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 CHAPTER 1: Introduction 

1a) Complex Regional Pain Syndrome. 

i.    History and Diagnosis - 

Ever since it was first described in the late 19th century the diagnosis of 

Complex Regional Pain Syndrome (CRPS) has been problematic for clinicians 

due to the heterogeneity of the symptoms and the lack of reliable and 

quantifiable diagnostic indicators. Although the term CRPS was only introduced 

in 1993 the historical description of CRPS is generally traced to a condition 

resembling CRPS, first described in American civil war soldiers by Silas Weir 

Mitchell, who used the term “Causalgia” to describe persistent pain symptoms 

following nerve damage from gunshot wounds1. The first clinical 

documentation of the condition related to inflammation, is credited to Paul 

Sudeck who, in 1901, published a paper on post-traumatic bone dystrophy in 

combination with various other clinical phenomena including edema and 

trophic changes2. This condition was described as “Sudecks Atrophy” until the 

mid-20th century when further research highlighted the possible role of the 

sympathetic nervous system in the maintenance of peripheral pain, following 

which term Reflex Sympathetic Dystrophy (RSD) was coined to describe a 

group of related chronic pain conditions3. Finally, in 1993 the International 

Association for the Study of Pain (IASP) held a conference in Orlando, Florida 

where the current term Complex Regional Pain Syndrome was agreed as the 
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new umbrella term for peripheral pain disorders, with varying and complex 

clinical phenomena4. 

The same meeting also formulated the first standardized and internationally 

recognized criteria for the diagnosis of CRPS, which included the distinction of 

conditions based on the presence or absence of an observable nerve injury, 

designated Type II (causalgia) and Type I (RSD) CRPS, respectively4. Despite the 

advantages of this new framework for diagnosis, implementation of the criteria 

remained inconsistent and subject to criticism. Despite identifying most cases 

of CRPS, the IASP criteria had low specificity, resulting in the misdiagnosis of 

other neuropathic pain conditions as CRPS5.  As a result of the mounting 

criticism, new diagnostic criteria were established in 2003 and named the 

“Budapest critera”6 (Table 1.1). The Budapest criteria possess a much greater 

specificity than previous clarifications7 and are now widely accepted as the 

international gold standard for CRPS diagnosis with regular updates published8. 

However, by virtue of the complicated pathology of the disease, reliable 

diagnosis continues to be a problem in CRPS and efforts continue to develop 

this area, including the proposal of a CRPS severity score9. Furthermore, due to 

the lack of a reliable and quantifiable diagnostic test for CRPS, diagnosis still 

relies heavily on the experience and knowledge of the practicing clinician, a 

system which can be exploited by malingerers who falsely report symptoms10. 
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ii.  Symptoms - 

CRPS is a heterogeneous disease, with a wide range of symptoms occurring 

across the patient population. Generally, symptoms can be classified into one 

or more of four basic categories of disturbance: sensory; motor; autonomic 

and trophic (described in detail in Table 1.2), with the most frequent complaint 

being pain of some kind in the affected limb11.  

Typically, patients present after some form of minor to moderate injury, such 

as a small bone fracture, followed by an acute phase characterised by the 

cardinal signs of inflammation (redness, warmth, swelling and pain)12. In 

particular, an altered skin colouration and temperature between affected and 

non-affected limbs is apparent in the early stages, usually manifesting as 

“warm CRPS” i.e. an increased relative skin temperature. After the acute 

phase, warm CRPS commonly develops into “cold CRPS” i.e. decreased relative 

skin temperature and cyanotic appearance. Further symptoms also develop 

within the affected limb, such as hyperalgesia and trophic changes, despite the 

apparent resolution of inflammation in the affected area. Although these 

symptoms are confined to the affected limb, they develop independently of 

any specific nerve(s) that were affected by the inciting event. As the disease 

progresses, the pain and other clinical symptoms can often spread proximally13 

and even to the contralateral or ipsilateral limb14. Disease persistence is also 

associated with development of sensory loss, and loss of voluntary motor 

function, with symptoms such as  
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Sensory 

Chronic Pain 
Spontaneous pain in CRPS is most commonly characterised as 

burning, pricking, aching or shooting
12

. 

Allodynia 
Pain in response to a stimulus which does not normally provoke 

pain such as a brush stroke across the skin. 

Hyperalgesia 

A greater intensity of pain than usual in response to a painful 

stimulus. Mechanical and thermal hyperalgesia are both common in 

CRPS with a prevalence for cold hyperalgesia opposed to warm
15

. 

Hypoesthesia 

The loss of sensory perception to pain, touch, temperature or a 

combination thereof. So called “negative symptoms” are more 

common in the later stages of CRPS. 

  

Motor 

Limb weakness 

Muscle weakness is common in CRPS affected limbs. In the acute 

phase oedema can also contribute to a reduced range of 

movement. Atrophy can also develop in latter stages. 

Tremor/ 

Myoclonus 

Tremors and muscle twitches occurring in CRPS affected limbs. 

Thought to be more common in cases with visible nerve damage i.e. 

Type II CRPS
16

. 

Focal Dystonia 

Involuntary muscle contractions or adoption of abnormal posture 

which commonly develops distally in affected limbs, commonly the 

hands and feet. 

  

Autonomic 

Oedema 
Most pronounced in the acute phases of disease and associated 

with inflammatory markers such as vascular leakage 

Vasodilation 

Increased blood flow in the affected limb resulting in characteristic 

“warm” CRPS in which produces a marked difference in both skin 

colouration and temperature between affected and non-affected 

limbs. 

Vasoconstriction 

Producing the opposite effect to above, resulting in “cold” CRPS and 

cyanotic appearance in limbs. In most cases, CRPS will progress from 

the warm to the cold type over time however, but 20% of cases 

present with only cold CRPS
12

. 

Sudomotor Alteration in sweating 

  

 

 

Trophic 

Changes 

Hair/Nail growth 

Excessive hair and nail growth are both observed within days of 

disease onset. However, as with sensory disturbances, these 

positive symptoms tend to reverse and become negative, resulting 

in reduced growth and in some cases atrophy. 

Bone density 

Reduction in bone density is common in the latter stages of CRPS, 

but in 40% of cases spotty osteoporosis can be observed as early as 

4 weeks from onset
17

. 

Table 1.2 – The major physical of symptoms CRPS.   
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 hypoesthesia, hypoalgesia, tremors and twitches appearing12. Since utilisation 

of an affected limb is associated with worsening symptoms, secondary factors 

such as disuse atrophy, can also develop. If CRPS symptoms do not resolve 

after continued therapy, the disease is commonly referred to as “longstanding 

CRPS” and is associated with reduced quality of life and a poorer prognosis18. 

Because the symptoms of CRPS are similar to those found in other conditions, 

such as fibromyalgia, and awareness of correct diagnostic criteria is generally 

low among general practitioners, CRPS is frequently diagnosed late. 

Furthermore, the wide variety of symptoms means that patients will often 

interact with a huge variety of different healthcare professionals, from 

neurologists and rheumatologists to psychologists and emergency service staff, 

which in turn can contribute to delayed diagnoses18.  

iii.  Epidemiology -  

The first published population-wide review on CRPS incidence was performed 

by Sandroni et al19 in the U.S. in 2003. The findings were regarded as 

controversial at the time, due to the low reported incidence (5.46 new cases 

per 100,000 annually) and the fact that the IASP diagnostic criteria had 

changed over the course of the study period20. In 2007 a second population 

wide review was published with a larger patient cohort (217,653 compared to 

the earlier 106,470) based in Europe21 which reported its most conservative 

estimate as 26.2 new cases of CRPS per 100,000 people annually. Because the 

second study used the modern diagnostic criteria throughout and had other 
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advantages, such as incorporating detailed data from pain specialists, it is 

widely regarded as the most accurate.  Despite the significant difference in 

reported incidence both studies did agree on other aspects of CRPS 

epidemiology. Both studies reported significantly more cases in females than in 

males, with ratios of 4:1 and 3.4:1 respectively, the highest levels of incidence 

in people aged 55 – 75 and both reported fractures and sprains as the most 

common precipitating events, accounting for over 40% of cases. 

No definition of recovery has been defined for CRPS, due mostly to the 

spontaneous resolution of many diagnostic symptoms but the persistence of 

chronic pain. From studies of patient outcomes, it is known that 6 years after 

onset, 54% of patients consider their symptoms to be stable while 30% 

consider themselves completely recovered11. Although CRPS is associated with 

spontaneous resolution in most cases, the improvement often follows some 

form of therapy. 

iv.  Treatment 

Since the underlying pathophysiology of CRPS is not well understood treatment 

and patient manifestation is so wide-ranging treatment regimens remain 

varied. National guidelines are available including the most recent UK 

guidelines published by the Royal College of Physicians (summarised in Table – 

3)22,23.  
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In particular, there is a scarcity of large randomised control trials for the drug 

treatment of CRPS and evidence in this area is mixed at best. A recent review 

of evidence based treatment for CRPS evaluated 25 studies of patients 

receiving oral or topical drug interventions and concluded that in most cases 

that there was no, or insufficient evidence to support treatment24. 

Furthermore, those treatments shown to have some effect are complicated by 

a lack of knowledge of drug mechanisms, uncertain dosage, and also by disease 

duration i.e. not effective in late stage disease. Of the more invasive 

techniques, only spinal cord stimulation was shown to be effective and is to 

date still the only CRPS treatment approved by NICE in the UK25. 

One area of treatment regarded as particularly important to a patient’s 

management of pain is through paramedical treatments. Various therapies 

encompassing physiotherapy, occupational therapy and psychological support 

have been shown to improve patient outcomes18,24.  

Finally, recent research has also produced promising new avenues of therapy, 

including application of intravenous immunoglobulin treatment (IVIG), use of 

NMDA receptor antagonists and various brain training techniques26,27. 

However, all still require long term randomised trials and further refinement to 

confirm efficacy. 
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FOUR PILLARS OF TREATMENT FOR COMPLEX REGIONAL PAIN SYNDROME (CRPS) –  

an integrated interdisciplinary approach  
1. Patient Information and Education.  

 

Patients should be : 
• Provided with education about CRPS. 

• Reassured of the safety of physical/occupational therapy as a treatment. 

• Encouraged to begin a process goal setting and reviewing. 

2. Pain Relief (medication and procedures). 

 

Pain specialists should be aware of the current evidence for efficacy of pain interventions in CRPS. No 

single treatment is recommended at the current time but the following may be considered: 
• Neuropathic pain medication according to National Institute for Clinical Excellence 

guidelines *. 

• Pamidronate (60mg intravenous single dose) for suitable patients with CRPS < 6 

months duration as a one-off treatment. 

• Spinal cord stimulator treatment for patients with CRPS who have not responded to 

appropriate integrated management. 

3. Physical and Vocational Rehabilitation. 

 

Should be delivered by therapists competent in treating chronic pain with emphasis on restoration of 

normal function and activity through acquisition of self-management skills.  
This may include elements of chronic pain management: 

• Body reconditioning through exercise, gait re-education and postural control. 

• Restoration of normal activities, including self-care, social, leisure and recreational 

activities. 

• Pacing and relaxation strategies. 

• Vocational support. 

It may also include specialised techniques to address altered perception of the limb for example: 
• Self-administered desensitisation with tactile and thermal stimuli. 

• Functional movement to improve motor control and limb position awareness. 

• Graded motor imagery, mirror visual feedback, mental visualisation. 

• Management of CRPS-related dystonia. 

4. Psychological Intervention 

 

Based on individual assessment to identify and manage factors that could contribute to perpetuation 

of pain or disability/dependency including: 
• Mood evaluation – management of anxiety/depression. 

• Internal factors, e.g. counter-productive behavioural patterns. 

• External influences or perverse incentives. 

This interventional usually follows the principles of cognitive behavioural therapy delivery: 
• Coping skills and positive thought patterns. 

• Support to family/carers to manage needs and maintain relationship. 

Table 1.3 – The Royal College of Physicians national guidelines for the treatment of 

complex regional pain syndrome 
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1b) Peripheral mechanisms of pain and the influence of the immune 

system. 

i.   Molecular Basis of Pain 

Pain as an evolved mechanism that serves the fundamental purpose of 

translating potentially noxious environmental stimuli: mechanical, thermal or 

chemical, into electrochemical activity. This signal transduction occurs when 

primary sensory pain fibres, known as nociceptors, become sufficiently 

depolarized to trigger a change in action potential. In the peripheral sensory 

system, there are two types of nociceptive fibre known as Aδ- and C-fibres, the 

latter of which is unmyelinated. Both types of fibre are polymodal and thus 

equipped with various sensor molecules which transduce noxious stimuli into a 

depolarising sensor potential (Figure 1.1)28,29. In most cases, the sensor 

molecule is a ligand-gated ion channel which facilitates depolarization when 

open, for example the transient receptor potential (TRP) V1 is open at 

temperatures higher than 43oC and facilitates transport of cations (mostly 

extracellular Ca+) into the cell. The same receptor can also be opened by 

chemicals, such as capsaicin, which results in a painful burning sensation,  

effectively mimicking the sensation of a high temperature28,30. Other major 

receptor types include acid-sensing ion channels (ASICs) which are active at low 

pH, ATP and purinergic ion channels, activated by the release of ATP from 

damaged cells, and degerin epithelial sodium channels (ENaCs) which are high-

threshold receptors responding to intense mechanical stimulation31–33.  
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Each receptor is generally classified by the type of stimuli to which it responds 

e.g. heat or mechano-heat and in combination allow responses to the three 

main noxious stimuli discussed above.  

If the level of depolarisation in the nerve ending is sufficient, then voltage-

gated ion channels facilitate the transmission of an action potential along the 

peripheral nerve fibre to dorsal root ganglion (DRG) cells and eventually on to 

the cortex and thalamus via the spinothalamic tract31. Information regarding 

ASICs for 
protons

TRP for thermal 
transduction

Channel for 
Mechanical 

Transduction

K+

K+

K+

K+

Na+

Na+

Na+

Na+

Ca+

Ca+
Ca+

Ca+

Signal Transduction

Voltage Gated Ion Channels

PTX receptor 
for ATP

SECOND MESSENGERS

Neuropeptides Adrenergic 
Mediators
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Mediators Cytokines

Neurotrophins

Modulation of 
sensing potentials

Modulation of 
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Figure 1.1 – The molecular basis of nociception. Polymodal sensory fibres express a wide 

variety of basic sensing receptors which, upon binding of a specific ligand, facilitate the 

induction of a sensing potential. Above a certain sensing potential threshold, signal 

transduction occurs and an action potential is produced. Intracellular second messenger 

systems exist which can modulate the thresholds for sensing in response to the binding of cell 

surface receptors by their specific ligands.  
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the intensity of a stimulus is rendered by the frequency and duration of the 

action potential firing31. 

ii.  Inflammatory Pain - Modulation of Pain by the Immune System 

The molecular pain pathway described above is commonly activated as a by-

product of inflammation by virtue of the tissue environment generated under 

inflammatory conditions (altered pH, bystander cell damage, direct damage to 

neurone etc.). However, active components of the immune system can also 

signal directly to peripheral nociceptors to alter the transduction thresholds 

and produce peripheral sensitization34 (Fig. 1.1). Active inflammation lowers 

the excitation threshold of nociceptors to noxious stimuli and also sensitizes 

certain C-fibres, which are otherwise non-excitable by noxious stimuli, 

contributing to sensitization28. This peripheral sensitization produces a state of 

hyper-excitability within the nociceptors of the central nervous system, thus 

producing pathophysiological, symptoms such as hyperalgesia and allodynia.  

This peripheral sensitization is mediated by a number of different soluble 

mediators and signalling pathways.  Cytokines, such as tumor necrosis factor 

(TNF-) α35,36 and interleukin (IL-) 1β37, have been shown to induce pain through 

altered nociceptive responses38. The pro-inflammatory CC-chemokine ligand 

(CCL-) 3 has been shown to alter the sensitivity of the TRPV1 receptor39. 

Furthermore, nflammatory proteases, such as mast cell tryptase and trypsin, 

can also alter the esnitivity of the TRPV1 receptor, through binding of the 

protease-activated receptor (PAR) 2 expressed on sensory neurones40. IL-6 in 
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complex with the soluble IL-6 receptor has also been shown to sensitize 

nociceptors in inflamed joints by binding to glycoprotein 130 expressed on 

sensory neurones41. There is also evidence that various other cytokines 

including IL-12, -15 and -18 may contribute to nociceptive sensitization when 

applied exogenously42. 

Other signalling molecules directly related to inflammation can also induce 

peripheral sensitization. Classical inflammatory mediators, such as 

prostaglandins and bradykinin, can both activate and sensitize neurones28,43. 

The neurotrophin nerve growth factor (NGF), released in response to 

inflammatory tissue damage, can directly alter the threshold for thermal 

excitation by enhancing currents through TRPV1 channels, as well as inducing 

the release of inflammatory compounds from immune cells42. Various 

neuropeptides including substance P (SP) and calcitonin gene-related peptide 

(CGRP) are also involved in inflammatory modulation of nociception and are 

discussed in more detail in the context of CRPS below. Finally, under certain 

conditions, usually following nerve injury, adrenergic mediators, such as 

noradrenaline (NA), can have nociceptive effects, a mechanism which may be 

of relevance to CRPS44 and is discussed in detail later. 

Various kinase families have been implicated as the intracellular signalling 

systems (second messengers) involved in inflammatory mediated peripheral 

sensitization. Mitogen activated protein (MAP) kinases, including extracellular 

signal-regulated kinase (ERK) and p3845, cyclic adenosine monophosphate 
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(cAMP) dependent protein kinase A (PKA)46, calcium dependent protein kinase 

C (PKC)47 and c-Jun N-terminal kinase (JNK)48 have all been implicated. Work in 

this area is almost exclusively performed using DRG cells, and so extrapolation 

of these models to primary sensory neurones relies predominantly on the use 

of pathway specific chemical inhibitors in primary neurones. 

iii.   Neuropathic Pain – Modulation of Pain by Nerve Damage 

Neuropathic pain is distinct from inflammatory pain in that the action 

potentials responsible for perception of pain are usually ectopic discharges 

generated in an area affected by nerve damage, though not necessarily directly 

from a damaged fibre itself49. These ectopic discharges can also be produced 

by inappropriate application of inflammatory mediators, blurring the lines 

between inflammatory pain and neuropathic pain28,38,50. It is clear that direct 

trauma to a nerve will produce a primary phase of inflammation which is 

similar to an inflammatory pain response in any damaged or infected tissue. 

However, in the case of damaged nerve fibres, this inflammatory response can 

lead to prolonged changes in the peripheral and central nervous systems, 

which contribute to the development of chronic neuropathic pain51,52.  

If a nerve fibre is completely transected during trauma, then axon 

degeneration occurs, known as Wallerian degeneration, whereby the nerve 

fragments distal to the injury bead, swell and then disintegrate, a process 

which can takes days in humans53. Over the course of this process, the 

products of cellular degeneration, so-called damage associated molecular 
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patterns (DAMPs), are exposed to the extracellular environment where they 

can bind Toll like receptors (TLRs) expressed on Schwann cells and on resident 

immune cells, such as mast cells and tissue resident macrophages53,54. These 

cells then release inflammatory mediators and chemotactic factors, such as 

TNFα, IL-1β, IL-6 and CCL2 in order to facilitate further immune cell 

recruitment55. This leads to infiltration of neutrophils and monocytes which 

phagocytose the cellular debris to prevent further immune activation56. 

Monocyte-derived macrophages also secrete neurotophins, such as NGF, and 

actively promote axon regeneration57. Over the course of this process, many of 

the inflammatory mediators are released in the presence of healthy nerve 

fibres, resulting in peripheral sensitization by the pathways discussed above.  

DRG cells can also become sensitized as a result of neurogenic inflammation in 

a peripheral sensory fibre. Indeed during peripheral inflammation DRG 

undergo a similar process to that described above, whereby immune cell 

infiltration, up regulation of pro-inflammatory cytokines and sensitization all 

occur55. This process may be facilitated by the retrograde transport of 

inflammatory factors from the damaged axons52. If this inflammation is not 

resolved, the persistent hyper-excitability in DRG cells can result in altered 

microglial (CNS resident macrophages) behaviour contributing to central 

sensitization58. This process is thought to be an essential step in the 

development and maintenance of chronic pain in which significant changes in 
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neuronal plasticity and cerebral processing result in so-called cortical 

reorganisation34,59. 

It has been suggested that inadequate resolution of neurogenic inflammation 

contributes to the development of neuropathic pain. Various resolution-

associated molecules have been implicated in this process including classical 

cytokines, such as IL-10 and transforming growth factor (TGF) –β, as well other 

endogenous mediators, such as resolvins and endocannabinoids, both of which 

have received significant recent interest as potential therapeutic 

treatments55,60,61. However, it is also been shown that insufficient immune 

involvement following nerve trauma, decreased debris clearance, axon 

regeneration and functional recovery, particularly in the absence of CD11b-

expressing monocytes and macrophages62. It is probable that dysregulation of 

this delicate balance between axon recovery and excessive inflammation 

ultimately transforms inflammatory pain into longstanding neuropathic pain, 

and may be crucial in understanding CRPS. 

1c) Complex Regional Pain Syndrome – Disease Etiology and Current 

Understanding 

Due to the heterogeneous symptoms involving multiple body systems and the 

early confusion in diagnosis and treatment of CRPS, a variety of different 

hypotheses have developed to explain the pathogenesis and maintenance of 

CRPS18. These hypotheses can generally be categorized by the three related 

body systems, within which the dysfunction is thought to occur: the immune 
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system, the peripheral nervous system and the central nervous system. It has 

become apparent; however, that no single hypothesis can adequately explain 

the entire condition and that significant interaction between the suggested 

mechanisms occurs across different disease subtypes, resulting in an 

integrative conceptual model of disease pathology, an overview of which is 

shown on page 46 (Fig. 1.4). 

1d) The Role of the Immune System in CRPS  

Due to the obvious inflammation that occurs in the acute phase of CRPS the role 

of the immune system in disease pathology has received much attention. 

However, it is not clear what role the immune system plays beyond the acute 

phase and if any pathological changes in immune activation contribute to the 

maintenance of longstanding disease. The role of the immune system 

throughout CRPS disease is discussed below and also summarised in figure 1.2. 

i.   Immunology of CRPS - Soluble Mediators 

Due to the lack of reliable diagnostic indicators in CRPS, there is considerable 

effort directed at measuring levels of serum proteins, particularly cytokines, in 

order to identify a reliable biomarker. However, results in this area have been 

conflicting. Some groups have shown increases in plasma concentrations of 

relevant inflammatory cytokines, including IL-8 and soluble TNF receptors 

(sTNFR)63. Üçeyler et al showed elevated levels of TNFα and increased levels of 

TNFα and IL-2 mRNA in patient blood, but the same study showed decreases in 

IL-8 mRNA64. More recently, a large study of 148 CRPS patients (100 type I CRPS 
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and 48 type II CRPS) showed significant increases in the plasma levels of 

interferon (IFN) –γ, IL-1β, IL-4, IL-7, TNF-α, soluble IL-1 receptor I (sIL-1RI), 

soluble IL-2 receptor (sIL-2R) –α, soluble TNF receptors (sTNFR) I&II, IL-1 

receptor antagonist (IL-1Ra) and CCL-2 when compared to healthy controls65. 

Cluster analysis of these data showed that a cluster consisting of 36% of the 

CRPS patients was responsible for these changes, with TNF-α determined to be 

the most important factor for cluster separation. The remaining 64% of CRPS 

patients demonstrated plasma analyte levels similar to those found in healthy 

control individuals. Although no significant, differences were observed in 

disease type, duration or symptoms, nor in the age, BMI or gender of the two 

clusters, TNF-α did show a significant positive correlation with disease duration 

in the plasma analyte-high cluster. Furthermore, sTNFR I&II and IL-1Ra were 

also positively correlated with pain intensity in this same group of patients. 

Micro RNA (miRNA) profiling of CRPS patients has also been used to stratify the 

disease, resulting in a patient cluster, comprising approximately 60% of 

patients in the study and no controls, in which elevated levels of IL-1Ra, CCl-2 

and vascular endothelial growth factor (VEGF) were all positively correlated 

with levels of pain66. 

 The polarisation of plasma cytokines, with little or no concurrent change in 

clinical manifestation, may explain contrasting results from other groups. 

Huygen et al showed no change in the plasma levels of various inflammatory 

mediators, including TNFα, IL-1β and IL-667. Similarly, van De Beek et al  
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recorded no change in cytokine release from peripheral blood cells of CRPS 

patients after stimulation, when compared to healthy controls68. Another 

explanation for this disparity is that systemic changes in inflammatory 

mediators between different patients may represent transient cytokine 

“overspill” from sites of local inflammation69. However, beyond the work 

discussed above, there is little evidence of a correlation between peripheral 

inflammatory mediators and disease symptoms. 

Cytokine measurements in cerebrospinal fluid (CSF) are also inconsistent 

between studies. Increased levels of IL-6 and IL-1β were observed in the CSF of 

CRPS patients compared to control70, while in a subset of CRPS patients, 

increases in nitric oxide metabolites (relevant to glial cell activation) and 

decreases in IL-4 and IL-10 were also observed71. However, this finding was not 

supported by a second, similar study specific to patients with dystonia72. Due to 

the differing symptoms of the CRPS patients analysed, it could be that changes 

in inflammatory markers in the CSF are dynamic, and that variations in levels 

impact on symptoms.  

Quantification of the levels of local inflammation has been predominantly 

measured through analysis of tissue fluid from artificial blisters and has 

consistently shown high levels of IL-6, TNFα and mast cell tryptase67,73. 

