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Abstract

This thesis studies the computational complexity of approximately evaluating partition
functions. For various classes of partition functions, we investigate whether there is an
FPRAS: a fully polynomial randomised approximation scheme. In many of these settings
we also study “expressibility”, a simple notion of defining a constraint by combining other
constraints, and we show that the results cannot be extended by expressibility reductions
alone. The main contributions are:

• We show that there is no FPRAS for evaluating∑
independent sets I

312|I|

on planar graphs, unless RP = NP.

• We generalise an argument of Jerrum and Sinclair to give FPRASes for a large
class of degree-two Boolean #CSPs.

• We initiate the classification of degree-two Boolean #CSPs where the constraint
language consists of a single arity 3 relation.

• We show that the complexity of approximately counting downsets in directed
acyclic graphs is not affected by restricting to graphs of maximum degree three.

• We classify the complexity of degree-two #CSPs with Boolean relations and weights
on variables.

• We classify the complexity of the problem #CSP(F) for arbitrary finite domains
when enough non-negative-valued arity 1 functions are in the constraint language.

• We show that not all log-supermodular functions can be expressed by binary log-
supermodular functions in the context of #CSPs.
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Chapter 1

Introduction

1.1 Gibbs measures and partition functions

We first briefly discuss how the problems considered in this thesis can be seen as a
generalisation of computational problems arising from statistical physics. The book [75]
discusses this connection in more detail.

Iron behaves as a magnet below a certain temperature. This is a statistical effect
of interactions between particles, and the Ising model is a simple model of this effect.
Given a finite graph (V,E), the Ising model Hamiltonian (with “interaction” or “coupling
constant” 1) is the function H : {−1,+1}V → R defined by H(σ) = −

∑
ij∈E σiσj . The

value H(σ) is the energy of the configuration σ. The vertices model particles, and
adjacent particles get a penalty for being in opposite states.

A Hamiltonian can then be converted to a probability measure. For any value β > 0

and function H : Ω → R where Ω is a finite set, the Gibbs measure is given by the
probability mass function p on Ω defined by p(σ) = 1

Z e
−βH(σ). Here Z is a normalising

constant
∑

σ∈Ω e
−βH(σ).

Gibbs measures are important for various related reasons. Most directly, they model
the behaviour of a physical system in a heat bath - see [68]. Here the value of β is inversely
proportional to temperature, and the Ising model on suitable graphs displays ferromag-
netism below a certain temperature [75]. Less directly, p is the unique maximiser of
the entropy

∑
σ∈Ω−p(σ) log p(σ) subject to a given mean energy H =

∑
σ∈Ω p(σ)H(σ);

the value of β depends on H. According to the principle of maximum entropy (again,
see [68]), the Gibbs measure is the correct guess for the distribution of a system with a
specified mean energy.

The normalising constant Z is called the partition function. As we will mention in
Section 1.5.2, the computational problem of computing Z is often related to the problem
of approximately sampling from the Gibbs measure. The behaviour of Z also determines
thermodynamic quantities such as H = −∂Z

∂β .
For the problems considered in this thesis, the important features of the Ising model

are that the configuration σ is a vector of local configurations in some finite domain, and
that the energy is a sum of energies with a simple form. We will nearly always work with

1
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the weights exp(−βH(σ)) rather than energies H(σ). This eliminates β, simplifying the
description of computational problems, and also allows zero weights without having to
talk about infinite energies. So for our purposes, a partition function is an expression of
the form ∑

σ : V→D

∏
k

Fk(σ).

For example, this expression specialises to the Ising model partition function described
above, as follows: set D = {−1, 1}, take the product to run over all edges k = ij, and
set Fij(σ) = e−βσiσj .

1.2 Computational complexity

We can consider the partition function for the Ising model as a computational problem
f : Σ∗ → R≥0, taking a string encoding a graph to the partition function of the Ising
model on that graph (fixing β > 0, for simplicity). Jerrum and Sinclair [71] gave a
type of approximation algorithm for this problem, called a fully polynomial randomised
approximation scheme (FPRAS).

A randomised approximation scheme for f : Σ∗ → R≥0 is a randomised algo-
rithm that when given an input w and error parameter ε > 0, outputs a random value q
satisfying

Pr(e−εf(w) ≤ q ≤ eεf(w)) ≥ 3

4
.

A randomised approximation scheme is a fully polynomial randomised approxima-
tion scheme (FPRAS) if it runs in time polynomial in ε−1 and the length |w| of w.
To represent the error parameter and outputs, ε−1 can be specified as a positive integer
in binary, and the output can be specified as a ratio of binary integers.

For other problems, such as the anti-ferromagnetic Ising model, it is known that there
is an FPRAS if and only if the complexity classes RP and NP are equal. A goal of this
thesis is to classify which problems have an FPRAS under various assumptions.

The notion of an FPRAS is quite robust. The number 3/4 can be amplified to 1− δ
using O(log δ−1) trials and taking the median [73, Lemma 6.1]. For typical problems
the dependence on ε is also not important because partition functions are multiplicative:
taking k disjoint copies of the input raises the partition function to the power of k, and
given q satisfying e−εZk ≤ q ≤ eεZk we know q1/k satisfies e−ε/kZ ≤ q1/k ≤ eε/kZ.
However, as we discuss in Chapter 2, this argument fails for logarithms of partition
functions.

Following [46], we will study computational problems by trying to find approximation-
preserving reductions (AP-reductions) between them. The justification for studying these
reductions is that if there is an AP-reduction from f to g, and g has an FPRAS, then f
also has an FPRAS. The following definition is a modest generalisation of the definition
given in [46], which was restricted to problems in #P.
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Let f, g : Σ∗ → R≥0. An AP-reduction A from f to g is a probabilistic oracle
Turing machine 1 satisfying the following requirements. (i) A takes inputs (w, ε) where
w ∈ Σ∗ and ε > 0. The run-time of A is polynomial in |w| and ε−1 and the bit-size of the
values returned by the oracle (this avoids requiring the oracle to give concise responses).
(ii) The oracle calls made by A are of the form (v, δ), where v is an instance of g and
δ > 0 is an error parameter, such that |v| and δ−1 are bounded by a polynomial in |w|
and ε−1 (depending only on A). (iii) If the oracle’s outputs meet the specification of a
randomised approximation scheme for g, then A is a randomised approximation scheme
for f .

If there is an AP-reduction from f to g we write f ≤AP g. We will say that f is
AP-equivalent to g, written f =AP g, whenever f ≤AP g and g ≤AP f . (In [46] this
relation is called AP-interreducibility.)

When discussing FPRASes for a problem, it makes sense to also discuss exact evalua-
tion. For exact evaluation, the challenge is to classify each problem as either being in FP

or being #P-hard. For example, [71] showed that a version of the problem of evaluating
the Ising partition function is #P-hard.

The notion of #P-hardness was introduced in [97]. In this thesis, FP means the
set of functions that can be computed by a polynomial-time algorithm. #P is the set
of functions g : Σ∗ → N such that there is a non-deterministic polynomial-time Turing
machine that has exactly g(w) accepting paths when given an input w. A problem f is
#P-hard if for each g ∈ #P there is a polynomial-time Turing reduction from g to f .
A problem is #P-complete if it is in #P and is #P-hard. Apart from in Chapter 4, the
problems we consider usually take non-integer values, so are not in #P.

1.2.1 #BIS, #PM, #SAT

Our results will often be stated in terms of AP-reductions to or from one of the following
problems.

Name. #BIS

Instance. A bipartite graph G.
Output. The number of independent sets in G.

Name. #PM

Instance. A graph G.
Output. The number of perfect matchings in G. (A perfect matching of a graph is a set

M of edges, such that every vertex is incident to exactly one edge in M .)

Name. #SAT

Instance. A Boolean formula ϕ in conjunctive normal form.
Output. The number of satisfying assignments of ϕ.

1A probabilistic oracle Turing machine (POTM) is a randomised algorithm that can make oracle
calls. There is some freedom in the type of oracles allowed; for concreteness we can use restricted RAS
oracles [8] but allow rational outputs.
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All these problems are #P-complete: see [85] for #BIS, and [97] for #PM and #SAT.
It is known that #SAT has an FPRAS if and only if RP = NP: see for example the
remarks in [46] and [69]. There are easy AP-reductions #BIS ≤AP #SAT and #PM ≤AP

#SAT, and no other reduction between these problems is known. However, there are
many reductions involving other problems.

Example 1.1. A downset in a partially ordered set (P,�) is a set X ⊆ P such that for all
x, y ∈ P with x ≤ y and y ∈ X, we have x ∈ X. #Downsets is the problem of counting
downsets in a partially ordered set, specified explicitly by a set P and a set (�) ⊆ P ×P .
Then #Downsets =AP #BIS [46]. �

Example 1.2. In [59] it is shown that #PM is AP-equivalent to computing the partition
function of the Ising model with negative weights in a certain sense: for any fixed rational
λ ∈ (−1, 0), #PM is AP-equivalent to the problem of computing∑

σ : V→{0,1}

∏
ij∈E

λ|σ(i)−σ(j)|

given a graph (V,E) as input. (This sum happens to always take non-negative values.) �

1.3 Counting constraint satisfaction problems

A #CSP (counting constraint satisfaction problem) is the computational problem of
evaluating certain partition functions. For any finite set D, a weight-function on D is
a function f : Dk → R≥0 for some arity k ≥ 0. A (weighted) constraint language F
is a set of weight-functions on a finite domain D. A constraint over F on a finite set
V is a pair 〈(v1, . . . , vk), F 〉 where v1, . . . , vk ∈ V and F is an arity-k function in F . For
any finite constraint language F , define a problem

Name. #CSP(F)

Instance. A set of variables V and a list C of constraints over F on V .
Output. The partition function

ZV,C =
∑

σ : V→D
wtV,C(σ)

where

wtV,C(σ) =
∏

〈(v1,...,vk),F 〉∈C

F (σ(v1), . . . , σ(vk)).

To neaten the notation we will drop curly braces and use commas to denote unions of
constraint languages, so #CSP(F ∪ {F1, . . . , Fk}) can be written #CSP(F , F1, . . . , Fk).
Note that we only define F for finite constraint languages2, so there is no ambiguity
about how elements of F are represented as input.

2We do not use the convention that the phrase “constraint language” means a finite set.
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To capture the problem of computing the partition function of the Ising model on
multigraphs (for a fixed β > 0), we take D = {−1, 1} and let F = {F} where F : D2 → R
is defined by F (x, y) = e−βxy. Given a multigraph (V,E), we can construct a #CSP(F)

instance with variables V and a constraint 〈(i, j), F 〉 for each edge ij. Conversely, given
a #CSP(F) instance (V,C) we can construct a multigraph with vertices V and an edge
ij for each 〈(i, j), F 〉. In both cases the partition function of the Ising model matches
the partition function of the #CSP.

An important special case is when the constraint language consists of relations
R ⊆ Dk, which we can consider as functions Dk → {0, 1} by taking the characteris-
tic function. A set of relations is called an unweighted constraint language. For
finite unweighted constraint languages Γ, the problem #CSP(Γ) can be described as
the problem of counting the number of configurations σ : V → D that are satisfying
assignments, that is:

(σ(v1), . . . , σ(vk)) ∈ R for all 〈(v1, . . . , vk), R〉 ∈ C.

For example, letting NAND = {(0, 0), (0, 1), (1, 0)}, the problem #CSP(NAND) cor-
responds to counting independent sets in multigraphs, using the same translations as for
the Ising model: the satisfying assignments are the characteristic functions of indepen-
dent sets.

Apart from Chapter 6, in this thesis we will use theBoolean domainD = {0, 1}. We
will study #CSPs as defined above, but we also use #CSPs as a convenient framework for
describing computational problems. In particular we will focus on degree-two #CSPs:
the restriction of a problem of the form #CSP(F) to instances where every variable is
used at most twice. Certain constraints have the effect of breaking the degree bound;
see for example Lemma 4.17. This means that restricting the degree of instances gives a
more general class of problems, in a sense.

The restriction to read-twice #CSPs, where every variable appears exactly twice,
gives the class of Holant problems. 3 These have useful algebraic properties that allow
reductions called holographic reductions [32, 99]. Holant problems are often described
in terms of the dual constraint graph: the multigraph whose vertices are constraints and
with an edge cc′ for each variable whose two occurrences are in the constraints c and c′.
In this way Holant problems are similar to problems such as #PM, where edges can be
seen as variables, and each vertex enforces a constraint (that exactly one incident edge
is in the matching).

1.4 Expressibility

Expressibility is a limited notion of reduction between computational problems like
#CSPs. The idea is that constraints can be combined to simulate a new weight-function

3The author learnt this CSP definition of Holant problems from [101, Proposition 9.2].
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F : DU → R≥0 of the form

F (σ) =
∑
σ′

∏
〈(v1,...,vk),F 〉∈C

F (σ′(v1), . . . , σ′(vk))

where C is a list of constraints on a variable set V ⊇ U , and σ is a configuration U → D,
and the sum ranges over extensions of σ to σ′ ∈ DV .

If C only uses functions from a set F , we say F is pps-definable over F . In this case
there is an AP-reduction #CSP(F ∪ {F}) ≤AP #CSP(F) [22, Lemma 17]. This gives
a reduction, which we will call an “expressibility reduction”. Throughout this thesis we
will try to show that our results cannot be extended by a reduction of this type.

There are variants of pps-definability allowing certain limits [22]. To study degree-
two #CSPs we need a notion of expressibility with degree restrictions. In each case the
important property is that we get an expressibility reduction between relevant #CSP-like
problems.

1.5 Background

To place the results of this thesis in context, we will briefly describe relevant previous
results.

1.5.1 Spin systems

Two-state spin systems are a generalisation of the Ising model to an arbitrary vertex
function ϕ : {0, 1} → R≥0 and edge function ϕ : {0, 1}2 → R≥0 satisfying ϕ(0, 1) =

ϕ(1, 0). (These can be normalised by setting ϕ(0) = ϕ(0, 1) = 1.) The partition function
on a graph (V,E) is

Z =
∑

σ : V→{0,1}

(∏
v∈V

ϕ(σ(v))

)( ∏
uv∈E

ϕ(σ(u), σ(v))

)
.

For fixed (ϕ,ϕ) we can then study the problem of evaluating Z. There is an al-
most complete classification of the complexity of approximating the partition func-
tion of antiferromagnetic (ϕ(0, 0)ϕ(1, 1) ≤ ϕ(0, 1)ϕ(1, 0)) two-state spin systems on
general and bounded-degree graphs. We review these results in more detail in Chap-
ter 2. An important special case is that there is an FPRAS for counting indepen-
dent sets in graphs of maximum degree five due to Weitz [100] (in fact, a deterministic
FPRAS), but no FPRAS for counting independent sets in regular graphs of degree six
unless RP = NP [92]. Note that we get the number of independent sets by setting
ϕ(0) = ϕ(1) = ϕ(0, 0) = ϕ(0, 1) = ϕ(1, 0) = 1 and ϕ(1, 1) = 0.

In a different direction, the Potts model generalises the Ising model to larger sets
of states than just {−1, 1}, while the Tutte polynomial generalises the Potts model to
a two-variable polynomial. The computational complexity of evaluating these partition
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functions has been studied [59, 61, 62]. In particular Goldberg and Jerrum [62] deter-
mined the computational complexity of evaluating some points of the Tutte polynomial
on planar graphs.

1.5.2 Sampling and Markov chains

In [73] it is shown that for the class of “self-reducible” problems, counting and sampling
are related: there is an FPRAS for a problem if and only if there is an algorithm that
samples from the Gibbs distribution, to within exponentially small error.

The FPRAS for the ferromagnetic Ising model in [71] mentioned earlier uses this ap-
proach, together with a rapidly converging Markov chain for sampling. (Though because
they used a transformation called the high-temperature expansion, they did not sam-
ple from configurations σ : V → {−1, 1} but from spanning subgraphs X ⊆ E.) They
then bounded the mixing time using an analysis we will refer to as the cycle-unwinding
canonical paths argument.

Another important type of Markov chain analysis is the path coupling technique
(which we use for Theorem 5.16). There are also examples of FPRASes that do not
use Markov chain techniques: see Karp and Luby’s algorithm for #DNFSAT [74], and
Weitz’s algorithm mentioned above.

1.5.3 #CSP and Holant classifications

There have been several results on the problem #CSP(F). For exact evaluation there is
a dichotomy into FP and #P-hard even for arbitrary finite domains, even if we allow the
functions in F to take complex algebraic values [23]. We will say a bit more about the
history of exact evaluation of #CSPs in Chapter 6, where we study the approximation
evaluation of #CSPs with no extra restrictions.

For approximate evaluation, there is a trichotomy for all (finite) unweighted con-
straint languages Γ on the Boolean domain: the problem #CSP(Γ) can either be eval-
uated exactly in polynomial time, or is AP-equivalent to #BIS, or is AP-equivalent to
#SAT [48]. A similar trichotomy was given for degree-six #CSPs in [51] under the
assumption {(0)}, {(1)} ∈ Γ, with partial results for degree-three #CSPs.

There are several results on exact and approximate evaluation of Holant problems.
Holant problems are often studied allowing complex-valued weight-functions (called sig-
natures in this context).

There is a dichotomy for the complexity of exactly evaluating Holant∗(F), which is
Holant(F) where all arity 1 complex-weighted constraints are allowed [27]. (Similarly
to the conservative CSPs mentioned below.) Other work on exact evaluation of Holant
problems has focussed on symmetric functions, so F (x1, . . . , xk) only depends on x1 +

· · ·+ xk; see [31, 66] for recent results.
Yamakami [103] studied the approximation complexity of Holant∗(F ) (referring to it

as #CSP∗2) where F is in a certain set of arity 3 functions. The conclusion is that each
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problem can either be evaluated exactly in polynomial time or is #P-hard to approximate.
In the same setting there are results for higher degree bounds [101, 102].

1.5.4 Decision and optimisation

Given a set Γ of relations on a finite domain D, CSP(Γ) is the problem of recognising
which instances of #CSP(Γ) have a satisfying assignment. It is an open problem to
classify the complexity of CSP(Γ), but there is a dichotomy into polynomial-time and NP-
complete problems when |D| is three [18]. Bounded-degree Boolean CSPs were studied
by Feder [52] and Dalmau and Ford [41]. We will use Feder’s ideas in Chapter 5.

Given a set Φ of functions f : Dk → Q ∪ {+∞}, the problem VCSP(Φ) (“valued
CSP”) is the optimisation problem of minimising∑

〈(v1,...,vk),F 〉

f(σ(v1), . . . , σ(vk))

over functions σ : V → D, given a set of variables V and a list of constraints C using Φ.
This gives a generalisation of CSPs.

This is similar to a #CSP but with addition replaced by minimisation and multipli-
cation replaced by addition; a valued CSP can be thought of as the problem of finding
the configuration of maximum weight, or minimum energy. We will use this connection
in Chapter 6.

The set of functions that can be expressed by a CSP or valued CSP has a useful dual
description in terms of inequalities called weighted polymorphisms [37]. No such duality
is known to exist for #CSPs. Analogous inequalities do however turn out to be useful
for studying #CSPs in some cases — we use this connection in Chapter 6.

1.5.5 Conservative constraint languages

For both CSPs and VCSPs, the conservative case has been completely classified. In
a conservative CSP, all arity 1 relations are allowed. In a conservative valued CSP
or #CSP, all non-negative arity 1 functions are allowed. (Formalising this with finite
constraint languages requires a bit of circumlocution.)

Bulatov et al. [22] gave a classification of Boolean conservative #CSPs. An inter-
esting case is when every function F : {0, 1}n → R≥0 in the constraint language F is
log-supermodular:

F (x ∨ y)F (x ∧ y) ≥ F (x)F (y) for all x,y ∈ {0, 1}n

where x∨y and x∧y are the joint and meet respectively, defined by (x∨y)i = max(xi, yi)

and (x ∧ y)i = min(xi, yi) (1 ≤ i ≤ n).
In this case, either #CSP(F) is in FP or there is a finite set S of non-negative arity 1

functions such that #BIS ≤AP #CSP(F ∪ S) (we import this result as Proposition 5.8).
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But it is not known whether #BIS =AP #CSP(F ∪ S). It is known that any function
that can be pps-defined by log-supermodular functions is log-supermodular.

Bulatov introduced the name “conservative” and gave a dichotomy for conservative
CSPs [17]. Kolmogorov and Živný established a dichotomy for conservative valued CSPs
[77]. (Because the definitions of conservativity are different, the conservative valued
CSP dichotomy does not generalise the conservative CSP dichotomy.) We will discuss
the VCSP result more in Chapter 6.

1.6 Summary of results

This section gives a brief summary of the thesis. We will focus here on stating the most
important consequences with as few preliminaries as possible rather than giving the most
powerful or general statements. In particular, this means we do not state explicit criteria
in classifications. We will also mention only the most relevant previous work for context,
leaving a fuller discussion for the introductions to each chapter.

Approximating the partition function of planar two-state spin systems

In Chapter 2 we show there is no FPRAS for evaluating∑
independent sets I⊆V

312|I|

on planar graphs, unless RP = NP. The result extends to other two-state spin systems.
We use a “contour” argument, which is a classic argument in statistical physics but is
used here to analyse a gadget. There is relevant previous work on spin systems on not-
necessarily-planar graphs by Sly and Sun [93], and on the Tutte polynomial on planar
graphs [62], but we study the case of spin systems on planar graphs.

We also show a striking feature of these spin systems on planar graphs: there is a
polynomial-time randomised approximation scheme for the logarithm of the partition
function.

Approximating Holant problems by winding

In Chapter 3 we generalise the canonical paths cycle-unwinding argument of Jerrum and
Sinclair [71] to Holant problems using “windable” functions, and show that this gives an
FPRAS for functions that are additionally “strictly terraced”. Both of these classes are
closed under a natural notion of expressibility.

A consequence is that there is an FPRAS for the following problem.

Name. #ParityNAE

Instance. A multigraph G in which each vertex is labelled Even, Odd, or NAE
Output. The number of subsets F ⊆ E(G) such that:

• each Even vertex has an even number of incident edges in F
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• each Odd vertex has an odd number of incident edges in F

• each NAE vertex has at least one incident edge in F and at least one incident
edge in E(G) \ F

The most relevant previous work is that of Jerrum and Sinclair [71].
We then ask whether windability is the same as expressibility by “matchings circuits”,

a natural notion of expressibility for #PM, and give a positive answer for functions of
arity three.

Holant problems with arity three relations, and counting downsets

In Chapter 4 we initiate the classification of Boolean degree-two #CSPs (and Holant
problems) where the constraint language consists of a single arity three relation. We
relate many problems to #PM, #BIS and #SAT. The most relevant previous work is
the study of bounded-degree #CSPs in [51], which looked at degrees greater than two.

Even the complexity of exact evaluation does not seem to have been previously pub-
lished. We give a dichotomy in FP and #P, for degree-two #CSPs and Holant problems
with finite unweighted constraint languages using relations of arity at most three. The
proof is an application of a dichotomy for real-weighted symmetric constraints due to
Huang and Lu [67].

We also show that counting downsets in directed acyclic graphs of maximum degree
three is AP-equivalent to #BIS.

Read-twice #CSPs with variable weights

In Chapter 5 we study the complexity of degree-two #CSPs with a finite unweighted
constraint language Γ and “variable weights”, a #CSP analogue of edge weights for
perfect matchings:

Name. #CSP≥0
≤2(Γ)

Instance. A tuple (V,C,w) where:

• V is a finite set of variables.

• C is a finite set of constraints over Γ on V such that each variable v ∈ V is
used at most twice in C

• w is a function from V to Q≥0 ×Q≥0, where rationals are specified as ratios
of binary integers.

Output. The sum of
∏
v∈V w(v)x(v) over satisfying assignments x : V → {0, 1} of C,

where we index the pair w(v) from zero: w(v)x(v) denotes the first element of w(v)

when x(v) = 0, and the second element when x(v) = 1.

For example the problem #CSP≥0
≤2(PM3) with PM3 = {(0, 0, 1), (0, 1, 0), (1, 0, 0)} cor-

responds to counting perfect matchings in cubic multigraphs with non-negative rational
edge weights specified in binary (except that we allow “edges” of order one).
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The main result is that for each Γ, the problem #CSP≥0
≤2(Γ) is either in FP, or

#PM ≤AP #CSP≥0
≤2(Γ), or #BIS =AP #CSP≥0

≤2(Γ). So assuming neither #BIS nor #PM

have an FPRAS, there is no FPRAS for any problem #CSP≥0
≤2(Γ), except when there is

an exact algorithm.
Related previous results, mentioned in Section 1.5.3, are the trichotomy for degree-six

#CSPs, the dichotomy for exact evaluation of Holant∗ problems, and partial results for
approximate evaluation of Holant∗ problems.

We also give partial results for weighted constraint languages, leaving open the possi-
bility that some degree-two #CSPs with variable weights for constraint languages using
“terraced basically binary” functions could have an FPRAS even if #PM and #BIS do
not. We show that this class is closed under a natural notion of expressibility, which
shows that the classification cannot be extended by expressibility reductions.

The complexity of approximating conservative counting CSPs

In Chapter 6 we give a classification for conservative #CSPs with an arbitrary finite
domain. As mentioned previously, conservative #CSPs are awkward to formalise. So
the following description of results is slightly imprecise, with formal statements given in
Chapter 6.

We show that each problem is either in FP or admits an AP-reduction from #BIS.
We further sub-divide the #BIS-hard case, by showing that each problem either AP-
reduces to a Boolean log-supermodular #CSP, or is AP-equivalent to #SAT. Finally,
we give a full trichotomy for the arity-2 case, where each problem is either in FP, or is
AP-equivalent to #BIS, or is AP-equivalent to #SAT.

The most relevant previous works are the classification of (approximating) conserva-
tive Boolean #CSPs by Bulatov et al. [22], and the dichotomies for exact evaluation of
#CSPs which we will discuss in Chapter 6, and Kolmogorov and Živný’s classification
of conservative VCSPs [77].

LSM is not generated by binary functions

In Chapter 7 we show that binary log-supermodular functions cannot pps-define all arity
four log-supermodular functions in the setting of #CSPs. Živný, Cohen, and Jeavons
studied the expressibility of binary submodular functions in the setting of valued CSPs.
In particular they showed that binary submodular functions do not express all arity four
submodular functions in that setting.

1.7 Layout and notation

The chapters can be read independently for the most part, with a few dependencies:

• the study of arity three relations in Chapter 4 uses results from Chapter 3: the
definition of windable functions, Theorem 3.4, Theorem 3.5, and Theorem 3.6
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• the study of degree-two Boolean #CSPs with variable weights in Chapter 5 refers
to Proposition 4.4 (in the discussion) and Lemma 4.15

• Chapter 7 relies on the definition of functional clones given in Chapter 6

Except in Chapter 6, the domain D is always {0, 1}. We defined Holant problems as
read-twice #CSPs. But in Chapter 3 we use an alternate definition in terms of annotated
graphs we call circuits. This allows us to use the language of graph theory throughout
that chapter.

In Chapters 6 and 7, the input to a #CSP is specified as a pps-formula, using atomic
formulas F (v1, . . . , vk) instead of constraints 〈(v1, . . . , vk), F 〉. This is just a notational
difference, matching the conventions in [22] and [77]. (Pps-formulas are essentially the
same as the N-formulas defined in 5.2.1.)

There are some common definitions mentioned below, and each chapter uses some
additional specialised definitions.

1.7.1 Indexing

For Chapters 3 to 5, it is very useful to consider relations and weight-functions defined
using {0, 1}J instead of {0, 1}k, for finite sets J . We consider {0, 1}k and {0, 1}{1,...,k} to
be the same (here k ≥ 0).

This does not change the definition of #CSP(F): by definition, constraint languages
exclusively use standard weight-functions, that is, weight-functions defined on {0, 1}k for
some non-negative integer k. Chapter 3 also uses a special notation “{0, 1}k+J ” — see
Section 3.2. However, Chapters 6 and 7 exclusively use standard weight-functions.

If x ∈ Dn and y ∈ Dm (n,m ≥ 0) then (x,y) denotes the concatenation (x1, . . . , xn, y1, . . . , ym),
which is an element of Dn+m. However, if x ∈ DI and y ∈ DJ for some disjoint finite
sets I, J , we let (x,y) denote the unique common extension of x and y to a configuration
of I ∪ J .

The Cartesian product R × S of relations R ⊆ Dn and S ⊆ Dm (n,m ≥ 0) is
{(x,y) | x ∈ R,y ∈ S} ⊆ Dn+m. The Cartesian product of relations R ⊆ DI , S ⊆ DJ ,
when I and J are finite sets, is also defined as {(x,y) | x ∈ R,y ∈ S}, which is then a
subset of DI∪J .

1.7.2 Common definitions

We use the convention that N is the set of non-negative integers, including zero. As usual,
Z, Q, Q≥0, R, R≥0, C denote the sets of integers, rationals, non-negative rationals, reals,
non-negative reals, and complex numbers respectively.

We will always write A ⊆ B and A $ B to denote subsets and proper subsets
respectively, avoiding the contested notation ⊂. However, we will also write A ⊂ B

when it is obvious that A cannot be B, specifically when A is declared to be finite and
B is declared to be infinite. The restriction of a function σ to a set X is denoted σ|X
throughout, except in Chapter 2 where it is denoted σ(X) (so that vertical lines can be
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reserved for conditional probabilities). We will implicitly identify subsets R ⊆ S with
their characteristic function R : S → {0, 1}, but to help make the definitions clearer in
Chapter 3, we write the characteristic function in boldface.

Here are some other definitions that are useful in more than one chapter.
A copy of F : {0, 1}J → Q≥0 is a function G : {0, 1}I → Q≥0 of the form G(x) =

F (x ◦ π) for some bijection π : J → I (here x ∈ {0, 1}I , so x ◦ π ∈ {0, 1}J). In other
words, we permute the variables. For all F : {0, 1}J → Q≥0, define λF : {0, 1}J → Q≥0

by (λF )(x) = λF (x). A constant multiple of F is any function of the form λF .
Define x ⊕ y ∈ {0, 1}J by (x ⊕ y)i ≡ xi + yi (mod 2). For all x ∈ {0, 1}J define

x ∈ {0, 1}J by xi = 1− xi.
We denote the all-zeros configuration of a finite set V by 0, and the all-ones con-

figuration by 1. We give common relations a name: EQk = {0, 1} ⊆ {0, 1}k, NEQ =

{(0, 1), (1, 0)}, PIN0 = {(0)}, PIN1 = {(1)}, NAND = {(0, 0), (0, 1), (1, 0)}, OR =

{(0, 1), (1, 0), (1, 1)}, IMP = {(0, 0), (0, 1), (1, 1)}, and PM3 = {(0, 0, 1), (0, 1, 0), (1, 0, 0)}.
The pinning of a weight-function F : {0, 1}J → Q≥0 by p ∈ {0, 1}I (I ⊆ J) is the
weight-function F (p, ·) : {0, 1}J\I → Q≥0 defined by (F (p, ·))(x) = F (x,p).

For any list C of constraints, the degree degC(v) of a variable v is the number
of times it is used in total in C. Note that variables can be used multiple times in a
constraint. For example, a constraint 〈(x, y, y), R〉 contributes two to the degree of y. Let
#CSP≤d(Γ) denote the restriction of #CSP(Γ) to instances in which every variable has
degree at most d. (A more general class of problems #CSPWK (F) is defined in Chapter 5.)

IMconj is the set of relations that can be written as a conjunction of implications
(which in this context become less-than-or-equal relations) and constants. For example
the relation {x ∈ {0, 1}4 | x1 ≤ x2 ≤ x3 and x2 = 1} is in IMconj. A relation R ⊆
{0, 1}k is affine if for all x, y, z in R the configuration x ⊕ y ⊕ z ∈ {0, 1}k, defined by
(x⊕ y ⊕ z)i = xi + yi + zi (mod 2) for all 1 ≤ i ≤ k, is also in R. We denote the set of
all log-supermodular weight-functions by LSM.

For all F : {0, 1}J → Q≥0, we define F : {0, 1}J → Q≥0 by F (x) = F (x) (for all
x ∈ {0, 1}J). For all FG : {0, 1}J → Q≥0, we define FG by (FG)(x) = F (x)G(x) (for
all x ∈ {0, 1}J). In particular, FF : {0, 1}J → Q≥0 satisfies (FF )(x) = F (x)F (x). In
Chapter 7 we also denote FF by F ?.

For any matrix T ∈ R2×2 where R is Q≥0, Q, R≥0, R or C (or more generally any
semiring), and any F : {0, 1}J → R where J is a finite set, define T⊗JF : {0, 1}J → R by

(T⊗JF )(z) =
∑

y∈{0,1}J

(∏
i∈J

Tzi,yi

)
F (y) (z ∈ {0, 1}J).

Here the rows and columns of T are considered to be indexed by {0, 1}.
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1.7.3 AP-reduction compatibility

Some of the papers we cite use a different definition for AP-reductions, where an AP-
reduction may assume the oracle provides integers. For example, [48, Theorem 3] gives
(among other things) a reduction A from #BIS to #CSP(IMP). But that reduction is
not guaranteed to be an AP-reduction in our sense, because A is only proved correct
under the assumption that the oracle always provides an integer.

Throughout the thesis, we will cite reductions such as #BIS ≤AP #CSP(IMP) with-
out mentioning the difference in definitions. To justify this we need to show that oracle
calls can be adapted from providing rationals to providing integers. A similar argument
is given in the proof of [46, Theorem 3].

We are given a POTM A which satisfies all the requirements of an AP-reduction
from some function f to an integer-valued function g, under the extra assumption that
the oracle always returns an integer. We modify A in the following way to give an
AP-reduction f ≤AP g.

To simulate any oracle call (v, δ), with 0 < δ < 1/2 say, we call the real oracle with
(v, δ/16) and return a nearest integer to the result q. Denote this integer by [q], and
denote g(v) by Z. With probability 3/4 we have e−δ/32Z ≤ q ≤ eδ/32Z. There are then
two cases. If Z < 8/δ then Z(1 − e−δ/32) and Z(eδ/32 − 1) are each less than 1/2, so
Z − 1/2 < q < Z + 1/2. If Z ≥ 8/δ then q ≥ 4/δ, so e−δ/2q ≤ q − 1/2 ≤ [q] ≤ q + 1/2 ≤
eδ/2q. In either case e−δZ ≤ [q] ≤ eδZ.



Chapter 2

Approximating the partition
function of planar two-state spin
systems

(This chapter consists of [63] with a modified introduction, and with references changed
to the published version of [104].)

We consider the problem of approximating the partition function of the hard-core
model on planar graphs of degree at most 4. We show that when the activity λ is
sufficiently large, there is no fully polynomial randomised approximation scheme for
evaluating the partition function unless NP = RP. The result extends to a nearby region
of the parameter space in a more general two-state spin system with three parameters.
We also give a polynomial-time randomised approximation scheme for the logarithm of
the partition function.

2.1 Introduction

A spin system is a model of particle interaction on a graph, generalising the Ising model.
Every vertex of the graph is assigned a state, called a spin. A configuration assigns a
spin to every vertex, and the weight of the configuration is determined by interactions
of neighbouring spins.

In this chapter, we consider the following two-spin model, which applies to spin
systems on a graph G = (V,E). The model has three parameters, β, γ and λ. It
is easiest to view these as non-negative rationals for now — we will be slightly more
general later. A configuration σ : V (G) → {0, 1} is an assignment of the two spins “0”
and “1” to the vertices in V . The configuration σ has a weight wG(σ), which depends
upon β, γ and λ. Let b(σ) denote the number of edges (u, v) of G with σ(u) = σ(v) = 0,
let c(σ) be the number of edges (u, v) of G with σ(u) = σ(v) = 1 and let `(σ) be the
number of vertices u of G with σ(u) = 1. Then wG(σ) = βb(σ)γc(σ)λ`(σ), where here and
throughout the chapter we use the convention that 00 = 1. The partition function of the

15
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model is given by
Zβ,γ,λ(G) =

∑
σ:V (G)→{0,1}

wG(σ).

Two important special cases are

• the case β = 1, γ = 0, which is the hard-core model, and

• the case β = γ, which is the Ising model.

The hard-core model [5] is a model of a gas in which vertices are either occupied by a
particle (in which case they have spin 1) or unoccupied (in which case they have spin 0).
The particles cannot overlap and adjacent vertices are close together, hence γ = 0. The
Ising model is a model of ferromagnetism. In this chapter we study the hard-core model
and a region of nearby two-state spin systems.

2.1.1 Previous work

The partition function factorises in the following way when βγ = 1. We have wG(σ) =

βb(σ)−c(σ)λ`(σ) for any configuration σ, and

b(σ)− c(σ) =
∑

v:σ(v)=0

deg(v)/2−
∑

v:σ(v)=1

deg(v)/2

where deg(v) denotes the degree of a vertex v. So Zβ,γ,λ is∑
σ:V (G)→{0,1}

β
∑
v:σ(v)=0 deg(v)/2−

∑
v:σ(v)=1 deg(v)/2λ`(σ) =

∏
v∈V (G)

(βdeg(v)/2 + λβ− deg(v)/2),

which is easy to evaluate.
In other cases, the complexity of evaluation has been studied in detail. When λ = 1,

the problem of computing the partition function on planar ∆-regular graphs is called
Pl-Hol∆(a, b) in [30], where a corresponds to β and b corresponds to γ. There is a
dichotomy [30, Theorem 1]: for non-negative a, b, the problem Pl-Hol∆(a, b) can be
computed in polynomial time in the trivial cases ab = 1 and a = b = 0, and in the
case of the Ising model with no external field, a = b. In all other cases the problem is
#P-hard.

A standard transformation extends this dichotomy to arbitrary λ > 0. Consider a
configuration σ : V (G)→ {0, 1} of a planar ∆-regular graph G. Counting the number of
edges adjacent to a “1” spin in two ways, we have ∆`(σ) = 2c(σ)+(|E(G)|−b(σ)−c(σ)).
Therefore,

Zβ,γ,λ(G) = λ|E(G)|/∆Zβλ−1/∆,γλ1/∆,1(G),

which is as hard to compute as Pl-Hol∆(βλ−1/∆, γλ1/∆). Suppose β and γ are not
both 0. Unless λ = 1, we have either βλ−1/3 6= γλ1/3 or βλ−1/4 6= γλ1/4. If βγ 6= 1 then
in either case, we can conclude from above that evaluating Zβ,γ,λ(G) is #P-hard when
the input G is restricted to be a planar graph of degree at most 4.
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Since the complexity of exactly evaluating the partition function is intractable, much
effort has focussed on the difficulty of approximately evaluating the partition function
for a given set of parameters β, γ and λ.

The complexity of approximating the partition function of the hard-core model and
the Ising model in general (not necessarily planar) graphs is well-understood. The Gibbs
measure is the distribution on configurations σ : V (G)→ {0, 1} in which the probability
of configuration σ is proportional to wG(σ). This notion of Gibbs measure extends to
certain infinite graphs, for example infinite regular trees, where it may or may not be
unique. For the hard-core model, there is a critical point λc(∆) = (∆− 1)∆−1/(∆− 2)∆

such that the infinite ∆-regular tree has a unique Gibbs measure if and only if λ ≤ λc.
An important result of Weitz [100] showed that, in every graph with maximum degree
at most ∆, the correlations between spins in the hard-core model decay rapidly with
distance as long as λ ≤ λc. As a result, he gives [100, Corollary 2.8] a fully-polynomial
(deterministic) approximation scheme (FPTAS) for evaluating the hard-core partition
function on graphs of degree at most ∆ for any λ < λc. By contrast, Sly and Sun [93,
Theorem 1] (see also the earlier hardness results of Sly [92] and Galanis et al. [55]) show
that, unless NP = RP, there is no fully-polynomial randomised approximation scheme
(FPRAS) on ∆-regular graphs (for ∆ ≥ 3) for any λ > λc(∆). Thus, the difficulty of
approximation is resolved, apart from at the boundary λ = λc(∆).

We say that the two-spin model is ferromagnetic if βγ > 1 and antiferromagnetic
if βγ < 1. For the antiferromagnetic Ising model, Sinclair et al. [91, Corollary 1.2]
show that there is an FPTAS for evaluating the Ising partition function on graphs of
degree at most ∆ for any choice of parameters β and λ which is in the interior of the
uniqueness region of the ∆-ary tree. By contrast, Sly and Sun [93, Theorem 2] show
that, unless NP = RP, there is no FPRAS on ∆-regular graphs (for ∆ ≥ 3) if β and λ
are outside the uniqueness region. (So, once again, the situation is fully resolved, apart
from the boundary.) The result of Sinclair et al. [91, Corollary 1.3] extends to general
anti-ferromagnetic two-state spin systems in regular graphs, and also in a somewhat
wider class of graphs.

For general anti-ferromagnetic two-state spin systems, the best positive result that
is known is due to Li, Lu, and Yin [79]. They use a stronger notion of correlation decay
than Weitz, which enables them to obtain an FPTAS, even for graphs with unbounded
degree. They show [79, Theorem 1.2] that for any finite ∆ ≥ 3, or for ∆ = ∞, there is
an FPTAS for the partition function of the two-state spin system on graphs of maximum
degree at most ∆ if the parameters of the system are antiferromagnetic, and for every
d ≤ ∆, they lie in the interior of the uniqueness region of the infinite d-regular tree. By
contrast [79, Theorem 1.3], the results of Sly and Sun imply that, for any finite ∆ ≥ 3,
or for ∆ = ∞, unless NP = RP, there is no FPRAS for the partition function of the
two-state spin system on graphs of maximum degree at most ∆ if the parameters of the
system are antiferromagnetic, and for some d ≤ ∆, they lie outside the interior of the
uniqueness region of the infinite d-regular tree. Thus, the approximation complexity is
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resolved in the antiferromagnetic case, apart from at the boundaries of the uniqueness
regions. Note that the result of Sun and Sly was independently discovered by Galanis,
Štefankovič and Vigoda [56] for the case λ = 1.

The situation is not completely resolved in the ferromagnetic case. Building on
Jerrum and Sinclair’s FPRAS for the ferromagnetic Ising model [71], Goldberg, Jerrum
and Paterson [64] gave an FPRAS for the ferromagnetic two-spin model which applies if
β ≥ γ and λ ≤

√
β/γ (or, equivalently, if β ≤ γ and λ ≥

√
β/γ). The approximation

applies without these constraints on the parameters if the input is a regular graph.
For the hard-core model, an important issue which arises in statistical physics is

approximating the partition function for planar graphs, including regular lattices. While
there do not seem to be any other hardness results known for this problem, the complexity
of particular algorithms have been studied. For example, Randall [86] showed that a
particular MCMC algorithm provides a bad approximation on subsets of Z2, because
Glauber dynamics mixes slowly when λ ≥ 8.066. (By contrast, results of Restrepo et
al. [87] showed that the mixing time is O(n log n) when λ < 2.3883, and that Weitz’s
algorithm [100] gives a (deterministic) fully-polynomial-approximation scheme in this
case.) Recently tree decompositions of planar graphs have been used to give FPTASes
for certain partition functions on planar graphs — see [104].

2.1.2 Contribution

Our objective is to determine whether approximating the partition function of the hard-
core model is computationally intractable on planar graphs for sufficiently large λ. It
turns out that this is so. Our main result (see Theorem 2.1) is that, for a wide range of
two-spin parameters, there is no FPRAS, even for planar graphs with degree at most 4.
The applicable range of parameters includes the hard-core model with λ ≥ 312. Thus,
we show that approximation is difficult for this problem (see Corollary 2.2).

An interesting difference between the general case and the planar case is that, in
general, it is difficult to approximate the logarithm of the partition function, a quantity
which has physical significance and is called the mean free energy. Sly and Sun (see
the proofs of Theorems 1 and 2 in [93]) showed that there is a fixed c > 1 such that no
algorithm can approximate Zβ,γ,λ(G) within a factor c|V (G)| unless NP=RP. By contrast,
we show (see Theorem 2.3) that, in the planar case, there is a polynomial-time approxi-
mation scheme for logZβ,γ,λ(G) (which implies an approximation within a factor c|V (G)|

since Zβ,γ,λ(G) is at most C |V (G)| for a quantity C which depends only on β, γ and λ).
At a high level, our hardness result is a reduction from the optimisation problem of

computing a maximum independent set in a cubic planar graph G to the problem of
estimating the partition function of a much larger graph, which is constructed from G.
Each vertex of G is represented by a gadget which is a “wrapped” rectangular lattice Cν
(see Figure 2.1). Similar to previous results of Goldberg and Jerrum [60] and Sly [92],
and Sly and Sun [93], we exploit the phase transition of the gadget to enable a reduction
from a hard optimisation problem.
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The optimisation problem from which we start (computing a maximum independent
set in a cubic planar graph) plays a similar role to that of the maximum cut problem
in the reduction of Sly and Sun [93]. However, there is a key difference. Since, as we
discuss below, it turns out that the logarithm of our partition function is efficiently
approximable, it is therefore necessary that the optimisation problem from which we
start is also easy to approximate (otherwise, we would get a contradiction). This means
that our reduction has to be more carefully tuned — the approximation of the partition
function has to allow us to exactly solve the optimisation problem.

A key technical challenge in the proof is to characterise the Gibbs distribution of the
two-spin model on the lattice gadget. We show that the spins of the vertices do exhibit
long-range correlation. In fact, the gadget is almost always in one of two phases. Each
of these phases are equally likely. Also, conditioned on the phase, the spins of certain
vertices along the boundary of the gadget are nearly independent, and their distribution
can be determined. Thus, although there is long-range correlation between spins, all
of the correlation is captured by the phase. Conditioned on the phase, the spins are
not very correlated. The analysis of the Gibbs distribution of the gadget uses contour
arguments adapted from Dobrushin [45] and Borgs et al. [10]. Randall’s slow-mixing
result is also based on contour arguments.

We have described the first step, showing that the Gibbs distribution of this gadget
can be described as a combination of two phases. We now describe how this phase
transition is used to simulate a new two-spin system. The argument is a modification of
how phase transitions are used in previous results such as [60, 92]. Given a cubic planar
graph G, we form a new graph J ′ with one copy of Cν for each vertex of G, adding some
carefully chosen new vertices and edges. The partition function of this new graph can be
written as a sum over choices of a phase for each gadget, up to a small error. For each
choice of phases, we get a term corresponding to a weight of another two-spin system on
G. In this way the partition function Zβ,γ,λ(J ′) can be written as a partition function of
this new two-spin system on G. We then show that an approximation of that partition
function determines the maximum size of an independent set in G, which is NP-hard to
compute.

In statistical physics it is sometimes useful to approximate the logarithm of the
partition function, even when the partition function itself cannot be approximated (for
example, in the situation of Theorem 2.1). Bandyopadhyay and Gamarnik [3] have
shown how to estimate the logarithm of the partition function of the hard-core model
when λ is small and the graph is regular, with large girth. They show that, in this
case, the approximate value does not depend on the graph, given its degree and size!
We give (Theorem 2.3) an approximation scheme for the logarithm of the partition
function which applies to all planar graphs, for sufficiently large λ. The algorithm is
based on the decomposition technique that Baker [2] used to give approximation schemes
for optimisation problems on planar graphs. There is a parameter k which is governed
by desired approximation quality. The graph G is decomposed into pieces which are
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k-outerplanar, and therefore have bounded tree-width. The partition functions of these
pieces can be calculated directly using an algorithm of Yin and Zhang [104]. These are
combined to give the estimate.

Here is a summary of the main arguments in this chapter.

• We characterise the Gibbs distribution of a gadget C|size using contour arguments
(Proposition 2.5).

• We combine these gadgets to simulate another two-spin system partition function
(Lemma 2.25).

• A reduction from Max Cubic Planar IS shows that these simulated partition func-
tions are hard to approximate, giving the main result (Theorem 2.1).

• We give a PRAS for the logarithm of the partition function using a decomposition
into graphs of bounded treewidth. (Theorem 2.3).

2.2 Preliminaries and statement of results

In our main result, we will assume that the parameters β, γ and λ satisfy the following
conditions.

λ ≥ 1, β ≥ 1 > γ ≥ 0, βγ < 1, βλ−1/4 ≤ 0.238, and γλ3/8 ≤ 0.238. (2.1)

Note that these conditions are satisfied by the hard-core model when λ ≥ 312 (by setting
β = 1 and γ = 0).

The notion of a fully polynomial randomised approximation scheme (FPRAS) is
defined in Section 1.2. Following [60, 61], we say that a real number z is efficiently
approximable if there is an FPRAS for the problem of computing z. For fixed efficiently
approximable reals β, γ and λ satisfying (2.1), we consider the problem of (approxi-
mately) computing Zβ,γ,λ(G), given an input graph G. In order to make our (negative)
result as strong as possible, we restrict the input G to have degree at most 4 as well as
being planar. Thus, we study the following computational problem.

Name. DegreeFourPlanarTwoSpin(β, γ, λ).
Instance. A planar graph G with maximum degree at most 4.
Output. The value Zβ,γ,λ(G).

Our main result is the following.

Theorem 2.1. Suppose that β, γ and λ are efficiently approximable reals satisfying
(2.1). There is no FPRAS for DegreeFourPlanarTwoSpin(β, γ, λ) unless NP ⊆ BPP.

The inclusion NP ⊆ BPP would imply NP = RP [76, Theorem 2]. So, for any fixed β,
γ and λ satisfying (2.1), there is no FPRAS for DegreeFourPlanarTwoSpin(β, γ, λ) unless
NP = RP.
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Of course, our result has an immediate consequence for the problem of approximating
the partition function in the hard-core model. Thus, Theorem 2.1 implies Corollary 2.2
for the following computational problem.

Name. DegreeFourPlanarHardCore(λ).
Instance. A planar graph G with maximum degree at most 4.
Output. The value Z1,0,λ(G).

Corollary 2.2. Suppose that λ ≥ 312 is an efficiently approximable real. There is no
FPRAS for DegreeFourPlanarHardCore(λ) unless NP ⊆ BPP.

Despite Theorem 2.1, we show that the logarithm of the partition function can be
approximated. In particular, we study the following computational problem, where, for
concreteness, we use the natural logarithm (to the base e).

Name. PlanarLogTwoSpin(β, γ, λ).
Instance. A planar graph G.
Output. The value log(Zβ,γ,λ(G)).

A randomised approximation scheme is said to be a polynomial randomised approx-
imation scheme or PRAS if, for each ε, its running time is bounded by a polynomial
in the length of the input. Our result is that there is a polynomial-time randomised
approximation scheme (PRAS) for PlanarLogTwoSpin(β, γ, λ).

Theorem 2.3. Suppose that β, γ and λ are efficiently approximable reals satisfying
β ≥ 1 > γ ≥ 0 and λ ≥ 1. There is a PRAS for PlanarLogTwoSpin(β, γ, λ).

The randomness used by the algorithm promised by Theorem 2.3 is only needed to
approximate the parameters β, γ and λ. If these are deterministically approximable,
then the approximation is deterministic.

We will need some notation to refer to the Gibbs distribution of the two-spin model
on a graph G, which is the distribution in which the probability of each configuration
is proportional to its weight. We will use σG to denote a random configuration drawn
from this distribution. Thus, for any configuration σ : V (G)→ {0, 1},

Pr(σG = σ) = wG(σ)/Zβ,γ,λ(G).

(In general, as here, we use boldface for the random variable and normal type for the
values that it takes on.) Finally, given a subset S of V (G) and a configuration σ :

V (G)→ {0, 1}, let σ(S) : S → {0, 1} denote the configuration induced by σ on S.
As mentioned in the introduction, the value of ε in the definition is usually not

important. For any graph G, if we denote by k · G the graph composed of k dis-
joint copies of G, then Zβ,γ,λ(k · G) = Zβ,γ,λ(G)k, Setting k = O(ε−1), a constant
factor approximation to Zβ,γ,λ(k · G) will yield (by taking the kth root) an FPRAS
for DegreeFourPlanarTwoSpin(β, γ, λ). Clearly, an approximation within a polynomial
factor would also suffice. Note that the same argument does not necessarily apply to
log-partition functions.
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2.3 The Gadget

We will assume throughout this section that β, γ and λ satisfy (2.1), so we do not keep
repeating this condition in the statement of our lemmas.

The gadget Cν has vertex set V (Cν) = Z/2νZ×{0, . . . , ν}. Vertices (x, y) and (x′, y′)

are adjacent in Cν if

• y = y′ and x = x′± 1 (where of course, the arithmetic is modulo 2ν since x and x′

are in Z/2νZ), or

• x = x′ and y = y′ ± 1.

Let E(Cν) denote the set of edges of Cν . See the leftmost picture in Figure 2.1.

(-4,0)

(-3,0)

(-2,0)

(-1,0)
(0,0)

(1,0)

(2,0)

(3,0)

(4,0)
(5,0)

(1,0)
(0,0)

(5,0)

Figure 2.1: C5, and the vertex subsets B1,2, and B0,5.

2.3.1 Goalposts and keyholes

Given a vertex (x, 0) ∈ V (Cν) and a value m ∈ {0, . . . , ν} let Bx,m be the set containing
the vertices on the rectangular (goalpost-shaped) path at distancem around the terminal.
In particular, let

Bx,m =
⋃

0≤j≤m
{(x−m, j), (x− j,m), (x+ j,m), (x+m, j)}.

Again, the arithmetic is done modulo 2ν since x ∈ Z/2νZ. See the middle picture in
Figure 2.1.

When m = ν, the vertices in {(x − m, j) | 0 ≤ j ≤ m} coincide with the vertices
in {(x + m, j) | 0 ≤ j ≤ m} so Bx,m becomes the “keyhole” which is depicted in the
rightmost picture of Figure 2.1 (for x = 0).

We shall often be working with configurations on gadgets. For convenience the no-
tation σCν will be contracted to σν , and no confusion should result.



23

2.3.2 Parity-0 ones and parity-1 ones

We say that a vertex (x, y) ∈ V (Cν) has parity 1 if x+ y is odd, and that it has parity 0

otherwise. Suppose that S is a subset of V (Cν) and that s ∈ {0, 1}. We say that σ(S)

has parity-s ones if {(x, y) ∈ S | σ(x, y) = 1} is exactly the set of parity-s vertices in S.

2.3.3 Idealised probabilities

Define

p= = lim sup
ν→∞

Pr(σν(0, 0) = 1 | σν(B0,ν) has parity-0 ones), and

p6= = lim sup
ν→∞

Pr(σν(1, 0) = 1 | σν(B1,ν) has parity-0 ones).

The notation p= is meant to connote that we are looking at the probability of a 1

at a vertex of parity s, conditioned on certain parity-t ones, where s = t; for p 6= we
are interested in s 6= t. As we shall see later, it will turn out that p= > p6=. This is a
non-trivial fact about the spin system: if there were no long-range correlations, we would
have p= = p6=. The following straightforward lemma is also useful.

Lemma 2.4. p 6= > 0 and p= < 1.

Proof. Suppose ν ≥ 2. Consider vertex (1, 0) of Cν . Let S = {(1, 0), (2, 0), (0, 0), (1, 1)}
be the set containing (1, 0) and its immediate neighbours. Let S′ = {(−1, 0), (0, 1), (1, 2), (2, 1), (3, 0)}
be the set containing the neighbours of S. Given any σ : S′ → {0, 1},

Pr(σν(S) has parity-1 ones | σν(S′) = σ) ≥ λ/16λ4β10 > 0.

Now let S′′ = {(−1, 0), (0, 1), (1, 0)} be the neighbours of (0, 0). Given any σ : S′′ →
{0, 1},

Pr(σν(0, 0) = 1 | σν(S′′) = σ) ≤ λ

1 + λ
< 1.

The events that σν(B0,ν) has parity-0 ones and that σν(B1,ν) has parity-0 ones have
low probability, so it may seem strange to condition on these events, but the purpose
of this conditioning is to identify two phases of the idealised gadget. We will refer to
certain vertices (x, 0) of Cν as “terminals”, and it will turn out to be the case that the
spins of these terminals are nearly independent of each other in the distribution of σν .

We will study the distribution that σν induces on the terminals by considering an
idealised distribution with two phases. In each of these two gadget phases, the spins
of the terminals will be chosen independently. Some terminals will be assigned spin 1

with probability p= and others will be assigned spin 1 with probability p 6=. This will be
explained further in the next section.
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2.3.4 Terminals

Fix positive integers d and k. Let ν = 2dk and let Ck,d denote the gadget Cν . We
will work with Ck,d for the rest of the chapter. We will use both notations, Cν and
Ck,d, depending on whether we want to emphasize the role of ν or the role of k and d.
Similarly, the alternative notations, σk,d and σν will be used as convenient.

Some of the vertices around the boundary of Ck,d (2k of them) are designated as
“terminals”. The set of “parity-1 terminals” is

T 1
k,d = {(4jd+ 1, 0) | 0 ≤ j ≤ k − 1}.

The set of “parity-0 terminals” is

T 0
k,d = {(4jd+ 2d, 0) | 0 ≤ j ≤ k − 1}.

Let Tk,d = T 1
k,d ∪ T 0

k,d denote the set of terminals.
For parity s ∈ {0, 1}, let µsk,d be the distribution on configurations σ : Tk,d → {0, 1}

in which the spin of each terminal is chosen independently as follows: For each parity-s
terminal (x, 0), set σ(x, 0) = 1 with probability p= (and set σ(x, 0) = 0 otherwise).
For each terminal (x, 0) with parity 1 ⊕ s, set σ(x, 0) = 1 with probability p 6= (and set
σ(x, 0) = 0 otherwise).

Informally, the distribution µsk,d will be relevant when an idealised gadget is in a phase
which prefers 1-spins at parity-s terminals. In this distribution, the probability that a
terminal is given spin 1 is higher if the terminal has parity s than if it has parity 1⊕ s.

Let µk,d be the distribution on configurations σ : Tk,d → {0, 1} given by µk,d(σ) =

(µ0
k,d(σ) +µ1

k,d(σ))/2. We will show that, provided that d is sufficiently large, the distri-
bution of σk,d(Tk,d) is close to µk,d.

Thus, the gadget can be thought of informally as having two phases, phases 0 and 1.
We will show that the gadget almost always occupies one of these two phases, and they
occur with equal probability. In phase 0, the distribution of σk,d(Tk,d) is close to µ0

k,d.
In phase 1, the distribution of σk,d(Tk,d) is close to µ1

k,d.

Proposition 2.5. There is a c > 1 such that, if d is a sufficiently large multiple of 16,
k is an integer greater than or equal to 1 and τ is a configuration τ : Tk,d → {0, 1}, then

|Pr(σk,d(Tk,d) = τ)− µk,d(τ)| ≤ c−dk2.

Proposition 2.5 is established at the end of this section. We will use contour argu-
ments adapted from Dobrushin [45] and Borgs et al. [10]. The outline of the argument
is as follows. We first define “contours” in Section 2.3.5. We show, in Section 2.3.6, that
long contours are unlikely. In Section 2.3.7, we show that, in the absence of long con-
tours, the spins of terminals are nearly independent. With high probability, the gadget
has a phase s and there is a boundary around each terminal, whose spins are consistent
with s. Conditioned on s, the distribution of the spins of the terminals is close to µsk,d.
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2.3.5 The Dual Gadget, trails, and contours

The dual gadget C∗ν has vertex set V (C∗ν ) = {x + 1
2 | x ∈ Z/2νZ} × {y + 1

2 | y ∈
{−1, . . . , ν}}. Vertices (x, y) and (x′, y′) are adjacent in C∗ν if

• y = y′ and y /∈ {−1
2 , ν + 1

2}, and x = x′ ± 1 (where of course, the arithmetic is
modulo 2ν), or

• x = x′ and y = y′ ± 1.

E(C∗ν ) denotes the edge set of C∗ν . This is illustrated in Figure 2.2.

(−1
2 , 3

1
2)

(−1
2 ,−

1
2)

(0, 0)

Figure 2.2: Part of C3 and C∗3 ; solid lines are edges of C3, dashed lines are edges of
C∗3 . The red thickened lines are a dual pair of edges.

There is a bijection called “duality” between edges of Cν and edges of C∗ν . In partic-
ular, the dual of edge e = ((x, y), (x+ 1, y)) of Cν is e∗ = ((x+ 1

2 , y −
1
2), (x+ 1

2 , y + 1
2))

and the dual of edge e∗ is e. Similarly, the dual of edge f = ((x, y), (x, y + 1)) of Cν is
f∗ = ((x− 1

2 , y + 1
2), (x+ 1

2 , y + 1
2)) and the dual of f∗ is f . We use the ∗ operation to

move between an edge and its dual, so every edge e satisfies (e∗)∗ = e.
A trail in C∗ν is a sequence g = v1, . . . , vj of vertices in V (C∗ν ) such that each

pair (vi, vi+1) is an edge of C∗ν , and no edge is used twice. A contour is a trail g =

v1, . . . , vj in C∗ν satisfying one of the following:

• v1 = vj , or

• The y-coordinate of v1 and the y-coordinate of vj are both in {−1
2 , ν + 1

2}.
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The length of g is j − 1. We say that g is a cross contour if the y-coordinate of v1

is −1
2 and the y-coordinate of vj is ν + 1

2 (or vice-versa). A cross contour goes from
one boundary of the gadget to the other. We say that every other contour is a simple
contour.

Given σ : V (Cν) → {0, 1}, let σ∗ be the set of edges of C∗ν which are dual to
monochromatic edges. In particular, σ∗ = {(u, v)∗ ∈ E(C∗ν ) | σ(u) = σ(v)}.

Definition 2.6. A contour of σ is a contour g = v1, . . . , vj satisfying the following two
properties.

• The edges of g are monochromatic: That is, for all 1 ≤ i < j, (vi, vi+1) ∈ σ∗.

• The contour g always turns at degree-4 vertices: That is, for all 1 < i < j, if four
edges of σ∗ meet at vertex vi, then vi−1 and vi+1 differ in both the x component
and the y component. Similarly, if four edges of σ∗ meet at v1 = vj then v2 and
vj−1 differ in both the x component and the y component.

Note that contours of σ cannot cross each other, though two contours can share a
vertex without crossing. Also, two contours can have a common portion (before turning
off in two different directions). Finally, every edge of σ∗ is contained in at least one
contour of σ.

