-

ation algorithm with a least-squares approach. The preprocessing step has two targets:

(i) identification and extraction of a Volume Of Interest (VOI) which also results in

noise removal, and (ii) flattening of the retina as appropriate. The example images

after preprocessing can be seen in Fig. 5.7.

Section 5.4.1 introduces our experimental setup and the evaluation methods used

in our experiments. The six commonly used one-class classifiers are compared with two

synthetic datasets in section 5.4.2. Using the extracted image features of the biopsy

image set, the effectiveness of combining Kernel PCAs is illustrated in section 5.4.3.

Then in Section 5.4.4, the performance of the proposed system is also evaluated and

compared on the 3D OCT retinal image set.
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Figure 5.7: Examples of OCT images. (a) Before preprocessing. (b) After preprocess-
ing. [4]

5.4.1 Experimental Setup and Performance Evaluation Methods

MATLAB 7.0 was used to implement the proposed process together with the Gaussian

kernel k(x, y) = exp(−∥x − y∥2/2σ2). Other types of kernels could have been used,

however.

Unless other wise stated 10-fold cross validation was used, all the results are averages

of 10 runs of the 10-fold cross validation. The following measures are used to evaluate

the proposed cascade method:

• Recognition rate (RR) = number of correctly recognized images / (number of

testing images - number of rejected images).

• Rejection rate (RejR) = number of rejected images /number of testing images.

• Reliability (RE) = (number of correctly recognized images + number of rejected

images)/ number of testing images.

• Error rate (ER): = 100% - reliability.

• ROC: Receiver Operating Characteristic graph.

• AUC: Area under an ROC curve.

5.4.2 Comparison among Different One-Class Classifiers

In this section, we use two synthetic datasets to evaluate the kernel PCA classifier by

comparing the decision boundaries of KPCA with five other commonly used one-class

classifiers: (i) PCA, (ii) MoG (Mixture of Gaussians with 2 components), (iii) k-means,

(iv) SVDD, (v) Parzen.

Fig. 5.8 shows the classification boundaries of the compared classifiers on a banana-

shaped dataset which has 120 data points. For kernel PCA, MoG, SVDD and Parzen

density estimation, the width of the Gaussian kernel is set to σ = 4. The number of
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Figure 5.8: Classification Boundaries of Different One-Class Classifiers on Banana
dataset.

eigenvectors used for reconstruction in PCA and KPCA is set to n = 40. A decision

threshold of 0.1 was selected for all the classifiers, which identifies 10% of the data as

outliers during training in order to improve the generalities of the classifiers. As can be

seen in the figure, the PCA, MoG, k-means and Parzen density estimation are unable

to describe the distribution. The KPCA and SVDD provide a better description of the

data, however, SVDD does not generalize well since the decision boundary contains

irregularities of the data distribution.
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Figure 5.9: Classification Boundaries of Different One-Class Classifiers on Spiral
dataset.

To test how kernel PCAs can cope with more complex data distributions, a spiral

distribution which contains 700 data points [79] is used. In Fig. 5.9, all the classifiers
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use the same parameters as in the banana data test. Although in Fig. 5.9 all the

classifiers fail to describe the distribution, however, when the width of the Gaussian

kernel is changed to a smaller value, KPCA can describe the distribution well. The

SVDD still cannot improve the decision boundary with a smaller σ, we compare the

operation of KPCA and SVDD in Fig. 5.10 with σ = 0.25.

Figure 5.10: Classification Boundary of KPCA and SVDD on Spiral dataset with σ =
0.25.

5.4.3 Results on Breast Cancer Biopsy Image Set

The KPCA ensemble evaluation using the biopsy image data is reported in this section.

Three types of image features were extracted, therefore for each image class three

Kernel PCAs were built with respect to each type of image feature. The recognition

rates of using these KPCAs individually are listed in column 2 to column 4 of Table

5.1, where CvletK, GLCMK and LBPK represent KPCA models trained from Curvlets,

GLCM and LBP, respectively. The results of combining all KPCA models are listed

in the last two columns of Table 5.1. Column 5 gives the results from the original

combining product rule introduced in Eqn. (5.18). The results from the proposed

product combining rule (Eqn. (5.19)) are listed in the sixth column. The parameters

of KPCAs were set to σ = 4 and n = 40.

Table 5.1: Recognition rate (%) for the biopsy image data from individual KPCAs and
the combined model.
Image Class CvletK GLCMK LBPK Original combining rule Proposed combining rule

Normal 70.10 67.70 71.40 69.25 92.70
Insitu 76.50 72.58 81.83 74.47 93.78
Invasive 77.71 68.65 85.57 75.22 90.35

Note that the results in Table 5.1 were obtained without rejection, each image is

directly assigned to the class with the Top Confidence Score (CFT ). From Table 5.1 one
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can see that by using the proposed product combining rule, the classification accuracies

of all the image classes have been improved. This illustrates that by combining one-class

classifiers trained from different features can improve the classification performance,

which is in accordance with the observation in [190]. For comparison, the other one-

class classifiers are also used as the base classifier of the ensemble in Stage 1, using the

same combining rule, the classification results are listed in Table 5.2.

