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Abstract

Transformer reliability and stability are the key concerns. In order to increase their

efficiency, an automatic monitoring and fault diagnosing of the power transformers are

required. Dissolved Gas Analysis (DGA) is one of the most important tools to diag-

nose the condition of oil-immersed transformer. Agents technology as a new, robust

and helpful technique, successfully applied for various applications. Integration of the

Multi-Agent System (MAS) with knowledge base provides a robust system for various

applications, such as fault diagnosis and automated actions performing, etc. For this

purpose, the present study was conducted in the field of MAS based on Gaia methodol-

ogy and knowledge base. The developed MAS followed by Gaia methodology represents

a generic framework that is capable to manage agents executions and message delivery.

Real-time data is sampled from a power transformer and saved into a database, and it is

also available to the user on request. Three types of knowledge-based systems, namely

the rule-based reasoning, ontology and fuzzy ontology, were applied for the MAS.

Therefore, the developed MAS is shown to be successfully applied for condition

monitoring of power transformer using the real-time data. The Roger’s method was used

with all of the knowledge-based systems named above, and the accuracy of the results

was compared and discussed. Of the knowledge-based systems studied, fuzzy ontology is

found to be the best performing one in terms of results accuracy, compared to the rule-

based reasoning and ontology. The application of the developed fuzzy ontology allowed

to improve the accuracy by over 22%. Unlike the previous works in this field, that were

not capable of dealing with the uncertainty situations, the present work based on fuzzy

ontology has a clear advantage of successfully solving the problem with some degree of

uncertainty. This is especially important, as the most of the real-world situations involve

some uncertainty.

iii



Overall, the work contributes the use of the knowledge base and the multi-agent

system for the fault diagnosis of the power transformer, including the novel application

of fuzzy ontology for dealing with the uncertain situations. The advantages of the

proposed method are the ease of the upgrade, flexibility, efficient fault diagnosis and

reliability. The application of the proposed technique would benefit the power system

reliability, as it would result in reduction of the number of engineering experts required,

lower maintenance expenses and extended lifetime of power transformer.
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Chapter 1

Introduction

1.1 Introduction

Power systems generate, transmit and distribute electrical energy to consumers. Electric

power distribution system is an important part of electrical power systems in delivery

of electricity to consumers. Electric power utilities worldwide are increasingly adopting

the computer aided monitoring, control and management of electric power distribution

system in order to provide better services to consumers. Therefore, recent research and

development are conducted in area of Information Technology (IT) and data communi-

cation for automation purpose.

Supervisory Control And Data Acquisition (SCADA) systems are powerful and suc-

cessful technology, that has been applied in industrial automation. The main features of

the SCADA systems are data acquisition, event processing, condition monitoring, con-

trolling components and user interaction. In power system, it has been applied in various

area, such as power generation, power transmission and power distribution. Providing

real-time information from large scale distributed network, to the user in the control

center, is the main application of SCADA. This has been recently carried out with the

help of agent technology [1].

In computer science, an agent is a programming software, situated in some environ-

ment, that can capture real-time status of this environment, think and select appropriate

actions, based on its goal and then apply with its actuators [2]. The MAS in power sys-

tem find their applications in condition monitoring, control, automation, etc. [1, 3–5].

MAS and KBS for Transformer Fault Diagnosis F. Davoodi Samirmi



1.2 Motivation 2

This also applies to ontology for the purpose of knowledge representation [6]. The ma-

jority of applied MAS provide the real-time information of the components to the user,

and user need to decide which action to be performed.

Power transformer is an important component of the power system, whose correct

and reliable functioning is vital to the system operation. Therefore, condition monitoring

provides the opportunity to protect the system from serious problem, to control power

transformer on-line and in an appropriate time. However, in case of large distributed

network, large amount of information is collected and presented to the user. This makes

engineers operate more data which requires an appropriate managing and monitoring

techniques. Besides that, the power transformer has been designed for the long term

operation, around 30 years. During its operation various types of stresses related to

the loads, ambient temperature, operation time, etc., influence its operation and the

outcome end up with losses [7]. Therefore, it is important to diagnose the fault as early

as possible when the fault appears. Automatic actions can be performed even in some

critical situation on behalf of the user.

This thesis is dedicated to the development of knowledge base and MAS for power

transformer fault diagnosis. The developed MAS is aimed to provide a condition mon-

itoring, perform various types of actions and fault diagnosis of the power transformer.

This chapter provides an overview of the above approaches based on applying knowledge

base for developed MAS. Furthermore, the motivations and objectives of the thesis are

given, as well as contribution of this project. The outline of the thesis is given in Section

1.4.

1.2 Motivation

MAS has been applied for the purpose of condition monitoring of the power system. The

system is designed to present the real-time information of the plant to the user for an

appropriate action to be performed [3–6, 8]. Various research works have been conducted

earlier in the field of power transformer fault diagnosis [9–12], however several problems

still remained unsolved. Therefore, this work was motivated by finding the solutions for

the following problems:
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• Large amount of data obtained from each component of the power system requires

efforts and knowledge of experts in various fields;

• On-line power transformer monitoring prevents a forehead diagnosis of the fault.

This consequently results in energy loss and shortens the lifetime of power trans-

former.

• Lack of intelligence and flexibility of existing methods for power transformer fault

diagnosis. The traditional methods of diagnosis usually have fixed topology, and

they can not be altered easily according to the situation requirements.

• The knowledge representation applied to date is only capable of providing the real-

time information of power system and not able to select an appropriate action in

critical situations.

The objectives of this work aimed to find solution for the problems described above

are highlighted in the following section of the thesis.

1.3 Objectives of Thesis

The objective of this work is to design a framework for power transformer fault diag-

nosis by utilising various types of knowledge-based systems. The framework is capable

of collecting the real-time data from the component (in our case power transformer),

providing the real-time status of the component, fault diagnosis and performing an auto-

mated action corresponding to the fault types. The following objectives were set during

this work:

• Development of a MAS based on a formal methodology for power transformer

on-line monitoring and fault diagnosis;

• Applying rule-based reasoning for MAS development for purpose of performing

automatic actions;

• Applying several types of knowledge-based systems, namely rule-based reasoning,

ontology, fuzzy ontology, for power transformer fault diagnosis;
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The more detailed information on the conducted project structure is presented in

the following section.

1.4 Thesis Overview

This thesis is structured as follows:

Chapter 1 defines the background for the research carried out as well as provides

an overview of research motivation, aims and contributions.

Chapter 2 gives an overview of industrial power system automation. Agents, MAS

and their applications are introduced, followed by reviewing different methodologies

of MAS design. The chapter presents agent standard, languages and platforms, in

particular, the elements applied in power system are highlighted. Components of power

system, including the power transformer, are reviewed, followed by some traditional

methods of transformer fault diagnosis. Finally, the current applications of MAS in

power system are discussed.

Chapter 3 presents the developed multi-agent framework for power transformer

monitoring and fault diagnosis based on Gaia methodology. The analysis part and

design part of the Gaia methodology are reviewed in details. The specifications of

applied agents are introduced and categorized. Three types of knowledge-based system

are developed for the proposed MAS for the purpose of condition monitoring, controlling

and performing automatic actions in power system components. Various type of tasks

are applied, and the agent collaborations are presented. An agent called Analyser is

developed to interact with MATLAB; it is used to load the data to MATLAB for fault

diagnosis. 191 of DGA samples are tested with the KNN classification to show agent

performance. Finally, an experimental system is proposed to test and perform the case

of study.

Chapter 4 proposes a novel knowledge-based system for the purpose of automation,

condition monitoring and fault diagnosis of power transformer. First, expert system and

knowledge-based system are introduced, as well as their application. The knowledge-

based system for power transformer fault diagnosis is developed in terms of rules. Roger’s

method as an instance of Dissolved Gas Analysis (DGA)-based fault diagnosis is ap-

plied. The performance of the proposed system is evaluated via experimental gas data

MAS and KBS for Transformer Fault Diagnosis F. Davoodi Samirmi



1.5 Contribution of Research 5

(70 DGA samples), and the results are discussed. Finally, the issues related to the

knowledge representation in form of rules are discussed, followed by their advantages

and disadvantages.

Chapter 5 presents the knowledge-based system in form of logic, which leads to the

ontology-based knowledge representation. First, a brief introduction to the Description

Logic (DL) is given followed by its applications. Such an important application of DL,

as ontology, is discussed, including the languages, platforms and design status. Finally,

an ontology and Ontology agent are developed for power transformer fault diagnosis.

The summarised agent system architecture and ontology based fault diagnosis are de-

scribed. Traditional fault diagnosis based on Roger’s method is investigated in form of

ontology. Experimental results for 70 DGA samples are presented, the conclusion about

the method accuracy is presented followed by discussion.

Chapter 6 describes an overview of fuzzy system and its application in power trans-

former fault diagnosis. The issues of ontology-based fault diagnosis are discussed. Fuzzy

ontology, including that for Protégé plug-in, are introduced. A fuzzy ontology for Roger’s

method is developed. The case study is applied for 70 DGA samples; the accuracy of

the proposed method is discussed and compared with the other methods.

Chapter 7 draws a conclusion for the thesis, based on the outcomes of this study,

followed by the discussion of the challenges of this work. Suggestions for future work

are also presented in this chapter.

1.5 Contribution of Research

The main contribution of this work lays in the field of using a multi-agent and knowledge-

based system for power transformer condition monitoring and fault diagnosis. The work

successfully met the objectives set earlier, and introduces several novel features and

applications.

• The multi-agent system for power transformer fault diagnosis followed by Gaia

methodology. Gaia methodology enables the convenient design of MAS, that can

be easily expanded according to the system requirements. Therefore, the flexibility
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of the developed MAS is increased, making it potentially suitable to be applied to

the other types of equipment than power transformer.

• Use of knowledge representation to perform automated action on behalf of user.

This results in lower number of expert engineers required to maintain the control,

and lower negative impact of the human factor.

• MAS combined with ontology for fault diagnosis. This enables the real-time on-line

fault diagnosis, thus minimising the chance of error, compared to the traditional

methods currently applied in industry.

• Application of fuzzy ontology for dealing with the fault situations involving some

uncertainty. One of the key problems of the ontology-based fault diagnosis is

inability of dealing with the situations involving some degree of uncertainty. This

work introduces the novel use of fuzzy ontology for solving this problem, and thus

significantly increases the accuracy of the fault diagnosis.

Overall, this work contributes the solution of the common problems of using the

power transformers and provides generic user-friendly and expandable technique of in-

dustrial fault diagnosis.
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Chapter 2

Multi-Agent System and Power

Transformer Condition

Monitoring

2.1 Background of Power System Automation

Power systems generate, transmit and distribute electrical energy to consumers. Com-

puters are applied for efficient monitoring, controlling and automation of the power

system and its components. Three types of automation systems used in the transmis-

sion industry are itemized as follows [1]:

• Energy Management Systems (EMS): A system that is run with the aid of com-

puters to control, monitor and optimize the performance of power system;

• Supervisory Control And Data Acquisition (SCADA) systems: Responsible for

data acquisition, event process and Human-Machine Interface (HMI);

• Substation Automation Systems (SAS): Reducing the operation in the plants with

the aid of components condition monitoring in a single substation.

Figure 2.1 shows the structure of power automation system. The hierarchical struc-

ture is formed by an individual SAS of each substation at the lowest level. The SCADA

system is superior to the SAS, and the EMS is at the top level.
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Figure 2.1: Power system automation

The SAS uses a number of devices which are integrated into a function package by

communication technology for the purpose of monitoring and controlling the substation.

In fact, the SAS components are classified into three levels: power system equipment,

such as transformers and circuit breakers, is at the lowest level, Intelligent Electronic

Devices (IEDs) with various application abilities are at the second level, and the utility

enterprise is on the top level [13]. The IEDs are the microprocessor systems with capa-

bility of sending and receiving data, which are designed and integrated for performing

various tasks, such as protection relays, load survey, operator indicating meter, etc.,

often via a network. The fact that they are designed by different vendors with various

protocols may cause the problems in communication stage. In this case open system-

s, based on the use of non-proprietary, standard software and hardware interface, are

recommended. Open systems use standard protocols, such as Modbus, Modbus Plus,

Distributed Network Protocol 3 (DNP3), etc., to enable future upgrades from multiple

suppliers at lower cost and easy integration with relative ease and low risk. Another
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recommendation is to apply the IEC 61850, an international standard for communica-

tions within the substation [14]. This standard improves multi-vendor interoperability

and establishes high speed communication between IEDs. Moreover, it results in lower

installation, extension, engineering costs and provides easier extension of functions and

implementation of new functions [13].

Monitoring is a main level above the equipment control in power system automation.

This level helps to monitor the state of the system, operate switching and control devices

remotely, and protect the system from disturbance. At this stage various methods

are applied for on-line condition monitoring in order to provide their functionalities in

real-time, according to the requirements. Information is captured and monitored in

control center to be further analysed by experts. One of the recent applied techniques

of monitoring and controlling electric power components is multi-agent system. The

following section provides a detailed description of the multi-agent system basics.

2.2 Agent and Multi-Agent Systems

Artificial Intelligence (AI) is the area of computer science that focuses on creating ma-

chines that can be engaged in behaviour that human consider to be intelligent. Reason-

ing, knowledge, planning, communication, perception and the ability to move, learning

and manipulate objects are the central goals of AI research. A systematic approach to

software engineering simplifies the process and results in a software that is understand-

able, verifiable and reliable. Object-oriented programming is one of the examples of this

methodology approach, presented by Booch in 1982 [15]. The key element of the Object-

oriented methodology is an object. An object is some real world entity that programmer

wishes to model. Agent-Oriented Programming (AOP) is another type of programming

paradigm with capabilities of interfaces and messaging. The internal structures are the

major difference between objects and agents. Objects encapsulate methods and at-

tributes, while agents encapsulate goals, plans, beliefs, and commitments. The main

goal of an agent is to discover an autonomous entity, to perform the task autonomously.

The main problem of objects is that they are passive service providers and do not possess

this ability directly.
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Agents and agent programming represent a new, robust and helpful technique based

on computing. There is no single definition of an agent, but the most common description

states that an agent is a computer system situated in an environment and it is able to

act autonomously on behalf of a user or an owner [2]. Wooldridge also noted that the

agent takes the information from its environment with its sensors, and decides what

action to perform. The action can be performed with agent’s actuators to make some

changes in its environment. Figure 2.2 shows an agent with its effectors/actuators that

are able to change the environment. In complex systems the agent on its own would not

be able to act autonomously and control its environment, so in this case several agents

can be used. These agents have different abilities and cooperate to achieve their goals.

Thus multi-agent systems are used to achieve results in this case.

Figure 2.2: An agent in its environment

Agents’ properties encourage researchers to apply this technology in a variety of

domains. Some of these properties are itemized as follows:

• Autonomous: agent is able to control its actions without any direct human inter-

vention;

• Reactive: agent is able to perceive environment by its sensors and respond to it

by changing the environment;

• Pro-active: agent’s behaviour and its responses are directed by exhibited goals;

MAS and KBS for Transformer Fault Diagnosis F. Davoodi Samirmi



2.3 Agent Standards and Communication 12

• Social ability: communication language between agents that provides the interac-

tion with each other.

According to the agent properties and ability to use various techniques in decision

making, agents act quite similar to the human beings [2]. A standard for multi-agent

technology provides a comprehensive performance in MASs collaboration.

2.3 Agent Standards and Communication

There are various standards for agent technology, such as Object Management Group

(OMG) [16], Agentcities [17], Foundation for Intelligent Physical Agents (FIPA) [18],

etc. The OMG Mobile Agent System Interoperability Facility (MASIF) was formed in

1989. It aims to satisfy a demand in a component-based software marketplace, which

followed an introduction of standardized object software. Thus, the organization is

responsible for establishing the industry guidelines and setting detailed object manage-

ment specifications, which results in creating the common framework for application

development.

FIPA is a collection of standards related to agent software; it was established in 1996.

It aims to standardize the interoperation of heterogeneous software agents. The details

of FIPA specification are given in the following subsection. A new initiative standard is

called Agentcities, which aims to build a worldwide, publicly accessible test bed for the

deployment of FIPA agent-based services.

2.3.1 FIPA standard for agent development

FIPA is a standards organization accepted by the IEEE in 2005 [18]. It promotes agent

technology and the interoperability of its standards with the other technologies. The

core principle of this standard is to provide a new paradigm for solving old and new

problems followed by standardization mechanics. The FIPA specification consists of

four main parts: abstract architecture, agent communication, agent management and

agent message transport, as shown in Figure 2.3.
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Abstract architecture is aimed to deal with the abstract entities for developing agent

services and its environment. Semantic meaning message exchange between agents, in-

cluding multiple message transport management and defining agent and servers location

by using the directory services, are the key points of this architecture.

Figure 2.3: FIPA standard

A set of interaction protocols was defined by FIPA for coordinating the multi-message

actions. Agent Communication Language (ACL) messages, communication acts, ex-

change messages protocols and language for representing the content, are the main

specifications of agent communication. An agent must be able to receive any FIPA-ACL

communicative act message; in the case if the message cannot be processed, the agent

should respond with a “not-understood” message. More details of the agent communi-

cation will be given in the following section.

Agent management deals with operating and establishing the logical reference model.

The logical reference model is applied for creating agents, migration, location, commu-

nication, registration and retirement [18]. The components of agent management are

presented in Figure 2.4. The scope of these components includes the following items:

• An Agent Platform (AP);

• An Agent;
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• A Directory Facilitator (DF);

• Agent Management System (AMS);

• A Message Transport Service (MTS).

The AP provides a physical infrastructure to deploy agents. Several APs are de-

veloped for agent technology, such as JADE, Jason, BDI, JACK, etc. An agent is a

form of distributed code process, which inhabits in the AP and offers computational

services. Agent Identity (AID) is the agent identification distinguished unambiguously.

DF provides a yellow pages service, that can be accessible to the other agents. Agents

publish their most current services in DF, so the other agent can easily find them. In

AP, Agent Management System (AMS) is a necessary agent responsible for managing

their operation, that also provides white pages service. Agents are able to de-register

from AMS or register in it, which can be available to other agents. ACL messages are

transported between agents by Message Transport Services (MTS). On any given AP,

the MTS is provided by an Agent Communication Channel (ACC). Hypertext Transfer

Protocol (HTTP) and Internet Inter-Orb Protocol (IIOP) are two transport protocols

specified by FIPA Message Transport Protocol.

Figure 2.4: Depiction of the agent management ontology
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2.3.2 Communication languages for agent development and platforms

FIPA communication language history started from creation of ARCOL by Sadex in

1991 from France Telecom, which soon after became known as FIPA-ACL or just ACL

[19]. For the purpose of message content expression and dealing with several cooperation

protocols, France Telecom recommends to use Semantic Language (SL). The main points

of any communication act are the facts that the message is performative, includes sender,

receiver and content. Several parameters of FIPA-ACL messages are given in Table 2.1

[18]. Sub-layers of the FIPA communication are detailed below:

• Transport: IIOP, WAP and HTTP are the message transports defined by FIPA;

• Encoding: messages can be represented in high level, such as String, XML and

Bit-Efficient;

• Message: independent message;

• Ontology: can be used for expression of message content;

• Content expression: provides different types of expression, such as logic, algebra,

etc., e.g. FIPA-SL;

• Communication Act (CA): performing or acting messages, e.g. request and inform;

• Interaction Protocol: used for message exchange, e.g. agree or refuse to the request

message.

As mentioned previously, FIPA represents the CA standard for action purpose. Some

set of CA performatives are “Inform”, “Inform If”, “Agree”, “Refuse”, etc. An example

of FIPA-ACL message with an “Inform” performative is given below. An agent called

TransformerOilSensor sends a message containing three gas ratios, to the receiver agent

called DataCollector.

( INFORM

:sender (agent-identifier

:name TransformerOilSensor)

:receiver (set (agent-identifier
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:name DataCollector))

:content ‘‘(( set (Ratio1 0.00815)

(Ratio2 6.7)

(Ratio3 6.9)))’’

:language FIPA-SL

:ontology PartPerMillion

:protocol fipa-request

)

Table 2.1: FIPA-ACL message parameters

Parameter Description

Performative Type of communicative acts
sender Identity of the sender of the message
receiver Identity of the intended recipients of the message
reply-to Participant in communication
content Content of the message
language Language content are expressed
encoding Description of content
ontology Description of content
protocol Conversation of interaction protocol
conversation-id Control of conversation
reply-with Control of conversation
in-reply-to Control of conversation
reply-by Control of conversation

The logic of mental attitudes and actions in CAs is based on first-order modal lan-

guages, which represent the intentional semantics for FIPA-SL. There are three sub-

classes of SL (SL0, SL1, SL2) extended by FIPA to support various operations. The

message content expression in FIPA-SL can be used in three cases:

• An action, for performing action. It is used as a content expression when the act

is requested, and other CAs are derived from it;

• A proposition, for assigning a truth value. It is used in the “Inform” CA, and

other CAs are derived from it;
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• An identifying reference expression, for identification of object in the domain. It

is used in the inform-ref macro act, and other CAs are derived from it.

Clarification given above may be described using an example of two agents, A and

B, that make use of the iota operator. The iota operator is a constructor for giving an

expression. In this case, agent A has the following knowledge base: KB=P(A), Q(1,A),

Q(1,B). The interaction between agents A and B is:

( QUERY-REF

:sender (agent-identifier

:name B)

:receiver (set (agent-identifier

:name A))

:content ‘‘((iota ?x (p ?x)))’’

:language FIPA-SL

:reply-with query1)

)

( INFORM

:sender (agent-identifier

:name A)

:receiver (set (agent-identifier

:name B))

:content ‘‘((= (iota ?x (p ?x)) alpha))’’

:language FIPA-SL

:in-reply-to query1)

)

The expression (iota x (p x)), where x is term and (p x) is a formula, can be read

as “the x such that p [is true] of x”. The query-ref message is replied with alpha which

is the only object can satisfy the proposition p(x) [20].
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In terms of a series of messages among agents, interaction protocol is given by FIPA

which allows an agent, called Initiator, to request other agent, called Participant, to

perform an action. The Participant processes the request and decides whether the

request should be accepted or refused. The interaction protocol Initiator and Participant

is shown in Figure 2.5.

Figure 2.5: The FIPA Interaction Protocol

Java Agent Development framework (JADE), developed by the University of Parma,

is one of the agent platforms compliant with FIPA standard [20]. First JADE platform

was developed in late 1998, by Telecom Italy under LGPL (Library Gnu Public License).

The key idea of JADE is in implementation of an abstraction over a well-known Java

object-oriented language. Thus, JADE programmers must develop their agents in full

Java programming. In JADE platform agents live in containers, that provide the JADE

run-time and all the services needed for hosting and executing agents. According to

FIPA standards requirement, JADE platform utilizes the complete agent management

specification, including the key services of ACC, AMS, MTS and DF. Main container

is the first launch container with hosting for two main agents, AMS and DF. AMS

supervises the entire platform and provides white pages service, while the DF agent

implements yellow pages service. Furthermore, JADE platform provides a graphical

user interface with various tools for helping developers in their design.
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2.3.3 Agent architectures

Various definitions of agents’ architectures are provided by researchers. One definition

provided by Michael Luck et al. [21] is that:

“Architectures provide information about essential data structures, relationships be-

tween these data structures, the process or functions that operate on these data struc-

tures, and the operation or execution cycle of an agent.”

The notion of agent’s architecture is the way how agents work together to achieve

the complex tasks by using different paradigms. Wooldridge and Jennings classified the

agent’s architecture into three categories [22] as follows:

• Deliberative/symbolic reasoning architectures;

• Reactive architectures;

• Hybrid architectures.

The basic idea of symbolic reasoning architecture is that the symbols represent the

environment. In fact, all the information of the environment is written in form of

symbols. In this case the main point is the way to describe the current state of this

environment. Therefore, these types of architecture faced two key problems; the first

problem is the difficulty to translate the environment into the symbols. The second

problem is a difficulty of the real world representation in a complex. Several models

have been provided by researchers to overcome these problems [2].

Reactive architecture, developed by Brooks and Maes [22], is another type of agent’s

architecture. In this architecture there is no symbolic or logical model of environmen-

t. The key idea of this architecture is that an intelligent behaviour can be generated

without explicit representations and abstract reasoning provided by symbolic artificial

intelligence techniques; intelligence is an emergent property of certain complex systems.

Subsumption architecture was developed by Brooks in 1991; it states that the sensors

can transmit real-time information into the layers of finite state machines. Layers with

lower level have less control than the higher level of the stack in a hierarchy of behaviour,

so decision-making is achieved through goal-directed behaviour. The advantage of this

architecture is faster response, however it only works for certain environments [2].
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Hybrid architecture consists of reactive and deliberative architectures, which act ac-

cording to their needs. The reactive architecture is useful in situations when the agents

ability to react on time is required. For the situations that require agent’s ability to act

reasonably, deliberative/symbolic architecture can be useful. Touring Machine is one

type of hybrid architecture provided by Ferguson [23]. The main point of Touring Ma-

chine is to coordinate and control the actions of autonomous agents situated in dynamic

worlds.

2.4 Agent Design Methodologies

The key point of designing MAS is to define the agents cooperation. Usually method-

ology covers the whole life-cycle of system development, such as analysis, design, im-

plementation and validation. In analysis step, agents are associated with the entities of

the analysed scenarios. The capabilities and responsibilities of each agent are identified.

Finally, the interactions between agents are applied [24].

Different types of methodologies have been introduced by researchers for various

applications. Some of the proposed methodologies are: High-Level and Intermediate

Models for Agent-oriented Methodology, MASE and Gaia methodology, etc. Based on

their abilities, each methodology has some advantages and disadvantages. There is a

framework to compare these methodologies and their suitability for specific applications

[25].