Let σ : V (Cν)→ {0, 1} be a configuration, and let g be a contour of σ. We say that
a vertex u ∈ V (Cν) is adjacent to g if there is an edge (u, v) ∈ E(Cν) such that e∗ ∈ g.
The set of vertices adjacent to g can be written as the union of two sets, L(g) and R(g),
where L(g) is the set of vertices which are on the left (relative to the direction of travel)
when we follow the trail g from v1 to vj , and R(g) is the set of vertices which are on the
right (relative to the direction of travel). See Figure 2.3.

L

L

L

L

L

L

L

L

LR

R

R

R

R

Figure 2.3: Left and right vertices of a contour of σ. The shaded squares represent
vertices of Cν with parity-1 ones and the unshaded squares represent vertices of Cν

with parity-0 ones.

A key property of contours is the following.
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Lemma 2.7. Let σ : V (Cν) → {0, 1} be a configuration, and let g be a contour of σ.
Then for some s ∈ {0, 1}, σ(L(g)) has parity-s ones and σ(R(g)) has parity-(1⊕s) ones.

Proof. Pick s ∈ {0, 1} such that the vertex on the left as we go from v1 to v2 has parity-s
ones. By induction on i, we will show that for each i the vertex on the left as we go from
vi to vi+1 has parity-s ones. Suppose without loss of generality that the edge (vi−1, vi)

increases the x-component (the other three cases are similar). So vi−1 = (x − 1
2 , y + 1

2)

and vi = (x + 1
2 , y + 1

2). Since g is a contour of σ, σ(x, y) = σ(x, y + 1) = s ⊕ x ⊕ y.
There are three cases.

x x+ 1

y

y + 1

x x+ 1

y

y + 1

x x+ 1

y

y + 1

Figure 2.4: Cases 1, 2, and 3. Black squares have the same spin as σ(x, y); white
squares have the opposite spin, and hatched squares can be either.

1. vi+1 = (x+ 1
2 , y + 3

2). In this case the vertex (x, y + 1) is still on the left as we go
from vi to vi+1.

2. vi+1 = (x+ 1
2 , y−

1
2). In this case the vertex (x+ 1, y) is on the left as we go from

vi to vi+1, but since g is a contour of σ we have σ(x+ 1, y) = σ(x, y) = σ(x, y+ 1).
So (x+ 1, y) has parity-s ones.

3. vi+1 = (x+ 3
2 , y + 1

2). In this case (x+ 1, y + 1) is on the left, and (x+ 1, y) is on
the right. Since g is a contour of σ, σ(x + 1, y) = σ(x + 1, y + 1), and we know
σ(x, y) = σ(x, y + 1). Since the contour did not turn, the vertex (x + 1

2 , y + 1
2)

cannot have degree 4 in σ∗, so σ(x+ 1, y+ 1) = s⊕ x⊕ y⊕ 1, so (x+ 1, y+ 1) has
parity-s ones.

The following lemma allows wG(σ) to be expressed more easily in terms of the con-
tours of σ. Suppose ν > 2. A side vertex of Cν is a vertex (x, y) ∈ V (Cν) with y = 0 or
y = ν. A side edge is an edge in E(Cν) between two side vertices.

Lemma 2.8. Fix ν > 2 and a configuration σ : V (Cν)→ {0, 1}. Let b′(σ) be the number
of side edges (u, v) of Cν with σ(u) = σ(v) = 0 and let c′(σ) be the number of side
edges (u, v) of Cν with σ(u) = σ(v) = 1. Then

`(σ) = 1
4(c(σ)− b(σ)) + 1

8(c′(σ)− b′(σ)) + ν(ν + 1).

Proof. Let `′(σ) be the number of side vertices u with σ(u) = 1. Let E′ be the set of all
side edges in Cν . By double-counting pairs (u, (u, v)) with σ(u) = 1 and (u, v) ∈ E(Cν),

(|E(Cν)| − b(σ)− c(σ)) + 2c(σ) = 4`(σ)− `′(σ).
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By double-counting pairs (u, (u, v)) with σ(u) = 1 and (u, v) ∈ E′, we have

(|E′| − b′(σ)− c′(σ)) + 2c′(σ) = 2`′(σ).

Rearranging gives `(σ) = 1
4(c(σ)−b(σ))+ 1

8(c′(σ)−b′(σ))+ 1
4 |E(Cν)|+ 1

8 |E
′|. Consider the

configuration with alternating 0s and 1s given by σ(x, y) = x⊕y. For this configuration σ,
we have b(σ) = c(σ) = b′(σ) = c′(σ) = 0 and `(σ) = ν(ν + 1), so the constant term
1
4 |E(Cν)|+ 1

8 |E
′| is ν(ν + 1).

2.3.6 Long contours are unlikely

Lemma 2.9. There is a c > 1 such that, for all sufficiently large h, all ν > 2, and all
U ⊆ V (C∗ν ),

Pr(σν has a simple contour of length at least h starting in U) ≤ |U | c−h.

Proof. Suppose that g is a simple length-r contour of a configuration σ : V (Cν)→ {0, 1}.
Consider the connected components of the graph

(
V (Cν), E(Cν) \ {e∗ | e ∈ g}

)
. We say

that a component is “left” if it contains at least one vertex in L(g) (but no vertices in
R(g)). We say that it is “right” if it contains at least one vertex in R(g) (but no vertices
in L(g)). Every component is either left or right. Let S be the set of vertices in left
components. Let S = V (Cν) \ S. Let S′ = {(x, y) ∈ S | (x− 1, y) ∈ S}, where, as usual,
the arithmetic on x is done modulo 2ν.

Suppose that σ(R(g)) has parity-s ones. By Lemma 2.7, this is true for some s ∈
{0, 1}. Define a configuration σg : V (Cν)→ {0, 1} as follows: σg(S) = σ(S), σg(S′) has
parity-s ones, and, for every (x, y) ∈ S \ S′, σg(x, y) = σ(x− 1, y).

Note that σ 7→ σg is a map from the set of configurations σ with g as a contour to
the set of all configurations; further, it does not lose information, and hence is injective.
Note also that (σg)∗ is the same as σ∗, but with g removed and with the contours in S
shifted by one. By Lemma 2.8,

wCν (σ) = (βλ−1/4)b(g)(γλ1/4)c(g)λ(c′(g)−b′(g))/8wCν (σg)

where b(g), c(g), b′(g), c′(g) are the contributions to b(σ), c(σ), b′(σ), c′(σ) coming from
edges whose duals are in g. As the map σ 7→ σg is injective,

Pr(g ⊆ σ∗ν) ≤ (βλ−1/4)b(g)(γλ1/4)c(g)λ(c′(g)−b′(g))/8

≤ (βλ−1/4)b(g)(γλ3/8)c(g),

where we have used the facts that λ ≥ 1 and c′(g) ≤ c(g). There are at most |U | 3r

relevant contours of length r in total (|U | choices of starting point, and at most three
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different directions at each step), so

Pr(σν has a simple contour of length at least h starting in U)

≤ |U |
∑
r≥h

3r max(βλ−1/4, γλ3/8)r

≤ |U | (3× 0.238)h

1− 3× 0.238
.

There is a c > 1 such that (3×0.238)h

1−3×0.238 < c−h for all sufficiently large h.

Lemma 2.10. Let i ∈ {0, 1}. For every ν > 2, and every simple contour g of length r,

Pr(g is a contour of σν | σν(Bi,ν) has parity-0 ones) ≤ max(βλ−1/4, γλ3/8)r. (2.2)

Furthermore, there is a c > 1 such that, for all sufficiently large h, all ν > 2, and all
U ⊆ V (Cν), the conditional probability that σν has a simple contour of length at least h
which contains an edge whose dual connects two vertices in U , conditioned on the fact
that σν(Bi,ν) has parity-0 ones, is at most |U | c−h.

Proof. The proof of (2.2) is similar to the first half of the proof of Lemma 2.9, except that
we have to take care to choose S to be on the correct side of the contour g. Previously, it
did not matter whether we formed S from the left or right components, and we arbitrarily
chose the former. Now we choose S (either taking all the left or all the right components)
in such a way that S ∩ Bi,ν = ∅. This is possible because all the vertices in Bi,ν are in
a single connected component (the contour g does not cross any edges whose endpoints
lie in Bi,ν). Now define σg as in the proof of Lemma 2.9 and continue as before. This
establishes (2.2).

For all 1 ≤ s ≤ r, and all u ∈ U , there are at most 3r × 4 contours v1 . . . vr for which
u is on the left as we go from vs−1 to vs: a choice of initial direction and direction at
each step determines the contour. Summing over s and u, this implies that there are
at most 4|U |r3r length-r contours with an edge whose dual connects vertices of U . By
(2.2),

Pr

(
σν has a simple contour of length at least h which

contains an edge whose dual connects two vertices in U

∣∣∣∣ σν(Bi,ν) has parity-0 ones
)

≤ 4|U |
∑
r≥h

r3r max(βλ−1/4, γλ3/8)r

= 4|U |(3× 0.238)h
∑
t≥0

(t+ h)(3× 0.238)t

= 4|U |(3× 0.238)h
3× 0.238 + h(1− 3× 0.238)

(1− 3× 0.238)2

There is a c > 1 such that 4(3 × 0.238)h 3×0.238+h(1−3×0.238)
(1−3×0.238)2 < c−h for all sufficiently

large h.
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By the upper boundary of Cν we mean the set of all vertices of the form (x, ν) for
some x.

Lemma 2.11. Let i ∈ {0, 1}. There is a c > 1 such that, for all sufficiently large
h and all ν > h, the probability that σν has a simple contour that separates the set
{−h+ i, . . . , h+ i} × {0, . . . , h} from the upper boundary of Cν , conditioned on the fact
that σν(Bi,ν) has parity-0 ones, is at most c−h.

Proof. Note that the separating contour cannot wrap around, owing to the boundary
condition that σν(Bi,ν) has parity-0 ones. If the separating contour has length r + 2

then its right-endpoint is in the set {(h + i + x − 1
2 ,−

1
2) | 1 ≤ x ≤ r}. There is

a unique choice for the edge incident to each endpoint. Thus, there are at most r3r

possible contours. By Lemma 2.10, the probability that σν has such a simple contour,
conditioned on the fact that σν(Bi,ν) has parity-0 ones, is at most

∞∑
r=h−2

r3r max(βλ−1/4, γλ3/8)r+2.

Thus, the probability is at most

max(βλ−1/4, γλ3/8)2
∞∑

r=h−2

r3r max(βλ−1/4, γλ3/8)r,

which, as in the proof of Lemma 2.10, is exponentially small in h.

Lemma 2.12. There is a c > 1 such that, for all sufficiently large ν,

Pr(σν has a cross contour ) ≤ c−ν .

Proof. Let g be a cross contour. There must be at least one other cross contour g′. For
otherwise there would be a path p in Cν from L(g) to R(g) such that σν(V (p)) has
parity-0 ones or parity-1 ones, which would violate parity. Orient g and g′ in opposite
senses (one away from y = −1

2 and one towards). Consider the connected components
of the graph

(
V (Cν), E(Cν) \ {e∗ | e ∈ g ∪ g′}

)
, and let S be the union of all connected

components that are left of either g or g′. Now proceed as in the proof of Lemma 2.9,
using the fact that a cross contour has length at least ν and the set of possible starting
points has size 2ν.

Lemma 2.13. Let i ∈ {0, 1}. Fix ν ≥ 1. Conditioned on σν(Bi,ν) having parity-s ones
(for any s ∈ {0, 1}), σν has no cross contour.

Proof. A cross contour would have to cross a side edge in Bi,ν , which is impossible.

Lemma 2.14. p= > p6=.
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Proof. Fix ν > 2. Suppose that σν(B0,ν) has parity-0 ones. If σν(0, 0) = 0 then there is
a simple contour of σν that separates (0, ν) from (0, 0). (Note that, by Lemma 2.13, cross
contours cannot separate these two vertices.) If the separating contour has length r + 2

then its right-endpoint is in the range (1
2 ,−

1
2), . . . , (r− 1

2 ,−
1
2). There is a unique choice

for the edge incident to each endpoint. Thus, there are at most r3r possible contours.
By Lemma 2.10, the probability that σν has such a simple contour, conditioned on the
fact that σν(B0,ν) has parity-0 ones, is at most

∞∑
r=1

r3r max(βλ−1/4, γλ3/8)r+2.

Thus,

Pr(σν(0, 0) = 0 | σν(B0,ν) has parity-0 ones) ≤ max(βλ−1/4, γλ3/8)2
∞∑
r=1

r3r max(βλ−1/4, γλ3/8)r

≤ (0.238)2 3× 0.238

(1− 3× 0.238)2

< 1/2.

Thus, p= > 1
2 .

Similarly, suppose that σν(B1,ν) has parity-0 ones. If there is no simple contour of σν
that separates (1, ν) from (1, 0), then σν(1, 0) = 0. We already saw that the probability
that no such contour exists is greater than 1

2 . Thus,

Pr(σν(1, 0) = 0 | σν(B1,ν) has parity-0 ones) > 1/2.

So p 6= < 1
2 . Putting the two inequalities together, we have p6= < 1

2 < p=.

2.3.7 In the absence of long contours, the spins of the terminals are
nearly independent

The ∗-distance between two points (x, y) and (x′, y′) in V (Cν) is max(|x − x′|, |y − y′|)
where |x − x′| is the minimum non-negative integer such that x = x′ + |x − x′| modulo
2ν or x′ = x+ |x− x′| modulo 2ν. The ∗-distance between two points (x, y) and (x′, y′)

in V (C∗ν ) is defined similarly. Let Ux,h be the set of vertices of Cν whose ∗-distance from
(x, 0) is at most h. Vertices in V (Cν) (or V (C∗ν )) are ∗-adjacent if the ∗-distance between
them is 1. A ∗-path on V (Cν) is a sequence v1, . . . , vh of vertices in V (Cν) such that,
for each j ∈ {1, . . . , h− 1}, the vertices vj and vj+1 are ∗-adjacent. A ∗-path on V (C∗ν )

is defined similarly.

Definition 2.15. Suppose ν and h are positive integers. An h-boundary of a vertex
(x, 0) is a set of vertices B ⊆ V (Cν) such that the following are true.

(i) (x, 0) is not connected to (x, ν) in the graph Cν \B, and
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(ii) B does not intersect Ux,h/4, and

(iii) B is a subset of Ux,h/2.

(iv) The subgraph of Cν induced by B is connected.

See Figure 2.5.

(0,0)

(5,0)

(10,0)

(15,0)

Figure 2.5: Example h-boundary of vertex (16, 0) with ν = 20 and h = 5.

Here is the relevant fact about h-boundaries. If B is an h-boundary of a vertex (x, 0)

and σ(B) has parity-s ones then there is no contour of σ which contains an edge whose
dual connects two vertices in B.

If B is an h-boundary of vertex (x, 0) and B′ is an h′-boundary of (x, 0), then we say
that B is inside of B′ if every path in Cν from B′ to (x, 0) passes through B. Suppose
that B and B′ are h-boundaries of (x, 0) and, for some s ∈ {0, 1}, σ(B) has parity-s
ones and σ(B′) has parity-(1⊕ s) ones. Then B ∩B′ = ∅, so exactly one of the following
occurs.

• B is inside of B′, or

• B′ is inside of B.

Definition 2.16. Suppose that s ∈ {0, 1} and that k and d are positive integers. Let ν =

2kd. Suppose that σ is a configuration σ : V (Cν) → {0, 1}. We say that σ has phase s
if the following holds for every terminal (x, 0).
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• (x, 0) has a d-boundary B for which σ(B) has parity-s ones.

• For every d-boundary B′ of (x, 0) for which σ(B′) has parity-(1⊕s) ones, B′ is
inside of B.

Note that a configuration σ can have exactly one phase (phase 0 or phase 1) or it can
have no phase. Suppose that ν ≥ 1 and that the configuration σ : V (Cν) → {0, 1} has
phase s. Say that a d-boundary B of a vertex (x, 0) is consistent if σ(B) has parity-s
ones. From the consistent d-boundaries, we want to select a canonical one, that is in some
precise sense “outermost” and also “minimal”. For each terminal (x, 0), let B̂x(σ) be the
union of all d-boundaries of (x, 0) which are consistent. Observe that B = B̂x(σ) satisfies
the first three bullet points in Definition 2.15, but not the final one, as the subgraph
Cν [B] of Cν induced by B may not be connected. Suppose that Cν [B] has j connected
components. Partition B̂x(σ) = B̂1

x(σ) ∪ · · · ∪ B̂j(σ) so that Cν [B̂1
x(σ)], . . . , Cν [B̂jx(σ)] is

an enumeration of these j connected components. Each set B̂ix(σ) is itself a d-boundary.
To see this, consider any vertex v ∈ B̂ix(σ). From the construction of B̂x(σ), this vertex
is contained in some d-boundary, which in turn is contained in B̂ix(σ). So B̂ix(σ) satisfies
the first three bullet points in Definition 2.15, in addition to inducing a connected graph.

From the first bullet point of Definition 2.15 it follows that B̂1
x(σ), . . . , B̂jx(σ) are

nested; suppose the numbering indicates the level of nesting, with B̂1
x(σ) being the out-

ermost. We now want to identify a minimal d-boundary within B̂1
x(σ). Let

Ext B̂1
x(σ) = {v ∈ V (Cν) | there is a ∗-path from v to (x, ν) in V (Cν) \ B̂1

x(σ)}.

denote the set of vertices lying in the “exterior” of B̂1
x(σ). Finally define

Bx(σ) = {v ∈ B̂1
x(σ) | v is ∗-adjacent to some vertex in Ext B̂1

x(σ)}.

Note that Bx(σ) is a d-boundary of (x, 0) which is consistent. (Informally, Bx(σ) is the
outermost such d-boundary.) To see this, observe that any path in the graph Cν from
(x, 0) to (x, ν) has a last vertex in the set B̂1

x(σ), and this vertex must be in Bx(σ);
this deals with the first bullet point in Definition 2.15. Consider the trail in the dual
graph C∗ν separating Bx(σ) and Ext B̂1

x(σ); the trail in the primal graph that shadows it
at ∗-distance 1

2 inside takes in all the vertices of Bx(σ) and establishes connectivity of
Cν [Bx(σ)]. This deals with the final bullet mark, and the remaining two are immediate.

The d-boundary Bx(σ) is our desired canonical d-boundary, and it has the following
important property. If σ′ is a configuration that agrees with σ on Bx(σ)∪Ext B̂1

x(σ), then
Bx(σ′) = Bx(σ). The reason is as follows. The set B = Bx(σ) is a d-boundary of (x, 0)

which is consistent with respect to σ′, i.e., σ′(B) has parity-s ones. It therefore gets incor-
porated into B̂x(σ′) ⊇ Bx(σ) and hence into B̂1

x(σ′) ⊇ Bx(σ). So ExtB1
x(σ′) = ExtB1

x(σ)

and Bx(σ′) = Bx(σ). This fact becomes significant when we come to consider events
supported on spins in the interior U = V (Cν) \ (B ∪ ExtB) of some d-boundary B.
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Specifically, conditioning on the event Bx(σν) = B (and on the phase s of σν) is equiva-
lent to selecting σν(U) according to the Gibbs distribution, with the boundary condition
“σν(B) has parity-s ones”. We refer to this property as canonicity of Bx(σ).

Before proceeding we need some definitions and observations concerning connected
subgraphs K of the graph (V (C∗ν ), σ∗). The ∗-diameter of K is the maximum, over pairs
of vertices in K, of the ∗-distance between those vertices. We say that K reaches the
lower boundary of Cν if it contains a vertex of the form (x,−1

2) for some x. We say
that it reaches the upper boundary of Cν if it contains a vertex of the form (x, ν + 1

2).
We say that it is a cross subgraph if it reaches both boundaries. We say that K wraps
around if it contains the image of some path from (0, y) to (2ν, y) in Z × {0, . . . , ν},
under the quotient map to V (Cν). We say that K is local if it is not a cross subgraph
and does not wrap around. We say that K intersects Ux,h if some edge e∗ in K is dual
to an edge e ∈ E(Cν) with both endpoints in Ux,h. A contour is a connected subgraph of
(V (C∗ν ), σ∗) so all of the above definitions apply to contours. We refer to the connected
components of (V (C∗ν ), σ∗) as σ∗-components.

Lemma 2.17. If σ has only local contours then σ∗ has only local components.

Proof. Suppose to the contrary that σ∗ has non-local component K. Consider first the
case of a cross component.

So suppose K reaches both the upper and lower boundaries of Cν , and that K
has 2j > 0 degree-1 vertices. (All vertices other than the degree-1 vertices have even
degree, and the number of odd-degree vertices in a graph is even.) By adapting the
standard algorithm for finding an Eulerian trail in a (connected) Eulerian graph, we may
decompose K into j contours beginning and ending at degree-1 vertices. The method is
as follows. Starting at a degree-1 vertex, trace out a trail in K subject only to the rule
that we must turn through a right-angle at any degree-4 vertex. This trail can only end
at another degree-1 vertex. The trail so formed is a contour; remove the trail from K

and repeat j − 1 more times to obtain j contours in total. If any edges of K remain,
start at any remaining vertex and trace out a closed trail that returns to the start vertex.
Again, the rule is always to turn through a right-angle at any degree 4 vertex. Repeat
until there are no edges remaining in K. We are left with j non-closed contours and an
unspecified number of closed ones. Whenever a non-closed contour meets a closed one,
we may splice the latter into the former, reducing the number of closed contours by one.
Repeating as necessary, we obtain the sought-for decomposition of K into j contours
beginning and ending at degree-1 vertices.

If one of these j contours joins the upper and lower boundaries of Cν we are done, as
we have already found a cross contour and obtained a contradiction. Otherwise, there
must be at least one vertex at which a lower-to-lower contour touches a upper-to-upper
contour. Simply reroute the trails at this vertex to obtain two cross contours.

Now consider the case whereK wraps around. We may assume thatK does not reach
one of the boundaries of Cν , say the upper one. Trace a closed trail along the upper
boundary of K: this trail is a contour that wraps around, providing a contradiction.
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Since non-local contours are unlikely, Lemma 2.17 allows us to concentrate on local
σ∗-components. A σ∗-component K that is local has a well defined inside and outside,
and a boundary that is a valid contour. (More precisely, there is a canonical contour
that has exactly the same edges as the boundary of K.) If K reaches neither the upper
nor lower boundary of Cν , then we may trace clockwise around K, always taking the
leftmost option, until we return to our starting point. This procedure yields a simple
contour; we refer to vertices of V (Cν) that lie within this contour as forming the interior
of K, denoted IntK.

If K reaches the lower boundary but not the top (or vice versa), then a slightly
modified construction can be used. First lift K to a grid: for sufficiently large N , there
is a connected subset K̂ of {1, . . . , N}×{0, . . . , ν} which maps bijectively to K under the
quotient map to Cν . Note that lifting can only increase the diameter of K̂ relative to K.
We now have a natural ordering of the degree-1 vertices of K, namely by increasing x-
coordinate. Start at the least degree-1 vertex in this ordering and and trace the boundary
of K̂ in a clockwise-leftmost fashion until the greatest degree-1 vertex is reached. This
procedure yields a simple contour which partitions the vertices of V (Cν) into an inside
and an outside (containing the point (0, ν)); again we refer to the former as the interior
of K.

Lemma 2.18. Consider σ : V (Cν) → {0, 1}. Let h ≤ ν be an integer multiple of 8.
Suppose

• σ contains only local contours.

• σ contains no contour of length at least h/8 that intersects Ux,h/2.

• σ contains no simple contour separating Ux,h/4 from the upper boundary of Cν .

Then every σ∗-component that intersects Ux,h/2 has ∗-diameter at most h/8.

Proof. Suppose K is a σ∗-component intersecting Ux,h/2. By Lemma 2.17, K is local.
The interior of K contains some vertex in Ux,h/2. By assumption, the contour defined by
the boundary of K does not separate Ux,h/4 from the upper boundary of Cν , so it does
not separate Ux,h/2 from the upper boundary of Cν . The only remaining possibility is
that this contour intersects Ux,h/2, and hence has length at most h/8. It follows that K
has ∗-diameter at most h/8.

Lemma 2.19. Suppose that h is a sufficiently large multiple of 8, and ν ≥ h. Consider
a configuration σ : V (Cν)→ {0, 1} and a terminal (x, 0). Suppose that the following are
true.

• σ has no cross contours.

• σ has no simple contour of length at least h/8 that intersects Ux,h/2.

• σ has no simple contour separating Ux,h/4 from the upper boundary of Cν .
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Then, for some s ∈ {0, 1},

1. (x, 0) has an h-boundary B for which σ(B) has parity-s ones.

2. There is no h-boundary B′ of (x, 0) for which σ(B′) has parity-(1⊕s) ones.

3. For any terminal (x′, 0) that has an h-boundary B′ for which σ(B′) has parity-s′

ones, if σ has no contour separating Ux,h/4 from Ux′,h/4 then s′ = s.

4. If σ(B0,ν) has parity-s′ ones then s′ = s.

Proof. There are no contours that wrap around, since any such contour would either
intersect Ux,h/2, or would separate Ux,h/4 from the upper boundary of Cν . Thus, by
Lemma 2.17, all σ∗-components are local. Let S be the set of all vertices in V (Cν) that
are not in the interior of some σ∗-component. That is

S = V (Cν) \
⋃{

IntK | K is a σ∗-component
}
.

Note that σ(S) has parity-s ones, for some s ∈ {0, 1}. Define S = V (Cν) \ S. Note that
σ(S ) in general has mixed parity; the salient feature is that σ(S) has consistent parity.

We work first towards conclusion (1) of the lemma. By Lemma 2.18, every σ∗-
component that intersects Ux,h/2 has ∗-diameter at most h/8. Now (informally) we
will construct the required h-boundary by tracing round the inside of Bx,h/2, making a
detour towards (x, 0) around any σ∗-components that stand in the way. (Recall that
Bx,h/2 = Ux,h/2 \ Ux,h/2−1 is the “goalpost” at distance h/2 from (x, 0).) This strategy
ensures we remain in the set S and, since all the σ∗-components are small, our detours
will not be too great.

More formally, let W be the union of the set V (Cν) \ Ux,h/2 together with any sets
of the form IntK that intersect Bx,h/2. That is,

W = (V (Cν) \ Ux,h/2) ∪
⋃
{IntK | K is a σ∗-component and Int(K) ∩Bx,h/2 6= ∅}.

The set

∂W = {v ∈ V (Cν) | v /∈W and v is ∗-adjacent to some vertex in W}

is almost the h-boundary B that we seek. Observe that any set of the form IntK is
contained in a maximal set of the form IntK ′, and the ∗-neighbours of IntK ′ are all in
S. Thus ∂W is a subset of S, and necessarily has parity-s ones.

And as we shall see presently, ∂W satisfies the first three conditions of an h-boundary
B — (i) every path from (x, 0) to (x, ν) intersects B, (ii) B∩Ux,h/4 = ∅, (iii) B ⊆ Ux,h/2
— but not necessarily the final one, namely: (iv) the induced graph Cν [B] is connected.
(There may be islands of vertices of ∂W lying outside the h-boundary we are trying to
home in on.) However, we can ensure (iv) by defining B to be the subset of vertices in
∂W that can be reached from (x, 0) by a path in Cν whose vertices all lie in V (Cν) \W .
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For (i), observe that any path from (x, 0) to (x, ν) has a first vertex w in W . The
vertex immediately preceding w is not in W but is adjacent to a vertex in W , and hence
in B. (ii) follows from the fact that every vertex in W ∩ Ux,h/2 is within ∗-distance h/8
of a vertex in Bx,h/2. (iii) is immediate from the construction. To see (iv), denote byW ◦

the set of all vertices in V (Cν) that can be reached from (x, 0) by a path whose vertices
all lie in V (Cν) \W . Note that Cν [W ◦] is connected and that B ⊆ W ◦. Let %∗ be the
set of edges in C∗ν separating W ◦ and W ; thus, e∗ ∈ %∗ iff e has one endpoint in W and
the other in W ◦. Since Cν [W ◦] is connected, the edges in %∗ form a trail in C∗ν starting
and ending at vertices with y-coordinate −1

2 . Following this trail anticlockwise, vertices
in W ◦ lie to the left and those in W to the right. In fact, the vertices immediately
to the left of the %∗-trail (i.e., those at ∗-distance 1

2 from it) are precisely the vertices
forming B: they are all ∗-adjacent to some vertex inW , and no other vertices inW ◦ have
this property. Thus, any two vertices in B are connected by a path, which is obtained
by shadowing %∗ at ∗-distance 1

2 .
For conclusion (2) of the lemma, observe that there cannot be an h-boundary B′ of

(x, 0) such that σ(B′) has parity-(s⊕1) ones, as such a B′ would have to exist entirely
within S, and all ∗-connected components of S are small (∗-diameter at most h/8).

As for conclusion (3), it is impossible for s′ 6= s. Consider the connected component
of Cν [S] containing B. If s′ 6= s then the boundary of this component contains a contour
separating B and B′, and hence Ux,h/4 and Ux′,h/4. If σ(B0,ν) has parity-s′ ones for
s′ 6= s then the boundary of the connected component of Cν [S] containing B is a simple
contour separating B from the upper boundary of Cν hence, separating Ux,h/4 from the
upper boundary of Cν , establishing (4).

Corollary 2.20. Suppose that k ≥ 1 that d is a sufficiently large multiple of 8 and that
ν = 2dk. Suppose σ : V (Cν) → {0, 1} has no contours of length at least d/8. Either σ
has phase 0 or σ has phase 1.

Proof. Since there are no contours of length at least d/8 of any kind, the premises of
Lemma 2.19 are all satisfied for every terminal (x, 0) and every other terminal (x′, 0).

The following monotonicity property is useful for comparing different contours and
boundary conditions.

Lemma 2.21. Let x ∈ Z/2νZ, let B be an h-boundary of (x, 0) for some h, and let B′

be an h′-boundary of (x, 0) for some h′ such that B is inside of B′. Then

Pr(σν has parity-0 ones at (x, 0) | σν(B) has parity-0 ones)

≥ Pr(σν has parity-0 ones at (x, 0) | σν(B′) has parity-0 ones).

Proof. For each S ⊆ V (Cν) let σS : Cν → {0, 1} denote the configuration which has
parity-0 ones exactly on S. So σS(x, y) = 1 if and only if one of these two conditions
hold: (x, y) ∈ S and x+ y is even, or (x, y) /∈ S and x+ y is odd.
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For all X,Y ⊆ V (Cν) we have

wCν (σX)wCν (σY ) = wCν (σX∩Y )wCν (σX∪Y )(βγ)k

where k is the number of edges uv ∈ E(G) such that {(σX(u), σX(v)), (σY (u), σY (v))} =

{(0, 0), (1, 1)} (so either u ∈ X and v /∈ X and u /∈ Y and v ∈ Y , or v ∈ X and u /∈ X
and v /∈ Y and u ∈ Y ). In particular,

wCν (σX)wCν (σY ) ≤ wCν (σX∩Y )wCν (σX∪Y ).

Let

X = {S | {(x, 0)} ∪B′ ⊆ S ⊆ V (Cν)}

Y = {S | B ∪B′ ⊆ S ⊆ V (Cν)}

By the FKG inequality [54] we have(∑
S∈X

wCν (σS)

)(∑
S∈Y

wCν (σS)

)
≤

( ∑
S∈X∧Y

wCν (σS)

)( ∑
S∈X∨Y

wCν (σS)

)

where X∧Y is the family of setsX ⊆ V (Cν) such that ({(x, 0)}∪B′)∩(B∪B′) = B′ ⊆ X,
and X ∨ Y is the family of sets X ⊆ V (Cν) such that {(x, 0)} ∪B ∪B′ ⊆ X. Finally,

Pr(σν has parity-0 ones at (x, 0) | σν(B′) has parity-0 ones) =

∑
S∈X wCν (σS)∑

S∈X∧Y wCν (σS)

Pr(σν has parity-0 ones at (x, 0) | σν(B) has parity-0 ones) =

∑
S∈X∨Y wCν (σS)∑
S∈Y wCν (σS)

.

Lemma 2.22. There is a c > 1 such that the following is true for any k ≥ 1, any
s ∈ {0, 1}, any sufficiently large d which is a multiple of 16, and any assignment {Bx}
of d-boundaries for each terminal (x, 0):

• For every parity-s terminal (x, 0),

|Pr(σk,d(x, 0) = 1 | σk,d has phase s and Bx(σk,d) = Bx)− p=| ≤ c−d.

• For every parity-(1⊕s) terminal (x, 0),

|Pr(σk,d(x, 0) = 1 | σk,d has phase s and Bx(σk,d) = Bx)− p6=| ≤ c−d.

Proof. By symmetry (rotating the gadget so that parity-0 vertices become parity-1 ver-
tices and vice-versa), it suffices to prove the inequalities for s = 0. For any m ≥ 1,
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define

p=(m) = Pr(σm(0, 0) = 1 | σm(B0,m) has parity-0 ones), and

p 6=(m) = Pr(σm(1, 0) = 1 | σm(B1,m) has parity-0 ones).

Now note that for any ν ≥ m, p=(m) and p6=(m) (as defined above) are the same as the
equivalent expressions in the gadget Cν . In particular,

p=(m) = Pr(σν(0, 0) = 1 | σν(B0,m) has parity-0 ones), and

p 6=(m) = Pr(σν(1, 0) = 1 | σν(B1,m) has parity-0 ones).

Thus, by fixing large ν and increasing m, Lemma 2.21 implies that p=(m) is weakly
decreasing in m and that p 6=(m) is weakly increasing. Thus, p= = limm→∞ p

=(m) and
p 6= = limm→∞ p

6=(m). Also, for a parity-0 terminal (x, 0), the target probability

Pr(σk,d(x, 0) = 1 | σk,d has phase 0 and Bx(σk,d) = Bx)

is between p=(d/2) and p=(d/4). Similarly, for a parity-1 terminal (x, 0), the target
probability

Pr(σk,d(x, 0) = 1 | σk,d has phase 0 and Bx(σk,d) = Bx)

is between p6=(d/4) and p 6=(d/2). (Here we use crucially the canonicity property of Bx(·);
refer to the discussion following Definition 2.16.) Thus it suffices to show

p=(d/4) ≤ p= + c−d and p 6=(d/4) ≥ p6= − c−d,

First we take a qualitative step. Pick w ≥ 8d sufficiently large that p=(w) ≤ p= +

|U0,d/4|(c′)−d/16 and p6=(w) ≥ p6= − |U1,d/4|(c′)−d/16, where c′ is the maximum of the
constants given in Lemma 2.10 and Lemma 2.11. This can be done since d is sufficiently
large and p= = limm→∞ p

=(m), and p 6= = limm→∞ p
6=(m) though w may be quite a lot

larger than d.
For i ∈ {0, 1}, let Fi be the event that there is a d/2-boundary B of vertex (i, 0) in

gadget Cw such that σw(B) has parity-0 ones. Recall from the definition that a d/2-
boundary of (i, 0) is a subset of Ui,d/4. Let Ei be the event that σw(Bi,w) has parity-0
ones.

For each i ∈ {0, 1}, applying Lemma 2.13, and Lemma 2.10 with h = d/16 and
U = Ui,d/4, and Lemma 2.11 with h = d/8, we find that, the conditional probability that
the following hold, conditioned on Ei, is at least 1− 2|Ui,d/4|(c′)−d/16.

• σw has no cross contour.

• σw has no simple contour of length at least d/16 which contains an edge between
two vertices in Ui,d/4.
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• σw has no simple contour that separates Ui,d/8 from the upper boundary of Cν .

Now, applying Lemma 2.19 with h = d/2 and ν = w and x = i, if all of these hold and
event Ei occurs then event Fi occurs. Thus,

Pr(Fi | Ei) ≥ 1− 2|Ui,d/4|(c′)−d/16.

But by Lemma 2.21, we have

Pr(σw(0, 0) = 1 | F0 ∧ E0) ≥ p=(d/4), and

Pr(σw(1, 0) = 1 | F1 ∧ E1) ≤ p6=(d/4).

So

p=(d/4) ≤ Pr(σw(0, 0) = 1 ∧ F0 | E0)

Pr(F0 | E0)
≤ Pr(σw(0, 0) = 1 | E0)

Pr(F0 | E0)
=

p=(w)

Pr(F0 | E0)

≤ p=(w)

1− 2|U0,d/4|(c′)−d/16
≤ p=(w) + 4|U0,d/4|(c′)−d/16,

since 2|U0,d/4|(c′)−d/16 ≤ 1/2.
A similar inequality holds for p6=(d/4):

p6=(d/4) ≥ Pr(σw(1, 0) = 1 ∧ F1 | E1)

Pr(F1 | E1)

≥ Pr(σw(1, 0) = 1 | E1)− Pr(¬F1 | E1)

≥ p 6=(w)− 2|U1,d/4|(c′)−d/16.

Thus,

p=(d/4) ≤ p=(w) + 4|U0,d/4|(c′)−d/16 ≤ p= + 5|U0,d/4|(c′)−d/16, and

p 6=(d/4) ≥ p6=(w)− 2|U1,d/4|(c′)−d/16 ≥ p6= − 3|U1,d/4|(c′)−d/16.

The result follows by noting that |Ui,d/4| is O(d2) and picking c = (c′)1/17, say.

We now prove the main proposition.

Proposition 2.5. There is a c > 1 such that, if d is a sufficiently large multiple of 16, k is
an integer greater than or equal to 1 and τ is a configuration τ : Tk,d → {0, 1}, then

|Pr(σk,d(Tk,d) = τ)− µk,d(τ)| ≤ c−dk2.

Proof. Fix k ≥ 1, d a sufficiently large multiple of 16, and τ : Tk,d → {0, 1}. Let c′ be
the minimum value of the constant c from the Lemmas 2.9, 2.12, and 2.22.

The probability Pr(σk,d(Tk,d) = τ) is the sum of the following probabilities (condi-
tioned on disjoint events)

• Pr(σk,d(Tk,d) = τ | σk,d does not have a phase) Pr(σk,d does not have a phase).
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• (summed over all assignments Bx of d-boundaries for each terminal (x, 0))

Pr(σk,d(Tk,d) = τ | σk,d has phase 0 and for all terminals (x, 0), Bx(σk,d) = Bx)×

Pr( σk,d has phase 0 and for all terminals (x, 0), Bx(σk,d) = Bx)

• (summed over all assignments Bx of d-boundaries for each terminal (x, 0))

Pr(σk,d(Tk,d) = τ | σk,d has phase 1 and for all terminals (x, 0), Bx(σk,d) = Bx)×

Pr( σk,d has phase 1 and for all terminals (x, 0), Bx(σk,d) = Bx)

By Lemmas 2.9 and 2.12 and Corollary 2.20, the probability of the first of these is
at most 2|V (C∗k,d)|(c′)−d/8. (We will use this below.)

Now consider an assignment Bx of d-boundaries for each terminal (x, 0). For any
two terminals (x′, 0) and (x′′, 0), the random variables σk,d(x′, 0) are σk,d(x′′, 0) are
independent, conditioned on the fact that σk,d has a given phase, and for all terminals
(x, 0), Bx(σk,d) = Bx. Also, by Lemma 2.22, for all s ∈ {0, 1},

• For every parity-s terminal (x′, 0),

∣∣Pr(σk,d(x
′, 0) = 1 | σk,d has phase s and for all terminals (x, 0), Bx(σk,d) = Bx)−p=

∣∣ ≤ (c′)−d.

• For every parity-(1⊕s) terminal (x′, 0),

∣∣Pr(σk,d(x
′, 0) = 1 | σk,d has phase s and for all terminals (x, 0), Bx(σk,d) = Bx)−p6=

∣∣ ≤ (c′)−d.

Now, for any probabilities a1, b1, . . . , ak, bk, we have∣∣∣∣∣
k∏
i=1

ai −
k∏
i=1

bi

∣∣∣∣∣ =

∣∣∣∣∣∣
k∑
j=1

a1 . . . aj−1(aj − bj)bj+1 . . . bk

∣∣∣∣∣∣ ≤
k∑
i=1

|ai − bi| ,

so if we fix a given phase, and τ assigns spin 1 to k′ terminals whose parity agrees with
that phase, and spin 1 to k′′ terminals whose parity disagrees with that phase then,
letting

p̂ = (p=)k
′
(1− p=)k−k

′
(p6=)

k′′
(1− p 6=)

k−k′′
,

we have

p̂− 2k(c′)−d

≤ Pr(σk,d(Tk,d) = τ | σk,d has the given phase and for all terminals (x, 0), Bx(σk,d) = Bx)

≤ p̂+ 2k(c′)−d.
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So summing up, Pr(σk,d(Tk,d) = τ | σk,d has the given phase) is between p̂−2k(c′)−d

and p̂+ 2k(c′)−d so, since the phases are equally likely,

µk,d(τ)− 2k(c′)−d ≤ Pr(σk,d(Tk,d) = τ | σk,d has a phase) ≤ µk,d(τ) + 2k(c′)−d.

Finally, since the probability that σk,d has no phase is at most 2|V (C∗k,d)|(c′)−d/8, as
we observed above,

µk,d(τ)−2(k+|V (C∗k,d)|)(c′)−d/8 ≤ Pr(σk,d(Tk,d) = τ) ≤ µk,d(τ)+2(k+|V (C∗k,d)|)(c′)−d/8.

The proposition follows by choosing c to be sufficiently small with respect to c′.

2.4 Proof of Theorem 2.1

2.4.1 Efficiently approximable reals

Lemma 2.23. Suppose that β, γ and λ are efficiently approximable reals satisfying (2.1).
Then p= and p6= are efficiently approximable reals.

Proof. Recall that p 6= > 0 (Lemma 2.4). Let q be a multiple of 16 greater than (2 +

log2(1/p 6=))/ log(c) where c is the constant given by Lemma 2.22. Consider the following
algorithm.

• Input an error parameter 0 < ε < 1/2.

• Set m = qdlog(ε−1)e.

• Compute rational approximations β̂, γ̂, λ̂ satisfying

βe−ε/8|E(Cm)| ≤ β̂ ≤ βeε/8|E(Cm)|

γe−ε/8|E(Cm)| ≤ γ̂ ≤ γeε/8|E(Cm)|

λe−ε/8|V (Cm)| ≤ λ̂ ≤ λeε/8|V (Cm)|.

• Using the algorithm of [104, Theorem 2.2], compute

Z =
∑
σ

β̂b(σ)γ̂c(σ)λ̂`(σ)

Z ′ =
∑

σ:σ(0,0)=1

β̂b(σ)γ̂c(σ)λ̂`(σ)

Z ′′ =
∑

σ:σ(1,0)=1

β̂b(σ)γ̂c(σ)λ̂`(σ),

where the sums range over configurations σ of Cm such that σ(B0,m) has parity-0
ones.

• Output Z ′/Z as the approximation to p=, and Z ′′/Z as the approximation to p6=.
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For the computation of Z, Z ′, and Z ′′ we use the fact that the grid graph Cm \B0,m has
treewidth m [7, Corollary 89]. We also use the fact that its tree decomposition is easy
to compute. So this algorithm runs in time bounded by a polynomial in 1/ε. We will
show that the algorithm is an FPRAS for p= and p 6=. Define

W =
∑
σ

βb(σ)γc(σ)λ`(σ)

W ′ =
∑

σ:σ(0,0)=1

βb(σ)γc(σ)λ`(σ)

W ′′ =
∑

σ:σ(1,0)=1

βb(σ)γc(σ)λ`(σ),

where the sums range over configurations σ of Cm such that σ(B0,m) has parity-0 ones.
For any σ we have

βb(σ)γc(σ)λ`(σ)e−ε/4 ≤ β̂b(σ)γ̂c(σ)λ̂`(σ) ≤ βb(σ)γc(σ)λ`(σ)eε/4

This implies e−ε/4W ≤ Z ≤ eε/4W and similarly for Z ′ and Z ′′, and therefore e−ε/2W ′/W ≤
Z ′/Z ≤ eε/2W ′/W and e−ε/2W ′′/W ≤ Z ′′/Z ≤ eε/2W ′′/W . We will show

p= ≤W ′/W ≤ p=eε/2 (2.3)

e−ε/2p 6= ≤W ′′/W ≤ p 6= (2.4)

W ′/W and W ′′/W are just the probabilities that an even or odd terminal gets as-
signed 1 in a random configuration of Cm, conditioned on a certain 2m-boundary. By
Lemma 2.21 we have p= ≤ W ′/W and W ′′/W ≤ p6= for any m, establishing the first
inequality in (2.3) and the second inequality in (2.4).

By Lemma 2.22, there exists c > 1 such that

W ′/W ≤ p= + c−q log(ε−1) = p=(1 + εq log(c)/p=).

Since
ε(q log(c)−1) ≤ (1/2)(q log(c)−1) ≤ p6=/2,

which is less than p= by Lemma 2.14, we have

W ′/W ≤ p=(1 + ε) ≤ eε.

This establishes (2.3). Similarly, by Lemma 2.22,

W ′′/W ≥ p 6= − c−q log(ε−1)

≥ p 6=(1− εq log(c)/p 6=)

≥ p 6=(1− ε/2)

≥ p 6=e−ε
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This establishes (2.4).

Lemma 2.23 gives us a way to obtain multiplicative approximations p̂= and p̂ 6= of the
real numbers p= and p6=. When we use these approximations, we will need to know that
1 − p̂= and 1 − p̂6= are also good multiplicative approximations to 1 − p= and 1 − p 6=,
respectively. As we show below, this follows from the fact that p= and p 6= are in (0, 1)

(which follows from Lemma 2.4 and Lemma 2.14). The following lemma gives us what
we need. The reason for introducing the rational p′ in the statement of the lemma is
that, since it is rational, it can be hard-wired into any algorithms (whereas a real number
can’t be).

Lemma 2.24. Suppose that p ∈ (0, 1) is an efficiently approximable real number. Let
p′ be a positive rational with p < p′ < 1. For any δ ∈ (0, 1), and any real number p̂
satisfying e−δ(1−p′)/2p̂ ≤ p ≤ eδ(1−p′)/2p̂, we have e−δ(1− p) ≤ 1− p̂ ≤ eδ(1− p).

Proof. Let δ′ = δ(1− p′)/2. Since p̂ ≥ e−δ′p ≥ p(1− δ′) ≥ p− δ′ and similarly p ≥ p̂− δ′,
we have

(1− p)
(

1− δ(1− p′)
2(1− p)

)
= (1− p)− δ′ ≤ 1− p̂ ≤ (1− p) + δ′ = (1− p)

(
1 +

δ(1− p′)
2(1− p)

)
.

Thus,
(1− p)(1− δ/2) ≤ 1− p̂ ≤ (1− p)(1 + δ/2),

which suffices.

The following problem is NP-complete [58].

Name. PlanarCubicIS.
Instance. A planar cubic graph G and a positive integer h.
Output. “Yes”, if G contains an independent set of size h, and “No”, otherwise.

Suppose that β, γ and λ are efficiently approximable reals satisfying (2.1). We will give a
randomised polynomial-time algorithm for PlanarCubicIS, using as an oracle, an FPRAS
for DegreeFourPlanarTwoSpin(β, γ, λ). The oracle will be used to approximate Z1,γ̃,λ̃(G),
for some suitably-defined parameters γ̃ and λ̃, where γ̃ is exponentially small in |V (G)|
and λ̃ is exponentially large. From this, it will be easy to determine whether G has an
independent set of size h.

Lemma 2.25. Suppose that β, γ and λ are efficiently approximable reals satisfying (2.1).
There is a polynomial-time randomised algorithm that, given a planar cubic graph G with
|V (G)| sufficiently large, outputs planar graphs J and J ′ with maximum degree at most 4

and randomised approximation schemes for positive reals K, γ̃ and λ̃. The running time
of each of these approximation schemes is bounded from above by a polynomial in |V (G)|
and the desired accuracy parameter ε. With probability at least 14/15, the parameters
satisfy λ̃ ≥ 4|V (G)| and γ̃ ≤ λ̃−|V (G)| and

e−1/4Z1,γ̃,λ̃(G) ≤ K
Zβ,γ,λ(J ′)

Zβ,γ,λ(J)
≤ e1/4Z1,γ̃,λ̃(G). (2.5)
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Proof. Let G = (V,E) be a planar cubic graph and let n denote |V |.
The algorithm for constructing J and J ′ uses a quantity δ ∈ (0, 1). It will be impor-

tant for the proof that δ is sufficiently small. Rather than giving a technical definition
here, we introduce upper bounds on δ in natural places throughout the proof. The reader
can verify that each of these upper bounds is at least the inverse of a polynomial in n
(so the algorithm runs in polynomial time).

The first step is to use the given FPRASes for β, γ and λ, and the FPRASes for p=

and p 6= from Lemma 2.23 to compute values β̂, γ̂, λ̂, p̂= and p̂6= satisfying

e−δ/3β ≤ β̂ ≤ eδ/3β,

e−δ/3γ ≤ γ̂ ≤ eδ/3γ,

e−δ/3λ ≤ λ̂ ≤ eδ/3λ,

e−δ/3p= ≤ p̂= ≤ eδ/3p=,

e−δ/3p6= ≤ p̂ 6= ≤ eδ/3p6=

e−δ/3(1− p=) ≤ 1− p̂= ≤ eδ/3(1− p=),

e−δ/3(1− p 6=) ≤ 1− p̂ 6= ≤ eδ/3(1− p 6=).

β̂ ≥ 1.

(2.6)

The first five lines in (2.6) follow directly from the definition of FPRAS in Section 1.2.
The next two lines follow from Lemma 2.24, using the fact that p= and p6= are in (0, 1),
as argued just before Lemma 2.24. Since β ≥ 1 by (2.1), we can ensure that β̂ ≥ 1

by taking β̂ to be the maximum of 1 and the output of the FPRAS. For this step we
adjust the failure probability of the FPRASes (as described in Section 1.2) so that the
probability that Equation (2.6) fails to hold is at most 1/15. Note that the running time
of the FPRASes is polynomial in 1/δ (even though the application of Lemma 2.24 means
that we have to call the FPRASes for p= and p 6= with slightly smaller values δ′.).

We will show below how to use G and these approximations to define positive integers
k1, k2 and d, which will be used in the construction of J and J ′. These quantities will
be bounded from above by a polynomial in n.

We first show how to construct J and J ′, using k1, k2, d and k = max(k1, 3k2). The
high-level construction is illustrated in Figure 2.6.

The construction of J is straightforward. Essentially, J consists of |V | copies of Ck,d,
with one copy for every vertex in V . Thus, the vertex set V (J) is the set of ordered
pairs V (J) = V × V (Ck,d) and the edge set E(J) is given by E(J) = V × E(Ck,d). We
will use C[u] to denote the gadget corresponding to vertex u ∈ V . Formally, C[u] is
the graph with vertex set {u} × V (Ck,d) and edge set {u} × E(Ck,d). To simplify the
notation, for u ∈ V and 0 ≤ j ≤ k − 1, let T 1[u, j] denote the j’th parity-1 terminal
of C[u]. Formally, this is the vertex (u, (4jd + 1, 0)) of J . Similarly, let T 0[u, j] denote
the j’th parity-0 terminal of C[u]. Formally, this is the vertex (u, (4jd + 2j, 0)) of J .
Let T [u] be the set of terminals of C[u]. Let µ0

u, µ1
u and µu be the distributions on
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and

Figure 2.6: An illustration of how G is transformed into the graphs J and J ′. A
fragment of G is shown on the left. The graph J is a collection of copies of Ck,d, one
for each vertex of G. A fragment of J is shown in the middle. The copies of Ck,d are
shown as grey annuli. The corresponding fragment of J ′ is shown on the right. The
stripes represent the sets of edges between copies of Ck,d in J ′. J ′ also contains some

“bristles” (described later) which are not shown.

configurations σ : T [u] → {0, 1} corresponding to the distributions µ0
k,d, µ

1
k,d and µ

defined in Section 2.3.4.
To simplify the description of J ′, consider a planar embedding of G in which each

vertex u of G is associated with three “endpoints” u0, u1 and u2, which are arranged
together in clockwise order in the plane. The edge set E can then be viewed as a
matchingM on the points

⋃
u∈V {u0, u1, u2} such that

• (u, v) ∈ E if and only if there are exactly two points ui and vj such that (ui, vj) ∈
M,

• No two edges ofM cross.

The vertex set V (J ′) consists of V (J), together with a set of nk1 new vertices, called
“bristles”. Formally, V (J ′) = V (J) ∪ {(u, j) | u ∈ V, 0 ≤ j ≤ k1 − 1}. Finally, the edge
set of J ′ consists of E(J), together with new edges connecting the bristles to the parity-1
terminals of the gadgets, and new edges matching the parity-0 terminals of the gadgets
(guided by the matchingM). The edges connecting the bristles to parity-1 terminals of
the gadgets are those in the set

EB = {((u, j), T 1[u, j]), u ∈ V, 0 ≤ j ≤ k1 − 1}.

It is more complicated to describe the edges matching the parity-0 terminals of the
gadgets. The idea (see Figure 2.7) that if ua is matched to vb inM (where a ∈ {0, 1, 2}
and b ∈ {0, 1, 2}) then the parity-0 terminals T 0[u, ak2], . . . , T 0[u, ak2 + k2 − 1] get
matched to the parity-0 terminals T 0[u, bk2], . . . , T 0[u, bk2 + k2 − 1]. However, there is
a further complication: To ensure that J ′ is planar we must ensure that one of these
sequences of terminals is matched in clockwise order, and the other in anti-clockwise
order. Thus, let

EM = {(T 0[u, ak2 + j], T 0[v, bk2 + k2 − 1− j]) | u < v, (ua, vb) ∈M, 0 ≤ j ≤ k2 − 1}.
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T 0[u, 3] T 0[v, 0]

T 0[u, 2] T 0[v, 1]

T 0[u, 1] T 0[v, 2]

T 0[u, 0] T 0[v, 3]

Figure 2.7: Terminals of u are matched to terminals in v, reversing the order.

Then E(J ′) = E(J) ∪ EB ∪ EM. Note that both J and J ′ are planar as required.
We next show how to define the positive integers k1, k2 and d. Define

P =

(
1− p= p=

1− p 6= p 6=

)
, M = P

(
β 1

1 γ

)
P t, W = P

(
β 1

1 γ

)(
1

λ

)

where P t denotes the transpose of the matrix P . Also, define

P̂ =

(
1− p̂= p̂=

1− p̂ 6= p̂ 6=

)
, M̂ = P̂

(
β̂ 1

1 γ̂

)
P̂ t, Ŵ = P̂

(
β̂ 1

1 γ̂

)(
1

λ̂

)

Note that if (2.6) holds then, for any s ∈ {0, 1} and s′ ∈ {0, 1},

e−δPs,s′ ≤ P̂s,s′ ≤ eδPs,s′ ,

e−δMs,s′ ≤ M̂s,s′ ≤ eδMs,s′ ,

e−δWs ≤ Ŵs ≤ eδWs.

(2.7)

The matrix M has the following informal interpretation. Suppose that two parity-0
terminals t and t′ are adjacent in J ′. and that σ : V (J ′) → {0, 1} is a configuration.
If these two terminals have spins σ(t) and σ(t′), respectively, then the edge between
them contributes a factor

(
β 1
1 γ

)
σ(t),σ(t′)

to wJ ′(σ). We will show below that, if t is a

terminal of C[u] and the spins of C[u] are chosen from the idealised distribution µsu, then
the probability that the spin of terminal t is j is Ps,j . Thus, informally, Ms,s′ captures
the expected contribution of this connection (in the idealised distribution), where s′

represents the phase of the gadget of terminal t′.
The informal interpretation ofW is that, given any configuration σ : V (J)→ {0, 1}, a

parity-1 terminal t which is connected to a bristle b will contribute a factor
[
( β 1

1 γ )( 1
λ )
]
σ(t)

to the sum
∑

σ′ wJ ′(σ
′), where the sum is over all configurations σ′ : V (J ′) → {0, 1}

which agree with σ except possibly at the bristle b. This informal description is just to
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provide intuition — the technical details are given below. The main idea is that, if the
spins of the terminals of the gadgets are chosen from the “idealised” distribution then, if
the gadget of t has phase s, then the terminal t will contribute a factor of W1⊕s to the
expected contribution from this bristle.

We now introduce some calculation which will be needed to describe the algorithm’s
computation of k1, k2, and d and also to give the definitions of the real numbers γ̃ and
λ̃. The first step is deriving some tedious but necessary bounds on the various quantities
defined above. In particular, we will define positive rational numbers ∆− and ∆+ and a
rational number ξ ∈ (0, 1) (independent of δ and n, but depending on β, γ and λ). These
will be hard-wired into the algorithm. We will prove that, provided that δ is sufficiently
small, each M̂s,s′ and Ŵs satisfies ∆− ≤ M̂s,s′ ≤ ∆+ and ∆− ≤ Ŵs ≤ ∆+. Also, each of
p̂= − p̂ 6=, 1− γ̂, p̂6= and λ̂ is at least ξ. We will also prove that p̂6= ≤ 1 (and, from (2.6),
we have β̂ ≥ 1.) Finally, we prove β̂γ̂ ≤ 1 − ξ. Here are the details (which the reader
may skip).

• By Lemmas 2.4 and 2.14, we can define positive rational numbers p− and p+ such
that every element Ps,s′ of matrix P satisfies p− ≤ Ps,s′ ≤ p+. Then

(p−)
2
(2 + β + γ) ≤Ms,s′ ≤ (p+)

2
(2 + β + γ),

so, since δ < 1,

e−1(p−)
2
(2 + β + γ) ≤ M̂s,s′ ≤ e(p+)

2
(2 + β + γ),

so to get the required bounds, we take any ∆− < e−1(p−)
2
(2 + β + γ) and any

∆+ > e(p+)
2
(2 + β + γ). The bounds on Ŵs are similar.

• To ensure p̂= − p̂6= ≥ ξ, choose rational numbers ρ1, ρ2, ρ3, and ρ4 such that
p6= < ρ1 < ρ2 < ρ3 < ρ4 < p=. These exist by Lemma 2.14, which guarantees
that p 6= < p=. Then, if δ ≤ ρ4 − ρ3, Equation (2.6) guarantees p̂= ≥ p=e−δ ≥
p=(1− δ) ≥ p=− δ ≥ p=− (ρ4−ρ3) ≥ ρ3. (Note that the calculation used p= ≤ 1.)
Similarly, if δ ≤ (ρ2 − ρ1)/2, Equation (2.6) guarantees p̂ 6= ≤ eδp6= ≤ p 6=(1 + 2δ) ≤
p6= + 2δ ≤ p6= + (ρ2 − ρ1) ≤ ρ2. (Again, we used p 6= ≤ 1.) It suffices to take any
ξ ≤ ρ3 − ρ2.

• We can similarly establish 1− γ̂ ≥ ξ by considering a sequence of rational numbers
between γ and 1 (using the fact that γ < 1 by (2.1)) and we can establish p̂6= ≥ ξ

by considering a sequence of rational numbers between 0 and p 6= (using the fact
that p 6= > 0 by Lemma 2.4).

• Then, by (2.1), λ > 0, so taking any ξ < λ, we can choose a rational number
ξ′ with 0 < ξ < ξ′ < λ. Then choosing δ ≤ log(ξ′/ξ) ensures e−δξ′ ≥ ξ so
λ̂ ≥ e−δλ ≥ e−δξ′ ≥ ξ.

• Note that the second bullet point already establishes p̂6= ≤ 1.
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• Finally, (2.1) guarantees βγ < 1, so choose rationals β′ ≥ β and γ′ ≥ γ with
β′γ′ < 1. Choose ξ sufficiently small that β′γ′ ≤ e−3ξ. Then choose δ ≤ ξ/2 to
ensure

β̂γ̂ ≤ e2δβγ ≤ eξβ′γ′ ≤ e−2ξ ≤ 1− ξ.

We can make the following conclusions.

M̂1,1 − M̂0,1 = (p̂= − p̂ 6=)((β̂ − 1)(1− p̂ 6=) + (1− γ̂)p̂ 6=) ≥ ξ3

M̂0,1 − M̂0,0 = (p̂= − p̂ 6=)((β̂ − 1)(1− p̂=) + (1− γ̂)p̂=) ≥ ξ3

Ŵ1 − Ŵ0 = (p̂= − p̂ 6=)((β̂ − 1) + (1− γ̂)λ̂) ≥ ξ3.

We can now define k2. Since

M̂0,0M̂1,1 − M̂2
0,1 = det(M̂) = det(P̂ )2(β̂γ̂ − 1) = (p̂= − p̂ 6=)

2
(β̂γ̂ − 1) ≤ −ξ3, so

M̂0,0M̂1,1

M̂2
0,1

=
M̂2

0,1 + (M̂0,0M̂1,1 − M̂2
0,1)

M̂2
0,1

≤
M̂2

0,1 − ξ3

M̂2
0,1

= 1− ξ3

M̂2
0,1

≤ 1− ξ3

(∆+)2
≤ e−ξ3/(∆+)2

.

Then let

k2 =

⌈
(n2 + n)2 log(5)(∆+)

2

ξ3

⌉
.

Then, if we ensure that δ < (ξ3/(∆+)2)/8, we have(
e4δ M̂0,0M̂1,1

M̂2
0,1

)k2

≤ e−k2ξ3/(2(∆+)2)

≤ 5−n
2−n.

Then define

γ̃ =

(
M0,0M1,1

M2
0,1

)k2

.

By (2.7),

γ̃ ≤ e4δk2

(
M̂0,0M̂1,1

M̂2
0,1

)k2

≤ 5−n
2−n.

Also, there is a randomised approximation scheme for γ̃ whose running time is at most
a polynomial in n and in the desired accuracy parameter ε.

Next, we will define k1. Recall that Ŵ1 > Ŵ0 and M̂1,1 > M̂0,1. If n is sufficiently
large with respect to log(∆+/∆−) ≥ log(Ŵ1/Ŵ0) then there is a positive integer k1
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(which the algorithm can compute) satisfying

3k2 log(M̂1,1/M̂0,1)

log(Ŵ1/Ŵ0)
+

log(4.1)n

log(Ŵ1/Ŵ0)
≤ k1 ≤

3k2 log(M̂1,1/M̂0,1)

log(Ŵ1/Ŵ0)
+

log(4.9)n

log(Ŵ1/Ŵ0)
.