However, no link between cytokine levels and disease symptoms could be 
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established74. Blister fluid from CRPS affected limbs was also assessed using a 

multiplex bead array (25 different analytes measured simultaneously) and 

confirmed previous observations of increased IL-6 and TNF-α, in addition to 

modest increases in IL-8, IL-1Ra, IL-12, CCL2 and CCL-475. In response to these 

finding a longitudinal study was implemented to investigate the long-term 

implications of increased IL-6 and TNFα, which showed a decrease in 

inflammatory cytokines over time with no concordant improvement in disease 

symptoms. These data suggest an early and indirect mechanism of action for IL-

6 and TNFα in CRPS pathology76. Analysis of skin biopsies from CRPS affected 

limbs also showed increases in TNF-α expression compared to patients with 

osteoarthritis, despite no difference between the levels of serum TNF-α 

between the two groups77. Interestingly, the same study also showed increased 

levels of TNF-α in the skin of fracture patients, providing a direct link between a 

common inciting event and the development of CRPS, an hypothesis supported 

by data from a tibia fracture model of CRPS78. In a small scale study increased 

levels of TNF-α in the affected limbs of CRPS patients has also been detected 

following administration of radiolabeled anti-TNF antibodies79. 

The role of TNF-α, and to a lesser extent IL-6, has received considerable 

interest in CRPS, in part due to the availability of new anti-cytokine therapies. A 

case report (2 patients) involving treatment with the anti-TNF drug, infliximab, 

reported a positive treatment outcome80. Use of thalidomide (prescribed for 

multiple myeloma and Behҫets disease) also showed some efficacy in the 
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treatment of CRPS81–83. However, the only randomized control study involving 

the anti-TNF-α and the anti-IL-6 agent lenalidomide, remains unpublished, 

despite successful completion84. The application of glucocorticoids, particularly 

in the early stages of the disease, has also been shown to have beneficial 

effects85. 

ii. Immunology of CRPS - Cellular Mediators 

As discussed above increased levels of mast cell tryptase have been 

consistently recorded in artificial blister fluid collected from CRPS affected 

tissue86. This finding has led to the implication that mast cells may play an 

important role in disease pathology. However, it is not known if this finding 

reflects increased cell activation/degranulation or physical differences in mast 

cell density within the affected tissue. Mast cells are potentially interesting 

cells due to their release of large quantities of nociceptive sensitizing 

molecules, such as histamine, prostaglandins and proteases. In addition to the 

expression of neuropeptide receptors, such as neurokinin (NK) 1 receptor, this 

functionality places mast cells at a crucial juncture in CRPS pathology86. Various 

animal models of neuropathic pain, similar to CRPS, have reported a role for 

mast cells. Klein et al reported an increase in the number of mast cells 

surrounding damaged nerves in hyperalgesic rats, compared to those with no 

hyperalgesia, following needle stick nerve injury87. Mast cells were also shown 

to play a key role in pain development in a rat tibia fracture model through 

interaction with the neuropeptide SP88. In this model, inflammatory mediators 
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released by mast cells, following an injury, sensitize peripheral nociceptors, 

which in response release SP. This neurogenic SP then binds to the NK1 

receptor expressed on mast cells and induces further degranulation and drives 

a vicious circle maintaining local inflammation around the nerve. Interestingly, 

it has been shown that mast cell sensitivity to SP varies between different 

strains of rat, with nanomolar doses being sufficient to cause histamine release 

in some cases89. Although these differences in responsiveness have not been 

described in humans, it could be a potential explanation for predisposition to 

the development of CRPS. 

There is limited evidence regarding the involvement of other leukocytes in 

CRPS. Tan et al used radioligand binding to investigate leukocyte accumulation 

in the hands of CRPS I patients, compared to control90. Although significantly 

increased leukocyte accumulation was observed in CRPS patients compared to 

controls, the technique is limited as it cannot differentiate between leukocyte 

subsets. CRPS patient neutrophils showed impaired function, including 

decreased phagocytosis of zymosan in autologous plasma91. The same group 

also demonstrated diminished T-helper 1 response, based largely on decreased 

numbers of CD8+ T-cells in CRPS patients, compared to healthy controls, 

suggesting modulation of the adaptive arm of the immune system92. 

Furthermore, CRPS patient monocytes from peripheral blood samples 

displayed significantly increased levels of Nitric Oxide (NO) release after 

stimulation with IFN-γ, when compared to healthy controls. More recent work 
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reported  an increase in circulating inflammatory monocytes (CD14+CD16+) in 

patients with CRPS, but no change in the levels of T-cells (CD4+/CD8+), B-cells 

(CD19+), natural killer (NK) cells (CD56+) or monocyte/macrophages (CD14+), 

when compared to healthy control93. 

iii.  Immunology of CRPS - Neurogenic Inflammation and Neuropeptides 

Interactions between immune cells and the nervous system, particularly via 

neuropeptides, may be especially important in CRPS. SP has already been 

discussed in relation to mast cell function, but it has a wide range of effects on 

immune cells, including chemo-attraction, activation and proliferation of 

lymphocytes and degranulation and respiratory burst activation in 

neutrophils94. It has similar effects on monocytes, although there are 

conflicting reports on the increased production of TNF-α and IL-6 in these 

cells95,96. In the acute phase of CRPS, SP is present at significantly higher 

concentrations in patient serum and correlates inflammatory symptoms63. The 

amount of SP required to induce plasma protein extravasation is also thought 

to be altered in the affected limbs of CRPS patients, thus facilitating neurogenic 

inflammation, possibly to due impaired inactivation of this pathway97,98. Aside 

from its direct effects on nerves and immune cells, SP can also induce IL-1β 

production by keratinocytes in a rat tibia fracture model, a process mediated 

by the NALP1 containing inflammasome99,100, and can also activate NK1 

receptor expressing osteoclasts, possibly contributing to osteoporosis101,102. 
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Other neuropeptides elevated during the acute phase of CRPS include 

bradykinin and CGRP, which decrease in concentration after the resolution of 

inflammation103,104. CGRP can produce many of the features of acute CRPS, 

such as edema and vasodilation, as well as increasing both sweating and hair 

growth102,105. CGRP also induces IL-1β production in keratinocytes in a similar 

manner to SP100. Both SP and CGRP are released from small nerve fibres (Aδ 

and C-fibres), but CGRP is constitutively expressed in certain epidermal nerve 

fibres which share a close physical relationship to epidermal dendritic cells 

known as Langerhans cells (LCs)102,106. Increased numbers of LCs were reported 

in skin biopsies from a small case series of CRPS patients107. Because the 

identification of the LCs in this study was based upon non-specific immuno-

staining (of the protein S100) and morphological appearance, the accuracy of 

the observation is questionable. However, the crucial role of LCs at the 

interface between the immune and nervous systems, and the involvement of 

CGRP, provides indirect support to this argument and is discussed in more 

detail below.  

Finally, a recent study has also shown that CRPS may be associated with 

angiotensin-converting-enzyme (ACE) inhibitor treatment108. Because ACE is 

capable of metabolizing both SP and bradykinin to inactive forms, it has been 

postulated that ACE inhibitor therapy may lead to elevated levels of these 

neuropeptides and facilitate CRPS onset. 



39 

 

iv.  Immunology of CRPS – Auto-Antibodies and Auto-Immunity 

One hypothesis receiving much attention recently is the concept of CRPS as a 

novel auto-immune disease, mediated by circulating auto-antibodies109. 

However, the fact that CRPS pathology is localized to peripheral limbs, 

specifically to an area affected by trauma, and the apparent absence of 

meaningful tissue destruction in these areas, argues against this hypothesis. To  

account for these unusual characteristic, a two-step model of autoimmunity 

has been proposed, involving the existence of pre-existing auto-antibodies 

which only become pathogenic after the exposure of their auto-antigen 

following trauma109. There is a small body of evidence to support the role of 

antecedent infections, including increased seroprevalence of Campylobacter 

jejuni, a causative agent of Guillian-Barré syndrome, and Parvovirus B19 

antibodies in CRPS serum110,111. Furthermore, “traditional” auto-immune 

characteristics have also been described in CRPS, such as human leukocyte 

antigen (HLA) associations and an increased prevalence in women21,112.  Auto-

antibodies directed against neuronal antigens have since been recorded in the 

serum of CRPS patients, including antibodies directed against differentiated 

neuroblastoma cells, and antibodies that bind to β2 adrenergic receptors and 

muscarinic-2 receptors expressed on the surface of Chinese Hamster Ovary 

cells113,114. Passive transfer of CRPS serum into mice has also shown altered 

rearing behaviour. However, the mice did not develop typical CRPS symptoms, 

such as sensitivity to temperature or touch115,116.   



40 

 

Some of the strongest evidence to support this hypothesis comes from the 

treatment of CRPS patients with IVIG, regarded itself as circumstantial support 

of an auto-immune etiology. In an open investigation of 130 patients with 

chronic pain, including 11 patients with CRPS, low dose IVIG achieved dramatic 

pain relief in 3 of the 11 CRPS patients117. Following this initial study, a 

randomized controlled crossover trial of low dose IVIG was conducted and 

found significant pain relief and limb improvement was reported in some 

patients with longstanding (6 months to 2.5 years) CRPS, with effects lasting no 

longer than 3 months26. Although the exact mechanism of action of IVIG is not 

known, it is thought that saturation of Fc receptors may block pathogenic 

antibodies from binding. However, alternative mechanisms have also been 

suggested such as the expression of inhibitory Fc receptors or the induction of 

anti-inflammatory profiles in dendritic cells118,119. Other evidence however, 

suggests that inflammation only plays an early role in CRPS development and is 

not involved in disease maintenance. Thus it is thought that these auto-

antibodies in CRPS may bind and activate their target receptor directly and 

thus contribute to aberrant pain signalling, which in turn sustains central 

sensitization109.   

v.  Immunology of CRPS – Limb Ischemia 

One possible outcome of exaggerated inflammation in the early phase of CRPS 

is tissue ischemia due to micro vascular damage caused by oxygen free 

radicals120. This theory is based on observations in an animal model where 
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induction of ischemia and subsequent reperfusion results in CRPS-like 

symptoms lasting up to one month in the complete absence of nerve 

damage121. The proposed mechanism involves a cycle of inflammatory and 

oxidative stress, which both sensitizes nociceptors and causes further micro-

vascular damage, leading further bouts of ischemia. Tissue hypoxia has been 

reported in the affected limbs of CRPS patients in which nuclear factor 

erythroid 2-related factor (Nrf2) may play a key role122,123.   

The pharmacological scavenging of free radicals has also been suggested as a 

possible treatment for CRPS. While a variety of treatments including 50% 

dimethylsulfoxide (DMSO), N-acetylcysteine and mannitol, have ben trailed, 

none of these methods have led to significant patient improvement124,125.  

Prophylactic treatment with vitamin C, a scavenger of oxygen free radicals, 

decreased the risk of CRPS development after wrist fracture in a randomized 

control trial, and another trial using the vasodilator tadalafil, improved pain 

symptoms in patients with cold CRPS, supporting the hypothesis of hypoxia 

induced pain126,127.    

1e) The Role of the Peripheral Nervous System in CRPS 

As discussed above, there is a large body of evidence suggesting a direct role of 

the immune system in the development CRPS pathology. However, it is also 

clear that there is significant cross-talk between systems and that the nervous 

system plays a key role in disease maintenance. The mechanisms by which the 

two systems interact within the periphery is summarised in Figure 1.3. 
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Figure 1.3 – Mechanisms of Peripheral Neuro-Immune Crosstalk Relevant to CRPS. 

The proposed role of the immune system in CRPS is generally limited to classic inflammatory 

mechanisms within the acute phase of disease. However, significant crosstalk occurs between the 

immune and nervous systems, dysregulation of which may have a role in late stage disease where 

classic inflammatory signs have been resolved. The complex interactions between these two systems 

take a number of different forms and are summarised above. The potential dysregulation of these 

mechanisms, particularly in late stage disease where central changes in nervous signalling are 

common, could have a major role in the establishment and maintenance of longstanding disease. 
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i.   Peripheral Nerves - Nerve Damage 

One interesting aspect of CRPS pathology is the classical appearance of 

neuropathic pain symptoms, seemingly in the absence of any nerve injury. 

CRPS symptoms present in a similar way as small-fibre polyneuropathies, in 

which the small Aδ- and C-fibres are impaired or lost due to damage128. Due to 

these parallels, it has been suggested that CRPS may represent a regionally-

restricted small fibre neuropathy129. This hypothesis centres on the idea that a 

sub-clinical nerve injury can cause partial denervation of key tissue structures, 

such as sweat glands and microvasculature, resulting in dysfunction; damaged 

nerves then release neuropeptides (discussed above) resulting in neurogenic 

inflammation and sensitization of the remaining (healthy) nociceptors.  

Studies conducted on skin punch biopsies and amputated limbs have shown 

decreased axon densities in the affected limbs of CRPS patients, including 

reductions in epidermal, sweat gland and vascular innervation which was 

associated with a decrease in CGRP expression130,131. It is also possible that 

CRPS cases in which there is no record of trauma, may represent small fibre 

neuropathies brought on by a viral infection, such as shingles, usually referred 

to as post-herpetic neuralgia132. However, the only treatment commonly used 

for neuropathic pain that has been assessed for efficacy in CRPS treatment is 

gabapentin, producing negative results133. This observation suggests that 

although small fibre neuropathy may play a role in CRPS pathology it’s etiology 
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is distinct from the group of conditions referred to as small fibre 

polyneuropathies. 

ii.  Peripheral Nerves - Sympathetically Maintained Pain  

The significant changes to skin sweating and blood flow (colour and 

temperature) in CRPS are, in part, due to dysregulation of the efferent 

sympathetic nerve pathway. Aberrant coupling of the efferent sympathetic 

pathway and the afferent nociceptive pathway can then produce so-called 

sympathetically maintained pain (SMP) 134. The mechanism by which this 

coupling occurs is thought to be via altered expression of adrenergic receptors 

on peripheral sensory fibres, effectively producing hypersensitivity to 

sympathetic catecholamine, such as NA135. In fact, during the acute phase of 

CRPS there is loss of autonomic cutaneous vasoconstrictor activity and 

decreased levels of NA, which result in the classic early symptoms of increased 

limb temperature and redness136. The decrease in circulating catecholamines 

from efferent sympathetic fibres may, in fact, be what induces the expression 

of adrenergic receptors on nociceptive fibres137. There is also a significant body 

of evidence from type II CRPS disease models that nerve injury can alter the 

adrenergic profile of peripheral sensory fibres, including Aδ- and C-fibres, 

resulting in nociceptive sensitization to catecholamines138–140. Indeed, the intra-

dermal application of NA induces spontaneous pain in individuals where this 

adrenergic sensitivity is established, but has no effect in control individuals141. 

One interesting aspect of this altered expression is that even uninjured 
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nociceptive fibres show increases in adrenergic receptor expression and 

spontaneous activity following nerve injury142, and that nociceptive fibres can 

release neuropeptides in response to this stimulation143. A similar sensitization 

can also occur in DRG, providing a direct link to central sensitization via the 

SMP pathway143. 

This work on SMP has led to the suggestion that depletion of NA from 

autonomic nerve endings, by the regional application of guanethidine, would 

lead to resolution of pain. However, this is not the case in CRPS type I144. 

Although a subset of CRPS patients do respond to sympathetic blockade 

through the application of an anaesthetic to sympathetic ganglia, responders 

are generally in the early phase of CRPS onset where other treatment options 

are available145,146. 

iii.  Peripheral Nerves - Adrenergic Receptors and Immunity 

As discussed above, CRPS patients often present with altered sympathetic 

regulation including changes in adrenergic receptor expression and circulating 

levels of catecholamines135,137. One potential impact of an altered adrenergic 

profile, such as that observed in SMP, is the modulation of the immune system. 

Autonomic influence on immunity via the sympathetic nervous system is well 

characterised, and involves the secretion of catecholamines both centrally, via 

the adrenal medulla, and from peripheral nerve fibres147. This control is 

affected via the expression of adrenergic receptors on immune cells and 

tissues, and contributes to the complex relationship between psychological 
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stress and immune responses, often manifesting as disease flares in many 

inflammatory conditions148. 

Adrenergic receptors themselves are G-protein linked cell surface receptors 

which are divided into three subgroups: α1, consisting of a, b and d subtypes; 

α2, consisting of a, b and c subtypes, and the β-receptors consisting of β1, β2 

and β3149. The prevailing view of adrenergic receptor expression on human 

immune cells (Table 4) is that the primary receptor involved in sympathetic 

control is the β2 adrenergic receptor (β2-AR), signalling through which 

increases intracellular levels of cAMP and PKA147. Stimulation of inflammatory 

cells, including  monocytes, mast cells and neutrophils, with pharmacological 

agonists of the β2-AR inhibits cell activation and release of inflammatory 

mediators, suggesting this dominant pathway is anti-inflammatory in nature150. 

However, stimulation through the same receptor in conjunction with a co-

stimulatory signal, such as antigen or CD-40 ligand (CD-40L) synergistically 

increases expression of CD86 on B-cells151. A similar scenario has been 

described following α2 adrenergic receptor (α2-AR) stimulation of 

macrophages in conjunction with lipopolysaccharide (LPS) which results in 

increases in TNF-α production and suggests that α2-ARs are expressed by 

peripheral blood cells149,152,153. 

In contrast, α1 adrenergic receptors (α1-ARs) are not expressed on peripheral 

blood mononuclear cells but can be induced on T- and B- cells following 

treatment with phytohaemagglutinin (PHA), and on monocytes following 
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treatment with IL-β, TNF-α or LPS154–156. Another interesting aspect of α1-AR 

regulation on immune cells is that the different subtypes are differentially 

regulated. Stimulation of monocytes with dexamethasone or with a β2-AR 

agonist, (both regarded as anti-inflammatory) selectively induces expression of 

α1b- and α1d-ARs154,157. The link between these two subtypes is reinforced by 

expression studies in which surface expression of the α1d-AR subtypes is 

dependent on co-expression of the α1b-, but not the α1a-AR158. 

 

Table 1.4 – Expression of adrenergic receptor on immune cells 
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Despite the lack of α1-AR expression on healthy human peripheral blood cells, 

functional α1-ARs have been described in peripheral blood mononuclear cells 

of patients with the inflammatory condition, juvenile rheumatoid arthritis 

Adrenergic 

Receptor 

Family 
Subtypes Immune Cell Expression Immune Modulation Ref 

α1 

a 

Inducible expression 

following stimulation 

with PHA (T-cells) or 

inflammatory cytokines 

(monocytes) 

Synergistic increase in IL-6 

production in the presence 

of LPS. 
150-

155 b Expression as above but 

also inducible on 

monocytes following 

treatment with 

dexamethasone or β2-

receptor agonists. 

As above, but also linked to 

anti-inflammatory 

responses during 

immunosuppression 
d 

    

α2 

a 

Peripheral blood 
mononuclear cells. 

Synergistically increases 
inflammatory cytokine 

production in the presence 
of TLR ligands. 

145, 

148, 

149 

b 

c 

    

β2 Non 
Peripheral mononuclear 

cells, Mast cells, 

Neutrophils,  

Predominantly anti-

inflammatory but can 

synergistically enhance cell 

activation in the presence of 

co-stimulatory signals 

143, 

146, 

147 
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(JRA). Furthermore, stimulation of these cells with the α1-AR agonist 

phenylephrine (PE) resulted in increased production of IL-6159. Further work in 

JRA patients showed enhanced LPS induced IL-6 production by peripheral 

blood cells following a noradrenergic stressor160. More recently a single 

nucleotide polymorphism in the α1a-AR gene was identified as a risk factor for 

CRPS development following distal radius fracture161. 

Aside from the possible dysregulation of the sympathetic nervous system in 

CRPS, adrenergic receptors may also be targets for auto-antibody activation, as 

discussed above. Although initial work has focussed on the expression of auto-

antigens in nervous tissue, the proposed activating anti-adrenergic receptor 

auto-antibodies in CRPS could also have direct immune-modulatory 

effects109,114. 

1f) The Role of the Central Nervous System in CRPS 

Although the focus of this review is on peripheral systems, it is essential to 

briefly discuss the involvement of the central nervous system (CNS) to 

understand how chronic pain may be maintained centrally after the resolution 

of peripheral symptoms, and how CNS changes can alter efferent nervous 

signalling.  

i.   Central Nerves - Central Sensitization  

The term central sensitization refers specifically to the molecular process that 

occurs following repeated and/or intense stimulation of the ascending pain 
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pathway resulting in the de-coupling of pain perception and the peripheral 

perception of noxious stimuli34. The reasons for the intense or persistent 

stimulation of peripheral nociceptors, both inflammatory and neuropathic, 

have been discussed in detail above. One crucial aspect in the development of 

central sensitization is the recruitment of non-nociceptive fibres into the 

nociceptive network, particularly those with low transduction thresholds such 

as large myelinated Aβ mechanoreceptors34. The altered membrane excitability 

within the CNS effectively translates signals from low threshold, sensory fibres 

into pain signals, producing allodynia and hyperalgesia. There also appears to 

be a conversion of nociceptive specific neurons into dynamic neurons capable 

of responding to innocuous stimuli162. This neuronal plasticity combines with, 

and contributes to, the hyper-excitability of central neurons. This relationship 

is symptomatically manifest through the progressively increased pain response 

observed during repeated application of innocuous stimuli, sometimes referred 

to as temporal wind-up.  

The molecular basis for the development of central sensitisation is thought to 

revolve around intracellular increases in Ca+ above a certain threshold leading 

to the activation of multiple signalling pathways within the neuron including 

PKC, ERK and cAMP binding protein (CREB)163–165. These activated kinases then 

post-transcriptionally modify, via the phosphorylation of C-terminal residues, 

the function of certain key receptors, resulting in altered activity and 

membrane trafficking, which directly contributes to the development and 
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maintenance of central sensitisation166,167. In particular, the activation of the 

glutamate binding N-methyl-D-Aspartate receptor (NMDAR) is thought to be 

crucial in this process. Under normal conditions the ion channel present in the 

NMDAR is blocked by  Mg2+ ions, but sufficient membrane depolarisation 

causes Mg2+ release and allows glutamate to bind the receptor168. The binding 

of glutamate to the NMDA receptor allows Ca+ influx into the neuron, 

contributing to the pathway described above. The depolarisation required to 

remove the voltage-dependent Mg2+ block and thus promote Ca+ influx, can 

be induced by the sustained release of glutamate from nociceptors, possibly 

as a result of peripheral sensitisation. Nociceptive release of the 

neuropeptides SP and CGRP can also contribute to this membrane 

depolarisation168.  

Evidence for the role of central sensitization in CRPS pathology derives from 

two recent randomized control trials, in which low dose intravenous 

application of the NMDAR antagonist ketamine dramatically reduced CRPS 

pain27,169 . In these studies, average pain intensity was decreased for several 

weeks after treatment, but with no concordant improvement in associated 

limb function and the effect was shown to be independent of the patient’s 

disease duration. These results have led to much discussion in the field, but 

due to the poorly-understood side-effects and concerns about possible 

neurotoxicity, it is not clear how this treatment will translate clinically170,171. 
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ii. Central Nerves - Cortical Reorganisation 

Some of the least well understood aspects of CRPS pathology are the 

permanent changes that occur within the brain processing of CRPS patients, 

usually referred to as cortical reorganisation.  Previous work has shown that 

patients with a variety of pain disorders, such as phantom limb pain or chronic 

back pain, develop modified processing within the somatosensory cortex172. 

Activity in this area of the brain, responsible for the sensory processing of 

tactile stimuli, can be mapped using imaging techniques, such as magneto 

encephalography (MEG) and functional magnetic resonance imaging (fMRI) and 

represented spatially using a sensory homunculus. The first reports of cortical 

reorganisation in CRPS showed increased responses to tactile stimulation and 

altered perception of the hand, particularly the thumb and little finger, in the 

affected limb173. Subsequent studies also showed significant changes in the 

perception of affected limbs, shown by shrinking and shifting on the Penfield 

sensory homunculus, and that these changes correlated with pain 

intensity173,174. Furthermore, it was shown that these patterns of cortical 

reorganisation were corrected after successful recovery from CRPS175. These 

modified sensory maps may manifest symptomatically in patients through 

peculiar perceptions about an affected limb, including: mismatching between 

how the limb looks and how the limb feels; misinterpretation of the physical 

position of the limb in relation to the body; the inability to form mental 

representations of particular limb areas; and a desire to self-amputate the 

affected limb176. Often these symptoms are not reported to clinicians and can 
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contribute further to the feeling of alienation and psychological stress 

experienced by many CRPS patients18. 

Various techniques have been used to restore a normal sensory map in an 

effort to decrease or resolve pain in CRPS. Therapeutic application of 

computer-based training exercises, which involve improving recognition of the 

affected limb, known as graded motor imagery (GMI), can decrease pain and 

swelling in CRPS patients177. Mirror therapy is another “brain training” exercise 

which uses a perpendicular mirror to create a virtual limb (a reflection of the 

opposite, non-affected limb) in place of the affected limb. By performing bi-

lateral exercises whilst looking into the mirror, the affected limb thus has 

normal appearance and function. This technique has been shown to improve 

CRPS symptoms in early and intermediate CRPS patients, as well as patients 

who developed CRPS following a stroke178,179. Due to the low cost and relative 

ease with which these techniques can be applied they are now widely-

practiced by clinicians in the treatment of CRPS18. While some patients do not 

respond to this type of therapy, the resolution of physical symptoms, such as 

oedema and inflammation, implicates central efferent signalling in the 

maintenance of CRPS pain i.e. central responses to altered somatosensory 

maps may lead to inappropriate signalling via the efferent nerve pathway, 

possibly producing changes in the peripheral nerve environment. 
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1g) The Integrative Conceptual Model of CRPS18 

A new integrative conceptual model for CRPS pathology has now been 

proposed in light of the evidence discussed above and is summarised in Figure 

1.4. This model includes most aspects of observed CRPS pathology and 

represents a combination of different mechanisms which may or may not be 

active in different individual patients. By identifying the dominant interacting 

mechanisms in the different phases and types of CRPS disease, it is hoped that 

distinct subsets will emerge with corresponding pathways for intervention. 
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1. Trauma

2. Nerve 
Damage

3. Immune 
Activation

4. Neurogenic 
Inflammation

5. Limb Ischemia

Peripheral Sensitisation

6. Altered Neuro-Plasticity

7. Hyper Excitable NMDARs

Central Sensitisation

11. Differential 
Adrenergic Receptor 

Expression

8. Modified Sensory 
Maps 

9. Altered Efferent 
Signalling 

Cortical Reorganisation

10. Changes in 
Sympathetic 

Signalling

11. Sympathetic-
Nociceptive 
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13. Pre-Existing 
Auto Antibodies

Positive Feedback

Figure 1.4 – The integrative conceptual model of complex regional pain syndrome pathology.  