Table 5.2: Recognition rate (%) for the biopsy image data from different one-class
classifier ensembles. The kernel widths for KPCA and SVDD were set to σ = 4. The
number of principal components for KPCA and PCA were set to n = 40.

Image Class PCA MoG KMeans SVDD Parzen KPCA

Normal 85.17 82.12 80.12 85.56 84.54 92.70
Insitu 87.33 84.67 83.46 87.22 81.26 93.78
Invasive 82.56 81.88 79.65 84.67 83.23 90.35

In the next expriment, the rejection option in Eqn. (5.23) combined with the two

confidence scores defined in Eqn. (5.14) are used, the experimental results showed

that with the rejection option and the control of the reliability-rejection tradeoff, the

proposed cascade system obtained promising results using the biopsy image data.

Without losing generality and simplicity, in the following experiments, the top con-

fidence score (CFT ) of each image class was empirically set to 0.5. In order to inves-

tigate the effectiveness of the rejection rule, the class confidence margins (CFM ) were

increased from 0 to 0.4 in steps of 0.02. Using different values for the CFM threshold,

the performance of the first stage (KPCA ensemble) in the cascade system is shown in

Fig. 5.11.
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Figure 5.11: Classification performance of KPCA ensemble in Stage 1 with different
CFM threshold values.
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From Fig. 5.11 (a) it can be observed that, as the rejection threshold CFM was

increased, the classification accuracies (recognition rates) of the three image classes

improved. However, for the class of “normal”, the recognition rate reaches a peak of

99.48% at a rejection threshold of 0.02, this indicates that the ambiguous images in

this class produce small class confidence margins, a small threshold can reject these

ambiguous images and improve the recognition rate of the class. The highest classifi-

cation reliability for the “normal” class was 99.52% obtained with CFM = 0.02. The

rejection rate for the “normal” class in this case was only 1.4% for the top recognition

rate and reliability.

The recognition rates of other two image classes (“insitu” and “invasive”) reached

the highest points at 100% and 96.28%, respectively, using a rejection threshold of 0.35

for both classes. The classification reliabilities of these two classes were also the best,

obtained 100% for the “insitu” class and 97.00% for the “invasive” class (Fig. 5.11

(b)). It can be seen from Fig. 5.11 (c) that when the rejection threshold is 0.35, for

the “insitu” class, the rejection rate is 49.17% and the rejection rate for the “invasive”

class is 17.71%. This means that to reach a better performance in Stage 1 for these

two classes, more images need to be rejected with respect to the second stage.

However, the side effect of a high rejection rate is that it has the potential to enhance

the error rate of the next stage. Therefore, a simple rule was used here to determine

the rejection threshold t for each class, the selected t was the threshold that gave the

maximum difference between the classification reliability and rejection rate, namely, we

chose the rejection threshold t that gave the maximum of |RE −RejR|, which can be

written as:

t = argmax|REt −RejRt|. (5.27)

This simple rule guarantees that the selected threshold produced a high classification

reliability with a small rejection rate. With this rule, the best thresholds for the

three image classes in Stage 1 are listed in Table 5.3 (Column TH), the corresponding

classification performances are also listed (recognition rate, reliability, rejection rate,

error rate).

Table 5.3: Best classification performance for the biopsy image data for the KPCA
ensemble, where RR, RE, RejR and ER represent recognition rate, reliability, rejection
rate and error rate. TH represents the rejection threshold that produced the results.

Image Class RR (%) RE (%) RejR (%) ER (%) TH

Normal 99.48 99.52 1.40 0.48 0.02
Insitu 99.76 99.83 12.42 0.17 0.17
Invasive 96.28 97.00 17.71 3.00 0.35

The images rejected by the KPCA ensemble will be further classified or rejected

in Stage 2, which is a “one-versus-all” SVM ensemble. The library for support vector
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machines, LIBSVM1 was used for the experiments. The parameter σ that defines the

spread of the radial function set to 5.0 and the parameter C that defines the trade-off

between the classifier accuracy and the margin 3.0.

For the SVM ensemble training, the three kinds of image feature vectors were com-

bined together forming a single feature vector for each image. Two important parame-

ters for the Random Subspace ensemble are the ensemble size L and the cardinality of

the feature vectors M (the size of the randomly chosen subsets of all available features,

thus the random subspace). A “rule of thumb” has been put forward with respect to

the fMRI data classification problem [107], in which the authors proposed a feature

subset size M = n
2 and a consequent ensemble size of L = n

10 , where n is the dimension

of the original feature vector. However, in our previous work [223], it was observed

that this rule does not work well with the biopsy image classification. Based on our

previous research, M = 4n
5 is used for the random subspace training of SVM ensemble.

In [223], it was found that a bigger ensemble size (L > n
10) may bring better classifi-

cation performance, however the big ensemble sizes also bring a heavy computational

cost. With respect to the work in this paper, we used the rule L = n
10 , the ensemble

size was set as L = 65 for evaluating our system, as the dimension of the combined

feature was n = 666.