Note that k1 = O(n2). Also,

(4.1)n ≤

(
Ŵ1

Ŵ0

)k1
(
M̂0,1

M̂1,1

)3k2

and (
Ŵ1

Ŵ0

)k1
(
M̂0,1

M̂1,1

)3k2

≤ (4.9)n.

Now if we ensure δ ≤ n−2.5 then, for sufficiently large n, δ ≤ n log(4.1/4)/(2k1 +6k2)

and δ ≤ n log(5/4.9)/(2k1 + 6k2), so

4n ≤

(
e−2δ Ŵ1

Ŵ0

)k1
(
e−2δ M̂0,1

M̂1,1

)3k2

and (
e2δ Ŵ1

Ŵ0

)k1
(
e2δ M̂0,1

M̂1,1

)3k2

≤ 5n.

Note that
5n ≤ 1

γ̃1/n
.

Then define

λ̃ =

(
W1

W0

)k1
(
M0,1

M1,1

)3k2

.

Note that there is a randomised approximation scheme for λ̃ whose running time is
bounded from above by a polynomial in n and the desired accuracy parameter ε. Also,
λ̃ ≤ 1

γ̃1/n so γ̃ ≤ λ̃−n and λ̃ ≥ 4n, as required.
Now let k = max(k1, 3k2). Finally, the gadget will use a parameter d. By Proposi-

tion 2.5, there is a c > 1 (not depending on k) such that, for all sufficiently large d which
are multiples of 16, and all configurations τ : Tk,d → {0, 1},

|Pr(σk,d(Tk,d) = τ)− µk,d(τ)| ≤ c−dk2.

The algorithm will choose d to be a multiple of 16 such that d = O(n3) and

c−dk2 <
(e−δŴ0)

k1n
(e−δM̂1,1)

k2|E|

(eδ(β̂ + λ̂))
k1n

(eδβ̂)
k2|E|

22kn2nn
.
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This can be done, since |E| = O(n). We will use below the fact that

max
τ :Tk,d→{0,1}

|Pr(σk,d(Tk,d) = τ)− µk,d(τ)| <
W k1n

0 M
k2|E|
1,1

(β + λ)k1nβk2|E|22kn2nn
, (2.8)

which follows from Equations (2.6) and (2.7).
Let K be the positive real given by

K =
2n

W k1n
0 M

k2|E|
1,1

.

Note that there is a randomised approximation scheme for K whose running time is at
most a polynomial in n and in the desired accuracy parameter, ε.

All that remains is to establish (2.5), which we do in the remainder of the proof. Let
T = ∪u∈V T [u] be the set of terminals in V (J). For every configuration τ : T → {0, 1},
let wt(τ) =

∑
σ∈V (J)→{0,1}:σ(T )=τ wJ(σ). The quantity wt(τ) is the contribution to

Zβ,γ,λ(J) from configurations σ with σ(T ) = τ . Similarly, let wt′(τ) be the contribu-
tion to Zβ,γ,λ(J ′) from these configurations. Since V (J ′) = V (J), we have wt′(τ) =∑

σ∈V (J)→{0,1}:σ(T )=τ wJ ′(σ). Let F (τ) denote wt′(τ)/wt(τ). Then

Zβ,γ,λ(J ′)

Zβ,γ,λ(J)
=

∑
τ :T→{0,1}wt′(τ)

Zβ,γ,λ(J)
=

∑
τ :T→{0,1}wt(τ)F (τ)

Zβ,γ,λ(J)
= E[F (σJ(T ))]. (2.9)

We can write F (τ) in terms of β, γ, and λ:

F (τ) =

∏
u∈V

k1−1∏
j=0

((
β 1

1 γ

)(
1

λ

))
τ(T 1[u,j])

 ∏
(ua,vb)∈M,u<v

k2−1∏
j=0

(
β 1

1 γ

)
τ(T 0[u,ak2+j]),τ(T 0[v,bk2+k2−1−j])


(2.10)

We now define an “idealised” distribution on configurations assigning spins to the
terminals. First, let σ̃ be a random variable which is drawn uniformly from V → {0, 1}.
Each realisation σ̃ of σ̃ can be thought of as specifying, for every vertex u ∈ V , a
phase σ̃(u) ∈ {0, 1} for the gadget C[u]. Conditioned on the realisation σ̃ = σ̃, the
random variable σ̂ : T → {0, 1} is distributed as follows: for each u ∈ V , σ̂(T [u])

is chosen independently from the distribution µ
σ̃(u)
u . Note that the (unconditioned)

random variable σ̂ has the property that σ̂(T [u]) is distributed as µu, independently of
all σ̂(T [u′]) for u′ 6= u.

We wish to estimate E[F (σJ(T ))], but the distribution of σJ(T ) is somewhat com-
plicated. Instead, we will first estimate E[F (σ̂)], and we will later use Proposition 2.5 to
show that these two quantities are close. From the definition of σ̂, we have

E[F (σ̂)] =
1

2n

∑
σ̃:V→{0,1}

E[F (σ̂) | σ̃ = σ̃].
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Now we will argue that if σ̃(u) = s then, for every parity-0 terminal t of C[u], it is the
case that Pr(σ̂(t) = j | σ̃ = σ̃) = Ps,j . (To see this, consider the possible cases. If s = 0

then, from the definition of µ0
k,d, the probability that σ̂(t) = 1 is p=, which is P0,1, but

the probability that σ̂(t) = 0 is 1− p= = P0,0. The situation is similar if s = 1.) On the
other hand, similar reasoning shows that, for every parity-1 terminal t of C[u], it is the
case that Pr(σ̂(t) = j | σ̃ = σ̃) = P1⊕s,j . Thus, we have

E[F (σ̂)] =
1

2n

∑
σ̃:V→{0,1}

∑
τ :T→{0,1}

F (τ)
∏
u∈V

k∏
j=1

Pσ̃(u),τ(T 0[u,j])P1⊕σ̃(u),τ(T 1[u,j]).

Plugging in (2.10), the contribution of each σ̃ to the right-hand-side of the above
equality is 2−n multiplied by the product of the following terms:

∏
u∈V

k1−1∏
j=0

∑
s∈{0,1}

P1⊕σ̃(u),s

((
β 1

1 γ

)(
1

λ

))
s

,

∏
u∈V

k−1∏
j=k1

∑
s∈{0,1}

P1⊕σ̃(u),s,

∏
(u,v)∈E

k2−1∏
j=0

∑
s∈{0,1}

∑
s′∈{0,1}

Pσ̃(u),sPσ̃(u),s′

(
β 1

1 γ

)
s,s′

,

∏
u∈V

k−1∏
j=3k2

∑
s∈{0,1}

Pσ̃(u),s.

The second and fourth of these terms are equal to 1, and the first and third simplify
using the matrices that we defined earlier, so we get

E[F (σ̂)] =
1

2n

∑
σ̃:V→{0,1}

∏
u∈V

W k1

1⊕σ̃(u)

∏
(u,v)∈E

Mσ̃(u),σ̃(v)
k2 .

Then, plugging in our notation from earlier, we have

E[F (σ̂)] =
1

2n

∑
σ̃:V→{0,1}

W
k1(n−`(σ̃))
1 W

k1`(σ̃)
0 M

k2b(σ̃)
0,0 M

k2(|E|−b(σ̃)−c(σ̃))
0,1 M

k2c(σ̃)
1,1

=
W k1n

0 M
k2|E|
0,1

2n

∑
σ̃:V→{0,1}

(
M0,0

M0,1

)k2b(σ̃)(M1,1

M0,1

)k2c(σ̃)(W1

W0

)k1(n−`(σ̃))

.

Replacing σ̃(u) with 1⊕ σ̃(u), we get

E[F (σ̂)] =
W k1n

0 M
k2|E|
0,1

2n

∑
σ̃:V→{0,1}

(
M1,1

M0,1

)k2b(σ̃)(M0,0

M0,1

)k2c(σ̃)(W1

W0

)k1`(σ̃)

.



53

Since G is cubic, we can count the pairs (v, (u, v)) ∈ V × E with σ̃(v) = 1 in two
ways to get 3`(σ̃) = 2c(σ̃) + (|E| − b(σ̃) − c(σ̃)). So b(σ̃) = c(σ̃) + |E| − 3`(σ̃), which
implies that

E[F (σ̂)] =
W k1n

0 M
k2|E|
0,1

2n

(
M1,1

M0,1

)k2|E| ∑
σ:V→{0,1}

(M0,0M1,1

M2
0,1

)k2
c(σ) [(

W1

W0

)k1
(
M0,1

M1,1

)3k2
]`(σ)

= K−1Z(1,γ̃,λ̃)(G) (2.11)

Plugging (2.9) and (2.11) into (2.5), it remains to prove

e−1/4 E[F (σ̂)] ≤ E[F (σJ(T ))] ≤ e1/4 E[F (σ̂)]. (2.12)

Let ψ = |E[F (σJ(T ))]− E[F (σ̂)]|. Now

ψ ≤
(

max
τ :T→{0,1}

F (τ)

) ∑
τ :T→{0,1}

|Pr(σJ(T ) = τ)− Pr(σ̂ = τ)| .

To emphasise that summation over τ : T → {0, 1} can be broken into summation over
each restriction τ(T [u]), we will write the summation index as ∀u, τ(T [u]) : T [u]→ {0, 1}.
By (2.10), F (τ) ≤ (β + λ)k1nβk2|E|, so we can write

ψ ≤ (β + λ)k1nβk2|E|
∑

∀u,τ(T [u]):T [u]→{0,1}

∣∣∣∣∣∏
u∈V

Pr(σJ(T [u]) = τ(T [u]))−
∏
u∈V

Pr(σ̂(T [u]) = τ(T [u]))

∣∣∣∣∣
= (β + λ)k1nβk2|E|

∑
∀u,τ(T [u]):T [u]→{0,1}

∣∣∣∣∣∏
u∈V

Pr(σJ(T [u]) = τ(T [u]))−
∏
u∈V

µ(τ(T [u]))

∣∣∣∣∣ .
Using the inequality |

∏
au −

∏
bu| ≤

∑
|au − bu| valid for values 0 ≤ au, bu ≤ 1, as

in the proof of Proposition 2.5, we have

ψ ≤ (β + λ)k1nβk2|E|22knn max
τ :Tk,d→{0,1}

|Pr(σk,d = τ)− µk,d(τ)| .

Applying (2.8),

ψ ≤ (β + λ)k1nβk2|E|22knn

(
W k1n

0 M
k2|E|
1,1

(β + λ)k1nβk2|E|22kn2nn

)
=
W k1n

0 M
k2|E|
1,1

2n
= K−1.

So to establish (2.12), we note that

1− 1

Z1,γ̃,λ̃(G)
= 1− 1

K E[F (σ̂)]
≤ E[F (σJ(T ))]

E[F (σ̂)]
≤ 1 +

1

K E[F (σ̂)]
= 1 +

1

Z1,γ̃,λ̃(G)
.

The result follows from the extremely crude bound Z1,γ̃,λ̃(G) ≥ 8.

We can now prove our main theorem.
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Theorem 2.1. Let β, γ and λ be efficiently-approximable reals satisfying (2.1). There is
no FPRAS for DegreeFourPlanarTwoSpin(β, γ, λ) unless NP ⊆ BPP.

Proof. We will give a randomised algorithm for PlanarCubicIS, using an FPRAS for
DegreeFourPlanarTwoSpin(β, γ, λ) as an oracle (and also using the given FPRASes for β,
γ and λ).

After receiving an instance G and h, our algorithm uses Lemma 2.25 which provides
planar graphs J and J ′ with maximum degree at most 4 and also some approximation
schemes for the reals K, γ̃ and λ̃. With probability at least 1 − 1/15, these satisfy
λ̃ ≥ 4|V (G)| and γ̃ ≤ λ̃−|V (G)| < 1 and Equation (2.5). The algorithm then makes four
calls to approximation schemes, suitably powered so that each call fails with probability
at most 1/15. Thus, with probability at least 2/3, Equation (2.5) is satisfied and all
calls to the approximation schemes succeed. In that case, we will show how to determine
(from the outputs of the approximation schemes) whether or not G has an independent
set of size h.

Let n = |V (G)|. By Equation (2.5), we have

e−1/4K
Zβ,γ,λ(J ′)

Zβ,γ,λ(J)
≤ Z1,γ̃,λ̃(G) ≤ e1/4K

Zβ,γ,λ(J ′)

Zβ,γ,λ(J)
.

Using the given approximation schemes for Zβ,γ,λ(J ′), Zβ,γ,λ(J) and K, each with
accuracy parameter 1/12 and failure probability 1/15, we can compute a value Ẑ which,
with probability at least 1− 3/15, satisfies

e−1/4Ẑ ≤ K
Zβ,γ,λ(J ′)

Zβ,γ,λ(J)
≤ e1/4Ẑ,

so
e−1/2Ẑ ≤ Z1,γ̃,λ̃(G) ≤ e1/2Ẑ. (2.13)

Using the given approximation scheme for λ̃ with accuracy parameter 1/2h and failure
probability 1/15, we can compute a value λ̂ which, with probability at least 1 − 1/15,
satisfies e−1/2hλ̂ ≤ λ̃ ≤ e1/2hλ̂ so

e−1/2λ̂h ≤ λ̃h ≤ e1/2λ̂h. (2.14)

Suppose that all four calls to the approximation schemes succeed so that (2.13) and
(2.14) hold. Recall that

Z1,γ̃,λ̃(G) =
∑

σ:V (G)→{0,1}

γ̃c(σ)λ̃`(σ).

If G has an independent set of size h then Z1,γ̃,λ̃(G) ≥ λ̃h so, plugging in (2.13) and
(2.14),

Ẑ ≥ e−1/2Z1,γ̃,λ̃(G) ≥ e−1/2λ̃h ≥ e−1λ̂h.
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Also, if G has no independent set of size h, then Z1,γ̃,λ̃(G) ≤ 2n max(λ̃h−1, λ̃nγ̃) ≤
2nλ̃h−1. So, plugging in (2.13) and (2.14) and our lower bound for λ̃,

Ẑ ≤ e1/2Z1,γ̃,λ̃(G) ≤ e1/22nλ̃h−1 ≤ e1/2 2nλ̃h

4n
= e1/22−nλ̃h ≤ e2−nλ̂h.

As long as n ≥ 3, e−1 > e2−n, so it is possible to determine from Ẑ and λ̂ whether
or not G has an independent set of size h.

2.5 Approximating the log-partition function

We start with a preliminary lemma, which will help us to show that our approximation
is sufficiently accurate.

Lemma 2.26. Suppose that β, γ and λ are real numbers satisfying β ≥ 1 > γ ≥ 0 and
λ ≥ 1. Then, for every planar graph G, Zβ,γ,λ(G) ≥ (1 + λ)|V (G)|/4.

Proof. Let I be the largest colour class in a proper 4-colouring of G. Then I is an
independent set of G of size at least |V (G)|/4. For every configuration σ : V (G)→ {0, 1}
which assigns spin 0 to every vertex in V (G) \ I, wG(σ) ≥ λ`(σ). Thus Zβ,γ,λ(G) ≥
(1 + λ)|I|.

Our approximation algorithm is inspired by Baker’s approximation schemes for opti-
misation problems on planar graphs [2]. For a good explanation of her technique (which
we use in our exposition here), see Borradailes’s notes [12]. We will use the following
notation (from [12]) to decompose a planar graph G = (V,E) which is embedded in
the plane. We first define the level of each vertex. Vertices on the boundary of the
embedding have level 0. Then, for i ∈ {0, . . . , n}, the vertices with level i are those
that are on the boundary on the graph formed from G by deleting all vertices whose
level is less than i. For a fixed parameter k, and for every i ∈ {0, . . . , k − 1}, let
Vi = {v ∈ V | The level of vertex v is equal to i modulo k}. Let Gi be the graph G−Vi.
By construction, Gi is (k − 1)-outerplanar. Also, Bodlaender [7] had shown that every
k-outerplanar graph has treewidth at most 3k− 1. Also, this tree decomposition is easy
to compute. Using a data structure of Lipton and Tarjan [80], Baker shows that the
levels of vertices can be computed in O(|V |) time.

We can now prove Theorem 2.3.

Theorem 2.3. Suppose that β, γ and λ are efficiently approximable reals satisfying β ≥
1 > γ ≥ 0 and λ ≥ 1. There is a PRAS for PlanarLogTwoSpin(β, γ, λ).

Proof. Consider input G = (V,E) with at least 3 vertices and an accuracy parameter
ε ∈ (0, 1). Let n = |V | and m = |E| ≤ 3n. Let β+, β−, λ+, λ−, γ+ and γ− be rational
numbers (built into the algorithm) such that β+ ≥ β ≥ β− ≥ 1, 1 > γ+ ≥ γ ≥ γ− ≥ 0,
and λ+ ≥ λ ≥ λ− ≥ 1. Let k be any integer satisfying

k ≥ 32 log(2λ+) + 96 log(β+)

ε log(1 + λ−)
.
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Then let
δ =

2n log(2λ+)

k(n+m)
.

Using the given FPRASes for β, γ and λ, compute β̂, γ̂ and λ̂ satisfying e−δβ ≤ β̂ ≤
eδβ, e−δλ ≤ λ̂ ≤ eδλ and e−δγ ≤ γ̂ ≤ eδγ. As in the proof of Lemma 2.25, adjust the
output of the FPRASes to ensure β+ ≥ β̂ ≥ β−, γ+ ≥ γ̂ ≥ γ−, and λ+ ≥ λ̂ ≥ λ−.

The first step is to compute a value Ẑ satisfying

Ẑ ≤ Z
β̂,γ̂,λ̂

(G) ≤ (2λ+)
2n/k

(β+)
12n/k

Ẑ. (2.15)

This step is accomplished as follows.

1. Using Baker’s algorithm, construct the graphs Gi for i ∈ {0, . . . , k − 1}. Each of
these has treewidth at most 3(k − 1)− 1.

2. Choose i ∈ {0, . . . , k − 1} as follows. Let I = {i | |Vi| ≤ 2n/k}. Note that
|I| ≥ k/2. Now consider the 2m endpoints of edges in E. Choose i ∈ I so that
Vi contains at most (2m)/|I| of these. Note that |Vi| ≤ 2n/k and the number of
edges with endpoints in Vi is at most 4m/k ≤ 12n/k.

3. Use the algorithm of Yin and Zhang [104, Theorem 2.2] to compute Ẑ = Z
β̂,γ̂,λ̂

(Gi).
The running time of Yin and Zhang’s algorithm is at most the product of a poly-
nomial in n and an exponential function in the treewidth of Gi. In order to apply
the algorithm, we first express the partition function Z

β̂,γ̂,λ̂
(Gi) as the solution to

a Holant problem Holant(G,F) with regular symmetric F . See [104] for definitions
and details.

4. Equation (2.15) now follows by noting that

Z
β̂,γ̂,λ̂

(G) =
∑

τ : V (Gi)→{0,1}

wGi(τ)
∑

τ ′:Vi→{0,1}

λ̂`(τ
′)β̂b(τ,τ

′)γ̂c(τ,τ
′),

where `(τ ′) is the number of vertices u ∈ Vi with τ ′(u) = 1 and b(τ, τ ′) is the sum
of the number of edges (u, v) with u ∈ V (Gi) and v ∈ Vi and τ(u) = τ ′(v) = 0

and the number of edges (u, v) with u ∈ Vi and v ∈ Vi and τ ′(u) = τ ′(v) = 0

and c(τ, τ ′) is defined similarly (with spin 1). Then
∑

τ ′:Vi→{0,1} λ̂
`(τ ′)β̂b(τ,τ

′)γ̂c(τ,τ
′)

is at least 1 (since τ ′ can assign spin 0 to every vertex in Vi) and it is at most
22n/k(λ̂)

2n/k
β̂

12n/k
.

To finish, note that

e−δ(n+m)Zβ,γ,λ(G) ≤ Z
β̂,γ̂,λ̂

(G) ≤ eδ(n+m)Zβ,γ,λ(G),

so since
δ(n+m) ≤ 2n

k
log(2λ+)
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and (from Lemma 2.26)
logZβ,γ,λ(G) ≥ (n/4)(1 + λ−),

and
(ε/2)(n/4) log(1 + λ−) ≥ 4n

k
log(2λ+) +

12n

k
log(β+),

e−ε log(Zβ,γ,λ(G)) ≤ log(Zβ,γ,λ(G))(1− ε/2)

≤ logZβ,γ,λ(G)− δ(n+m)− 2n

k
log(2λ+)− 12n

k
log(β+)

≤ logZ
β̂,γ̂,λ̂

(G)− 2n

k
log(2λ+)− 12n

k
log(β+)

≤ log Ẑ.

Similarly,

log Ẑ ≤ logZ
β̂,γ̂,λ̂

(G)

≤ δ(n+m) + logZβ,γ,λ(G)

≤ 2n

k
log(2λ+) + logZβ,γ,λ(G)

≤ (1 + ε/2) logZβ,γ,λ(G)

≤ eε logZβ,γ,λ(G).





Chapter 3

Approximating Holant problems by
winding

(This chapter is a revised version of [84], without the introduction to FPRASes and
#CSPs.)

We give an FPRAS for Holant problems with parity constraints and not-all-equal
constraints, a generalisation of the problem of counting sink-free-orientations. The ap-
proach combines a sampler for near-assignments of “windable” functions – using the
cycle-unwinding canonical paths technique of Jerrum and Sinclair – with a bound on
the weight of near-assignments. The proof generalises to a larger class of Holant prob-
lems; we characterise this class and show that it cannot be extended by expressibility
reductions.

We then ask whether windability is equivalent to expressibility by matchings circuits
(an analogue of matchgates), and give a positive answer for functions of arity three.

3.1 Introduction

In this chapter we will show that the following problem has an FPRAS.

Name. #ParityNAE

Instance. A multigraph G in which each vertex is labelled Even, Odd, or NAE
Output. The number of subsets F ⊆ E(G) such that:

• each Even vertex has an even number of incident edges in F

• each Odd vertex has an odd number of incident edges in F

• each NAE vertex has at least one incident edge in F and at least one incident
edge in E(G) \ F

Theorem 3.1. There is an FPRAS for #ParityNAE.
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←→

NAE

NAE

NAE

Odd

Odd

Odd

Odd

Odd

Figure 3.1: Reduction from #SFO to #ParityNAE. The edge with two arrows is a
skew edge. A sink-free orientation is illustrated with the corresponding set F draw in

thick grey.

3.1.1 Relationships with other counting problems

Consider a graph G. An orientation of G is a choice of orientation of each edge: exactly
one of the endpoints of each edge is chosen to be the head of the edge, while the other
endpoint is the tail. An orientation is sink-free if each vertex is a tail of some edge. We
can also allow some edges of G to be designated “skew edges”. An orientation of G then
consists of an orientation of each ordinary edge, and a choice of which skew edges will
point outwards. If a skew edge points outwards, both its endpoints are its heads, and
otherwise both its endpoints are its tails. The problem #SFO takes as input a multigraph
G where each edge is designated ordinary or skew, and outputs the number of sink-free
orientations of G.

Bubley and Dyer studied #SFO and gave an FPRAS [15]. They showed as a corol-
lary that there is an FPRAS for counting solutions to a formula in conjunctive normal
form in which every variable appears at most twice, which they showed is a #P-hard
problem. The first part of their argument was a standard reduction to sampling - finding
a fully polynomial almost uniform sampler (FPAUS) for sink-free orientations. Then,
they constructed a Markov chain that converges to the uniform distribution on sink-free
orientations, and bounded its mixing time using a two-stage path coupling argument.
Cohn, Pemantle and Propp later gave an exact sampler (for a simpler problem where
skew edges are not allowed) with O(|V |·|E|) mean running time, using a kind of rejection
sampling [38].

A simple reduction from #SFO to #ParityNAE is illustrated in Figure 3.1, showing
that #ParityNAE generalises the problem of counting sink-free orientations in a graph
(while also allowing parity constraints). Given an instance G of #SFO, label all the
vertices NAE, subdivide each non-skew edge uv, label the new vertices (which we will
refer to as “muv”) Odd, then attach a degree-one Odd vertex to each NAE vertex. This
gives an instance G′ of #ParityNAE. For all orientations O of G define a set FO ⊆ E(G′)

by taking all edges attached to degree-one Odd vertices and all edges corresponding to
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heads: for non-skew edges uv take umuv ∈ F if and only if u is the head of uv, and for
skew edges uv take uv ∈ F if and only if uv is oriented outwards. Each degree-two Odd
vertex in G′ has exactly one incident edge in FO, and each NAE vertex in G′ has at least
one incident edge in FO, and if O is sink-free then each NAE vertex in G′ has at least one
incident edge not in FO. Furthermore, any F ⊆ E(G′) satisfying these conditions is FO
for some sink-free orientation O. The function O 7→ FO therefore gives a bijection from
sink-free orientations of G to the set of subsets of E(G′) that get counted by #ParityNAE.

#ParityNAE, at least when restricted to bounded-degree graphs, is a type of Boolean
Holant problem. In this discussion we will take the codomain to be the set of complex
numbers; functions {0, 1}k → C are called signatures in this context. But afterwards we
will restrict to non-negative rational-valued functions.

For all positive integers k define Evenk,Oddk,NAEk : {0, 1}k → {0, 1} by setting
Evenk(x1, . . . , xk) to be 1 if and only if x1 + · · ·+ xk is even, setting Oddk(x1, . . . , xk)

to be 1 if and only if x1 + · · ·+ xk is odd, and setting NAEk(x1, . . . , xk) to be 1 if and
only if 1 ≤ x1 + · · ·+ xk ≤ k − 1. The restriction of #ParityNAE to graphs of maximum
degree at most d is then equivalent to Holant(Fd) where

Fd = {Even1,Odd1,NAE1, . . . ,Evend,Oddd,NAEd}.

By Theorem 3.1, this problem has an FPRAS for each d.
We now recall the relationships between #CSPs and Holant problems in the Hadamard

basis as discussed in [66]. Note that while these equivalences are usually stated in the
context of exact evaluation, the reductions just involve preprocessing the input, and so
also apply in the context of approximate counting. Firstly, equality constraints can be
used to break the read-twice restriction: if EQ3 is in F then Holant(F) is equivalent
to #CSP(F) [29, Proposition 5]. Secondly, let F̂ : {0, 1}k → C denote the Hadamard
transform, defined by

F̂ (x1, . . . , xk) = 2−k/2
∑

y∈{0,1}k
F (y1, . . . , yk)(−1)x1y1+···+xkyk .

Holant(F) is always equivalent to Holant({F̂ | F ∈ F}); see [29, Proposition 1] or

[82]. Also, ̂̂F = F for any F . So if F contains ÊQ3, then Holant(F) is equivalent to
#CSP({F̂ | F ∈ F}). But ÊQ3 is just Even3 multiplied by a factor of

√
2 (which can

be easily accounted for).
Taking F to be the set Fd defined above, with d ≥ 3, we find that the restriction

of #ParityNAE to instances of degree at most d is equivalent to #CSP({F̂ | F ∈ Fd}).
By Theorem 3.1 this problem has an FPRAS for each d. In this sense, #ParityNAE

generalises #SFO to a #CSP. Note that Ôdd1(0) = 1/
√

2 and Ôdd1(0) = −1/
√

2. So
we get a class of FPRASes for #CSPs using functions with mixed signs.
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3.1.2 Techniques

Like Bubley and Dyer we will use Markov chains, but to bound the mixing time we will
instead apply the canonical paths technique. More precisely, we will use a multicom-
modity flow with cycle-unwinding as used by Jerrum and Sinclair [70]. They proved the
following relevant result: for any polynomial p we can sample efficiently from the uniform
distribution of perfect matchings, in graphs G satisfying

number of matchings of order 1
2 |V (G)| − 1

number of matchings of order 1
2 |V (G)|

≤ p(|V (G)|). (3.1)

Recall that a matching of a graph is a set of edges not sharing any vertices, and a
matching is perfect if it has order |V (G)|/2. A perfect matching is a satisfying assignment
to a certain system of constraints: each edge is either IN or OUT, and every variable
enforces a perfect matchings constraint, that exactly one of its incident edges is IN.
From this perspective a natural question is: what weight-functions can we use instead of
perfect matchings constraints? We show that Jerrum and Sinclair’s result generalises in
a certain sense to windable functions, defined as follows.

Definition 3.2. For any finite set J and any configuration x ∈ {0, 1}J defineM′x to be
the set of partitions of {i | xi = 1} into pairs and singletons. A function F : {0, 1}J →
Q≥0 is windable if there exist values B(x,y,M) ≥ 0 for all x,y ∈ {0, 1}J and all
M ∈M′x⊕y satisfying:

1. F (x)F (y) =
∑

M∈M′x⊕y
B(x,y,M) for all x,y ∈ {0, 1}J , and

2. B(x,y,M) = B(x⊕ S,y ⊕ S,M) for all x,y ∈ {0, 1}J and all S ∈M ∈M′x⊕y.

Here x ⊕ S denotes the vector obtained by changing xi to 1 − xi for the one or two
elements i in S.

The next question is: what kinds of constraints guarantee a bound like (3.1)? We
give one answer: strictly terraced functions.

Definition 3.3. A function F : {0, 1}J → Q≥0 is strictly terraced if

F (x) = 0 =⇒ F (x⊕ ei) = F (x⊕ ej) for all x ∈ {0, 1}J and all i, j ∈ J.

Here x⊕ ei denotes the vector obtained by changing xi to 1− xi.

We will discuss these definitions more throughout the chapter. Using properties of
these classes, we will establish Theorem 3.1. A feature of the techniques is that they
cannot be extended by expressibility reductions. We make this precise in the following
theorem. Circuits are a natural type of gadget for Holant problem reductions which
we define formally in Section 3.2.1. If G consists of weight-functions of circuits using
functions in G′, then Holant(G) ≤AP Holant(G′). So one might hope to find an FPRAS
for a problem Holant(G) by simulating each constraint by a circuit using windable strictly
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terraced functions, then applying the techniques of this chapter to the resulting problem.
The first bullet point of the following theorem shows that this approach does not give
any extra tractable problems.

Theorem 3.4. Let F be the class of strictly terraced windable functions. Then

• F is closed under taking weight-functions of connected 1 circuits

• F contains Evenk, Oddk, and NAEk for all k ≥ 1

• for all finite subsets F ′ ⊂ F there is an FPRAS for Holant(F ′)

The reason to take F ′ to be finite is to make sense of the computational problem
Holant(F ′). As in Theorem 3.1, if one is careful about how the input is specified, it is
also possible to allow infinite F ′ in some cases.

3.1.3 Matching circuits

In Section 3.7 we will consider a natural type of gadget for reducing Holant problems to
#PM, the problem of counting the number of perfect matchings in a graph.

As mentioned in Section 1.2.1, #PM is #P-complete. This suggests that there is
no efficient exact algorithm, leaving the question of whether there is an approximation
algorithm. A major result in this direction is that there is an FPRAS for #PM restricted
to bipartite graphs [72]. Our study of matching circuits is an attempt to identify which
Holant problems reduce to #PM in the sense of expressibility.

Take a clique of order four K4, and attach an outgoing edge di at the i’th vertex
for each 1 ≤ i ≤ 4. For each of the sixteen possible subsets M ⊆ {d1, d2, d3, d4} of
the outgoing edges, we can count the number F (M) of ways to add internal edges of
K4 to the edges in M to obtain a perfect matching. Because K4 by itself has 3 perfect
matchings, we have F (∅) = 3, while F ({d1}) = 0 and F ({d1, d2, d3, d4}) = 1.

We will say that a function F : {0, 1}J → Q≥0 has a matchings circuit if there is a sim-
ilar graph fragment, with outgoing edges J , and such that F (x) is the number of perfect
matchings containing the outgoing edges {i ∈ J | xi = 1}. In this chapter, we will think
of Holant instances as a graph whose vertices are the constraints and whose edges are
the variables. Substituting each vertex of a Holant({F}) instance by the graph fragment
gives a reduction from Holant({F}) to #PM. As a useful generalisation, our definition
of matchings circuits will also allow non-negative edge-weights and a “fugacity” at each
vertex. These parameters were used in [70] to study permanents and monomer-dimer
systems. The extra flexibility turns out not to increase the computational complexity
beyond #PM (even though #PM does not involve edge-weights or fugacities). We show:

Theorem 3.5. If F is a finite set of weight-functions that have matchings circuits, then
Holant(F) ≤AP #PM.

1The restriction to connected circuits is a technical convenience to keep F in Theorem 3.4 as simple
as possible – disconnected circuits are only useful for expressing functions that are decomposable in the
sense of Section 5.1.6.
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The main result is the following theorem.

Theorem 3.6. Let F : {0, 1}3 → Q≥0. The following are equivalent:

1. F is windable

2. For all x1, x2, x3 ∈ {0, 1} we have

F (x1, x2, x3)F (1− x1, 1− x2, 1− x3)

≤ F (x1, x2, 1− x3)F (1− x1, 1− x2, x3)

+ F (x1, 1− x2, x3)F (1− x1, x2, 1− x3)

+ F (x1, 1− x2, 1− x3)F (1− x1, x2, x3)

3. F has a matchings circuit

Theorem 3.6 gives a class of problems that reduce to counting perfect matchings. For
example, the Holant problem allowing only the relation {(0, 0, 0), (1, 0, 0), (0, 1, 0), (1, 0, 1), (0, 1, 1)}
reduces to #PM, but is not known to have an FPRAS.

3.1.4 Related work

A matroid is sbo (strongly basis orderable) [42] if for all bases A and B there is a bijection
π : A \ B → B \ A such that for all X ⊆ A \ B the set (A ∪ π(X)) \ X is a basis.
Bouchet and Cunningham generalised the sbo property as linkability for the class of
even delta-matroids, and showed that this class is closed under an analogue of circuits
[13]. These conditions are just windability over the two-element Boolean semiring (B =

{0, 1},max,min), for the set of bases when considered as a function {0, 1}J → B, by
taking the characteristic vector of characteristic vectors of bases. Gambin used the sbo
property to approximately count the number of bases in certain matroids [57].

Valiant [98] introduced matchgates and matchcircuits, which are similar to matchings
circuits but give efficient exact algorithms. Matchcircuits can be understood as planar
graphs with edge-weights, with no restriction to non-negative numbers. Cai and Choud-
hary characterised the expressibility of matchgates [28]. The name “matchings circuits”
used in this chapter is meant to suggest a version of matchgates.

As discussed in Section 1.5.5, the focus on (the negative side of) expressibility for
approximate counting problems appears in [22], where logsupermodular functions are
shown not to express non-logsupermodular functions in the context of #CSPs.

Yamakami [103] has given partial classifications for classes of Holant problems, and
we will also study these problems in Chapter 5. The bulk of these results deal with in-
tractability: reductions from a named problem such as #SAT to a given Holant problem.
The focus of the current chapter is on tractability: either in the absolute sense of an
FPRAS, or by reductions to #PM.

The equivalence between #PM and certain points of the Tutte polynomial mentioned
in Example 1.2 can be seen as an example of a #CSP using weight functions with mixed
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signs studied in the context of approximate counting. By the proof of [59, Lemma 7], the
following problems are equivalent in the sense of approximate counting2 , for any fixed
y < −1.

• #PM

• #CSP({By}) where By : {0, 1}2 → Q is defined by By(0, 0) = By(1, 1) = y and
By(0, 1) = By(1, 0) = 1

• evaluating the Tutte polynomial at the point (x, y) where (x− 1)(y − 1) = 2

3.1.5 Outline

In Section 3.3, we adapt the conductance argument of Jerrum and Sinclair to “even-
windable” functions, which are a slightly simpler version of windable functions. We
study windable functions in Section 3.4. We study strictly terraced functions in Section
3.5. In Section 3.6 we establish Theorem 3.1 and Theorem 3.4. Finally, in Section 3.7
we discuss matchings circuits and establish Theorem 3.5 and Theorem 3.6.

3.2 Preliminaries

In this chapter, we will use bold face to distinguish between sets S ⊆ J and the charac-
teristic vector S. Similarly the bold version of a relation R ⊆ {0, 1}J is the corresponding
zero-one-valued weight-function.

We will sometimes allow indexing sets to be partially enumerated in a certain way.
This is for notational power: the enumerated indices are easy to refer to explicitly, while
the unenumerated indices are easy to fix. For all positive integers k and all finite sets J ,
when k + J is used as an indexing set it means the disjoint union of {1, . . . , k} and J .
Elements of {0, 1}k+J will be denoted by (x1, . . . , xk;y) where x1, . . . , xk ∈ {0, 1} and
y ∈ {0, 1}J .

The distance |{i ∈ J | xi 6= yi}| between two configurations x,y ∈ {0, 1}J will be
denoted d(x,y). We say F is even3 if d(x,y) is even for all x,y with F (x), F (y) > 0.

For all F : {0, 1}J → Q≥0 and y ∈ {0, 1}J define the flip of F by y to be the
weight-function F ′ : {0, 1}J → Q≥0 defined by F ′(x) = F (x⊕ y) for all x ∈ {0, 1}J . For
all i ∈ J define ei ∈ {0, 1}J (where J is implicit) to be the characteristic vector of {i}.

2For a generalisation of the definition of FPRAS allowing approximate negative values.
3This may be confusing terminology - an even function can be non-zero on vectors of odd Hamming

weight. But it is a common definition for delta-matroids.
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internal edge

incidence

external edge

vertex

Figure 3.2: Terminology for graph fragments.

For all finite sets J we will use the relations

EvenJ = {x ∈ {0, 1}J |
∑
i∈J

xi is even}

OddJ = {x ∈ {0, 1}J |
∑
i∈J

xi is odd}

NAEJ = {x ∈ {0, 1}J | 1 ≤
∑
i∈J

xi ≤ |J | − 1}

EvenNAEJ = EvenJ ∩NAEJ

EvenJ and OddJ are parity relations. The last relation EvenNAEJ is only used for
calculations (and only with |J | even).

3.2.1 Circuits

In this chapter, circuits are a type of graph equipped with weight-functions at each vertex,
and allowing external edges. A little care is needed to allow self-loops and asymmetric
weight-functions.

A graph fragment G is specified by:

• a set JG whose elements are called incidences

• a set V G of vertices, and sets JGv , v ∈ V G, that partition JG

• a set AG ⊆ JG whose elements are called external edges

• a partition EG of JG \AG into pairs called internal edges

See Figure 3.2.
A circuit ϕ is graph fragment equipped with a constraint Fϕv : {0, 1}J

ϕ
v → Q≥0 for

each vertex v. We can also use a relation R ⊆ {0, 1}J
ϕ
v as a constraint by taking Fϕv = R.

We will drop the superscript ϕ where there is only one graph or circuit in context.
G is closed if it has no external edges. Standard graph-theoretic terminology extends

to graph fragments. In particular we will refer to connected graph fragments. An edge
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is either an internal edge or an external edge. A vertex v and an internal edge e are
incident if Jv intersects e. If an internal edge e is uniquely identified by the vertices u, v
it is incident to, we will denote e by uv.

Given a circuit ϕ, for any configuration x of J ,

• x is an assignment (with respect to E) if xi = xj for all {i, j} ∈ E.

• x|Jv denotes the restriction of x to Jv.

• The weight of x is wtϕ(x) =
∏
v∈V Fv(x|Jv).

The weight-function of ϕ is the function [[ϕ]] : {0, 1}A → Q≥0 defined by

[[ϕ]] (x) =
∑
x′

wtϕ(x′) (x ∈ {0, 1}A)

where the sum is over extensions of x to assignments x′ : {0, 1}J → Q≥0 with respect to
E. If a weight-function F is equal to [[ϕ]], we will say that F has the circuit ϕ.

Another way to think of a circuit is as a “read-twice pps-formula”, a special case of
the pps-formulas of [22]. For example, consider an equation

F (x) =
1∑
y=0

1∑
z=0

G(x, y)G(y, z)H(z) (x ∈ {0, 1}).

Note how on the right-hand-side, each bound (summed) variable appears exactly twice,
and each free (unsummed) variable appears exactly once. Any equation of this form
defines a circuit in a natural way: incidences correspond to the variable occurrences
x, y, y, z, z; vertices correspond to terms G(x, y), G(y, z), H(z); the sets Jv are scopes for
each term; external edges correspond to free variables; and internal edges correspond to
summed variables.

For any partition E of a finite set J into pairs, for all non-negative integers k, a
k-assignment with respect to E is a configuration x of J such that xi = xj for all but
exactly k pairs {i, j} ∈ E. So an assignment is a 0-assignment. For all closed circuits ϕ
and all integers k ≥ 0 define

Zk(ϕ) =
∑

k-assignments x

wtϕ(x).

So Z0(ϕ) is just [[ϕ]] (evaluated on the empty configuration).
In this chapter, we use an alternate definition of Holant problems:

Name. Holant(F)

Instance. A closed circuit ϕ using copies of weight-functions in F
Output. [[ϕ]]

This is equivalent to the definition given in Section 1.3 of Holant problems as a
read-twice #CSP, because each edge in a closed circuit is used exactly twice.
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⊕ = = ⊕

Figure 3.3: An example of constructing perfect matchings by symmetric differences.
From left to right, M , M ′, M4M ′ (with P drawn in thick solid grey), M4P , and

M ′4P .

By substituting circuits, if F has a circuit using copies of weight-functions from a finite
set F , then Holant(F ∪{F}) ≤AP Holant(F). This justifies the focus on expressibility in
this chapter.

3.3 Even-windable functions

3.3.1 Idea

Windability is an abstraction of a property of the distribution of perfect matchings in a
graph with external edges. We will illustrate the idea briefly by the arity 4 case, where
windability is already used implicitly in [70]. But higher-arity conditions are important
for showing that windability is preserved by circuits.

Consider a graph G with four external edges e1, e2, e3, e4. For all x1, x2, x3, x4,
let F (x1, x2, x3, x4) be the number of perfect matchings in G that include the out-
going edges {ei | xi = 1}. So F (0, 0, 0, 0)F (1, 1, 1, 1) is the number of pairs of per-
fect matchings (M,M ′) such that M includes all the external edges and M ′ includes
none. But for any such pair (M,M ′), the symmetric difference M4M ′ consists of cy-
cles and paths, and the path starting at e1 ends at either e2, e3, or e4, depending on
the choice of (M,M ′). Thus F (0, 0, 0, 0)F (1, 1, 1, 1) splits into three terms. Denote
these numbers by B((0, 0, 0, 0), (1, 1, 1, 1),M) where M is a partition of {1, 2, 3, 4} into
pairs: either {{1, 2}, {3, 4}} or {{1, 3}, {2, 4}} or {{1, 4}, {2, 3}}. For the clique exam-
ple, Figure 3.3 (after numbering the external edges arbitrarily), we find that the value of
B((0, 0, 0, 0), (1, 1, 1, 1), {{1, 2}, {3, 4}}) (for example) is 1, because there is precisely one
perfect matching of the clique giving a path from the first and second external edges. In
a similar way we can define B((1, 1, 0, 0), (0, 0, 1, 1),M).

WhenM4M ′ contains a path P from e1 to e2, the setsM4P andM ′4P are also per-
fect matchings - see Figure 3.3. The only external edges inM4P are e3 and e4, while the
only external edges inM ′4P are e1 and e2. ThusB((0, 0, 0, 0), (1, 1, 1, 1), {{1, 2}, {3, 4}})
equals B((1, 1, 0, 0), (0, 0, 1, 1), {{1, 2}, {3, 4}}.

In this section, for simplicity, we will consider only even functions.

3.3.2 Definition

For any configuration x ∈ {0, 1}J defineMx to be the set of partitions of {i ∈ J | xi = 1}
into pairs. In particular, if

∑
i∈J xi is odd thenMx = ∅.
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A function F : {0, 1}J → Q≥0 is even-windable (with witness B) if there exist
values B(x,y,M) ≥ 0 for all x,y ∈ {0, 1}J and all M ∈ Mx⊕y, i.e. all partitions M of
the set {i ∈ J | xi 6= yi} into pairs, satisfying:

EW1. F (x)F (y) =
∑

M∈Mx⊕y
B(x,y,M) for all x,y ∈ {0, 1}J , and

EW2. B(x,y,M) = B(x⊕ S,y ⊕ S,M) for all x,y ∈ {0, 1}J and all S ∈M ∈Mx⊕y.

Note that in the second condition, S is a pair {i, j} in M : we are swapping the values of
xi and yi, and swapping the values of xj and yj . By swapping a sequence of pairs, EW2
is equivalent to

EW2’. B(x,y,M) = B(x⊕ S1 ⊕ · · · ⊕ Sk,y⊕ S1 ⊕ · · · ⊕ Sk,M) for all x,y ∈ {0, 1}J and
all S1, . . . , Sk ∈M ∈Mx⊕y.

3.3.3 2-decompositions

Using pinnings, the even-windability conditions can be stated in a form that is sometimes
easier to check. A functionH : {0, 1}J → Q≥0 has a 2-decomposition if there are values
D(x,M) ≥ 0, where x ranges over {0, 1}J and M ranges over partitions of J into pairs,
such that:

1. H(x) =
∑

M D(x,M) for all x, where the sum is over partitions of J into pairs,
and

2. D(x,M) = D(x⊕ S,M) for all x,M and all S ∈M .

In particular if |J | is odd then the first condition forces H to be identically zero.
A function F is even-windable if and only if for all pinnings G of F the function

GG has a 2-decomposition. For the forwards direction, given a witness B that F is
even-windable, for each I ⊆ J and each p ∈ {0, 1}J\I define

Dp(x,M) = B((x,p), (x,p),M) (x ∈ {0, 1}I ,M ∈MI)

to obtain a 2-decomposition Dp of GG where G : {0, 1}I → Q≥0 is the pinning of F by
p. Indeed EW1 implies that for all x ∈ {0, 1}I ,

GG(x) = F (x,p)F (x,p) =
∑

M∈MI

B(x,x⊕ I,M) =
∑

M∈MI

Dp(x,M),

while EW2 implies

Dp(x,M) = B((x,p), (x,p),M) = B((x⊕ S,p), (x⊕ S,p),M) = Dp(x⊕ S,M)

for all x ∈ {0, 1}I and all S ∈M ∈MI.
For the backwards direction, for each I ⊆ J and each p ∈ {0, 1}I , pick a 2-

decomposition Dp of GG where G is the pinning of F by p. For all x,y ∈ {0, 1}J ,
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define B(x,y,M) = Dp(x′,M) where p is the restriction of x to {i ∈ J | xi = yi} and
x′ is the restriction of x to {i ∈ J | xi 6= yi}. Then B witnesses that F is even-windable:
EW1 is

F (x)F (y) = GG(x′) =
∑
M

Dp(x′,M) =
∑
M

B(x,y,M),

where M ranges over partitions of {i ∈ J | xi 6= yi} into pairs, while EW2 is

B(x,y,M) = Dp(x′,M) = Dp(x′ ⊕ S,M) = B(x⊕ S,y ⊕ S,M)

for all partitions M of {i ∈ J | xi 6= yi} into pairs and all S ∈M .

Lemma 3.7. Let F : {0, 1}J → Q≥0 with |J | ≤ 3. If F is even then F is even-windable.

Proof. Let G : {0, 1}I → Q≥0 be a pinning of F .
If I = ∅ define D(x, ∅) = GG(x) where x ∈ {0, 1}∅ is the empty configuration. Then

GG(x) =
∑

M D(x,M) where M ranges over the set {∅} of partitions of I into pairs, so
D is a 2-decomposition of GG.

If |I| = 2, let i, j be the elements of I and define D(x, {{i, j}}) = GG(x). For all
x ∈ {0, 1}I we have GG(x) =

∑
M D(x,M) where M ranges over the set {{{i, j}}} of

partitions of I into pairs, so D is a 2-decomposition of GG.
If |I| is 1 or 3 then G(x) and G(x) cannot be simultaneously be non-zero because G

is a pinning of the even function F , and
∑

i∈I xi ≡ |I| +
∑

i∈I(1 − xi) (mod 2). Thus
GG is identically zero. There are also no partitions of I into pairs, so the empty function
is a 2-decomposition of GG.

Lemma 3.8. EvenJ and OddJ have a 2-decomposition whenever |J | is even. EvenJ

and OddJ are even-windable for any J .

Proof. First consider EvenJ . Fix a partition N of J into pairs. Define

D(x,M) =

1 if M = N and
∑

i∈J xi is even

0 otherwise.

Then for all x ∈ {0, 1}J we have EvenJ(x) =
∑

M D(x,M) (where the sum ranges over
partitions M of J into pairs). Similarly for OddJ , define

D(x,M) =

1 if M = N and
∑

i∈J xi is odd

0 otherwise.

Then for all x ∈ {0, 1}J we have OddJ(x) =
∑

M D(x,M).
Now consider a pinning G : {0, 1}K → Q≥0 of EvenJ or OddJ . If |K| is odd then

GG is identically zero, by the same argument used in Lemma 3.7. Otherwise, G = GG

is either EvenK or OddK , which we showed have 2-decompositions.
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The following argument gives a more difficult example of a 2-decomposition. It will
be used later (in the proof of Lemma 3.17) to show that NAEJ is windable.

Lemma 3.9. Let J be an finite set with |J | even. Then EvenNAEJ has a 2-decomposition.

Proof. For each subset I ⊆ J of even order fix a partition MI of I into pairs. Set

D(x,M) = 2−k+2

∣∣∣∣∣∣{I ⊆ J | |I| is even,
∑
i∈I

xi and
∑
i∈J\I

xi are odd, and M = MI ∪MJ\I}

∣∣∣∣∣∣ .
S ∈MI∪MJ\I implies S ⊆ I or S ⊆ J\I. The conditions that

∑
i∈I xi and

∑
i∈J\I xi

are odd are therefore not affected by changing x to x⊕S. Thus D(x⊕S,M) = D(x,M)

for all S ∈M .
For any x, if EvenNAEJ(x) = 0 then D(x,M) = 0. If EvenNAEJ(x) = 1, pick

i, j with xi = 0 and xj = 1. For each of the 2k−2 subsets I ′ ⊆ J \ {i, j} there is a
unique set I ′′ ⊆ {i, j} such that the order of I = I ′ ∪ I ′′ is even and such that

∑
i∈I xi

and
∑

i∈J\I xi are odd. There are thus 2k−2 such subsets I for each fixed x, which gives∑
M D(x,M) = 1. So D is a 2-decomposition of EvenNAEJ .

3.3.4 Expressibility

We will show that the weight-function of any circuit using even-windable functions is
even-windable. We will use a certain graph associated with a choice of matching of
incidences.

Let M and E each be a set of disjoint pairs of some set. Define LE(M) to be
the multigraph on the vertex set

⋃
S∈M S with edge set the disjoint union of M and

{{i, j} ∈ E | i, j ∈
⋃
S∈M S} (so edges in M ∩ E give pairs of parallel edges in LE(M)).

Note that for each vertex i of LE(M), the degree of i is two if {i, j} ∈ E for some
j ∈

⋃
S∈M S, and otherwise i has degree one. So LE(M) consists of paths and cycles.

We will use this graph later for the analysis of the near-assignments chain. For now,
consider an assignment x of some circuit with internal edges E and external edges A,
and let M ∈ Mx. For any i not in A with xi = 1, the unique j with {i, j} ∈ E satisfies
xj = 1. This means that i ∈

⋃
S∈M S has degree 1 in LE(M) if and only if i ∈ A. So

every path component of LE(M) ends in {i ∈ A | xi = 1}, and every such i is at the end
of a path. See Figure 3.4.

Lemma 3.10. Let ϕ be a circuit using only weight-functions that are even-windable.
The weight-function of ϕ is even-windable.

Proof. Recall that V, J, Jv, A,E, Fv denote vertices, incidences, vertices’ incidences, ex-
ternal edges, internal edges, and vertices’ weight-functions. For each v ∈ V pick a
function Bv witnessing that Fv is even-windable.

Consider a set M ′ of disjoint pairs of J . We will say that M ′ induces the set of pairs
{i, j} ⊆ A such that there is a path from i to j in LE(M ′).
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Figure 3.4: A circuit ϕ and LE(M) for some M ∈ Mx where x is an assignment of
E = Eϕ. (In particular, the M drawn is a union of partitions Mv ∈ Mx|Jv

.) Circles
represent vertices of the circuit. Squares are incidences i ∈ Jϕ of the circuit, and are
filled black where xi = 1. Elements of M are drawn as thick black lines. Elements

{i, j} ∈ E are drawn as thin lines.

For all x,y ∈ {0, 1}A and all M ∈Mx⊕y define

B(x,y,M) =
∑
x′,y′

∑
{Mv} inducing M

∏
v∈V

Bv(x
′|Jv ,y′|Jv ,Mv)

where:

•
∑

x′,y′ denotes the sum over assignments x′ and y′ extending x and y respectively.

•
∑
{Mv} inducing M denotes the sum over all choices of Mv ∈ M(x′⊕y′)|Jv for each

v ∈ V , such that
⋃
v∈V Mv induces M .

For all x,y ∈ {0, 1}A we have∑
M∈Mx⊕y

B(x,y,M) =
∑

M∈Mx⊕y

∑
x′,y′

∑
{Mv} inducing M

∏
v∈V

Bv(x
′|Jv ,y′|Jv ,Mv)

=
∑
x′,y′

∑
{Mv}

∏
v∈V

Bv(x
′|Jv ,y′|Jv ,Mv)

=
∑
x′,y′

∏
v∈V

Fv(x
′|Jv)Fv(y′|Jv)

= [[ϕ]] (x) [[ϕ]] (y).

Here
∑
{Mv} denotes the sum over all choices of Mv ∈ M(x′⊕y′)|Jv for each v ∈ V : the

sum over M eliminates the condition that
⋃
v∈V Mv induces M .

Now fix x,y ∈ {0, 1}A and S = {i, j} ∈ M ∈ Mx⊕y. For any choice of {Mv}
inducing M , there is a unique path component P{Mv} (also depending on x,y, S) from i

to j in L = LE(
⋃
v∈V

⋃
S∈Mv

S). By construction of L, the vertices of P{Mv} are a union
of pairs S ∈

⋃
v∈V Mv. In particular, for each v ∈ V , the intersection P{Mv} ∩ Jv is a
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union of pairs S ∈Mv. Using EW2’ we have

B(x,y,M) =
∑
x′,y′

∑
{Mv} inducing M

∏
v∈V

Bv(x
′|Jv ,y′|Jv ,Mv)

=
∑
x′,y′

∑
{Mv} inducing M

∏
v∈V

Bv((x
′ ⊕P{Mv})|Jv , (y

′ ⊕P{Mv})|Jv ,Mv)

= B(x⊕ S,y ⊕ S,M).

So B witnesses that [[ϕ]] is even-windable.

3.3.5 The near-assignments Markov chain

Throughout this subsection fix an even-windable weight-function F : {0, 1}J → Q≥0 and
a partition E of J into pairs. This can be thought of as a circuit with one vertex. We
will define and study the near-assignments Markov chain for (F,E).

Set n = |J |. For each k ≥ 0 let Ωk denote the set of k-assignments of J with respect to
E that satisfy F (x) > 0. The state-space is Ω = Ω0∪Ω2. The transitions are Metropolis
updates to states at distance two. More specifically, the transition probability from x to
y is defined to be

P (x,y) =


2
n2 min(1, F (y)/F (x)) if d(x,y) = 2

1− 2
n2

∑
y′ : d(x,y′)=2 min(1, F (y′)/F (x)) if y = x

0 otherwise.

(We will not consider the initial state to be part of the Markov chain itself: the
Markov chain is completely described by the matrix P ∈ RΩ×Ω.) Define a probability
distribution π on Ω by

π(x) = F (x)

/∑
y∈Ω

F (y) (x ∈ Ω).

By abuse of notation we will also denote
∑

x∈X π(x) by π(X) for subsets X ⊆ Ω. By
adapting the arguments of [70], we will show:

Theorem 3.11. For all x ∈ Ω and all non-negative integers t, we have

1

2

∑
y∈Ω

|P t(x,y)− π(y)| ≤ 1

2
π(x)−1/2 exp(−tπ(Ω0)2/n4)

Here P t denotes the t’th matrix power. The factor of 1
2 is convention: the left hand

side is called the total variation distance of P t from π.
We will use a congestion argument, with the following definitions. In this section

a “path” is a directed path γ in the transition graph (the directed graph with vertex
set Ω and an arc (x,y) whenever P (x,y) > 0). A flow from X ⊆ Ω to Y ⊆ Ω is a
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Figure 3.5: LE(M) for some 2-assignment-matching M . Squares are elements of J .
Elements of M are drawn as thick black lines. Elements {i, j} ∈ E are drawn as thin

lines.

non-negative real-valued function f defined on paths which start in X and end in Y ,
satisfying ∑

paths γ from x to y

f(γ) = π(x)π(y) (x ∈ X, y ∈ Y ).

The congestion of f is

ρ(f) = max
transitions (x,y)

1

π(x)P (x,y)

∑
paths γ with γ 3 (x,y)

f(γ).

These definitions of flows and ρ agree with [90, Section 4].
In the following arguments we will often use k-assignments (with respect to E) of

the form x ⊕ y for x ∈ Ωk1 and y ∈ Ωk2 . Note that we do not require F (x) > 0 for
k-assignments x, though we do require F (x) > 0 for x ∈ Ωk (so Ωk, defined at the start
of this section, is the set of “satisfying” k-assignments). For any non-negative integer k,
a k-assignment-matching (with respect to E) is a set M of disjoint pairs of J such
that exactly k edges {i, j} ∈ E have exactly one endpoint, i or j, in

⋃
S∈M S. In other

words, the characteristic vector of
⋃
S∈M S is a k-assignment.

Consider a k-assignment-matching M . Recall the definition of LE(M) given in Sec-
tion 3.3.4, which consists of cycles and paths. For any i with i ∈

⋃
S∈M S, the unique

j with {i, j} ∈ E satisfies j ∈
⋃
S∈M S, except for exactly k values i. Thus LE(M) has

precisely k/2 path components. See Figure 3.5.
For all non-negative integers k define

Zk =
∑
x∈Ωk

F (x).

(This is Zk(ϕ) if we consider F as a one-vertex circuit ϕ.)

Lemma 3.12. Z0Z4 ≤ Z2Z2.

Proof. We have

Z0Z4 =
∑
x∈Ω0
y∈Ω4

F (x)F (y) =
∑
x∈Ω0
y∈Ω4

∑
M∈Mx⊕y

B(x,y,M).
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For each 4-assignment-matchingM , pick a path component of LE(M) and let HM be the
set of vertices of this component. Let B be a function witnessing that F is even-windable.
Each HM is a union of pairs in M so by EW2’,

Z0Z4 =
∑
x∈Ω0
y∈Ω4

∑
M∈Mx⊕y

B(x⊕HM ,y ⊕HM ,M).

Let x′ = x⊕HM and y′ = y⊕HM . Note that x′,y′ ∈ Ω2, and that (x′,y′,M) uniquely
determines (x,y,M), or in other words, the map (x,y,M) 7→ (x′,y′,M) is an injection.
Therefore we get an upper bound by summing over all x′,y′ ∈ Ω2:

Z0Z4 ≤
∑

x′∈Ω2
y′∈Ω2

∑
M∈Mx′⊕y′

B(x′,y′,M)

=
∑

x′∈Ω2
y′∈Ω2

F (x′)F (y′) = Z2Z2.

Lemma 3.13. Assume Z0 > 0. There is a flow f0 from Ω0 to Ω with congestion at most
1
2n

3/π(Ω0), such that f0(γ) = 0 for paths γ of length more than n/2.

Proof. We will first construct a “winding” enumeration S(M, 1), . . . , S(M, |M |) of each
0- or 2-assignment-matchingM . The property we will need is that for each 0 ≤ k ≤ |M |,
the characteristic vector of S(M, 1) ∪ · · · ∪ S(M,k) is a 0- or 2-assignment.

First define the final pair T (M) = S(M, |M |) for all non-empty 0- or 2-assignment-
matchingsM as follows. IfM is a non-empty 0-assignment-matching (so LE(M) consists
of cycles), pick any vertex i ∈ LE(M). IfM is a non-empty 2-assignment-matching, pick
an endpoint i of the unique path component in LE(M). In either case let j be the
unique index with {i, j} ∈ M , and set T (M) = {i, j}. In any case LE(M \ {T (M)}) =

LE(M) \ {i, j} has at most one path component.
So M \ {T (M)} is a 0- or 2-assignment-matching. By induction on |M | − k define

S(M,k) = T (M \ {S(M,k + 1), . . . , S(M, |M |)}).

So M \ {S(M,k + 1), . . . , S(M, |M |)} is always a 0- or 2-assignment-matching. This
completes the construction of S(M,k).

For each x ∈ Ω0 and y ∈ Ω and M ∈Mx⊕y, let γx,y,M denote the path

x = x⊕ JM,0 → x⊕ JM,1 → · · · → x⊕ JM,|M | = y,

where JM,k denotes the characteristic vector of S(M, 1) ∪ · · · ∪ S(M,k). Let B be a
function witnessing that F is even-windable. For all paths γ from x ∈ Ω0 to y ∈ Ω,
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define
f0(γ) =

∑
M∈Mx⊕y
γ=γx,y,M

B(x,y,M)/(Z0 + Z2)2.

f0 is a flow from Ω0 to Ω because for all x ∈ Ω0 and y ∈ Ω we have∑
paths γ from x to y

f0(γ) =
∑

M∈Mx⊕y

B(x,y,M)/(Z0 + Z2)2

= F (x)F (y)/(Z0 + Z2)2

= π(x)π(y).

The congestion of f0 is, by definition,

ρ(f0) = max
transitions (z, z′)

1

π(z)P (z, z′)

∑
paths γ with γ 3 (z, z′)

f0(γ).

