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Abstract 

The characterisation and epidemiology of avian pathogenic 

Escherichia coli in UK broiler chickens 

Kirsty A. Kemmett 

Poultry health and welfare are important for maintaining sustainable and safe food 
production. In the UK alone, in excess of 900 million broiler chickens are farmed 
annually with demand continuously increasing. Avian pathogenic Escherichia coli 
(APEC) is the causative agent of the extraintestinal syndromic poultry disease 
colibacillosis, which has a major impact on poultry health and is a considerable 
economic burden to the global poultry industry. The need for disease control is of 
paramount importance. Little is known about the epidemiology, population dynamics 
and infection biology of APEC in UK broiler chickens. This knowledge would 
contribute to the implementation of control measures.  

This investigation comprised: one longitudinal field study in commercial flocks 
aimed at simultaneously identifying potential APEC (pAPEC) in the intestinal tract 
of healthy birds and extraintestinal E. coli in diseased birds, one study determining 
the contribution of E. coli to early flock mortalities and a series of in vitro 
experiments and genetic analyses characterising both extraintestinal and avian faecal 
E. coli isolated from UK broiler chickens. E. coli were subjected to virulotyping, 
phylogenetic typing, macro-restriction pulsed field gel electrophoresis (PFGE) and 
multilocus sequence typing (MLST). The extraintestinal E. coli isolates from 
diseased birds represent a diverse genetic population. Furthermore, as broiler 
chickens age, the prevalence of pAPEC in the gastrointestinal tract decreases. The 
intestinal tract of day-old chicks contains considerable levels of pAPEC (24.05% of 
the faecal population sampled), while ~70% of early mortalities relate to 
extraintestinal E. coli infections, possibly originating from the gut. In vitro, pAPEC 
did not appear to invade intestinal epithelial cells, suggesting the respiratory route is 
likely to be favourable for dissemination, although pAPEC are cytotoxic and may 
disrupt epithelial integrity prior to dissemination. There were no significant 
differences in the intracellular persistence of APEC and faecal E. coli in cultured 
avian macrophages and survival in serum; challenges encountered by E. coli during 
dissemination. Overall, this investigation highlights the diverse spectrum of E. coli 
associated with extraintestinal disease in commercial broiler production and the need 
to determine the contribution of host susceptibility to disease manifestation.   
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1.1. Introduction 

The global population is expected to reach an estimated 9 billion by 2050, increasing 

the pressure for sustainable and safe food production. In the UK alone, 900 million 

broiler chickens are reared annually for meat consumption [3]. With poultry 

(predominately chicken) being the consumers’ preferred choice of affordable animal 

protein, the UK poultry industry is particularly under pressure. Current challenges 

include minimising production losses resulting from infectious diseases. Farming 

practices include routine vaccination of broiler flocks against a number of viral 

pathogens that have proven effective in disease control. Endemic disease caused by 

an extraintestinal pathogenic Escherichia coli (E. coli) known as avian pathogenic E. 

coli (APEC) remains a substantial burden and to date little is known about this 

poorly defined pathogenic group meriting further research.  

1.2.  The genus Escherichia coli  

1.2.1 Introduction 

E. coli was first identified in 1885 by Theodor Escherich [4]. E. coli is one of five 

members of the genus Escherichia and a natural inhabitant of the gastrointestinal 

tract (GIT) of all vertebrates, generally residing in the mucosal layer [5]. The genus 

Escherichia is in the class of Gamma proteobacteria, order Enterobacteriales and 

family Enterobacteriaceae. E. coli are one of the best studied bacterial species and 

often used as model organisms because of their commensal and pathogenic 

tendencies [6].  
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1.2.2 Bacteriological characteristics  

E. coli is a non-spore forming, Gram negative, rod-shaped facultative anaerobe and 

while most E. coli are flagellated, allowing motility, this is not a uniform feature. 

Optimal environmental growth conditions are between 37 and 42 ⁰C with a pH range 

of 6.0-8.0 [7]. E. coli has the ability to adapt to changes in environmental pH in order 

to maintain cytoplasmic homeostasis allowing survival in environments with extreme 

pH, such as the upper GIT [8, 9].  

E. coli can be readily identified by cultivation on to a differential solid medium such 

as Eosin Methylene Blue agar (EMBA) because of its ability to ferment lactose. On 

EMBA typical E. coli colonies appear dark violet often encompassed within a 

metallic green sheen, produced via lactose fermentation and a subsequent drop in pH. 

E. coli can also be identified based on its’ biochemical profile including; non-oxidase 

activity, catalase production, lactose fermentation, inability to utilise citrate as a 

carbon source and positive indole production.  API-20E test strips (BioMerieux, UK) 

test many of these biochemical properties and are often used by both veterinary and 

human diagnostic services to identify Enterobacteriaceae [10]. E. coli confirmation 

can be readily achieved using a polymerase chain reaction (PCR) targeting the uidA 

gene, a chromosomal gene encoding β-D-glucuronidase (GUD) carried by most E. 

coli [11].  
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1.3.  Commensal and pathogenic E. coli 

1.3.1 Commensal E. coli 

E. coli is one of the first species to colonise the GIT of most neonatal warm blooded 

vertebrates [12]. Colonisation succession is a dynamic process involving both 

resident E. coli (which may colonise the GIT for years) and ingested E. coli (which 

may be transient and only colonise for several days) [13]. Ingested E. coli may 

colonise the GIT providing it can utilise a growth-limiting nutrient better than 

resident E. coli strains or other microbes already present [14]. In poultry, E. coli 

reside predominately in the mucosal layer of the lower GIT (caeca and colon) and are 

excreted in faeces with degraded mucus and the sloughing of dead epithelial cells. 

This process allows dissemination into the surrounding environment [15]. The 

abundance of E. coli between host species varies greatly (as much as 6 times) and 

this is largely influenced by gut architecture, microbiota and diet [16].  The E. coli-

host relationship is generally described as one of commensalism; E. coli obtain a 

steady and consistent supply of nutrients within a stabilised protected environment 

and the host remains unharmed [17]. That said, these commensal E. coli have been 

shown to provide protection against intestinal pathogens such as Salmonella 

Typhimurium and enterohaemorrhagic E. coli O157 by competing for sites of 

adherence and nutrients [18, 19]. E. coli reportedly stimulate mucus secretion from 

goblet cells in order to maintain their nutritional supply [20].  
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1.3.2 Pathogenic E. coli 

1.3.2.1 Opportunistic pathogens 

In a compromised host, resident E. coli have been shown to cause disease. Cirrhosis 

patients often have decreased levels of the mucosal antibody immunoglobulin A 

(IgA) and sufferers of peritonitis or inflammatory bowel disease have breached 

and/or weakened intestinal epithelial barriers, both of which have been associated 

with opportunistic E. coli infections [21, 22]. This highlights the importance of the 

integrity of the mucosal immune system and epithelia in preventing disease. 

1.3.2.2 Extraintestinal pathogenic E. coli (ExPEC) 

Pathogenic E. coli are broadly categorised into diarrhoeal and extraintestinal 

pathogenic E. coli (ExPEC) [23, 24]. The most common human ExPEC pathogens 

are neonatal meningitis E. coli (NMEC) and uropathogenic E. coli (UPEC) [25].  The 

focus of this thesis is on the avian ExPEC pathovar; avian pathogenic E. coli 

(APEC).  

Pathogenic E. coli evolve following the acquisition of virulence-associated genes 

(VAGs), which allow them to compete with the resident microbiota or colonise new 

niches such as systemic sites [23]. The E. coli genome has a high degree of plasticity 

mainly from recombination events in genome ‘hotspots’ yet they appear to retain a 

level of clonality allowing the identification of particular strains or related groups of 

pathogenic E. coli [6, 26-28].  
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1.4. Colibacillosis  

1.4.1 Introduction to colibacillosis  

APEC related disease has multiple manifestations, collectively referred to as 

colibacillosis. Colibacillosis poses a substantial economic burden on the global 

poultry industry [29]. Acute outbreaks of colibacillosis have been reported since the 

mid-1990s [30]. Potential APEC reservoirs are likely to reside in the avian GIT [31].  

1.4.2  APEC as primary or secondary pathogens 

In the first instance, colibacillosis was thought to be the result of a secondary or 

opportunistic APEC infection in an infected or stressed host. Examples of 

physiological stress in poultry production include the hierarchical social stresses 

within free-range layer hens and the onset of lay [32, 33].  

In chickens, primary infection with turkey rhinotracheitis virus (TRTV) (also known 

as avian metapneumovirus), infectious bronchitis virus (IBV), infectious bursal 

disease and Newcastle disease virus have all been shown to predispose birds to 

extraintestinal E. coli infections [34-36]. Early in vivo studies aimed at determining 

the infection biology of APEC often used prior oculonasal administration of a viral 

pathogen [32, 37, 38]. Primary viral infections and colibacillosis have been well 

studied; a combination of respiratory distress, tissue damage, impaired ciliary action 

and altered immune responses are likely to increase the likelihood of colibacillosis 

[39-42]. Co-infection studies have also been used to assess both APEC pathogenesis 

and potential APEC vaccine candidates [43, 44].  
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Although prior viral infection has been shown to enhance the severity of 

colibacillosis, APEC is now recognised as a primary pathogen not requiring a 

concurrent viral infection and this has been confirmed in a number of in vivo APEC 

infection studies [45-47].  

1.4.3 Colibacillosis in broiler chickens 

Colibacillosis in broiler chickens typically manifests as a systemic inflammatory 

infection with fibrinous-based lesions around visceral organs. Airsacculitis, cellulitis, 

pericarditis, perihepatitis, respiratory distress, splenomegaly and swollen head 

syndrome are among the most commonly associated signs of colibacillosis in broilers 

in the sub-acute form [48]. The acute, rapidly progressing, form of colibacillosis is 

associated with septicaemia and death is also possible [49]. 

Yolk sac infections and omphilitis are the most common lesions seen among broiler 

chicks (up to around 7 days of age) and APEC vertical transmission has been 

hypothesised [50, 51]. Yolk sac infections pose a great risk of septicaemia and 

ultimately premature death.  

1.4.4 Colibacillosis in other avian species 

In layer hens, colibacillosis is often associated with infections of the reproductive 

tract - peritonitis, salpingitis and polyserositis [30, 52]. Such disease manifestations 

are associated with a reduction in egg production and increased mortality.  

Colibacillosis affects most avian species including turkeys, ducks and ostriches, 

among others. In turkeys, more commonly fast growing adolescent males with poor 

cell mediated immunity, turkey osteomyelitis complex (TOC), is a manifestation of 



Chapter one  General introduction 
 

 8 

APEC extraintestinal disease [32].  TOC is associated with soft tissue abscesses, 

green discoloured liver, osteomyelitis of the tibia and arthritis [53].  

1.5. The UK poultry industry 

1.5.1 Introduction to the UK poultry industry 

The UK Department for Environment, Food and Rural Affairs (DEFRA) reported 

that in 2012 there were over 900 million broiler chickens, 17 million turkeys and 

100,000 geese farmed for meat in the UK [3].  This equates to a 3.2% increase in 

broiler production from the previous year with total broiler chicken production 

reaching 1.6 million tonnes in 2012. Furthermore, breast meat importations are vital 

in satisfying consumer demand.  

Egg production quarterly figures for 2012 show 5 million packs of eggs in England 

and Wales were produced [54].   

1.5.2  The APEC burden on broiler chicken production 

The UK broiler industry estimates an annual loss of ~8%, equating to ~50 million 

chickens in the UK alone, from APEC related disease (T.J. Humphrey, personal 

communication, August 2012).  Losses are the result of the rejection of carcasses at 

slaughter and heightened mortality rates. Chicken remains one of the consumers’ 

most popular choices of cheap meat with the poultry industry escaping much of the 

recent economic crisis relatively lightly.  
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1.6.  Introduction to the broiler chicken (Gallus gallus domesticus) 

1.6.1 Broiler growth performance and commercial production 

In an attempt to meet demand, standard broiler chickens reach slaughter weight of 

approximately 2.2kg in 35-39 days, 60% faster than they did 20 years previously 

[55]. Under strict regulations, stocking densities at end-of-life are not to exceed 

42kg/m2, although most are reared at 38kg/m2. Such intense farming is often the 

focus of animal activist campaigns, although it is difficult to imagine how the 

industry could meet demand otherwise. As a result of selective breeding and the 

consequent rapidly changing host, the modern broiler chicken is unlike other 

commercial avian species.     

1.6.2  Broiler genotypes 

Standard commercial broiler chickens which reach slaughter weight between 35 and 

39 days represent approximately 90% of UK production. The most common 

genotype in the UK for intensive indoor production is the Ross 308. Genotypic 

variations of the Ross bird are available including the Ross 708, which reaches 

slaughter weight a day or two later. The Ross 308 has been selectively bred for its 

uniformity and high feed conversion efficiency. Cobb-500 birds are an alternative 

genotype used in standard production.  

The Hubbard JA757 and JA787 make up the remaining ~10% of commercial 

broilers. The Hubbard genotypes are often reared under higher welfare conditions 

with lower stocking densities (30kg/m2) or in free-range systems, which allow access 

to the outdoor environment for at least half of the flock cycle.  
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This investigation focuses on the standard Ross 308 genotype, because it accounts 

for the majority of the UK market.  

1.6.3  Broiler susceptibility to endemic disease 

The selective breeding of commercial broiler chickens for traits attractive for 

industrial production such as rapid growth and increased feed conversion efficiency, 

may have impacted on the adaptive humoral immune system and increased the 

likelihood of detrimental pro-inflammatory responses [56]. Past work comparing the 

contribution of APEC-related mortalities between different broiler genotypes 

suggests rapid growth may reduce broiler ‘viability’ and increase disease 

susceptibility [56, 57]. The study highlighted infection-based mortalities in standard 

broilers were more than double that seen in slower growing breeds [57]. The 

production of broiler genotypes more resistant to endemic disease is an attractive 

candidate for reducing mortalities; a difficult concept for APEC control as the 

pathogenesis remains unclear.  

1.7. APEC epidemiology and E. coli population genetics  

E. coli is one of the best studied bacterial species to date and an array of methods 

have been developed to identify them genetically. Some of the most common 

methods are described below. Each of the methods described has advantages and 

disadvantages relating to genetic resolution, cost, time, labour, portability and the 

reproducibility of results.  
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1.7.1 Phylogenetic typing  

1.7.1.1  Introduction to the four E. coli phylogenetic groups 

E. coli can be divided broadly into four main phylogenetic groups (A, B1, B2 and D) 

with numerous sub-phylogenetic groups [58-60]. Research suggests that phylogroup 

B2 represents the E. coli ‘ancestral’ lineage as this group exhibits the highest 

diversity at nucleotide and gene level, suggesting early emergence, evolution and 

diversification [28, 61]. Phylogroup D was the first lineage to branch from B2, while 

sister groups A and B1 emerged later [28]. Wirth et al. (2006) suggested the 4 main 

phylogroups reflect 4 ancestral sources prior to the bottle necking of the E. coli 

population 10-30 million years ago [62].  

Generally speaking, sister groups A and B1 represent environmental, resident non-

pathogenic E. coli, whereas groups B2 and, to a lesser extent, D are associated with 

pathogenic strains [63, 64]. Additional differences in phenotypic traits including 

antibiotic-resistance, sugar metabolism, growth rate and genome size (groups B2 and 

D tend to have larger genomes) have been observed between the groups [63].  

1.7.1.2  Determining the phylogenetic group 

The E. coli phylogenetic group can be determined using several techniques, which 

differ in both cost and labour. The mid-1980s saw the development of multi-locus 

enzyme electrophoresis (MLEE) and ribotyping. MLEE involves the analysis of 

relative electrophoretic mobility of 38 water-soluble housekeeping enzymes. 

Variants in mobility correspond to different alleles (termed electrophoretic type) and 

relatedness can be mapped using dendrograms [65]. MLEE is both labour intensive 

and time consuming.  
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In 2000, Clermont et al. published a simple triplex polymerase chain reaction (PCR), 

which has now been used in over 150 different studies [1, 66].  Clermont’s PCR 

targets 2 genes; i) chuA, a gene encoding an outer-membrane hemin receptor ii) yjaA, 

identified following the complete genome sequencing of E. coli K-12 and now 

known to encode part of a lipase esterase gene [67-69]. The third target of 

Clermont’s triplex PCR is a DNA fragment referred to as TSPE4.C2 [68]. Table 1.1 

summarises the dichotomous approach used to determine the phylogenetic group, 

this is based on the combinations of the three DNA targets successfully detected by 

PCR. 

Clermont et al. (2000) initially reported an accuracy of 99%, although in a more 

recent study Gordon et al. (2008) suggested that the accuracy was no more than 80-

85%. While the exact accuracy was dependent on the phylogroup, highest rates were 

seen among the B1 and B2 isolates [66].  

Originally, isolates negative for all three targets, were grouped into phylogenetic 

group A by default. However, later work suggested only 17% of said isolates was 

truly phylogroup A when determined by other methods and despite this group of 

isolates being non-random, it does not form a monophyletic group [66].  
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Table 1. 1 The Dichotomous approach to E. coli phylogenetic typing 

 

 

 

 

 

 

 

 

 

 

1.7.1.3 APEC phylogenetic groups 

Phylogroups B2 and D are more associated with extraintestinal disease than groups 

A and B1 [70-72]. Past studies report >80% representation by phylogroups B2 and D 

[73-75]. Not all studies concur, Rodriguez-siek et al. (2005) reported 38% of APEC 

Group Triplex PCR result 

Unassigned No genes 

A yjaA+ only 

B1 TSPE4.C2+ only 

B2 chuA+yjaA+; 

chuA+yjaA+TSPE4.C2+ 

D chuA+; chuA+TSPE4.C2+ 

E. coli may be assigned to one of four major phylogenetic groups based on the 

presence or absence of 2 genes (chuA, yjaA) and one DNA fragment 

(TSPE4.C2) [1].     
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(n=524) were in fact phylogroup A isolates and an Italian study conducted by Giufre 

et al. (2012) found most APEC belonged to group A with B2 and D phylogroups 

representing 18 and 28% of the population respectively [76, 77]. The well 

characterised APEC O78 (chi7122) isolate is also of B1 origin [78, 79]. The 

phylogenetic typing of APEC is poorly discriminative and often used in conjunction 

with other typing methods. Defining APEC by phylogroup may help indicate the 

nature and origin of E. coli, but should not be used conclusively.  

1.7.2  Serotyping 

1.7.2.1  Introduction to serotyping 

Serotyping was first described by Kauffmann et al. in the 1940s [80]. This method of 

typing is based on the allelic combinations of 3 surface antigens of which there are 

currently, 173 O (somatic lipopolysaccharide), 80 K (capsular) and 56 H (flagellar) 

antigens. The different O, K and H antigens are associated with strains of the same 

lineage and are not geographically restricted [6, 81]. Most antigenic combinations 

have been identified in nature resulting in an extremely high number of E. coli 

serotypes (50,000 – 100,000), thus as with phylogenetic typing serotyping is often 

used in conjunction with other typing methods.  

1.7.2.2 Serotyping methodology  

A number of techniques exist for serotyping E. coli including the standard slide 

agglutination test, the use of K-phages and PCR based assays.  

Antigens are specific moieties recognised by antibodies and this concept forms the 

basis of the standard slide agglutination test. Bacterial cell suspensions are exposed 
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to antisera containing specific antibodies against the different O, H and K antigens. 

Antibody recognition of specific antigens result in the agglutination and aggregation 

of bacterial cells [81]. This agglutination protocol provides a rapid result and 

commercial antisera against common serogroups are available. The disadvantage of 

this method is that each different antiserum is tested individually. Prior isolate 

knowledge relating to host species and disease status may help narrow down the 

expansive antisera to test against [81].  

Bacteriophages have evolved to recognise specific polysaccharide capsules coating 

bacterial cells including those capsules consisting of the K antigen (polysialic acid) 

[82]. This protocol takes approximately 24 hours and involves the co-incubation of a 

K antigen-specific bacteriophage and the test isolate on a solid trypticase-soy agar; 

positive detection yields visually lysed E. coli [83]. The main disadvantage of phage 

assays is the limited number of commercially available phages and the 

reproducibility of results between laboratories.  

Finally, PCR primers targeting different O, H and K antigens have been published 

and are widely used as a rapid method for determining the presence of certain 

serotypes associated with disease including K1 (kpsMT K1 or neuC), K54 (kpsMT 

KIII) and H7 (fliC) [72, 77]. In 2010, Wang et al. (2010) published a PCR designed 

to detect certain O-serogroups associated with human diarrhoeal disease [84]. PCR 

based approaches are rapid, cost effective and accurate and possibly the most 

common test used today in serotyping.    

1.7.2.3 APEC serotyping  

As with phylogenetic typing, certain serotypes have been associated with pathogenic 

strains of E. coli; these can be subdivided into those which cause diarrhoeal disease 
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(for example E. coli O157:H7 which causes watery diarrhoea and haemolytic 

anaemia) and those that cause extraintestinal disease [81].  

Predominant APEC serogroups include O1, O2 and O78, while O8 and O35 have 

also been identified [29, 32].  On average, these O-serotypes represent no more than 

50% of APEC tested [77, 83, 85].  

The K1 capsule is poorly immunogenic because of its similarity to polysialic acid 

moieties on host cell surface glycoproteins and has previously been associated with 

increased serum survival via complement inactivation, such traits allow K1 positive 

E. coli to avoid detection by the host immune system and promote systemic survival 

[86, 87]. The K1 capsule does not seem to be essential for APEC pathogenesis, with 

as few as 2% of isolates testing positive for the capsule [83, 88]. Finally, H7 antigen 

has been associated with ExPEC, although, again, the prevalence varies greatly [77]. 

APEC O1:K1:H7, O2:K1:H5 and O78:H9 serogroups are well characterised strains 

thought to be representative of APEC and thus have been used as APEC prototypes 

[31, 78, 79, 89].  

These studies also report a significant number of untypable APEC (usually ~30%) 

and expansive, diverse arrays of other serotypes representing the remaining APEC. 

Serotyping may not be the most effective typing scheme for APEC. Serogroups O1, 

O2, O78, and more specifically O1:K1:H7, have been identified among avian faecal 

E. coli populations, supporting the hypothesis that the gut is a potential APEC 

reservoir [31, 90].  
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1.7.3  Multi-locus sequence typing (MLST) 

1.7.3.1  Introduction to MLST 

Multilocus sequence typing (MLST) was first described by Maiden et al. in 1998 

[91]. Maiden described a lack of available molecular techniques suitable for 

detecting slowly accumulating genetic change, despite numerous schemes available 

for detecting rapid genetic change (ribotyping and pulsed field gel electrophoresis) 

available at the time. High-resolution methods are ideal during disease outbreaks, but 

can be misleading when studying microbial evolution. On the other hand, 

phylogenetic typing is very broad and offers little discrimination. In other words, this 

can be described as local versus global molecular epidemiology, with global 

epidemiology requiring lower resolution. MLST analysis aims to provide a balance 

between these extremes. 

MLST is a DNA sequencing-based technique involving the sequencing of ~470 

nucleotides of 5-10 housekeeping genes (genes essential for normal cell function and 

under neutral selection). Mutations in single housekeeping genes are slow to 

accumulate as many genetic mutations are lethal and would result in detrimental non-

functional proteins and therefore are not maintained in bacterial populations. The 

analysis of multiple housekeeping loci increases genetic discrimination and such 

sequencing data allow for the analysis of linkage disequilibrium between alleles. The 

determined allelic combinations give rise to sequence types (ST) and STs can then be 

clustered into sequence type clonal complexes (STCC) based on their level of genetic 

relatedness. Sequence data can be uploaded to species-specific online databases 

producing an expanding portable database, which can be exchanged between 

laboratories. This is the first real molecular technique that is truly portable and 
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reproducible [92]. A disadvantage of MLST over the previously described molecular 

typing techniques, serotyping and phylogenetic typing, is the need for DNA 

sequencing. High throughput MLST protocols have been described with the aim of 

making it more cost effective, although it is likely that techniques requiring 

sequencing will become less costly as whole genome sequencing (WGS) becomes 

more popular [93].  

1.7.3.2  E. coli MLST methodology 

A number of E. coli MLST schemes have been published. In 2003, Adiri et al. 

published a protocol based on the amplification of 6 housekeeping genes: adk 

(adenylate kinase), gcl (glycoxylate carboligase), gdh (glucose-6-phosphate 

dehydrogenase), mdh (malate dehydrogenase), metA (homoserine transsuccinylase) 

and ppk (polyphosphate kinase) [94]. This 6 loci gene set was used by Moulin-

Schouleur et al. in a 2007 study focusing on possible zoonotic risks of APEC by 

comparing human ExPEC and APEC [75].  

An alternative E. coli MLST protocol was published in 2006 by Wirth et al. and is 

the more popular scheme [62]. This 7 gene MLST scheme targets adk, fumC 

(fumarate hydratase), gyrB (DNA gyrase), icd (isocitrate/isopropylmalate 

dehydrogenase), mdh (malate dehydrogenase), purA (adenylosuccinate 

dehydrogenase) and recA (ATP/GTP binding motif) and the protocol is publically 

available online (http://mlst.ucc.i.e./mlst/dbs/Ecoli).  

In brief, housekeeping gene targets are amplified by PCR and sequenced using an 

automated sequencer and the nucleotide sequences are analysed using computer 

software such as Ridom SeqSphere (Ridom GmbH, Wűrzburg, Germany) or 

ChromasPro version 1.5 (Technelysium, Australia) and MEGA 5.05 [95]. Analysed 
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sequences are submitted to the Achtman E. coli online database 

(http://mlst.ucc.ie/mlst/dbs/Ecoli) where ST and STCC are assigned accordingly.  

1.7.3.3 APEC MLST sequence types    

MLST has proven to be a popular global molecular tool for pathogenic E. coli 

analysis and is potentially more suited to the study of pathogens, which tend to 

acquire mutations and undergo recombination at a faster rate than other bacteria [62]. 

Numerous STs have been associated with avian E. coli including: ST-23, ST-88, ST-

95, ST-162, ST-347, ST-358, ST-369 and ST-1353 [96]. To date, the most common 

APEC STCCs include STCC-23, STCC-95 and STCC-117, which have been shown 

to represent around 50% of isolates while they are not geographically restricted and 

have also been associated with antibiotic resistance [76, 89, 96, 97]. The previously 

mentioned prototype APEC strain O2:K1:H5 is a ST-140 isolate and found within 

the STCC-95 [31]. MLST of E. coli O78 clones from different hosts demonstrated a 

highly related clonal structure in E. coli populations and links between virulence and 

ST [94].   

MLST has been an important tool in the comparison of human ExPEC (mainly 

UPEC) and APEC isolates and the potential zoonotic risk of avian E. coli [76, 89]. 

ST-117 and strains within the STCC-117 have been described as potentially zoonotic 

and have been associated with chicken at retail [98, 99]. ST-117 also represented 

~17% of Japanese E. coli O78 [96].  

As with all the molecular techniques mentioned so far, caution is needed. No single 

ST solely associated with pathogenic E. coli or APEC has been identified. The 

O1:K1:H7 avian faecal E. coli previously mentioned is an ST-95 isolate, thus 

clustering with APEC prototypes. Ewers et al. (2009) utilised MLST when 
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comparing avian faecal and systemic E. coli and highlighted the potential intestinal 

APEC reservoir, but this also highlights the lack of complete discrimination of 

pathogenic and supposed commensal E. coli and further adds to the problem in 

deciphering the molecular background of APEC [31]. 

1.7.4 Macro-restriction analysis of genomic DNA and pulsed field gel 

electrophoresis  

1.7.4.1 Introduction to pulsed-field gel electrophoresis  

Macro-restriction analysis of genomic DNA using pulsed-field gel electrophoresis 

(PFGE) involves the cleavage of DNA by restriction endonucleases targeting short 

specific nucleotide sequences yielding high molecular weight DNA fragments 

(fingerprints). These fragments are separated using gel electrophoresis by changing 

the direction of the current through the gel and the observed banding pattern is 

referred to as the ‘pulsotype’. PFGE analysis allows for the detection of 

microvariation in genomic sequences between strains.  PFGE protocols are available 

for a wide range of bacterial species including those which cause food-borne illness; 

E. coli, Salmonella, Listeria, Shigella and Campylobacter [100-103].   

 PFGE analysis has been available for over 20 years and has been proven to be a 

valuable tool during epidemics, a good example of this is a large multistate E. coli 

O157:H7 outbreak in 1993, which was later traced back to contaminated beef [104, 

105]. A major challenge incurred when using PFGE is the reproducibility of results 

within and between laboratories. In 2006, Ribot et al. published a standardised PFGE 

protocol which carefully evaluated existing PFGE methodology, highlighting steps 
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responsible for lab to lab result variation and shortened protocols from 3-4 days to 1-

2 days – a time lapse more appropriate during disease outbreaks [103].  