2.4.1 High-Level and Intermediate Models (HLIM) methodology

A general-purpose multi-agent methodology model is called HLIM [26]. This method

represents the development of agent systems through a series of abstraction levels where

human, with machine assistance, can manipulate abstractions at one level into abstrac-

tions at the next lower level. Overall, the methodology has two phases, namely, discovery

phase and definition phase. The discovery phase guides the discovery of agents and their

high-level behaviour, while the definition phase produces implementable definitions. The

HLIM contains five models, as itemized below:

• A high-level model;
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• An internal agent model for the internal structure of agents;

• A relationship model;

• A conversational model;

• A contract model.

A high-level model provides the high-level view of the system and initial point for

development. The application scenarios are tracked to describe functional behaviour,

discovering agents and behaviour patterns along the way. Goals, plans and beliefs aspects

of agents are described by internal model, which are derived directly from the high-level

model. The relationship model describes agent relationships, such as dependency and

jurisdiction. The coordination among the agents is described by conversational model.

The structure of agents commitments are defined by the contract model. Contracts are

created during the agents instantiation or execution as required. This methodology has

a lack a detailed description of the implementation and testing phases [25].

2.4.2 MaSE methodology

MaSE methodology focused mainly on robotics; it captures goals and continues through

the conceptual phase to design the system [27]. Number of graphically-based models are

used to describe the agent types and their interface with the other agents, as well as an

architecture-independent definition of the internal agent design. The MaSE methodology

consists of analysis and design parts. The analysis part provides an overview of required

system, while the design part models it into useful construction for implementing the

MAS.

The analysis part is captured in three steps: capturing goals, applying use cases,

and refining roles. In first step the users requirements are taken, goals are captured

and turned to the system level goals. From this level, the use cases and sequence charts

are extracted to initialize the set of roles and their communications paths. Finally, the

third step is to refine and extend the initial set of roles and define tasks to accomplish

each goal in the refining roles step. Creating agent classes, constructing conversations,

assembling agent classes and system design are four steps of the design stage, that are

captured from analysis stage.
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In MaSE methodology, communication between agents is applied through Finite S-

tate Machines which leads to an algebraic description of conversations. For this reason

the method is considered to be successful and acceptable in describing interactions be-

tween agents [25]. On the other hand, it does not support adaptability and mental

attitudes, such as Beliefs Desires Intentions (BDI).

2.4.3 Gaia methodology

The Gaia methodology [28] is anticipated to facilitate an analyst to gradually shift

from an initial ambiguous state to a more concise and methodical design which can be

implemented directly. According to the Gaia methodology, the process of building MAS

is similar to a process of organisational design. Hence, the relationship and interaction

between hierarchical roles in one organisation would be defined as the analysis category

of this Gaia methodology, which, in turn, consists of two other sub-categories, namely

the role model and interaction model. For instance, the role model in this case consists

of a role called Data Collector, and its responsibility is to collect data from any messages

received from devices or equipment in a plant and store them in appropriate databases

and tables.

According to Gaia, each role has different permissions and responsibilities related to

their tasks. Each role should be responsible of its tasks to be completed in a correct way.

Permission defines information resources that are allocated to each role. These resources

can be the knowledge or information related to the agent. Therefore, some resources can

be carried out by a role, identified as liveness. On the other hand, sometimes an agent

does not change the existing condition. It is required to preserve it for some purpose,

and this is defined as safety.

In the case when roles should complete their tasks according to their responsibilities,

the roles may use some other activities in their own way to improve the task. This

is identified as activities. The way the role interacts with other roles is called role’s

protocols. The role model template is provided in Figure 2.6. The second part of

analysis is to find a link between roles defined as the interaction model. This model

consists of a set of protocols’ definitions, including such attributes, as its purpose, the

initiator, responder, input, output information and processing.
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Role Schema:

Description:

Protocols and Activities:

Permission:

Responsibilities

Name of role

Short English description of the role

Protocols and activities in which the role plays a part

Liveness: liveness responsibilities

“rights” associated with the role

Safety: safety responsibilities

Figure 2.6: Template for MAS role schema

The analysis model is transformed into an implementation model during a design

phase. Gaia identifies three models for the design part. The first model identifies the

agent types in the system by mapping one to one from the role model in the analysis

part. The second model, called services model, shows the main services required to

assign agents’ roles. Finally the lines of agents’ communication are documented in the

acquaintance model. More detailed explanation of Gaia methodology is provided in

Section 3.2.

As the agent-based programming is becoming more and more popular in recent years,

the multi-agent systems now find their application in various areas; this will be discussed

in details in following section.

2.5 Agent Applications

Agent technologies have been successfully used in many industrial applications. The

first applications of MAS appeared in 1980 and expanded to various areas. The main

applications of MAS are the electronic business [29], monitoring [30] and control [31]

[32], information management [33], automation intelligence behaviour [34] and so on.

One of industrial applications of MAS is energy management, a process of monitoring

and controlling the cycle of generation, transportation and distribution of energy to

industrial and domestic customers. The operators’ work efficiency in critical situations

can be improved by applying a set of decision support systems (DSS). ARCHON a
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decentralised software platform that provides technology for connecting DSS with each

other, thus extending their use. ARCHON helps the components work together, offers

them control and a level of integration. Thus, the agent consists of an ARCHON layer

and application program [35] [8].

Extensibility and flexibility are the key advantages of MAS; it had been applied in

many power engineering fields. Various functionalities with different abilities are able

to be implemented by MAS by designing appropriate agent. In power systems MAS

is described to find application in automation [4] [5], diagnosis [36], monitoring [37]

and control [38], which helps the asset management of power system. These applica-

tions recommend various frameworks with different abilities, to represent the real-time

information to the users for the purpose of decision making.

2.6 Electric Power Systems and Their Components

Electricity can be generated in several ways, such as hydroelectric, nuclear, solar, wind,

etc. Transmission lines are required to transmit the power from the plant to the sub-

stations. The key point of substation is to change the voltage level and perform several

other important operations, such as protection, control, etc. These operations can be

improved by on-line monitoring and control of the components, which may consequent-

ly results in the maintenance’s cost reduction. Substations also can be interconnected

to create the electricity transmission networks. The central nerve of power system is

the control center which senses the pulse of the power system, adjusts its condition,

coordinates its movement, and provides defence against exogenous events [39].

The main components of substation are transformers, switch-gears and other items

of plant. An electric circuit can be protected from short-circuit with automatically-

operated switches, called circuit breakers. Relays are another type of switches; they are

used to control, isolate and protect the power system from high current flow. Trans-

former is a static electric device, the most expensive component of substation. The

transformers may differ significantly in terms of size and application. Such an expen-

sive equipment as power transformer is always in a high risk of damage in high voltage

working state. In the UK there are over 5000 substations; 377 substations at 275 kV or

MAS and KBS for Transformer Fault Diagnosis F. Davoodi Samirmi



2.6 Electric Power Systems and Their Components 25

400 kV, and 4849 substations at 132 kV and below; they are operated by National Grid

Transco (NGT) [40].

2.6.1 Power transformer

As mentioned earlier, power transformer is one of the most important parts of electric

power system; it converts voltage to higher or lower levels. Depending on size, they can

be divided into three groups, as follows [41]:

• Small power transformers, 500 to 7500 kVA;

• Medium power transformers, 7500 to 100 MVA;

• Large power transformers, 100 MVA and above.

Operated within the ratings, the lifetime of power transformer is expected to be

about 30 years of operation, however operating beyond its rating values may lead to

a significant life shortening. On the other hand, all industries require a reliable and

correctly operated power system at all times. Failure of power transformer would result

in power supply loss to the industry, supplied by these transformers.

Heat is one of the most common transformer destroyers. During transformer oper-

ation, a temperature increase by 10 ◦C above its rating will result in shorter life time.

Depending on the transformer, various classes of cooling systems are applied. In dry

type transformers air forced devices (fans) are implemented to reduce the temperature.

Oil-immersed transformer is another type of transformer which uses oil-forced pumps

for reducing the temperature.

Mathematical modelling of the power transformers is widely used for research of elec-

tromagnetic transient processes and can be simulated in a range of computer programs.

These mathematical models are intended to describe work of power transformer using

mathematical equations, and can be used by researchers to solve the problems arising in

actual power transformers [42, 43]. The mathematical modelling of power transformer

can be quite complex process, as it is require representation of equivalent circuits with

the help of modern computer programs. In particular, thermal model [11] is capable of

predicting the transformer temperature and evaluation suggestions. This model can be

used by engineers for better understanding of transformer working conditions. Another
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important feature of the thermal model is the transformer load ability analysis that

allows an engineer to simulate the possible conditions before switching loading between

transformers [11].

The basic construction parts of power transformers are essential throughout the

industry to a certain degree. Some these types, such as core, winding, taps-turns ratio

adjustment are described below, as well as accessory equipment.

Core

Magnetic field path in power transformer is guided by core, it consists of thin strips of

high-grade steel with thin coating insulation. Depending on the transformer rating, the

type of steel and the core size can be varied. During working state of power transformer,

heat is generated in the core and must be transferred. One way of cooling the core down

is to immerse it in the tank of oil. Oil temperature can vary depending on position of

sensors in the tank. The Top Oil Temperature (TOT) and Bottom Oil Temperature

(BOT) are the examples of the temperature in various parts of the tank. In larger units,

cooling ducts are used inside the core for reducing heat and avoiding the hotspots.

Winding

Windings are the conductors for carrying the current; they are made of aluminium

or copper materials by wounding around the section of the core. Their types depend on

the transformer rating, as well as the core construction. In the case of high electrical

and mechanical stress in power transformer, the winding is made of disc coils. The flow

of liquid (oil) through the windings can reduce the heat during of transformer operation

time.

The taps-turns ratio adjustment

Voltage in secondary winding of transformer can be adjusted by the ratio of the num-

ber of turns in primary. It is possible to be operated manually and/or automatically.

In terms of manual operation, De-Energized Tap Changer (DETC) switches mechanism

and provides the external accessibility to change the tap position. There is an on-line

capability of monitoring and changing the ratio of transformer, referred to Load Tap

Changing [44] [45].
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Accessories

There are many types of accessories used for monitoring and protecting power trans-

former. Some of accessories are: liquid level indicator, pressure relief devices, liquid

temperature indicator, winding temperature indicator, sudden pressure relay, etc. For

instance, the liquid level indicator in oil-immersed transformer is used to indicate and

control the oil level.

These parameters of components can be captured every minute to present the power

transformer status. Data is collected by Remote Terminal Units (RTUs) situated in

substations [46]. In order to increase the reliability and efficiency of component, an

on-line monitoring is required.

2.6.2 Power transformer on-line monitoring

On-line monitoring of the power transformer is a process of accessing the data while

transformer is operational. The characteristics of component on-line monitoring can be

varied, it depends on the number of parameters monitored and the accessibility of the

data required. For an on-line monitoring system normally data, reports and alarms are

recorded periodically. The following major components are required in order to monitor

the devices and equipment functions of power station: [41].

• Sensors: capture information or data about the equipment;

• Data Acquisition Units (DAU): measure and collect signals from different sensors;

• Communications Line between DAU and Computer: various types of communica-

tion networks to transfer data from DAU and sensors to the control room;

• Computer: software platform for monitoring of the components and communica-

tion with controlling facilities.

On-line monitoring significantly improves the efficiency of operation and mainte-

nance procedures of power transformer [47]. The characteristics of on-line monitoring

process can vary; they depend on the number of parameters monitored and the acces-

sibility of the data required. There are over ten parameters that can be monitored

to prevent the acceleration of deterioration processes during long term operation [48].
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Power transformer components status can be captured with various types of electronic

sensors, including Ultra-High Frequency (UHF) ones [10].

The IEEE Guide [49] covers such aspects of on-line monitoring, as the monitoring

systems and their equipment, various configurations of the system with their benefits

and application. The key parameters of on-line monitoring of power transformer are

itemized as follows:

• Dissolved Gas in Oil Analysis: It is one of the most efficient diagnostic tools for

problems determination in transformer operation. Overheating, partial discharge

or local breakdown cause the presence of several gases dissolved in oil. Thus, the

identification of these gases presence helps to indicate the fault.

• Moisture in Oil: The presence of moisture in oil causes decrease in dielectric

strength followed by reduction of the insulation strength. It is important to mea-

sure the moisture level before any failure occurs, that can be done by regularly

taking oil samples.

• Partial Discharge (PD): PD is a type of fault in power transformer, that often

occurs in the case of dielectric breakdown. The level of PD can be measured with

various methods, such as electrical and acoustical, providing information about

the changes in power transformer.

• Oil temperature: Oil temperature is one of the key parameters in the overall tem-

perature conditions of power transformer, which includes ambient temperature,

top oil temperature, fan operation and load. These factors are important to de-

termine the condition of transformer during its operation.

• Winding temperature: One of the limiting factors for the loading capability is

hot-spot temperature of the winding. The mechanical strength of paper insulation

in power transformer can be reduced by prolonged exposure to excessive heat.

• Load current and voltage: Automatic tracking of load current and voltage of power

transformer will increase their life-time, by restricting their maximum load.
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• Insulation power factor: All electrical insulation has a measurable quantity of

dielectric loss, regardless of condition. Chemical substances and moisture may

increase losses, more then normal stage.

• Pump/Fan operation: Fan operation is designed to control the temperature of

transformer under various conditions. Its abnormal operation may cause failure of

the cooling system. Fans and pumps status can be captured by measuring their

current drown and its correlation with the measured temperature.

• Load Tap Changer (LTC) operation: LTD failures are either mechanical or elec-

trical in nature. Failures can be caused by poor design or misalignment of the

contacts, high loads, excessive number of tap changers etc. Various parameters of

LTD, such as initial peak torque or current, average torque, motor current index

etc., can be monitored to avoid its failures.

Thus on-line monitoring systems provide detailed information about the power trans-

former components and help to minimise the probability of an unexpected outage.

There are some requirements applied to transformer on-line monitoring system func-

tionality:

• Cost efficiency: The installation and maintenance cost of on-line monitoring system

should be balanced with the benefit of having this system installed.

• Long-time operation: The reliability of the monitoring system should be main-

tained for the lifetime of power transformer (30 years and over).

• Selectivity: The on-line monitoring system should record the parameters that could

be used for the interpretation of the power transformer current condition.

• Data accessibility: All the data recorded in the monitoring process should be easily

accessible by the user, and stored for the sufficient period of time.

However, the monitored data can not be used without their correct interpretation.

Thus, the next step after monitoring is a fault diagnosis which provides interpretation

of on-line captured data.
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2.6.3 Power transformer fault diagnosis based on gas analysis

Problems in transformer can arise from defects/deficiencies and develop into incipient

faults of deterioration processes. Increasing temperature, moisture, oxygen and oth-

er contaminants during transformer operation can significantly contribute in insulation

degradation. According to [50], the typical failures due to high voltage in transformer

are shown in Figure 2.7. As shown, the bushings and the windings are at the highest

risk of failure, because these regions operate under the highest electrical filed. In this

case, fault diagnosis techniques are required to identify the failure component of power

transformers. Various diagnosis methods, e.g. chemical, electrical, thermal, optical and

mechanical can be applied on-line and/or off-line to diagnose the transformer failure.

These methods can be applied in terms of various techniques, such as artificial intelli-

gence [51], fuzzy logic [52], machine learning, such as Support Vector Machine (SVM)

[53], etc. For instance, in AI techniques, data from specific tool (like gas samples) are

collected in the expert system to facilitate the decision making, in terms of fault detec-

tion. For the case of fault diagnosis based on temperature data, thermal model with

capability of predicting transformers’ temperature at different locations is applied [11].

Figure 2.7: High voltage transformer failure distribution

DGA is a common diagnostic technique that had been used for several decades

to diagnose the condition of oil-immersed transformers. Oil samples are taken from a

transformer and sent for fault diagnosis, such as hot-spots, overheating, partial discharge,

arcing, etc. Hydrocarbon fragments and hydrogen can be formed as a result of mineral oil

hydrocarbon molecules decomposition under electrical and thermal stress. Key gases,
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such as acetylene (C2H2), methane (CH4), hydrogen (H2), ethylene (C2H4), ethane

(C2H6), carbon mono oxide (CO), etc., may be formed by combination of fragments.

For instance, overheating fault may generate the following gases:

H2 ⇒ CH4 ⇒ C2H6 ⇒ C2H4 ⇒ C2H2.

DGA fault diagnosis is based on key gases and/or gas ratios (such as R1 = CH4/H2,

R2 = C2H2/C2H4, R3 = C2H2/CH4, R4 = C2H6/C2H2, R5 = C2H4/C2H6) by ap-

plying different methods for fault detection. Each method uses different gas ratios (or

key gases) for fault classifications. Obviously, more categories of classification give bet-

ter diagnosis results. In power transformer status evaluation, the rapid increase of key

gases should be paid more attention, rather than the total amount of gas. However,

the acetylene makes an exception, as any amount of it over few part per million (ppm)

is generated as a result of the high energy arcing, while trace amount (several ppm)

can be a result of thermal fault over 500 ◦C. DGA based fault diagnosis methods in

power transformer, including such methods as Duval Triangle, Doernenburg, IEC ratio,

Roger’s ratios, are briefly summarised below [54].

Doernenburg method

The Doernenburg method [55] utilizes four types of gas ratios, R1 = CH4/H2, R2 =

C2H2/C2H4, R3 = C2H2/CH4, R4 = C2H6/C2H2 to diagnose three general fault types,

such as thermal fault, partial discharge and arcing. At first, the values of gases are

compared with the given table, to ascertain whether there is a problem with the unit.

In the case of existing problem, the ratios are applied in order to obtain the suggested

faults, based on Table 2.2.

Table 2.2: Diagnosis with Doernenburg key gas ratios method

Fault suggestion
R1 R1 R2 R2 R3 R3 R4 R4

Oil Gas
space

Oil Gas
space

Oil Gas
space

Oil Gas
space

Thermal Fault >1.0 >0.1 <0.75 <1.0 <0.3 <0.1 >0.4 >0.2
Partial discharge
(low-intensity)

<0.1 <0.01 NS* NS* <0.3 <0.1 >0.4 >0.2

Arcing (high-
intensity)

>0.1
to
<1.0

>0.01
to
<0.1

>0.75 >1.0 >0.3 >0.1 <0.4 <0.2

* NS = Not Significant
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This method is a part of IEEE Standard C57.104-2008 [55], based on thermal degra-

dation principles. In the case of missing gas value and gas ratios, the implementation of

this method may result in significant number of “no interpretation” or undefined faults.

Roger’s and IEC ratios

Roger’s ratio method [56] of DGA fault diagnosis is one of the tools to be used for

analysing at gases dissolved in transformer oil. Roger’s method is based on the earlier

work of Doernenburg, but unlike it uses four key gas ratios. Later on, International Elec-

trotechnical Commission (IEC) introduced the fault diagnosis based on Roger’s method

using only three gas ratios. According to Roger’s method, the quantities of different

gases are compared by dividing them one to the other and representing the result as

a ratio of the key gases. Thus, the Roger’s method assumes that the certain gas ratio

indicates that the specific temperature has been reached. The presence of certain faults

was proven by comparing a large number of power transformers with similar gas ratios

and examining the data according to Roger’s method. However, Roger’s ratio method

is only an additional technique in analysing the problems in power transformer. Like

the other ratio methods, it is only valid in the case of significant gas presence. The

fault classification according to IEC ratio method is shown in Table 2.3. The faults are

classified into eight types, allowing to make an assumption on the fault of the power

transformer.

Table 2.3: Diagnosis of IEC ratio method

Case Fault Type R2 R1 R5

0 No fault R2 < 0.1 0.1 ≤ R1 ≤ 1 R5 ≤ 1
1 Low energy partial discharge 0.1 ≤ R2 ≤ 3 R1 < 0.1 R5 ≤ 1
2 High energy partial discharge 0.1 ≤ R2 ≤ 3 R1 < 0.1 R5 ≤ 1
3 Low energy discharge, sparking,

arcing
0.1 ≤ R2 0.1 ≤ R1 ≤ 1 1 ≤ R5

4 High energy discharges, arcing 0.1 ≤ R2 ≤ 3 0.1 ≤ R1 ≤ 1 3 < R5

5 Thermal fault less than 150 ◦C R2 < 0.1 0.1 ≤ R1 ≤ 1 1 ≤ R5 ≤ 3
6 Thermal fault temperature range

150-300 ◦C
R2 < 0.1 1 ≤ R1 R5 ≤ 1

7 Thermal fault temperature range
300-700 ◦C

R2 < 0.1 1 ≤ R1 1 ≤ R5 ≤ 3

8 Thermal fault temperature range
over 700 ◦C

R2 < 0.1 1 ≤ R1 3 < R5
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For instance, assume the gas dissolved in the oil sample are (in ppm): C2H2 = 2,

CH4 = 170, H2 = 26, C2H4 = 25, C2H6 = 278, CO = 92 and CO2 = 3125. The ratios

can be calculated as follows:

R1 = CH4/H2 = 170/26 = 6.54

R2 = C2H2/C2H4 = 2/25 = 0.08

R5 = C2H4/C2H6 = 25/278 = 0.09

By referring to Table 2.3, the gas ratios indicate that transformer has a thermal fault

in the temperature range of 150 ◦C to 300 ◦C, which is case 6.

Duval triangle

Duval Triangle method [57] uses three gas values (CH4,C2H4, C2H2) and their loca-

tion in a triangular map to diagnose the fault. The triangle graphical method is used to

visualize the different cases and facilitate their comparison. Faults are categorised into

seven types, as given below:

• PD = Partial Discharge;

• T1 = Thermal Fault Less than 300 ◦C;

• T2 = Thermal Fault between 300 ◦C and 700 ◦C;

• T3 = Thermal Fault greater than 700 ◦C;

• D1 = Low Energy Discharge (Sparking);

• D2 = High Energy Discharge (Arcing);

• DT = Mix of Thermal and Electrical Faults;

These types of faults can be identified by visual inspection of the equipment after

the fault has occurred in service. The Duval Triangle with its fault’s region is shown in

Figure 2.8. As can be seen in the Figure 2.8, there is no region of the triangle designated

to the normal ageing.
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Figure 2.8: The Duval triangle

2.7 Current Applications of MAS in Power System

There are various techniques have been applied for monitoring and diagnosis of power

transformers, but the complexity of their structure and the limitations of each technique

force the researchers to look for new methods with better outcome. For instance, MAS

is used for transformer condition monitoring based on the data of PD activity captured

and measured by UHF [10]. Then captured data are analysed and diagnosed to be

available to the engineers only.

A MAS with ontology has been used for power system automation in [3, 6]. The

system has the ability to take a user’s order from a user interface console to perform

certain actions. The real-time status of equipment is captured by an ontology agent. For

instance, if a user requests to open or close a specific circuit breaker, then the real-time

status (open or closed) of the circuit breaker is provided by an ontology agent. The

system is only able to provide the real-time information of a component to a user, and

user is the one who performs specific actions. In terms of complex distributed network

system with more components, more experts are required. The MAS only monitors the

components of the system and does not diagnose the system faults.

Ontology-based fault diagnosis was applied for the power transformer in [9, 12]. The

proposed system in [9] consists of classes and subclasses, based on category of fault

types. The ontology was only able to derive the subclasses or individuals, as defined in

the time of building ontology. The ontology in the system is built for fault diagnosis with
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four subclasses of partial discharge, thermal fault, frequency response and dissolved gas

analysis. For instance, in the built ontology there is a class called “Fault phenomenon”

with subclasses of different gases ratios. The ontology could get gas ratios through the

user interface, and by matching it with the ontology fault diagnosis, it can capture the

related fault and report it to the expert users. The system is not able to deduce the

new information or undefined subclasses, and only can provide the predefined knowledge.

Furthermore, the fault diagnosis method is able to provide the fault types to the user, and

there is no automatic action and agent system were performed in proposed system. The

ontologies proposed in [12] did not considered any situations that involve some degree

of uncertainty. However uncertain situations are a common problem in real-world fault

diagnosis.

The agent-based system is also applied in substation power system for the purpose

of monitoring and controlling its components [1, 10, 37]. The outcome of the system is

similar to the SCADA system, which is able to present the information of the substation

to the user situated in higher level. Based on monitored component and agents who

provide services, the user is able to request performing some actions towards the agent

system. However, none of the examples described above includes dealing with situations

involving an uncertainty. This feature is essential for the real-world situations, as the

majority of them include some uncertainty.

According to the agent definition and its properties for providing automation in the

system, the most of the proposed systems are only able to provide the information to

the user, and user can inform the relevant agent to perform the necessary action. In

this case, the decision maker is only user, who needs to decide which actions need to

be performed in critical situation. In terms of large scale distributed network system,

a group of users is required to deal with. One of the large scale distributed network

system (over 5000) is power transformers on-line monitoring and fault diagnosis. It is

hardly possible for the user to diagnose the fault types and performs appropriate actions

on-time individually before serious problem appear. The lifetime of power transformer

is designed to be around 30 years, in terms of normal operation. According to its long

lifetime and maintenance cost, their maintenance services are carried out less often than

supposed to be, and the transformer lifetime may shorten [7]. On the the other hand,
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some types of substations may have a spare transformer for the case of fault situation.

For this purpose, there are circuit breakers which provide a possibility of excluding the

faulty transformer (for the purpose of servicing) from the bus line and switching to the

spare one. For instance, Figure 2.9 shows the parallel transformers applied to supply

the 11KV low voltage bus (parts A and B in figure). In case of correct operation of

two transformers SGT1 and SGT2, the bus-tie breaker remains open, and the 11KV

low voltage bus is supplied. In the case of some fault appears in the power transformer

SGT1, part A of the 11KV bus remains without power. In this case, MAS for on-line

transformer fault diagnosis informs the CB1 (the agent that wrapped CB1) to open, and

similarly the bus-tie breaker to close. Finally, the part A of the system is supplied by

power, therefore faulty transformer operates abnormally for a shorter period of time.

