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Abstract 
 

Myofibroblasts are recognised to play an important role in wound healing and the 

maintenance of tissue integrity. In addition, they are increasingly recognised to 

provide a supporting microenvironment for cancer cells. They secrete a variety of 

chemokines, cytokines, growth factors and proteases that collectively regulate cell 

proliferation, migration and invasion. Specific chemokines are known to recruit 

mesenchymal stromal cells (MSCs) to both tumours and normal tissue which may 

then give rise to myofibroblasts. Proteomic studies by Holmberg and Varro 

(unpublished observations) identified chemerin as an upregulated chemokine in 

conditioned media (CM) from oesophageal cancer associated myofibroblasts 

(CAMs) compared to adjacent tissue myofibroblasts (ATMs). Chemerin is potent 

chemo-attractant for immune and inflammatory cells. The objectives of this thesis 

were (a) to functionally characterise the oesophageal myofibroblasts,(b) validate 

the findings of previous proteomic studies and (c) determine  the role of chemerin 

in MSC migration. 

Oesophageal CAMs from both squamous and adenocarcinoma tumours were 

shown to be more proliferative than their paired ATMs, or normal tissue 

myofibroblasts (NTMs). In addition, CAM conditioned media increased the 

proliferation and migration of two oesophageal cancer cell lines (OE21 and OE33) 

and stimulated MSC migration compared to ATM CM.  The data suggest 

oesophageal CAMs promote an aggressive tumour microenvironment. 

Western blotting and ELISA confirmed increased chemerin secretion by squamous 

carcinoma CAMs. Chemerin and conditioned media from squamous carcinoma 

CAMs, stimulated MSC and OE21 cell migration; Chemerin neutralizing antibody 

reversed these effects and siRNA knockdown of chemerin in CAMs, or of its 

cognate receptor ChemR23 in MSCs, decreased migratory responses. Studies 



xviii 
 

using pharmacological inhibitors or Western blot of cellular proteins indicated that 

chemerin stimulated MSCs via PKC, and p42/44, p38 MAP and JNK kinases.  

Macrophage Inhibitory Factor (MIF) was identified as a putative chemerin target in 

MSCs and validated by ELISA and Western blot of MSC media and cell extracts. 

MIF inhibited MSC migration in response to low or moderate concentrations of 

chemerin, indicating that it might restrain MSC migration in normal tissues but not 

in cancers where chemerin is elevated. 

Finally, confirmation of chemerin-chemR23 interactions was obtained using a 

chemR23 antagonist, CCX832. Chemerin induced MSC and OE21 cell migration 

was inhibited by CCX832. Moreover, transendothelial migration of MSCs in 

response to chemerin or CAM conditioned media was reversed by CCX832. 

Transendothelial migration was also shown to depend on chemerin-stimulated 

MMP-2 secretion. These findings indicate a molecular mechanism by which MSCs 

are recruited to tumours.  

Taken as a whole, this work indicates that myofibroblasts derived from 

oesophageal cancers differ from those in adjacent or normal tissue. The finding of 

increased chemerin in these cells is novel and may be relevant to MSC 

recruitment. Since it is possible to inhibit the effects of chemerin on MSCs using 

CCX832, there is the potential for a novel therapeutic approach to prevent cancer 

progression. 
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1.1 Overview 

In multicellular organisms there are evolutionary advantages conferred by the 

differentiation of cells into different types with specialised functions. Coordinated 

cell-cell interactions then become vital in maintaining the organisation and 

function of tissues containing multiple cells types, both in development and in 

tissue repair. In the gastrointestinal tract, for example, interactions between 

epithelial cells and stromal cells control cell proliferation, differentiation and 

apoptosis. These interactions are disrupted in a variety of diseases including 

inflammatory conditions and, most strikingly, in cancer. Since inflammation is 

recognised as a driver of cancer progression (Balkwill and Mantovani 2001) there 

has been a growing appreciation of the role that cellular microenvironments play 

in carcinogenesis. In particular work by several groups over the last decades has 

led to the idea of a specific niche that determines the fate of mutated cancer cells 

(Bissell, Radisky et al. 2002) and is one of the  hallmarks of cancer (Hanahan and 

Weinberg 2011) as well as being a potential target for therapy (Hainaut and 

Plymoth 2013).  

Amongst the various cells contributing to the tumour niche, myofibroblasts have 

been highlighted by many studies. These cells normally play an important role in 

the maintenance of tissue architecture and wound healing (Roland 1976; 

Tomasek, Gabbiani et al. 2002; Radisky, Kenny et al. 2007; Klingberg, Hinz et al. 

2013). They are a rich source of growth factors, cytokines, chemokines, 

extracellular matrix (ECM) proteins, proteases and their inhibitors (Powell, Mifflin 

et al. 1999a). Disrupted autocrine and paracrine signalling by myofibroblasts 

influences cancer cell proliferation, metastasis, infiltration of immune cells and 

recruitment of mesenchymal stromal cells (MSCs) (Powell, Mifflin et al. 1999a; 

Direkze, Hodivala-Dilke et al. 2004). The latter are of interest because they are 
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thought to be myofibroblast progenitors and as well as potentially exerting other 

effects that determine tumour progression (Klopp, Gupta et al. 2011). 

In spite of recent progress, the functional role of myofibroblasts in many cancers, 

including those of the oesophagus, is not well understood. In this thesis, the 

overall aim was to investigate novel signalling pathways that are altered in 

cancer-derived myofibroblasts and their influence on other cell types including 

cancer cells and the recruitment of MSCs. 

  

1.2 The Organisation of the Gastrointestinal Tract 

1.2.1 The basic pattern of organisation 

The wall of the gastrointestinal tract is divided into layers: i) there is an outer 

muscle layer and ii) within this a mucosal layer consisting of epithelial cells that 

continuously line the luminal surface and an underlying stromal layer, the lamina 

propria consisting of blood vessels, ECM, lymphatics, inflammatory and immune 

cells, fibroblasts and myofibroblasts (Wu, Jackson et al. 1999). One of the ECM 

components, basement membrane, provides the anchorage for epithelial cells. 

Between these two layers, there is a submucosal layer of connective tissue 

(Streuli, Bailey et al. 1991). Nerve plexuses are found between the circular and 

longitudinal muscle (myenteric plexus) and in the submucosa (submucosal 

plexus). There are marked differences in mucosal organisation in different regions 

of the gut; the present studies focus on the upper gastrointestinal tract. 
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1.2.2 Oesophagus 

The mucosal organisation of the oesophagus is relatively simple compared with 

many other regions of the gut. In particular, the lining consists of squamous type 

stratified epithelial cells that lack absorptive and secretory functions. The 

oesophageal submucosa includes seromucous glands. This pattern of 

organisation is changed dramatically in preneoplastic conditions e.g. Barrett’s 

oesophagus.  

 

1.2.3 Stomach  

In the stomach, the epithelium is folded into gastric glands that are of two main 

types: in the body of stomach there are corpus or acid-secreting gastric glands 

while distally there are pyloric antral glands that do not release acid but do 

contain G-cells releasing the hormone gastrin.  Mucus-secreting surface epithelial 

cells that have a protective role are found in both cases, as are pepsinogen-

secreting chief cells. Acid is released by parietal cells in corpus glands in 

response to histamine secreted by enterochromaffin-like (ECL) cells. The latter 

are stimulated by gastrin released from antral G-cells.  Other endocrine cells 

include D-cells producing somatostatin in both regions of the stomach, and X-

cells producing ghrelin in the corpus. 

 

The maintenance of glandular organisation is achieved by cellular proliferation 

and differentiation, and the migration of differentiating cells to their final 

destination. In the corpus, proliferating cells occur in the isthmus region that also 

includes pluripotent gastric stem cells (Figure 1.1). The precursor cells exhibit bi-

directional movement from this region towards the surface or towards the base of 

the glands (Barker, Huch et al. 2010). Cells moving up to the pit region 
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differentiate into mucus-secreting cells, whereas cells migrating in the opposite 

direction differentiate into pepsinogen cells, parietal cells, or endocrine cells 

(Yang, Tsuyama et al. 1997; Karam 1999). Epithelial cell populations survive for 

varying periods of time: mucus cells are reproduced every 2-6 days compared 

with >3 weeks for parietal and chief cells (Karam 1993; Kirton, Wang et al. 2002). 

There is a tight network of myofibroblasts around the gastric glands that are 

thought to determine organisation and function of the epithelial cells. 
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Figure.1.1     Gastric gland cell organisations. 
Diagrammatic representation of different cell types: proliferating cells, mucous neck 
cells, parietal cells, ECL cells and chief cells. The bi- directional migration of cells 
leaving the cell-cycle occurs from isthmus region to gastric pits and to the fundus 
region generating the differentiated cell types. 

 

 

1.3 Tissue Remodelling and Repair 

The events that characterise wound healing in the gut include (a) restitution and 

haemostasis after tissue damage, (b) inflammation, (c) neo-vascularisation and 
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re-epithelisation and (d) resolution or tissue remodelling (Shaw and Martin 2009).  

In some tissues e.g. liver and pancreas there are stellate cells which resemble 

myofibroblasts but in general myofibroblasts are sparse in healthy tissue (Omary, 

Lugea et al. 2007). In the gastrointestinal tract, however, myofibroblasts are 

normally relatively abundant and their numbers increase still further in wound 

healing. 

 

1.3.1 Restitution and Haemostasis: Blood Platelets and Fibrin   

Restitution is an epithelial migratory response to superficial damage in the gut by 

which a protective layer of epithelial cells forms over exposed basement 

membrane. This is characterised by initial epithelial cell migration about 30 

minutes after tissue damage and does not involve proliferation (Lacy and Ito 

1984).  The initial step in healing upon more substantial damage is formation of a 

blood clot and platelet aggregation. In conjunction with blood clotting factors, 

anaphylatoxin, C3a and C5a in the matrix (Ghebrehiwet, Silverberg et al. 1981) 

aggregate platelets  on fibrin  (Clark 2001). In damaged tissue, fibrin forms a 

provisional ECM (Clark, Lanigan et al. 1982; Clark 2001) that embeds platelets 

which are an early source of growth factors and chemokines e.g. platelet derived 

growth factor (PDGF) and monocyte chemotactic protein-1 (MCP-1) required to 

further drive coordinated wound healing (Gawaz, Neumann et al. 1998; Kim, 

Gittes et al. 1998). 

 

1.3.2 Inflammation: Infiltration of inflammatory cells 

Inflammatory cells/leucocytes including macrophages, neutrophils, natural killer 

cells and eosinophils circulate in largely undifferentiated forms that are recruited 

to damaged tissue. The release of anaphylatoxins and histamine from mast cells 
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act as vasodilators (Fernandez, Henson et al. 1978). This facilitates successful 

infiltration of inflammatory cells in response to growth factors such as PDGF and 

MCP-1 (Deuel, Senior et al. 1982; Gross, Leavell et al. 1997; Gawaz, Neumann 

et al. 1998). The first to migrate into wounds are neutrophils which release matrix 

degrading enzymes such as collagenase (matrix metalloproteinase-8, MMP-8) 

(Nwomeh, Liang et al. 1999; Dovi, Szpaderska et al. 2004) and shield against 

further infection as well as removing dead cells via phagocytosis. 

 

Monocytes infiltrate the tissue microenvironment and differentiate into 

macrophages in response to TGF-β (Turley, Falk et al. 1996). Resident 

macrophages act as anti-inflammatory agents by phagocytosing microbes and 

secreting IL-10 (Monteleone, Platt et al. 2008). The modification of ECM by 

macrophage-secreted proteins including MMPs and plasmin also provokes the 

activation and release of ECM-stored angiogenic factors e.g. vascular endothelial 

growth factor (VEGF), PDGF and TGF- β (Cordon-Cardo, Vlodavsky et al. 1990).  

 

1.3.3 Proliferation: Vascularisation and Re-epithelialisation 

1.3.3.1 Vascularisation  

Neoangiogenesis is required to meet the oxygen requirements of healing tissues. 

Oxygen stress induces the transcription factor, hypoxia inducible factor (HIF) in 

endothelial cells which enhances the expression of VEGF (Gerber, Condorelli et 

al. 1997). Fibroblast growth factor (FGF) (Gospodarowicz, Bialecki et al. 1978) 

and endothelial cell growth factors (ECGF) (Maciag, Cerundolo et al. 1979) also 

increase the proliferation of endothelial cells. In addition, other growth factors e.g. 

FGF-2, insulin growth factor (IGF)-I and IGF-II also support neoangiogenesis 

(Chang, Garcia-Cardena et al. 2004; Bjorndahl, Cao et al. 2005). Increased 
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endothelial cell proliferation is followed by initiation of collagen deposition 

(Prockop, Kivirikko et al. 1979). 

 

1.3.3.2 Re-epithelialisation 

Re-epithelisation is the process of epithelial cell proliferation and migration in 

damaged tissue. In gastric inflammation, macrophage or platelet derived TGF-β 

stimulates interleukin-1β (IL-1β), interferon-γ (IFN- γ) and EGF expression which 

promote epithelial cell proliferation (Dignass and Podolsky 1993). The increased 

expression of integrin (Gailit, Welch et al. 1994) and IGF-I, EGF and FGF 

facilitates cell adhesion and pro-migratory roles in re-epithelialisation (Giancotti 

and Ruoslahti 1999; Eslami, Gallant-Behm et al. 2009).  

 

1.3.4 Matrix Deposition and Tissue Remodelling  

The concluding event in wound healing involves scar maturation and crosslinking 

of collagen fibrils. Simultaneously, there is removal of blood clots, inhibition of 

platelet driven signalling events and remodelling of tissue architecture.  

 

1.3.4.1 Fibroblasts 

In the final stages, mechanical force is required for closure of wounds and matrix 

deposition. The vital cell types in this process are derived from fibroblast lineages. 

Fibroblasts are activated in response to TGF- to become “activated fibroblasts” 

also called myofibroblasts. The expression of α-smooth muscle actin (α-SMA) and 

other actin filaments in myofibroblasts provides the capacity for contractile tension 

for wound closure (Hinz 2007). These cells are also an important source of ECM 

proteins e.g. collagens. In addition, they secrete proteases such as MMPs to 

maintain a balance in ECM deposition and degradation (Hinz 2007).  
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1.3.4.2 ECM Proteins 

The adhesion of infiltrated cells occurs via integrin receptors and interactions with 

fibronectin, collagen, vitronectin or other ECM molecules (Schwartz, Schaller et 

al. 1995). Adhesion, migration and proliferation are mediated by increased 

expression of integrin and fibronectin in tissue repair (George, Georges-

Labouesse et al. 1993; Wijelath, Murray et al. 2002). In tissue remodelling all 

types of collagen contribute to tissue strength and elasticity. The intestinal 

submucosa demands elasticity and is predominantly constituted of Type III and V 

collagen (Graham, Diegelmann et al. 1988).  However, fibrous collagens, type I 

and type IV, are the primary structural unit in ECM and basement membrane, 

respectively, of all tissues (Timpl, Wiedemann et al. 1981; Prockop and Kivirikko 

1995). Other vital players in the ECM are glycosaminoglycans (GAG) e.g. 

hyaluronan (Chen and Abatangelo 1999; Trabucchi, Pallotta et al. 2002). In 

addition, other GAG molecules e.g. heparin sulphate regulates cell proliferation 

and angiogenesis (Andres, DeFalcis et al. 1992; Iozzo 1998). Proteolytic 

cleavage of sydencan, laminin and elastin releases bioactive fragments known as 

matrikines (Maquart, Bellon et al. 2005). They are equally important in 

proliferation, adhesion and signalling in completion of  wound repair (Adair-Kirk 

and Senior 2008). 

 

1.3.5 Failure in Tissue Remodelling and Repair 

Failure of the normal wound healing processes to restore tissue architecture may 

lead to the development of conditions such as fibrosis and chronic inflammation.  

1.3.5.1 Fibrosis 

Fibrosis is the result of excessive deposition of ECM proteins often with loss of 

some resident cell types, but increased numbers of myofibroblasts and related 
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cells. Early in wound healing, fibrin and other scar matrix proteins provide a 

favourable scaffold for adhesion, migration and proliferation of cells. However, 

subsequent inefficient removal of fibrin, and further matrix protein deposition, 

leads to fibrosis (Olman, Mackman et al. 1995). The role of plasminogen activator 

inhibitor-1 (PAI-1), for example, is well studied in this case. Thus PAI-1 is an 

inhibitor of tissue plasminogen activator (tPA) and urokinase-type plasminogen 

activator (uPA). Plasmin abundance is regulated by uPA which determines the 

degradation of fibrin and ECM proteins; these enzymes also play a role in 

activating MMPs (Madlener, Parks et al. 1998). The mouse bleomycin induced-

lung fibrosis model illustrates some of the relevant issues: in bleomycin-treated 

mice there is upregulation of TGF-β and procollagen I and III (Gurujeyalakshmi 

and Giri 1995); TGF-β enhances PAI-1 expression (Kutz, Hordines et al. 2001; 

Vayalil, Olman et al. 2005) and PAI-1 in turn contributes to pulmonary fibrosis by 

inhibiting proteases that degrade ECM proteins (Olman, Mackman et al. 1995). 

Similar evidence is available for other systems including liver and kidney fibrosis, 

but less is understood of the stomach. Even so, however, there is evidence of 

increased PAI-1 in epithelial cells in conditions associated with atrophy e.g 

H.pylori infection (Kenny, Duval et al. 2008). Interestingly, in some clinical 

situations fibrosis might develop from cancer cell-secreted growth factors. For 

example, the fibrosis of the peritoneum in scirrhous gastric cancer (Yashiro, 

Chung et al. 1996) is characterised by extensive growth of fibroblasts possibly 

due to TGF-β1 secretion from scirrhous gastric cancer cells (Mahara, Kato et al. 

1994).  
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1.3.5.2 Chronic Inflammation 

One characteristic of chronic inflammation is the continuous reiteration of 

inflammation steps in wound healing. An excess of cytokines and MMP’s due to 

continuous infiltration of inflammatory cells causes increased degradation of ECM 

(Wysocki, Staiano-Coico et al. 1993; Widgerow 2011). Proteases also cleave 

laminin and elastin triggering further inflammatory responses (Adair-Kirk and 

Senior 2008; He, Turino et al. 2010). These phenomena cause repetition of repair 

events (Adair-Kirk and Senior 2008; He, Turino et al. 2010) resulting in deformed 

tissue architecture, a loose bed of ECM proteins, damaged basement membrane 

and infiltrated macrophages and fibroblasts or resident activated myofibroblasts. 

Chronic inflammation leads to a state in which wounds never heal and 

predisposes to cancer (Figure 1.2). 

 

1.4 Chronic inflammation in the gastrointestinal tract 

The gastrointestinal tract is normally exposed to many different potentially 

damaging agents including acid, ingested toxins, resident and ingested 

microbiota. In the upper gastrointestinal tract, failure of the normal protective 

mechanisms is a feature of several common conditions including pathology 

associated with gastric infection with H.pylori, and reflux of gastroduodenal 

contents into the oesophagus. In both cases chronic inflammation is associated 

with increased risk of cancer. 
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Figure 1.2     Changes in tissue intergrity and microenvironment components. 
Schematic representation of changes in epithelial cell organisation and cellular 

microenvironments A. in normal tissue, B. inflammed and C. in cancer. The loss of 

basement memebrane and increased stromal cell population, particulary 

myofibroblasts, contributes to the development of cancer on a background on chronic 

inflammation. 

 
 

1.4.1 Chronic Inflammation and Gastric cancer 

H.pylori infection is associated with chronic gastritis (Fox and Wang 2007). The 

cascade of events initiated by H. pylori in the stomach triggers immune responses 

involving secretion of cytokines and chemokines (Bodger and Crabtree 1998). 

Subsequently infiltration of neutrophils and monocytes enhances the secretion of 

proinflammatory cytokines like TNF-α and chemokines from epithelial cells 

(Bodger and Crabtree 1998). In some patients this leads to chronic inflammation 

that is associated with a sequence of pre-neoplastic changes including atrophy, 

metaplasia and dysplasia (Correa, Piazuelo et al. 2010). In other patients there is 
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an increased risk of duodenal ulcer (McColl 2012). It seems that antrum-

predominant infection leads to increased acid secretion by parietal cells which are 

associated with duodenal ulcer. In contrast, infection in the antrum and the corpus 

is associated with development of the pre-neoplastic progression leading to 

gastric cancer (Fox and Wang 2007). There is also some evidence of increased 

fibrosis in atrophy (Truong, Farhood et al. 1992; Kang, Hughes et al. 2001).  

 

1.4.2 Barrett’s oesophagus  

Barrett’s oesophagus results from persistent gastro-oesophageal reflux (GORD) 

by which the oesophagus is continuously exposed to gastric acid and bile salts 

(Souza, Krishnan et al. 2008). The resulting chronic inflammation can lead in 

some patients to a transition from squamous to columnar epithelia characterised 

by the presence of increased goblet cells i.e. intestinal metaplasia, and known as 

Barrett’s oesophagus (Naef, Savary et al. 1975; Nicholson, Graham et al. 2012). 

The condition is important because it may lead to oesophageal adenocarcinoma 

(AC). Interestingly, infection of the gastric corpus with H. pylori may decrease acid 

secretion and mitigate the effects of gastric acid reflux thereby decreasing the risk 

for developing Barrett’s oesophagus (Chow, Blaser et al. 1998).  

 

1.4.3 Oesophagitis and Oesophageal Squamous Cell Carcinoma 

Other states of oesophageal inflammation are recognised including excess 

eosinophil infiltration. Eosinophil oesophagitis is defined as an increase in 

eosinophils ( >20 /high power field) (Rothenberg, Mishra et al. 2001) in the mid 

and upper oesophagus (Noffsinger 2009). The condition may progress to involve 

basal cell hyperplasia (BCH), with >15% epithelial thickness and extended lamina 
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propria papillae, leading to squamous dysplasia and squamous carcinoma of the 

oesophagus (Wang, Abnet et al. 2005). 

 

1.5 Cancer  

Modern theories of oncogenesis are based on observations that go back well over 

a century. The “Tissue Organisation Field Theory” (TOFT) of cancer development 

(Soto and Sonnenschein 2011) originated with Franz Boll in 1876 who considered 

cancer to be a self-sustaining entity with enhanced cellular proliferation (Garrison 

1926). The concept of “false embryo” was put forward by Thiersch, Cohnheim in 

1876, i.e. displaced embryonic rest, by which a portion of undifferentiated 

embryonic cells in adult tissue initiate cancer; this was later also called the theory 

of “displaced embryonic cell in space and time” (Garrison 1926).  Modern ideas 

are based on the observation of genetic and somatic mutations in epithelial cells 

determining the cancer phenotype (Knudson 2001).  

 
Over the last decade or so, however, it has become clear that genetic changes in 

cancer cells do not, alone, account for cancer progression. Instead there are 

important tumour-promoting changes in the microenvironment. The term niche is 

sometimes used to define the combination of stromal cells such as myofibroblasts 

and ECM proteins that together interact with cancer cells to provide the conditions 

for tumour growth (Hanahan and Weinberg 2000; Coussens and Werb 2002; 

Hanahan and Weinberg 2011).  

 

1.5.1 Cancer Niche 

The idea of a cancer-promoting microenvironment is an extension of an old 

question which is “why do certain organs support cancer metastasis?” i.e. provide 

an appropriate microenvironment that nurtures cancer cells. The question was 
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posed by Stephen Paget in 1889, who suggested the “seed (cancer) and soil 

(microenvironment)” theory of cancer progression. Later, the idea of a cancer- 

specialised niche emerged that sustains mutated epithelial cell capacities for 

tumorigenicity (Weaver, Fischer et al. 1996; Bissell 2007). 

 
The cancer niche depends on stromal cells that include resident and inwardly 

migrating non-malignant cells. The non-malignant cells can be from local or 

healthy neighbouring tissue, e.g. myofibroblasts, or can migrate in from distant 

source e.g. MSCs and inflammatory cells (Wels, Kaplan et al. 2008). A reactive 

stroma encourages tumour growth through multiple mechanisms. For instance, 

extensive neo-vascularisation results from enhanced endothelial cell proliferation. 

In such cases upregulation of MT1-MMP and VEGF in stromal cells have been 

identified (Sounni, Janssen et al. 2003). In addition, vascularisation facilitates 

metastasis, i.e. cancer cell migration and invasion of other tissues. Abnormal 

basement membrane facilitates the motility of cancer cells in solid tumours of the 

gut (Ozzello 1959; Li, Chen et al. 2001). This includes basement membrane 

degradation and imbalances between collagen deposition, hyaluoran GAGs, 

laminin, vitronectin and fibronectin (Noble, McKee et al. 1996; Kalluri 2003).  

 
However, in addition to interactions with ECM proteins, various stromal cells in 

the niche determine cancer cell proliferation, survival and metastatic properties 

(Weaver, Petersen et al. 1997). Stromal cells progressively increase in cancer 

either by inward migration or transdifferentiation from other cells as well as by 

proliferation. For example, in response to signalling molecules such as TGF-β, 

fibroblasts and infiltrated monocytes differentiate to myofibroblasts and 

macrophages, respectively (Roberts and Sporn 1993). In addition, recruitment of 

bone marrow derived MSCs to tumour sites is increasingly recognised (Kidd, 
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Spaeth et al. 2009). These pluripotent cells infiltrate in response to multiple 

signalling molecules including chemokines, VEGF and IL-10 (Serafini, Borrello et 

al. 2006); they may differentiate into various stromal cells including myofibroblasts 

(Spaeth, Dembinski et al. 2009; Quante, Tu et al. 2011). In addition they have 

their own signalling systems that influence the microenvironment and cancer cell 

function (Whiteside 2008). 