This standardised, more rapid, protocol became the ‘gold standard’ PulseNet 

reference PFGE protocol for a United States and European national molecular 

subtyping network for foodborne disease surveillance established and controlled by 

the United States Centers for Disease Control (CDC) and Prevention and European 

CDC respectively (see Figure 1.1) [103, 106]. PFGE allows discrimination of strains 

circulating within the same geographical location, which MLST would fail to 

achieve [107].   

 

 

 

 

 

 

 

 

Such high specificity is perhaps a disadvantage during long-term epidemiological 

studies. Bacteria mutate and/or acquire and/or lose genetic information, thus, over 

Figure 1. 1 Countries and institutes involved in PulseNet Europe (Pezzoli et 

al (2008))     

Bar chart representing the European countries involved in PulseNet European food-borne 

pathogen surveillance. Chart taken from Pezzoli et al (2008)[2].  
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time, highly related strains could produce very different pulsotypes. Additionally, 

bacterial pathogens tend to change at a faster rate than other bacteria. Other 

disadvantages of PFGE include i) it is labour intensive ii) a limited number of 

isolates can be tested at one time iii) time-consuming, requiring at least 24 hours 

(although MLST is likely to require sending amplified DNA away for sequencing 

therefore likely to take longer) iv) DNA may be subject to endogenous nucleases 

altering pulsotype analysis v) banding patterns can be subject to variation based on 

individual interpretation even with the use of software packages such as Bionumerics 

V 4.0 software [108].  

1.7.4.2  E. coli PFGE methodology 

The revised and standardised protocol published by Ribot et al. (2006) describes a 2-

day process with one day being highly labour intensive. In brief, bacterial cell 

suspensions with comparable optical densities are incorporated into agarose plugs, 

which are subsequently washed and digested with an XbaI restriction endonuclease 

(Roche products Ltd, UK) for ~2hrs. XbaI (originally isolated from Xanthomonas 

badrii) specifically nicks (˅) the nucleotide motif 5’...T˅CTAGA...3’ (reverse strand 

3’...AGATC˄T...5’). The lysis to restriction steps should take no longer than 8-10 

hours, a great improvement on original protocols which required overnight lysis 

[109]. Nicked DNA is separated using gel electrophoresis and pulsotypes are 

visualised and compared.    

1.7.4.3  PFGE and APEC characterisation 

Timothy et al. (2008) demonstrated the usefulness of PFGE analysis in APEC 

molecular epidemiology following an outbreak of a reproductive tract infection, 

salpingitis and peritonitis in a layer breeder flock originally reported by Jordan et al. 
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(2005) [52, 110]. Thirty-five of 45 isolates analysed using PFGE had the same 

pulsotype and were recognised as a single clonal group. Furthermore, an 

environmental isolate also produced the same pulsotype, perhaps suggesting a source 

of infection or dissemination into the environment. PFGE has frequently been used 

for the evaluation of genetic relatedness between ExPEC, APEC and suggested 

commensal E. coli, with studies most frequently using the XbaI restriction enzyme 

[85, 97, 111-113]. The combination of PFGE and MLST may be useful in future 

APEC epidemiological studies.  

1.7.5 Multiple-locus variable number of tandem repeat analysis  

Multiple-locus variable number of tandem repeat (MLVA) analysis utilises the 

naturally occurring polymorphisms found in the genomes of microorganisms. 

Variations in the number of tandem repeated DNA sequences found at multiple loci 

in the genomes are compared using MLVA. These loci are often subject to rapid 

evolutionary change. Multiple loci are amplified by PCR and the number of repeats 

at each loci can then be determined using either conventional electrophoresis or by 

using a genetic analyser and fluorescent labels. [114-116]. The generated profiles are 

uploaded to online reference databases and used to compare profiles.  

In European union (EU) countries the only major prokaryote with a wholly accepted 

standardised MLVA protocol is Salmonella Typhimurium, which is used by 

surveillance centres to monitor potential outbreaks, similar to PulseNet for PFGE 

based surveillance [117, 118].  For the past 10 years, scientists in France have been 

trying to establish standardised national surveillance protocols for a range of 

pathogens including those relating to food-borne disease such as Listeria.  
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As discussed, PFGE is highly discriminative and thus has proven successful during 

disease outbreaks. However, there are a number of advantages of MLVA over PFGE 

and MLST. Like MLST, results obtained from MLVA are objective thus less prone 

to subjective variation like PFGE. Secondly, the data generated from MLVA are 

highly amenable and can be rapidly uploaded to online databases and shared between 

laboratories. Some studies have shown MLVA to be even more discriminative than 

PFGE, easier to perform with fewer decreasing false-positive results [119].  

Noller et al. (2003) first described an MLVA protocol for E. coli [120]. Advantages 

of using MLVA for the study of E. coli molecular epidemiology include i) less 

labour intensive than PFGE ii) more rapid iii) highly discriminative. Currently there 

are no published reports of using MLVA in APEC characterisation and 

epidemiology.   

1.7.6 Whole genome sequencing (WGS) 

WGS has the potential to allow researchers to decipher APEC molecular 

pathogenesis by identifying VAGs that have previously gone undetected and assess 

the phylogenetic relatedness of strains using a larger genome scale. The more 

publically available whole genomes available there are, the more likely researchers 

are to further our understanding of APEC. To date there are 4 APEC genome 

sequences publically available; APEC O1:K1:H7 isolated from a turkey, APEC SCI-

07 (untypable O antigen) isolated from a layer hen in Brazil, APEC O78 (chi7122) 

isolated from an infected turkey and another APEC O78 [78, 89, 121, 122]. The first 

of these genomes to be made available was APEC ST-95 O1:K1:H7 (APEC O1), 

which was chosen for sequencing, as it appeared to represent other APEC strains 

based on the authors’ previous work showing its similarities in VAG carriage and 
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genetic typing to other APEC strains [89]. APEC O1 was originally isolated from the 

lung of an infected chicken [89]. The same research group also published the most 

recently available APEC O78 genome which consists of 1 chromosome and 2 

plasmids [121]. The full genome sequencing of APEC O78 (chi7122) (and APEC 

IMT2125) was used to decipher the evolutionary genetic lineages of APEC [78]. 

Results from this study suggest APEC strains are likely to originate from multiple 

different lineages and those of ST-23 (chi7122 and IMT2125) appear distinct from 

APEC O1. To date, there are no broiler chicken associated APEC genomes available.  

1.8.  Challenges faced during APEC characterisation 

The APEC pathotype remains poorly defined; no single molecular typing technique 

is 100% discriminative for APEC and non-APEC isolates. Multiple molecular typing 

methods are used in conjunction, perhaps allowing strengthened discrimination of 

isolates. Our understanding of the APEC evolutionary background remains 

incomplete. Correlation between PFGE pulsotype clusters and specific serogroups 

were reported by Ewers et al. (2004) [85]. Furthermore, serogroups O1, O2 and O78 

mostly cluster into MLST ST-23 and ST-95 [123, 124]. On the other hand, these 

same studies report a diverse APEC phylogenetic background.   

As discussed, WGS comparisons suggest that APEC have evolved from E. coli of 

multiple genetic lineages through the acquisition of distinct VAGs [78]. Furthermore, 

distinguishing strains by their disease manifestations (i.e. extraintestinal or 

diarrheagenic) is not wholly supported by genetic analysis. A similar scenario has 

recently been described for EAEC and UPEC capable of causing urosepsis [125, 

126].  
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1.9. APEC pathogenesis  

1.9.1 APEC dissemination 

The major APEC reservoir is thought to be the avian GIT [31]. The route of 

extraintestinal spread has not been fully elucidated, although the oral and upper 

respiratory routes appear to be the most important [43, 127]. APEC has been reported 

to persist on poultry house dust particles at levels exceeding 106 colony forming units 

per gram of dust and inhalation of contaminated particles is thought to be an 

important route of infection [128]. Using the chicken as a model for natural infection 

researchers have shown that administration of 106 and 109 CFU into the respiratory 

tract produces local respiratory and systemic infections respectively [127].  

Oral infection and subsequent intestinal transepithelial migration has also been 

proposed as methods of extraintestinal dissemination [129, 130]. Furthermore, 

infections of superficial and subcutaneous abrasions have been suggested as 

alternative mechanisms for dissemination [131, 132].  

Vertical transmission may play a role in broiler chicken infection [51, 52]. Olsen et 

al (2012) reported that bacterial infections, primarily E. coli, accounted for ~50% of 

layer flock mortalities during the first week [133]. Omphalitis and/or yolk sac 

infections, with or without septicaemia, were reported. Such infections may originate 

from infected breeder hens with salpingitis where the yolk sac becomes infected in 

ovo, or through the hatchery environment [30, 134]. Additionally, Petersen et al 

(2006) demonstrated potential vertical transmission of fluoroquinolone resistant E. 

coli [135]. Vertical transmission is supported by studies demonstrating the 

contribution of extraintestinal E. coli infections in early flock mortality [133].  
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1.9.2 Introduction to APEC virulence-associated genes (VAGs)  

Some E. coli pathotypes are associated with certain factors associated with virulence, 

which aid their identification and characterisation. An example of this is 

enterohaemorrhagic E. coli (EHEC) (or shiga-toxin producing E. coli), which carry 

stx1 and stx2 genes encoding shiga-like toxins [136]. EHEC are associated with 

diarrheal disease, haemolytic colitis and haemolytic uraemic syndrome [137]. 

Enteropathogenic E. coli (EPEC) utilise bundle forming pili encoded by EPEC 

adherence factor plasmids [138].  

Over the past decade, deciphering APEC infection biology has been a major research 

target; this would ultimately allow better identification of APEC and the opportunity 

for disease control and intervention.  

To date, scientists have failed to identify a single or group of VAGs, 

 which can be found in all APEC isolates. Based on the literature below there are 

various modes of host-pathogen interactions.   

1.9.3 Methods of identifying virulence-associated genes: Comparative 

genomics  

Comparative genomic and mutational studies can be used to evaluate the role of 

suspected VAGs in APEC pathogenesis. Systemic E. coli from diseased birds have 

previously been compared to those from apparently healthy birds (often isolated from 

the intestinal microbiota) or to lab-attenuated strains. Genomic suppression 

subtractive hybridisation analysis has proven a valuable tool in allowing such 

comparisons to take place [139]. Suppression subtractive hybridisation has helped 

identify an array of potential APEC virulence genes involved in adhesion, invasion, 
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iron metabolism and plasmid-encoded genes in APEC strains, yet absent in non-

pathogenic strains such as E. coli K-12 MG1655 [85, 134, 140-142].  

Selective capture of transcribed sequences (SCOTS) allows for the identification of 

genes expressed by isolates taken from avian infected tissues [143]. SCOTS was 

used by Dozois et al. (2003) to identify essential APEC genes required during 

infection [144]. An advantage of SCOTS is that it does not require expansive 

knowledge of the genome in question.  

Signature tagged transposon mutagenesis (STM) allows for large scale screening of 

mutant libraries to identify genes by function involved in pathogenesis [145]. Li et 

al. (2005) used STM to identify VAGs important in an APEC in vivo infection model 

which used an O2:H5 APEC (IMT5155); a series of extracellular polysaccharides 

and lipopolysaccharides were identified using this technique [47]. STM is perhaps 

one of the most powerful tools, as it allows for large-scale screening and the 

identification of unknown genes. Furthermore, mutants are directly linked with 

attenuation. A disadvantage of STM is the possibility of overlooking moderate 

attenuation of mutants, although this would be dependent on the sensitivity of the 

protocol. For example, toxins may not be required for survival in vivo but may be 

required for pathogenesis [146].  

1.9.4 Adhesion  

ExPEC are known to colonise the avian intestinal tract asymptomatically, accounting 

for as much as 20% of the E. coli population [24, 147]. The gastrointestinal E. coli 

population is a known reservoir of APEC strains [31]. APEC causes disease at 

various systemic sites, including the respiratory tract, liver, heart and reproductive 
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tract [48]. Colonisation is the first step in APEC pathogenesis and the bacteria are not 

thought to be particularly invasive pathogens[148].  

 Type 1 fimbriae have been shown to play a role in adhesion to a number of different 

sites including the intestinal mucus layer, enterocytes, the tracheal epithelia and lung 

tissue [149-151].  Type 1 fimbriae are encoded by the fim operon, a 9 gene cluster 

within the E. coli genome. Encoded within the fim operon is the fimH protein, which 

mediates mannose-sensitive binding while recombinases allow phase variation in 

fimbriae expression. Type 1 fimbriae have also been shown to contribute to UPEC 

pathogenesis [152].  

E. coli are not thought to be particularly invasive [148]. Studies suggest translocation 

of the intestinal epithelium by APEC provides an alternative route for dissemination, 

but this only occurs when birds are predisposed to stress [129, 130]. A number of 

studies have identified ExPEC factors associated with epithelial invasion including 

Outer membrane protein A (OmpA), invasion barrier epithelia proteins (IbeA, B and 

C), fimbriae and temperature sensitive haemagglutinin (Tsh), but the exact 

mechanisms in many cases remain unknown [131, 149, 153-155].  

Ibe proteins were first described in NMEC pathogenesis for their role in invasion of 

the blood-brain barrier [156, 157]. Johnson et al. (2001) estimated 33-44% of NMEC 

carry ibe genes [158]. Germon et al. (2005) reported 24% of APEC carry ibeA, 

compared to 0% of non-APEC strains tested, despite a negative correlation with O78 

strains [159]. The exact role of Ibe proteins is not clear, some authors suggest ibeA 

encodes an extracellular protein capable of binding a 55KDa ibeA receptor (ibe10R) 

on bovine and human microvascular endothelial cells (BMECS/HMECS) [160]. 

However, Cortes et al. (2008) later proposed that ibeA may in fact encode a 
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cytoplasmic protein with enzymatic activity as no signal secretion sequence has been 

identified yet a putative flavin adenine dinucleotide binding domain has been found 

[154]. Cortes suggests that ibeA regulates type 1 fimbriae expression and thus 

indirectly contributes to the adhesion-invasive properties of ExPEC. APEC ibeA- 

mutants have been shown to have decreased biofilm formation potential and 

decreased invasiveness and virulence in both in vitro BMEC, chicken embryo DF-1 

cell models and in vivo using 3-week old chickens [157, 159, 161, 162].   

Autotransporter proteins are a distinct family of secreted proteins of Gram-negative 

bacteria. They possess an overall unifying structure composing of an N-terminal 

signal sequence, a C-terminal outer-membrane pore-forming translocator domain and 

a passenger (secreted protein) domain. The first autotransporter to be identified in 

APEC chi7122 was the 106KDa Tsh autotransporter protein [163].  Dozois et al. 

(2000) demonstrated that the Tsh protein contributed to the adherence of APEC to 

avian air sacs during the early stages of infection [155]. The tsh gene is carried by 

46-85% of APEC and is located on a number of virulence plasmids including the 

pAPEC-O2-ColV plasmid [26, 164]. Ewers et al. (2007) reported a prevalence of 4-

4.5% in UPEC isolates [165].  

The APEC autotransporter adhesin (aatA gene) and aatB contribute to biofilm 

formation and adherence to chicken embryo fibroblasts (DF-1 cells) [166, 167]. In a 

recent study aatB was carried by ~27% of 273 tested APEC (predominately of the 

B2 and D phylogroup) from China [167]. aatB was discovered following the genome 

sequencing of APEC DE205B, originally isolated from the brain of a Duck. aatB 

perhaps plays a redundant role in colonisation by some APEC, given its relatively 
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low prevalence and ΔaatB mutants still colonised infected birds but at lower capacity 

[167].  

Pyelonephritis-associated pili (P pili) encoded by the pap operon may also contribute 

to APEC pathogenesis [29, 87, 168]. P pili are not thought to be important in the 

early stages of infection, but play a role during later stages leading to septicaemia 

and organ failure [87]. The complete pap operon is carried by the well characterised 

pathogenicity associated island (PAI) IAPEC-01 [169]. The PAI IAPEC-O1 pap operon, 

excluding papA, which showed 99% homology to porcine septicaemic E. coli, shows 

high sequence homology to that of UPEC CFT073 [170]. The prevalence of pap 

genes among APEC has been reported to be between 18.5 and 40% [171, 172].  

 In all, an array of adhesins has been shown to contribute to APEC pathogenicity and 

many are likely to still be unknown. It is possible that a combination of adhesins is 

required in pathogenesis and with certain adhesins playing a role at specific points 

during infection. 

1.9.5 Iron Acquisition 

Iron is an essential requirement for most metabolic pathways involving electron 

transportation and in nucleotide biosynthesis [173, 174]. The concentration of 

extracellular free iron is low in extraintestinal sites of infection; iron tends to be 

chelated by host proteins (transferrin or lactoferrin) or bound to host haem-

containing proteins (haemoglobin), while, intracellularly, iron is often associated 

with ferritin. Bacteria have evolved direct and indirect mechanisms for sequestering 

iron from the host to ensure their survival. Hijacking iron from haem-containing 

proteins (direct acquisition) is an effective mechanism of iron acquisition; haem is 
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the most abundant source of iron in vivo. Some bacteria possess outer-membrane 

protein receptors such as ChuA, which are capable of binding haemproteins and 

allow uptake into the bacterial periplasm. Then, once within the periplasm, ATP-

binding protein cassettes such as ChuT allow transfer of iron into the cytoplasm 

[175].  

Indirect mechanisms of iron acquisition involve shuttling iron to the bacterial cell 

with the aid of bacterial siderophores; high affinity ferric iron chelators. These 

include catecholates, enterobactins, salmochelins and yersiniabactins [176]. 

Salmochelins were first identified in Salmonella enterica and are encoded by the iro 

locus (iroBCDEN) [177]. Salmochelins have been associated with the virulence of 

NMEC, UPEC and APEC, and the iro locus has been identified on ColV and ColBM 

plasmids suggesting that ExPEC share similar iron uptake mechanisms [178-181]. 

Salmochelins are C-glycosylated derivatives of enterobactins and appear to be better 

iron chelators and to potentially contribute more to APEC virulence than 

enterobactins [180]. Chicken infection studies revealed that deletion of the iro locus, 

decreased the ability of APEC chi7122 to persist and cause deep tissue lesions [144].  

Hydroxamate aerobactin, encoded by the iucABCD locus, is estimated to be carried 

by 63-98% of APEC [182, 183]. Like the iro locus, the iucABCD locus has been 

identified on APEC transmissible plasmids [26]. Mutational studies have helped 

reveal the importance of iucA and iucC in APEC E058 pathogenesis [184].  Iron 

repressible protein 2 (Irp2) is involved in the synthesis of yersiniabactin and that, and 

another siderophore receptor (ireA), have both previously been associated with 

human ExPEC virulence and located to APEC plasmids and PAIs [170, 182, 185, 
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186]. Ferric yersiniabactin uptake protein encoded by the fyuA gene has been 

identified in 66% of APEC [187].  

The SitABCD operon, encodes an iron and manganese transport system and was 

shown to contribute to the virulence of APEC chi7122 in a chicken infection model 

with a possible additional role in protection against oxidative stress [26, 188]. In one 

study, the sitABCD operon was identified in over 85% of APEC [189].   

It is perhaps the case that APEC strains possess multiple redundant mechanisms to 

ensure iron acquisition is achieved because of its essential requirement [180, 182]. 

Iron is known to be the key regulator in siderophore gene expression, but 

Valdebenito et al. (2006) also suggest that other environmental factors such as pH 

influence siderophore gene expression [190].  

The avian innate immune system appears to have developed strategies to minimise 

the effectiveness of bacterial siderophores by producing Ex-FABP homologous to 

mammalian siderocalins. Ex-FABP binds ferric iron-siderophore complexes to 

prevent bacteria from acquiring iron [191]. Ex-FABP inhibited E. coli K12 growth in 

vitro but pathogenic E. coli carrying siderophores such as salmochelins, aerobactin 

and yersiniabactin grew normally in the presence of Ex-FABP [191].  

Despite its importance, too much iron can be lethal to E. coli; high iron 

concentrations in the blood require tight regulation and factors involved in such 

regulation (AraC-like regulator and YbtA) are associated with increased expression 

in septicaemic APEC and deletion of these factors is detrimental to survival in blood 

[192].  
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1.9.6  Overcoming the host immune system  

To infect extraintestinal sites, APEC must evade the avian immune system. The 

respiratory tract lacks a resident innate cellular defence system with very few 

macrophages and heterophils (the chicken orthologue of mammalian 

polymorphonuclear neutrophils) residing in the respiratory tissue [193]. Thus, the 

respiratory tract must rely on the infiltration of peripheral blood monocytes along 

with macrophages and heterophils residing in bronchus-associated lymphoid tissues 

(BALT) [193-195]. APEC may reside free in the air sac lumen or in close contact 

with macrophages, with some speculation over the ability of APEC to replicate 

intracellularly [196]. Pourbakhsh et al (1997) correlated virulence with the ability of 

APEC to resist killing by macrophages [196]. APEC infection studies using STM or 

specific gene knockouts have been used to test molecular Koch’s postulates in a 

number of different studies to evaluate the contribution of VAGs to APEC 

colonisation and persistence in respiratory tissues [47, 155, 197].  

The K1 capsular antigen N-acetylneuraminic acid shows little immunogenic 

capacity. In epidemiological and mutational studies, the pathogenic association of K1 

has previously been associated with NMEC and APEC, although not all studies 

support the beneficial effects of the K1 capsule in pathogenesis [47, 198, 199]. 

Mellata et al. (2003) showed that the absence of P-fimbriae, K1 and the O78 antigen 

promoted association of APEC with phagocytic cells [200].  

Once within the bloodstream, APEC are faced with the bactericidal effects of the 

complement system, a constituent of the innate immune system found in sera. A 

number of VAGs have been associated with complement resistance including iss, 

which encodes the 10-11KDa increased serum survival (Iss) outer-membrane 
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lipoprotein [201]. Iss reportedly contributed to a 100 fold increase in E. coli 

virulence [202]. High sequence homology between iss and the phage lambda bor 

gene, also involved in serum resistance, suggests iss evolved from a bor precursor 

[201]. Johnson et al. (2008) described the presence of 3 iss alleles associated with 

ColV/BM plasmids and at least 2 encoded on the E. coli chromosome [26, 203]. 

Between 38 and 82.7% of APEC possess the iss gene and past studies have focused 

on this gene as a potential vaccine target offering homologous and heterologous 

protection [182, 204]. Not all research concurs with the importance of iss, suggesting 

iss may play only subtle role in virulence [200, 205].  

Other proteins associated with serum survival include the outer membrane proteins 

TraT [88, 202]. TraT inhibits complement by preventing the deposition of C3 and the 

formation of the C5b6 complex in bacterial cells, which ultimately leads to bacterial 

lysis [206, 207]. TraT has also been associated with EAEC pathogenesis [208].  

Lysozyme is another bactericidal component of the innate immune system, non-

specifically destroying bacterial cell walls by hydrolysing the peptidoglycan layer. 

Two genes have been associated with APEC resistance to lysozyme and increased 

virulence in vivo using knock-out mutants; an inhibitor of vertebrate lysozyme (ivy) 

and a membrane bound lysozyme inhibitor (MLi-C) of C-type lysozyme[209].  

1.9.7 Toxin production 

 The exact contribution of toxins to APEC virulence remains to be fully elucidated, 

although various toxins may be involved [43]. The first PAI of APEC was the VAT-

PAI encoding a vacuolating autotransporter toxin (Vat) [210]. VAT induces the 

formation of intracellular vacuoles having an overall cytotoxic effect. Parreira et al. 
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(2003) observed a decline in virulence following the deletion of the vat gene in a 

broiler chicken respiratory infection model [210]. This autotransporter toxin shares 

75% sequence homology to the tsh gene described earlier and is found in 

approximately 38% of APEC, although it has been reported in over 50% of ExPEC 

[47, 182]. Johnson et al. (2007) even reported the presence of vat in the backbone 

genome of ExPEC strains [89].  

Toxins previously associated with other ExPEC have been suggested to contribute to 

APEC virulence but existing data are contradictory. The enteroaggregative heat 

stable enterotoxin 1 (EAST1), encoded by the astA gene, was originally identified in 

EAEC and later associated with both ETEC and 20-30% of APEC pathotypes and 

induces diarrhoea [187, 210, 211]. Olsen et al. (2011) demonstrated that although 

EAST1 may be associated with pathogenicity it is not found in all outbreak APEC 

strains [123].   

Recently cellulitis was induced following the subcutaneous inoculation of purified E. 

coli vacuolating factor (ECVF) into 40-day old broiler chickens confirming its role in 

the initiation of inflammation and pathogenesis [212].  

Other toxins associated with ExPEC pathogenesis, include the haemolysin (hlyE), 

heat-labile enterotoxin (a homologue of EAST1) and shiga toxins, although their 

exact role in APEC pathogenesis remains unclear [213-216].  

1.9.8  Plasmid encoded genes and pathogenicity islands 

A number of conjugation and mutational studies have highlighted the ability to 

transfer virulence using virulence plasmids or PAI [217-220]. The avian gut has been 
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described as a ‘mixing vessel’ allowing the transfer for virulence encoded genetic 

elements and is a known source of APEC [221].  

1.9.8.1  Colicin V plasmids 

Colicin V (ColV) plasmids are large ones (80-180kb) associated with ExPEC [189, 

205, 222, 223]. These plasmids mainly fall into incompatibility groups IncFIB and 

IncFIIA (defined by the replication mechanism used) [224].  ColV plasmids are 

named because they carry the bacteriolysin colicin V; this phenotype was first 

described as transmissible in the early 1960s and was later associated with F-type 

plasmids [225, 226]. In 1980, Williams and Warner reported that the colicin 

phenotype did not actually contribute to virulence of ExPEC and it was merely 

associated with large plasmids encoding other VAGs [227].  

Numerous APEC ColV plasmids have been fully sequenced including: 1) pAPEC-

O2-ColV carried by a particularly virulent strain of APEC from a turkey with 

colibacillosis 2) pEco588 from an O45 NMEC isolate 3) PCVM29188_146 

originally isolated from a Salmonella spp. from retail chickens 4) pChi7122-1 carried 

by the model APEC chi7122 [26, 28, 164, 228]. Johnson et al. (2006) published the 

first fully sequenced ColV plasmid (pAPEC-O2-ColV) which became available in 

2006 [26].  

Iron acquisition systems, serum resistance and even selective growth advantages 

under acidic conditions are associated with ColV plasmid carriage [229]. The 

pAPEC-O2-ColV plasmid is 180kb with a 93kb region encoding VAGs containing 

both ‘constant’ and ‘variable’ regions. The constant region focuses around the 

plasmid replicon along with the aerobactin operon, salmochelin siderophore, sit 

operon, ompT, Ets (an ABC transporter) and iss. The variable region contained genes 
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for the synthesis of Tsh and the transport system Eit [224]. Virulence of this plasmid 

was confirmed when it was transferred into non-pathogenic commensal E. coli [220].  

 pChi7122-1 also contains many of the expected APEC VAGs previously described 

and has been shown to be a major contributor to virulence [164].  

1.9.8.2  Colicin B & M plasmids 

Colicin B and M (ColBM) plasmids (named so because they encode Colicin B and 

Colicin M) are thought to have evolved from ColV plasmids. ColBM plasmids are 

within the same incompatibility group IncFIIB as ColV plasmids. One such 

sequenced plasmid (called the pAPEC-ColBM) encodes similar VAGs to those 

found on the ColV plasmids and is of a similar size and was identified in ~28% of 

APEC tested [221]. Often, ColBM plasmids are associated with multidrug resistance, 

particularly to tetracycline, ampicillin and streptomycin [228]. Another ColBM 

plasmid, which has been fully sequenced, is the pAPEC-O103-ColBM [230].  

Overall, the colicin plasmid pangenome is large and plasmids are highly 

heterogeneous whilst maintaining conserved structures, suggesting differences in 

plasmids arise from larger insertions and deletions of genetic material as opposed to 

single nucleotide polymorphisms and mutations.   