But π(z)P (z, z′) = 2
n2 min(π(z), π(z′)), so

ρ(fo) ≤ max
z∈Ω

n2

2 · π(z)

∑
paths γ with γ 3 z

f0(γ)

= max
z∈Ω

n2

2F (z)(Z0 + Z2)

∑
x∈Ω0
y∈Ω

∑
M∈Mx⊕y

with z∈γx,y,M

B(x,y,M)

In the last summation, z ∈ γx,y,M implies z = x⊕JM,k for some k, so by EW2’ we have
B(x,y,M) = B(z, z⊕w,M) where w = x⊕ y. Thus,

ρ(f0) ≤ max
z∈Ω

n2

2F (z)(Z0 + Z2)

∑
0- and 2-assignments w

∑
x∈Ω0

∑
M∈Mw

with z∈γx,x⊕w,M

B(z, z⊕w,M)

For each (z,w,M) with M ∈ Mw, the only values of x such that z ∈ γx,x⊕w,M are the
|M |+ 1 values z⊕ JM,0, . . . , z⊕ JM,|M |. Thus,

ρ(Ω0) ≤ max
z∈Ω

n2

2F (z)(Z0 + Z2)

∑
0- and 2-assignments w

(|M |+ 1)
∑

M∈Mw

B(z, z⊕w,M)

≤ max
z∈Ω

n2(n/2 + 1)

2F (z)(Z0 + Z2)

∑
0- and 2-assignments w

F (z)F (z⊕w)

Using z⊕w ∈ Ω0 ∪ Ω2 ∪ Ω4,

ρ(Ω0) ≤ n3

2
· Z0 + Z2 + Z4

Z0 + Z2
.
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If Z2 = 0 then by Lemma 3.12 we also have Z4 = 0, so the congestion is at most
n3/2. Otherwise by Lemma 3.12 we have Z4/Z2 ≤ Z2/Z0 and

Z0 + Z2 + Z4

Z0 + Z2
≤ 1 +

Z4

Z2
≤ 1 +

Z2

Z0
= 1
/ Z0

Z0 + Z2
= 1/π(Ω0).

Lemma 3.14. Assume Z0 > 0. There is a flow f from Ω to Ω with congestion at most
n3/π(Ω0)2, such that f(γ) = 0 for paths γ of length greater than n.

Proof. As in [72], we will randomly route through Ω0.
In this proof, let Γ(y,x) denote the set of paths that start at y and end at x. For

all x,y, z ∈ Ω, all g ∈ Γ(y,x) and all g′ ∈ Γ(y, z), let gg′ denote the path from x to z

obtained by appending g′ to the reverse of g. For all paths γ from x ∈ Ω to z ∈ Ω, define

f(γ) =
∑
y∈Ω0

∑
g∈Γ(y,x)
g′∈Γ(y,z)
gg′=γ

f0(g)f0(g′)/π(y)π(Ω0).

Then f is a flow from Ω to Ω: for all x, z ∈ Ω we have∑
γ∈Γ(x,z)

f(γ) =
∑
y∈Ω0

∑
g∈Γ(y,x)
g′∈Γ(y,z)

f0(g)f0(g′)/π(y)π(Ω0)

=
∑
y∈Ω0

π(x)π(y)π(y)π(z)/π(y)π(Ω0)

= π(x)π(z).

Letting (w,w′) denote an arbitrary transition, the congestion of f is

ρ(f) = max
(w,w′)

1

π(w)P (w,w′)

∑
paths γ with γ 3 (w,w′)

f(γ)

= max
(w,w′)

1

π(w)P (w,w′)

∑
x,z∈Ω
y∈Ω0

∑
g∈Γ(y,x)
g′∈Γ(y,z)

such that (w,w′) ∈ gg′

f0(g)f0(g′)

π(y)π(Ω0)
.
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By symmetry, half of the sum comes from (w,w′) ∈ g′ terms:

ρ(f) = 2 max
(w,w′)

1

π(w)P (w,w′)

∑
x,z∈Ω
y∈Ω0

∑
g∈Γ(y,x)
g′∈Γ(y,z)

such that (w,w′) ∈ g′

f0(g)f0(g′)

π(y)π(Ω0)

= 2 max
(w,w′)

1

π(w)P (w,w′)

∑
x,z∈Ω
y∈Ω0

∑
g′∈Γ(y,z)

such that (w,w′) ∈ g′

π(x)π(y)f0(g′)

π(y)π(Ω0)

= 2 max
(w,w′)

1

π(w)P (w,w′)

∑
z∈Ω
y∈Ω0

∑
g′∈Γ(y,z)

such that (w,w′) ∈ g′

f0(g′)/π(Ω0)

= 2ρ(f0)/π(Ω0)

≤ n3/π(Ω0)2

by Lemma 3.13.

The remaining task is to relate the congestion to Markov chain mixing.

Theorem 3.11. For all x ∈ Ω and all non-negative integers t, we have

1

2

∑
y∈Ω

|P t(x,y)− π(y)| ≤ 1

2
π(x)−1/2 exp(−tπ(Ω0)2/n4).

Proof. The transition matrix P is reversible relative to π: it obeys the detailed balance
condition

π(y)P (y, z) = π(z)P (z,y) for all y, z ∈ Ω.

We have

P (x,x) ≥ 1− 2

n2

(
n

2

)
≥ 1/n for all x ∈ Ω. (3.2)

In particular, the Markov chain is aperiodic. Also, by Lemma 3.14 there exists a flow f

from Ω to Ω, which implies that that the Markov chain is connected. This allows us to
use the results from [90] and [44]. P has eigenvalues

1 = λ0 > λ1 ≥ . . . λ|Ω|−1 ≥ −1.

By Lemma 3.14 and [90, Corollary 6’],

λ1 ≤ 1− 1

ρ(Γ)n

≤ 1− π(Ω0)2/n4.

By (3.2) and equation 1 of [65] we have

−λ|Ω|−1 ≤ 1− 2/n ≤ λ1.
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By [44, Proposition 3],

1

2

∑
y∈Ω

|P t(x,y)− π(y)| ≤ 1

2

√
1− π(x)

π(x)
max(λ1,−λ|Ω|−1)t

≤ 1

2
π(x)−1/2 exp(−tπ(Ω0)2/n4).

3.4 Windable functions

In this section we extend the analysis of even-windable functions to windable functions.
The definition of windability is a natural extension of even-windability, but turns out
not to give much extra generality.

For all F : {0, 1}J → Q≥0 define F⊕ : {0, 1}1+J → Q≥0 by

F⊕(p;x) =

F (x) if p+
∑

i∈J xi is even

0 otherwise
(p ∈ {0, 1},x ∈ {0, 1}J).

Lemma 3.15. F : {0, 1}J → Q≥0 is windable if and only if F⊕ is even-windable.

Proof. (⇒) Pick an ordering of J . Consider a partition M of a subset I ⊆ J into
singletons {a1}, . . . , {ak} and pairs S1, . . . , S`. Define µ(M), when |I| is even, to be
the union of {S1, . . . , S`} with a partition (depending only on M) of {a1, . . . , ak} into
pairs. Define µ(M), when |I| is odd, to be the union of {S1, . . . , S`} with a partition of
{1, a1, . . . , ak} into pairs. Let B be a witness that F is windable. For all (p;x), (q;y) ∈
{0, 1}1+J and all M ∈M(p;x)⊕(q;y), define

B′((p;x), (q;y),M) =


∑

M ′ : µ(M ′)=M

B(x,y,M ′) if p+
∑

i∈J xi and q +
∑

i∈J yi are even

0 otherwise

For all S ∈M = µ(M ′), if we let S′ = S \ {1} then B(x⊕S′,y⊕S′,M ′) = B(x,y,M ′).
So B′ witnesses that F⊕ is even-windable.

(⇐) For all sets M of disjoint pairs of 1 + J define ν(M) to be {S \ {1} | S ∈ M}.
Let B be a witness that F⊕ is windable. For all x,y ∈ {0, 1}J and allM ∈M′x⊕y, define

B′(x,y,M) =
1∑

p,q=0

∑
M ′ : ν(M ′)=M

B((p;x), (q;y),M ′)

For all S ∈ M = ν(M ′), let S′ = S if |S| = 2 and S′ = S ∪ {1} otherwise. Then
B(x⊕ S′,y ⊕ S′,M ′) = B(x,y,M ′). So B′ witnesses that F is windable.

Lemma 3.16. Let ϕ be a circuit using only weight-functions that are windable. The
weight-function of ϕ is windable.
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Proof. Replace each constraint Fv by (Fv)⊕, rename the new incidences pv, v ∈ V (ϕ),
and add a constraint Even1+P where P = {pv | v ∈ V (ϕ)}. This produces a circuit ϕ⊕
with [[ϕ⊕]] = [[ϕ]]⊕. By Lemmas 3.15, 3.10, and 3.9 we find that [[ϕ⊕]] is even-windable.
So by Lemma 3.15 again, [[ϕ]] is windable.

Lemma 3.17. For any J , the weight-functions EvenJ , OddJ , and NAEJ are windable.

Proof. By Lemma 3.8 there is a witness B that EvenJ is even-windable. Extending B
by setting B(x,y,M) = 0 for all M ∈M′x⊕y \Mx⊕y we get a witness B′ that EvenJ is
windable. Similarly, OddJ is even-windable by Lemma 3.8, and it is therefore windable.

For NAEj , by Lemma 3.15 it suffices to show that the weight-function (NAEJ)⊕ is
even-windable. Let I ⊆ 1 + J , let p ∈ {0, 1}I , let K = (1 + J) \ I and let G : {0, 1}K →
Q≥0 be the pinning of (NAEJ)⊕ by p. We wish to show that GG has a 2-decomposition.
If |K| is odd then GG is identically zero so has a 2-decomposition. We can therefore
assume that |K| is even.

Let c ∈ {0, 1} be equal to |J | modulo 2. (NAEJ)⊕ is the weight-function correspond-
ing to the relation Even1+J \ {(0; 0), (c; 1)}. (Here 0 and 1 are the all-zeros and all-ones
configurations of J). We first argue that in all cases, GG is either EvenK or OddK , or
a flip of EvenNAEK .

If
∑

i∈I pi is odd, then G takes the value 1 precisely on OddK \X where X consists
of at most one configuration x ∈ OddK . If X = ∅ then GG = OddK . If X is a singleton
{x} then GG is the flip of EvenNAEK by x.

If
∑

i∈I pi is even, then G takes the value 1 precisely on EvenK \X where X consists
of at most two configurations in EvenK . If |X| ≤ 1 we are done by the same argument as
the previous paragraph: GG is either EvenK or a flip of EvenNAEK . If |X| = 2 then
X consists of two configurations x,y with d(x,y) = |J |+ c. But |J |+ c ≤ |K| ≤ |J |+ 1,
and |K| and |J |+ c are both even, so |K| = |J |+ c. Thus y = x, and again GG is a flip
of EvenNAEK .

By Lemma 3.8 the weight-functions EvenK andOddK have 2-decompositions. So we
only need to check the last case where GG is a flip, by z ∈ {0, 1}K say, of EvenNAEK .
Let D be a 2-decomposition of EvenNAEK given by Lemma 3.9. Define D′(x,M) =

D(x ⊕ z,M) for all x ∈ {0, 1}K and for all partitions M of K into pairs. For all
x ∈ {0, 1}K we have GG(x) = EvenNAEK(x⊕z) =

∑
M D(x⊕z,M) =

∑
M D′(x,M),

where M ranges over partitions of K into pairs. So D′ is a 2-decomposition of GG.

3.5 Strictly terraced functions

3.5.1 Idea

To apply Theorem 3.11 to Holant problems, we want to bound the ratio of the weight of
2-assignments to the weight of 0-assignments in certain closed circuits. Given a closed
circuit ϕ, consider breaking an edge. This gives an circuit ϕ′ with two external edges The
sum of [[ϕ′]] (1, 0) and [[ϕ′]] (0, 1) contributes to the weight of 2-assignments in ϕ, while
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Figure 3.6: A circuit with weight-function F with F (0, 0) = 2 and F (1, 1) =
1 and F (0, 1) = F (1, 0) = 0. Vertices represent “exact-one” constraints

{(1, 0, 0), (0, 1, 0), (0, 0, 1)}.

the sum of [[ϕ′]] (0, 0) and [[ϕ′]] (1, 1) contributes to the weight of 0-assignments in ϕ. So
one idea (if we are trying to bound the ratio of the weight of 2-assignments of ϕ to the
weight of 0-assignments) is to try to find a bound on ratios like [[ϕ′]] (0, 1)/ [[ϕ′]] (0, 0).

It is instructive to consider multiplication of two-by-two matrices. To see the rela-
tionship between multiplication of matrices and circuits (in the form of read-twice pps-
formulas), for matricesM with rows and columns indexed by {0, 1}, define FM : {0, 1}2 →
Q≥0 by FM (i, j) = Mi,j ; then FMN (i, k) =

∑
j FM (i, j)FN (j, k).

Matrix multiplication can produce exponentially-large ratios: for any x, y > 0, we
have (

x y

0 1

)n
=

(
xn y(xn−1 + · · ·+ 1)

0 1

)
and xn/1 is exponentially large if x > 1.

In fact, the matrix ( 2 0
0 1 ) corresponds to the circuit depicted in Figure 3.6 using

“exact-one” constraints {(1, 0, 0), (0, 1, 0), (0, 0, 1)}, which can be used to construct coun-
terexamples to the bound (3.1) on nearly perfect matchings [14].

We might guess that exponentially-large ratios can only be produced by matrix mul-
tiplication when the zero entry in the matrix is surrounded by values that are different.
And indeed this property of being “strictly terraced” turns out to give some control over
ratios. For strictly terraced functions, the worst ratio in a weight-function is bounded
by the sum of the worst ratios that can be obtained by mixing the individual functions
with parity relations.

3.5.2 Definitions

A function F : {0, 1}J → Q≥0 is strictly terraced if

F (x) = 0 =⇒ F (x⊕ ei) = F (x⊕ ej) for all x ∈ {0, 1}J and all i, j ∈ J.

For all weight-functions F , a parity-weight-function of F is a constant multiple of
the weight-function of a circuit using one F constraint and such that all other constraints
are parity relations. If F is not identically zero, define

θ(F ) = max

F
′(0)

F ′(1)

∣∣∣∣∣∣∣
F ′ : {0, 1}1 → Q≥0 is an arity 1

parity-weight-function of F with
F ′(1) > 0

 .

We extend θ to all weight-functions F by setting θ(F ) = 0 if F is identically zero.
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We can show that θ is well-defined using the following operation. For any circuit ϕ
and any internal edge e ∈ Eϕ between incidences iu ∈ Ju and iv ∈ Jv, with u, v ∈ V (not
necessarily distinct), define the contraction of ϕ by e to be the circuit ϕ′ obtained
by replacing u and v by a vertex w with incidences (Ju ∪ Jv) \ {iu, iv} and defining the
constraint for this new vertex w to be the weight-function of the circuit with constraints
Fu and Fv, edge e, and external edges (Ju ∪ Jv) \ {iu, iv}.

Lemma 3.18. Let ϕ be a connected circuit whose constraints are all parity constraints.
The weight-function of ϕ is a constant multiple of a parity constraint.

Proof. By induction on the number of edges of ϕ, it suffices to show that contracting a
single edge of ϕ leaves only parity constraints (up to multiplication by constants).

Consider the case that the edge {i, j} goes between distinct vertices, which are
equipped with a Even{i}∪I constraint and a Even{j}∪J constraint. Then contraction
gives a copy of EvenI∪J , because EvenI∪J(x,y) =

∑
tEven1+I(t;x)Even1+J(t;y) for

all x ∈ {0, 1}I and all y ∈ {0, 1}J . Similarly Odd{i}∪I and Odd{j}∪J produce EvenI∪J ,
while Even{i}∪I and Odd{j}∪J produce OddI∪J .

If the edge {i, j} is a loop on a vertex with constraint Even{i,j}∪J , contracting {i, j}
produces 2EvenJ . Similarly Odd{i,j}∪J produces 2OddJ .

Note that contracting an edge does not affect the weight-function of a circuit. By
contracting edges between parity relations, the circuits appearing in the definition of
a parity-weight-function can be rewritten not to use any edges except external edges
and edges incident to the F constraint. For fixed F there are therefore a finite num-
ber of equivalence classes of parity-weight-functions F ′ : {0, 1} → Q≥0 with F ′(1) > 0,
under the equivalence relation of multiplication by constants. Thus the maximum
in the definition of θ(F ) is taken over a finite set, which can be seen to be non-
empty if F is not identically zero (if F (x) > 0 for some x ∈ EvenJ then the func-
tion F ′ : {0, 1}1 → Q≥0 defined by F ′(t) =

∑
x∈{0,1}J Odd1(t)F (x)EvenJ(x) satisfies

F ′(1) > 0, and if F (x) > 0 for some x ∈ OddJ then the function F ′ : {0, 1}1 → Q≥0

defined by F ′(t) =
∑

x∈{0,1}J Odd1(t)F (x)OddJ(x) satisfies F ′(1) > 0).
Note that if G is a parity-weight-function of F , then θ(G) ≤ θ(F ). In particular if

G is a pinning of F then θ(G) ≤ θ(F ). Also, since Odd2 = NEQ = {(0, 1), (1, 0)} is a
parity relation, it is not important that we took F ′(0)/F ′(1) rather than F ′(1)/F ′(0) in
the definition of θ.

3.5.3 Examples

A relation R ⊆ {0, 1}J is coindependent if for all x ∈ {0, 1}J \ R we have x⊕ ei ∈ R
for all indices i. For example, the disequality relation {(0, 1), (1, 0)} is coindependent.
Any coindependent relation R gives an example R of a strictly terraced weight-function.

Lemma 3.19. For all finite sets J , the functions EvenJ , OddJ and NAEJ are strictly
terraced. Also, θ(EvenJ) = θ(OddJ) = 0, and θ(NAEJ) ≤ 3.
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Proof. The first statement follows from the fact that the corresponding relations are
coindependent. To show θ(EvenJ) = θ(OddJ) = 0, note that by Lemma 3.18 a parity-
weight-function of a parity relation must be even.

Now we will show that θ(NAEJ) ≤ 3. Consider a connected circuit ϕ with one
external edge, such that ϕ uses one NAEJ constraint, and all other constraints are
parity relations, with no internal edges between parity relations (this is without loss of
generality, because we can contract any such edge). Assume that [[ϕ]] (0) and [[ϕ]] (1) are
non-zero. We will show that [[ϕ]] (0) ≤ 3 [[ϕ]] (1).

We can write
[[ϕ]] (t) =

∑
x∈NAEJ

R(t;x)

where R is an affine subspace of GF(2)1+J . Since [[ϕ]] (0) and [[ϕ]] (1) are non-zero, the
sets R0 = {x | (0;x) ∈ R} and R1 = {x | (1;x) ∈ R} are non-empty. Since R is an affine
subspace, |R0| = |R1|, so

[[ϕ]] (0) ≤ |R0| = |R1| ≤ [[ϕ]] (1) + 2 ≤ 3 [[ϕ]] (1).

3.5.4 Properties

An important property we will use is that a strictly terraced function F is either identi-
cally zero or its support {x | F (x) > 0} is coindependent. (If F (x) = 0 and F (y) > 0

for some y, pick such a y with d = d(x,y) minimal. If d > 1, there are distinct
indices i, j such that xi 6= yi and xj 6= yj , so F (y ⊕ ei) = F (y ⊕ ei ⊕ ej) = 0

by minimality of d(x,y), which means F is not strictly terraced: F (y ⊕ ei) = 0 but
F ((y ⊕ ei)⊕ ei) 6= F ((y ⊕ ei)⊕ ej).)

The Cartesian product of coindependent relations is in general not coindependent,
for example {(0, 1), (1, 0)} × {(0, 1), (1, 0)} is not coindependent (set x = (0, 0, 0, 0) and
i = 1). Thus the class of strictly terraced functions is not closed under taking weight-
functions of disconnected circuits.

Lemma 3.20. Let ϕ be a connected circuit using strictly terraced weight-functions. Then
[[ϕ]] is strictly terraced.

Proof. We will argue by induction on the number of internal edges of ϕ. If there are no
internal edges, then ϕ consists of a single constraint using a strictly terraced function F ,
and [[ϕ]] = F . Otherwise, pick an internal edge e. We wish to argue that the function
created by contracting e is strictly terraced. There are two cases.

(i) e is loop on a vertex v.
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Let F : {0, 1}2+J → Q≥0 be a copy of Fv, indexed so that the ends of e become
enumerated indices. We wish to show that the function H : {0, 1}J → Q≥0 defined by

H(x) =

1∑
t=0

F (t, t;x) (x ∈ {0, 1}J)

is strictly terraced. Consider x ∈ {0, 1}J satisfying H(x) = 0 and let i, j ∈ J . Since F is
strictly terraced and F (0, 0;x) = F (1, 1;x) = 0, we have F (0, 0;x⊕ ei) = F (0, 0;x⊕ ej)

and F (1, 1;x⊕ ei) = F (1, 1,x⊕ ej). Hence H(x⊕ ei) = H(x⊕ ej).
(ii) e is incident to distinct vertices u and v.
Let F : {0, 1}1+I → Q≥0 and G : {0, 1}1+J → Q≥0 be copies of Fu and Fv respectively,

reindexed so that the ends of e become the enumerated indices (and with I and J

disjoint). We wish to show that the function H : {0, 1}I∪J → Q≥0 defined by

H(x,y) =

1∑
t=0

F (t;x)G(t;y) (x ∈ {0, 1}I ,y ∈ {0, 1}J)

is strictly terraced. If F or G is identically zero then H is identically zero and therefore
strictly terraced.

Otherwise consider x ∈ {0, 1}I and y ∈ {0, 1}J satisfying H(x,y) = 0. Since F
and G have coindependent support and F (0;x)G(0;y)+F (1;x)G(1;y) = 0, there exists
t ∈ {0, 1} such that F (t;x) = G(1− t;y) = 0 and F (1− t;x), G(t;y) > 0. For all i ∈ I
we have

H(x⊕ ei,y) = F (t;x⊕ ei)G(t;y) = F (1− t;x)G(t;y).

Similarly for i ∈ J we have

H(x,y ⊕ ei) = F (1− t;x)G(1− t;y ⊕ ei) = F (1− t;x)G(t;y).

Therefore for all i, j ∈ I ∪ J we have H((x,y)⊕ ei) = H((x,y)⊕ ej).

The following calculations bound ratios produced by certain circuits.

Lemma 3.21. Let F : {0, 1}1+J and G : {0, 1}J → Q≥0. Define H(0), H(1) by

H(t) =
∑

x∈{0,1}J
F (t;x)G(x).

Assume that F and G are strictly terraced and that H(1) > 0. Then

H(0) ≤ (θ(F ) + θ(G))H(1).

Proof. We will use induction on |J |. For the base case J = ∅ we have H(0) ≤ θ(F )H(1)

by definition of θ(F ). So assume that J is non-empty.
For each i ∈ J and each c ∈ {0, 1} define Fi,c : {0, 1}1+J\{i} → Q≥0 to be the pinning

of F by taking i to c, and similarly define Gi,c : {0, 1}1+J\{i} → Q≥0 to be the pinning
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of g by taking i to c, and define

Hi,c(t) =
∑

x∈{0,1}J\{i}
Fi,c(t;x)Gi,c(x) (t ∈ {0, 1}).

Since pinnings are parity-weight-functions, θ(Fi,c) ≤ θ(F ) and θ(Gi,c) ≤ θ(G). If
there exists i ∈ J such that Hi,0(1) and Hi,1(1) are non-zero, then by the induction
hypothesis we have

H(0) = Hi,0(0) +Hi,1(0) ≤ (θ(F ) + θ(G))(Hi,0(1) +Hi,1(1)) = (θ(F ) + θ(G))H(1)

as required. Otherwise, taking a choice for each i, we may assume that there exists
y ∈ {0, 1}J such that for all i ∈ J we have Hi,1−yi(1) = 0. So for each i ∈ I the sets
R = {x | Fi,1−yi(1;x) > 0} and S = {x | Gi,1−yi(x) > 0} are disjoint. R and S are
pinnings of coindependent relations, so they are coindependent. For all x ∈ R we have
x /∈ S, so x⊕ei ∈ S for any i, and x⊕ei /∈ R. Repeating this, we find that R consists of
the configurations at even distance from x, and S consists of the configurations at odd
distance from x. In other words, for each i ∈ J there exists ci ∈ {0, 1} such that

F (1;x) > 0 ⇐⇒ ci +
∑
j∈J

xj is even, and

G(x) > 0 ⇐⇒ ci +
∑
j∈J

xj is odd.
(x ∈ {0, 1}J , xi 6= yi) (3.3)

For any i, j ∈ J there is some choice of x ∈ {0, 1}J with xi 6= yi and xj 6= yj , so
ci = cj . Thus there is a single choice of c such that (3.3) holds for all i taking ci = c:

F (1;x) > 0 ⇐⇒ c+
∑
j∈J

xj is even, and

G(x) > 0 ⇐⇒ c+
∑
j∈J

xj is odd.
(x ∈ {0, 1}J \ {y}) (3.4)

For any x ∈ {0, 1}J with c +
∑

i∈J xi even, and any distinct i, j ∈ J , we have
F (1;x) = F (1;x ⊕ ei ⊕ ej) because F is strictly terraced and either F (1;x ⊕ ei) or
F (1;x⊕ej) is zero. Similarly for any x ∈ {0, 1}J with c+

∑
i∈J xi odd, and any distinct

i, j ∈ J , we have G(x) = G(x⊕ ei ⊕ ej). This implies that there are constants λ, µ > 0

such that
F (1;x) = λ if c+

∑
i∈J

xi is even, and

G(x) = µ if c+
∑
i∈J

xi is odd.
(x ∈ {0, 1}J). (3.5)

If c +
∑

i∈J yi is odd then by (3.5) and (3.4), G is µEvenJ (if c = 1) or µOddJ

(if c = 0). In this case G is a constant multiple of a parity relation. Considering H as
the weight-function of a circuit with constraints F and G, we get H(0) ≤ θ(F )H(1) by
definition of θ. We may therefore assume that c+

∑
i∈J yi is even.
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Define F ′(0), F ′(1), G′(0), G′(1) by

F ′(t) = F (t;y)

G′(t) =
∑

x∈{0,1}J
Odd2+J(t, c;x)G(x)

so

F ′(0) = F (0;y)

F ′(1) = F (1;y) = λ

G′(0) = µ2|J |−1

G′(1) = G(y)

Since F ′ is a parity-weight-function of F we have F (0;y)/λ ≤ θ(F ). Since G′ is a parity-
weight-function of G we have µ2|J |−1/G(y) ≤ θ(G). For all x ∈ {0, 1}J with c+

∑
i∈J xi

odd, we have F (1;x) = 0 and F (1;x⊕ ei) = λ (for any i ∈ J) and therefore F (0;x) = λ

because F is strictly terraced. So

H(0)

H(1)
=
F (0;y)G(y) + λµ2|J |−1

λG(y)
≤ θ(F ) + θ(G).

Lemma 3.22. Let ϕ be a circuit using strictly terraced weight-functions. Then

θ([[ϕ]]) ≤
∑
v∈V ϕ

θ(Fϕv ).

Proof. We will argue by induction on the number k of constraints of ϕ that are not parity
relations. The cases k = 0 and k = 1 follow from the definition of θ. Components of
a circuit not connected to the external edges simply contribute a constant factor to the
weight-function. And θ(F ) = 0 for parity-weight-functions F (Lemma 3.19). So for a
given k, it suffices to show that [[ϕ(0)]] / [[ϕ(1)]] ≤

∑
v∈V ϕ θ(F

ϕ
v ) whenever:

• ϕ is a connected circuit with one external edge, with [[ϕ(1)]] > 0, and

• ϕ uses strictly terraced weight-functions, at most k of which are not parity relations.

For the k = 2 case, if there is a loop on a vertex v, contract it. This changes the
weight-function Fv, but the resulting weight-function is a parity-weight-function of Fv,
so this process does not increase

∑
v∈V θ(Fv). And Fv is still strictly terraced by Lemma

3.20. Similarly, if there is an edge incident to distinct vertices u, v where Fu is a parity
constraint, contract that edge. The weight-function F introduced by the contraction is a
parity-weight-function of Fv, so this process does not increase

∑
v∈V θ(Fv). And again,

F is strictly terraced by Lemma 3.20. Repeating this process we end up with a circuit
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i

j
←→

i
i∗

j∗

j

{i, j}

Figure 3.7: An illustration of the correspondence between arbitrary configurations
in a closed circuit and assignments in a modified circuit. Solid circles are arbitrary
constraints, empty circles are copies of Even3. Thin black lines are incidences given the

value 0, thick grey lines are incidences given the value 1.

with at most two vertices. If there is only one vertex we can appeal to the k ≤ 1 case,
and otherwise we are done by Lemma 3.21.

For k > 2, contract any internal edge. From the k ≤ 2 case we know that
∑

v∈V θ(Fv)

has not increased. This process does not change the weight-function of ϕ, and by Lemma
3.20 the constraint function introduced by the contraction is strictly terraced.

Lemma 3.23. Let ϕ be a closed circuit using strictly terraced constraints, and assume
that Z0(ϕ) > 0. Then

Z2(ϕ)

Z0(ϕ)
≤ 1

2
|Eϕ|2 max

(
1,
∑
v∈V ϕ

θ(Fϕv )

)2

. (3.6)

Proof. We will consider a circuit ψ obtained by attaching Even3 to edges of ϕ as illus-
trated in Figure 3.7. In words: let J∗ be a disjoint copy of J , consisting of an element
i∗ for each i ∈ J . Define ψ to have incidences E ∪ J ∪ J∗, external edges E, edges
{i, i∗} for each i ∈ J , vertex set V ∪ E, the same constraints at each v ∈ V , and
Fψ{i,j} = Even{i∗,j∗,{i,j}} for all {i, j} ∈ E.

Zk(ϕ) is the sum of [[ψ]] (x) over configurations x of Eϕ with
∑

e∈Eϕ xe = k. By
pinning, θ bounds the ratio F (x⊕ ei)/F (x) between the weights of neighbouring config-
urations of non-zero weight. Letting 0 denote the all-zeros vector, for all i 6= j such that
[[ψ]] (ei) 6= 0,

[[ψ]] (ei + ej) ≤ θ(ψ) [[ψ]] (ei) ≤ θ(ψ)2 [[ψ]] (0).

If [[ψ]] (ei) = 0 we have [[ψ]] (ei + ej) = [[ψ]] (0) because [[ψ]] is strictly terraced. Thus

Z2(ϕ) ≤ Z0(ϕ)

(
|Eϕ|

2

)
max(1, θ(ψ))2.

The result follows by applying Lemmas 3.19 and 3.22.
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3.6 Proofs of Theorem 3.1 and Theorem 3.4

For the algorithmic results we will use a reduction of counting to sampling. This is
a standard argument, which has been formalised in particular in [73, Theorem 6.4].
The important hypothesis is called self-reducibility and means that a problem can be
expressed as a combination of not too many smaller subproblems. Rather than check
this hypothesis (which can require a problem to be encoded in an unusual way), we
will now describe the argument for the particular case of Holant problems, illustrating
exactly what type of samples are needed.

The aim is to approximate Z0(ϕ) for a closed circuit ϕ with Z0(ϕ) > 0. We will
consider the unweighted case, by assuming that wtϕ takes values in {0, 1}, so Z0(ϕ) =

|Ω0|. First, the set of variables J is ordered, say as 1, . . . , n. For each k = 1, . . . , n in turn,
the procedure takes a large number t of samples z1, . . . , zt sampled “almost uniformly”
from the set Ek−1 = {x ∈ Ω0 | (x1, . . . , xk−1) = (y1, . . . , yk−1)} (y1, . . . , yk−1 will have
been chosen in steps 1, . . . , k−1). This is the important sampling step we need to be able
to implement. Then yk is defined to be the most common value in the list z1

k, . . . , z
t
k, and

αk is defined to be the proportion of these values equal to yk. The output is 1/α1 . . . αn.
This approximation relies on the telescoping product

1

Z0(ϕ)
=
|E1|
|E0|
|E2|
|E1|

· · · |En|
|En−1|

≈ α1 · · ·αn

where En = {y}.
The calculations in [73, Theorem 6.4] show that this approximation gives an FPRAS

as long as for any ε > 0 we can take a sample z ∈ Ek satisfying (1+ε)−1|Ek|−1 ≤ Pr(x =

z) ≤ (1 + ε)|Ek|−1 for all x ∈ Ek, in time polynomial in the size of ϕ and in log(1/ε).
The important requirement is that we can sample to within a small error from the

uniform distribution on the sets Ek – holding some variables constant. This ability to
hold variables constant is a type of self-reducibility. For an FPRAS, we also need to be
able to test whether there are any satisfying assignments at all, that is, Z0(ϕ) > 0.

Theorem 3.1. #ParityNAE has an FPRAS.

Proof. We are given a labelled graph, which is naturally a closed circuit ϕ using con-
straints of the form EvenJ , OddJ , and NAEJ .

As described above, it suffices to show that we can test Z0(ϕ), and that we can
sample uniformly from the subsets of Ω0 where some variables are kept constant. But we
can test whether Z0(ϕ) > 0 in polynomial time by Cornuéjols’ algorithm for the general
factor problem [39]. And degree-1 parity relations can be used to fix variables to take a
particular value, so it suffices to show how to sample uniformly from Ω0 (without holding
any variables constant).
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We will use the near-assignments chain to sample from assignments of ϕ. Define
F : {0, 1}J → Q≥0 by

F (x) =

wtϕ(x), if
∑

i∈J xi is even

0 otherwise.

(In fact, wtϕ(x) is always 0 or 1.)
By Lemma 3.17, all the constraints of ϕ are windable. By Lemma 3.16, wtϕ is

windable. By Lemma 3.15, (wtϕ)⊕ is even-windable. But F is a pinning of (wtϕ)⊕

(setting the parity bit to zero). A pinning of an even-windable function is even-windable
- this is immediate from the characterisation in terms of 2-decompositions given in Section
3.3.3.

We will use the notation π,Ω,Ω0 from Theorem 3.11, for the near-assignment chain
on the pair (F,Eϕ).

Recall from Lemma 3.19 that θ(NAEJ) ≤ 3 and θ(EvenJ) = θ(OddJ) = 0, and
that all these weight-functions are strictly terraced. Let R = 3|V |2|E|2; by Lemma 3.23
we have 1/R ≤ Z0(ϕ)/Z2(ϕ) ≤ Z0(ϕ)/(Z0(ϕ) + Z2(ϕ)) = π(Ω0).

By Cornuéjols’ algorithm, mentioned above, we get an assignment y with wtϕ(y) > 0

and in particular π(y) ≥ 2−|E|. Let δ > 0 be an error parameter, which will be specified
later. Applying Theorem 3.11, by simulating the near-assignments Markov chain of
(F,E) for t ≥ (2|E|)4R2(log 2R

δ + |E| log 2) steps we can take a sample z from near-
assignments of ϕ such that

1

2

∑
x∈Ω

|Pr(x = z)− π(x)| ≤ δ/2R

Thus
1

2

∑
x∈Ω0

|Pr(x = z|z ∈ Ω0)− F (x)/Z0(ϕ)| ≤ δ/2

We sample from Ω0 by rejection sampling: run the simulation at least 2R log 2
δ times

and return the first sample in Ω0. The probability that this fails is small (at most
(1− 1

2π(Ω0))2R log 2
δ ≤ δ/2). To get the condition that (1+ε)−1|Ω0|−1 ≤ Pr(x = z) ≤ (1+

ε)|Ω0|−1 for all x ∈ Ω0, as required by [73, Theorem 6.4], we can take δ = ε/2|E|+1.

The reduction of counting to sampling in [73, Theorem 6.4] is stated in the setting
of unweighted counting and uniform sampling. But the results generalise to weighted
sums and non-uniform distributions. Instead of the uniform distribution on the sets
Ek, we need to be able to sample to within a small error from the distribution on
Ek proportional to wtϕ. The FPRAS described above would output wtϕ(z)/α1 . . . αn

instead of 1/α1 . . . αn. The sampling condition becomes (1 + ε)−1πk(x) ≤ Pr(x = z) ≤
(1 + ε)πk(x) where πk(x) = wtϕ(x)/

∑
z∈Ek wtϕ(z).

Theorem 3.4. Let F be the class of strictly terraced windable functions. Then
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• F is closed under taking weight-functions of connected circuits

• F contains Evenk, Oddk, and NAEk for all k ≥ 1

• for all finite subsets F ′ ⊂ F there is an FPRAS for Holant(F ′)

Proof. The first statement is Lemma 3.16. The second statement is Lemma 3.17.
For the third statement, given F ′, let F ′′ = F ′ ∪ {Even1,Odd1}. For the decision

problem we can use Feder’s algorithm for coindependent relations [52, Theorem 4]. We
can use Even1 and Odd1 to fix the value a variable takes. Otherwise the argument
proceeds as in the previous proof except taking R to be |E|2|V |2 maxF∈F ′ θ(F ), and
taking δ slightly smaller, for example δ = ε/2|E|+1(M/m)|V | where M is the maximum
value taken by any function in F and m is the minimum non-zero value taken by any
function in F . We find that Holant(F ′′), and therefore Holant(F ′), has an FPRAS.

3.7 Matchings circuits

Define a matchings circuit G to be a graph fragment equipped with:

• a non-negative rational edge-weight w(e) for each internal edge e

• a non-negative rational fugacity λ(v) for each vertex v

Note that in this definition the external edges are not given weights.
For any set of edges F ⊆ A∪E, let degF (v) denote the number of edges in F incident

to the vertex v. The weight of F is:

wtG(F ) =

0 if degF (v) ≥ 2 for some vertex v(∏
degF (v)=0 λ(v)

) (∏
e∈F w(e)

)
otherwise.

The weight-function of G is the function [[G]] : {0, 1}A → Q≥0 where A is the set of
external edges and

[[G]] (x) =
∑
F⊆E

F∩A={e∈A|xe=1}

wtϕ(F ).

As with circuits, if F = [[G]] we will say the F has the matchings circuit G.
For all w ≥ 0 define Edgew : {0, 1}2 → Q≥0 by

Edgew(i, j) =

(
1 0

0 w

)
i,j
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. . .

. . .

Figure 3.8: 2k−1ORk matchings circuit. Hollow circles are vertices with fugacity 1.
All other vertices have fugacity 0, and all edges have edge-weight 1.

where the matrix rows and columns are indexed by {0, 1}. For all λ ≥ 0 and all finite
sets J define FugacityλJ : {0, 1}J → Q≥0 by

FugacityλJ(x) =


λ if

∑
i∈J xi = 0

1 if
∑

i∈J xi = 1

0 otherwise.

Given G, define a circuit by equipping each vertex v with the function Fugacity
λ(v)
Jv

,
then subdividing each edge e and equipping the new vertex with the function Edgew(e).
The circuit clearly has the same weight-function as the matchings circuit. So matchings
circuits are just a special type of circuit. We will use the same notation and terminology.

3.7.1 Example

Proposition 3.24. For all finite sets J define ORJ = {x ∈ {0, 1}J |
∑

i∈J xi > 0}.
Then ORJ has a matchings circuit.

Proof. We may assume J = {1, . . . , k}. The matchings circuit is illustrated in Figure
3.8.

Define F : {0, 1}3 → Q≥0 by

F (i, 0, j) =

(
2 0

0 2

)
i,j

F (i, 1, j) =

(
1 1

1 1

)
i,j

(with rows and columns indexed from zero.) Each of the smaller boxes shown in Figure
3.8 have the weight-function F (where external edges are numbered from left to right).
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For all x1, . . . , xk ∈ {0, 1},

[[G]] (x1, . . . , xk) =
∑

y1,...,yk−1

F (1, x1, y1)F (y1, x2, y2) . . . F (yk−1, xk, 0)

=

(2 0

0 2

)k−x1+···−xk (
1 1

1 1

)x1+···+xk


1,0

= 2k−1ORk(x1, . . . , xk).

So the weight-function of G is 2k−1ORk. To deal with the scalar multiple, add an
isolated vertex with fugacity 1/2k−1.

In particular, let k ≥ 1 be odd. Then (ORk)⊕ is a copy of EvenORk+1 where
EvenORk+1 is defined as Evenk+1 ∩ ORk+1. By Lemma 3.15, EvenORk+1 is even-
windable. Thus EvenORk+1EvenORk+1 = EvenNAEk+1 has a 2-decomposition.
This gives an alternate proof of Lemma 3.9 which, via Lemma 3.17, shows that NAEJ

is windable for all finite sets J . But this argument does not seem to show that NAEJ

has a matchings circuit.

3.7.2 Approximate counting

Define

Name. #PM

Instance. A simple graph G
Output. The number of perfect matchings in G

The aim of this section is to establish Theorem 3.5, that Holant(F) ≤AP #PM for any
finite set F of weight-functions of matchings circuits, showing that matchings circuits
are a natural choice of circuit for #PM. We will reduce via the following problem.

Name. #FugacityWeightedPM

Instance. A closed matchings circuit ϕ where fugacities and edge-weights are given as
ratios of non-negative integers specified in binary

Output. Z0(ϕ)

The fugacities and edge-weights can both be simulated using matchings circuits. A
similar reduction appears in [59].

Lemma 3.25. There is a polynomial-time algorithm which, given non-negative integers
p, q specified in binary, outputs a matchings circuit Gp,q whose fugacities are all 0 and
whose edge-weights are all 1, and with two external edges such that

[[Gp,q]] (i, j) =

(
p 0

0 q

)
i,j

for all i, j ∈ {0, 1}.

where we consider the rows and columns of the matrix to be indexed from zero.



93

s = v3,1

v3,2 v3,3

t = v3,4

Figure 3.9: G7,2, with one path in the copy of G7,1 labelled. All fugacities are 0, all
edge-weights are 1.

Proof. See Figure 3.9.
For all p ≥ 0 there is a unique binary expansion p = 2n1 + · · · + 2nk , with 0 ≤

n1 < · · · < nk. Define Gp,1 in the following way. Take two vertices s and t, each
with one external edge. For each 1 ≤ i ≤ k, if ni = 0 add an edge between s and
t, and otherwise add a path between s and t of length 2ni − 1, which we can denote
s = vi,1, vi,2, . . . , vi,2ni = t, and add a parallel edge in the odd positions: between vi,2j−1

and vi,2j for each 1 ≤ j ≤ ni.
There is a unique perfect matching of Gp,1 that includes the external edges: it uses

the edges in even position in each path, vi,2jvi,2j+1 for all 1 ≤ i ≤ k and all 1 ≤ j < ni.
The perfect matchings of Gp,1 that do not include the external edges are determined by
a choice of 1 ≤ i ≤ k such that the i’th path uses edges in odd positions, and a choice
of edge in each of the ni odd positions in this path; there are 2ni choices for each i. So
Gp,1 has the correct weight-function: [[Gp,1]] (i, j) =

(
p 0
0 1

)
i,j
.

Define H to be the circuit consisting of one vertex with fugacity zero, with two
external edges. For q 6= 1 define Gp,q to be serial composition of copies of Gp,1, H, Gq,1,
and H, that is, we identify the second external edge of the i’th circuit with the first
external edge of the (i + 1)’th, for i = 1, 2, 3. The weight-function of Gp,q is then given
by the matrix (

p 0

0 1

)(
0 1

1 0

)(
q 0

0 1

)(
0 1

1 0

)
=

(
p 0

0 q

)
.

Lemma 3.26. Given a matchings circuit G for a weight-function F , we can efficiently
construct a matchings circuit G′ for F⊕ (defined in Section 3.4) in which every vertex
has fugacity zero. Conversely, given a matchings circuit G for F⊕, we can efficiently
construct a matchings circuit G′ for F .

Proof. For the first statement, pick an enumeration v1, . . . , vn of the vertices of G. Form
G′ as follows. For each 1 ≤ i ≤ n, add vertices ai, bi, ci, edges aibi,aici,bici with edge-
weight 1, add an edge viai with weight λ(vi), and if i < n add an edge cibi+1 with
edge-weight 1. Set all the fugacities to zero and add an external edge at b1. See Figure
3.10. Consider a matching M ⊆ E of G. We will argue that there is a unique way to
extend M to a perfect matching M ′ of G′.
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λ(v1) λ(v2) λ(vn)

b1 c1

a1

v1

b2 c2

a2

v2

bn cn

an

vn
F

. . .

. . .

. . .

Figure 3.10: Illustration of a matching circuit for F⊕ built from a matchings circuit
for F , as described in Lemma 3.26.

Let U = {i | degM (vi) = 0} be the indices of unmatched vertices. Let M1 = {aivi |
i ∈ U}. Note that the extension M ′ must include M1, and if i 6∈ U we cannot have
bici ∈ M ′. Consider the following subset P of external and internal edges: the external
edge at b1, edges bici for all i ∈ U , and the edges biai and aici for all i /∈ U . So P is
a path, except that at one endpoint, P has an external edge b1. Observe that there is
a unique choice of perfect matching M2 ⊆ P along this path: the odd-numbered edges
starting from the end of P not incident to the external edge b1. (If P has an odd number
of vertices then we get b1 ∈ M2, and otherwise b1 6∈ M2.) Define M ′ = M ∪M1 ∪M2.
Any extension of M to a perfect matching of G′ would have to include M1, and hence
M2, and so the extension is unique.

This gives a weight-preserving bijection between matchings M of G and perfect
matchings M ′ of G′. Since G′ has an even number of vertices, the sets M ′ must in-
clude an even number of external edges. Thus [[G′]] = F⊕.

The converse is easy: given a matchings circuit G for F⊕, add a vertex of fugacity 1

to the external edge 1 to get a matchings circuit for F .

Lemma 3.27. #FugacityWeightedPM ≤AP #PM

Proof. Given a matchings circuit G1 with no external edges, we will construct a simple
graph G with C [[G1]] perfect matchings where C is an easily computed positive integer.

By Lemma 3.26 we get a matchings circuit G2 such that [[G2]] = [[G1]]⊕. Deleting
the external edge, we get a circuit G3 with [[G3]] = [[G1]]. At each edge e of G3, we
have integers pe, qe such that the weight of e is pe/qe. Insert a copy of the circuit Gp,q
given by Lemma 3.25; this produces a circuit G4 whose weight-function is C [[G3]] where
C =

∏
e∈EG3 qe, and where all fugacities are 0 and all edge-weights are 1. Forgetting

the fugacities and edge-weights we get a multigraph with C [[G3]] perfect matchings. To
construct G, delete any loops and subdivide each edge into a path of length 3; this does
not affect the number of perfect matchings.
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Theorem 3.5. If F is a finite set of weight-functions that have matchings circuits, then
Holant(F) ≤AP #PM.

Proof. Pick a choice of matchings circuit GF for each F ∈ F . Given an instance ψ of
Holant(F), for each vertex v the function Fv is a copy of some F ∈ F ; we can substitute
GF into ψ at v. This process gives a matchings circuit G′ with the same weight-function
as ψ. We can then appeal to Lemma 3.27.

3.7.3 Expressive power

Lemma 3.28. The weight-function of any matchings circuit is windable.

Proof. By Lemma 3.26 and Lemma 3.15 it suffices to show that the weight-function of
any matchings circuit where all fugacities are zero is even-windable. For all w ≥ 0,
Lemma 3.7 implies that Edgew is even-windable. For all λ ≥ 0 and all finite sets J ,
consider a pinning G : {0, 1}I → Q≥0 of FugacityλJ . If (GG)(x) > 0 for some x then∑

i∈I xi and
∑

i∈I(1− xi) are at most 1, so |I| ≤ 2. Thus GG has a 2-decomposition as
in Lemma 3.7.

To give circuits for low-arity functions we will apply linear programming duality
in the form of Farkas’ lemma. For a very short proof of Farkas’ lemma, as well as a
statement explicitly allowing a general ordered field, see [4]. For all x,ϕ ∈ Qd denote
the dot product x1ϕ1 + · · ·+ xdϕd by x ·ϕ.

Lemma 3.29. Let x1, . . . ,xk,y ∈ Qd. The following are equivalent:

• y = c1x1 + · · ·+ ckxk for some c1, . . . , ck ∈ Q≥0

• y ·ϕ ≥ 0 for all ϕ ∈ Qd that satisfy x1 ·ϕ, . . . ,xk ·ϕ ≥ 0

Lemma 3.30. Let F : {0, 1}4 → Q≥0. Assume that F (e1), F (e2),F (e3),F (e4) are not
all zero, and that F (x1, x2, x3, x4) = 0 whenever x1 + x2 + x3 + x4 is even, and that for
all x1, x2, x3, x4 ∈ {0, 1} we have

F (x1, x2, x3, x4)F (1− x1, 1− x2, 1− x3, 1− x4)

≤ F (x1, x2, 1− x3, 1− x4)F (1− x1, 1− x2, x3, x4)

+ F (x1, 1− x2, x3, 1− x4)F (1− x1, x2, 1− x3, x4)

+ F (x1, 1− x2, 1− x3, x4)F (1− x1, x2, x3, 1− x4).

Then F has a matchings circuit.

Proof. We will construct values w(vivj) ≥ 0 satisfying

F (e1) = F (e2)w(v3v4) + F (e3)w(v4v2) + F (e4)w(v2v3)

F (e2) = F (e3)w(v4v1) + F (e4)w(v1v3) + F (e1)w(v3v4)

F (e3) = F (e4)w(v1v2) + F (e1)w(v2v4) + F (e2)w(v4v1)

F (e4) = F (e1)w(v2v3) + F (e2)w(v3v1) + F (e3)w(v1v2)
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F (e1)

F (e2) F (e3)

F (e4)

v1

v2 v3

v4

u

Figure 3.11: A weighted clique. All fugacities are zero, and w(uvi) = F (ei) for all i.
The other edge-weights are to be determined.

(and also w(vivj) = w(vjvi).) This suffices because then F = [[G]] where G is the
weighted clique illustrated in Figure 3.11. We need to show that the vector

y = (F (e1), F (e2), F (e3), F (e4))

is a non-negative linear combination of the vectors eiF (ej)+ejF (ei) with 1 ≤ i < j ≤ 4.
By Farkas’ lemma (Lemma 3.29), it suffices to show that y · ϕ ≥ 0 for all ϕ ∈ Q4

satisfying

ϕiF (ej) + ϕjF (ei) ≥ 0 for all 1 ≤ i < j ≤ 4. (3.7)

If ϕ1, ϕ2, ϕ3, ϕ4 ≥ 0 we are done. Otherwise ϕi < 0 for some i. By assumption F (ej) > 0

for some j. If j 6= i, then (3.7) implies that ϕjF (ei) is non-zero. In any case F (ei) > 0.
If i = 1 then

F (e1)F (e1) ≤ F (e2)F (e2) + F (e3)F (e3) + F (e4)F (e4)

−ϕ1F (e1)F (e1) ≤ −ϕ1F (e2)F (e2)− ϕ1F (e3)F (e3)− ϕ1F (e4)F (e4)

−ϕ1F (e1)F (e1) ≤ ϕ2F (e2)F (e1) + ϕ3F (e3)F (e1) + ϕ4F (e4)F (e1)

−ϕ1F (e1) ≤ ϕ2F (e2) + ϕ3F (e3) + ϕ4F (e4)

Therefore y ·ϕ ≥ 0. By symmetry the other cases, i 6= 1, are similar.

Theorem 3.6. Let F : {0, 1}3 → Q≥0. The following are equivalent:

1. F is windable
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2. For all x1, x2, x3 ∈ {0, 1} we have

F (x1, x2, x3)F (1− x1, 1− x2, 1− x3)

≤ F (x1, x2, 1− x3)F (1− x1, 1− x2, x3)

+ F (x1, 1− x2, x3)F (1− x1, x2, 1− x3)

+ F (x1, 1− x2, 1− x3)F (1− x1, x2, x3)

3. F has a matchings circuit

Proof. For notational convenience, in the following argument we will use a particular
copy of F⊕. For all x1, x2, x3, x4 ∈ {0, 1} define

F ′(x1, x2, x3, x4) =

F (x1, x2, x3) if x1 + x2 + x3 + x4 is even

0 otherwise.

(1 =⇒ 2) Let B be a witness that F ′ is even-windable (using Lemma 3.15). Let
x1, x2, x3 ∈ {0, 1}. Let c ∈ {0, 1} be the unique value such that x1 + x2 + x3 + c is even.
Then (x1, x2, x3, c)⊕ (1− x1, 1− x2, 1− x3, 1− c) = (1, 1, 1, 1). Note that

M(1,1,1,1) = {{{1, 2}, {3, 4}}, {{1, 3}, {2, 4}}, {{1, 4}, {2, 3}}}.

We have

F (x1, x2, x3)F (1− x1, 1− x2, 1− x3)

= F ′(x1, x2, x3, c)F
′(1− x1, 1− x2, 1− x3, 1− c)

= B((x1, x2, x3, c), (1− x1, 1− x2, 1− x3, 1− c), {{1, 2}, {3, 4}})

+B((x1, x2, x3, c), (1− x1, 1− x2, 1− x3, 1− c), {{1, 3}, {2, 4}})

+B((x1, x2, x3, c), (1− x1, 1− x2, 1− x3, 1− c), {{1, 4}, {2, 3}})

= B((x1, x2, 1− x3, 1− c), (1− x1, 1− x2, x3, c), {{1, 2}, {3, 4}})

+B((x1, 1− x2, x3, 1− c), (1− x1, x2, 1− x3, c), {{1, 3}, {2, 4}})

+B((x1, 1− x2, 1− x3, c), (1− x1, x2, x3, 1− c), {{1, 4}, {2, 3}})

≤ F ′(x1, x2, 1− x3, 1− c)F ′(1− x1, 1− x2, x3, c)

+ F ′(x1, 1− x2, x3, 1− c)F ′(1− x1, x2, 1− x3, c)

+ F ′(x1, 1− x2, 1− x3, c)F
′(1− x1, x2, x3, 1− c)

= F (x1, x2, 1− x3)F (1− x1, 1− x2, x3)

+ F (x1, 1− x2, x3)F (1− x1, x2, 1− x3)

+ F (x1, 1− x2, 1− x3)F (1− x1, x2, x3)

(2 =⇒ 3) We can assume that F is not identically zero (otherwise, take two vertices
of fugacity 0, and attach four outgoing edges to one of them - the isolated vertex can
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never be matched). Pick x ∈ {0, 1}4 with F ′(x1, x2, x3, x4) > 0. Lemma 3.30 implies
that the flip F ′′ of F ′ by x⊕ (1, 1, 1, 0) has a matchings circuit. By subdividing the i’th
outgoing edge for each i with xi = 1, we get a matchings circuit for F ′. By Lemma 3.26
we get a matchings circuit whose weight-function is F .

(3 =⇒ 1) Lemma 3.28.

In particular by Theorem 3.6 and Theorem 3.5, Holant({R}) ≤AP #PM where

R = {(0, 0, 0), (1, 0, 0), (0, 1, 0), (1, 0, 1), (0, 1, 1)}.



Chapter 4

Holant problems with arity three
relations, and counting downsets

In this section we study some unweighted counting problems: first, degree-two #CSPs
and Holant problems using arity 3 relations, and secondly, a restriction of #Downsets.
We first discuss unweighted #CSPs without degree restrictions.

4.1 Introduction to bounded-degree unweighted #CSPs

There is a trichotomy for #CSP(Γ) where Γ is a finite unweighted constraint language.

Proposition 4.1. [48] Let Γ be a finite unweighted constraint language.

• If every relation in Γ is affine then #CSP(Γ) ∈ FP.

• Otherwise, if Γ ⊆ IMconj then #CSP(Γ) =AP #BIS.

• Otherwise, #CSP(Γ) =AP #SAT.

In particular #CSP(NAND) =AP #SAT and #CSP(IMP) =AP #BIS. The following
examples show that bounded-degree problems are unlikely to have a classification of
the same form as Proposition 4.1 without some assumptions. Example 4.2 shows that
#CSP≤5 is different from #CSP≤6.

Example 4.2. The problem #ISd of counting independent sets in graphs of maximum
degree at most d has a (deterministic) FPRAS [100] for d ≤ 5, while for d ≥ 6, this
problem has no FPRAS unless the complexity classes RP and NP are equal [92]. But
#ISd is AP-equivalent to #CSP≤d(NAND), where NAND = {(0, 0), (0, 1), (1, 0)}, by the
correspondence mentioned in Section 1.3. �

Example 4.3 rules out any classification of constraint languages into a finite number
of classes such that #CSP≤d(Γ) can be classified up to AP-equivalence in a way that
depends only on d and the class of Γ.
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Example 4.3. A hypergraph is a set of vertices and a set of hyperedges, where a hyperedge
is any set of vertices. The degree of a vertex v is the number of hyperedges including
v, while the size of an hyperedge e is the number of vertices in e. An independent set
of a hypergraph is a set of vertices I such that no hyperedge e is a subset of I. For all
positive integers d, there is an FPRAS for the problem of counting independent sets in
hypergraphs where every vertex has degree at most d and every hyperedge has size at
least 2d+ 1 [9].

Unfortunately, the natural way to model hypergraph problems as a #CSP tends to
give a subtly different problem - while the edges of a hypergraph are sets, the scope of a
constraint may use the same variable more than once. However, we get the crude con-
sequence that the problem #CSP≤d(NAND3d2) has an FPRAS, where NANDk denotes
{0, 1}k\{0}k. Indeed, given an instance of #CSP≤d(NAND3d2), consider the “primal con-
straint hypergraph” whose vertices are variables of the instance, and whose hyperedges
are sets {v1, . . . , v3d2} for each constraint 〈(v1, . . . , v3d2),NAND3d2〉 (ignoring repeated
hyperedges). Each hyperedge has size at least 3d ≥ 2d+ 1, so we can count the number
of independent sets in this hypergraph efficiently by [9].

Conversely #CSP≤d(NANDd/3) does not have an FPRAS, at least when d is a pos-
itive multiple of 6 and RP 6= NP. Recall from Example 4.2 that there is no FPRAS
for #CSP≤6(NAND2) unless RP = NP. But given an instance of #CSP≤6(NAND2) we
can replace each constraint 〈(u, v),NAND2〉 by 〈(u, . . . , u, v, . . . , v),NANDd/3〉 – repeat-
ing each variable d/6 times – to get an instance of #CSP≤d(NANDd/3) with the same
satisfying assignments. �

The problem #CSP≤d(Γ) for d ≥ 3 was studied in [51], giving a trichotomy for d ≥ 6

for constraint languages that include constants:

Proposition 4.4. [51, Theorem 24] Let Γ be a finite unweighted constraint language
containing {(0)} and {(1)}. Let d ≥ 6.

• If every relation in Γ is affine then #CSP≤d(Γ) ∈ FP.

• Otherwise, if Γ ⊆ IMconj then #CSP≤d(Γ) =AP #BIS.

• Otherwise, #CSP≤d(Γ) has no FPRAS unless RP = NP.

The aim of this chapter is to give an analogue of this result for d = 2. The distinction
between degree-two #CSPs and Holant problems does not seem to be important — the
only difference is that degree-two #CSPs allow variables to be used less than twice. But
we state results in both settings in the hope that it is convenient for future research.
Note that degree-two #CSPs can be viewed as read-twice #CSPs (where every variable
must appear exactly twice):

Lemma 4.5. [101, Proposition 9.2] #CSP≤2(R) is equivalent to Holant(R, {0, 1}1), un-
der AP-reductions and under polynomial-time Turing reductions.
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Proof. (Note we have incorporated [101, Proposition 9.2] into our definitions to some
extent, by taking Holant problems to be encoded like a constraint satisfaction problem
rather than as a graph.)

Given an instance (V,C) of #CSP≤2(R) we can insert 2−degC(v) constraints 〈(v), {0, 1}1〉
for each variable v, where degC(v) denotes the number of occurrences of v. This gives
an instance of Holant(R, {0, 1}1) with the same partition function. Conversely, given an
instance of Holant(R, {0, 1}1) we can delete the {0, 1}1 constraints to get an instance of
#CSP≤2(R) with the same partition function.

To emphasise the similarly between degree-two and read-twice problems, in this chap-
ter we will write Holant(F) as #CSP=2(F).

4.2 Expressibility reductions

The reductions in this section are mostly a combination of previous results, and the
following type of expressibility reduction. We will express a function F in the form

F (x1, . . . , xn) =
∑

xn+1,...,xn+m∈{0,1}

∏
〈(i1,...,ik),G〉∈C

G(xi1 , . . . , xik) (4.1)

where on the right-hand-side each unsummed variable x1, . . . , xn occurs exactly once and
each summed variable xn+1, . . . , xn+m occurs exactly twice.

If (4.1) holds, we can substitute each F constraint 〈(v1, . . . , vn), F 〉 in a #CSP in-
stance (V ′, C ′) by a copy of the constraints C, renaming the unsummed variables to
v1, . . . , vn and renaming the summed variables to new variables for each F constraint.
This does not affect the partition function: if we let (V ′′, C ′′) denote the modified in-
stance then

ZV ′,C′ = ZV ′′,C′′ .

(In fact, each assignment σ : V ′ → {0, 1} satisfies wtV ′,C′(σ) =
∑

wtV ′′,C′′(σ
′) where

the sum is over extensions of σ to σ′ : V ′′ → {0, 1}. We formalise this argument further
in Section 5.2.1.)

This gives both an AP-reduction and a polynomial-time Turing reduction, from
#CSP=2(F∪{F}) to #CSP=2(F), for any finite set F such thatG ∈ F for all 〈(i1, . . . , ik), G〉 ∈
C.

4.3 Exact evaluation

The problems #CSP(Γ) in the last two cases in Proposition 4.1 are #P-complete; this was
shown earlier by Creignou and Hermann [40]. But there turn out to be more tractable
cases for degree two #CSPs and Holant problems.
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In this section we will classify the complexity of exactly evaluating #CSP=2(Γ) where
Γ is a set of relations of arity at most 3. We will do this by applying a dichotomy for
symmetric Holant problems. Throughout this section, functions {0, 1}k → C are called
signatures, and [f0, . . . , fk] denotes the symmetric function F : {0, 1}k → C defined by

F (x1, . . . , xk) = fx1+···+xk (x1, . . . , xk ∈ {0, 1}).