Majority voting was used in Stage 2 to control the reliability-rejection tradeoff. In

combining the decisions from the M SVM experts (Figure 5.5), a sample is assigned the

class for which at least t of the experts are agreed on the label, otherwise, the sample

is rejected. For evaluating the error-tradeoff of the second stage, the threshold t was

increased from t = 32 to t = 65 in steps of 3. The classification performance of Stage

2 using different thresholds is shown in Fig. 5.12. As the second stage is a multiclass

classifier, the classification results were obtained using all the rejected images from

Stage 1.

From Fig. 5.12 (a) it can be seen that as the rejection threshold increases from 32

to 50, the recognition rate and reliability values improve. At a threshold of 50, the

recognition rate and reliability of the second stage reach their peak values of 97.88%

and 98.20% respectively. As the rejection threshold continues to increase, it can be

seen that there is no further improvement in classification performance. At the same

time, the high thresholds bring high rejection rates, as shown in Fig. 5.12 (b), when

the threshold is 65, the rejection rate of the second stage is 37.61%. Therefore, the

threshold value 50 was selected as the optimal threshold value for the SVM ensemble,

as it produced the maximum difference between reliability and rejection rate. Table

5.4 lists the classification results for the three image classes using a rejection threshold

of 50.

In Table 5.4, one can see that when using a threshold of 50, for the classes “normal”

1www.csie.ntu.edu.tw/ cjlin/libsvm
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Figure 5.12: Classification performance of SVM ensemble in stage 2 with different
rejection threshold values.

Table 5.4: Classification performance of Stage 2 on the biopsy image set
Image Class RR (%) RE (%) RejR (%) ER (%) TH

Normal 1 1 0 0 50
Insitu 93.65 94.60 12.08 5.40 50
Invasive 1 1 27.50 0 50
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and “invasive”, the rejected images from Stage 1 can be correctly classified with small

rejected numbers. Under the selected optimal thresholds for Stage 1 and Stage 2, the

overall classification performance of the proposed cascade system is listed in Table 5.5.

The classification confusion matrix is presented in Table 5.6.

Table 5.5: Overall classification performance for the biopsy image data of the proposed
cascade system

Image Class RR (%) RE (%) RejR (%) ER (%)

Normal 99.50 99.50 0 0.50
Insitu 98.33 99.83 1.5 0.17
Invasive 97.57 99.43 3.5 0.57

Overall 98.36 99.58 1.86 0.42

The results with respect to the evaluation image dataset obtained using other meth-

ods were also considered. In [16], the level set method was used to extract image fea-

tures, and a 42-bin histogram was constructed to represent information of connected

components; a 6.6% classification error rate was obtained. An error rate of 1.25% and

rejection rate of 1.94% were reported in [223], which also used a cascade classification

scheme, however our proposed method produces an error rate of 0.42% with a smaller

rejection rate of 1.86%.

With respect to the comparison of a variety of one-class classifiers, the classifiers

from Section 5.4.2 were used as the base classifiers for the ensemble of Stage 1. The

Receiver Operating Characteristics (ROC) curves obtained using different one-class

classifiers are shown in Fig. 5.13. The Areas Under the ROC curves (AUC), for the

compared classifiers, are listed in Table 5.7, the KPCA ensemble gives the best result.

5.4.4 Results on the 3D OCT Retinal Image Set

The 3D OCT retinal image contains 140 images, in which 68 are normal eyes and the

remainders are AMD (Age-related Macular Degeneration). To further evaluate the

proposed method on imbalanced data problem, in each run of the experiments, only 40

images in the normal class were randomly chosen for classifier training. As the images

are three-dimensional, following the work in [4], three types image features were used

for image description: Local Binary Patterns of Three Orthogonal Planes (LBP-TOP),

Local Phase Quantization (LPQ) and Multi-Scale Spatial Pyramid (MSSP).

Table 5.8 presents the classification results of KPCA models trained by individual

Table 5.6: Averaged confusion matrix with overall rejection rate 1.86% (%)
insitu normal invasive rejected

normal 99.50 0.14 0.36 0
insitu 0.37 98.33 1.30 1.5
invasive 1.26 1.17 97.57 3.5
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Figure 5.13: Receiver operating characteristics curves of different one-class classifiers
used as the base classifiers for the ensemble of stage 1.

Table 5.7: AUC of different one-class classifiers used as the base classifier for the
ensemble of stage 1.

Parzen SVDD PCA Kmeans MoG KPCA

AUC 94.30 93.61 94.19 94.28 93.67 99.53

features and the combined feature. From Table 5.8 one can see that by using the

proposed product combining rule in Eqn. (5.19), the classification accuracies of all the

image classes have been improved.