1.9.8.3  Other APEC associated plasmids and PAIs 

Non-ColV plasmids have also been linked to virulence in APEC. Mellata et al. 

(2012) recently described the contributing roles of pChi7122-2, -3 and the small 

cryptic plasmid pChi7122-4 in APEC chi7122 pathogenesis in addition to the already 

well defined pChi7122-1 plasmid [231]. This work highlighted that combinations of 

plasmids and their nature are important and indeed determine the outcome of 
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bacterial behaviour. pChi7122-2 and -3 do not encode the common ExPEC VAGs 

and were shown to contribute to acid tolerance, biofilm formation and bacterial 

interaction with the epithelium, possibly due to the encoding of Type IV fimbriae 

and the eitABCD transporter. These plasmids play minor roles in virulence 

contributing more to APEC persistence in stressful (low iron) environments.  

A transmissible IncHI2 plasmid (pAPEC-O1-R) encoding for multidrug resistance to 

eight antibiotics and heavy ion resistance has also been fully sequenced [232]. The 

prevalence of this plasmid amongst ExPEC (including APEC and UPEC) was 

determined to be low but highlights the potential for the emergence of large drug 

resistance phenotypes.  

A number of chromosomally embedded APEC associated PAI have been identified 

amongst pathogenic E. coli that are missing from non-pathogenic strains. Such 

chromosomal regions vary in size from 20-200kb and can be horizontally transferred 

within a bacterial population [233]. The PAIAPEC-O1 was sequenced to reveal the pap 

operon [169]. Furthermore, the vat encoding PAI was the first to be identified and 

deletion of this PAI in broiler respiratory models reduced virulence [210].  

1.9.9 VAG summary 

The molecular basis of APEC pathogenesis is yet to be fully understood but it is 

apparent there are many modes of host-pathogen interaction. Many genes have been 

identified to have a contributing role in APEC pathogenesis, yet no defining factor 

has been identified to date. A recent in vivo APEC infection study focusing on APEC 

with faecal E. coli infection comparisons revealed that both groups were capable of 
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producing inflammation in infected lung tissue and despite efforts it is difficult to 

draw a line that separates pathogenic and non-pathogenic avian E. coli [234].  

1.10. Chicken Immunology 

1.10.1 Introduction to chicken immunology 

The divergence of mammals and birds from a common reptilian ancestor occurred 

200 million years ago. Despite this evolutionary time period, the fundamental 

principles of both the innate and adaptive immune systems of mammals and birds are 

the same. The availability of the chicken genome has helped improve our 

understanding of the avian immune system [235]. 

1.10.2  The chicken innate immune system  

The first non-specific arm of the avian immune system is known as the innate 

system. As in mammals, the most well characterised family of non-specific pattern 

recognition receptors (PRRs) are membrane-bound Toll-like receptors (TLRs) 

expressed by various cell types including epithelial cells and sentinel cells such as 

antigen presenting cells (APCs), dendritic cells and macrophages. In the chicken, 

TLRs are also expressed by heterophils, a polymorphonuclear leukocyte and 

homologue of mammalian neutrophils [236]. TLRs detect structurally conserved 

microbial specific motifs. Thirteen TLRs have been described in the chicken; 11 are 

also present in mammals while two are chicken-specific (TLR-15 and TLR-21) [237, 

238]. Despite differences in TLR families, similar microbial motifs are recognised by 

both TLR repertoires.   
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Invading E. coli are likely to be recognised by TLR-2, -4, -5 and -21 which recognise 

peptidoglycan, LPS, flagellin and unmethylated CpG DNA motifs respectively [237-

239]. Receptor-ligand binding triggers proinflammatory intracellular signalling 

pathways (NFκB and mitogen activated protein kinase pathways) initiating the 

activation and recruitment of phagocytic cells and lymphocytes through the 

expression of pro-inflammatory cytokines and chemokines (molecular messengers 

and immunomodulators responsible for coordinating cells of the innate and adaptive 

immune system).   

An invaluable tool in starting to understand the chicken cytokine responses is the 

availability of quantitative real-time reverse transcription PCR assays for many of the 

chicken cytokine messenger RNAs [240]. Pro-inflammatory cytokines such as 

interleukin-1β (IL-1β), IL-6, IL-8 and chemokines CXCLi 1, 2 and 4 are involved in 

the recruitment of heterophils and macrophages to the intestinal epithelium during 

chicken infection with Salmonella Typhimurium [241]. The respiratory tract and air 

sacs are thought to be one of the primary sites for APEC infection. The air sacs 

possess no resident cellular defences and rely on the rapid pro-inflammatory influx 

of heterophils and then macrophages [193]. An initial pro-inflammatory avian 

response is common following pathogen exposure. IL-2 induces heterophil activation 

and T lymphocyte activation (a cell of the adaptive immune system) [242].  For 

example, exposure of chicken peripheral blood mononuclear cells (PBMC) to S. 

Enteritidis can induce a rapid change in IL-6, CXCLi2 and anti-inflammatory 

transforming growth factor – β4 (TGF-β), although some reports are contradictory 

[240].    
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An association between E. coli and innate immune cells has been reported. Mellata et 

al. (2003) suggested that Type 1 fimbriae and the absence of P fimbriae, K1 antigen 

and the O78 antigen promoted the association of E. coli and innate cells. However, 

the presence of Type 1 and P fimbriae protected E. coli from the subsequent 

bactericidal effects of phagocytes [243]. Pourbaksh et al. (1997) reported that 

following in vivo infection of chickens, E. coli were detected within macrophages in 

the air sacs and extracellular E. coli were associated with heterophils, fibrin or 

epithelial cells [87]. An increase in the number of phagocytes and levels of IL-6 in 

the lung and blood were recorded following the administration of a recombinant pro-

inflammatory interferon-у (IFN-у) during an E. coli in vivo infection [244].  

1.10.3  The adaptive immune system 

The second arm of the chicken immune system is the adaptive one involved in both 

cellular and humoral (antibody) responses, as well as the production of memory 

cells.  The avian antigenic repertoire is more compact than that of the mammalian 

system; one reason for this is that birds only possess 2 of the Major 

Histocompatability complex class (MHC) 1 alleles, compared to the 6 of mammals 

[245]. MHC class 1 is found on almost all nucleated cells and their function is to 

present antigen peptides to CD8+ cytotoxic T lymphocytes (T-cells). Despite this 

more limited repertoire, birds are still effective at mounting an adaptive immune 

response and clear pathogens such as S. Enteritidis by T Helper 1 CD8+ cells [241].   

1.10.4  APEC vaccine production 

A recent study identified that approximately 50% of first week layer hen mortalities 

were related to infection, with E. coli being responsible for a significant proportion 
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of deaths [133].  The major limiting factor in designing an APEC vaccine is the 

inability to define APEC by a single or even a combination of factors. Olsen et al. 

(2012) found that the first week mortalities related to E. coli were due to a polyclonal 

population further adding to the problems faced in vaccine production. Some 

attempts in vaccine production have failed to overcome this problem, resulting in 

poor protection against heterogeneous challenge [246]. 

 Liposomal inactivated APEC vaccines have shown some promise [247]. Following 

eye drop administration of the inactivated APEC, levels of IgG in sera and IgA at 

mucosal sites increased. A similar observation was made using a recombinant iss 

protein vaccine [204, 248]. Lynne et al. (2012) showed that the recombinant APEC 

vaccine of multiple different serogroups provided sufficient protection against 

subsequent challenge [248]. Absolute protection from this vaccine was not seen, 

corresponding with the idea that the Iss protein may only play a minor role in APEC 

virulence [200, 205].  

Live virus vaccines would allow for mass vaccination as they can be administered in 

feed and water or as an aerosol spray. A number of live APEC vaccines have been 

described in recent years, including mutant O2 and O78 strains [249, 250]. These 

vaccine candidates contained mutations in genes involved in intracellular signalling, 

bacterial transcription (E. coli cyclic AMP binding protein (crp)), sugar fermentation 

and amino acid biosynthesis.  
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1.11.  The aims of this thesis 

APEC research has become increasingly popular in the past decade but there is still 

much to be done. To date, very little work has focused on the epidemiology of APEC 

in UK commercial broiler chickens. This investigation addresses the epidemiology, 

population dynamics, and (subsequently) the in vitro phenotypic behaviour of both 

avian faecal and extraintestinal E. coli populations isolated from UK commercial 

broiler chickens using several innovative approaches. Such information may help 

elucidate the complex interaction between host and microbe and contribute to the 

formation of effective control measures in the poultry industry. The specific aims 

are: 

1. To explore the population genetics and VAG carriage of E. coli found in the 

avian GIT.  

2. To explore the population genetics and VAG carriage of extraintestinal E. 

coli in diseased broiler chickens.  

3. To compare the genetic background and VAG carriage of intestinal and 

extraintestinal E. coli from the same flock cycle.  

4. To determine the changes/dynamics of E. coli populations found intestinally 

and extraintestinally as birds age.  

5. To determine the contribution of E. coli to first week mortalities of UK 

broiler chickens. 

6. To compare the in vitro behaviour of avian extraintestinal and intestinal E. 

coli isolated from the field. 

7. To compare the avian innate immune response to avian extraintestinal and 

intestinal E. coli.  
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2.1      Longitudinal field study   

2.1.1 Commercial poultry farms 

Two commercial poultry farms were involved in this investigation. These poultry 

farms are located in North East Wales, approximately 30 miles from the University 

of Liverpool (Leahurst campus) and approximately 15miles from one another. One 

of the two farms consisted of three sheds, while the other had four. All poultry, 

irrespective of farm, were reared to conform to the standard commercial end-of-life 

stocking density of 38kg/m2. Farm managers are required to perform 3-4 welfare 

inspections daily.  

The broiler chickens included in this thesis were a standard commercial breed, 

representative of approximately 90% of the total industry. All flocks involved were 

routinely vaccinated against avian pneumovirus (7 days old), infectious bronchitis 

virus (14 days old) and infectious bursal disease (16 days old). 

2.1.2 Sample collection 

For the longitudinal component of the investigation 2 flock cycles from each of the 

two farms were included. Thus 4 flock cycles were sampled in total.  

2.1.2.1 Faecal E. coli  

Once a week (every 7th day where possible), 20 fresh faecal samples were collected 

using sterile swabs from one broiler shed on each of the two farms. The same shed 

was sampled throughout the study. Sampling commenced the day the chicks were 

placed in the sheds and concluded when the birds reached 5 weeks old, coinciding 

with the depopulation of the flock. During depopulation events, approximately 30% 
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of the flock is removed and sent to slaughter to allow farmers to conform to end-of-

life stocking density legislation.  

2.1.2.2 Extraintestinal E. coli 

From week 2 of production and alongside faecal sampling, dead birds were collected 

during the first welfare walk of the day and examined by post-mortem. To minimise 

the detection of systemic E. coli resulting from a loss of intestinal integrity following 

death, birds were only selected for post-mortem examination if they did not show 

signs of extensive trauma (pecking, broken legs). For all birds, signs of disease/tissue 

lesions were recorded including: ascites, airsacculitis, cellulitis, splenomegaly, 

pericarditis, perihepatitis and lesions within respiratory tissue.  

For each bird, up to 1 gram of the following tissues were collected; heart, kidney, 

liver, lung and spleen using sterile forceps and scalpels. An equal volume of sterile 

phosphate buffered saline (PBS) was added to each tissue sample and homogenised 

using a Biomaster Micro-stomacher 80 (Steward, UK) for 60 seconds at high speed.  

2.1.3 Isolation and resuscitation of E. coli 

Each faecal swab (or 50µl of tissue homogenate) was cultured onto eosin-methylene 

blue agar (EMBA) and incubated overnight at 37°C. From each plate, eight randomly 

selected colonies typical of E. coli were sub-cultured onto nutrient agar to obtain 

pure cultures and incubated overnight at 37°C. On EMBA, E. coli are typically dark 

colonies with a metallic green sheen, the result of lactose fermentation and acid 

production.  Not all E. coli produce the green sheen and identification was confirmed 

using a polymerase chain reaction (PCR) targeting the uidA gene, see section 2.4.3 
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for assay conditions [11]. uidA encodes a β-glucuronidase enzyme carried by ~96% 

of E. coli [251]. All media were obtained from LabM (IDG) Ltd (Bury, UK).  

The E. coli culture collection obtained during this study was stored long term at -

80⁰C in Microbank vials (Pro-Lab Diagnostics, UK). When required, bacterial 

isolates were resuscitated from -80⁰C storage by streaking onto nutrient agar and 

incubating overnight at 37⁰C. 

2.2 Defining and identifying pAPEC  

In the following investigation, potential APEC (pAPEC) are defined as E. coli 

isolated from the faeces of broiler chickens and which carry ≥ 5 virulence-associated 

genes (VAGs) identified using PCR based assays, see section 2.4.1.  

2.2.1 Identifying pAPEC among entire faecal E. coli population 

To screen the faecal population for pAPEC, the eight E. coli isolated from each swab 

were pooled and screened for 4 VAGs (cvi, iss, iucD and tsh) using a published 

multiplex PCR (mPCR), see section 2.4.1 [252]. PCR positive pools for ≥ 3 VAGS 

were subsequently separated into their 8 individual isolates and virulotyped 

individually.  E. coli pools with < 3 positive genes were discarded. This screening 

protocol is illustrated as a flowchart in Figure 2.1.  

2.3 DNA extractions  

The pooled mPCR and the virulotyping mPCR DNA extractions were performed 

using Chelex-100 (in 10 mM Tris-HCl, 1 mM EDTA, pH 8.0) (Bio-Rad, 

Hertfordshire, UK) based protocols, described by Walsh et al (1991) [253]. 
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2.3.1  DNA extraction for screening pooled faecal E. coli  

One colony of each of the 8 faecal E. coli isolated from the same swab was pooled 

into 600µl of Chelex-100 and incubated at 95⁰C for 10 min. At each time point there 

were 20 pools of 8 E. coli. Samples were centrifuged at 10,000rpm for 2 min and 

50µl of supernatant was added to 250µl of sterile double distilled water. Pooled DNA 

preparations were stored short term at 4°C.  

2.3.2 DNA extraction for virulotyping individual E. coli  

To prepare individual E. coli isolates for virulotyping by PCR analysis, extractions 

were made as above (section 2.3.1) with a few modifications. One loopful of 

bacterial cells was suspended in 300µl of Chelex-100 solution. The solution was 

heated at 95°C for 10 minutes and then centrifuged at 10,000rpm for 2 min. 50µl of 

the clear supernatant was added to a new eppendorf tube containing 450µl sterile 

distilled water [253]. Pooled DNA preparations were stored short term (weeks) at 

4°C and for long term (months) at -80°C.  

2.4 Polymerase Chain Reaction (PCR) assays 

Multiple PCR assays were used during the course of this investigation. All PCR 

constituents were supplied by Thermo Scientific Ltd, Surrey and primers were 

obtained from Eurofins MWG operon (Germany). 
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2.4.1 Screening faecal E. coli  

As a means of screening faecal E. coli, largely expected to be non-pathogenic, each 

pooled DNA extract was screened for four VAGs previously associated with APEC 

pathogenesis; iss, tsh, iucC and cvi, using a mPCR [252].  

2.4.1.1 Screening faecal E. coli: the reaction 

Primer sequences are shown in Table 2.1[252]. Each 50µl reaction contained: 12µl of 

25mM MgCl2, 21.3µl sterile water, 5µl 10x PCR buffer, 4µl of 20mM dNTPs, 0.3µl 

of each 100pmol forward and reverse primer, 0.3µl 5U/µl Taq polymerase and 5µl 

template DNA.  

 

Table 2.1  Gene target, primer sequences, accession number and product length 

for pooled multiplex PCR   

 

Gene Primer sequence (5' - 3') Gene Bank 
Accession no. 

Size 
(bp) 

Reference 

iss GTGGCGAAAACTAGTAAAACAGC! AF042279 760 [254]  
CGCCTCGGGGTGGATAA!

tsh GGGAAATGACCTGAATGCTGG! AF218073 420 [255]  
CCGCTCATCAGTCAGTACCAC!

iucC CGCCGTGGCTGGGGTAAG! X76100 541 [252] 
CAGCCGGTTCACCAAGTATCACTG!

cvi GGGCCTCCTACCCTTCACTCTTG! AF062858 366 [252] 
ACGCCCTGAAGCACCACCAGAA!
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2.4.1.2 Screening faecal E. coli: thermocycler conditions 

Thermocycler conditions were: initial denaturation 95⁰C for 5 min; nine cycles of 

95⁰C for 60 sec, 55⁰C for 30 sec, 72⁰C for 60 sec; twenty eight cycles of 94⁰C for 30 

sec, 55⁰C for 30 sec, 72⁰C for 30 sec with a final extension 72⁰C for 7 min. The 

mixture was cooled and held at 4⁰C until visualised. 

2.4.2 Virulotyping E. coli by PCR 

Individual E. coli passing the screening threshold or those isolated directly from 

extraintestinal sites were virulotyped based on the presence of 10 VAGs; astA, iss, 

irp2, papC, iucD, tsh, cvi, vat, sitA and ibeA.  

In order to do this, 3 PCR assays were required: one multiplex and two single PCRs.  

The published mPCR targets astA, iss, irp2, papC, iucD, tsh, cvi and vat [182].  The 

two single PCRs target sitA and ibeA and have been previously described by Timothy 

et al (2008) [110].  

2.4.2.1 Virulotyping E. coli: the reaction 

Primer sequences are shown in Table 2.2. Reactions were performed in 25µl 

containing: 4µl of 25mM MgCl2, 13.9µl sterile water, 2.5µl 10x PCR buffer, 0.5µl 

20mM dNTPs, 0.1µl of each 100pmol forward and reverse primers, 0.5µl 5U/µl Taq 

polymerase and 2µl DNA template.  

sitA and ibeA PCR assays contained 1µl DNA template, 1µl of each primer 

(100pmol) and 22µl of 1.1 x Reddymix PCR mastermix with 1.5mM MgCl2. 
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2.4.2.2 Virulotyping E. coli: thermocycler conditions 

Thermocycler conditions were as follows: initial denaturation 94⁰C for 3 min and 25 

cycles of; 94⁰C for 30 sec, 58⁰C for 30 sec, 68⁰C for 3 min; final extension 72⁰C for 

10 min; hold at 4⁰C until visualised.  

Thermocycler conditions for sitA and ibeA were identical; 95⁰C for 12 min; 25 

cycles of: 94⁰C for 30 sec, 63⁰C for 30 sec, 68⁰C for 3 min with a final 72⁰C for 10 

min. The mixture was held at 4⁰C until visualised.  

Table 2.2 Gene target, primer sequences, accession number and product length 

for virulence-associated genes targeted in second stage of virulotyping   

Gene Primer sequence (5' - 3') 
Gene Bank 

Accession no.  
Size 
(bp) Reference 

astA TGCCATCAACACAGTATATCC! AF143819 116 [256] 
TCAGGTCGCGAGTGACGGC!

iss ATCACATAGGATTCTGCCG!
X52665 309 [171] 

CAGCGGAGTATAGATGCCA!

irp2 AAGGATTCGCTGTTACCGGAC! L18881 413 [171, 187] 
AACTCCTGATACAGGTGGC!

papC TGATATCACGCAGTCAGTAGC!
Y00529 501 [257] 

CCGGCCATATTCACATAA!

iucD ACAAAAAGTTCTATCGCTTCC! M18968 714 [257] 
CCTGATCCAGATGATGCTC!

tsh ACTATTCTCTGCAGGAAGTC! AF218073 824 [171] 
CTTCCGATGTTCTGAACGT!

vat TCCTGGGACATAATGGTCAG!
AY151282 981 [171] 

GTGTCAGAACGGAATTGT!

cvi/cva TGGTAGAATGTGCCAGAGCAAG! AJ223631 1181 [171] 
GAGCTGTTTGTAGCGAAGCC!

ibeA AGGCAGGTGTGCGCCGCGTAC! L42624 171 [72] 
TGGTGCTCCGGCAAACCATGC!

sitA TGGTGCTCCGGCAAACCATGC! AY126440 608 [77] 
AGGGGGCACAACTGATTCTCG!
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2.4.3 E. coli uidA PCR  

E. coli identification was confirmed by the presence of uidA [11]. Each reaction was 

performed in 25µl containing: 1µl of template DNA, 1µl of each 20pmol forward 

and reverse primers and 22µl of 1.1 x Reddymix PCR mastermix with 1.5mM 

MgCl2. Thermocycler conditions were as follows: 25 cycles of 1 min of each 94, 58 

and 72°C with a final extension at 72°C for 7 min. Forward primer (5’to 3’) 

CCAAAAGCCAGACAGAGT and reverse primer (5’ to 3’) 

GCACAGCACATCAAAGAG [11]. PCR amplicon was 623bp.  

2.4.4 Phylogenetic typing PCR based assay 

2.4.4.1 Phylogenetic typing; the reaction 

E. coli were assigned to 1 of 4 phylogenetic groups (A, B1, B2 or D) using a mPCR   

targeting chuA, yjaA and the DNA fragment TSPE4.C2 [1]. Phylogenetic 

classification was based on the combination of chuA, yjaA and TSPE4.C2: A (chuA-, 

TSPE4.C2-, yjaA+), B1 (chuA-, TSPE4.C2+, yjaA-), B2 (chuA+, TSPE4.C2-/+, yjaA+) 

and D (chuA+, TSPE4.C2-/+, yjaA-).  

Each 25µl PCR reaction contained: 1µl of template DNA extract, 1µl of each forward 

and reverse 100pmol primer and 22µl of 1.1 x Reddymix with 1.5mM MgCl2.  

2.4.4.2 Phylogenetic typing; thermocycler conditions 

Thermocycler conditions were as follows: initial denaturation at 94⁰C for 4 min; 30 

cycles of; 5 sec at 94⁰C and 10 sec at 59⁰C with a final extension at 72⁰C for 5 min. 

The reaction mixture was held at 4⁰C until visualised.  
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2.4.5 Visualisation of PCR products 

All mPCR products were visualised on a 1.5% agarose gel while single PCR 

products were visualised on a 2% agarose gels made using agarose (Biorad, UK) in 1 

x Tris-borate ethanoate (TBE) buffer (Sigma-Aldrich) with 10µl/ml of ethidium 

bromide. For all PCR assays, 15µl of PCR product was loaded into the gel wells 

alongside10µl of 100bp molecular weight marker (Superladder low 100bp, Thermo 

scientific). Gels loaded with mPCR products were run in 1 x TBE buffer at potential 

difference of 120V and current 500mA for a maximum of 1.5 hours and checked 

periodically. Single PCR products were run at 150V and current 500mA for 30-40 

minutes. Product bands were visualised using a gel documentation system (UviTee 

Gel Documentation system, UVItec, Cambridge, UK) under ultraviolet (UV) 

transillumination and images recorded using the UVIProMV computer program 

(UVItec). 
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4 UK broiler chicken flocks 
sampled once weekly from 
placement until slaughter 

8 dead birds collected from 
first daily welfare walk and 
post-mortems performed 

Faecal and extraintestinal 
isolates from 1 flock cycle 
taken for further genetic 
characterisation 

20 fresh faecal swabs 
collected using sterile swabs: 
8 E. coli isolate picks from 
each and DNA pooled 

Pooled DNA extracts screened 
by multiplex PCR for 4 VAGs: 
cvi, iucC, iss, tsh  

Up to 8 E. coli isolate picks 
from heart, kidney, liver, lung 
and spleen    

Individual isolates virulotyped: 
astA, iss, irp2, iucD, papC, tsh, 
vat, cvi, sitA, ibeA   

Phylogenetic 
typing 

 

Multilocus-
sequence typing 

(MLST) 

Pulsed field gel 
electrophoresis 
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Figure 2. 1 Flow diagram for sampling E. coli on broiler chicken farms 
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2.5 Gentamicin Invasion Assay 

The gentamicin invasion assay was used to analyse the invasive potential of pAPEC 

using the human colonic carcinoma cell line (Caco-2) and the intracellular 

persistence of avian faecal and extraintestinal E. coli in the avian macrophage cell 

line (HD11) [258]. The protocol for both experiments was based on that previously 

described [259, 260].  

2.5.1 Cell line seeding protocols 

2.5.1.1 Caco-2 cell line 

The human colonic carcinoma cell line (Caco-2 cells) was sourced from Dr Barry 

Campbell from the Gastroenterology Department, University of Liverpool, UK 

(ATCC®, Number HTB-37). Cells were grown in Dulbecco’s minimum essential 

medium (DMEM) (Sigma-Aldrich, UK) supplemented with 10% foetal bovine serum 

(Sigma-Aldrich, UK), 1% GlutaMAXTM (100x concentration) (Invitrogen, UK), 1% 

MEM non-essential amino acid solution (Sigma-Aldrich, UK) and penicillin–

streptomycin (100 U/ml) antibiotics (Sigma-Aldrich, UK). Cells were grown at 37⁰C 

5% CO2.  

Twelve days before infection, cells were seeded into 24-well tissue culture plates at a 

density of 3 x 105 cells per well and incubated at 37⁰C in 5% CO2 to give a final 

density of 1 x 106 cells. The DMEM was changed every 2-3 days during this time 

[259]. Three days before the experiment, the DMEM with the above supplementation 

was substituted for antibiotic-and serum-free medium (AFSF DMEM).  
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2.5.1.2 HD11 cell line 

The avian macrophage HD11 cell line [258] was grown in RPMI-1640 media 

(Sigma-Aldrich, UK) with the same supplementation as that of the Caco-2 cell line 

described in section 2.5.1.1. Cells were grown at 37⁰C. 5% CO2 [258].   

Two days before infection, cells were seeded into 24-well tissue culture plates at a 

density of 4.5 x 105 cells per well and incubated at 37⁰C to give a final density of 1 x 

106 cells. One day before the experiment, the RPMI with the above supplementation 

was substituted for AFSF RPMI.   

2.5.2 Bacterial culture preparation  

All bacterial isolates were resuscitated from the -80⁰C culture collections by 

streaking onto nutrient agar and incubating overnight at 37⁰C. For all assays, S. 

Typhimurium 4/74 was used as an invasive positive control and APEC O78 was used 

as a reference APEC control. The APEC O78 reference strain was kindly donated by 

Professor Mark Stevens of The University of Edinburgh Roslin Institute, Scotland, 

UK. APEC O78 is a spontaneous mutant of the EC1 strain isolated from the liver of a 

diseased turkey [79].  

 One day prior to the invasion assays, 2-3 colonies of each overnight culture were 

used to inoculate 2ml of sterile LB broth. Bacterial suspensions were incubated 

overnight at 37⁰C.  On the day of the infection studies, 100µl of overnight culture 

was added to 10ml of fresh LB broth and incubated at 37⁰C for 3.5 hours at 150rpm. 

After 3.5 hours the OD600 was adjusted using sterile PBS to 0.27 +/- 0.05 to reduce 
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differences in multiplicity of infection (MOI) between bacterial samples. These 

adjusted suspensions (MOI of ~28) were used to infect the immortalised cell lines.  

2.5.2.1 In vitro infection  

The AFSF growth medium was removed from the cultured cell lines and the cells 

were washed 3 times with sterile PBS and replaced with 1ml of heated (37°C) AFSF 

growth medium. Cell monolayers were incubated for 2 hours at 37⁰C 5% CO2.  

100µl of bacterial samples (with adjusted OD600) were added to the monolayers in 

triplicate. Infected monolayers were re-incubated at 37⁰C for one or two hours for 

HD11 and Caco-2 cells respectively. After the initial incubation time, the supernatant 

was removed. One ml of growth media containing 100µg/ml gentamicin sulphate 

(Invitrogen, UK) was added to each well and incubated at 37⁰C for 1 hour. This was 

removed and cells washed once with sterile PBS. Cells were lysed with 0.5% Triton 

X-100 in 1ml PBS incubated at 37⁰C for 5 minutes. Cell lysates were serially diluted 

(1:10) using PBS and intracellular bacteria enumerated on nutrient agar. For 

enumeration, 3 x 20µl of each dilution (neat to 10-8) was plated onto nutrient agar 

and the average for each dilution was calculated.  

To assess the level of persistence at later time points (refer to Chapter 5 and 6 for 

details) following the initial incubation periods described above, 1ml of fresh growth 

medium containing 20µg/ml of gentamicin sulphate was added to the infected 

monolayers instead of lysing the cells with PBS-Triton X-100. Cells were then 

incubated at 37⁰C 5% CO2 until the pre-defined point (up to 24 hours post-infection). 