In an attempt to combine existing theories on the etiology of CRPS an integrative conceptual 

model has been suggesting. 1. Onset is triggered by some form of trauma in the affected limb. 2. 

Sub clinical nerve damage contributes to immune activation. 3. Immune infiltration and 

activation leads to acute symptoms such as swelling and redness. 4. Neurogenic elements and 

neuro-immune crosstalk contributes to the maintenance of an inflammatory response. 5. High 

levels of cell activation can lead to compartment like syndrome and limb ischemia. 6. Persistent 

activation of peripheral nociceptors alters neuronal plasticity in the CNS. 7. Changes in the CNS 

facilitate hyper excitable pain transmission pathways via NMDARs. 8. Chronic hyperexcitablity in 

the CNS leads to cortical reorganisation and modifications in sensory maps. 9. Following 

reorganisation efferent responses are altered based on modified sensory maps. 10-11. positive 

feedback may then occur through changes in sympathetic signalling producing nociceptive-

sympathetic coupling and altered adrenergic receptor profiles. 13. The presence of auto-

antibodies may drive these processes by linking the consequences of altered sympathetic 

signalling to immune cell activation/modulation. 
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1h) Skin: At the Axis of Neuro-Immune Interaction 

As described in detail above, the interaction between the nervous and immune 

systems is integral in CRPS pathology. Human skin, as the single largest 

interface between “self” and the external environment, is constantly exposed 

to exogenous stimuli which require responses from both the immune and 

nervous systems. The continuous application of exogenous and endogenous 

signals produces a dynamic environment in which cells of both systems are 

exposed to a wide range of immuno- and neuro-genic signalling molecules. This 

shared interaction with, and response to, the external environment produces 

an intricate connection sometimes referred to as the “brain-skin axis”180,181.  

Human skin is broadly divided into the epidermal (outer) and dermal (inner) 

layers (Fig. 1.5). In CRPS, many of the symptoms are linked to structures in the 

dermal layer, such as eccrine sweat glands, hair follicles and vascular 

endothelium, all of which are densely innervated by efferent autonomic nerve 

fibres182,183. The dermis also contains a wide variety of polymodal, 

unmyelinated nerve fibres, including nociceptors, used for sensing. The 

discovery of a protein ,subsequently termed protein gene product (PGP) 9.5, 

which is ubiquitously expressed in all nerve fibres, has allowed for the staining 

of epidermal nerves fibres which extend from the papillary dermis, through to 

the lower layers of the epidermis184 (Fig. 1.5). PGP 9.5 has since been identified 

as ubiquitin carboxy-terminal hydrolase L1 (UCH-L1), although use of the term 

PGP 9.5 is still commonplace in histology.  
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As the most peripheral sensory fibres, intra-epidermal nerve fibres (IENFs) are 

particularly interesting in pain research. Due to the small diameter and 

unmyelinated structure, IENF are only detectable using immuno-staining 

techniques on skin biopsy samples. Indeed, quantification of IENF density in 

skin has now become a standardised method for the assessment of some 

peripheral neuropathies185,186. As discussed above, it has been suggested that 

Figure 1.5 – Cutaneous structure of hairy skin. 

Hairy human skin is characterised by densely innervated hair follicles and sweat 

glands. The Epidermis is distinctly separated from the dermis by the lowest layer of 

the epidermis, the stratum basale which contains basal keratinocytes, melanocytes, 

Langerhans cells and also the distal end of intra-epidermal nerve fibres. 
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CRPS may be a form of small fibre neuropathy affecting IENF, although 

negative data regarding CRPS symptoms and IENF density has been published,  

a recent review of studies in this area concluded that the commercial methods 

used to assess IENF as may be insufficient to detect ultra-microscopic changes 

and/or changes in IENF function129,187.  

Mast cells, which have been discussed above in the context or CRPS, are crucial 

in neuro-immune crosstalk, particularly in stress responses. Due to the ability 

to rapidly respond to neurogenic signalling and facilitate neurogenic 

inflammation, mast cells are now regarded as key mediators between efferent 

nerve signalling and immune responses in the skin, and also as the critical 

mediators of stress-induced disease flares apparent in many inflammatory skin 

conditions, such as psoriasis181,188. Although there is now a growing population 

of identified dermal dendritic cells thought to be important in skin immune 

responses, the epidermal LC is still regarded as the other dominant immune 

cell in skin, particularly in the context of neuro-immunology106,189.  

1i) Langerhans Cells – Origin and Function 

In 1868, Paul Langerhans described a type of nerve cell which formed a 

contiguous network within the epidermis of human skin190. Over intervening 

years, many theories were proposed regarding LC function. We now know that 

LCs are epidermal dendritic cells of the myeloid lineage which constitute 

approximately 5% of all cells in the epidermis. By forming a continuous 
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network throughout the epidermis, LCs are able, by sampling and processing 

antigen from the environment, to act as the body’s first line of defence.  

 As the only cell of a myeloid lineage within the epidermis, LCs are easily 

identified in situ by the expression of CD45 and/or Major Histocompatibility 

Complex (MHC)-II. However, the definitive feature is the expression of 

distinctive “tennis racket” intracytoplasmic organelles, described in 1961 and 

named Birbeck granules after their discoverer191. Although the role of these 

granules is still poorly understood they appear to be involved in endosomal 

recycling via a cell surface expressed C-type lectin receptor known as Langerin 

(CD207)192,193. Langerin is growing in prominence as a marker of LCs due to its 

interaction with Birbeck granules. However, it has since been described on a 

variety of other dendritic cells, including a newly characterised population of 

dermal dendritic cells194,195. In humans, but not in mice, LCs also express high 

levels CD1a, a member of the lipid antigen presenting CD1 protein family that 

can present microbial lipid antigens to T-cells196. CD1a is well described as a 

marker of LCs in humans although the lack of expression in mice precludes its 

use in many important murine models197. A thorough list of markers expressed 

on LCs can be found in the review paper by Merad, Ginhoux and Collin (see 

Table 1)194. 

In contrast to other hematopoietic dendritic cells, LCs precursors are seeded in 

the developing epidermis prior to birth198. In mice, this process is initiated by 

primitive myeloid progenitor cells known as yolk sac macrophages, which are 
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also responsible for the development of embryonic glial cells, followed by an 

influx of fetal liver monocytes which replace the yolk sac cells199. Although 

embryonic studies are much more difficult in humans, the same paradigm has 

been suggested, with LCs found to be present in human epidermis at 9 weeks 

estimated gestational age200,201. Although the exact lineage of LCs in human is 

still not clear, murine models have shown that LC development is fms-like 

tyrosine kinase 3 (Flt3) and Flt3 ligand (Flt3L)-independent, but colony-

stimulating factor-1 receptor (CSF-1R) dependant202,203. In contrast FLt3, and 

Flt3L are essential in the development of lymphoid tissue dendritic cells and 

the CSF-1R is not202,204. Interestingly IL-34, a CSF-1R ligand expressed by 

keratinocytes and neurons, was recently shown to be crucial for the 

maintenance of both LCs and microglia in a knockout mice model, further 

enforcing the links between these cell types205. TGF-β has also been shown to 

be essential in the differentiation and survival of LCs and is expressed by both 

keratinocytes and LCs206,207. TGF-β, in combination with IL-4 and GM-CSF is also 

essential for the in vitro differentiation of monocyte-derived LCs (MoLCs)208. 

Under steady state conditions most dendritic cells are continually replaced by a 

pool of circulating, bone marrow derived precursor cells. However, LCs are 

maintained by a radio-resistant precursor cell within the skin itself, a paradigm 

proven by the chimeric and parabiotic mice models of Miriam Merad 194,209. A 

similar scenario to the persistence of host LCs in the skin of bone marrow 

transplanted mice is also apparent in humans, as shown by the striking 
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longevity of donor LCs in hand transplant patients, where donor cells survived 

in the graft for over 4 years210. Only in the presence of inflammation, such as 

that induced by UV radiation, are cells recruited from the circulation to 

repopulate the pool of epidermal LCs, a process found to be dependent on 

CCR2, CCR6 and macrophage colony-stimulating factor receptor (M-CSFR) 

expression194,203,209.  

The principle role of LCs in the skin is to sample antigens that break the skin 

barrier and, when stimulated by an appropriate pathogen associated molecular 

pattern or inflammatory cytokine signal, migrate to the draining lymph node. 

During migration, the LC functionally matures, by increasing co-stimulatory 

molecule expression and inflammatory cytokine production, into an activating 

dendritic cell capable of providing the second and third signals required to 

activate and direct naive T-cell maturation, thus tailoring the adaptive immune 

response to the type of antigen encountered194. More recently the paradigm of 

LC function has shifted to include a possible role in establishing peripheral 

tolerance. It has been suggested that by presenting self-antigen during the 

steady state, i.e. in the absence of an activating signal, LCs induce anergy in any 

self-reactive T-cells residing in the draining lymph node211. The novel 

immunoregulatory functions of LCs are still not well understood and, coupled 

with the increasingly complex network of dermal dendritic cells it may be some 

time before the intricate interactions of skin dendritic cells, and the wider 

immune system are fully understood212. 
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1j) Langerhans Cells –Interaction with Neurogenic Factors 

As described above, LCs share both a close morphological relationship to 

epidermal nerve fibres and a similar developmental pathway to glial cells106,205. 

Given these facts, it is perhaps unsurprising that LC function can be significantly 

modulated by IENFs through the release of neuropeptides and catecholamines 

such as NA213. As with mast cells in the skin, much of this research has centred 

on the role of stress and its modulation of cell function. A striking example of 

this relationship described by Kleyn et al is the significantly decreased LC 

density observed in human skin following an acute psycho-social stressor, 

namely the Trier public speaking test, a phenomenon that was associated with 

increases in epidermal CGRP and PGP9.5214. 

i.   Langerhans Cells - Modulation by Neuropeptides 

CGRP in particular has received much attention as a modulator of LC function. 

Treatment of LCs with CGRP increases intracellular levels of cAMP in mice and 

inhibits the presentation of ovalbumin (OVA) to a OVA-specific T-cell 

clones106,215. Inhibition of antigen presentation is possibly mediated by 

decreased expression of CD86 co-stimulatory molecules as observed in the LC-

like cell line XS52 following CGRP stimulation in the presence of LPS and GM-

CSF216. The same cell line also exhibited increased levels of LPS and GM-CSF 

induced IL-10, when treated with CGRP, whilst secretion of IL-1β and 

transcription of IL-12 mRNA were both decreased. It has since been shown that 

CGRP inhibits the LPS-induced production of TNF-α in both XS52 cells and 
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enriched LCs, a mechanism mediated, in part, through the inhibition of IκB 

kinase-β (IKK-β) phosphorylation and subsequent prevention of nuclear factor 

kappa-light-chain-enhancer of activated B cells (NF-κB) activation217. 

Despite previous observations of its effects on antigen presentation, CGRP has 

been shown to enhance LC antigen presentation to a Th-2 type T-cell clone218. 

Pre-treatment of primary murine LCs with CGRP dose dependently increased 

IL-4 production in a conalbumin specific Th-2 clone while concomitantly 

decreasing IFN-γ production in a keyhole limpet hemocyanin specific Th-1 

clone. Furthermore CGRP inhibited the production of the Th-1 chemokines 

CXCL-9 and CXCL-10 in primary murine LCs and the LC-like XS106 cell line (a cell 

line derived from A/J mice epidermal cells to model mature LC behaviour219) 

whilst increasing the production of Th-2 chemokines CCL-17 and CCL-22, 

although this interaction appears to be independent of the primary CGRP 

receptor218. 

Similar modulation of LC function has been described for the neuropeptides, 

vasoactive intestinal peptide (VIP) and pituitary adenylate cyclase-activating 

peptide (PACAP), including suppression of antigen presentation and inhibition 

of inflammatory cytokine secretion220,221. In contrast to the Th-2 polarising 

effect of CGRP on LCs, VIP and PACAP produce a Th-17 bias in LCs when 

presenting antigen to T-cells222.  

Despite its important role in neurogenic inflammation and the observed 

expression of NK1 receptors on LCs, SP has only been shown to suppress LC 
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function at very high concentrations (10-4 – 10-5 M) in a mixed cell system, 

where indirect effects are likely 223. 

ii. Langerhans Cells - Modulation by Catecholamines  

LCs isolated from mouse epidermis, XS52 cells (a cell line similar to xs106 but 

derived from fetal BALB mice epidermis219) and XS106 cells have been shown to 

express the α1a- and β2-ARs mRNA and in vitro stimulation of unseparated 

epidermal cell suspensions with adrenaline and NA decreased the level of 

antigen presentation to a specific T-cell clone224. Furthermore isolation and ex 

vivo stimulation of murine epidermal cells suspensions with NA suppressed 

delayed type hypersensitivity in pre-immunized mice, an effect blocked by the 

β2-AR specific antagonist ICI 188,551 but not by the α-AR specific antagonist 

phentolamine224. The immunosuppressive effects of β2-AR stimulation on LCs 

was further expounded by the observation that locally, and even distally, 

administered adrenaline supressed contact hypersensitivity to an 

epicutaneously administered hapten224. Pharmacological blockade of NA 

release, via injection with the ganglionic blocker pentolinium, increased levels 

of IFN-γ in draining lymph nodes and increased contact hypersensitivity to 

fluorescein isothiocyanate (FITC) in mice225. ICI 188,551-mediated blockade of 

β2-ARs during the induction of sensitisation to FITC in mice also decreases LC 

migration and increases hypersensitivity226. Inhibition of LC migration and 

contact hypersensitivity was also reported following α1b-AR blockade; 

however, this affect was later attributed to local release of NA acting on β2-
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ARs226,227. β2-AR agonists also influence LC chemotaxis by increasing 

responsiveness to CCL-19 and CCL-21, a process mediated by IL-10 secretion213.  

Since LCs have now been shown to be functionally redundant in contact 

hypersensitivity responses, and many of the above studies did not use a marker 

specific for epidermal dendritic cells it cannot be ruled out that some of these 

effects may be mediated through a population of dermal dendritic cells as 

opposed to LCs228,229.  

1k) Langerhans cells – Relevance to a pain mechanisms 

In the absence of an activating signal, LCs routinely sample the epidermal 

environment and migrate to draining lymph nodes in a process thought to 

induce peripheral tolerance212. Although it is well established that LCs are 

capable of secreting inflammatory cytokines with the potential to sensitise 

peripheral nociceptors, in most cases this induction requires some form of 

stimulus, such as the recognition of a pathogen associated molecular 

pattern230–232. As established above, neurogenic signalling can significantly 

influence the behaviour of LCs and so this presents an interesting area of study 

in CRPS and other chronic pain conditions, where dysregulated nerve signalling 

is suspected as a key contributor to pathology. This relation is revealed by the 

loss or interruption of nerve signalling in the epidermis, which can significantly 

alter normal LC function, to the extent that artificially induced denervation of 

the epidermis (destruction of IENF) has been reported to both abolish, and 

enhance contact hypersensitivity in mice233,234.  
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As previously mentioned, a small case study has suggested that there may be 

elevated levels of LCs in the skin of CRPS patients107. Oaklander et al reported 

no difference in LC density in patients with post-herpetic neuralgia, when 

compared to healthy controls, but patients with painful diabetic small fibre 

neuropathy were shown to exhibit increased LC densities in affected tissues, a 

finding which negatively correlated with IENF density235,236. A striking 

observation from studies involving the denervation of epidermis, particularly in 

models based on nerve injury as opposed to denervation using neurotoxin, was 

the expression of UCH-L1 by LCs as measured by immunofluorescent staining 

with anti-PGP9.5 antibodies237. Of particular relevance to this research is that 

epidermal denervation, and subsequent UCH-L1 expression by LCs is often seen 

in models of neuropathic pain, including nerve transection and painful 

neuropathy induced by the chemo-therapeutic treatment paclitaxel237–239.  

Expression of UCH-L1 in LCs and mature dendritic cells has been related to cell 

maturation in the absence of nerve fibres  and could possibly represent altered 

processing of internalized antigen or more generally altered protein synthesis 

within the cell240–242. Interestingly, a related ubiquitin C-terminal hydrolase, 

UCH37, has been shown to regulate TGF-β signalling, an important pathway in 

LC development in vivo243. One possible reason for the observed expression of 

UCH-L1 in LCs is through the phagocytosis of products of neuronal degradation 

as opposed to de novo synthesis, a prospect which might suggest a potential 

auto-immune element to LC function in these models and which would support 
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a role for UCH-L1 in altered antigenic processing. However, increased levels of 

UCH-L1 transcripts in denervated skin extracts, where LC were the only cells 

that stained positive for a PGP9.5 antibody, suggests that UCH-L1 expression 

was a result of de novo synthesis from within the cells themselves238. It has also 

been established that isolation of LCs from healthy epidermal tissues, 

effectively denervating the cells, induces UCH-L1 expression whereas, LCs 

differentiated from CD34+ cord blood precursor cells in the absence of nerves, 

do not express UCH-L1241.     

An interesting aspect of LC-nerve interaction is that during the growth of new 

nerve fibres into the epidermis following epidermal denervation, the extension 

of fresh IENF appeared to be directed towards LCs238. Furthermore 

supernatants from LPS-stimulated LCs and XS52 cells induced the 

differentiation of PC12 pheochromocytoma cells into sympathetic neuron-likes 

cells, a process mediated by IL-6, NGF and basic fibroblast growth factor 

(bFGF)244. Both XS52 and XS106 cells were shown to express mRNA for the 

neurotrophins ciliary neurotrophic factor and neurotrophic factor 4/5, both of 

which contribute to nerve cell growth and survival245.  In response to these 

findings, a hypothesis has been suggested whereby denervated LCs respond to 

the absence of nerve fibres by secreting neurotrophic factors in a process 

which requires the de novo production of UCH-L1. However, this hypothesis 

remains untested and the importance of UCH-L1 expression, and the signal (or 

lack thereof), which induces its expression in LCs is yet to be described. 
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1l) UCH-L1 

As described briefly above UCH-L1 is an ubiquitin C-terminal hydrolase and a 

member of a family of enzymes generally involved in the recycling of free 

ubiquitin from the ubiquitin protein degradation system. Identified as a “brain 

specific protein” in 1981, the newly discovered protein, designated PGP9.5, 

received significant attention due to its constitutive expression in neuronal 

cells246. Despite being labelled as “neuron specific” UCH-L1 is merely expressed 

in much greater concentrations in neuronal tissue, constituting an estimated 1-

2% of total soluble brain protein, but can be detected in a variety of other 

tissues240. Of note, UCH-L1 expression has been described in Schwann cells, 

following nerve transection injuries, and in fibroblasts during wound 

healing247,248. 

The ubiquitin system to which UCH-L1 is related, is a post-translational 

modification system responsible for the ubiquitination, and thus altered 

cellular processing, of protein substrates. Generally regarded as a proteolytic 

system, protein ubiquitination can result in a huge variety of different 

outcomes including functional modifications or altered intracellular 

transport249. Deubiquitinating enzymes (DUBs), to which UCH-L1 belongs, are 

responsible for removing bound ubiquitin from ubiquitinated substrates. UCH-

L1 is thought to remove ubiquitin by hydrolysing ubiquitin-lysine bonds present 

in ubiquitin-isopeptides thought to be the end products of proteolysis, thus 

recycling ubiquitin after protein degradation240. However, the low hydrolytic 
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activity of UCH-L1 compared to other ubiquitin hydrolases has led to a variety 

of different theories regarding its primary function, including the stabilisation 

of mono-ubiquitin, the processing of poly-ubiquitin and ubiquitin ligase 

activity250–252. 

UCH-L1 received significant attention following the identification of a missense 

mutation in the UCH-L1 gene in a German family with Parkinson’s disease 

(PD)253. The mutation resulted in a shortage of free ubiquitin and since PD is 

associated with the accumulation of ubiquitin-conjugated proteins, this 

suggested UCH-L1 might play an active role in disease pathology. The discovery 

of UCH-L1 inhibitors such as LDN-57444, also allowed for the specific blocking 

of UCH-L1 function in order to understand its role in pathology, work 

performed mostly in the context of PD254. Treatment of UCH-L1 expressing 

neuroblastoma SK-N-SH cells with the inhibitor LDN-57444 induced cell 

apoptosis by triggering endoplasmic reticulum stress, possibly through the 

accumulation of incorrectly folded proteins255. However, treatment of UCH-L1 

transfected cell lines with the same inhibitor at a lower dose only inhibited 

UCH-L1 function with no induction of apoptosis256.  
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1m) Hypothesis 

The evidence discussed above implicates the immune system in CRPS disease 

pathology in the acute phase of the disease, but evidence suggests that 

inflammation resolves during disease progression. It is unknown if immune 

dysregulation persists in CRPS affected tissue, or if other immune-mediated 

mechanisms contribute to long term disease maintenance. 

Given the documented changes in central nervous processing in longstanding 

CRPS, understanding the relationships between immune cells and the nervous 

system in longstanding disease may assist in the development of more effective 

therapeutic strategies, or identify new biomarkers for disease diagnosis 

The hypothesis to be tested in the thesis, therefore, is that “Immune cell 

dysfunction and interaction with the nervous system contributes to the 

pathology of long-standing CRPS”. 
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1n) Thesis Aims 

This thesis aims to interrogate the above hypothesis by defining the interactions 

between immune cells and the nervous system in longstanding CRPS patients. To 

achieve this aim the project was divided in to several specific thesis objectives: 

   Quantify and analyse the immune cell population within CRPS affected and 

non-affected skin in patients with long standing disease, with specific focus 

on epidermal LCs and dermal mast cells. 

   Determine the expression and function of UCH-L1 in MoLCs in order to 

explain the relevance of this protein to chronic pain development and/or 

maintenance. 

   Define the role of immune cell adrenergic receptor expression in CRPS 

disease and the potential of auto-antibody mediated adrenergic receptor 

binding on immune cells. 
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CHAPTER 2: Materials and Methods 

2A) Materials 

 

Media & chemicals Supplier 

Glycerol 

Sodium dodecyl sulphate 

Tris 

Fischer Scientific (Loughborough, UK) 

RPMI 1640 (2mM L-gluatamine) Gibco (Paisley, UK) 

Phosphate Buffered Saline (PBS) 

tablets 
Promega (Southampton, UK) 

Acetone 

Ammonium chloride (NH4Cl) 

Ammonium persulphate (APS) 

Bovine Serum Albumin (BSA) 

Dithiothreitol (DTT) 

Dimethyl sulfoxide (DMSO) 

Ethanol (lab grade) 

Ethylenediaminetetracetic acid (EDTA) 

Non-enzymatic cell dissociation 

solution 

Paraformaldehyde 

Saponin 

Tetramethylethylenediamine (TEMED) 

Tween-20 

Sigma (Poole, UK) 

Hydrochloric acid (HCl) 
VWR International (Leicestershire, 

UK) 

Polyacrylamide  Severn Biotech (Kiddiminster, UK) 

Table 2.1 Materials used - media and chemicals 
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Cytokines, cell stimulants & chemical inhibitors Supplier 

Recombinant human IL-1β 
Invitrogen (Paisley, 

UK) 

Phorbol 12-myristate 13-acetate (PMA) 

Recombinant human IL-6 

Bacterial lipopolysaccharide (LPS) 

Substance P acetate salt hydrate (SP) 

Norepinephrine bitartrate salt (NA) 

Human calcitonin gene related peptide (CGRP) 

Phenylephrine hydrochloride (PE) 

LDN-57444 UCH-L1 inhibitor 

Sigma (Poole, UK) 

Recombinant human CCL-19 

Recombinant human GM-CSF 

Recombinant human IL-4 

Recombinant human TGFβ 

Recombinant human TNFα 
 

R & D Systems Europe 

(Abingdon, UK) 

Antibodies and dyes Supplier 

Mouse anti-human CD1a (ab24055) 

Rat anti-human HLA-DR (ab10544) 

Rabbit anti-human α1a-adrenergic receptor 

(ab54730) 

Rabbit anti-human β2-adrenergic receptor 

(ab61778) 

FITC Goat anti-mouse IgG (Fab2)  

Mouse anti-human actin 

Abcam (Cambridge, UK) 

Rabbit anti-human PGP9.5 (7863-0504) AbD Serotec (Oxford, UK) 

Table 2.2 Materials used – cytokines, stimulants and inhibitors 

Table 2.3 Materials used – antibodies and chemical dyes 
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Self-contained laboratory kits Supplier 

TaqMan® Gene expression assays: 

Hs00171263_m1 - α 1 b 

Hs00169124_m1 - α 1 a 

Hs00169865_m1 - α 1 d 

Hs00265090_s1 - α 2 b 

Hs03044628_s1 - α 2 c 

Hs00265081_s1 - α 2 a 

Hs00240532_s1 - β 2 

Hs99999903_m1 - β actin control 

TaqMan® Gene expression mastermix 

Applied Biosystems (Paisley, 

UK) 

HRP donkey anti-rabbit IgG 
Amersham Life Sciences (Bucks, 

UK) 

Citifluor anti-fadent mountant AF-1 citifluor (London, UK) 

R-PE goat anti-rat IgG 

R-PE goat anti-rabbit IgG 

Mouse IgG2a isotype control 

AF-488 mouse anti-human CD1a (CD1a20) 

Rabbit primary antibody isotype control 

Invitrogen (Paisley, UK) 

1% toluidine blue solution 
American Mastertech (Lodi, CA, 

USA) 

Mouse anti-human CD86 (discontinued) PharMingen (Cowely, UK) 

Per CP Mouse anti-human CD14 (FAB3832C) 

Mouse anti-human IL-1β (MAB6964) 

R & D Systems Europe 

(Abingdon, UK) 

Mouse anti human pan-α1-adrenergic 

receptor (A270) 

Ponceau Stain 

Sigma (Poole, UK) 

Table 2.4 Materials used – Pre-optimized laboratory kits 
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Dynabeads® Untouched™ human monocytes 

Dynabeads® sheep anti-mouse IgG 

Luminex® Cytokine Human 10-plex panel 

Luminex® IL-17 human singleplex bead kit 

Luminex® MIP-1α human singleplex bead kit 

Luminex® IFNα human singleplex bead kit 

Superscript III first strand cDNA synthesis kit 

Invitrogen 

(Paisley, UK) 

Immoblion western chemiluminescence HRP-substrate 
Millipore 

(Herts, UK) 

RNeasy mini kit 
Qiagen 

(Crawley, UK) 

 

 

Other materials Supplier 

Enhanced chemiluminescence 

hyperfilm 

Amersham Life Sciences 

(Buckinghamshire, UK) 

Polymorphprep® 

Lymphoprep® 
AxisShield (Cambridge, Uk) 

dNTPs Bioline (London, UK) 

Biotinylated  protein ladder 

detection pack 

Cell Signalling Technology 

(Massachusetts, USA) 

Custom Primers 
Eurofins MWG Operon (Ebersberg, 

Germany) 

Lithium heparin green top 

vacutainers 

Z-serum clot activator gold top 

vacutainers 

Grenier Bio-one (Gloucestershire, Uk) 

Table 2.5 Materials used – other miscellaneous 
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6mm punch biopsy pack 

Optimo suture pack sliver 

Healthcare Equipment Supplies 

(Surrey, UK) 

RNase OUT Invitrogen (Paisley, UK) 

Polyethylene Terephthalate (PET) millicell 

hanging well inserts 5 µm 

Polyvinylidene fluoride (PVDF) membrane 

Millipore (Hertfordshires, UK) 

Q5™ High-Fidelity DNA Polymerase 
New England Biolabs 

(Hertfordshire, UK) 

Human Heart cDNA (Biobanked) Primer Design (Hants, UK) 

Random primers Promega (Southampton, UK) 

Marvel non-fact milk powder Tesco 

 

2B) Methods 

i.  Patient Numbers  

10 CRPS patients, as defined by the Budapest criteria6 (table 1.1), were 

recruited to this study. Controls recruited were 5 Fibromyalgia patients, as 

defined by the American College of Rheumatology, and 9 healthy controls. 