Bus-tie 

breaker

L/V 

Circuit breakers

SGT1 SGT2

CB2CB1

11 KV

Low Voltage Bus

Substation 

Transformers 

(220/11 KV)

H/V Circuit 

breaker

220 KV

High Voltage Bus

High Voltage

Transmission Lines

Part A Part B

Figure 2.9: Distribution substation schematic diagram

On-line monitoring and fault diagnosis of distributed power transformer are the

key points of this work. One of the research projects in the Department of Electrical
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Engineering and Electronics at the University of Liverpool is focused in e-Automation

[58]. The e-Automation architecture contains a real-time simulator, data acquisition

devices, real time automation platforms and IP networks, including a wireless local area

network, that can be used to undertake research in the area of network-based industrial

automation. The key point of the laboratory is to focus on improving the real-time

condition monitoring, information management, automation and fault diagnosis in a

power system.

Previous MAS works in power system automation are developed in this e-Automation

laboratory. For instance, agents are designed to collect the data from different compo-

nents of power system simulator and save them in database for the future analysis. The

collected data are accessible by the user through the relevant agents. The agent system

has the ability to take a user’s order from a user interface console to perform certain

actions. The system is able to collect and present the real-time information of the com-

ponents to the user on the top level. In the case of large scale, the participation of more

experts for the purpose of control is necessary, which obviously leads to increases of cost.

2.8 Summary

The background of agents, multi-agent system and condition monitoring of power trans-

former are introduced in this chapter. Agents definition and their standard for commu-

nication are reviewed. FIPA as the main standard is explained clearly. Some methodolo-

gies for design of MAS are summarised, and their characteristics and specifications are

discussed. MAS application is introduced, and the recent research projects is reviewed.

Power system components are briefly discussed. Power transformer and its components

for on-line monitoring are introduced. Some method of fault diagnosis based on DGA

are also reviewed. Regarding to agent properties, the key point of using them in such ap-

plication is agent ability to capture information from its environment, think and perform

the appropriate actions. Based on this objective, the MAS should be able to capture the

real time information of equipment and by using some techniques of decision making,

an appropriate actions are selected and applied. This can be solved by providing an

knowledge-based system for MAS.
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Chapter 3

Multi-Agent Framework for

Power Transformer Monitoring

and Fault Diagnosis

3.1 Introduction

The aim of this chapter is to present a new framework for power system automation based

on a formal methodology called Gaia; this methodology was introduced by Wooldridge

and Jennings [28]. The analysis and design parts of the Gaia methodology are imple-

mented step by step. Following this method, a design process is clarified, simplified and

standardized while creating optimal MAS for transformer condition monitoring. Agents

developed in this system are capable of receiving real-time data from a transformer

relevant sensors (like DGA sensor) in a substation, and perform such tasks as saving,

monitoring, reporting and reacting autonomously by determining the most suitable so-

lution. In addition to reducing the user activities, knowledge-based systems in forms of

rule based reasoning, ontology and fuzzy-ontology are developed for power transformer

on-line monitoring and fault diagnosis.

The overall structure of the developed multi-agent framework is presented in Figure

3.1. As can be seen in the Figure 3.1, the hierarchy structure consists of three levels;

components at the lowest level, agents are situated at the second level, and finally the

top level consists of the user and knowledge-based systems for monitoring and decision
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Figure 3.1: A hierarchy of the multi-agent framework

processes, noted as monitor and decision level. However, user priority is the key concern

for influencing the overall system. Components level contains equipment, such as trans-

former, circuit breakers, DAU, databases, IEDs, etc., that are combined with different

agents for data extraction, operation, condition monitoring, fault detection and etc. The

agents level represents various types of agents, which are analysed and designed accord-

ing to Gaia methodology. Usually in decision level, the monitoring process and decision

performance are implemented by the user only. The developed system introduces three

types of knowledge-based systems for this level, in order to reduce the users’ efforts.

In this work, the developed multi-agent framework is designed and implemented

based on the e-Automation architecture, later on extended with application of the rule-

based and ontology-based reasoning for the purpose of automation and fault diagnosis.

The software agents development design based on Gaia methodology and the evaluation

of the performance of system are described in details in the following section.
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3.2 Gaia Methodology for Agent Development

As mentioned previously, Gaia is a methodology for agent-oriented analysis and design

in the macro and micro levels of systems. Its design structure allows the developers

to choose the most suitable organisational structure for solving a problem, and enables

re-use of agent-oriented organisational patterns, such as efficiency, robustness, degree of

openness and ease of enactment of organisational structures [59]. The Gaia methodology

is meant to be suitable for developing such systems as ADEPT [60] and ARCHON [8].

Building an agent-based system following this methodology is similar to the process of

organisational design. An organization is a collection of roles with certain relationships

with each other in systematic patterns and interaction.

The aim of this methodology is to define a road map from statement of requirements,

denoted as analysis part, to the implementation of the system, called design part. The

main models of Gaia are presented in Figure 3.2 [28].

Figure 3.2: The summary of Gaia methodology models

As shown in the Figure 3.2, the first requirement of Gaia is the analysis part, that

can be done by initializing the role model. The role model is the key feature of an agent

system design. Each role consists of schema to represent its responsibility, permission,

protocol and activity. The key role attributes, defined as responsibilities, determine

the role functionality. There are two types of responsibilities: liveness properties and
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Table 3.1: Formal notation to express the properties in Gaia

Operator Interpretation

x · y x followed by y
x | y x or y occurs
x∗ x occurs 0 or more times
x+ x occurs 1 or more times
xω x occurs infinitely often
[x] x is optional
x‖y x and y interleaved

safety properties. Liveness properties state that “something good happens”, while safety

properties states that “nothing bad happens” [28]. Activities or protocols are atomic

components of a liveness expression. Table 3.1 shows the formal notation to express

these properties presented in Gaia.

In order to draw the responsibilities of each role, some information resources are

available, defined as permissions. Figure 2.6 in Section 2.4.3 represents the template for

MAS role schema. Following that, the second part of analysis involves the interaction

model between roles. The interaction model consists of a set of protocol definitions, one

for each type of inter-role interaction. The protocol definition consists of six attributes

itemized as follows:

• Protocol name: brief textual description of interaction;

• Initiator: the starter role for interaction;

• Responder: the initiator role interacts with;

• Inputs: information used by initiator;

• Outputs: information supplied by responder;

• Processing: brief description of processing protocol initiator.

The schema for one protocol is given in the Figure 3.3.
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Figure 3.3: Schema of protocol definition

Design part of the Gaia methodology is the next step after analysis of the system

requirements; it requires sufficiently low abstraction level, thus easily can be used in

traditional design techniques, such as Object-Oriented (OO) techniques, for agents im-

plementation. This process involves use of three models: agent model, services model

and acquaintance model, as shown in Figure 3.2. For instance, the role called “Da-

ta Collector” in role model can appear as an agent denoted as Data Collector agent. A

service in object orientation can correspond to a method available for another object.

An agent also engages a single, coherent block of activity, denoted as service in service

model. Four attributes are required for each service: inputs, outputs, pre-conditions

and post-conditions. The protocol model from analysis part helps to find the inputs

and outputs of services, while the safety properties of the role derive pre- and post-

conditions. To put it another way, the list of protocols, activities, responsibilities and

liveness properties of the role derives the services that an agent performs. Finally, the

existing communication pathways between agents are defined by acquaintance model.

This model can be represented with graph, consisting of nodes (corresponding to agents)

and arcs (corresponding to communication pathways). It might be necessary during the

design part of system to revise the analysis stage to recover the problems.

3.2.1 Gaia implementation for transformer condition monitoring

Several different standardisations are accepted in multi-agent technology, one of them

is the FIPA. The principle aim of FIPA is to provide a general standard for multi-agent

technology with different paradigm in a variety of domains. JADE platform is one of

the agent platforms compliant with FIPA standards. JADE provides important services,
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such as agent management system, directory facilitator, agent communication channel

etc. According to these specifications, the developed system was built in JADE platform

and followed the FIPA specification standard.

Two key aspects are required to design a MAS for power transformer, condition

monitoring and fault diagnosis. In terms of power transformer condition monitoring,

various parameters, such as voltages, currents, temperatures, key gas ratios, etc., are

required to be captured, maintained and precised to increase the reliability. In terms

of fault diagnosis, the captured data can be diagnosed, based on applied techniques in

knowledge-based system. In this case, top level (user) is able to access to the required

data and reports in a form of request. Moreover, user can request to perform actions

at the components level; for instance ask to close or open the specific circuit breaker.

In parallel user performance, the knowledge-based system can also perform actions in

critical situation.

The proposed system is designed to meet the following requirements:

• Data Sender can read the actual data from given text file, then create a message

every minute and send it to the “Data Collector”;

• Data Collector waits to receive the real-time data from the “Data Sender”, save

them in the database as raw data and send them to the “Knowledge base” for fault

diagnosis. The result of fault diagnosis will be saved in the database. It can also

get requests from “User” for an access to data and, thus, can respond to “User”;

• Reporter is capable of being informed by “User” about requested data, then

obtains the data from “Data Collector” and plots them in a graphical window;

• User is able to utilise a user interface, which can send requests about chosen

reports or data and get replies. It is also able to send request to perform actions

in components level;

• Controller is an equipment situated in the components level that is designed

to perform action at the time required. For instance, equipment such as alarms,

circuit breakers, IEDs, etc., are wrapped by this role, for being informed to operate

in critical time, subject to receiving an appropriate message;
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• Knowledge base is able to utilise the knowledge-based system. It is able to

receive data and use the knowledge-based system for diagnosing the data status.

It is also can inform the “Controller” with an appropriate actions;

• Analyser receives data, connects to the MATLAB program for fault diagnosis,

uses KNN method. The result will be sent to the “Data Collector” to be saved in

database.

• Coordinator provides the coordination between roles to manage their actions

correctly and accurately. This can be done by roles that are able to present their

performed reports in certain time;

According to these requirements, the analysis part of the developed system is pre-

sented in the following section.

3.2.2 Gaia system analysis

The analysis phase identifies eight roles: “Data Sender” (instead of “Equipment”) is the

first role which sends the data in form of message. The remaining roles are outlined as

follows:

“Data Collector” wraps a database while being responsible for data query and da-

ta saving in a database. “Reporter” handles a report. “Controller” wraps the control

equipment, such as alarm, circuit breaker, etc., for performing an appropriate action

requested with messages. “User” can handle the user requirements, and is able to in-

teract with “Controller” in order to perform an action. The “Analyser” role is designed

for the purpose of connecting to the MATLAB for fault diagnosis based on using d-

ifferent methods (such as machine learning). The role called “Coordinator” provides

coordination between roles by being informed with report of tasks completion. Finally,

the “Knowledge Base” role wraps the knowledge-based system, consisting of rule-based

system, ontology and fuzzy ontology.

Figure 3.4 shows the schema for “Data Sender” (“Transformer”) role. This role is

able to read data in form of text file and send them in form of message every minute.

The brief description of the role is given in the description part of the role schema

in the Figure 3.4. The role’s activity is to read the text file containing data every
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minute and create a message containing data. The message with new data, defined as

protocol, needs to be sent to the role “Data Collector”. Following these definitions, the

activities for this role are “ReadTextFileData” and “CreateMessage”, while its protocol

is “SendNewData”, as given in Figure 3.4. The role needs to access some information,

in this case the text file data, to be able to perform its action. This is given as a

permission of this role to read the new data from the text file. This role also needs

to create a message and send it to the specific role. These three permissions for role

“Data Sender” are given in the role schema. Finally, the role responsibilities consist of

liveness and safety. The liveness are protocols and activities required to occur timely.

This means that the role needs to read the data, create a message and send it every

minute. The safety in this case is to check whether the number of rows in text file data is

equal to the number of the messages. Similarly, the rest of the role schemas are defined

and presented in Appendix A.

Role Schema:

Description:

Protocols and Activities:

Permission:

Responsibilities

Liveness:

Safety:

Data_Sender (Transformer)

This role involves reading text file data, creating a message from each

row and sending them every minute.

ReadTextFileData, CreateMessage, SendNewData

// one message for each row

// every minute one message

Data_Sender = (ReadTextFileData. CreateMessage. SendNew-

Data)+

reads

generates

supplied newData

createMessage

sendMessage

// each row data of text file

· numberOfRows = numberOfMessages

Figure 3.4: Schema for the role “Data Sender” (Transformer)

Second part of the Gaia analysis is the interaction model, which defines the depen-

dencies and relationships between various roles. The definition of protocol associated

with “Data Sender” role is illustrated in Figure 3.5. The protocol is called “SendNewDa-

ta”; and its purpose is to get new data and create a message containing these data. The

data is required to be delivered to the “Data Collector” role to be saved in the database.

In this case, the initiator is the “Data Sender” role, who starts the interaction with the
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responder. The responder is the “Data Collector”, who receives the message. The in-

put information used by initiator is “newData”, while the output information supplied

during interaction is “messageWithNewData”. It is also obvious, that more details of

protocol definition can be added at any time to complement and clarify its conceptual

definition. The rest of the roles are designed in the same way, as given in Appendix A.

newData

messageWith

NewData

Figure 3.5: Definition of protocol associated with the “Data Sender”

The analysis part of Gaia methodology provides all the functional characteristics

required for the design part. These structured specifications can be used in architectural

design of MAS in the following section.

3.2.3 Gaia system design

The agent model can be represented with aggregated roles of the analysis model for

the system. The analysis phase is aimed to define the general properties of MAS, while

design phase focuses on actual characteristics of MAS. The first step of Gaia design is

to define the agent’s model. This model for the developed system consists of eight types

of agents. The Data Sender agent is capable of “Data Sender” role. This agent reads

text file data and sends them every minute. The Data Collector agent with capability

of “Data Collector” role deals with the data. The Reporter agent gets request about

particular report and plots them in form of graphical reports. The Controller agent

gets request to perform an action and informs user that the action is completed. The

Coordinator agent provides coordination and cooperation between agents, while the

Knowledge Based agent provides accessibility to the knowledge-based system. Finally,

Analyser agent handles the analysis of role attributes. The developed agent model is

presented in Figure 3.6. For instance, the agent called Data Sender is expressed with
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arrow and annotation “+” to play the role “Data Sender”. The annotation “+” means

that one or more instances at the run time will be created in the MAS.

“Data Sender”+
play
−−→ Data Sender

Figure 3.6: The agent model for developed system

The second part of design process is to develop a service model representing the

main services required to assign the agents’ roles. This model is simply taken from

the roles’ protocols of the analysis part. For instance, the “Data Sender” role with its

“SendNewData” protocol derives a service called “present new data”. The input of this

service is new data, while the output is the message containing new data. The pre- and

post-conditions, associated to this protocol, is the sent message with new data. Table

3.2 represents some type of services given in the service model. According to the Gaia

methodology, the service model does not require a particular type of implementation for

the services it documents, thus the designer is free to decide what kind of services are

appropriate for the framework implementation [28].

The acquaintance model is the final part of the design, as illustrated in Figure 3.1,

which represents the multi-agent framework. This model represents the interaction

between agents for the developed system.

This analysis and design of the Gaia methodology provide a kind of roadmap for

implementing the MAS. Another step required before developing the MAS is to select

a platform compatible with FIPA standard. The next section presents the development

of MAS in JADE platform.
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Table 3.2: The service model for developed system

Service Inputs Outputs Pre-condition Post-condition

present new data newData messageContain-
NewData

messageWithNewDataSend =
true

NewDataSend = true

obtain new data messageWithNewData newData data saved = true data saved = true
find fault type messageWithNewData faultType fault diagnosed = true fault diagnosed = true
obtain data messageWithRequestData time&date replied request data = true replied request data = true
obtain report messageWithRequestReport report repliedRequestReport = true repliedRequestReport = true
required data messageWithRequiredData data dataReceived = true dataReceived = true
request to perform
action

messageWithRequestAction action true true

inform action done messageWithActionConfirmation actionDone actionPerformed = true actionPerformed = true
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3.3 Developed MAS

In this section the MAS and a generic agent platform are presented. The section provides

wider information about the agent platform and its relation with the FIPA standard of

proposed system. Agent platform is aimed for implementation of the MAS and agents

communication, according to the FIPA standards. JADE was selected as an agent plat-

form, as it is compliant with the FIPA standards. The Gaia methodology applied covers

the analysis and design phases of the software development cycle. Also, the current

section contains information on combining Gaia methodology with JADE platform.

3.3.1 JADE platform

JADE is aimed to provide a framework for developing MAS according to the FIPA s-

tandards. JADE platform have been selected as a platform in previous research works

conducted in power system monitoring and control [3] [30] [61]. Distributed platform

for building agents, AMS, DF, ACC and ACL, are the most important of the features

presented in JADE. The language called FIPA-ACL is also used for presenting the com-

munication between agents through their messages. In terms of JADE communication

performance, the message can be sent by the Initiator agent to the Responder agent. In

case if the message is not understood, or action requested cannot be performed, the Re-

sponder agent replies with “not understood” or refuse message, respectively. Otherwise,

the Responder agent confirms that the action can be completed.

The agent’s performance is based on the different behaviours interaction. Thus,

building an agent in JADE assumes the use of behaviours for the implementation of the

agents tasks. Behaviours are defined as logical execution threads [62] with “setup” and

“action” methods, and classified into three types [20], explained as follows:

1. One-shot behaviours are able to complete an action in one execution phase; their

“action” method is thus executed only once;

2. Cyclic behaviours can be never completed, “action” method in this case performs

the same task every time it is asked to;

3. Generic behaviours perform different operations depending on some status value,

set as a status trigger. They can be completed subject to conditions met.
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Moreover, JADE provides an opportunity of creating more complex behaviour by

combining several types of them. Depending on the MAS requirements, the necessary

behaviours are selected and applied for the developed system.

3.3.2 Combination of JADE with Gaia

The roadmap of switching from Gaia to the JADE has been developed according to an

algorithm provided in [63]. Thus, the following steps were completed during this process:

1. The ACL messages were defined by using Gaia protocols and interaction models;

2. Found the required software modules and data structures to be used by agents in

terms of using Gaia roles;

3. Figured out the safety conditions and their implementation in the case of each

role;

4. The behaviour classes provided by JADE were used for defining the JADE be-

haviours starting from the lowest level;

5. Initialised all the structures of the agent data;

6. All the behaviours are added at the lowest level of the agent scheduler.

Any ACL message contains some information that can be accessed both by sender

and receiver agents. The message usually consists of the following fields: message sender,

list of message receivers, FIPA performative, protocol, language and content. FIPA per-

formative contains some information that depends on the sender’s intentions towards the

message receiver, such as request, query, or inform. The content of the message provides

additional information on the action to be performed. The language helps to express the

message content in the way to be understandable both by message sender, and receiver.

Additionally, the ACL message may contain other information, such as ontology, time-

outs, etc. For instance, according to the FIPA ACL Message Structure Specification

[18], the JADE ACL messages for “RequestPerformAction” and “InformActionDone”

are presented in Table 3.3.

As shown in Table 3.3, the User agent can send a request to the Controller agent to

turn the alarm system on. The user can be informed that the alarm system is on. The

MAS and KBS for Transformer Fault Diagnosis F. Davoodi Samirmi



3.3 Developed MAS 51

Table 3.3: The ACL message definition for user to perform an action

ACL Message: RequestPerformAction ACL Message: InformActionDone

Sender: User Sender: Controller
Receiver: Controller Receiver: User
FIPA Performative: REQUEST FIPA Performative: INFORM
Protocol: RequestPerformAction Protocol: InformActionDone
Language: SL Language: SL
Content: AlarmSignal ON Content: AlarmSignal ON

one-shot behaviour is selected to perform the action, subject to receiving a specific ACL

message. This can be done with request messages given as follows:

( REQUEST

:sender (agent-identifier

:name User)

:receiver (set (agent-identifier

:name Controller))

:content ‘‘(( action( ON AlarmSignal )))’’

:language FIPA-SL

:protocol fipa-request

)

The message informing that the alarm system is on, can be presented in the following

way:

( INFORM

:sender (agent-identifier

:name Controller)

:receiver (set (agent-identifier

:name User))

:content ‘‘(( done (action ( Alarm_Signal_is_ON ))))’’

:language FIPA-SL

:protocol fipa-request

)
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In case of agent is located in the different host, it is required to have its Internet

Protocol (IP) address. For instance, if the alarm system is located in the host with

IP address “192.168.1.127”, the sender should send a message with receiver name and

its IP address, e.g. “Controller@192.168.1.127”. The IP address of any agent can be

captured through the DF agent, as applied previously in power system automation

[6, 11]. Message sender also can be a knowledge-based agent which had been fired after

meeting the data status. For instance, in case of rule-based reasoning, the knowledge

about performing particular actions is written in form of “IF ... THEN ...” statements.

The received data (facts) can be matched with the defined status, and necessary action

will be performed.

3.4 Knowledge-Based Systems

Knowledge-based system is a software system that can mimic the performance of a

human expert in a limited sense. The knowledge can be represented in different ways [64],

such as semantic network, logic, procedure, production systems (rules), frames, etc. Each

form provides different characteristics. The purpose of the knowledge representation

is to solve the problems arising with the integration of some body of knowledge into

the computer system. This results in automated and intelligent reasoning. In case

of the fault diagnosis, three types of knowledge-based system with different abilities

are developed. In terms of this work, the rule-based reasoning was applied as a first

knowledge-based system to present the information about transformer fault diagnosis

and perform some necessary actions. Ontology was chosen as a second way of knowledge

representation to perform the same actions in terms of ontology. The improvement of

the ontology use, in terms of proposed knowledge base, was achieved by using fuzzy

ontology as a third step of transformer fault diagnosis, based on DGA.

3.4.1 Rule-based reasoning for transformer fault diagnosis

A power transformer fault diagnosis system with rule-based reasoning has been estab-

lished in the proposed multi-agent framework to reduce the user effort. In this system,

two applications of rule-based reasoning for power transformer fault diagnosis are in-

vestigated. First application is to diagnose the power transformer based on DGA data.
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Transformer’s status can be diagnosed based on gas ratios and Roger’s method. The

second application is to apply the rule-based reasoning on behalf of the user in critical

situation. Furthermore, reducing the user’s efforts may lead to the cost reduction. The

various agents are implemented using the JADE platform; rules are written in Java

Expert System Shell (JESS) [65]. Figure 3.7 demonstrates a UML use in case of this

system.

Figure 3.7: A UML use case diagram of the transformer fault diagnosis system based
on rule-based reasoning

3.4.2 Ontology-based reasoning for transformer fault diagnosis

Knowledge in knowledge-based system can be represented in terms of logic. In this case,

a set of concepts within a domain and their logical relationships between pairs of concepts

are defined as a ontology. Ontology provides a shared and common understanding

of data that exists within an application integration problem domain, and the way

of facilitation of communication between people and information systems. Thus, the

concept of ontology can be used to organise and share information, manage knowledge

and improve interoperability of communication systems within the company. Based on

the proposed multi-agent framework, ontology is able to represent the transformer and

its components. Ontology is applied for transformer fault diagnosis. In this system an

ontology is developed to represent the relationship between transformer’s components,

fault symptoms and fault types. The purpose of ontology is to enable the knowledge

sharing and reuse. The developed ontology for transformer fault diagnosis is built in
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Protégé platform [66] and wrapped with developed agent for interaction with multi-agent

system. To demonstrate the requirements of the system, a UML use case diagram is

shown in Figure 3.8.

Figure 3.8: A UML use case diagram of the transformer fault diagnosis system based
on ontology-based reasoning

The ontology development for transformer fault diagnosis can be improved further

by using the fuzzy ontology. The advantage of the fuzzy ontology is that its elements can

belong to a set to some degree. This helps to define with some certain degree whether

the concepts belong to some category. In this case, the fuzzy ontology for transformer

fault diagnosis is developed to improve the system performance. The software called

Fuzzy OWL 2 Protégé plug-in [67] was applied to build a fuzzy ontology.

3.5 Agents Collaboration

The agent communication uses FIPA-ACL in the speech act theory that states commu-

nicative acts and messages representations. The chain process governing the system is

organized by sending data in form of messages to the relevant agents. According to the

messages exchange, various tasks can be performed using the agent system developed.

The tasks for developed system are itemised as follows:

1. Data collection and fault diagnosis;

2. User interaction;
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3. Automatic action performing.

The following subsection illustrates the examples of the tasks execution using the

system proposed.

3.5.1 Agents collaboration for data collection and fault diagnosis tasks

The purpose of this task is information collection from the messages received, retrieval of

this information and placing it to the correct table of database. The status of data also

requires verification through interaction with the knowledge-based system. The sequen-

tial steps of collecting data and diagnosis task, as well as collaboration and coordination

between agents are illustrated with a UML diagram in Figure 3.9.

Figure 3.9: Collaboration between agents for data collection task

The aim of the Data Collector agent is to collect the received data and save them

into the table of database. This process is initiated by Data Sender agent, who sends a

messages containing data to the Data Collector agent. The Data Collector agent uses

Java Database Connectivity (JDBC) API to connect to the database. In this case, the

database is designed with MySQL and contains various tables. The data need to be sent

for fault diagnosis by Knowledge Based agent. Knowledge about specific information is

MAS and KBS for Transformer Fault Diagnosis F. Davoodi Samirmi



3.5 Agents Collaboration 56

written in JESS program. The data are send to the JESS for fault detection, and the

results (fault types) are replied to the Knowledge Based agent. The Knowledge Based

agent informs the Data Collector agent about the fault types. Finally, the fault types

are saved into the database by Data Collector agent.

3.5.2 Agents collaboration for user interaction task

The tasks are aimed to provide an interaction between user, MAS and components.

For this purpose, the user is able to request data, reports and action performing. The

sequence of collaboration and coordination between agents is shown in the UML diagram,

displayed in Figure 3.10. As can be seen from the figure, the User agent handles the user

interface. This agent is able to send the requested data from Data Collector agent and

get reply data. The user is also able to request report from Reporter agent. The Reporter

agent needs to request the data from Data Collector agent, that accesses the database.