At this time, the supernatant was removed, lysed with PBS-Triton X-100 and 

enumerated as previously described.  
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ABSTRACT 

Colibacillosis is an economically important syndromic disease of poultry caused by 

extraintestinal avian pathogenic Escherichia coli (APEC) but the pathotype remains 

poorly defined. Combinations of virulence-associated genes (VAGs) have aided 

APEC identification. The intestinal microbiota is a potential APEC reservoir. This 

study simultaneously investigates intestinal E. coli VAG carriage in apparently 

healthy birds and characterises systemic E. coli from diseased broiler chickens from 

the same flocks. Four flocks were sampled longitudinally from chick placement until 

slaughter. Phylogrouping, macro-restriction pulsed-field gel electrophoresis (PFGE) 

and multi-locus sequence typing (MLST) were performed on an isolate subset from 

one flock to investigate the population structure of faecal and systemic E. coli. 

Early in production, VAG carriage among chick intestinal E. coli populations was 

diverse (average Simpson’s D value = 0.73); 24.05% of intestinal E. coli (n=160) 

from day-old chicks were carrying ≥ 5 VAGs. Generalised Linear models 

demonstrated VAG prevalence in potential APEC populations declined with age; 1% 

of E. coli carrying ≥5 VAGs at slaughter and demonstrated high strain diversity. A 

variety of VAG profiles and high strain diversity were observed among systemic E. 

coli; polyclonal infections were also identified within organs of the same bird. Thirty 

three new MLST sequence types were identified among 50 isolates and a new 

sequence type (ST-2999) representing 22.2% (ST-2999) of the systemic population 

was found, differing from the pre-defined pathogenic ST-117 at a single locus. For 

the first time, this study takes a longitudinal approach to unravelling the APEC 

paradigm. Our findings, supported by other studies, highlight the difficulty in 

defining the APEC pathotype.  
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3.1 Introduction  

Colibacillosis is an avian syndromic disease characterised by fibrinous lesions 

around visceral organs caused by a group of extraintestinal pathogenic Escherichia 

coli (ExPEC) known as avian pathogenic E. coli (APEC). Airsacculitis, cellulitis, 

pericarditis, perihepatitis and respiratory distress are among the most commonly 

associated signs of colibacillosis in broiler chickens [48].  

The domestic chicken (Gallus gallus domesticus) is the most abundant domestic bird 

species on the planet while chicken remains the most popular meat of choice. The 

UK Department for Environment, Food and Rural Affairs (DEFRA) report annual 

production of over 900 million broiler chickens, 17 million turkeys and 100,000 

geese in the UK [3]. These 2012 figures show a 3.2% increase in broiler chicken 

production since 2011. Endemic infections are a massive economic burden on the 

global poultry industry. E. coli infections heighten levels of flock mortality and 

morbidity and rejection of carcasses at slaughter.   

The E. coli genome has a high degree of plasticity whilst retaining a degree of 

clonality, resulting from recombination events of short mobile elements in genome 

‘hotspots’ [6, 26-28]. This clonal nature is advantageous in deciphering the genetic 

relatedness of different strains. With E. coli being one of the most studied microbes 

to date it is no surprise that an array of molecular genetic techniques exist. The E. 

coli reference collection (ECOR) originally described by Ochman and Selander 

shows the species E. coli is divided into four phylogenetic groups (A, B1, B2 and D) 

and a number of sub-phylogenetic groups [57-59]. The original ancestral group (B2) 

and D are more frequently associated with ExPEC than sister groups A and B1, 

which are often associated with environmental sources and commensalism [63, 64]. 
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Allocating E. coli to a phylogenetic group involves a simple triplex polymerase chain 

reaction (PCR) [1]. Multi-locus sequence typing (MLST) allows finer resolution of 

the relatedness of strains than phylotyping and for the detection of slowly evolving 

housekeeping genes. MLST generally involves the sequencing of ~420 nucleotide 

bases of 6-7 housekeeping genes. 

Certain traits have been identified in aiding ExPEC pathogenesis and systemic 

survival, including those involved in adhesion, invasion, toxin production, serum 

survival and iron acquisition. All have been shown to contribute to APEC 

pathogenesis [83, 159, 182, 185, 189, 252]. It is likely that combinations of 

virulence-associated genes (termed VAGs profiles or virulotypes) are needed to give 

rise to pathogenic E. coli, as no single virulence gene has been identified exclusively 

in APEC. A recent study demonstrates that APEC strains arise from multiple E. coli 

lineages following the acquisition of distinct VAGs, highlighting the potential high 

genetic diversity among these bacteria [78]. Serotyping has been used as a method 

for identifying APEC but several authors suggest it fails to discriminate APEC and 

avian faecal E. coli and a significant proportion of E. coli is untypable [31].   

Previous studies have identified the gastrointestinal microbiota as a potential 

reservoir for APEC infection [31, 83]. It has been shown that infection follows either 

inhalation of contaminated faecal dust followed by dissemination into the 

bloodstream or possibly via active bacterial gut translocation across the epithelial 

barrier [129, 261]. Intestinal E. coli carrying numerous VAGs maybe referred to as 

‘potential’ APEC (pAPEC) populations and their presence is likely to pose an 

increased risk to systemic disease.  
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Commercial broiler chickens are selectively bred for efficient and uniform growth. 

Despite commercial importance, relatively little work has exclusively focused on 

colibacillosis in broiler chickens [26, 31, 83, 189]. The gastrointestinal tract of a 

young animal is a rich ecological niche ideal for bacterial colonisation and 

subsequent microbial succession. The outcomes of host-microbial interactions are 

influenced by host (age, immunity), microbial (microbiota, VAGs) and 

environmental factors [262, 263]. Initially, commercial broiler gut colonisation can 

be influenced by: vertical transmission, the hatchery environment, handling and 

transportation [135, 264, 265]. Once on farm, birds are exposed to a different rearing 

environment, dietary changes and a series of routine vaccinations (see materials and 

methods).  

This chapter uses virulotyping, phylogenetic typing, macro-restriction pulsed field 

gel electrophoresis (PFGE) and MLST to:  

a.  Determine temporal changes in the intestinal pAPEC reservoir with age 

b. Determine whether certain VAGs and/or VAG profiles are selected for in the 

intestinal environment  

c. Determine the population dynamics of systemic E. coli in diseased broiler 

chickens 

d. Determine if there is an association between faecal and systemic E. coli 

populations  
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3.2 Materials and methods 

3.2.1 Ethics statement 

The following protocol involved the (non invasive) collection of faecal samples 

(using sterile cotton swabs) following excretion; no approval under the Animals 

(Scientific Procedures) Act (1986) was needed. No birds were culled for the purpose 

of this study and all dead birds intended for post-mortem examination were collected 

on the first daily welfare walk conducted by farmers. The study was approved by the 

University of Liverpool Committee on Research Ethics: Physical Interventions sub-

committee (reference RETH000448), with the mandatory condition that any serious 

adverse events be reported to the sub-committee within 24 hours. The study was 

conducted in strict accordance with the University of Liverpool Research 

Governance policies and permission for sampling on the broiler farms was granted 

by the farms.  

3.2.2 Sample collection  

Two consecutive flock cycles on two standard commercial broiler chicken farms in 

the UK were visited once or twice weekly. The sampling described below 

commenced from the day the chicks were placed in rearing houses and was 

completed approximately 3 days before the first de-population event (~32-35 days). 

Approximately 30% of the flock is removed at first depopulation to allow farmers to 

conform to end-of-life stocking density standards. The flocks used in this study were 

routinely vaccinated as industrial practice in the UK. All isolates collected during the 

course of this study are available upon request.  
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3.2.2.1 Gut E. coli population VAG carriage  

At each visit, 20 fresh faecal swabs were collected at random from different areas of 

the broiler house floor. Each swab was cultured onto eosin-methylene blue agar 

(EMBA) and incubated overnight at 37⁰C. From each plate, eight randomly selected 

colonies typical of E. coli were sub-cultured onto nutrient agar to obtain pure 

cultures and incubated overnight at 37⁰C. All media used were obtained from LabM 

(IDG) Ltd (Bury, UK). E. coli identification was confirmed using a PCR targeting 

the uidA gene [11]. One colony, representing each of the eight isolates, was pooled in 

600µl of Chelex-100 and the DNA extracted for PCR analysis, see Chapter 2 for 

details [253].  

As a means of screening faecal E. coli, largely expected to be non-pathogenic E. coli, 

each pooled DNA extract was screened for four VAGs previously associated with 

avian E. coli pathogenesis; iss, tsh, iucC and cvi, using a multiplex PCR [252]. 

Primer sequences, thermocycler conditions and PCR product analysis can be found 

in Chapter 2 and were originally described by Skyberg et al (2003) [252]. When a 

sample pool was positive for ≥ 3 of the 4 genes, a new Chelex-100 preparation was 

made for each individual isolate within the pool. Pooled samples with fewer than 3 

VAGs were discarded.  

The individual isolate DNA templates were then screened for 10 VAGs; astA, iss, 

irp2, iucD, papC, tsh, vat, cvi, sitA and ibeA. Three separate PCR assays were 

performed; one multiplex PCR previously described by Ewers et al.  [182] and two 

single PCR assays for ibeA and sitA outlined by Timothy et al.  [110]. Primer 

sequences and reaction conditions are described in Chapter 2 The presence or 
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absence of the 10 VAGs produced a series of 10 numbers, which denoted the VAG 

profile for each isolate (presence ‘1’ or absence ‘0’).  

3.2.2.2 Post-mortem examination of dead broiler chickens 

As well as faecal sample collection throughout rearing, from week 2 onwards, at 

each faecal sampling time point, 8 dead birds were collected from the first welfare 

walk of the day for post-mortem examination. To minimise the detection of systemic 

E. coli resulting from a loss of intestinal integrity following death, only birds 

identified as recently dead were included. Birds were only selected for post-mortem 

examination if they did not show signs of extensive pecking, had not been trodden on 

(flattened appearance) and/or did not have broken legs or other obvious injury. For 

all birds, any observed classic colibacillosis characteristics were recorded including; 

ascites, airsacculitis, cellulitis, enlarged spleen, pericarditis and perihepatitis [48]. 

For each bird, up to 1 gram of the following tissues were collected; heart, kidney, 

liver, lung and spleen using sterile forceps and scalpels. An equal volume of sterile 

phosphate buffered saline (PBS) was added to each sample and tissues were 

homogenised using a Biomaster Micro-stomacher 80 (Steward, UK) for 60 seconds 

at high speed. 50µl of the homogenate was streaked onto EMBA and incubated 

overnight at 37⁰C. Eight E. coli colonies were picked, re-plated onto nutrient agar 

and incubated overnight at 37⁰C. All isolates were immediately subjected to a full 

screen of all 10 virulence genes using the assays described previously and each 

isolate was given a corresponding VAG profile.   
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3.2.2.3 Statistical analysis   

Collected data were analysed using multiple statistical tests. Intestinal E. coli VAG 

profile diversity at each sampling time point was calculated using Simpson’s 

diversity index (D). Generalised linear models (GLMs) were used to investigate the 

relationship between VAG profile diversity and time. Several different statistical 

measures were used a) the Pearson’s correlation coefficient from VAG profile 

diversity data and the detection of potential APEC isolates b) the P-value obtained 

from the Fisher’s exact test to assess the distribution of VAG genes between faecal 

and systemic E. coli population. Associations were considered statistically significant 

if the calculated P-value was < 0.05.  

3.2.3 Phylogenetic typing 

Faecal and systemic isolates collected from one of the four flock cycles underwent 

further molecular analysis by phylogenetic typing. Two hundred and sixteen faecal 

and 35 systemic E. coli were analysed. Isolates were assigned to 1 of 4 E. coli 

phylogenetic groups (A, B1, B2 or D) using a triplex PCR targeting chuA, yjaA and 

the DNA fragment TSPE4.C2 [1].  

3.2.4 Macro-restriction pulsed-field gel electrophoresis  

Two hundred and twenty two faecal and 48 systemic E. coli were analysed using 

PFGE. The PFGE protocol used was based on the standardised Pulsenet Rapid E. 

coli method [103] with slight modifications. During sample preparation, plugs were 

incubated for 2h at 54⁰C with vigorous shaking at 175rpm and for sample digestion; 

each sample was incubated for 2h with 50U of Xba1 restriction enzyme (Roche 
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products Ltd, Hertfordshire) at 37⁰C. Samples were run on a 1% 0.5X Tris-Borate 

running buffer (TBE) (Life technologies, UK) agarose universal (alpha laboratories, 

Hampshire) with 0.5X TBE running buffer for 20 hours at 14⁰C, at 6V/cm2 with the 

initial switch time of 2.2s and final switch time of 54.2s in a CHEF-DRIII PFGE 

system. A Lambda ladder PFGE marker (New England Biolabs, Ipswich, MA, USA) 

was run on each gel. The gel was stained in an ethidium bromide solution (500µl 

ethidium bromide in 500ml 0.5X TBE running buffer) for 25 mins and visualised 

under UV using a transilluminator. Samples which failed PFGE analysis, were re-

tested with a longer proteinase K incubation period; 24h at 54⁰C with vigorous 

shaking at 175rpm. Image analysis was performed using BioNumerics version 4.0 

and Dendrograms were constructed using the Unweighted Pair Group Method with 

Arithmetic Mean (UPGMA). 

3.2.5  Multi-Locus sequence typing (MLST) 

Fifty E. coli isolates from intestinal and systemic sites were analysed by MLST. 

Genomic template DNA was prepared using the Chelex 100 DNA extraction method 

as previously described [253].  Seven house-keeping genes were targeted for PCR; 

adenylate kinase (adk), fumarate hydratase (fumC), DNA gyrase (gyrA), isocitrate 

dehydrogenase (icd), malate dehydrogenase (mdh), adenylosuccinate dehydrogenase 

(purA) and the ATP/GTP binding motif (recA) [62]. All primer sequences and a 

detailed protocol are given by Wirth et al.  [62]. For this present study, the PCR 

based protocol was modified slightly and each 25µl reaction contained:  0.5µl of each 

forward and reverse primer (20pmol), 23µl of 1.1 x Reddymix with 1.5mM MgCl2 

and 1µl of template DNA (Chelex 100 extractions). The PCR conditions included an 

initial denaturation at 95⁰C for 2 mins, 30 cycles of; 95⁰C for 1 mins, target specific 
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primer annealing temperature for 1 mins (outlined in Wirth et al. , 2006) and a final 

extension at 72⁰C for 5 mins. PCR success was confirmed by running products on a 

1.5% agarose gel in TAE buffer for 30mins at 150v. The remaining product was 

cleaned using a 20% (w/v) polyethylene glycol (PEG8000), 2.5M NaCl (Yorkshire 

Bioscience Ltd, UK) precipitation protocol. Cleaned PCR products were sequenced 

commercially (Macrogen, Korea) with 1:15 diluted sequencing primers (same as 

amplification primers). Sequences were analysed using ChromasPro version 1.5 

(Technelysium, Australia) and MEGA 5.05 [95] and  submitted to the Achtman E. 

coli MLST online database (http://mlst.ucc.ie/mlst/dbs/Ecoli). To determine the 

genetic relatedness of our STs and those previously submitted to the online database, 

ᴇBurst (version 3) diagrams were constructed following the online instructions 

(http://eburst.mlst.net/).  
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3.3 Results   

3.3.1 E. coli carriage of virulence-associated genes in healthy broiler chickens 

A total of 420 E. coli pools were obtained from apparently healthy birds from two 

flocks on two farms, between May and July 2011 and following initial screening, 119 

were positive for ≥ 3 of the 4 targeted VAGs. Thus a total of 952 isolates were 

assigned a VAG profile out of 3360.  Generally, fewer pooled samples met the 

threshold as birds aged. Overall, VAGs were more frequently associated with 

systemic E. coli populations than faecal ones (Figure 3.1). For individual intestinal E. 

coli isolates, the sitA gene was the most commonly detected VAG, ranging between 

0.68% and 20.57% prevalence, with an average detection of 8.51% over each 

sampling point for all flocks. Toxin encoding genes (astA and vat) were the least 

frequently detected in these populations; 0.00-11.25% (average 1.12%) and 0.00-

9.38% (average 2.11%) for astA and vat respectively over the four flock cycles. 

Genes associated with iron acquisition, sitA, iucD and irp2, were commonly carried 

by individual isolates averaging 5.10% and 7.34% for irp2 and iucD respectively.    

The frequency at which the invasion-related gene, ibeA, was detected varied, ranging 

from 0.6% to 17.73% over the 4 flock cycles. At t=0, ibeA detection ranged from 5 - 

14.10%. Over the first week, the level of ibeA detection decreased, before peaking 

between weeks 2-3 (approximately 13%) and then declining once again (to 3.12%) 

towards week 5. A similar trend was also observed for iss detection (Figure 3.2). 
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Figure 3.1 Comparison of faecal and systemic E. coli VAG carriage
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Upper and lower bound 95% confidence intervals indicate statistically significant differences 

between VAG carriages within the two populations. Fisher’s exact test indicates that irp2, 

papC, iucD, cvi, sitA and ibeA are significantly more associated with systemic E. coli.  
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VAG profiles (P-) were created based on observed combinations of the 10 different 

VAGs targeted (a systematic numbering system). A total of 206 different unique 

profiles were observed in the faeces of apparently healthy broiler chickens; P-1 

(astA, iss, irp2, iucD, papC, tsh, cvi, vat, sitA, ibeA: 0000000001) represents the 

carriage of ibeA only, whereas P-206 is assigned to isolates carrying none of the 

targeted genes.  P-206 was the most common profile detected in all flocks and its 

level of detection increased with time perhaps suggesting a positive selection for 

non-pathogenic traits within an intestinal population. Figure 3.3 shows the 

frequencies of detection for different profiles at t=0 and t=5. 

Figure 3.2 Average percentage frequency of VAGs    

0!

2!

4!

6!

8!

10!

12!

14!

16!

astA# iss# irp2# papC# iucD# tsh# vat# cvi# sitA# ibeA#

 %
 F

re
qu

en
cy

 

Virulence-associated genes 

0 week 

1 week 

2 week 

3 week 

4 week 

5 week 

Average percentage frequencies of 10 VAGs were calculated and plotted against time, from 

t = 0 (arrival) to t = week 5 (depopulation). Overall, VAGs appear to decline with time, 

with a peak in detection at week 3 for iss, sitA and ibeA. Iron acquisition genes irp2 and 

iucD consistently decline with time. 
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Figure 3.3 Virulence-associated gene profile diversity for all flocks  

a) Shows the VAG profiles identified at t = 0. Profiles consisting of 4 VAGs were the most diverse, with differences in iron acquisition genes being the most abundant, while profiles 0010101110 

(irp2+, papC+, vat+,cvi+, sitA+)  and 0011101010 (irp2+, iucD+, papC+, vat+, sitA+) were the most common profile b) Shows the VAG profiles identified at t = week 5. VAG profile diversity had 

declined over time.. No isolates carried more than 5 VAGs c) Comparison of total number of VAGs carried by E. coli at t = 0 and 5. Profile 206 (0000000000) excluded from both graphs. 
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3.3.2 Changes in VAG profile diversity with respect to farm/flock and time 

When the VAG data were analysed for individual farms and flocks; F1C1 (farm 1; 

cycle1), F2C1, F1C2 and F2C2, a total of 57, 45, 86 and 112 different VAG profiles 

were identified, respectively. Sixty two out of 206 different profiles (30.10%) were 

detected on >1 farm/flock, while 69.9% were only identified on one farm. Despite 

farm/flock individual VAG profile frequency differences, a common trend was 

observed with respect to time.   

On average, 24.05% of E. coli isolates screened from the gastrointestinal tract of 

chicks at t=0 (placement) carried at least 5 of the 10 VAGs (termed pAPEC) (Figure 

3.4). The sitA gene was consistently the most frequently detected VAG from all four 

flock cycles on the two farms. 
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Simpson’s diversity index (D) was used to compare the profile diversity at each week 

of production for the second flock cycles on both farms; D values are shown in Table 

3.3. Generalised linear models confirmed the significant effect of time on VAG 

profile diversity (p<0.05). Overall, VAG profile diversity declined through time, 

with a common peak at week 3 of production (Table 3.1).  
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Figure 3.4 Average percentage of pAPEC with respect to time 

At weekly intervals the average percentage of pAPEC, defined by the carriage of ≥5 VAGs, 

from the total faecal E. coli population was calculated.  At each time point, 160 faecal E. 

coli were assessed. 95% upper confidence interval error bars shown.   
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Table 3.1 Simpson’s diversity index for VAG profile diversity through time 

 D value 

Week F1 F2 

0 0.683 0.779 

1 0.683 0.359 

2 0.438 0.582 

3 0.704 0.686 

4 0.070 0.307 

5 0.391 0.200 
 

Simpson’s diversity index (D) was used to compare VAG profile diversity through time in the 

second flock cycles of farm 1 (F1) and farm 2 (F2). Overall, profile diversity decreases with 

time, with a peak at week 3. 

 

As birds aged, the percentage frequency of pAPEC in the gastrointestinal tract 

declined. Prior to the first depopulation event at 5 weeks of production, only 1% of 

E. coli carried ≥5 VAGs.  

An average decrease of 12.97% in pAPEC from t=0 to week 1 was detected, 

followed by a further 5.47% decrease between weeks 1 and 2 (Figure 3.4). 
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3.3.3 Longitudinal analysis of systemic E. coli carriage of virulence-associated 

genes 

On average, over the four flocks, 39.1% of dead birds (n=128) collected on the first 

daily welfare walk showed signs of colibacillosis and systemic E. coli was identified, 

see Figure 3.5. Three hundred and twenty four isolates were virulotyped. Figure 3.1 

shows the distribution of VAG frequencies between both faecal and systemic E. coli 

populations. Fisher’s exact test was used to assess the frequency differences between 

the faecal and systemic populations; irp2, papC, iucD, cvi, sitA and ibeA genes were 

significantly associated with systemic E. coli populations (p<0.05); astA, vat, iss and 

tsh were not (p>0.05). Sixty-three different VAG profiles were identified among 

systemic E. coli. Thirteen of the 63 profiles (20.63%) were found on more than one 

farm. Fifty-eight of 324 isolates (17.90%) carried no VAGs (P-206). P-15 (ibeA+, 

iucD+, sitA+) was the second most frequent profile (9.88%). However, this was only 

identified on F1C1. Of the profiles that were found on more than one farm, 46.26% 

accounted for profiles with ≥4 VAGs; in all these profiles at least 50% of the genes 

detected were involved in iron acquisition. None of the tested isolates carried more 

than 7 VAGs. Observed VAG profile diversity was not correlated with the number of 

E. coli investigated (p>0.05), suggesting sample size variation has not influenced 

profile detection and thus the reported level of diversity. Over the four flock cycles, 

36.4 – 80% of VAG profiles identified in systemic isolates were also identified at 

least once in faecal isolates collected before and/or at the same time from apparently 

healthy birds during the same cycle. Nineteen profiles out of 63 were unique 

amongst systemic isolates, only one of these profiles was identified on more than one 

occasion (P-221; iss+, irp2+, papC+, iucD+). Overall, there were no profiles wholly 

associated with diseased birds.  
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a) 35 day old broiler chicken with ascites (accumulation of fluid in the abdominal cavity) 

 

 

 

 

 

 

 

 

 

Figure 3.5 The clinical manifestations of colibacillosis  

b) 14 day old broiler chicken with cellulitis  
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c) 35 day old broiler chicken with perihepatitis (fibirn lesions coating the liver) 

d) 28 day old broiler chicken with perihepatitis 
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e) 14 day old broiler chicken with pericarditis (fibrin based inflammatory lesions of the 

pericardium) 
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3.3.4 Phylogenetic analysis 

Table 3.2 shows the assignment of 216 faecal and 35 systemic E. coli collected from 

F1C2 to the four phylogenetic groups and 1 subgroup. If no amplification occurred 

for any of the 3 targets, isolates were assigned to subgroup A0 [266, 267].  

Table 3.2 Assignment of faecal and systemic E. coli to phylogenetic groups 

 

216 faecal and 35 systemic E. coli were typed using the Clermont et al triplex PCR and 

assigned to 1 of 5 phylogenetic groups. Those isolates that showed no amplification of any of 

the 3 targets were assigned to subgroup A0. Group D was the most frequently detected 

phylogenetic group among faecal population, while A0 (untypable) was the most common 

group among systemic isolates. B2 and D have been previously associated with more 

pathogenic E. coli but they only accounted for 28.57% of systemic isolates in this study.   

 

With the exception of week 2 (22.50%; individual data not shown), group D was the 

most frequently detected phylogenetic group among faecal isolates. In week 2, group 

A was the most frequently detected phylogenetic group (58.75%). The screening-

based protocol of faecal isolates would have led to sampling bias towards ones 

 Number of isolates (% frequency) 

Source A A0 B1 B2 D 

Faecal 85 (39.35) 21 (9.72) 1 (0.46) 5 (2.31) 104 (48.15) 

Systemic 11 (31.43) 14 (40.00) 0 (0.00) 1 (2.86) 9 (25.71) 

Total 96 35 1 6 113 
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containing VAGs and therefore possibly group B2 and D isolates. There are no 

obvious changes in phylogenetic groups through time.  

Fourteen of 35 (40%) systemic isolates grouped into phylogenetic group A0. 

Pathogenic associated phylogenetic groups D and B2 represented 25.71% and 2.86% 

of systemic isolates respectively. Results suggest that no distinct phylogenetic group 

accounts for systemic E. coli.  

3.3.5 Macro-restriction PFGE analysis  

Two hundred and twenty two faecal and 48 systemic E. coli isolated from the same 

flock were analysed by PFGE to look for changes in gut population through time, 

common strain types associated with systemic E. coli and to relate genetic 

background to the carriage of VAGs. One hundred and sixty six faecal and 35 

extraintestinal isolates were successfully digested and dendrograms constructed. 

A dendrogram constructed from the pulsotypes of 48 E. coli isolated from faeces at 

t=0 shows large strain diversity and no apparent association between phylotype and 

VAG carriage. The 48 isolates fell into 5 groups with 80% similarity. There appears 

to be no retained strain type correlated with time.  

Thirty-five systemic E. coli belonged to 10 groups with 80% similarity (Figure 3.6), 

suggesting a diverse strain population amongst systemic isolates. The dendrogram 

also highlights the isolation of multiple strain types from individual diseased birds 

and the presence of similar strain types amongst faecal and systemic isolates.      
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Figure 3.6 Dendrogram constructed using DICE for systemic E. coli using 

XbaI PFGE 

 

(tolerance 5%) (minimum height >0.0%, minimum surface >0.0%)(0.0-100% coefficient). A 

dendrogram showing the relatedness and strain diversity amongst systemic E. coli 

harbouring APEC VAG using BioNumerics software by unweighted pair group method with 

Arithmetic mean. The dendrogram also shows; phylogenetic group (P) (green = D; red = 

A; yellow = B2), isolate (I), organ and age of bird at isolation (H = heart: K = kidney: Li = 

liver: Lu = lung; S = spleen), MLST sequence type (ST) and VAG profiles. The dendrogram 

shows the clustering of ST 117 and 2999 isolates (excluding 601) which by PFGE analysis 

are ~60% different from other isolates. Several ST 3004 were identified and these 

potentially show the acquisition of 2 Iron acquisition genes (irp2 and iucD) while other ST 

3004 isolates have no VAGs (isolates 579 and 583).     
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3.3.6 MLST analysis 

To assess the underlying clonal association between isolates with VAGs in faecal 

and diseased bird populations, 24 faecal E. coli (8 with ≥5 VAGs, 8 with <5 VAGs 

and 8 with 0 VAGs) and 23 extraintestinal E. coli (11 with ≥5 VAGs, 7 with <5 

VAGs and 5 with 0 VAGs) were submitted to the MLST online database 

(http://mlst.ucc.ie/mlst/dbs/Ecoli). All results are shown in Table 3.3.  

In total, 33 new sequence types (ST) were identified, 6 of which were single locus 

variants (SLV) of ST-10. This was the only clonal complex (CC-10) in which faecal 

and systemic isolates were clustered.  

Interestingly, 3 of the 24 faecal isolates were identified as ST-352, all 3 isolates 

carried more than 5 VAGs 1) astA+, irp2+, papC+, iucD+, vat+, cvi+, sitA+ 2) iss+, 

irp2+, papC+, iucD+, vat+, cvi+, sitA+ 3) iss+, irp2+, papC+, iucD+, vat+, cvi+, sitA+. ST-

352 did not cluster with any of the other faecal or systemic isolates in the constructed 

ᴇburst diagrams.   