Patients were selected from those seen in the clinics of the principal 

investigator, Dr Andreas Goebel, and other consultants at The Walton Centre. 

Ethical approval for the study was obtained from the North West 8 Regional 

Ethic committee - Greater Manchester East (09/H1013/56), and written 

informed consent was obtained from all participants.  
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ii. Biopsy Sampling and Processing 

Two 6 mm epidermal punch biopsies were taken from each patient and 

volunteer at the Jefferson Day Ward within The Walton Centre NHS Hospital. 

The biopsies were taken from the affected limb of CRPS patients and disease 

controls, whereas those from healthy volunteers were taken from matched 

limbs. A further two biopsies were taken from each CRPS patient from a non-

affected limb, as a contra-lateral control to facilitate comparison between 

affected and non-affected limbs in the same patient (Fig 2.1). One biopsy from 

each pair was sent to the Buxton Histopathology Ward within the hospital for 

formalin fixation and batch processing for histochemical analysis. The 

remaining biopsy was taken to The School of Biological Sciences, at the 

University of Liverpool for epidermal sheets processing (see below). In 4 cases, 

biopsies designated for processing for epidermal sheets were also bisected, 

and half the tissue used for T-cell isolation (see below)  
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Figure 2.1 – Schematic of Biopsy material and usage 

Biopsies were taken from the affected limb of CRPS patients and disease 

controls. Biopsies in healthy controls were taken from matched limbs. Two 

further biopsies were taken from each CRPS patient from contra-lateral 

locations on non-affected limbs to facilitate comparison within each individual. 

Following biopsy taking tissue was fixed for histological analysis or immediately 

processed for epidermal sheet staining (see protocols below). In 4 cases 

biopsies from CRPS affected were bisected with half of the material used for 

tissue T-cell isolation in addition to normal epidermal sheet processing 
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iii.  Blood Sampling and Processing 

30 ml of blood was taken from each patient and volunteer (during the biopsy 

taking at the Jefferson Day Ward) using Z-serum clot activator vacutainers (gold 

top) for serum isolation. A further 30 ml of blood was taken from 3 CRPS 

patients and used for peripheral blood mononuclear cell (PBMC) isolation using 

lithium heparin vacutainers (green top). Blood taken from healthy donors 

taken at the University of Liverpool, was approved by the University 

Committee for Research Ethics and written informed consent was obtained in 

all cases. 

iv.  Serum Isolation 

Blood taken for serum isolation was drawn into gold top vacutainers containing 

a z-serum clot activator and a separation gel specifically designed for serum 

isolation. After allowing the blood to clot for approximately 10 min the tubes 

were centrifuged at 1300 g for 15 min and the serum aspirated from the top of 

the tube. Isolated serum was then stored at -80oC for investigation of serum 

antibodies at a later date. 

v. Peripheral Blood Cell Isolation 

Blood was collected in heparinized tubes and cells isolated by density-

dependent centrifugation.  Whole blood was diluted 1:1 with 0.9% NaCl and 

layered onto Lymphoprep media for purification of lymphocytes according to 
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the manufacturer’s guidelines. Following isolation, cells were counted using an 

automated cell counter (Beckman-coulter) and resuspended in RPMI 1640 

media at a cell concentration of 1 x 106 ml-1. Mixed cell populations were also 

isolated by extracting the mononuclear layer of Polymorphprep preparations (a 

one-step density-dependent centrifugation procedure for neutrophil isolation). 

Mononuclear cells from polymorph preparations were then washed and 

resuspended in RPMI 1640 media and subject to a second density-dependent 

centrifugation using Lymphoprep, as above. Mixed mononuclear cell 

populations were then used in protocols as described below or subject to the 

monocyte purification protocol detailed below. 

vi.  Isolation of untouched™ monocytes by negative selection using 

Dynabead® magnetic beads 

Purified blood monocytes were isolated by negative selection using a pre-

formulated untouched™ human monocytes magnetic bead isolation kit 

according to the manufacturer’s guideline (Invitrogen). Briefly, peripheral 

blood mononuclear cells (minimum 5 x 107 ml-1) were incubated with a 

premixed antibody cocktail and blocking solution for 20 min at 40C. Cells were 

then washed and resuspended in buffer containing magnetic Dynabeads® and 

incubated for 15 min at 40C with tilting and rotation. Finally, bead-bound cells 

were vigorously resuspended by repeated pipetting and separated by a magnet 

field. Unbound cells were then removed from the solution and used as 



81 

 

negatively selected monocytes for further applications and the bead bound 

were cells discarded. 

vii. Differentiation of Monocyte Derived Langerhans Cells (MoLCs) 

MolCs were generated using previously described methods208. Negatively 

selected monocytes were resuspended at 1x106 cell ml-1 in RPMI 1640 

supplemented with 10% FCS and 1% Penicillin-Streptomycin (complete media) 

and incubated with TGF-β2 at 10 ng ml-1, IL-4 at 20 ng ml-1, and GM-CSF at 100 

ng ml-1. They were then plated in 1 ml aliquots in a 24 well plate before 7 d 

incubation at 370C in a humidified incubator with 5% CO2. Cells were fed on day 

4 by removing 50% of media and replacing with cytokine-supplemented media 

as above.  

viii. Cell incubations 

Cells were incubated as detailed in Table 2.6. In order to investigate 

modulation of UCH-L1 expression in MoLCs, day 7 cultures were incubated with 

a variety of neurogenic factors with known effects on LC function. The 

functional effect of UCH-L1 expression was explored through incubation with a 

UCH-L1 inhibitor followed by cell activation using cytokines and LPS and a 

variety of functional tests, described below. PBMCs were stimulated with LPS 

and cytokines to induce changes in adrenergic receptor subtype expression, 

assessed by western blotting. Finally, negatively selected monocytes were 
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stimulated with LPS and/or PE to examine the known synergistic effect on IL-1β 

production. Patient or healthy IgG fractions were then used in place of PE to 

study potential adrenergic receptor binding by auto-antibodies present in IgG. 

 

Cell type Stimulant Diluent Concentration Conditions Ref. 

MoLC (day 7) 

CGRP 
Pure 
H2O 

100 nM 

24 h ; 37oC;  
5% CO2 

218 

NA 100 nM 257 

SP 10 µM 258 

MoLC (day 6) 
LDN-

57444 
DMSO 10 µM 255,256 

MoLC (day 7) 

TNFα 

PBS 

100 ng ml-1 

18 h ; 37oC;  
5% CO2 

259 

LPS 50 ng ml-1 257 

IL-1β 100 ng ml-1 259 

PBMCs 

LPS 100 ng ml-1 

18 h ; 37oC;  
5% CO2 

 
TNFα 10 ng ml-1 

IL-1β 10 ng ml-1 

IL-6 10 ng ml-1 

Negatively 
selected 

monocytes 

LPS 25 ng ml-1 

3-6 h  37oC;  
5% CO2 

260 
PE 

Pure 
H2O 

10 µM 

IgG 
RPMI 
1640 

7-16 mgml-1  

 

ix.  Flow Cytometry  

Preparation and staining of cells for flow cytometric analysis is described in 

Table 2.7. Cells were stained in 100µl aliquots using sterile PBS with 2% BSA 

(staining buffer). Each staining protocol was followed by a 10 min wash step in 

staining buffer. Cells were resuspended in 250 µl (at approximately 0.4x10-6 ml-

1) prior to analysis using a Guava Easycyte bench top flow cytometer 

(Millipore). Unstained cells were used to define baseline fluorescence and 

Table 2.6 - Experimental protocols for cell incubations 
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forwards and side scatter gates were used to exclude extracellular debris. 

CD1a+ cells were defined as MoLCs when recording co-expression of PGP 9.5, 

HLA-DR and CD86 proteins. The isotype controls were also carried using 

indirect staining protocols with mouse IgG and rabbit IgG in place of specific 

primary antibodies at matched concentrations. Analysis of flow cytometric data 

was completed using Express Pro that is provided within the Cytosoft software 

package suite. 

Protocol 
Preparation 

1o 

Antibodies 
Incubation 

2o 

Antibodies 
Incubation 

MoLC PGP 
9.5 
expression 

Fixed in 2% 

PFA on ice 10 

min. 

Permeabilized 

using 0.5% 

saponin for 

10 min. 

Mouse 

anti-

human 

CD1a at 40 

µg ml-1 
1 h in 
staining 
buffer 
+0.1% 
saponin 

anti-

mouse AF-

488 1:200 1 h in 

staining 

buffer 

+0.1% 

saponin 

Rabbit 

anti-

human 

PGP 9.5 at 

1:200 

anti-rabbit 
R-PE at 
1:200 

MoLC 
activation 
marker 
expression 

live cells 

AF-488 
conjugated 
mouse 
anti-
human 
CD1a 
 

1 h in 
staining 
buffer 

Directly conjugated 

rat anti-
human 
HLA-DR at 
10 µgml-1 

1 h in 
staining 
buffer 

R-PE goat 
anti-rat 
IgG at 
1:200 
 

1 h in 

staining 

buffer + 

AF-488 

CD1a (see rabbit anti 
human 

R-PE goat 
anti-rabbit  

Table 2.7 – Experimental protocols for flow cytometry 
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CD86 at 
1:100 

IgG at 
1:200 
 

above) 

PBMCs/ 

Pure 
monocytes 

live cells 

Mouse 
anti 
human 
pan-α1-
adrenergic 
at 1:100 

1 h in 
staining 
buffer 

anti-
mouse AF-
488 1:200 

1 h in 

staining 

buffer 

PerCP 
conjugated 
mouse 
anti-
human 
CD14 
 

1 h in 
staining 
buffer 

Directly conjugated 

 

x. Chemotaxis Assay 

MoLCs at day 6 of culture were pre-treated with either with LDN-57444 or a 

vehicle control for 24 h before an 18 h incubation with TNFα or IL-1β (table 

2.6). Following stimulation cells were counted and resuspended in complete 

media at 2 x 10-6 cells ml-1. In parallel, transwell chambers were prepared in 

duplicate by aliquoting 600 µl of CCL-19, prepared in 0.2% BSA at 200 ng ml-1, 

or vehicle control into a 12 well plate. 5 µm PET well inserts were placed into 

each well and incubated at 370C and 5% CO2
 to equilibrate for 30 min. 100 µl of 

the pre-stimulated cells were then aliquoted, in duplicate, into each well 

chamber as appropriate and the plate returned to the incubator for 3 h. 

Following incubation, the number of migrated cells was counted using an 

automated cell counter (Beckman-coulter). 
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xi. Western Blotting 

Protein lysates were generated using boiling Laemmli buffer (containing 

dithiothreitol). Lysates were then loaded onto SDS-polyacrylamide gels 

alongside biotinylated protein markers, and run for 60-75 min at 200 V. 

Proteins were transferred onto PVDF membranes for 1 h at 100 V. After 

transfer, membranes were incubated in blocking buffer (TBS (10mM Tris, 

150mM NaCl, pH 8.0) 5% Marvel (w/v), 0.075% Tween20) for 1 h at room 

temperature to block non-specific protein binding. Membranes were then 

washed 3x for 5 min in wash buffer (TBS (10 mM Tris, 150 mM NaCl, pH 8.0), 

0.075% Tween20) and incubated in antibody buffer (TBS (10 mM Tris, 150 mM 

NaCl, pH 8.0) 5% BSA, 0.075% Tween20) with primary antibodies, as indicated 

in Table 2.8, overnight at 4oC. Membranes were then washed 2x 30 s, 2x 5 min 

and 1x 15 min in wash buffer before incubating with antibody buffer containing 

secondary antibody (HRP conjugated donkey anti-rabbit) and a marker 

antibody (HRP conjugated anti-biotin) for 1 h at room temperature. 

Membranes were then washed 2x 30 s, 2x 5 min and 1x 15 min in wash buffer. 

Protein detection was performed using Amersham ECL detection reagents and 

hyperfilm. 



86 

 

 

xii. RNA isolation & Reverse Transcription PCR 

RNA was isolated using the RNeasy® mini kit from Qiagen and cells lysed by 

repeat pipetting using a 20 gauge needle and syringe. cDNA was synthesised 

using the Superscript® III first strand synthesis kit from Invitrogen and random 

primers. A minimum of 5ng of RNA template, measured using a NanoDrop 

(Thermo-Fischer), was used in each reverse transcription reaction with 1µl of 

dNTPs (10 mM) and sterile water to a total of 13µl. Reaction mixtures were 

incubated at 65oC for 5 min followed by 1 min on ice before addition of 5x first 

strand buffer, 0.1M DTT, RNase OUT RNase inhibitor and the Superscript III 

reverse transcriptase, as per the manufacturer’s instructions. Following a 5 min 

incubation at room temperature cDNA was then synthesised by incubating 

reaction mixes in a Thermo PX2 thermal cycler at 50oC for 60 min. Reactions 

were inactivated by heating to 70oC for 15 min and cDNA fractions were stored 

at -80oC. 

Cell lysate 
Gel 

% 
1o Antibodies Concentration 

Protein size on 

product insert 

PBMCs 9% 
Rabbit anti-

human α1a-AR 
1:5000 80kDa 

Pure 

monocytes 
12% 

Rabbit anti-

human IL-1β 
2 µg ml-1 32kDa 

CD1a+/- 

selected 
15% 

Rabbit anti-

human PGP 9.5 
1:5000 27kDa 

Table 2.8  - Experimental protocols used for western blotting 
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xiii. Standard PCR 

Standard PCR was performed using Q5® high fidelity DNA polymerase 

according to the manufacturer’s instructions. Briefly, 5x Q5 reaction 

buffer, 10mM dNTPs, and Q5 polymerase were mixed with 10µM forward 

and reverse primers (detailed in Table 2.9) and a minimum of 5ng of 

template DNA before adjusting to 50µl with nuclease free water. 

Thermocycling conditions used for standard PCR were: 

Stage 1 -  denaturation   -  98oC for 30 sec     

Stage 2 -  denaturation   -  98oC for 10 sec 

       annealing      -  60oC for 30 sec 

       extension        -  72oC for 30 sec 

Stage 3 – extension       -  72oC for 2 min 

Stage 4 – Hold         -4oC 

 

Gene Sequence Product Ref. 

UCH-L1 –Forward 

UCH-L1 -Reverse 

5’-CTGTGGCACAATCGGACTTA-3’ 

5’-CCATCCACGTTGTTAAACAGAA-3’ 
243 

261
 

CD207 –Forward 

CD207 -Reverse 

5’-CAACAATGCTGGGAACAATG-3’ 

5’-GGGGAAGAAAGAGGCATTTC-3’ 
203 

262
 

GAPDH –Forward 

GAPDH -Reverse 

5’-CTCAACGACCACTTTGTCAAGCTCA-3’ 

5’-GGTCTTACTCCTTGGAGGCCATGTG-3’ 
106  

 

30 cycles 

Table 2.9 – Primer pairs used for standard PCR 
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xiv. Quantitative PCR 

qPCR was performed using pre-optimised TaqMan® gene expression assays 

(applied biosystems) and mastermix, according to the manufacturer’s 

instructions. Briefly, reactions were made up in opaque 96-well plates using up 

to 4 µl of cDNA template (minimum 1ng) combined in with 1 µl of TaqMan® gene 

expression assay mix and 10 µl of the TaqMan® gene expression master mix. 

RNase-free water added up to a total volume of 20 µl.  Each reaction was 

performed in triplicate using the pre-optimized assays described above (Table 

2.4). Following setup, plates were sealed and centrifuged for 1 min before 

loading into a LightCycler 480® qPCR instrument (Roche) for real-time analysis. 

CT values were generated automatically using Light Cycler 480 software (Roche) 

and used to calculate relative gene expression using the mean normalised 

expression method (µ(2^Target)/µ(2^Ref)) with β-Actin as the internal control263. 

Thermocycling conditions were defined by the manufacturer and were as 

follows: 

Stage 1 -  Hold   -   50oC for 2 min     

Stage 2 -  Hold  -   95oC for 10 min 

Stage 3 - Cycle  -   95oC for 15 s 

        - Cycle  -  -60oC for 1 min 

40 cycles 
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xv. Epidermal Sheet Separation and Langerhans Cell Staining 

Epidermal sheets were prepared as previously described 214. Briefly, whole 

biopsies were washed twice in PBS to remove excess blood, and then placed 

into 2 mmol.L-1 EDTA and incubated at 37oC for a minimum of 2 h. Forceps 

were then used to gently separate the epidermis from the dermis. The 

epidermal sheet was then washed in phosphate buffered saline (PBS) and fixed 

in acetone for 20 min at –20oC. After fixing, the sheet was washed in PBS and 

incubated for 1 h at room temperature with an anti-CD1a monoclonal antibody 

diluted to 10 µgml-1 in PBS containing 0.1% bovine serum albumin (BSA). The 

epidermal sheet was then washed in PBS and incubated for 1 h at room 

temperature with a fluorescein isothiocyanate (FITC)-conjugated goat anti-

mouse polyclonal antibody diluted 1:100 in 0.1% BSA/PBS. Finally, sheets were 

washed in PBS, mounted on microscope slides using Citifluor anti-fadent 

mounting solution and sealed with nail varnish. The same method was used 

but instead using an unconjugated rat anti-human HLA-DR primary at 10 µgml-1 

in PBS containing 0.1% bovine serum albumin, and a R-phycoerythrin-

conjugated goat anti-rat secondary diluted 1:100 in 0.1% BSA/PBS to achieve 

dual staining to confirm the professional antigen presenting cell phenotype. A 

mouse IgG isotype control was also used, as above. LCs were visualised using 

an LSM710 confocal microscope (Zeiss) with a 40x fluor lens. Imaging was 

performed using a 488nm laser excitation with a 488nm dichroic mirror and 

500-550nm band pass filter for emission detection. Multiple composite images 

(tilescans) were used to match the surface area covered in previous studies 
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(constituting approximately 28 fields at 350µm2 per field)264. Vertical sections 

through the sheet (Z-stacking, 20 sections at 3 µm intervals) were then 

compiled to allow for 3D image construction and quantification of cells 

throughout the epidermis. Cell density was then calculated as LC per mm2 of 

epidermis using the Volocity 3D (Perkin Elmer, USA) imaging software package 

(counting objects greater than 10µm3 with a fluorescence value greater than 

background), and manual counting (acetate overlays on PC monitor to mark off 

counted cell) was performed to validate cell densities. Cells were also visually 

assessed for their size and the number of dendritic processes. Increases in cell 

size and dendrite retraction can be indicative of cell activation265. 

xvi. Immunohistochemistry 

Formalin biopsy tissues were bisected and paraffin-embedded. Three non-

consecutive 5 µm sections were then cut from the fixed sections and adhered 

on to glass slides. Prior to staining, the tissue sections were de-waxed in xylene 

and rehydrated through a series of ethanol solutions (2X 100% ethanol, 2X 95% 

ethanol). Haematoxylin and eosin (H&E), and a 1% toluidine blue solution were 

used to stain cellular infiltration. Sections were then dehydrated through 

increasing ethanol concentrations (as above) before submersion in xylene and 

mounted using DPX. H&E sections were then blinded and randomized before 

scoring/counting. Slides were assigned a score based on the level of cell 

infiltration into the tissue compared to normal skin (‘histological assessment 

score’, see Appendix Table 1). Scoring was performed by two independent 
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assessors, including a qualified dermatologist, and the mean taken, where 

scores did not concur. Kappa values were calculated using GraphPad. Inter-

observer weighted kappa was “moderate” (κ=0.525). Intra-observer weighted 

kappa values were both “good” (κ=0.765, and κ=0.685). Mast cells were 

quantified by counting metachromatic granular cells in toluidine blue-stained 

sections. Toluidine blue is a chemical stain used to identify mast cells, based 

predominantly on the presence of heparin within mast cell granules.  10 

random fields from the papillary dermis of each section were assessed at x400 

magnification (0.2mm x 0.2mm field size) using an Axiovert100 microscope and 

data recorded as mean mast cell density per mm2 (Zeiss).  

xvii. Tissue T-cell Isolation and analysis 

Tissue T-cell isolation and phenotyping was performed by Dr. J. Farrell and Dr. 

D. Naisbitt of the University of Liverpool Department of Molecular and Clinical 

Pharmacology. In 3 cases, biopsy tissue taken from affected and non-affected 

skin for the isolation of epidermal sheets, were bisected and used for T-cell 

isolation also. Tissue was minced with a scalpel, and cultured in a single well of 

a 24 well tissue culture plate for 2-3 d in complete media (RPMI 1640 media 

supplemented with pooled heat-inactivated human AB serum (10%, v/v), 

HEPES (25 mM), L-glutamine (2 mM), transferrin (25 μg/ml), streptomycin (100 

μg/ml) and penicillin (100 U/ml), supplemented with 100U/ml IL-2. The content 

of the wells was then aspirated and passed through a 50 µm filter to remove 

debris. The resultant cell solution was centrifuged to pellet the cells, 
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resuspended and cultured for 14 d with complete medium supplemented with 

5µg/ml phytohemaglutinin (PHA), IL-2 and irradiated (45Gy) allogeneic 

peripheral blood mononuclear cells (PBMC) cells to expand T-cell numbers. 

Cells were then collected for cloning by limiting dilution (equivalent to 0.5 cells 

per well) and repetitive mitogen stimulation. The single cells were stimulated 

on day 0 and 14 with 5 μg/ml PHA, irradiated (45Gy) allogeneic PBMC 

5x104/well and IL-2. Twenty four clones from each biopsy were expanded for 

subsequent CD4/CD8 phenotyping by flow cytometry, and the analysis of 

cytokine secretion. To measure cytokine secretion profiles, individual clones 

were incubated in the presence and absence of PHA (5 μg/ml) and subjected to 

IFN-γ and IL-13 ELIspots (Mabtech, Sweden). In total, 72 clones from affected 

and non-affected skin were assessed. Cytokine secretion was recorded as spot-

forming units (SFU) where one spot represents a single clonal cell secreting the 

specific analyte i.e. IL-13 or IFN-γ. The mean number of SFU per clone was then 

used to extrapolate the cytokine profile of the original tissue resident T-cell, 

and thus determine the T-cell phenotype within the biopsied tissue. IL-13 and 

IFN-γ were selected as key markers for Th2 and Th1 T-cell polarisation, 

respectively, following a well-established paradigm 266. 

 

xviii. IgG Samples 
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Patient IgG samples were kindly provided by Dr. V. Thompson of the University 

Of Liverpool Institute Of Translational Medicine. IgG samples were isolated using 

protein G columns and suspending in RPMI 1640 medium for use in cell cultures. 

 

xix. Statistical Analysis 

Statistical analyses were performed using GraphPad Prism (version 4.04 for 

Windows, GraphPad Software, and La Jolla California USA). Data were tested for 

normality (kolmogorov-smirnov) before application of the appropriate test. Data 

which were not significantly different from normal were assessed using 

parametric tests (Independent or paired Student’s t-tests as appropriate). Data 

which was significantly different from normal were analysed using non-

parametric tests equivalent to those used for normal data (Mann Whitney U test 

and Wilcoxon Signed rank test respectively). Pearson’s correlation and 

Spearman’s rank sum test were used to assess correlation. Data are expressed as 

mean ±SEM, with differences considered significant if p < 0.05. 
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CHAPTER 3: The cutaneous immune cell population in CRPS. 

3A) Introduction 

There is now a substantial body of evidence to support the involvement of 

immune cells in the pathology of CRPS. Various studies have found systemic 

changes in immune cells in CRPS, including altered responses in lymphocytes, 

neutrophils and monocytes 91–93. In experiments to characterise the local tissue 

environment in CRPS, recent studies have focussed on the cytokine analysis from 

artificially induced blister fluid, showing consistently elevated levels of IL-6, TNF-

α and mast cell tryptase in CRPS skin compared to controls67,73,77. However, there 

is still relatively little information regarding cellular involvement CRPS-affected 

skin tissue. Radioligand binding showed leukocyte accumulation in the hands of 

CRPS I patients compared to controls and increased levels of mast cell tryptase 

implicate mast cells in local tissue pathology 86,90.  