Table 5.8: Recognition rate (%) for the 3D OCT retinal image data from individual
KPCAs and the combined model.
Image Class LPQ LBP-TOP MSSP Original combining rule Proposed combining rule

Normal 86.20 88.45 85.56 78.83 91.30
AMD 86.50 87.69 85.83 74.67 90.22

Apply the reject option on the KPCA ensemble in stage 1, using the rejection

threshold selection rule in Eqn. 5.27, the classification performance of stage 1 on the

3D OCT retinal images can be seen in Table 5.9.

As for the second stage, we simply used the same rejection threshold for the biopsy

image set, under the rejection threshold 50, the performance of stage 2 on 3D OCT

retinal image set is listed in Table 5.10. The overall performance on the image set is

presented in Table 5.11.

The Receiver Operating Characteristics (ROC) curves obtained using different one-

class classifiers are shown in Fig. 5.14. For comparison, the results from a recent

publication [4] using the same 3D OCT dataset and the results of the proposed method
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Table 5.9: Best classification performance for the 3D OCT retinal image data for the
KPCA ensemble, where RR, RE, RejR and ER represent recognition rate, reliability,
rejection rate and error rate. TH represents the rejection threshold that produced the
results.

Image Class RR (%) RE (%) RejR (%) ER (%) TH

Normal 94.35 96.45 7.54 3.55 0.07
AMD 93.56 95.77 10.86 4.23 0.12

Table 5.10: Classification performance of stage 2 on the 3D OCT retinal image set.
Image Class RR (%) RE (%) RejR (%) ER (%) TH

Normal 93.24 94.36 13.68 5.64 50
AMD 92.11 93.15 16.66 6.85 50

are listed in Table 5.12.

5.5 Conclusion

In this chapter, a reliable classification scheme based on the serial fusion of a one-class

KPCA model ensemble together with a random subspace SVM ensemble has been

proposed for medical image classification. Rather than simply pursuing classification

accuracy, we emphasized the importance of a reject option in order to minimize the

cost of misclassifications so as to ensure high classification reliability. The proposed

two-stage method used a serial approach where the second classifier ensemble is only

responsible for the patterns rejected by the first classifier ensemble. The first stage

ensemble consists of one-class KPCA models trained using different image features

from each image class, while the second ensemble comprises SVMs. During classifier

generation, randomly sampled subsets of features, following the Random Subspace

procedure, were used. For both of the ensembles the reject option was implemented

using a confidence threshold.

The effectiveness of the proposed cascade classification scheme was verified using a

breast cancer biopsy image dataset and a 3D OCT retinal image set. The two-stage

ensemble cascade classification scheme obtained high classification accuracies and si-

multaneously guaranteed high classification reliabilities with small rejection rates. The

proposed cascade system obtained a 98.36% classification accuracy and a 99.58% clas-

sification reliability on the biopsy image set. Compared with the state-of-the-art result

Table 5.11: Overall classification performance on the 3D OCT retinal image set.
Image Class RR (%) RE (%) RejR (%) ER (%)

Normal 94.78 95.15 0.38 4.85
AMD 94.33 94.67 0.33 5.23

Overall 94.56 94.91 0.36 5.04
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Figure 5.14: Receiver operating characteristics curves for 3D OCT retinal image set
with different one-class classifiers used as the base classifiers for the ensemble of stage
1.

Table 5.12: AUC and classification accuracy comparison of 3D OCT retinal image set
results in [4] proposed method

AUC 94.40 95.33
Classification accuracy 91.50 94.56

on the same image set, the proposed method obtained a 4.66% improvement on the

classification accuracy. For the 3D OCT retina image set, a classification accuracy

of 94.40% was obtained using the proposed cascade method, which achieves a 2.9%

improvement compared to the published result. Moreover, the cascade architecture

provides a mechanism to balance between classification accuracy and rejection rate.

By adjusting the rejection threshold in each ensemble, the classification accuracy and

reliability of the system can be modulated to a certain degree according to the spec-

ification of specific applications. For example, medical diagnosis tasks usually require

high accuracy and reliability.

Although the proposed system has shown promising results with respect to the

biopsy image classification task, there are still some aspects that need to be further

investigated. The benchmark images used in this work were cropped from the original

biopsy scans and only cover the important areas of the scans. However, often it is

difficult to find Regions of Interest (ROIs) that contain the most important tissues in

biopsy scans, more effort therefore needs to be put into detecting ROIs from biopsy

images. In this work, the parameters for the cascade system, such as ensemble size and

rejection threshold, were decided empirically; this may not produce the most satisfac-

tory performance with respect to all application contexts. Therefore, some self-adaptive
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rules or algorithms for automatically optimizing these parameters would be desirable.
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Chapter 6

Conclusions and Future Work

In this thesis, the problem of biomedical image classification is investigated. The ran-

dom subspace method for classifier ensemble is used for combining different classifiers

trained by multiple image features. A new cascade classification scheme based on reject

option is developed to improve the classification accuracy and reliability for medical

image classification problems. In order to address the problem of imbalanced data

problem in many medical image diagnosis applications, a new ensemble of one-class

classifiers is developed, where the reject option is also included to construct a cascade

classifier. The classification schemes proposed in this thesis can be summarized as

follows:

• A random subspace ensemble of neural networks is proposed to classify microscope

images. Using a combination of three image descriptors, namely curvelet trans-

form, gray level co-occurrence matrix and completed local binary patterns, the

designed paradigm is well-suited to the characteristics of microscopic image data.