Four ST-2999 isolates (representing 22.22% of systemic isolates tested) were 

isolated from two diseased birds, ST-2999 is a SLV of the emerging pathogenic 

clone ST-117 [98]. All four ST-2999 isolates carried ≥5 VAGs and no ST-2999 

isolates were identified among the faecal population (Figure 3.7). Furthermore, the 

genetic relatedness of ST-2999 and ST-117 is highlighted by their general clustering 

in constructed PFGE dendrograms (Figure 2.6). ST-48 (CC-10) and ST-10 (CC-10) 

were also among those already known STs identified in systemic populations. ST-

3004 was identified only among systemic isolates. ST-3004 isolates were found to 

differ in the number of VAGs they carried; no VAGs (isolate 579 and 583), 1 (isolate 
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586) and 3 (isolate 607). Two out of the 3 VAGs are involved in iron acquisition 

(irp2 and iucD) (see Figure 3.6).  

Table 3.3 Observed faecal and systemic E. coli MLST Sequence types 

categorised by VAG carriage 

 

(n) = ST observation frequency. All faecal E. coli belonged to newly identified sequence 

types (ST) excluding ST-352. Interestingly, all ST-352 isolates harboured more than 5 VAGs 

with the following profiles:1) astA+, irp2+, papC+, iucD+, vat+, cvi+, sitA+ 2) iss+, irp2+, 

papC+, iucD+, vat+, cvi+, sitA+ 3) iss+, irp2+, papC+, iucD+, vat+, cvi+, sitA+ and they did not 

group with other E. coli in the online database. Systemic E. coli analysis identified 3 ST–117 

and 4 ST- 2999 isolates; however ST-2998 and ST-3000 did not cluster with the other two 

STs in this category.  

 

 

 

 

  

 VAGs 

Site of isolation 

Faeces Systemic 

0 2990, 2991, 2992, 2993, 2994, 2995, 
2996, 2997 

3003, 3004 (2), 3007, 3008 

< 5 2980, 2981, 2982, 2983, 2987, 2988, 2989 3001, 3002, 3004 (2), 3005, 
3006, 3009, 10 

≥ 5  352 (3), 2978, 2984, 2985, 2986, 3010 117 (3), 2998, 2999 (4), 
3000 
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Figure 3.7 Multi-locus sequence typing Eburst diagram showing clustering 

of the new sequence type (ST-2999) and emerging pathogenic ST-117 

Multi-locus sequence typing (MLST) identified 4 systemic E. coli that belonged to the new 

sequence type (ST): ST-2999. All isolates carried ≥ 5 virulence-associated genes. ST- 

2999 is a single locus variant of the previously identified emerging pathogenic ST- 117.  
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3.4 Discussion 

To our knowledge, this is the first study to address the longitudinal diversity of 

intestinal E. coli populations with a focus on APEC VAG carriage, while 

simultaneously characterising systemic E. coli isolated from visceral organs of 

diseased birds in UK broiler flocks.  

Previous work suggests that the clonal nature of E. coli makes it possible to associate 

certain lineages with ExPEC status that could help elucidate a “typical” APEC [74, 

85, 89, 96, 268]. The E. coli genome has a high degree of plasticity whilst retaining a 

level of clonality resulting from recombination events of short mobile elements in 

genome ‘’hotspots’’. These elements often contain VAGs [6, 26-28]. A similar 

observation was made recently regarding the clonality of extended β-lactamase 

producing E. coli [112]. Research suggests that APEC arise from the acquisition of 

VAGs and certain lineages may be more accepting of incoming genetic elements and 

thus pathogenic [217, 269, 270]. In the current study, MLST identified a new 

sequence type (ST-2999) among the systemic isolates carrying ≥ 5 VAGs. ST-2999 

is an SLV of ST-117, a potentially emerging pathogenic ST previously associated 

with retail chicken and human disease [98, 99]. ST-117 was also identified among 

the systemic isolates. PFGE allows for more refined comparisons between isolates 

and here confirmed the genetic relatedness between these isolates compared to the 

other systemic ones. However, the overall high level of strain diversity among 

systemic E. coli isolated from diseased birds; the lack of correlation with VAG 

carriage and the identification of multiple strains as opposed to a single clone in one 

bird perhaps suggests the opportunistic nature of certain E. coli [32]. Additionally, 

this perhaps suggests that differences in broiler susceptibility were identified [26, 78, 
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89]. As only a subset of isolates were subjected to genetic analysis, it is possible to 

have underestimated the level of diversity present. However, it is clear a high level of 

diversity is present.   

The intestinal E. coli population of birds has previously been identified as an APEC 

reservoir [31, 83]. The findings from this study further support this with 36.4 - 80.0% 

of systemic VAG profiles also being identified among faecal E. coli of the same 

flock. 

E. coli is one of the first bacterial species to colonise the neonatal gut before 

succession [12, 271, 272]. A large proportion of pAPEC contributed to early 

colonisation of the neonatal chick (24.05% of tested population). Sources of such E. 

coli include: parent flock (vertical transmission), hatchery environment, human 

handling, and transportation equipment [135, 264, 265].  Yassin et al.  (2009) 

correlated first week chick mortalities with hatchery and breeder age, highlighting 

the potential important influence of these factors [273]. Interestingly, despite all four 

flocks in this study being sourced from different hatcheries, the level of observed 

pAPEC at this stage was comparable. Past studies have shown that that the 

possession of VAGs could be advantageous in microbial gut populations offering 

commensalism fitness advantages [274-276]. The positioning of VAGs on mobile 

genetic elements would allow for their selective maintenance within populations [6, 

26, 185].  

As birds aged, both VAG profile diversity and the detection of pAPEC declined; by 

the last week of production, 1% of the population sampled were classified as pAPEC. 

Furthermore, as birds exceeded 3 weeks of age there was a noticeable decline in the 

proportion of pooled samples reaching the 3 VAG threshold outlined in our sampling 
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protocol, suggesting a negative selection in the avian gut. Younger birds have been 

shown to possess a more diverse microbiota compared to that of older birds, likely to 

be due to rapid initial opportunistic colonisation of an available ecological 

environment; with age microbial succession and microbial bottle necking occur [263, 

277].  The bottle necking of VAG diversity and pAPEC with microbial succession 

may represent the persistence of stronger colonisers and the loss of more transient 

strains. One hypothesis is that different VAGs offer selective advantages at different 

stages of development [6]. A note of caution is required, as our list of VAGs is not an 

exhaustive list of APEC-associated virulence genes.   

Irrespective of time, sitA was the most frequently detected VAG in this study. The 

sitABCD encoded transporter regulates iron and manganese transport and provides 

increased resistance to oxidative stress [188]. This mechanism could be 

advantageous among competing gastrointestinal populations and during 

inflammation [263]. Additionally, a redundancy of iron acquisition systems is 

thought to be advantageous in environmental survival [278]. Interestingly, our study 

identified multiple ST-3004 isolates which differed in their possession of VAGs 

namely ones involved in iron acquisition (irp2 and iucD). Could this be the result of 

gene transfer and acquisition?  

The ibeA gene was detected among intestinal E. coli populations of young birds. The 

ibeA gene encodes a 50kDa protein thought to aid microvascular epithelial adherence 

and invasion in the brain [159]. The exact mechanism of IbeA remains to be 

determined but it has been shown to modulate type 1 fimbriae [154]. The advantage 

of possessing ibeA while in the gut remains unknown; it could relate to the increased 
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survival of attached E. coli, particularly in a transient inflammatory environment 

[156, 159].  

The 10 VAGs selected for this study do not represent an exhaustive list of APEC 

determinants [279]. For future work, an investigation published after this study was 

carried out presents a new virulotyping protocol offering vastly improved error 

margins in APEC detection, ideal for epidemiological studies [132]. Based on the 

literature, the APEC pathotype is likely to contain a mix of iron acquisition genes 

and those encoded on plasmids [31, 189]. This was reflected in our chosen panel of 

VAGs. It was necessary to add a level of bias to the faecal sampling given the 

ubiquitous nature of E. coli in the gastrointestinal tract allowing practical detection of 

the proportion of the population that are potentially pathogenic. Such sampling is 

technically demanding and labour intensive. The 4 VAGs used in the initial 

screening were selected based on their high prevalence among APEC strains; iss 

(~83%), iucC (75%), tsh (53-63%) and cvi (63%) [77, 165]. This panel allowed for 

the detection of as many pAPEC as possible given the limitations in screening the 

large number of samples. All calculations regarding the ‘proportion of potentially 

pathogenic E. coli’ were calculated using the entire population sampled, i.e. the 

original number of E. coli picked before initial PCR screening.     

The avian host also contributes to shaping the microbiota.  Lu et al. (2003) described 

a more stable microbiota between 2 and 4 weeks of age in fast growing birds, 

reflecting the current study which observed more consistent levels of pAPEC 

between weeks 4 and 5 [263]. Immunological changes during host development are 

likely to contribute to changes in the microbiota; heterophil function (avian 

polymorphonuclear neutrophils (PMNs)) has been shown to be lacking in day old 
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chicks [280]. Crhanova et al. (2011) reported transient gut physiological 

inflammation in 4 day old chicks, while the cellular immune responses to Salmonella 

Typhimurium of 1 day old and 1 week old chicks have been shown to be markedly 

different, suggesting rapid immunological changes in early life [241, 263, 277, 281]. 

It is likely that a combination of host (immunity and vaccination), microbial 

(microbiota composition, VAG carriage) and environmental (feed, production 

systems) changes has contributed to the changes in pAPEC observed in this study, 

highlighting the importance of host-microbial interactions [282]. This warrants 

further investigation..  It would be of interest to determine causes of death in the first 

48-72 hours of life; a period of limited heterophil function, often the point of highest 

mortality during commercial rearing and as noticed in this study the point in 

production where APEC VAGs are at the greatest prevalence in the avian gut [273]. 

In summary, we have shown colonisation of the broiler gut by pAPEC may occur 

before chicks are placed and as broilers age these populations shift while VAG 

diversity bottlenecks. The reasons for this remain to be determined. Our work 

supports that of others, identifying the avian gut as an APEC reservoir, but did not 

find a predominant APEC pathotype in the flocks studied. The identification of 

highly diverse systemic E. coli populations rather than single or highly related clones 

perhaps suggests the broiler chicken and its susceptibility is a major contributor to 

disease manifestation. Further work is required (i.e. molecular analysis on more 

isolates, elucidation of contributing impacting factors to pAPEC dynamics), but this 

study offers the first insight into the temporal movement and dynamics of E. coli in 

the avian host and offers a new approach to deciphering APEC. 
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ABSTRACT 

Avian pathogenic Escherichia coli (APEC) are a substantial burden to the global 

poultry industry. APEC cause a syndromic poultry infection known as colibacillosis, 

which has been previously associated with broiler chickens over 2-weeks old. We 

previously described the intestinal tracts of day-old broilers to harbour a rich 

reservoir of potentially pathogenic E. coli. Prior infections of the reproductive tract 

of breeders, egg hygiene and transportation all contribute to early colonisation of the 

neonatal gut. Up to half of all flock deaths can occur in the first week of production, 

but few data are available describing the contribution of E. coli to this. In the present 

study, all dead birds collected on the first daily welfare walk 48 and 72 hours after 

chick placement underwent post-mortem examination. Diseased tissues were 

selectively cultured for E. coli and isolates subsequently virulotyped using 10 APEC 

virulence-associated genes (VAGs): astA, iss, irp2, iucD, papC, tsh, vat, cvi, sitA and 

ibeA. Approximately 70% of birds displayed signs of colibacillosis. Thirty distinct 

virulence profiles were identified among 157 E. coli. Isolates carried between 0 and 7 

VAGs; ~30% of E. coli carried 5-7 VAGs, 12.7% shared the same VAG profile: 

astA, iss, irp2, iucD, tsh, cvi and sitA. Overall, this study demonstrates the significant 

contribution of E. coli infections to early broiler mortalities. The identification of a 

diverse E. coli population is unsurprising based on our previous findings. This work 

emphasises the need for effective control measures that should target early stages of 

production, possibly including early vaccination programmes or the use of 

probiotics.  
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4.1 Introduction 

Avian pathogenic Escherichia coli (APEC) is an ill-defined pathotype of the 

extraintestinal pathogenic E. coli (ExPEC) group. APEC is the aetiological agent of 

an avian syndromic disease characterised by fibrinous lesions around visceral organs 

collectively termed colibacillosis. Airsacculitis, cellulitis, pericarditis, perihepatitis 

respiratory distress and septicaemia are among the most commonly associated signs 

of colibacillosis [48]. The broiler (meat chicken) industry is substantial, with over 

900 million broiler chickens reared annually for consumption in the UK alone [3]. 

Colibacillosis is an endemic disease in commercial flocks and responsible for 

substantial economic losses globally.  

The APEC pathotype shows high diversity. Recent work suggests APEC evolve from 

multiple E. coli lineages following the acquisition of virulence-associated genes 

(VAGs), often encoded on mobile genetic elements, explaining the high genetic 

diversity within this pathogenic group [78]. Genes involved in adhesion, invasion, 

toxin production, serum survival and iron acquisition have been shown to contribute 

to APEC pathogenesis [83, 159, 169, 182, 189, 252]. Such diversity has hindered the 

production of an effective vaccination programme capable of protecting against 

heterologous challenge.  

The avian intestinal E. coli population has been identified as a potential APEC 

(pAPEC) reservoir and described as a “mixing vessel” allowing VAG acquisition 

[31]. In the previous chapter, I described the intestinal tract of day-old commercial 

broiler chicks to be rich in pAPEC [283]. These pAPEC were identified by their 

possession of at least 5 VAGs previously identified as contributors to APEC 

pathogenesis [182, 189, 252]. Given the identification of such a potential pathogenic 
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threat it was of interest to determine the prevalence of E. coli-related systemic 

disease in broiler chicks.  

First week mortalities can account for up to 50% of total flock loses [133, 273]. Early 

mortalities reportedly reflect overall flock performance, which has led to contracts 

between hatcheries and farmers often stating an adjusted cost per chick based on 

flock performance during the first week [273, 284]. Chick survival during this initial 

period has been associated with the breeder farm and hatcheries with emphasis on 

flock management (nutrition, age, lighting) [285]. Early mortalities also correlate 

with the extreme breeder ages, egg storage length, breeder feed and the hatchery used 

[286-289].  

Olsen et al (2012) reported that bacterial infections, primarily E. coli, accounted for 

~50% of layer flock mortalities during the first week of life [133]. In this instance, 

omphalitis and/or yolk sac infections, with or without septicaemia, accounted for the 

majority of the observed clinical manifestations. Such infections may originate from 

infected breeders (subsequently infecting the yolk sac in ovo), or the hatchery 

environment [30, 134]. In support of vertical transmission, Petersen et al (2006) 

demonstrated the potential vertical transmission of fluoroquinolone resistant E. coli 

[135].  

Investigations into broiler flock infection mortalities are rarely conducted and there is 

no existing published data regarding UK broilers. This present study reports on the 

contribution of E. coli to chick mortalities in the first 72-hours of production.  
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4.2 Materials and methods  

4.2.1 Ethics statement 

The following protocol did not involve any invasive procedures; no approval under 

the Animals (Scientific Procedures) Act (1986) was needed. No birds were culled for 

the purpose of this study and all dead birds intended for post-mortem examination 

were collected on the first daily welfare walk conducted by farmers. The study was 

conducted in strict accordance with the University of Liverpool Research 

Governance policies and permission for sampling on the broiler farms was granted 

by the farms and companies. 

4.2.2 Standard commercial broiler farm 

In commercial production, day-of hatch and 1-day old broiler chicks are transported 

to the broiler farm for rearing. At the hatchery, birds were vaccinated against the 

infectious bronchitis virus. No prior veterinary treatment was undertaken.  

4.2.3 Post-mortem examination of dead broiler chickens 

Dead chicks were collected during the first daily welfare walk on a standard 

commercial broiler chicken farm at 48 and 72 hours after placement. To minimise 

the detection of systemic E. coli resulting from a loss of intestinal integrity following 

death, only birds displaying minimal physical trauma were included. All birds were 

examined for classic signs of colibacillosis, including: ascites, airsacculitis, cellulitis, 

pericarditis and perihepatitis and yolk sac infection [48]. For each bird, up to 1 gram 

of each the following tissues were collected; heart, kidney, liver, lung and spleen 
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using sterile forceps and scalpels. Any other clinical manifestations were swabbed 

using sterile swabs. Enough sterile phosphate buffered saline (PBS) was added to 

each sample for homogenisation using a Biomaster Micro-stomacher 80 (Steward, 

UK) for 60 seconds at high speed. 50µl of each homogenate was streaked onto eosin-

methylene blue agar (EMBA) and incubated overnight at 37⁰C. All media used were 

obtained from LabM Ltd (Bury, UK). Two to 3 E. coli colonies per positive tissue 

sample were picked, re-plated onto nutrient agar and incubated overnight at 37⁰C.  

4.2.4 Virulotyping of extraintestinal E. coli 

The DNA of each isolate was extracted using Chelex-100 (Bio-Rad, Hertfordshire, 

UK) [253]. E. coli identification was confirmed using a  polymerase-chain reaction 

(PCR) assay targeting uidA [11]. Assay details are outlined in Chapter 2.  

All isolates were subjected to a full screen of 10 VAGs and subsequently given a 

corresponding VAG profile, depending on the presence and absence of VAGs 

(presence ‘1’ or absence ‘0’).  The VAG targets were: astA, iss, irp2, iucD, papC, 

tsh, vat, cvi, sitA and ibeA. Three separate PCR assays were performed; one 

multiplex PCR previously described by Ewers et al. [182] and two single PCR assays 

for ibeA and sitA outlined by Timothy et al. (2008) [110]. All primers were obtained 

from Eurofins MWG operon (Germany) and all molecular reagents from Thermo 

Scientific (Surrey, UK). Primer sequences and assay conditions are described in 

detail in Chapter 2.  
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4.2.5 Phylogenetic analysis  

E. coli were assigned to 1 of 4 phylogenetic groups (A, B1, B2 or D) using a triplex 

PCR targeting chuA, yjaA and the DNA fragment TSPE4.C2 [1]. All reagents were 

obtained from Thermo Scientific (Surrey, UK). Each 25µl PCR reaction contained: 

3µl of template DNA extract, 0.2µl of each forward and reverse 100pmol primer 

(Eurofins MWG operon, Germany), 2.5µl dNTPs, 4µl MgCl2, 2µl 10x PCR buffer 

and 0.25µl  5U/µl  Taq polymerase. Thermocycler conditions were as follows: initial 

denaturation at 94°C for 5mins; 30 cycles of; 30 secs at 94°C, 30 secs at 59°C and 30 

secs 72°C with a final extension at 72°C for 7 mins. PCR products were separated by 

electrophoresis. Phylogenetic group classification was based on the combination of 

chuA, yjaA and TSPE4.C2 as described in the Materials and Methods chapter section 

2.5.4.  
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4.3 Results 

4.3.1 Post mortem analysis 

At placement, 25,700 chicks were placed in the rearing shed. The overall flock 

mortality rate for the sampled flock at the point of slaughter was 4.36%, while flock 

mortality in the first week was recorded as 1.03% and 0.44% for the first 72 hours. 

Overall, 37 birds (n=14 at 48 hours and n=23 at 72 hours after placement) were 

collected on the first daily welfare walk and subject to post-mortem. Twenty-six out 

of 37 birds (70.27%) showed clinical signs associated with colibacillosis (n=10 at 48 

hours and n=16 at 72 hours after placement) (illustrated in Figure 4.1). E. coli was 

isolated by pure culture from all pathological lesions tested, although quantification 

was not undertaken. Table 4.1 summarises the pathology observed at post-mortem.  

4.3.2 Virulotyping 

One hundred and fifty seven extraintestinal E. coli were screened for 10 VAGs.  The 

overall presence of each VAG is represented in Figure 4.2 and a summary of the 

distribution of VAG profiles is shown in Table 4.2. 

Three of the four most prevalent genes identified among the extraintestinal E. coli 

are ones involved in iron acquisition (sitA, iucD and irp2, positive in 98.09, 41.40 

and 37.58% of the population respectively).  The iss gene is involved in serum 

survival, an important trait during septicaemia, and was detected in 38.22% of the 

isolates tested. In the present study only 2.55% of isolates carried the pyelonephritis-

associated pili gene (papC).  Toxin-producing genes astA and vat were identified in 

21.02 and 17.83% of isolates respectively.  
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4.3.3  Phylogenetic analysis 

Table 4.3 summarises the distribution of E. coli into the five phylogenetic groups (A, 

A0, B1, B2 and D). The most common phylogenetic group was group A (29.94%), 

while phylogenetic groups largely expected to represent pathogenic E. coli (B2 and 

D) represented 12.74 and 15.29% of E. coli respectively. E. coli with the VAG 

profile astA, iss  irp2, iucD, tsh, cvi and sitA mentioned above, were assigned to A or 

A0 (untypable). Other E. coli with 7 VAGs (distinct to the described profile) were 

classified as A, B2 or D E. coli, suggesting these isolates were not all clonal. There 

appeared to be no association between the number of VAGs carried and the 

phylogentic group; only 75% of B2 E. coli carried < 5 VAGs and phylogroup A 

represented the majority of E. coli carrying 7 VAGs.  
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a) Accumulation of fluid around the heart and discoloured liver of a 72hr-old chick. b) Pericarditis (fibrin based lesions around the 

pericardium) in a 48hr old chick. c) Severe pericarditis in a 72hr old chick.  E. coli was cultured from all tissue samples.    

Figure 4. 1 Post-mortem examination of broiler chicks with colibacillosis 
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Table 4. 1 Prevalence of pathological lesions associated with colibacillosis identified during post-mortem examination of broiler chicks 

 

 

  Percentage prevalence (%) 

Pathology 48 hours  (n=14) 72hours  (n=23) Overall (n=37) 
Pericarditis 20.00 43.75 24.32 

Perihepatitis 10.00 56.25 27.03 

Discoloured liver 60.00 25.00 27.03 

Ascites 30.00 12.50 13.51 

Cellulitis  0.00 18.75 8.11 

Yolk sac Infection 10.00 18.75 10.81 
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Table 4. 2 Frequency of VAG profiles in extraintestinal E. coli isolates. 
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Figure 4. 2 The percentage prevalence of virulence-associated genes 

among E. coli isolated from broiler chicks within 72 hours of placement.   
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Thirty distinct virulence profiles were identified (Figure 4.3). Isolates with 0/10 

VAGs accounted for 1.27% of the total, while the maximum number of VAGs 

identified in an individual isolate was 7/10 (14.65%). Approximately 30% of E. coli 

carried 5 - 7 VAGs. 12.7% of E. coli harboured the same VAG profile, positive for 

astA, iss  irp2, iucD, tsh, cvi and sitA, and negative for papC, vat and ibeA. These 

E.coli were isolated from multiple birds and organs (heart, liver and cellulitis swab). 

The most abundant virulence profile, representing 42/157 isolates (26.8%) was 

positive for sitA whilst negative for the remaining 9 genes. Multiple VAG profiles 

were carried by E. coli isolated from the same bird, supporting our previous findings 

[283]. Simpson’s diversity index (D = 0.915) indicates a large degree of profile 

diversity.  

Table 4.3 Phylogenetic analysis of extraintestinal E. coli 

Phylogenetic group Frequency (%) 

A0 24.20 

A 29.24 

B1 17.83 

B2 12.74 

D 15.29 
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Figure 4. 3 The frequency of virulence profiles identified among extraintestinal E. coli  

Thirty different virulence profiles were identified among 157 E. coli isolates, based on their carriage of 10 VAGs (positive carriage is 

indicated by ‘1’ and negative carriage of gene is indicated by ‘0’. VAG order: astA, iss, irp2, papC, iucD, tsh, vat, cvi/cva, sitA, ibeA.  
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4.4 Discussion 

Previously, we investigated the carriage of VAGs associated with APEC 

pathogenicity in intestinal populations of E. coli. We identified the gut of 1-day old 

chicks to be a reservoir rich in potentially pathogenic E. coli. In the present study, we 

report on the contribution of extraintestinal E. coli infections to flock mortalities in 

the first few days of production. Approximately 70% of birds in the present study 

showed signs of extraintestinal E. coli infection. Olsen et al (2012) recently reported 

that approximately 50% of mortalities in commercial Danish layer flocks was related 

to E. coli or Enterococcus faecalis infection [133].The present study supports similar 

findings to those observed in layer flocks in which E. coli infections represent many 

strains of E. coli [133]. Colibacillosis is an economically important poultry infection 

resulting in increased mortality rates and higher rejections of carcasses at slaughter. 

Colibacillosis has previously been associated with a disease of older broiler chickens 

(> 2 weeks old), but several studies have taken an ‘integrated poultry production’ 

approach and suggested breeders and hatcheries pose significant risks to broiler 

chickens either via environmental contamination or vertical transmission of APEC 

[51, 135].   

Poor flock performance has been correlated with increased early mortality rates 

while increased early mortalities have been related to hatchery practices and breeders 

[273, 284, 290]. Young breeders often produce smaller eggs containing increased 

levels of albumen producing lower live chick weights [288, 289]. Older breeders are 

associated with increased navel to yolk sac infections and eggs frequently hatch 

sooner leading to increased chick dehydration at the hatchery [287].  Acting as a key 
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indicator, reasons behind early flock mortalities appear central to flock management 

and reducing overall mortality.  

Thirty different virulence profiles were identified from 157 E. coli. The most 

prevalent virulence profile was positive for sitA and negative for the other nine genes 

(0000000010) and sitA was carried by ~98% of all the isolates. The sitABCD operon 

encodes an iron and manganese transport system and was shown to contribute to the 

virulence of APEC chi7122 in a chicken infection model, with a possible additional 

role in protection against oxidative stress [26, 188]. The sitABCD operon has been 

identified in over 85% of APEC populations previously and has been located to ColV 

plasmids, associated with APEC pathogenicity [189].   

Around 30% of isolates carried 5 - 7 VAGs. A conserved profile of astA, iss, irp2, 

iucD, tsh, cvi and sitA was observed in 12.7% of isolates. The identification of this 

profile in more than one bird and organ at the same time point (72 hours) may 

suggest a common or related E. coli strain. Phylogenetic analysis using a widely 

accepted protocol suggests these E. coli fall into phylogroup A or were untypable 

(A0) [1]. Phylogroup A has previously largely been associated with non-pathogenic 

and environmental E. coli [189].  This profile was not identified in the faeces of 1-

day old broilers in the previous study [283]. Colonisation of chicks by this 

pathogenic E.coli may have occured in ovo as a consequence of a reproductive tract 

infection, or alternatively acquired post-hatch from the hatchery or via faceal 

contamination [291, 292]. Phylogenetic analysis highlights the high genetic diversity 

seen among extraintestinal E. coli in diseased broiler chicks, with all four major 

phylogenetic groups represented in the 157 isolates. 
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The intestinal tract of newly hatched chicks is relatively immuno-incompetent and 

lacks a stable microbiota, both provide ideal conditions for pathogen colonisation 

[293]. Industrial use of probiotics, or direct-fed microbials, to reduce infectious 

enteric pathogen colonisation is not new and it is an industry expected to grow in the 

near future [294]. The introduction of beneficial bacteria including Bacillus and 

Lactobacillus species to enhance growth performance, feed conversion efficiencies 

while reducing the APEC burden and strengthening the intestinal mucosal immune 

system in broiler chickens has attracted interest recently. This concept requires 

further investigation based on exisiting conflicting results likely to be due to 

differences in host status and the avian microbiota between studies [295, 296]. 

Targeting newly hatched chicks or breeders with such measures to manipulate the 

neonatal gut could be beneficial in reducing the prevalence of E. coli and 

subsequently extraintestinal disease.    

Alternatively, the identification of key VAGs involved in extraintestinal infections 

could be used in developing recombinant vaccines. Lynne et al (2012) previously 

tested a recombinant Iss-based vaccine, which showed some promise leading to both 

serum and mucosal humoural immune responses [248]. In the present study, the iss 

gene was carried by almost 40% of E. coli, other targets would therefore need to be 

sought. The vaccination of broiler breeders and the subsequent transfer of maternal 

antibodies would be a valuable control measure due to the early detection of 

extraintestinal E. coli infection, the short life span of a broiler chicken and the 

substantial loss associated with early mortalities. There is some promise in the ability 

to transfer protective egg yolk ImmunoglobulinY (IgY) and other 

immunomodulatory peptides to chicks, although further work is required [297-299].  
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The panel of VAGs used in this investigation is not an exhausted list of potential 

targets. Genes involved in bacterial adhesion, invasion, toxin production, serum 

survival and iron acquisition have all been associated with APEC pathogenesis. The 

10 genes used in the current investigation reflect these traits.   