We will use a dichotomy theorem for symmetric Holant problems stated in terms of
certain classes of functions. A signature is degenerate if it is [ak, ak−1b, ak−2b2, . . . , bk]

for some a, b ∈ C and some integer k ≥ 0. A symmetric signature is of product type if
it is degenerate or [a, 0, 0, . . . , 0, b] or [0, a, 0] for some a, b ∈ C. Let P denote the class of
signatures of product type. We will also need to refer to affine signatures. The symmetric
affine signatures are listed below; see for example the discussion following Definition 2.7
in [31]. In each case λ is an arbitrary constant.

A1. λ[1, 0, . . . , 0,±1]

A2. λ[1, 0, . . . , 0,±
√
−1]

A3. λ[1, 0, 1, 0, . . . , 0 or 1]

A4. λ[1,−
√
−1, 1,−

√
−1, . . . ,−

√
−1 or 1]

A5. λ[0, 1, 0, 1, . . . , 0 or 1]

A6. λ[1,
√
−1, 1,

√
−1, . . . ,

√
−1 or 1]

A7. λ[1, 0,−1, 0, 1, 0,−1, 0, . . . , 0 or 1 or −1]

A8. λ[1, 1,−1,−1, 1, 1,−1,−1, . . . , 1 or −1]

A9. λ[0, 1, 0,−1, 0, 1, 0,−1, . . . , 0 or 1 or −1]

A10. λ[1,−1,−1, 1, 1,−1,−1, 1, . . . , 1 or −1]

The dichotomy is stated in terms of signatures of the form T⊗kF . For any set of
signatures F define TF = {T⊗kF | k ≥ 0 and F : {0, 1}k → C is in F}.

Proposition 4.6. [67] Let F be a set of symmetric signatures on Boolean variables with
real values. Then #CSP=2(F) is #P-hard unless one of the following conditions hold.

(i.) the arity of any non-degenerate signature in F is no more than 2

(ii.) F ⊆ TA for some orthogonal matrix T ∈ C2×2

(iii.) F ⊆ TP for some orthogonal matrix T ∈ C2×2

In these cases, #CSP=2(F) is computable in polynomial time.

(A matrix is orthogonal if it is the inverse of its transpose.) We will next show that
these conditions simplify slightly if F consists of non-negative-valued signatures.

First, we will need to discuss a type of signature appearing in the third class in
Proposition 4.6. A function F = [f0, . . . , fk] is a “generalised Fibonacci signature” if
there exist α, β ∈ C not both zero such that αfi−1 +βfi−αfi+1 = 0 for all 1 ≤ i ≤ k−1.
These are mentioned in [67].
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An important property is that a function is a generalised Fibonacci signature if and
only if it is of the form T⊗k[λ, 0, 0, . . . , 0, λ′] for some orthogonal matrix T ∈ C2×2. This
property is used, for example, in the proof of [67, Corollary 4.6]; we will give a proof here
for completeness.

For the forward direction, note that T is orthogonal so is either of the form
(
a b
−b a

)
or
(−a b
b a

)
. We have

(
a b
−b a

)⊗k
[λ, 0, 0, . . . , 0, λ′] = [λak + λ′bk, λak−1(−b) + λ′abk−1, . . . , λ(−b)k + λ′ak](−a b

b a

)⊗k
[λ, 0, 0, . . . , 0, λ′] = [λ(−a)k + λ′bk, λ(−a)k−1b+ λ′abk−1, . . . , λbk + λ′ak]

(4.2)
which both satisfy abfi−1 + (a2 − b2)fi − abfi+1 = 0 for all 1 ≤ i ≤ k − 1.

Conversely given α, β not both zero, there are a, b not both zero satisfying α = ab

and β = a2 − b2: if α = 0 take b = 0 and pick a square root a of β and set b = 0,
otherwise pick a zero X of X2 − (β/α)X − 1 (which ensures αX − α/X = β), pick a
square root a of αX, and set b = a/X. Then the first equation of (4.2) gives the full
two-dimensional space of solutions to the recurrence: αfi−1 + βfi − αfi+1 = 0 for all
1 ≤ i ≤ k − 1.

Lemma 4.7. Let F be a set of non-negative-valued symmetric signatures. If F ⊆ TA
or F ⊆ TP for some orthogonal matrix T ∈ C2×2, then one of the following conditions
holds.

(i.) F ⊆ A

(ii.) F ⊆ P

(iii.) There exists µ ∈ R such that every non-degenerate [f0, . . . , fk] in F satisfies fi−1 +

µfi − fi+1 = 0 for all 1 ≤ i ≤ k − 1

Proof. First consider the case that F ⊆ TP for some orthogonal matrix T . Suppose that
condition (ii.) fails, so T is not of the form

(±1 0
0 ±1

)
or
(

0 ±1
±1 0

)
. So T is of the form(

a b
−b a

)
or
(−a b
b a

)
with a, b 6= 0 and a2 + b2 = 1, and F consists of functions of the form

T⊗2[0, λ, 0] or T⊗k[λ, 0, 0, . . . , 0, λ′] (with λ, λ′ ∈ C). But T⊗2[0, λ, 0] cannot occur with
λ 6= 0, because

(
a b
−b a

)⊗2
[0, 1, 0] = [2ab, a2 − b2,−2ab](−a b

b a

)⊗2
[0, 1, 0] = [−2ab, b2 − a2, 2ab]

and the values 2abλ and −2abλ cannot both be non-negative. For T⊗k[λ, 0, 0, . . . , 0, λ′],
by (4.2) condition (iii.) is satisfied with µ = a2−b2

ab ; if this value is not real we can just
take µ = 0 because for any [f0, . . . , fk] ∈ F the differences fi−1 − fi+1 = a2−b2

ab fi lie in
a2−b2
ab R ∩ R = {0}.
Now consider the case that F ⊆ TA for some orthogonal matrix T . So F consists

of functions λT⊗kF where λ ∈ C and F is in one the ten forms (A1)-(A10). If F is
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of the form (A2), (A4), or (A6), and F is not of the form (A1), (A3) or (A5), then∑1
x1,...,xk=0 F (x1, . . . , xk)F (x1, . . . , xk) is zero. Since T is orthogonal,

1∑
x1,...,xk=0

F (x1, . . . , xk)F (x1, . . . , xk) =

1∑
x1,...,xk=0

(T⊗kF )(x1, . . . , xk)(T
⊗kF )(x1, . . . , xk)

but T⊗kF takes non-negative values, so must be identically zero. Similarly if F is in one
of the forms (A7)-(A10), and F is not of the form (A1), (A3) or (A5), then the arity k−2

function F ′ defined by F ′(x1, . . . , xk−2) =
∑1

y=0 F (x1, . . . , xk−2, y, y) is identically zero.
Thus (T⊗(k−2)F ′)(x1, . . . , xk−2) is zero for all x1, . . . , xk−2 ∈ {0, 1}. But by orthogonality
of T ,

(T⊗(k−2)F ′)(x1, . . . , xk−2) =
1∑
y=0

(T⊗kF )(x1, . . . , xk−2, y, y)

for all x1, . . . , xk−2 ∈ {0, 1}, so F is identically zero (or F = [0, λ, 0] for some λ, so F is
of the form (A5)).

We have shown that for all T⊗kF ∈ F , the function F is in one of the forms (A1),
(A3) or (A5). Define H = 1√

2

(
1 1
1 −1

)
. Note that if T or TH is one of the eight matrices(±1 0

0 ±1

)
,
(

0 ±1
±1 0

)
then T⊗kF ∈ A for any function F in the forms (A1), (A3), or (A5),

which implies condition (i.). So we may assume T is not one of these eight matrices.
Both (A3) and (A5) are constant multiples of functions of the formH⊗k[1, 0, 0, . . . , 0,±1],

so F is contained in TP ∪ THP. We previously argued that if F ⊆ TP then condition
(ii.) or (iii.) holds. Similarly if F ⊆ THP then we are done. So we may assume that
F 6⊆ TP and F 6⊆ THP. Note that all functions of the forms (A1), (A3) and (A5) of
arity at most 2 are in P. So F contains S⊗k[λ, 0, 0, . . . , 0,±λ] where S ∈ {T, TH} and
k ≥ 3. Since S is orthogonal, S is

(
a b
−b a

)
or
(−a b
b a

)
where a, b 6= 0 and a2 + b2 = 1. Let

G = S⊗4[λ2, 0, 0, 0, λ2]. Let F = S⊗k[λ, 0, 0, . . . , 0,±λ]. By orthogonality of S, for all
y1, . . . , y4 ∈ {0, 1} we have

G(y1, y2, y3, y4) =
1∑

x1,...,xk−2=0

F (x1, . . . , xk−2, y1, y2)F (x1, . . . , xk−2, y3, y4).

F ∈ F takes non-negative values, so G(1, 0, 0, 0), G(1, 1, 1, 0) ≥ 0. But G is either

(
a b
−b a

)⊗4
[λ2, 0, 0, 0, λ2] = λ2[a4 + b4,−a3b+ ab3, 2a2b2,−ab3 + a3b, a4 + b4] or(−a b

b a

)⊗4
[λ2, 0, 0, 0, λ2] = λ2[a4 + b4,−a3b+ ab3, 2a2b2,−ab3 + a3b, a4 + b4].

So λ2(−a3b + ab3) and λ2(−ab3 + a3b) are non-negative, which implies that a = 0 or
b = 0 or a2 = b2. But this contradicts the assumption that T was not one of the eight
matrices

(±1 0
0 ±1

)
,
(

0 ±1
±1 0

)
.

Lemma 4.7 simplifies the dichotomy slightly for non-negative-valued functions. An-
other way we will simplify the study of #CSPs is to restrict to studying constraint
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languages that do not contain Cartesian products. This is justified by the following
argument.

Lemma 4.8. Let R ⊆ {0, 1}r and S ⊆ {0, 1}s be non-empty relations, and let Γ be a
set of relations. Then #CSP=2(Γ∪{R×S}) is equivalent to #CSP=2(Γ∪{R,S}) under
AP-reductions and under polynomial-time Turing reductions.

Proof. We first give a reduction from #CSP=2(Γ∪{R}) to #CSP=2(Γ∪{R×S}) where
S is any non-empty relation. Consider an instance I of #CSP=2(Γ ∪ {R}) with k

constraints using R. Let 2 · I denote two disjoint copies of I. Let I ′ denote the in-
stance of #CSP=2(Γ ∪ {R × S}) obtained from 2 · I by replacing each R constraint
c = 〈(vc,1, . . . , vc,r), R〉 and its corresponding copy c′ = 〈(v′c,1, . . . , v′c,r), R〉 with the con-
straints 〈(vc,1, . . . , vc,r, wc,1, . . . , wc,s), R × S〉 and 〈(v′c,1, . . . , v′c,r, wc,1, . . . , wc,s), R × S〉,
where wc,1, . . . , wc,s are new variables.

ZI′ gets k new factors of
∑

x∈{0,1}s S(x)S(x) = |S|. So ZI′ = |S|kZ2·I = |S|k(ZI)2.
We can compute ZI from ZI′ by ZI =

√
ZI′/|S|k. (For an AP-reduction, given error

parameter ε, we can call the ZI′ oracle with error parameter 2ε.) Repeating the same
argument with the roles of R and S reversed, we get a reduction from #CSP=2(Γ∪{R,S})
to #CSP=2(Γ ∪ {R} ∪ {R× S}).

In the other direction we reduce #CSP=2(F ∪ {R× S}) to #CSP=2(F ∪ {R,S}) by
replacing each 〈(v1, . . . , vr, w1, . . . , ws), R×S〉 constraint by a 〈(v1, . . . , vr), R〉 constraint
and a 〈(w1, . . . , ws), S〉 constraint.

Proposition 4.9. Let Γ be a set of relations of arity at most three, and assume that
no relation in Γ is a Cartesian product of relations R ⊆ {0, 1}I and S ⊆ {0, 1}J with
|I|, |J | ≥ 1. Then #CSP=2(Γ) is #P-complete unless one of the following conditions
hold.

(i.) every relation in Γ has arity at most two

(ii.) every relation in Γ is affine

(iii.) Γ ⊆ {[1, 0, 1, 1], [0, 1, 1], [1, 0, 1], [1, 1], [0, 1], [1, 0]}

(iv.) Γ ⊆ {[1, 1, 0, 1], [1, 1, 0], [1, 0, 1], [1, 1], [0, 1], [1, 0]}

(See Figure 4.1.) In each of these cases, #CSP=2(Γ) can be computed in polynomial
time.

Proof. #CSP=2(Γ) is clearly in #P. To show #P-hardness we use symmetrisation gad-
gets (this approach is used for similar purposes in [103]).

Let F be the set containing: the symmetric relations in Γ, and [2, 1, 1] and [1, 1, 2] if
IMP = {(0, 0), (0, 1), (1, 1)} is in Γ (or {(0, 0), (1, 0), (1, 1)} is in Γ), and for each arity 3
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arity at most two

affine

µ = 1 µ = −1

[1, 0] [0, 1]
[1, 1] [1, 0, 1]

[0, 1, 0]

IMPIMP

N/A

N/A N/A

E
[1, 0, 1, 0]
[0, 1, 0, 1]
[1, 0, 0, 1]

[0, 1, 1]

[1, 0, 1, 1]

[1, 1, 0]

[1, 1, 0, 1]

Figure 4.1: Tractable families of indecomposable relations of arity at most three. N/A
means there are no indecomposable relations of arity at most three with the specified
properties. IMP represents {(0, 0), (0, 1), (1, 1)} (and {(0, 0), (1, 0), (1, 1)}), while E

represents {(1, 0, 0), (0, 1, 1)} (and {(0, 1, 0), (1, 0, 1)} and {(0, 0, 1), (1, 1, 0)}).

relation R in Γ, the signatures F1, F2, F3 : {0, 1}3 → C and F4 : {0, 1}2 → C defined by

F1(x1, x2, x3) =
∑

y1,y2,y3∈{0,1}

R(x1, y1, y2)R(x2, y2, y3)R(x3, y3, y1)

F2(x1, x2, x3) =
∑

y1,y2,y3∈{0,1}

R(y2, x1, y1)R(y3, x2, y2)R(y1, x3, y3)

F3(x1, x2, x3) =
∑

y1,y2,y3∈{0,1}

R(y1, y2, x1)R(y2, y3, x2)R(y3, y1, x3)

F4(x1, x2) =
∑

y1,y2∈{0,1}

R(x1, y1, y2)R(x2, y1, y2)

F4 and F1 are represented in Figure 4.2.
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These functions have cyclic symmetry, and any function on {0, 1}2 or {0, 1}3 with
cyclic symmetry must be symmetric. We have

[2, 1, 1](x1, x2) =
∑

y∈{0,1}

IMP(x1, y)IMP(x2, y) and

[1, 1, 2](x1, x2) =
∑

y∈{0,1}

IMP(y, x1)IMP(y, x2)

for all x1, x2 ∈ {0, 1}, so there is an expressibility reduction from #CSP=2(F) to #CSP=2(Γ)

(see Section 4.2). It remains to show that if Γ is not in any of the classes (i.) to (iv.) then
#CSP=2(F) is not in any of the tractable classes given by Proposition 4.6. By Lemma
4.7 it suffices to show that F 6⊆ A and F 6⊆ P and there is no µ ∈ R such that every
non-degenerate symmetric signature [f0, . . . , fk] in F satisfies fi−1 + µfi − fi+1 = 0 for
all 1 ≤ i ≤ k − 1.

Here is how binary relations affect the classification. The binary relation [1, 1, 0] is
not affine or of product type, and forces µ = −1, while the binary relation [0, 1, 1] is not
affine or of product type, and forces µ = 1. On the other hand, [0, 1, 0] is affine and of
product type, but forces µ = 0. If IMP ∈ Γ then [2, 1, 1], [1, 1, 2] ∈ F , but these are not
affine or of product type, and rule out any µ.

By considering each arity 3 relation, as shown in Figure 4.3, we can show that amongst
arity 3 indecomposable relations R, the problem #CSP=2(R) is already #P-hard unless
R is one of the following relations (possibly after permuting variables):

• [1, 0, 0, 1] and {(0, 0, 1), (1, 1, 0)}, which are affine and of product type; each rules
out any µ.

• [0, 1, 0, 1] and [1, 0, 1, 0], which are affine but not of product type, and each forces
µ = 0.

• [1, 1, 0, 1], which is not affine or of product type, and forces µ = −1.

• [1, 0, 1, 1], which is not affine or of product type, and forces µ = 1.

Putting this all together verifies the #P-hard cases.
Indeed for the relations R marked Fi in Figure 4.3, 1 ≤ i ≤ 3 the function Fi =

[f0, f1, f2, f3] defined above is already non-degenerate, not affine, and not of product
type, and there is no µ such that f0 + µf1 − f2 = 0 and f1 + µf2 − f3 = 0. For the
special cases marked * we find that F4 is [2, 0, 1] or [1, 0, 2], which is not affine nor of
product type and rules out any µ, while one of F1, F2, or F3 is [0, 1, 0, 1] or [1, 0, 1, 0],
which are non-degenerate signatures of arity greater than two. For example, in the case
R = {(0, 0, 0), (0, 1, 1), (1, 0, 1)} we get F4 = [2, 0, 1] and F3 = [1, 0, 1, 0] in F .

For tractability, for case (i.) we can use [27, Theorem 2.2], and for case (ii.) we
can appeal to Proposition 4.1 (note that these results deal with asymmetric signatures).
The third case consists of generalised Fibonacci signatures, [f0, . . . , fk] with fi−1 + fi −
fi+1 = 0. The last case consists of generalised Fibonacci signatures, [f0, . . . , fk] with
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y2
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1

x1 x2

x3

y2

y1 y3
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2

3
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Figure 4.2: Symmetrisation gadgets F4 and F1. The numbers denote the position of
a variable (drawn as an edge) in the constraint (drawn as a vertex).

fi−1 − fi − fi+1 = 0. In cases (iii.) and (iv.) we can therefore appeal to Proposition
4.6.
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4.4 Approximate evaluation

We now study approximate evaluation of degree-two #CSPs and Holant problems whose
constraint language consists of a single arity 3 relation. The results are listed in Figure
4.4. The table only shows one member of each equivalence class under the symmetries
of permuting variables and permuting the domain {0, 1}, because these operations do
not affect the computational complexity. Also, the problems shown to be in FP by
Proposition 4.9 are not shown. Each relation R ⊆ {0, 1}3 is listed by writing ijk for each
(i, j, k) ∈ R. For example the first row represents the relation {(0, 0, 1), (0, 1, 0), (1, 0, 0)}.
In each row:

• “FPRAS” means that #CSP≤2(R) has an FPRAS

• “#X”, where #X is #PM, #BIS or #SAT, means #CSP≤2(R) ≤AP #X ≤AP

#CSP=2(R)

• “≤AP #X” means #CSP≤2(R) ≤AP #X

R Complexity
100 010 001 #PM Lemmas 4.14 & 4.15

000 100 010 001 FPRAS Lemma 4.11
000 001 110

100 001 110 #SAT Lemma 4.17
000 100 001 110

100 010 001 110 #SAT Lemma 4.17
000 100 010 001 110 FPRAS Lemma 4.11
000 110 101 #PM Lemmas 4.14 & 4.16
000 100 110 101 FPRAS Lemma 4.12
000 010 110 101

100 001 110 101 #SAT Lemma 4.17
000 100 010 110 101
000 010 001 110 101 ≤AP #PM Lemma 4.14

100 010 001 110 101 ≤AP #PM Lemma 4.14
000 100 110 101 011
000 100 010 110 101 011 FPRAS Lemma 4.13

100 010 001 110 101 011 FPRAS Lemma 4.13
000 100 010 001 110 101 011 FPRAS Lemma 4.13
000 100 111 #BIS Lemma 4.17
000 100 010 111
000 100 101 111 #BIS Lemma 4.17
000 100 010 110 111 ≤AP #BIS Proposition 4.1
000 100 001 110 111 ≤AP #PM Lemma 4.14
000 100 010 001 110 111 FPRAS Lemma 4.13
000 010 001 110 101 111 FPRAS Lemma 4.13
000 100 010 001 110 101 111 FPRAS Lemma 4.13

Figure 4.4: Summary of results for degree-two #CSPs and Holant problems.
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Remark 4.10. The proof of Lemma 4.11 gives a deterministic FPRAS, sometimes called
an FPTAS, for two rows.

4.4.1 FPRASes, and reductions from #CSPs to other problems

Lemma 4.11. Let

R = {(0, 0, 0), (1, 0, 0), (0, 1, 0), (0, 0, 1)}

S = {(0, 0, 0), (1, 0, 0), (0, 1, 0), (0, 0, 1), (1, 1, 0)}.

Then #CSP≤2(R,S) has a FPRAS.

Proof. Given an instance (V,C) of #CSP≤2(R,S), let G be the multigraph with vertex
set V , three edges xy, xz, yz for each 〈(x, y, z), R〉 ∈ C, and two edges xz, yz for each
〈(x, y, z), S〉 ∈ C. Then G has maximum degree four, and there is a bijection σ 7→
σ−1({1}) from satisfying assignments of (V,C) to independent sets of G. We can then
use an FPRAS for the problem of counting independent sets in multigraphs of maximum
degree at most five [100].

Lemma 4.12. Let R = {(0, 0, 0), (1, 0, 0), (1, 1, 0), (1, 0, 1)}. Then #CSP≤2(R) has an
FPRAS.

Proof. We will reduce to computing the number of (not necessarily perfect) matchings
in a multigraph, which has an FPRAS [70, Corollary 4.5]. For all integers k ≥ 1 define

Mk(x1, . . . , xk) =

1 if x1 + · · ·+ xk ≤ 1

0 otherwise.

Note thatM1(0) = M1(1) = 1. There is an expressibility reduction from #CSP≤2(R)

to #CSP≤2(NEQ,M3) where NEQ = {(0, 1), (1, 0)}:

R(x, y, z) =
∑

x′∈{0,1}

NEQ(x, x′)M3(x′, y, z).

By Lemma 4.5, #CSP≤2(NEQ,M3) ≤AP #CSP=2(NEQ,M1,M3). It remains to estab-
lish an AP-reduction from #CSP=2(NEQ,M1,M3) to the problem of counting matchings
in a multigraph. The important observation is that two M constraints joined by a NEQ

constraint act like a single M constraint:∑
x,y

Mk+1(x, x1, . . . , xk)NEQ(x, y)M`+1(y, y1, . . . , y`) = Mk+`(x1, . . . , xk, y1, . . . , y`)

for all x1, . . . , xk, y1, . . . , y` ∈ {0, 1}. We will use this identity to eliminate constraints
until we are only left with constraints over {Mk | k ≥ 1}.

We are given an instance (V,C) of #CSP=2(NEQ,M1,M3) and an error parameter
ε. Set (m1, V1, C1) = (1, V, C). Given (mi, Vi, Ci) such that:
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• ZV,C = miZVi,Ci , and

• degCi(v) = 2 for all v ∈ Vi, and

• Ci consists of constraints over {NEQ,PIN0,PIN1} ∪ {Mk | k ≥ 1}, where PIN0 =

{(0)} and PIN1 = {(1)},

we will show that if Ci uses a NEQ, PIN0, or PIN1 constraint, then we can efficiently
construct (mi+1, Vi+1, Ci+1) with these same three properties, such that Vi+1 is a strict
subset of Vi. Note that |Ci| is necessarily bounded by 2|Vi|, so to get a polynomial time
algorithm we only need to ensure that each step runs in polynomial time in |Vi|.

Consider the case where, for two variables x, y ∈ Vi, the constraint 〈(x, y),NEQ〉
appears twice in Ci. Then we can set Vi+1 = Vi \ {x, y}, set Ci+1 to be Ci with the
two 〈(x, y),NEQ〉 constraints removed, and set mi+1 = 2mi. This is correct because
ZVi,Ci = 2 · ZVi+1,Ci+1 . We denote this transformation by:

∑
x,y NEQ(x, y)NEQ(x, y)→ 2.

This notation means that the summed variables and constraints represented by the
left-hand-side are deleted, and we multiply mi by 2. In this case we do not introduce any
new constraints. Since NEQ is a symmetric relation (as are PIN0, PIN1, and Mk), the
order of variables does not matter: we can apply the same transformation if 〈(x, y),NEQ〉
and 〈(y, x),NEQ〉 are in Ci.

A more complicated case is when there is a constraint 〈(x, y),NEQ〉, and x appears
in a constraint using Mk for some k ≥ 1, and y appears in a different constraint, using
M` for some ` ≥ 1 (possibly with k = `). Set Vi+1 = Vi \ {x, y}, let Ci+1 be the
result of deleting these three constraints using x or y then inserting a new constraint
〈(x1, . . . , xk, y1, . . . , y`),Mk+`〉, and set mi+1 = mi. This is correct because ZVi,Ci =

ZVi+1,Ci+1 . We denote this transformation by

∑
x,yMk+1(x, x1, . . . , xk)NEQ(x, y)M`+1(y, y1, . . . , y`)→Mk+`(x1, . . . , xk, y1, . . . , y`).

Again, we delete the summed variables and constraints represented by the left-hand-side,
and the order of variables in a constraint does not matter. In this case we do not need
to multiply mi, but we do get a new constraint, represented by the expression on the
right-hand-side.
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If Ci has a 〈(x),PIN0〉 or 〈(x),PIN1〉 constraint for some x ∈ Vi, we can apply one
of the following transformations, depending on which other constraint x appears in:

∑
x PIN0(x)PIN0(x)→ 1∑
x PIN1(x)PIN1(x)→ 1∑
x PIN0(x)PIN1(x)→ 0∑

xMk+1(x, x1, . . . , xk)PIN0(x)→Mk(x1, . . . , xk)∑
xMk+1(x, x1, . . . , xk)PIN1(x)→ PIN0(x1) . . .PIN0(xk)∑

x PIN0(x)NEQ(x, y)→ PIN1(y)∑
x PIN1(x)NEQ(x, y)→ PIN0(y)

If Ci has a 〈(x, y),NEQ〉 constraint for some x, y ∈ Vi, we can apply one of the
following transformations, depending on whether x = y, or otherwise depending on
which other constraints x and y appear in:

∑
x NEQ(x, x)→ 0∑

x,y NEQ(x, y)NEQ(x, y)→ 2∑
x,y NEQ(z, x)NEQ(x, y)NEQ(y, w)→ NEQ(z, w)∑

x,yMk+1(x, x1, . . . , xk)NEQ(x, y)M`+1(y, y1, . . . , y`)→Mk+`(x1, . . . , xk, y1, . . . , y`)∑
x,yMk+1(x, x1, . . . , xk)NEQ(x, y)NEQ(y, z)→Mk+1(z, x1, . . . , xk)∑

x,yMk+2(x, y, x1, . . . , xk)NEQ(x, y)→ 2PIN0(x1) . . .PIN0(xk)

(It is possible to show that some of these rules are unnecessary, but that argument
seems to be much more complicated than just covering extra cases.)

The remaining case is that Ci does not contain a NEQ, PIN0 or PIN1 constraint.
Let G be the multigraph whose vertex set is Ci and, for each variable v ∈ Ci, there is an
edge between the two constraints in which v is used in Ci. The number of matchings in
G is ZVi,Ci , and we wish to approximate ZV,C = miZVi,Ci . By [70, Corollary 4.4] we can
find an approximation q of ZVi,Ci satisfying the FPRAS condition Pr(e−εZVi,Ci ≤ q ≤
eεZVi,Ci) ≥ 3

4 . We can then output miq.

We will use the results of Chapter 3 concerning windable strictly terraced functions.
By Theorem 3.5, the condition for an arity three relation to be windable simplifies to:

There are at least four triples (x, y, z) ∈ R with (1− x, 1− y, 1− z) ∈ R. (Wind)

Also note that an arity three relation R is strictly terraced whenever it is coindependent,
that is, (1− x, y, z), (x, 1− y, z), (x, y, 1− z) /∈ R for all (x, y, z) ∈ R. Thus:

Lemma 4.13. Let R be a coindependent relation satisfying (Wind). Then #CSP≤2(R)

has an FPRAS.
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Proof. The function U defined by U(0) = U(1) = 1 is windable and strictly terraced.
#CSP≤2(R) =AP #CSP=2(R,U) by Lemma 4.5, and #CSP=2(R,U) has an FPRAS by
Theorem 3.4.

Lemma 4.14. If R ⊆ {0, 1}3 satisfies (Wind) then #CSP≤2(R) ≤AP #PM.

Proof. By Theorem 3.6, R has a matchings circuit. The function U defined by U(0) =

U(1) = 1 has a matchings circuit (take a vertex of fugacity 1 with one external edge).
The reduction is given by Theorem 3.5 and Lemma 4.5.

4.4.2 Reductions from other problems to Holant problems

The following reduction is essentially due to Fisher [53].

Lemma 4.15. #PM ≤AP #CSP=2(PM3)

Proof. The reduction is given a graph G and error parameter ε. For any degree-1 vertex
v we can delete v and its neighbour; repeating this process gives a graph with the same
number of perfect matchings and no vertices of degree 1. If G has a vertex of degree
zero or if |G| is odd, then G has no perfect matchings and we can output zero. So we
may assume that G has minimum degree at least two and that |G| is even. Replace any
vertex of degree k > 3 by vertices of degree 2 and 3 as shown in Figure 4.5.

...

...

...

Figure 4.5: A vertex of degree k > 3 is transformed to vertices of degree two and three,
preserving the total number of perfect matchings. In words, the vertex is replaced by
a path v1u1v2u2 . . . uk−3vk−2, and the k edges that were incident to v are now incident

to v1, v1, v2, v3, . . . , vk−3, vk−2, vk−2 respectively.

This produces a multigraph G′ with the same number of perfect matchings as G, and
where every vertex has degree 2 or 3, and with an even number of vertices. Any graph
has an even number of odd-degree vertices, so G′ has an even number of even-degree
vertices. Enumerate the degree 2 vertices as v1, . . . , v2k. For each 1 ≤ i ≤ k add new
vertices xi, yi and edges vixi, vi+1xi, xiyi, yiyi to produce a new multigraph G′′. Observe
that for all i the edge xiyi is in every perfect matching in G′′, so G′′ has the same number
of perfect matchings as G.

Let C consist of one constraint 〈(e1, e2, e3),PM3〉 for each vertex in G′′ with incident
edges e1, e2, e3 (possibly with repeats, corresponding to loops in G′′). The reduction
calls the oracle on (E(G′′), C) with error parameter ε. This is correct because number
of perfect matchings in G′′ is ZE(G′′),C .

Lemma 4.16. Let R = {(0, 0, 0), (0, 1, 1), (1, 0, 1)}. Then #PM ≤AP #CSP=2(R).
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Proof. Define F : {0, 1}2 → R≥0 by F (0, 0) = 1 and F (1, 1) = 2 and F (0, 1) = F (1, 0) =

0. It suffices to establish the following reductions:

#PM ≤AP #CSP=2(PM3)

≤AP #CSP=2(R,PIN1)

≤AP #CSP=2(R, {(1, 1)})

≤AP #CSP=2(R,F )

≤AP #CSP=2(R).

The first reduction #PM ≤AP #CSP=2(PM3) is Lemma 4.15. The second is an express-
ibility reduction #CSP=2(PM3) ≤AP #CSP=2(R,PIN1):

PM3(x, y, z) =
∑

i,j∈{0,1}

R(x, i, j)R(i, y, z)PIN1(j) (x, y, z ∈ {0, 1}).

The third reduction #CSP=2(R,PIN1) ≤AP #CSP=2(R, {(1, 1)}) follows from Lemma 4.8.
For the fourth reduction #CSP=2(R, {(1, 1)}) ≤AP #CSP=2(R,F ) we are given an

instance (V,C) of #CSP=2(R, {(1, 1)}) and error parameter ε, which we can assume is less
than 1/2. Let k be |V |+1+ dlog2 ε

−1e: the least integer satisfying 2|V |−k ≤ ε/2. Denote
the constraints using {(1, 1)} by 〈(x1, y1), {(1, 1)}〉, . . . , 〈(xm, ym), {(1, 1)}〉. Let (V ′, C ′)

denote the result of replacing, for each 1 ≤ i ≤ m, the constraint 〈(xi, yi), {(1, 1)}〉 by

〈(xi, vi,1), F 〉, 〈(vi,1, vi,2), F 〉, . . . 〈(vi,k−1, yi), F 〉 (4.3)

where vi,1, . . . , vi,k−1 are new variables. The reduction calls the oracle with error pa-
rameter ε/2 to obtain a value q, outputs zero if q/2mk < 1/2, and otherwise outputs
q/2mk.

For any σ : V → {0, 1} let σ′ : V ′ → {0, 1} denote the extension of σ with σ′(vi,1) =

· · · = σ′(vi,k−1) = σ(xi) for each 1 ≤ i ≤ m. If σ is a satisfying assignment of (V,C),
then the weight of σ is 1 and the weight of σ′ is 2mk. Summing over σ we get ZV,C ≤
ZV ′,C′/2

mk. Conversely any assignment of (V ′, C ′) of positive weight is of the form σ′

for some σ, and if σ is not a satisfying assignment of (V,C) then the weight of σ′ is at
most 2(m−1)k. Summing over σ we get

ZV,C ≤ ZV ′,C′/2mk ≤ ZV,C + 2|V |−k.

With probability at least 3/4, the value q satisfies

e−ε/2ZV ′,C′ ≤ q ≤ eε/2ZV ′,C′
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If ZV,C = 0 then q/2mk ≤ eε/22|V |−k < 1/2 so the reduction correct outputs zero. If
ZV,C ≥ 1 then

e−ε/2ZV,C ≤ q/2mk ≤ eε/2(ZV,C + 2|V |−k)

≤ eε/2(ZV,C + ε/2)

≤ eε/2ZV,C(1 + ε/2)

≤ eεZV,C

as required.
The fifth reduction #CSP=2(R,F ) ≤AP #CSP=2(R) is an expressibility reduction:

F (x, y) =
∑

i,j∈{0,1}

R(i, j, x)R(i, j, y) (x, y ∈ {0, 1})

Lemma 4.17. Let R ⊆ {0, 1}3, and assume:

• for all (x, y, z) ∈ R we have x ≤ y

• either (0, 0, 0), (1, 1, 1) ∈ R and (0, 0, 1), (1, 1, 0) 6∈ R, or (0, 0, 0), (1, 1, 1) 6∈ R and
(0, 0, 1), (1, 1, 0) ∈ R

Then #CSP=2(R) =AP #CSP(R), so the classification of Proposition 4.1 applies.

Proof. The reduction #CSP=2(R) ≤AP #CSP(R) is obvious. For the other direction
we will use the technique of 2-simulating equality from [51]. The reduction is given an
instance (V,C) of #CSP(R). For each v ∈ V let degC(v) denote the total number of
occurrences of v in C. Let V ′ consist of distinct variables wv,i, w′v,i for each v ∈ V and
each 1 ≤ i ≤ degC(v). Let C ′ consist of constraints:

• 〈(w′v,i, w′v,i+1, wv,i), R〉 for each v ∈ V and each 1 ≤ i ≤ degC(v) where w′v,degC(v)+1

means w′v,1, and

• 〈(wv1,i1 , wv2,i2 , wv3,i3), R〉 for each constraint 〈(v1, v2, v3), R〉 ∈ C such that this use
of v1 is the i1’th occurrence of v1, this use of v2 is the i2’th occurrence of v2, and
this use of v3 is the i3’th occurrence of v3.

For each v ∈ V , the 〈(w′v,i, w′v,i+1, wv,i), R〉 constraints force the variables w′v,i to take
the same value for 1 ≤ i ≤ degC(v). Given a satisfying assignment σ of (V,C) we get
a satisfying assignment σ′ of (V ′, C ′) by, for each v ∈ V and each 1 ≤ i ≤ degC(v),
setting σ′(wv,i) = σ(v), and σ′(w′v,i) = σ(v) if (0, 0, 0) ∈ R, and σ′(w′v,i) = 1 − σ(v)

if (0, 0, 0) 6∈ R. Conversely any satisfying assignment of (V ′, C ′) arises as σ′ for some
satisfying assignment σ of (V,C). Therefore (V ′, C ′) is an instance of #CSP=2(R) such
that ZV ′,C′ = ZV,C .
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4.5 Downsets in directed acyclic graphs of maximum degree
three

As mentioned in the introduction (Example 1.1), one of the problems originally shown
to be AP-equivalent to #BIS is #Downsets. The input of #Downsets is usually defined
to be a partially ordered set. However, in this section we will think of the input as being
a directed graph. A downset in a directed graph is a set of vertices D such that for
all u ∈ D and all arcs u → v, we have v ∈ D. We can then consider the following
problem, which is easily seen to be AP-equivalent to the usual definition as given in the
introduction.

Name. #Downsets

Instance. A directed graph G.
Output. The number of downsets in G.

Downsets correspond to satisfying assignments of the constraints 〈(u, v), IMP〉 for
each u → v, where IMP = {(0, 0), (0, 1), (1, 1)}. The restriction of #Downsets to di-
rected graphs of maximum degree at most d is therefore AP-equivalent to #CSP≤d(IMP).
(“Degree” will always mean total degree: the sum of the in-degree and out-degree.) In
particular the restriction to directed graphs of maximum degree at most 2 is in FP by
Proposition 4.9, and the restriction to directed graphs of maximum degree at most 3 is
AP-equivalent to #BIS by [51, Theorem 23].

However, the reductions used in [51] rely in a crucial way on cycles. Contracting
a cycle to a single vertex does not affect the number of downsets. So #Downsets is
AP-equivalent to its restriction to directed acyclic graphs, which we abbreviate as dags.
In this section we will show that #Downsets remains AP-equivalent to #BIS even when
restricted to dags of maximum degree three.

Remark 4.18. Consider the restriction of #Downsets to dags of depth two, that is, di-
rected bipartite graphs with a bipartition U ∪ V such that all the arcs go from U to V .
There is a bijection I 7→ I4V from the set of independent sets of the underlying undi-
rected graph to the set of downsets of the original graph. So the restriction of #Downsets

to directed graphs of depth two is still AP-equivalent to #BIS. But there is an FPRAS
for the restriction of #Downsets to dags of depth two and maximum degree five - we can
use the equivalence just described for dags of depth two, then apply the Weitz’s FPRAS
for counting independent sets in graphs of maximum degree five [100].

Lemma 4.19. Given an integer n ≥ 4 specified in binary, we can build a dag G that has
exactly n downsets, in polynomial time in log n, such that G has a unique source and a
unique sink, which are distinct and each have degree 1, and such that every vertex of G
has degree at most three.

Proof. We will first define certain graphs Hp, p ≥ 2. Define H2 to be the directed path
of length one. For each integer p ≥ 2, define Hp+1 by adding three new vertices s, u, t to
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H2 H3

s u t

H4

s u t

Figure 4.6: Three Hp graphs used in Lemma 4.19.

Hp and arcs s→ s′ → u→ t and t′ → t where s′ denotes the source of Hp and t′ denotes
the sink of Hp; see Figure 4.6. The downsets of Hp+1 are ∅, V (Hp), V (Hp) ∪ {u, t}, and
D∪{t} and D∪{u, t} for each downset D of Hp that does not include the source s′, that
is, D 6= V (Hp). Letting h(p) denote the number of downsets in Hp we have h(2) = 3

and h(p+ 1) = 2(h(p)− 1) + 3. So h(p) = 2p − 1 for all p ≥ 2.
Let n′ denote the greatest multiple of four with n′ ≤ n. Denote the binary expansion

of n′ by 2p1 + · · · + 2pk , where 2 ≤ p1 < p2 < · · · < pk. Let ` = n − n′ + 4k − 2. Let
G consist of a copy H ′i of Hpi for each 1 ≤ i ≤ k, as well as ` − k copies H ′k+1, . . . ,H

′
`

of the directed edge H2, except that for each 2 ≤ i ≤ ` we identify the sink of H ′i−1

with the source of H ′i. The downsets of G are ∅, V (G), and D ∪ V (H ′i+1) ∪ · · · ∪ V (H ′`)

for each 1 ≤ i ≤ ` and each downset D of H ′i that includes the sink of H ′i but not the
source. Note we have not counted any downset twice. So the number of downsets in G
is 2 + (h(p1) − 2) + · · · + (h(pk) − 2) + (` − k)(h(2) − 2) = 2 + n′ − 3k + ` − k = n.
Note that the graphs Hm have O(m) vertices, so G has O((log n)2) vertices and can be
constructed in polynomial time in log n as required.

Theorem 4.20. #Downsets is AP-equivalent to its restriction to dags of maximum de-
gree at most three.

Proof. We will describe an AP-reduction from #BIS. Consider an instance G of #BIS,
specified by vertex sets U and V and a set of edges E ⊆ U×V , and an error parameter 0 <

ε < 1. We may assume that there are no isolated vertices. Let w = d(2/ε)4|U |+|V |+|E|e.
For each v ∈ U ∪V choose an enumeration {ev,1, · · · , ev,deg(v)} of the edges incident to v,
where deg(v) denotes the degree of v. Let Gv be a copy of the dag with exactly wdeg(v)+2

downsets given by Lemma 4.19. For each e ∈ E let Ge be a copy of the dag with exactly
w+ 2 downsets given by Lemma 4.19. For each x ∈ U ∪V ∪E let s(x) denote the source
of Gx and let t(x) denote the sink of Gx. Construct G′ by taking the disjoint union of
the dags Gx with x ∈ U ∪ V ∪ E, together with arcs t(u)→ s(eu,1)→ · · · → s(eu,deg(u))

for each u ∈ U and t(ev,1) → · · · → t(ev,deg(v)) → s(v) for each v ∈ V . The reduction
calls the oracle on G′ with error parameter ε/2, divides by w|E|, and returns the result.
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Let Z denote the number of independent sets in G, and let Z ′ denote the number of
downsets of G′. We will argue that

Z ≤ w−|E|Z ′ ≤ Z + w−14|U |+|V |+|E|. (4.4)

Assuming (4.4), the AP-reduction is correct: with probability at least 3/4 the value q
returned by the oracle satisfies e−ε/2Z ′ ≤ q ≤ eε/2Z ′ which implies e−εZ ≤ w−|E|q ≤ eεZ
as required.

Let X be the partial order with underlying set
⋃
x∈U∪V ∪E{s(u), t(u)} where x ≤ y

means there is a directed path from x to y in G′. Consider a downset Y of X, and a
downset D of G′ with D ∩X = Y . For each x, we have:

• D ∩Gx = ∅ if t(x) 6∈ Y , and

• D ∩Gx = Gx if s(x) ∈ Y , and

• otherwise s(x) 6∈ Y and t(x) ∈ Y , so D ∩ Gx can be any downset of Gx with
s(x) 6∈ D ∩ Gx and t(x) ∈ D ∩ Gx. There are w such sets if x ∈ E, and wdeg(x)

such sets if x ∈ U ∪ V .

So there are exactly wc(Y ) downsets D of G′ with D ∩X = Y , where

c(Y ) =
∑

v∈U∪V
s(v)/∈Y
t(v)∈Y

deg(v) +
∑
e∈E
s(e)/∈Y
t(e)∈Y

1 =
∑

(u,v)∈E

 ∑
s(u)/∈Y
t(u)∈Y

1 +
∑

s(u,v)/∈Y
t(u,v)∈Y

1 +
∑

s(v)/∈Y
t(v)∈Y

1

 .

Note that the contribution from each (u, v) ∈ E is at most 1, and c(Y ) = |E| if and
only if for all (u, v) ∈ E we have: s(u) 6∈ Y , and t(u) ∈ Y ⇐⇒ s(u, v) ∈ Y , and
t(u, v) ∈ Y ⇐⇒ s(v) ∈ Y , and t(v) ∈ Y . For each independent set I of G let YI ⊆ X

be the set containing:

• t(u), s(eu,1), . . . , s(eu,deg(u)) for each u ∈ U ∩ I, and

• t(ev,1), . . . , t(ev,deg(v)), s(v) for each v ∈ V \ I, and

• t(v) for each v ∈ V .

By the previous remarks we have wc(YI)−|E| = 1, while wc(Y )−|E| ≤ w−1 for any downset
Y of X not of the form YI where I is an independent set of G. Since X has cardinality
2(|U | + |V | + |E|), it has at most 4|U |+|V |+|E| downsets. This gives Z ≤ w−|E|Z ′ ≤
Z + w−14|U |+|V |+|E|, which is (4.4).





Chapter 5

Degree-two #CSPs with variable
weights

(This chapter is a revised version of [83] with a modified introduction.)
This chapter aims to study the computational complexity of approximately evaluating

#CSPs where variables range over the Boolean domain {0, 1}, and we restrict the allowed
constraints to a fixed constraint language Γ, and we restrict each variable to appear at
most twice, but we allow instances to specify a weight for each value that each variable
can take. These problems, degree-two #CSPs with variable weights, are an abstraction
of the problem of counting perfect matchings in a graph with edge weights.

5.1 Introduction

Recall Proposition 4.4:

Proposition 4.4. [51, Theorem 24] Let Γ be a finite unweighted constraint language
containing {(0)} and {(1)}. Let d ≥ 6.

• If every relation in Γ is affine then #CSP≤d(Γ) ∈ FP.

• Otherwise, if Γ ⊆ IMconj then #CSP≤d(Γ) =AP #BIS.

• Otherwise, #CSP≤d(Γ) has no FPRAS unless RP = NP.

Note the assumption that Γ contains the “pinning” relations {(0)} and {(1)}. In
other words, the instance is allowed to specify that configurations x with x(v) = i

contribute to the output, for various pairs (v, i). We can interpret this as saying the
instance may specify variable weights of zero or one: the number of configurations with
x(v) = i is multiplied by a factor of 1, while other configurations are multiplied by
a factor of 0. The main result of this chapter is a classification of degree-two #CSPs
with unweighted constraint languages, where we allow the instance to specify arbitrary
non-negative variable weights.

As mentioned in the introduction, we will be studying the following problem:
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Name. #CSP≥0
≤2(Γ)

Instance. A tuple (V,C,w) where:

• V is a finite set of variables.

• C is a finite set of constraints over Γ on V such that degC(v) ≤ 2 for all v ∈ V

• w is a function from V to Q≥0 ×Q≥0, where rationals are specified as ratios
of binary integers.

Output. The sum of
∏
v∈V w(v)x(v) over satisfying assignments x : V → {0, 1} of C,

where we index the pair w(v) from zero: w(v)x(v) denotes the first element of w(v)

when x(v) = 0, and the second element when x(v) = 1.

Here and throughout the chapter we restrict to rational numbers, rather than some
larger class of numbers, because rationals are easy to encode as input to a Turing machine.

Yamakami [103] investigated the problem Holant∗(F), where arbitrary complex-valued
arity 1 functions are allowed as part of the instance. Because of the degree bound, variable
weights are more invasive than arity 1 functions: the weights are applied to a variable,
which is then used in two constraints, whereas an arity 1 function only affects a vari-
able used in one other constraint. However, we are only allowing non-negative variable
weights. So variable weights are neither a weaker assumption nor a stronger assumption
than the “Holant∗” complex-valued arity 1 functions used in [103].

5.1.1 Delta-matroids and set family notation

To state the main theorem we need to define delta-matroids. Usually, delta-matroids are
defined as set families. A set family A is a set of subsets of some finite set (called the
ground set). Let A4B denote the symmetric difference of sets A and B. A set family
A is a delta-matroid if for all X,Y ∈ A and all i ∈ X4Y there exists j ∈ X4Y , not
necessarily distinct from i, such that X4{i, j} ∈ A. For example, setting X = ∅ and
Y = {1, 2, 3} and i = 1, we see that {∅, {1, 2, 3}} is not a delta-matroid.

Delta-matroids were used by Feder [52], under the name of generalised matroids.
Feder studied the decision version of #CSP≤2(Γ) — the problem of deciding if there is
any satisfying assignment.1 He showed that if the constraint language contains a non-
delta-matroid, and the constant relations {(0)} and {(1)}, then the graph constraint
satisfaction is equivalent to the unbounded-degree constraint satisfaction problem [52,
Theorem 4]. In fact, some of the NP-hardness implied by our main theorem is already
implied by Feder’s result. We will adapt this work to the setting of counting CSPs.

In this chapter we will call the corresponding relations delta-matroids:

Definition 5.1. We will denote {i | xi 6= yi} by x4y.
A relation R is a delta-matroid if for all x,y ∈ R, for all i ∈ x4y there exists

j ∈ x4y, not necessarily distinct from i, such that x⊕ {i, j} ∈ R.
1Actually, Feder studied the variant where every variable is used exactly twice, rather than at most

twice.
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Note that, for example, (1, 0, 0)4(1, 1, 0) = {2}, while (1, 0, 0) ⊕ {1, 2} = (1, 0, 0) ⊕
(1, 1, 0) = (0, 1, 0). The difference between 4 and ⊕ is whether a set or a configuration
is returned.

In particular the perfect matchings relation PM3 = {(0, 0, 1), (0, 1, 0), (1, 0, 0)} is a
delta-matroid, while the arity 3 equality relation EQ3 = {(0, 0, 0), (1, 1, 1)} is not.

5.1.2 Main result

We will refer to two more classes of relations in addition to those of Section 1.7.2.

Definition 5.2. NEQconj is the set of relations that can be written as a conjunction of
equalities, disequalities, and constants.

A relation R is basically binary if it is a Cartesian product of relations of arity at
most two: there is a partition of {1, . . . , k} into sets D1, . . . , D` of order at most two and
relations Ri ⊆ {0, 1}Di for each 1 ≤ i ≤ ` such that

R = {x ∈ {0, 1}k | x|Di ∈ Ri for each 1 ≤ i ≤ `},

where x|Di denotes the restriction of x ∈ {0, 1}k = {0, 1}{1,...,k} from {1, . . . , k} to Di.

For example {x ∈ {0, 1}3 | x1 6= x2 and x2 6= x3 and x3 = 1} is in NEQconj, and
{x ∈ {0, 1}4 | x1 ≤ x3 and x2 ≤ x4} is basically binary, but EQ3 = {(0, 0, 0), (1, 1, 1)} is
not basically binary.

With these definitions we state the main result of this chapter.

Theorem 5.3. Let Γ be a finite unweighted constraint language. If every relation in Γ

is basically binary, or if Γ ⊆ NEQconj, then #CSP≥0
≤2(Γ) is in FP. Otherwise:

• If every relation in Γ is a delta-matroid then #PM ≤AP #CSP≥0
≤2(Γ).

• If some relation in Γ is not a delta-matroid and Γ ⊆ IMconj, then #BIS =AP

#CSP≥0
≤2(Γ).

• If some relation in Γ is not a delta-matroid and Γ 6⊆ IMconj then #SAT =AP

#CSP≥0
≤2(Γ).

Theorem 5.3 says that every degree-two Boolean #CSP with variable weights either
lies between #PM and #SAT, or is AP-equivalent to #BIS, or is in FP. Under the
assumption that #PM and #BIS do not have an FPRAS, this classifies completely which
problems have an FPRAS.

This is quite a different situation from the corresponding decision problems, consid-
ered in [41]. For degree-two decision CSP there is no known dichotomy, and there are
many tractable problems using delta-matroids.

Even if #PM does have an FPRAS, it might be that there are delta-matroids R such
that #CSP≥0

≤2(R) does not have an FPRAS. Perhaps Theorem 5.3 could be refined to say
more about which of these scenarios can be ruled out.
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An approximation algorithm necessarily gives a decision algorithm: if a #CSP has
an FPRAS, then there is a (randomised) polynomial-time algorithm that determines
whether a satisfying assignment exists. The following example shows that the converse
does not hold for the problems considered in Theorem 5.3.

Example 5.4. Let R be the relation {x ∈ {0, 1}3 | x1, x2 ≤ x3}. By Schaefer’s clas-
sification [89] (or reduction to 2-SAT), there is a polynomial-time algorithm that de-
termines whether a list of constraints over {R,NAND} has a satisfying assignment. R
is not a delta-matroid, because there is no j such that (1, 1, 1) ⊕ {3, j} ∈ R. Also,
R ∈ IMconj, and NAND /∈ IMconj. By Theorem 5.3 we have #CSP≥0

≤2(R) =AP #BIS and
#CSP≥0

≤2(R,NAND) =AP #SAT. �

5.1.3 Weighted #CSPs and other generalisations

We now discuss some variants of Theorem 5.3. Here we will not restrict to unweighted
constraint languages, and we will extend the notation to generalise the degree restrictions
and to allow restricted sets of variable weights. For all K ⊆ N (recall 0 ∈ N), all
W ⊆ Q≥0 ×Q≥0, and all finite weighted constraint languages F define:

Name. #CSPWK (F)

Instance. A triple (V,C,w) where

• V is a finite set of variables.

• C is a list of constraints over F on V such that degC(v) ∈ K for all v ∈ V

• w is a function from V to W , with rationals represented as ratios of binary
integers.

Output. The value
ZV,C,w =

∑
x : V→{0,1}

wtV,C,w(x)

where

wtV,C,w(x) =

(∏
v∈V

w(v)x(v)

) ∏
〈(s1,...,sk),F 〉∈C

F (x(s1), . . . ,x(sk))

 .

For readability we will use the following shorthand for K and W : if K is omitted
then K = N (no degree restriction), if K is “= d” then K = {d}, and if K is “≤ d” then
K = {1, . . . , d}; if W is omitted then W = {(1, 1)} (no weighting), if W is “≥ 0” then
W = Q≥0 ×Q≥0 (arbitrary variable weights). Also, when w is omitted from (V,C,w) it
means the unique function V → {(1, 1)} — this convention is only used in proofs.

Note that if F = Γ is a set of relations, then #CSP(Γ), #CSP≤d(Γ) and #CSP≥0
≤2(Γ)

all agree with their earlier definitions.

Example 5.5. Let B be an arity 2 weight-function that is symmetric (B(0, 1) = B(1, 0)).
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The problem #CSP{(1,λ)}(B) is then the problem of computing the partition func-
tion of a two-state spin system as discussed in Chapter 2. Examples are the Ising model
(B(0, 0) = B(1, 1)) and the hardcore gas model (B = NAND). In the ferromagnetic
case B(0, 0)B(1, 1) ≥ B(0, 1)B(1, 0) the problem #CSP(B) has an FPRAS [64]. If
B(0, 0)B(1, 1) < B(0, 1)B(1, 0), then #CSP{(1,λ)}(B) corresponds to the partition func-
tion of an anti-ferromagnetic spin system. The research on these problems is a rare
example of a (near) dichotomy for approximate counting for weighted problems. See [79]
for details. In particular, consider the following problem:

Name. #HCd(λ)

Instance. A simple graph in which every vertex has degree d.
Output. The sum of λ|I| over all independent sets I of G.

For all integers d ≥ 3 and all rationals λ < (d−1)d−1/(d−2)d, the problem #HCd(λ)

has an FPRAS (in fact an FPTAS). But for λ > (d−1)d−1/(d−2)d, there does not exist
an FPRAS for #HCd(λ) unless RP = NP [92, Theorem 1]. Using the correspondence
mentioned in Section 1.3, the partition function of the hardcore model with fugacity λ for
regular graphs of degree d is AP-equivalent to (a restriction of) #CSP

{(1,λ)}
=d (NAND). �

Thus, in terms of #CSPs:

Proposition 5.6. [93] For all rationals λ > 4, there is no FPRAS for #CSP
{(1,λ)}
=3 (NAND)

unless RP = NP.

The paper [22] studies weighted #CSPs where all (non-negative valued) arity 1

weight-functions are assumed to be in the constraint language. To make this precise,
rather than allowing variable weights, the statement of [22, Lemma 16] involves inserting
finite sets of arity 1 functions into a given finite constraint language. The classification
is in terms of LSM, as defined in the introduction to the thesis, and another class which
we will call WNEQ.

Definition 5.7. F ′ is a simple weighting of F if F ′ is of the form

F ′(x) = λF (x)U1(x1) · · ·Uk(xk)

with λ,U1(0), U1(1), . . . , Uk(0), Uk(1) ∈ Q≥0. WNEQ is the set of simple weightings of
weight-functions in NEQconj.

Proposition 5.8. [22, Lemma 16] Let F be a finite weighted constraint language.

• If F ⊆WNEQ then #CSP(F) is in FP.

• Otherwise, there is a finite set of S of weight-functions {0, 1}1 → Q≥0 such that

– #BIS ≤AP #CSP(F ∪ S), and

– if furthermore F 6⊆ LSM then #SAT =AP #CSP(F ∪ S).
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(This statement takes the liberty of restricting to rational numbers, which is justified
because the relevant constructions in [22] only use field operations. The original state-
ment in [22] only gives an FPRAS for the first case, but membership in FP follows by
inspecting the algorithm used in the proof when F is rational-valued, or by the algorithm
of [29]. The set WNEQ is the same as the set “〈NEQ,B1〉” used in [22], by [22, Remark
14].)

Much like Theorem 5.3 merely gives a reduction from #PM in some cases and not an
equivalence, Proposition 5.8 merely gives a reduction from #BIS in some cases and not
an equivalence. The truth could be that #BIS has an FPRAS but there exists F ∈ LSM

such that there is no FPRAS for #CSP(F ).

5.1.4 Terraced weight-functions

How might Theorem 5.3 generalise to weighted constraint languages? The #CSP result
stated here as Proposition 5.8 suggests that WNEQ and LSM can be seen as a gener-
alisation of NEQconj and IMconj. Basically binary weight-functions can be defined by
replacing Cartesian products by tensor products: a function F : {0, 1}k → Q≥0 is basi-
cally binary if there is a partition of {1, . . . , k} into sets D1, . . . , D` of order at most two
and functions Fi : {0, 1}Di → Q≥0 for each 1 ≤ i ≤ ` such that

F (x) =
∏̀
i=1

Fi(x|Di) (x ∈ {0, 1}k).

Then we have the following generalisations of the classes used in Theorem 5.3:

Unweighted Weighted
basically binary basically binary

NEQconj WNEQ

IMconj LSM

delta-matroid ?

Terraced weight-functions give one weighted version of delta-matroids.

Definition 5.9. A partial configuration p of V is an element of {0, 1}U for some subset
U ⊆ V , which we call domp.

Two weight-functions F,G : {0, 1}V → Q≥0 are parallel if there are λ, µ not both zero
such that for all x ∈ {0, 1}V we have λF (x) = µG(x). Note that if either F or G is
identically zero then F and G are parallel.

A weight-function F of arity k is terraced if for all partial configurations p such that
the pinning F (p, ·) is identically zero, for all i, j ∈ domp the pinnings F (p⊕ {i}, ·) and
F (p⊕ {j}, ·) are parallel.

For example, EQ3 = {(0, 0, 0), (1, 1, 1)} is not terraced: define p by p1 = 0 and
p2 = 1, and set i = 1 and j = 2.
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A relation is terraced if and only if it is a delta-matroid (Lemma 5.27). Terraced
weight-functions are thus a weighted version of delta-matroids that allow a generalisation
of Theorem 5.3. First, we define the support supp(F ) of a weight-function F : {0, 1}k →
Q≥0 to be the relation {x ∈ {0, 1}k | F (x) 6= 0}.

Theorem 5.10. Let F be a finite weighted constraint language.

(i.) If F ⊆WNEQ or every weight-function in F is basically binary, then #CSP≥0
≤2(F)

is in FP.

(ii.) Otherwise, if there is a non-terraced weight-function in F , then we have a similar
classification to Proposition 5.8: #BIS ≤AP #CSP≥0

=2(F) and if F 6⊆ LSM then
#SAT =AP #CSP≥0

=2(F).

(iii.) Otherwise (when neither of the two conditions above hold), if there is a weight-
function in F whose support is not basically binary, then #PM ≤AP #CSP≥0

=2(F).

Under the assumption that #PM and #BIS do not have an FPRAS, this theorem
classifies when there is an FPRAS, except for the case of terraced weight-functions whose
support is basically binary.

Example 5.11. Theorem 5.10 says nothing about the problem #CSP≥0
=2(F ) where F : {0, 1}3 →

Q≥0 is defined by

F (0, 0, 0) = 0 F (1, 0, 0) = 0

F (0, 0, 1) = 1 F (1, 0, 1) = 1

F (0, 1, 0) = 1 F (1, 1, 0) = 1

F (0, 1, 1) = 1 F (1, 1, 1) = 2. �

Note that the reductions in Theorem 5.10 are slightly sharper than Theorem 5.3 in
one respect. They are stated for #CSP≥0

=2, or Holant problems with variable weights:
every variable must be used exactly twice.

5.1.5 Other results

The conclusion of Theorem 5.10 can be extended in some cases to allow finite sets of
variable weights:

Definition 5.12. A weight-function F is IM-terraced if it satisfies the definition of a
terraced function whenever “p, i, j” satisfy pi 6= pj . In full: for all partial configurations
p such that the pinning F (p, ·) is identically zero, for all i, j ∈ domp such that pi 6= pj ,
the pinnings F (p⊕ {i}, ·) and F (p⊕ {j}, ·) are parallel.

The “IM” prefix is meant to suggest that we are ruling out powerful IMconj-like
relations, such as {(0, 0, 0), (1, 1, 1)}.
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Theorem 5.13. Let F be a finite weighted constraint language. Assume F 6⊆ WNEQ,
and that not every weight-function in F is basically binary, and that not every weight-
function in F is terraced. (This is the same setting as the #BIS and #SAT reductions
in Theorem 5.10.)

Unless all the following conditions hold, there is a finite set W ⊆ Q≥0×Q≥0 such that
#BIS ≤AP #CSPW=2(F), and if furthermore F 6⊆ LSM then #SAT =AP #CSPW=2(F).

(i.) Every weight-function F ∈ F is IM-terraced.

(ii.) Either the support of every weight-function F in F is closed under meets — F (x), F (y) 6=
0 =⇒ F (x ∧ y) 6= 0 — or the support of every weight-function F in F is closed
under joins — F (x), F (y) 6= 0 =⇒ F (x ∨ y) 6= 0.

(iii.) No pinning of the support of a weight-function F ∈ F is a copy of EQ2, that is,
there are no x, i, j satisfying xi = xj and F (x), F (x⊕{i, j}) 6= 0 and F (x⊕{i}) =

F (x⊕ {j}) = 0.