The required data is sent to the Reporter agent for applying the drawn function and

replied to the User agent.

Figure 3.10: Collaboration between agents for user interaction task
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The key task that can be applied by user is a request to perform a particular action.

This can be done by User agent, who requests the action from the Controller agent and

gets information whether the action is done. The more applicable this type of agent is

previously applied in [1] by registering the controllers with DF and AMS agents. Then

the User agent is able to identify the participating agent for performing the action. For

instance, two relay agents ARel1 and ARel2 are able to perform actions, such as opening

or closing the relay. These two agents are registered with DF and AMS agents. In case

if user requires to perform action on the first relay (open or close), the requested action

will be sent to Controller agent for particular service. The Controller agent sends a

request of service provider AID agent from DF agent and gets reply. The Controller

agent finally sends request to perform the action to the service provider (in this case

ARel1), and gets information that the action is completed.

3.5.3 Agents collaboration for automatic action performance task

The aim of this task is to perform appropriate action on behalf of user in critical situ-

ation. For this purpose all the agents should register their services with DF and AMS

agents, in order to be accessible by the other agents. The real-time data is sent to the

Knowledge Based agent for the purpose of fault diagnosis and defining required actions.

According to the knowledge-based system, the rules are fired, and the appropriate ac-

tions are defined. The search of the agents that are able to provide the required action

can be performed through DF agent. The Knowledge Based agent requests the services

from the service provider (in this case Controller agent). The Controller agent requests

the action to be performed by corresponding the controlling equipment and gets reply.

Finally, the Controller agent informs the user of the applied actions. The sequence UML

diagram of agents collaboration and coordination is provided in Figure 3.11.

3.6 Agent Analyser

The key point of this study is to investigate that the proposed multi-agent framework

has ability of applying fault diagnosis methods based on MATLAB platform. For this

purpose an agent called Analyser capable of carrying out the fault diagnosis based on

the DGA samples has been developed. In this case key gases (or gas ratios) are sent to
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Figure 3.11: Collaboration between agents for automatics performs an action task

the Analyser agent. This agent is able to connect to the MATLAB and uses K-Nearest

Neighbour (KNN) classification method for fault diagnosis. Finally, the information

about the fault types is sent to the message sender.

3.6.1 Data and features

In electric power system real-time data are captured from equipment and available in

DAU [46]. Depending on required information, sensors are designed and installed in e-

quipment. In power transformer on-line monitoring, the DAUs are designed and situated

in a cubicle at the transformer or in a control center. The collected original data are

also defined as features, which saved into the database for future analysis. For instance,

oil temperatures in oil-immersed transformer are different at the top and bottom of the

oil. These two objects are captured separately and defined as two features.

The captured data are usually presented in the database as some numerical data, such

as temperature, gas ratio, etc. In practice, database may sometimes have missing data.

These incomplete data may be due to missing measurements, incorrect measurements or
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imperfect procedures of manual data entry, which is common in data collections. Missing

data may be reflected as a noise in classification stage [68]. This issue should be solved

before any action is performed on incomplete data. The action of completing the missing

values in a set of data is called imputation. Three traditional treats are recommended

for data imputation: (a) remove the samples or (b) fill them with zeros or (c) fill with

mean computed from available values. First method can be used for the low number

of missed data and it is not applicable for the large incomplete data. Filling with zero

may not be useful if the new features have to use mathematical equation (like division)

for generating new features. The third method takes the mean from available values

in each feature and replaces missing data with mean. More significant and accurate

imputation methods are recommended in [69, 70] to deal with this problem. Table 3.4

shows an example of thermal fault gas samples with some of the data missing. As can

be seen from Table 3.4, the missing values (later in experiment) are replaced by mean

of corresponding features in actual data.

Table 3.4: DGA samples of thermal fault containing missing values

H2 CH4 C2H2 C2H4 C2H6 CO CO2

12 18 - 4 4 559 1710

48 610 - 10 29 1900 970

150 22 11 60 9 - -

1860 4980 1600 10700 - 158 1300

8800 64064 - 95650 72128 290 90300

The following section describes a linear classification used in this study for fault

diagnosis. The K-Nearest Neighbour (KNN) classifier was used for classification in this

study, as explained in the next section.

3.6.2 KNN Classification Algorithm

The KNN algorithm is a non-parametric algorithm used to classify the objects based

on K closest samples. A majority vote of the nearest neighbours is used to find the

class of any object. The class of the test sample is the most common class amongst its

K nearest neighbours [71]. In the case of K = 1, known as the NN rule which is the

simplest version of this method, the class of the test sample is the class of the nearest
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neighbour. There is no simple way to select the value of K, and its value depends on

particular application. A high value of K increases the computing time, while a value

too low can increase the noise effect on classification performance.

The KNN algorithm uses different methods, such as Euclidean, Manhattan or Ham-

ming, to define the distance between two input vectors. In Euclidean method, let

xn and xm be two input vectors with two dimensional space. The distance between

xn = (xn1, xn2) and xm = (xm1, xm2) is denoted by the difference vector xn − xm :

DE = |xn − xm| =
√

(xn1 − xm1)2 + (xn2 − xm2)2 (3.1)

where the K = 1.

In the case of K > 1, the distance is defined:

DE =

√

√

√

√

K
∑

i=1

(xni − xmi)2 (3.2)

This formula is only valid for continuous variables, and in the case of categorical

variables the Hamming distance can be applied as follows:

DH =
K
∑

i=1

|xni − xmi| (3.3)

In this study Euclidean distance was used for distance measurement.

3.6.3 Experimental agents for collaboration with MATLAB

The architecture of agent-based fault diagnosis for power transformer and the software

agent development is shown as a diagram in the Figure 3.12. The process of fault

diagnosis starts from sending the data by Initiator agent (in this case Data Sender

agent) to the Analyser agent. The content of the message is 7 key gases, the actual

data obtained from the database. The Analyser agent is able to connect to MATLAB

(as described in [61]) in order to carry out the fault diagnosis based on the key gases

samples data. The identified fault type is passed by Analyser agent to the Data Sender

agent.
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Figure 3.12: Collaboration of Data Sender and Analyser agents in experimental sys-
tem

3.6.4 Agent coordination model

Figure 3.13 illustrates the mechanism of the interaction, as well as the agent commu-

nication message sequence. The process of communication is initiated by Data Sender

agent, who sends the data on 7 key gases to the Analyser agent. This can be done by

using following message:

( query-ref

:sender (agent-identifier

:name Data_Sender@192.168.1.187:1051/JADE)

:receiver (set (Agent-Identifier

:name Analyser@pc042385:1891/JADE))

:content ‘‘((Key_Gases (H2 8266) (CH4 1061)

(C2H2 2357.9) (C2H4 582.14) (C2H6 22)

(CO 107) (CO2 498)))’’

:protocol fipa-request

)
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Figure 3.13: Collaboration between Data Sender and Analyser agents

The Analyser agent consequently connects to the MATLAB and applies the KNN

method to identify the fault types. The obtained information about the fault types is

passed to the Data Sender agent with following message:

( inform

:sender (agent-identifier

:name Analyser@pc042385:1891/JADE)

:receiver (set (Agent-Identifier

:name Data_Sender@192.168.1.187:1051/JADE))

:content ‘‘((set Low_Energy_Discharge))’’

:protocol fipa-request

)

3.6.5 Experimental result based on KNN classifier and agent Analyser

In this study, data were extracted from DGA, obtained from [54, 57, 72] for 191 samples.

These samples contain 4 types of classes: “No Fault” for 49 samples, “Low Energy

Discharge” for 48 samples, “High Energy Discharge” for 44 samples and “Thermal Fault”

for 50 samples. Each sample consists of 7 types of gases, such as hydrogen (H2), methane

(CH4), acetylene (C2H2), ethylene (C2H4), ethane (C2H6), carbon monoxide (CO) and

carbon dioxide (CO2).
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Figure 3.14: Accuracy with 7 key gases and 6 gas ratios

In this study the dataset was divided into five different training and test datasets

with 80% and 20% training and test data partition, respectively. This 20% test class

contains eight samples from each class fault. The division was done to carry out a 5-fold

cross validation test (5× fc) to be tested with KNN classifier.

Accuracy of the dataset is investigated for seven key gases and six gas ratios features,

as shown in Figure 3.14. As can be seen, the maximum accuracy reached with seven

key gases is 66.88%, and with six gas ratios is 72.25%.

3.7 The Experimental System for Rule-based Reasoning

The experimental systems were developed individually to evaluate the interaction be-

tween the Data Collector, Reporter, Controller and User agents. Figure 3.15 shows the

interaction between user and knowledge-based system. In this case, an agent called Da-

ta Sender sends a message containing some data to the Knowledge Based agent. This

agent can connect to the knowledge-based system for the fault diagnosis and define the

appropriate actions to be performed. Three types of knowledge-based systems individu-

ally are applied in this work, namely rule-based reasoning, ontology and fuzzy ontology.
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The knowledge-based systems are able to perform action on behalf of user in critical

situation. The rule-based reasoning was applied for performing an appropriate action.

This choice was caused by the need of faster response, similarly to reactive architecture

of MAS. All three types of knowledge-based reasoning were applied for fault diagno-

sis. The design and implementation of each type of knowledge-based system will be

presented in the following chapters.

Figure 3.15: The collaboration of Knowledge-Based, User and Controller agents in
the experimental system

The developed agent system uses MySQL database for data collection, with tables

built for different types of information. The tables are built using the power transformer

actual data available, such as ambient, top oil and bottom oil temperatures, key gases,

etc. The Data Collector agent is able to insert information to and retrieve it from the

database, as applied in [73]. The software component JDBC was utilized for interaction

of Java applications with a database. JDBC has the capability of designing a single

Java program to manipulate the data in a variety of different SQL database servers

(without modifying the program). Thus, the combination of JDBC and MySQL provides

a powerful union to fulfil a variety of purposes. Appendix A illustrates a part of database

content, filled by the Data Collector agent with the given data.

JFreeChart [74] was used for production of graphical report (e.g. line graph).

JFreeChart is capable of plotting lines, pies, bars, etc., depending on the requirements.
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However, this work operates only the line plots for the process simplification. The data

requires from the User agent are plotted and provided to the user. Figures 3.16 and

3.17 show the reports created for bottom oil temperature and ambient temperature of

a power transformer by the Reporter agent, respectively.

Figure 3.16: A sample report of
Bottom-Oil temperature

Figure 3.17: A sample report of
Ambient temperature

3.8 Summary

A development of multi-agent architecture for power transformer monitoring and fault

diagnosis is introduced in this chapter. The developed MAS is analysed in details and

designed according to the Gaia methodology. Three types of knowledge-based systems

were applied for the MAS to diagnose the fault and perform some actions. The proposed

agent system solves the problem of on-line monitoring and fault diagnosis. Additionally,

examples of agent collaboration for task performing were presented, such as interac-

tion with user and performing some action using the information obtained from the

knowledge-based system. The KNN classification algorithm is applied to find the classi-

fication accuracy for 191 DGA samples. The MAS was established based on the JADE

platform, that is capable of agents execution and control over the message delivery.

The chapter also presents detailed system design and gives examples of various agents

performance.
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Chapter 4

Power Transformer Fault

Diagnosis with Rule-based

Reasoning

4.1 Introduction

In this chapter rule-based reasoning is proposed for performing an automated action

and power transformer fault diagnosis. In this case, an expert or Knowledge-Based

System (KBS), a branch of AI with ability of utilizing computers to simulate the human

intelligence in a limited way [75], are applied. Integration of MAS with KBS enables

two applications of it. First, KBS is implemented to represent information about the

particular component of the system and the actions required in critical situation. The

second application of KBS and MAS combination is power transformer fault diagnosis.

The fault diagnosis based on Roger’s ratio method has been applied on DGA samples.

The chapter begins with introducing the knowledge-based system and rule-based

reasoning, followed by the overview of the agent system architecture for two types of

applications. Example of communication acts between various agents are provided. Fi-

nally, the actual data are applied practically with MAS for the purpose of fault diagnosis

in power transformer.
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4.2 Rule-based Reasoning or Knowledge-based System

A software system that can mimic the human performance expertise in a limited sense

is denoted as a knowledge-based system [75]. Many researchers also denote the expert

system as a KBS. In fact, the expert system is a classical example of a rule-based system

that uses rules to make deductions in particular domain. It finds various applications,

such as diagnosis, interpretation, prediction, monitoring, control, etc. The main com-

ponents of KBS are Knowledge Acquisition (KA), Knowledge Representation (KR) and

Knowledge Processing (KP). The KP is also known as a knowledge engineer; it collects

the expertise in specific domain and arranges them in the form suitable for further use.

The knowledge in KR can be in the form of logic, production systems (rule), direct

(analogical), semantic network, procedure, frames, etc. The presented knowledge can be

driven by program called Inference Engine (IE). The IE traverses the knowledge base

to provide one or more outcomes, regarding its observations. Usually the outcome in-

formation is presented to the user, who represents the interface between the KBS and

external world. Different types of inputs, such as transducers and sensors, are used to

capture the environment. The output of the KBS can be stored in the databases or

directly sent to actuators or controllers for appropriate actions to be taken.

The KR in form of production (rule), also called situation-action rules, consists of

the rules written in an object-oriented programming language, i.e. Java. A rule system

may consist of three components, itemized as follows:

• Rule base – consists of a set of rules;

• Fact base – consists of a set of facts;

• An interpreter for the rules.

In simple design, the rules are written in terms of “IF - THEN - ACTION ”, thus rules

and actions can be performed if the clause is true. Therefore, an external text editor

is often applied for KA facilitation. Shells are the most widely used expert systems,

containing the software required for programming. User is responsible for the knowledge

base building according to the system requirements; this can be taken as an advantage
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of the shell and finds various application. The independence of the rules represents their

other advantage, thus the rules can be easily modified, added and deleted.

knowledge-based system can find several applications in power system, such as fault

diagnosis [76], alarm processing for an energy management system [77], supervisory and

control of voltage using fuzzy logic [78], etc. It also can be applied with MAS for purpose

of automated management, SCADA analysis and fault recording [79].

In order to apply the KBS with Java compatible program, a use of tool called Java

Expert System Shell is required.

4.2.1 Java Expert System Shell (JESS)

The JESS is based on CLIPS (a public domain software tool), and it is a rule engine and

scripting environment written in Java language by Ernest Friedman-Hill [65]. Applying

the JESS tool with built-in application in Java provides capability of reasoning by using

the knowledge supplied in the form of declarative rules. For building an intelligent

software system, a set of rules is applied to the collection of the facts about the world.

There are three ways to represent them in JESS: rules, functions and object-oriented

programming. The data captured from environment (facts) are presented, and the

matching rules are fired. Rete algorithm [80] is the fastest applied algorithm; it is used

in JESS to derive facts and rules. One of the obvious advantages of the JESS shell is

that it provides the knowledge-base containing rules and IE, the basic elements of a

KBS. The program written in JESS may consist of rules, facts and objects, where the

executed rules are inferred by IE.

4.2.2 Facts and rules

Facts can be either ordered or unordered; they contain a “head” and “slots”. The

advantages of ordered facts is that they can be accessed faster. Various functions, such

as clear, assert, reset, etc., can be applied to utilize the facts in an appropriate manner.

For instance, an example below shows the gas ratios asserted for the power transformer

fault diagnosis.

( assert (Ratio2 0.00815)

(Ratio1 6.7)
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(Ratio5 6.9)

)

where the gas ratio1 is 6.7, the gas ratio2 is 0.00815, and the gas ratio5 is 6.9 ppm.

The left hand side of the rules written in JESS consists of facts, while sequences of

function calls are placed in the right hand side. These two side are separated by the

characters “=>”. The right hand side functions are executed (fired) if the JESS engine

matches with the left hand side of rules. In some cases, the fired rule can satisfy the

right hand side of the other rules, and consequently these rules will fired. An example

of rules written for power transformer fault diagnosis can be presented as follows:

( (Gases_Ratio {Ratio2 < 0.1}

{Ratio1 >= 0.1 && Ratio1 < 1}

{Ratio5 <= 1})

=>

(send "Report: No Fault" ?UserAgent)

(assert (Transformer CoolerSystem_OFF))

)

The presented rule provides the necessary actions to be performed in case if the facts

received meet the rule’s condition. In the presented rule two actions are performed: the

cooler system should be switched off and the message should be sent in order to notify

the user about the fault absence.

Based on JESS characteristic and agent system developed in JADE, the JESS tool

can be a good choice of representing knowledge about specific system for interaction with

agent system. MAS with KBS can be designed as a combination of the agent, capturing

the real-time information from transformer, with the JESS, providing the KBS.

4.3 System Architecture Design

The agent-based architecture developed for automated action and transformer fault

diagnosis is shown in Figure 4.1. The proposed system has two applications. First
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Figure 4.1: An agent architecture for transformer fault diagnosis using rule-based
reasoning

application is to perform automated actions in case if the fault appears. The second

application is to diagnose the power transformer fault, based on DGA samples. For

both of these applications the data from power transformer are captured by designed

sensors of transformer and collected in DAU. The data is sent to the Knowledge base

agent, that wraps the KBS for fault diagnosis. The Knowledge base agent is able to

connect to the JESS engine to share the content of the message received (samples gas

ratios). JESS contains some information about the power transformer fault diagnosis

and the protection components. The Knowledge base agent is always ready to receive a

message containing data (facts). The captured facts are passed to the JESS engine and

checked for the matching rules to be fired. Based on real-time status of transformer,

the required actions are performed by informing the agent responsible for the relevant

equipment. One example of used Knowledge base agent is given in the Appendix B.

To use the JESS for automated action, two experiments are applied. First experiment

is carried out on power transformer components, such as air cooling system (fan), alarm
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signal, trip signal, etc. The second experiment informs the relevant circuit breaker to

perform some action (open or close).

4.3.1 Automated action in power transformer

In order to implement the rule-based reasoning for performing automated action in

power transformer, the IEC publications about a thermal system of power transformer

was used. The IEC is an organization that provides the international standards in the

domain of electric power system and relevant technologies. Different standards, such

as IEC60354 and IEC60905, are published for different types of transformers, such as

oil immersed transformer and dry transformer [81, 82]. Thermal model is one of the

most essential issues and construction of modelling transformer’s temperatures, such

as Top Oil Temperature (TOT), Bottom Oil Temperature (BOT), Hot Spot Tempera-

ture (HST), etc. This is an important aspect of transformer condition monitoring, that

represents the relation between TOT, BOT, HST, etc., and transformer status. Accord-

ing to standard [81], the captured data on temperatures (TOT, BOT, etc.) of power

transformer can provide an information about the thermal fault. Figure 4.2 shows the

loading and cooling conditions of the winding transformer indicator for recommended

transformer rating [9]. As can be seen in the figure, there is a relation between the wind-

ing temperature of power transformer and the status of its components. Five possible

conditions of the winding temperature must be followed with the relevant actions, which

can be defines as five rules. For instance, the winding temperature below 50 ◦C does

not require the cooler system to be turned on. However, for the winding temperature

over 120 ◦C, such components as cooling system, alarm and trip signal must be turned

on.

The relation between winding temperature and dependent components can be rep-

resented through five rules. The example of the rule for the case of winding temperature

over 120 ◦C is presented here, the complete set rules is given in the Appendix B.
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Figure 4.2: Loading and cooling conditions for power transformer

Rule5:

(defrule Control5_Component_Temperature

(Component_Temperature {Winding_Temperature >= 120} (Agent ?agent))

=>

(assert (Transformer TripSignal_ON))

;(send "ON TripSignal" ?Controller)

(send "Report: Trip Signal = ON" ?User)

The rule requires the trip signal to be turned on if the captured temperature is equal

or higher than 120 ◦C. The trip signal can be turned on by asserting it as a fact, or by

sending a message to the relevant (Controller) agent to perform the action. It is also

required to inform the user that the trip signal is on. It is interesting to note, that in

JESS the rules can be fired by the other rules, subject to satisfaction of their conditions.

This might be illustrated with an example when the winding oil temperature is 121

◦C. As it over the condition provided in fifth rule, the trip signal is turned on. The

temperature condition at the same time satisfies the rules 3 and 4, so the relevant rules

(3 and 4) are fired and asserted with these two rules are performed (cooler system and

alarm signal turn on).
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4.3.2 Automated action in power system

In power system an appropriate action is performed by the engineers, based on various

information provided, such as SCADA, digital fault recorder, microprocessor-based pro-

tection relays, travelling-wave fault locators, etc. [83, 84]. Similarly, the same approach

can be used in agent system, with the agents assisting the decision making. The pro-

cess of decision making and informing about the decisions made is presented in Figure

4.3. In this study it is considered that required action is to be performed subject to

the fault presence in power transformer. The operation of power transformer in the

case of thermal fault situation may result in solid insulation decomposition causing the

loss. Therefore, faulty power transformer should be disconnected from the system and

serviced in time to avoid more serious problems.

Figure 4.3: Process of decision making to perform an action in power system

Similarly to the automatic performance described earlier, the control equipment (e.g.

circuit breaker) can be used to protect the system from loss; it can be informed to operate

in case if the fault is diagnosed. A transformer fault diagnosis based on Roger’s method

is applied in JESS for this purpose. According to the information presented in Table

2.3, the status of fault situation can be covered with the help of nine rules. In the case

if the gas ratios are not in the regions defined by Roger’s method, an additional rule is

required. The applied fault diagnosis method with nine types of faults is based on three

gas ratios (R2, R1, R5). For instance, in case if R2 < 0.1, 1 ≤ R1 and 3 < R5, the fault
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“Thermal fault with temperature over 700 ◦C” is discovered. The rule representing this

status is given below.

;Rule_Case9:

(defrule Transformer_Fault_Diagnosis_C9_Rogers_Method

(Gases_Ratio {Ratio2 < 0.1} {Ratio1 >= 1} {Ratio5 > 3} (Agent ?agent))

=>

(send "Open CB1" ?Controller)

(send "Report: Thermal Fault(TF) TF>700 Celsius degrees" ?User)

Fault types can be diagnosed in case if DGA ratios samples satisfy the rule’s conditions.

To illustrate this application, the performance of the circuit breaker CB1 based on

presence the fault in power transformer SGT1 is presented in Figure 2.9. The developed

agent system senses the transformer SGT1 status, and in the case fault appears, the

CB1 will be informed to operate, as shown in Figure 4.4.

Figure 4.4: Automated operation in power system
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Figure 4.4 shows that there is an agent denoted as ASGT1, that wraps the transformer

SGT1 for the purpose of capturing real-time information (can use the data from DAU).

Similarly, agents ACB1 and ACB3 wrap the circuit breakers CB1 and CB3 respectively.

In our case, the real-time gas ratio samples are sent from the ASGT1 to the Knowledge

base agent, denoted as AKB, for fault diagnosis. The AKB utilizes the JESS engine and

applies the gas ratios from received message to diagnose the fault. Controller agent,

denoted as ACNT , receives request for performing an appropriate actions towards the

messages. The ACNT sends the request to the ACB1 to perform the action, and after the

action is performed, the ACNT receives a notification. The agent ACB3 acts similarly

regarding circuit breaker CB3. The results of the fault types and the actions performed

are supplied to the user.

4.3.3 Rule-based reasoning for transformer fault diagnosis

Application of MAS with JESS for purpose of fault diagnosis, based on the use of Roger’s

method, is investigated in this section of work. The developed agent architecture used

for fault diagnosis task is presented in Figure 4.5. The data applied containing three gas

ratios (R1, R2 and R5) is written as a text file. Data Sender agent, denoted as ADS , is

able to read each row of text file data and create a message. The message containing the

gas ratios is sent to the AKB. The AKB utilizes the JESS engine and fires the matching

rules. Thus, the fault types are diagnosed, and AKB is informed. The information on

the fault types is sent to the Data Collector agent (ADC) to be saved in the database,

and also sent to the User agent (AUSER) to be reported to the user.

4.4 An Example of Agent Communication Act

In this section an example of implementing the KBS for performing an automated action

is investigated. According to the distribution substation, presented in Figure 2.9, an

automated action can be performed in terms of fault diagnosis. In this example we use

the actual DGA samples captured on-line from the transformer SGT1. For this purpose,

the real DGA samples obtained from [57] are used, as shown in the Table 4.1. The data

contains two categories: “No Fault” and “Thermal Fault”.
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Figure 4.5: Experimental MAS for fault diagnosis, based on rule-based reasoning

As shown in overview of the system performance in Figure 4.4, the communication

act is initiated by agent ASGT1. The ASGT1 sends messages containing the gas ratios, as

given in Table 4.1. The agent AKB, as a receiver agent, is able to access the KBS. The

Roger’s method, as an example of fault diagnosis method is applied for this purpose.