To our knowledge, this is the first study to assess the contribution of extraintestinal 

E. coli to early broiler deaths. The identification of diverse population based on VAG 

carriage supports the work of others. These findings are unsurprising based on 

previous findings of a rich reservoir of potentially pathogenic E. coli in the intestinal 

tract of day-old chicks. This work emphasises the need for effective control measures 

and provides the foundations for future work. Additionally, improved egg and chick 

hygiene at the hatchery and during transportation is likely to be highly valuable. 

Further work including the sampling of hatcheries and breeders will strengthen our 

current understanding of integrated poultry production.   
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ABSTRACT 

Avian pathogenic E. coli causes a syndromic disease in poultry called colibacillosis. 

Colibacillosis is responsible for significant economic losses to the global poultry 

industry. Poultry health is crucial in allowing for the sustainable production of safe 

food that meets consumer demand. Potential APEC (pAPEC) populations reside in 

the avian intestinal tract and extraintestinal dissemination is primarily via the 

inhalation of contaminated faecal dust but active gut translocation or migration up 

the reproductive tract may also be important. 10 pAPEC isolated from UK broiler 

chickens were used to assess invasion and cytotoxicity to the human colonic 

carcinoma cell line, Caco-2. The pAPEC were not invasive in intestinal epithelial 

cells. No more than 0.05% of the initial inoculum invaded 2 hours and 24 hours post-

infection. There were no significant differences between the pAPEC (p>0.05) yet all 

isolates were significantly poorer invaders compared to S. Typhimurium 4/74 

(p<0.05). There were no significant differences in pAPEC cytotoxicity in Caco-2 

cells measured at 2 and 24 hours post-infection. Cytotoxicity as high as ~60% 

(average 40%) was observed 24 hours post-infection, such damage may allow 

bacterial translocation during infection. Further work is required in an attempt to 

expand on the dynamics of infection, including the contribution of physiological 

stress and the microbiota that may be encountered in the intestinal tract of 

commercial broiler chickens. Our efforts are limited, as we await the development of 

a reliable and reproducible chicken intestinal cell line.  
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5.1 Introduction 

Avian pathogenic Escherichia coli (APEC) are an ill-defined pathotype of the 

extraintestinal pathogenic E. coli (ExPEC) group. APEC cause an avian syndromic 

disease often characterised by fibrinous lesions around visceral organs, often referred 

to as colibacillosis, which is associated with airsacculitis, cellulitis, pericarditis, 

perihepatitis, respiratory infections, infections of the reproductive tract and 

septicaemia [48]. The broiler (meat chicken) industry is substantial, with over 900 

million broiler chickens reared annually for consumption in the UK alone [3]. 

Colibacillosis is an endemic disease within commercial flocks and responsible for 

substantial economic losses globally.  

APEC is an accepted primary and opportunistic pathogen, yet its pathogenesis 

remains unresolved. Whole genome analysis suggests that APEC are likely to 

originate from multiple E. coli lineages [78]. A multitude of virulence-associated 

genes (VAGs) have been described, including those involved in: adhesion, growth 

and avoidance of the host immune system, although not all literature concurs with 

the importance of individual factors [83, 159, 182, 185, 189, 252]. Acquisition of 

VAGs found on mobile genetic elements are likely to enhance pathogenic potential.  

The avian gastrointestinal tract has been identified as an APEC reservoir and 

described as a ‘mixing vessel’ for the horizontal transfer of VAGs [31, 283]. Faecal 

shedding provides a mechanism for bacterial dissemination into the surrounding 

environment. Numerous routes of systemic dissemination have been described 

including: vertical transmission (originating from broiler breeders), subcutaneous 

infection, migration up the reproductive tract, oral infection and respiratory infection 

[43, 51, 52, 127, 131, 132]. Inhalation of E. coli-contaminated faecal dust is thought 
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to be the primary mechanism of infection [43, 127]. E. coli have been shown to 

persist on poultry house dust particles at levels exceeding 106 colony forming units 

per gram [128]. In vivo infection studies often mimic the respiratory route through 

intra-tracheal or intra-air sac inoculation [78, 127, 144]. To mimic natural infection, 

infection of the upper respiratory tract is perhaps more representative given that 

incoming pathogens will need to pass through physical barriers not encountered 

when directly inserted into the air sacs [196, 300].  

Earlier studies suggest translocation of the intestinal epithelium by pathogenic E. coli 

provides an alternative route for dissemination, but only when birds have been 

predisposed to stress [129, 130]. Thus, APEC may be avian-adapted opportunists as 

opposed to true pathogens. This hypothesis is supported by the isolation of numerous 

E. coli strains from diseased birds [83, 90, 189, 283].  

Whether APEC traverse the intestinal, respiratory or reproductive mucosa they must 

possess the ability to invade lining epithelial cells or be capable of disrupting the 

epithelial integrity, subsequently allowing transcellular passage. Pathogens have 

evolved a number of strategies to invade host cells [301]. Salmonella enterica 

serovar Typhimurium (S. Typhimurium) and S. Typhi possess Salmonella 

pathogenicity islands (SPI-1 and SPI-2), both of which encode type three secretion 

systems (TTSS); needle-like structures which insert proteins required for invasion 

into target host cells [302]. Salmonella species, including S. Gallinarum, which 

causes fowl typhoid, also possess SPI-1-independent invasive mechanisms [260]. 

Some E. coli pathotypes have been associated with intracellular stages [303, 304].  

This fundamental step in APEC pathogenesis remains unclear. A number of studies 

have identified ExPEC factors associated with epithelial invasion including outer 
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membrane protein A (OmpA), invasion barrier epithelia proteins (IbeA, B and C), 

fimbriae and temperature sensitive haemagglutinin (Tsh), but the exact mechanisms 

in many cases remain unknown [131, 149, 153-155]. Past work on the invasive 

properties of APEC to non-phagocytic cells is minimal and somewhat confusing [87, 

151, 305].  

One difficulty in studying the interactions of APEC with the chicken intestinal 

epithelium is the lack of a reliable immortal chicken intestinal cell line [306]. This 

limitation means human epithelial, non-phagocytic non-epithelial chickens cells 

(such as chicken fibroblasts) or primary cell cultures are often used as alternatives 

[151, 307, 308].   

This chapter aims to characterise the growth characteristics along with the invasive 

and cytotoxic nature of 10 pAPEC using the human colonic carcinoma cell line, 

Caco-2. These E. coli were obtained from commercial broiler flocks sampled during 

the longitudinal field study described in Chapter 3 [283].  
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5.2 Materials and methods 

5.2.1 Bacterial isolates 

Nine E. coli isolates were originally isolated from the faeces of commercial broiler 

chickens (Table 5.1) and 1 E. coli was isolated extraintestinally (588) [283]. Test 

isolates were selected based on their carriage of APEC VAGs determined previously 

[283]. Prior to use, all E. coli were stored at -80⁰C in Microbank vials (Pro-Lab 

Diagnostics, UK).  APEC O78 (chi 7122) was used as a representative APEC control 

strain and was kindly donated by Professor Mark Stevens of The University of 

Edinburgh Roslin Institute, Scotland, UK. APEC O78 is a spontaneous mutant of a 

strain originally isolated from the liver of a diseased turkey [79].  

5.2.2 Growth characteristics  

All bacterial isolates were resuscitated from -80⁰C storage, streaked onto nutrient 

agar and incubated overnight at 37⁰C. 2-3 colonies of each overnight culture were 

used to inoculate 2ml of sterile Luria broth (LB broth). Liquid cultures were 

incubated overnight at 37⁰C. All media used were obtained from LabM (IDG) Ltd 

(Bury, UK). Overnight cultures were diluted 1:100 (v/v) using fresh LB broth. 200µl 

of bacterial suspension was extracted and the optical density at 600nm (OD600) was 

recorded in triplicate using a spectrophotometer. Sterile LB broth acted as a blank 

control. Additionally, each bacterial suspension was serially diluted 1:10 (v/v) using 

sterile phosphate buffered saline (PBS) and plated onto nutrient agar for 

enumeration. Method of enumeration is outlined in Chapter 2. Plates were incubated 

overnight at 37⁰C (Time 0: T.0). Bacterial suspensions were incubated at 37⁰C in a 
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shaking incubator (Stuart, Orbital incubator SI 500, UK) at 150rpm. The OD600 was 

recorded periodically at 30 minute intervals and serial dilutions for enumeration were 

undertaken every hour. This was repeated up to T.6 or until cultures reached 

stationary phase (OD600 plateau). In using the optical density to measure bacterial 

growth, it was assumed the number of bacterial cells was proportional to the optical 

density under steady state conditions.  

Bacterial growth was assessed on three separate occasions and at 42⁰C 

(corresponding with the avian body temperature). The growth rate data for APEC 

O78 were obtained via a personal communication (Charlotte Collingwood) at the 

University of Liverpool.  

5.2.3 Bacterial motility 

E. coli motility was assessed using a basic motility assay. A sterile volume (20-25ml) 

of 0.35% semi-solid Bactoagar (BD Diagnostics, UK) was poured into standard 

petri-dishes and left to cool. A sterilised straightened paper clip was used to inoculate 

the semi-solid agar with overnight liquid cultures of E. coli in LB broth and 

incubated at 37°C overnight. The level of motility was measured using a ruler and 

recorded in millimetres. The assay was repeated in triplicate and an average motility 

reading was recorded. S. Gallinarum 287 was used as a negative control. 

5.2.4 Caco-2 intestinal epithelial cell gentamicin invasion assays 

The gentamicin invasion assay protocol was based on that previously described by 

others [259, 260]. A detailed protocol is outlined in Chapter 2 and is described 

briefly below. 
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5.2.4.1 Cell line seeding protocol and cell line preparation 

The human colonic carcinoma cell line (Caco-2 cells) was sourced from Dr Barry 

Campbell from the Gastroenterology Department, University of Liverpool, UK 

(ATCC®, Number HTB-37). Cells were grown in Dulbecco’s minimum essential 

medium (DMEM) (Sigma-Aldrich, UK) supplemented with 10% foetal bovine serum 

(Sigma-Aldrich, UK), 1% GlutaMAXTM (100x concentration) (Invitrogen, UK), 1% 

MEM non-essential amino acid solution (Sigma-Aldrich, UK) and penicillin–

streptomycin (100 U/ml) antibiotics (Sigma-Aldrich, UK). Cells were grown at 37⁰C 

5% CO2.  

Twelve days before the invasion studies, cells were seeded into 24-well tissue culture 

plates at a density of 3 x 105 cells per well and incubated at 37⁰C in 5% CO2 to give a 

final density of 1 x 106 cells. The DMEM was changed every 2-3 days during this 

period [259]. Three days before the experiment, the DMEM with the above 

supplementation was substituted for antibiotic-free, serum-free medium (AFSF 

DMEM).  

5.2.4.2 Bacterial culture preparation  

All bacterial isolates were resuscitated from the -80⁰C culture collections by 

streaking onto nutrient agar and incubating overnight at 37⁰C. S. Typhimurium 4/74 

was used as an invasive positive control and APEC O78 was used as a characterised 

APEC control. One day prior to the invasion assay, bacterial isolates were prepared 

for inoculation as described in Chapter 2. Bacterial suspensions were adjusted to give 

an MOI of ~28.  
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5.2.4.3 Infection of intestinal epithelial cells 

The AFSF DMEM was removed from the Caco-2 cells and cells washed 3 times with 

sterile PBS and replaced with 1ml of warm (37°C) AFSF DMEM. Cell monolayers 

were incubated for 2 hours at 37⁰C.  

100µl of prepared bacterial samples (with adjusted OD600) were added to the 

monolayers in triplicate. Infected monolayers were re-incubated at 37⁰C for two 

hours. After two hours, the supernatant was removed and stored at -20⁰C for 

cytotoxic analysis. One ml of DMEM containing 100µg/ml gentamicin sulphate 

(Invitrogen, UK) was added to each well and incubated at 37⁰C for 1 hour. The 

DMEM was removed and cells washed once with sterile PBS. Cells were lysed with 

0.5% Triton X-100 in 1ml PBS incubated at 37⁰C for 5 minutes. Cell lysates were 

serially diluted (1:10) using PBS and invasive bacteria enumerated on nutrient agar.  

The level of intracellular persistence was assessed at 24 hours post-infection. For this 

time point, the protocol followed the same as above. However, instead of adding 

PBS-Triton X-100, 1ml of fresh DMEM containing 20µg/ml of gentamicin sulphate 

was added to the infected monolayers. Cells were incubated at 37⁰C until 24 hours 

post-infection. At this time, the supernatant was removed and stored at -20⁰C for 

cytotoxic analysis and cells were lysed using PBS-Triton X-100 as previously 

described.  

5.2.4.4 Statistical analysis 

The difference in percentage invasion between isolates was examined using analysis 

of variance.  
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5.2.5 Caco-2 lactate dehydrogenase release cytotoxicity assays 

Lactate dehydrogenase (LDH) is a cytosolic enzyme, therefore detection 

extracellularly can be used as a measure of cell necrosis/death [309]. Supernatants 

collected from the gentamicin invasion assays above at 2 and 24 hours post-infection 

were stored at -20⁰C until required for the Lactate dehydrogenase cytotoxicity assay 

(LDH assay). Immediately prior to the LDH assay, samples were freeze thawed and 

150µl transferred to a sterile round bottom 96-well plate in triplicate.  

The following controls were used: Caco-2 spontaneous LDH release control, 

Maximum LDH release control (Caco-2 cells lysed with Triton X-100 for 1 hour) 

and a DMEM background control (AFSF DMEM only).  

The 96-well plate was centrifuged at 250 x g for 4 minutes to remove cell debris. 

50µl of supernatant was transferred to a fresh 96-well plate. 50µl of reconstituted 

CytoTox-96 Substrate mix was added to each well and mixed gently. Samples were 

incubated at 22⁰C for 30 minutes in darkness. Next, 50µl of Stop Solution was added 

to each well and samples shaken gently for 10 seconds, keeping them protected from 

the light. The absorbance at 490nm was recorded. The LDH release was calculated as 

follows: 

%!Cytotoxicity = 100!x! !"#$%&'$()*+!!"#$!!!!"#$%&$'#(!!!"#"$%"!"#$%&%!!!"!!"#"$%"   

5.2.5.2 Statistical analysis 

Significant differences between isolates and controls were identified using analysis 

of variance.  
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Table 5. 1 E. coli test strains with virulence profiles and phylogenetic groups.  

  Virulence Associated Genes (VAGs)     

Isolate astA iss irp2 papC iucD tsh vat cvi/cva sitA ibeA Total VAGs Phylogenetic group 

284 1 0 1 1 1 0 1 1 1 0 7 B2 

292 0 1 1 0 1 0 1 1 1 1 7 D 

293 0 0 1 0 1 0 1 1 1 1 6 D 

295 0 1 1 1 1 0 1 1 1 0 7 D 

297 0 1 0 0 1 0 0 0 1 1 4 A 

339 1 1 0 1 1 1 0 1 1 0 7 U 

352 0 1 1 1 1 1 1 1 0 0 7 U 

356 0 1 1 1 1 1 1 1 0 1 8 U 

410 0 0 1 0 1 1 1 0 1 1 6 D 

588 0 1 1 1 1 0 1 1 1 0 7 D 

U; Unknown phylogenetic group, 1; positive by PCR for VAG, 0; negative by PCR for VAG 
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5.3 Results 

5.3.1 Comparing the growth of E. coli strains 

The growth rates of 10 E. coli strains, isolated from commercial broiler chickens, 

were assessed in liquid growth media. Figure 5.1 shows the average changes in 

bacterial densities at 37 and 42⁰C calculated from three repeat experiments. There 

were no significant differences in growth rates between the E. coli isolates. All 

isolates entered exponential/log phase at approximately 1.5 hours and reached 

stationary phase at approximately 4-5 hours. Based on these results the subsequent 

invasion assays were performed using late log phase E. coli, which required 3.5 

hours of growth prior to infection of the epithelial Caco-2 cell line.    

5.3.2 E. coli motility  

In total, 6/10 E. coli were motile. E. coli 339, 352, 356 and 588, appeared non-

motile. The results for the motility assay can be seen in Figure 5.2. The reference 

strain APEC isolate O78 appeared less motile than the other motile E. coli in this 

study. None of the E. coli isolates were as motile as S. Typhimurium 4/74.  
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a)                                                                                                                  b) 

 

 

 

 

 

Isolates were isolated from commercial broiler chickens. a) Growth at 37⁰C b) Growth at 42⁰C. There were no significant differences in growth 

between the individual E. coli isolates and temperature was not a significant factor in the growth rate of  E.coli. 
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Figure 5. 1 Growth of 10 Escherichia coli isolates in liquid culture.  
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Overnight motility was recorded in millimetres and an average was taken over 3 

experiments. The standard deviation is also shown 

 

5.3.3 E. coli invasion of Caco-2 epithelial cells – 2 hours post-infection 

Caco-2 epithelial cells were grown for 12 days prior to infection, Figure 5.3. The 

initial invasiveness of E. coli in human epithelial cells 2 hours post-infection was 

measured and is represented in Figure 5.4a. E. coli 284, 292, 356, 410 and 293 show 

comparable invasiveness to the APEC reference strain O78, with approximately 

0.02% of the inocula being successfully recovered in each case. All E. coli were 

significantly poorer invaders in comparison to S. Typhimurium 4/74, where 0.51% of 

the inoculum had invaded 2 hours post-infection (p<0.05). Isolates 588, 339, 352 and 

297 were non-invasive during the 2 hour infection period. The percentage invasion of 
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Figure 5. 2 Average E. coli motility. 
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E. coli 295 was significantly different to all other E. coli (p<0.05) and the invasive 

potential of E. coli 284 and 292 was significant compared to the non-invasive 

isolates 588, 339 and 352 (p<0.05).  

5.3.4 E. coli net replication in Caco-2 epithelial cells – 24 hours post-infection 

The intracellular persistence of E. coli was measured following the 24 hour 

incubation with the Caco-2 monolayer. Only 2 isolates, 588 and 295, showed 

persistence within epithelial cells (0.01 and 0.04% of the inoculum respectively) 

(Figure 5.4b). All other E. coli failed to persist at the limit of theoretical detection for 

this study (less than 5 CFU per ml). This level of persistence was insignificant 

compared to that of S. Typhimurium 4/74, where an average of 2.19% of the 

inoculum had persisted 24 hours after infection (p<0.05). There were no significant 

differences between the E. coli (p<0.05).   
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Figure 5. 3 Cultured Caco-2 human colon carcinoma cells 

3 x 105 Caco-2 cells were added to each 24-well plate and incubated at 37⁰C in 

5% CO2 for 12 days to give a final density of 1 x 106 cells. The photograph 

illustrates confluent cells with tight junctions formation.  
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Invasion was assessed using the gentamicin invasion assay. Calculations were based on the 

percentage of the original inoculum. An average over three repeat experiments (undertaken 

in triplicate on each occasion) was used. S. Typhimurium was used as a positive invasive 

control and APEC O78 was used as an APEC control. The standard deviation is shown and 

* indicates statistically significant differences (p<0.05): refer to section 5.3.3 for details.
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Figure 5. 4a Invasive ability of E. coli in human epithelial cell line Caco-

2: 2 hours post infection. 
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5.3.5 Cytotoxicity of E. coli to Caco-2 epithelial cells 

The cytotoxicity of the E. coli isolates was determined by the quantification of LDH 

in the cell culture growth media collected during the invasion studies. All E. coli 

appear similar in their cytotoxic impact and that of the field isolates was comparable 

to that of the APEC reference strain O78. All E. coli were 20-40% cytotoxic, 

although cytotoxicity varied between each repeat. The cytotoxicity of S. 

Typhimurium 4/74 was comparably lower (10.60%).   The results for 2 hour and 24 

hour post-infection are illustrated in Figure 5.5. There were no significant differences 

between the E. coli (p<0.05).  
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The averages were taken from the three repeats. Standard deviation is also shown. 

Cytotoxicity was measured using a lactate dehydrogenase assay (p>0.05). 

 

Figure 5. 5a The average percentage of cytotoxicity of E. coli to Caco-2 

epithelial cells 2 hours post-infection.  
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5.4 Discussion 

This series of experiments aimed at elucidating the invasiveness and cytotoxicity of 

10 E. coli isolates, 9 of which were isolated from the gastrointestinal tract of UK 

broiler chickens during a previous study [283]. Overall, these pAPEC were not 

invasive in human colon carcinoma epithelial cells. This concurs with previous work 

conducted by Matter et al (2011) who tested 8 APEC strains, only one of which 

appeared invasive at comparable levels to S. Typhimurium 4/74 [305].  

Other work suggests APEC are capable of intracellular invasion. Silveira et al (2002) 

used human cell lines to compare a panel of diverse APEC and described invasive 

behaviour. However, they found no correlation between VAG carriage, serogroups 

and invasiveness [308]. Prior to this, Pourbakhsh et al (1997) administered 108 

colony forming units of APEC into the air sacs of broiler chicks and identified 

intracellular APEC 6 hours post-infection using electron microscopy [196].  

The primary route of APEC dissemination is thought to be via the respiratory tract 

[43, 127]. Infection models have shown that as few as 3 hours after intra-air sac 

administration, air sac epithelial cells appear swollen, vacuolated and the space 

between cells increased [196]. The integrity of the epithelium is then jeopardised. 

Damaged air sacs are quickly vascularised, given they possess no cellular defence 

mechanisms of their own and rely on the incoming of innate immune cells such as 

heterophils and macrophages [193, 310]. Vascularisation would favour bacteraemia.    

Such attack on the integrity of the host mucosal surfaces and the inconsistent 

invasive behaviour of APEC strains may suggest the bacteria transverse the epithelial 

barrier only after they have weakened it. The current study assessed the cytotoxicity 
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of pAPEC to colonic epithelial cells and found that at 2 hours post-infection the 

epithelial cells showed an average of 25% cytotoxicity. This was greater than the 

invasive S. Typhimurium control (~11%). This is also approximately double the 

cytotoxicity that Matter et al (2011) reported [305]. There were no significant 

differences between the pAPEC isolates at this time point. At 24 hours post-

infection, there were also no significant differences between the pAPEC isolates but 

the average cytotoxicity was ~40%. This may sufficiently disrupt the epithelial 

integrity allowing E. coli to transverse and disseminate in vivo. Inflammation and 

host stress are known to reduce epithelial integrity [259]. E. coli display certain 

antigens including flagellin and lipopolysaccharide (LPS) which are recognised by a 

family of host receptors known as Toll-like receptors [311]. E. coli may utilise the 

avian inflammatory response to subsequently reduce the transepithelial resistance 

allowing migration intercellularly, as demonstrated by Shigella [312].   This study 

observed large variation in cytotoxicity between repeat experiments. Reasons for this 

could be due to differences in the cultured cells between experiments. Caution must 

be taken when considering the intracellular E. coli counts at 24 hours post-infection. 

The gentamicin invasion assay relies on the impermeable cellular barrier to prevent 

gentamicin from gaining access to the cytosol. Our cytotoxicity results suggest this 

barrier is jeopardised at this time point and this intracellular counts for net 

replication/persistence may be somewhat inaccurate.    

APEC pathogenesis is associated with a number of toxins and other molecular 

molecules associated with inducing cell death. The first genomic pathogenicity 

associated island (PAI) of APEC was the VAT-PAI encoding a vacuolating 

autotransporter toxin (vat), which induces the formation of cytotoxic intracellular 

vacuoles [210]. Parriera et al. (2003) reported a decline in virulence following the 
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deletion of vat in a broiler chicken respiratory infection model [210]. This 

autotransporter toxin shares 75% sequence homology to tsh and is found in 

approximately 38% of APEC, although it has been reported in over 50% of ExPEC 

[47, 182]. The Enteroaggregative heat stable enterotoxin 1 (EAST1), encoded by the 

astA gene, was originally identified in enteroaggregative E. coli (EAEC) and later 

associated with both enterotoxigenic E. coli (ETEC) and 20-30% of APEC [187, 210, 

211]. Olsen et al. (2011) demonstrated that although EAST1 may be associated with 

pathogenicity it is not found in all outbreak APEC strains [123].  In the current study, 

8/10 and 2/10 E. coli carried the vat and astA gene respectively but no significant 

differences in cytotoxicity were observed.  

Other toxins associated with ExPEC pathogenesis include the haemolysin (hlyE), 

heat-liable enterotoxin (a homologue of EAST1) and verocytotoxins/shiga toxins 

(vtx1 and vtx2) [213-216] although their exact role in APEC pathogenesis remains 

unclear and fell outside this study.  

Generally speaking, E. coli are not typically intracellular pathogens, but a number of 

ExPEC pathovars are associated with invasive behaviour, including uropathogenic E. 

coli (UPEC) and neonatal meningitis E. coli (NMEC).  Both pathotypes show a high 

level of genetic similarities to APEC [89].  

NMEC is responsible for meningitis and sepsis in humans. The pathogenic pathway 

of NMEC involves bacteraemia and the subsequent crossing of the blood-brain 

barrier. NMEC invade the brain microvascular endothelial cells (BMEC) via a 

zipper-like mechanism involving the rearrangement of endothelial cell actin 

microfilaments [304]. NMEC invasion can be inhibited with the use of actin 

inhibitors such as cytochalasin D [313]. OmpA and type 1 fimbriae have been shown 
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to be important adhesins required for invasion of BMEC [304]. NMEC do not 

transverse the brain endothelium intercellularly by endothelial disruption [313]. Ibe 

proteins have been shown to play a role in invasion of BMEC and ΔIbeA NMEC 

BEN2908 were significantly less invasive than wild type strains [159]. It was 

originally thought that ibeA encoded an outermembrane protein involved in invasion. 

However, Cortes et al (2008) later suggested that ibeA encoded an intracellular 

bacterial protein involved in the regulation of type 1 fimbriae required for adhesion 

to endothelial cells [154]. Ibe proteins have also been shown to aid APEC 

pathogenicity in some cases with approximately 25% of APEC carrying this VAG, 

although it has been reported to be higher in isolates from UK broiler chickens [159, 

283]. IbeA aids invasion but does not appear to be essential [159]. The ibeA gene was 

carried by 4 of the E. coli used in this study but this appeared insignificant to 

invasion.  

Human urinary tract infections (UTIs) are the most common of extraintestinal E. coli 

infections and are caused primarily by the UPEC pathotype [23]. UPEC form 

protective ‘pod-like’ polysaccharide rich intracellular bacterial communities (IBCs) 

on the surface of the uroepithelium [303]. Within IBCs, UPEC interact with 

uroplakin using type 1 fimbriae to form stable structures [303]. E. coli contained 

within IBCs are protected against host surveillance and antibiotics, explaining why 

some UTIs are recurrent. One route of APEC systemic dissemination could be via 

the migration of APEC up the avian reproductive tract.  

Enteroinvasive E. coli (EIEC) cause invasive inflammatory colitis and differ from 

other E. coli pathotypes as they are obligate intracellular bacteria.  EIEC and Shigella 

are considered to have the same pathogenicity mechanisms but because of the 
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disease Shigella causes (shigellosis) it retains its own genus [23]. Most of the 

pathogenesis of EIEC is mediated by a TTSS encoded on a ~220kb virulence 

plasmid; pWR100 [312]. The Mxi-Spa locus of this plasmid encodes effector 

proteins IpaA-C and IpgD. IpaB and IpaC are inserted into specialised antigen 

sampling epithelial cells known as Microfold cells (M-cells). This initiates 

intracellular actin microfilament rearrangements at the host:bacterial interface, 

promoting the  membrane ruffling required for bacterial invasion [314]. Once inside 

epithelial cells, bacteria are able to hijack the host machinery to avoid host detection 

and promote their intercellular dissemination [25]. Shigella can exit the basolateral 

surface of M cells and enter the submucosa [312].  Unlike EHEC, Shigella can also 

pass through the intercellular spaces of the epithelial cells created following 

destruction of tight junctions during inflammation [312, 314]. There are some 

examples  demonstrating E. coli and related bacterial species intracellular nature.  