An interesting class of relations not covered by Theorem 5.13 is the class of monotone
relations, for example the relation

R = {(0, 0, 1), (0, 1, 1), (1, 0, 1), (1, 1, 0), (1, 1, 1)}.

This is not a delta-matroid: there is no j ∈ (0, 0, 1)4(1, 1, 0) such that (0, 0, 1)⊕{3, j} ∈
R.

A simple type of reduction we will use is to substitute one constraint by other
constraints. We will formalise this process by “K-formulas”, a bounded-degree refine-
ment of the pps-formulas used in [22]. The important property is that if G can be
expressed by a K-formula over F then #CSPWK (F,G) ≤AP #CSPWK (F ) for any set
{(1, 1)} ⊆W ⊆ Q≥0 ×Q≥0 — see Lemma 5.21.

An important feature is that Theorem 5.10 cannot be improved by this type of
reduction alone. Suppose that some non-terraced function G could be expressed by
some terraced function F . Then by Theorem 5.10 and substitution (Lemma 5.21) we
would know #CSP≥0

=2(F ) =AP #SAT, at least if F is neither basically binary nor in
LSM ∪WNEQ. The following result shows that this cannot happen.

Theorem 5.14. No non-terraced function can be defined by a (≤ 2)-formula that only
uses terraced functions.

Feder proved the analogous result for delta-matroids [52, Theorem 4]; a similar result
was given by Bouchet and Cunningham [13, Theorem 2.2].

For higher degrees, the situation is quite simple as long as F contains a weight-
function with non-degenerate support, where a relation is degenerate if it is a Cartesian
product of arity 1 relations.
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Theorem 5.15. Let F be a finite weighted constraint language and assume that not every
weight-function in F has degenerate support. There exists a finite set of variable weights
W such that #CSP≥0(F) has an FPRAS if and only if #CSPW≤3(F) has an FPRAS.

So under these assumptions, by Proposition 5.8, the tractable cases are just what can
be computed exactly (unless #BIS has an FPRAS). On the other hand, we show that
the tractable region has positive measure, loosely speaking, for all d ≥ 2:

Theorem 5.16. Let d, k ≥ 2. Let F be an arity k weight-function with values in the
range [1, d(k−1)+1

d(k−1)−1). Then #CSP≥0
≤d(F ) has an FPRAS.

In Section 5.8 we show that infinite sets of variable weights are necessary in Theo-
rem 5.10, at least unless #PM has an FPRAS:

Theorem 5.17. Let AtMostOne3 = {x ∈ {0, 1}3 | x1 + x2 + x3 ≤ 1}. Let W be a finite
subset of Q≥0 ×Q≥0. Then #CSPW≤2(AtMostOne3) has an FPRAS.

Note that by Theorem 5.3, #PM ≤AP #CSP≥0
=2(AtMostOne3).

5.1.6 Other definitions and notation

The tensor product F ⊗ G : {0, 1}U∪V → Q≥0 of F : {0, 1}U → Q≥0 and G : {0, 1}V →
Q≥0, where U and V are assumed to be disjoint, is defined by (F ⊗G)(x,y) = F (x)G(y)

for all x ∈ {0, 1}U and y ∈ {0, 1}V . So if F and G are relations, then F ⊗G is just the
Cartesian product and will be denoted F ×G. Consider a weight-function F : {0, 1}V →
Q≥0 that is not identically zero. F is decomposable if it is the tensor product of at least
two weight-functions of arity at least one. Otherwise F is indecomposable.

We will sometimes write partial configurations using the notation {i 7→ pi | i ∈
dom p}. For example {i 7→ c} denotes the unique function {i} → {c}.

A partial configuration p is non-empty if domp is non-empty. For a property P

of weight-functions, a weight-function F is pinning-minimal subject to P if F satisfies
P and every pinning of F by a non-empty partial configuration does not satisfy P . A
weight-function pair is a pair (F,G) where F,G : {0, 1}V → Q≥0 for some V . We say
(F,G) is pinning-minimal subject to not being parallel if: F is not parallel to G, and
F (p, ·) is parallel to G(p, ·) for any non-empty partial configuration p.

5.2 Reductions

This section establishes some reductions between #CSPs.
We will often implicitly use the fact that #CSPWK (F) ≤AP #CSPW

′
K′ (F ′) whenever

K ⊆ K ′ and W ⊆ W ′ and F ⊆ F ′. The reduction is to pass through the input to the
oracle and return the result.
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5.2.1 K-formulas

Another basic reduction uses a simple type of gadget we will call a K-formula, similar to
the T-constructability of [103] and refining the pps-definability of [22]. A natural type of
gadget for #CSPWK (F) would allow variable weights. However, this amount of generality
is not needed in the reductions later. We will be more restrictive, defining K-formulas
without variable weights.

Definition 5.18. Let F be a weighted constraint language (not necessarily finite). For
any K ⊆ N, a K-formula over F of arity k is a tuple ϕ = (V,C, v1, . . . , vk) where:

• V is a finite set of variables.

• C is a list of constraints over F on V .

• v1, . . . , vk are distinct elements of V , called the external variables.

• The degree of each internal (i.e. not external) variable is in K.

• Each external variable has degree 1, unless K = N.

ϕ defines a functions [[ϕ]] : {0, 1}k → Q≥0:

[[ϕ]] (x(v1), . . . ,x(vk)) =
∑

x|V \{v1,...,vk}

∏
〈(s1,...,sk),F 〉∈C

F (x(s1), . . . ,x(sk))

for all x : {v1, . . . , vk} → {0, 1}, where the sum is over all extensions of x to functions
V → {0, 1}.

We will usually specify a K-formula implicitly as a summation of a product. For
example, a {1, 2}-formula ({x, y, z}, {〈(y, z), F 〉, 〈(x, y, z), G〉}, x) could be specified by:

[[ϕ]] (x) =
∑
y,z

F (y, z)G(x, y, z).

The same conventions for the K in #CSPK also apply to the K in K-formulas:
(≤ d)-formulas are {1, . . . , d}-formulas, and (= d)-formulas are {d}-formulas. The degree
restriction on the external variables allows substitutions, defined below.

Definition 5.19. For all K ⊆ N, all W ⊆ Q≥0 × Q≥0 containing (1, 1), all sets F of
weight-functions, all K-formulas ϕ = (Vϕ, Cϕ, v1, . . . , vk) over F , all weight-functions F
of arity k, and all instances I = (VI , CI , wI) of #CSPWK (F ∪{F}), define the substitution
I[ϕ/F ] = (VI[ϕ/F ], CI[ϕ/F ], wI[ϕ/F ]) as follows.

• VI[ϕ/F ] is the disjoint union of VI and Uϕ × C ′ where Uϕ is the set of internal
variables of ϕ, and C ′ is the set of constraints in CI that use F . (If there are
repeated constraints, CI should be a set of labels for these constraints.)
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• CI[ϕ/F ] = (CI \C ′) ∪C ′′ where C ′′ has one constraint 〈(Uc,d,1, . . . , Uc,d,kd), Gd〉 for
each c = 〈(sc,1, . . . , sc,k), F 〉 ∈ C ′ and each d = 〈(ud,1, . . . , ud,kd), Gd〉 ∈ Cϕ, where

Uc,d,i =

(ud,i, c) if ud,i /∈ {v1, . . . , vk}

sc,j otherwise, where j satisfies ud,i = vj .

• wI[ϕ/F ](v) = wI(v) for all v ∈ VI , and wI[ϕ/F ] = (1, 1) for all (u, t) ∈ Uϕ × C ′.

The condition that external variables of ϕ have degree 1 (when K 6= N) again means
that I[ϕ/F ] is an instance of #CSPWK (F).

Lemma 5.20. If F = [[ϕ]] then ZI = ZI[ϕ/F ].

Proof. We will use the notation from the definition of I[ϕ/F ]. Let

b(x) =

∏
v∈VI

w(v)x(v)

 ∏
〈(s1,...,sm),H〉∈CI\C′

H(x(s1), . . . ,x(sm))

 .

Then,

ZI =
∑

x : VI→{0,1}

(
b(x)

∏
c∈C′

F (x(sc,1), . . . ,x(sc,k))

)

=
∑

x : VI→{0,1}

b(x)
∏
c∈C′

∑
x|Uϕ×{c}

∏
d∈Cϕ

Gd(x(Uc,d,1), . . . ,x(Uc,d,kd))


where

∑
x|Uϕ×{c}

denotes the sum over all extensions of x to functions V ∪ (Uϕ×{c})→
{0, 1}. By the distributivity of multiplication over summation,

ZI =
∑

x : VI∪(Uϕ×C′)→{0,1}

b(x|VI ) ∏
c∈C′

∏
d∈Cϕ

Gd(x(Uc,d,1), . . . ,x(Uc,d,kd))


= ZI[ϕ/F ].

Lemma 5.21. Let F be a finite weighted constraint language. Let (1, 1) ∈ W ⊆ Q≥0 ×
Q≥0. Let K ⊆ N. Let ϕ be a K-formula. Then #CSPWK (F ∪ {F}) ≤AP #CSPWK (F)

where F = [[ϕ]].

Proof. Given I, the reduction calls the oracle on I[ϕ/F ], without changing the error
parameter, and returns the result. This is a correct AP-reduction by Lemma 5.20.

5.2.2 h-maximisation

We now discuss a reduction which is an important step in the proof of Theorem 5.3: it
shows that we can delete configurations in certain sense.
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Definition 5.22. For all k ≥ 0, all h ∈ Zk and all F : {0, 1}k → Q≥0 not identically
zero, define the h-maximisation Fh−max : {0, 1}k → Q≥0 of F by setting

Fh−max(x) =

F (x) if
∑k

i=1 xihi = maxy∈supp(F )

∑k
i=1 yihi, and

0 otherwise.

Lemma 5.23. Let F be a finite weighted constraint language. Let W = Q≥0 × Q≥0 or
W = {(2a, 2b) | a, b ∈ Z}. Then for every F ∈ F , and every h ∈ Zk where k is the arity
of F , we have

#CSPWK (F ∪ {Fh−max}) ≤AP #CSPWK (F).

Proof. The reduction is given an instance (V,C,w) of #CSPWK (F ∪{Fh−max}) and error
parameter ε > 0 which we can assume is less than 1/2. We wish to compute a value Z
such that e−εZV,C,w ≤ Z ≤ eεZV,C,w.

Let s = |V | + |C|. Let M be the maximum over: the value 1, the values taken by
weight-functions in F , and the values w(v)i for all v, i. Let m be the minimum over:
the value 1, the non-zero values taken by weight-functions in F , and the values w(v)i

for all v, i such that w(v)i 6= 0. Let n = d|V | + s log2M − log2(msε/4)e. Note that
n is polynomially bounded in the size of the input, and 2|V |+s log2M−n ≤ (ε/4)ms. Let
H = maxy∈supp(F )

∑k
i=1 yihi. Define Fn : {0, 1}k → Q≥0 by

Fn(x) = F (x)2n(
∑k
i=1 xihi−H) (x ∈ {0, 1}k).

Note that for all x either:
∑k

i=1 xihi = H so Fn(x) = Fh−max(x) = F (x), or
∑k

i=1 xihi <

H so Fh−max(x) = 0 and Fn(x) ≤ M2−n. Let Cn be the result of replacing Fh−max by
Fn in C.

ZV,Cn,w can be approximated using the oracle as follows. First, let C ′ be the result of
replacing Fh−max by F in C. Then define w′ : V → W by w′(v)0 = w(v)0 and w′(v)1 =

w(v)12nh(v) where h(v) is the sum of hi over all pairs (〈(s1, . . . , sk), Fh−max〉, i) ∈ C ×N
with si = v. So every time that v is used in position i in an Fh−max constraint, we
get a contribution of hi to h(v). Then ZV,C′,w′ = ZV,Cn,w2nHt where t is the number of
constraints in C using Fh−max. Call the oracle on (V,C ′, w′) with error parameter ε/2 and
divide the result by 2nHt to obtain a value Z ′ such that e−ε/2ZV,Cn,w ≤ Z ′ ≤ eε/2ZV,Cn,w
with probability at least 3/4.

We will argue that the following algorithm is a correct AP-reduction: compute Z ′ as
above; if Z ′ < ms/4 then output Z = 0, and otherwise output Z = Z ′. It suffices to
show that e−ε/2ZV,Cn,w ≤ Z ′ ≤ eε/2ZV,Cn,w implies e−εZV,C,w ≤ Z ≤ eεZV,C,w.

For all configurations x, if wtV,C,w(x) 6= wtV,Cn,w(x) then wtV,C,w(x) = 0 and
wtV,Cn,w(x) ≤M s2−n. Hence

|ZV,C,w − ZV,Cn,w| ≤ 2|V |+s log2 M−n ≤ ms(ε/4).
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If ZV,C,w = 0 then Z ′ ≤ 2ZV,Cn,w ≤ 2ms(ε/4) < ms/4, so the algorithm correctly outputs
zero. Otherwise, ZV,C,w 6= 0, so Z ′ > ZV,Cn,w/2 ≥ (ZV,C,w−ms(ε/4))/2 ≥ ms/4. In this
case |ZV,C,w − ZV,Cn,w| ≤ ZV,C,w(ε/4), and since e−ε/2 ≤ 1− ε/4 we have

(1− ε/4)ZV,C,w ≤ ZV,Cn,w ≤ (1 + ε/4)ZV,C,w

e−ε/2ZV,C,w ≤ ZV,Cn,w ≤ eε/2ZV,C,w
e−εZV,C,w ≤ Z ′ ≤ eεZV,C,w.

5.2.3 Other reductions

We will use variable-weighted versions of known reductions.

Lemma 5.24. Let F be a finite weighted constraint language.

(i.) If F ⊆ WNEQ then #CSP≥0(F) ∈ FP [29]. If every weight-function in F is
basically binary then #CSP≥0

≤2(F) ∈ FP [27, Theorem 2.2].

(ii.) If F ⊆ IMconj then #CSP≥0(F) ≤ #BIS.

(iii.) #CSP≥0(F) ≤AP #SAT.

(iv.) #CSP≥0(F) ≤AP #CSP≥0
≤2(F ∪ {EQ3}).

Proof. (i.) is a straightforward modification of the cited algorithms to include variable
weights. In (ii.) and (iii.), by scaling we can assume all the variable weights and values
taken by weight-functions are in fact integers.

For (ii.), we have #CSP(IMP,PIN0,PIN1) ≤AP #BIS by Proposition 4.1 ([48, Theo-
rem 3]), so it suffices to show that #CSP≥0(IMP,PIN0,PIN1) ≤AP #CSP(IMP,PIN0,PIN1).
Since there is no degree bound, arity 1 functions can be used as variable weights. The
construction in [22, Proposition 25] defines any positive-integer-valued arity 1 weight-
function F in polynomial time in dlog(F (0)) + log(F (1))e, as a N-formula. So we can
simulate any variable weight.

For (iii.), the problem of evaluating a #CSP, with explicit integer-valued weight-
functions as part of the input, is in #P and hence AP-reduces to #SAT - see the remarks
in Section 3 of [46].

(iv.) is called “2-simulating equality” in [51]. Since this reduction is an important
part of Theorem 5.3, we will give details here.

For all k ≥ 3 let ϕk be the (= 2)-formula over {EQ3} on the variable set {u1, . . . , uk, v1, . . . , vk}
with external variables (v1, . . . , vk) and constraints 〈(ui−1, vi, ui),EQ3〉 for 1 ≤ i ≤ k,
where u0 means uk. Then [[ϕk]] = EQk.

The reduction is given an instance (V,C,w) of #CSP≥0(Γ) and an error param-
eter ε. For each variable v ∈ V of degree degC(v) > 2, replace all but one of its
occurrences in C by distinct new variables v2, . . . , vdegC(v) and add a new constraint
〈(v, v2, . . . , vdegC(v)),EQdegC(v)〉. Call the new variable set V ′ and the new constraint list
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C ′. Extend w to w′ : V ′ → Q≥0×Q≥0 by setting w(vi) = (1, 1) for all vi ∈ V ′ \V . Then
ZV ′,C′,w′ = ZV,C,w. Let (V ′′, C ′′, w′′) be the repeated substitution

(V ′, C ′, w′)[ϕ4/EQ4] . . . [ϕD/EQD]

where D = maxv∈V degC(v). This substitution can easily be computed in polynomial
time. By Lemma 5.20 we have ZV ′′,C′′,w′′ = ZV ′,C′,w′ = ZV,C,w, so the reduction can just
call the oracle on ZV ′′,C′′,w′′ with error parameter ε and return the result.

Pinning is very useful throughout.

Lemma 5.25. Let F be a finite weighted constraint language. Let F ′ : {0, 1}m → Q≥0 be
a copy of a pinning of a weight-function F ∈ F . Then #CSP≥0

≤2(F∪{F ′,PIN0,PIN1}) ≤AP

#CSP≥0
≤2(F).

Proof. F ′ is [[ϕ]], for some (= 2)-formula ϕ over {F,PIN0,PIN1}. Specifically, let k be
the arity of F . Permuting F ′ if necessary, there are indices 1 ≤ i1 < · · · < im ≤ k and
constants xi ∈ {0, 1} for i ∈ {1, . . . , k} \ {i1, . . . , im} such that

F ′(xi1 , . . . , xim) = F (x1, . . . , xk) for all xi1 , . . . , xim ∈ {0, 1}.

Thus F ′ = [[ϕ]] where ϕ is the (= 2)-formula on the variable set {v1, . . . , vk}, with exter-
nal variables (vi1 , . . . , vim), consisting of a constraint 〈(v1, . . . , vk), F 〉, and a constraint
〈(vi),PINxi〉 for each i ∈ {1, . . . , k} \ {i1, . . . , im}.

Therefore, by substitution (Lemma 5.21), it suffices to show #CSP≥0
≤2(F∪{PIN0,PIN1}) ≤AP

#CSP≥0
≤2(F). Given an instance (V,C,w) of #CSP≥0

≤2(F ∪ {PIN0,PIN1}), let C ′ be the
list of constraints in C not using PIN0 or PIN1, and define w′ : W → Q≥0 ×Q≥0 by

w′(v)i =

0 if 〈(v),PIN1−i〉 ∈ C,

w(v)i otherwise.

Then wtV,C,w agrees with wtV,C′,w′ on all configurations, so ZV,C,w = ZV,C′,w′ , and
(V,C ′, w′) is an instance of #CSP≥0

≤2(F).

We can convert between finite sets of variable weights and simple weightings. This
is useful for Theorems 5.13 and 5.15.

Lemma 5.26. Let K be a finite non-empty set of integers. Let F be a finite weighted
constraint language.

1. Let G be a finite set of simple weightings of weight-functions in F . There is a finite
set W ⊆ Q≥0 ×Q≥0 such that #CSPK(G) ≤AP #CSPWK (F).

2. For all finite sets W ⊆ Q≥0 × Q≥0 there is a finite set G of simple weightings of
weight-functions in F such that #CSPWK (F) ≤AP #CSPK(G).
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Proof. (1.) Each G ∈ G can be expressed as G(x) = λGFG(x)
∏kG
j=1 UG,j(xj) for some

FG ∈ F and some λG, UG,1(0), UG,1(1), . . . , UG,kG(0), UG,kG(1) ≥ 0 where kG is the arity
of G. Given a function n taking pairs (G, j), G ∈ G, 1 ≤ j ≤ kG, to integers 0 ≤ nG,j ≤
max(K), define

wn =

 ∏
G∈G,1≤j≤kG

UG,j(0)nG,j ,
∏

G∈G,1≤j≤kG

UG,j(1)nG,j

 ∈ Q≥0 ×Q≥0.

Let W be the set of pairs wn where n ranges over all (max(K) + 1)
∑
G∈G kG choices of

the integers nG,j .
Given an instance (V,C) of #CSPK(G), let C ′ be the list with one constraint 〈(v1, . . . , vk), FG〉

for each constraint 〈(v1, . . . , vk), G〉 ∈ C. Define w : V → W by w(v) = wn(x), where
n(x)G,j is the number of constraints in C using G and using v in the j position:
〈(v1, . . . , vk), G〉 ∈ C with vj = v. This ensures that wtV,C(x) = µ · wtV,C′,w(x) for
all x ∈ {0, 1}V , where µ =

∏
〈(v1,...,vk),G〉∈C λG. So the reduction can just query the

oracle with (V,C ′, w), passing the error parameter to the oracle, and divide by µ.

(2.) For all F : {0, 1}k → Q≥0 and all w ∈ (W ∪ {(1, 1)})k, define

GF,w(x) = F (x)

k∏
i=1

w(i)xi (x ∈ {0, 1}k).

Let G be the set of weight-functions of the form GF,w with F ∈ F .
We are given an instance (V,C,w) of #CSPWK (F). Let V ′ = {v ∈ V | degC(v) > 0}.

Let g : V ′ → C be any map taking each variable v ∈ V ′ to the index of a constraint with
v in its scope: if g(v) = 〈(v1, . . . , vk), G〉 then v = vi for some i. Let C ′ be the list with
one constraint 〈(v1, . . . , vk), GF,wF 〉 for each constraint c = 〈(v1, . . . , vk), F 〉 ∈ C, where

wF (i) =

w(vi) if g(vi) = c, and

(1, 1) otherwise.

This ensures that wtV ′,C,w(x) = wtV ′,C′(x) for all x ∈ {0, 1}V ′ , so ZV,C,w = ZV ′,C′ ·µ
where µ =

∏
v∈V \V ′(w(v)0 +w(v)1), so the reduction can just call the #CSPK(G) oracle

on ZV ′,C′ , passing through the error parameter, then multiply by the result by µ.

5.3 Main theorem

We first establish some useful properties of delta-matroids.

Lemma 5.27. A relation is a delta-matroid if and only if it is terraced.

(Recall that a relation R is a delta-matroid if for all x,y ∈ R and for all i ∈ x4y

there exists j ∈ x4y, not necessarily distinct from i, such that x ⊕ {i, j} ∈ R. A
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weight-function F is terraced if for all partial configurations p of V and all i, j ∈ domp,
if F (p, ·) is identically zero then F (p⊕ {i}, ·) and F (p⊕ {j}, ·) are parallel.)

Proof. Let R be a delta-matroid. Let p be a partial configuration such that R(p, ·) is
empty and let i, j ∈ domp be indices such that R(p⊕ {i}, ·) and R(p⊕ {j}, ·) are non-
empty. We will show that R(p⊕ {i}, ·) = R(p⊕ {j}, ·). By symmetry it suffices to show
that for all x ∈ R(p⊕ {i}, ·) we have x ∈ R(p⊕ {j}, ·). Pick y ∈ R(p⊕ {j}, ·). By the
delta-matroid property applied to ((p⊕ {i},x), (p⊕ {j},y), i) there exists d, such that
xd 6= yd or d ∈ {i, j}, and such that (p⊕ {i},x)⊕ {i, d} is in R. Since R(p, ·) is empty
we have d = j and hence x ∈ R(p⊕ {j}, ·).

Conversely let R be a relation which is terraced when considered as a weight-function.
For all x,y ∈ R and all d ∈ x4y we wish to show that x⊕{d, d′} ∈ R for some d′ ∈ x4y.
Let y′ ∈ R satisfy {d} ⊆ x4y′ ⊆ x4y with |x4y′| minimal. If x4y′ = {d} we can
take d′ = d. Otherwise pick d′ ∈ (x4y′) \ {d}. Let p be the restriction of x ⊕ {d} to
{d, d′} ∪ {i | xi = y′i}. Configurations z ∈ R(p, ·) satisfy {d} ⊆ x4(p, z) ⊆ (x4y′) \
{d′}, but |x4(p, z)| < |x4y′| contradicts the choice of y′; therefore R(p, ·) is empty.
And R(p⊕ {d}, ·) and R(p⊕ {d′}, ·) contain the restrictions of x and y respectively (to
(x4y′) \ {d, d′}). Since R has a terraced weight-function, R(p⊕ {d}, ·) = R(p⊕ {d′}, ·)
so x⊕ {d, d′} ∈ R.

The following argument is useful for studying pinnings.

Lemma 5.28. Let (F,G) be a weight-function pair that is pinning-minimal subject to not
being parallel. Then supp(F ) ∪ supp(G) = {x,x} where x ∈ supp(F ) and x ∈ supp(G).

Proof. First we give another characterisation of when a weight-function pair is parallel.
For any F,G : {0, 1}V → Q≥0 consider the two-by-2|V | matrix M , with columns indexed
by {0, 1}V , defined by M1,x = F (x) and M2,x = G(x). The weight-function pair is
non-parallel if and only if M has row rank two, hence if and only if M has column rank
two, and hence if and only if there exist x,y such that the two-by-two submatrix

M(x,y) =

(
F (x) F (y)

G(x) G(y)

)

has linearly independent rows.
Now let (F,G) be a weight-function pair that is pinning-minimal subject to not

being parallel. For any (x,y) such that M(x,y) has linearly independent rows, let
p = {i 7→ xi | xi = yi}. Then F (p, ·) is not parallel to G(p, ·). But (F,G) is pinning-
minimal subject to not being parallel, so y = x.

There exists some x such that M(x,x) has linearly independent columns. For all
z such that F (z) or G(z) is non-zero, (F (z), G(z)) ∈ R2 cannot be a multiple of both
(F (x), G(x)) and (F (x), G(x)), so either M(x, z) has linearly independent columns or
M(z,x) has linearly independent columns. By the previous paragraph, z = x or z =

x = x. Hence supp(F ) ∪ supp(G) ⊆ {x,x}. Finally, since F and G are not parallel, if
one of F (x) and G(x) is zero, then F (x) and G(x) are both non-zero.
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To get a reduction from #PM to a degree-two #CSP whose constraint language
consists of delta-matroids, we will use certain pinnings.

Lemma 5.29. Let R be a delta-matroid that is not basically binary. There is a copy
R′ : {0, 1}3 → Q≥0 of an arity 3 pinning of R such that for some h : {1, 2, 3} → Z and
some x ∈ {0, 1}3,

R′h−max = {(1− x1, x2, x3), (x1, 1− x2, x3), (x1, x2, 1− x3)}.

Proof. We will show that some pinning R′ : {0, 1}V → Q≥0 of R with |V | = 3 has the
following property. The conclusion of the lemma then follows after choosing a bijection
from V to {1, 2, 3}.

There exists y ∈ {0, 1}V and d ∈ {1, 2} such that: y ⊕ U /∈ R′ for each subset
U ⊆ V with |U | < d, and y ⊕ U ∈ R′ for each subset U ⊆ V with |U | = d.

(SP)

Given (SP), let h(i) = 2yi − 1 for all i ∈ V . Observe that R′h−max consists precisely
of the three configurations x ⊕ U with |U | = d. If d = 1, we may take x = y, and if
d = 2 we may take x = y.

It remains to establish (SP). We may assume that R is indecomposable. (If R = S×T
for some S and T , then S and T cannot both be basically binary, but both S and T are
pinnings of R.) There exists a configuration not in R (otherwise R would be basically
binary). In other words, there is an arity zero pinning of R that is the empty relation.
Let R(p, ·) be an inclusion-maximal pinning (so domp is minimal) subject to R(p, ·) = ∅.
For each v ∈ domp the pinning R(p|domp\{v}, ·) is non-empty by maximality of R(p, ·).
Hence the relations R(p⊕ {v}, ·) are non-empty. The weight-function of R is terraced
by Lemma 5.27, so R(p⊕ {v}, ·) = R(p⊕ {v′}, ·) for any v, v′ ∈ domp.

If domp = {v} for some v then R is the product of {1−pv} with R(p⊕ {v}, ·), which
contradicts the indecomposability of R.

If |domp| ≥ 3, pick z ∈ R(p⊕ {v}, ·) (for any v) and pick a subset D of order 3

of domp. Let R′ : {0, 1}D → Q≥0 be the pinning of R by (p|domp\D, z). Note that
p|D /∈ R′ but p|D ⊕ {v} ∈ R′ for all variables v ∈ D. Hence (SP) holds with d = 1.

The remaining case is that domp = {i, j} for some distinct variables i, j. Since
R is indecomposable, R is not the product of R(p⊕ {i}, ·) with {p ⊕ {i},p ⊕ {j}} or
{p⊕{i},p⊕{j},p⊕{i, j}}. Hence R(p⊕ {i}, ·) and R(p⊕ {i, j}, ·) are not parallel. Let
R′ be a pinning ofR such that (R′(p⊕ {i}, ·), R′(p⊕ {i, j}, ·)) is pinning-minimal subject
to not being parallel. By Lemma 5.28 we have R′(p⊕ {i}, ·) ∪ R′(p⊕ {i, j}, ·) = {z, z}
where z ∈ R′(p⊕ {i}, ·) and z ∈ R′(p⊕ {i, j}, ·). Also, to recap: R′(p, ·) = ∅ and
R′(p⊕ {i}, ·) = R′(p⊕ {j}, ·) 6= R′(p⊕ {i, j}, ·).

If z /∈ R′(p⊕ {i}, ·) then by the delta-matroid property applied to (p ⊕ {i, j}, z),
(p ⊕ {i}, z) and j there exists k ∈ {j} ∪ dom z such that (p ⊕ {i, j}, z) ⊕ {j, k} ∈ R′,
but then k must lie in dom z and z ⊕ {k} ∈ R′(p⊕ {j}, ·). Hence |dom z| = 1, and R′

has arity 3, and (SP) holds with x = (p, z) and d = 2. Otherwise z /∈ R′(p⊕ {i, j}, ·).
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Then, by the delta matroid property applied to (p⊕ {i}, z), (p⊕ {i, j}, z) and j, there
exists k ∈ {j} ∪ dom z such that (p⊕ {i}, z)⊕ {j, k} ∈ R′, but then k must lie in dom z

and z ⊕ {k} ∈ R′(p⊕ {i, j}, ·). Hence |dom z| = 1, and R′ has arity 3, and (SP) holds
with z = (p⊕ {i, j}, z) and d = 1.

The following observation is important for getting a complete classification in Theo-
rem 5.3.

Lemma 5.30. Let R be a delta-matroid in IMconj. Then R is basically binary.

Proof. We may assume that R is indecomposable, because a Cartesian product of basi-
cally binary relations is basically binary. Assume for contradiction that R has arity at
least three.

Let V be the variable set of R. Note that no variables are pinned: if there exists
i ∈ V and c ∈ {0, 1} such that xi = c for all x ∈ R, then R is the product of {c} with
the pinning of R by {i 7→ c} (the unique function {i} → {c}), but this contradicts the
assumption that R is indecomposable. Since R is in IMconj and no variables are pinned,
R is a conjunction of implications of variables. Therefore there is a subset P of V × V
such that

R = {x | xi ≤ xj for all (i, j) ∈ P}.

Consider the undirected graph G on V where i and j are adjacent if and only if (i, j)

or (j, i) is in P . Then G has at least three vertices, and since R is indecomposable, G is
connected. Hence there is a vertex i of degree at least two. There exist distinct variables
j, k ∈ V such that (i, j), (i, k) ∈ P , or (j, i), (k, i) ∈ P , or (j, i), (i, k) ∈ P . In the first
case, there is no ` ∈ V such that 0 ⊕ {i, `} ∈ R. In the second case, there is no ` ∈ V
such that 1 ⊕ {i, `} ∈ R. In the third case, there is no ` ∈ V such that 0 ⊕ {j, `} ∈ R.
But the all-zero configuration 0 and the all-one configuration 1 are both in R. Hence the
delta-matroid property fails for R.

We now give a reduction from an unbounded-degree #CSP, which will be used to
give reductions from #BIS and #SAT.

Lemma 5.31. Let Γ be a finite unweighted constraint language, not consisting entirely
of delta matroids. Then

#CSP≥0(Γ) ≤AP #CSP≥0
≤2(Γ)

Proof. Let R ∈ Γ be a relation that is not a delta-matroid. We will first argue that there
is a configuration z ∈ {0, 1}3 and a (≤ 2)-formula ϕ over {R,PIN0,PIN1} such that [[ϕ]]

is an arity 3 weight-function F satisfying:

F (z⊕ (0, 0, 0)) = F (z⊕ (1, 1, 1)) = 1, and (5.1)

F (z⊕ (1, 0, 0)) = F (z⊕ (1, 1, 0)) = F (z⊕ (1, 0, 1)) = 0.

By Lemma 5.27, R is not terraced, which means there exists a partial configura-
tion p and i, j ∈ domp such that R(p, ·) is identically zero but R(p⊕ {i}, ·) and
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R(p⊕ {j}, ·) are not parallel. Fixing {i, j}, take p to be maximal such that R(p⊕ {i}, ·)
and R(p⊕ {j}, ·) are not parallel. By Lemma 5.28, R(p⊕ {i}, ·) and R(p⊕ {j}, ·) are
distinct non-empty subsets of {y,y} for some y. Without loss of generality (swapping i
and j if necessary, and swapping y and y if necessary), R(p⊕ {j}, ·) = {y}.

Pick some index k not in domp. Let ϕ be the (≤ 2)-formula on variable set
v1, . . . , vn where n is the arity of R, with external variables (vi, vj , vk), with a constraint
〈(v1, . . . , vn), R〉 and constraints 〈(vt),PINpt〉 for each t ∈ domp\{i, j}. Let F = [[ϕ]], so
for all x ∈ {0, 1}{i,j,k}, the quantity F (xi, xj , xk) is the number of extensions of x to a con-
figuration ofR agreeing with p on domp\{i, j}. Set z = (1−pi, pj , 1−yk). Since R(p, ·) is
identically zero, we have F (z⊕(1, 0, 0)) = F (z⊕(1, 0, 1)) = 0. Since R(p⊕ {j}, ·) = {y}
we have F (z⊕ (1, 1, 1)) = 1 and F (z⊕ (1, 1, 0)) = 0. Since {y} ⊆ R(p⊕ {i}, ·) ⊆ {y,y}
we have F (z⊕ (0, 0, 0)) = 1.

So F satisfies (5.1). By pinning (Lemma 5.25) and substitution (Lemma 5.21) we
have #CSP≥0

≤2(Γ ∪ {F}) ≤AP #CSP≥0
≤2(Γ). Let h(1) = 2 − 4z1 and h(2) = 2z2 − 1

and h(3) = 2z3 − 1. Then S = Fh−max is the relation {z, z}. By h-maximisation
(Lemma 5.23) we have #CSP≥0

≤2(Γ ∪ {S}) ≤AP #CSP≥0
≤2(Γ ∪ {F}). Taking a copy of S

if necessary, we have S = EQ3 = {(0, 0, 0), (1, 1, 1)} or S = {(0, 1, 1), (1, 0, 0)}. In the
second case note that EQ3(x, y, z) =

∑1
Y,Z=0 S(x, Y, Z)S(Y, y, z) for all x, y, z ∈ {0, 1},

so by substitution (Lemma 5.21), #CSP≥0
≤2(Γ ∪ {EQ3}) ≤AP #CSP≥0

≤2(Γ ∪ {S}). By
Lemma 5.24(iv.), #CSP≥0(Γ) ≤AP #CSP≥0

≤2(Γ ∪ {EQ3}).

Lemma 5.32. Let R be a delta-matroid that is not basically binary. Then #PM ≤AP

#CSP≥0
≤2(R).

Proof. Define the temporary notation PMx = {(1−x1, x2, x3), (x1, 1−x2, x3), (x1, x2, 1−
x3)} for all x ∈ {0, 1}3. We will first argue that #PM ≤AP #CSP≥0

≤2(PMx) for all
x ∈ {0, 1}3.

For x1 + x2 + x3 ≥ 2, note that reversing the roles of zero and one gives a AP-
reduction, #CSP≥0

≤2(PMx) ≤AP #CSP≥0
≤2(PMx). So we only need to consider the case

x1 + x2 + x3 ≤ 1. Lemma 4.15 implies #PM ≤AP #CSP≥0
≤2(PM(0,0,0)). For x = (1, 0, 0)

note

PM(0,0,0)(x, y, z) =
1∑

t,x′=0

PIN1(t)PM(1,0,0)(t, x, x′)PM(1,0,0)(x′, y, z)

By Lemma 4.15 and substitution (Lemma 5.21),

#PM ≤AP #CSP≥0
=2(PM(0,0,0)) ≤AP #CSP≥0

=2(PM(1,0,0),PIN1). (5.2)

By pinning (Lemma 5.25) we get #PM ≤AP #CSP≥0
≤2(PM(1,0,0)). By permuting variables,

the same reduction applies whenever x1 + x2 + x3 = 1. Thus #PM ≤AP #CSP≥0
≤2(PMx)

for all x ∈ {0, 1}3.
By Lemma 5.29 there is a copy R′ of a pinning of R and some x ∈ {0, 1}3 such that

x⊕U /∈ R for subsets U of {1, 2, 3} with |U | < d and x⊕U ∈ R for |U | = d. Let h(1) =

2x1−1 and h(2) = 2x2−1 and h(3) = 2x3−1. Then R′h−max is PMx (if d = 1) or PMx (if
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d = 2). We have shown that #PM ≤AP #CSP≥0
≤2(R′h−max), and by pinning (Lemma 5.25)

and h-maximisation (Lemma 5.23) we have #CSP≥0
≤2(R′h−max) ≤AP #CSP≥0

≤2(R).

Theorem 5.3. Let Γ be a finite unweighted constraint language. If every relation in Γ

is basically binary, or if Γ ⊆ NEQconj, then #CSP≥0
≤2(Γ) is in FP. Otherwise:

• If every relation in Γ is a delta-matroid then #PM ≤AP #CSP≥0
≤2(Γ).

• If some relation in Γ is not a delta-matroid and Γ ⊆ IMconj, then #BIS =AP

#CSP≥0
≤2(Γ).

• If some relation in Γ is not a delta-matroid and Γ 6⊆ IMconj then #SAT =AP

#CSP≥0
≤2(Γ).

Proof. The inclusion in FP is given by Lemma 5.24(i.). We will therefore assume that Γ

contains a relation that is not in NEQ-conj and a relation that is not basically binary.
Consider the four cases depending on whether Γ ⊆ IMconj and whether Γ consists entirely
of delta-matroids:

IMconj delta
matroids

yes yes impossible by Lemma 5.30
no yes #PM ≤AP #CSP≥0

≤2(Γ) by Lemma 5.32

yes no
#BIS =AP #CSP≥0

≤2(Γ) by Lemma 5.31,
Proposition 5.8 and Lemma 5.24(ii.)

no no
#SAT =AP #CSP≥0

≤2(Γ) by Lemma 5.31,
Proposition 5.8 and Lemma 5.24(iii.)

5.4 Extensions of the main theorem

In this section we will establish the extensions of Theorem 5.3 mentioned in the intro-
duction.

5.4.1 Simulating an unbounded degree problem

To extend Lemma 5.31 from non-delta-matroids to non-terraced weight-functions, rather
than reducing #CSP(F) to #CSP=2(F), we will reduce from a #CSP using functions of
the form T⊗kF and T⊗k(FG).

Definition 5.33. For any weighted constraint language F define TF1 and TF2 by

TF1 = {T⊗kF | F is an arity k function in F for some k ≥ 0}

TF2 = {T⊗k(FG) | F and G are arity k functions in F for some k ≥ 0}.

Lemma 5.34. Let F be a finite weighted constraint language. Let T ∈ Q2×2.

1. If F contains some G : {0, 1}3 → Q≥0 such that for all x, y ∈ {0, 1} we have
G(1, 0, y) = 0 and G(x, x, y) = Tx,y, then #CSP(TF1) ≤AP #CSP=2(F).
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2. If F contains some G : {0, 1}4 → Q≥0 such that for all x, y, y′ ∈ {0, 1} we have
G(1, 0, y, y′) = 0 and G(x, x, y, y′) = EQ2(y, y′)Tx,y, then #CSP(TF2) ≤AP #CSP=2(F).

Proof. (1.) The reduction is given an instance (V,C) of #CSP(TF1). We may assume
that every variable has non-zero degree. It will be convenient to label the functions and
variables used by constraints as c = 〈(vc,1, . . . , vc,kc), T⊗kcFc〉 for c ∈ C. We wish to
approximate

ZV,C =
∑

z∈{0,1}V

∏
c∈C

(T⊗kcFc)(z(vc,1), . . . , z(vc,kc)).

We will enumerate each use of each variable in the following way. Define L = {(v, d) |
v ∈ V, 1 ≤ d ≤ degC(v)} and R = {(c, j) | c ∈ C, 1 ≤ j ≤ kc}. There is a bijection
g : L → R where g(v, i) = (c, j) means that that i’th occurrence of v, according to a
fixed enumeration of C, is as the j’th variable in the constraint c. In other words, for all
c ∈ C, for all 1 ≤ i ≤ kc there exists 1 ≤ j ≤ degC(vc,i) such that g(vc,i, j) = (c, i).

Define (V ′, C ′) to be the instance of #CSP=2(F) where:

• the variable set V ′ is the disjoint union of L and R,

• there is one constraint 〈((v, d−1), (v, d), g(v, d)), G〉 for each pair (v, d) ∈ L, where
(v, 0) means (v,degC(v)), and also

• there is one constraint 〈((c, 1), . . . , (c, kc)), Fc〉 for each c ∈ C.

Thus

ZV ′,C′ =
∑
x,y

∏
v,d

G(x(v, d− 1),x(v, d),y(g(v, d)))

(∏
c

Fc(y(c, 1), . . . ,y(c, kc))

)
.

Here, and for the rest of the proof of case (1.), indices c, j, v, d range over c ∈ C

and 1 ≤ j ≤ kc and v ∈ V and 1 ≤ d ≤ degC(v). The variables x,y, z range over
x : L→ {0, 1} and y : R→ {0, 1} and z : V → {0, 1}. And x(v, 0) means x(v,degC(v)).

The reduction queries the #CSP=2(F) oracle on (V ′, C ′), passing through the error
parameter, and returns the result. To show that the reduction is correct we will show
that ZV,C = ZV ′,C′ . Define



142

ZTerms(z) =
∏
c

(T⊗kcFc)(z(vc,1), . . . , z(vc,kc))

YZTrans(y, z) =
∏
c,j

Tz(vc,j),y(c,j)

YTerms(y) =
∏
c

Fc(y(c, 1), . . . ,y(c, kc))

XEq(x) =
∏
v

EQdegC(v)(x(v, 1), · · · ,x(v,degC(v)))

XYTrans(x,y) =
∏
v,d

Tx(v,d),y(g(v,d))

XYGTrans(x,y) =
∏
v,d

G(x(v, d− 1),x(v, d),y(g(v, d)))

Note:

• For fixed z we have ZTerms(z) =
∑

y YZTrans(y, z)YTerms(y) by expanding the
definition of T⊗kcFc.

• Summing over x with the factor XEq(x) is the same as summing over z and defining
x by x(v, d) = z(v). Hence summing over x with the factor XEq(x)XYTrans(x,y)

is the same as summing over z with the factor YZTrans(y, z).

• Fix x and y. If XEq(x) = 1 then XYTrans(x,y) = XYGTrans(x,y) by defi-
nition of G. And if XEq(x) is zero then so is XYGTrans(x,y), which implies
XEq(x)XYTrans(x,y) = XYGTrans(x,y) = 0.

Hence

ZV,C =
∑
z

ZTerms(z)

=
∑
y,z

YZTrans(y, z)YTerms(y)

=
∑
x,y

XEq(x)XYTrans(x,y)YTerms(y)

=
∑
x,y

XYGTrans(x,y)YTerms(y)

= ZV ′,C′

(2.) The reduction is given an instance (V,C) of #CSP(TF2). We may assume
that every variable has non-zero degree. It will be convenient to label the functions and
variables used by constraints as c = 〈(vc,1, . . . , vc,kc), T⊗kc(Fc,1Fc,2)〉 for c ∈ C. We wish



143

to approximate

ZV,C =
∑

z∈{0,1}V

∏
c∈C

(T⊗kc(Fc,1Fc,2))(z(vc,1), . . . , z(vc,kc)).

Let L,R, g be defined as before. Define (V ′, C ′) to be the instance of #CSP=2(F)

where:

• the variable set is the disjoint union of L and R× {1, 2},

• there is one constraint 〈((v, d − 1), (v, d), (g(v, d), 1), (g(v, d), 2)), G〉 for each pair
(v, d) ∈ L, where (v, 0) means (v,degC(v)), and also

• there is one constraint 〈(((c, 1), b), . . . , ((c, kc), b)), Fc,b〉 for each c ∈ C and each
b ∈ {1, 2}.

Thus

ZV ′,C′ =
∑
x,y

∏
v,d

G(x(v, d− 1),x(v, d),y(g(v, d), 1),y(g(v, d), 2))


·

∏
c,b

Fc,b(y((c, 1), b), . . . ,y((c, kc), b))

 .

Here and for the rest of the proof, indices c, j, b, v, d range over c ∈ C and 1 ≤ j ≤ kc
and b ∈ {1, 2} and v ∈ V and 1 ≤ d ≤ degC(v). The variables x,y, z range over
x : L → {0, 1} and y : R × {1, 2} → {0, 1} and z : V → {0, 1}. As before, x(v, 0) means
x(v,degC(v)).

The reduction queries the #CSP=2(F) oracle on (V ′, C ′), passing through the error
parameter, and returns the result. To show that the reduction is correct we will show
that ZV,C = ZV ′,C′ . Define

ZTerms(z) =
∏
c

(T⊗kc(Fc,1Fc,2))(z(vc,1), . . . , z(vc,kc))

YZTrans(y, z) =
∏
c,j

EQ2(y((c, j), 1),y((c, j), 2))Tz(vc,j),y((c,j),1)

YTerms(y) =
∏
c,b

Fc,b(y((c, 1), b), . . . ,y((c, kc), b))

XEq(x) =
∏
v

EQdegC(v)(x(v, 1), . . . ,x(v,degC(v))) (as in case (1.))

XYTrans(x,y) =
∏
v,d

EQ2(y(g(v, d), 1),y(g(v, d), 2))Tx(v,d),y(g(v,d),1)

XYGTrans(x,y) =
∏
v,d

G(x(v, d− 1),x(v, d),y(g(v, d), 1),y(g(v, d), 2))
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As in case (1.) we have ZTerms(z) =
∑

y YZTrans(y, z)YTerms(y) by expanding
the definition of T⊗kc(Fc,1Fc,2). The rest of the argument is identical to case (1.) and
we get ZV,C = ZV ′,C′ .

5.4.2 Pinnings

As in the main theorem, we will use pinnings. The following lemma gives the necessary
analogue of Lemma 5.25.

Lemma 5.35. Let F be a finite weighted constraint language. Let F ′ be a copy of
a pinning of a weight-function F ∈ F . Let (1, 0), (0, 1) ∈ W ⊆ Q≥0 × Q≥0. Then
#CSPW=2(F ∪ {F ′,PIN0,PIN1}) ≤AP #CSPW=2(F).

Proof. As in Lemma 5.25, it suffices to show that #CSPW=2(F ∪ {PIN0,PIN1}) ≤AP

#CSPW=2(F). The reduction is given an instance (V,C,w) of #CSPW=2(F∪{PIN0,PIN1})
and an error parameter ε. If 〈(v),PIN0〉, 〈(v),PIN1〉 ∈ C for some v ∈ V then the
reduction can correctly output ZV,C,w = 0, so we will assume this does not occur. We
will define an instance (V ′, C ′, w′) of #CSPW=2(F) such that ZV,C,w can be computed
easily from ZV ′,C′,w′ .

Let CF be the list of constraints in C that do not use PIN0 or PIN1. For each
d ∈ {0, 1, 2} let Vd = {v | degCF (v) = d}. Let V ′ be the disjoint union of V2×{0, 1} and
V1. For each i ∈ {0, 1} define si : V1 ∪ V2 → V ′ by

si(v) =

v if v ∈ V1, and

(v, i) otherwise.

Let C ′ be the list with the two constraints 〈(s0(v1), . . . , s0(vk)), F 〉 and 〈(s1(v1), . . . , s1(vk)), F 〉
for each constraint 〈(v1, . . . , vk), F 〉 ∈ C. Define w′ : V ′ →W by

w′(v) = (1, 0) for v ∈ V1 where 〈(v),PIN0〉 ∈ C

w′(v) = (0, 1) for v ∈ V1 where 〈(v),PIN1〉 ∈ C

w′(v, i) = w(v) for all v ∈ V2 and i ∈ {0, 1}.

For each v ∈ V0 ∪ V1 there is a unique p(v) ∈ {0, 1} such that 〈(v),PINp(v)〉 ∈ C. Define
K0 =

∏
v∈V0

w(v)p(v) and K1 =
∏
v∈V1

w(v)p(v). Then

Z2
V,C,w = K2

0

∑
x∈{0,1}V ′

wtV1∪V2,CF ,w|V1∪V2
(x◦s0) wtV1∪V2,CF ,w|V1∪V2

(x◦s1) = K2
0K

2
1ZV ′,C′,w′ .

The reduction should call the oracle on (V ′, C ′, w′) with error parameter ε to obtain a
value Z ′ satisfying e−ε/2

√
ZV ′,C′,w′ ≤

√
Z ′ ≤ eε/2

√
ZV ′,C′,w′ (with probability at least

3/4) then compute a rational Z ′′ such that e−ε/2
√
Z ′ ≤ Z ′′ ≤ eε/2

√
Z ′, then return

K0K1Z
′′.
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Since the constraint language is no longer restricted to relations, to show #BIS-
and #SAT-hardness we will require some observations about weight-functions that are
pinning-minimal subject to various conditions.

Lemma 5.36. Let F be a pinning-minimal weight-function subject to not being log-
supermodular. Then supp(F ) ⊆ {0,x,x, 1} for some x.

Proof. For all x,y such that F (x ∧ y)F (x ∨ y) < F (x)F (y), the pinning of F by {i 7→
xi | xi = yi} is not log-supermodular so y = x. Taking the contrapositive, for all y, z
such that z 6= y we have F (z ∧ y)F (z ∨ y) ≥ F (z)F (y). And there exists x with
F (0)F (1) < F (x)F (x). Let z /∈ {0, 1,x,x}. Then

F (x ∧ z)F (x ∨ z) ≥ F (x)F (z)

F (x ∧ z)F (x ∨ z) ≥ F (x)F (z)

F (0)F (z) ≥ F (x ∧ z)F (x ∧ z)

F (z)F (1) ≥ F (x ∨ z)F (x ∨ z)

In each case we have used the fact that the configurations on the right-hand-side are not
complements, or, equivalently, the configurations on the left-hand-side are not 0 and 1.

Multiplying these four inequalities we get F (0)F (1)C ≥ F (x)F (x)C where

C = F (z)2F (x ∧ z)F (x ∨ z)F (x ∧ z)F (x ∨ z) ≥ F (x)F (x)F (z)4.

But F (0)F (1) < F (x)F (x) so C = 0 and hence F (z) = 0.

Lemma 5.37. Let R be a pinning-minimal relation subject to not being closed under
joins (so there exists x,y ∈ R such that x ∨ y /∈ R). Then R = {0,x,x} or R = {x,x}.

Proof. For all x,y ∈ R with x ∨ y /∈ R, the pinning of R by {i 7→ xi | xi = yi} is not
closed under joins so y = x. Hence there exists x with x,x ∈ R, and 1 /∈ R. Also, taking
contrapositives, if y, z ∈ R and y 6= z then y ∨ z ∈ R.

Consider y ∈ R \ {x,x}. By the previous paragraph, x ∨ y ∈ R and x ∨ y ∈ R. But
(x ∨ y) ∨ (x ∨ y) = 1 /∈ R, so x ∨ y is the complement of x ∨ y. Hence max(xi, yi) =

1−max(1− xi, yi) = min(xi, 1− yi) for all variables i, which implies y = 0.

Recall that F is IM-terraced if for all partial configurations p such that the pinning
F (p, ·) is identically zero, for all i, j ∈ domp such that pi 6= pj , the pinnings F (p⊕ {i}, ·)
and F (p⊕ {j}, ·) are parallel.

Lemma 5.38. For every weight-function G that is pinning-minimal subject to not being
IM-terraced, there is a copy F : {0, 1}k → Q≥0 of G such that:

• for all y3, . . . , yk ∈ {0, 1} we have F (1, 0, y3, . . . , yk) = 0, and
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• there exists a configuration z of {3, 4, · · · , k} and a non-singular matrix T ∈ Q2×2

such that for all x, y3, · · · , yk ∈ {0, 1} we have

F (x, x, y3, · · · , yk) =

Tx,y3 if y = z or y = z

0 otherwise.

Proof. Consider an arbitrary weight-function G : {0, 1}V → Q≥0 that is pinning-minimal
subject to not being IM-terraced. Since G is not IM-terraced there exist p, i, j such that
pi = 1 and pj = 0 and G(p, ·) is identically zero but G(p⊕ {i}, ·) and G(p⊕ {j}, ·)
are not parallel. Let p′ be the restriction of p to domp \ {1, 2}. Then F ′ = F (p′, ·)
is also not IM-terraced: F ′((p⊕ {i})|{i,j}, ·) = F (p⊕ {i}, ·) and F ′((p⊕ {j})|{i,j}, ·) =

F (p⊕ {j}, ·) are not parallel. Hence domp = {i, j} by minimality of F .
Pick a bijection π from V to {1, . . . , k} sending i to 1 and j to 2. Then the copy F of

G defined by F (x) = G(x ◦ π) has the same properties with i = 1 and j = 2; letting 00,
10 and 11 denote (0, 0) and (1, 0) and (1, 1) considered as partial configurations living
in {0, 1}{1,2}, the pinning F (10, ·) is identically zero but F (00, ·) and F (11, ·) are not
parallel.

We will argue that (F (00, ·), F (11, ·)) is pinning-minimal subject to not being paral-
lel. We need to check that for any non-empty partial configuration y of {3, · · · , k} the
pinnings F ((00,y), ·) and F ((11,y), ·) are parallel. F ((10,y), ·) is identically zero, and
10 ⊕ {1} = 00 and 10 ⊕ {2} = 11, and F (y, ·) is IM-terraced by minimality of F , so
F ((00,y), ·) and F ((11,y), ·) are parallel.

By Lemma 5.28 there exists z ∈ {0, 1}{3,4,··· ,k} such that supp(F (00, ·))∪supp(F (11, ·)) =

{z, z}. Without loss of generality we may take z3 = 0. Set T00 = F (00, z) and
T01 = F (00, z) and T10 = F (11, z) and T11 = F (11, z). This T satisfies the required
expression for F . Furthermore the weight-functions F00 and F11 are not parallel, hence
neither are the vectors (T00, T01) and (T10, T11), and hence T is non-singular.

5.4.3 #BIS- and #SAT-hardness

We will need a few constructions to help reduce from a suitable unbounded-degree #CSP.
We work in the setting of finite sets W as much as possible, to help the proof of Theo-
rem 5.13.

To use Proposition 5.8 we need to insert arity 1 weight-functions into the constraint
language of a #CSP. Lemma 5.39 provides these, and Lemma 5.40 says that we can
reduce one of the #CSPs considered in Proposition 5.8 to a read-twice #CSP with a
non-IM-terraced weight-function. Lemma 5.42 applies this to reducing #BIS and #SAT

to certain #CSPW=2 problems.

Lemma 5.39. Let B = 1 or B = 2 and let T ∈ Q2×2
≥0 be non-singular. Assume that

either: T00 > T10 and T01 < T11, or T00 < T10 and T01 > T11. Let U(0), U(1) be positive
rationals and let F be any weight-function with | supp(F )| > 1. Then U = [[ϕ]] for some
N-formula ϕ over TFB where F is a finite set of simple weightings of F .
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Proof. First we will write U in the form U(x) = U1(x) . . . Uk(x) such that for each
1 ≤ i ≤ k the ratio Ui(0)/Ui(1) lies in the closed interval from T00/T10 to T01/T11 where
one of these endpoints may be +∞ (so the interval is [T00/T10,+∞) when T11 = 0, and
[T01/T11,+∞) when T10 = 0).

If U(0) ≤ U(1), let i ∈ {0, 1} satisfy T0i < T1i. Let k ≥ 1 be the unique integer
with (T0i/T1i)

k < U(0)/U(1) ≤ (T0i/T1i)
k−1. Then let U1(x) = · · · = Uk−1(x) = Txi and

Uk(x) = U(x)/(Txi)
k−1 for each x ∈ {0, 1}. Note that T0i/T1i < Uk(0)/Uk(1) ≤ 1.

If U(0) > U(1), let i ∈ {0, 1} satisfy T0i > T1i. Let k ≥ 1 be the unique integer
with (T0i/T1i)

k−1 ≤ U(0)/U(1) < (T0i/T1i)
k. Then let U1(x) = · · · = Uk−1(x) = Txi and

Uk(x) = U(x)/(Txi)
k−1 for each x ∈ {0, 1}. Note that 1 ≤ Uk(0)/Uk(1) < T0i/T1i.

We have constructed U1, . . . , Uk. Now let x,x′ be distinct elements of supp(F ). By
permuting variables if necessary we can assume that xn 6= x′n where n is the arity of F .
Let

F ′(yn) =

1∑
x1,...,xn−1,y1,...,yn−1=0

Tx1,y1 . . . Txn−1,yn−1F (y)B for yn ∈ {0, 1}.

Since xn 6= x′n we have F ′(0), F ′(1) > 0. Define Wi(0),Wi(1) by the following equation.(
F ′(0)Wi(0)

F ′(1)Wi(1)

)
= T−1

(
Ui(0)

Ui(1)

)
=

1

detT

(
T11 −T01

−T10 T00

)(
Ui(0)

Ui(1)

)
.

If T00 > T10 then detT > 0 and so Wi(0),Wi(1) ≥ 0 because T01/T11 ≤ Ui(0)/Ui(1) ≤
T00/T10 (where the final inequality should be ignored when T10 = 0). If T00 > T10 then
detT < 0 and so Wi(0),Wi(1) ≥ 0 because T00/T10 ≤ Ui(0)/Ui(1) ≤ T01/T11 (where the
final inequality should be ignored when T11 = 0).

For each 1 ≤ i ≤ k define Fi to be the simple weighting Fi(x1, . . . , xn) = F (x1, . . . , xn)Wi(xn).
Then

U(xn) =
k∏
i=1

Ui(xn) =


∏k
i=1

∑1
x1,...,xn−1=0(T⊗nFi)(x) if B = 1∏k

i=1

∑1
x1,...,xn−1=0(T⊗n(FFi))(x) if B = 2.

This implicitly defines a N-formula ϕ over TFB with U = [[ϕ]], where F = {F, F1, . . . , Fk}.

Lemma 5.40. Let F be a finite weighted constraint language containing a non-IM-
terraced weight-function. There exists B ∈ {1, 2} and a non-singular matrix T ∈ Q2×2

≥0

such that for all finite sets of arity 1 weight-functions S there is a finite set W ⊆ Q≥0 ×
Q≥0 such that

#CSP(TFB ∪ S) ≤AP #CSPW=2(F).
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Proof. We can always insert (0, 1) and (1, 0) into W , so by Lemma 5.35 we can assume
that F is closed under taking pinnings.2

Choose a weight-function F ∈ F that is pinning-minimal subject to not being
IM-terraced. Permuting variables if necessary, F has the form given by Lemma 5.38.
So F (1, 0, y3, . . . , yk) = 0 for all y3, . . . , yk ∈ {0, 1}, and there exists T ∈ Q2×2

≥0 and
z3, . . . , zk ∈ {0, 1} and B ≥ 1 such that for all x, y3, . . . , yk ∈ {0, 1} we have

F (x, x, y3, . . . , yk) =

Tx,y3 if y ∈ {z, z}

0 otherwise.
(5.3)

If k ≥ 5 there are 3 ≤ i < j ≤ k with yi = yj . Define F ′ : {0, 1}k−2 → Q≥0 by

F ′(x1, x2, y3, · · · , yi−1, yi+1, · · · , yj−1, yj+1, · · · , yk) =

1∑
t=0

F (x1, x2, y3, · · · , yi−1, t, yi+1, · · · , yj−1, t, yj+1, · · · , yk)

Let y′ denote y with the i’th and j’th components deleted, and let z′ denote z with
the i’th and j’th components deleted. Equation (5.3) holds with F,y, z replaced by
F ′,y′, z′, which implies that F ′ is not IM-terraced. F ′ is defined by a (= 2)-formula over
F , so by substitution (Lemma 5.21), #CSPW=2(F ∪ {F ′}) ≤AP #CSPW=2(F) whenever
(1, 1) ∈W ⊆ Q≥0 ×Q≥0. Repeating this we can assume k ≤ 4. Set B = k − 2.

If B = 2 and z3 6= z4, define F ′ by

F ′(x1, x2, y3, y4) =

1∑
t,y′4=0

F (x1, x2, y3, y
′
4)F (t, t, y′4, y4)

Then F ′(1, 0, y3, y4) = 0 for all y3, y4 ∈ {0, 1}. Also, for all x, y3, y4 ∈ {0, 1},

F ′(x, x, y3, y4) =


∑1

t=0 F (t, t, 1− y3, y3)Tx,y3 if y3 = y4

0 otherwise.

By substitution (Lemma 5.21) we can use F ′ instead of F . Therefore we can assume
that z is either (0) or (0, 0).

Furthermore by taking a simple weighting of F and invoking Lemma 5.26, we can
assume that there exist i, j ∈ {0, 1} such that Ti0 > Ti1 and Tj0 < Tj1. Indeed let
U(0) = T01 +T11 and U(1) = T00 +T10. Replacing F by the simple weighting F ′ defined
by

F ′(x1, x2, y3, y4) = U(y3)F (x1, x2, y3, y4)

2This is not literally true, since our convention is that constraint languages consist of standard weight-
functions. The more precise statement is that we can assume that for every pinning F of a function in
F , some copy of F is in F .
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has the effect of replacing Txy by U(y)Txy. If T00T11 > T01T10 then U(0)T00 > U(1)T01

and U(0)T10 < U(1)T11. Otherwise T00T11 < T10T01 so U(0)T00 < U(1)T01 and
U(0)T10 > U(1)T11.