In real life situation user makes a decision to undertake an appropriate action based on

the information obtained. In this case we assumed that in terms of “No Fault” status,

the power transformer SGT1 should remain in its normal operation mode, while in case

of “Thermal Fault” situation it should be disconnected from the power system, and

user should get informed. In terms of JESS rules, it is also possible to send a message

directly to the ACNT . The ACNT is able to search the DF to find an appropriate agents

to provide the services required, and inform them. To simplify the case of our study

and reduce the agents’ communication involved, we assumed that the ACNT has already

informed the service provider agent. The service provider is the agent ACB1, that wraps

the circuit breaker CB1 and able to perform the action (open or close CB1). Thus, the

action required in particular situation can be performed.
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Table 4.1: The actual DGA samples applied for performing an automatic action

Data Samples H2 CH4 C2H2 C2H4 C2H6 Ratio2 Ratio1 Ratio5 Actual Fault

Sample 1 150 120 1 40 130 0.025 0.8 0.31 No Fault

Sample 2 1270 3450 8 1390 520 0.006 2.72 2.67 Thermal Fault

Sample 3 360 610 9 260 259 0.035 1.7 1.01 Thermal Fault

Sample 4 960 4000 6 1590 1290 0.004 4.17 1.23 Thermal Fault

The communication acts between relevant agents can be initiated by ASGT1 sending

the gas ratios. The ASGT1 is presented as “SGT1@192.168.1.66 : 1099/JADE” with

ability of reading the gas ratios from the Table 4.1 and send them to the AKB shown at

“Knowledge − based@192.168.1.181 : 6126/JADE”. The following message is used for

sending the first gas ratios:

( INFORM

:sender (agent-identifier

:name SGT1@192.168.1.66:1099/JADE)

:receiver (set (agent-identifier

:name Knowledge-based@192.168.1.181:6126/JADE))

:content ‘‘(( set (Ratio2 0.025)

(Ratio1 0.8)

(Ratio5 0.31)))’’

:protocol fipa-request

)

The AKB is designed to await for the message to be received, get the message content

and then run the JESS engine. The JESS engine contains rules corresponding to the

Roger’s method for fault diagnosis. Two related rules associated to the test conditions

are given as follows:

;********Rules.clp**********

;Rule0:

(defrule Transformer_Fault_Diagnosis_C0_Rogers_Method

MAS and KBS for Transformer Fault Diagnosis F. Davoodi Samirmi



4.4 An Example of Agent Communication Act 78

(Gases_Ratio {Ratio2 < 0.1} {Ratio1 >= 0.1 && Ratio1 <= 1}

{Ratio5 <= 1} (Agent ?agent))

=>

(send (ACLMessage (communicative-act INFORM)

(sender Knowledge-based@192.168.1.181:6126/JADE)

(receiver User@pc2214:1099/JADE) (conversation-id ?cid)

(content NO_Fault)))

)

...

;Rule5:

(defrule Transformer_Fault_Diagnosis_C5_Rogers_Method

(Gases_Ratio {Ratio2 < 0.1} {Ratio1 >= 0.1 && Ratio1 <= 1}

{Ratio5 >= 1 && Ratio5 <= 3} (Agent ?agent))

=>

(send (ACLMessage (communicative-act INFORM)

(sender Knowledge-based@192.168.1.181:6126/JADE)

(receiver User@pc2214:1099/JADE) (conversation-id ?cid)

(content Thermal_Fault<150)))

(send (ACLMessage (communicative-act REQUEST)

(sender Knowledge-based@192.168.1.181:6126/JADE)

(receiver Controller@192.168.1.184:1428/JADE)

(conversation-id ?cid) (content open CB1)))

)

...

The first DGA sample from the Table 4.1 correspond to No Fault condition, therefore

there are no actions required to be performed. In this situation the user will be informed

that there is no fault in the SGT1 transformer. For the case of the DGA samples

indicating the presence of some Thermal Fault (samples 2, 3, 4), the situation is different,

and an appropriate actions should be undertaken. Appropriate actions in this case are

defined as opening the circuit breaker CB1 (and also can close the circuit breaker CB3)
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at first and then informing the user about the fault type occurred. The system is aimed

to disconnect the transformer from the circuit in the case of Thermal Fault.

Thus, the rule five will be fired, and the user will be informed about the fault type. A

message will also be sent to the ACNT to request the appropriate action to be performed.

According to previous works, the agent system can use ontology agent for the purpose of

knowledge representation in power system. This have been applied previously in [6], and

can be applied to the present work in the same way. For the case of using the ontology

agent, the real-time information of the power system (e.g. CB1 open or close) and its

components is presented. To simplify the example, we assume that the ACNT already

knows that the ACB1 is able to perform the action requested. The request message for

opening the CB1 will be sent to theACB1, located at CB1@192.168.1.194 : 1099/JADE,

with the following request message:

( REQUEST

:sender (agent-identifier

:name Controller@192.168.1.184:1428/JADE)

:receiver (set (agent-identifier

:name CB1@192.168.1.194:1099/JADE))

:content ‘‘((action (agent-identifier

:name CB1@192.168.1.194:1099/JADE)

(open CB1)))’’

:protocol fipa-request

)

The agreement will be returned to the Controller agent in the case of consulting the

ACB1 with device in a form of the following message:

( AGREE

:sender (agent-identifier

:name CB1@192.168.1.194:1099/JADE)

:receiver (set (agent-identifier

:name Controller@192.168.1.184:1428/JADE))
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:protocol fipa-request

)

Finally, the action permission is granted and the circuit breaker CB1 switches off.

An informing message is sent to the AKB to confirm the status of circuit breaker CB1

(opened):

( INFORM

:sender (agent-identifier

:name CB1@192.168.1.194:1099/JADE)

:receiver (set (agent-identifier

:name Knowledge-based@192.168.1.181:6126/JADE))

:content ‘‘((done(action (agent-identifier

:name CB1@192.168.1.194:1099/JADE)

(open CB1))))’’

:protocol fipa-request

)

This a simple example of communication messages for performing an automated

action in MAS to reduce the human efforts.

4.5 The Experiment Results for Fault Diagnosis

The case study described in this section was developed to evaluate the performance of

the KBS for fault diagnosis. For this purpose, the practically obtained data and their

actual faults are used, as listed in Table 4.2. All of these data and results of actual

inspection were published in [57, 85, 86]. The actual data contain one case of no fault,

2 cases of partial discharge, 14 cases of arcing, 25 cases of overheating and 28 cases of

low energy discharge, giving the total of 70 DGA samples investigated.

In this study, the Roger’s method is chosen for the purpose of fault diagnosis to

interact with agent system, as shown in Figure 4.5. The data are sent to the AKB by
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Table 4.2: Actual gas ratio samples from power transformer

Fault types Number of samples

No Fault 1

Partial Discharge 2

Arcing 14

Overheating 25

Low Energy Discharge 28

Total 70

Data Sender agent, denoted as ADS. The AKB uses the JESS rules to diagnose the

fault. The results of fault diagnosis are sent to the Data Collector agent to be saved in

the database. According to the actual data applied and the fault diagnosis method, the

results corresponding to the situation where fault type could not be defined are shown in

Table 4.3 as “ND”. This happens in the case where ratios of the samples do not match

with any of the regions of the Roger’s method. In this case using different methods of

knowledge-based system (fuzzy ontology) can improve the accuracy of the fault diagnosis

(as investigated in Chapter 6). In practical situation for the case of undefined the fault

types, an expert needs to apply his experience to diagnose the faults. Table 4.3 presents

20 data samples diagnosed with the help of rule-based reasoning.

The results of rule-based reasoning for fault diagnosis with developed agent system

are summarised in Table 4.4. This way of presenting the results makes them more

convenient for discussion and comparison with further work based on using of identical

DGA samples (the results can be improved by use of fuzzy ontology).

As shown in Table 4.4, such fault cases as “No Fault”, “Overheating” and “Low

Energy Discharge”, are diagnosed correctly, while in the case of “Arcing” and “Partial

Discharge”, the fault type could not be identified. In this study, the data applied

consisted of more then 70 samples, but in some cases the fault types were not identified

correctly. 70 data samples where the fault types could be identified correctly were used

for various methods application, such as ontology and fuzzy ontology.
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Table 4.3: The actual DGA samples applied with rule-based reasoning (JESS)

R2 R1 R5 Actual Fault JESS Agent Results Results

1.16 0.46 5.2 Arcing Low Energy Partial Discharge, Arcing, Sparking Correct

0.07 5.43 5.26 Overheating Thermal Fault(TF) TF > 700◦C Correct

1.65 0.17 3.13 Arcing Low Energy Partial Discharge, Arcing, Sparking Correct

1.06 1.74 9.26 Arcing Undefined Fault ND*

0.04 3.86 6.94 Overheating Thermal Fault TF > 700◦C Correct

0.97 1.79 7.06 Arcing Undefined Fault ND*

0.01 40.99 5.07 Overheating Thermal Fault TF > 700◦C Correct

3.25 0.08 17.75 Partial Discharges Undefined Fault ND*

0.02 3.09 7.44 Overheating Thermal Fault TF > 700◦C Correct

0.01 1.42 10.02 Overheating Thermal Fault TF > 700◦C Correct

2.74 1.54 13.42 Arcing Undefined Fault ND*

0.01 2.69 8.62 Overheating Thermal Fault TF > 700◦C Correct

2.93 0.09 6.6 Arcing Undefined Fault ND*

2.26 0.29 10.82 Arcing Low Energy Partial Discharge, Arcing, Sparking Correct

3.42 0.08 5.6 Partial Discharges Undefined Fault ND*

0.02 2.39 7.16 Overheating Thermal Fault TF > 700◦C Correct

3.3 0.07 16.5 Arcing Undefined Fault ND*

0.02 2.4 6.7 Overheating Thermal Fault TF > 700◦C Correct

0 4.85 1.85 Overheating Thermal Fault 300 < TF < 700◦C Correct

1.45 0.84 14 Arcing Low Energy Partial Discharge, Arcing, Sparking Correct

* ND = Not Defined

Table 4.4: Summary of rule-based reasoning for fault diagnosis

Fault Types Total Samples Diagnosed Correctly Not Defined Fault Accuracy

No Fault 1 1 0 100%

Partial Discharge 2 0 2 0%

Arcing 14 9 5 64.3%

Overheating 25 25 0 100%

Low Energy Discharge 28 28 0 100%

Average Total Accuracy — — — 72.86%
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The rule-based reasoning finds various applications, such as detecting power system

failure based on fuzzy rule [87], fuzzy algorithm for power transformer diagnosis [88],

fuzzy rule set for fault diagnosis [89], expert system for transformer fault diagnosis based

on DGA [90], etc. For instance, in [90] the defined fuzzy membership functions are

applied in the expert system to handle uncertain norm threshold. Further information

on application of fuzzy system is given in the Section 6.1.1. However the difficulty of

rules tracking for the large knowledge base may be named as one of the disadvantages

of the rule-based reasoning. Structural knowledge (knowledge about cause and effect)

cannot be easily handled with the rule-based reasoning [75]. On the contrary, different

method of knowledge representation, such as ontology-based reasoning, can provide a

comprehensive knowledge of the system, as will be discussed in the following chapter.

4.6 Summary

A MAS with rule-based reasoning for performing action and fault diagnosis based on

DGA samples is presented in this chapter. Two types of applications are investigated,

such as performing an automatic action for individual component of power system (e.g.

power transformer) and fault diagnosis of power transformer. The rule-based reasoning

is applied in the JESS program, which is able to interact with the agent system. The

JESS engine provides the specific knowledge about system, performs automated action

and capable of fault diagnosis. Various type of agents are designed, and their communi-

cation messages are detailed. Furthermore, practical DGA data samples are utilized for

investigation of the fault diagnosis, based on use of MAS. The results of fault diagnosis

are presented and possible future improvements are discussed.
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Chapter 5

Ontology-based Fault Diagnosis

for Power Transformer

5.1 Introduction

The ability to be accessible to the other applications of key importance for the knowledge-

based systems. Extensible Markup Language (XML) is the basic type of knowledge

representation, which provides a syntax designed to be readable by both machines and

humans. Its drawback is that the represented knowledge in particular domain is not

understandable to the other applications (e.g. software agent). Semantic Web (SW)

provides the meaning layer to the World Wide Web (WWW) to make it machine un-

derstandable. Based on SW and knowledge representation, ontology provides the mech-

anism, that assigns the semantics to the web. Ontology also can be used by different

software applications [91]. Therefore, the Description Logic (DL) as the main feature of

ontology is discussed here first.

5.1.1 Description Logic

Knowledge can be represented in the form of logic. In AI various types of formal logic

are proposed for knowledge base representation. One of the formal deductive systems,

called First Order Logic (FOL), permits to predict and quantify the propositional logic.

For instance, FOL uses some variables to describe the notation of “all the Mercedes-Benz
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are cars” as follows:

∀n(Mercedes−Benz(n) → Car(n))

Being a suffocated logic is one of the FOL advantages, as well as an ability to capture

the most of the natural language. Its drawback is that the higher order functions are

not directly expressible in FOL.

The DL is a subset of the FOL, another family of knowledge representation, which

can be used to represent the knowledge of an application domain in a structured and

formally well-understood way [92]. Many types of DL, such as ALC, SHIQ, ALCNIO,

SHOIN , etc., can describe their operation with different attributes. A huge number of

shared properties and logic-based knowledge representation formalisms are formed (in

DL) to precise the DL definition. The main components of DL are itemized below:

• Concept (C) represents an abbreviation of the objects in the world;

• Roles (R) are binary relationships between set of concepts;

• Functions (F) are defined over the concepts to return a concept;

• Axioms (A) are true assertions, that impose the definition of concepts, rules,

etc.;

• Individuals (I) are instances of the concepts, which also correspond to the con-

cepts subset.

In summary, the DL describes a domain of interest in terms of concepts, roles and

individuals. Concepts (or classes) and roles (or properties) in DL are the building con-

structors, such as conjunction, disjunction, negation, etc., that can be varied depending

on DL types. An overview of the most important constructors is given in Table 5.1,

where the first column represents the name of constructor, and its syntax is provided in

the second column.

The DL architecture consists of two parts, namely terminological box (TBox) and

assertion box (ABox), which are represented as a reasoner system. The TBox contains

intentional knowledge, which means the abbreviation (name) and schema for a complex

description. For example,

Car ≡ V ehicle ⊓ Engine
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Table 5.1: Summary of constructors in description logic

Constructor Name Syntax Semantic Symbol

Conjunction C ⊓D CI ∩DI AL
Disjunction C ⊔D CI ∪DI U
Negation ¬C ∆I − CI C
Value restriction ∀R.C

{

x ∈ ∆I | ∀y ∈ xRI : y ∈ CI
}

A
Exists restriction ∃R.C

{

x ∈ ∆I | ∃y ∈ xRI : y ∈ CI
}

ε
Nominals {O1, ..., On}

{

OI

1 , ..., O
I
n

}

O
Unqualified number restriction ≥ nR

{

x ∈ ∆I ‖ xR |≥ n
}

N
Unqualified number restriction ≤ nR

{

x ∈ ∆I ‖ xR |≤ n
}

N
Qualified number restriction ≥ nR.C

{

x ∈ ∆I ‖ xR ∩ CI |≥ n
}

Q
Qualified number restriction ≤ nR.C

{

x ∈ ∆I ‖ xR ∩ CI |≤ n
}

Q

defines that car is a type of vehicle, and it has an engine. The ABox contains extensional

knowledge, which represents the data of complex description. For example,

BMW : Car

(BMW,X5) : hasModel

defines that BMW is a car, and BMW has a model called X5.

The DL semantics is defined in a model-theoretic way, one central notion is that of

an interpretation. The interpretation is a structure I = (∆I , ·I), where the ∆I is the

domain and ·I is an interpretation function. Every concept name A to a subset AI of

∆I with semantic (AI ⊆ ∆I), and every role name r to a binary relation rI over ∆I

with semantic (rI ⊆ ∆I ×∆I) [92]. For instance, the interpretation can be described

with following example, where the TBox contains two axioms:

Mercedes −Benz ⊑ Car

BMW ⊑ Car

The semantics are interpreted as follows:

Mercedes −BenzI ⊆ CarI
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BMW I ⊆ CarI

Individuals, such as Mercedes-Benz and BMW, are the subsets of Car, this can be

represented with Venn diagram, as shown in Figure 5.1.

Figure 5.1: Description logic interpretations represented with Venn diagram

The reasoning services in DL provide the automatic deduction of implicit knowledge

from the explicit represented knowledge. For this purpose various algorithms can be

implemented, some examples of them are presented below [92]:

• Subsumption algorithm determines the subconcepts and superconcept relationship-

s: C is subsumed by D if all instances of C are necessarily instances of D. For

example, BMW ⊑ Car where the BMW is a subclass of the class Car ;

• Instance algorithm determines instance relationships: the individual i is an in-

stance of the concept description C, if i is always interpreted as an element of the

interpretation of C. For example, X5 is an instance of class BMW, as presented

with BMW (X5);

• Consistency algorithm determines whether a knowledge base, consisting of the

TBox and ABox, is non-contradictory. For example, if all the cars can be defined

as either sport or four wheel drive, and the X5 is an instance of BMW class and

it is not sport car, then we can not say that X5 is not four wheel drive, which

represents its inconsistency.
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DL finds various applications, such as software information and documentation,

databases, query answering, ontology languages, etc. [91]. The Ontology Web Lan-

guage (OWL) is one of the most important applications of DL, where various tools and

reasoning techniques are widely been used. This will be discussed in further sections.

This application of the DL is perhaps one of the most prominent applications used [92].

5.1.2 Ontology

There are various definitions given for ontology, one of the commonly used in computer

science is [93]:

“Ontology is a formal, explicit specification of a shared conceptualization.”

In this definition, the specification is a formal description of how something could

be constructed to meet certain criteria, while the conceptualization is required to use

the ontology language. It is involves the computer symbols with the individuals and

relations in the world. It provides a particular abstraction of the world and notation for

that abstraction. For example, the propositional logic formula

X(n) → Y (n)

is an abstract, and can be grounded into a domain as

Mercedes −Benz(n) → Car(n)

where the interpretation of it can be shared and utilized in particular procedure.

The main components of ontology are itemized as follows:

• Classes or Concepts;

• Properties or Roles;

• Axioms.

Many programming languages are developed for building an ontology. Resource

Description Framework (RDF) is the one of the basic ontology languages, which allows

to build a simple hierarchy of the concepts and properties. OWL is extended from
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RDF; it is one of the standard ontology languages recommended by W3C [94]. OWL

is a powerful ontology with RDF’s abilities, and additionally capable to describe the

concepts in complex situations. The key feature of OWL is that it can be used not only

for presenting the information, but also to process the presented information and to

extract the new information. This point makes it possible to use the OWL for various

applications, such as knowledge sharing and representation, semantic web, information

system, ontology-based reasoning, etc. An example of OWL representation and its

explanation are given below. Let us consider the two axioms represented in the following

TBox:

Mercedes −BenzI ⊆ CarI

BMW I ⊆ CarI

The OWL file can be represented in the following way:

<owl:Class rdf:about="#Car">

</owl:Class>

<owl:Class rdf:about="#Mercedes-Benz">

<rdfs:subClassOf rdf:resource="#Car"/>

</owl:Class>

<owl:Class rdf:about="#BMW">

<rdfs:subClassOf rdf:resource="#Car"/>

</owl:Class>

which represents the class Car has two subclasses Mercedes-Benz and BMW. The graph

representing this ontology is given in Figure 5.2, where the various subclasses of class

Thing are shown.

OWL uses a DL expression called SHIQ to express the ontology language and rea-

soner such as FaCT++, RACER and Pellet [95]. The SHIQ provides various features,

with ability of more expression compared to the other types of DL (e.g. ALC). The ex-

pressions provide several features and attributes, such as qualified number restrictions,

inverse roles, transitive roles, sub-roles, etc., which easily formulate the complex termi-

nological axioms. For instance, the qualified number restrictions in the SHIQ help to
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Figure 5.2: Graphical representation of an ontology

present the statement that a car most often has five doors:

≤ 5 hasDoor.

OWL-Lite, OWL-DL and OWL-Full are three categories of OWL with different fea-

tures. OWL-Lite gives simple constraint features, while OWL-Full provides the maxi-

mum expressiveness. OWL-DL corresponds to DL and supports the maximum expres-

siveness without losing computational completeness [92]. A summary of constructors

supported by the OWL is given in Table 5.2 [96].

The syntax language for concepts are defined as follows: concept names (C0, C1, ...),

property names (P0, P1, ...), concept constructor “⊔” called unionOf, disjunction or or,

concept constructor “⊓” called intersectionOf, conjunction or and, concept constructor

“∃” called existential restriction constructor, “∀” called value restriction constructor

and so on. For instance, the concept of fault diagnosis for power transformer is defined

as: “A transformer has a thermal fault in its component, and the symptoms are either

temperature or gases”. The description of this concept can be defined using the following
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Table 5.2: Summary of OWL constructors

Constructor DL Syntax Example

intersectionOf C1⊓ ... ⊓Cn Vehicle ⊓ Car
unionOf C1⊔ ... ⊔Cn Car ⊔ Bike
complementOf ¬C ¬ Car
oneOf {x1 ... xn} {BMW, Mercedes}
allValuesFrom ∀r.C ∀ hasEngine.BMW
someValuesFrom ∃r.C ∃ hasEngine.Vehicle
hasValue ∃r.{x} ∃ madeIn.{Germany}
minCardinality ≥ nr (≥3 hasDoor)
maxCardinality ≤ nr (≤ 1 hasEngine)
inverseOf r′ hasEngine′

DL:

TransformerComponent⊓ (∃hasFault.ThermalFault)⊓

(∀hasSymptom.(Temperature ⊔GasRatios))

OWL2 language is newer version of OWL, equivalent to DL SROIQ(D) [96]. Com-

pared to OWL, OWL2 provides more functionality including property chains, keys, richer

datatypes, data ranges, disjoint properties, etc. [94].

5.1.3 Reasoners

The OWL ontology consists of classes, properties and individuals. Hierarchy classes in

ontology are formed with superclasses and subclasses. Different types of properties, such

as inverse, functional, inverse functional, transitive, symmetric, asymmetric, reflexive

and irreflexive properties, provides restriction to the built ontology. Inference problems

could be performed by some reasoning algorithms. Tableau algorithm is one of the most

widely used techniques for reasoning in DL [92]. It is used to prove a decidability or

computational complexity result. A reasoner allows the inference to be made, based

on the construction of compositional concepts and roles. Precisely the concept D is

subsumed by concept C, when all instances of the D are also instances of C. Various

reasoners can be used, such as Racer [97], FaCT [98], FaCT++ [99] and Pellet [100].

The differences between reasoners are the types of algorithms used and the way they are

implemented in reasoning tasks.
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One powerful approach of building ontology-based reasoning is to use such reasoning

techniques [101]. An ontology reasoner deduces the queried results from the ontology

knowledge base. Therefore, an Application Programming Interface (API) is required,

for accessing the reasoner to the ontology. OWL APIs with various interfaces provide

accessibility to OWL reasoners [102].

5.2 System Architecture Design

Seven steps required to design an appropriate ontology are given in [94]. These steps are

recommended for gradual design of the hierarchy classes, properties, individuals, etc.,

to form an ontology. Based on these recommendation, the ontology-based transformer

fault diagnosis is developed for the agent framework. The proposed system consists of

two parts. An ontology for power transformer fault diagnosis is developed at the first

step; and then the agent system is designed to wrap the ontology and interact with it.

The developed ontology is able to query the fault types, using the information of given

symptoms. The ontology is also able to define the relevant information of the faulty

components of power transformer. The interaction between developed ontology and

power transformer is carried out through the developed agent, who sends the real-time

symptoms (for the case study using the DGA gas ratios) to the ontology. The overall

architecture of transformer fault diagnosis is shown in the Figure 5.3.

As can be seen in the Figure 5.3, an agent called Ontology, wraps the ontology for

transformer fault diagnosis. Ontology agent is able to communicate with other agent (in

this case Data Sender agent), in order to establish an interaction with the other agents.

5.2.1 Ontology for power transformer fault diagnosis

As the transformer is one of the most important units in power system, its reliability

is a prime concern in power system operation. Real-time condition monitoring and

fault diagnosis of the power transformer help to improve its reliability and prevent more

serious problems. A fault diagnosis system with ontology-based reasoning provides a

comprehensive knowledge base, which can be utilized by other application. For this

purpose, an on-line fault diagnosis system based on ontology reasoning is developed.
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Figure 5.3: MAS for power transformer fault diagnosis based on ontology reasoning

A fault typically appears in a power transformer during its operations, however,

more likely, any type of faults could change the working status of transformer, which

is obviously reflected in some symptoms related to the fault. This is similar to the

concepts of cause and effect, where the cause is the event that has relation with its effect,

known as phenomenon. In other word, any type of fault has some relevant symptoms.

Knowing symptoms enables the identification of relevant fault types. For instance, a

cooling system (fan) in a power transformer is used to dissipate heat to its external

surrounding. A fault can affect the working status of a cooling system, which may

lead to malfunction of its correct performance (e.g. fan stops working). This results

in abnormal oil temperature increase, presented as a symptom. Thus, the temperature

increase may indicate a problem of a cooling system, and later cause arcing.

In reality, because of complexity of transformer fault mechanism, there are many

types of symptoms and faults. To build an appropriate ontology for power transformer

fault diagnosis, three different categories are defined, namely fault, symptom and com-

ponent. A summary of faults is collected in the fault category, restricted by some types

of properties to the symptom category. For instance, fault A has the symptom B, thus
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Figure 5.4: Main classes of proposed ontology for power transformer fault diagnosis

the fault A can be diagnosed by observing symptom B. The component category is also

linked via some properties to the fault category, which reflects the relationship between

faults and components. These three categories and their relations are employed as the

basic concepts of ontology reasoning for transformer fault diagnosis. The elements of

the developed ontology are shown in Figure 5.4.

Based on ontology structure, the components of developed ontology for power trans-

former fault diagnosis are defined as follows:

Class

The developed ontology consists of three main classes: Components, Symptoms and

Faults, and consequently each of them is defined as subclass of class Transformer, as

described in the following axioms:

Symptoms ⊑ Transformer (5.1)

Faults ⊑ Transformer (5.2)

Components ⊑ Transformer (5.3)

where these axioms are represented in OWL as:

<owl:Class rdf:about="#Transformer">

</owl:Class>
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<owl:Class rdf:about="#Symptoms">

<rdfs:subClassOf rdf:resource="#Transformer"/>

</owl:Class>

<owl:Class rdf:about="#Faults">

<rdfs:subClassOf rdf:resource="#Transformer"/>

</owl:Class>

<owl:Class rdf:about="#Components">

<rdfs:subClassOf rdf:resource="#Transformer"/>

</owl:Class>

The syntax in the statement above defines that, there is a concept called Transformer

with three subclasses, Symptoms, Faults and Components, built in OWL.