One small case report using skin biopsies from amputated CRPS limbs, showed 

increased Langerhans cell (LC) densities in the skin of CRPS patients. However, 

the non-specific nature of the  immuno-staining and the accuracy of the 

quantification of cells in transverse section is subject to criticism107. Patients with 

painful diabetic small fibre neuropathy also exhibit increased LC densities in 

affected tissues, although no difference was found in patients with post herpetic 

neuralgia235,236. LCs are particularly interesting in the study of nerve:immune 

system interactions as they are the only myeloid-derived cell in the epidermis, 
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and have close morphological contact with the most peripheral sensory fibres106. 

Furthermore, the intricate modulation of LC behaviour through neurogenic 

signalling, and the reciprocal alterations in sensory nerve fibre behaviour, place 

LCs at a crucial axis in neuro-immune interaction, a key relationship in the onset 

and maintenance of CRPS pathology244,267. 

Aberrant interaction between immune cells, such as mast cells and LCs,  and 

peripheral nociceptive fibres in the skin can produce painful sensitisations, such 

as hyperalgesia and allodynia and may also contribute to mechanisms of central 

sensitisation thought to be crucial for the maintenance of disease28,50. The 

cortical reorganisation believed to occur in CRPS may then produce aberrant 

efferent signalling which perpetuates immune cell dysfunction in affected tissues 

and effectively maintains disease. Thus, the immune cell population within CRPS 

affected tissues could be a key effector mechanism for the development and 

maintenance of disease, but may also be a crucial indicator for centrally-

mediated disease processes. 

i.  Hypothesis 

It is possible that despite the resolution of active inflammation in acute CRPS 

disease, on-going dysregulation of the immune system occurs through aberrant 

interactions between immune cells and disrupted nerve fibre networks.  

LCs are a particularly good candidate with which to investigate this possibility 

due to their close relationship to peripheral nerve fibres. Any observed 
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differences in these tissues may be directly relevant to chronic disease 

mechanisms in longstanding CRPS tissues. Thus the hypothesis to be tested in 

this chapter is “Dysregulation of immune cells in CRPS affected tissue, 

mediated by altered nerve fibre networks, contributes to the maintenance of 

long-standing CRPS disease” 

3B) Aims 

Although a key role for the immune system in the development of CRPS 

pathology is now widely accepted, there still remain significant gaps in 

knowledge regarding the cellular population in affected tissues. Defining the 

immune cell population within CRPS affected tissues in longstanding disease 

may help to develop a better understanding of the aberrant process 

underpinning CRPS pathology, with particular emphasis on LCs which, 

positioned at the axis of neuro-immune crosstalk, are seen as key indicators of 

neuro-immune function in the skin. The specific aims of this chapter are to: 

   Measure immune cell numbers in CRPS affected tissue with a focus on 

dermal mast cells and epidermal Langerhans cells. 

  Determine functional differences in immune cells in affected tissues 

through phenotyping of tissue resident T-cells. 

   Investigate the relationship between immune cell populations and 

disease symptoms by correlating observed differences with relevant 

clinical data e.g. Pain intensity, disease duration etc. 
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3C) Results:  

i.  Patient Demographics 

To investigate the local immune cell populations within CRPS-affected skin, 6mm 

punch biopsies were taken from affected areas and from non-affected areas on 

contra-lateral limbs. Biopsies were also taken from fibromyalgia patients (as a 

non-CRPS pain control) and from healthy individuals. Patient and control 

characteristics are summarised in Table 3.1 and Table 3.2. The age-range of CRPS 

participants varied from 24 to 50 years, with the mean age being 38 ± 8. The age 

of non-CRPS pain volunteers and healthy volunteers ranged from 24 to 67 years 

with a mean age of 45 ± 12. The length of disease duration in CRPS patients 

ranged from 1 to 12 years with a mean duration of 5.5 ± 1.4 years. Pain NRS 

scores ranged from 5 to 8 with a mean of 6.6 ± 0.3 in CRPS patients, and from 2 

to 7 with a mean of 2.8 ± 3 in non-CRPS pain controls. 

ii. Tissue histology 

Haematoxylin- and eosin-stained sections are commonly used to assess tissue 

integrity and cellular infiltration by histology. Tissue samples were blinded and 

evaluated by two independent assessors, including a qualified dermatologist, 

based on histological assessment table (Appendix Table 1). No significant 

difference in histological assessment of immune cell infiltration was observed  
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between any of the sample groups (Fig. 3.1A). Arithmetic means and medians 

of all three sample groups were less than 1, using the above scoring method, 

indicating a predominance of normal tissue from all sample groups. Only one 

sample, a CRPS affected limb, was scored greater than 1 by both assessors 

independently, and came from tissue previously affected by blistering 

manifestations which likely contributed to the elevated score and may be more 

indicative of previous pathology, as opposed to on-going immune activation. 

Increased levels of mast cell tryptase previously reported in artificially induced 

blister fluid has led to the suggestion that mast cells may be involved in the 

immuno-pathogenesis of CRPS73. Toluidine blue is a commonly-used chemical 

stain which produces metachromatic colouration (red/purple) in mast cell 

granules that contain heparin and/or histamine.  Quantification of mast cells in 

toludine blue-stained sections showed no significant difference between any of 

the sample groups (Fig. 3.1C). The highest mean mast cell density per mm2 of 

dermis was observed in CRPS non-affected tissue (mean = 58, median = 59), 

and there was no significant difference when paired with contra-lateral CRPS-

affected limbs (mean = 55, median 55) using a paired t-test (p> 0.05) Mast cell 

densities recorded in this study are broadly in line with previous observations 

in healthy distal limbs using the same staining method268. Different methods 

have reported greater mast cell densities in distal limbs269. This observation is  
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in line with previous studies in CRPS showing a general decline in immune 

activity (measured by cytokine release) following the acute phase of CRPS76. 

This may suggest that mast cells are directly involved in the early inflammatory 

stages of CRPS disease onset but their role is diminished during disease 

progression 

iii.  Langerhans Cell (LC) Density in CRPS affected Tissue 

LCs are the only myeloid cell present in the epidermis and, in humans, uniquely 

express CD1a on their cell surface194. Separation of epidermal sheets from skin 

punch biopsies facilitates the direct in situ staining of LCs using fluorescently-

labelled antibodies and provides a unique perspective for LC cell quantification 

Table 3.2 – Control patient characteristics and demographics. 
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with minimal disruption of tissue. CD1a staining of epidermal sheets showed 

positive cells with dendritic morphology indicative of LCs (Fig. 3.2A). Dual 

staining with MHC-II was used to confirm cell lineage (Fig. 3.2B & Fig. 3.2C). 

Protocols in which the primary antibody was omitted or an isotype control 

antibody was used showed negative staining. CD1a stained epidermal sheets 

from a patient with a history of blistering manifestations exhibited a clearly 

altered LC morphology (Fig. 3.2D), possibly as a result of underlying dermal 

tissue disruption, as recorded in the histological assessment score. For this 

reason, this sample was excluded from the summary LC density counts.  Two 

further samples exhibited bilateral CRPS distribution which necessitated the 

sampling of biopsies from non-contralateral control tissues. Following analysis, 

these samples (P1 & P3) introduced outliers in the data set and so were 

excluded on the basis of biopsy locations. CD1a+ LC quantification was 

performed using composite confocal images and 3D software assisted manual 

counting, and was calculated as LC/mm2 of epidermis (Fig. 3.3A). 
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Figure 3.1 – Immune Cell Infiltration and Mast Cell Densities in CRPS affected Tissue. 

Formalin fixed skin sections were stained (as described in the text) to assess immune cell 

infiltration and mast cell density in CRPS affected tissues. A&B) Double-blind histological 

assessment scoring of haematoxylin and eosin stained was used to evaluate inflammation and 

tissue damage. C&D) Mast cell densities were calculated by visual counting of metachromatic 

granular cells (white arrows) within 10 random fields of the papillary dermis per tissue 

sections. 
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Mean LC cell densities ranged from 328 LCs/mm2 (CRPS affected) to 807 

LCs/mm2 (CRPS non-affected). Mean values for CRPS affected, CRPS non-

affected, healthy and non-CRPS pain were 480 ± 37 LCs/mm2, 609 ± 43 

LCs/mm2, 457 ± 53 LCs/mm2 and 421 ± 48 LCs/mm2, respectively.  Comparative 

analysis of cell densities throughout the epidermis (Fig. 3.3B) revealed a 

significant difference only between non-CRPS pain control tissue and CRPS 

non-affected tissue (U(6) = 4.00, p< 0.05) as measured by a Mann-Whitney U 

test. No further significant differences in the means of the groups were 

observed, possibly due to high levels of variation in LC density between donors, 

the reasons for which are discussed later. 

 However, a paired t-test of CRPS-affected and non-affected limbs (i.e. 

comparing samples from different locations across each individual donor) 

showed a significant difference between LC densities (t(6) = 4.75, p  <0.01) (Fig. 

3.3C) with a mean percentage difference in LC density of 24% ± 5.57 between 

affected and non-affected limbs (Fig. 3.3D). 
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Figure 3.2 – Immuno-fluorescent Staining of Langerhans Cells in Epidermal Sheets 

Epidermal sheets isolated from skin punch biopsies were fixed in acetone and dual-stained for 

LC specific markers. A) CD1a was used to specifically label LCs within the epidermal sheet. B) 

Single staining with HLA-DR was also performed to label professional antigen presenting cells 

C) Dual staining with both HLA-DR and CD1a shows co-localisation confirming the professional 

antigen-presenting capacity of CD1a
+
 epidermal LCs. D) In a single skin biopsy from a CRPS 

affected site with a previous history of blistering disease LCs showed a non-uniform 

distribution pattern that was distinct from the pattern seen in other samples. 

A B

C D 
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Statistical analysis, including those patients with non-contralateral controls (P1 

& P3), also demonstrated a significant difference between LC densities in 

affected and non-affected limbs (p <0.05) (Appendix Figure 1).  

This finding shows that there is a significant observable difference in LC 

densities in individual CRPS patients when comparing affected and non-

affected limbs. Since the differences are independent of healthy control 

samples, it is not clear if the difference represents a relative increase or 

decrease in cell number in affected tissues, the implications of which are 

discussed in more detail below. However, this striking difference does indicate 

that there is some form of differential regulation of LCs in CRPS affected tissue 

when compared to healthy tissue from the same individual. As LCs share a 

close functional relationship with distal nerve fibres in the epidermis, and other 

evidence indicates that conventional inflammatory processes are resolved in 

longstanding CRPS, it is possible this difference is as a result of efferent nerve 

signalling as opposed to immune mediated (e.g. by cytokines). This could have 

important implications for our understanding of disease mechanisms in 

longstanding patients and could also constitute a useful biomarker for CRPS 

disease in these patients. 
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Figure 3.3 – Langerhans Cell Densities in CRPS Affected tissues. 

CD1a stained epidermal sheets imaged by confocal microscopy and a 3 dimensional picture 

constructed of the epidermal sheet following which LC were quantified and cell density 

recorded as cells per mm
2
 of epidermis. A) A combination of Volocity 3D imaging software 

and manual counting was used to quantify cells numbers within the epidermal sheet. B) Mean 

LC densities observed in CRPS non-affected and non-CRPS control tissue were significantly 

different (p < 0.05). C) Paired analysis between LC densities in CRPS affected and non-CRPS 

affected tissue from the same individual showed a significant difference (p  < 0.01) but due to 

variation within the control sample populations it is not clear if this difference represents a 

significant increase or decrease when comparing CRPS-affected and non-affected tissues. D) 

In order to analyse differences in LC density in relation to other data sets the % difference 

between CRPS affected and CRPS non-affected sites within each individual was calculated. 
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iv.  Tissue Resident T-cell Isolation and Phenotyping  

Although existing data and the data presented above, suggest that 

inflammation and cell infiltration into affected tissue is resolved in cases of 

longstanding CRPS it is not known if functional differences in immune cells 

persist. Functional differences in immune cells in the skin could occur as a 

result of alterations in the tissue environment which could be relevant to 

disease mechanisms. As T-cells are present in dermal tissue under steady state 

conditions and have well characterised developmental and phenotypic 

pathways, they represent a useful reporter cell for the tissue environment. 

Differential regulation of the functional phenotype of these cells in affected 

and non-affected tissue could be indicative of aberrant disease processes, the 

manner of which may be inferred from the specific way in which the T-cells are 

differentiated.  

To test this hypothesis resident T-cells were isolated from CRPS patient 

bisected skin punch biopsies and cloned over a number of weeks. T-cells were 

then phenotyped based on the cytokine expression profile following mitogen 

stimulation in ELIspot assays. Release of IFN-γ and IL-13 was used to assess Th-

1 and Th-2 T-cells respectively, and granzyme B (a serine protease) release was 

used to assess polarisation towards a cytotoxic cell profile. Individual results 

from each biopsy are summarised in Figure 3.4. Donor-dependent variation in 

T-cell responsiveness to mitogen stimulation resulted in different levels of Spot 

Forming Units (SFU) between the different assays and thus arbitrary gates are  
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Figure 3.4 – Phenotyping of Tissue Resident T-cells Isolated from CRPS-affected and Non-affected Skin. 

Biopsy tissue from 3 patients was bisected and half the material minced and subject to tissue T-cell 

isolation. T-cells were serially diluted to produce single clones and these clones were expanded over 2 

weeks before phenotyping. A&B) 24 T-cell clones isolated from either CRPS-affected or CRPS non-

affected tissue were subject to ELIspot assays for IFN-γ, IL-13 or Granzyme B following mitogen 

stimulation. Cytokine secretion is recorded as spot forming units (SFU) where one spot represents a single 

clonal cell secreting the specific analyte. 
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shown to differentiate cell polarisation across each donor. A general trend 

towards increased numbers of IL-13 producing cells in CRPS-affected tissues 

was observed, particularly in patient 8 (Fig. 3.4A). Patient 9 also displayed a 

distinctive polarisation towards IFN-γ producing T-cells, in both affected and 

non-affected tissues and an increased number of granzyme B producing T-cells 

in affected tissue relative to non-affected tissue (Fig. 3.4 A & B).   

Mean SFU were calculated for IL-13, IFN-γ and granzyme B from each of the 24 

T-cell clones per biopsy. These data are then used to represent the relative 

polarisation towards each specific T-cell phenotype (Fig. 3.5A). Mean SFUs in T-

cell clones isolated from CRPS-affected tissues were 183 ± 57 SFU, 255 ± 52 SFU 

and 118 ± 24 SFU for IL-13, IFN-γ and granzyme B, respectively. Mean SFUs in 

clones isolated from CRPS non-affected tissues were 144 ± 57 SFU, 246 ± 27 

SFU and 107 ± 13. Analysis using a non-parametric paired t-test (Wilcoxon 

signed rank), as a direct comparison between affected and non-affected T-cell 

clones within in each individual donor (n=72), showed a significant increase in 

mean IL-13 SFU from T-cell clones isolated from CRPS-affected tissue (Fig.  

3.5B), suggesting an increase in IL-13 producing cells in these tissues relative to 

non-affected tissue. However, there was no significant difference in the mean 

SFU of any of the three analytes when comparing CRPS-affected and non-

affected tissue in the absence of pairing, possibly due to the aforementioned 

donor dependent variation in T-cell responsiveness. 
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A B

C

Figure 3.5 – Tissue Resident T-cell Polarisation 

Following isolation from tissue, T-cells were phenotyped using ELIspot assays and mean SFU for 

each analyte was calculated as a measure of T-cell polarisation. A) Despite a trend for reduced SFU 

for each analyte in CRPS non-affected tissue compared to CRPS affected tissue, there were no 

significant differences between data sets. B) Paired analysis, i.e. comparing T-cell polarisation in 

affected and non-affected tissues for each individual, showed a significant reduction in mean IL-13 

SFUs produced by T-cells from non-affected tissues compared to those from affected tissue, 

suggesting a relative increase in IL-13 producing cells in CRPS affected tissues compared to non-

affected tissues. Data shown are means of 24 clones per biopsy. Paired analysis was performed on 

all clones i.e. n=72 C) T-cell clones were also stained for CD4 and CD8 to differentiate T-helper and 

cytotoxic subtypes respectively; un-stained or dual-stained cells were recorded as “other”. Despite 

patient 9 displaying a distinctly different profile, no significant differences were observed between 

groups. Error bars show the mean ±SEM. 
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As IL-13 is considered a Th-2, closely related to IL-4, this finding may indicate a 

Th-2 bias within CRPS affected tissues266. This finding may indicate that 

although inflammation and immune activation is resolved in longstanding 

CRPS, there is on-going dysregulation of the immune system in these patients. 

A view further supported by the LC density data described above. The type of 

polarisation could suggest that Th-2 cytokines may be prevalent within affected 

tissues in longstanding disease, the further implications of which are discussed 

below. 

Surface marker expression was also recorded for each T-cell clone to assess 

differences in the expression of CD4 (T-helper) and CD8 (cytotoxic T-cell). 

Positive staining for each marker was calculated as a percentage of T-cell 

clones isolated (Fig.  3.5C). Unstained or dual positive cells were recorded as 

“other”. No difference was found in the percentage of CD4+ or CD8+ T-cell 

clones when comparing CRPS affected and non-affected tissue. Patient 9 

expressed distinctly altered marker expression compared to the two patients 

with a greater proportion of CD8+ T-cells. Since this patient was receiving anti-

biotic medication (Table 3.1) which may indicate some form of active infection, 

one possibility is that this infection is responsible for skewing the T-cell profile. 

However, further repeats would be necessary to confirm this. 

v. Measurement of Serum Cytokines  

There is conflicting evidence regarding serum cytokine concentrations in CRPS 

with the general consensus forming that increased levels observed in acute  
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Figure 3.6 – Serum Cytokine Concentrations in CRPS 

Multiplex ELISA was used to simultaneously measure 13 different analytes in CRPS patient serum. 

A-E) Of the 13-analytes measured 5 were consistently detected at reliable levels. Cytokine levels 

varied across all patients with only IL-4 displaying a consistent concentration in across the sample 

population. 
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phase disease are resolved over the course of disease progression64,74. However, 

since significant differences in tissue regulation had been observed in our 

patients (Fig. 3.3 & 3.5) serum cytokines were investigated as a possible co-factor 

in the dysregulation of either LCs or tissue resident T-cells. For this reason 

healthy controls were excluded as only comparisons between cytokine 

concentrations and existing significant data would be analysed. Cytokine 

concentrations were measured for each biopsy donor using  multiplex ELISA to 

simultaneously measure 13 different analytes: IL -1β, -2, -4, -5, -6, -8, -10, 17a, 

GM-CSF, IFNγ, TNFα, IFNα and MIP1α, (a comprehensive overview of results can 

be found in Appendix Table 2). Of those analytes assayed only 5 were detected 

within the reliable range of the assay and are shown in Figure 3.6. Low levels of 

IL-2 and IL-4 were detected in all samples, in contrast to IL-1β, IL-6 and IL-8 which 

were detected over a range of concentrations in the different donors, and in 

some cases were not detectable. This data is consistent with previous reports 

showing high levels of variability in serum cytokine in longstanding CRPS 

patients65. 

vi.  Correlation between Data Sets 

To identify putative relationships between the different aspects of the immune 

system measured in this study, correlation analyses between the multiple data 

sets was performed. By calculating percentage difference in LC density in each 

patient (Fig. 3.3D), direct analysis of correlation between LCs and the other 

clinically relevant data could be undertaken. This method was then used assess if  
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Figure 3.7 Langerhans Cell Density and Clinical Correlates  

Following the observation of significantly altered LC density between CRPS affected and non-

affected limbs, % difference in LC density between limbs was used to explore the relationship 

between LC density and other clinically relevant data. A&B) Despite weak positive trends in both 

cases, no significant correlation was observed between the % difference in LC density and either 

pain, as recorded on an NRS, or mast cell density in dermal tissue. C) Patient serum cytokine 

concentrations were assayed using a 13-analyte multiplex ELISA, and of the 5 cytokines reliably 

detected by the assay none were significantly correlated with the % difference in LC density 

between affected and non-affected limbs. D) Mean IL-13 SFU produced by tissue resident T-cells 

showed a significant negative correlation (p < 0.05) with LC density recorded in the same biopsy. 

Mean IFN-γ SFU showed the same negative trend but did not reach statistical significance. 
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there is a relationship between significantly altered LC density and other aspects 

of CRPS disease. A summary of these finding is shown in Figure 3.8. No significant 

correlation was observed between percentage change in LC density and pain NRS 

scores or mast cell density (Fig. 3.7 A&B). There was also no correlation between 

percentage change in LC density and detectable serum cytokine concentrations 

(Fig. 3.7C).  Since only 3 biopsy samples were used for the tissue resident T-cell 

isolation protocol, any comparisons between CRPS affected and non-affected 

limbs were limited. However, examining each individual biopsy as a single data 

point, irrespective of the CRPS-affected or non-affected status of the tissue, 

produced a significant negative correlation between LC cell density in tissue and 

the mean IL-13 SFU produced by tissue resident T-cells (r6 = -0.859 p = 0.029) 

(Fig. 3.7D) which would suggest a link between increased LC density and Th-2 

polarization within the tissue. However, since there was a similar, but non-

significant, trend in the production of IFNγ by T-cells, it appears that this 

relationship is linked with T-cell responsiveness, as opposed to polarisation 

towards a T-helper subtype. There was no correlation between the percentage 

change in LC density and the percentage change in SFU of IL-13, IFNγ or 

granzyme B produced by tissue resident T-cells (Appendix Fig. 2). 
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3D) Discussion 

In summary the key findings from this chapter are: 

   There is no significant difference in the number of mast cells in CRPS-

affected skin tissue, compared to control. Indicating any role for mast 

cell involvement may be restricted to early stage CRPS. 

   There is a significant difference in LC cell density between CRPS-

affected and non-affected limbs within individual patients. This 

demonstrates differential regulation of CRPS affected tissue which 

could have implications for understanding disease mechanisms and 

improving diagnosis.  

   Tissue resident T-cells from CRPS-affected skin are polarised towards a 

Th2 phenotype, compared to cells from non-affected tissue in the 

same patient. This finding supports differential regulation of CRPS 

affected tissue and indicates that classical immune cells may still be 

involved in disease processes.  

i.  Mast Cells in CRPS  

Increased levels of mast cell tryptase have been reported in blister fluid from 

CRPS affected tissues73. Mast cells are distributed throughout the dermis and 

are potent activators of inflammation, capable of secreting CRPS-relevant 

cytokines, such as TNF-α, and also respond to and secrete neuropeptides such 

as SP 88,270. Recent research in CRPS has focused on the possible role of mast 
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cells in disease pathogenesis, particularly in the early stage of disease where 

neurogenic inflammation and neuroimmune crosstalk are apparent86. 

Furthermore, therapeutic interventions linked to an inhibition of mast cell 

function are being suggested for the treatment of CRPS and the efficacy of 

existing immuno-modulating drugs may be attributed, at least in part, to their 

effects on mast cell activation85,271. In the above results, I have shown that 

there is no significant difference in the number of mast cells present in CRPS 

tissue, compared to non-affected or control tissue (figure 3.2C). Previous data 

which have implicated mast cells in CRPS disease is based on markers of mast 

cells activation, such as the presence of mast cell tryptase without any 

consideration of cell number. Similarly the techniques used in this study cannot 

account for the activation status of the mast cells in the tissue, although 

decreased staining can be observed if mast cells are de-granulated. A further 

consideration is that mast cell involvement may be more important in the early 

stages of disease onset, where neurogenic inflammation is thought to be a key 

aspect in peripheral and central sensitisation88. Given that the CRPS patients in 

this study are all in the latter stages of disease, it is possible that any change in 

mast cell numbers, which could facilitate inflammation in affected tissues, may 

have normalised following the resolution of active inflammation. 

ii. Langerhans Cells in CRPS 

As previously established LCs are the only immune cell present in the human 

epidermis under steady-state conditions, and are involved in the maintenance 
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of peripheral tolerance making them functionally distinct from the newly-

characterised mixed population of dendritic cells found in the dermis 189,195. LCs  

in situ also share a close morphological relationship with peripheral nerve 

endings and have been shown to display altered behaviour following 

stimulation with a variety of neurogenic signalling components, including 

neuropeptides and catecholamines, and also exhibit altered behaviour in 

models of neuropathic pain 213,217,224,237,238. In the context of CRPS disease, LCs 

are capable of producing the relevant inflammatory cytokines and are uniquely 

positioned at a crucial interface between immune and nervous systems in the 

periphery, and thus represent a key cell type in context of CRPS pathology 

272,273.   

In the above data, I have shown a significant difference in CD1a+ LC density in 

the epidermis of CRPS affected limbs when compared to non-affected tissue 

from the same patient (Fig. 3.4C). Previously, a small case-series using skin 

punch biopsies from the amputated limbs from CRPS patients reported 

increased numbers of an epidermal cell with dendritic morphology following 

staining with a LC non-specific (S100) antibody 107. More recently, Casanova-

Molla et al showed increased numbers of LCs in the epidermis of patients with 

painful diabetic small fibre neuropathy, compared to control tissue,  a finding 

which negatively-correlated with intra-epidermal nerve fibre density 236. 

However, Oaklander has previously reported  no difference in LC numbers in 

skin affected by post herpetic neuralgia, compared to control, including no 
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change in LC numbers following the loss of cutaneous innervations 235. It is 

likely that differences in experimental protocols, such as the use of non-cell 

specific markers and different biopsy locations, could explain some of these 

differences, in addition to any underlying differences in disease pathology. It is 

well established within the literature that exposure of skin surfaces to 

environmental stimuli, particularly UV light, can result in reduced LC numbers 

when compared to UV- protected tissue sites 274. In addition to physical stimuli, 

even moderate psychosocial stress has been shown to significantly alter LC 

density 214. These factors introduce significant sources of error when 

attempting to compare epidermal LC densities in different individuals, as the 

different behavioural patterns and states of mind of participants is difficult to 

control for. This is of particular importance in the field of pain, where patients 

are usually less mobile, and thus less likely to encounter environmental stress 

such as UV, and sometimes also present with altered mental states, particularly 

in the context of a potentially painful surgical procedure such as a biopsy. In 

the present study, we have shown a relative difference between CRPS-affected 

and non-affected limbs within individual patients and thus eliminated potential 

bias from prior exposure of tissues to environmental stress and also any 

psychological effects. By comparing CRPS-affected and non-affected tissue 

alone, it is not clear if the observed difference represents a relative increase in 

non-affected tissues or relative decrease in affected tissues, nor were there 

any consistent changes in LC cell morphology that could be indicative of cell 

activation status. However, there is also a significant increase in the mean LC 
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density in CRPS non-affected tissue, compared to the non-CRPS pain control 

group (Fig. 3.4B). Since this control group was included to mimic the 

behavioural and/or psychological effects of pain suffering, and thus reduce 

potential error, these data might suggest that LC densities in CRPS non-affected 

limbs are increased relative to CRPS-affected limbs. However, since by the 

same measure i.e. mean LC density within the sample group, there is no 

significant difference in LC density between CRPS affected and non-affected 

tissues, this conclusion cannot be reliably established without further work.  