 

1.6 Myofibroblasts  

Myofibroblasts are activated fibroblasts; they are dynamic, spindle-like cells 

sharing the functional characteristics of both fibrocytes and smooth muscle cells 

(Hinz, Phan et al. 2007). They are rare in most tissues, but in the gastrointestinal 

tract they are relatively abundant where they are localized in a subepithelial 

compartment (in the lamina propria mucosae). Myofibroblasts express alpha-

smooth muscle actin (α-SMA) and vimentin, which are specific histopathological 

markers of these cells. A variety of different origins of these cells has been 

discussed (Figure. 1.3), including (a) rapid stimulation of local fibroblasts to 

differentiate into myofibroblasts (Serini, Bochaton-Piallat et al. 1998), (b) epithelial 

cell transdifferentiation into myofibroblasts via epithelial mesenchymal transition 

(EMT) (Radisky, Kenny et al. 2007), (c) local or bone-marrow-derived 

mesenchymal stem cells transformation into myofibroblasts (Spaeth, Dembinski 

et al. 2009; Quante, Tu et al. 2011). 

The dynamic secretory profile of myofibroblasts includes growth factors, MMPs, 

and tissue inhibitor of metalloproteinase (TIMPs) that regulate tissue remodelling 

and influence cancer progression (Figure 1.3).  In case of H. pylori gastritis, 

gastric epithelial cells secrete matrix metalloproteinase-7 which cleaves insulin-

like growth factor binding protein-5 (IGFBP-5) secreted by myofibroblasts leading 
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to release of IGF-II which stimulates both epithelial and myofibroblast proliferation 

(McCaig, Duval et al. 2006).  In breast cancer, stromal derived factor-1 (SDF-1), 

HIF-1 and VEGF are highly expressed by CAMs and promote cancer cell 

proliferation and angiogenesis (Orimo, Tomioka et al. 2001; Orimo, Gupta et al. 

2005).  The profound effect of CAMs can be shown in xenografts where they 

increase tumour growth when co-injected with cancer cells compared to cancer 

cell alone (Gleave, Hsieh et al. 1991; Quante, Tu et al. 2011; Holmberg, Quante 

et al. 2012). 

 

1.6.1 Myofibroblasts Associated With Cancers 

Fibroblasts residing in the cancer niche are known as peritumoural fibroblasts. 

Their activated forms express α-SMA, vimentin, P4H and are negative for 

cytokeratin; they are designated “cancer associated myofibroblasts” (CAMs) (De 

Wever and Mareel 2003). Differences in gene expression (Boussioutas, Li et al. 

2003; Farmer, Bonnefoi et al. 2009) and changes at the epigenetic level have 

been detected in CAMs from gastric cancer compared with myofibroblasts derived 

from normal tissues (Jiang, Gonda et al. 2008). The differential expression of 

genes is not only involved in classifying myofibroblast associated with tumour 

tissue (CAMs/CAFs) or non-tumour/normal tissue (NTMs) but also, relates to 

various cellular functions such as cancer cell proliferation, migration and invasion 

(Bhowmick, Neilson et al. 2004; Singer, Gschwantler-Kaulich et al. 2008; Grugan, 

Miller et al. 2010). It has been demonstrated that CAMs exhibit increased 

migration and/ or proliferation compared to myofibroblasts from non-cancerous 

stroma (Schor, Schor et al. 1988; Holmberg, Quante et al. 2012).   

Tumour myofibroblasts have been shown to have decreased sensitivity to 

chemotherapy at least partly due to CpG DNA hypermethylation and reduced 
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expression of caspase and STAT-1 resulting in escape from apoptosis of cancer 

cells (Muerkoster, Werbing et al. 2008). 
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Figure 1.3 Myofibroblasts: single cell with multiple, origins and functional roles. 
Schematic representation of origin of myofibroblasts from multiple progenitors 
(fibroblasts, mesenchymal stromal cells orepithelial cells). Myofibroblasts secrete 
various growth factors e.g. EGF, IGF, HGF; chemokines e.g. CXCL12, TGF-β; 
preoteases, MMPs; and protease inhibitors, TIMPs that regulate cell proliferation, 
migration, and infiltration of immune cells and stromal cells, e.g. MSCs, cell 
differentiation, as well as  ECM remodelling.  

 

1.6.2 Myofibroblast Secretomes in Cancer  

Differential secretome analysis has suggested upregulated stromal-derived factor-

1α and Rantes in CAFs associated with colon cancer compared to bone marrow 

derived MSCs (De Boeck, Hendrix et al. 2013).  Moreover secretome analysis of 

CAMs in gastric cancer compared to ATMs showed decreased transforming 

growth factor-β-induced gene-h3 (TGFβig-h3) in advanced disease. A role for this 

protein in suppression of cancer cell proliferation and migration was shown 
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indicating that myofibroblasts may also release tumour suppressors (Holmberg, 

Quante et al. 2012).  

 
Myofibroblast are a prime source of extracellular MMP’s that have potential as 

prognostic markers in cancer (Vihinen and Kahari 2002) as well as promoting 

cancer progression (Holmberg, Ghesquiere et al. 2013). Also, secretome analysis 

has provided a potential marker, collagen type XII, for differentiating myofibroblast 

in colon cancer (Karagiannis, Petraki et al. 2012). These studies highlight the 

value of protein profiling of myofibroblasts in understanding cancer growth and 

treatment.  

 
However, there are still large gaps in knowledge and, for example, myofibroblasts 

in oesophageal cancers have been largely ignored to date. Unpublished studies 

in our group have shown differentially upregulated secretory proteins in CAMs vs 

ATMs from oesophageal squamous cell carcinoma (ESCC) and adenocarcinoma 

(AC) (Holmberg & Varro, unpublished data). The data have provided a potential 

candidate, namely the chemokine chemerin, as differentially upregulated in CAMs 

vs ATMs and this provides the starting point for the present experimental work.  

 

1.7 Mesenchymal Stromal Cells  

Bone marrow-derived MSCs have shown to populate the gastrointestinal tract and 

in bone transplant patients there is evidence of differentiation into epithelial cells 

(Ferrand, Noel et al. 2011). In Barrett’s adenocarcinoma, X/Y fluorescence in situ 

hybridization (FISH), indicates MSC homing and differentiation to stromal and 

epithelial cells (Sarosi, Brown et al. 2008; Hutchinson, Stenstrom et al. 2011). 

Moreover, in mice with H. felis-induced gastric cancer, 20% of CAMs have been 

shown to originate from bone marrow-derived MSCs (Quante, Tu et al. 2011). In 
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other studies, sublethally irradiated severe combined immunodeficient (SCID) 

mouse (H-2d) tumours were shown to harbour bone marrow derived 

myofibroblasts: 12.7 % on day 14 and 39.8 % on day 28 (Ishii, Sangai et al. 

2003). The infiltrated bone marrow derived MSCs differentiate into myofibroblasts 

in response to osteopontin (OPN) or TGF-β secreted by cancer cells or stroma 

(Popova, Bozyk et al. 2010; Mi, Bhattacharya et al. 2011). Moreover, TGF-β1-

stimulated MSCs shared 16 proteins with CAFs in colon cancer, including 

stromal-derived factor-1α and Rantes (De Boeck, Hendrix et al. 2013), suggesting 

that in the presence of TGF-β1 MSCs might potentially give rise to CAFs. In other 

studies, IGF-1 transactivation of CXCR4 increased MSC migration in response to 

growth factor SDF-1 (Li, Yu et al. 2007).  Recruited MSCs secrete CCL5 which 

interacts with its cognate receptor CCLR5 to increase breast cancer cell motility 

(Karnoub, Dash et al. 2007). While, on the other hand, MSCs have also been 

ascribed anti-tumorigenic properties (Kidd, Spaeth et al. 2008). In Kaposi’s 

sarcoma, recruited MSCs inhibited tumour growth perhaps via moderation of Akt 

signalling (Khakoo, Pati et al. 2006).  

 

Collectively the data suggest that the homing of bone marrow derived MSCs to 

cancer involves multiple ligands eg EGF, HGF, MCP-1, and ligand-receptor 

interactions, SDF-1α/CXCR4 and CXCL5/CXCR2 (Karnoub, Dash et al. 2007; 

Yang, Huang et al. 2008; Feng and Chen 2009; Quante, Tu et al. 2011). 

Nevertheless many aspects of the relationships between MSCs and tumour 

stroma remain uncertain, including mechanisms of homing in oesophageal 

cancer. 
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1.8 Mechanisms of inter-cellular signalling  

Cell-cell signalling is mediated by various substances including hormones, growth 

factors, cytokines and chemokines. In each case, a ligand activates receptors on 

target cells. Where ligands are released in close proximity to target cells the 

mechanisms are collectively known as paracrine signalling. Where they are 

carried in the blood stream to their targets the mechanisms are known as 

hormonal signalling; in some cases, ligands may even act on their cell of origin, 

known as autocrine signalling. Within a tissue, there are frequently interactions 

that are two-way, for example epithelial-stromal cell interactions where both cell 

types can be the source of signalling ligands and can respond to them by 

paracrine mechanisms. 

 

1.8.1 Humoral transmission 

The idea of chemical messengers mediating cell-cell interactions originated with 

the discovery of the first hormone, secretin, in 1902 by Bayliss and Starling 

(Bayliss and Starling 1902). Many gut hormones were subsequently discovered 

and shown to be involved in regulating gut secretion, motility and growth (Dockray 

2006). It was only much later that the cell surface receptors at which these 

hormones act were discovered. The well characterized gut hormones include 

gastrin, cholecystokinin (CCK), secretin, gastric inhibitory polypeptide (GIP), 

peptide YY (PYY), glucagon-like peptide (GLP)-1, and somatostatin (SST); their 

respective receptors are CCK-2 (gastrin/CCK-B), CCK-1,  human secretin 

receptor (SCTR), GIP-R , Y-2 receptor, GLP-1 and the SSTR1-5 receptors 

(Konturek, Konturek et al. 2004; Murphy and Bloom 2006). 

 



Introduction 

 

22 
 

1.8.2 Growth factors 

Growth factors (GFs) are polypeptides which are secreted and act in relatively 

close proximity to their cells of origin. Like polypeptide hormones they bind 

specific membrane receptors. However, while hormones typically act via GPCRs 

(Walsh 1993), growth factors typically act at receptor tyrosine kinases (Lemmon 

and Schlessinger 2010). There are multiple classes of growth factors including 

the families of EGF, IGF, VEGF, TGF-β, HGF, FGF, PDGF, Wnt, Hedgehog, 

Notch; each of these act at their cognate receptors and most play a role in 

gastrointestinal mucosal regeneration (Jones, Tomikawa et al. 1999). Cancer 

cells (Sporn and Roberts 1985), stromal cells e.g. myofibroblasts, bone marrow-

derived MSCs and epithelial cells are all potential sources of growth factors 

(Sporn and Roberts 1985; Orimo, Tomioka et al. 2001; Chen, Tredget et al. 2008) 

 

EGF family. The EGF family consists of EGF, heparin-binding EGF (HB-EGF), 

TGFα, amphiregulin, epiregulin, βcellulin, and neuregulin-1 to -4. The expression 

of TGFα, and HB-EGF in gastric parietal cells (Murayama, Miyagawa et al. 1995)  

may induce mitogenic signals within the epithelium regulating tissue integrity 

(Wang, Dangler et al. 2000). Members of the family may also influence stromal 

cells to enhance healing for example of gastroduodenal ulcers (Schultz, Rotatori 

et al. 1991). The exocrine secretion of EGF from salivary gland may stimulate 

proliferation of gastrointestinal epithelial cells and plays a role in the healing of 

gastric ulcers (Olsen, Poulsen et al. 1984; Konturek, Dembinski et al. 1988).  

 

IGF family. As its name suggests, members of the IGF family of growth factors 

are related in structure to insulin; however, the two members of this family, IGF-I 

and IGF-II, each consist of a single peptide chain which is homologous to the 
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single chain of pro-insulin prior to its cleavage to generate the A and B chains of 

mature insulin (Rinderknecht and Humbel 1978). Both IGF-I and –II act at the 

IGF-1 receptor to stimulate cell proliferation and migration; there is also an IGF-II 

receptor which is not functional. In the extracellular space, IGFs are sequestered 

by binding to IGF-binding proteins (IGFBPs1-6). In the upper gastrointestinal 

tract, IGF-II has been shown to be produced by myofibroblasts and to act on both 

epithelial cells and myofibroblasts to stimulate proliferation and migration 

(McCaig, Duval et al. 2006).  It has been shown that MMP-7 released by epithelial 

cells cleaves IGFBP-5 released by myofibroblasts to liberate the active growth 

factor (Hemers, Duval et al. 2005).   

 

TGF/activins. The TGF-β family comprises five members, TGF-β1-5 of which 

TGF-β1-3 are expressed in mammals. The release of TGF-β is attributed to 

cleavage by plasmin of latent TGF-β (Sato and Rifkin 1989); TGF-β1, TGF-β2 and 

TGF-β3 are mainly expressed by mesenchymal, epithelial and connective tissue 

cells respectively (Massague 1990). TGF-β acts via two receptors, TGF-β 

receptors type I and II. The binding of ligand to a type II receptor dimer, recruits a 

type I receptor dimer forming a hetero-tetrameric complex in which both receptors 

are required for the transduction of signal (Wrana, Attisano et al. 1992). Receptor 

type-III does not transduce signals; however, binding of type I and II is catalysed 

by type III receptors (Wrana, Attisano et al. 1994). In gastric cancer, cell 

invasiveness and migration may be mediated by TGF-β1 (Fu, Hu et al. 2009). As 

already noted, TGF- stimulates conversion of fibroblasts to myofibroblasts and 

consistent with this increased TGF-β in scirrhous gastric carcinoma cells 

increases the number of myofibroblasts associated with the tumour (Fuyuhiro, 

Yashiro et al. 2011). 
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FGF Family. There are 23 mammalian forms of FGF, including FGF-1 (acidic 

FGF), FGF-2 (basic FGF) and FGF-7/keratinocyte growth factor (KGF) which 

interact with FGFRs to influence cellular growth and differentiation. FGF-2/bFGF 

is secreted by fibroblasts and immobilised by binding to heparin and heparan 

sulphate in the ECM. The binding of FGF-2 to ECM proteins may confer 

protection from proteases and regulate activity and binding affinity to the receptor, 

FGFR2 (Guimond, Maccarana et al. 1993). FGF-7 is expressed in mesenchymal 

cells (Finch, Rubin et al. 1989) and studies have shown it signals via FGFR2 

expressed on epithelial cells (Mason, Fuller-Pace et al. 1994). There is increased 

expression of FGF-7 in gastric ulcer (Hull, Brough et al. 1998) which in turn 

stimulates epithelial cell proliferation and migration (Cordon-Cardo, Vlodavsky et 

al. 1990). 

 

PDGF Family. This is a family of dimeric glycoproteins with isoforms e.g. PDGFA, 

PDGFB acting through two different receptors, PDGFRA, PDGFRB. In gastric 

ulcer PDGF has been shown to be a potent mitogen for fibroblasts (Piazuelo, 

Lanas et al. 1998). Other studies have shown that gastric cancer cells (MKN-1) 

secrete PDGF which interacts with PDGFRA to increase the proliferation of 

gastric fibroblasts (Wada, Sakamoto et al. 1998). The isoform PDGF-B regulates 

the expression of other growth factors, e.g. VEGF and HGF by stromal cells; it 

increases the proliferation of epithelial cells and myofibroblasts in epithelial 

cancers (Lederle, Stark et al. 2006). 

 

HGF Family. Inactive HGF produced by stromal cells is cleaved by serine 

proteases to release the active form that acts on the protoncogene c-Met 

receptor. CAF-derived HGF has been shown to act at c-Met expressed on ESCC 
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to increase cell invasion (Grugan, Miller et al. 2010). Other studies have shown 

increased c-Met in TE-1 and TE-4 cells (ESCC lines) that depends on the level of 

Ets-1 transcription factor (Saeki, Oda et al. 2002). Further, these cells show 

increased motility in response to HGF.  

 

VEGF Family. As the name suggests, VEGF is a growth factor for endothelial 

cells and is vital in angiogenesis. The family consist of the isoforms, VEGF-A, 

VEGF-B, VEGF-C and VEGF-D. VEGF-A regulates cell proliferation and 

migration via VEGFR-1 and VEGFR-2. The expression of VEGF depends upon 

enhanced HIP-1 expression in an oxygen-stressed environment and has been 

observed in ESCC (Kimura, Kitadai et al. 2004). Further, VEGFs are extensively 

studied in gastrointestinal tract injury (Milani and Calabro 2001) and they have 

been shown to have relevance in carcinogenesis (Hyodo, Doi et al. 1998). 

 

Wnt Family. These are a family of cysteine rich glycoproteins comprised of 19 

members in humans. There are distinct intracellular signalling pathways for 

different Wnt proteins. For example Wnt3a, binds to cognate receptors of the 

Frizzled (Fz) family and a low-density lipoprotein receptor-related (LRP) protein to 

activate the so-called canonical pathway mediated by -catenin; while Wnt5a 

activates the non-canonical pathway (Cong, Schweizer et al. 2004). Collectively, 

Wnt molecules act as growth factors for stem cells and maintain the stemness of 

epithelial cells (Willert, Brown et al. 2003). Increased accumulation of β-catenin as 

a result of canonical pathway activation is seen in a majority of upper 

gastrointestinal cancers (Woo, Kim et al. 2001). Moreover, Wnt2 derived from 

tumour fibroblasts increases oesophageal cancer cell proliferation and migration 

via increased cyclin D and c-Myc expression and via Wnt/β catenin signalling (Fu, 
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Zhang et al. 2011). In contrast, both gastric epithelial and myofibroblasts-derived 

Wnt-5a mediates a β-catenin-independent pathway to enhance the gastric cancer 

cell migration (Kurayoshi, Oue et al. 2006; Wang 2013).   

 

Hedgehog Family. There are three hedgehog (Hh) homologues, Desert 

hedgehog homolog (DHH), Indian hedgehog homolog (IHH), and sonic hedgehog 

(SHH) of which SHH is widely studied in mammals. SHH undergoes processing to 

yield the active form by a mechanism involving translocation to the endoplasmic 

reticulum and autocatalytic processing to produce an active N-terminal domain. 

The activation of Patched (PTCH), a cell-surface transmembrane protein, by Hh 

increases the level of a 7-transmembrane spanning receptor, Smoothened (SMO) 

which in turn is coupled to activation of GLI transcription factors (Brink, 

Peppelenbosch et al. 2006). In gastric glands SHH is expressed in neck cells (van 

den Brink, Hardwick et al. 2001) while IHH is expressed by pit epithelial cells 

(Fukaya, Isohata et al. 2006). Sonic hedgehog plays a vital role in cell 

differentiation and is lost in atrophic gastritis (Zavros 2008). The loss of SHH in 

parietal cells increases the expression of E-cadherin, nuclear localisation of β-

catenin, the transcription factor GIi1, and activation of Wnt pathways. In addition, 

the expression of IHH was shown to regulate the events occurring in the absence 

of SHH in gastric epithelium. Thus Hh and related molecules might play an 

important role in maintaining gastric epithelial architecture (Xiao, Ogle et al. 

2010). Overexpression of sonic hedgehog (SHH) and abnormal hedgehog 

signalling has been shown to increase proliferation of both gastric and 

oesophageal cancer cells (Berman, Karhadkar et al. 2003). 
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Notch Family. Notch proteins are of 4 types, Notch1-Notch4, and possess 

transmembrane domains. The activation of notch receptors occurs mostly via the 

transmembrane ligands, delta and jagged, thus cell-cell contact is essential. 

Increased notch-1 activity and increased jagged expression are associated with 

Barrett’s adenocarcinoma (Mendelson, Song et al. 2011) and inhibition of notch-1 

activation increases the colony formation in oesophageal cancer cells 

(Subramaniam, Ponnurangam et al. 2012).  

 

1.8.3 Cytokines 

Cytokines are small cell signalling molecules found in both extracellular and 

membrane-bound forms. Many cytokines are upregulated in cancer. They are 

named on the basis of their ability to stimulate growth, differentiation and 

activation of immune cells and can be grouped into immunoregulatory cytokines 

e.g. IL-2 and pro-inflammatory cytokines, e.g. TNF-α. 

 

Immunoregulatory cytokines.  Immunoregulatory cytokines regulate various 

aspects of inflammation, and modulate the biological impact of pro-inflammatory 

cytokines. The expression of some cytokine receptors such as IL1R, IL-4R in 

resting immune cells is constitutive providing for readily responsive cells. In 

addition, activating stimuli may increase expression and activation of cytokine 

receptors e.g. IL 2R, (Ozaki, Kikly et al. 2000; Dumoutier, Lejeune et al. 2003). 

The interaction of activated cytokine receptors and upregulated cytokines 

regulates the migration and proliferation not just of the immune cells, but also of 

stromal and epithelial cells (Trinchieri and Scott 1995). Gastric cancer cells show 

increase expression of IL 2Rβ and in response to IL-2 exhibit enhanced cell 

proliferation (Lin, Yasumura et al. 1995). Some cytokines also regulate immune 
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responses via induced secretion of other cytokines. Thus increased IL-10 in 

oesophageal cancer regulates cell proliferation (Gholamin, Moaven et al. 2009) 

and secretion of IL-8 and IL-12 (Buelens, Verhasselt et al. 1997).  

 

Proinflammatory Cytokines. These cytokine are generally not expressed until 

an external stress stimulus triggers their expression. Infection with H. pylori 

provides an example, and is associated for instance with increased the secretion 

of IL-1β (Jung, Kim et al. 1997).  As the name suggests, the main function of this 

class of cytokine is to enhance inflammation. In the case of gastric cells, co-

culture of cancer cells (MKN45) with H. pylori caused increased IL-8 which was 

attributed to activation of NF-kB and regulated proinflammatory cytokine 

transcription (Aihara, Tsuchimoto et al. 1997). Moreover, increased IL-1β in 

response to H.pylori may regulate gastric acid secretion (Beales and Calam 

1998). Increased abundance of proinflammatory cytokines can be a driver for 

cancer development. For instance, increased IL-1 expression is associated with 

increased risk of upper gastrointestinal cancer (El-Omar, Carrington et al. 2001).  

 

Macrophage migratory inhibition factor (MIF): Macrophage migration inhibitory 

factor (MIF) is also known as glycosylation-inhibiting factor (GIF), L-dopachrome 

isomerase, or phenyl pyruvate tautomerase. It was discovered in activated T-

lymphocytes as an inhibitor of the migration of peritoneal cells (David 1966). 

Later, it was shown that macrophages possess a receptor for MIF (Remold and 

David 1971) and associated with this was inhibition of macrophage migration 

(Rocklin 1976). Now it is well known that MIF interacts through CD74 and its 

activation regulates recruitment of CD44 (Bernhagen, Calandra et al. 1993) The 

recruitment of CD44 then activates non-receptor tyrosine kinases leading 
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ultimately to extracellular signal-regulated kinase phosphorylation (Shi, Leng et al. 

2006). It plays a vital role in proinflammatory signalling in the control of local and 

systemic immune responses. In H. pylori induced gastritis and gastric cancer 

there is increased MIF which enhances gastric epithelial proliferation (Xia, Lam et 

al. 2005; He, Yang et al. 2006). In addition, MIF indirectly promotes angiogenesis 

in ESCC by stimulating tumour cells to produce angiogenic factors, such as IL-8 

and VEGF (Ren, Law et al. 2005). Moreover, it was recently shown that MIF 

transduces inhibitory signals via CD74 regulating MSC migration (Barrilleaux, 

Phinney et al. 2009). Amongst specific downstream targets of MIF is activation of 

MAPK pathways, e.g. ERK1/2 which depends on activation of protein kinase A 

(PKA) and protein kinase C (PKC) (Mitchell 2004); there is also down-regulation 

of the expression of the tumour-suppressor protein p53 (Hudson, Shoaibi et al. 

1999).  

 

1.8.4 Chemokines 

Chemokines are defined as chemotactic cytokines vital for infiltration of immune 

cells and MSCs. They are also involved in cancer metastasis. The expression and 

regulation of chemokines and their receptors is widely modulated in chronic 

inflammation. The inflammatory chemokines recruit neutrophils, inflammatory 

cells, and stimulate neoangiogenesis. In general, chemokines bind to soluble and 

cell membrane-bound GAGs. The interaction with GAG has varying 

consequences; thus binding to soluble GAG impairs chemokine activity whereas 

immobilised membrane GAGs increases their local availability (Kuschert, Coulin 

et al. 1999). Chemokine receptors undergo oligomerization or dimerization and 

interact with chemokine-GAGs complexes to stimulate cancer cell migration and 

angiogenesis (Folkman and Shing 1992).  Broadly, the chemokines expressed in 
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cancer belong to inflammatory group. Inflammatory chemokines are induced or 

upregulated by pro-inflammatory stimuli e.g. TNF-α. This group of chemokines, 

e.g. CXCL10, CCL5 attract immune and inflammatory cell to the site of damage. 

The other group, homeostatic chemokines, includes members regulating the 

normal recruitment of neutrophils e.g. CXCL12 and CCL14. The inflammatory and 

homeostatic groups consist of various classes of chemokines which can be 

characterised on the basis of their structure, namely the spacing of their first two 

cysteine residues i.e. CXC, CC, C and CX3C. 

 

CXC Family. The α-chemokines, i.e. CXC, consist of 17 members that can be 

further classified depending on the presence or absence of a glutamine-leucine-

arginine (ELR) motif ie ELR+ or ELR- chemokines. The interaction of ELR+ or 

ELR- CXCs with their cognate G-protein-coupled seven trans-membrane (GPCR) 

receptors (CXCR) is essential for paracrine or autocrine signalling. In addition, 

growth-related oncogenes (GROs) (GROα, GROβ, and GROγ) of the ELR+ CXC 

group are potent promoters of cell proliferation and angiogenesis via interactions 

with CXC chemokine receptor 1 or 2 (CXCR1 or CXCR2). Autocrine signalling via 

GROβ/CXCR2 interaction increases ESCC proliferation by stimulating ERK1/2 

(Wang, Hendricks et al. 2006). In breast cancer, CAM-derived CXCL12/SDF-1 

interacts with CXCR4 on cancer cell enhancing their invasion (Orimo, Gupta et al. 

2005) and stimulating angiogenesis (Luker and Luker 2006). 