Let S′ be the set {U ∈ S | U(0), U(1) > 0} ∪ {U0, U1} where U0(0) = 2, U0(1) = 1

and U1(0) = 1, U1(1) = 2. By Lemma 5.39 there is a finite set G of simple weight-
ings of F (note | supp(F )| > 1) such that each U ∈ S′ can be expressed by a N-
formula over {T⊗GB}. By substitution (Lemma 5.21), Lemma 5.34, and simple weighting
(Lemma 5.26), we have

#CSP(TFB ∪ S′) ≤AP #CSP(TFB ∪ TGB) ≤AP #CSP=2(F ∪ G) ≤AP #CSPW=2(F)

for some finite set W . Using U0 and U1 as variable weights we have:

#CSP{(2
a,2b)|a,b∈Z}(TFB ∪ S′) ≤AP #CSP(TFB ∪ S′)

But PIN0 = (U1)h−max with h(1) = −1, and similarly PIN1 = (U0)h−max with h(1) = 1,
so by h-maximisation (Lemma 5.23) we have

#CSP(TFB ∪ S′ ∪ {PIN0,PIN1}) ≤AP #CSP{(2
a,2b)|a,b∈Z}(TFB ∪ S′)

The weight-functions in S \ S′ are just constant multiples of PIN0 and PIN1 so we have
established that #CSP(TFB ∪ S) ≤AP #CSPW=2(F).

Lemma 5.41. Let F : {0, 1}k → Q≥0 be indecomposable. F ∈ WNEQ if and only if
| supp(F )| ≤ 2.

(In [27], this property is used to define the complex-valued analogue E of WNEQ.
But we have defined WNEQ in a different way.)

Proof. If F ∈ WNEQ then F is a simple weighting of a NEQconj relation: there are
numbers λ,U1(0), U1(1), . . . , Uk(0), Uk(1) ∈ Q≥0 and sets A,B ⊆ {1, . . . , k} × {1, . . . , k}
such that

F (x1, . . . , xk) = λ

(
k∏
i=1

Ui(xi)

) ∏
(i,j)∈A

EQ2(xi, xj)

 ∏
(i,j)∈B

NEQ(xi, xj)


= λ

∏
P

(∏
i∈P

Ui(xi)

) ∏
(i,j)∈A∩P 2

EQ2(xi, xj)

 ∏
(i,j)∈B∩P 2

NEQ(xi, xj)


where P runs over equivalence classes of the equivalence relation generated by i ∼ j if
(i, j) ∈ A∪B. This expresses F as a tensor product. But F is indecomposable, so there
must only be one equivalence class. Consider two tuples x,y ∈ supp(F ). If i ∼ j then
either xi = xj and yi = yj , or xi 6= xj and yi 6= yj ; in either case xi = yi if and only if
xj = yj . Thus x4y is a union of equivalence classes. Since there is only one equivalence
class, x = y or x = y. We have shown that | supp(F )| ≤ 2.
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Conversely, if | supp(F )| ≤ 2 then either the arity of F is zero, in which case F
is certainly in WNEQ, or the support R of F is a subset of {y, z} for distinct vectors
y, z ∈ {0, 1}k. Pick t with yt 6= zt. Then for all x ∈ {0, 1}k we have

F (x) = U(xt)

 ∏
i:yi=zi=0

PIN0(xi)

 ∏
i:yi=zi=1

PIN1(xi)


·

 ∏
i:yi 6=yt=zi

NEQ(xt, xi)

 ∏
i:yi=yt 6=zi

EQ2(xt, xi)


so F ∈WNEQ.

Lemma 5.42. Let F be a finite weighted constraint language. Assume that F contains
a weight-function that is not in WNEQ and a weight-function that is not IM-terraced.
There is a finite set W ⊆ Q≥0 ×Q≥0 such that #BIS ≤AP #CSPW=2(F) and if F 6⊆ LSM

then #SAT ≤AP #CSPW=2(F).

Proof. As in Lemma 5.40, we can assume F is closed under pinnings. Let B, T be as
given by Lemma 5.40 applied to F . We first show that TFB has the same properties
as F for the purposes of Proposition 5.8: firstly that TFB 6⊆WNEQ, and secondly that
F 6⊆ LSM implies TFB 6⊆ LSM.

For any function F : {0, 1}V → Q≥0 and any p ∈ {1
2 , 1, 2}, define F

p : {0, 1}V → R≥0

by F p(x) = F (x)p.
To show TFB 6⊆WNEQ, let G : {0, 1}k → Q≥0 be a pinning-minimal weight-function

subject to G ∈ F \ WNEQ. Since WNEQ is closed under taking tensor products,
this implies that G is indecomposable. By Lemma 5.41, the support of G has order
at most two. Either T00T11 > 0 and supp(T⊗kGB) ⊇ supp(G), or T01T10 > 0 and
supp(T⊗kGB) ⊇ {x | x ∈ supp(G)}. In either case | supp(T⊗kGB)| ≥ | supp(G)| > 2. If
T⊗kGB = G1⊗G2 then G = (S⊗V1G1)1/B ⊗ (S⊗V2G2)1/B where S is the matrix inverse
of T , and V1 and V2 are the variable sets of G1 and G2 respectively. But G is indecom-
posable, so G1 or G2 has arity zero.3 We have shown that T⊗kGB is an indecomposable
weight-function whose support has order greater then two, which by Lemma 5.41 implies
that T⊗kGB is not in WNEQ.

Assume F 6⊆ LSM; we will now argue that TFB 6⊆ LSM. Let H be a weight-function
in F that is pinning-minimal subject to not being log-supermodular. In particular by
Lemma 5.36, supp(H) ⊆ {0,x,x, 1} for some vector x with a zeros and b ones for some

3 We defined a function F to be indecomposable if F = G ⊗H implies that G or H has arity zero,
for all rational-valued G and H. But we are using the property that an indecomposable function cannot
be a tensor product of real-valued functions of positive arity. To justify this, note that if F is rational-
valued and F = G⊗H for some real-valued G and H then, as long as F is not identically zero, we have
F = G′ ⊗ H ′ where G′(y) =

∑
z F (y, z) and H ′(z) =

∑
y F (y, z)/

∑
y,z F (y, z). Here y ranges over

configurations of the variable set of G, and z ranges over configurations of the variable set of H.
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a, b ≥ 1. Hence (
(T⊗(a+b)HB)(0) (T⊗(a+b)HB)(x)

(T⊗(a+b)HB)(x) (T⊗(a+b)HB)(1)

)

=

(
T a00 T a01

T a10 T a11

)(
H(0)B H(x)B

H(x)B H(1)B

)(
T b00 T b10

T b01 T b11

)

Denote the latter expression by M1M2M3. Since H(0)H(1) < H(x)H(x), the middle
matrix M2 has a negative determinant. The determinants of the neighbouring matrices
M1 andM3 have the same sign: if T00T11 > T01T10 they both have a positive determinant,
otherwise they both have a negative determinant. Therefore the matrix on the left-hand-
side has a negative determinant, and hence T⊗(a+b)HB ∈ TFB is not log-supermodular.

Let B, T be as given by Lemma 5.40 applied to F . By Proposition 5.8 there is a
finite set of arity 1 weight-functions S such that #BIS ≤AP #CSP(TFB ∪ S), and if
TFB 6⊆ LSM then #SAT ≤AP #CSP(TFB ∪ S). By the choice of B and T we have
#CSP(TFB ∪ S) ≤AP #CSPW=2(F) for some finite set W .

5.4.4 Proof of Theorem 5.10

Lemma 5.43 extends the #PM-hardness result of Lemma 5.32 to certain weight-functions.

Lemma 5.43. Let F be a terraced weight-function whose support is not basically binary.
Then #PM ≤AP #CSP≥0

=2(F ).

Proof. By Lemma 5.27, supp(F ) is a delta-matroid. As in the proof of Lemma 5.32, there
is an arity 3 copy G of a pinning of F , integers h(1), h(2), h(3), and a vector x ∈ {0, 1}3

such that supp(Gh−max) is the relation PMx = {x ⊕ (1, 0, 0),x ⊕ (0, 1, 0),x ⊕ (0, 0, 1)}.
Let U1(x1) = 1/G(1, 0, 0), U2(x2) = 1/G(0, 1, 0), and U3(x3) = 1/G(0, 0, 1). Let
U1(1 − x1) = U2(1 − x2) = U3(1 − x3) = 1. Then G(y1, y2, y3)U1(y1)U2(y2)U3(y3) =

PMx(y1, y2, y3) for all y1, y2, y3 ∈ {0, 1}. Thus PMx is a simple weighting of Gh−max.
In the proof of Lemma 5.32 we showed #PM ≤AP #CSP≥0

=2(PMx,PIN0,PIN1) (equa-
tion (5.2)). Using this, pinning (Lemma 5.35), simple weighting (Lemma 5.26), h-
maximisation (Lemma 5.23), and pinning again,

#PM ≤AP #CSP≥0
=2(PMx,PIN0,PIN1) ≤AP #CSP≥0

=2(PMx)

≤AP #CSP≥0
=2(Gh−max) ≤AP #CSP≥0

=2(G) ≤AP #CSP≥0
=2(F ).

Lemma 5.44 uses h-maximisation to simulate non-IM-terraced weight-functions from
non-terraced weight-functions.

Lemma 5.44. Let F be a finite weighted constraint language, containing a weight-
function whose support is not in IMconj, and a weight-function that is not terraced. Then
#CSP≥0

=2(F ∪{F}) ≤AP #CSP≥0
=2(F) for some weight-function F that is not IM-terraced.
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Proof. Let G ∈ F satisfy supp(G) /∈ IMconj. By Lemma 5.36 applied to supp(G), there
exists p such that, if we let H = G(p, ·), then {z, z} ⊆ supp(H) $ {0, z, z, 1} for some
z not equal to 0 or 1. Permuting variables if necessary, there exist a, b ≥ 1 such that
z ∈ {0, 1}a+b, with zi = 0 for 1 ≤ i ≤ a and zi = 1 for a+ 1 ≤ i ≤ a+ b.

Define R = {z, z}. Then R is a simple weighting of an h-maximisation of H. Specif-
ically, define h ∈ Za+b as follows. If H(1) 6= 0, let h(1) = h(a + 1) = 1, and h(i) = 0

elsewhere. If H(0) 6= 0, let h(1) = h(a + 1) = −1, and h(i) = 0 otherwise. Define
W (0) = 1/H(z) and W (1) = 1/H(z). Then R(x) = Hh−max(x)W (x1) for all x. By h-
maximisation (Lemma 5.23), pinning (Lemma 5.35) and simple weighting (Lemma 5.26),

#CSP≥0
=2(F ∪ {R}) ≤AP #CSP≥0

=2(F).

If the arity of R is two, then R = NEQ. Let F ′ ∈ F be a weight-function that is not
terraced, so there exist p, i, j such that F ′(p, ·) is identically zero, but F ′(p⊕ {i}, ·) and
F ′(p⊕ {j}, ·) are not parallel. If pi 6= pj then F ′ is not IM-terraced, so the conclusion
follows by setting F = F ′. Let n be the arity of F ′ and define F : {0, 1}n → Q≥0 by

F (x) =
∑
y

NEQ(xi, y)F ′(x1, . . . , xi−1, y, xi+1, . . . , xn) (x ∈ {0, 1}n).

Note that this implicitly defines F as [[ϕ]] for a (= 2)-formula ϕ over {F ′,NEQ}. Further-
more F is not IM-terraced, because F (p⊕ S, ·) = F ′((p⊕ {i})⊕ S, ·) for all S ⊆ {i, j}.
By substitution (Lemma 5.21), #CSP≥0

=2(F ∪ {F}) ≤AP #CSP≥0
=2(F ∪ {R}), so we are

done.
If the arity of R is greater than two then note that

EQ2a(x,x
′) =

∑
y∈{0,1}b

F (x,y)F (x′,y) for all x,x′ ∈ {0, 1}a, and

EQ2b(y,y
′) =

∑
x∈{0,1}a

F (x,y)F (x,y′) for all y,y′ ∈ {0, 1}b.

Here commas just denote concatenation: (x,x′) = (x1, . . . , xa, x
′
1, . . . , x

′
a) and so on.

By substitution (Lemma 5.21) we have #CSP≥0
=2(F ∪ {EQ2a,EQ2b}) ≤AP #CSP≥0

=2(F ∪
{R}), but EQ2a is not IM-terraced unless a = 1, in which case b > 1 and EQ2b is not
IM-terraced.

Theorem 5.10. Let F be a finite weighted constraint language.

(i.) If F ⊆WNEQ or every weight-function in F is basically binary, then #CSP≥0
≤2(F)

is in FP.

(ii.) Otherwise, if there is a non-terraced weight-function in F , then we have a similar
classification to Proposition 5.8: #BIS ≤AP #CSP≥0

=2(F) and if F 6⊆ LSM then
#SAT =AP #CSP≥0

=2(F).
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(iii.) Otherwise (when neither of the two conditions above hold), if there is a weight-
function in F whose support is not basically binary, then #PM ≤AP #CSP≥0

=2(F).

Proof. (i.) Lemma 5.24(i.).
(ii.) There is a weight-function F : {0, 1}k → Q≥0 in F that is not terraced. By

definition there is a pinning F (p, ·) and there are variables i, j ∈ domp such that F (p, ·)
is identically zero but F (p⊕ {i}, ·) and F (p⊕ {j}, ·) are not parallel.

If pi 6= pj , so F is not IM-terraced, set F ′ = F . Otherwise pi = pj . There are
x,y ∈ {0, 1}{1,...,k}\domp such that F (p⊕ {i},x), F (p⊕ {j},y) > 0. But if pi = pj = 0

then F ((p ⊕ {i},x) ∧ (p ⊕ {j},y)) = F (p,x ∧ y) = 0, and if pi = pj = 1 then F ((p ⊕
{i},x)∨(p⊕{j},y)) = F (p,x∨y) = 0. Hence supp(F ) is not in IMconj. By Lemma 5.44
there is a non-IM-terraced F ′ such that #CSP≥0

=2(F ∪ {F ′}) ≤AP #CSP≥0
=2(F).

By Lemma 5.42 #BIS ≤AP #CSP≥0
=2(F ∪ {F ′}), and #SAT ≤AP #CSP≥0

=2(F ∪ {F ′})
if F contains a weight-function that is not log-supermodular. Also, #CSP≥0

=2(F) ≤AP

#SAT by Lemma 5.24(iii.).
(iii.) There is a weight-function F in F that does not have basically binary support.

By Lemma 5.43 we have #PM ≤AP #CSP≥0
=2(F ).

5.4.5 Proof of Theorem 5.13

Lemma 5.45. For every weight-function G that is pinning-minimal subject to not being
terraced, there is a copy F : {0, 1}k → Q≥0 of G and values p1, p2 ∈ {0, 1} such that

• for all y3, . . . , yk ∈ {0, 1} we have F (p1, p2, y3, . . . , yk) = 0, and

• there exists a configuration z ∈ {0, 1}{3,··· ,k} and a non-singular matrix T ∈ Q2×2

such that for all x1, x2, y3, · · · , yk ∈ {0, 1} satisfying (x1, x2) ∈ {(p1, 1 − p2), (1 −
p1, p2)} we have

F (x1, x2, y3, · · · , yk) =

Tx1,y3 if y = z or y = z

0 otherwise.

Proof. (This can be argued as in the proof of Lemma 5.38, but we will derive it from the
statement of Lemma 5.38.)

Given a weight-function G : {0, 1}V → Q≥0 that is pinning-minimal subject to not
being terraced, there exists q, i, j such that G(q, ·) is identically zero, but G(q⊕ {i}, ·)
and G(q⊕ {j}, ·) are not parallel. Let S be the set containing: i if qi = 0, and j if qj = 1.
Define GS : {0, 1}V → Q≥0 by GS(x) = G(x⊕ S). Then GS(q⊕ S, ·) is identically zero
but GS(q⊕ S ⊕ {i}, ·) = G(q⊕ {i}, ·) and GS(q⊕ S ⊕ {j}, ·) = G(q⊕ {j}, ·) are not
parallel. Therefore GS is not IM-terraced. Every pinning of G by a non-empty partial
configuration is terraced, so every pinning of GS by a non-empty partial configuration
is terraced, and hence IM-terraced. So GS is pinning-minimal subject to not being
IM-terraced. (We can now forget about i and j.)
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Applying Lemma 5.38 to GS we get a bijection π : V → {1, . . . , k}, values zS3 , . . . , zSk
and a matrix T such that the weight-function FS : {0, 1}k → Q≥0 defined by FS(x) =

GS(x ◦ π) satisfies the two bullet points of Lemma 5.38. For each 3 ≤ i ≤ k, define
zi = zSi if i /∈ π(S), and zi = 1 − zSi if i ∈ π(S). Define p1, p2 ∈ {0, 1} by setting
p1 = 1 if and only if 1 6∈ π(S), and setting p2 = 0 if and only if 2 6∈ π(S). Then the
weight-function F : {0, 1}k → Q≥0 defined by F (x) = G(x ◦ π) satisfies the two bullet
points which were to be shown.

Theorem 5.13. Let F be a finite weighted constraint language. Assume F 6⊆ WNEQ,
and that not every weight-function in F is basically binary, and that not every weight-
function in F is terraced. (This is the same setting as the #BIS and #SAT reductions
in Theorem 5.10.)

Unless all the following conditions hold, there is a finite setW ⊆ Q≥0×Q≥0 such that
#BIS ≤AP #CSPW=2(F), and if furthermore F 6⊆ LSM then #SAT =AP #CSPW=2(F).

(i.) Every weight-function F ∈ F is IM-terraced.

(ii.) Either the support of every weight-function F in F is closed under meets —
F (x), F (y) 6= 0 =⇒ F (x ∧ y) 6= 0 — or the support of every weight-function
F in F is closed under joins — F (x), F (y) 6= 0 =⇒ F (x ∨ y) 6= 0.

(iii.) No pinning of the support of a weight-function F ∈ F is a copy of EQ2, that is,
there are no x, i, j satisfying xi = xj and F (x), F (x⊕{i, j}) 6= 0 and F (x⊕{i}) =

F (x⊕ {j}) = 0.

Proof. By Lemma 5.35 we can assume F is closed under pinnings. We will consider each
condition in turn.

(i.) Assume that F is not IM-terraced. The conclusion follows from Lemma 5.42.

(ii.) Assume that condition (ii.) does not hold but condition (i.) holds.

There is a weight-function G′ ∈ F such that supp(G′) is not closed under joins; let
G be a pinning of G′ that is pinning-minimal subject to supp(G) not being closed
under joins. By Lemma 5.37 there exists x /∈ {0, 1} such that supp(G) = {0,x,x}
or supp(G) = {x,x}. Taking a copy of G if necessary we can assume that G is a
weight-function of arity a+b and x1 = · · · = xa = 0 and xa+1 = · · · = xa+b = 1, for
some a, b ≥ 1. Suppose for contradiction that a ≥ 2. Letting p = {1 7→ 0, 2 7→ 1}
we find that G(p, ·) is identically zero but G(p⊕ {1}, ·) and G(p⊕ {2}, ·) are
not parallel, contradicting the fact that G is IM-terraced. Similarly, suppose for
contradiction that b ≥ 2. Letting p = {a+1 7→ 0, a+2 7→ 1} we find that G(p, ·) is
identically zero but G(p⊕ {a+ 1}, ·) and G(p⊕ {a+ 2}, ·) are non-parallel, which
again contradicts the fact that G is IM-terraced.

Pick a non-terraced weight-function F ′ ∈ F . By Lemma 5.45 there is a copy
F : {0, 1}k → Q≥0 of F ′ such that: there exist p1, p2, z3, z4, . . . , zk ∈ {0, 1} and a
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non-singular two-by-two matrix T such that F (p, ·) is identically zero and for all
x ∈ {(1− p1, p2), (p1, 1− p2)} and all y3, . . . , yk ∈ {0, 1} we have

F (x1, x2, y3, · · · , yk) =

Tx1,y3 if y = z or y = z

0 otherwise

We have assumed that condition (i.) holds, so F ′ is IM-terraced, so p1 = p2.
Permuting the domain {0, 1} if necessary we can assume p1 = p2 = 0 without loss
of generality.

So supp(G) is either NEQ or NAND. Define H : {0, 1}k → Q≥0 by

H(x1, x2, y3, . . . , yk) =
∑
t=0,1

G(x1, t)F (t, x2, y3, . . . , yk)

Denote F ({1 7→ i, 2 7→ j}, ·) by Fij , and similarly define Hij . We have:

H10 = G(1, 0)F00 +G(1, 1)F10 which is identically zero

H00 = G(0, 0)F00 +G(0, 1)F10 = G(0, 1)F10

H11 = G(1, 0)F01 +G(1, 1)F11 = G(1, 0)F01

Hence H is not IM-terraced. (A related trick, expressing a function with support
IMP using OR and NAND, is used in [51].)

We showed (case (i.)) that there is a finite setW such that #BIS ≤AP #CSPW=2(F∪
{H}), and if F 6⊆ LSM we can replace #BIS by #SAT. By substitution (Lemma 5.21),
#CSPW=2(F ∪ {H}) ≤AP #CSPW=2(F ∪ {F,G}), and by pinning (Lemma 5.35),
#CSPW=2(F ∪ {F,G}) ≤AP #CSPW

′
=2 (F) where W ′ = W ∪ {(0, 1), (1, 0)}.

(iii.) Assume that condition (iii.) does not hold but conditions (i.) and (ii.) do hold. By
permuting the domain {0, 1} if necessary we can assume without loss of generality
that the support of every weight-function in F is closed under meets.

Pick a non-terraced weight-function H ∈ F . We will argue that supp(H) is not
closed under joins. By definition there exist p, i, j such that H(p, ·) is identically
zero but H(p⊕ {i}, ·) and H(p⊕ {j}, ·) are not parallel. Since H is IM-terraced,
pi = pj . There exist y ∈ supp(H(p⊕ {i}, ·)) and y′ ∈ supp(H(p⊕ {j}, ·)). In
other words, H(p⊕{i},y), H(p⊕{j},y′) > 0. Since supp(H) is closed under joins,
H((p⊕{i})∧(p⊕{j}),y∧y′). Hence pi = pj = 1, andH((p⊕{i})∨(p⊕{j}),y∨y′).
So supp(H) is not closed under joins.

By the same argument used in the second paragraph of condition (ii.), the fact
that H is IM-terraced and not closed under joins implies that there is a pinning
G of H of arity 2 not closed under joins, and taking a copy of necessary we can
assume supp(G) = NAND. Let h(1) = h(2) = 1 so supp(Gh−max) = NEQ. Since
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F ∪ {Gh−max} fails condition (ii.), there is a finite set W such that #BIS ≤AP

#CSPW=2(F ∪ {Gh−max}), and if F 6⊆ LSM we can replace #BIS by #SAT.

We will want to use variable weights that are arbitrary powers of two, so it is
convenient to hide W at this point. By Lemma 5.26 there is a set of simple
weightings G of weight-functions in F , and a set of simple weightings G′ of Gh−max,
such that #CSPW=2(F ∪ {Gh−max}) ≤AP #CSP=2(G ∪ G′). Let

P = {(2p0 , 2p1) | p0, p1 ∈ Z}

Let G′′ be the set of simple weightings G′ of G satisfying G′h−max ∈ G′. In other
words, for all arity 1 weight-functions U,W , if the weight-function defined by
Gh−max(x, y)U(x)W (y) is in G′, then the weight-function defined byG(x, y)U(x)W (y)

is in G′′. Note that |G′′| = |G′| is finite. By Lemma 5.23,

#CSP=2(G ∪ G′) ≤AP #CSPP=2(G ∪ G′′)

We will show that

#CSPP=2(G ∪ G′′) ≤AP #CSP
{(1,2),(1,1),(2,1)}
=2 (G ∪ G′′ ∪ {EQ2}) (5.4)

We are given an instance (V,C,w) of #CSPP=2(G ∪ G′′) and error parameter ε. For
each v ∈ V there exists an integer pv such that w(v)1/w(v)0 = 2pv . Let V ′ be the
set with one variable vi for each v ∈ V and each 0 ≤ i ≤ |pv|. Define w′ : V ′ →W

by w′(v0) = (1, 1) and for all i > 0,

w′(vi) =

(1, 2) if pv < 0

(2, 1) if pv > 0.

Modify C as follows to obtain a new list of constraints C ′: for each v ∈ V , insert
constraints 〈(v0, v1),EQ2〉, · · · 〈(v|pv |−1, v|pv |),EQ2〉 and replace the two occurrences
of v by v0 and v|pv |. Note that configurations x′ of V ′ satisfy wtV ′,C′,w′(x

′) =

0 unless there exists x ∈ {0, 1}V such that x′vi = xv for all v, i, and in this
case wtV,C,w(x′) = wtV,C,w(x)/K where K =

∏
v∈V min(w(v)0, w(v)1). Hence

ZV ′,C′,w′ = ZV,C,wK. And ZV ′,C′,w′ can be approximated by the oracle, passing
through ε. Multiplying the result by K gives the AP-reduction (5.4).

To finish, let F be a pinning of a weight-function in F such that supp(F ) is a copy
of EQ2. Then F (x, y) = EQ2(x, y)F (x, x) for all x, y ∈ {0, 1} so F is a simple
weighting of EQ2. By Lemma 5.26 there is a finite set W ′ (which we can assume
contains (0, 1) and (1, 0)) such that

#CSP
{(1,2),(1,1),(2,1)}
=2 (G ∪ G′′ ∪ {EQ2}) ≤AP #CSPW

′
=2 (F ∪ {F})
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and #CSPW
′

=2 (F ∪ {F}) ≤AP #CSPW
′

=2 (F) by pinning (Lemma 5.35).

5.5 Expressive power of terraced functions

Recall that F is terraced if for all partial configurations p such that the pinning F (p, ·) is
identically zero, for all i, j ∈ domp the pinnings F (p⊕ {i}, ·) and F (p⊕ {j}, ·) are par-
allel. In this section we show that we cannot hope to extend Theorem 5.10 by expressing
non-terraced functions starting with terraced functions.

Theorem 5.14. No non-terraced function can be defined by a (≤ 2)-formula that only
uses terraced functions.

Proof. Given a (≤ 2)-formula ϕ, we can add useless constraints 〈(x), U〉 where U(0) =

U(1) = 1 to bring the degree of every variable to two without affecting [[ϕ]]. Because U
is terraced, this means we can assume that ϕ is in fact a (= 2)-formula.

ϕ consists of a vertex set V , a constraint list C, and distinct external variables
v1, · · · , vm. We can split up the definition of [[ϕ]] in the following way. Define V ′ =

{(c, i) | c = 〈(s1, . . . , sk), F 〉 ∈ C, 1 ≤ i ≤ k} and define P : {0, 1}V ′ → Q≥0 by

P (x) =
∏

c=〈(s1,...,sk),F 〉∈C

F (x(c, 1), . . . ,x(c, k)) (x ∈ {0, 1}V ′).

Recall that in a (= 2)-formula the external variables are used exactly once; for each 1 ≤
j ≤ m let cj denote the constraint using vj , and let ij denote the position of vj in the scope
of cj (so if cj = 〈(s1, . . . , sk), F 〉 ∈ C then sij = vj). For all x ∈ {0, 1}{(c1,i1),...,(ck,ik)} we
have

[[ϕ]] (x(c1, i1), . . . ,x(ck, ik)) =
∑

P (x)

where
∑

denotes the sum over all extensions of x to V ′ such that x(c, i) = x(c′, j)

whenever an internal variable v appears in the i’th position in the constraint c and in
the j’th position in the constraint c′.

P is a tensor product of terraced functions. To show that P is terraced, it suffices
to show that for all terraced functions F : {0, 1}UF → Q≥0 and G : {0, 1}UG → Q≥0

the tensor product F ⊗ G is terraced (UF and UG are assumed disjoint). Consider a
partial configuration p of UF ∪ UG such that (F ⊗G)(p, ·) is identically zero, and let
i, j ∈ domp. The comma notation may be misleading here: if we let pF be the restriction
of p to UF ∩ domp, and let pG be the restriction of p to UG ∩ domp, the hypothesis is
that F (pF ,xF )G(pG,xG) is zero for all xF ∈ {0, 1}UF \domp and all xG ∈ {0, 1}UG\domp.

Note that this implies that F (pF , ·) is identically zero or G(pG, ·) is identically zero.
We deduce that (F ⊗G)(p⊕ {i}, ·) is parallel to (F ⊗G)(p⊕ {j}, ·):

• When (i, j) ∈ UF ×UF , note that if F (pF , ·) is identically zero then F (pF ⊕ {i}, ·)
is parallel to F (pF ⊕ {j}, ·), which implies that (F ⊗G)(p⊕ {i}, ·) is parallel to
(F ⊗G)(p⊕ {j}, ·). And if G(pG, ·) is identically zero then (F ⊗G)(p⊕ {i}, ·)
and (F ⊗G)(p⊕ {j}, ·) are identically zero.
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• When (i, j) ∈ UG×UG, note that if G(pG, ·) is identically zero then G(pG ⊕ {i}, ·)
is parallel to G(pG ⊕ {j}, ·), which implies that (F ⊗G)(p⊕ {i}, ·) is parallel to
(F ⊗G)(p⊕ {j}, ·). And if F (pF , ·) is identically zero then (F ⊗G)(p⊕ {i}, ·)
and (F ⊗G)(p⊕ {j}, ·) are identically zero.

• When (i, j) ∈ UF × UG or (i, j) ∈ UG × UF , since either F (pF , ·) or G(pG, ·)
is identically zero, either (F ⊗G)(p⊕ {i}, ·) or (F ⊗G)(p⊕ {j}, ·) is identically
zero.

We have shown that any tensor product of terraced functions is terraced, and hence
that P is terraced. To show that [[ϕ]] is terraced, it suffices to show that the property
of being terraced is preserved under summing two variables. This comes down to the
following claim. We are given a function F : {0, 1}×{0, 1}×{0, 1}U×{0, 1}U ′ → Q≥0 and
a configuration p ∈ {0, 1}U . We are given that F is terraced (when considered as an arity
2 + |U |+ |U ′| function), and that G(p, ·) is identically zero where G : {0, 1}U∪U ′ → Q≥0

is the function defined by

G(p,x) =
1∑
t=0

F (t, t,p,x) (p ∈ {0, 1}U ,x ∈ {0, 1}U ′ .)

We wish to show that G(p⊕ {i}, ·) is parallel to G(p⊕ {j}, ·). There are two cases.

• F (s, t,p,x) = 0 for all s, t ∈ {0, 1} and all x ∈ {0, 1}U ′ . In this case, because F is
terraced there are numbers λ, µ not both zero satisfying

λF (s, t,p⊕ {i},x) = µF (s, t,p⊕ {j},x) for all x ∈ {0, 1}U ′ and all s, t ∈ {0, 1}.

Therefore λG(p⊕ {i},x) = µG(p⊕ {j},x) for all x ∈ {0, 1}U ′ .

• F (s, t,p,x) > 0 for some s, t ∈ {0, 1} and some x ∈ {0, 1}U ′ . Since G(p,x) = 0

we have s 6= t. Let H : {0, 1}U ′ → Q≥0 be the pinning F (s, t,p, ·). Since F is
terraced and F (0, 0,p, ·) is identically zero, F (0, 0,p⊕{i}, ·) and F (0, 0,p⊕{j}, ·)
are constant multiples of H. Since F is terraced and F (1, 1,p, ·) is identically
zero, F (1, 1,p⊕ {i}, ·) and F (1, 1,p⊕ {j}, ·) are also constant multiples of H. So
G(p ⊕ {i}, ·) and G(p ⊕ {j}, ·) are constant multiples of H, which implies that
G(p⊕ {i}, ·) is parallel to G(p⊕ {j}, ·).

We have shown that the class of terraced functions is closed under summing two variables,
which implies that [[ϕ]] is terraced.

5.6 Degree three and higher

In this section we will study #CSPW≤k(F) for k > 2.

Lemma 5.46. For all λ > 4, there is no FPRAS for #CSP
{(1,λ)}
=3 (NAND) or #CSP

{(λ,1)}
=3 (OR)

unless RP=NP.
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Proof. #CSP
{(1,λ)}
=3 (NAND) has an FPRAS if and only if #CSP

{(λ,1)}
=3 (OR) has an FPRAS,

because the two problems just reverse the roles of 0 and 1 in the domain. Lemma 5.6
says that there is no FPRAS for #CSP

{(1,λ)}
=3 (NAND) unless RP = NP.

Lemma 5.47. Let R ⊆ {0, 1}V be a relation that is pinning-minimal subject to not being
degenerate. Then R has arity 2 or R = {x,x} for some x ∈ {0, 1}V .

Proof. Pick v ∈ V . For any H ⊆ {0, 1}V we will denote the pinnings of H by {v 7→ 0}
and {v 7→ 1} respectively by H0 and H1.

For any product G of relations G′ ⊆ {0, 1}{v} and G′′ ⊆ {0, 1}V \{v}, the pinnings
G0 and G1 are equal if G′ = {0, 1}{v}, and otherwise one of them is empty; in other
words, G0 and G1 are parallel. So for all partial configurations p such that R0(p, ·) and
R1(p, ·) are not parallel, R(p, ·) is non-degenerate and hence domp = ∅ by minimality
of R. Since R0 and R1 are products of arity 1 relations but R is not, R cannot be
R0×{0, 1}{v} or R0×{0}{v} or R1×{1}{v}; this implies that R0 and R1 are not parallel.
Hence the weight-function pair (R0, R1) is pinning-minimal subject to not being parallel.
By Lemma 5.28, R0 ∪R1 = {y,y} for some y, which can be chosen to be in R0.

Let x = y ∪ {v 7→ 0} be the extension of y to V with xv = 0. If R0 and R1 are {y}
and {y} respectively then R = {x,x}, so we are done. Otherwise R0 or R1 is {y,y},
but R0 and R1 are degenerate by minimality of R. So {y,y} is a copy of a product of
arity 1 relations, {0, 1}a × {0}b × {1}c for some a, b, c ≥ 0. Taking cardinalities we have
2 = 2a so a = 1, and b = c = 0 because yu 6= 1 − yu for all u ∈ V \ {v}. Hence R has
arity 2.

Theorem 5.15. Let F be a finite weighted constraint language and assume that not
every weight-function in F has degenerate support. There exists a finite set of variable
weights W such that #CSP≥0(F) has an FPRAS if and only if #CSPW≤3(F) has an
FPRAS.

Proof. Let F be a weight-function in F whose support is non-degenerate. LetG : {0, 1}k →
Q≥0 be a minimal non-degenerate pinning of F . DefineH(x1, x2) =

∑
x3,··· ,xk G(x1, · · · , xk)

and R = supp(H). By Lemma 5.47, either the arity of G is 2, or supp(G) equals {x,x}
for some configuration x. In either case the relation R is non-degenerate. Permuting the
variables of R if necessary,

R ∈ {NAND,OR,EQ2,NEQ, IMP}.

Observe that there exists (X,Y ) ∈ {0, 1}2 \ R with (X ⊕ 1, Y ), (X,Y ⊕ 1) ∈ R. For
all x, y ∈ {0, 1},

R(x, y) =

H(x, y)/H(x, Y ⊕ x⊕X ⊕ 1) if (X ⊕ 1, Y ⊕ 1) 6∈ R, and
H(x,y)H(x⊕1,Y⊕1)H(X⊕1,y⊕1)
H(X⊕1,Y⊕1)H(X,Y⊕1)H(X⊕1,Y ) if (X ⊕ 1, Y ⊕ 1) ∈ R.
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Thus R is a simple weighting of H. For any finite set W ⊆ Q≥0 × Q≥0, by using both
parts of Lemma 5.26, there is a finite set W ′ such that

#CSPW≤3(F ∪ {R}) ≤AP #CSPW
′

≤3 (F ∪ {H})

By substitution (Lemma 5.21) and pinning (Lemma 5.25),

#CSPW
′

≤3 (F ∪ {H}) ≤AP #CSPW
′

≤3 (F ∪ {G}) ≤AP #CSPW
′

≤3 (F)

Therefore it suffices to show that there is a finite set W ⊆ Q≥0 × Q≥0 such that
#CSP≥0(F) has an FPRAS if and only if #CSPW≤3(F ∪ {R}) has an FPRAS.

If R = NEQ then EQ2(x, z) =
∑

y R(x, y)R(y, z) for all x, z ∈ {0, 1}. By substitution
(Lemma 5.21) we have #CSPW≤3(F ∪ {EQ2}) ≤AP #CSPW≤3(F) for all sets W containing
(1, 1). So we can ignore the case R = NEQ. If R = NAND or R = OR then by
Lemma 5.46, for some finite set W there is no FPRAS for #CSPW≤3(R) unless RP = NP.
The remaining cases are R = EQ2 and R = IMP. We will “3-simulate equality” as in
[51].

By Lemma 5.24(i.) we may assume that F is not contained in WNEQ. It follows from
[22, Theorem 14, Proposition 25] that there is a finite set S of arity 1 weight-functions
such that #CSP(F ∪ S) =AP #CSP(F ∪ {IMP}) =AP #CSP≥0(F). Let

W = {(U(0), U(1)) | U ∈ S} ∪ {(1, 1)}

We will show that #CSP(F ∪ S) ≤AP #CSPW≤3(F). Given an instance (V,C) of
#CSP(F ∪ S), construct an instance (V ′, C ′) of #CSP≤3(F ∪ S ∪ {R}) by, for each
variable v of degree d = degC(v), replacing the d occurrences of v in C by distinct vari-
ables v1, . . . , vd, then inserting new constraints 〈(v1, v2), R〉, 〈(v2, v3), R〉, · · · , 〈(vd, v1), R〉
if d ≥ 1. Note that ZV,C = ZV ′,C′ , because for all d ≥ 1 and all x1, . . . , xd ∈ {0, 1},

R(x1, x2)R(x2, x3) · · ·R(xd, x1) = EQd(x1, . . . , xd).

Finally, construct an instance (V ′, C ′′, w) of #CSPW≤3(F ∪ {R}) from (V ′, C ′) by
replacing each constraint 〈(vi), U〉 ∈ C such that U ∈ S by a variable weight on vi; that
is, C ′′ is the list of constraints in C ′ not using weight-functions in S, and w : V ′ →W is
defined by

w(vi) =

(U(0), U(1)) if there is a constraint 〈(vi), U〉 ∈ C ′ with U ∈ S, and

(1, 1) otherwise.

This is well-defined because each vi is in at most one constraint in C ′ that does not use
R. Moving these factors of U(0), U(1) into variable weights does not affect the weight
of any configuration, so ZV ′,C′′,w = ZV ′,C′ = ZV,C . Therefore a correct AP-reduction
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is to query the #CSPW≤3(F ∪ {R}) oracle with (V ′, C ′′, w), passing through the error
parameter, and returning the result.

5.7 A tractable region

In this section we will argue that there is a large tractable region for #CSP≥0
≤d. The

existence of these FPRASes contrasts with the unbounded problem #CSP≥0. Assuming
that #BIS does not have an FPRAS, #CSP≥0(F ) has an FPRAS if and only if it is in
FP (see Proposition 5.8). But #CSP≥0

≤d(F) can have an FPRAS even when #CSP≥0
≤d(F)

is #P-hard.

Proposition 5.48. [26, Theorem 5.3] If F is not a subset of WNEQ then #CSP≥0
≤3(F)

is #P-hard to evaluate exactly.

Proof. Define U by U(0) = 1 and U(1) = 2. Using variable weights instead of U , we have
#CSP≤3(F ∪ {U}) ≤AP #CSP≥0

≤3(F). Now we can appeal to [26, Theorem 5.3]. Their
set “A” does not contain U , and WNEQ is contained in their “P”. Hence #CSP≤3(F,U)

is #P-hard.

This following argument is inspired by [105]. In particular we use the same quantity
J .

Theorem 5.16. Let d, k ≥ 2. Let F be an arity k weight-function with values in the
range [1, d(k−1)+1

d(k−1)−1). Then #CSP≥0
≤d(F ) has an FPRAS.

Proof. We will use a path coupling argument on a Markov chain with heat bath dynamics.
We will proceed by giving a FPAUS, by which we mean a randomised algorithm that,
given an instance (V,C,w) and error parameter ε > 0, outputs a random configuration
µ such that the total variation distance of µ from πV,C,w is at most ε where πV,C,w(σ) =

wtV,C,w(σ)/ZV,C,w, and the algorithm runs in time polynomial in the size of the input
and log(1/ε).

The FPAUS is to simulate a Markov chain of configurations (xt)t=0,1,··· and output xT
for some T to be determined later. For configurations x ∈ {0, 1}V and variables v we will
use the notation x[v 7→ j] to mean x[v 7→ j](u) = x(u) for u 6= v and x[v 7→ j](v) = j.
Let x0 ∈ {0, 1}V be any configuration. For each t ≥ 1 let vt ∈ V be distributed uniformly
at random and let xt be distributed according to heat bath dynamics, that is, distributed
according to πV,C,w conditioned on xt ∈ {xt−1[vt 7→ 0],xt−1[vt 7→ 1]}. Thus

Pr[xt(i) = 1 | xt−1, vt] =
wtV,C,w(xt−1[v 7→ 1])

wtV,C,w(xt−1[v 7→ 0]) + wtV,C,w(xt−1[v 7→ 1])

This probability is easy to compute exactly, so each step of the Markov chain can be
simulated efficiently.
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Consider another Markov chain (yt)t≥0 distributed in the same way as (xt)t≥0, with
the optimal coupling given that both chains choose the same variables vt. So

Pr[xt(vt) 6= yt(vt)|xt−1,yt−1, vt] = |Pr[xt(vt) = 1|xt−1,yt−1, vt]−Pr[yt(vt) = 1|xt−1,yt−1, vt]|

Define β = β(V,C,w) = maxx0,y0:|x04y0|=1 E[d(x1,y1)]. Let M be the maximum value
taken by F . We will establish the bound

β ≤ 1− c|V |−1 (5.5)

for some c > 0 depending only on the parameters d, k,M . Then by the General Path
Coupling Theorem of [16] the total variation distance from the stationary distribution
is at most ε as long as T ≥ log(|V |ε−1)/ log β−1 = poly(|V |, log ε−1). This gives the
required FPAUS. Given the FPAUS, there is an FPRAS by [73, Theorem 6.4] in the
same way as we discussed earlier in Theorem 3.4 – the self-reducibility is given by pinning
(Lemma 5.25).

We will now bound β. Fix configurations x0 and y0 that only differ on a single
variable u. For all v1 ∈ V define

E(x0,y0, v1) = |Pr[x1(v1) = 1|x0,y0, v1]− Pr[y1(v1) = 1|x0,y0, v1]|

Define Wij = Wij(x0,y0, v1) = wtV,C,w(x0[u 7→ i][v1 7→ j]) for all i, j ∈ {0, 1}. Then

E(x0,y0, v1) = |Pr[x1(v1) = 1|x0,y0, v1]− Pr[y1(v1) = 1|x0,y0, v1]|

=

∣∣∣∣ W01

W00 +W01
− W11

W10 +W11

∣∣∣∣
=

|W00W11 −W01W10|
W00W11 +W01W10 +W00W10 +W01W11

≤ |W00W11 −W01W10|
W00W11 +W01W10 + 2

√
W00W10W01W11

=
|
√
W00W11 −

√
W01W10|√

W00W11 +
√
W01W10

Let v1 ∈ V \ {u}. Denote by C ′ = C ′(u, v1) ⊆ C the list of constraints with u

and v1 in their scope. For all i, j ∈ {0, 1} let xij = x[u 7→ i][v1 7→ j], and for all
c = 〈(u1, . . . , uk), F 〉 ∈ C ′(u, v1) define

F ′c(i, j) = F (xij(u1), . . . ,xij(uk)).

Define W ′ = W ′(u, v1) by W ′ij =
∏
c∈C′ F

′
c(j, k). The other weights depend on u or v1

alone, so W ′00W
′
11/W

′
01W

′
10 equals W00W11/W01W10 and

E(x0,y0, v1) ≤
|
√
W ′00W

′
11 −

√
W ′01W

′
10|√

W ′00W
′
11 +

√
W ′01W

′
10
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For all 2-by-2 matrices G with strictly positive entries, define J(G) = 1
4 log G00G11

G01G10
.

Note that the functions F ′i take values in the range [1,M ] so |J(F ′i )| ≤ 1
2 logM ; also

recall that tanh is non-decreasing and subadditive for positive reals, that is, tanh(x+y) =
tanhx+tanh y

1+tanhx tanh y ≤ tanh(x) + tanh(y). Hence

E(x0,y0, v1) ≤
|
√
W ′00W

′
11 −

√
W ′01W

′
10|√

W ′00W
′
11 +

√
W ′01W

′
10

= tanh |J(W ′)|

= tanh

∣∣∣∣∣∣
∑

i∈C′(u,v1)

J(F ′i )

∣∣∣∣∣∣
≤ |C ′(u, v1)| tanh

(
1

2
logM

)
= |C ′(u, v1)|M − 1

M + 1

The variable u appears in at most d constraints, each of which contributes at most
k − 1 to

∑
v1
|C ′(u, v1)|. Rearranging M < d(k−1)+1

d(k−1)−1 we get d(k − 1)M−1
M+1 < 1, so

E[d(x1,y1)] = 1− 1

|V |
+

1

|V |
∑

v1∈V \{u}

E(x0,y0, v1)

≤ 1−
(

1− d(k − 1)
M − 1

M + 1

)
/|V |

giving the required bound (5.5).

5.8 Infinite sets of variable weights are sometimes necessary

Theorem 5.13 gives some circumstances in which the set of variable weights in Theo-
rem 5.10 can be taken to be finite. We will show that, assuming that #PM does not
have an FPRAS, the set of variable weights cannot always be taken to be finite in The-
orem 5.10: the constraint language {AtMostOne3} falls into case (iii) of Theorem 5.10,
but there is no finite set W such that #PM ≤AP #CSPW=2(AtMostOne3).

Consider a graph G and a function c : E(G)→ Q≥0 assigning an edge-weight c(e) to
each edge e. Recall that a matching in G is a subset M of the edge set of G such that
no two edges in M share a vertex. Define the monomer-dimer partition function

Zmd(G, c) =
∑

matchings M

∏
e∈M

c(e).

[70, Corollary 4.4] states that there exists an FPRAS for the monomer-dimer partition
function of arbitrary weighted graphs with edge weights presented in unary. The unary
representation is just used is to bound maxe∈E(G) c(e) in the proof of [70, Corollary 4.3].
Thus we have:
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Lemma 5.49. [70] There exists a randomised approximation scheme for the monomer-
dimer partition function of arbitrary weighted graphs with edge weights presented as frac-
tions of binary integers, with runtime polynomial in |V (G)|, maxe∈E(G) c(e), and the
inverse error parameter ε−1.

Theorem 5.17. Let AtMostOne3 = {x ∈ {0, 1}3 | x1 + x2 + x3 ≤ 1}. Let W be a finite
subset of Q≥0 ×Q≥0. Then #CSPW≤2(AtMostOne3) has an FPRAS.

Proof. We will show something slightly stronger: there is a randomised approximation
scheme for #CSP≥0

≤2(AtMostOne3) whose runtime is bounded by a polynomial in the size
of the input (V,C,w), the inverse error parameter ε−1, and in

δ = max{w(v)1/w(v)0 | v ∈ V such that w(v)0 > 0}.

Let (V,C,w) be an instance of #CSP≥0
≤2(AtMostOne3) and let ε > 0. To deal with

variables used less than twice, let AtMostOne1 be the arity-1 constraint {0, 1}, and
for each v ∈ V add 2 − degC(c) constraints 〈(v),AtMostOne1〉 to C. Note that these
constraints do not affect whether an assignment is satisfying.

Let G be the multigraph whose vertex set is (a set of labels for) the constraint set C,
and whose edge set is V , where for each variable v ∈ V , the edge v joins the two vertices
corresponding to the constraints in which v appears. If a variable is used twice in the
same constraint then we get a vertex with a loop. Let V0 = {v ∈ V | w(v)0 = 0}. Let G′

be the graph obtained from G by deleting the edge v and its endpoints, for each v ∈ V0.
Define c : V \ V0 → Q≥0 by c(v) = w(v)1/w(v)0.

The map x 7→ V0 ∪ {v ∈ V \ V0 | w(v)1} is a bijection from the set of configurations
x : V → {0, 1} with wtV,C,w(x) > 0 to the set of matchings M of G with

∏
v∈M c(v) > 0.

Letting K =
(∏

v∈V0
w(v)1

) (∏
v∈V \V0

w(v)0

)
, we have wtV,C,w(x) = K

∏
v∈M w′(v).

This implies that ZV,C,w = K · Zmd(G′, c).

By Lemma 5.49 there is a randomised approximation scheme that approximates
Zmd(G′, w′) in time bounded by a polynomial in |V | and maxv∈V \V0

w′(v) ≤ δ and
ε−1. Multiplying the result by K gives the required approximation to ZV,C,w.



Chapter 6

The complexity of approximating
conservative counting CSPs

(This chapter is a revised version of [34] with a modified introduction.)
We study the complexity of approximately solving the weighted counting constraint

satisfaction problem #CSP(F). In the conservative case, where F contains all unary
functions, there is a classification known for the case in which the domain of functions
in F is Boolean. In this chapter, we give a classification for the more general problem
where functions in F have an arbitrary finite domain. We define the notions of weak
log-modularity and weak log-supermodularity. We show that if F is weakly log-modular,
then #CSP(F) is in FP. Otherwise, it is at least as difficult to approximate as #BIS,
the problem of counting independent sets in bipartite graphs. #BIS is complete with
respect to approximation-preserving reductions for a logically defined complexity class
#RHΠ1, and is believed to be intractable. We further sub-divide the #BIS-hard case. If
F is weakly log-supermodular, then we show that #CSP(F) is as easy as a Boolean log-
supermodular weighted #CSP. Otherwise, we show that it is NP-hard to approximate.
Finally, we give a full trichotomy for the arity-2 case, where #CSP(F) is in FP, or is
#BIS-equivalent, or is equivalent in difficulty to #SAT, the problem of approximately
counting the satisfying assignments of a Boolean formula in conjunctive normal form.
We also discuss the algorithmic aspects of our classification.

6.1 Introduction

There has been a lot of work on classifying the computational difficulty of exactly solving
#CSP(F). For some weighted constraint languages F , this is a computationally easy
task, while for others, it is intractable. We will give a brief summary of what is known.
For more details, see the surveys of Chen [33] and Lu [81].

First, suppose that the domain D is Boolean (that is, suppose that D = {0, 1}). For
this case, Creignou and Hermann [40] gave a dichotomy for the case in which weights are
also in {0, 1}. In this case, they showed that #CSP(F) is in FP (the set of polynomial-
time computable function problems) if all of the functions in F are affine, and that
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otherwise, it is #P-complete. Dyer, Goldberg, and Jerrum [47] extended this to the case
in which weights are non-negative rationals. For this case, they showed that the problem
is solvable in polynomial time if (1) every function in F is expressible as a product of
unary functions, equalities and disequalities, or (2) every function in F is a constant
multiple of an affine function. Otherwise, they showed the problem is complete in the
complexity class FP#P. We will not deal with negative weights in this chapter. However,
it is worth mentioning that these results have been extended to the case in which weights
can be negative [21], to the case in which they can be complex [26], and to the related
class of Holant∗ problems [27]. Other dichotomies are also known for Holant problems
(see [81]).

Next, consider an arbitrary finite domain D. For the case in which weights are in
{0, 1}, Bulatov’s breakthrough result [19] showed that #CSP(F) is always either in FP or
#P-hard. A simplified version was given by Dyer and Richerby [49, 50] who introduced
a new criterion called “strong balance”. The dichotomy was extended to include non-
negative rational weights by Bulatov et al. [20] and then to include all non-negative
algebraic weights by Cai, Chen and Lu [24, 25]. Cai, Chen and Lu gave a generalised
notion of balance that we will use in this work. Finally, Cai and Chen [23] extended the
dichotomy to include all algebraic complex weights. The criterion for the unweighted
#CSP dichotomy is known to be decidable [50] and this carries through to non-negative
rational weights and non-negative algebraic weights [24]. Decidability is currently open
for the complex case.

Much less is known about the complexity of approximately solving #CSP(F). Prior
to this work, there were no known complexity classifications for approximately solving
#CSP(F) for the case in which the domain D is not Boolean. Thus, this is the problem
that we address in this chapter. Our main result (Theorem 6.4, below) is a complexity
classification for the conservative case (where all unary weights are contained in F). Here
is an informal description of the result.

• If F is “weakly log-modular” (a concept we define below) then, for any finite G ⊂ F ,
#CSP(G) is in FP.

• Otherwise, there is a finite G ⊂ F such that #CSP(G) is at least as hard to
approximate as #BIS. Furthermore,

– if F is “weakly log-supermodular” (again, defined below) then, for any finite
G ⊂ F , there is a finite set G′ of log-supermodular functions on the Boolean
domain such that #CSP(G) is as easy to approximate as #CSP(G′);

– otherwise, there is a finite G ⊂ F such that #CSP(G) is as hard to approximate
as #SAT.

Informally, F is weakly log-supermodular if, for every binary function F that can
be expressed using functions in F , every projection of F onto two domain elements is
log-supermodular (see Definition 6.3). Thus, in some sense, our result shows that all



167

the difficulty of approximating conservative weighted constraint satisfaction problems
arises in the Boolean case. Even when the domain D is larger, approximations which are
#SAT-equivalent are #SAT-equivalent precisely because of intractable Boolean problems
which arise as sub-problems.

In addition to the complexity classifications described above (FP versus #BIS-hard
and “as easy as a Boolean log-supermodular problem” versus #SAT-equivalent) we also
give a full trichotomy for the binary case (i.e., where all functions in F have arity 1 or 2).

• If F is weakly log-modular then, for any finite G ⊂ F , #CSP(G) is in FP.

• Otherwise, if F is weakly log-supermodular, then

– for every finite G ⊂ F , #CSP(G) is as easy to approximate as #BIS and

– there is a finite G ⊂ F such that #CSP(G) is as hard to approximate as #BIS.

• Otherwise, there is a finite G ⊂ F such that #CSP(G) is as hard to approximate
as #SAT.

The final section of this chapter discusses the algorithmic aspects of our classification
for the case in which F is the union of a finite, weighted constraint language H and the
set of all unary functions. In particular, we give an algorithm that takes H as input and
correctly makes one of the following deductions:

1. #CSP(G) is in FP for every finite G ⊂ F ;

2. #CSP(G) is LSM-easy for every finite G ⊂ F and #BIS-hard for some such G;

3. #CSP(G) is #BIS-easy for every finite G ⊂ F and #BIS-equivalent for some such G;

4. #CSP(G) is #SAT-easy for all finite G ⊂ F and #SAT-equivalent for some such G.

Further, if every function in H has arity at most 2, the output is not deduction 2.

6.1.1 Previous work

The first contribution of this chapter is to show that, if F is weakly log-modular then,
for any finite G ⊂ F , #CSP(G) is in FP. Otherwise, there is a finite G ⊂ F for which
#CSP(G) is at least as hard to approximate as #BIS. We also show that, if F is not
weakly log-supermodular, then there is a finite G ⊂ F , such that #CSP(G) is #SAT-
hard. This work is presented in Sections 6.2 and 6.3 below and builds on two strands of
previous work.

• The hardness results build on the approximation classification in the Boolean
case [22] and, in particular, on the key role played by log-supermodular functions.

• The easiness results build on the classification of the exact evaluation of #CSP(F)

in the general case [24], and in particular on the key role played by “balance”.
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The second contribution of this chapter is to show that, if F is weakly log-supermodular,
then, for any finite G ⊂ F , there is a finite set G′ of log-supermodular functions on the
Boolean domain such that #CSP(G) is as easy to approximate as #CSP(G′). This builds
on three key studies of the complexity of optimisation CSPs by Takhanov [94, 95], Cohen,
Cooper and Jeavons [35] and Kolmogorov and Živný [77, 78]. In all three cases, we use
their arguments and ideas, and not merely their results. Thus, we delve into these three
papers in some detail.

Our final contribution is the trichotomy for the binary case. This relies additionally on
work of Rudolf and Woeginger [88] on decomposing matrices known as Monge matrices.

6.1.2 Proof outline

The previous section described each part of the classification, and where we use previous
results. Here is an outline of how the these previous results are used.

The hardness results follow quickly from the Boolean case; weak log-modularity and
weak log-supermodularity are conditions about Boolean subdomains, and we can pick
out these problems using unary functions. If a conservative constraint language F is
not weakly log-modular the classification in [22] easily gives a reduction from #BIS to
#CSP(G) for some finite G ⊂ F ; and if F instead fails to be weakly log-supermodular,
we get a reduction from #SAT (Theorem 6.7).

For the polynomial-time tractability result we show that if F is weakly log-modular
then it satisfies the balance condition in [24], giving a polynomial-time algorithm for
#CSP(G) for each finite subset G ⊂ F . Indeed if F is not balanced, by definition of
balance there is a pps-formula witnessing that F is not balanced; we show that this
witness can be modified using unary functions to produce a witness that F is not weakly
log-modular. (Theorem 6.12)

For the second contribution we need to show that if F is weakly log-supermodular
then we can reduce #CSP(G) to #CSP(G′) for some finite set F ′ of log-supermodular
functions on the Boolean domain. Here we use a connection to optimisation. We show
that if a (translated version of) a constraint language F does not satisfy the tractability
condition of Kolmogorov and Živný’s result, then F is not weakly log-supermodular
(Lemma 6.27). The proof of this uses the following trick. By repeating constraints k
times for large k, most of the contribution to the partition function comes from the
highest weight configurations:(∑

y

m∏
i=1

Fi(y)k

)1/k

→ max
y

m∏
i=1

Fi(y) as k →∞.

The expression on the right can then be translated into an instance of the optimisation
problems studied by Kolmogorov and Živný.

Next, where Kolmogorov and Živný reduce to submodular function minimisation
problems, we argue that essentially the same transformation reduces #CSPs to a problem
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of the form #CSP(G′) where G′ are log-supermodular functions on the Boolean domain,
as required. (See Lemma 6.41.)

The Monge matrix decomposition then allows us to transform the #CSP(G) into an
even more special form, using only Boolean log-supermodular functions of arity 2. This
gives a reduction to #BIS. (See Lemma 6.42.)

We get an algorithmic classification carefully applying the decidability results from
the classifications we use. One complication here is that conservative constraint languages
are infinite. We prove that it suffices to check a certain finite subset. (See Lemma 6.44)

6.1.3 Preliminaries and statement of results

Let D be a finite domain with |D| ≥ 2. It will be convenient to refer to the set
Funck(D,R) of all functions Dk → R for some codomain R, and the set Func(D,R) =⋃∞
k=0 Funck(D,R). Let EQ be the binary equality function defined by EQ(x, x) = 1 and

EQ(x, y) = 0 for x 6= y. When D = {0, 1}, we called this EQ2 in Section 1.7.2. Recall
that we also defined NEQ = {(0, 1), (1, 0)}; this can be considered as a weight-function
in Func2({0, 1}, {0, 1}).

This chapter uses a slightly different definition of #CSP(F) from Section 1.3, in
terms of atomic formulas and pps-formulas. The following definitions are from [22]. Let
F be a subset of Func(D,R). Let V = {v1, . . . , vn} be a set of variables. An atomic
formula has the form ϕ = G(vi1 , . . . , via) where G ∈ F , a = a(G) is the arity of G,
and (vi1 , vi2 , . . . , via) ∈ V a is called a “scope”. Note that repeated variables are allowed.
The function Fϕ : Dn → R represented by the atomic formula ϕ = G(vi1 , . . . , via) is
just Fϕ(x) = G(x(vi1), . . . ,x(via)), where x : {v1, . . . , vn} → D is an assignment to the
variables. To simplify the notation, we write xj = x(vj) so

Fϕ(x) = G(xi1 , . . . , xia).

A pps-formula (“primitive product summation formula”) is a finite summation of a fi-
nite product of atomic formulas. A pps-formula ψ over F in variables V ′ = {v1, . . . , vn+k}
has the form

ψ =
∑

vn+1,...,vn+k

m∏
j=1

ϕj ,

where ϕj are all atomic formulas over F in the variables V ′. (The variables V are free,
and the others, V ′ \ V , are bound.) The formula ψ specifies a function Fψ : Dn → R in
the following way:

Fψ(x) =
∑
y∈Dk

m∏
j=1

Fϕj (x,y),

where x and y are assignments x : {v1, . . . , vn} → D and y : {vn+1, . . . , vn+k} → D. The
functional clone 〈F〉# generated by F is the set of all functions that can be represented
by a pps-formula over F ∪ {EQ}. Crucially, 〈〈F〉#〉# = 〈F〉# [22, Lemma 1]; we will
rely on this transitivity property implicitly.
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Definition 6.1. A weighted constraint language F is conservative if UD ⊆ F , where
UD = Func1(D,Q≥0).

Definition 6.2. A weighted constraint language F is weakly log-modular if, for all binary
functions F ∈ 〈F〉# and elements a, b ∈ D,

F (a, a)F (b, b) = F (a, b)F (b, a), or

F (a, a) = F (b, b) = 0, or

F (a, b) = F (b, a) = 0. (6.1)

Definition 6.3. F is weakly log-supermodular if, for all binary functions F ∈ 〈F〉# and
elements a, b ∈ D,

F (a, a)F (b, b) ≥ F (a, b)F (b, a) or F (a, a) = F (b, b) = 0. (6.2)

Recall the definitions of log-supermodular functions and LSM from Section 1.5.5. It
is known [22, Lemma 7] that 〈LSM〉# = LSM.

The definition of #CSP(F) used in this chapter is as follows.

Name. #CSP(F).
Instance. A pps-formula ψ consisting of a product of m atomic F-formulas over n free

variables x. (Thus, ψ has no bound variables.)
Output. The value

∑
x∈Dn Fψ(x) where Fψ is the function defined by ψ.

As in [22] (and other works) we take the size of a #CSP(F) instance to be n + m,
where n is the number of (free) variables and m is the number of weighted constraints
(atomic formulas). In unweighted versions of CSP and #CSP, we can just use n as the
size of an instance, since the number of constraints can be bounded by a polynomial
in the number of variables. However, in weighted cases, the multiplicity of constraints
matters so we cannot bound m in terms of n. In this chapter, we typically denote an
instance of #CSP(F) by I and the output by Z(I).