If the difference in LC density between CRPS-affected and non-affected tissue 

represents a relative increase in LC density in non-affected limbs, this could be 

indicative of altered efferent nervous signalling. In this scenario, the regulation 

of LC migration and/or recruitment to and from the epidermis has been altered 

only in healthy tissues as a result of central re-organisation of nerve 

signalling59. As described earlier, LC behaviour is regulated in many different 

ways by a variety of neurogenic elements. If central re-organisation is 

established following persistent aberrant signalling from damaged nerves in 

CRPS affected tissues, the resulting changes in efferent nerve signalling may be 

most apparent in healthy tissues with functioning small fibre networks, as 

opposed to tissues where small fibre signalling is disrupted. If this were the 

case, the resulting effect on LC behaviour would manifest only in healthy 

tissue.  
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The alternative hypothesis is that LC densities are reduced in CRPS-affected 

tissues, relative to non-affected tissues. A reduction in LC density is often 

observed in the context of cell migration away from the epidermis under both 

inflammatory and non-inflammatory conditions 212. However, decreased LC 

densities could also be a result of diminished migration and/or development of 

precursor cells. LCs are repopulated from a precursor cell population present in 

the epidermis under steady state conditions and recent work has shown that 

hair follicles are crucial to LC precursor development and migration to the 

epidermis 275,276. This finding is of increased relevance given the well-

established changes to hair growth in CRPS. 

iii. Tissue Resident T-cells in CRPS 

As with the LCs, it is not clear if the observed difference in the number IL-13 

producing cells in CRPS-affected skin, compared to non-affected tissues, is a 

relative increase or decrease. It has previously been suggested there may be a 

Th2 bias in CRPS, but the observation was inferred from diminished Th1 

responses as a result of reduced numbers of circulating CD8+ T-cells 92. 

Interestingly, it has been reported that certain neuropeptides, in particular 

CGRP, can skew LC-mediated activation of T-cells towards a Th2 phenotype218. 

The negative correlation between LC density and the number of IL-13 

producing T-cells could be interpreted as an increase in LC migration away from 

the tissue and subsequent activation and recruitment of IL-13 producing T-cells 

into the tissue. However, if this were the case one might expect to observe 
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increased infiltration of T-cells into CRPS affected tissue, a finding not 

supported by the histological sections. Similarly, the same trend was observed 

with IFN-γ producing T-cells and so the effects appears to be independent of 

skewness and more related to T-cell responsiveness in the ELIspot assays.  

iv.  Conclusions 

The data presented in this chapter support existing ideas within the field of CRPS 

disease that inflammation and immune cell activation apparent in the acute 

phase of the disease is resolved in patients with longstanding CRPS. However, 

the above data have also shown that on-going, disease specific, dysregulation is 

still apparent in the immune cells of these patients, as demonstrated by altered 

LC densities within tissue and the possible phenotypic skewing of tissue T-cells, a 

finding which is important to our understanding of how tissue is regulated in late 

stage disease.  

As discussed above, it is possible that central changes within the nervous system 

could produce changes in LC behaviour. This change could be indicative of 

disease progression from an acute phase, mediated by inflammation within 

affected tissue, to a longstanding phase in which peripheral inflammation and 

immune involvement is resolved and any on-going immune dysregulation is 

mediated by central nervous signalling. In addition to its potential as a biomarker 

for CRPS disease this finding also supports the hypothesis that therapeutic 

intervention directed at the immune system may have a limited window of 

effectiveness during the acute phase.  
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Furthermore the observation of a potential Th-2 bias in tissue resident T-cells in 

affected tissue suggests the acute phase inflammation results in a T-cell bias in 

longstanding disease despite the resolution of inflammation. This finding will 

need further exploration but could also have potential for understanding CRPS 

disease mechanisms and progression for acute to longstanding disease.  
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CHAPTER 4: Effects of UCH-L1 Expression on 

Monocyte-Derived Langerhans Cell Function. 

4A) Introduction 

Previous research conducted in animal models of chronic pain has shown a link 

between the onset of pain and the expression of the deubiquitinating enzyme 

UCH-L1, also known as PGP9.5, which is constitutively expressed in peripheral 

nerve fibres237–239. The expression of UCH-L1 by LCs in these models of pain is 

often concomitant with denervation of the epidermis. Increased levels of UCH-L1 

transcription within denervated epidermis containing UCH-L1+ LCs suggests that 

this expression is a product of de novo synthesis as opposed to the phagocytosis 

of UCH-L1 expressing peripheral nerve material238. LCs isolated from healthy 

epidermis also express UCH-L1 suggesting a direct link between epidermal nerve 

contact and suppression of UCH-L1 expression241. Interestingly, various studies 

have reported neurotrophic functions for LCs, including directing the extension 

of growing nerve fibres into the epidermis and also the functional differentiation 

of developing nerves238,244. Taken together these data suggest that LCs respond 

to a loss of contact with peripheral nerve fibres by expressing UCH-L1, a process 

which is associated with the onset of chronic pain.  

However, LCs differentiated from CD34+ cord blood precursor cells do not 

express UCH-L1 despite differentiation occurring in the absence of any 
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neurogenic signal241. Since in the steady state LCs are maintained by precursor 

cells within the epidermis, this may suggest that maturation within the tissue is a 

key aspect of UCH-L1 expression in LCs277. Under inflammatory conditions, such 

as those observed in the acute phase of CRPS disease, peripheral blood 

monocytes are recruited to the epidermis where they differentiate into mature 

LCs to help maintain and restore the LC population277. These MoLCs are 

predisposed to an inflammatory phenotype compared to LCs differentiated from 

CD34+ cells, as might be expected as monocytes are recruited to tissue only 

under inflammatory conditions in vivo. However, the expression of UCH-L1 has 

not yet been described in MoLCs nor have there been any reports on the 

functional effects of UCH-L1 expression on LC function. 

UCH-L1 is a ubiquitin C-terminal hydrolase and a member of family of enzymes 

involved in the recycling of free ubiquitin from the ubiquitin protein degradation 

system240. Although the exact recognised role of UCH-L1 in the ubiquitin system 

is yet to be fully elucidated, it is understood that UCH-L1-mediated recycling of 

ubiquitin is an important factor in relieving endoplasmic reticulum stress through 

the “unfolded protein response”, a process which prevents the build-up of 

misfolded protein in cells with very high levels of protein translation240,255. 

Inhibition of UCH-L1 function by the specific inhibitor LDN-57444 results in cell 

death in a neuroblastoma cell line which constitutively expresses UCH-L1, but 

has no effect on apoptosis in UCH-L1 transfected cells254–256.   
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i.  Hypothesis 

UCH-L1 expression in LCs has been observed in animal models of chronic pain 

similar to CRPS. Defining the role UCH-L1 in LCs could identify new mechanisms 

by which chronic pain develops and elucidate the role of LCs in this process. Thus 

the hypothesis to be tested in this chapter is “UCH-L1 expression in LCs is 

required for cell activation including the regulation of processes relevant to 

chronic pain development”. 

4B) Aims 

Despite compelling evidence of a link between epidermal denervation, onset of 

chronic pain and the expression of UCH-L1 in LCs, there remains little or no 

evidence of the functional effects of UCH-L1 expression in LCs. Investigation of 

the expression of UCH-L1 in LCs differentiated from peripheral blood monocytes, 

a population of cells with a direct bearing on inflammatory skin reactions, may 

lead to better understand the consequences of UCH-L1 expression in LCs. By 

characterising the role of UCH-L1 in MoLCs this chapter aims to identify a 

possible role for LCs in the onset of chronic pain in peripheral tissue and thus 

develop news targets for therapeutic intervention in this field. The specific aims 

of this chapter are: 

 To investigate the expression and chemical inhibition of UCH-L1 in MoLCs 

 Determine the role of UCH-L1 on activation, cytokine secretion and 

chemotaxis of MolCs.  
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4C) Results  

i.  UCH-L1 Expression in MoLCs 

To generate MoLCs, peripheral blood monocytes were isolated from 

mononuclear cell preparations using negative magnetic selection. Negatively 

selected monocytes were then cultured in the presence of GM-CSF, IL-4 and TGF-

β to stimulate cell differentiation into CD1a+ MoLCs. Following differentiation, 

cells were fixed and permeabilized to facilitate indirect dual staining of CD1a and 

UCH-L1 (Fig. 4.1). UCH-L1 is commonly referred to as PGP 9.5, in reference to the 

isolation of the original protein from brain tissue. As commercial antibodies still 

use the PGP 9.5 nomenclature, throughout this chapter UCH-L1 will be used to 

refer to gene expression whereas PGP 9.5 refers specifically to protein 

expression measured by antibody staining. Cytometric  gating, based on forward 

and side scatter to exclude cell contaminants and/or cell debris, showed the 

percentage of CD1a+ cells following differentiation ranged from 64% - 92% with 

a mean of 87% (Fig. 4.1 B&E). PGP 9.5 expression was observed predominantly in 

CD1a+ MoLCs following differentiation, but CD1a- cells (either undifferentiated 

monocytes or conventional monocyte-derived dendritic cells) also expressed PGP 

9.5 (Fig. 4.1C). The number of CD1a+ cells that also stained positive for PGP 9.5, 

ranged from 48% - 89% with a mean value of 70%. Staining protocols, in which 

the primary antibody was excluded or an isotype control antibody was used, 

were negative, and PGP 9.5 staining prior to cell permeabilization resulted in  



127 

 

 

 

 

 

Figure 4.1 – Dual expression of CD1a and PGP 9.5 (UCH-L1) in Monocyte Derived Langerhans Cells 

Following negative magnetic isolation negatively selected peripheral blood monocytes were differentiated 

into MoLCs over 7 d before fixation and permeablization. Cells were dual stained for CD1a and PGP 9.5 and 

analysed by flow cytometry. A-C) Cells were gated using forward and side scatter to eliminate any 

contaminating cells and cell debris from analysis and fluorescent gates determined by un-stained cells. D-F) 

the majority of cells were labelled dual positive for both CD1a and PGP 9.5 with a smaller population of CD1a-

, PGP 9.5+ cells also apparent. The above graphs are representative examples of multiple experiments (n = 7). 

CD1a PGP 9.5 
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decreased levels of staining suggesting an intra-cellular localisation (Appendix 

Figure 3). 

Following the observation of UCH-L1 expression via flow cytometry, live CD1a+ 

cells were isolated from day 7 MoLC cultures via a two-step positive magnetic 

selection process, utilizing the same CD1a primary antibody that was used during 

the flow cytometry protocols. CD1a-positive cells were then lysed in Laemmli 

buffer for protein isolation or subject to an RNeasy (Qiagen) RNA purification 

protocol. Cell protein lysates were separated by SDS-PAGE and blotted onto 

nitrocellulose membranes prior to antibody staining for PGP 9.5 and actin. CD1a+ 

cell protein extracts were positive for PGP 9.5, as were some CD1a- protein 

extracts (Fig. 4.2A). Amplification of purified RNA by standard PCR and analysis 

by agarose gel electrophoresis showed that CD1a+ cells also contain RNA 

transcripts for UCH-L1 and CD207 (langerin)(Fig. 4.2B).The housekeeping gene  

GAPDH was also included as an assay control (data not shown) however as no 

relative gene expression calculations were necessary no further analysis was 

necessary. These data show that MoLCs constitutively express UCH-L1 and thus 

these cells are a useful model for exploring the functional effects of UCH-L1. 

Improving our understanding of this relationship could have direct bearing on 

the role of LCs in the development of chronic pain. 
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ii. Suppression of UCH-L1 expression 

Previously it has been shown that LCs differentiated from CD34+ cord blood 

precursor cells do not express UCH-L1 and that LCs isolated from epidermis only 

become UCH-L1 positive following separation from tissue241. Since the above 

data suggest that CD1a+ MoLCs constitutively express UCH-L1 following 

differentiation from monocytes, it was hypothesized that UCH-L1 expression in 

vivo may be regulated by neurogenic factors. To investigate this hypothesis, the 

neuropeptides CGRP and SP and also the catecholamine NA, were added to 

MoLC cultures for 24 h following cell differentiation. The change in PGP 9.5 

expression, measure as immunofluorescence, was calculated relative to the 

Figure 4.2 – Expression of UCH-L1 protein and RNA in CD1a+ Monocyte Derived Langerhans Cells 

Following differentiation CD1a+ MoLCs were positively selected using magnetic beads subject protein or RNA 

isolation. A) Protein lysates from CD1a+ MoLCs were analysed by SDS-PAGE and western blotting using anti-

human PGP 9.5 antibodies. CD1a+ protein lysates were positive for PGP 9.5 proteins. PGP 9.5 was also detected in 

CD1a negative lysates but to a lesser extent. B) RNA isolated form CD1a+ MoLCs was analysed using standard PCR 

and primers specific for the CD207 and UCH-L1 genes. Transcripts were detected for both of the genes probed 

with the exception UCH-L1 in samples 1 & 3 with low levels of isolated RNA.  (M = Molecular Weight Marker) 
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fluorescence observed in unstimulated cells, and data are presented as mean 

percentage expression relative to controls (Fig. 4.3). Mean expression of PGP 9.5 

was 111% ±25.52, 87% ±2.29, and 96% ±2.53 following CGRP, NA and SP 

addition, respectively. There was a significant reduction in the level of PGP 9.5 

expression in MoLCs following stimulation with NA (p< 0.05) but no change 

following stimulation with either of the neuropeptides despite, SP exhibiting a 

similar trend to NA. In all but one experiment, PGP 9.5 expression was 

decreased. The exception was one experiment in which CGRP stimulation 

increased PGP 9.5 expression to a much greater extent than other repeats, and 

thus introduced significant error into the datasets. Cells from the same donor 

responded normally to stimulation with NA and SP, and so without further 

repeats it cannot reasonably be concluded that this data point represents an 

outlier and so is included in the above data.  

iii.  Effects of the UCH-L1 Inhibitor LDN-57444 on MoLCs 

To determine if UCH-L1 expression in MoLCs has any functional effect which 

could alter cell behaviour and contribute to immune mediated pain or aberrant 

pain signalling, the UCH-L1 specific inhibitor LDN-57444 was used to inhibit UCH-

L1 activity. LDN-57444 is a specific UCH-L1 inhibitor and has no reported effects 

on other UCH family members252. It has been shown previously that in vitro 

treatment of neuronal cells with 10µM LDN-57444 significantly decreased levels  
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Figure 4.3 – Suppression of PGP 9.5 (UCH-L1) in Monocyte-Derived Langerhans Cells 

To assess the effects of neurogenic signalling on UCH-L1 expression in MoLCs cell cultures were 

stimulated with 100nM CGRP, 100nM NA or 10µM SP and incubated for 24hrs prior to analysis. 

Cells were then fixed and permeabilized prior to dual staining with CD1a and PGP 9.5 and analysis 

by flow cytometry. PGP 9.5 expression was normalised to unstimulated cells (taken as 100%) and 

changes expressed as percentage expression relative to controls. 100nM NA significantly 

decreased levels of PGP 9.5 expression in MoLCs (p < 0.05). Error bars show the mean ±SEM. 

Abbreviations: CGRP = Calcitonin Gene Related Peptide; NA = Noradrenaline; SP = Substance P;  
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of UCH-L1278.  Higher concentrations of LDN-57444 were also shown to induce 

apoptosis in a neuronal cell line which constitutively expresses UCH-L1, but not 

in a cell line transfected with the UCH-L1 gene255,256 . Since this established 

published values for efficacy and lethality, and due to the limited numbers of 

cells available following differentiation, it was decided to use LDN at the single 

concentration of 10µM. To investigate the effects of UCH-L1 inhibition by LDN-

57444 in MoLCs cells were treated with 10uM for 24 h on day 6 of cell 

differentiation. Changes in PGP 9.5 expression were measured as above, and cell 

concentrations relative to unstimulated control cells, were used as a measure of 

cell death (Fig. 4.4). Despite a trend towards increasing PGP 9.5 expression, there 

was no significant difference between untreated and LDN-57444 treated cells (p 

= 0.07)(Fig.4.4A). There was also no change in cell number between untreated 

and LDN-57444 treated cells, suggesting that there was no apoptotic effect in 

MoLCs (Fig. 4.4B). 

iv. UCH-L1 Inhibition in MoLCs – Effect on Markers of Cell Activation 

To assess the effects of UCH-L1 inhibition on cell activation, MoLCs were pre-

treated with the UCH-L1 inhibitor LDN-57444 or a vehicle control for 24 h prior to 

overnight stimulation with TNFα, LPS or IL-1β. Cell surface expression of 

activation markers was then assessed by flow cytometry using cells dual stained 

for CD1a and either the MHC-II antigen presenting molecule HLA-DR or the co- 
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Figure 4.4 – Direct effects of UCH-L1 inhibition in Monocyte Derived Langerhans Cells  

On day 6 of cell differentiation, MoLCs were treated with the UCH-L1 specific inhibitor 

LDN-57444 at a concentration of 10µM for 24 h. Following incubation, cells were 

analysed for changes in PGP 9.5 expression. A) Despite a trend towards increased levels 

of PGP 9.5 expression in MoLCs treated with LDN-57444 compared to control, the 

difference was not statistically significant. B) To assess for any possible toxic affects 

following LDN-57444 treatment, the number of MoLCs were counted and normalised to 

untreated cells. There was no change in cell numbers between the two treatments, 

suggesting that LDN-5744 treatment is not toxic to MoLCs at a concentration of 10µM. 

Data shown are the mean values ±SEM (n = 6). 
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stimulatory molecule CD86. Changes in mean fluorescent intensity were 

normalised to unstimulated controls and the relative change in expression was 

recorded as percentage change in expression normalised to control. Pre-

incubation with LDN-57444 alone had no effect on either CD86 or HLA-DR 

expression with mean values of 116% ±30.82 and 72% ±12.36, respectively (Fig. 

4.5). Consistent with their role as innate danger signals, both TNFα and LPS 

increased CD86 expression (Fig. 4.5A). Despite normalised mean expression 

values of 218% ± 87.22 and 185% ±54.86, respectively variations in donor cell 

response to stimulation introduced variation and thus the observed trend was 

not statistically significant. Similarly, despite a trend towards inhibition of CD86 

expression in MoLCs pre-treated with LDN-57444, there was no significant 

difference in CD86 expression following stimulation with or without inhibitor 

pre-treatment. 

HLA-DR expression followed a similar pattern to CD86 expression. Stimulation 

with either TNFα or LPS significantly increased HLA-DR expression (p< 0.05) and 

LDN-57444 pre-treated MoLCs stimulated with TNFα also expressed significantly 

increased levels of HLA-DR (p< 0.05) (Fig. 4.5B).  Despite a trend towards 

decreased HLA-DR expression in MoLCs pre-treated with LDN-57444, there was 

no significant difference between different stimulations with or without inhibitor 

pre-treatment, suggesting that inhibition of UCH-L1 has no effect on MoLC 

activation marker expression.  
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Figure 4.5 – Effects of UCH-L1 Inhibition on Cell Activation Marker Expression 

Following differentiation, MoLCs were pre-treated with LDN-57444 or vehicle control for 24 

h prior to overnight stimulation with 100ng ml
-1

 TNFα, 50ng ml
-
1 LPS or 100ng ml

-1
 IL-1β. 

Live cells were dual stained for CD1a and either CD86 or HLA-DR, and analysed by flow 

cytometry. A) There were no significant changes in CD86 expression despite a trend 

towards increased expression in stimulated cells and an associated decrease in expression 

in stimulated cells which had received inhibitor pre-treatment. B) Both TNFα and LPS 

stimulation significantly increased HLA-DR expression (p <0.05). Despite a similar trend 

towards decreased levels of expression in stimulated cells which had received inhibitor pre-

treatment, there were no statistically significant effects following LDN-57444 treatment. 

Error bars show the mean ±SEM. 

Abbreviations: TNF = Tumor Necrosis Factor; LPS = Lipopolysaccharide, IL = interleukin; HLA = Human 

leukocyte antigen   
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IL-1B had no effect on either CD86 or HLA-DR expression. Mean normalised 

expression values for CD86 and HLA-DR were 128.8% ±10.42 and 119.6% ±34.12 

respectively. However, these values ranged from 108.1% - 141.2% for CD86 

expression and 63.8% - 181.5% for HLA-DR expression. Since only three repeats 

were performed for this treatment group, because of time constraints, it is not 

possible to exclude potential outliers.  

These data suggest that UCH-L1 has no role in cell activation via expression of co-

receptors for T-cell activation. This is relevant to the in vivo models of chronic 

pain as it suggests that UCH-L1 expression in LCs is not a marker of activation as 

inhibition of this molecule has no effect on activation marker expression. 

v. UCH-L1 Inhibition in MoLCs – Effect on Cytokine Secretion 

Following differentiation from negatively selected monocytes and pre-treatment 

with the UCH-L1 inhibitor LDN-57444 or vehicle control MoLCs were stimulated 

with TNFα, LPS and IL-1β overnight and cell culture supernatants collected for 

cytokine analysis. Supernatants were assayed for 12 different analytes (IL’s -1β, -

2, -4, -5, -6, -8, -10, -17, GM-CSF, IFNγ, TNFα, and MIP1α) using a multiplex ELISA 

bead assay. Cytokine concentrations were then interpolated from standard 

curves of known concentration and expressed as pg ml-1 of cell culture 

supernatant. Of the 12 analytes assayed, 10 were consistently and reliably 

detected in all samples. Although consistently high levels of GM-CSF and IL-4 

were detected in all samples, this was almost certainly carry over from the  
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Figure 4.6 – Effects of UCH-L1 Inhibition of Cell Cytokine Secretion 

Following differentiation, MoLCs were pre-treated with LDN-57444 or vehicle control for 24 

h prior to overnight stimulation with 100ng TNFα, or 100ng IL-1β. Cell supernatants were 

collected and analysed by multi-plex ELISA for the above analytes. IL-1β was found to 

significantly increase IL-2 secretion (p <0.05) but there were no significant effects on 

cytokine secretion following pre-treatment with LDN-57444. Each dot represents a single cell 

supernatant sample. 

Abbreviations: TNF = Tumor Necrosis Factor; IL = interleukin; MIP = Macrophage Inflammatory Protein; 

LDN = LDN-57444   
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incubation medium and thus these data are excluded. A summary of the 

remaining detected 8 cytokines is shown below in Figure 4.6. As with previous 

experiments, there is significant donor cell variation in response to stimulation. 

There was no observable difference in the levels of IL-6 or IL-8 secreted in 

response to stimulation when compared to unstimulated cells despite values 

being increased in all samples (Fig. 4.6 C&D).  Stimulation with TNFα had no 

effect on IL-2 or MIP1α secretion, but there was a non-significant trend towards 

increases in IL-10 and IL-1β secretion (Fig. 4.6 A&E). LPS stimulation also resulted 

in a small increase in IL-10 secretion, but had no effect on any other cytokines 

(Fig. 4.6E). Stimulation with IL-1β produced a significant increase in IL-2 secretion 

(t2 = 4.001, p< 0.05) and non-significant increases in IL-10 and TNFα secretion 

(Fig. 4.6B,E&F). Pre-treatment with LDN-57444 had no effect on cytokine 

secretion when compared to vehicle controls. Despite trends towards decreased 

IL-10 and IL-1β secretion in response to TNFα stimulation, decreased IL-10 

secretion in response to LPS stimulation, and diminished IL-2, IL-10 and TNFα 

secretion in response to IL-1β stimulation there were no significant differences 

between cells pre-treated with LDN-57444 prior to stimulation and vehicle 

controls. LDN-57444 pre-treatment did abrogate the significant increase IL-2 

secretion following IL-1β stimulation, but since there was no significant 

difference between IL-1β stimulated and IL-1β + LDN, further repeats would be 

necessary to explore this relationship.  Together, these data suggest that 

inhibition of UCH-L1 function in MoLCs has no effect on cytokine secretion in 

response to cell activation. 
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vi. UCH-L1 Inhibition in MoLCs – Effect on Chemotaxis 

Cell migration is a key aspect of LC function. Detachment from the epidermal 

matrix and chemotaxis towards the draining lymph node occurs regularly as part 

of LC sampling of the epidermal environment and also in response to 

inflammatory stimuli. Under both types of condition, migration is dependent on 

CCL19 signalling through CCR7 expressed on LCs279. Furthermore, the process of 

LC replenishment under inflammatory conditions is dependent on CCR2 specific 

recruitment of monocytes from the circulation 209.  To assess the effects of UCH-

L1 inhibition on MoLC chemotaxis, cells were pre-treated with LDN-57444 or a 

vehicle control and primed with a either IL-1β or TNFα. Primed cells were then 

placed in transwell chambers containing either CCL19 or a vehicle control to 

assess migratory ability. For each treatment, the number of migrated cells was 

counted and normalised to the number of migrated cells in untreated controls. 

Data are presented as percentage chemotaxis normalised to control (Fig. 4.6). 