 

CC Family. The β-chemokines, ie CC,  consist of 28 members that act via CCRs 

which are mostly of the GPCR type (Murphy 2002). Two different studies in 

gastric cancer showed increased CC family members, CCL7 and CCL21 (Hwang, 

Lee et al. 2012) and their receptor, CCR7 (Mashino, Sadanaga et al. 2002), 
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associated with cancer cell invasion and metastasis. CCL5 derived from CD4+ T 

blockade significantly impaired gastric cancer progression and has been shown to 

induce apoptosis of CD8+ T cells (Sugasawa, Ichikura et al. 2008). Oesophageal 

cancer cell derived MCP-1 stimulates both infiltration of immune cells and 

secretion of angiogenic factors such as VEGF suggesting role in angiogenesis. 

Further, there is a significant correlation of MCP-1 expression by cancer cells and 

CCR2 via infiltrating stromal cell macrophages (Koide, Nishio et al. 2004) thereby 

suggesting cancer and stromal interactions that are important in tumour growth. 

 

C Family: A small family of chemokines with two members named, XCL1 

(lymphotactin-α) and XCL2 (lymphotactin-β). These ligands are expressed by 

immune cells and act as chemo-attractants for T cells via binding to XCR1 e.g. G-

protein receptor 5 (GPR5)(Kroczek and Henn 2012) as well as modulating cancer 

growth (Cairns, Gordon et al. 2001). 

 

CX3C Family: This subgroup of chemokines consists of single member called 

fractalkine (or CX3CL1). It exists in soluble form and in an immobilized form on 

cell membranes (Bazan, Bacon et al. 1997). Fractalkine supports adhesion and 

migration of stromal cells, e.g. monocytes and endothelial cells via the Gαi 

coupled receptor CX3CR1(White and Greaves 2009) 

 

1.8.5  Adipocytokines 

As the name suggested these are cytokine-like molecules secreted from 

adipocytes, also known as adipokines. The well-known members include 

chemerin, PAI-1, retinol binding protein 4 (RBP4), visfatin, and leptin. The most 

abundant and well-studied adipokine is leptin which may also be produced in 
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gastric chief cells and D1 cells in stomach (Bado, Levasseur et al. 1998). 

Similarly, other adipokines such as visfatin and chemerin may be derived from 

non-adipocytes including macrophages, neutrophils and fibroblasts (Moschen, 

Kaser et al. 2007; Albanesi, Scarponi et al. 2009). Generally, the adipokines are 

involved in energy metabolism, obesity and insulin resistance (MacDougald and 

Burant 2007; Rabe, Lehrke et al. 2008). However, recent evidence has identified 

a link to cancer (MacDougald and Burant 2007). Leptin exerts a mitogenic effect 

in oesophageal cancer cells (OE33) via PI3K/Akt and p38 MAPK (Beales and 

Ogunwobi 2007; Kendall, Macdonald et al. 2008). In contrast, adiponectin 

inhibited ERK1/2 and Bcl-2 expression, and increased Bax abundance, in OE19 

cells thereby exerting anti-proliferative and pro-apoptotic effects (Konturek, Burnat 

et al. 2008).  

 

1.9 Intracellular Signal Transduction Pathways  

Multiple different types of ligand-activated receptors have been defined that can 

be conveniently classified as (1) receptor tyrosine kinases (RTK) e.g. EGFR, (2) 

ligand gated ion channels, e.g. nicotinic cholinergic receptor, (3) the G-protein 

coupled receptors, GPCRs, e.g. CXCR4 and chemR23 and (4) nuclear receptors 

e.g. receptors for oestrogen, corticosteroids, thyroxin.  

 

Receptor tyrosine kinases. Members of the RTK family have a single 

transmembrane domain and typically act in dimers. They can be grouped into 20 

different classes including for example EGF receptors, IGF and PDGF receptor 

families respectively. The EGFR family illustrates some of the general issues and 

is linked to a well-defined intracellular signalling cascade. The members of the 

family are ErbB 1 to ErbB4 (or HER1-4). They are widely expressed in epithelial, 
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mesenchymal, and neuronal-derived cells where they influence cell proliferation 

and differentiation. The extracellular binding of ligand causes RTK receptor 

dimerization (Lemmon and Schlessinger 2010). Auto-phosphorylation of specific 

intracellular tyrosine residues creates binding sites for Src homology 2 (SH2) 

domain- and phosphotyrosine binding (PTB) domain-containing proteins (Pawson 

1995). The recruitment of Src causes downstream activation of a signal 

transduction pathway (Pawson 1995) in which isoforms of Raf (Raf1, A-Raf or B-

Raf) interact with Ras to activate MEK1/2 followed ERK1/2 (Roberts and Der 

2007) (Figure 1.4). In addition conformational changes in Ras transduce signals 

by PI3 kinase and Ral guanine nucleotide exchange factors (RalGEFs) (Hamad, 

Elconin et al. 2002; Yin, Pollock et al. 2007) (Figure 1.4). The loss of ErbB 

signalling results in failure of organ development and embryonic death (Miettinen, 

Berger et al. 1995). Mutations in Ras family members are common being found 

up to 40% of upper gastrointestinal cancers (Arber, Shapira et al. 2000; Lord, 

O'Grady et al. 2000). There may also be mutations in erbB receptors which, since 

they are upstream of Ras, can lead to constitutive activation of Ras/Raf/MEK in 

cancer (Roberts and Der 2007). Constitutive activation of Ras can also be result 

of germline mutation either in Ras itself or Raf isoforms. Mutations found in 

human cancers include Ras residues G12 (glycine to valine mutation at residue 

12), Q61 and infrequently at G13. In the case of Raf, V600E (valine substitution 

by glutamate at position 600) occurs in high proportion of cancers (Garnett and 

Marais 2004; Tan, Liu et al. 2008). Signalling through the MAPK cascade is 

transduced by GTP loading of Ras leading to the activation of Raf kinase;, 

constitutive activation of Ras is due to inhibition of GTPase activity that is longer 

be stimulated by GAP (Mitin, Rossman et al. 2005).  
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G-Protein coupled receptors. The GPCRs are a family of approximately 800 

receptors characterised by 7-transmembrane domains and exhibiting sequence 

homology and functional similarity; they can be grouped into 6 different classes 

(A-F). The binding of ligand to a GPCR causes a conformational change and 

regulates G-protein/guanine nucleotide-binding protein signals via the exchange 

of GDP to GTP on the alpha (α) subunit of a heterotrimeric G-protein complex; 

the other components of the complex are beta (β) and gamma (γ) subunits 

(Hurowitz, Melnyk et al. 2000; Krumins and Gilman 2006). Gα exists in different 

forms each possessing unique function: Gαs is linked to activation of adenylate 

cyclase and increased production of cyclic adenosine monophosphate (cAMP) 

while Gαi inhibits the production of cAMP from  adenosine-5'-triphosphate (ATP); 

Gαq/11 stimulates membrane-bound phospholipase C beta, and Gα12/13 are involved 

in Rho family GTPase signalling and control cell cytoskeleton remodelling and cell 

migration (Etienne-Manneville and Hall 2002; Vega and Ridley 2008). The major 

pathways resulting from GPCR activation are therefore stimulation of cAMP and 

phosphatidylinositol (PI) (Figure 1.4) (Gilman 1987). The increase of cAMP acts 

as secondary messenger to induce downstream events via kinases such as PKA. 

In the case of phospholipase C (PLC) (Boyer, Waldo et al. 1992), there is 

digestion of phosphatidylinositol 4,5-bisphosphate (PIP2) to generate inositol 

1,4,5-trisphosphate (IP3) which increases intracellular Ca
2+

, and diacylglycerol 

(DAG) which activates protein kinase C (Takai, Kishimoto et al. 1979).  
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Figure 1.4  Receptor Tyrosine Kinases (RTK) and G-protein Coupled Receptor 
(GPCR) signal transduction pathways.  
Ligand binding results in activation by phosphorylation of tyrosine residues and 
recruitment of docking proteins. Ras proteins then become activated, resulting in the 
activation of Ras kinase, which initiates the phosphorylation cascade of MEK and 
MAPK. The activation of phosphatidylinositol 3 kinase (PI3K) and Ral guanine 
nucleotide exchange factors (RalGEFs) also mediate MAPK signalling. GPCR 
activation leads to G-protein dependent activation of phospholipase C (PLC) or cyclic 
adenosine monophosphate (cAMP). The Ras-Raf-MEK-MAPK/ERK pathway can also 
be activated by GPCR agonists. 

 

 

Regulators of G protein signalling (RGS), guanine nucleotide exchange factors 

(GEF), switch on GPCR activity, while β-arrestin, G protein-coupled receptor 

kinases (GRK) and GTPase-activating proteins (GAP) all switch off GPCR 

signalling (Dohlman 2009). The GRKs have kinase activity and phosphorylate the 

intracellular domain of GPCRs at serine and threonine residues (Ribas, Penela et 

al. 2007). The phosphorylated residues serve as binding sites for β-arrestin and 
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disrupt conformation thereby inhibiting the reactivation of the signal transduction 

pathways (Gurevich and Gurevich 2006). GTPase-activating proteins (GAP) 

involved in hydrolysis of GTP regain the status of inactive G-protein-GDP 

complex causing inactivation. The regulation of RGSs is also important, and for 

instance GPCR activation releases PIP3, which itself binds to RGS4 GAP and 

causes temporary inactivation (Ishii, Fujita et al. 2005). Some GPCR regulatory  

mechanisms also involve PKC and PKA which may activate GRKs stop GPCR 

signalling (Lefkowitz 1998). The desensitised GPCR may be degraded via 

clathrin-associated receptor translocation to lysosomes (Hanyaloglu and von 

Zastrow 2008), but there is also recycling of internalised GPCRs to the cell 

surface. 

GPCR signalling is misdirected in various ways in cancer (Marinissen and 

Gutkind 2001). For instance, signalling via CXCL12/CXCR4 activates protein 

kinase B (PKB) associated with increased proliferation and decreased apoptosis 

in gastric cancer (Yasumoto, Koizumi et al. 2006).  

 

The ligand gated ion channel receptors. These are transmembrane receptors 

that regulate permeability to various ions such as Ca
2+

, Na
+
, K

+
, or Cl

- 
upon 

binding of appropriate ligands. The receptor class is named according to its 

ligand: for example, nicotinic acetylcholine receptors (nAChR), ionotropic 

glutamate receptors and ATP-gated channels (P2XR). The binding of ligands 

induces conformational changes in the receptors that allow the movement of ions. 

Receptor structure varies and for example nAChR is a complex pentamer 

structure, (ααβγδ), of which (α9)5 is expressed in epithelial and neuronal cells 

and shown to be overexpressed in cancer cells (Lee, Huang et al. 2010).  
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Nuclear receptors. The nuclear receptors (NRs) are typically localised in the 

cytosol in their inactive forms but on stimulation they move to the nucleus where 

they bind to DNA and change gene expression.  (Mangelsdorf, Thummel et al. 

1995).  The binding of lipophilic ligand to type I NRs activates them causing 

translocation from cytosol to nucleus and binding at specific hormone response 

elements (HREs) on DNA (Gronemeyer, Gustafsson et al. 2004). While type II 

NRs occur in the nucleus in the inactive state associated with the relevant HRE. 

The activation of type II NRs involves co-regulators (Aranda and Pascual 2001). 

The inactive state is maintained by a small protein called a co-repressor.  Co-

repressors directly associate with repressors and indirectly bind to DNA to limit 

gene transcription. In the presence of ligand the co-repressor is replaced by a co-

activator, a protein molecule recruited to DNA along with a transcriptional 

complex required for gene expression.  

 

Cross talk. Networking amongst different transduction pathways occurs widely in 

health and disease. Examples include the intracellular activation of signalling 

pathways by stimulation of neighbouring receptors collectively known as 

transactivation. Thus GPCR-mediated transactivation of tyrosine kinase receptors 

has been extensively studied. Transactivation includes ligand-dependent and 

independent activation of RTK pathways; for instance, prostaglandin E2 and 

endothelin act at their GPCRs to transactivate EGFR secondary to cleavage of 

HB-EGF or TNF-α with subsequent increases in phosphorylation of ERK2 and 

cell proliferation (Prenzel, Zwick et al. 1999; Pai, Soreghan et al. 2002; Ogunwobi 

and Beales 2008). Other relevant mechanisms include ligand-independent 

transactivation, for example GPCR activation of intracellular molecules such as 

Src and followed by autophosphorylation of EGFR (Hsieh, Sun et al. 2008).  
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1.10 Chemerin and ChemR23  

Chemerin is 18kDa chemokine/adipokine expressed in adipocytes and immune 

cells e.g. macrophages (Zabel, Zuniga et al. 2006). It is a potent chemoattractant 

that recruits macrophages, natural killer (NK) and dendritic cells via interacting 

with a GPCR, chemokine like-receptor 1 (CMLR1) also called chemerin receptor 

23 (chemR23) (Zabel, Zuniga et al. 2006; Yoshimura and Oppenheim 2008). 

Chemerin was originally identified in 3-D co-culture experiments of keratinocytes 

and fibroblasts from psoriatic skin using a subtraction hybridization approach 

(Nagpal, Patel et al. 1997).  The ligand was then confirmed to interact with 

chemR23 and two other putative receptors, G-protein-coupled receptor 1 (GPR1) 

and chemokine (CC motif) receptor-like 2 (CCRL2) (Nagpal, Patel et al. 1997; 

Bondue, Wittamer et al. 2011). Chemerin was subsequently isolated from 

haemofiltrates using HPLC followed by peptide analysis by MALDI-TOF-MS 

(Meder, Wendland et al. 2003; Wittamer, Franssen et al. 2003). The C-terminal 

sequence of full length chemerin (163 residues) is proteolytically cleaved to 

produce the active forms. Cleavage may be mediated by different proteases 

(Figure. 1.5). Elastase cleaves chemerin 163 between amino acids at positions 5 

and 6 from the C-terminus to give active chemerin-157 (Zabel, Allen et al. 2005). 

Similarly, processing at the C-terminus by cathepsin G produces active chemerin 

156 (Zabel, Allen et al. 2005); however cleavage by chymase of chemerin 157 

and chemerin 156 leads to the inactive chemerin 154 (Guillabert, Wittamer et al. 

2008; Du and Leung 2009).  

 
Various studies have determined chemerin or its transcripts in serum, media or 

cell extracts using ELISA,  Western blot, RT-PCR or gene microarray (Parlee, 

McNeil et al. 2012). In parallel, chemR23 expression has been studied in various 
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stromal cells, endothelial, macrophage, NK cells, dendritic cells using gene 

microarray, fluorescence-activated cell sorting (FACS), immunocytochemistry 

(ICC) and immunohistochemistry (IHC) (Albanesi, Scarponi et al. 2009; Kaur, 

Adya et al. 2010; Muruganandan, Parlee et al. 2011).  

 

 

Pro chemerin 163

Chemerin  155Chemerin 158

Chemerin 156

Chemerin 157

Chemerin  154

Plasmin Protease 3, Tryptase,  elastase 

Elastase / MMP 12 Cathepsin G 

ChymaseChymase 

Cleaves 7 C-terminal aaCleaves 6 C-terminal aa

Cleaves 5/8 C-terminal aaCleaves  5 C-terminal aa

Carboxypeptidase

 

 

 

Figure 1.5 Isoforms of chemerin.  
Schematic of proteolytic cleavage in the C- terminal region of full length prochemerin 

163 and subsequent chemerin derivatives. Solid arrows represent active chemerin, 

while black dotted arrows represent inactive isoforms of chemerin. 

 

Ligand-receptor interactions have been studied using calcium influx measurement 

in adipocytes and macrophages (Bondue, Wittamer et al. 2011) and decreased 

accumulation of cAMP using cell based FLIPR assays (Meder, Wendland et al. 

2003; Wittamer, Franssen et al. 2003). Chemerin binding to chemR23 also 

activates downstream signalling pathways involving p44-42, p38, JNK-II, Akt, 

PI3K, and NFκβ (Berg, Sveinbjornsson et al. 2010; Hart and Greaves 2010; 
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Kaneko, Miyabe et al. 2011) (Figure 1.5). Chemerin binding to GPR1 and CCRL-2 

does not activate intracellular signalling pathways but may increase the local 

availability of chemerin to chemR23 expressing cells (Barnea, Strapps et al. 2008; 

Zabel, Nakae et al. 2008). 

 

ChemR23

Chemerin

PI3K/Akt and MAPKs

Endothelial cell survival

PI3K, Akt, and p38

Macrophage recruitment and 

adhesion to ECM

ERK1/2 , Ca+2  and 
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muscle cell metabolism

G2/M cyclins (cyclin

A2/B2)
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Angiogenesis Adipogeneis and insulin 

resistance

Adipogeneis and 

Differentiation

Inflammation

 

 

 

Figure 1.6 Chemerin  mediated cellular functions.  
Shcematic representation of action of chemerin in activating signal pathways in 

varied cell types and subsequent cellular funcitons.  

 

Chemerin has been implicated in autocrine and paracrine signalling in maturation 

and differentiation of adipocytes (Roh, Song et al. 2007). The inflammation 

mediated by chemerin is associated with infiltration of macrophages and dendritic 

cells in inflamed tissues. Chemerin also increases lipolysis and insulin signalling 

in adipocytes (Goralski, McCarthy et al. 2007) and acts on endothelial cell to 

increase angiogenesis (Kaur, Adya et al. 2010).  
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The role of chemerin in arthiritis, liver fibrosis and obesity has attracted attention. 

Chemerin regulation of IL-6 and TNF-α, and vice versa, and also chemerin-

stimulated adiponectin, has indicated a role as anti-inflammatory cytokine (Cash, 

Hart et al. 2008). In contrast, it has been suggested that the ability of chemerin to 

stimulate TGFβ secretion (Cash, Hart et al. 2008) might be critical in liver fibrosis 

and chronic inflammation. In obesity, increased chemerin expression in mature 

adipocytes mediates insulin-dependent glucose uptake and cell metabolism 

(Takahashi, Takahashi et al. 2008) and chemerin concentrations in blood 

correlate with body mass index and plasma triglyceride levels (Zabel, Allen et al. 

2005).  Relatively little is known about possible roles of chemerin in cancer. 

However, previous findings in our group (Holmberg & Varro, unpublished 

observations) showed chemerin is increased in oesophageal CAMs from SC 

compared to ATMs. This raises the possibility of a role in oesophageal cancer. 
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1.11 Aims : 

This investigation focuses on the properties of myofibroblasts in oesophageal 

cancer and in particular on the mechanisms by which they communicate with 

cancer cells and with bone marrow derived MSCs. The specific aims were: 

 

1. To characterise myofibroblasts derived from ESCC and EAC (CAMs) and 

from adjacent tissue (ATMs) and to compare their properties with 

myofibroblasts from normal donor patients (NTMs). 

2. To investigate the role of chemerin in chemotactic responses of MSCs and 

oesophageal cancer cells and to define the signal transduction pathways. 

3. To determine the role of MIF in local modulation of the responses to 

chemerin. 

4. To establish mechanisms of transendothelial migration of MSCs and to 

validate the use of a chemR23 antagonist 
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2.1 Materials 

Oesophageal cancer cell lines (OE21, OE33 and OE19) were obtained from 

American type culture collection, ATCC, VA, US. Human mesenchymal stromal 

cells (MSC; MSC7F3914) and Human Umbilical Vein Endothelial Cells (HUVEC) 

were purchased from Lonza (Cambridge, UK). Cell culture materials namely 0.25 

% w/v trypsin-EDTA, Dulbecco's modified Eagle's medium (DMEM), Roswell Park 

Memorial Institute medium (RPMI)-1640, L-glutamine, non-essential amino acids, 

antibiotic-antimycotic solution, penicillin-streptomycin solution and phosphate 

buffered saline (PBS) were obtained from Sigma (Dorset, UK); Recovery
TM

 cell 

freezing medium came from Invitrogen (Paisley, UK). Fetal bovine serum (FBS) 

was purchased from Lonza. Cell culture reagents for MSCs and HUVECs i.e MSC 

Trypsin (0.25% w/v)-EDTA, Mesenchymal Stem Cell Growth Medium bulletkit, 

(MSCGM, includes basal medium and MSC growth supplement, MSCGS) and 

Endothelial Growth media (EGM) were purchased from Lonza Transfection kits, 

Amaxa™ Fibroblasts Nucleofector™ kit and Amaxa
TM

 Human MSC 

Nucleofector® kit were also purchased from Lonza. Competent E. coli cells for 

plasmid amplification were purchased from Invitrogen. PKH67 membrane 

labelling reagent was purchased from Sigma. Chemerin silencing RNAs were 

obtained from Sigma and a chemerin overexpression plasmid from Origene, 

Rockville, USA. Macrophage migration inhibiting factor (MIF) siRNA was obtained 

from Invitrogen. Plasmid DNA extraction mini Kit and RNeasy kit were obtained 

from Qiagen (Manchester, UK). Protease Inhibitor cocktail set III, EDTA-free, 

phosphatase Inhibitor cocktail set III, EDTA free were obtained from Calbiochem 

(Darmstadt, Germany) and RIPA buffer was purchased from Cell Signalling 

(Hitchin, UK). Western blot reagents were obtained from Bio-Rad Laboratories 

(Hercules, CA, US) namely Immun-Star™ WesternC™ Chemiluminescence Kit, 
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Lowry DC protein assay, ChemiDoc XRS system and the nitrocellulose 

membrane came from Amersham Pharmacia (Biotech, Little Chalfont, UK). 

PageRuler
TM

 prestained protein ladder was purchased from Fermentas (York, 

UK). Bovine serum albumin (BSA) and 4-(2-hydroxyethyl)-1-

piperazineethanesulfonic acid (HEPES) for immunocytochemistry were 

purchased from Jackson Immunoresearch (PA, USA) and Sigma, respectively. 

Vectashield with DAPI for nuclear staining was obtained from Vector laboratories 

(Peterborough, UK). The Click-iT EdU Alexa Fluor 488 Imaging kits were 

purchased from Invitrogen. Clonogenic reagent, (1, 9-dimethyl-methylene blue) 

was obtained from Sigma. Chemerin ELISA kits were obtained from Adipo 

Bioscience (Santa Clara, CA, USA) and MIF ELISA kits from R&D Systems 

Europe Ltd (Abingdon, UK). Boyden chamber control cell culture inserts and BD 

BioCoat™ Matrigel™ Invasion Chamber for migration and invasion assays were 

purchased from SLS (Nottingham, UK). The migration cell fixing and staining kit 

(DiffQuick) was from Dade Behring Inc (Newark, DE). Drugs including Ro320432, 

SB202190, SP600125, Uo126, ISO-1 were purchased from Calbiochem and 

LY294002 was obtained from Cell Signaling. Chemerin-9 was purchased from 

Genscript (Piscataway, NJ, USA). Chemerin was purchased from R&D Systems 

Europe Ltd (Abingdon, UK) and IGF-II from Calbiochem (Darmstadt, Germany). 

ChemoCentryx (Mountain View, CA, USA) provided the ChemR23 antagonist 

CCX-832 and a control compound (CCX-826). GeneChip©Human Genome U133 

plus 2.0 arrays was obtained from Affymetrix (Wycombe, UK).  

 

2.2 Human primary myofibroblasts  

Human primary myofibroblasts were obtained from resected oesophagael 

cancers and adjacent non-cancerous tissue during surgery for removal of tumours 
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at First Department of Surgery, University of Szeged, Szeged, Hungary. 

Myofibroblasts were prepared in the Department of Medicine, University of 

Szeged, Hungary as previously described (McCaig, Duval et al. 2006) and 

transported to University of Liverpool in liquid nitrogen and cryopreserved until 

use. Myofibroblasts were derived from four oesophageal squamous cancers and 

three Barrett's adenocarcinoma, recovered from the oesophagus and 

oesophagus/cardiac junction. From each patient, CAMs and ATMs were cultured. 

Also, 6 myofibroblast lines were obtained from the oesophagus of normal patients 

who were transplant donors (NTMs: 3 males, 3 females, mean average age 48.7 

± 5.8 yrs and 49.3 ± 2.7 yrs respectively). The details of tumour staging 

(pathology tumour size, lymph nodes, metastasis) and cancer classification are 

shown in Table 2.1.   

 

2.3 Tissue culture 

2.3.1 Human myofibroblasts  

Myofibroblasts were maintained in T-75 flasks in DMEM supplemented with 10% 

v/v FBS, 1% v/v penicillin-streptomycin, 2% v/v antibiotic-antimycotic and 1% v/v 

non-essential amino acids. This is referred to as "full medium” (FM) unless 

otherwise stated. Cells were grown at 37
o
C in a 5% v/v CO2 atmosphere and the 

medium was changed every 48 h.  

For passaging, cells at 80% confluence or above were washed twice with PBS 

followed by incubation for 5-8 min in 2ml 0.25 % w/v trypsin-EDTA. Trypsinised 

single cell suspensions were then added to 8ml of FM and 8x10
5 

to 10
6 

cells were 

re-plated in T-75 flasks. Aliquots of 10µl of cell suspensions were used for cell 

counting using a haemocytometer. The cells used in experiments were obtained 

from passages 5 to 15. 
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A 

Patient No. Age Gender Survival (months) Tumour Staging Tumour Location Classification Adjacent Tissue 

1 72 M 18 pT3N1M0 oesophagus Barrett adenocarcinoma Barrett’s 

2 64 M 19 pT2N3M0 cardia Barrett adenocarcinoma Barrett’s 

3 70 F >25 pT3N1M1 cardia Barrett adenocarcinoma Barrett’s 

4 56 M 34 pT3N1M0 oesophagus squamous carcinoma CIM, PAM (cardia) 

5 52 M 31 pT3N1M0 oesophagus squamous carcinoma normal 

6 49 M 35 pT2N1M0 oesophagus squamous carcinoma GERD 

7 69 M 14 pT3N1M0 oesophagus squamous carcinoma PAM (cardia) 
B 
 

Patient No. Age Gender Location 

8 44 F oesophagus 

9 45 M oesophagus 

10 52 F oesophagus 

11 60 M oesophagus 

12 52 F oesophagus 

13 41 M oesophagus 
 
 
Table 2.1 Characteristics of patients used to provide oesophageal myofibroblasts. A) Age, gender, post-operative survival (>, alive at time of 
submission), tumour staging, tumour localisation, tumour classification, and pathology assessment of tissue taken adjacent to the tumour for 
patients used to provide oesophageal CAMs and ATMs. Tumour staging is defined in terms of pathology of tumour (pT) where 0 defines no 
sign of tumour and 3 maximum size and/or extensions. Similarly, the involvement of local and metastasis to proximal lymph nodes is stated as 
N0 - N3 and metastasis severity by M0, no metastasis and M, distant metastasis. The gastro-intestinal junction tissue possessing the intestinal 
metaplasia and metastasis of pancreatic acinar cells are called cardiac intestinal metaplasia (CIM) and pancreatic acinar metaplasia (PAM) 
respectively in adjacent tissue, last column. B) Myofibroblasts isolated from 6 normal transplant donors tissue, NTMs (3 were males, 3 females 
mean average age 48.66 ± 5.78 yrs and 49.3 ± 2.66 yrs respectively). 
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2.3.2 Human mesenchymal stromal cells (MSC) 

Mesenchymal stromal cells were maintained in an undifferentiated state in T-75 

flasks in MSCGM containing 440ml basal medium and MSC growth supplements. 