Faults in a power transformer can be classified into five types: Electrical, Thermal,

Mechanical, Degradation and Ageing. These five types are defined as the subclasses of

class Faults, described as follows:

Electrical Faults ⊑ Faults (5.4)

Thermal Faults ⊑ Faults (5.5)

Ageing Faults ⊑ Faults (5.6)

Degradation Faults ⊑ Faults (5.7)

Mechanical Faults ⊑ Faults (5.8)

Each types of faults can be further subdivided into different types of related faults,

as shown below in the case of Degradation fault:

Degradation Of Insulation ⊑ Degradation Faults (5.9)

Degradation Of Iron ⊑ Degradation Faults (5.10)

Degradation Of Paper ⊑ Degradation Of Insulation (5.11)
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The Roger’s method, as an example of the existing fault diagnosis technique, has

been applied as a class called Rogers Method Faults with eight types of faults, defined

as subclasses (the ontology can be extended using diagnosis methods of fault diagnosis).

Class Symptoms consists of various symptoms types, which may appear in a power

transformer. For instance, in the Roger’s fault diagnosis method, the symptoms are

three gas ratios R1, R2 and R5, that help to distinguish the fault types. These types of

gas ratios can be represented as the subclasses of class Gas. Other types of symptoms

can be represented, such as Acidity, Temperature, Electrical and Physical symptoms,

which are defined as the subclasses of class Symptoms. For the case of Roger’s fault

diagnosis the Symptoms contain a subclasses GasRatios, with five types of gas ratios

Ratio1 to Ratio5. The axioms related to the class Symptom are given in equations 5.12

to 5.21.

Temperature ⊑ Symptoms (5.12)

Electrical ⊑ Symptoms (5.13)

Acidity ⊑ Symptoms (5.14)

Physical ⊑ Symptoms (5.15)

GasRatios ⊑ Symptoms (5.16)

Ratio1 ⊑ GasRatios (5.17)

Ratio2 ⊑ GasRatios (5.18)

Ratio3 ⊑ GasRatios (5.19)

Ratio4 ⊑ GasRatios (5.20)

Ratio5 ⊑ GasRatios (5.21)

Similarly, the class Components contains the power transformer components, such

as Winding, Cooling system, Taps, Oil etc., defined as its subclasses. Figure 5.5 shows

the defined class of transformer fault diagnosis.
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Figure 5.5: The class Transformer and its subclasses for power transformer fault
diagnosis
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The designed classes are restricted to various types of properties, (shown with dashed

line between classes in Figure 5.5).

Properties

Properties provide the binary relations of classes or individuals. There are two main

types of properties, namely the object properties and datatype properties. They provide

different attributes to the classes. Two categories of properties, “has category” and

“is category of ” with inverse characteristics to each other are applied. The inverse

properties represent that, if a properties links individual x to individual y, then the

inverse property links the individual y to individual x. In this study, the has category

property is the inverse of is category of property.

OWL can be used to define sub-properties of each property. In this work, each

property has three sub-properties. For instance, the property has category has three

sub-properties as “has fault”, “has symptom” and “has component”, with different char-

acteristics, such as functional, inverse, etc. An individual with functional property rep-

resents that there can be at most one individual related to him via this property [103].

The functional property with an example in ontology for fault diagnosis is examplified

here. It is assumed that the property called is symptom of is defined as functional. If

individual High Temperature is a symptom of OverHeating, and also that the individu-

al High Temperature is a symptom of Thermal Fault, then because is symptom of is a

functional property, it can be inferred that Thermal Fault and Overheating must be the

same individual. This is shown in the Figure 5.6.

Figure 5.6: An example of a functional property is symptom of

Similarly for the property is category of, three sub properties are defined, includ-

ing is fault of, is symptom of and is component of. Summary of applied properties is

itemized below.
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To apply these properties for the defined classes in previous sections, the following

statements are used:

A) Faults has symptom some Symptoms;

B) Symptoms is symptom of some Faults.

which means that all types of faults have some types of symptoms, defined in class

Symptoms (item A). The word some represents existential restriction to describes the

class Faults, which means all the faults has at least one symptom. The inverse statement

(item B) indicates that the symptoms correspond to some types of fault. The following

examples of power transformer fault diagnosis are given to illustrate the above statement.

For instance, a fault of partial discharge may lead to the presence of hydrogen in the oil

symptom (found from gas ratio values). The statements to describe this restriction are:

Example for A) Partial Discharge has symptom some Hydrogen;

Example for B) Hydrogen is symptom of some Partial Discharge.

Furthermore, the components of power transformer can be identified by the relevant

fault types. For instance, the degradation of paper insulation in winding causes the

fault called arcing. In the case of the fault type (here – arcing) has been diagnosed

based on captured symptoms, and it is required to detect the faulty component of

power transformer, where the paper insulation in winding caused arcing. These types

of restrictions are defined in the following statements:

C) Components has fault some Faults;

D) Faults is fault of some Components.
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An example is shown here for transformer fault diagnosis. Almost all types of trans-

formers have a tank made of carbon steel. Acidity can be defined as the mass of potas-

sium hydroxide in milligrams, which is required for neutralisation of acid in one gram

of transformer oil [104]. Consequently, higher amount of acid in oil is represented as

higher acid numbers. The acid number generally tends to increase with the ageing

of power transformer due to oxidative processes in the insulation and acid formation.

The acid attacks the metal inside of the tank and results in tank corrosion. Therefore,

the presence of corrosion faults can be illustrated with the help of the statement as

“Corrosion is fault of only Tank”, where the only is defined as universal restriction.

A concept C can be described with the set of necessary condition, if the values xi in

some properties pi, i = 1, 2, ..., n, and pi is denoted as a necessary condition. This can

be denoted:

C ⊆ D (5.22)

where “⊆” denoted the dependency of C on D.

For instance, the fault Corrosion can be defined as necessary condition of the fault

class. This assertion can be expressed with following statement:

Corrosion ⊆ Faults (5.23)

It is also possible to define the concept with sufficient condition, where the condition

D is sufficient condition of the concept C. This can be denoted with:

C ≡ D (5.24)

This can be illustrated with example of ontology for power transformer fault diagnosis

represented with sufficient condition. Using an information of previous example, that

the corrosion fault of the tank in power transformer component is only have a high acid

number in the oil, this notation can be defined as follows:

Corrosion In Tank ≡ Fault ⊓ ∀has symptom.High Acid Number (5.25)
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In the case of having no common elements, the class can be defined as disjoint class.

For instance, two classes, Faults and Symptoms are disjoint, because the faults can have

different types of symptoms (like gas, temperature symptoms) but cannot be a symptom.

This can be expressed with the following notation:

Faults ⊔ Symptoms ⊑⊥ (5.26)

Protégé [66] is a powerful tool to support OWL; it is based on a graphical editor.

The Protégé ontology editor supports SHIQ(D). Figure 5.7 represents the developed

ontology for power transformer fault diagnosis.

Accordingly, by giving the symptoms, the fault types can be diagnosed; and the rel-

evant components are identified by giving the fault types. The communication between

the developed ontology and power transformer in the substation can be handled by an

agent.

5.2.2 Ontology agent

As shown in the Figure 5.3, the built ontology is wrapped by an agent called Ontology,

can be denoted as AONT . The AONT receives a message containing some symptoms

from the agent who captures the real-time information from power transformer. In this

case we assumed that the agent Data Sender, denoted as ADS, sends the symptoms (e.g.

gas ratios). The AONT passes the symptoms as arguments to the ontology, and ontology

uses its reasoner to verify inconsistency of the classes and also to diagnose the relevant

fault. The FaCT++ reasoner is applied to this ontology. This information is also can

be reported to the User agent or sent to the Data Collector agent to be saved in the

database. A sample of AONT are presented in the Appendix C.

5.2.3 Ontology reasoning

One of the key features of applying ontology is to extract hidden information from the

explicit facts built in ontology. To consider this situation, two examples are presented.

Corrosion fault in the tank can be diagnosed based on the high acid number of oil. The

information related to high acid number can be delivered by the agent sensors connected

inside of the oil tank, to the AONT who wraps the ontology for fault diagnosis.
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The proposed ontology has a class Faults, containing a subclass Corrosion. The

class Symptoms has a defined subclass, High Acid Number, and the class Tank is de-

fined as the subclass of the class Components, with a subclass of Oil. The interesting

part of the ontology reasoner is that the class Faults does not have any subclass called

Tank Corrosion, which can be deduced by this ontology. In this case, the applied re-

strictions for faults, symptoms and components are given below:

Corrosion has symptom only High Acid Number (5.27)

which means corrosion is a type of fault, which can be detected only with symptom of

high acid number.

High Acid Number is symptom of only Corrosion (5.28)

which represent the inverse property of statement 5.27.

Corrosion is fault of only Tank (5.29)

which represents the necessary and sufficient conditions of the corrosion with tank.

Tank has component some Oil (5.30)

which means tank is filled with oil. The elements of this ontology reasoner are shown in

Figure 5.8.

According to agent’s observations, the acid number of oil is high. The properties,

high acid number is the only symptom of the fault corrosion, from statement 5.28 and

tank filled by this oil statement 5.30, the undefined knowledge can be deduced. In fact,

the ontology reasoner is able to infer the new knowledge that the tank has a corrosion

fault.

Another example of reasoning, based on DL description, can be presented. Degrada-

tion is a common type of fault in power transformer, happening due to the transformer

ageing. Moreover, degradation itself speeds the ageing of the equipment up. There are

several factors other than equipment ageing that can cause the degradation, such as
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Figure 5.8: An example of ontology reasoner for extracting implicit information from
the explicit facts

water, temperature, byproducts, etc. High temperature or presence of water are the key

factors (or symptoms) for degradation of transformer component, e.g. paper insulation.

Degradation is an abbreviation for the concept description, which can be defined in the

TBOX as follows:

Degradation ≡ Faults ⊓ (∃ has symptom.Symptoms) ⊓

(∀ has symptom.(water ⊔ temperature))

(5.31)

which means that the degradation is a type of fault and it has some symptoms, either

water or temperature. The current situation is described in ABox stating the properties

of individuals. The ABox contains:

Degradation(Paper Degradation), has fault(Paper,Degradation),

¬water(Paper)

(5.32)

It means that the instance Paper Degradation belongs to the concept Degradation; Paper

has a fault Degradation, and there is no water in Paper (the paper is not wet). Users

receive the reasoning services from the modern DL, which can automatically deduce
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implicit knowledge from the explicitly represented knowledge, and it always yields a

correct answer in finite time [92]. For the case presented above, the instance algorithm

determines the instance relationships.

For the given ABox and the definition of Degradation, Paper has fault Degradation

because Paper Degradation is an instance of Degradation, so all its symptoms are either

Water or Temperature, and paper is not wet (¬water(paper)), then concluding that the

paper degradation is caused by temperature.

5.3 Case Study Using Ontology-based Reasoning for Fault

Diagnosis

The routine work of power engineers includes such tasks, as condition assessment, fault

diagnosis, maintenance and decision-making, which involves their knowledge and data

analysis. This work presents a comprehensive knowledge base for power transformer

fault diagnosis based on ontology reasoning. For this purpose, the Roger’s method in

from of ontology is investigated for transformer fault diagnosis. A summary of proposed

ontology contains class of faults with eight subclasses, which represent the recommended

cases of the fault types in the Roger’s method. Three datatypes properties are applied

for restricting the faults’ classes. The datatype property called has ratio contains three

sub-properties, namely has ratio R1, has ratio R2 and has ratio R5, applied for this

ontology.

The first case of the Roger’s method as illustrated in Table 2.3, corresponding to

No Faults can be defined in Protégé with the following statements:

Faults and (has ratio R2 some float[< 0.1]) and (has ratio R1 some

float[≥ 0.1, ≤ 1.0]) and (has ratio R5 some float[≤ 1.0])

(5.33)

which means, if the received gas ratios are within the defined boundaries, then there is

no fault in the power transformer. Ontology can be formalised in a TBox with DL in

SHIQ for the “No Fault” statement [95], as follows:

MAS and KBS for Transformer Fault Diagnosis F. Davoodi Samirmi



5.3 Case Study Using Ontology-based Reasoning for Fault Diagnosis 106

Case 0:

No Fault ≡ (∀Faults.⊤) ⊓ (< 0.1 has ratio R2.⊤) ⊓ ((≥ 0.1 has ratio R1

.⊤) ⊓ (≤ 1.0 has ratio R1.⊤)) ⊓ (≤ 1.0 has ratio R5.⊤)

(5.34)

which expresses the case of No Fault with three conditions of gas ratios. This state-

ment can be represented in OWL2 syntax, given in Appendix C. The cases 1 and 2

of the Roger’s method present conditions for the partial discharge fault; they can be

summarised in one case only. The rest of the Roger’s method cases are formalized in

the TBox in the same way, as given below:

Case 1&2:

Partial Discharge ≡ (∀Faults.⊤) ⊓ ((≥ 0.1 has ratio R2.⊤) ⊓ (≤ 3.0

has ratio R2.⊤)) ⊓ (< 0.1 has ratio R1.⊤) ⊓ (≤ 1.0 has ratio R5.⊤)

(5.35)

Case 3:

Low Energy Discharge, Sparking,Arcing ≡ (∀Faults.⊤) ⊓ (≥ 0.1 has

ratio R2.⊤) ⊓ ((≥ 0.1 has ratio R1.⊤) ⊓ (≤ 1.0 has ratio R1.⊤)) ⊓

(≥ 1.0 has ratio R5.⊤)

(5.36)

Case 4:

High Energy Discharge,Arcing ≡ (∀Faults.⊤) ⊓ ((≥ 0.1 has ratio R2.⊤)

⊓ (≤ 3.0 has ratio R2.⊤)) ⊓ ((≥ 0.1 has ratio R1.⊤) ⊓ (≤ 1.0 has ratio

R1.⊤)) ⊓ (> 3.0 has ratio R5.⊤)

(5.37)

Case 5:

Thermal Fault Temperature Less Than 150 ◦C ≡ (∀Faults.⊤) ⊓ (< 0.1

has ratio R2.⊤) ⊓ ((≥ 0.1 has ratio R1.⊤) ⊓ (≤ 1.0 has ratio R1.⊤))

⊓ ((≥ 1.0 has ratio R5.⊤) ⊓ (≤ 3.0 has ratio R5.⊤))

(5.38)
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Case 6:

Thermal Fault Temperature between 150 300 ◦C ≡ (∀Faults.⊤) ⊓ (< 0.1

has ratio R2.⊤) ⊓ (≥ 1.0 has ratio R1.⊤) ⊓ (≤ 1.0 has ratio R5.⊤)

(5.39)

Case 7:

Thermal Fault Temperature between 300 700 ◦C ≡ (∀Faults.⊤) ⊓ (< 0.1

has ratio R2.⊤) ⊓ (≥ 1.0 has ratio R1.⊤) ⊓ ((≥ 1.0 has ratio R5.⊤) ⊓

(≤ 3.0 has ratio R5.⊤))

(5.40)

Case 8:

Thermal Fault Temperature Over 700 ◦C ≡ (∀Faults.⊤) ⊓ (< 0.1

has ratio R2.⊤) ⊓ (≥ 1.0 has ratio R1.⊤) ⊓ (> 3.0 has ratio R5.⊤)

(5.41)

Some screenshots of the developed ontology are given in the Appendix C. The built

ontology is tested with ADS, who sends the DGA gas ratio samples (identical to the

used data in previous experiment), and diagnoses the fault types.

5.3.1 The experimental results of fault diagnosis with ontology

Ontology-based fault diagnosis for power transformer have been tested using the real

data, identical to the data presented in Section 4.5. Obviously, the results of fault diag-

nosis for the applied ontology are the same as the results used with JESS programming.

Ontology-based reasoning for power transformer fault diagnosis is a novel representation

of the knowledge-based system in power system, which can be improved with other types

of ontology, for example fuzzy ontology. Table 5.3 presents 20 data samples diagnosed

with the ontology-based reasoning.

Table 5.4 contains the summary of results for 70 DGA gas samples applied. Similarly,

three types of fault categories are diagnosed correctly, while the “Arcing” and “Partial

Discharge” fault types could not be identified correctly in some cases. The situation with

undefined faults can be improved further by applying the fuzzy ontology (as presented

in the following chapter).
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Table 5.3: The actual DGA samples applied with ontology-based reasoning

R2 R1 R5 Actual Fault Ontology Agent Results Results

1.16 0.46 5.2 Arcing Low Energy Partial Discharge, Arcing, Sparking Correct

0.07 5.43 5.26 Overheating Thermal Fault(TF) TF > 700◦C Correct

1.65 0.17 3.13 Arcing Low Energy Partial Discharge, Arcing, Sparking Correct

1.06 1.74 9.26 Arcing Undefined Fault ND*

0.04 3.86 6.94 Overheating Thermal Fault TF > 700◦C Correct

0.97 1.79 7.06 Arcing Undefined Fault ND*

0.01 40.99 5.07 Overheating Thermal Fault TF > 700◦C Correct

3.25 0.08 17.75 Partial Discharges Undefined Fault ND*

0.02 3.09 7.44 Overheating Thermal Fault TF > 700◦C Correct

0.01 1.42 10.02 Overheating Thermal Fault TF > 700◦C Correct

2.74 1.54 13.42 Arcing Undefined Fault ND*

0.01 2.69 8.62 Overheating Thermal Fault TF > 700◦C Correct

2.93 0.09 6.6 Arcing Undefined Fault ND*

2.26 0.29 10.82 Arcing Low Energy Partial Discharge, Arcing, Sparking Correct

3.42 0.08 5.6 Partial Discharges Undefined Fault ND*

0.02 2.39 7.16 Overheating Thermal Fault TF > 700◦C Correct

3.3 0.07 16.5 Arcing Undefined Fault ND*

0.02 2.4 6.7 Overheating Thermal Fault TF > 700◦C Correct

0 4.85 1.85 Overheating Thermal Fault 300 < TF < 700◦C Correct

1.45 0.84 14 Arcing Low Energy Partial Discharge, Arcing, Sparking Correct

* ND = Not Defined

5.3.2 Discussion and conclusion

It is important to share and use the knowledge-based systems in various domains. Earlier

expert systems have a significant disadvantage of both domain knowledge and rules (how

to use the domain) contained in the knowledge base. Thus, the success in one domain

could hardly be replicated to another one, due to high degree of interconnections between

domain knowledge and rules. For example, the knowledge-based system for transformer

fault diagnosis with rule-based reasoning (described in previous chapter) is able to take

the gas ratios and then present the appropriate fault types. For the case of properly
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Table 5.4: Summary of ontology-based reasoning for fault diagnosis

Fault Types Total Samples Diagnosed Correctly Not Defined Fault Accuracy

No Fault 1 1 0 100%

Partial Discharge 2 0 2 0%

Arcing 14 9 5 64.3%

Overheating 25 25 0 100%

Low Energy Discharge 28 28 0 100%

Average Total Accuracy — — — 72.86%

conceptualized knowledge it could be possible to separate the domain knowledge from

the application, while the used inference rules are directed to the knowledge, which

makes it difficult to separate them. In this case sharing them in different domain is

a difficult task, and this can be taken as disadvantage. Furthermore, the represented

knowledge-based system with the use of rule-based reasoning cannot be easily improved,

as it is impossible to know all the conditions to build the rule-based reasoning.

The ontology-based DL provides the strong structured knowledge representation,

which can be understood by other applications. Proving advance services, such as se-

mantic search and automated reasoning, enables various applications of it. Ontology-

based knowledge representation has been proposed for condition assessment of the power

system components [3, 6]. The main scope of the developed ontology was to provide the

real-time information of power system components to the agent system. The proposed

ontology only can represent the hierarchy structure of components and cannot partici-

pate in the main feature of ontology for extracting hidden information. In case of fault

diagnosis, ontology is applied for power transformer [9]. The ontology described in [9]

has the weak point of applying object properties instead of datatype. This can result in

need of more classes to represent all statuses of fault types. The ontology developed in

this work, based on DL and applied datatype properties, provides more features.
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5.4 Summary

To make the knowledge-based system useful for various applications, ontology-based DL

is presented. For this purpose we developed an ontology for power transformer fault

diagnosis. The developed ontology in OWL-DL is translatable into a DL representation,

which can perform automated reasoning using a DL reasoner. The DL reasoners compute

various inference services, such as computing the inferred hierarchy classes and super-

classes, inferred inconsistency in classes, subsume of classes, etc. Ontology agents are

designed to interact with the developed ontology for the purpose of providing the real-

time information (e.g. symptoms) to diagnose the fault types. Finally, the actual DGA

samples are tested with ontology, and the results are discussed.
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Chapter 6

Fuzzy Ontology for Power

Transformer Fault Diagnosis

6.1 Introduction

A knowledge base is not a static collection of information, but a dynamic resource

that has a capability to be revised by itself or with the help of agents technology.

Therefore, it is important to have the knowledge updated with the newer knowledge-

based systems. Ontology-based knowledge representation provides an opportunity to

upgrade a knowledge easily. For this purpose a new ontology for power transformer

fault diagnosis based on the fuzzy ontology have been developed. The ontology presented

earlier in the Chapter 5 can be improved. Thus, the developed fuzzy ontology is able to

deal with uncertainty, which is a common requirement in the real world. The improved

accuracy of the developed fuzzy ontology is another issue discussed in this chapter.

6.1.1 Fuzzy theory and fuzzy sets

Human reasoning is based on approximation and imprecision, which can be handled

by fuzzy systems. The fuzzy set theory was proposed by Lotfi Zadeh in 1965 [105] for

dealing with the approximate reasoning. It finds various applications in such fields as

artificial intelligence, control theory, etc. Element of the fuzzy set belongs to a set to

some degree, defined as a membership function, while in the classical set, the elements
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either belong to a set or not. Therefore, crisp thresholds used in the classical set are

replaced with the fuzzy thresholds for the fuzzy set.

A fuzzy set A in the fuzzy subset of X is defined as a mapping:

A : X → [0, 1] , x ∈ X

where the “µA(x)” can be defined as the membership degree of x to the fuzzy set A

[105].

Various logic operations provide connectives in fuzzy set theory and fuzzy logic.

In fuzzy, the membership can vary between 0 and 1, while in the classical case, it

can be either 0 or 1. These characteristics of the fuzzy sets theory provide an ability

of representing the imprecise or vague types of knowledge. For instance, the concept

“Teenager Boys” is defined as follows:

Teenager Boys = Boys ∩ ∃ has Age.Teenager

where the linguistic term Teenager may be defined by a trapezoidal function, as shown

in Figure 6.1. The mathematical representation for Teenager is given in equation 6.1.

µTeenager(Age) =



































(Age − 12)/(13 − 12) if 12 ≤ Age ≤ 13

1 if 13 ≤ Age ≤ 18

(19−Age)/(19 − 18) if 18 ≤ Age ≤ 19

0 if Age < 12 or Age > 19

(6.1)

1

0 Age12 13 18 19

Teenager

Figure 6.1: Example of trapezoidal membership function
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The same example can be illustrated in classical set without using the fuzzy set,

where only individual in the age from 13 to 18 years old can be called Teenager.

Many types of fuzzy logic apply various sets of operations, such as intersection, union,

complement and implication, for presenting different types of properties. Lukasiewicz,

Product and Godel are three main fuzzy logics, providing different properties [106, 107].

Fuzzy system has been applied in power system for the DGA fault diagnosis, as

summarised in [108, 109]. The fuzzy set can be implemented in several ways, and the

most common structure is based on the rule set, from which actions and conclusions can

be suggested. The accuracy of fault diagnosis can be improved with the use of fuzzy

logic in combination with Artificial Neural Network (ANN) or Evolution Algorithms

(EA). The fuzzy system proposed in [110] delivers the accuracy up to 88%, based on

561 DGA gas samples.

6.1.2 Fuzzy ontology OWL2

The idea of expressing imprecise or vague objects is taken from the fuzzy logic and

applied in semantic web ontologies, for representing the fuzzy ontology. The fuzzy

ontology has been introduced by Straccia to apply the non crisp data within the ontology

definition [106]. Some advantages of fuzzy ontology are itemized below:

• Fuzzy OWL ontology can be shared and reused easily;

• Easily extendable to the other types of fuzzy OWL2 statements;

• It can be easily translated into the syntax of other fuzzy-DL reasoner.