Consistent with previous findings, CCL19 significantly increased chemotaxis259 (p< 

0.05). However, donor-dependent variation in response to stimulation is also 

apparent in these data and was particularly apparent in cytokine-stimulated cells 

exposed to CCL19, where the mean normalised percentage chemotaxis was 

167% ±79.50 and 159% ±89.32 for TNFα and IL-1β treated cells, respectively.  In 

all cases, pre-treatment with LDN-57444 decreased the level of chemotaxis 

compared to vehicle controls. However, this decrease was only statistically 

significant in the unprimed cells (p< 0.01) and IL-1β-treated cells (p< 0.05) but  
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Figure 4.7 – Effects of UCH-L1 Inhibition on MoLC chemotaxis 

Following differentiation, MoLCs were pre-treated with LDN-57444 or vehicle control for 24 h 

prior to overnight stimulation with 100 ngml
-1

 TNFα, or 100 ngml
-1

 IL-1β. Cell migration was then 

analysed by a transwell migration assay in response to CCL19, or a vehicle control. Pre-treatment 

with LDN significantly decreased cell migration following IL-1β stimulation (p <0.05) and in control 

cells (p <0.01) in the absence of CCL19. Error bars show the mean ±SEM. 

Abbreviations: TNF = Tumor Necrosis Factor; LPS = Lipopolysaccharide, IL = interleukin; LDN – LDN-57444; 

CCL = CC motif chemokine ligand 
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not in TNFα treated cells in the absence of CCL19.  This statistical significance is 

abolished, however, in the presence of CCL19, despite the same trend toward 

reduced chemotaxis in LDN-57444 pre-treated cells. Paired t-test analysis of the 

whole data set, based solely on the absence or presence of LDN-57444 pre-

treatment, showed significant inhibition of chemotaxis in LDN-57444 pre-treated 

cells, compared to the relevant control (p< 0.05), suggesting a role for UCH-L1 in 

MoLC motility/random migration. 

Since the above data has shown inhibition of UCH-L1 has no effect on MoLC 

activation marker expression or cytokine secretion it would appear the primary 

role for UCH-L1 in these cells is related to cell motility. In the animal models of 

chronic pain discussed above, UCH-L1 expression appears in response to 

epidermal denervation. Thus it is possible that LCs expressing UCH-L1 in vivo may 

be responding to a chemotactic signal or migrating in response to the absence of 

IENF signalling. A further understanding of this relationship may enhance our 

understanding of the role LCs play in the onset of chronic pain in these models. 
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4D) Discussion 

In summary, the key finding of this chapter are: 

   MoLCs constitutively express UCH-L1 at both the protein and transcript 

levels. 

   Treatment with the UCH-L1 inhibitor LDN-57444 has no effect on UCH-L1 

expression or survival in MoLCs 

   Chemical Inhibition of UCH-L1 function in MoLCs has no effect on cell 

activation, as measured by expression of activation markers or cytokine 

secretion. 

   Chemical inhibition of UCH-L1 function in MoLCs significantly decreases 

MoLC chemotaxis 

i.  UCH-L1 expression in MoLCs 

Various animal models of chronic pain have shown the appearance UCH-L1+ LCs 

in the epidermis of affected tissues, expression of which parallels the loss of 

epidermal innervation and the onset of pain sensation 237–239. Since RNA 

transcripts for UCH-L1 are elevated in denervated epidermis and the only 

remaining UCH-L1 immunoreactive cells are LCs, it has been suggested that UCH-

L1 expression in these models is as a result of de novo synthesis, as opposed to 

the phagocytosis of material derived from nerves238. This has led to speculation 
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that epidermal denervation, followed by the de novo synthesis of UCH-L1 by LCs, 

has a role to play in chronic pain239. LCs derived from CD34+ cord blood 

precursors do not express UCH-L1 following differentiation241. The same group 

also showed that, despite no UCH-L1 expression by LCs under normal conditions, 

epidermal disruption and removal of LCs induced UCH-L1 expression241.  In 

contrast to the results in cord blood derived LCs I have shown that MoLCs 

constitutively express UCH-L1 (Fig.4.1). Given that Hamzeh et al did not 

permeabilize differentiated LCs prior to staining, and so only measured cell 

surface proteins, it is possible this may account for the observed difference in 

UCH-L1 expression241. However, given that both protocols utilized PFA fixation 

and UCH-L1 staining was decreased in the absence of permeablization as 

opposed to abolished, it is likely that the apparent differences are not due to 

protocol dissimilarities. Since MoLCs are derived from peripheral blood 

monocytes, they have undergone a different differentiation pathway than LCs 

derived from precursor cells in vivo, or directly from CD34+ precursor cells 280. 

Furthermore, in vivo monocytes are only recruited into the epidermis to 

replenish the LC population under inflammatory conditions and thus represent a 

distinct population from LCs generated from an in situ precursor cell277. Since 

UCH-L1 expression appears in both LCs isolated directly from disrupted 

epidermal tissue and also in MoLCs which represent a more inflammatory 

phenotype, it is possible that UCH-L1 expression is a marker of LC activation. The 

implications for this in models of chronic pain are not clear although they suggest 

two possible mechanisms: 
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 a) Following nerve damage and denervation of the epidermis homeostatic 

interaction between LCs and epidermal nerves are disrupted, leading to cell 

activation and UCH-L1 expression.  

b) Nerve damage and epidermal denervation leads to the recruitment of 

UCH-L1+ MoLCs, as is seen under inflammatory conditions in which the 

resident LC population has been eliminated. 

It has been suggested that UCH-L1 expression by skin-resident LCs requires both 

maturation in the presence of neurogenic signalling and the subsequent loss of 

this or another type of nerve signal241. In this chapter the data show that MoLCs 

do not require culture in the presence of a neurogenic element in order to 

express UCH-L1, but culture with NA did significantly decrease UCH-L1 

expression in MoLCs (Fig. 4.3). Although the decrease was slight compared to the 

absence of UCH-L1 observed in LCs under steady state conditions, it is possible 

that repeated application of NA or treatment during the early stages of MoLC 

differentiation, may have a greater effect. This finding may reflect the close 

relationship between LCs and IENF in vivo and suggests that neurogenic 

signalling, or absence thereof, may play a major role in LC behaviour. Since many 

chronic pain models display denervation of the epidermis, understanding the 

consequences of the removal of this connection between IENF and LCs may have 

an important bearing on our understanding of chronic pain development. 

ii.  UCH-L1 Inhibition and MoLC Activation 
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Consistent with other reports of UCH-L1 inhibition in non-neuronal cell line, the 

use of LDN-57444 at 10µM did not induce cell death in MoLCs, nor did it have 

any effect on the expression of UCH-L1 protein as measured by flow cytometry 

(Fig.4.4). Despite a trend towards decreased levels of activation marker 

expression in MoLCs pre-treated with LDN-57444, there was no significant 

difference in the level of either CD86 or HLA-DR expression following stimulation 

with TNFα, LPS or IL-1β after inhibitor pre-treatment, compared to controls 

(Fig.4.5). This observation is complicated by donor variation to cell stimulation. 

Despite an obvious trend towards increased CD86 expression following 

stimulation, there was no significant difference when compared to unstimulated 

controls. Similar patterns were observed upon analysis of cell culture 

supernatant (Fig.4.6). In those treatments where elevated cytokines were 

detected, such as TNFα induced (Fig.4.6A) IL-1β secretion and IL-1- induced IL-2 

secretion (Fig.4.6B), pre-treatment with LDN-75444 decreased the amount of 

cytokine released, however, this decrease did not reach statistical significance. It 

is also interesting that the significant increase in IL-2 secretion induced by IL-1β 

stimulation is abolished in LDN-57444 pre-treated cells, again suggesting that 

LDN-57444 has an inhibitory effect on cytokine secretion. However given the 

inherent variation in the data set and the relatively small differences between IL-

1β treatments, with and without inhibitor, further work would be required to 

draw any firm conclusions. 
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In the context of chronic pain, activation of LCs and secretion of cytokines could 

contribute to peripheral nerve sensitisation38. If UCH-L1 expression was 

indicative of activation, it may have a role in cytokine production and thus be 

linked to sensitisation. Since UCH-L1 is thought to be involved in ubiquitin 

recycling, it is possible that inhibition of this pathway could affect protein 

translation in general. This hypothesis is supported by the observation that UCH-

L1 inhibition by LDN-57444 can cause cell death through endoplasmic reticulum 

stress  and the unfolded protein response255. However, data in this chapter 

suggest that there is no significant effect of UCH-L1 inhibition on cell activation, 

although a general disruption in protein translation due to the accumulation of 

misfolded protein could account for the trend towards decreased levels of 

marker expression and cytokine secretion in LDN-57444-treated MoLCs. 

iii.  UCH-L1 Inhibition and MoLC Chemotaxis 

As discussed above LC migration is a key aspect of skin immunity. The data 

presented in this chapter show that there is a significant decrease in MoLC 

motility following pre-treatment with LDN-57444 (p< 0.05) (Fig. 4.7). Although 

decreased levels of CCL19-induced chemotaxis are seen in MoLCs following pre-

treatment with LDN-57444, these differences are not significant. However, in the 

absence of a chemokine gradient, the difference in random cell migration is 

significant (p< 0.05). These data together suggest that UCH-L1 inhibition 

decreases cell migration but that chemokine sensing remains intact, as 

evidenced by the increased chemotaxis in response to CCL19.  



147 

 

A role for UCH-L1 in MoLC migration is consistent with the theory that UCH-L1 

expression in vivo is associated with activated LC, as cell activation is commonly 

followed by migration away from the epidermis. Alternatively, in vivo 

recruitment of monocytes to the epidermis to replenish the LC population also 

requires two stages of chemokine-specific migration, dependent on CCR2 and 

CCR6 respectively, and thus one might also expect UCH-L1 expression in newly 

differentiated MoLCs in vivo280.  

iv. Conclusions 

The data presented in this chapter provides new insights into the role of LCs in 

models of chronic pain. By investigating the role of UCH-L1 in MoLCs it would 

now appear that expression of this molecule is primarily related to LC chemotaxis 

and motility. There was no effect on activation marker expression or cytokine 

secretion following inhibition of UCH-L1 which suggests that expression in vivo is 

not linked to inflammatory processes in these cells e.g. active cytokine secretion 

and/or induction of adaptive immunity. Since chemotaxis was significantly 

reduced following inhibition it seems likely that UCH-L1 expressing LCs in vivo are 

responding to chemotactic stimuli or, given the relationship between IENF and 

LCs, the removal of a neurogenic signal such as NA. Further work is needed to 

fully understand this relationship but these data indicate UCH-L1 expression in 

LCs is not linked to cell activation, and thus it is unlikely these cells are 

responsible for generating inflammation or sensitising nerves via cytokines. 
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CHAPTER 5: Expression and Function of Immune Cell 

Adrenergic Receptors in CRPS 

5A) Introduction 

Adrenergic receptors are widely-expressed throughout the peripheral nervous 

system and mediate responses to the catecholamines, such adrenaline and 

noradrenaline (NA), the principle neurotransmitters of the sympathetic nervous 

system. The wide-ranging implications of adrenergic receptor signalling in 

different tissues is typified by the classical “fight or flight” response which results 

in a variety of physical responses, including a short-lived augmentation of 

immune cell function281.  In CRPS pathology dysregulation of sympathetic 

signalling is demonstrated by changes to skin sweating and blood flow136. 

Furthermore, the aberrant coupling of efferent sympathetic signalling to afferent 

nociceptive sensing can produce so-called sympathetically-maintained pain 

(SMP), whereby nociceptors may become hypersensitive to NA via altered 

adrenergic receptor expression135. This theory is supported by data from animal 

models of type II CRPS, in which nerve injury alters the adrenergic receptor 

profile of peripheral sensory fibres which then develop hypersensitivity to NA138–

140. This relationship may occur in vivo, as intra-dermal injection of NA induced 

pain in patients with suspected SMP141. Altered levels of circulating 

catecholamines in affected and non-affected limbs of CRPS patients has been 

reported, a scenario that could promote differential adrenergic receptor 
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expression on peripheral nerves135,137. However, more recent work has shown no 

difference in the amount of NA released in response to dermal sympathetic 

activation in chronic CRPS patients, compared to controls282. 

Because sympathetic dysfunction is suspected in CRPS, abnormal immune 

activation, through adrenergic receptor signalling mechanisms, may also play a 

role in disease pathology. The expression of adrenergic receptors on immune 

cells has not been fully defined, but current ideas support the view (see Chapter 

1 – Table 4) that β2-adrenergic receptors (-ARs) are the most widely-expressed, 

and serve an anti-inflammatory role following ligand binding, but can be pro-

inflammatory in the presence of other activating signals147,151,283.  A similar pro-

inflammatory synergy has been described following the stimulation of peripheral 

blood mononuclear cells with an α2-AR specific agonist and LPS149,152,153. 

Interestingly, the α1-ARs do not appear to be expressed in mononuclear cells but 

can be up-regulated by inflammatory stimuli154–156. This expression under 

inflammatory conditions has also been described in the peripheral blood cells of 

patients with juvenile idiopathic arthritis, a finding that was linked to increased 

IL-6 production by immune cells following a noradrenergic stressor159,160. 

Furthermore, a single nucleotide polymorphism in the α1a-AR gene was recently 

identified as a risk factor for CRPS development161. Thus, dysregulated expression 

of adrenergic receptors on immune cells in CRPS could influence the progression 

or maintenance of disease. This effect may also be enhanced by activating auto-

antibodies which have recently been identified in CRPS, and could directly 
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modulate of immune cell behaviour by functionally binding to or blocking 

ARs109,114. This finding is of particular interest given recent work suggesting that a 

greater number of peripheral blood monocytes in CRPS patients express a pro-

inflammatory marker when compared to healthy controls93. 

i.   Hypothesis 

Since it is believed longstanding CRPS is mediated by central changes to nervous 

signalling, alterations in efferent sympathetic pathways may influence immune 

cell behaviour. Elucidating potential differences in this signalling through 

examining altered adrenergic receptor expression by immune cells could 

elucidate new mechanisms of disease and pathways for therapeutic intervention. 

Thus the hypothesis to be tested in this chapter is “Altered adrenergic 

receptor signalling in immune cells in longstanding CRPS contributes to 

disease pathology, a process possibly mediated by adrenergic receptor auto-

antibodies”. 

5B) Aims 

Adrenergic receptors represent an interesting mechanism in CRPS disease due to 

the established sympathetic dysfunction in the disease. Furthermore, differential 

expression of adrenergic receptor subtypes by immune cells could alter immune 

cell behaviour in response to efferent nerve signalling, providing an important 

link between these two systems. However, the adrenergic receptor profile of 
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immune cells in CRPS, and the potential effects of auto-antibody activation 

through these receptors, has not yet been described. The specific aims of this 

chapter are to:  

 Determine the adrenergic receptor expression profile on peripheral blood 

monocytes isolated from CRPS patients 

 Measure the effects of auto-antibody stimulation on monocyte activation 

 

5C) Results 

i.  Adrenergic Receptor Expression in Peripheral Blood Mononuclear Cells  

As the expression of α1-ARs has previously been linked to inflammatory disease, 

initial work focused on the characterisation of these receptors in peripheral 

blood cells. In the first set of experiments α1a-AR expression in PBMCs was 

assessed following stimulation with LPS (100ng/ml), TNFα, IL-1β and IL-6 (all at 

10ng/ml) (Fig. 5.1). Although no changes in expression were observed during 

these treatments, interpretation of data was hampered by the detection of non-

specific proteins. Given the structural similarity of receptor subtypes, the 

possible glycosylation of the receptors, and the similar predicted masses (α1a = 

52kDa; α1b = 56kDa; α1d = 60kDa) it seems likely that the antibody was 

incapable of differentiating between the three receptor subtypes.  

Due to the apparent staining of other receptor subtypes by western blot, it was 

decided to abandon subtype specific staining and use a pan-α1-AR antibody. This  
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Figure 5.1 – Detection of alpha adrenergic receptor subtypes in PBMC protein lysates 

Peripheral blood cells isolated by density dependent centrifugation were stimulated with LPS 

(100ng/ml), TNFα, IL-1 or IL-6 (all 10ng/ml) for 18 h before protein extraction and western 

blotting using an α1a-adrenergic receptor antibody. Non-specific staining was apparent in all 

samples, possibly indicative of expression of other α1-adrenergic receptor subtypes. 

Abbreviations: LPS = lipopolysaccharide; TNF = tumor necrosis factor alpha; IL- = interleukin 
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approach assesses expression of all three α1-AR subtypes using flow cytometry. 

Although this method cannot differentiate between subtype receptors it allows 

for combination with other cell marker antibodies thus defining which immune 

cell populations are positive for α1-ARs. Peripheral blood monocytes had 

previously been shown to express α1-AR and so CD14, a monocyte-specific cell 

marker, was used in combination with the pan-α1-AR antibody to assess 

receptor expression in PBMC fractions (Fig. 5.2)156. As expected CD14, was 

detected only in the larger, more-granular population of cells, as assessed by 

forward and side scatter; a finding consistent with monocyte-specific expression 

of CD14 (Fig. 5.2 D&E). Staining with the pan-α1-AR antibody showed a similar 

pattern of expression as CD14, mostly restricted to large granular cells, but with 

some positive staining also being observed in the population of cells usually 

categorized as lymphocytes (Fig. 5.2 B&C). Dual staining-confirmed that all 

CD14+ cells were also pan-α1-AR+, with a second population of cells staining as 

CD14-/pan-α1-AR+, probably representing lymphocytes or other small non-

granular cells (Fig. 5.2A). Staining protocols in which the primary antibody was 

excluded or replaced by an isotype control antibody were negative. Staining with 

a β2-AR showed positive staining in all PBMCs, consistent with previous findings 

of widespread β2-AR expression151 (Appendix Fig. 4).  
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Figure 5.2 – Identification of alpha 1 adrenergic receptor-expressing peripheral blood cells  

Peripheral blood cells isolated by density dependent centrifugation were stained directly 

using a PerCP conjugated anti-human CD14 antibody or indirectly using a pan-α1adrenergic 

receptor antibody with an Alex Fluor 488 secondary antibody.  A) Dual staining of PBMCs 

shows a majority of CD14/pan-α1 double positive cells. B&C) Backgating of pan-α1+ cells 

shows expression is predominantly restricted to large granular cells, as assessed by forward 

and side scatter. D&E) Backgating of CD14+ cells shows staining is restricted to the large 

granular cell population attributed to peripheral blood monocytes. 

Abbreviations: α1-AR = α1-adrenergic receptors; PBMC = Peripheral blood mononuclear cells 
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ii. Alpha 1 Adrenergic Receptor Expression in CRPS patient Monocytes  

To investigate any differences in α1-AR expression in CRPS patients compared to 

healthy controls, PBMCs were isolated from the peripheral blood of CRPS 

patients by density -dependent centrifugation, followed by the purification of 

monocytes by negative magnetic isolation. Monocytes were then stained (as 

above) and the expression of α1-AR measured as a percentage of dual-positive 

cells (Fig. 5.3). The mean percentage of cells showing dual-positive expression 

was 86% ±4.38 and 85% ± 5.05, for healthy control and CRPS monocytes, 

respectively. There was no significant difference between the means of the two 

groups. 

iii.  Alpha Adrenergic receptor subtype expression in CRPS monocytes 

As discussed previously, it has shown that changes in adrenergic receptor 

subtype expression can affect cellular response, and so a pre-optimized 

TaqMan™ qPCR assay was used to assay for differences in α1- and α2-AR 

subtype expression in peripheral blood monocytes. Human heart cDNA was used 

as a positive control for the primers and β-actin used as an internal reference 

gene for normalisation. No transcripts were detected for any of the α1-ARs in 

cDNA generated from either CRPS or control monocytes (Fig. 5.3).  Of the three 

α2-AR subtypes analysed, both α2b and α2c showed a trend towards increased 

levels of expression in healthy cells when compared to CRPS, but the difference 

was not statistically significant. 
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Figure 5.3 – Expression of α1-adrenergic receptors on CD14+ monocytes in CRPS 

After peripheral blood monocytes were purified by negative magnetic isolation, cells 

were stained directly using a PerCP conjugated anti-human CD14 antibody or indirectly 

using a pan-α1 adrenergic receptor antibody with an Alex Fluor 488 labelled secondary 

antibody. A&B) representative scatter plots of dual-stained cells showing α1-adrenergic 

receptor expression is predominantly restricted to CD14+ monocytes. C) There was no 

significant difference in the percentage of α1-adrenergic receptor/CD14 dual positive 

monocytes isolated from CRPS donors compared to healthy controls. Data shown is the 

mean of 3 experiments. Error bars show the mean ±SEM. 

Abbreviations: α1-AR = α1-adrenergic receptors 
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 (p = 0.266 & p = 0.283 respectively).  The α2a subtype was not detected in 

either CRPS or control, monocytes. β2-AR transcripts were detected in all 

samples, with no observable difference in levels following normalisation. As 

expected from previous work, mRNA representing all of the adrenergic 

receptor types were detected in cDNA from human heart tissue284. The 

apparently decreased levels of expression in heart tissue compared to 

monocyte cDNA may be a product of both a reduced level starting material 

compared to the monocyte assays and also differential expression of the 

reference gene in heart tissue i.e. increased levels of β-actin relative to 

adrenergic receptors in heart tissue compared to the same relative difference 

in monocytes. The conflicting results of adrenergic receptor expression are 

discussed in more detail later. 

iv.  Adrenergic receptor mediated monocyte activation in CRPS 

Following the detection of α1-AR protein by antibody staining and the 

contrasting absence of specific transcripts at the mRNA level, the effects of 

adrenergic receptor stimulation on monocytes were examined. It has previously 

been demonstrated that monocyte activation, measured by IL-1β production, in 

response to LPS stimulation is synergistically increased in the presence of 

phenylephrine (PE) in a α1-AR specific manner260. It has also been hypothesised 

that auto-antibodies may play a role in maintenance of CRPS disease by binding 

to and activating adrenergic receptors109. To investigate the possible role of auto- 
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antibody-mediated monocyte activation, previous experiments, showing 

synergistic IL-1β production following TLR and α1-AR stimulation260, were first  

replicated using negatively-selected healthy monocytes stimulated with 25ng/ml 

LPS and 10µM PE for 3 h (Fig 5.5). Protein lysates from stimulated cells were 

subject to SDS-PAGE and western blotting for IL-1β and actin. Densitometry was 

used to assess protein level relative to unstimulated cells and data presented as 

fold change normalised to actin (Fig 5.5 A&C). In line with previous observations 

by others260, LPS treatment significantly increased IL-1β production, compared to 

control (p = 0.0161) and the addition of PE caused a further increase in IL-1β 

production which was significantly greater than the increase observed with LPS 

alone (p = 0.0391).  

To test the hypothesis that adrenergic receptor-activating auto-antibodies 

present in CRPS may produce similar synergistic effects to PE when added in 

conjunction with LPS serum, samples from CRPS patients and matched (age & 

sex) healthy controls were subject to protein G affinity chromatography to 

isolate IgG fractions. Following elution, IgG fractions were adjusted to 

approximate physiological concentrations (7-16mg/ml)285 and incubated with 

monocytes prior to protein isolation and western blotting as above (Fig 5.5 B&C). 

A total of 3 matched IgG samples from CRPS patients and controls were tested 

on healthy donor monocytes in each experiment. LPS stimulated cells showed 

significantly greater levels of IL-1β compared to unstimulated (ctrl) cells after the 

addition of both CRPS IgG (p = 0.0229) and healthy control IgG (p = 0.0197) 
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Figure 5.5– IL-1β production in monocytes stimulated with LPS and either phenylephrine, or IgG 

fractions from CRPS and healthy donors. 

Negatively-selected monocytes isolated from healthy donors were stimulated with LPS in the presence 

of phenylephrine (10µM) or human IgG fractions from CRPS and healthy donors (7-16mg/ml) for 3 h. 

Cell protein was then extracted and subject to SDS-PAGE before western blotting with an anti-human IL-

1β antibody. Protein levels were assessed by densitometry and data expressed as fold change 

normalised to actin A) A representative western blot showing that LPS stimulation increases expression 

of IL-1β in monocytes and the addition of phenylephrine causes a further significant increase which is 

not observed in cells treated with phenylephrine alone  B) A representative western blot showing that 

stimulation with IgG fractions from both healthy and CRPS serum alone, induce increased IL-1β 

expression in monocytes and that addition of LPS further increases IL-1β production. C) Analysis of 

mean normalised expression showed monocytes stimulated with LPS (with any additions) significantly 

increased IL-1β expression (p <0.05) and that the synergistic increase in production following the 

addition of phenylephrine was also statistically significant (p <0.05). Error bars show the mean ±SEM. 

Data analysed using paired t-tests or Wilcoxon signed ranked test for non-normal data (bars 4-8). 

Abbreviations: LPS = lipopolysaccharide; PE = phenylephrine; IL- = interleukin 
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analysed by paired t-test (or Wilcoxon signed ranked test for non-normal data 

sets). Treatment with both CRPS and healthy control IgG in the absence of LPS 

resulted in a marked increase in IL-1β production, but this difference did not 

reach statistical significance in either case (p = 0.1001 and p = 0.0569, 

respectively). There was no significant difference between LPS stimulated cells 

and those stimulated with LPS in the presence of CRPS IgG; and despite a trend 

towards increased IL-1β production in monocytes stimulated with both LPS 

and healthy control IgG, compared with LPS alone, the difference was not 

significant (p = 0.1015). These data suggest that although there may be low 

levels of IgG-mediated activation of monocytes, it is independent of LPS 

stimulation and thus does not mimic the synergistic increase in IL-1β 

production apparent in the presence of PE. These data suggest that any auto-

antibodies present in CRPS IgG are not functionally binding to ARs in a manner 

which could influence cell behaviour, similar to NA or PE but that non-specific 

activation may be occurring through other mechanisms. Findings which have 

direct bearing on the regulation of monocytes in CRPS patients with 

longstanding disease. 

v. IgG-mediated monocyte activation in CRPS 

To examine the direct effects of IgG stimulation on monocytes independently of 

LPS stimulation, negatively-selected monocytes were stimulated as above but 
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with cell stimulation extended to 6 h to allow for further cell activation. Cell 

culture supernatants were then collected and subject to a multiplex ELISA that  

 

A                                  B 

C                                  D 

E                                  F 

G                                  H 

Figure 5.6 – Cytokine secretion by monocytes stimulated with CRPS or healthy IgG fractions. 