Cells were maintained at 37
o
C in 5% v/v CO2 atmosphere. Every 3-4 days, media 

was aspirated and replaced with 20ml fresh media. Cultures were split and 

passaged at 80% confluence or over. Cells were detached with 2ml of trypsin 

(0.25% w/v)-EDTA for 2-3 min, and 8x10
5 

to 10
6 

cells were then added to 8ml FM 

and re-plated in T-75 flasks. The cells used in experiments were obtained from 

passages 5 to 12 and maintained their undifferentiated phenotype. 

 

2.3.3 Human Umbilical Vein Endothelial Cells (HUVEC) 

Human umbilical vein endothelial cells were maintained in T-25 flasks in EGM 

medium. Cells were maintained at 37
o
C in 5% v/v CO2 atmosphere. Every 2nd 

day, media was aspirated and replaced with 10ml fresh media. At 80% 

confluence cells were trypsinised with 1ml of trypsin (0.25% w/v)-EDTA for 2-3 

min, and then suspended in 4ml FM and re-plated in T-25 flasks at a density of 

1000-2000 cells/ml. The cells used in experiments were obtained from passages 

5 to 9. 

 

2.3.4 Human oesophageal cancer cell lines 

Oesophageal squamous cancer (OE21), adenocarcinoma (OE33), and Barrett's 

oesophagus (OE19) cell lines were cultured in RPMI-1640 supplemented with 

10% v/v FBS, 1% v/v penicillin-streptomycin, 2% v/v L-glutamine. Cells were 

maintained at 37
o
C in a 5 % v/v CO2 atmosphere, and media were changed every 

48-72 h. Confluent cells at 80% were washed twice with PBS, trypsinised using 
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0.25% w/v trypsin-EDTA and 8x10
5 

to 10
6 

cells added 8ml FM and re-plated in T-

75 flasks. 

 

2.3.5 Cryopreservation of cell lines 

Cells were trypsinised at 80% confluence, centrifuged at 800 x g for 7 min at 4
o
C 

and supernatants discarded. Pellets were resuspended in 1 ml recovery cell 

freezing medium and cell suspensions stored in 1.5 ml cryovials. These vials 

were placed in a plastic holder in a bath containing propane-1, 2,-diol and then 

transferred to a -80°C freezer overnight and then to liquid nitrogen for long-term 

storage. 

 

2.3.6 Recovering frozen cell lines 

Cells were removed from liquid nitrogen, thawed by hand or in a water bath at    

37
o
C and added to a T-75 culture flask with 19 ml FM and maintained 37

o
C in a 5 

% v/v CO2 atmosphere 

 

2.4 Preparation of condition media 

Myofibroblasts (1.5 x 10
6
 cells) were plated in T-75 falcon flasks and maintained 

at 37
o
C in a 5% v/v CO2 atmosphere for 24 h in FM. Cultures were then washed 3 

times with sterile PBS and incubated in 15ml serum free (SF) media (FBS 

excluded from FM) for 24 h. Conditioned media were collected in 20 ml Universal 

tubes and centrifuged for 7 min 800 x g, 4
o
C. Aliquots of 5 ml were stored at -

80
o
C until further use. 
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2.5 Immunocytochemistry 

Cells were cultured in T-75 flasks and trypsinised to yield single cell suspensions 

that were seeded at 10,000 cells per well on cover slips in 24 well plates. Cells 

were incubated for 24 h and fixed using 4% w/v paraformaldehyde for 30 min at 

room temperature (RT). Cells were then washed twice with PBS before 

permeabilisation with 500µl of fresh 0.2% Triton X-100 in PBS (PBS-T) for 30 min 

at RT. Cells were washed twice with PBS and incubated with 500µl of 5% w/v 

BSA for 30 min at RT. To prevent non-specific binding of secondary antibody, 

cells were incubated with 500 µl 10% v/v donkey serum for 1 h at RT. Cells were 

then washed with PBS twice and incubated with primary antibody diluted in PBS, 

overnight at 4
o
C in a humid atmosphere. Next day, the cells were washed with 

500µl 0.14M NaCl for 10 min, 0.5M NaCl for 10 min and 0.14M NaCl for 10 min. 

Secondary antibodies were prepared in HEPES. Slides were incubated with the 

appropriate secondary antibody for 1 h at RT in the dark. Cover slips were then 

washed in PBS for 10 min each and transferred to glass slides. Vectashield 

containing DAPI was added to cover slips that were mounted, sealed with nail 

varnish and kept overnight in the dark at 4
o
C. Staining was observed using 40 x 

magnification using a fluorescence Zeiss Axioplan-2 microscope and Axiovision 

software V 4.8.0. Images (MicrOptik, Deursen, Netherlands) were captured using 

a JVC-3 charged coupled device camera with KS300 software. Emissions of 

fluorescence (FITC) were captured with the XF22 filter (excitation 493 nm, 

emission 520 nm) and Texas Red was detected using the XF33 filter (excitation 

596 nm, emission 620 nm, Omega Optical, Essex, UK). Details of primary and 

secondary antibodies provided in Table 2.2. 
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Antibody Species Dilution Supplier 

Anti-α smooth muscle actin Mouse 1:100 Fitzgerald, USA 

Anti-vimentin Guinea pig 1:100 Fitzgerald, USA 

Anti-desmin Rabbit 1:100 Fitzgerald, USA 

Anti-chemR23 Rabbit 1:100 Millipore, UK 

Anti-GPCR GPR1 Rabbit 1:250 Abcam, UK 

Anti-CD105        Mouse 1:50 Bayport, USA 

FITC-conjugated donkey- 

anti-mouse Donkey 1:400 Jackson, USA 

Texas-Red-conjugated  

donkey-anti-guinea pig Donkey 1:400 Jackson, USA 

FITC-conjugated donkey- 

anti-rabbit Donkey 1:400 Jackson,  USA 

 

Table 2.2 Antibodies and their working dilution used in 
immunocytochemistry.  
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2.6 Bioassays 

2.6.1 Cell migration assays 

2.6.1.1 Boyden chamber-chemotactic migration assays 

 

Migration assays were applied to myofibroblasts, cancer cells and MSC following 

the manufacturer’s instructions. Cells were seeded in 500µl SF media on 

perforated polyethylene terepthalate (PET) membranes with 8.0 μm pores; the 

inserts were placed in wells containing 750µl of appropriate media. Cells were 

obtained by trypsinising 70% confluent cultures and resuspension in 5 ml of 

medium with 0.1% FBS. A 10 μL aliquot of the cell suspension was counted in a 

haemocytometer. Stimulants and inhibitors, conditioned media, cell types, 

seeding density and incubation times are described in the relevant sections. 

 

After incubation, migrated cells on the underside of the insert were stained with 

DiffQuick according to manufacturer's instructions. Cells on the upper side of the 

membrane were removed by scrubbing with a cotton bud and those on the lower 

side of the membrane were fixed, stained and counted under 10 x magnifications 

using a Zeiss 25 Axiovert Microscope (Carl Zeiss Microscopy, NY, USA). Cells 

were counted in five fields on a single membrane and means were calculated. 

 

2.6.1.2 In vitro scratch wound healing assays  

 

Cells were plated at 80% confluence in 6-well plates and incubated in 2ml FM 

until monolayers of cells were achieved. A single scratch was created across the 

monolayer in each well using a p2 pipette tip perpendicular to the surface and 

through the centre of the well. Experiments were performed in duplicates or 
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triplicates. Cells migrating across the wound were determined in one or two fields 

per well using time-lapse microscopy with Hamamatsu Orca ER Camera and 

Kinetic Imaging AQM-2001 software (Hamamatsu, Town NJ, USA). 

 

2.6.1.3 Transendothelial migration assays  

 

Mesenchymal stromal cells were labelled with 1µM PKH67 per 10
7
 cells following 

the manufacturer’s protocol. Transendothelial migration assays were applied to 

PKH67 labelled MSCs using BD BioCoat™ Matrigel™ Invasion Chambers 

according to manufacturer’s instructions. Endothelial cells, HUVEC were 

trypsinised and seeded at 10
6 

cells per insert and topped up with 500 µl of EGM. 

The HUVEC cells were incubated for 48 hr at 37
o
C in a 5 % v/v CO2 atmosphere 

to allow the formation of a monolayer. Subsequently the procedure used to study 

MSC migration was performed as described in section 2.6.1.1. Mesenchymal 

stromal cells were counted with green fluorescence for PKH67 for five fields on a 

single membrane and means were calculated.  

 

2.6.2  Cell proliferation assays 

2.6.2.1   EdU labelling 

 

Proliferating cells were labelled with 5-ethynyl-2´-deoxyuridine (EdU) and 

detected using the Click-iT
TM

 EdU Alexa Fluor 488 Imaging kit according to the 

manufacturer’s instructions. In 24 well plates, 10,000 cells/well were cultured on 

coverslips in 1ml FM for 24 h. Cells were washed twice with PBS and serum 

starved for 24 h to synchronize the cells at G0/G1 of the cell cycle. Fresh SF 

media (1ml) was added with 10µM EdU and stimuli or inhibitors for 24 h. Cultured 

cells were fixed in 4% PFA in PBS for 30 min at RT, then washed three times with 
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PBS followed by PBT (0.5% Triton X-100 in PBS) for 20 min at room temperature. 

Cells were incubated for 30 min with 3% 500µl of BSA. The Click-iT™ reaction 

cocktail was prepared freshly just before use by mixing 430 μL of reaction Click-iT 

buffer, 20μL of 100 mM copper sulphate (CuSO4),  1.2μL of Alexa Fluor dye, and 

50μL of reaction buffer additive solution in a final volume of 500 μL (sufficient for 

one well). Cells were washed three times with 3% 500µl of BSA and incubated 

with Click-iT for 30 min in the dark. Cover slips were then washed three times in 

PBS for 10 min each and transferred to a glass slide. Vectashield containing 

DAPI was added to the cover slips which was then mounted, and sealed with nail 

varnish, and kept overnight in the dark at 4
o
C until counting at 10x magnification 

using a Zeiss Axioplan-2 microscope. Alexa Fluor 488 light emission was 

captured with the XF22 filter (excitation 495 nm, emission 519 nm) and Axiovision 

software V4.8. Images were captured using a JVC-3 charged coupled device 

camera with KS300 software. 
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2.7 Gene expression arrays 

Myofibroblasts and MSCs were cultured as described in section 2.3.1 and 2.3.2 

respectively and RNA extracted by Dr. Islay Steele using the RNeasy kit. 

Similarly, the RNA was extracted from cultured oesophageal cancer cells, (OE21, 

OE19 and OE33) according to manufacturer's instruction. Samples were 

analysed using GeneChip©Human Genome U133 Plus 2.0 arrays at the Liverpool 

Genome Facility by Dr. Lucille Rainbow, according to the manufacturer's 

instruction. The GeneChip©Human Genome U133 Plus 2.0 array measures the 

expression of 47,000 transcripts. GeneChip® Scanner 3000 enabled high-

resolution scanning of the arrays. To provide stringent microarray assessments 

confirming reproducibility and avoiding the experimental artifacts, Microarray 

Suite 5.0 QC Metrics (MAQC) was used as a quality control. Further, the data 

were extracted using the software GeneSpring GX V.10. Data were normalised 

with a MAS5 algorithm and filtered using "flags present (P)", "marginal (M)", and 

"absent (A)". Statistical analysis was performed using student paired t-test, 

unpaired t-test and ANOVA within the GeneSpring software. For large datasets of 

differential gene expression (DE), the percentage of false positives among 

defined significant results, ie False Discovery Rate (FDR), was used. The 

expression of individual genes was reported relative to Glyceraldehyde 3-

phosphate dehydrogenase (GAPDH). 
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2.8 Western Blots 

2.8.1 Preparation of whole cell lysates 

Cells were cultured in 10 cm Petri dishes at a seeding density of 10
6 

 cells and 

incubated for 24 h in FM. Cells were then washed three times with PBS and fresh 

10 ml SF media containing stimuli or inhibitors was added and incubated for 24 h. 

Media was then removed and 10ml sterile PBS added to the cells on ice. Cells 

were washed twice with 10ml PBS and recovered by 100µl RIPA buffer (25 mM 

Tris-HCL pH 7.6, 150 mM NaCl, 1% w/v NP-40, 1% w/v sodium deoxycholate and 

0.1% w/v sodium dodecyl sulfate), containing 1% v/v Protease Inhibitor cocktail 

set III, EDTA-free and 1% v/v Phosphatase Inhibitor cocktail set III, EDTA free. 

Cell suspensions were pipetted into clean labelled tubes, sonicated for 5 min and 

incubated on ice for 30 min. The extracts were then centrifuged at 12000 x g at 

4
o
C for 30 min and supernatants stored at -80

o
C. 

 

2.8.2 Protein quantification 

To ensure equal loading in Western blots, protein concentrations were quantified 

using modified Lowry DC protein assays. Bovine serum albumin standard (2 

μg/ml-0.125 μg/ml) was serially diluted in PBS and 5 μL was added in triplicate. 

Similarly, triplicates of 5 μL of sample diluted in RIPA lysis buffer (1:10) were 

added followed by the addition of 25 μL reagent A and 200 μL of reagent B. The 

samples were incubated for 30 min and absorbance was measured at 450 nm. 

  

2.8.3 SDS-poly-acrylamide gel electrophoresis 

Proteins were resolved by discontinuous SDS polyacrylamide gel electrophoresis 

(SDS-PAGE). A separating gel of 10% or 15% w/v SDS-poly-acrylamide was 
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layered with H2O-saturated iso-butyl alcohol. The chamber and gels were 

assembled as described in the manufacturer’s protocol. Each gel was loaded with 

5 μL of PageRuler
TM

 Plus prestained protein ladder to provide molecular weight 

standards and to monitor electro-blotting. Cell extracts were denatured by pre-

heating for 5 min at 100
o
C with 5x loading buffer. Gels were run at a constant 

current of 100V for 1 h and were blotted once the bromophenol blue reached the 

lower end of the gel.  

 

2.8.3.1 Electrophoretic transfer 

Proteins were electotransferred onto nitrocellulose at a constant voltage of 100 V 

for 1 h at RT. Nirtocellulose membranes were then rinsed in Tris-buffered saline 

containing 0.1% Tween (TBS-T) three times for 10 min. Membranes were blocked 

for at least 1 h at RT with blocking buffer (TBS-T containing 5% W/V Marvel milk 

powder). Primary antibody diluted in 5 ml blocking buffer was applied to 

membranes overnight at 4
o
C. On the next day, membranes were washed four 

times in TBS-T and horseradish peroxidase (HRP)-conjugated secondary 

antibodies were applied for at least 1 h. Membranes were exposed using the 

Immun-Star™ WesternC™ Chemiluminescence Kit. 

 

2.8.3.2 Densitometry evaluation of band intensity  

Protein bands were quantified from captured blot images using a ChemiDoc XRS 

system (Bio-Rad, Hemel Hempstead, UK). The intensity of individual bands was 

quantified with the BioRad software version 2.3.1. The samples were normalised 

to Glyceraldehyde 3-phosphate dehydrogenase (GAPDH) unless otherwise 

stated. 
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Antibody Species Dilution Source 

GAPDH Mouse 1:1000 Meridian Life 
Science, USA 

Chemerin Goat 1:250 R&D Systems, 
UK 

MIF Goat 1:200 R&D Systems, 
UK 

Phospho- p44/42 MAPK Rabbit 1:2000 CellSignal, USA 

Phospho-p38 MAPK Rabbit 1:1000 CellSignal, USA 

Phospho- SPAK/JNK-II Rabbit 1:1000 CellSignal, USA 

Total p44/42 MAPK Rabbit 1:2000 CellSignal, USA 

Total p38 MAPK Rabbit 1:2000 CellSignal, USA 

Total SAPK/JNK-II Rabbit 1:2000 CellSignal, USA 

Anti-Mouse Goat 1:20000 Sigma, UK 

Anti-Goat Rabbit 1:10000 Sigma, UK 

Anti-Rabbit Goat 1:10000 Sigma, UK 

Anti-Rabbit Goat 1:2000 Sigma, UK 

 
 

Table 2.3 Primary antibodies and secondary antibodies and their dilutions 
used for Western blot analysis.  
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2.9 Sandwich - enzyme linked immunosorbent assay 

(ELISA) 

Media samples were collected as mentioned in section 2.4 and were stored at -

80
o
C until use. Chemerin and MIF concentrations in media were measured using 

commercially available Chemerin ELISA Kits and Human MIF Immunoassays 

respectively.  

 

2.10 Amplification of plasmid DNA 

Chemically competent E. coli were used to amplify plasmids expressing DNAs of 

interest. A 50 μL aliquot of competent E. coli cells was thawed on ice, mixed with 

100 ng of plasmid DNA and then incubated for 30 min on ice, followed by 30 sec 

heat shock at 37°C and 2 min incubation on ice to induce uptake of DNA. The 

cells were allowed to recover by the addition of 250 μL of Luria broth (LB) 

medium in a shaking incubator at 37°C for 1 h. Two aliquots of the suspension 

(20 μL and 100 μL) were then plated onto pre-warmed (37°C) LB agar plates 

containing 100 μg/ml ampicillin. The plates were observed the next day after 

overnight incubation at 37°C for the antibiotic-resistant colonies. A single colony 

isolated from a fresh LB plate was used to inoculate 4 ml of LB medium 

containing 100 μg/ml ampicillin, the cells were then incubated at 37°C in a 

shaking incubator at 225 rpm for 4-8 h. Bacterial cultures were collected by 

centrifugation (6000 rpm for 5 min) and processed for plasmid DNA extraction 

using Qiagen Plasmid Mini Kit. DNA concentrations were measured by 

absorbance at A260, and the ratio of A260/A280 was used as an indicator of 

purity. When long-term storage of clones was needed, glycerol was added to an 
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aliquot of culture at a final concentration of 15% v/v, and the stocks were stored in 

required aliquots at -20°C. A small aliquot was kept at 4
o
C for usage till 6 months 

 

2.11  Transient transfection of myofibroblasts and MSCs 
 

Cells were cultured as described in section 2.3 and maintained at low passage 

number (<9) and 85% confluence before transient transfection. Amaxa™ 

Fibroblasts Nucleofector™ kits and Amaxa
TM

 Human MSC Nucleofector® kits 

were used according to manufacturer’s instructions. Each transfection employed 

2 μg of DNA (5 x 10
5
 cells) and 100 μL of complete nucleofector solution along 

with media. The required number of cells was centrifuged at 200 x g for 10 min 

and the supernatant was discarded. The pellet was resuspended at RT Human 

MSC Nucleofector Solution to a final concentration of 5 x10
5
 cells/100μL.  

Transfection was achieved by using the program U-23 (for high transfection 

efficiency) by adding 500 μL of the pre-warmed culture full medium to the cuvette 

and using the plastic pipette (provided in kits) and transfer sample to the T-75 

with 20 ml of freshly prepared FM.  

  

2.12 Statistics 

The final results were calculated as mean ± standard error of means (SEM). 

Student t-test and ANOVA were performed on the data as appropriate with 

significance at p≤0.05, unless otherwise stated. Experiments with standards 

included the assay efficacy, reliability, and calculation of unknown samples which 

were based on coefficient of regression, R
2
 and line equation, y= mx + c (where 

m= slope of line and c is the intercept at y-axis) 
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Chapter 3 
 
 

3 Morphological and functional 
characterisation of oesophageal 

myofibroblasts 
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3.1 Introduction 

Myofibroblasts are often described as activated fibroblasts and are observed in 

the stroma of many, probably all, solid cancers. The isolation of myofibroblasts 

from tumours and their characterisation by morphology and function has been 

widely applied to studies of breast cancer, prostate cancer and gastric cancer 

(Ronnov-Jessen, Petersen et al. 1995; Tuxhorn, Ayala et al. 2002; McCaig, Duval 

et al. 2006; Holmberg, Quante et al. 2012). In oesophageal cancer, some studies 

have showed that fibroblasts influence tumour growth and development (Noma, 

Smalley et al. 2008; Grugan, Miller et al. 2010). However, in general little is 

known of how myofibroblasts obtained from oesophageal cancer (CAMs) differ 

from those obtained from neighbouring tissue (ATMs) or normal tissue (NTMs). 

Myofibroblasts share some markers, e.g. αSMA, vimentin with other stromal cells 

notably smooth muscle cells (Sappino, Schurch et al. 1990; Meran and Steadman 

2011). Some studies have therefore used a panel of positive (αSMA, fibroblast 

activated protein, fibroblasts secreted protein), and negative (pan cytokeratin, 

desmin) markers to distinguish myofibroblasts from epithelial cells and other 

stromal cells (Spaeth, Dembinski et al. 2009; Kidd, Spaeth et al. 2012). However, 

αSMA has been used in virtually every study characterising myofibroblasts and 

increased αSMA abundance is considered to be one of the strongest signatures 

of myofibroblasts. 

Recent studies of gastric myofibroblasts have shown clear differences between 

CAMs and ATMs with respect to proliferation and migration (Holmberg, Quante et 

al. 2012). To our knowledge, so far there has been no comparable study of CAMs 

and ATMs in oesophageal SC or AC. However, Zhang et al., 2009 compared  
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oesophageal fibroblasts from cancer and non-cancer tissue and confirmed 

increased proliferation using MTT assays. In the present study we used two 

different proliferation assays (EdU and clonogenic) and two different migrations 

assays (Boyden chamber and wound healing) to characterise oesophageal SC 

and AC CAMs and ATMs, and NTMs, and studied the responses of cancer cell 

lines (SC, OE 21 and AC, OE19 and OE33) to CM from these cells.  

 

3.1.1 Objectives 

 

Specific objectives were: 

1. To characterise CAMs and ATMs from SC and AC, and to compare with 

myofibroblasts from normal transplant donors (NTMs). 

2. To determine the effect of conditioned media from oesophageal CAMs, 

ATMs and NTMs on cancer cell proliferation and migration. 
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3.2 Material and Methods 

3.2.1 Cell culture 

 

Oesophageal SC and AC myofibroblasts (both CAMs and ATMs), and 

oesophageal NTMs, were cultured as described in sections 2.3, and 2.3.1. 

Oesophageal cancer cell lines (OE19, OE21, and OE33 cells) were cultured as 

described in section 2.3.3. 

3.2.2 Conditioned media 

Conditioned media were prepared from myofibroblasts as described in section 

2.4. 

3.2.3 Immunocytochemistry 

Myofibroblasts were seeded at a density of 10,000 cells/well in 24 well plates on 

cover slips (see section 2.3.1) and probed for each marker.  Approximately 500-

800 cells were counted for each marker and images were taken as described in 

section 2.5. 

3.2.4 EdU labelling 

To determine differences in proliferation between CAMs, ATMs and NTMs, cells 

were seeded at a density of 10,000 cells/well in 24 well plates on cover slips. The 

effect of myofibroblast CM was determined on OE19, OE21 and OE33 cells using 

EdU labelling as described in section 2.7.1. Myofibroblasts labelled with EdU 

were counted in 5-10 fields and cancer cells in 5 fields (100-200 cells/well). 

Images were taken as described in section 2.7.1. Data are presented as mean 

proliferating cells in 5 fields for cancer cells and 10 fields for myofibroblasts per 
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well; experiments were performed in triplicate and data expressed as mean ± 

S.E.M; significance was determined by ANOVA, p<0.05. 

3.2.5 Boyden chamber chemotactic migration assays 

Chemotactic migration assays were performed using Boyden chambers as 

described in section 2.6.1.1.  Inserts were seeded with 25,000 OE21 or OE33 

cells in 500µl 0.1% FBS in appropriate media. The bottom well contained 750µl 

CM from CAMs, ATMs or NTMs. The incubation time was 24 h. Cell staining and 

counting was performed as described in section 2.6.1.1. Data are presented as 

mean cells migrating in 5 fields/well; experiments were performed in triplicate and 

data expressed as mean ± S.E.M; significance was determined by student t-test 

or ANOVA as appropriate, p<0.05.  

3.2.6 Scratch wound assays  

Wound healing assays were performed in 6 well plates. Cells were allowed to 

form monolayers and subsequent steps were performed as described in section 

2.6.1.2. OE21 and OE33 cells were incubated for 8 h and 10 h respectively with 2 

ml myofibroblast CM after creating wound edges. Data analysis and presentation 

were performed as described in section 2.6.1.2. Thus, the distance between 

wound edges was measured at 5 equally spaced positions in each field and 

presented as mean percentage of wound healing/well; experiments were 

performed in triplicate and data expressed as means ± S.E.M; significance was 

determined by student t-test or ANOVA as appropriate, p<0.05. 
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3.3 Results 

3.3.1 Oesophageal myofibroblasts express α-SMA and vimentin 

The primary oesophageal tumours employed in this study exhibited increased 

numbers of myofibroblasts typically with disordered architecture and morphology 

compared to adjacent tissue or normal tissue. They also stained with α-SMA and 

vimentin and they were negative for the smooth muscle and pericyte marker 

desmin (Appendix, Figure 1; Data obtained by Dr Tiszlavicz, Szeged, Hungary). 