Three alphabets are assumed in fuzzy OWL2, namely fuzzy concepts, fuzzy roles

and individuals [111]. The fuzzy concepts denote fuzzy sets of individuals, and fuzzy

roles denote fuzzy binary relations. Fuzzy modifier is the function which can be applied

to a fuzzy set to change its membership function. Two types of modifier, linear and

triangular, can be applied in fuzzy ontology. The fuzzy modifiers have capability of using

some expressions, such as very, more or less, to express their membership functions in

fuzzy sets. For instance, the oil temperature can be very high, where the very is a linear

modifier, which can be defined as linear(0.9). Table 6.1 presents the syntax of the fuzzy

OWL2 given in [111].
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Table 6.1: Summary of fuzzy OWL2 syntax

Concept Syntax Axiom Syntax

(C1) A (A1) 〈a:C ⊲⊳ α 〉
(C2) ⊤ (A2) 〈(a, b):R ⊲⊳ α〉
(C3) ⊥ (A3) 〈(a, b):¬R ⊲⊳ α〉
(C4) C ⊓ D (A4) 〈(a, ν):T ⊲⊳ α〉
(C5) C ⊔ D (A5) 〈(a, ν):¬T ⊲⊳ α〉
(C6) ¬ C (A6) 〈a 6= b〉
(C7) ∀R.C (A7) 〈a = b〉
(C8) ∃R.C (A8) 〈C ⊑ D ⊲ α〉
(C9) ∀T. d (A9) C1 ≡ ... Cm

(C10) ∃T. d (A10) dis(C1, ..., Cm)
(C11) {α/a} (A11) disUnion(C1, ..., Cm)
(C12) ≥m S.C. (A12) 〈R1 ...Rm ⊑ R ⊲ α〉
(C13) ≤n S.C. (A13) 〈T1 ⊑ T2 ⊲ α〉
(C14) ≥m T. d (A14) R1 ≡ ... Rm

(C15) ≤n T. d (A15) T1 ≡ ... Tm

(C16) ∃S.self (A16) domain(R, C)
(C17) mod(C) (A17) range(R, C)
(C18) α · C (A18) range(T, d)
(C19) (α1 · C1) + ... + (αk · Ck) (A19) func(S)
Role Syntax (A20) func(T)
(R1) RA (A21) R ≡ R−

(R2) T (A22) trans(R)
(R3) R− (A23) dis(S1, ..., Sm)
(R4) U (A24) dis(T1, ..., Tm)
(R5) mod(R) (A25) ref(R)
Datatype Syntax (A26) irr(S)
(D1) left(k1, k2, a, b) (A27) sym(R)
(D2) right(k1, k2, a, b) (A28) asy(S)
(D3) triangular(k1, k2, a, b, c)
(D4) trapezoidal(k1, k2, a, b, c, d)
(D5) mod(d)

As can be seen in the Table 6.1, the fuzzy concepts represent various constructors,

from C1 to C19. The fuzzy roles syntax from R1 to R5, and the datatypes syntax from

D1 to D5, are provided for restriction. The applied axioms in fuzzy OWL2 based on

logic, are given in the Table 6.1, and can be grouped into the ABox (A1 to A7), TBox

(A8 to A11) and RBox (A12 to A28). Let us consider an example of fuzzy ontology

for power transformer fault diagnosis. The following concept can represent the fault
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Corrosion:

Corrosion ≡ Fault ⊓ ∃ has symptom.High Acid Number.

The conceptHigh Acid Number can be easily defined with fuzzy concept “Acid Number”

and a fuzzy modifier “High”. The concept 〈 Acid Number: High ≥ 0.9 〉 states that

the acid number is high with at least degree of 0.9.

Annotation in fuzzy OWL2 will be delimited with a starting tag “<fuzzyOwl2>”, and

an ending tag “< /fuzzyOwl2>”. Let us define the fuzzy modifier High = linear(0.9) of

the Corrosion fault presented previously. A fuzzy datatype High is annotated as follows:

<AnnotationAssertion >

<AnnotationProperty IRI = #fuzzyLabel/>

<IRI >#High </IRI >

<Literal datatypeIRI = &rdf;PlainLiteral>

<fuzzyOwl2 fuzzyType = "modifier">

<Modifier type = "linear" c="0.9" />

</fuzzyOwl2 >

</Literal >

</AnnotationAssertion >

A fuzzy datatype D is a pair 〈△D, ΦD〉, where △D is a concrete interpretation do-

main, and ΦD is a set of fuzzy concrete predicates d with an arity n and an interpretation

dI : ∆n
D → [0, 1], which is an n-ary fuzzy relation over △D [111]. Various functions,

such as trapezoidal, triangular, left-shoulder function (L-function), right-shoulder func-

tion (R-function) etc., can be used to specify the membership function in fuzzy modified

datatypes, as shown in Figure 6.2.

Depending on the fuzzy datatypes, various parameters, K1,K2, a, b, c, d can be ap-

plied, as shown in the Table 6.1. For instance, the gas ratio R2 from the Roger’s method

represents the condition R2 < 0.1. According to [110, 112], the undefined fault cases

usually appear when the value of gas ratios are close to the crisp boundaries, given in
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Figure 6.2: (a) Trapezoidal function, (b) Triangular function, (c) Left-shoulder
function, (d) Right-shoulder function, (e) Crisp function, (f) Linear function

the Roger’s method. However, the use of non crisp threshold based on fuzzy member-

ship function is recommended in order to solve this situation [110, 112]. In this case,

the fuzzy ontology can be applied in the form of left-shoulder function, with parameters

a = 0.05 and b = 0.15, for the datatype R2, as shown in Figure 6.3.

1

0 R20.05 0.15

1

0 R20.1

(a) (b)

Crisp Threshold Left-shoulder Threshold

Figure 6.3: Example of replaced fuzzy left-shoulder function with crisp function
(a) Crisp threshold function, (b) Left-shoulder threshold function

As shown in the Figure 6.3, the ratio R2 is represented with the left-shoulder function,

allowed by fuzzy modified datatype given in the Table 6.1.

6.1.3 Fuzzy DL reasoner

Several fuzzy reasoners, such as DELOREAN, FuzzyDL, FIRE, etc., are developed to

support the fuzzy ontology [106]. Fuzzy DL reasoner have been proposed as an extension

to the classical DLs, which aims to deal with fuzzy/vague/imprecise concepts. It sup-

ports fuzzy logic reasoning and based on the fuzzy DL SHIF(D) [113]. The tableaux

algorithm and Mixed Integer Linear Programming (MILP) optimization problem have
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been applied in the fuzzy DL reasoner [114]. Query language is one of the useful fea-

tures of the reasoner; it allows to compute several different types of queries. Table 6.2

represents the concrete syntax for the queries.

For instance, the concept query (max− subs ? C D) determines the maximal degree

of the concept C subsuming the concept D. Another feature, called “Show Expressions”,

can be used to show the values in an optimal solution, as presented in the Table 6.3

[114].

6.2 Fuzzy Ontology for Transformer Fault Diagnosis

As mentioned earlier, the main components of building a fuzzy ontology are fuzzy

datatypes, fuzzy modifiers, fuzzy concepts and fuzzy roles. To use the fuzzy ontolo-

gy for power transformer fault diagnosis, the Roger’s method is applied. Previously

in this work, the developed ontology-based fault diagnosis used three crisp threshold

datatypes, R1, R2 and R5, for restriction of defined fault classes. However, there were

some situations where the ontology could not diagnose the fault types. Consequently,

the undefined faults were displayed in the results. The present chapter illustrates how

the situation of the undefined fault can be solved with the use of the proposed fuzzy

ontology. The case five of the Roger’s method “Thermal fault less than 150 ◦C” with

three datatypes R2 < 0.1, 0.1 ≤ R1 ≤ 1 and 1 ≤ R5 ≤ 3 is investigated in this case.

Assuming the presented gas ratios, R1 and R2 satisfy their conditions, while R5 has the

value 0.99, which is slightly below the crisp threshold value (1 ≤ R5 ≤ 3). It is also

known that, the actual fault is the thermal fault less than 150 ◦C. In this case, the

Roger’s method identifies the fault as case 0, which shows that there is no fault. There

are also some other conditions that could not be defined in terms of Roger’s method,

which consequently results in the presence of undefined faults. These can be solved by

applying the fuzzy datatypes instead of the crisp threshold, as presented in [110, 112].

The developed fuzzy ontology applies ten datatypes with different functionalities and

boundaries. The first ratio R2 from the Table 2.3 is modified as three ratios, R21, R22

and R23, with fuzzy modified datatypes. The other two ratios, R1 and R5, are modified

in the similar way. The summary of proposed ratios is given in equation 6.2.
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Table 6.2: Concrete syntax for the queries

Query Semantics Expression

(max-instance? a C) sup{n | K |= 〈 a : C,n 〉} maximal degree to which individual a is an instance of concept C
(min-instance? a C) inf{n | K |= 〈 a : C,n 〉} minimal degree to which individual a is an instance of concept C
(max-related? a b R) sup{n | K |= 〈 (a,b) : R,n 〉} maximal degree to which individual pair (a,b) is an instance of role name R
(min-related? a b R) inf{n | K |= 〈 (a,b) : R,n 〉} maximal degree to which individual pair (a,b) is an instance of role name R
(max-subs? C D) sup{n | K |= 〈 D ⊑ C, n 〉} maximal degree to which concept C subsumes concept D
(min-subs? C D) inf{n | K |= 〈 D ⊑ C, n 〉} minimal degree to which concept C subsumes concept D
(max-sat? C [a]) supIsupaǫ∆

ICI (a) maximal degree to which concept C is satisfiable
(min-sat? C[a]) infIsupaǫ∆

ICI (a) minimal degree to which concept C is satisfiable
(max-var? var) sup{var | K is consistent} maximal value for variable var in [0,1], taking into account the constraints in KB
(min-var? var) inf{var | K is consistent} minimal value for variable var in [0,1], taking into account the constraints in KB
(defuzzify-lom? C a t) defuzzify t using LOM Defuzzify the value of feature t with the largest of the maxima method.
(defuzzify-som? C a t) defuzzify t using SOM Defuzzify the value of feature t with the smallest of the maxima method.
(defuzzify-mom? C a t) defuzzify t using MOM Defuzzify the value of feature t with the middle of the maxima method.
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Table 6.3: Show expression for fuzzy OWL2 statement

Statements Expression

(show-concrete-fillers f1...fn) show all fillers of concrete feature f1...fn in an optimal solution to a query
(show-concrete-fillers-for a f1...fn) for individual a, show all fillers of concrete feature f1...fn in an optimal solution to a query
(show-variables x1...xn) show the value of the variables x1...xn in an optimal solution to a query
(show-instances A1...An) show all instances of atomic concepts A1...An and their degree in an optimal solution to a query
(show-concepts a1...an) show all atoms to which ai is instance and their degree in an optimal solution to a query
(show-language) show the description logic language of the KB, from ALC to SHIF
(show-abstract-fillers R A1...An) show the membership to atomic concepts A1...An of the fillers of R
(show-abstract-fillers-for a R A1...An) show the membership to atomic concepts A1...An of the fillers of R for individual a
(show-concrete–instance-for a f A1...An) show degrees of being the f filler of a an instance of concept Ai

(show-abstract-fillers R1...Rn) show fillers of R1...Rn and membership to any concept
(show-abstract-fillers-for a R1...Rn) show fillers of R1...Rn for a and membership to any concept
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(6.2)

where the values of membership functions for each gas ratios are shown in the Figure

6.4.
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Figure 6.4: Proposed fuzzy datatypes for three gas ratios of the Roger’s method

For instance, the datatype R21 is defined as a left shoulder function with parameters

“a=0.05” and “b=0.15” (from the Figure 6.2 part C), instead of being crisp values of

“a=b=0.1”. This can be defined in fuzzy OWL2 with the following statement:

$<fuzzyOwl2 fuzzyType = "datatype">$

$<Datatype type = "leftshoulder" a="0.05" b="0.15" />$

$</fuzzyOwl2>$

The case study is applied for the Roger’s method with actual DGA samples, to in-

vestigate how fuzzy ontology can improve the ontology developed earlier for transformer

fault diagnosis. For this reason, the required classes and properties are designed, similar

to the ontology described in the previous chapter.
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Table 6.4: Revised Roger’s method for fault diagnosis

Case Fault Type R2 R1 R5

0 No fault R21 R12 R51
1 Low energy partial discharge R22 R11 R51
2 High energy partial discharge R22 R11 R51
3 Low energy discharge, sparking, arcing R23 R12 R53
4 High energy discharges, arcing R22 R12 R54
5 Thermal fault temperature less than 150 ◦C R21 R12 R52
6 Thermal fault temperature range 150-300 ◦C R21 R13 R51
7 Thermal fault temperature range 300-700 ◦C R21 R13 R52
8 Thermal fault temperature range over 700 ◦C R21 R13 R54

6.2.1 Classes and properties

The software Protégé plug-in helps to make the syntax of the fuzzy ontology annota-

tion [111]. Similarly to the developed ontology described in Chapter 5, the proposed

fuzzy ontology for power transformer fault diagnosis contains various classes. Three

subclasses, Faults, Symptoms and Components are chosen for the class Transformer.

The subclass of faults, called Rogers Method Faults, represents nine cases of the Roger’s

method faults. These nine subclasses are restricted with fuzzy modified datatypes prop-

erties. Depending on the type of fault, various relevant classes and subclasses are applied

for the fuzzy ontology. Screenshots provided in Appendix D show the classes, subclasses

and applied restrictions for the developed fuzzy ontology.

To provide the restrictions on the selected classes, various types of properties are

applied. One of the applied object properties is called has ratio. The modified datatypes

properties presented in equation 6.2 are also asserted, instead of using the crisp threshold

properties. Therefore, the Roger’s method can be revised using the fuzzy membership

functions, as shown in the Table 6.4.

This can be illustrated with the first case of Roger’s method in the form of fuzzy

ontology. According to Table 6.4, the case 0 represents No Fault situation with R21,

R12 and R51 gas ratios conditions corresponding to it (their values are defined in the

Figure 6.4). This can be presented in Protégé with the following statement:
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No Faults EquivalentTo Faults and (has ratio some R21) and (has ratio

some R12) and (has ratio some R51)

(6.3)

while in the fuzzyDL form, this statement is defined as:

Case 0:

No Fault ≡ Faults ⊓ (∃ has ratio.R21) ⊓ (∃ has ratio.R12) ⊓

(∃ has ratio.R51)

(6.4)

which expresses the case of having no fault with corresponding three conditions of gas

ratios. The OWL2 syntax expressing this statement is given in Appendix D. The cases

1 and 2 of the Roger’s method present similar conditions for the Partial Discharge fault

(low and high energy); and they can be merged into one case. The rest of the Roger’s

method cases are formalized in the TBox as given below:

Case 1&2:

Partial Discharge ≡ Faults ⊓ (∃ has ratio.R22) ⊓ (∃ has ratio.R11) ⊓

(∃ has ratio.R51)

(6.5)

Case 3:

Low Energy Discharge, Sparking,Arcing ≡ Faults ⊓ (∃ has ratio.R23) ⊓

(∃ has ratio.R12) ⊓ (∃ has ratio.R53)

(6.6)

Case 4:

High Energy Discharge,Arcing ≡ Faults ⊓ (∃ has ratio.R22) ⊓ (∃

has ratio.R12) ⊓ (∃ has ratio.R54)

(6.7)

Case 5:

Thermal Fault Temperature Less Than 150 ◦C ≡ Faults ⊓ (∃ has ratio

.R21) ⊓ (∃ has ratio.R12) ⊓ (∃ has ratio.R52)

(6.8)
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Case 6:

Thermal Fault Temperature between 150 300 ◦C ≡ Faults ⊓ (∃ has ratio

.R21) ⊓ (∃ has ratio.R13) ⊓ (∃ has ratio.R51)

(6.9)

Case 7:

Thermal Fault Temperature between 300 700 ◦C ≡ Faults ⊓ (∃ has ratio

.R21) ⊓ (∃ has ratio.R13) ⊓ (∃ has ratio.R52)

(6.10)

Case 8:

Thermal Fault Temperature Over 700 ◦C ≡ Faults ⊓ (∃ has ratio.R21)

⊓ (∃ has ratio.R13) ⊓ (∃ has ratio.R54)

(6.11)

The relevant screenshots for the developed fuzzy ontology, including classes, proper-

ties, fuzzy datatype, etc., are provided in the Appendix D.

6.2.2 The experimental results for fault diagnosis with fuzzy ontology

Various types of programming software, such as Protégé, Java, Gurobi, etc., were used in

this work to apply and test the fuzzy ontology. The actual data and the corresponding

faults from Table 4.2 are investigated with the help of fuzzy ontology. The accuracy

of fault diagnosis is improved by applying the fuzzy membership functions instead of

crisp thresholds. For this purpose, the values of membership functions of the gas ratios

are found and investigated. In the case of membership function value is equivalent to

one, the developed method performs similarly to the ontology described in the previous

chapter. For the membership function value below one, the conclusion on the fault

type will be made considering whether the gas ratio combination belongs to the one

(or more) of the defined classes. This can be illustrated with an example of actual gas

ratios (as provided in Table 6.5). A fault type for the set of gas ratio values (R2=3.25,

R1=0.08, R5=17.75) could not be defined with the ontology, while using the developed

fuzzy ontology can solve this problem. With the help of fuzzy ontology the following

membership functions were obtained:

µ(R2 = 3.25) = µ(R23) = 1
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µ(R1 = 0.08) =











µ(R11) = 0.7

µ(R12) = 0.3











µ(R5 = 17.75) =











µ(R53) = 1

µ(R54) = 1











Therefore, the conclusions on the several combinations of the participating datatypes

are made as follows:

1. R23 ⊓R11 ⊓R53 ⇒ There is no fault defined with this condition.

2. R23 ⊓R11 ⊓R54 ⇒ There is no fault defined with this condition.

3. R23 ⊓R12 ⊓R54 ⇒ There is no fault defined with this condition.

4. R23 ⊓R12 ⊓R53 ⇒ The conditions match with the fault in case 3.

Verifying the combination of membership functions with the table of defined classes

(Table 6.4) allows to identify the fault type as “Low energy partial discharge, sparking,

arcing” (case 3).

The overall accuracy can be increased in the case of applying more DGA samples in

the threshold areas. As the same actual data were used in all cases, it can be easily com-

pared to the results of proposed rule-based reasoning and ontology methods. Table 6.5

shows 20 results of the developed fuzzy ontology for power transformer fault diagnosis.

As shown in Table 6.5, the number of undefined faults is reduced to three cases only.

Summary of the results for the 70 DGA samples is given in Table 6.6. As shown in

Table 6.6, two cases of partial discharge faults were diagnosed correctly, and two cases

of undefined faults were verified as the arcing faults. The overall accuracy increased

from 72.86% to 95.71% by applying fuzzy ontology.

6.2.3 Discussion

Complex problems can be solved with knowledge-based systems using the reasoning

techniques. It is also important for the knowledge-base system to be conceptualised.

As mentioned earlier, the significant disadvantage of early expert system was having

both domain knowledge and rules within the same knowledge base. The knowledge-

based systems utilizing rule-based reasoning were facing this problem. Having a proper
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Table 6.5: The actual DGA samples applied with fuzzy ontology-based reasoning

R2 R1 R5 Actual Fault Fuzzy Ontology Results Results

1.16 0.46 5.2 Arcing Low Energy Partial Discharge, Arcing, Sparking Correct

0.07 5.43 5.26 Overheating Thermal Fault(TF) TF > 700◦C Correct

1.65 0.17 3.13 Arcing Low Energy Partial Discharge, Arcing, Sparking Correct

1.06 1.74 9.26 Arcing Undefined Fault ND*

0.04 3.86 6.94 Overheating Thermal Fault TF > 700◦C Correct

0.97 1.79 7.06 Arcing Undefined Fault ND*

0.01 40.99 5.07 Overheating Thermal Fault TF > 700◦C Correct

3.25 0.08 17.75 Partial Discharges Low Energy Partial Discharge, Arcing, Sparking Correct

0.02 3.09 7.44 Overheating Thermal Fault TF > 700◦C Correct

0.01 1.42 10.02 Overheating Thermal Fault TF > 700◦C Correct

2.74 1.54 13.42 Arcing Undefined Fault ND*

0.01 2.69 8.62 Overheating Thermal Fault TF > 700◦C Correct

2.93 0.09 6.6 Arcing Low Energy Partial Discharge, Arcing, Sparking Correct

2.26 0.29 10.82 Arcing Low Energy Partial Discharge, Arcing, Sparking Correct

3.42 0.08 5.6 Partial Discharges Low Energy Partial Discharge, Arcing, Sparking Correct

0.02 2.39 7.16 Overheating Thermal Fault TF > 700◦C Correct

3.3 0.07 16.5 Arcing Low Energy Partial Discharge, Arcing, Sparking Correct

0.02 2.4 6.7 Overheating Thermal Fault TF > 700◦C Correct

0 4.85 1.85 Overheating Thermal Fault 300 < TF < 700◦C Correct

1.45 0.84 14 Arcing Low Energy Partial Discharge, Arcing, Sparking Correct

* ND = Not Defined

concept of the knowledge enables the separation of domain and application of knowledge,

however the problem of separation of rules remains unsolved. This can be done with

the help of ontology. For this reason, an ontology-based knowledge representation was

developed for the purpose of power transformer fault diagnosis.

The interaction between agent technology and the developed ontology for transformer

fault diagnosis is able to facilitate and automate the actions. The key advantage of

proposed system is the ability to revise the knowledge-based system with newer ontology

with better performance. This also can be done with help of agents technology. The

fuzzy ontology has never been applied to date for power transformer fault diagnosis.

MAS and KBS for Transformer Fault Diagnosis F. Davoodi Samirmi



6.2 Fuzzy Ontology for Transformer Fault Diagnosis 126

Table 6.6: Summary of fuzzy ontology-based reasoning for fault diagnosis

Fault Types Total Samples Diagnosed Correctly Not Defined Fault Accuracy

No Fault 1 1 0 100%

Partial Discharge 2 2 0 100%

Arcing 14 11 3 78.57%

Overheating 25 25 0 100%

Low Energy Discharge 28 28 0 100%

Average Total Accuracy — — — 95.71%

In this study, the simple fuzzy system is investigated, while on the latter stages it can

be used with more significant threshold boundaries of the fuzzy system for DGA fault

diagnosis.

There are various techniques of power transformer fault diagnosis based on DGA

samples developed by researchers. Ontology-based knowledge representation for power

system is applied in [3, 6], where it aims to provide the real-time information to the

user. Therefore, the system described in [3, 6] has no ability of fault diagnosis, while

the proposed system is able to do so.

Ontology was applied for power transformer fault diagnosis in some of the literature

sources found, such as [9, 12]. In both cases, the proposed ontologies were not able to

handle the uncertain conditions. The ontology proposed in [9] uses the object properties

only, and therefore requires an additional programming for fault classification. However,

agent does not participate in this work, and experts are required to carry out the fault

diagnosis. Application of datatype properties, similarly to this work, would reduce the

number of classes representing the fault types. The system developed in this work does

not require any additional programming for fault diagnosis. The overall accuracy for

the developed system have been increased by applying different methods. A summary

of results for three types of developed systems is given in Table 6.7.

As shown in the Table 6.7, the identical values of the accuracy were obtained with the

use of rule-based system and ontology, while for the fuzzy ontology this value was higher.

The total accuracy of the fault diagnosis with the fuzzy ontology applied has increased

by 22.85% compared to the other two methods. As the real time power transformer
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Table 6.7: Results summary of developed systems for fault diagnosis

Fault Types Rule-based Ontology Fuzzy Ontology Increased Accuracy

No Fault 100% 100% 100% —

Partial Discharge 0% 0% 100% 100%

Arcing 64.30% 64.30% 78.57% 14.27%

Overheating 100% 100% 100% —

Low Energy Discharge 100% 100% 100% —

Average Total Accuracy 72.86% 72.86% 95.71% 22.85%

fault diagnosis always involves some degree of uncertainty, therefore the use of ontology

in this case might be limited. Fuzzy ontology is capable of dealing with the situations

involving some uncertainty better, and the applications of it to power transformer fault

diagnosis provides better results.

6.3 Summary

A fuzzy ontology developed for power transformer fault diagnosis, based on the Roger’s

method, was presented in this chapter. Three types of fuzzy modified datatypes, namely

left-shoulder, right-shoulder and trapezoidal functions, were applied to revise the Roger’s

method. The developed fuzzy ontology applies various classes and subclasses, restricted

by different types of properties. Finally, the actual DGA samples were tested; the

results were compared to the work described previously, such as rule-based reasoning

and ontology. The results showed that the use of fuzzy ontology allowed to increase the

fault diagnosis total accuracy by 22.85% compared to two other methods.
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Chapter 7

Conclusion and Future work

7.1 Conclusion

This thesis has described a multi-agent system using a knowledge base for the purpose

of performing automatic actions and fault diagnosis of the power transformer. MAS is

the main component of this architecture; it consists of a FIPA standard agent platform

and number of various types of agents. MAS provides condition monitoring, performs

various actions and fault diagnosis in power system. Known conditions of the power

system component, here – power transformer, are collected into the knowledge-based

system for the purpose of fault diagnosis. Three types of knowledge representation are

applied in this study for power transformer fault diagnosis and performing automatic

actions in case of fault situation. The developed knowledge-based systems are rule-based

reasoning, ontology-based reasoning and fuzzy ontology.

Initially, the agent architecture is developed based on the Gaia methodology to clar-

ify, simplify and standardize the design of the MAS. The Gaia methodology has been

applied for first time in power transformer condition monitoring and fault diagnosis

in combination with knowledge-based systems. The developed agent system is able to

monitor the condition of the component (power transformer), diagnose its fault, and

perform an action, if required. Furthermore, several types of knowledge-based systems

are developed in order to improve the system versatility. Accuracy of the fault diagnosis

based on the use of fuzzy ontology was shown to be increased by 22.85%, for the identical

data samples used. The agent architecture for power transformer condition monitoring
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and real-time fault diagnosis can be applied to different industrial situations that require

SCADA system to reduce the human efforts required, as well as equipment maintenance

cost reduction.

7.1.1 Summary of thesis

Chapter 2 described various types of applied automated systems in industry and the

background of power system automation. Some aspects of agents and multi-agent sys-

tems, including definition, architectures, design methodologies, standards and their ap-

plications, have been reviewed. Power system components, power transformers and the

components required for condition monitoring were introduced. DGA, as a common type

of fault diagnosis technique, with various methods, was described. Finally, the current

applications of MAS in power system automation, ontology, condition monitoring, etc.

were reviewed.

Chapter 3 described the overall hierarchy of the developed multi-agent framework

for the power transformer condition monitoring and fault diagnosis. First, the Gaia

methodology was chosen to analyse and design the MAS step by step. Various types of

agents for the purpose of condition monitoring, controlling and performing automatic

actions were developed. Three types of knowledge based systems were proposed to

provide information to the MAS.