Bacterial motility is considered an important virulence factor of ExPEC aiding 

bacterial migration and contact with the host epithelium. This is particularly true in 

the case of UPEC pathogenesis, where flagella mediated motility enables ascendance 

of the urinary tract [315]. In the current study, 6/10 E. coli were considered motile 

but no correlation between invasion and motility was observed probably because 

once E. coli were added to the epithelial cells, they were gently mixed insuring the 

bacteria came into contact with the cells during the invasion assay. EIEC are, in fact, 

non-motile pathogens and, as mentioned, utilise the host machinery to ensure 

migration [312]. Wooley et al (1993) showed that systemic E. coli were more likely 

to be motile than intestinal strains [199]. Non-motile intestinal and extraintestinal 

pathogens are well documented suggesting means of overcoming the non-motile 
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phenotype and perhaps advantages to being non-motile (to avoid host recognition of 

flagella for example) [316, 317].  

These examples illustrate how certain E. coli pathotypes have evolved mechanisms 

to allow invasion.  The host is also likely to play an important role in bacterial:host 

interactions. Some studies suggest APEC are only invasive under host physiological 

stress conditions. Oral inoculation of turkeys and broiler chickens with 

approximately 108 E. coli resulted in colonisation of turkey spleens and increased 

mortality in the presence of an environmental stressor (feed withdrawal or heat) 

[130]. In a similar study, the predisposition of axenic turkeys to stress prior to oral 

administration of pathogenic E. coli resulted in greater colonisation of liver rather 

than lung tissue [129]. Stress has been described as one of the leading causes of 

APEC dissemination [46]. The Caco-2 epithelia used in this study was not subjected 

to any stressful conditions but this has been simulated previously with the 

introduction of noradrenaline to cultured epithelial cells [259].  

Noradrenaline has been shown to increase the expression of E. coli O157 virulence 

factors including adhesion factors, which led to increased adherence and colitis in 

infection models [318, 319]. Pre-incubation of noradrenaline and Caco-2 cells has 

been shown to increase the breakdown of epithelial tight junctions and noradrenaline 

increases intestinal vascularisation to aid the infiltration of host immune cells. Such 

physiological changes could allow APEC to enter the bloodstream [259].  

In an attempt to meet consumer demands, modern commercial broilers now reach 

slaughter weight (1.8-3.0kg) 60% faster than in the 1970s, with an annual increase in 

growth of 5% [55]. The growth rate stressor may facilitate systemic dissemination of 

APEC.   In vitro experiments are used in an attempt to achieve the three Rs 
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(reduction, replacement and refinement) of licensed animals but they do not allow for 

an accurate understanding of the complex interactions involved in the pathogenesis 

of bacterial pathogens. Such experiments would also allow consideration for the 

surrounding microbiota that is likely to influence bacterial behaviour and the gut 

environment [320].  

This chapter reports the apparent non-invasive phenotype of pAPEC but suggests 

other mechanisms may be used to disseminate throughout the host, including 

disruption of the epithelial integrity. The E. coli strains used in this study showed 

comparative biological characteristics to the reference E. coli strain, O78. Further 

work is required in an attempt to expand on the in vitro conditions assessed including 

the simulation of physiological stress, conditions which may be encountered in the 

intestinal tract of commercial broiler chickens. Efforts are limited as we await the 

development of a reliable and reproducible chicken intestinal cell line. 
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ABSTRACT 

Avian pathogenic Escherichia coli (APEC) is a massive economic burden to the 

global poultry industry, which is currently struggling to meet consumer demand. 

APEC is associated with fibrin-based lesions around visceral organs and septicaemia 

in poultry. The molecular mechanisms involved in APEC pathogenesis are not fully 

understood. In order to survive extraintestinally, APEC must resist killing by the 

avian immune system. Colonisation of the respiratory tract following the inhalation 

of faecal dust initiates the influx of innate defence cells including phagocytic 

macrophages. To disseminate via the blood, APEC must resist killing by the 

complement system. The current study aimed to compare the intracellular persistence 

and survival of APEC (n=5) and avian faecal E. coli (n=4) in cultured avian 

macrophages (HD11) and in chicken serum.  There were no significant differences 

(p>0.05) in the uptake and persistence of APEC and avian faecal E. coli by HD11 

macrophages. At 24 hours post-infection, avian faecal E. coli 396 and 495 showed 

the greatest amount of persistence with 2.44 and 3.04% of the original inocula 

detected intracellularly, respectively, compared to 10.89% with the Salmonella 

Typhimurium control. All isolates successfully stimulated proinflammatory 

responses in HD11 cells (quantification of IL-6 and CxCLi2).  There were no 

significant differences between APEC and avian faecal E. coli survival in serum; all 

isolates showed at least 60-70% survival following 3 hours incubation with 10% 

serum. Three APEC isolates carried iss and demonstrated 95-109% survival. This 

supports the hypothesis that opportunistic infection by non-pathogenic E. coli may be 

possible.   
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6.1 Introduction 

Poultry health and welfare are important in allowing for sustainable and secure food 

production. In the UK alone, over 900 million broiler chickens are currently farmed 

annually and worldwide poultry production is expected to increase rapidly to meet 

both the rise in the global population and the increasing demand for meat in an 

increasingly rich populations in countries such as India and China [3]. Meeting this 

demand, whilst retaining or improving animal health and welfare, is a challenge. 

Furthermore, practices such as the use of antibiotics as growth promoters are 

unsustainable and have been banned in the EU and there is an increased reliance on 

other disease control methods including vaccination and breeding for disease 

resistance.  

Avian pathogenic Escherichia coli (APEC) are an ill-defined pathotype of the 

extraintestinal pathogenic E. coli (ExPEC) group. APEC cause an avian syndromic 

disease characterised by fibrinous lesions around visceral organs often referred to as 

colibacillosis, which is commonly associated with airsacculitis, cellulitis, 

pericarditis, perihepatitis, respiratory distress and septicaemia in broiler chickens 

[48]. Colibacillosis is an economic burden resulting in mortalities during production 

and the rejection of carcasses at slaughter.  

The APEC pathotype originates from diverse E. coli lineages and, although APEC 

pathogenesis is unclear, a range of virulence-associated genes (VAGs) has been 

described [78, 83, 159, 182, 185, 189, 252].  

Potential APEC (pAPEC) reside in the gastrointestinal tract and systemic infection is 

likely to be the result of inhalation of contaminated faecal dust [43, 127]. E. coli have 
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been shown to persist on poultry house dust particles at levels exceeding 106 colony 

forming units per gram [128]. In vivo studies suggest 106 and 109 CFU are sufficient 

in causing lung and systemic infections respectively [127]. Previous chapters support 

the presence of pAPEC in the avian gut and the high diversity among extraintestinal 

E. coli.  

The respiratory tract lacks a resident innate cellular defence system with very few 

macrophages and heterophils (the chicken orthologue of mammalian 

polymorphonuclear neutrophils) residing in the respiratory tissue awaiting challenge 

[193]. Thus, the respiratory tract must rely on the infiltration of peripheral blood 

monocytes along with macrophages and heterophils residing in bronchus-associated 

lymphoid tissues (BALT) [193-195].  

Heterophils are polymorphonuclear cells and are considered to be the orthologue of 

the mammalian neutrophil. They are rapid responders to infection but only have a 

short life span of around 7-10 days once released from bone marrow. Macrophages 

are large mononuclear phagocytic cells that may be found in tissues or as progenitor 

forms such as monocytes and pro-monocytes within the circulatory system. Their life 

span is longer than that of heterophils, typically around 80 days. Heterophils and 

macrophages are considered to be the main effector cells of the induced innate 

immune system [195].  

 The availability of the chicken genome has helped improve our understanding of the 

avian immune system [235]. Pattern recognition receptors (PRR) found on the 

surface of phagocytic cells recognise a diverse set of microbial associated molecular 

patterns (MAMPs). The most common PRR are Toll-like receptors (TLRs) and 

currently 13 have been described in the chicken (two of which are chicken specific: 
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TLR-15 and TLR-21) [321]. Chicken TLRs recognise a similar pool of MAMPs to 

the mammalian repertoire including: lipopolysaccharide (LPS), peptidoglycan, 

flagellin and nucleic acids. Receptor-ligand binding triggers proinflammatory 

intracellular signalling pathways (NFκB and mitogen activated protein kinase 

pathways) initiating the activation and recruitment of phagocytic cells and 

lymphocytes. This is reviewed elsewhere [311]. Macrophages produce bactericidal 

reactive oxygen species (hypochlorous acid, superoxide and hydrogen peroxide) 

using oxidative burst reactions within the phagolysosome allowing bacterial 

degradation and clearance. Immune responses are co-ordinated by molecular 

messengers known as cytokines and chemokines [322].  

APEC infection studies using signature tagged mutagenesis or specific gene knock-

outs have been used to test molecular Koch’s postulates in a number of different 

studies to evaluate the contribution of VAGs to APEC colonisation and persistence 

in respiratory tissues [47, 155, 197]. These studies have highlighted the possible 

importance of temperature sensitive haemagglutinin (Tsh), P-fimbriae and Type 1 

fimbriae in colonisation of the respiratory tract. Previous work has also looked at the 

contribution of these factors to the interaction of APEC with avian macrophages 

whereby some E. coli factors repel such interactions (P-fimbriae) while others appear 

to promote them yet prevent degradation once bacteria reside intracellularly (Type 1 

fimbriae) [243].  

In order to cause systemic infection and gain entry into the bloodstream, APEC must 

overcome infiltrating macrophages. It has been shown in vivo that APEC may reside 

free in the air sac lumen or in close contact with macrophages, with some speculation 

over the ability of APEC to replicate intracellularly [196]. Pourbakhsh et al (1997) 
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correlated virulence with the ability of APEC to resist killing by macrophages [196]. 

Persistence in macrophages could provide E. coli with systemic transport mechanism 

within a protected environment.  

Previously, this thesis has shown that extraintestinal E. coli represents a diverse 

population in terms of both their genetic background and VAG carriage [283]. 

However, we speculate that all successful extraintestinal pathogenic E. coli must 

possess mechanisms allowing their survival and non-pathogenic E. coli would not 

harbour such traits.  

Recently Horn et al (2012) compared 3 previously isolated APEC strains, including 

APEC MT78, and 1 avian faecal E. coli [234]. Examination of pathological lesions 

could not distinguish APEC from the non-APEC strain but only a limited number of 

isolates were included in the study.  

Examining such interactions can be done in the laboratory using an immortalised 

avian macrophage cell line known as HD11. This HD11 cell line has been well 

characterised and shown to be highly representative of primary macrophages in terms 

of cytokine production [323, 324].  

During septicaemia (often associated with APEC infection) APEC must overcome 

the bactericidal effects of the complement immune system. Two complement 

pathways in serum can result in the killing of APEC; the antibody-mediated classical 

pathway or the surface polysaccharide recognition alternative one [325, 326]. APEC 

survival in serum has been described since the early 1990s and a number of virulence 

factors have been identified in contributing including; pap operon, O78 antigen, 

OmpA, TraT and Iss [171]. 
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To start to address whether the diversity seen among extraintestinal E. coli in 

previous chapters is a result of opportunistic infection, or whether these E. coli 

possess mechanisms required to survive systemically, this chapter compares the 

survival of UK isolated extraintestinal (APEC) and avian faecal E. coli following 

exposure to macrophages and commercial broiler serum.  
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6.2 Materials and methods 

6.2.1 Bacterial isolates 

The E. coli isolates used in this study were isolated from the faeces or visceral organs 

of ‘healthy’ or diseased commercial broiler chickens respectively (Table 6.1) [283]. 

Test isolates were selected based on their carriage of VAGs and site of isolation, as 

determined previously [283]. A summary of isolate information can be found in 

Table 6.1. Prior to use, all E. coli were stored at -80⁰C in Microbank vials (Pro-Lab 

Diagnostics, UK).  APEC O78 was used as a representative APEC strain and was 

kindly donated by Professor Mark Stevens of The University of Edinburgh Roslin 

Institute, Scotland, UK.  
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        Table 6. 1 List of test E. coli strains from various sources including VAG carriage and phylogroup data 

   Virulence Associated Genes (VAGs)     

Isolate Source astA iss irp2 papC iucD tsh vat cvi/cva sitA ibeA Total VAGs Phylogenetic group 

601 Lung 0 0 0 1 1 0 1 1 1 0 5 D 

588 Heart 0 1 1 1 1 0 1 1 1 0 7 D 

24B Liver 0 1 1 0 1 0 1 1 1 1 7 B2 

24F Heart 0 0 1 0 1 1 1 0 1 1 6 D 

18C Heart 1 1 1 0 1 1 0 1 1 0 7 D 

317 Faeces 0 0 0 0 0 0 0 0 0 0 0 D 

396 Faeces 0 0 0 0 0 0 0 0 0 0 0 A 

495 Faeces 0 0 0 0 0 0 0 0 0 0 0 A 

571 Faeces 0 0 0 0 0 0 0 0 0 0 0 A 

1; positive by PCR for VAG, 0; negative by PCR for VAG 
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6.2.2 Avian macrophage gentamicin invasion assays 

The gentamicin invasion assay protocol was based on that previously described by 

others [259, 260]. 

6.2.2.1 Cell line seeding protocol and cell line preparation 

The avian macrophage cell line (HD11) [258] was grown in RPMI-1640 media 

(Sigma-Aldrich, UK) supplemented with 10% foetal bovine serum (Sigma-Aldrich, 

UK), 1% GlutaMAXTM (100x concentration) (Invitrogen, UK), 1% MEM non-

essential amino acid solution (Sigma-Aldrich, UK) and penicillin–streptomycin (100 

U/ml) antibiotics (Sigma-Aldrich, UK). Cells were grown at 37⁰C. Two days before 

the infection studies, cells were seeded into 24-well tissue culture plates at a density 

of 4.5 x 105 cells per well and incubated at 37⁰C to give a final density of 1 x 106 

cells. One day before the experiment, the RPMI with the above supplementation was 

substituted for antibiotic-free, serum-free medium (AFSF RPMI).  

6.2.2.2 Bacterial culture preparation  

All bacterial isolates were obtained from the -80⁰C culture collections, streaked onto 

nutrient agar (NA) (LabM, UK) and incubated overnight at 37⁰C. S. Typhimurium 

4/74 was used as an invasive positive control and APEC O78 as a characterised 

APEC positive control. One day prior to the invasion assay, 2-3 colonies of each 

overnight culture were used to inoculate 2ml of sterile LB broth. Bacterial 

suspensions were incubated overnight at 37⁰C.  On the day of the experiment, 100µl 

of overnight culture was added to 10ml of fresh LB broth and incubated at 37⁰C for 

3.5 hours at 150rpm. After 3.5 hours, the OD600 was adjusted using sterile phosphate 
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buffered saline (PBS) to 0.27 +/- 0.05 to reduce differences in multiplicity of 

infection (MOI) between bacterial samples. These adjusted suspensions (MOI of 

~28) were used to infect the HD11 cell line.   

6.2.2.3 Infection of avian macrophages 

The intracellular survival of E. coli in HD11 macrophages was assessed at 1, 4 and 

24 hours post-infection.  

Prior to infection, the AFSF RPMI was removed from the HD11 cells. Cells were 

washed 3 times with sterile PBS, which was replaced with 1ml of 37°C AFSF RPMI. 

Cell monolayers were incubated for 2 hours at 37⁰C in 5% CO2.  

100µl of bacterial samples (with adjusted OD600) were added to the monolayers in 

triplicate. Infected monolayers were re-incubated at 37⁰C in 5% CO2 for one hour. 

The supernatant was removed and stored at -20⁰C to assess pathogen-mediated 

cytoxicity. One ml of RPMI containing 100µg/ml gentamicin sulphate (Invitrogen, 

UK) was added to each well and incubated at 37⁰C for 1 hour. The RPMI was 

removed and cells washed once with sterile PBS. Cells were lysed with 0.5% Triton 

X-100 in 1ml PBS incubated at 37⁰C for 5 minutes. Cell lysates were serially diluted 

(1:10) using PBS and invasive bacteria enumerated on NA.  

The level of bacterial invasiveness was also analysed at 4 and 24 hours post-

infection. However, instead of adding PBS-Triton X-100 after 1 hour post infection, 

1ml of fresh RPMI containing 20µg/ml of gentamicin sulphate was added to the 

infected monolayers. Cells were then incubated at 37⁰C until 4 or 24 hours post-

infection. At this time, the supernatant was removed and stored at -20⁰C for 
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cytotoxic analysis and cells were lysed using PBS-Triton X-100 as previously 

described.  

6.2.2.4 Statistical analysis 

Differences in the percentage invasion were examined using analysis of variance.  

6.2.3 Real time quantitative reverse transcriptase polymerase chain reaction 

for avian cytokines  

6.2.3.1 Isolation of RNA 

After 1 hour co-incubation of avian macrophage HD11 cells with E. coli (as 

described above), 350µl of Buffer RLT was added directly to the cells [327]. Cells 

were then expelled from wells and stored in 1.5ml eppendorf tubes at -80°C until 

required.   RNA was eluted into 50µl of RNase-free water using a Qiagen RNeasy 

Mini kit following the manufacturer’s instructions (Qiagen, West Sussex, UK). The 

total RNA was quantified by measuring light absorption at 260 and 280 nm with a 

Nanodrop (ND-1000) spectrophotometer.  

6.2.3.2 Quantification of pro-inflammatory cytokine RNA  

The expression of the pro-inflammatory cytokine Interleukin 6 (IL-6) and the pro-

inflammatory chemokine CXCLi2 by avian macrophages in response to exposure to 

E. coli was quantified using real time quantitative reverse transcriptase polymerase 

chain reaction (qRT-PCR). All reagents were obtained from Qiagen, West Sussex, 

UK. The quantification of 28S rRNA was used as a standard to allow comparisons. 

Primers and probes were based on those previously described and are outlined in 
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Table 6.2 [328]. Twenty µl-reaction mixtures for one-step qRT-PCR were prepared 

using the RotorGene Probe RT-PCR kit and contained: 1 µl of total RNA, 10 µl of 

RotorGene Probe RT-PCR Master Mix, 0.2 µl RotorGene RT Enzyme Mix, 1.6 µl of 

each primer (at 10 µM), 0.8 µl of probe (at 5 µM) and 4.8 µl of RNase-free water. 

Reactions were set up using an automated QIAgility system. Real-time RT-PCR was 

performed on a RotorGene Q system with the following reaction conditions: 50oC for 

10 minutes (RNA to cDNA reaction), then 95oC for 5 minutes, and 40 cycles of the 

two stage reaction of 95oC for 5 seconds and 60oC for 10 seconds. Each reaction was 

performed in triplicate and each run included non-template controls and non-probe 

controls.  

6.2.3.3 qRT-PCR analysis 

The levels of IL-6 and CXCLi2 expression are shown measured as the average 

threshold cycle value (Ct) from the triplicate PCRs. The Ct value is the PCR cycle 

number at which the reporter dye passes a significance threshold (this is half way up 

the exponential phase and varies depending on the level of RNA). The level of target 

gene expression was assessed relative to the standard reference gene 28S rRNA by 

calculating the difference (ΔCT) between the comparative threshold (CT)values of the 

target genes and the 28S rRNA. To determine the effect of E. coli exposure on the 

expression of pro-inflammatory messengers, the relative expression of the target 

genes in a sample (ΔΔCT) was calculated by finding the difference between each 

sample target gene ΔCT and the uninfected control ΔCT for each 

cytokine/chemokine. Finally, the fold change in expression between the infected and 

uninfected cells was calculated (2-ΔΔCT) for each isolate.  
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To clearly illustrate the differences between the infected and uninfected expression 

and the individual isolates, the results have further been analysed in the 40-Ct format. 

This represents the maximum cycle number (40) minus the threshold detection value 

(Ct). The higher the 40-Ct value the greater the gene expression. 

6.2.3.4 Statistical analysis 

The PCRs were repeated in triplicate for each E. coli isolate and the infection 

experiments were also repeated three times. The average level of expression and 

standard deviation was calculated for each of the 12 bacterial isolates. Significant 

differences between individual isolates were determined using analysis of variance 

(one way ANOVA) with the post-hoc Tukey test. Differences between systemic and 

faecally derived E. coli were assessed using the Student’s t-test. Differences were 

considered significant at p<0.05.  

Table 6. 2  Real time quantitative RT-PCR primers and probes 

RNA$target$ Primer$sequence$(5'$5$3')$
Gene$Bank$

Accession$no.$$

28s 

F:  GGCGAAGCCAGAGGAAACT 
R: GACGACCGATTTGCACGTC 
P: (FAM)-
AGGACCGCTACGGACCTCCACCA-
(TAMRA)  

X59733 

 

 

IL-6 

F:  GCTCGCCGGCTTCGA 
R: GGTAGGTCTGAAAGGCGAACAG AJ250838 

 
P: (FAM)-
AGGAGAAATGCCTGACGAAGCTCTCCA-
(TAMRA)     

CXCLi2 

F:  GCCCTCCTCCTGGTTTCAG 
R:  TGGCACCGCAGCTCATT 
P: (FAM)-
TCTTTACCAGCGTCCTACCTTGCGACA-
(TAMRA)  

AJ009800 
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6.2.4 Serum survival assay 

The serum survival assay was based on that previously described with slight 

modifications [171]. Serum was collected from 3-week-old commercial broiler 

chickens and stored at -20°C. E. coli and S. Typhimurium 4/74 were grown in 2ml 

LB broth overnight at 37°C in a shaking incubator at 150rpm. Mid-log phase cultures 

were obtained by diluting overnight cultures 1:100 into fresh LB broth and incubated 

at 37°C at 150rpm for 1 hour 45 minutes. The optical density at 600nm was 

measured and cultures adjusted accordingly in gelatin-veronal buffered saline 

solution with magnesium and calcium ions (GVB2+), pH 7.35 (TCS Biosciences 

limited, UK) to give final inocula containing approximately 106 colony forming units 

(CFU) ml-1 mid-log phase bacteria. 100µl of serum was added to 900µl of inoculum 

(1:10) with gentle mixing and incubated at 37°C for 3 hours. At 1 hour intervals, 

20µl of culture was removed, serially diluted in PBS and plated onto NA for 

bacterial enumeration. Results are displayed as percentage survival of the original 

inoculum. The same assay was repeated using stationary phase bacteria (4 hours 

incubation). The differences between APEC and avian faecal E. coli were assessed 

using the student’s t test.  
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6.3 Results 

6.3.1 Comparing the invasive phenotypes and persistence of APEC and avian 

faecal E. coli in avian macrophages 

This study focused on comparing the invasion/phagocytosis and persistence of APEC 

and avian faecal E. coli in cultured avian macrophages at 1, 4 and 24 hour post-

infection.  

6.3.1.1 Invasion/uptake in avian macrophages – 1 hour post-infection 

At 1 hour post-infection, the highest level of intracellular bacteria was observed for 

the avian faecal isolate 495 (0.41% of inoculum). The highest intracellular count by 

systemic E. coli isolates was that of 24B (0.26% of original inoculum). The positive 

control S. Typhimurium 4/74 averaged 1.69%. The data are illustrated in Figure 6.1. 

The bacterial counts 1hour post-infection for E. coli 24B, 24F, 495 and 571 were not 

significantly different compared to the S. Typhimurium control (p<0.05). There were 

no significant differences between APEC and avian faecal E. coli at this time point 

(p>0.05).  

6.3.1.2 Invasion/persistence in avian macrophages – 4 hours post-infection 

At 4 hours post-infection, there was no overall statistically significant difference 

between APEC and avian faecal E. coli (p>0.05). There were also no significant 

differences between APEC 601 and 588 (p>0.05) and S. Typhimurium 4/74, 

suggesting these isolates show similar levels of intracellular bacteria at this 

intermediate time point. Intracellular APEC 601 and 588 (0.84% and 1.04% 
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respectively) were identified at higher levels than the APEC O78 (0.34%). Results 

are displayed in Figure 6.1b.  

6.3.1.3 Net replication/persistence in avian macrophages – 24 hours post-infection 

The ability of APEC and avian faecal E. coli to persist in avian macrophages (as a 

possible mechanism of systemic spread) was evaluated following 24 hour incubation 

of the HD11 cells. Avian faecal E. coli 396 and 495 showed the highest level of 

persistence among the test strains with 2.44 and 3.04% of the inoculum being 

detected 24 hours post-infection but this was not statistically significant (p>0.05). 

There were no significant differences between the E. coli used in this study and all 

strains, including APEC O78, were significantly poor persisters in comparison to S. 

Typhimurium 4/74 (10.89%).  Results are displayed in Figure 6.1c. The cytotoxic 

effects of exposure to E. coli and time was not measured, however caution must be 

taken when considering the bacterial counts obtained here; any increase in 

permeability would allow for gentamicin access to intracellular bacteria.  
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Figure 6. 1a Measure of intracellular E. coli in avian macrophages 

(gentamicin invasion assay) 1 hour post-infection.  

b) 4 hour post-infection  

APEC Faecal 

APEC Faecal  
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Values are shown as the percentage of the original inoculum. The standard deviation of the 

three experiments is represented by the error bars. Analysis of variance identified no 

significant differences between APEC and avian faecal E. coli. S. Typhimurium 4/74 was 

used as a positive invasive control and APEC O78 was used as an APEC reference strain.  

6.3.2 Pro-inflammatory cytokine production in response to exposure to E. coli 

Infection with all E. coli elicited a rapid pro-inflammatory response in the avian 

macrophage HD11 cell line when compared to non-infected macrophages (P<0.05) 

(Figures 6.2). There were no significant differences in the expression fold change 

between those isolates classified as APEC and avian faecal (p>0.05). Furthermore, 

there were no significant differences between the individual isolates. Both 

macrophage IL-6 and CXCLi2 expression was increased following exposure to E. 

coli.  

 

 

c) 24 hour post-infection 
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All E. coli elicited a significant IL-6 and CXCLi2 response in avian macrophages compared 

to uninfected controls (p<0.05). Data are represented as 40-Ct values. 40 is the maximum 

number of repeat cycles and the Ct is the cycle number at which the detection of a probe 

reaches a threshold value. The higher the 40-Ct value the greater the expression.   

b) CXCLi2  

APEC     Faecal 

APEC     Faecal 

Figure 6. 2 Expression of IL-6 (a) and CXCLi2 (b) by avian macrophages in 

response to APEC and avian faecal E. coli.  
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6.3.3 Serum survival  

There were no significant differences in the survival of E. coli in mid-log and 

stationary phase. There were also no significant differences between APEC and 

avian faecal E. coli (p>0.05). Of the isolates carrying the iss gene (588, 24B and 

18C), approximately 95-109% of the original inoculum was present 3 hours after 

exposure. The results for the 3 hour exposure time point are presented as percentage 

survival of original inoculum for each isolate (mid-log) (Figure 6.4). A number of the 

isolates appeared to be capable of growth in the presence of serum (E. coli 24F, 18C 

and 571). All other isolates, excluding 396, were identified at levels of approximately 

60-70% of the original inoculum following 3 hours exposure to 10% serum.  

 

 

 

 

 

 

 

Results are presented as the percentage survival of the original inoculum. Error bars 

represent the standard deviation from the three repeats. There were no significant 

differences between APEC and avian faecal E. coli (p>0.05). 

APEC     Faecal 

Figure 6. 4 Serum survival of APEC and avian faecal E. coli.  
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6.4 Discussion  

In order for APEC to spread systemically it must overcome several challenges 

imposed by the avian immune system. One of the initial challenges is the infiltration 

of innate immune cells at the site of infection [43, 127, 128]. The avian respiratory 

tract harbours low levels of resident heterophils and macrophages and relies heavily 

on cellular infiltration [194]. Following infection, air sacs are quickly vascularised to 

support this [193, 310].  

This study found no significant differences between APEC and avian faecal E. coli in 

their ability to persist inside phagocytic cells. A recent study comparing a smaller 

panel of APEC and avian faecal E. coli reported no differences in the histopathology 

of infected birds and comparable colonisation levels between avian faecal and APEC 

isolates [234]. Such results highlight the differences between APEC isolates 

themselves and make deciphering APEC pathogenesis more difficult.   

Electron microscopy of chicken air sacs 24 and 48 hours post inoculation revealed an 

average of 18 and 29 intracellular CFU per macrophage respectively [196]. 

Furthermore, APEC virulence was correlated with resistance to macrophage killing. 