Initially, cultured myofibroblasts were examined for the expression of two 

characteristic markers, namely α-SMA and vimentin. Expression of α-SMA and 

vimentin was found in both SC and AC CAMs and ATMs, and in NTMs (Figure 

3.1 A, B). Distinct intermediate filaments were visible with vimentin staining while 

with α-SMA there was a network of immunopositive structures that were clustered 

within the plasma membrane (Figure 3.1 A). The majority (99%) of myofibroblasts 

were positive for α-SMA and vimentin, with no structural differences between 

CAMs, ATMs or NTMs. All oesophageal CAMs, ATMs, and NTMs were negative 

for desmin markers for pericytes.  

 

3.3.2 CAMs show increased proliferation compared to ATMs 

Myofibroblast characterization was then extended to include a search for 

functional differences between SC and AC CAMs, ATMs and NTMs. The 

incorporation of EdU was used to measure the proportion of CAM, ATM and NTM 

cultures that were entering S-phase of the cell cycle (Figure 3.2 A). In individual 

pairs of SC (n=4) and AC (n=3) cells, CAMs showed greater proliferation than 

their ATM counterparts (Figure 3.2 B & C). Taken together, the mean data reveal 
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significantly greater numbers of CAMs in S-phase compared to ATMs or NTMs 

(Figure 3.2 D & E). 

 

3.3.3 Optimisation of functional assays for oesophageal cancer 

cell lines, OE21, OE33 and OE19 

In order to study the effect of CM on oesophageal cancer cells it was first 

necessary to optimize assays of proliferation and migration for these cells. EdU 

incorporation assays showed full media significantly increased labeling of OE21, 

OE19 and OE33 cells by approximately 30% compared to SF conditions (Figure 

3.3 A & B). In wound healing assays, there was significantly increased migration 

of OE21 and OE33 cells in response to FM compared to SF conditions (Figure 

3.3 C). OE21 and OE33 cells both migrated as a layer of cells (Figure 3.3 D). 

There was poor adhesion of OE19 cells after wounding and serum starvation and 

so these cells were not included in wound healing assays.  
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Figure 3.1 Characterisation of cultured oesophageal myofibroblasts. A) Positive 

vimentin  (red) staining of cultured oesophageal myofibroblasts (arrow) from 
squamous cancer and normal oesophageal tissue (nuclear staining with DAPI, blue); 
top, CAMs; middle, ATMs; lower, NTMs. B) Positive α-SMA (green) staining in 
cultured oesophageal myofibroblasts (arrow) from squamous cancer and normal 
oesophageal tissue (nuclear staining with DAPI, blue); top, CAMs; middle, ATMs; 
lower, NTMs. C) Negative desmin staining in cultures oesophageal CAMs. Scale bar: 
20 μm.  
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Figure 3.2 Increased proliferation of cancer associated myofibroblasts. A) 

Representative data from EdU proliferation assays. Staining of CAM, ATM, and NTM 
nuclei with DAPI (blue, first column, arrow), EdU (green; middle, arrow) and merged 
(third column, arrow). B) Individual pair-wise comparison of EdU labelling in CAMs 
versus ATMs in 4 pairs of SC cells. C) Individual pair-wise comparison of EdU 
labelling in CAMs versus paired ATMs in 3 pairs of AC cells. D) Group mean of data 
in panel B; CAMs (n=4), ATMs (n=4) and NTMs (n=6). E) Group mean of data in 
panel C; CAMs (n=3), ATMs (n=3) and NTMs (n=6). Horizontal arrows mean p<0.05 
by ANOVA; Bars, SEM; Scale bar= 20µM.  
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Figure 3.3 Optimisation of EdU incorporation, and wound healing assays for OE19, 

OE21 and OE33 cells. A) Representative EdU incorporation assays. Staining of 

OE21 nuclei with DAPI (blue, first column), EdU (green; middle) and merged images 

(third column) of cells treated with serum free media (SF, control) and full media 

(FM). B) Mean EdU labeling of OE19, OE 21 and OE33 cells (10,000 cells/well, 2cm2) 

24 h in SF or FM. C) Wound healing assays of OE21 and OE33 cells, scored at 8 h 

and 10 h when the closure of the wounds was approximately 50%. D) Mean wound 

healing of OE 21 and OE33 cells 8 h in SF or FM. Horizontal arrows mean p<0.05 by 

ANOVA; Bars, SEM; Scale bar- 20µM.  
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3.3.4 Enhanced proliferation of OE21 and OE33 cells in response 

to CM from CAMs 

 

EdU incorporation was then used to measure the proliferation of OE21 and OE33 

cells in response to myofibroblast CM. In individual pair comparisons, CM from all 

4 SC CAMs (SC1- SC4) stimulated OE21 cell proliferation and CM from all 3 AC 

CAMs (AC1- AC3) stimulated OE33 cell proliferation compared to the relevant 

ATM CM (Figure 3.4 A & B). The group mean increase in OE21 cell proliferation 

in response to CAM CM was significant for SC (n=4) compared to either ATMs or 

NTMs (n=6) (Figure 3.4 C). However, CAM CM stimulated OE33 cell proliferation 

was significantly greater compared to NTM CM (n=6) but not ATM CM (Figure 3.4 

D). In addition, the increase in OE21 and OE33 cell proliferation was significant in 

response to CM from SC ATM and AC ATM respectively, compared to control 

(Figure 3.4 C & D). 
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Figure 3.4 Increased proliferation of OE21 and OE33 cells treated with CM from 
CAMs. A) EdU labelling of OE21 cells treated with CM from SC CAMs compared to 
the corresponding ATM CM. B) EdU labelling of OE33 cells treated with CM from AC 
CAMs compared to the corresponding ATM CM. C) Group mean data for EdU 
labelling of OE21 cells treated with CM from SC CAMs (n=4) compared to ATM CM 
(n=4) and NTM CM (n=6). D) Group mean data for EdU labeling of OE33 cells treated 
with CM from AC CAMs (n=3) compared to ATM CM (n=3). Horizontal arrows mean 
p<0.05 by ANOVA; Bars, SEM. 
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3.3.5 Wound healing assays show CAM CM induces greater OE21 

and OE33 cell migration 

 

In individual pairwise comparisons, CM from SC CAMs increased OE21 cell 

migration compared to CM from corresponding ATMs (Figure 3.5 A). Similar 

results were obtained for OE33 cells in response to CM from AC CAMs compared 

with ATMs (n=3) (Figure 3.5 B). The group mean data showed significant
 

increases in OE21 cell migration in response to CM from SC CAMs compared to 

the paired ATMs, or NTMs (Figure 3.5 C). Increase OE33 cell migration was also 

seen in response to CM from AC CAMs compared to the corresponding ATM CM. 

In addition, a significant increase in OE33 cell wound healing was seen in 

response to CM from AC ATM compared to control (Figure 3.5 D). 

 

3.3.6 CAM CM induces OE21 and OE33 chemotaxis 

 

Finally, studies of cell migration were extended to include a different type of assay 

namely chemotaxis in Boyden chambers. In individual paired comparisons, OE21 

cells treated with CM (in the lower chamber) from SC CAMs showed enhanced 

migration compared to CM from the corresponding ATMs (Figure 3.6 C). Similar 

results were obtained for OE33 cells in response to CM from AC CAMs compared 

with ATMs (Figure 3.6 D). The group mean data showed statistically significant
 

increases in OE21 and OE33 cell migration in response to CM from CAMs 

compared to ATMs or NTMs in both, SC and AC group (Figure 3.6 E & F). In 

addition, a significant increase in OE21 and OE33 cell migration was seen in 

response to CM from SC ATMs and AC ATMs, respectively, compared to control 

(Figure 3.6 E & F). 
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Figure 3.5 Increased migration in wound healing assays of OE21 and OE33 cells 
treated with CM from CAMs. A) Wound healing responses of OE21 cells treated with 
CM from SC CAMs versus corresponding ATMs. B) Wound healing responses of 
OE33 cells treated with CM  from AC CAMs versus corresponding ATM CM. C) 
Group mean wound healing data for OE21 cells treated with CM from SC CAMs 
(n=4), ATMs (n=4) and normal tissue myofibroblasts, NTMs (n=4). D) Group mean 
wound healing data for OE33 cells treated with CM from AC CAMs (n=3) and ATMs 
(n=3). Horizontal arrows mean p<0.05 by ANOVA; Bars, SEM.  
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Figure 3.6 Enhanced chemotaxis of OE21 and OE33 cells in response to CM from CAMs. A) 
Representative Boyden chamber migration assays of OE21 cells treated with CM from NTMs, 
ATMs, and CAMs (red arrow). B) Representative Boyden chamber migration assays of OE33 
cells treated with CM from NTMs, ATMs, and CAMs (red arrow). C) Boyden chamber 
migration assays of OE21 cells treated with CM from SC CAMs and corresponding ATMs. D) 
Group mean data of OE21 cell migration in response to CM from SC CAMs (n=4), ATMs (n=4) 
and NTMs (n=4). E) Boyden chamber migration assays of OE33 cells in response to CM from 
AC CAMs and corresponding ATMs. F) Group mean data of OE33 migration responses to CM 
from AC CAMs (n=3), ATMs (n=3) and NTMs (n=2). Horizontal arrows mean p<0.05 by 
ANOVA; Bars, SEM. 

A 
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3.4 Discussion 

The main finding of these studies is that conditioned media from myofibroblasts 

increases the proliferation and migration of oesophageal squamous cancer i.e. 

OE21 cells and Barrett’s adenocarcinoma i.e. OE33, cells. The myofibroblasts 

used for these studies were characterised by positive staining for α-SMA and 

vimentin expression. In the case of both types of oesophageal cancer, the results 

indicate clear functional differences in proliferation in vitro between CAMs 

compared with ATMs or NTMs. Importantly, the functional differences also include 

an increased capacity for CM from SC and AC CAMs to stimulate the proliferation 

and migration of OE21 and OE33 cells compared to CM from ATMs or NTMs. 

Expression of α-SMA and vimentin are widely used as markers for myofibroblasts. 

In particular increased expression of α-SMA occurs when fibroblasts are 

transformed to myofibroblasts and is a marker for this transformation (Hinz, 

Celetta et al. 2001). The present data are therefore consistent with observations 

that myofibroblasts or CAFs from various other cancers such as lung, breast and 

pancreatic cancer also express α-SMA and vimentin (Serini and Gabbiani 1999; 

Micke and Ostman 2004; Surowiak, Suchocki et al. 2006; Brentnall, Lai et al. 

2012). However, expression of α-SMA also occurs in smooth muscle cells, and 

possible contamination of pericytes and epithelial cells might conceivably occur in 

myofibroblast cultures. This was tackled by showing positive co-staining for 

vimentin and negative staining for desmin and pan-cytokeratin thereby confirming 

that the myofibroblast cultures differ from smooth muscle cells pericytes or 

epithelial cells.  

 

Functional studies showed clear differences between CAMs versus ATMs or 

NTMs. In particular, SC and AC CAMs proliferate at greater rates than ATMs or 
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NTMs as indicated by EdU incorporation (which measures cells in S-phase). It 

would have been interesting to measure the apoptosis in myofibroblasts although 

previous studies have suggested no difference in cell death between gastric 

CAMs, ATMs and NTMs (Holmberg, Quante et al. 2012). Moreover, other work in 

the group has found no difference in apoptosis using cleaved caspase assays in 

these myofibroblasts (Holmberg, Quante et al. 2012). The present data are 

nevertheless consistent with previous studies using cell growth assays such as 

MTT (3-(4,5-dimethyethiazol-2-yl)-2,5-diphenyltetrazolium bromide) which show 

increased biomass of tumour fibroblasts, and flow cytometry to measure cells in 

the S and G2-M phases of the cell cycle which has confirmed increased tumour 

fibroblast proliferation compared with non-tumorous fibroblasts derived from 

oesophageal SC (Zhang, Fu et al. 2009). 

 

In view of the potential importance of myofibroblasts in regulating the tumour 

microenvironment and promoting cancer cell growth, the effect of myofibroblast 

CM was then studied on several different oesophageal cancer cell lines. For 

these studies CM from SC and AC myofibroblasts were applied to an SC cell line 

(OE21) or to AC cell lines (OE33 and OE19), respectively. Myofibroblast CM 

stimulated proliferation and migration of the cancer cell lines, and CAM CM was 

more potent than ATM CM.  Proliferation was measured as EdU incorporation into 

DNA of dividing cells. Unlike BrdU incorporation assays, EdU incorporation 

assays are rapid to perform and do not require DNA denaturation; in principle 

though, the two assay both measure cells in S-phase. In previous studies, 

oesophageal cancer cell proliferation has been measured by MTT and XTT 

(sodium3’-[1-phenylamino)-carbonyl]-3,4-tetrazolium]-bis(4-methoxy-6-nitro) 

benzene-sulfonic acid hydrate incorporation (Liu, Jamieson et al. 2005; 

O'Donovan, O'Sullivan et al. 2011). These assays measure tetrazolium salt 
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reduction in metabolically more active cells by mitochondrial dehydrogenase. 

Although convenient, they do not therefore measure cell proliferation directly. 

Moreover, the tetrazolium salt in the presence of PMS (phenozine 

methosulfate) is toxic and can result in unreliable assays. It is conceivable that 

increased proliferation could be accompanied by increased apoptosis in which 

case EdU incorporation might not indicate an increase in cell numbers. In 

response to CM from SC and AC CAMs, OE21 and OE33 cells exhibited both 

increased EdU incorporation and greater clonal expansion compared with ATM 

CM. Previously, other models have been used to study stromal-cancer cell 

interactions; for example co-culture studies suggest that direct contact of breast 

cancer cells, UACC-81 and MCF7 with fibroblasts is essential to induce cancer 

cells proliferation or migration (Maeda, Alexander et al. 2004; Samoszuk, Tan et 

al. 2005). Even so, studies using CM from myofibroblasts in CFU and Boyden 

chamber migration assays have shown enhanced cancer cell proliferation and 

migration, respectively, in human breast cancer and in gastric cancer (Gioni, 

Karampinas et al. 2008; Mi, Bhattacharya et al. 2011; Holmberg, Quante et al. 

2012). Hence, the data from multiple models supports the idea of functional roles 

for myofibroblasts driving cancer cell proliferation. 

The present study examined migration of cancer cells using two different assays: 

wound healing and transwell Boyden chamber assay. In wound healing assays 

the ability of cells to migrate in an open field is measured; this type of assay is 

suitable for cells that migrate as a sheet ie without loss of cell-cell contact. 

Boyden chamber assays also determine migration but in this case in response to 

a gradient of growth factor; they therefore measure chemotaxis. Moreover these 

assays are suitable for cells that migrate individually ie exhibit EMT. In response 

to CM from oesophageal SC and AC CAMs, both OE21 and OE33 cells showed 
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enhanced migration compared with CM from ATMs or NTMs. The migration of 

cancer cells in response to myofibroblast CM has previously been determined in 

several other studies, for example Holmberg et al., showed increased AGS cell 

migration in response to CM from gastric cancer CAMs and ATMs(Holmberg, 

Quante et al. 2012). 

In conclusion oesophageal myofibroblasts in culture express α-SMA and vimentin 

markers, which are important markers of their differentiation. However, there are 

important functional differences between CAMs, ATMs and NTMs: CAMs 

proliferate more than ATMs and NTMs. In addition CM from CAMs consistently 

induces more proliferation and migration of OE21 and OE33 cells compared to 

CM from paired ATMs, or from NTMs. One obvious mechanism to explain these 

observations would be the increased abundance of paracrine factors in CAM CM. 

In subsequent chapters, therefore, this possibility will be explored in order to 

define myofibroblast secreted factor(s) involved in stimulating oesophageal 

cancer cell proliferation or migration.  

3.5 Conclusion 

 

1. CAMs, ATMs, and NTMs exhibit a myofibroblast phenotype. 

2. CAMs are more proliferative than ATMs in both SC and AC. 

3. Conditioned media from SC and AC CAMs increased proliferation and 

migration of OE21 and OE33 cell, respectively, more than CM from ATMs, 

or NTMs. 
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Cell migration 
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4.1 Introduction 

Chemerin is a comparatively new protein that has emerged as a modulator of 

cancer growth. Its potential to recruit stromal cells, e.g. macrophages and 

dendritic cells has been studied in obesity (Landgraf, Friebe et al. 2012), insulin 

resistance (Takahashi, Takahashi et al. 2008) and inflammatory diseases 

(Landgraf, Friebe et al. 2012). In addition, recent findings have shown increased 

chemerin concentrations in ascites fluid resulting from ovarian and liver cancer 

(Wittamer, Franssen et al. 2003) although no functional relevance was attached 

to the observation. Other studies have shown increased chemerin in association 

with a good prognosis for non-small cell lung cancer (NSCLC) (Shen Zhao 2011), 

and suppression of tumorigenesis in melanoma (Pachynski, Zabel et al. 2012). 

Nevertheless, little attention has been given to chemerin interactions with its 

cognate receptors, chemR23 and GPR1, or to the activation of signalling 

cascades, in cancer. To our knowledge, so far nothing has been published 

relating chemerin to oesophageal cancer. 

Proteomic studies using iTRAQ analysis to compare the secretome of SC CAMs 

and ATMs have been performed by Dr C Holmberg (Holmberg 2009) The results 

revealed chemerin to be an upregulated chemokine in the media of CAMs relative 

to paired ATMs in all 4 SC patients examined (see Appendix 2). In the present 

study these observations were validated and the effect of chemerin on MSC, 

OE21 and OE33 cell migration was investigated, together with the role of the two 

putative chemerin receptors: chemR23 and GPR1. 
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4.1.1 Objectives 

 

The specific objectives were: 

1. To validate the expression and secretion of chemerin by myofibroblasts. 

2. To investigate the effect of chemerin on MSC, OE21 and OE33 cell 

proliferation and migration. 

3. To study ligand–receptor interactions and dissect the transduction 

pathways mediating chemerin-stimulated MSC migration. 

4. To identify targets of chemerin expressed by MSCs. 
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4.2 Material and Methods 

4.2.1 Cell culture and condition media preparation 

 

Oesophageal SC and AC myofibroblasts (CAMs and ATMs), and oesophageal 

NTMs, were cultured as described in section 2.3.1. Conditioned media were 

prepared as described in section 2.4. Oesophageal cancer cell lines (OE19, 

OE21 and OE33 cells) and MSCs were cultured as described in sections 2.3.2 

and 2.3.3 respectively. 

4.2.2 Immunocytochemistry 

 

Expression of chemR23 and GPR1 in MSC was confirmed using ICC as 

described in section 2.5. Approximately 500-800 cells were counted in each case 

and images were taken as described in section 2.5. 

4.2.3 EdU labelling 

Proliferation was determined by EdU labelling as described in section 2.7.1. Cells 

were incubated in 1 ml SF media containing human recombinant chemerin at 

100ng/ml for 24 h. Labelled cells were counted in 5-10 fields (approximately 100-

200 cells/well) in triplicate. Images were taken as described in section 2.3. Data 

are represented as mean % EdU-labelled cells ± S.E.M, and significance 

determined by student t-test, or ANOVA as appropriate and considered significant 

at p<0.05. 

4.2.4 Boyden chamber- chemotactic migration assays 

 

Chemotactic migration assays were performed as described in section 2.6.1. 

Inserts were seeded with 10,000 cells in 500µl SF and the bottom well contained 
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either 750µl CM or SF media containing chemerin (4 - 100ng/ml) or other 

treatment, as appropriate. The effect of CM from myofibroblasts overexpressing 

chemerin or in which chemerin had been knocked-down was studied on MSC and 

OE21 cell migration as described in section 2.6.1.1. The effect of chemerin 

receptor (chemR23 and GPR1) knock down in MSCs was studied in response to 

CM or chemerin. Inhibitors of MAPK (SP600125, 50µM; UO126, 10µM; 

SB202190, 3µM), PKC (Ro320432, 2µM) and PI3K (LY294002, 50µM), were 

used.  Cell staining and counting were performed as described in section 2.6.1.2. 

Data are represented as mean of cells migrating in 5 fields/well in triplicate ± 

S.E.M and significance was determined by student t-test or ANOVA as 

appropriate and considered significant at p<0.05. 

4.2.5 Scratch wound assays  

The effect of chemerin (20ng/ml, 100ng/ml) on OE21, OE33 and MSC migration 

in scratch wound assays was studied in 6 well plates as described in 2.6.1.2.  

4.2.6 Western blot analysis 

 

Western blot analysis was used to validate expression of chemerin in 

myofibroblasts after overexpression and knockdown and to determine activation 

of MAPK pathways after chemerin and PMA stimulation, as described in section 

2.9.  

4.2.7 Gene Expression analysis 

Transcript profiles of myofibroblasts, MSCs and OE21 cells were analysed using 

GeneChip©Human Genome U133 Plus 2.0 arrays as described in section 2.8.  

4.2.8 Sandwich - enzyme linked immunosorbent assay (ELISA) 
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Chemerin concentrations in media from myofibroblasts, MSCs and oesophageal 

cancer cell lines were determined by ELISA as described in section 2.10.  

4.2.9 Transient transfection of myofibroblasts and MSCs 

Squamous cancer CAMs and ATMs were transfected with a chemerin 

overexpression plasmid (3µg) or with 3 different silencing RNAs (siRNA) (3µM) as 

described in section 2.11 and 2.12.  
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4.3 Results 

4.3.1 Gene arrays indicate reciprocal expression of chemerin and 

chemR23 transcripts in CAMs and MSCs 

In initial studies, the relative abundance of chemerin and chemR23 transcripts 

was examined using existing microarray datasets from oesophageal CAMs, 

ATMs, MSCs and cancer cell lines. The abundance of chemerin transcripts 

relative to GAPDH was highest in CAMs and ATMs (both SC and AC), followed 

by MSCs, OE19, OE21 and OE33 cells. A comparison between CAMs and ATMs 

from SC or AC showed no difference in chemerin transcript abundance. Similarly 

the abundance of chemerin transcripts, relative to GAPDH, in NTMs resembled 

that in CAMs and ATMs and was higher than in MSCs and cancer cells (Figure 

4.1 A). 

The abundance of chemR23 transcripts relative to GAPDH was significantly 

higher in MSCs than in myofibroblasts or cancer cells (Figure 4.1 A). There was 

no difference in chemR23 transcript abundance in the different types of 

myofibroblast. A microarray analysis was also performed for the other putative 

chemerin receptor, GPR1. The abundance of GPR1 transcripts relative to 

GAPDH was higher in MSCs than in CAMs, ATMs (either SC or AC), NTMs or 

cancer cells. There was no difference of GPR1 transcripts between CAMs and 

ATMs in AC, but in SC there was higher abundance in ATMs than CAMs.  
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Figure 4.1  Chemerin expression is higher in myofibroblasts while that of its putative 
receptors, chemR23 and GPR1, is higher in MSCs. Transcript abundance of 
chemerin, chemR23 and GPR1 relative to GAPDH in  OE19, OE21, OE33, MSCs, 
and different groups of myofibroblasts (CAMs, ATMs, NTMs). Horizontal arrows mean 
p<0.05 by ANOVA; vertical bars, SEM. 

 

 

 

 

 

 

A 



                                                                           Chemerin and Mesenchymal Stromal Cell migration
  

88 
 

4.3.2 Increased chemerin expression in CAMs 

 

Given the microarray data, it was then considered particularly important to 

validate the observation by proteomic analysis of increased chemerin in CAMs 

using Western blot and ELISA. Western blot analysis of media and cell extracts 

from SC CAMs and ATMs showed greater expression of chemerin in CAMs than 

in ATMs (Figure 4.2 A and B). In contrast, cell extracts from MSC and OE21 cells 

showed either no, or barely, detectable expression of chemerin (Figure 4.2 C). 

The group mean data for densitometry analysis Western blots of SC cell extracts 

and media confirmed significantly increased chemerin expression in CAMs 

compared to ATMs (Figure 4.2 D and E).  

To further validate the findings, individual pairwise comparisons were then made 

of chemerin expression measured by ELISA of media from SC and AC CAMs 

compared to ATMs (Fig 4.3 A & C). The range of chemerin concentrations in 

CAM media was 200 to 3250 pg/ml compared with 90 pg/ml to 1450 pg/ml in 

ATMs. The group mean chemerin concentration in CAM media was significantly 

higher than in their paired ATMs for both SC and AC  (Figure 4.3 B & D).  

4.3.3 Chemerin receptor, chemR23 and GPR1, expression in MSC  

 

Since the gene array data suggested chemR23 and GPR1 were relatively well 

expressed in MSCs compared to myofibroblasts and cancer cells the expression 

of these was then validated by immunocytochemistry. Specific antibodies for each 

receptor showed strong chemR23 and GPR1 expression in MSCs (Figure 4.2 F). 

Approximately 90-95% of MSCs were positive for chemR23 and GPR1 

suggesting most cells expressed both receptors. Myofibroblasts and cancer cells 

showed weak chemR23 and GPR1 expression. 
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Figure 4.2 Increased chemerin expression in CAMs and ChemR23 receptor 
expression in MSCs. A) Western blots analysis of chemerin in media from SC CAMs 
and ATMs, and B) cell extracts. C) Western blots of chemerin in MSC and OE21 cell 
extracts. D) Quantitative analysis of chemerin abundance in SC CAM and ATM media 
by densitometry (n=4), and E) cell extracts (n=4). F) Immunohistochemical staining of 
ChemR23, and GPR1 in MSCs. Horizontal arrows p<0.05 by t-test; vertical bars, 
SEM; scale bar, 20µM; magnification, 40x.  
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Figure 4.3 ELISA indicates increased chemerin in media of CAMs compared to 
ATMs. A) Chemerin concentrations (pg/ml) in individual pairs of CAMs (filled bars) 
and ATMs (open bars) from SC. B) Mean chemerin concentration from SC CAMs and 
ATMs (n=4). C,D) Similar data for AC (n=3). Horizontal arrows,  p<0.05, paired t- test; 
vertical bars, SEM.  
 