Experiments on the benchmark RNAi datasets showed that the random sub-

space MLP ensemble method achieved higher classification accuracies (∼ 87.1%).

Compared to the published result 82%, a 4.9% improvement on the classifica-

tion accuracy was obtained. The classification results of other three groups of

microscopy image data sets using random subspace MLP also support the effec-

tiveness of the proposed method. The random subspace MLP ensemble obtained

86.6% classification accuracy on the 2D Hela dataset, and 93.7% on the CHO

dataset, providing the improvements of 0.7% and 2.6% on the classification ac-

curacy, respectively. A classification accuracy of 95.22% was obtained from the

proposed ensemble method on the biopsy image sets, which obtains an 1.82%

improvement on the published result on the same image sets [113].

• A reliable classification scheme based on cascaded Random Subspace ensembles

has been proposed for the classification of microscopic biopsy images for breast

cancer diagnosis. Rather than simply pursuing classification accuracy, we em-

phasized the importance of a reject option in order to minimize the cost of mis-
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classifications so as to ensure high classification reliability. The proposed cascade

method used a serial approach where the second classifier ensemble is only re-

sponsible for the patterns rejected by the first classifier ensemble. The first stage

ensemble consists of binary SVMs, which were trained in parallel, while the sec-

ond ensemble comprises MLPs. During classification, the cascade of classifier

ensembles received randomly sampled subsets of features following the Random

Subspace procedure. For both of the ensembles the reject option was implemented

by relating the consensus degree from majority voting to a confidence measure

and abstaining to classify ambiguous samples if the consensus degree was lower

than the threshold.

The two-stage ensemble cascade classification scheme resulted in a high classi-

fication accuracy (99.25%) and simultaneously guaranteed a high classification

reliability (97.65%) with a small rejection rate (1.94%). We have observed a 5.6%

improvement on the classification accuracy compared with the best published re-

sult [16]. Moreover, the cascade architecture provides a mechanism to balance

between classification accuracy and rejection rate.

• A novel classification scheme based on the serial fusion of a one-class KPCA model

ensemble together with a random subspace SVM ensemble has been proposed

for medical image classification. The first stage ensemble consists of one-class

KPCA models trained using different image features from each image class, while

the second ensemble comprises SVMs. During ensemble construction, randomly

sampled subsets of features were used following the Random Subspace procedure.

For both of the ensembles the reject option was implemented using a confidence

threshold. The effectiveness of the proposed cascade classification scheme was

verified using a breast cancer biopsy image dataset and a 3D OCT retinal image

set. The proposed cascade system obtained a 98.36% classification accuracy and

a 99.58% classification reliability on the biopsy image set. Compared with the

state-of-the-art result on the same image set [16], the proposed method obtained a

4.66% improvement on the classification accuracy. For the 3D OCT retina image

set, a classification accuracy of 94.40% was obtained using the proposed cascade

method, which achieves a 2.9% improvement compared to the published result

[4].

To sum up, research effort has been taken on developing and implementing new

algorithms to solve the biomedical image classification problem, particularly for micro-

scope images. It has been verified from our experiments that using classifier ensem-

ble can improve the classification performance. The random subspace based ensem-

ble led to superior results over popular ensemble strategies. The proposed two-stage

classification schemes composed by different classifier ensembles further enhance the
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classification accuracy. The use of reject options in the cascade systems can simulta-

neously guarantee high accuracy and reliability of the classification. By investigating

the error-reject trade-offs, appropriate rejection thresholds were selected for different

classification tasks, this resulted in high classification accuracy and reliability under

small rejection rates.

Although the proposed methods achieved promising results with respect to the

classification of biomedical images, there are several aspects that can be further inves-

tigated:

• The benchmark images used in this work were cropped from the original biopsy

scans and only cover the important areas of the scans. However, often it is difficult

to find Regions of Interest (RoI) that contain the most important tissues in biopsy

scans. Therefor, more effort therefore needs to be put into detecting ROIs from

biopsy images.

• In this thesis, the parameters for the cascade system (e.g. ensemble size, rejec-

tion threshold) were decided empirically; this may not produce the most satis-

factory performance with respect to all application contexts. Therefore, some

self-adaptive rules or algorithms for automatically optimizing these parameters

would be desirable.

• The random subspace utilizes different feature subspaces to guarantee the diver-

sity of base classifiers in an ensemble. However, in the current work, the diversity

of the proposed systems were not theoretically investigated. In future research,

quantitative analysis of ensemble diversity and its effects on the classification

performance will be carried out.