Agent collaboration for three types of tasks, real-time data collection and fault di-

agnosis, user interaction and automatic action performing, were investigated. Various

types of software, such as MySQL database, JDBC, JFreeChart, etc., were applied in

order to develop the system. Agent Analyser was developed to interact with MAT-

LAB program for the case of fault diagnosis. A classification method based on machine

learning, KNN, was applied for the fault classification. A total number of 191 DGA

samples was tested using key gases and gas ratios individually. An experimental system

was applied for the purpose of agents collaboration with the knowledge based system.

The experimental system used actual data, such as bottom oil temperature and ambient

temperature, etc., for purpose of data collection, monitored the information for the user

and replied to the request of report.

MAS and KBS for Transformer Fault Diagnosis F. Davoodi Samirmi



7.1 Conclusion 130

Chapter 4 described the developed knowledge-based system for power transformer

fault diagnosis. Rule-based reasoning has been successfully applied to present infor-

mation of the power transformer status. Two applications of rule-based reasoning in

cooperation with MAS were proposed. For the first application rule-based reasoning

was implemented to perform automatic action in power system and its component. For

this purpose two types of experimental tests were investigated. First test used perform-

ing of automatic actions in power transformer. For this purpose, the information of

thermal fault, given by IEC standard publication, was loaded into the knowledge-based

system. Based on receiving the real-time data, such as transformer winding tempera-

ture, an appropriate action could be performed. Second test was applied for performing

an automatic action in power system based on fault diagnosis.

The second application of the rule-based reasoning was applied for power transformer

fault diagnosis based on Roger’s method. Actual data samples were investigated to

show the fault diagnosis performance. Various types of agents, such as data sender,

knowledge base agent, controller and user agents, were utilised to perform the actions.

The knowledge-based system used JESS program for the interaction of the required

information of the transformer and power system with agent system. The accuracy of

the fault diagnosis for 70 DGA samples was evaluated as 72.88%.

Chapter 5 described the ontology-based reasoning for power transformer fault di-

agnosis. The OWL-DL language was applied to develop the ontology. Various classes

and subclasses were asserted and restricted by different types of properties. The devel-

oped ontology based on OWL-DL with DL reasoner had an ability to infer the hierarchy

classes, subclasses, inconsistency, etc. The way developed ontology could extract im-

plicit information from the explicit facts built in, was also reviewed in this chapter. An

agent was designed to wrap the ontology for the purpose of interaction. In the study

conducted, an ontology agent was able to receive the DGA samples and pass them to

the ontology for fault diagnosis. In this case study, the Roger’s method was applied in

form of OWL-DL ontology. Finally, the applied 70 DGA sample were investigated, and

the accuracy of discussed fault diagnosis method was assessed.
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Chapter 6 described the novel application of the fuzzy ontology in power system,

that was capable of dealing with the uncertainty. The advantages of fuzzy ontology and

some examples of its application for power transformer fault diagnosis were discussed. To

investigate the improvement of the fuzzy ontology compared to the previously developed

ontology, the fault diagnosis based on Roger’s method was applied. The accuracy of

developed fuzzy ontology was evaluated using the same DGA samples as previously;

then the overall accuracy was assessed. It was shown that the use of fuzzy ontology

allowed to improve accuracy by over 22 %, compared to the other types of knowledge-

based systems discussed earlier.

7.2 Future Research

Due to the time limitation and the broadness of the research field the work was carried

out at, it was not possible to investigate all the possible methods in terms of this project.

This section provides several suggestions that might be used for future work conducted

in the relevant area.

• MAS decision maker based on fuzzy ontology in power system

Fuzzy ontology provides the semantic annotations based on logic for dealing with

uncertain knowledge. The present thesis describes a limited number of the agents

developed. Various types of behaviour, such as cyclic, parallel, etc., can be im-

plemented for improving the agent system. However, one feature of the fuzzy

ontology is to implement the relative importance of every criterion with decision

alternatives, by assigning a weight to it. This feature can be applied for the power

transformer fault diagnosis for the case of diagnosed various types of faults. In

case of x decision alternatives and a set of y criteria according to which the desir-

ability of the fault type can be judged. The use of developed agent framework with

knowledge-based system combined with the features of fuzzy ontology described

above can provide an additional abilities to be used in power system.

• BDI-agent software for power system automation
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Agent technology is an impressive technique that can be applied in power system

for condition monitoring and automation of the components. Depending on the

application, the agent architectures may vary to be able to cooperate for achieving

the goals. In this work the developed agent system for transformer fault diagnosis

uses the reactive architecture. This type of architecture was chosen based on its

ability to respond actively to the fault situation. However, in case of electricity

marketing and utilities, long term decision makers based on agent system obser-

vation and goal direction are required. The BDI agent architecture is a useful

architecture can be applied for those type of applications in power system.

• Fault diagnosis with non-linear classification method

The interaction of the proposed multi-agent framework with KNN classifier were

successful. A linear classifier method, KNN, was applied to evaluate the accuracy.

For the purpose of increasing the accuracy of the fault diagnosis, various other

methods can be applied. For instance, using non-liner classification, such as SVM,

can improve the overall accuracy.

• Knowledge-based learning system

The complexity of real-world problems often require complicated methods and

tools for building on-line, knowledge-based intelligent systems. The multi-agent

framework described in this thesis does not possess the learning method. Therefore

the proposed system can be potentially improved with introducing the learning

ability to it. Thus, the learning ability of the knowledge base means that the

system attempts to complete the missing knowledge and reduce non-reliability of

the communication process between man and machine [115].
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Appendix A

The Gaia Methodology Design for

the System

A.1 Role Schema of Gaia Methodology

Figures A.1 to A.7 represent the role schemas of Gaia methodology for the remain roles.

Role Schema:

Description:

Protocols and Activities:

Responsibilities

Reporter

Receives messa e rom ser or aphical report, requests data from

the data collector, draws data and replies to the report.

AwaitRequestReport, ExtractRequestDataDetail, SendRequestData,

AwaitReceiveRequestData, DrawRequestData, SendReportRequestData

Permission:

reads

generates

supplied data

createReport

// what data is required

// draw data as a report

Liveness:

Safety:

Reporter = (AwaitRequestReport. GetData. Generate-

Report)ʷ

GetData = (ExtractRequestDataDetail. SendRequestData.

AwaitReceiveRequestData)

GenerateReport = (DrawRequestData. SendReportRequestData)

· repliedRequestReport = true

Figure A.1: The “Reporter” role schema
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Role Schema:

Description:

Protocols and Activities:

Permission:

Data_Collector

Receives messa e rom the data sender, extracts the new data from

message and saves into database. The new data is sent for fault diagnosis

by knowledge-based system, result is sent to be saved in database. This

role is also able to get request for data and reply to this request.

AwaitNewMessage, ExtractDataDetails, SaveRawData, SendNew-

DataForFaultDiagnose, AwaitReceiveDiagnosedData, Extract-

DiagnosedData, SaveDataInDatabase, AwaitRequestData, GetRequest-

Data, ReplayRequestData

reads

generates

supplied newData

supplied diagnosedData

supplied requestData

saveInDatabase

messageWithNewData

saveDiagnosedData

getRequestData

// new data information

// new diagnosed data information

// what data required

// save raw data in database

// create a message with data content

// save data fault diagnosis

// get the information of required data

Responsibilities

Liveness:

Safety:

Data_Collector = (AwaitNewMessage. SaveData. DiagnosedData.

RepliedData)ʷ

SaveData = (ExtractDataDetails. SaveRawData)

DiagnosedData= (SendNewDataForFaultDiagnose. Await-

ReceiveDiagnosedNewData. ExtractDiagnosed-

Data. SaveDataInDatabase)

RepliedData = (AwaitRequestData. GetRequestData. Replay-

RequestData)

· dataSaved = true

· diagnosedDataSaved = true

· repliedRequestData = true

Figure A.2: The “Data Collector” role schema
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Role Schema:

Description:

Protocols and Activities:

Permission:

User

his role receives request from user interface for data or report, and gets

the reply. It also requests applying some action and informs whether the

action is done.

RequestData, ReplyRequestData, RequestReport, ReplyRequestReport,

RequestPerformAction, InformActionDone

reads

generates

supplied data

supplied dataReport

supplied actionApplied

messagePerformingAction

// data information

// report data in form of graph

// inform the action is completed

// create message for performing action

Responsibilities

Liveness:

Safety:

User = (GetData | GetReport | PerformAction)+

GetData = (RequestData. ReplyRequestData)

GetReport = (RequestReport. ReplyRequestReport)

PerformAction = (RequestPerformAction. InformActionDone)

· repliedDataReport = true

· repliedRequestReport = true

· actionPerformed = true

Figure A.3: The “User” role schema

Role Schema:

Description:

Protocols and Activities:

Controller

his role receives an action per ormance and also in orms the ser hat

action is applied

ait ormAction, PerformAction, InformAppliedAction

Permission:

reads

generates

supplied performAction

messageWithNewData

// which equipment is activated

// create a message with applied

action

Responsibilities

Liveness:

Safety:

Controller = (AwaitInformAction. ActionDone)+

ActionDone = (PerformAction. InformAppliedAction)

· actionPerformed = true

Figure A.4: The “Controller” role schema
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Role Schema:

Description:

Protocols and Activities:

Knowledge-based

This role receives data from data collector and uses the knowledge-based

system to diagnose the fault. It is also able to send message to relevant

controlling devices.

AwaitReseiveData, DiagnoseFault, AssignAction, SendDiagnosedData,

SendPerformAction

reads

generates

supplied newData

usesKnowledge-basedSystem

messageDiagnosedFault

messageActionPerformance

// new data information

// connect to knowledge-based system

// create message with defined fault

// create message for performing

action

Permission:

Responsibilities

Liveness:

Safety:

Knowledge-based = (AwaitReseiveData. DiagnoseFault. Send-

DiagnosedData. SendPerformAction)ʷ

· faultDiagnosed = true

· actionPerformed = true

Figure A.5: The “Knowledge Base” role schema

MAS and KBS for Transformer Fault Diagnosis F. Davoodi Samirmi



A.1 Role Schema of Gaia Methodology 137

Role Schema:

Description:

Protocols and Activities:

Analyser

This role receives data, connects to MATLAB, fault diagnosis and

finally informs the data collector about the results.

AwaitNewMessage, ExtractDataDetail, ConnectToMATLAB,

DiagnoseFault, SendDiagnosedData

Permission:

reads

generates

supplied newData

supplied diagnosedData

messageWithDiagnosedData

// new data information

// new diagnosed data information

// create a message with diagnosed

data

Responsibilities

Liveness:

Safety:

Analyser = (AwaitNewMessage. DiagnosedFaults )ʷ

DiagnosedFaults = (ExtractDataDetail. ConnectToMATLAB.

DiagnoseFault. SendDiagnosedData)

· faultDiagnosed = true

· repliedDiagnosedData = true

Figure A.6: The “Analyser” role schema

Role Schema:

Description:

Protocols and Activities:

Coordinator

This role provides coordination et een roles y checking their reports.

AwaitInformDataCollected, AwaitInformDataReported, AwaitInform-

GraphReported, AwaitInformActionDone, AwaitInformFaultDiagnosed

Permission:

reads Supplied reportTaskDone // reporting task completed

Responsibilities

Liveness:

Safety:

Coordinator = (AwaitInformeDataCollected. AwaitInformData-

Reported. AwaitInformGraphReported. Await-

InformActionDone. AwaitInformFaultDiagnosed)ʷ

· dataCollected = true

· faultDiagnosed = true

· dataReported = true

· graphReported = true

· actionPeformed = true

Figure A.7: The “Coordinator” role schema
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A.2 Interaction Model for Developed MAS

Figures A.8 to A.11 represent the definition of protocol associated with the roles.

Figure A.8: Protocol definition associated with roles a)“Data Collector”
b)“Reporter”

Figure A.9: Protocol definition associated with roles a)“Controller” b)“Analyser”
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Figure A.10: Protocol definition associated with roles a)“Coordinator”
b)“Knowledge Base”

Figure A.11: Protocol definition associated with “User” role

MAS and KBS for Transformer Fault Diagnosis F. Davoodi Samirmi



A.3 Database Contents 140

A.3 Database Contents

Figure A.12 provides an example of database content, filled by the Data Collector agent

then stored the data in the related database and table.

Figure A.12: Contents of database
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Rule-based Reasoning

B.1 Sample Code of JESS Rules

The following JESS rules are written for the loading and cooling conditions of power

transformer based on IEC standard recommendations.

/*

* IEC_Standard.clp

* Create on 27 May 2011, 14:15

* author F. Davoodi Samirmi

*/

********Template*******

(deftemplate Component_Temperature

(slot Winding_Temperature)

(slot Agent)

)

********Rules**********

Rule0:

(defrule st

(initial-fact)

=>

(printout t "Jess engine started!" crlf))
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Rule1:

(defrule Control1_Component_Temperature

(Component_Temperature{Winding_Temperature < 50}(Agent ?agent))

=>

(send "Report: Cooler System = OFF" ?User)

(assert (Transformer CoolerSystem_OFF))

)

Rule2:

(defrule Control2_Component_Temperature

(Component_Temperature {Winding_Temperature >= 50 &&

Winding_Temperature < 75}

(Agent ?agent))

=>

(send "Report: Cooler System = OFF" ?User)

(send "Report: No Fault" ?agent)

(assert (Transformer CoolerSystem_OFF))

)

Rule3:

(defrule Control3_Component_Temperature

(Component_Temperature{Winding_Temperature >= 75}(Agent ?agent))

=>

(send "Report: Cooler System = ON" ?User)

(assert (Transformer CoolerSystem_ON))

)

Rule4:

(defrule Control4_Component_Temperature

(Component_Temperature{Winding_Temperature >= 105}(Agent ?agent))

=>
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(send "Report: Alarm Signal = ON" ?User)

(assert (Transformer AlarmSignal_ON))

)

Rule5:

(defrule Control5_Component_Temperature

(Component_Temperature{Winding_Temperature >= 120}(Agent ?agent))

=>

(send "Report: Trip Signal = ON" ?User)

(assert (Transformer TripSignal_ON))

)

B.2 Sample Code of Knowledge base Agent

The following example shows a simple agent called Knowledge Based agent designed

according to FIPA specification. The agent is able to receive a message containing data

from Data Sender, connect to the JESS for the purpose of fault diagnosis.

/*

* Knowledge_Based_Agent.java

* Create on 5 June 2011, 10:56

* author F. Davoodi Samirmi

*/

import jade.core.Agent;

import jade.core.AID;

import jade.core.behaviours.CyclicBehaviour;

import jade.lang.acl.ACLMessage;

import jade.lang.acl.MessageTemplate;

import java.io.FileReader;

import java.io.IOException;

import jess.*;
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public class Knowledge_Based extends Agent

{protected void setup()

{

JessBehaviour jessBeh=new JessBehaviour(this, "JessFile.clp");

addBehaviour(jessBeh);

addBehaviour(new MsgListening(this, jessBeh));

MyACLMessage myMsg = new MyACLMessage(ACLMessage.INFORM);

myMsg.setContent("My content");

myMsg.addReceiver(new AID("Data_Sender", false));

send(myMsg);

}

public class MyACLMessage extends ACLMessage

{

private String content;

MyACLMessage(int perf) {

super(perf);

}

public String getContent() {

return content;

}

public void setContent(String content) {

this.content = content;

}

}

class JessBehaviour extends CyclicBehaviour {

private jess.Rete jess;

private static final int MAX_JESS_PASSES = 1;

JessBehaviour(Agent agent, String jessFile) {
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super(agent);

jess = new jess.Rete();

jess.addUserfunction(new JessSend2(myAgent));

try {

FileReader fr = new FileReader("C:\\~\\jessFile.clp");

jess.Jesp j = new jess.Jesp(fr, jess);

try {

j.parse(false);

} catch (jess.JessException je) {

je.printStackTrace();

}

fr.close();

} catch (IOException ioe) {

System.err.println("Error loading JessFile, engine is empty");

}

}

public void action() {

int executedPasses = -1;

try {

executedPasses = jess.run(MAX_JESS_PASSES);

} catch (JessException je) {

je.printStackTrace();

}

if(executedPasses < MAX_JESS_PASSES)

block();

}

boolean addFact(String jessFact) {

try {

jess.reset();

jess.assertString(jessFact);

System.out.println(jessFact);
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} catch(JessException je) {

return false;

}

if(!isRunnable()) restart();

return true;

}

boolean newMsg(ACLMessage msg) {

String jf=msg.getContent();

return addFact(jf);

class MsgListening extends CyclicBehaviour {

private JessBehaviour jessBeh;

MsgListening(Agent agent, JessBehaviour jessBeh) {

super(agent);

this.jessBeh = jessBeh;

}

public void action() {

MessageTemplate mt=MessageTemplate.MatchPerformative(ACLMessage.INFORM);

ACLMessage msg=myAgent.receive(mt);

if (msg != null) {

if(jessBeh.newMsg(msg))

System.out.println("New fact asserted. ");

else

System.out.println("Fact assertion failed. ");

} else

block();

}

}

}
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Ontology-based Reasoning

C.1 Sample Code of an Ontology Agent

According to FIPA specification, an Ontology agent is implemented. The life-cycle

operation of this agent is initiated by creating the agent in the platform. The agent

starts performing after receiving a message containing of gas ratios.

/*

* OntologyAgent.java

* Create on 3 December 2011, 17:10

* author F. Davoodi Samirmi

*/

import java.io.File;

import java.util.Set;

import org.semanticweb.owlapi.apibinding.OWLManager;

import org.semanticweb.owlapi.model.IRI;

import org.semanticweb.owlapi.model.OWLClass;

import org.semanticweb.owlapi.model.OWLClassExpression;

import org.semanticweb.owlapi.model.OWLDataFactory;

import org.semanticweb.owlapi.model.OWLObjectProperty;

import org.semanticweb.owlapi.model.OWLOntology;

import org.semanticweb.owlapi.model.OWLOntologyCreationException;
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import org.semanticweb.owlapi.model.OWLOntologyManager;

import org.semanticweb.owlapi.reasoner.ConsoleProgressMonitor;

import org.semanticweb.owlapi.reasoner.Node;

import org.semanticweb.owlapi.reasoner.NodeSet;

import org.semanticweb.owlapi.reasoner.OWLReasoner;

import org.semanticweb.owlapi.reasoner.OWLReasonerConfiguration;

import org.semanticweb.owlapi.reasoner.OWLReasonerFactory;

import org.semanticweb.owlapi.reasoner.SimpleConfiguration;

import org.semanticweb.owlapi.util.DefaultPrefixManager;

import uk.ac.manchester.cs.factplusplus.owlapiv3.

FaCTPlusPlusReasonerFactory;

import jade.core.Agent;

import jade.core.behaviours.*;

import jade.lang.acl.*;

public class OntologyAgent extends Agent {

protected void setup() {

addBehaviour(new CyclicBehaviour(this) {

public void action() {

ACLMessage msg=receive();

if (msg!=null) {

System.out.println( " - " + myAgent.getLocalName() +

" received Symptoms: " + msg.getContent() );

try {

//Create our ontology manager in the usual way.

OWLOntologyManager manager=OWLManager.createOWLOntologyManager();

//Load a copy of the PowerTransformerOntology.

File file=new File("C:/Ontology/~.owl");
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//Now load the local copy

OWLOntology ont=manager.loadOntologyFromOntologyDocument(file);

System.out.println("The Ontology Loaded: " + ont.getOntologyID());

DefaultPrefixManager pm=new DefaultPrefixManager("http://~.owl#");

//Create an instance of OWLReasoner. (Using factPP.OWL reasoner)

ReasonerFactory reasonerFactory=new FaCTPlusPlusReasonerFactory();

//We’ll now create an instance of an OWLReasoner.

ConsoleProgressMonitor progressMonitor=new ConsoleProgressMonitor();

//Specify the progress monitor via a configuration.

OWLReasonerConfiguration config=new SimpleConfiguration(

progressMonitor);

//Create a reasoner that will reason over ontology.

OWLReasoner reasoner=reasonerFactory.createReasoner(ont, config);

//Ask reasoner to determine the consistent ontology.

reasoner.precomputeInferences();

boolean consistent=reasoner.isConsistent();

System.out.println("Consistent: " + consistent);

System.out.println("\n");

//We can easily get a list of unsatisfiable classes.

Node<OWLClass> bottomNode=reasoner.getUnsatisfiableClasses();

Set<OWLClass> unsatisfiable=bottomNode.getEntitiesMinusBottom();

if (!unsatisfiable.isEmpty()) {

System.out.println("The following classes are unsatisfiable: ");

for(OWLClass cls : unsatisfiable) {

System.out.println(" " + cls);
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}

}

else {

System.out.println("There are no unsatisfiable classes.");

}

System.out.println("\n");

//Now we want to query the reasoner for all types of faults.

OWLDataFactory fac=manager.getOWLDataFactory();

OWLClass koh=fac.getOWLClass(IRI.create(ont.getOntologyID().

getOntologyIRI()+ "#" + msg.getContent()));

OWLObjectProperty has_symp=fac.getOWLObjectProperty(IRI.create

("http://www.liv.co.uk/~owl#has_symptom"));

OWLClassExpression has_symp_koh=fac.getOWLObjectSomeValuesFrom(

has_symp, koh);

//Now ask reasoner for the has_symptom property values for koh

NodeSet<OWLClass>faults=reasoner.getSubClasses(has_symp_koh,false);

Set<OWLClass> faultsb=faults.getFlattened();

System.out.println("faults: ");

for(OWLClass cls : faultsb) {

System.out.println(" " + cls);

}

for(OWLClass cls : faultsb) {

if(!cls.isBottomEntity()) {

System.out.println("Faults are " + pm.getShortForm(cls));

// Send message back

ACLMessage reply=msg.createReply();

reply.setPerformative( ACLMessage.INFORM );

reply.setContent("faults are: " + pm.getShortForm(cls));
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send(reply);

}

}

System.out.println("\n");

}

catch(UnsupportedOperationException exception) {

System.out.println("Unsupported reasoner operation.");

}

catch (OWLOntologyCreationException e) {

System.out.println("Could not load the ontology:

" + e.getMessage());}

}

block();

}

});

}

}

C.2 The Developed Ontology for Fault Diagnosis

Ontology for power transformer fault diagnosis is built in Protégé. Screenshots of three

classes, Faults, Symptoms and Components, and their subclasses are given in the Figures

C.1 – C.4. Figure C.5 presents the applied datatype properties for the case 8 of the

Roger’s method.
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Figure C.1: Class Faults and its subclasses for developed ontology
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Figure C.2: Class Components and its subclasses for developed ontology
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Figure C.3: Class Symptoms and its subclasses for developed ontology

Figure C.4: Class Rogers Method Faults and its subclasses for developed ontology
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Figure C.5: Datatype properties applied for Roger’s method fault diagnosis

C.3 The OWL Ontology Annotation

The developed ontology for power transformer fault diagnosis built in Protégé 4.1, con-

tains hierarchy classes and subclasses restricted by various types of properties. An

example of applied datatype in OWL2 syntax for the case 0 of the Roger’s method is

given below:

<EquivalentClasses>

<Class IRI="http://www.liv.co.uk/~.owl#No_Fault"/>

<ObjectIntersectionOf>

<DataSomeValuesFrom>

<DataProperty IRI="http://www.liv.co.uk/~.owl#has_ratio_R2"/>

<DatatypeRestriction>

<Datatype abbreviatedIRI="xsd:float"/>

<FacetRestriction facet="&xsd;maxInclusive">

<Literal datatypeIRI="&xsd;double">0.1</Literal>

</FacetRestriction>
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</DatatypeRestriction>

</DataSomeValuesFrom>

<DataSomeValuesFrom>

<DataProperty IRI="http://www.liv.co.uk/~.owl#has_ratio_R1"/>

<DatatypeRestriction>

<Datatype abbreviatedIRI="xsd:float"/>

<FacetRestriction facet="&xsd;minInclusive">

<Literal datatypeIRI="&xsd;double">0.1</Literal>

</FacetRestriction>

<FacetRestriction facet="&xsd;maxInclusive">

<Literal datatypeIRI="&xsd;double">1.0</Literal>

</FacetRestriction>

</DatatypeRestriction>

</DataSomeValuesFrom>

<DataSomeValuesFrom>

<DataProperty IRI="http://www.liv.co.uk/~.owl#has_ratio_R5"/>

<DatatypeRestriction>

<Datatype abbreviatedIRI="xsd:float"/>

<FacetRestriction facet="&xsd;maxExclusive">

<Literal datatypeIRI="&xsd;double">1.0</Literal>

</FacetRestriction>

</DatatypeRestriction>

</DataSomeValuesFrom>

</ObjectIntersectionOf>

</EquivalentClasses>
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Fuzzy Ontology

D.1 Fuzzy Ontology-based Knowledge Representation

The OWL2 syntax expresses the case 0 of the Roger’s method; it can be written as

follows:

<EquivalentClasses>

<Class IRI="http:/~FuzzyOntology1.owl#No_Fault"/>

<ObjectIntersectionOf>

<DataSomeValuesFrom>

<DataProperty IRI="http:/~FuzzyOntology1.owl#has_ratio"/>

<Datatype IRI="#R21"/>

</DataSomeValuesFrom>

<DataSomeValuesFrom>

<DataProperty IRI="http:/~FuzzyOntology1.owl#has_ratio"/>

<Datatype IRI="#R12"/>

</DataSomeValuesFrom>

<DataSomeValuesFrom>

<DataProperty IRI="http:/~FuzzyOntology1.owl#has_ratio"/>

<Datatype IRI="#R51"/>

</DataSomeValuesFrom>

</ObjectIntersectionOf>

</EquivalentClasses>
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Figures D.1 to D.4 show the screenshots of the developed fuzzy ontology for power

transformer fault diagnosis, based on Roger’s method.

Figure D.1: Fuzzy modified datatype representing the R12 condition

Figure D.2: The fuzzy datatype R12 applied to the classes in Protégé
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Figure D.3: Protégé plug-in classes and properties

Figure D.4: The fuzzy ontology designed in Protégé
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