 

 

 

 

A B 

C D 



                                                                           Chemerin and Mesenchymal Stromal Cell migration
  

91 
 

4.3.4 Chemerin increased EdU incorporation 

 

Next, the role of chemerin was investigated using human recombinant chemerin 

in cell proliferation assays, by EdU. EdU incorporation assays showed increased 

proliferation in MSC and OE21 cells in response to 100ng/m chemerin (Figure 4.4 

B & C). 

4.3.5 Chemerin in CM from CAMs stimulated MSC proliferation 

 

The role of chemerin released from CAMs was then studied by examining the 

effect of CM from SC myofibroblasts, and from NTMs, on MSC proliferation. Thus 

CM from CAM6 significantly increased MSC proliferation compared to CM from 

the corresponding ATM or from NTMs (Figure 4.4 D). The stimulatory effect of 

CAM CM on MSC proliferation was inhibited using chemerin neutralising antibody 

(Figure 4.4 E). 

4.3.6 Recombinant chemerin enhanced MSC, OE21, OE33 and 

myofibroblast chemotactic cell migration  

 

To study the effect of chemerin in chemotactic cell migration, Boyden chamber 

assays were performed. Chemerin increased MSC, OE33 and OE21 cell 

migration in these assays (Figure 4.5 A, B, C, D, & F). It also increased CAM and 

ATM migration significantly compared to SF media (Figure 4.5 G & H).  
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Figure 4.4 Increased proliferation of MSCs in response to chemerin. A) 
Representative image of EdU staining (arrow) of MSCs in response to chemerin, 100 
ng/ml. B) Dose dependent increase in EdU labelling of MSCs in response to 
chemerin. C) Similar data for EdU labelling of OE21 cells. D) Increased EdU labelling 
of MSCs in response to CM from CAMs, ATMs and NTMs. E) Chemerin immune-
neutralisation (Chem Ab) significantly decreased EdU labelling of MSCs treated with 
CM from CAM6. Horizontal arrows, p<0.05, ANOVA; vertical bars, SEM.   
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Figure 4.5 Chemerin stimulation of cell migration in chemotaxis assays. A) 
Representative image of migrating MSCs (red arrow). B) Dose-dependent MSC 
migration in response to chemerin. C) Representative image of OE21 migrating cells 
(red arrow). D) Dose-dependent OE21 migration in response to chemerin. E) 
Representative image of OE33 migrating cells (red arrow). F) OE33 cells migrated in 
response to dose dependent stimulation by chemerin. G) Chemerin (100 ng/ml) 
stimulated CAM1 and ATM1 and H) CAM6 and ATM6 migration (n=3). Horizontal 
arrows means p<0.05,  t- test; vertical bars,  SEM. Scale bar, 20 µm 
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4.3.7 Recombinant chemerin increased MSC, OE33 and OE21 cell 

migration in wound healing assays 

 

As a final step in characterising the biological properties of chemerin, its effects in 

a different cell migration assay, namely scratch wound healing, was studied. In 

these assays MSCs, OE33 and OE21 cells exhibited significantly more migration 

in response to chemerin at doses of 20 and 100 ng/ml compared to SF controls 

(Figure 4.6 A-F). 

 

4.3.8 Conditioned media from CAMs enhances MSC and OE21 

cell migration  

 

To study whether chemerin produced by myofibroblast increases MSC migration 

studies were performed using CM and a chemerin neutralising antibody. In 

Boyden chamber assays, CM from SC CAMs and ATMs increased MSC 

migration. Individual pairwise comparisons showed MSCs migrated more in 

response to CM from CAMs than the corresponding ATMs (Figure 4.7 A). The 

group mean data also showed CAM CM significantly increased MSC migration 

compared to either ATM or NTM CM (Figure 4.7 B). The effect of chemerin (100 

ng/ml) on MSC and OE21 cell migration was inhibited by a neutralising antibody 

(Figure 4.7 C & D). Moreover, the specificity of chemerin neutralising antibody 

was showed by no effect on IGF-II stimulated migration (100 ng/ml) (Figure 4.7 

C). Importantly, MSC and OE21 cell migration in response to CM from SC CAMs 

was significantly inhibited by chemerin neutralising antibody (Figure 4.8 E & F). 
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Figure 4.6 In wound healing assays, chemerin stimulated cell migration in a dose 
dependent manner. A) Representative images of MSCs migrating individually in 
scratch wound assays (red arrow) in response to chemerin stimulation. B) Dose 
dependent chemerin stimulation of MSC migration. C) Representative image of OE21 
cells migrating as a sheet. D) Dose dependent chemerin stimulation of OE21 cell 
migration. E) Representative image of OE33 cells in wound healing assay in the 
presence of chemerin. F) Chemerin has little or no effect on OE33 cell migration. n=3. 
Horizontal arrows, p<0.05, t-test; vertical bars, SEM. Scale bar, 20μm. 
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Figure 4.7 In Boyden chamber migration assays, SC CAM CM increased MSC and 
OE21 cell migration.  A) Comparison of MSC migration in response to CM from 
paired SC CAMs versus ATMs. B) Group mean data of MSC migration in response to 
CM from SC CAMs (n=4), ATMs (n=4) and NTMs (n=4). C)  Chemerin neutralising 
antibody inhibited MSC migration in response to chemerin (100 ng/ml) but not IGF-II 
(100 ng/ml). D) Chemerin stimulation of OE21 cell migration is decreased by 
chemerin immuno-neutralisation (Chem Ab). E) Stimulation of MSC migration by 
CAM4, CAM5, CAM6 and CAM7 CM was inhibited by chemerin neutralising antibody 
(n=3). F)  OE21 migration in response to CAM5 CM treatment was partially inhibited 
by chemerin immuno-neutralisation. Horizontal arrows, p<0.05, ANOVA; vertical bars, 
SEM. 
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4.3.9 Chemerin neutralisation inhibits CM stimulated OE21 

wound healing  

 

In wound healing assays, chemerin (100ng/ml) and CM from CAM4 significantly 

increased OE21 cell migration compared to SF media (Figure 4.8 A & B). The 

stimulatory effect was significantly inhibited by chemerin neutralising antibody 

(Figure 4.8 A & B).  

 

4.3.10 Knock-down of chemerin inhibits and overexpression 

increases cell migration  

 

In addition to the neutralising antibody approach, knock-down and overexpression 

of chemerin were used to confirm a role in cell migration. Chemerin knock-down 

in CAMs using siRNA was confirmed by Western blots (Figure 4.9 A). MSCs 

showed significantly reduced migration in response to CM from CAMs treated 

with silencing RNA compared to control CAM CM (Figure 4.9 B). In the case of 

OE21 cell migration, there was a significant reduction by CAM4 and CAM7 CM 

after chemerin knock-down (Figure 4.9 D).  

Overexpression of chemerin after transfection with an expression vector of CAM4 

and ATM7 cells was confirmed by Western blot (Figure 4.9 A). The CM from 

myofibroblasts overexpressing chemerin significantly increased in MSC and 

OE21 cell migration relative to control (Figure 4.9 C & E). 
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Figure 4.8 In wound healing assays, chemerin immuno-neutralisation decreased 
OE21 migration.  A) Effect of immuno-neutralisation on OE21 migration stimulated by 
chemerin (100ng/ml). B) OE21 migration in response to CM from CAM4 was inhibited 
by chemerin neutralising antibody (n=3). Horizontal arrows, p<0.05; ANOVA; vertical 
bars, SEM. 
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Figure 4.94 Chemerin knock-down decreased, and overexpression increased, MSC 
migration in Boyden chamber migration assays. A) Western blots showing chemerin 
knock-down in siRNA treated (Si1) CAM7 and (Si2 and Si3) CAM4 cells, and 
overexpression after chemerin plasmid transfection in CAM4 and ATM7 cells. B) 
MSC migration is decreased in response to CM from CAM4 and CAM7 transfected 
with chemerin silencing RNA, Si1 and Si3 respectively. C) Increased MSC migration 
in response to CM from CAM4 and ATM7 overexpressing chemerin. D) OE21 cell 
migration is decreased in response to CM from CAM4 siRNA transfected cells, and 
increased by CM from chemerin overexpressing ATM7 cells. E) In wound healing 
assays, CM from CAM4 cells overexpressing chemerin increased OE21 cell 
migration. Horizontal arrows, p<0.05, t- test; vertical bars, SEM.   
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4.3.11 ChemR23 knock-down in MSCs reduce the migratory 

response to CM and chemerin 

The data above indicate a role for chemerin in mediating the effect of 

myofibroblast CM on migration of several cell types including MSCs. The relevant 

receptors in MSCs were then examined by separate knock-down of chemR23 and 

GPR1. The knock-down of receptors by validated siRNAs was confirmed by 

immunocytochemistry (Figure 4.10 A & B). Scoring of chemR23 and GPR1 after 

knock-down indicated a reduction in immunoreactive cells by 80.7% and 75.9%, 

respectively, relative to control MSCs (Figure 4.10 C & D). In both cases, a 

negative control, vimentin, showed no change after treatment with siRNA for 

chemR23 and GPR1 confirming the specificity of the receptor suppression (Figure 

4.10 C & D). 

In response to CAM CM, MSCs treated with chemR23 siRNA showed significant 

decreases in migration compared to control cells (Figure 4.11 A, Left panel). 

Similar results were obtained in response to chemerin (Figure 4.11 B, Left panel). 

However, GPR1 knock-down in MSCs had only modest effect on migration in 

response to CM from CAM6 but no effect to chemerin (Figure 4.11 A & B, Top 

and bottom right panel respectively). 

 

4.3.12 Chemerin activation of chemR23 stimulates MAPK 

pathways 

Having established a functional role for chemR23 in mediating chemerin effects 

on MSCs, the next step was to determine the signal transduction pathways 

involved in cell migration. In response to chemerin, MSC cell extracts showed 

increased phosphorylation of p42-44, p38 and JNK-II kinases in Western blots 



                                                                           Chemerin and Mesenchymal Stromal Cell migration
  

101 
 

using phosphor-specific antibodies and in all cases this was decreased by 

chemR23 knock-down (Figure 4.12). 

 

4.3.13 Chemerin stimulated MSC migration via activating MAPK 

pathways 

 

The role of signalling pathways activated by chemerin was then studied using 

specific pharmacological inhibitors targeting p42-44, p38, JNK-II, and PKC 

pathways. Chemerin-induced MSC migration was significantly inhibited by 

SP600125 (JNK-II inhibitor), UO126 (p42/44 inhibitor), SB202190 (p38 inhibitor), 

Ro320432 (PKC inhibitor) but not LY294002 (PI3K inhibitor) (Figure 4.13 A). The 

PKC inhibitor showed the highest inhibition of chemerin-stimulated MSC 

migration. Combinations of inhibitors i.e. two or three together virtually abolished 

chemerin stimulated MSC migration (Figure 4.13 B).  
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Figure 4.5 Immunocytochemical validation of receptor expression after chemR23 and 
GPR1 knock-down. A) Representative images from MSCs stained for vimentin 
(positive control) and chemR23. B) Representative image from MSCs stained for 
vimentin (positive control) chemR23 and GPR1.  C) Quantitative data show 
decreased chemR23 expression after its knock-down and D) quantitative data 
showing GPR1 expression after its knock-down. Horizontal arrows, p<0.05, t-test; 
vertical bars, SEM. Scale bar, 20µm. 

 

 

 

C D 

A B 



                                                                           Chemerin and Mesenchymal Stromal Cell migration
  

103 
 

 

 

              

0

100

200

300

400

500

Cntrl Si 1 Si 2 Si 3

M
ig

ra
ti

n
g

 c
e

ll
s

 r
e

la
ti

v
e

 t
o

 
c

o
n

tr
o

l

Control
ChemR23 KD

0

100

200

300

400

500

Cntrl Si1 Si2 Si3

M
ig

ra
ti

n
g

 c
e

ll
s

 r
e

la
ti

v
e

 t
o

 
c
o

n
tr

o
l

Control
ChemR23 KD

Control

GPR1 KD

Control

GPR1 KD

Chemerin   +        +        +        +                   +      + 

Cntrl Si

Cntrl Si

CAM6 CM   +        +       +        +                   +      + 

 

 

Figure 4.61 In Boyden chamber migration assays chemR23 knock-down decreased 
MSC migration in response to chemerin (100ng/ml) and CM from CAMs. A) Effect of 
3 different chemR23 silencing RNAs (Si) (left) and a GPR1 validated siRNA (right) on 
MSC migration in response to CAM6 CM. B) MSC migration after chemR23 and 
GPR1 knock-down in response to chemerin. Horizontal arrows, p<0.05, t- test; 
vertical bars, SEM.   
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Figure 4.12 Chemerin stimulated p42/44, p38, and JNK-II in MSCs and the 
stimulation is reduced after chemR23 knock-down. A) Representative Western blot 
analysis of phospho- and total p42/44 kinase, p38 kinase, and JNK-II in MSCs 
treated with chemerin (100 ng/ml) for 0, 10, 20, 30 mins. B) Western blot of phospho 
and total p42/44 kinase, p38 kinase, and JNK-II expression in response to chemerin 
(Ch) (100 ng/ml) in control MSC cells and after chemR23 knock-down. 
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Figure 4.73 Chemerin stimulated MSC migration is mediated by several protein 
kinases. A) In Boyden chamber assays, chemerin stimulated MSC migration is 
inhibited by SP600125 (JNK-II inhibitor, 50µM), UO126 (p42/44 inhibitor, 10µM), 
SB202190 (p38 inhibitor, 3µM), Ro320432 (PKC inhibitor, 2µM) but not LY294002 
(PIK3 inhibitor, 50µM) (n=3). B) Chemerin stimulated MSC migration  is significantly 
inhibited by combinations of two of UO126, SB202190, and Ro320432, and by 
combination of three of SP600125, UO126, SB202190 and Ro320432 (n=3). 
Horizontal arrows, p<0.05, Anova; vertical bars, SEM. 
 

C 

A 

B 



                                                                           Chemerin and Mesenchymal Stromal Cell migration
  

106 
 

 

4.3.14 PKC acts upstream of MAPK activation 

The observation that the strongest inhibition of chemerin-stimulated MSC 

migration was by the PKC inhibitor suggested the existence of signalling 

cascades downstream of PKC. This hypothesis was then investigated by using 

p42/44, p38, JNK-II inhibitors against PMA-stimulated MSC migration. MSCs 

showed a significant increase in migration in response to the PKC activator, PMA 

(Figure 4.14 A). The MAPK inhibitors SP600125, UO126 and SB202190 

significantly inhibited PMA-stimulated migration (Figure 4.14 A). The combination 

of all three inhibitors virtually abolished PMA stimulated MSC migration compared 

to control (Figure 4.14 A). In addition, Western blot analysis of cell extracts from 

PMA-stimulated MSCs showed increased phospho - p42/44, p38 and pJNK-II 

(Figure 4.14 B & C respectively) that was reduced by the PKC inhibitor Ro320432 

(Figure 4.14 C).  
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Figure 4.14.  PMA stimulated MSC migration is mediated by activation of p42/44 
kinase, p38 kinase, JNK-II, and PKC. A) PMA (100nM) stimulated MSC migration in 
Boyden chamber assay and was inhibited by SP600125 (JNK-II inhibitor, 50µM), 
UO126 (p42/44 inhibitor, 10µM), and SB202190 (p38 inhibitor, 3µM). B) 
Representative Western blot analysis of p42/44, p38 and JNK-II kinases from MSC 
cell extracts treated with PMA. C) Western blots analysis of p42/44,  p38 and JNK-II 
kinases from MSC cell extracts treated with Ro320432 (Ro, PKC inhibitor) and 
chemerin (100 ng/ml). Horizontal arrows, p<0.05, ANOVA; vertical bars, SEM.  
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4.4 Discussion 

The main finding of this chapter is that oesophageal SC CAMs are a source of 

increased chemerin expression compared with ATMs. Bone marrow derived 

MSCs strongly express the putative chemerin receptors, chemR23 and GPR1, 

and have a strong migratory response to chemerin. Knockdown and 

overexpression studies have confirmed that chemerin in CAM CM acts at 

chemR23 to induce MSC migration. The latter is mostly mediated by activation of 

PKC which in turn stimulates the p42/44, p38 and JNK-II MAPK pathways. 

In this study, the initial discovery of chemerin expression by myofibroblasts was 

made by iTRAQ proteomic analysis comparing CM from SC CAMs and ATMs. 

Chemerin was the only chemokine identified as upregulated in all 4 CAMs from 

SC patients. Interestingly, microarray studies did not show a difference in 

chemerin transcript abundance in CAMs versus ATMs emphasising the 

importance of validation of the proteomic data. Thus a combination of methods 

(ELISA and Western blot) was used to validate the increased chemerin 

abundance both in media and cell extracts of CAMs from oesophageal SC. These 

confirmed increased chemerin in CAM media. Presumably the different 

conclusions from microarray and protein studies indicate regulation of chemerin 

expression at a translational or post-translational level.  

Upregulation of chemerin in fibroblasts related to pathology (skin psoriasis 

compared to paired normal fibroblasts) has previously been reported using RT-

PCR (Albanesi, Scarponi et al. 2009). In addition, other studies have shown 

increased abundance of chemerin in plasma, media and cell extracts using ELISA 

and Western blot (Parlee, Ernst et al. 2010; Parlee, McNeil et al. 2012). However, 

the existence of various chemerin isoforms (Du and Leung 2009) limits the 
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interpretation of assays using a single antibody in ELISA or Western blot.  

Chemerin-9 (which has high bioactivity) was undetectable by the ELISA used 

here, emphasising the need for  further studies to precisely define the active 

forms of chemerin in CAM media; these in turn will depend on the use of multiple 

antibodies of different specificities. Nevertheless the combination of the two 

methods, taken together with the iTRAQ data, provides strong evidence of 

increased expression in CAMs. Consequently, for the first time, it has been 

possible to identify myofibroblasts as a source of elevated chemerin, at least in 

oesophageal cancer. 

The microarray data analysis showed that MSCs have greater chemerin receptor 

expression, both chemR23 and GPR1, compared to myofibroblasts followed by 

oesophageal cancer cells, OE21, OE19 and OE33 cells. Immunohistochemistry 

confirmed the expression of chemR23 and GPR1 in MSCs and showed weak 

staining for both receptors in CAMs and OE21 cells. Techniques such as RT-PCR 

and FACS have previously been applied to other cells eg adipocytes and 

macrophages, to establish chemR23 and GPR1 expression (Huang, Zhang et al. 

2010; Bondue, De Henau et al. 2012). In the present study, the finding of 

increased ligand (chemerin) in myofibroblasts and of receptor expression 

(chemR23) in MSCs provided a basis for further detailed functional studies, 

namely with regard to cell migration. 

Recent work has shown that MSCs are an integral part of the tumour 

microenvironment and are key factors for tumour growth and development (Feng 

and Chen 2009; Kidd, Spaeth et al. 2009). Undifferentiated MSCs can contribute 

to various stromal cell populations including potentially CAMs, as well as epithelial 

cells in oesophageal AC (Worthley, Ruszkiewicz et al. 2009; Hutchinson, 
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Stenstrom et al. 2011; Lecomte, Masset et al. 2012). It therefore becomes 

important to understand the mechanisms involved in recruitment of MSCs to the 

tumour microenvironment. In this context the chemotactic property of chemerin 

demonstrated in this study suggests a potential novel mechanism.  

Recombinant chemerin increased MSC migration and neutralising antibody to 

chemerin decreased MSC migration stimulated by CM from CAMs and ATMs 

indicating a role for the native protein. Chemerin is known to interact with 

chemR23 to induce trafficking of inflammatory cells and dendritic cells (Ernst and 

Sinal 2010; Bondue, Wittamer et al. 2011). In good agreement with this, siRNA 

knock-down of chemR23 decreased chemerin stimulated MSC migration. 

Albanesi et al., have used anti chemR23 antibody to inhibit chemerin stimulated in 

vitro transmigration of pDC thereby confirming the chemerin interaction with 

chemR23 in chemotaxis (Albanesi, Scarponi et al. 2009). However, the transient 

knockdown by siRNA was not 100% efficient and other reporter based in vitro 

assays, such as Tango assays, ought to be considered as an alternative 

approach in the future (Barnea, Strapps et al. 2008). The latter assay depends 

upon the exogenous ligand activation of receptor followed by protein-protein 

interactions subsequently activating the binding of protease to specific sites of 

cleavage in the fusion of a membrane receptor and transcriptional activator. The 

release of transcriptional activator amplifies the reporter gene and produces 

appropriate signals for quantification (Barnea, Strapps et al. 2008). This method 

might provide a further rigorous approach to define receptor specificity, and its 

activation by chemerin in our cell systems.  
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Other studies showed GPR1 has equal binding affinity to chemerin, however no 

signal transduction ability was observed suggesting of no functional significance 

(Ernst and Sinal 2010; Bondue, Wittamer et al. 2011). We investigated the 

functional significance of GPR1, and in agreement with previous studies GPR1 

knock-down had no effect on chemerin stimulated MSC migration.  

The action of chemerin on MSCs was shown to be mediated by activation of 

p44/42, p38, JNK-II and PKC signal transduction pathways. Furthermore, 

chemerin-mediated MSC migration was significantly reversed by a PKC inhibitor 

suggesting PKC as upstream of MAPK signalling pathways. Nevertheless many 

of the inhibitors used produced only partial inhibition of migratory responses. 

There are two components to interpreting these data First there is partial PKC-

dependent downstream activation of MAPKs signals (Figure 4.15). Second, 

chemerin chemotaxis might independently activate p44/42, p38 and JNK-II. It is 

known that chemerin activates Akt, and PI3K to facilitate macrophage adhesion to 

ECM (Hart and Greaves 2010). However, in our studies the PI3K pathway had no 

role to play in chemerin stimulated MSC migration. 

ChemR23

p42/44 , JNK-II,   p38

PKC        p42/44, JNK-II,  p38

Chemerin

Migration

Migration
 

Figure 4.15. The PKC activation partially activates downstream p44/42, p38, JNK-II 
pathways. In addition, individual activation of p42/44, p38 and JNK-II stimulates cell 
migration. 
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Although not studied in as much detail, we have also investigated and confirmed 

the effect of chemerin on cancer cells. In response to chemerin and CM from SC 

CAMs, OE21 cells showed increased proliferation and migration whereas OE33 

cells did not respond to chemerin. These observations suggest cancer-restricted 

tumour-stromal interaction mediated by chemerin.   

The results presented here raise the first indication of a role for chemerin in 

oesophageal cancer. Firstly, myofibroblasts in oesophageal SC are a major 

source of chemerin. Secondly, chemerin secreted from CAMs interacts with the 

putative receptor chemR23, expressed by MSC and cancer cells and stimulates 

their in vitro migration. Thirdly, the chemerin-chemR23 interaction regulates cell 

migration via activation of signalling pathways, notably PKC that is upstream of 

p44-42, p38, and JNK-II. Berg et al., and others have shown chemerin influences 

the secretion of TNF-α, interleukins and MMPs that further regulate the 

recruitment and migration of cells across stromal compartment (De Becker, Van 

Hummelen et al. 2007; Berg, Sveinbjornsson et al. 2010; Lecomte, Masset et al. 

2012). It is possible that there are comparable extracellular mediators in the 

present system and, if so, their identification will provide valuable insight in 

understanding molecular mechanism involving the tumour microenvironment and 

recruitment of cells to it. 
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4.5 Conclusions 

 

1. Oesophageal SC CAMs secrete chemerin and MSCs express the putative 

chemerin receptors, chemR23 and GPR1. 

2. Chemerin in CM stimulates the migration of MSCs via interaction with 

chemR23.  

3. Chemerin-stimulated chemotaxis is the result of activation of PKC followed 

by partial downstream activation of p-44/42, p38, and JNK-II MAPKs but 

not PI3K. 

4. Chemerin in CM also induces OE21 cell migration. 
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5.1 Introductions 

 

The findings in chapter-4 confirmed an increase of chemerin in myofibroblasts 

associated with oesophageal SC and showed its significance in enhancing MSC 

migration in vitro. In general, chemokines activate multiple paracrine signalling 

pathways regulating functions  such as migration and invasion (Wels, Kaplan et 

al. 2008).  For example, Zhiyong Mi et al., showed increased expression of CCL5 

in BM-derived MSCs along with their recruitment to a metastatic niche in 

response to distant osteopontin originating from breast cancer cells (MDA-

MB231) (Mi, Bhattacharya et al. 2011). In the present study, it was considered 

reasonable to suppose that chemerin might also activate paracrine signalling 

mechanisms in MSCs that were functionally significant.  

Proteomic studies in the group (Holmberg, Varro, unpublished observations) 

using SILAC-labelled MSCs identified increase MIF abundance in response to 

chemerin stimulation. It has been reported that MIF acts as a negative regulator 

of MSC migration at sites of tissue damage (Ozaki, Nishimura et al. 2007; 

Barrilleaux, Fischer-Valuck et al. 2010). It was therefore hypothesised that MIF 

might regulate MSC migration in response to chemerin. To our knowledge there 

have been no previous studies of the effect of chemerin on MIF release. Hence, 

the rationale for the studies in this chapter was to investigate and determine the 

role of MIF in MSC migration.  
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5.1.1 Objectives 

The specific objectives of this chapter were: 

1. To study the effect of chemerin on MIF secretion from MSC and OE21 cells. 

2. To determine the functional significance of MIF on chemerin stimulated MSC 

migration. 
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5.2 Material and Methods 
 

5.2.1 Cell culture  

Myofibroblasts, MSCs, and oesophageal cancer cell lines were cultured as 

described in sections 2.3. 

5.2.2 Boyden chamber migration assays 

The effect of MIF on migration was investigated using Boyden chamber assays as 

described in sections 2.6.1.1 and 2.6.1.2. The bottom well contained 750µl 

serum-free media, with or without chemerin (4-100ng/ml), MIF (200ng/ml), IGF-II 

(100ng/ml) or ISO-1 (50µM).  