• In this thesis, the classification reliability is a measurement for the whole clas-

sification systems obtained from all testing samples. However, the classification

reliability for a single sample is also important in medical applications, where

the accuracy of prediction for any individual patient is more important than the

global error of the classification model. In order to guarantee high reliability

for each individual sample, some dynamic ensemble generation methods can be

incorporated into current schemes to deal with ‘ambiguous’ samples. Another al-

ternative way is to use transductive inference classifiers [143] as the base classifiers

in the ensemble.
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Kovačev́ıc. Classification with reject option using contextual information. In

Proceedings of 2013 IEEE 10th International Symposium on Biomedical Imaging,

pages 1340–1343, 2013.

106



[36] Christophe Croux, Kristel Joossens, and Aurelie Lemmens. Trimmed bagging.

Computational Statistics & Data Analysis, 52(1):362–368, 2007.

[37] Zhang C.X. and Zhang J.S. A local boosting algorithm for solving classification

problems. Computational Statistics & Data Analysis, 52:1928–1941, 2008.

[38] Margineantu D. and Dietterich T. Pruning adaptive boosting. In Proceedings of

14th International Conference on Machine Learning, pages 211–218, 1997.

[39] Opitz D. and Shavlik J. Generating accurate and diverse members of neural

network ensemble. In Avances in neural information processing systems vol. 8,

pages 535–541. The MIT Press, Cambridge, 1996.

[40] Opitz D. and Maclin R. Popular ensemble methods: An empirical study. Journal

of Artificial Intelligence Research, pages 169–198, 1999.

[41] Jean-Romain Dalle, Wee Kheng Leow, Daniel Racoceanu, Adina Eunice Tutac,

and Thomas C. Putti. Automatic breast cancer grading of histopathological

images. In Proc. 30th Annual international IEEE EMBS conference, pages 3052–

3055. IEEE, 2008.

[42] I. Daubechies. Ten Lectures on Wavelets, page 137. SIAM, Philadelphia,PA,

1992.

[43] T. G. Dietterich. Ensemble methods in machine learning. in MCS’00: Proceedings

of the First International Workshop on Multiple Classifier Systems, pages 1–15,

2000.

[44] T.G. Dietterich and G. Bakiri. Solving multiclass learning problems via error-

correcting output codes. Journal of Artificial Intelligence Research, 2:263–286,

1995.

[45] S. Doyle, M. Hwang, K. Shah, A. Madabhushi, M. Feldman, and J. Tomaszeweski.

Automated grading of prostate cancer using architectural and textural image

features. In 4th IEEE International Symposium on Biomedical Imaging: From

Nano to Macro, pages 1284–1287, 2007.

[46] Scott Doyle, Michael Feldman, John Tomaszewski, and Anant Madabuhushi. A

boosted bayesian multiresolution classifier for prostate cancer detection from digi-

tized needle biopsies. IEEE Transactions on Biomedical Engineering, 59(5):1205–

1218, 2012.

[47] Scott Doyle, Michael Feldman, John Tomaszewski, Natalie Shih, and Anant Mad-

abhushi. Cascaded multi-class pairwise classifier (cascampa) for normal, cancer-

ous, and cancer confounder classes in prostate histology. In Proceedings of the

ISBI 2011, pages 715–718, 2011.

107



[48] Scott Doyle, Michael D Feldman, Natalie Shih, John Tomaszewki, and Anant

Madabhushi. Cascaded discrimination of normal, abnormal, and confounder

classes in histopathology: Gleason grading of prostate cancer. BMC Bioinfor-

matics, 13(282):1–15, 2012.

[49] M. Murat Dundar, Sunil Badve, Gokhan Bilgin, Vikas Raykar, Rohit Jain, Olcay

Sertel, and Metin N. Gurcan. Computerized image-based detection and grading

of lymphocytic infiltration in her2+ breast cancer histopathology. IEEE Trans-

actions on Biomedical Engineering, 58(7):1977–1984, 2011.

[50] Alpaydin E. and Kaynak C. Cascading classifiers. Kybernetika, 34:369–374, 1998.

[51] Schapire R. E. The strength of weak learnability. Machine Learning, 5(2):197–

227, 1990.

[52] Colm Elliott, Douglas L. Arnold, D. Louis Collins, and Tal Arbel. Temporally

consistent probabilistic detection of new multiple sclerosis lesions in brain mri.

IEEE Transactions on Medical Imaging, 32(8):1490–1503, 2013.

[53] T. Evgeniou, M. Pontil, and A. Elisseeff. Leave one out error, stability, and

generalization of voting combinations of classifiers. Machine Learning, 55:71–97,

2004.

[54] P. Foggia, C. Sansone, F. Tortorella, and M. Vento. Multiclassification: reject

criteria for the baysian combiner. Pattern Recognition, 32:1435–1447, 1999.

[55] Jerome Friedman, Trevor Hastie, and Robert Tibshirani. Additive logistic regres-

sion: a statistical view of boosting. Ann. Statist., 28 (2):337–407, 2000.

[56] G. Fumera. The advanced methods for pattern recognition with the reject option.

PhD thesis, University of Caliary, Caliary, Italy, 2002.