Similarly, invasive adherent E. coli (IAEC) are capable of replicating in J774 murine 

macrophages with cell counts increasing more than 74 fold in 48 hours [329]. There 

is speculation over the ability of APEC to replicate intracellularly, but the 

mechanisms are not understood [196]. In the current study, both APEC and avian 

faecal isolates failed to persist intracellularly in macrophages following 24 hours 

infection. This study did not assess the extracellular survival of E. coli in the 

presence of macrophages, but this may be an important trait in allowing systemic 

spread considering APEC fail to persist intracellularly.  
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Key cells of the innate immune system (heterophils and macrophages) are associated 

with non-specific immune responses. PRRs, such as TLRs, recognise a variety of 

MAMPs associated with both non-pathogenic and pathogenic bacteria [311]. Despite 

this, macrophages from inbred chicken lines reportedly contribute to Salmonella 

resistance [327]. One hypothesis for this is a rapid proinflammatory cytokine and 

chemokine response, involving significant fold increases in IL-6 and IL-18 

(lymphocyte and macrophage inducing cytokines) levels [327]. These cytokines have 

also been shown to be important in the differential susceptibility to Marek’s Disease 

Virus [330].  

The current study looked at the fold change in the proinflammatory cytokine IL-6 

and the proinflammatory chemokine CXCLi2. There were no significant differences 

in fold change between APEC and avian faecal isolates. This is most likely because 

of the non-specific responses induced by macrophages. Some pathogens actively 

dampen proinflammatory responses to remain undetected by the host [327]. My work 

suggests that this panel of APEC, failed to dampen proinflammatory responses and 

therefore this is not a pathogenic mechanism used by these isolates. The availability 

of the chicken genome continues to be a valuable tool in improving our 

understanding of the chicken immune system, an absolute paramount in allowing 

improvements in poultry health and welfare and subsequently food safety, security 

and improved financial return [235]. 

Some pathogens have evolved mechanisms to avoid clearance by phagocytic cells. 

Mutations in the Salmonella pathogenicity island (SPI-2) type 3 secretion system 

reduce the ability of these bacteria to resist killing by macrophages [260].  
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Mutational and gene knock out studies have aided the identification of APEC 

colonisation factors in the respiratory system. Type 1 fimbriae bind D-mannose 

residues located in the trachea, lung and air sacs but play little role in the 

colonisation of deeper tissues [300]. Variation also occurs within different sites of 

the respiratory tract itself: P-fimbriae (expressed by the pap operon) are expressed by 

APEC in the air sac and lungs but not in the trachea [331]. Tsh has also been shown 

to contribute to colonisation of the trachea [155]. IbeA is an invasive factor involved 

in the pathogenesis of neonatal meningitis E. coli (NMEC) and APEC [159]. 

Deletion of ibeA impairs Type 1 fimbriae and reduces APEC biofilm formation [154, 

162]. The assembly of biofilms contributes to resistance against macrophages [332]. 

Additionally, large amounts of iron are required for biofilm formation and many 

APEC VAGs relate to iron acquisition (irp2, iucD, sitA) [32, 43]. Biofilm formation 

was not assessed in the current study, although a number of isolates carried genes 

that may contribute to this. Past work has shown that APEC harbouring very similar 

VAG profiles differ in their infection biology, suggesting other factors, currently 

unidentified, may contribute to pathogenesis [234].  

The K1 capsule and P-fimbriae have been negatively associated with macrophage 

interactions [243, 333]. The authors suggested that the PapG component of P-

fimbriae produces an electrostatic repulsive effect to macrophages as shown in 

human E. coli. The same authors suggest Type 1 fimbriae promote the association of 

APEC and macrophages but protect against subsequent killing. It is clear that the 

interaction between APEC and macrophages is complex and not fully understood, 

although it involves a network of factors.  
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Many Gram negative bacteria possess conserved environmental sensory systems 

allowing them to detect changes and adapt accordingly to promote survival [334, 

335]. One system associated with APEC pathogenesis is the BarA-UvrY two-

component system [336]. Functional mutations in this system in APEC O78 

(chi7122) reduced its ability to survive in HD11 macrophages and in serum. Mutant 

APEC O78 were more rapidly engulfed and digested. The authors suggested that this 

was perhaps because of reduced catalase production associated with such a mutation, 

subsequently impairing the ability of APEC to resist the oxidative burst induced by 

macrophages.  

The second part of this chapter assessed the survival of APEC and avian faecal E. 

coli in serum. This study suggests there were no significant differences in the ability 

of APEC and avian faecal E. coli to resist destruction by the complement system. 

Resistance to complement has long been associated with systemic pathogens [337, 

338]. Two complement pathways found in serum can result in the killing of APEC; 

the antibody-mediated classical pathway and the surface polysaccharide recognition 

alternative pathway [325, 326]. APEC survival in serum has been described since the 

early 1990s and a number of contributing factors have been identified including; P 

pili, O78 antigen, OmpA, TraT and Iss [171]. The iss gene encodes a 10-11KDa 

Increased serum survival (Iss) outermembrane lipoprotein [201]. Iss reportedly 

contributes to as much as a 100 fold increase in E. coli virulence [202]. High 

sequence homology between iss and the phage lambda bor gene, also involved in 

serum resistance, suggests iss evolved from a bor precursor [201]. Johnson et al. 

(2008) described the presence of 3 iss alleles associated with ColV/BM plasmids and 

at least 2 encoded on the E. coli chromosome [26, 203]. Between 38 and 82.7% of 

APEC possess iss and past studies have even focused on this gene as a potential 
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vaccine target [182, 204]. Not all research concurs with the importance of iss [200, 

205]. In the current study, despite differences in VAG carriage (2 APEC possessed 

iss), there were no significant differences in serum survival. Furthermore, survival  of 

the APEC isolated from the field was similar to that of the reference strain O78. 

Perhaps Iss plays a subtle role in virulence and is associated with a larger 

pathogenicity entity possibly being required for complete virulence. 

Other proteins have been associated with APEC serum resistance, including TraT, 

another outer membrane protein [88, 202]. TraT inhibits complement by preventing 

the deposition of C3 and the formation of the C5b6 complex [206, 207]. TraT has 

also been associated with Enteroaggregative E. coli (EAEC) pathogenesis [208]. It is 

unknown whether this panel of E. coli encoded TraT.  

Due to the increased levels of iron found in blood, bacteria must tightly regulate its 

uptake, as too much is toxic. Factors involved in such regulation (AraC-like regulator 

and YbtA) are increasingly expressed when in serum and deletion of these proteins 

reduces APEC survival [192].  

Overall, no definitive differences were seen between APEC and avian faecal strains, 

potentially relating back to the possible opportunistic nature of APEC described first 

in Chapter 3 following the identification of diverse extraintestinal E. coli in broiler 

chickens [283]. It appears other contributing factors, including the state of the host, 

may be important and future work will need to focus on the broiler chicken 

specifically.   
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7.1 General Discussion 

The primary objective of the investigation was to provide insight into the 

epidemiology of avian pathogenic Escherichia coli (APEC) on UK commercial 

broiler chicken farms. Knowledge about the epidemiology of APEC in broiler 

chickens is scarce, previous literature has largely focused on other production birds 

including layer hens and turkeys [85, 110, 123]. Particularly, little is known about the 

epidemiology and population biology of APEC burdening UK broiler production [85, 

172, 339, 340].  

The current investigation has contributed to our understanding of extraintestinal E. 

coli and the risk of infection, with the simultaneous identification and 

characterisation of potentially pathogenic E. coli (pAPEC) residing in the avian 

gastrointestinal tract (GIT) and extraintestinal E. coli from diseased broilers. This 

was achieved by screening 3360 avian faecal E. coli (952 of which were virulotyped) 

and the virulotyping of 324 extraintestinal E. coli. In the current investigation, 

pAPEC were defined as faecal E. coli harbouring ≥ 5 APEC virulence-associated 

genes (VAGs) (genes which aid APEC dissemination and systemic survival). The 

avian GIT has previously been identified as an APEC reservoir [31]. The avian GIT 

provides both a stable environment and the opportunity for APEC to disseminate into 

the external environment through faecal shedding. Over 106 E. coli can reside on 

poultry house dust particles, providing ample opportunity for the inhalation of APEC 

contaminated dust [127, 128]. Furthermore, as the digestive tract and the 

reproductive tract of poultry meet in the cloaca, another potential opportunity for E. 

coli to disseminate extraintestinally is by migration up the reproductive tract.  
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Chapter 3 included the longitudinal sampling of faecal E. coli populations. This 

offered a valuable snap shot of the changing intestinal E. coli population as well as 

the prevalence of pAPEC colonising the gut. Results obtained here suggest that as 

birds age the prevalence of pAPEC declines and the population diversity bottlenecks; 

with pAPEC accounting for almost 25% of the screened population in day-old 

chicks, compared to only 1% in 5 week-old birds. E. coli is a rapid coloniser of the 

neonatal gut, with such bacteria likely to originate from breeding flocks, the hatchery 

and human handling during transportation [12, 135, 264, 265, 341, 342]. The 

carriage of VAGs among intestinal colonisers has proven advantageous when 

competing with other members of the microbiota or within the hosts’ external 

environment [274-276].  

The findings from the first study prompted the investigation of extraintestinal E. coli 

related disease in chicks. Similar studies on Italian (broiler chicken) and Danish 

(layer hen) poultry farms confirmed the presence of extraintestinal disease at this 

early stage, often manifesting as omphilitis and yolk sac infections [50, 51, 123]. 

Furthermore, infected breeders may be a potential source for infection as well as a 

source for pAPEC colonising the chick GIT [30, 134]. The investigation undertaken 

in Chapter 4 supports that of others and suggests a proportion of early flock 

mortalities are the result of extraintestinal E. coli infections, with the isolation of 

extraintestinal E. coli from 70% of chicks subject to post mortem. This study did not 

look at alternative contributors to early mortalities, but work by Olsen et al (2012), 

among others, found dehydration, kidney related disease (nephropathy and visceral 

gout) and other infectious agents such as Enterococcus faecalis and E. hirae to be 

responsible for early mortalities (although E. coli infections were the primary cause) 

[133, 343].  



Chapter seven  Concluding discussion  
 

 165 

Newly hatched chicks and breeders could be valuable targets in preventative 

therapies aimed at inhibiting or minimising pAPEC colonisation. The introduction of 

beneficial bacteria including Bacillus and Lactobacillus species to enhance growth 

performance and feed conversion efficiencies while reducing the APEC burden and 

strengthening the intestinal integrity in broiler chickens has recently attracted interest 

[295, 344]. This requires further investigation based on exisiting conflicting results 

likely to be due to differences in host status and differences in the avian microbiota 

between studies [295, 296]. 

A key finding in the current investigation is the high population diversity of 

extraintestinal E. coli isolated from diseased birds, which provides new insights into 

the infection biology of APEC related disease. Extraintestinal pathogenic E. coli 

(ExPEC) are a group of pathogenic variants capable of causing extraintestinal 

disease. Research suggests ExPEC strains cannot be discriminated from non- ExPEC 

bacteria using molecular epidemiological methods [345]. Much of the research focus 

has been on identifying the accessory genome (VAGs) promoting pathogenic status 

[74, 85, 89, 96, 268]. The identification of diverse lineages among APEC suggests 

that multiple lineages may give rise to APEC through the acquisition of VAGs, 

ultimately providing the machinery required to cause systemic infection [78, 269]. 

The availability of molecular techniques such as multi-locus sequence typing 

(MLST) has allowed for the identification of several sequence types (STs)/ clonal 

complexes (CC) associated with APEC including ST10, 23, 95 and 117 complexes 

[89, 96, 97]. Serotyping has identified O1, O2 and O78 as APEC associated 

serotypes, although these 3 groups represent only ~50% of APEC [29, 32], and take 

little account of genetic variation  or potential for virulence within a serotype.  
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Although this investigation reports the high overall diversity among extraintestinal E. 

coli, findings, to an extent, concur with those from previous work, as a new ST (ST-

2999) representing 22% of the extraintestinal E. coli analysed and multiple ST-117 

isolates were identified. All of these isolates carried more than 5 VAGs. ST-2999 is a 

single locus variant of ST-117, an ST previously associated with human disease and 

chicken meat at retail [98, 99]. There remains an underlying concern for zoonotic 

disease here. This concern is elevated with the association of APEC with ExPEC 

variants including uropathogenic E. coli (UPEC), the primary cause of human 

urinary tract infections [89, 141]. As emphasised, the wider picture suggests the 

extraintestinal population diversity is high with overall little correlation between 

clonality or pulsotypes and VAG carriage.  The identification of multiple strains, as 

opposed to a single clone in one bird, perhaps suggests infection may be 

opportunistic [32]. Since the undertaking of this investigation a study was published 

suggesting most E. coli found in human urinary infections are capable of 

bacteraemia, a similar scenario to the one described here [125].  

Furthermore, the inability to determine an APEC pathotype is a major limiting factor 

in disease control on commercial poultry farms. This work found no significant 

correlation between VAG carriage and clonality. Sixty-three different VAG profiles 

amongst 324 extraintestinal E. coli from broilers aged 2 weeks and over were 

identified. A similar level of diversity was seen during the early mortality study of 

Chapter 4 where 30 VAG profiles were observed amongst 157 E. coli. Some studies 

have shown that virulence plasmids and PAIs, particularly colicin plasmids, 

contribute to APEC pathogenesis and are relatively abundant among these bacteria 

[217, 218, 224, 230, 231]. Linkages and co-inheritance of known VAGs have also 

been described. For example, iss, tsh and cvi have all been found on an APEC 
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associated ColV plasmid [26]. This investigation failed to find similar linkages and 

interestingly almost 18% of systemic isolates carried none of the 10 VAGs used in 

this investigation, but this list is not exhaustive. At the time of the study, constraints 

in finance and labour, as well as the large scale screening undertaken, prevented 

further VAG analysis. 

Another hypothesis suggests there may be key host factors contributing to the 

susceptibility of birds to extraintestinal disease [56, 57]. The modern broiler chicken 

is far removed from both laying hens and traditional chicken breeds; the result of 

selective breeding for certain characteristics including high feed conversion ratio, 

rapid weight gain and high carcass conformity, potentially negatively selected 

against key host defence systems (such as innate immunity) [26, 56, 78, 89]. The 

host genetic background may be an important contributing factor in disease outcome, 

APEC pathogenesis and opportunistic microbial behaviour. Past work comparing 

APEC-related flock mortalities of different broiler genotypes suggests that rapid 

growth reduces broiler ‘viability’ [56, 57]. It is difficult to comment further, as 

broiler susceptibility was not the focus of this investigation.  

It is impossible to truly simulate host-microbe dynamics in an in vitro environment, 

but such studies are valuable tools in elucidating potentially pathogenic and non-

pathogenic bacteria by ultimately removing the host factor. Furthermore, in vitro 

analysis aims at reducing the use of animals in research (the 3 R’s).  

The identification of genetically diverse extraintestinal E. coli led the investigation to 

compare certain traits between extraintestinal and avian faecal E. coli. One 

hypothesis is extraintestinal E. coli, despite their diversity, all harbour mechanisms 

for overcoming components of the avian immune system while commensal E. coli do 
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not. Chapter 5 and 6 focused on a series of in vitro experiments addressing this. 

There were no significant differences between extraintestinal (carrying > 5 VAGS) 

and avian faecal E. coli (carrying 0 VAGs) to; persist in avian macrophages, elicit an 

innate inflammatory cytokine and chemokine response in macrophages, or resist the 

bactericidal effects of complement found in serum. Key to these experiments was the 

use of E. coli isolated from UK poultry farms in Chapter 3 and 4.  

APEC survival in serum has been described since the early 1990s and a number of 

virulence factors have been identified to contribute; pap operon, O78 antigen, 

OmpA, TraT and Iss [171]. Li et al (2011) reported transcriptome data from APEC 

O1 grown in chicken serum (the study did not state whether this was from broilers or 

layer hens), revealing the occurrence of adaptive responses regulated by genes 

encoded on virulence plasmids and pathogenicity islands to subsequently aid survival 

and growth in the presence of serum [192]. One criticism of this study was the lack 

of comparison to a non-pathogenic control bacterium. In the current investigation, 

not only did some avian faecal E. coli resist the bactericidal effects of complement in 

serum, but in the case of E. coli 571, they appeared capable of replicating, similar to 

that described by Li et al (2011) for APEC O1 [192]. Interestingly, as with the 

current investigation, not all research concurs with the importance of iss, suggesting 

it only plays a subtle role in virulence [200, 205]. It may, however, be the case that 

minimal genes are required for septicaemia and most E. coli are capable of causing 

this, as has recently been described for human urosepsis [125]. 

Other work suggests that APEC are capable of residing and potentially replicating in 

avian macrophages in vivo [196]. Electron microscopy of avian air sacs 24 and 48 

hours post APEC infection revealed an average of 18 and 29 intracellular colony 
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forming units per macrophage respectively, while virulence was correlated with 

macrophage resistance [196]. This did not appear to be the case for the isolates used 

in the current investigation.  

A limitation to this study was the screening for only 10 VAGs. It is unknown 

whether the E. coli carried OmpA, TraT, type 1 Fimbriae, iron regulators (AraC-like 

regulator and YbtA) and the BarA-UvrY two-component system, all of which have 

been related to either APEC survival in sera or persistence in macrophages [26, 171, 

192, 202, 207, 243, 336]. Since this work, further mPCRs reporting apparent 

accurate minimal markers for APEC detection have been published, although in the 

defence of this study these PCRs do not target the above VAGs. It would be of 

interest to know the profiles of the isolates collected during this investigation [132].  

The results from the in vitro studies support the hypothesis developed in the early 

stages of the investigation; extraintestinal E. coli infections in broiler chickens may 

be the result of competent opportunists and the insignificant differences seen during 

the in vitro experiments are the result of avian adapted E. coli (with the absence of 

truly pathogenic E. coli).  

Some ExPEC subtypes are associated with non-phagocytic invasive behaviour 

including NMEC and UPEC [303, 304]. Some studies show APEC possess similar 

invasive potential, although this was not confirmed in this study, which compared a 

panel of 10 pAPEC isolates using the human Caco-2 cell line [305]. Such invasion 

would allow pAPEC to transverse the intestinal tract in order to disseminate. 

Alternatively APEC may migrate up the reproductive tract and invade the lining 

epithelia in order to disseminate. Conflicting results between the current study and 

that of Matter et al (2011) could be due to the genetic and phenotypic diversity of 
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APEC. Furthermore, there are limitations when using in vitro analysis that eliminates 

physiological stress, inflammatory markers and the microbial population found in the 

avian gut. The availability of a reliable immortal chicken intestinal cell line would be 

useful. 

This work highlights the complex relationship between the modern broiler chicken 

(as seen with the field studies) and the true pathogenic mechanisms of APEC (as 

attempted to be shown in vitro). Previous studies have used criteria such as virulence 

in day-old chicks, specific-pathogen free birds, or the intra-air sac inoculation of 

108/109 APEC to assess virulence [196, 223, 234]. Such criteria have resulted in 

conflicting results. For example, Horn et al (2012) found the virulence of UEL17 to 

be far less severe in 5 week-old chickens than was previously described by Vidotto et 

al (1990) [223, 234]. Host-microbial interactions are highly complex and caution 

must be taken when classifying “pathogens”. As shown in the current investigation 

and as largely expected, faecal E. coli are capable at eliciting similar pro-

inflammatory responses as ones deemed pathogenic based on VAG carriage and are 

therefore likely to elicit similar damage in a chicken infection model [234].  
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7.2  Future work 

This study provides the first insight into the epidemiology and population biology of 

APEC-related disease on UK broiler farms but it raises a number of questions that 

could be addressed by further research.  

7.2.1 Field studies 

• The farm contribution to VAG profile diversity obtained during the 

longitudinal sampling phase was interesting and it would be of interest to 

sample more farms in a similar manner, possibly considering different broiler 

genotypes and disease susceptibility. Furthermore, the rapid succession of the 

avian microbiota during bird development prevented the current investigation 

from recording the dynamics of the intestinal E. coli carriage, thus more 

sampling time points would be valuable.   

• Following the identification of a high level of pAPEC in day old chicks and 

the contribution of extraintestinal E. coli to early mortalities, it would be of 

interest to assess the population biology of E. coli in both the hatchery 

environment and in broiler breeders. Previous work in Denmark reported a 

significant association between flock performance (measured partly by flock 

mortalities), the hatchery and breeder age [273]. Can the same be said for the 

UK production chain? It may be that certain breeder flocks or hatcheries 

harbour more pAPEC, which pose an increased risk to the performance of 

broiler flocks; a problem industry continue to face. Such information would 

be highly sensitive to the poultry industry and engaging industry in such 

studies would be challenging. 
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7.2.2 In the laboratory 

This was the first investigation to simultaneously assess the avian faecal and 

extraintestinal E. coli populations in a longitudinally manner, thus a valuable culture 

collection was formed.  

• A limitation to the current investigation was the virulotyping of E. coli based 

on the presence of only 10 VAGs. The availability of other mPCR schemes 

would allow for the further characterisation of the E. coli culture collection 

collected during this investigation [132, 279].  

• To date, a limited number of APEC have been analysed by whole genome 

sequencing, existing isolates include APEC O1, chi 7122 and IMT2125 [78, 

89]. The end of the current investigation saw the submission of 103 avian 

faecal, pAPEC and APEC (extraintestinal E. coli with > 5 VAGs) submitted 

for whole genome sequencing. It would be valuable to compare the genome 

sequences of such a population to one another and to the existing APEC 

genomes in an attempt to identify genetic markers associated with 

extraintestinal status among E. coli in UK broiler flocks. Whole genome 

sequencing is becoming increasingly popular as the cost continues to 

decrease and such a technique offers a wealth of information. However, 

caution must be taken, as with techniques such as PFGE and MLVA, the high 

resolution produced can in itself be problematic when deciphering the 

relatedness of micro-organisms.   

• The broiler chicken has undergone substantial commercial genetic selection, 

and is far removed from traditional chicken breeds, reaching slaughter weight 

in approximately 5 weeks and this has been related to disease susceptibility 
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[56]. Furthermore, conflicting results relating to the virulence of APEC 

highlight errors in the current methodologies used to assess virulence 

(virulence in day old chicks, the use of SPF chickens and high inoculation 

doses). It would be valuable to compare the outcome of both avian faecal, 

pAPEC and extraintestinal E. coli in vivo infections using today’s commercial 

broiler chickens. This would allow clarification of the results obtained from 

the in vitro studies performed in the current work, which found no significant 

difference in avian faecal and pathogenic E. coli infections.  

• Focus on the use of probiotics to manipulate the intestinal microbiota of 

chicks or breeders could prove highly beneficial in reducing the pAPEC 

reservoir.  

 

 

 

 

 

 

 

 



Chapter seven  Concluding discussion  
 

 174 

7.3 Conclusions 

 From the results collected in this investigation I extrapolate that extraintestinal E. 

coli pose a significant burden on the UK poultry industry. The population structure 

of extraintestinal E. coli has been shown to be so diverse that an APEC pathotype 

may not exist, a similar scenario to that of the ill-defined EAEC pathotype which 

currently lacks a strict pathotype and discriminating traits [126].  

APEC pathogenesis remains to be determined and disease mechanisms are not 

simplistic. The entire broiler production chain merits investigation, including breeder 

flocks and hatcheries to bring about disease management; the identification of 

pAPEC in day-old chicks and the contribution of extraintestinal E. coli in early 

mortalities confirm this. The broiler chicken should also be considered on its own 

principles.  

Overall, although some E. coli appear to fit an APEC pathotype, they reside within a 

large and highly diverse spectrum, thus the concept of a definitive APEC pathotype 

in UK broiler chickens looks unlikely.   
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Appendix I 

(Chapter 3 published manuscript)  

 

Kemmett K, Humphrey T, Rushton S, Close A, Wigley P, et al. 

(2013) A Longitudinal Study Simultaneously Exploring the Carriage 

of APEC Virulence Associated Genes and the Molecular 

Epidemiology of Faecal and Systemic E. coli in Commercial Broiler 

Chickens.PLoS ONE 8(6): e67749. doi:10.1371/journal.pone.0067749 

 

 

 

 

 

 

 

 

 

 



Chapter eight  Appendices  
 

 177 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Chapter eight  Appendices  
 

 178 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Chapter eight  Appendices  
 

 179 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Chapter eight  Appendices  
 

 180 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Chapter eight  Appendices  
 

 181 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Chapter eight  Appendices  
 

 182 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Chapter eight  Appendices  
 

 183 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Chapter eight  Appendices  
 

 184 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Chapter eight  Appendices  
 

 185 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Chapter eight  Appendices  
 

 186 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Chapter eight  Appendices  
 

 187 

 

 

Appendix II  

(Chapter 3 genetic analysis material) 
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Week 0 (day of placement) faecal E. coli macro-restriction pulsed field gel 

electrophoresis dendrogram   

 

 

 

 

 

 

 

 

 

 

 

 

(tolerance 5%) (minimum height >0.0%, minimum surface >0.0%)(0.0-100% coefficient). A 

dendrogram showing the relatedness and strain diversity amongst faecal E. coli collected 

from chicks at placement harbouring APEC VAG using BioNumerics software by 

unweighted pair group method with Arithmetic mean. 
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Multi-locus sequence typing (MLST) spreadsheet for systemic and faecal E. coli  

    Allele   
Source No.VAGs adk fumC gyrB icd mdh purA recA ST 
Faeces >5 232 11 4 8 92 8 2 3010 
Faeces >5 76 96 19 89 17 1 10 352 
Faeces >5 111 11 5 1 7 8 2 2978 
Faeces >5 76 96 19 89 17 1 10 352 
Faeces >5 232 11 4 323 20 8 2 2984 
Faeces >5 187 96 19 323 92 8 2 2985 
Faeces >5 76 96 19 89 17 1 10 352 
Faeces >5 179 11 22 1 20 89 205 2986 

Systemic  >5 232 11 278 55 8 8 49 2998 
Systemic  >5 20 45 41 43 5 32 221 2999 
Systemic  >5 57 336 230 43 7 8 2 3000 
Systemic  >5 20 45 41 43 5 32 2 117 
Systemic  >5 20 45 41 43 5 32 221 2999 
Systemic >5 20 45 41 43 5 32 221 2999 
Systemic  >5 20 45 41 43 5 32 221 2999 
Systemic  >5 20 45 41 43 5 32 2 117 
Systemic  >5 20 45 41 43 5 32 2 117 
Systemic >5 6 11 5 8 8 8 2 48 
Systemic >5 10 11 4 8 8 8 170 3004 
Faeces <5 76 96 12 339 20 211 2 2979 
Faeces <5 179 96 22 8 8 8 10 2980 
Faeces <5 76 82 12 89 17 1 10 2981 
Faeces <5 56 4 116 316 20 12 173 2982 
Faeces <5 6 4 12 316 20 12 7 2983 
Faeces <5 10 11 230 238 8 8 173 2987 
Faeces <5 6 7 5 238 8 18 2 2988 
Faeces <5 200 11 4 278 12 8 2 2989 

Systemic <5 20 4 230 83 8 8 6 3001 
Systemic <5 20 45 230 8 8 8 6 3002 
Systemic <5 10 11 4 8 8 8 170 3004 
Systemic <5 34 36 39 87 67 16 39 3005 
Systemic <5 10 11 4 8 92 8 2 3006 
Systemic <5 10 11 4 8 8 8 2 10 
Systemic <5 6 11 4 1 8 8 144 3009 
Faeces 0 232 7 4 278 8 8 2 2990 
Faeces 0 232 11 4 278 8 8 2 2991 
Faeces 0 6 282 230 238 8 8 173 2992 
Faeces 0 232 11 4 278 8 250 2 2993 
Faeces 0 10 11 4 278 8 251 2 2994 
Faeces 0 272 282 230 238 8 1 173 2995 
Faeces 0 179 282 4 238 8 8 144 2996 
Faeces 0 23 282 230 274 8 8 173 2997 

Systemic 0 6 45 230 8 8 8 6 3003 
Systemic 0 10 11 4 8 8 8 170 3004 
Systemic 0 10 11 4 8 8 8 170 3004 
Systemic 0 232 282 230 8 8 8 2 3007 
Systemic 0 84 4 5 8 8 8 6 3008 
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Results are presented as the percentage survival of the original inoculum. Error bars 

represent the standard deviation from the three repeats. There were no significant 

differences between APEC and avian faecal E. coli (p>0.05). 
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