5.2.3 Transient transfection of myofibroblasts and MSCs 

MSCs were transfected with validated MIF siRNA (100µM) as described in 

sections 2.11 and 2.12 following the manufacturer’s instruction. 

5.2.4 Western blot analysis 

The expression of MIF in normal and transiently transfected myofibroblasts, 

MSCs and OE21 cells extracts and media was investigated by Western blot as 

described in section 2.9.  

5.2.5 Sandwich - enzyme linked immunosorbent assay (ELISA) 

The concentration of MIF in media from myofibroblasts, MSCs, OE21 and OE33 

cells was determined by ELISA as described in section 2.10.  
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5.3 Results 
 

5.3.1 Chemerin stimulated MSC expresses MIF 

Because proteomic studies using SILAC had shown increased MIF abundance in 

MSC media after 24 hr stimulation with chemerin, validation studies using ELISA 

and Western blot were undertaken to confirm this observation.  

The analysis of MIF by ELISA showed relatively low concentrations in media from 

unstimulated MSCs and increased abundance in response to chemerin and IGF-II 

(Figure 5.1 A). However, in OE21 cell media there were relatively high 

concentrations basally and no effect with IGF-II or chemerin (Figure 5.1 B). 

Similarly, the basal concentrations of MIF in control MSC media were relatively 

low in Western blots, but in response to stimulation by chemerin or IGF-II there 

was increased MIF; there was also increased MIF in MSC cell extracts after 

stimulation (Figure 5.1 C top panels). In contrast, chemerin and IGF-II had very 

modest effects on MIF detected by Western blot in OE21 cell extracts and media 

(Figure 5.1 C bottom panels). ELISA also showed the mean MIF concentration in 

ATM (ATM4-ATM7) media was significantly higher than in the corresponding 

CAM media (CAM4-CAM7) (Figure 5.1 E).   

 

 



Identification of MIF as a Chemerin Target in MSCs and its Functional Significance 

119 
 

MIF  kDa

12.5                        

MIF  kDa

12.5                        

GAPDH

SF    IGF-II  Chem. 

OE21  cell extract OE21 media

SF   IGF-II  Chem.SF   IGF-II Chem.

GAPDH

MSC  cell extract MSC  media

SF  IGF-II Chem. 

0

4

8

12

16

20

CAM ATM

M
IF

  
(n

g
/m

l)

0

4

8

12

16

20

M
IF

 (
n

g
/m

l)

Media

0

4

8

12

16

20

M
IF

 (
n

g
/m

l)

Media

SF     IGF-II  Chem. SF     IGF-II  Chem. 

 

. 

Figure 5.1 Increased MIF secretion in MSCs in response to IGF-II (100 ng/ml) and 
chemerin (100 ng/ml). A) ELISA showed MIF secretion in MSC (n=2) but not B) OE21 
media in response to IGF-II or chemerin (n=2). C) Representative Western blots 
showing secretion of MIF by MSCs (top panel) but not by OE21 cells (bottom panel) 
treated with chemerin or IGF-II for 15 min.  D) Myofibroblasts from squamous cancer 
(CAMs) secreted less MIF compared to ATMs (n=4).  Horizontal arrows, p<0.05, t-
test; vertical bars, SEM. 
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5.3.2 MIF inhibits chemerin and IGF-II stimulated MSC migration 

The role of MIF was then investigated with respect to cell migration in response to 

chemerin and IGF-II using Boyden chambers. Chemerin and IGF-II stimulated 

MSC migration was significantly inhibited by MIF (200ng/ml) (Figure 5.2 A). The 

inhibitory effect of MIF on chemerin-stimulated MSC migration was significantly 

reversed by ISO-1, a MIF antagonist, at 50μM (Figure 5.2 C). A role for 

endogenous MIF in modulating MSC migration was then indicated by the 

observation that ISO-1 dose-dependently increased migration in response to 

chemerin (Figure 5.2 B).  

 

5.3.3 MIF inhibits chemerin and IGF-II stimulated MSC migration 

Finally, knock-down studies were performed to further validate the role of MIF. 

Thus knock-down of MIF expression in MSCs using siRNA was confirmed by 

Western blot (Figure 5.3 A). In cells transfected with MIF siRNA there was a 

significant increase in migration in response to 4ng/ml chemerin compared to 

control (Figure 5.3 B); however, at 20ng/ml chemerin, which produced a stronger 

stimulation of MSC migration, there was no significant effect of MIF knockdown 

(Figure 5.3 B)  

Medium from chemerin-stimulated MSCs pre-treated with siRNA to knock-down 

chemR23 expression was then studied by ELISA to establish the role of 

chemerin-chemR23 interactions in MIF secretion. As expected, ELISA showed a 

significant decrease in MIF secretion in chemerin stimulated MSCs pre-treated 

with chemR23 siRNA compared to control MSCs (Figure 5.3 C). Interestingly, 

however, while MSC migration in response to chemerin (4 ng/ml) after chemR23 
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knockdown was, as expected, decreased (p<0.05) compared to control cells, 

ISO-1 strongly increased migration further supporting the idea that MIF plays a 

part in modulating responses to modest chemerin stimulation (Figure 5.3 D). 
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Figure 5.2 MSC migration in response to ISO-1 (50µM) treatment. A) MSC migration 
in response to chemerin or IGF-II (100 ng/ml) was inhibited by MIF (200 ng/ml). B) 
ISO-1 increased chemerin-stimulated MSC migration in a dose-dependent manner 
and C) ISO-I reversed the effect of MIF on chemerin-stimulated migration.  Horizontal 
arrows, p<0.05, ANOVA; vertical bars, SEM. 
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Figure 5.3 In Boyden chamber assays, MSC migration in response to chemerin was 
significantly increased by MIF knock-down. A) Western blots showing MIF knock-
down in MSC cell extracts after siRNA treatment. B) MSC migration in response to 4 
ng/ml, but not 20 ng/ml, chemerin was increased by MIF knock-down. C) ChemR23 
knock-down decreased MIF release in response to chemerin. D) MSC migration in 
response chemerin (4 ng/ml) was decreased after chemR23 knock-down in MSCs but 
was increased by ISO-1 (50µM).  Horizontal arrows, p<0.05, ANOVA; vertical bars, 
SEM. 
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5.4 Discussion 
 

Initial proteomic studies using SILAC identified increased MIF in chemerin- 

stimulated MSC media. The main point of the work in this chapter was to validate 

this observation and explore its biological significance. Thus, studies using ELISA 

and Western blot confirmed an increase in concentration of MIF in media and cell 

extracts of MSCs after chemerin stimulation. Chemerin enhanced OE21 cell 

migration (chapter 3) but, in contrast to MSCs, it did not stimulate MIF secretion in 

these cells, although it should be noted that basal secretion of MIF is already 

relatively high in OE21 cells.  Using siRNA treatments and the antagonist ISO-1 

evidence was obtained to indicate that MIF significantly inhibited MSC migration 

in response to chemerin.  

Interestingly, the present findings indicated that MIF restrained the MSC migratory 

response to relatively low concentrations of chemerin (4ng/ml) but not higher 

concentrations (20ng/ml and 100ng/ml). Presumably, maximal secretion of MIF 

occurs at concentrations of chemerin lower than those that are maximal for 

migration so that relatively strong chemerin stimulation overwhelms MIF-inhibitory 

effects. This finding may be relevant in understanding MSC recruitment in cancer. 

Thus the high concentrations of chemerin in CAM CM promote MSC migration 

while in CM from ATMs and NTMs, where chemerin concentration is lower, MIF is 

able to act more effectively as an auto-inhibitor thereby restraining MSC 

recruitment to normal or preneoplastic tissues (Figure 5.4). 

The proposed role of MIF in the present system would appear to be novel. 

However, the existence of similar phenomena is known for other growth factors in 

cancer biology. Well known example of biphasic roles is TGF-β which at 
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physiological concentrations acts as a negative regulator of proliferation of 

epithelial cells (Blobe, Schiemann et al. 2000). 
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Figure 5.4 MSC migration regulated by chemerin.  

Chemerin stimulated MSC migration and MIF secretion. The migration of MSCs was 

inhibited by autocrine release of MIF only at relatively modest chemerin 

concentrations. 

 

However, in cancer the neoplastic cells become insensitive to this inhibitory effect 

of TGF-β and simultaneously increased TGF-β expression promotes tumour 

growth via stimulating cancer cell invasion and metastasis (Maehara, Kakeji et al. 

1999).   

The present functional studies were made using both an antagonist for MIF, ISO-

1 (Dessein, Stechly et al. 2010) and siRNA, knock-down approaches. A 

hydrophobic pocket in MIF constitutes a catalytic domain which is important for its 

tautomerase action on substrates such as asp-hydroxyphenylpyruvic acid. The 
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binding of ISO-1 at the catalytic site abolishes MIF tautomerase activity and 

suppresses the production of cytokines, e.g. TNFα (Al-Abed, Dabideen et al. 

2005). Previously, it was shown that MIF inhibits migration of MSCs and that this 

was rescued by ISO-1 in vitro (Barrilleaux, Phinney et al. 2009), which is in broad 

agreement with the present findings. In addition, though, knock-down studies here 

using validated MIF siRNA also confirmed the inhibitory effect of MIF on MSC 

migration. Intriguingly, ISO-1 rescued chemerin-stimulated migration of MSCs 

pre-treated with chemR23 siRNA. This could suggest chemerin regulation of MIF 

through a mechanism independent of chemR23, for example via GPR-1 or 

CCLR2; or alternatively, it may reflect the fact that MIF is an effective inhibitor of 

MSC migration at low level chemerin stimulation (in this case achieved by 

receptor knock-down). Further studies to clarify this interpretation would be 

useful.  

The functional significance of MIF in oesophageal cancer is not well understood. 

However clinical studies showed increased MIF expression in cancer tissues 

compared to non-cancerous tissues in oesophageal SC by tissue staining and 

RT-PCR for mRNA expression. Moreover, ELISA has shown elevated levels of 

MIF in a SC cell line, Eca-109 (Xia, Zhang et al. 2005), while  MIF has been 

shown to regulate angiogenic factors in oesophageal cancer cells, HKESC-1, 

HKESC-2, such as VEGF and IL-8 suggesting positive regulation of tumour 

growth (Ren, Law et al. 2005).  The current findings using ELISA and Western 

blot suggest that MIF abundance in media and cell extracts from OE21 cells is not 

increased by chemerin. A possible explanation could be that expression levels of 

chemerin receptor, chemR23, that are sufficient to trigger the biological function 

are inadequate for effective regulation of MIF in OE21 cells. More plausible, 

however, is that MIF release is already close to maximal and chemerin stimulation 
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has little or no additional effect. In the future it would be useful to study other 

validated SC cell lines for MIF secretion such as HKESC-1, HKESC-2 (Ren, Law 

et al. 2005) and Eca-109 (Xia, Zhang et al. 2005) to determine whether the 

observations on OE21 cells are representative.  

The current findings suggest MSC responses to chemerin are modulated by 

autocrine effects of MIF and that the relative concentrations of chemerin and MIF 

determine the migratory response. It will now be necessary to establish the in vivo 

significance of these findings in order to better understand the role of chemerin in 

carcinogenesis. Nevertheless the data do raise the interesting possibility of an 

auto regulatory role for MIF production by MSCs that restricts recruitment when 

chemerin concentrations are relatively low (e.g. from normal and preneoplastic 

stromal cells) and which is overcome by high chemerin concentrations.  
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5.5 Conclusions 
 

1. Chemerin effect on MSC is release of chemokine, MIF. 

2. Chemerin stimulated MSC migration was inhibited by MIF. 

3. The regulatory effect of MIF in CM might depend on the relative abundance 

of chemerin to MIF in media. 
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transendothelial migration using a 
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6.1 Introduction 

 

The potential role of chemerin in MSC recruitment to oesophageal cancers was 

raised in chapter 4. Further, MIF expression by MSCs was identified in chapter 5 

as an effect of chemerin which was proposed to supress MSC recruitment to sites 

of moderate or low chemerin production. However, there remains the question of 

whether MSC recruitment by chemerin also includes stimulation of 

transendothelial migration (given that MSCs are presumably recruited from the 

circulation). While this study was in progress a chemR23 antagonist became 

available providing additional opportunities to study the role of chemerin in MSC 

migration and in transendothelial migration in particular. First, however, it was 

considered necessary to establish that the antagonist (CCX832) inhibited 

chemerin effects in the assays that had already been employed in this study.     

The extravasation of MSCs through endothelial monolayers is regarded as an 

integral part of recruitment to tumours. This process is thought to be regulated by 

several factors including MMP-2 and MMP-9 (Vande Broek, Asosingh et al. 2004; 

De Becker, Van Hummelen et al. 2007; Ries, Egea et al. 2007). Previous work in 

our group using SILAC-based proteomics (Holmberg & Varro, unpublished 

observations) identified increased MMP-2 secretion in IGF-II stimulated MSCs.  

IGF-II is a relatively well-established chemotactic growth factor secreted by CAMs 

(Holmberg, Quante et al. 2012), and was shown in chapter 4 to strongly stimulate 

MSC migration. It was therefore hypothesised that chemerin stimulated MSC 

transendothelial migration at least in part by a mechanism involving MMP-2.  
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The present studies made use of the chemR23 antagonist, CCX832, generated 

by a collaborator, Chemocentryx, who generously provided a sample 

(ChemoCentryx 2011). To the best of our knowledge there are, so far, no 

published studies of the effect of chemR23 antagonists in oesophageal SC. 

Hence, CCX832 was used firstly in validation studies employing assays used 

earlier and then secondly to directly study chemerin/ChemR23 interactions in 

MSC transendothelial migration.  

 

6.1.1 Objectives 

The specific objectives were: 

1. To characterise the action of the chemR23 antagonist CCX832 in inhibiting 

chemerin-stimulated MSC and OE21 cell migration in vitro. 

2. To use CCX832 to study the effect of chemerin and CM in stimulating 

transendothelial migration by MSCs using a Matrigel-coated invasion 

chamber.  

3. To determine the role of MMP-2 in transendothelial migration of MSCs in 

response to chemerin. 
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6.2 Material and Methods 
 

6.2.1 Cell culture  

MSCs and OE21 cells were cultured as described in sections 2.3.2 and 2.3.3 

respectively. 

6.2.2 Boyden chamber migration assays 

The effect of CCX832 (0.1nM - 1µM), and a control compound CCX826 (1 µM), 

on MSC and OE21 cell migration was investigated using Boyden chamber as 

described in section 2.6.1.1. The bottom well contained 750µl serum-free media, 

CM from CAM4, chemerin or chemerin-9 (6.25nM of chemerin-9 equivalent to 

100ng/ml chemerin) with or without CCX832 or CCX826.  

6.2.3 Scratch wound healing assays  

Wound healing assays were performed with OE21 cells to determine the effect of 

CCX832 (1 µM) on chemerin-9 stimulated migration (6.25nM) as described in 

sections 2.6.1.2 and 2.6.1.3. 

6.2.4  Labelling of MSCs 

MSCs were labelled using the fluorescent membrane dye, PKH67, and validated 

for functional studies. The labelling has been described in section 2.13.1.3.  

6.2.5 Transendothelial migration assays 

The effect of CCX832 (1µM) and CCX826 (1 µM) on transendothelial migration of 

labelled MSCs across a monolayer of HUVECs overlaid on Matrigel coated 

membrane was investigated using BD BioCoat™ Matrigel™ invasion chambers 

as described in section 2.6.1.3. Furthermore, chemerin-9 (6.25nM) and CAM4  
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CM-stimulated transendothelial migration of labelled MSCs was investigated 

using a chemerin neutralising antibody. The effect of human recombinant MMP-2 

in these assays was studied using specific inhibitor for MMP-2 (MMP-2 inhibitor I) 

(Holmberg, Ghesquiere et al. 2013).  

6.2.6 MMP activity assay 

Enzyme activity assays for MMP-2 were performed using the selective substrate 

MCA-Pro-Leu-Ala-Nva-Dpa-Ala-Arg-NH2 and CM from chemerin-stimulated MSCs 

as described in section 2.18. 
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6.3  Results 
 

6.3.1 The ChemR23 antagonist, CCX832, inhibits chemerin-

stimulated MSC and OE21 cell migration 

Initially, the action of CCX832 against both full length chemerin and its C-terminal 

active fragment chemerin-9 was evaluated in both Boyden chamber and scratch 

wound migration assays. In Boyden chamber assays, chemerin-9 (6.25nM) 

exhibited similar efficacy to the recombinant full length chemerin (100ng/ml) for 

stimulation of MSC migration (Figure 6.1 A). MSC migration in response to 

chemerin-9 was inhibited in a dose-dependent manner by CCX832 (Figure 6.1 B 

& C). At a concentration of 1µM (which was the highest concentration of CCX832 

used) the control compound CCX826 had no effect (Figure 6.1 D). Furthermore, 

CCX832 and AF2325 (chemerin neutralising antibody) also inhibited significantly 

CAM CM-induced MSC migration (Figure 6.1 E). Chemerin-9 stimulation of OE21 

cell migration in Boyden chamber assays was also reversed in a dose-dependent 

manner by CCX832 (Figure 6.2 A & B). Moreover, CCX832 (1µM) and chemerin 

neutralising antibody, AF2325, inhibited CAM CM-stimulated OE21 cell migration 

(Figure 6.2. C). In wound healing assays, CCX832 (1µM) inhibited also OE21 cell 

migration in response to C-9 while the control compound, CCX826, had no effect 

(Figure 6.2 D) 
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Figure 6.1 In Boyden chamber migration assays, the chemR23 antagonist CCX832 
significantly inhibited MSC migration. A) Chemerin-9 (C-9) and mature chemerin-157 
(chemerin) similarly stimulated MSC migration. B) Dose-dependent inhibition of MSC 
migration in response to chemerin-9 by CCX832 (0, 0.1nM, 1nM, 10nM, 100nM, and 
1µM) (n=3). C) Data from panel B with basal subtracted. D) CCX832 (1µM) 
significantly inhibited chemerin-9 stimulation of MSC migration while the control, 
compound CCX826 (1 µM) did not (n=3). E) CCX832 (1µM) and chemerin 
neutralising antibody, AF2325, inhibited MSC migration in response to CAM CM while 
the control compound, CCX826 (1 µM), did not. Horizontal arrows, p<0.05, t- test; 
vertical bars, SEM.   
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Figure 6.2 The chemR23 antagonist, CCX832, significantly inhibited OE21 cell 
migration in Boyden chamber and scratch wound assays. A) Dose-dependent 
inhibition of OE21 migration in response to CCX832 (0, 0.1nM, 1nM, 10nM, 100nM, 
and 1µM). B) The data from panel A with basal subtracted. C) CCX832 (1µM) and 
chemerin neutralising antibody, AF2325, inhibited OE21 migration in response to CM. 
D) In wound healing assay, CCX832 (1µM) inhibited OE21 migration while the control 
compound CCX826 (1 µM) did not. Horizontal arrows, p<0.05, t- test; vertical bars, 
SEM.   
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6.3.2 Chemerin stimulates transendothelial migration of MSCs   

via ChemR23 

MSCs labelled with the membrane-inserting dye, PKH67 (Figure 6.3 A) were then 

used to investigate the ability of MSCs to migrate through a HUVEC monolayer 

(transendothelial migration). First, we confirmed using Boyden chamber assays 

that migration in response to chemerin-9 was similar for labelled and unlabelled 

cells (Figure 6.3 B). Chemerin-9 and CM from CAM4 stimulated transendothelial 

migration of MSCs and in both cases the response was significantly inhibited by 

both CCX832 (1µM) and chemerin neutralising antibody, AF2325 (Figure 6.3 C, D 

& E) while the control compound, CCX826, had no effect (Figure 6.3 D & E).  

6.3.3 Chemerin stimulated transendothelial migration of MSCs 

requires MMP-2 

Previous data indicated expression of MMP-2 by MSCs and increased abundance 

in the media after growth factor stimulation (IGF-II). We considered the possibility 

that chemerin might stimulate MMP-2 release that was required for MSC 

transendothelial migration. Initially, then, enzyme activity was shown to be 

significantly increased in the medium in response to chemerin and IGF-II 

stimulation of MSCs (Figure 6.4 A). Human recombinant MMP-2 was then shown 

to stimulate MSC transendothelial migration and the response was inhibited in a 

dose-dependent manner by a selective MMP-2 inhibitor (MMP-2 inhibitor I) 

(Holmberg, Ghesquiere et al. 2013). Since the MMP-2 inhibitor at 60.18 µM was 

found to have no further inhibitory effect compared to 20.16 µM in human MMP-2 

stimulated MSC migration. (Figure 6.4 B) we used this concentration in further 

studies. Chemerin and IGF-II stimulated MSC transendothelial migration was 

significantly inhibited by the MMP-2 inhibitor at this concentration (Figure 6.4 C).  
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Figure 6.3 The chemR23 antagonist, CCX832, significantly inhibited MSC 
transendothelial migration. A) Representative fields from transendothelial MSC 
migration experiments showing migrating unlabelled (left panel) and labelled MSCs 
(right panel). B) Membrane labelling did not effected MSC migration in response to 
chemerin-9 (C-9) compared to unlabelled MSCs. C) CCX832 and chemerin 
neutralising antibody, AF2325, inhibited MSC transendothelial migration stimulated 
by chemerin-9 D) The inactive compound CCX826 (1 µM) did not affect chemerin-9 
stimulated MSC transendothelial migration. E) Conditioned media (CM) from CAMs 
stimulated MSC transendothelial migration and this was significantly inhibited by 
CCX832 (1µM) but not CCX826 (1 µM). Horizontal arrows, p<0.05, t- test; vertical 
bars, SEM.   
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Figure 6.4 MMP-2 is released by chemerin and stimulates transendothelial migration 
of MSCs.  A) IGF-II and chemerin significantly increased MMP-2 enzyme activity in 
MSC media detected by the selective substrate MCA-Pro-Leu-Ala-Nva-Dpa-Ala-Arg-
NH2. B) MMP-2 stimulates transendothelial migration and there is dose-dependent 
inhibition by an MMP-2 selective inhibitor (MMP-2 inhibitor I). C) An MMP-2 inhibitor 
significantly inhibited IGF-II and chemerin stimulated MSC transendothelial migration. 
Horizontal arrows, p<0.05, t- test; vertical bars, SEM.  
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6.4 Discussion 

In chapters 4 and 5 chemerin-regulated MSC migration was characterised. Since 

circulating MSCs presumably gain access to tissues after crossing the 

endothelium, an assay was then established to study transendothelial migration of 

these cells in vitro. Both chemerin and CM were shown to stimulate 

transendothelial migration of MSCs. Transendothelial migration involves MMP-2, 

and in addition chemerin was shown to stimulate MMP-2 secretion suggesting a 

molecular mechanism for MSC extravasation. Characterisation of a chemR23 

antagonist, CCX832, confirmed the role of chemerin/chemR23 interactions in CM 

and chemerin-stimulated MSC and OE21 migration, and this compound was then 

used to establish a role for these interactions in MSC transendothelial migration. 

The data presented here are the first of their kind to study chemR23 function 

using CCX832 in oesophageal cells and in MSCs. The validation of CCX832 in 

these systems provides a basis for future in vivo studies.   

Transendothelial migration of MSCs requires protease activity for passage of the 

cells across the endothelial barrier. The activity of MMP-2 in MSC media was 

measured using a selective fluorogenic substrate, MCA-Pro-Leu-Ala-Nva-Dpa-

Ala-Arg-NH2, (Holmberg, Ghesquiere et al. 2013) and shown to be increased in 

response to chemerin. Others have previously demonstrated increased MMP-2, 

MT1-MMP and MMP-9 levels in MSCs in response to inflammatory cytokines, 

TNF-α and IL-1β (Ries, Egea et al. 2007). Moreover, these proteases, along with 

protease inhibitor, TIMP-3 regulate the chemotaxis of BM-derived MSCs to the 

matrix environment (De Becker, Van Hummelen et al. 2007; Ries, Egea et al. 

2007). Our findings are in agreement with previous studies showing MMP-2 

induce MSC transendothelial migration (De Becker, Van Hummelen et al. 2007; 

Ries, Egea et al. 2007). Chemerin also increases MMP-2 and MMP-9 in 
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endothelial cells (Kaur, Adya et al. 2010). In the future it will be necessary to 

expand the present studies including, for example, using gelatin zymography to 

determine the ability of chemerin to activate other gelatinases (eg MMP-9) in 

MSCs. There is also a need for Western blots to probe active and inactive MMP-

2, and other MMPs, in both cell extracts and media in response to chemerin.  

In chapters 4 and 5, chemerin-stimulated cell migration was studied using 

knockdown and overexpression approaches. Although the findings were robust 

and reproducible, these approaches do not lend themselves to future studies in 

vivo. However, the use of a chemR23 antagonist, CCX832, suggests a novel 

method to target chemerin-chemR23 interactions involving MSC function in vivo. 

Previously, CCX832 has been used in studies of psoriasis (ChemoCentryx 2011) 

but so far no studies of the compound in cancer have been published. 

Nevertheless the use of other antagonists targeting GPCRs in cancer is well 

established; for example, a recognised target in prostate cancer is the 

gonadotropin releasing hormone receptor (GnRH) which regulates testosterone 

and dihydrotestosterone and can be blocked by antagonists resulting in impaired 

cancer cell proliferation (Cook and Sheridan 2000; Pommerville and de Boer 

2010). Other examples include studies associated with increased chemokine 

CCL5 expression in breast cancers and targeting the receptor, CCR5, by the 

antagonist maraviroc which attenuates invasion of breast cancer cell in vitro and 

in vivo (Velasco-Velazquez, Jiao et al. 2012). In these cases, the targets were 

cancer cells themselves, rather than the tumour microenvironment. 