[57] Giorgio Fumera and Fabio Roli. Support vector machines with embedded reject

option. In Proceedings of the Int. Workshop on Pattern Recognition with Support

Vector Machines (SVM2002), Niagara Falls, pages 68–82. Springer, 2002.

[58] Giorgio Fumera and Fabio Roli. Analysis of error-reject trade-off in linear com-

bined multiple classifiers. Pattern Recognition, 37:1245–1265, 2004.

[59] Giorgio Fumera, Fabio Roli, and Giorgio Giacinto. Reject option with multiple

thresholds. Pattern Recogntion, 33:2099–2101, 2000.

[60] Giorgio Fumera, Fabio Roli, and Alessandra Serrau. A theoretical analysis of

bagging as a linear combination of classifiers. IEEE Transactions on Pattern

Analysis and Machine Intelligence, 30(7):1293–1299, 2008.

108
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Glenn Bauman, Aaron Fenster, and Aaron D. Ward. Prostate histopathology:

Learning tissue component histograms for cancer detection and classification.

IEEE Transactions on Medical Imaging, 32(10):1804–1818, 2013.

[67] Zhenhua Guo, Lei Zhang, and David Zhang. A completed modeling of local

binary pattern operator for texture classification. IEEE Transactions on Image

Processing, 19(6):1657–1663, 2010.

[68] Metin N. Gurcan, Laura E. Boucheron, Ali Can, Anant Madabhushi, Nasir M.

Rajpoot, and Bulent Yener. Histopathological Image Analysis: A Review. IEEE

Reviews in Biomedical Engineering, 2:147–171, 2009.

[69] Metin N. Gurcan, Laura E. Boucheron, Ali Can, Anant Madabhushi, Nasir M.

Rajpoot, and Bulent Yener. Histopathological image analysis: A review. IEEE

Reviews in Biomedical Engineering, 2:147–171, 2009.

[70] Wolpert D. H. Stacked generalization. Neural Networks, 5:241–259, 1992.

[71] Zhou Z. H., Wu J., and Tang W. Ensembling neural networks: many could be

better than all. Artificial Intelligence, 137:239–263, 2002.

[72] Mehdi Salkhordeh Haghighi, Abedin Vahedian, and Hadi Sadoghi Yazdi. Creating

and measuring diversity in multiple classifier systems using support vector data

description. Applied Soft Computing, 11:4931–4942, 2011.

[73] P. Han, X. Zhang, R.S. Norton, and Z.P. Feng. Large-scale prediction of long dis-

ordered regions in proteins using random forests. BMC Bioinformatics, 10(8):1–9,

2009.

109



[74] Blaise Hanczar and Edward R. Dougherty. Classification with reject option in

gene expression data. Bioinformatics, 24(17):1889–1895, 2010.

[75] H. Hao, C.-L. Liu, and H. Sako. Confidence evaluation for combining diverse clas-

sifiers. In Proceedings of Seventh International Conference on Document Analysis

and Recognition, pages 760–764. IEEE Computer Society, 2003.

[76] R. M. Haralick, K. Shanmugam, and I. Dinstein. Textural Features for Image

Classification. IEEE Trans. Systems, Man and Cybernetics, 3(6):610–621, 1973.

[77] S. Haykin. An Introduction to Neural Networks-A Comprehensive Foundation,

2nd Edition. Prentice-Hall, Upper Saddle River, NJ, 1999.

[78] T. K. Ho. The random subspace method for constructing decision forests. IEEE

Transactions on Pattern Analysis and Machine Intelligence, 20(8):832–844, 1998.

[79] Heiko Hoffmann. Kernel pca for novelty detection. Pattern Recognition, 40:863–

874, 2007.

[80] H. Gholam Hosseini, K. J. Reynolds, and D. Powers. A multi-stage neural network

classifier for ecg events. In Proceedings of the 23rd Annual EMBS International

Conference, pages 1672–1675, 2001.

[81] Yanhua Hu, Jesus Carmona, and Robert F. Murphy. Application of temporal

texture features to automated analysis of protein subcellualr locations in time

serie fluorescene images. In Proceedings of the ISBI 2006, pages 1028–1031, 2006.

[82] Yanhua Hu, Elvira Osuna-Highley, Juchang Hua, Theodore Scott Nowicki,

Robert Stolz, Camille McKayle, and Robert F. Murphy. Automated analysis of

protein subcellular location in time series images. Bioinformatics, 26(13):1630–

1636, 2010.

[83] Chao-Hui Huang, Antoine Veillard, Ludovic Roux, Nocolas Loménie, and Daniel

Rcoceanu. Time-efficient sparse analysis of histopathological while slide images.

Preprint (2010) dio:10.1016/j.compmedimag.2010.11.009, 2010.

[84] Wang J., Zhou X., Bradley P.L., Chang S.F., Perrimon N., and Wong S.T.C. Cel-

lular phenotype recognition for high-content rna interference genome-wide screen-

ing. Journal of Biomolecular Screening, 13:29–39, 2008.