Negatively-selected monocytes from healthy donors were stimulated with IgG fractions from CRPS serum 

or matched healthy controls for 6 h. Cell culture supernatants were then harvested and assayed by 

multiplex ELISA for the above cytokines. Each data point represents a single experiment from the same 

donor monocytes stimulated with matched IgG samples. A-H) IL-2 secretion was significantly increased in 

cells stimulated using CRPS IgG compared to matched controls (p = <0.05), while the increase in MIP-1α 

also reached significance following exclusion of outliers (shown by red arrows). Data analysed by paired t-

test or Wilcoxon signed ranked test for non-normal data sets (graphs B,C,F & H) 

Abbreviations: MIP1a = macrophage inflammatory protein 1α; IL- = interleukin; TNFa = tumor necrosis factor α 

 



163 

 

was specific for 12 different analytes (IL’s -1β, -2, -4, -5, -6, -8, -10, -17, GM-CSF, 

IFNγ, TNFα, and MIP1α). Cytokine concentrations were then interpolated from 

standard curves of known concentration standards and expressed pgml-1 of cell 

culture supernatant. Of the 12 analytes assayed IL-5, IFNγ, GM-CSF and IL-17 

were all below the reliable minimum threshold of the assay, while the results of 

the remaining 8 cytokines are shown below in Figure 5.6. Each pair of data points 

is a single experiment using healthy monocytes from a single donor, stimulated 

with either CRPS IgG or an age- and sex-matched healthy control IgG fraction. 

Paired t-tests (or Wilcoxon signed ranked test for non-normal data sets) for 

each analyte were used to assess statistically significant differences. Only the 

increase in IL-2 secretion in CRPS IgG-stimulated monocytes was shown to be 

significant, when compared to matched controls (p = 0.0415) (Fig 5.6 C). CRPS 

IgG-treated monocytes also showed a general trend towards increased levels 

of MIP1α secretion, but this did not reach statistical significance, as 2 

experimental repeats, both using IgG from the same CRPS patient, displayed an 

opposing pattern (red arrows in Fig 5.6 A). Statistical analysis, excluding 

experiments using this patient’s IgG did show significantly increased levels of 

MIP1α secretion in CRPS IgG-treated monocytes when compared to matched 

controls (p = 0.0164) suggesting differential effects in different patient 

samples. Both IL-1β and TNFα displayed outliers within the CRPS patient group, 

but these were IgG fractions from different patients and previous repeats on 

different donor cells did not produce the same response (Fig 5.5 B&H). IL-8 
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showed a weak trend towards decreased secretion in monocytes stimulated 

with CRPS IgG when compared to matched controls, but the trend did not 

reach statistical significance (p = 0.1026). Statistical significance was achieved 

by excluding a single data point, but in this case there were no justification for 

exclusion as there was no indication that the IgG fractions or the donor cells 

for that experiment behaved unusually. Analysis of IL-4, -6 and -10 levels were 

not significantly different following incubation with IgG from CRPS patients or 

healthy controls (Fig. 5.5 D,E&G).  

Although based on small data sets these results present a potentially crucial 

difference in monocyte response to IgG when comparing longstanding CRPS 

patients to matched healthy controls. Despite the above data showing that 

functional auto-antibody binding was not occurring via α1-ARs it does appear 

that healthy monocytes produce a more inflammatory response to CRPS IgG 

than healthy IgG. Although further work is needed to establish the mechanism 

of this regulation, discussed below, it could indicate a crucial mechanism for 

immune dysregulation in longstanding patients and thus improve treatment 

and diagnosis of this patient cohort. 
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5D) Discussion 

In summary, the key finding of this chapter are: 

   α-Adrenergic receptor protein is expressed on peripheral blood 

monocytes from both healthy individuals and CRPS patients. 

   qPCR analysis of adrenergic receptor gene transcripts showed no 

expression of any α1-AR subtypes and only limited expression of α2-AR 

subtypes in CRPS or control monocytes. 

   There was no difference between levels of adrenergic receptor 

expression detected at either the protein or RNA level, in CRPS 

monocytes compared to healthy controls. 

   Stimulation of healthy monocytes with IgG fractions from CRPS serum, in 

conjunction with LPS, did not induce a synergistic increase in IL-1β 

expression,  in contrast to the effects of PE and LPS. 

   Stimulation of healthy monocytes with CRPS IgG, induced a significant 

increase in IL-2 secretion compared to control, and also a significant 

increase in MIPα1 secretion in two of the three CRPS patients tested. 
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i.   Alpha adrenergic receptor expression in monocytes 

Initial work aimed at identifying α-adrenergic receptor subtypes expressed on 

peripheral blood cells, was hampered by difficulties in characterising proteins of 

similar structure and function (Fig. 5.1). The structural similarities of the α1-AR 

subtypes make them difficult to distinguish by techniques such as western 

blotting. Indeed, a study using selective α1-AR family knockout mice showed that 

many commercially available antibodies, claiming to be subtype specific, were in 

fact binding to multiple subtypes286. Given the appearance of three bands on the 

western blot using an antibody that is marketed to be specific for only the α1a-

AR subtype (Fig. 5.1), indicated that the antibody used in this chapter was also 

non-specific.  The relative predicted molecular weights of the detected bands 

suggests that the three subtypes were detected i.e. the 80kDa band is equivalent 

to the α1d-AR, with each receptor running with apparent molecular masses at 

approximately 20kDa greater than the molecular weight predicted from the 

amino acid sequence. However, this theory is based on identical post 

translational modification for each receptor type. 

In order to address the issue of subtype-specific adrenergic receptor expression, 

a multi-format approach was developed based on live cell staining with a pan-α1-

AR and flow cytometry, and RNA analysis for specific adrenergic receptor 

subtypes. Initial characterisation of α1-ARs, indicated that expression was mostly 

restricted to CD14+ monocytes (Fig 5.2). This finding conflicts with previous work 

suggesting that peripheral blood monocytes do not express α1-ARs, based on 
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functional response to PE stimulation and mRNA expression 155,159,160. Another 

study, using a combination of antibody staining, mRNA analysis and radio ligand 

binding, reported expression of all three α1-AR subtypes in PBMCs and the same 

group also used in situ hybridization and immunocytochemistry to show α1-AR 

expression (predominantly the α1a- and α1b- subtypes) in PBMCs287,288. Similarly 

evidence for functional α1-AR expression in purified monocytes has also been 

described289. However, doubts remain over the specificity of subtype specific 

ligands and, as previously described, subtype specific antibodies286,290.  The 

reliance on mRNA analyses is also subject to criticism, as studies in mononuclear 

cells from murine bone marrow and the human monocytic cell line THP-1, 

indicate that both cell types express mRNA for α1-AR suggesting, translation and 

protein expression may occur early in cellular development 155,291. The conflicting 

opinions on adrenergic receptor expression in immune cells are summarised by 

Grisanti, Perez & Porter292. 

Analysis of negatively-selected monocytes from CRPS patients and healthy 

controls showed no difference in the expression of α1-ARs, when analysed using 

a pan-specific antibody (Fig. 5.3). It has previously been shown that monocyte 

α1-AR subtype expression is differentially modulated by different pro- and anti-

inflammatory stimuli, including PHA and LPS, and glucocorticoid and 

dexamethasone 157,160. If different adrenergic receptor profiles were expressed 

on CRPS monocytes compared to healthy cells then these may not be 

distinguished using the pan-specific antibody. However, on examination of 
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monocyte mRNA, no α1-AR transcripts were detected in monocytes from either 

healthy controls or CRPS donors (Fig. 5.4). These data are consistent with the 

current literature, as discussed above156,292. There are several possible 

explanations for these findings. The first possibility is that α1-AR expression at 

the protein level occurs at an early point in cell development, and further gene 

expression only occurs following direct cell stimulation, as previously described 

157,160. Assuming this hypothesis is correct, the similarity in CRPS and healthy 

monocyte transcription profiles suggest that there is no altered expression 

profile in CRPS monocytes, as has been shown in other inflammatory 

conditions159,160. Alternatively, the pan-α1-AR antibody used may be cross-

reacting with α2-ARs expressed on monocytes, transcripts of which were 

detected by qPCR: thus, α1-AR may not be expressed by peripheral blood 

monocytes. One final possibility is that the qPCR assay was not sensitive enough 

to detect low copy numbers of transcripts. However, the β2-AR receptor has also 

been shown to have relatively low transcript copy numbers in various tissues156. 

As β2-AR transcripts were detected in all samples and subtype specific α2-ARs 

were also detected, this explanation seems unlikely. Likewise, cDNA from human 

heart tissue, at a minimum concentration for the qPCR assay, was positive for all 

the adrenergic receptors tested (Fig. 5.4). 

ii. Effects of CRPS immunoglobulin G on monocyte function 

Previous work has established that a subset of CRPS patients possess auto-

antibodies directed against nervous system structures, including adrenergic 
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receptors109,113,114. A synergistic increase in monocyte IL-1β production has also 

been described following treatment with LPS, in the presence of the α1-AR 

specific agonist PE260. The above data replicates previous work by Grisanti et al260 

and shows a synergistic increase in LPS-induced IL-1β expression when 

stimulated in the presence of PE (Fig 5.5 A). This also supports earlier data that 

peripheral blood monocytes express functional α1-AR, despite the lack of 

transcripts detected at the RNA level.  

To explore the possible role of α1-AR activating auto-antibodies in CRPS disease, 

IgG fractions from CRPS patients and healthy controls were used in conjunction 

with LPS stimulation and IL-1β western blotting, to assess the synergistic effects 

with α1-ARs (Fig. 5.5 B). Despite increased levels of IL-1β production in IgG 

stimulated cells, there was no synergy when co-incubated with LPS (Fig 5.5 C). 

Only those cells treated with LPS showed significantly increased levels of IL-1β 

production, compared to untreated cells and only the LPS-PE combination 

showed significantly more IL-1β than LPS alone.  Because monocytes are known 

to express IgG specific Fc-γ receptors, which induce cell activation once cross-

linked, it is possible that the trend toward activation in IgG-treated cells is Fc 

receptor mediated293.  

One interesting aspect of CRPS pathology is that intravenous immunoglobulin 

(IVIG) therapy has proven to be effective in some patients, and it has been 

suggested that IVIG efficacy in a variety of inflammatory and auto-immune 

conditions, is due to the up regulation of an inhibitory Fc receptor26,118,294.  
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To examine the direct effects of CRPS IgG on healthy monocytes, independently 

of the LPS-IL-1β synergy model, cell culture supernatants were analysed by 

multiplex ELSIA following cell stimulation (Fig 5.6). Healthy monocytes stimulated 

with CRPS IgG, secreted significantly greater amounts of IL-2, compared to 

healthy controls (p< 0.05) and two of the three CRPS patient IgG fractions also 

stimulated significantly increased MIP-1α secretion (p< 0.05) (Fig 5.6 A&C). This 

could indicate different methods of activation through which CRPS IgG, but not 

healthy IgG, produces a more inflammatory monocyte profile. 

Auto-antibody activation of α1-AR receptors is unlikely to be responsible for 

these differences, given the absence of synergy in the LPS-IL-1β model. 

Furthermore, functional binding via other auto-antibody epitopes, such as the 

β2-AR, would be expected to produce an anti-inflammatory response114,295. 

Cross-linking of Fc-γ receptors would cause cell activation but this is commonly-

associated with TNFα and IL-6 secretion, which was not apparent in the above 

data296,297 (Fig 5.6 E&H).  Increased MIP-1α may have particular relevance to 

CRPS disease, as it has been demonstrated to induce pain through nociceptors 

sensitisation298. IL-2 has also been reported as elevated in the blood of chronic 

CRPS patients in a recent meta-analysis, but the same analysis showed increased 

levels of IL-4 and TNFα, which was not seen in the above experiments. 

iii. Conclusion 

In conclusion the data presented in this chapter show that, despite conflicting 

evidence on adrenergic receptor expression in peripheral blood monocytes, CRPS 
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patient IgG does not functionally bind to ARs on these cells in a manner similar to 

NA or PE. Thus it would appear that activating auto-antibodies do not modulate 

monocyte cell function via this pathway. However, further data shows that CRPS 

patient IgG does produce a more inflammatory cytokine profile in healthy 

monocytes when compared to healthy control. This suggests that, although the 

hypothesised anti-α1-AR antibodies may not play a role in modulating immune 

cell function, there may be an alternative mechanism which is specific to CRPS 

patients. 

Since IgG fractions were isolated from patients with longstanding disease this 

finding may indicate a mechanism by which peripheral immune cells are 

dysregulated in CRPS patients with longstanding disease. This is an important 

observation as it highlights on-going changes in the immune system in the 

absence of active inflammation and suggests future therapy and research could 

target this disease mechanism. Furthermore, if CRPS patient monocytes are 

differentially regulated via auto-antibody interactions it could have downstream 

effects on terminal differentiation, such as monocytes recruited to skin tissue in 

order to develop LCs. Further research is needed to investigate these possible 

links and elucidate potential avenues for therapy or diagnosis using this 

knowledge. 
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CHAPTER 6: Discussion 

CRPS is a chronic pain condition which causes severe debilitation in many 

affected individuals and significantly reduces quality of life17. The wide variety 

of symptoms and the progression from acute to chronic disease displays the 

complex underlying disease etiology18. Despite clear evidence that the immune 

system plays a key role in CRPS disease significant gaps remain within our 

understanding of how the immune system might contribute directly to disease 

development and maintenance109,299,300. Furthermore this lack of understanding 

contributes to the difficulty in establishing definitive and reliable diagnoses of 

CRPS due to the absence of reliable biomarkers for disease. It is likely that 

different underlying disease etiologies exist in different patients and that these 

diverse mechanisms of disease combine to produce the wider syndrome. This 

concept is summarised in the integrative conceptual model of CRPS (Fig. 1.2)18.  

The aim of this research was to better understand how the immune cell 

population in CRPS affected tissue may vary from that in healthy tissue and 

also how immune cell status may be modulated by aspects of the nervous 

system, a relationship of particular relevance to CRPS disease301.  

In chapter 3, I examined skin tissue from patients with longstanding CRPS. The 

data from the histological sections showed there was no difference in immune 

cell infiltration or mast cell density in CRPS affected tissue compared to non-

affected or healthy control tissue (Fig 3.2). In early stage CRPS there is visible 
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swelling and inflammation in the affected limb and recently it has been 

reported that mast cell numbers are increased in early stage patients even 

after the resolution of obvious inflammation86,302. The role of mast cells in 

facilitating neurogenic inflammation is well described and mast cells have been 

identified as potential targets for treatment in CRPS73,86,271.  

As discussed previously it is possible that mast cell involvement is a factor in 

early stage disease and thus normal mast cell densities are restored in patients 

with longstanding disease. Interestingly mast cell activation is classically 

associated with allergic responses (through IgE specific Fc-Ɛ receptors) and T-

helper 2 immune activation303. Activation of mast cells in the early stages of 

disease could lead to secretion of class switching cytokines such as IL-4 which 

in turn would bias T-cell responses in affected tissue towards a Th-2 

phenotype304. The finding that tissue resident T-cells are biased towards a Th-2 

phenotype in CRPS affected tissue compared to non-affected tissue supports 

this hypothesis (Fig 3.6). It has also previously been suggested that peripheral 

blood cells in CRPS patients may exhibit a Th-2 phenotype92. However the Th-2 

inducing potential of mast cells has mostly been described in relation to allergic 

sensitization or pathogens such as helminths and it is not clearly understood if 

neurogenic stimulation in the absence of other sources of stimulation can 

produce the same Th-2 polarisation305,306.  

The difference in LC densities observed in CRPS affected limbs compared to 

non-affected tissue could also have implications for wider immunity (Fig 3.4). 
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As discussed earlier, the difference in LC density is more difficult to interpret as 

it could represent either a relative increase (in non-affected tissues) or relative 

decrease (in CRPS affected tissue) or combination of the two. One interesting 

link between the T-cell data and LCs is that the neuropeptide CGRP which has 

been shown to induce Th-2 responses in LCs including enhanced antigen 

presentation to Th-2 T-cell clones, increased secretion of IL-4 in activated LCs 

and a skew towards Th-2 chemokine secretion216,218. If cortical reorganisation 

occurs in long standing cases of CRPS then it is possible that efferent nervous 

signalling is altered. Given the interaction between LCs and neurogenic 

signalling molecules like CGRP it is entirely possible that this re-organisation is 

responsible for the changes observed in LC density. Indeed if there are 

underlying changes to peripheral nerve fibres, as a result of acute inflammation 

during early stage CRPS, the altered efferent nervous signalling may have more 

effect in CRPS non-affected limbs i.e. increasing LC density in non-affected 

limbs and supressing Th-2 differentiation. Alternatively the altered nerve 

signalling to LCs could be restricted to CRPS affected tissues i.e. increasing LC 

density and increasing Th-2 polarisation. Furthermore the recently established 

role of densely innervated hair follicles in the recruitment and replenishment 

of LCs in the epidermis supports the hypothesis that altered efferent nerve 

signalling could have significant impact on LC populations275. 

In chapter 4, I showed how monocyte derived Langerhans cells (MoLCs) 

express the ubiquitin processing protein UCH-L1 (Fig. 4.1 & 4.2). UCH-L1 
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expression in LCs is particularly relevant to pain research as various animal 

models of chronic pain have shown UCH-L1 expression develops concomitantly 

with the onset of pain237–239. By inhibiting the activity of UCH-L1 in MoLCs I 

have also shown that there is no effect on activation marker expression or 

cytokine secretion (Fig. 4.5 & 4.6) suggesting that the expression of the 

deubiquitinating enzyme is not related to cell activation. This observation is 

important in establishing that UCH-L1 expression is not directly involved in cell 

activation, a mechanism which could lead to the induction of auto-immunity. 

However, inhibition of UCH-L1 function did have significant effects on MoLC 

chemotaxis (Fig 4.7). 

Although no study has examined this issue directly in CRPS, UCH-L1 positive LCs 

have not been observed in studies using PGP9.5 staining to study epidermal 

nerve fibre density in CRPS patients130. However the observation of UCH-L1 

positive LCs in animal models follows closely after epidermal denervation 

whereas there are no biopsy studies in CRPS patients during the acute phase of 

inflammation where nerve damage may be most apparent. Given the 

constitutive expression of UCH-L1 in MoLCs it is possible that UCH-L1 

expressing LCs in animal models of pain are in fact monocyte derived cells 

recruited from circulation following nerve injury, mirroring the type monocyte 

recruitment seen under inflammatory condition194. Another possibility given 

the apparent role of UCH-L1 in MoLC chemotaxis is that expression is switched 

on in skin resident LCs following epidermal denervation in order to facilitate LC 



176 

 

migration away from the tissue. This finding is indirectly supported by previous 

work describing an interaction between UCH-L1 and α2-AR expression as 

signalling through adrenergic receptors has been shown to alter LC 

migration226,227,307. Further work examining the relationship between epidermal 

nerve fibres and LCs is required to understand this relationship in the context 

of chronic pain. 

In the final chapter I explored how the presence of auto-antibodies in CRPS 

disease may have systemic effects on immune regulation. Previous work has 

established that auto-antibodies are present in a subset of CRPS patients and 

that these antibodies are directed towards nervous system epitopes, including 

adrenergic receptors109,113,114. The therapeutic application of intravenous 

immunoglobulin (IVIG) in CRPS has also been shown to reduce pain in some 

patients suggesting a direct link between the action auto-antibodies and 

maintenance of pain26. To establish if auto-antibodies to adrenergic receptor 

epitopes could modulate immune cell function in CRPS, I first explored the 

expression of adrenergic receptors on peripheral blood monocytes. Despite the 

obvious expression of α1-ARs on CD14+ peripheral blood monocytes (Fig 5.2) 

no transcripts for any of the α1-ARs were detected at the in cell RNA (Fig. 5.4). 

Furthermore there were no differences in expression when comparing healthy 

and CRPS monocytes at either the protein or RNA level. As discussed earlier the 

historical problems with specificity in commercially available adrenergic 

receptor antibodies casts doubt on the accuracy of this method, although this 
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risk was minimized by using a novel pan-specific antibody286. Furthermore RNA 

transcripts for α1-AR are reportedly of very low abundance in human blood 

cells making detection difficult155.  Due to the contrasting results in measuring 

adrenergic receptor expression, a function assay based on LPS stimulation in 

monocytes was used to show that IgG from CRPS patients does not modulate 

monocyte activation in a similar way to the α1-AR agonist phenylepherine260 

(Fig 5.5). However, stimulation with CRPS IgG alone did produce differential 

effects in healthy monocytes when compared to healthy IgG stimulations, 

including increases in IL-2 and MIP1α (Fig. 5.6).  

The hypothesis that altered adrenergic receptor expression profiles in immune 

cells can modify the immune cell response to neurogenic signalling, including 

stress induced NA, has been described previously155,160,292. This theory is 

appealing in CRPS as it provides another link between aberrant nervous 

signalling and immune cell activation. Furthermore, as established earlier, 

peripheral blood monocytes are able to act as precursor cells for epidermal LCs 

by migrating to the epidermis under inflammatory conditions277. Thus altered 

adrenergic receptor expression in circulating monocytes in CRPS patients could 

also contribute to the observed differential LC densities in these patients.  

However, the above data indicate that receptor expression is not altered in 

CRPS monocytes when compared to healthy controls. The data also suggest 

that CRPS IgG differentially activates healthy monocytes independently of α1-

AR as, despite increases in IL-2 and MIP1α secretion, no change in IL-1β was 
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observed in the LPS synergy assay. One possible explanation for IgG mediated 

activation of monocytes is Fc-receptor activation as described earlier293. This 

could have interesting implications of IVIG treatment in CRPS as one postulated 

mechanism for the anti-inflammatory effects of this treatment is the up-

regulation of so called “inhibitory Fc-Receptors”294. Thus there may be a role 

for auto-antibodies in CRPS, possibly through the cross-linking of Fc-receptors 

in peripheral blood monocytes, however it would appear to be independent of 

direct activation and/or modulation of adrenergic receptors on immune cells.  

Final Summary -  

In summary my work over the course of this project has shown that there are 

significant differences between immune cells in CRPS affected and non-

affected tissues in late stage patients including altered LC densities and T-cell 

polarisation. By exploring the functional relevance of UCH-L1 expression in 

MoLCs I was able to show that UCH-L1 plays a role in cell chemotaxis and 

describe how this may be relevant to chronic pain by linking neurogenic and 

immune signalling in the epidermis. Finally by examining the expression of 

adrenergic receptors in CRPS monocytes and the effects of CRPS IgG on healthy 

monocytes I was able to show differential activation of these cells in a manner 

which was independent of α1-AR binding. These findings contribute to our 

understanding of CRPS and taken together indicate that the immune system 

involvement continues into late stage disease. By further understanding the 
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mechanisms of this immune dysregulation we may identify key pathways 

responsible for the maintenance of CRPS disease in chronic sufferers. 

Further Work -  

Various avenues for further research have been elucidated during the course of 

this project. Given the differences in LC density between affected and non-

affected limbs in CRPS patients exploring UCH-L1 expression in these tissues 

would provide answers regarding intra-epidermal nerve fibre density, and its 

relationship to LC density, and also provide further detail on UCH-L1 expression 

in CRPS LCs, this work is underway currently by a collaborator with experience 

in intra-epidermal nerve fibre quantification.  

The effects of CRPS IgG on healthy monocytes would be improved by 

expanding sample numbers and by exploring any correlation between 

monocyte activation and the presence of known auto-antibodies. Furthermore 

inhibition of Fc-receptor binding may provide answers on the exact mechanism 

of activation in these cells.  

Finally, by expanding on the methods used in this study to examine LCs in 

greater detail (markers of activation or cell migration, adrenergic receptor 

expression etc.) a better understanding of LCs in situ in CRPS tissue would be 

developed and thus provide direct clues as to the nature of neuro-immune 

signalling in the late stages of this disease.  
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Taking a broader view the data presented in this thesis suggest that there is on-

going immune involvement in late stage CRPS but that it is distinct from the 

acute phase of disease. Finding such as these may provide a more reliable 

diagnostic indicator of the stages or CRPS disease, i.e. when a patient is 

progressing to late stage disease, and also help improve diagnosis of patients 

presenting with late stage symptoms.  

Furthermore the indication that previously undiscovered mechanisms may be 

at work during late stage disease could have implications for treatment. This 

finding further reinforces the hypothesis that classic anti-inflammatory 

medication may only have a limited window of effectiveness within the acute 

phase of the disease. Following disease progression a more complex neuro-

immune interaction begins to predominate which is poorly understood but 

which does still involve immune elements. Thus a combined approach including 

immuno-modulating therapies, such as IVIG, may be the most effective way 

forward when treating late stage disease and is deserving of further research. 
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Appendix Figure 2 – The Relationship between altered Langerhans Cell Density 

and Tissue Resident T-cell phenotypes in CRPS affected skin. 

The percentage difference in LC density in 3 patients was plotted against the 

percentage difference in SFU produced by tissue resident T-cells from the same 

tissue samples. There was no correlation between these data and thus no 

established relationship between altered LC densities and skewing of tissue 

resident T-cell phenotypes. 

Appendix Figure 1 - Langerhans Cell Densities in CRPS Affected tissues. 

CD1a stained epidermal sheets, including those from patients with control 

biopsies from non-contralateral sites,  were imaged by confocal microscopy and 

a 3 dimensional picture constructed of the epidermal sheet following which LC 

were quantified and cell density recorded as cells per mm
2
 of epidermis. Paired 

analysis between LC densities in CRPS affected and non-CRPS affected tissue 

from the same individual showed a significant difference (p  <0.05) 
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 Appendix Figure 3 – PGP 9.5 and CD1a staining in non-permeabilized MoLCs 

Following negative magnetic isolation negatively selected peripheral blood 

monocytes were differentiated into MoLCs over 7 d and fixed in PFA. Cells were 

dual stained for CD1a and PGP 9.5 and analysed by flow cytometry. Minimal 

levels of PGP 9.5 were detected using this method whilst CD1a staining 

remained prominent. 

Abbreviations: MoLC = Monocyte derived Langerhans Cell; PFA = 

paraformaldehyde 
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