Our results have shown for first time that blocking chemR23 decreases 

transendothelial migration of MSCs in vitro and clearly it will now become 

interesting and important to devise experiments to test the effects in vivo.  
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The present studies have shown chemerin-stimulated OE21 cell migration was 

also inhibited by CCX832. These findings therefore suggest a potential paracrine 

signalling pathway in oesophageal cancer cells involving myofibroblasts that 

might be exploited therapeutically. Other studies in oesophageal cancer cells that 

involve targeting of GPCRs include the findings of EGF/EGFR transactivation of 

β-adrenoceptors (Liu, Wu et al. 2008) and in particular the demonstration that 

EGF stimulated oesophageal SC cell (HKESC-1) proliferation was inhibited by 

Atenolol and ICI 118,551 which are antagonists of β-adrenoceptor (Liu, Wu et al. 

2008). Although not extensively studied, increased OE21 cell proliferation was 

observed in response to chemerin (data not shown). Thus it would now be 

interesting to study the blocking effect of CCX832 on OE21 cell proliferation in 

response to chemerin. 

These present findings confirm the role of chemR23 in MSC and OE21 cell 

migration and they extend these findings by demonstrating a role in 

transendothelial transit. It now becomes important to ascertain whether chemerin-

stimulated cancer cell migration, or recruitment of MSCs to the oesophageal 

cancer niche, is important in vivo. Xenograft studies in mice using various 

strategies to track MSCs (Kang, Shin et al. 2012) and by targeting ligand-GPCR 

axis or biomolecules modulation may help here (De Becker, Van Hummelen et al. 

2007; Placencio, Li et al. 2010). Moreover, the in vitro validation of CCX832 

provides a platform for future xenograft experiments to study chemR23 more 

generally in tumour growth. These studies are now underway. Potentially the data 

from such studies will indicate whether this is an appropriate candidate for cancer 

drug development.  
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6.5 Conclusions 
 

1. Chem23 antagonist, CCX832, inhibited chemerin-stimulated MSC and OE21 

cell migration. 

2. Chemerin-stimulated transendothelial migration of MSCs was inhibited by 

CCX832. 

3. Chemerin-stimulated secretion of active MMP-2 from MSCs was required for 

MSC transendothelial migration.   
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7.1 Overview 

The main findings of this thesis are that (a) oesophageal CAMs are functionally 

distinguishable from their paired ATMs in both SC and AC, (b) conditioned media 

from oesophageal CAMs increases cancer cell migration and proliferation 

compared to CM from ATMs, (c) there is increased chemerin abundance in SC 

CAMs compared to their respective ATMs and (d) chemerin stimulates migration 

of chemR23- expressing MSC and OE21 cells. The migration of MSCs is 

mediated through chemerin-chemR23 dependent activation of PKC, p44/42, p38 

and JNK-II pathways. In addition, (e) chemerin increases MIF secretion by MSCs 

which tends to reduce the migratory response at low chemerin concentrations and 

(f) migration of MSCs across a monolayer of endothelial cells was also stimulated 

by chemerin and required induction of MMP-2. The effect of chemerin MSC 

transendothelial migration was reversed by a chemR23 antagonist, CCX832, 

which provides a basis for future in vivo studies.  

 

7.1.1 Myofibroblasts and the tumour microenvironment 

 

7.1.1.1 CAMs are functionally distinct from ATMs 

 

Morphology and expression of markers such as α-SMA and vimentin confirmed 

the CAMs and ATMs used in the present studies as myofibroblasts.  These are 

phenotypically different from other stromal cells and are considered to be subset 

of fibroblasts (Gabbiani, Ryan et al. 1971). Previously, heterogeneity of 

myofibroblasts has been associated with a role in tissue organisation (Powell et 

al., 1999). The present study on oesophageal myofibroblasts, and previous 

studies of gastric, breast and oesophageal myofibroblasts have shown CAMs to 
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be more aggressive than their corresponding ATMs, or myofibroblasts from 

normal tissue (Holmberg, Quante et al. 2012) (Noma, Smalley et al. 2008; Peng, 

Zhao et al. 2013).. The differences are evident both in vitro, for example with 

respect to proliferation and migration, and in vivo when xenografts composed of  

co-injected cancers cells and myofibroblast/CAMs are studied (Quante, Tu et al. 

2011).  

 
What mechanisms account for the differences between CAMs, ATMs and NTMs? 

Previously, hypomethylation was identified in gastric CAMs which might account 

for differences in gene expression (Jiang, Gonda et al. 2008) and in protein 

secretion (Balabanova 2012). In addition, the profiling of miRNA in gastric 

myofibroblasts showed differential regulation in CAMs which might change protein 

expression (Wang, 2013). At the phenotypic level, the activation of proteolytic 

systems (Bernstein, Twining et al. 2007; Holmberg, Ghesquiere et al. 2013),  

differences in NHE1 activity (Czepan, Rakonczay et al. 2012) and in IGF-II 

secretion (Grotendorst, Rahmanie et al. 2004) could all contribute to increased 

myofibroblast proliferation and migration. 

 

Because myofibroblasts critically influence the microenvironment it seems 

possible that they are rate limiting factors in determining disease progression via 

their rich pool of extracellular secreted proteins involved in autocrine and 

paracrine signalling (Powell, Mifflin et al. 1999; Kalluri and Zeisberg 2006; Hinz, 

Phan et al. 2007). In addition, the recent recognition of polyclonal tumour origins 

was hypothesised to be due to paracrine signalling from secreted factors such as 

Wnt-1 from myofibroblasts (Thliverisa A. T. et al. 2013). Collectively, these 

signalling mechanisms control the growth and invasiveness of cancer cells, 

infiltration of MSCs, and differentiation of various cells including myofibroblasts 
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themselves (Hinz, Phan et al. 2007; De Wever, Demetter et al. 2008; Quante, Tu 

et al. 2011). 

 

7.1.1.2 Differential secretory profile of CAMs vs ATMs: chemerin is a 

novel example 

 

Proteomic analyses of CM from oesophageal myofibroblasts (Holmberg & Varro, 

unpublished data) have revealed an impressive array of secreted proteins. The 

list includes families of proteases, chemokines and inflammatory cytokines that 

could play crucial roles in cancer progression. Other studies have shown 

increased SDF-1 in CAMs that might encourage angiogenesis and tumour growth 

as well as MSC recruitment (Orimo, Gupta et al. 2005; Quante, Tu et al. 2011; 

Jung, Kim et al. 2013). Similarly, compared to NTMs increased Wnt-2 was 

reported in oesophageal CAMs and shown to regulate the invasiveness of cancer 

cells (Fu, Zhang et al. 2011). The present validation of a novel target in the 

oesophageal CAM secretome, chemerin, should therefore be seen as a further 

(previously unsuspected) example of differential expression of signalling 

molecules. Interestingly, there was no marked difference in chemerin transcripts 

observed in microarray datasets suggesting the existence of post transcriptional 

mechanisms regulating expression, possibly due to differential miRNA expression 

(Wang 2013). There is extensive evidence of post-translational processing of 

chemerin that determines biological activity. The precise processing mechanisms 

in myofibroblasts have not yet been addressed and this question should now be 

resolved. However, prochemerin is known to be processed by various enzymes, 

such as elastase, tyrptase, and plasmin at least some of these may also be 

produced by myofibroblasts indicating that the machinery for post-translational 

processing is present in these cells (Du and Leung 2009). Interestingly, chemerin 
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was not detected in adenocarcinoma myofibroblasts despite the presence of gene 

transcripts. This might be attributed to its complete enzymatic degradation in AC 

and studies of these are now required. 

 

7.1.2 Biological outcomes of chemokine-ChemR23 interactions 

 

7.1.2.1 Chemokine-ChemR23  

 
Recruitment of inflammatory cells and MSCs is an important step in inflammation-

driven cancers and is orchestrated to a large extent by chemokines. Chemokines 

such as SDF-1/CXCL12 (Levesque, Hendy et al. 2003) and MCP-1 to MCP-4 

(Uguccioni, D'Apuzzo et al. 1995) are recognised as potent chemoattractants. 

Studies have also demonstrated chemokine (C-C motif) ligand 2 (CCL-2)/MCP-1 

(Lin, Chuang et al. 2012) and SDF-1/CXCL12 derived from CAMs (Orimo, Gupta 

et al. 2005) could interact with epithelial and other stromal cells in 

microenvironment, macrophages and endothelial cells. The interaction is crucial 

for triggering cell proliferation, angiogenesis and downstream activation of other 

chemokines, cytokines and proteases (Balkwill 2004).  

 

In this study, chemerin was confirmed to be approximately equally efficacious as 

IGF-II as a chemoattractant for MSCs and cancer cells. Nevertheless the function 

of chemokines is not restricted to chemotaxis. Indeed, chemerin has been shown 

to be responsible for cell differentiation and proliferation as well (Muruganandan, 

Roman et al. 2010; Yang, Li et al. 2012). For example, chemerin induces 

adipocyte differentiation, clonal expansion, and basal proliferation of bone marrow 

MSCs (Muruganandan, Roman et al. 2010; Muruganandan, Parlee et al. 2011). 

Stimulation of proliferation was not studied in detail, but chemerin shown in pilot 
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experiments to increase cancer cell proliferation. In addition, differentiation of 

MSCs into adipocytes was confirmed in response to chemerin (data not shown). 

In addition, in response to CAM CM and chemerin, the specific marker study of 

osteogenic (Alizarin Red staining), chondrogenic (Alcian Staining) and adipogenic 

(Oil Red O) differentiation of MSC might suggest chemerin inducing differentiation 

capability. However, the relevance of this findings remains uncertain given that in 

oesophageal cancer adipocytes in the stromal environment are unlikely to be 

functionally important, in contrast to some other cancers notably breast cancer 

(Dirat, Bochet et al. 2011).  

 

The GPCRs, chemR23 and GPR1, have previously been shown to interact with 

chemerin in various cell types (Barnea, Strapps et al. 2008; Huang, Zhang et al. 

2010). Other studies showed chemerin also binds efficiently to CCLR2 (Zabel, 

Nakae et al. 2008; Otero, Vecchi et al. 2010). In this study, chemR23 and GPR1 

expression was confirmed at the transcript level, and also by 

immunohistochemistry, in MSCs and oesophageal cancer cells. However, the 

functionally significant chemerin interaction was shown to be with chemR23. 

Although interactions with the two receptors might have varying biological 

significance the current findings indicate that chemerin stimulation of MSC 

migration requires only chemR23. Other studies also confirmed the 

chemerin/chemR23 axis is primary to transduce signals and to execute the cell 

functions (Huang, Zhang et al. 2010). Despite equal binding affinity to GPR1 and 

CCLR2, it may be that these only amplify the preceding effects on chemotaxis for 

example by increasing local availability of chemokine to cells expressing primary 

receptors (Zabel, Nakae et al. 2008; Otero, Vecchi et al. 2010). 
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7.1.2.2 Chemerin signalling in migration 

 

The various downstream pathways involved in chemokine signalling include 

activation of PKC, PI3K/Akt, MAPK, Src, and Jak/STAT and activation of Rac and 

Rho GTPase (Raftopoulou and Hall 2004; O'Hayre, Salanga et al. 2008). 

Chemerin triggers p44/42 and Akt in chrodocytes (Berg, Sveinbjornsson et al. 

2010), and p44/42, p38 and Akt in fibroblast-like synoviocytes (Kaneko, Miyabe et 

al. 2011); it also increases calcium influx and inhibits cAMP in endothelial cells 

(Hart and Greaves 2010) all linked to cell motility. Here, chemerin induced MSC 

cell migration via increased phosphorylation of p44/42, p38 and JNK-II, while  

PI3k/Akt was not crucial for chemotaxis notwithstanding the finding that PI3K and 

Akt are considered key signalling mediators in adhesion of macrophages (Hart 

and Greaves 2010). Chemerin increases calcium influx and triggeres MAPKs 

pathways via Gi family members regulating dendritic cell chemotaxis (Wittamer, 

Franssen et al. 2003). It would be worth examining the role of calcium influx in 

MSCs in the future. The activation of p44/42, p38 and JNK-II was presumably part 

of a cascade following PKC activation as occurs  in various other cell functions 

including migration (O'Hayre, Salanga et al. 2008). Pharmacological inhibitors 

showed partial PKC-dependent downstream MPAKs activation, but there also 

seems to be PKC independent responses that sustain activation. This raises the 

possibility of cross talk following transactivation of RTK downstream of GPCR 

activation which should be further studied. In this context, and based on earlier 

studies of chemokine/GPCR interaction, it would be useful to determine whether 

there is activation of proteases such as ADAM’s that cleave and release active 

EGF ligands to trigger intracellular pathways via EGFR (Gschwind, Zwick et al. 

2001).  
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7.1.2.3 Chemerin, cytokines and proteases 

 

Chemerin is known to enhance chondrocyte chemotaxis via increased secretion 

of TNF-α, interleukin-6 and interleukin 8 (Berg, Sveinbjornsson et al. 2010). Other 

studies have confirmed TNF-α and IL-6 strongly stimulate MSC migration (Fu, 

Han et al. 2009; Anton, Banerjee et al. 2012). Chemokines such as osteopontin 

have also been shown to induce MSC-derived CCL5 to enhance migration and 

increased cancer cell invasion (Mi, Bhattacharya et al. 2011). In the present 

study, chemerin was shown to target MIF and MMP-2 in MSCs, which has not 

been previously demonstrated (Figure 7.1).   

The inflammatory cytokine, MIF, exerts a dual role both intracellular and 

extracellular which are considered to be anti- and pro-tumorigenic, respectively 

(Verjans, Noetzel et al. 2009). This is reminiscent of the dual function of TGF-β 

which inhibits cell migration in normal tissue, but in cancer it acts as a tumour 

enhancer (Derynck, Akhurst et al. 2001).  The present in vitro findings indicated 

that MIF inhibition of MSC migration was exhibited only at moderate chemerin 

concentrations. This suggests the strength of the stimulus provided by chemerin 

decides the degree to which MSCs are recruited.  

It is well-known that for cells to cross the endothelial monolayer (either in 

recruitment or in metastatic migration) there is a requirement for MMP activity 

(Przybylo and Radisky 2007). Chemerin was shown to induce MMP-2 secretion in 

MSCs, which extends studies showing stimulation of MMP-1, MMP-3, MMP-8 and 

MMP-13 (Berg, Sveinbjornsson et al. 2010) and MMP-9 (Kaur, Adya et al. 2010) 

in other cells. 
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Previously MMP-2 and also MMP-14 were shown to be crucial for MSC migration 

in vitro (De Becker, Van Hummelen et al. 2007; Lu, Li et al. 2010). MMP-2 targets 

laminin and collagen which are constituents of BM and ECM (Giannelli, Falk-

Marzillier et al. 1997). Moreover, the co-localisation of MMP-2 with integrin has 

been shown at the leading edge of the migrating cells (Ogier, Bernard et al. 

2006). A similar mechanism is considered to control the MSC migration across 

endothelial monolayers and suggests a mechanistic target for in vivo MSC 

homing in microenvironment. The existence of other proteases in this process 

cannot be ruled out. For example, MMP-9 and MMP-14 shown to increase cell 

migration via interacting with integrin (Egeblad and Werb 2002; Sabeh, Ota et al. 

2004).  

Chemerin

MSC

Cancer cells

Myofibroblasts

Migration

MIF

MMP-2

Blood vessel

 
 
 
 
Figure 7.1 Novel stromal cell signalling for MSC migration.  
Schematic showing cancer associated myofibroblasts secretion of chemerin and 
stimulation of MSC migration via chemR23. The chemerin/chemR23 interaction 
activates PKC and MAPKs pathways. Chemerin targets in MSCs include MIF and 
MMP-2 which enhance transendothelial migration. 
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7.1.2.4 Targeting chemerin-ChemR23 interactions 

 
The identification of chemokine-receptor interactions opens up the prospect of 

therapeutic intervention. For example the antagonist maraviroc for CCR5 

decreases tumour growth in response to CCL5 (Velasco-Velazquez, Jiao et al. 

2012). In this study, the chemR23 antagonist, CCX832, was shown to significantly 

inhibit chemerin stimulated MSC and cancer cell migration. Very recently, the 

supplier of CCX832, ChemoCentryx, have reported that this compound 

antagonises the effect of chemerin in stimulating human monocyte migration 

(Watts, Dorrance et al. 2013). The binding affinity of CCX832 was significantly 

higher for  chemR23 than GPR1 and CCLR2, (Watts, Dorrance et al. 2013) 

thereby confirming its specificity. Together these two studies provide a platform 

for future in vivo work. In particular it now becomes possible to address the 

specific question of whether chemerin acts as a chemoattractant for MSCs in 

vivo, as well as more generally to determine whether chemerin influences tumour 

progression.  

7.2 Methodology 

The strong positive correlation of increased CAMs and tumour growth has been 

established (Orimo and Weinberg 2006).  The use of primary cells in our research 

is considered to provide advantages over immortalised myofibroblasts and 

fibroblast cell lines (Pan, Kumar et al. 2009). There are limitations, however; using 

primary cells for research tends to be associated with small sample sizes and 

limited life span (passages) of the cells. There is also a concern that even primary 

myofibroblasts may have adapted to culture conditions. Nevertheless several 

studies have shown that co-injection of CAMs and cancer cells in mice stimulates 

xenograft growth supporting the idea that CAMs do indeed promote cancer 



Final Discussion 

154 
 

progression and that this property is retained when the cells are expanded in vitro 

(Hwang, Moore et al. 2008; Holmberg, Quante et al. 2012).  

 
The identification of chemerin abundance was by the robust proteomic technique 

of iTRAQ (Holmberg & Varro, unpublished observations). Further, Western blot 

and ELISA was used to validate chemerin abundance in cultured myofibroblast 

cell extracts and media. Other approaches, such as IHC for primary tumour 

tissues would provide data on protein expression in tissues. The exploitation for 

selective cell type from clinical samples for gene expression could provide better 

chances for prognostic and diagnostic markers. For studies of the expression of 

specific genes in a defined cell type in a clinical samples, it would be possible to 

use laser capture microdissection (Gillespie, Ahram et al. 2001).  This allows 

targeting of  cells with defined properties and that after microdissected can be 

processed for either gene microarray or RT-PCR (Bonner, Emmert-Buck et al. 

1997).  

 
The present study made extensive use of different in vitro assays for proliferation 

and migration of cells in response to CM. The proliferation was studied by 

labelling cells in S phase (EdU incorporation). Migration was studied both by 

Boyden chamber and by wound healing assays. The cell functions of proliferation 

and migration reflect integrative responses of host cells (Teoh and Anderson 

1997). However, it would be useful to extend this to the study of cells in ECM. 

Thus an in vitro 3D culture system might be an approach to investigate cell 

behaviour in response to environment mimicking the possible tissue 

physiology/pathology (Noma, Smalley et al. 2008; Kimlin, Casagrande et al. 

2013). 
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There is ample scope for further studies of in vivo tumour growth using imaging 

methods that might extend the current in vitro findings. Mice transgenic for GFP 

expressing bone marrow can be used to provide evidence of homing of BM-MSCs 

(Quante, Tu et al. 2011; Lecomte, Masset et al. 2012). Simultaneously, the 

tumour can be grown and accessed for increased cancer cell population by co-

injection of transfected cancer cells for red fluorescence e.g. (renilla luciferase-

monomeric red fluorescence reported gene) (Wang, Cao et al. 2009) and 

myofibroblasts. There are also future prospects for the use of knockout mice for 

chemerin and chemR23. In response to chemerin the recruitment of NK cells, and 

dendritic cell have been studied in chemR23
-/-  

mice for inflammation and tumour 

model (Luangsay, Wittamer et al. 2009; Pachynski, Zabel et al. 2012).  The 

mouse chemR23 expressing dendritic and macrophages were shown to respond 

to human and mouse chemerin  equally confirming the conserved chemerin and 

chemR23 cell signalling system homologous to human (Luangsay, Wittamer et al. 

2009). Double transgenic mice for chemR23
-/-  

and GFP-BM-MSCs would provide 

a strong tool to study the recruitment of MSC in response to tumours harbouring 

primary myofibroblasts. 

 

7.3 Future prospects 

In this thesis the ligand-receptor interaction identified in vitro provides a notion of 

homing of MSCs, with extended scope of specific receptor and ligand which might 

be a potential therapeutic target. Orthodox conventional chemotherapy using 

single cytotoxic agents were ineffective in oesophageal tumours, thereby, later 

combinational therapy was carried out. Such as a combination of Cisplatin/5-FU, 

and Epirubicin/Cisplatin/5-FU are recently being used in clinical trial stage II and 

III respectively in oesophageal squamous cell carcinoma (Ross, Nicolson et al. 
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2002; Nishimura, Hiraoka et al. 2012). The advancement in molecular 

oncogenesis provided better therapeutics opportunities by targeted therapy 

chemotherapy. Such example includes targeting receptors, e.g. EGFR, with 

monoloclonal antibodies and Gefitinib, however was not impressively effective 

against oesophageal SC in clinical trial II (Janmaat, Gallegos-Ruiz et al. 2006; 

Ilson 2008). Others examples of molecular targets are VEGF, HGF, and COX-2 in 

oesophageal SC with inhibitors in clinical trial phase I/II (Tabernero, Macarulla et 

al. 2005; Tew, Kelsen et al. 2005; Ilson 2008; Hong, Wo et al. 2013). The small 

molecule drugs and targeted therapy proved to be efficient and at least 

circumvent the conventional problem over using cytotoxic drugs. Hence, the novel 

target in oesophageal squamous cancer, chemerin-chemR23 axis with available 

small molecule drug, CCX832 might holds a great promise in oesophageal cancer 

treatment. However, in this research the significance of chemerin-chemR23 

interaction was established using small sample size. Heterogeneity in patient 

population and their individual response to treatment is always a challenge to 

benefit from specific treatments.  Therefore, large panel of pre-clinical and clinical 

studies are further required to introduce CCX832, as potent drug in the cancer 

treatment.  
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Figure 1. α-SMA staining identified myofibroblasts in increased numbers, and with 

disordered morphology in oesophageal  adenocarcinoma cancer and squamous 

cancer. Myofibroblasts in a oesophageal A) adenocarcinoma and B) squamous 

cancer. Myofibroblast morphology in adjacent tissue (ATM) from the same patients 

C) adenocarcinoma and D) squamous cancer. Arrows indicate α-SMA positive 

myofibroblasts (brown). E and F) Quantification of myofibroblast morphology, 

architecture and number in cancer, and adjacent tissue. The scoring system for 
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myofibroblast morphology was: 0, normal; 1, mildly distorted; 2, severely distorted. 

Myofibroblast architecture was scored: 0, restricted to periglandular or subepithelial 

localisation; 1, both in periglandular/subepithelial regions and elsewhere in the 

interstitium; 2, severe architectural damage with meshwork-like appearance. 

Myofibroblast number was scored: 0, as NTMs; 1, mild to moderately increased; 2 

substantially increased. For the histopathological assessment, myofibroblasts were 

defined as stellate/spindle-shaped cells with consistent α-SMA and vimentin 

coexpresssion. Smooth muscle fibers were excluded based on their characteristic 

morphology. * p<0.05, n=7. 
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Isobaric tagging for relative and absolute 

quantitation (iTRAQ)
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Appendix-2 
 

 

Uniprot ID Name 

Relative change CAM vs ATM 

Patient  #1 Patient  #2 Patient  #3 Patient  #4 

Q99969

Chemerin (Retinoic acid 

receptor responder protein 

2)

1.66 4.63 1.83 4.7

A. MRRLLIPLAL WLGAVGVGVA ELTEAQRRGL QVALEEFHKH PPVQWAFQE

SVESAVDTPF PAGIFVRLEF KLQQTSCRKR DWKKPECKVR PNGRKRKCLA

CIKLGSEDKV LGRLVHCPIE TQVLREAEEH QETQCLRVQR AGEDPHSFYF

PGQFAFSKAL PRS

Red – identified in 4 patients

Green – identified in 1 patient

Table 1.

 
     

Table 1. iTARQ identified chemerin as upregulated in media in all 4 CAMs 
compared to ATMs.  A) Tryptic peptides in chemerin identified by iTRAQ in 4 
(red) and 1 (green) patients. 
 
 
 
 

Isobaric tagging for relative and absolute quantitation (iTRAQ) 

Myofibroblast media was concentrated to 500 µl and 80µg of protein was 

precipitated in cold acetone, reduced with 2µl 50mM tris-(2-carboxyethyl) 

phosphine (TCEP) at 60
o
C for one hour and alkylated with 1µl 200mM methyl 

methanethiosulfonate (MMTS) for 10 min at room temperature. Samples were then 

digested using 8 µg sequencing-grade modified trypsin overnight at 37
o
C. The 

iTRAQ tag reagents were prepared by adding 70 µl ethanol to the samples and 

incubated for 1 h at ambient temperature. Samples were then mixed and dried by 

vacuum centrifugation to less than 30 µl. Protein samples labelled by iTRAQ were 

diluted to 2 ml with 25% v/v ACN and pH adjusted to less than 3 with H3PO4. The 

sample was then loaded onto a PolyLC PolySULFOETHYL A (4.6 x 200mm i.d.) 
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cation exchange (CEX) column using an Agilent 1100 HPLC system. Fractions (27) 

were collected and dried by vacuum centrifugation. Samples were then 

resuspended in 5% v/v ACN, 0.05% w/v TFA and loaded onto a PepMap C18 

(75µm x 180 mm i.d.) reverse phase column with C18 Trap (300 µm x 5 mm i.d.) 

using an LC Packings Ultimate nano-LC system run in-line with an Applied 

Biosystems QStar Pulsar mass spectrometer via a nano-electrospray source head 

and 10µm inner diameter PicoTip (New Objective, Massachusetts, USA). Spectra 

from both MS and MS/MS were acquired using an information-dependant 

acquisition (IDA) in positive ion mode. Protein identification and quantification were 

performed using the ProteinPilot
TM

 v3.0.1 software (Applied Biosystems; MDS-

Sciex). The Paragon algorithm was selected as the default search program, with 

the digestion agent set as trypsin and cysteine modification as methyl 

methanethiosulfonate. Only proteins with an identification confidence of at least 

95% based on the assignment of at least two tryptic peptides, and a local FDR 

calculated using the PSPEP algorithm of <1%,  were reported. Differentially 

abundant proteins were defined as having a fold change of 1.5 or more, and an 

associated p-value of <0.05.  

 