[85] Kourosh Jafari-Khouzani and Hamid Soltanian-Zadeh. Multiwavelet grading of

pathological images of prostate. IEEE Transactions on Biomedical Engineering,

50(6):697–704, 2003.

110



[86] Anil K. Jain, Robert P. W. Duin, and Jianchang Mao. Statistical pattern recogni-

tion: A review. IEEE Transactions on Pattern Analysis and Machine Intelligence,

22(1):4–37, 2000.

[87] Clemens JC., Worby CA., Simonson-Leff N., Muda M., Maehama T., Hemmings

BA., and Dixon JE. Use of double-stranded rna interference in drosophila cell

lines to dissect signal transduction pathways. Proceedings of the Natural Academy

of Sciences, 97:6499–6503, 2000.

[88] Yarrow J.C., Feng Y., Perlman Z.E., Kirchhausen T., and Mitchison T.J. Phe-

notypic screening of small molecule libraries by high throughput cell imaging.

Combinatorial Chemistry & High Throughput Screening, 6:279–286, 2003.

[89] Shi jin Wang, Avin Mathew, Yan Chen, Li feng Xi, Lin Ma, and Jay Lee. Empir-

ical analysis of support vector machine ensemble classifiers. Expert Systems and

Applications, 36:6466–6476, 2009.

[90] Chan P. K. and Stolfo S. J. A comparative evaluation of voting and meta-

learning on partitioned data. In Proceedings of the 12th International Conference

on Machine Learning, pages 90–98. Morgan Kaufumann, 1995.

[91] Chan P. K. and Stolfo S. J. On the accuracy of meta-learning for scalable data

mining. Journal of Intelligent Information Systems, 8:5–28, 1997.

[92] Huang K. and Murphy RF. Automated classification of subcellular patterns in

multicell images without segmentation into single cells. In Proceedings of the ISBI

2004, pages 1139–1142, 2004.

[93] Huang K. and Murphy RF. Boosting accuracy of automated classification of

fluorescence microscope images for location proteomics. BMC Bioinformatics,

5(78):1–19, 2004.

[94] Maya Kallas, Paul Honeine, Cédric Richard, Clovis Francis, and Hassan Amoud.

Non-negativity constraints on the pre-image for pattern recognition with kernel

machines. Pattern Recognition, 46:3066–3080, 2013.

[95] Cenk Kaynak and Ethem Alpaydin. Multistage cascading of multiple classifiers:

one man’s noise is another man’s data. Proceedings of ICML 2000, pages 455–462,

2000.

[96] Shehroz S. Khan and Michael G. Madden. A survey of recent trends in one class

classification. In Lorcan Coyle and Jill Freyne, editors, Artificial Intelligence

and Cognitive Science, volume 6206 of Lecture Notes in Computer Science, pages

188–197. Springer Berlin Heidelberg, 2010.

111



[97] H.-C. Kim, S. Pang, H.-M. Je, D. Kim, and S. Y. Bang. Pattern classification

using support vector machine ensemble. Proceedings of the 16th International

Conference on Pattern Recognition, 2:160–163, 2002.

[98] Young-Won Kim and Il-Seok Oh. Classifier ensemble selection using hybrid ge-

netic algorithms. Pattern Recognition Letters, 29:796–802, 2008.

[99] Josef Kittler, Mohamad Hatef, Robert P.W. Duin, and Jiri Matas. On combining

classifiers. IEEE Transactions on Pattern Analysis and Machine Intelligence,

20(3):226–239, 1998.

[100] Albert H.R. Ko, Robert Sabourin, and Alceu Souza Britto Jr. From dynamic

classi?er selection to dynamic ensemble selection. Pattern Recognition, 41:1718–

1731, 2008.

[101] Sonal Kothari, John H Phan, Andrew N Young, and May D Wang. Histological

image classification using biological interpretable shape-based features. BMC

Medical Imaging, 13(9):1–16, 2013.

[102] Bartosz Krawczyk. Diversity in ensembles for one-class classification. In Mykola

Pechenizkiy and Marek Wojciechowski, editors, Advances in Intelligent Systems

and Computing, volume 185 of New Trends in Databases and Information Sys-

tems, pages 119–129. Springer Berlin Heidelberg, 2013.

[103] M. Muthu Rama Krishnan, Vikram Venkatraghavan, U. Rajendra Acharya,

Mousumi Pal, Ranjan Rashmi Paul, Lim Choo Min, Ajoy Kumar Ray, Jyotir-

moy Chatterjee, and Chandan Chakraborty. Automated oral cancer identifica-

tion using histopathological images: a hybrid feature extraction paradigm. BMC

Bioinformatics, 13(282):1–15, 2012.

[104] L. Kuncheva and L. C. Jain. Designing classifier fusion systems by genetic algo-

rithms. IEEE Transactions on Evolutionary Computation, 4(4):327–336, 2000.

[105] L. I. Kuncheva, J. Bezdek, and R. Duin. Decision templates for multiple classifier

fusion: an experimental comparison. Pattern Recognition, 34:299–314, 2001.
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