The notion of pps-definability described earlier is closely related to AP-reductions.
In particular, [22, Lemma 17] shows that G ∈ 〈F〉# implies that #CSP(F , G) ≤AP

#CSP(F). We will use this fact without comment.
We say that a counting problem #X is #Y -easy if #X ≤AP #Y and that it is #Y -

hard if #Y ≤AP #X. A problem #X is LSM-easy if there is a finite, weighted constraint
language F ⊂ LSM such that #X ≤AP #CSP(F).

We now state our main theorem. Note that we have only defined the problem
#CSP(F) for finite languages whereas conservative languages are, by definition, infinite.

Theorem 6.4. Let F be a conservative weighted constraint language taking values in
Q≥0.

1. If F is weakly log-modular then #CSP(G) is in FP for every finite G ⊂ F .
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2. If F is weakly log-supermodular but not weakly log-modular, then #CSP(G) is LSM-
easy for every finite G ⊂ F and #BIS-hard for some such G.

3. If F is weakly log-supermodular but not weakly log-modular and consists of functions
of arity at most two, then #CSP(G) is #BIS-easy for every finite G ⊂ F and #BIS-
equivalent for some such G.

4. If F is not weakly log-supermodular, then #CSP(G) is #SAT-easy for every finite
G ⊂ F and #SAT-equivalent for some such G.

In particular, among conservative #CSPs, there are no new complexity classes be-
low #BIS or above LSM; furthermore there is a trichotomy for conservative weighted
constraint languages with no functions of arity greater than two.

The #BIS-hardness and #SAT-equivalence are proved in Section 6.2, where they are
restated as Theorem 6.7. The membership in FP is established as Theorem 6.12 at the
end of Section 6.3. LSM-easiness and #BIS-easiness are established by Theorem 6.43 at
the end of Section 6.6. Algorithmic aspects are discussed in Section 6.7.

6.2 Hardness results

Our hardness results use the following result from [22], which we stated before as Propo-
sition 5.8 but which we can now state in terms of functional clones:

Lemma 6.5. [22, Theorem 18] Let F be a finite, weighted constraint language with
D = {0, 1}.

• If F ⊂ 〈NEQ,U{0,1}〉# then, for any finite S ⊂ U{0,1}, #CSP(F ∪ S) has an
FPRAS.

• If F 6⊂ 〈NEQ,U{0,1}〉#, then there is a finite S ⊂ U{0,1} such that #CSP(F ∪ S) is
#BIS-hard.

• If F 6⊂ 〈NEQ,U{0,1}〉# and F 6⊂ LSM, then there is a finite S ⊂ U{0,1} such that
#CSP(F ∪ S) is #SAT-hard.

(As in Proposition 5.8, we restrict to rationals for simplicity. This is justified because
the relevant constructions in [22] only use field operations.)

In fact we will only use the following special case of Lemma 6.5.

Lemma 6.6. [22, Theorem 18] Let F be a function in Func2({0, 1},Q≥0).

• If F /∈ 〈NEQ,U{0,1}〉# then {F} ∪ U{0,1} is #BIS-hard.

• If F /∈ 〈NEQ,U{0,1}〉# ∪ LSM then {F} ∪ U{0,1} is #SAT-hard.

Our hardness results now follow from Lemma 6.6.
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Theorem 6.7. Let F be a conservative weighted constraint language taking values in
Q≥0.

• If F is not weakly log-modular, there is a finite G ⊂ F such that #CSP(G) is
#BIS-hard.

• If F is not weakly log-supermodular, there is a finite G ⊂ F such that #CSP(G) is
#SAT-hard.

• For all finite G ⊂ F , #CSP(G) is #SAT-easy.

Proof. First, we establish the hardness results.
Suppose that F is not weakly log-modular. Let H ∈ 〈F〉# be a function violating

(6.1) and let a and b be the relevant domain elements, which must be distinct. Let
ϕ : {0, 1} → D be a unary function with ϕ(0) = a and ϕ(1) = b. Define Hϕ : {0, 1}2 →
Q≥0 by Hϕ(x, y) = H(ϕ(x), ϕ(y)). The following three equations must all fail to hold:

Hϕ(0, 0)Hϕ(1, 1) = Hϕ(0, 1)Hϕ(1, 0)

Hϕ(0, 0) = Hϕ(1, 1) = 0

Hϕ(0, 1) = Hϕ(1, 0) = 0.

By [22, Remark 14], every binary function in 〈NEQ,U{0,1}〉# has one of three forms:
U1(x)U2(y), U(x)EQ(x, y) or U(x)NEQ(x, y). Therefore, Hϕ /∈ 〈NEQ,U{0,1}〉#. By
Lemma 6.6 there is a finite set S ⊂ U{0,1} such that #BIS ≤AP #CSP(Hϕ, S).

For each U ∈ U{0,1}, define Uϕ−1 ∈ UD by

Uϕ−1(x) =


U(0) if x = a,

U(1) if x = b,

0 otherwise.

Let E(0) = E(1) = 1 so that Eϕ−1 is the characteristic function of {a, b} ⊆ D. Let
S′ = {Uϕ−1 | U ∈ S ∪ {E}}. Note that {H} ∪ S′ ⊂ 〈F,UD〉# is finite.

We describe a reduction from #CSP(Hϕ, S) to #CSP(H,S′). Given an instance I of
#CSP(Hϕ, S), replace each use of Hϕ by H, and each use of U ∈ S by Uϕ−1 ∈ S′, and
introduce an atomic formula Eϕ−1(v) for each variable v, to obtain a new instance I ′ of
#CSP(H,S′) with Z(I) = Z(I ′). Thus #CSP(H,S′) is #BIS-hard.

A similar argument shows that F is #SAT-hard if it is not weakly log-supermodular.
In this case, we start with a function H ∈ 〈F〉# violating (6.2) on the elements a, b ∈ D.
Defining ϕ and Hϕ as above, we find that Hϕ 6∈ LSM. Since H also violates (6.1) on a, b,
the argument above establishes Hϕ /∈ 〈NEQ,U{0,1}〉#. By Lemma 6.6 there is a finite
set S ⊂ U{0,1} such that #SAT ≤AP #CSP(Hϕ, S). We then proceed as before.

#SAT-easiness follows from the construction in Section 3 of [46], which shows that
any problem in #P is #SAT-easy. The weighted counting CSPs that we deal with here
are equivalent, by [20], to unweighted ones, which are in #P.
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6.3 Balance and weak log-modularity

In this section we show that weak log-modularity implies tractability, by showing that
every weakly log-modular weighted constraint language is balanced in the following sense.

We may associate a matrix M with an undirected bipartite graph GM whose vertex
partition consists of the set of rows R and columns C of M. A pair (r, c) ∈ R × C is
an edge of GM if, and only if, Mrc 6= 0. A block of M is a submatrix whose rows and
columns form a connected component in GM. M has block-rank 1 if all its blocks have
rank 1.

We say that a weighted constraint language F is balanced [24] if, for every function
F (x1, . . . , xn) ∈ 〈F〉# with arity n ≥ 2, and every k with 0 < k < n, the |D|k × |D|n−k

matrix F ((x1, . . . , xk), (xk+1, . . . , xn)) has block-rank 1. (This notion reduces to Dyer
and Richerby’s notion of “strong balance”[50] in the unweighted case.)

A function F : {0, 1}n → R has rank 1 if it has the form F (x1, . . . , xk) = U1(x1) · · ·Uk(xk).
We associate with any function F : {0, 1}2 → R, the matrix MF ∈ R2×2 defined by

(MF )ij = F (i, j).

Lemma 6.8. Let M ∈ Rk×k. Let F : {0, 1}k → R. Let T ∈ R2×2
≥0 be non-singular.

1. A 2 × 2 matrix M has block-rank 1 if and only if it has rank 1 or it has at most
two non-zero entries. F : {0, 1}2 → R has rank 1 if and only if detMF = 0.

2. M has block-rank 1 if and only if the matrix

NM,u,u′,v,v′ =

(
M(u,v) M(u,v′)

M(u′,v) M(u′,v′)

)

has block-rank 1 for every u,u′,v,v′.

3. (Topkis’s theorem) If F is strictly positive and not of rank 1, there is a function
F ′ : {0, 1}2 → R of the following form that is not of rank 1.

F ′(xi, xj) = F (c1, . . . , ci−1, xi, ci+1, . . . , cj−1, xj , cj+1, . . . , ck).

Here 1 ≤ i < j ≤ k, and each c` is a fixed element of {0, 1}.

4. F has rank 1 if and only if T⊗kF has rank 1.

Proof. 1. A 2×2 matrix that has block-rank 1 either has rank 1 or is diagonal or anti-
diagonal so has two zeroes. Conversely, a matrix that has rank 1 has no submatrix
whose rank exceeds 1, so has block-rank 1. A matrix with two or more zeroes has
no 2× 2 block so can only have blocks of rank 1.

For the second statement, if F has rank 1 then there are unary functions U0 and
U1 so that F (x, y) = U0(x)U1(y), which implies that detMF = 0. Going the other
way, if F is identically 0 then it has rank 1. Otherwise, suppose F (i, j) 6= 0.
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Let U0(x) = F (x, j) and U1(y) = F (i, y)/F (i, j). If detMF = 0 then F (x, y) =

U0(x)U1(y), so F has rank 1.

2. [50, Lemma 38].

3. Say that a strictly positive function F is log-modular if f = logF is modular: that
is, F (x ∨ y)F (x ∧ y) = F (x)F (y) for all x,y ∈ {0, 1}k. A modular function is an
affine map (see for example [11, Proposition 24]), so a strictly positive log-modular
function is a product of unary functions, so it has rank 1. The result is then
Topkis’s theorem [96] in the form stated in [22, Lemma 8].

4. If F is of the form U1(x1) · · ·Un(xn) then

(T⊗nF )(x1, . . . , xn) = (T⊗1U1)(x1) · · · (T⊗1Un)(xn)

The reverse implication follows from (T−1)⊗nT⊗nF = F , where T−1 is the matrix
inverse of T .

A function F : Dn → Q≥0 is essentially pseudo-Boolean if its support is contained in
a set D1 × · · · ×Dn with |D1|, . . . , |Dn| ≤ 2. The projection of a relation R ⊆ Dn onto
indices 1 ≤ i < j ≤ n is the set of pairs (a, b) ∈ D2 such that there exists x ∈ R with
xi = a and xj = b. A generalised NEQ is a relation of the form {(xi, xj), (yi, yj)} ⊂ D2

for some xi 6= yi and xj 6= yj .

Lemma 6.9. Let F : Dn → Q≥0 be an essentially pseudo-Boolean function which is not
of rank 1, and assume that no binary projection of the support of F is a generalised NEQ.
Then {F} ∪ UD is not weakly log-modular.

Proof. Let the support of F be contained in D1 × · · · × Dn where |Di| = 2 for all i.
Choose bijections ρi : {0, 1} → Di for each 1 ≤ i ≤ n. Define Fρ : {0, 1}n → Q≥0 by

Fρ(x1, . . . , xn) = F (ρ1(x1), . . . , ρn(xn))

for all x1, . . . , xn ∈ {0, 1}. Let T = ( 2 1
1 2 ) and note that T⊗nFρ is strictly positive. Since

F is not of rank 1, Fρ is not of rank 1, so by Lemma 6.8 part (4), T⊗nFρ is not of rank 1.
By Lemma 6.8 part (3), there is a function B : {0, 1}2 → Q≥0 of the following form that
is not of rank 1.

B(xi, xj) = (T⊗nFρ)(c1, . . . , ci−1, xi, ci+1, . . . , cj−1, xj , cj+1, . . . , cn).

For all indices k ∈ {1, . . . , n} \ {i, j}, define Uk ∈ UD by Uk(ρk(xk)) = Tckxk for all
xk ∈ {0, 1}, and Uk(z) = 0 if z /∈ Dk. DefineG,H : D2 → Q≥0 andGρi,ρj , Hρi,ρi : {0, 1}2 →
Q≥0 as follows. Note in these definitions that i and j are fixed, but ρi and ρj are used as
subscripts in the name of some of the functions as a reminder of the bijections that are
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being applied to the inputs. Thus, inHρi,ρi , the bijection ρi is applied to both arguments,
even though the function depends on both i and j.

G(yi, yj) =
∑∏

k 6=i,j
Uk(yk)

F (y1, . . . , yn) for all yi, yj ∈ D

Gρi,ρj (xi, xj) =
∑∏

k 6=i,j
Tck,xk

Fρ(x1, . . . , xn) for all xi, xj ∈ {0, 1}

H(y′, y′′) =
∑
y∈D

G(y′, y)G(y′′, y) for all y′, y′′ ∈ D

Hρi,ρi(x
′, x′′) =

∑
x∈{0,1}

Gρi,ρj (x
′, x)Gρi,ρj (x

′′, x) for all x′, x′′ ∈ {0, 1}

where the first sum is over all y1, . . . , yi−1, yi+1, . . . , yj−1, yj+1, . . . , yn ∈ D and the second
sum is over all x1, . . . , xi−1, xi+1, . . . , xj−1, xj+1, . . . , xn ∈ {0, 1}.

Note that MHρi,ρi
= MGρi,ρj

M t
Gρi,ρj

= T−1MB(T−1)tT−1M t
B(T−1)t where t denotes

transpose. Taking determinants and applying Lemma 6.8 part (1) this implies that Hρi,ρi

is not of rank 1. Also, since T is strictly positive, the support of Gρi,ρj is the binary
projection of the support of Fρ onto i and j which, by assumption, is not NEQ or EQ.
Hence Hρi,ρi is strictly positive but not of rank 1. Again using Lemma 6.8 part (1) we
see that H is a witness that {F} ∪ UD is not weakly log-modular.

Lemma 6.10. Every conservative weakly log-modular weighted constraint language is
balanced.

Proof. Let F be a conservative weighted constraint language that is not balanced. We
will show that F is not weakly log-modular.

By the definition of balance, there is a function F ∈ 〈F〉# of arity n and a partition
x = (u,v) of its n variables, such that the matrix F (u,v) is not of block-rank 1. By
Lemma 6.8 part (2) there is a two-by-two submatrix N = NF,u,u′,v,v′ that is not of
block-rank 1.

Construct an essentially pseudo-Boolean function G from F as follows. For all 1 ≤
i ≤ n let Ui ∈ 〈UD〉# ⊆ 〈F〉# be the indicator function of Di−1 × Di × Dn−i, where
Di = {ui, u′i} for all 1 ≤ i ≤ k and Di = {vi, v′i} for all k < i ≤ n. Let G = F

∏n
i=1 Ui.

Then NG,u,u′,v,v′ = N is not of block-rank 1, and G is essentially pseudo-Boolean.
If the binary projection of the support of G onto two indices i, j is a generalised NEQ

{(xi, xj), (yi, yj)}, construct (G′, ρ(u), ρ(u′), ρ(v), ρ(v′)) from (G,u,u′,v,v′) as follows.
Let ρ : Dn → Dn−1 be the projection operator sending x to x1, . . . , xi−1, xi+1, . . . , xn and
let G′(x) =

∑
ρ(x′)=xG(x′) for all x ∈ Dn−1. Note that, for all x ∈ Dn, G(x) 6= G′(ρ(x))

implies that G(x) = 0 because G(x) = 0 unless xi 6= xj . Note that N has at least
three non-zero entries by Lemma 6.8 part (1). So the corresponding three pairs out of
((u,v)i, (u,v)j), ((u,v′)i, (u,v

′)j), ((u′,v)i, (u
′,v)j), and ((u′,v′)i, (u

′,v′)j) must each
be either (xi, xj) or (yi, yj). But then the fourth pair must also be (xi, xj) or (yi, yj),
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which implies that NG′,ρ(u),ρ(u′),ρ(v),ρ(v′) = N . Also, G′ is essentially pseudo-Boolean,
and G′ is obtained by summing the i’th variable, so G′ ∈ 〈G〉#.

Repeating this process if necessary, we obtain (G′,x,x′,y,y′) such that G′ is an essen-
tially pseudo-Boolean function in 〈F ,UD〉# = 〈F〉# and none of the binary projections
of the support of G′ is a generalised NEQ, and NG′,x,x′,y,y′ is not of block-rank 1. So, in
particular, G′ is not of rank 1. By Lemma 6.9, {G′} ∪ UD is not weakly log-modular, so
〈F〉# is not weakly log-modular.

We now return to Theorem 6.4 and prove the tractable case. The proof relies on an
important theorem of Cai, Chen and Lu about the complexity of exact evaluation.

Lemma 6.11. [24] Let F be a finite, weighted constraint language taking non-negative
algebraic real values. If F is balanced, then #CSP(F) is in FP, and otherwise #CSP(F)

is #P-hard.

Theorem 6.12. Let F be a conservative weighted constraint language taking values in
Q≥0. If F is weakly log-modular then, for any finite G ⊂ F , #CSP(G) ∈ FP.

Proof. By Lemma 6.10, F is balanced. Hence, every finite G ⊂ F is balanced, which
implies that #CSP(G) is in FP by Lemma 6.11.

6.4 Valued clones, valued CSPs and relational clones

To define valued clones, we use the same set-up as Section 6.1.3 except that summation
is replaced by minimisation and product is replaced by sum. Let D be a finite domain
with |D| ≥ 2 and let R be a codomain with {0,∞} ⊆ R, where ∞ obeys the following
rules for all x ∈ R: x +∞ = ∞, x ≤ ∞ and min{x,∞} = x. Let Φ be a subset of
Func(D,R) and let V = {v1, . . . , vn} be a set of variables. For each atomic formula
ϕ = G(vi1 , . . . , via) we use the notation fϕ to denote the function represented by ϕ, so
fϕ(x) = G(xi1 , . . . , xia).

A psm-formula (“primitive sum minimisation formula”) is a minimisation of a sum of
atomic formulas. A psm-formula ψ over Φ in variables V ′ = {v1, . . . , vn+k} has the form

ψ = min
vn+1,...,vn+k

m∑
j=1

ϕj , (6.3)

where ϕj are all atomic formulas over Φ in the variables V ′. The formula ψ specifies a
function fψ : Dn → R in the following way:

fψ(x) = min
y∈Dk

m∑
j=1

fϕj (x,y), (6.4)

where x and y are assignments x : {v1, . . . , vn} → D and y : {vn+1, . . . , vn+k} → D.



177

The valued clone 〈Φ〉V generated by Φ is the set of all functions that can be represented
by a psm-formula over Φ∪ {eq}, where eq is the binary equality function on D given by
eq(x, x) = 0 and eq(x, y) =∞ for x 6= y.

We next introduce valued constraint satisfaction problems (VCSPs), which are op-
timisation problems. In the work of Kolmogorov and Živný [77], the codomain is
R = Q≥0 ∪ {∞}. For reasons which will be clear below, it is useful for us to extend
the codomain to include irrational numbers. This will not cause problems because, with
the exception of Theorem 6.33 we use only formal calculations from their papers, not
complexity results. For Theorem 6.33, we avoid irrational numbers and, in fact, restrict
to cost functions taking values in {0,∞} ⊂ R. Furthermore, all the real numbers we use
are either rationals or their logarithms so are efficiently computable.

Let R≥0 = R≥0 ∪ {∞} be the set of non-negative real numbers together with ∞.

Definition 6.13. A cost function is a function Dk → R≥0. A valued constraint language
is a set of cost functions Φ ⊆ Func(D,R≥0).

Given a valued constraint language Φ, VCSP(Φ) is the problem of taking an instance
ψ, a psm-formula consisting of a sum of m atomic Φ-formulas over n free variables x and
computing the value

minCost(ψ) = min
x∈Dn

fψ(x) ,

where fψ is the function defined by ψ.
We typically use the notation of Kolmogorov and Živný. An instance is usually

denoted by the letter I. In this case, we use fI to denote the function specified by
the psm-formula corresponding to instance I, so the value of the instance is denoted
by minCost(I). The psm-formula corresponding to I is a sum of atomic formulas (since
all of the variables are free variables). We refer to each of these atomic formulas as a
valued constraint and we represent these by the multiset T of all valued constraints in the
instance I. For each valued constraint t ∈ T we use kt to denote its arity, ft to denote the
function represented by the corresponding atomic formula, and σt to denote its scope,
which is given as a tuple (i(t, 1), . . . , i(t, kt)) ∈ {1, . . . , n}kt containing the indices of the
variables in the scope. Thus,

fI(x) =
∑
t∈T

ft(xi(t,1), . . . , xi(t,kt)) . (6.5)

For convenience, we use x[σt] as an abbreviation for the tuple (xi(t,1), . . . , xi(t,kt)). In
this abbreviated notation, the function defined by instance I may be written fI(x) =∑

t∈T ft(x[σt]).
Now, let [0, 1]Q = [0, 1] ∩ Q. For reasons which will be clear below, it will be useful

to work with weight functions in Func(D, [0, 1]Q). For such a weight function F , let the
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cost function `(F ) ∈ Func(D,R≥0) be the function defined by

(`(F ))(x) =

− lnF (x) if F (x) > 0

∞ if F (x) = 0.

For example, `(EQ) = eq. For a weighted constraint language F ⊆ Func(D, [0, 1]Q), let
`(F) be the valued constraint language defined by `(F) = {`(F ) | F ∈ F}.

There is a natural bijection between instances of #CSP(F) and VCSP(`(F)), ob-
tained by replacing each function Ft in the former by the function ft = `(Ft) in the
latter, keeping the scopes unchanged. Note that fI(x) = − lnFI(x), for any assign-
ment x, with the convention − ln 0 =∞.

Definition 6.14. A valued constraint language is conservative if it contains all arity-1
cost functions D → R≥0.

The mapping F 7→ `(F ) from Func(D, [0, 1]Q) to Func(D,R≥0) is not surjective be-
cause there are real numbers that are not the logarithm of any rational. For the same rea-
son, the valued constraint language `(F) is not conservative (for any weighted constraint
language F). Finally, note that we have only defined `(F ) for F ∈ Func(D, [0, 1]Q). The
obvious extension to F ∈ Func(D,Q≥0) would produce negative-valued cost functions
and we wish to avoid this since Kolmogorov and Živný [77] do not allow it.

Definition 6.15. A cost function is crisp [36] if f(x) ∈ {0,∞} for all x.

Definition 6.16. For any cost function f , let Feas(f) be the relation defined by Feas(f) =

{x | f(x) <∞}.

Thus, any cost function f can be associated with its underlying relation. Similarly,
we can represent any relation by a crisp cost function f for which f(x) = 0 if and only
if x is in the relation. A crisp constraint language is a set of relations, which we always
represent as crisp cost functions, not as functions with codomain {0, 1}. For a valued
constraint language Φ, the crisp constraint language Feas(Φ) is given by Feas(Φ) =

{Feas(f) | f ∈ Φ}.

Definition 6.17. A crisp constraint language is conservative if it includes all arity-1
relations.

A relational clone is simply a crisp constraint language Feas(〈Φ〉V ) for a valued
constraint language Φ.

Lemma 6.18. Suppose Φ ⊆ Func(D,R≥0). Then 〈Feas(Φ)〉V = Feas(〈Φ〉V ).

Proof. The mapping ρ : R≥0 → {0,∞} defined by ρ(∞) = ∞ and ρ(x) = 0, for all
x <∞, is a homomorphism of semirings, from (R≥0,min,+) to ({0,∞},min,+).
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6.5 STP/MJNmultimorphisms and weak log-supermodularity

In [77, Corollary 12], Kolmogorov and Živný give a tractability criterion for conservative
VCSPs. In particular, they show that the VCSP associated with a conservative valued
constraint language Φ is tractable iff Φ has an STP/MJN multimorphism.

We define STP/MJN multimorphisms below. In this section, we show (see Theo-
rem 6.30 below) that, if a weighted constraint language F ∈ Func(D, [0, 1]Q) is weakly
log-supermodular, then the corresponding valued constraint language `(F) has an STP/MJN
multimorphism. In Section 6.6, this will enable us to use such a multimorphism (via the
work of Kolmogorov and Živný[77] and Cohen, Cooper and Jeavons [35]) to prove #BIS-
easiness and LSM-easiness of the weighted counting CSP.

Our proof of Theorem 6.30 relies on work by Kolmogorov and Živný [77] and Takhanov [94].
We start with some general definitions. Most of these are from [77], but some care is
required since some of the definitions in [77] differ from those in [35].

Definition 6.19. A k-ary operation on D is a function from Dk to D. An operation
on D is a k-ary operation, for some k.

We drop the “on D” when the domain D is clear from the context.

Definition 6.20. A k-tuple 〈ρ1, . . . , ρk〉 of k-ary operations ρ1, . . . , ρk is conservative if,
for every tuple x = (x1, . . . , xk) ∈ Dk, the multisets {{x1, . . . , xk}} and {{ρ1(x), . . . , ρk(x)}}
are equal.

Note that we have now defined conservative operations and conservative constraint
languages (weighted, valued and crisp). There are connections between these notions of
“conservative” but we do not need these here.

Definition 6.21. 〈ρ1, . . . , ρk〉 is a multimorphism of an arity-r cost function f if, for all
x1, . . . ,xk ∈ Dr, we have:

k∑
i=1

f(ρi(x
1
1, . . . , x

k
1), . . . , ρi(x

1
r , . . . , x

k
r )) ≤

k∑
i=1

f(xi).

Definition 6.22. 〈ρ1, . . . , ρk〉 is a multimorphism of a valued constraint language Φ if
it is a multimorphism of every f ∈ Φ.

These definitions imply the following.

Observation 1. If 〈ρ1, . . . , ρk〉 is conservative, then it is a multimorphism of every unary
cost function f .

Definition 6.23. Suppose M ⊆ D2. A pair 〈u,t〉 of binary operations is a symmetric
tournament pair (STP) on M if it is conservative and both operations are commutative
on M . We say that it is an STP if it is an STP on D2.
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Definition 6.24. Suppose M ⊆ D2. A triple 〈Mj1, Mj2, Mn3〉 of ternary operations is
an MJN on M if it is conservative and, for all triples (a, b, c) ∈ D3 with {{a, b, c}} =

{{x, x, y}} where x and y are distinct and (x, y) ∈M , we have Mj1(a, b, c) = Mj2(a, b, c) =

x and Mn3(a, b, c) = y.

Definition 6.25. An STP/MJN multimorphism of a valued constraint language Φ con-
sists of a pair of operations 〈u,t〉 and a triple of operations 〈Mj1, Mj2, Mn3〉, both of
which are multimorphisms of Φ, for which, for some symmetric subset M of D2, 〈u,t〉
is an STP on M and 〈Mj1, Mj2, Mn3〉 is an MJN on {(a, b) ∈ D2 \M | a 6= b}.

Definition 6.26. Φ ⊆ Func(D,R≥0) is weakly submodular if, for all binary functions
f ∈ 〈Φ〉V and elements a, b ∈ D,

f(a, a) + f(b, b) ≤ f(a, b) + f(b, a) or f(a, a) = f(b, b) =∞. (6.6)

Note that the definition of weak submodularity for cost functions is a restatement of
Kolmogorov and Živný’s “Assumption 3”. It is not trivial that weak log-supermodularity
for F is related to weak submodularity for `(F). Expressibility for VCSP is different
from expressibility for #CSP and, specifically, we cannot expect 〈`(F)〉V = `(〈F〉#) to
hold in general. However, the following is suitable for our purposes.

Lemma 6.27. Suppose F ⊆ Func(D, [0, 1]Q) and let Φ = `(F). If F is weakly log-
supermodular then Φ is weakly submodular.

Proof. We prove the contrapositive. Suppose f ∈ 〈Φ〉V is a binary function that witnesses
the fact that Φ is not weakly submodular according to Definition 6.26, specifically,

f(a, a) + f(b, b) > f(a, b) + f(b, a) and min{f(a, a), f(b, b)} <∞.

Since f ∈ 〈Φ〉V , we may express f in the form

f(x) = min
y
g(x,y) = min

y

m∑
i=1

gi(x,y),

where the gi ∈ Φ are atomic. For k ∈ N, define

F (k)(x) =
∑
y

m∏
i=1

Gi(x,y)k,

where each Gi is such that gi = `(Gi). Note that F (k) ∈ 〈F〉#, and

F (k)(x)1/k → max
y

m∏
i=1

Gi(x,y), as k →∞.
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Now

max
y

m∏
i=1

Gi(x,y) = max
y

exp

(
−

m∑
i=1

gi(x,y)

)

= exp

(
−min

y

m∑
i=1

gi(x,y)

)
= exp(−f(x))

and
exp(−f(a, a)) exp(−f(b, b)) < exp(−f(a, b)) exp(−f(b, a)).

Thus F (a, a)F (b, b) < F (a, b)F (b, a) where F = F (k) for some sufficiently large k. Also,
min{f(a, a), f(b, b)} <∞ implies that max{F (a, a), F (b, b)} > 0. These properties of F
imply that F is not weakly log-supermodular, according to Definition 6.3.

Let Γ be a crisp constraint language. A majority polymorphism of Γ is a ternary
operation ρ such that ρ(a, a, b) = ρ(a, b, a) = ρ(b, a, a) = a for all a, b ∈ D and for all
arity-k relations R ∈ Γ we have

x,y, z ∈ R =⇒ (ρ(x1, y1, z1), . . . , ρ(xk, yk, zk)) ∈ R.

Let N(a, b, c, d) be the relation {(a, c), (b, c), (a, d)}. The existence of such a relation
in 〈Γ〉V indicates that Γ is not “strongly balanced” in the terminology of [50]. Note that,
on the Boolean domain, N(0, 1, 0, 1) is NAND.

Theorem 6.28. (Takhanov) Let Γ be a conservative relational clone with domain D. At
least one of the following holds.

• There are distinct a, b ∈ D such that N(a, b, a, b) ∈ Γ.

• There are distinct a, b ∈ D such that {(a, a, a), (a, b, b), (b, a, b), (b, b, a)} ∈ Γ.

• For some k ≥ 1, there are a0, . . . , a2k, b0, . . . , b2k ∈ D such that, for each 0 ≤ i ≤
2k, ai 6= bi and, for each 0 ≤ i ≤ 2k − 1,

N(ai, bi, ai+1, bi+1) ∈ Γ and N(a2k, b2k, a0, b0) ∈ Γ.

• Γ has a majority polymorphism.

Proof. This formulation is essentially [94, Theorem 9.1] except for the last bullet point.
As stated in the proof of that theorem, the first two conditions both fail if and only if
the “necessary local conditions” [94, Definition 3.5] hold. Unfortunately for us, Takhanov
uses the term “functional clone” differently to how we use it, so the reader will need to
take this into account to understand the local conditions. However, we do not need the
detail, here. Takhanov’s proof of the NP-hard case of his Theorem 3.7 (at the end of his
Section 4) shows the following: Given the necessary local conditions, the third condition
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fails only if a certain graph TF is bipartite. If TF is bipartite then [94, Theorem 5.5]
establishes a majority polymorphism.

Lemma 6.29. If Φ ⊆ Func(D,R≥0) is conservative and weakly submodular, Γ = 〈Feas(Φ)〉V
has a majority polymorphism.

Proof. Since Φ is conservative (Definition 6.14), so is Γ (Definition 6.17). We will now
show that the first three bullets of Theorem 6.28 contradict the premise of the lemma,
so the fourth must hold.

The first bullet-point is easily ruled out. Suppose the given relation is in Γ. By
Lemma 6.18, there is a binary function f ∈ 〈Φ〉V such that Feas(f) = N(a, b, a, b). This
function has f(b, b) =∞ and f(a, a), f(a, b), f(b, a) <∞, and hence violates (6.6).

For the second bullet-point, by Lemma 6.18 we have a 3-place function g ∈ 〈Φ〉V
which is finite precisely on

{
(a, a, a), (a, b, b), (b, a, b), (b, b, a)

}
. Now let M be a suffi-

ciently large constant and let u be the unary function defined by

u(z) =


M if z = a,

0 if z = b,

∞ otherwise.

Let
f(x, y) = min

z∈D
{g(x, y, z) + u(z)}.

Then f(a, a) = M + g(a, a, a), f(b, b) = M + g(b, b, a), f(a, b) = g(a, b, b) and f(b, a) =

g(b, a, b). Clearly, f violates (6.6) for sufficiently large M .
Finally, let us consider the third bullet-point. By Lemma 6.18 we have binary func-

tions g0, g1, . . . , g2k ∈ 〈Φ〉V where the underlying relation of gi is N(ai, bi, ai+1, bi+1) for
0 ≤ i < 2k and the underlying relation of g2k is N(a2k, b2k, a0, b0). Define

f(x, y) = min
{
g0(x, z0) + u0(z0) + g1(z0, z1) + u1(z1) +

· · ·+ u2k−1(z2k−1) + g2k(z2k−1, y) | (z0, . . . , z2k−1) ∈ D2k
}
,

where ui(ai) = M , ui(bi) = 0, and ui(z) =∞ if z /∈ {ai, bi}. Note that f(a0, a0) ≥ kM ,
f(b0, b0) ≥ (k + 1)M and f(a0, b0), f(b0, a0) ≤ kM + (2k + 1)m, where m is the largest
finite value taken by any of g0, . . . , g2k. So f violates (6.6) for sufficiently large M .

So we are left with the remaining possibility that Γ has a majority polymorphism.

We can now prove the main result of this section.

Theorem 6.30. Let F be a weighted constraint language such that Func1(D, [0, 1]Q) ⊆
F ⊆ Func(D, [0, 1]Q). If F is weakly log-supermodular then `(F) has an STP/MJN
multimorphism.
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Proof. Let Φ = `(F) ∪ Func1(D,R≥0). We will show that Φ has an STP/MJN multi-
morphism. By Definitions 6.25 and 6.22, this is also an STP/MJN multimorphism of the
subset `(F).

By Lemma 6.27, `(F) is weakly submodular. Now, `(F) contains `(Func1(D, [0, 1]Q)).
Thus, for every unary function u ∈ Func1(D,R≥0) and every ε ∈ (0, 1), there is a
unary function uε ∈ `(F) such that, for all x ∈ {0, 1}, |u(x) − uε(x)| < ε. From the
definition of valued clones, and continuity, we deduce that, for every binary function
f ∈ 〈Φ〉V and every ε > (0, 1), there is an fε ∈ 〈`(F)〉V such that, for all x, y ∈ {0, 1},
|f(x, y)−fε(x, y)| < ε. Since `(F) is weakly submodular, we conclude from the definition
of weak submodularity (Definition 6.26) that Φ is weakly submodular.

In [77, §6.1–6.4], Kolmogorov and Živný show how to construct an STP/MJN multi-
morphism of Φ under “Assumptions 1–3”. Assumption 1 is that Φ is conservative, which
is true by construction. Assumption 3 is that Φ is weakly submodular. This is given as a
premise of our lemma. Assumption 2 is that Γ = Feas(Φ) has a majority polymorphism,
which follows from Assumptions 1 and 3 by Lemma 6.29. (Assumption 2 states that
Φ has a majority polymorphism. In our terminology, this means that Feas(Φ) has a
majority polymorphism.)

6.6 LSM-easiness and #BIS-easiness

Our aim is to show that if `(F) has an STP/MJN multimorphism then F is LSM-easy.
This will involve using the arguments of [35] and [77], but we try, as much as possible,
to avoid going into the details of their proofs. We start by generalising the notion of an
STP multimorphism.

Definition 6.31. Let f be an arity-k cost function. A generalised STP multimorphism
of f is a pair 〈u,t〉, defined as follows. For 1 ≤ i ≤ k, ui and ti are operations on the
set Di = {a ∈ D | ∃x : xi = a and f(x) <∞}, and 〈ui,ti〉 is an STP of {f}.

The operation u is the binary operation on D1 × · · · × Dk defined by applying
u1, . . . ,uk component-wise. Similarly, t is defined by applying t1, . . . ,tk component-
wise. We require that, for all x,y ∈ Dk, f(t(x,y)) + f(u(x,y)) ≤ f(x) + f(y). Equiva-
lently, we require

f(t1(x1, y1), . . . ,tk(xk, yk)) + f(u1(x1, y1), . . . ,uk(xk, yk)) ≤ f(x) + f(y).

Where it is clearer, we use infix notation for operations such as u and t.

Theorem 6.32 (Kolmogorov and Živný). Suppose Φ0 is a finite, valued constraint lan-
guage which has an STP/MJN multimorphism. Then there is a polynomial-time algo-
rithm that takes an instance I of VCSP(Φ0) and returns a generalised STP multimor-
phism 〈u,t〉 of fI . The pair 〈u,t〉 depends only on the STP/MJN multimorphism of Φ0

and on the relation Feas(fI) underlying fI . It does not depend in any other way on I.
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Proof. This theorem is closely related to Theorem 11 in [77]. To prove Theorem 6.32,
we just take the proof of Kolmogorov and Živný’s Theorem 11 (refer to [77, §7]), but we
stop before the final step. Specifically, we stop when their Lemma 35 has been proved.
At this point, the existence of the pair 〈u,t〉, as specified above, has been established.

Note that Kolmogorov and Živný restrict to rationals, whereas we allow real numbers.
This is not a problem because their algorithm does not require access to the functions
in Φ0 themselves. Instead, it only requires access to the relations in Feas(Φ0) and to
the STP/MJN multimorphism that Φ0 satisfies. These are both finite amounts of data,
which can be hardwired into the algorithm, whose input is just the instance I, which is
a symbolic expression.

We will also use the following algorithmic consequence of [77, Theorem 11]. We
restrict to crisp cost functions because this is all that we use and we wish to avoid issues
with number systems.

Theorem 6.33 (Kolmogorov and Živný). Suppose that Φ0 is a finite, crisp constraint
language that has an STP/MJN multimorphism. Then there is a polynomial-time algo-
rithm for VCSP(Φ0).

For our eventual construction, we would like 〈u,t〉 to induce a generalised STP
multimorphism of ft for each individual valued constraint t in the instance. We do not
know whether this is true of the generalised STP multimorphism provided by Kolmogorov
and Živný’s algorithm, but something sufficiently close to this is true.

Definition 6.34. For an instance I, a valued constraint t and a length-kt vector a, define

RI,t(a) =

0, if there exists x with x[σt] = a and fI(x) <∞;

∞, otherwise,

and define f ′t = ft +RI,t.

Thus, f ′t is a “trimmed” version of ft whose domain is precisely the kt-tuples of values
that can actually arise in feasible solutions to instance I. We will see that if the scope
σt contains variables with indices i(t, 1), . . . , i(t, kt), then〈

u[σt],t[σt]
〉

=
〈
(ui(t,1), . . . ,ui(t,kt)), (ti(t,1), . . . ,ti(t,kt))

〉
is a generalised STP multimorphism of f ′t , even though it might not necessarily be a
generalised STP multimorphism of ft.

Note that Theorem 6.33 has the following consequence.

Corollary 6.35. Let Φ0 be a finite, valued constraint language that has an STP/MJN
multimorphism. There is a polynomial-time algorithm that takes an instance I of VCSP(Φ0),
a valued constraint t and a length-kt vector a and returns a truth table for f ′t.
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The truth table produced by the algorithm of Corollary 6.35 is finite since all valued
constraints in Φ0 are finite.

Theorem 6.36 (An extension to Theorem 6.32). Suppose Φ0 is a finite, valued con-
straint language which has an STP/MJN multimorphism. Consider the algorithm from
Theorem 6.32 which takes an instance I of VCSP(Φ0) (in the form (6.5)) and returns
a generalised STP multimorphism 〈u,t〉 of fI . Then, for all t ∈ T ,

〈
u[σt],t[σt]

〉
is a

generalised STP multimorphism of f ′t.

Proof. Focus on a particular valued constraint t of I. Let k = kt be the arity of ft, and
for brevity denote u[σt] and t[σt] by u′ and t′, respectively. Without loss of generality
assume σt = (1, 2, . . . , k). We wish to show that

f ′t(a u′ b) + f ′t(a t′ b) ≤ f ′t(a) + f ′t(b) (6.7)

for all a,b ∈ D1 × · · · × Dk. If either f ′t(a) = ∞ or f ′t(b) = ∞, then we are done.
Otherwise, by construction of f ′t , there exist x and y such that a = x[σt], b = y[σt],
and fI(x), fI(y) < ∞. Notice that f ′t(a) = ft(a) < ∞ and f ′t(b) = ft(b) < ∞, also by
construction of f ′t . Now consider the augmented instance IN of I with N extra copies of
the valued constraint t. We have

fIN (x) = fI(x) +Nft(a)

fIN (y) = fI(y) +Nft(b)

fIN (x u y) = fI(x u y) +Nft(a u′ b)

fIN (x t y) = fI(x t y) +Nft(a t′ b).

(6.8)

Since Feas(fIN ) = Feas(fI), from Theorem 6.32, 〈u,t〉 is also a generalised STP multi-
morphism of fIN , i.e.,

fIN (x u y) + fIN (x t y) ≤ fIN (x) + fIN (y).

Combining this with (6.8), we obtain

ft(a u′ b) + ft(a t′ b) +O(N−1) ≤ ft(a) + ft(b) +O(N−1). (6.9)

Since (6.9) remains true as N →∞ but ft is independent of N , we conclude that

ft(a u′ b) + ft(a t′ b) ≤ ft(a) + ft(b).

Since a u′ b and a t′ b extend to feasible solutions x u y and x t y, it follows that
f ′t(a u′ b) = ft(a u′ b) and f ′t(a t′ b) = ft(a t′ b). The required inequality (6.7) follows
immediately.

To make use of Theorem 6.36, we will use the following definitions.
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Definition 6.37. Given a finite, valued constraint language Φ0 ⊂ Func(D,R≥0), let
Φ′0 be the set of functions of the form f + R, for f ∈ Φ0 ∩ Funck(D,R≥0), R ∈
Funck(D, {0,∞}) and k ∈ N.

Note that Φ′0 is finite because Funck(D, {0,∞}) is finite for any finite k.

Definition 6.38. Two n-variable instances I and I ′ of VCSP(Φ) are equivalent if fI(x) =

fI′(x) for all x ∈ Dn.

Definition 6.39. [35] A function f : D1×· · ·×Dr → R≥0 is domain-reduced if, for each
i ∈ {1, . . . , r}, and for each a ∈ Di, there is an x ∈ Dn such that xi = a and f(x) <∞.

Lemma 6.40. Suppose Φ0 is a finite, valued constraint language which has an STP/MJN
multimorphism. Consider an instance I of VCSP(Φ0). There is an equivalent instance
I ′ of VCSP(Φ′0) and a generalised STP multimorphism 〈u,t〉 of fI′ which induces a
generalised STP multimorphism of ft for each valued constraint t of I ′. Both I ′ and
〈u,t〉 are polynomial-time computable (given I). Moreover, each operation ui and ti
induces a total order.

Proof. We first show how to construct an equivalent instance I ′ and a generalised STP
multimorphism of fI′ which induces generalised STP multimorphisms on the valued
constraints. To obtain I ′, start from the instance I and use Corollary 6.35 to replace
each valued constraint ft(x[σt]) with f ′t(x[σt]). This operation clearly preserves the set
of feasible solutions and their costs. Then use the algorithm from Theorem 6.36 to
construct the generalised STP multimorphism 〈u,t〉.

In the remainder of the proof, we construct a new generalised STP multimorphism
by modifying 〈u,t〉 to ensure that it is composed of total orders, as required. Consider
the following claim.

Claim: Suppose that D is a domain. Given a set of functions Φ ⊆ Func(D,R≥0),
let P be an instance of VCSP(Φ) with variable set {v1, . . . , vn}. Let Di = {a ∈ D |
∃x : xi = a and fP(x) <∞}. Suppose that 〈u,t〉 is a generalised STP multimorphism
of P. Then there is a generalised STP multimorphism 〈u′,t′〉 of P in which each u′i is a
total order on Di (hence t′i is the reversal of this total order). Furthermore, for any set
J = {i1, . . . , ij} ⊆ {1, . . . , n} and any domain-reduced function f : Di1×· · ·×Dij → R≥0

for which 〈uJ ,tJ〉 is a multimorphism, 〈u′J ,t′J〉 is also a multimorphism of f . The
multimorphism 〈u′,t′〉 is polynomial-time computable.

This claim is proved (but not explicitly stated) in the proof of [35, Theorem 8.2]. The
basic method is as follows. P is augmented with extra (redundant) valued constraints
using unary and binary crisp cost functions. The binary crisp cost functions are used to
enforce consistency so that when ui is modified to form a total order on Di, a compatible
modification is made to each other uj . Once u and t are constructed, it is proved by
induction that every relevant function f has the property specified in the claim. The
induction is on the arity of f .

To prove the lemma, we use the claim with Φ = Φ′0, P = I ′ and, for each valued
constraint t of I ′, f = f ′t .
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Lemma 6.41. If F ⊆ Func(D, [0, 1]Q) and `(F) has an STP/MJN multimorphism, then
#CSP(G) is LSM-easy for every finite G ⊂ F .

Proof. Let G be a finite subset of F . To any instance I# of #CSP(G) there corresponds
an instance I = `(I#) of VCSP(Φ0), where Φ0 = `(G): for each weighted constraint t,
the function Ft is mapped to ft = `(Ft) while the scope σt remains unchanged. Using
Lemma 6.40, we may construct an equivalent instance I ′ of VCSP(Φ′0) on the domain
D1 × · · · × Dn and a generalised STP multimorphism 〈u,t〉 of that instance, where
each ui is a total order. 〈u,t〉 induces a generalised STP multimorphism of each ft.

We now construct an instance I ′′ over the Boolean domain that is equivalent to I ′

and hence to I. For each i, 1 ≤ i ≤ n, introduce a set of |Di| + 1 Boolean variables
Vi = {zi,a | a ∈ D+

i }, where D+
i = Di ∪ {⊥}. Extend the total order on D+

i by
placing ⊥ below all elements of Di. Define a nested sequence of subsets of D+

i by
Ui,a = {b ∈ D+

i | b < a}. The idea is that each domain element a ∈ Di is represented by
the truth assignment that assigns 1 to all variables in Ui,a, and 0 to the others. Consider
the constraint asserting that only these |Di| particular assignments to Vi are allowed.
This constraint can be represented by the crisp cost function f that assigns f(x) = 0

to these assignments and f(x) = ∞ to all others. Note that F (x) = exp(−f(x)) is
log-supermodular.

Note that we can use the same relation for any pair of sets Di and Dj with |Di| =

|Dj | — if Di and Dj have different total orders then the relation is applied to the
variables in D+

i in a different order than to the variables in D+
j . If we add these crisp

valued constraints then there is a natural bijection between D1 × · · · ×Dn and feasible
assignments to Boolean variables V1 ∪ · · · ∪ Vn. The variable zi,a where a is the smallest
(respectively largest) element of D+

i always takes on the value 1 (respectively 0), and so
these variables are redundant. However, their introduction simplifies the description of
some constructions later in the proof.

Consider a valued constraint in I ′ of arity k that imposes the function f ′ ∈ Φ′0, and,
without loss of generality, assume that its scope is the first k variables x1, . . . , xk. Add
a corresponding valued constraint f ′′ to I ′′ with f ′′ : 2V1∪···∪Vk → R≥0 defined as follows,
where for convenience we are viewing f ′′ as a function on subsets of V1 ∪ · · · ∪ Vk rather
than as a function of |V1|+ · · ·+ |Vk| Boolean variables:

f ′′(A) =

f ′(a1, . . . , ak), if A = U1,a1 ∪ · · · ∪ Uk,ak for some (a1, . . . , ak);

∞, otherwise.

We claim f ′′ is submodular, i.e., f ′′(A ∩ B) + f ′′(A ∪ B) ≤ f ′′(A) + f ′′(B). If either
f ′′(A) = ∞ or f ′′(B) = ∞ there is nothing to prove. So A = U1,a1 ∪ · · · ∪ Uk,ak and
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B = U1,b1 ∪ · · · ∪ Uk,bk for some (a1, . . . , ak), (b1, . . . , bk) ∈ D1 × · · · ×Dk. Then

f ′′(A ∩B) + f ′′(A ∪B)

= f ′′
(
(U1,a1 ∩ U1,b1) ∪ · · · ∪ (Uk,ak ∩ Uk,bk)

)
+ f ′′

(
(U1,a1 ∪ U1,b1) ∪ · · · ∪ (Uk,ak ∪ Uk,bk)

)
= f ′′(U1,a1u1b1 ∪ · · · ∪ Uk,akukbk)

+ f(U1,a1t1b1 ∪ · · · ∪ Uk,aktkbk)

= f ′(a1 u1 b1, . . . , ak uk bk) + f ′(a1 t1 b1, . . . , ak tk bk)

≤ f ′(a1, . . . , ak) + f ′(b1, . . . , bk)

= f ′′(A) + f ′′(B).

Now take stock. We have an instance I ′′ of Boolean VCSP, which is equivalent to I ′

and hence to I. It has at most n(|D| + 1) Boolean variables and it has n more valued
constraints than I. The number of distinct valued constraints in Φ′′0 is |Φ′′0| ≤ |Φ′0|+ |D|;
note that these come from a fixed set of cost functions independent of the instance I and
hence of I# itself.

Now map the VCSP instance I ′′ back to #CSP to yield an instance I ′′# over the
Boolean domain in which every valued constraint comes from a certain fixed set of cost
functions F ′′0 ⊂ LSM. Specifically, I ′′ = `(I ′′#) and Φ′′0 = `(F ′′0 ). Since I ′′ is equivalent
to I, there is a bijection between the non-zero terms of Z(I#) and Z(I ′′#) that preserves
weights, and hence Z(I#) = Z(I ′′#).

Lemma 6.41 shows that, if `(F) has an STP/MJN multimorphism, then #CSP(G) is
LSM-easy for every finite G ⊂ F . Lemma 6.42 below strengthens the result by showing
that #CSP(G) is #BIS-easy. The strengthening applies when the weight functions in F
have arity at most two.

In order to do the strengthening, we need to generalise the notion of a binary sub-
modular function to cover binary functions over larger domains. A matrix M has the
Monge property if, for every pair of rows r and r′, and every pair of columns s and s′,

Mr∧r′ s∧s′ +Mr∨r′ s∨s′ ≤Mr∧r′ s∨s′ +Mr∨r′ s∧s′ ,

where the ∧ and ∨ operators are the minimum and maximum operators, respectively. To
apply this concept here, suppose that f is a function with domain Di×Dj . Given orders
on Di and Dj , let Di(`) and Dj(`) denote the `’th element of Di and Dj , respectively. We
say that a function f with domain Di×Dj is Monge (with respect to the given orders) if
the |Di|×|Dj | matrixMf is Monge), where, as in Section 6.3, (MF )k` = F (Di(k), Dj(`)).
We say that a function F : Di×Dj → [0, 1]Q is log-anti-Monge (with respect to the given
orders) if the function `(F ) is Monge (with respect to the same orders). The “anti” in the
term “log-anti-Monge” comes from the fact that (`(F ))(x) = − lnF (x), and the minus
sign reverses the inequality in the definition of Monge. Thus, the relationship between
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Monge and log-anti-Monge is analogous to the relationship between submodular and
log-supermodular. The Monge property generalises submodularity and the property of
being log-anti-Monge generalises the notion of log-supermodularity.

Lemma 6.42. If F ⊆ Func(D, [0, 1]Q) is a weighted constraint language whose weight
functions have arity at most two and `(F) has an STP/MJN multimorphism, then
#CSP(G) is #BIS-easy for every finite G ⊂ F .

Proof. Let G be a finite subset of F . We use exactly the same construction as in the previ-
ous lemma, but go further and show that every weight function F ′′ appearing in instance
I ′′# is expressible in terms of unary weight functions in U{0,1}, and the binary weight
function IMP defined by IMP(0, 0) = IMP(0, 1) = IMP(1, 1) = 1 and IMP(1, 0) = 0.
Moreover, unary weight functions in U{0,1} (even those taking irrational values) can
be approximated sufficiently closely by polynomial-sized pps-formulas using IMP [22,
Lemma 36]. This will complete the proof, since #CSP(IMP) ≤AP #BIS by [47, Theo-
rem 5].

The task then, is to show that every weight function F ′′ in instance I ′′# is expressible
in terms of unary weight functions in U{0,1} and IMP. We do this by considering, in
turn, the different types of weight functions arising in I ′′#. The n relations (crisp cost
functions) that were introduced in I ′′ to impose a total order on the variables in the sets
Vi are clearly implementable in terms of imp = `(IMP).

Every other weight function F ′′ is associated with a cost function f ′′ in I ′′ that is an
implementation over the Boolean domain of a cost function f ′ from I ′. Since f ′ ∈ Φ0,
it has arity at most 2. Our goal is to show that the function F ′(x) = `−1(f ′(x)) =

exp(−f ′(x)) is expressible in terms of unary weight functions in U{0,1} and IMP. If f ′ is
unary, this is immediate, so suppose f ′ is binary.

To fix the notation, suppose that f ′ is a function f ′ : Di×Dj → R≥0. We can assume
without loss of generality that Di and Dj are disjoint (otherwise, rename some elements).
Also, Di and Dj are ordered according to the linear order induced by u. Since 〈u,t〉
induces a generalised STP multimorphism of f ′ (see Definition 6.31), the function f ′ is
Monge (with respect to this order). We start by considering two special cases.

• First, suppose that F ′ is strictly positive. (That is, there is no (x, y) with f ′(x, y) =

∞ so the range of f ′ is contained R≥0). Rudolf and Woeginger [88] have shown that
every nonnegative Monge matrix is expressible as a positive linear combination of
certain simple Monge matrices. Translated to our setting by applying `−1, this
says that F ′ is expressible as a product of certain simple basis functions, namely:
(i) the unary functions

Ba(x) =

α, if x = a;

1, otherwise,
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for all a ∈ Di (with a similar set of unary functions defined over Dj), and (ii) the
binary functions

Ba,b(x, y) =

α, if x ≤ a and y ≥ b;

1, otherwise,

for all (a, b) ∈ (Di, Dj) (with a similar set of binary function defined by replacing
x ≤ a and y ≥ b by x ≥ a and y ≤ b). In both cases (i) and (ii), α is an arbitrary
constant in the range (0, 1).

Using the Boolean variables Vi ∪Vj , the basis function Ba(x) may be implemented
as Uα(zi,a)U1/α(zi,a−), where

Uβ(z) =

β, if z = 0;

1, if z = 1,

and a− is the element immediately below a in the total order on Di. Also,
the basis function Ba,b(x, y) may be implemented as IMP(zi,a, y) IMP(zj,b− , y)×
Uα(zi,a)U1/α−1(y), where y is a new variable.

• Second, suppose that the range of F ′ is {0, 1} (that is, f ′ is a crisp cost function).
As in the proof of Lemma 6.41, let Ui,a = {b ∈ D+

i | b < a}. Let F ∗ be the set of
subsets of Vi ∪ Vj defined as follows.

F ∗ = {Ui,a ∪ Uj,b | F ′(a, b) = 1}

F ′ is log-anti-Monge so

F ′(x ∧ x′, y ∧ y′)F ′(x ∨ x′, y ∨ y′) ≥ F ′(x, y)F ′(x′, y′).

Thus, F ∗ is closed under unions and intersections. Hence by [48, Corollary 18],
F ∗ is a conjunction of implications and constants, and hence can be implemented
using IMP and unary weights.

To finish the proof, we use a construction from [22, Lemma 23]. Assume without loss
of generality that Di = {1, . . . , |Di|} and Dj = {1, . . . , |Dj |} with the usual total order.
Define H ′ : Di × Dj → [0, 1]Q by putting H ′(x, y) = F ′(x, y) for all x ∈ Di, y ∈ Dj

except that, if F ′(1, 1) = 0, we put H ′(1, 1) = 1. Note that H ′ is log-anti-Monge (by
construction, since F ′ is log-anti-Monge) and H ′(1, 1) 6= 0. Define G : Di ×Dj → Q≥0

by
G(x, y) = max{H ′(x∗, y∗)µx+y−x∗−y∗ | x∗ ≤ x and y∗ ≤ y} ,
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where

µ = max{m ≥ 0 |H ′(x∗, y∗)mx+y−x∗−y∗ ≤ H ′(x, y)

for all (x, y), (x∗, y∗) ∈ Di ×Dj

with H ′(x, y) > 0 and x∗ ≤ x and y∗ ≤ y}.

From the definition of µ, we can see that µ > 0, so G is strictly positive. We will
show that G is log-anti-Monge. Let x, x′ ∈ Di and y, y′ ∈ Dj . There exist x∗ ≤ x and
x′∗ ≤ x′ and y∗ ≤ y and y′∗ ≤ y′ such that

G(x, y)G(x′, y′) = H ′(x∗, y∗)H ′(x′∗, y′∗)µx+y+x′+y′−x∗−y∗−x′∗−y′∗

≤ H ′(x∗ ∧ x′∗, y∗ ∧ y′∗)µx∧x′−x∗∧x′∗+y∧y′−y∗∧y′∗

·H ′(x∗ ∨ x′∗, y∗ ∨ y′∗)µx∨x′−x∗∨x′∗+y∨y′−y∗∨y′∗

≤ G(x ∧ x′, y ∧ y′)G(x ∨ x′, y ∨ y′).

Now, from the definition of G and µ we can see that H ′(x, y) = RH′(x, y)G(x, y), where
RH′ is the support of H ′ (considered as a zero-one valued function). Thus, by the
definition of H ′, F ′(x, y) = RF ′(x, y)G(x, y). Then, by the above constructions, F ′ can
be implemented in terms of IMP and unary functions. (The first of the cases above shows
how to implement G, which is strictly positive; the second shows how to implement R,
whose range is {0, 1}).

To use Lemmas 6.41 and 6.42, we need to perform some scaling. For any k-ary weight
function in F ∈ F , let mF = max{f(x) | x ∈ Dk}. Let

Λ(F ) =

 F/mF if mF > 1

F otherwise

and let Λ(F) = {Λ(F ) | F ∈ F}. Note that Λ(F ) always takes values in [0, 1]Q and that,
since F is conservative, Func1(D, [0, 1]Q) ⊆ Λ(F).

We return, once more, to the proof of Theorem 6.4.

Theorem 6.43. Let F be a weakly log-supermodular, conservative weighted constraint
language taking values in Q≥0.

• For any finite G ⊂ F , there is a finite G′ ⊂ LSM such that #CSP(G) ≤AP

#CSP(G′).

• If F consists of functions of arity at most two, then #CSP(G) is #BIS-easy for any
finite G ⊂ F .

Proof. By Theorem 6.30, `(λ(F)) has an STP/MJN multimorphism. The result follows
from Lemmas 6.41 and 6.42 and the fact that #CSP(F) ≤AP #CSP(Λ(F)).
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Theorem 6.4, our classification of the complexity of approximating #CSP(F), now
follows from Theorems 6.7, 6.12 and 6.43.

6.7 Algorithmic aspects

Finally, we consider the algorithmic aspects of the classification of Theorem 6.4. Intu-
itively, there is an algorithm that determines the complexity of #CSP with constraints
from a finite language H plus unary weights because weak log-modularity is essentially
equivalent to balance and weak log-supermodularity is essentially equivalent to the exis-
tence of a STP/MJN multimorphism. Balance and the existence of STP/MJN multimor-
phisms depend only on certain finite parts of the weighted constraint language so balance
is decidable by [24] and the existence of STP/MJN multimorphisms can be determined
by brute force, or by using more sophisticated methods from [77].

We need to determine whether the infinite language H∪UD is balanced. Fortunately,
it suffices to check whether H ∪ U ′D is balanced, where U ′D = Func1(D, {1, 2}), which
is finite. (Note that it is not enough to test whether H is balanced; also, there is
nothing special about 1 and 2: any pair of distinct, positive rationals would do. In fact,
|U ′D| = 2|D| and there are sets of size |D| which would suffice, but we do not need this
here.)

Lemma 6.44. Let H be a finite, weighted constraint language taking values in Q≥0. The
following are equivalent: (1) H ∪ U ′D is balanced; (2) every finite subset of H ∪ UD is
balanced; and (3) H ∪ UD is balanced.

Proof. (2) and (3) are equivalent because any pps-formula contains only a finite number
of atomic formulas. (2) trivially implies (1), since U ′D is finite. It remains to show that
(1) implies (2) so, towards this goal, suppose that H ∪ U ′D is balanced. We must show
that every finite subset of H ∪ UD is balanced. Suppose that such a subset contains r
functions in UD \ H.

Let {F1, . . . , Fr} be unary functions such that Fi(d) = ai,d (i ∈ {1, . . . , r}, d ∈ D)
and let G = H ∪ {F1, . . . , Fr}. We may consider the ai,d as formal variables and treat a
function G ∈ 〈G〉# with free variables x as a function of both x and the ai,d. We will
show that, for any function G and any interpretation of the ai,d (i.e., any instantiation of
the function symbols Fi as concrete functions D → Q≥0), the matrices associated with
G have block-rank 1, thus establishing that G is balanced.

So, consider any G ∈ 〈G〉# with arity n ≥ 2 and choose any k with 1 ≤ k < n. We
will show that the Dk × Dn−k matrix MG(x,y) has block-rank 1 for any value of the
ai,d. By Lemma 6.8 part (2), it suffices to show that every 2 × 2 submatrix induced by
rows x,x′ and columns y,y′ has block-rank 1. By Lemma 6.8 part (1), this happens if,
and only if, every such submatrix has rank 1 or at least two zero entries, which happens
if, and only if, the multivariate polynomial

p = G(x,y′)G(x′,y)G(x′,y′)
[
G(x,y)G(x′,y′)−G(x′,y)G(x,y′)

]
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is zero for all values of x,x′,y,y′ and for all values of the ai,d. (Note that, if the submatrix
defined by a pair of rows and columns does not have block-rank 1 but has exactly one
zero, then only one of the four possible choices for x,x′,y,y′ will make p non-zero.)

We now fix x,x′,y,y′ and consider p as a function of just the ai,d. Our goal is to
show that (for every choice of x,x′,y,y′), p is identically 0.

Consider first the case where every ai,d is a power of two. Here, every atomic formula
Fi(z) defines the same function as some product U1(z) · · ·U`(z) of atomic formulas from
U ′D so G is equivalent to some function in 〈H ∪ U ′D〉#. But H ∪ U ′D is balanced by
assumption, so p = 0 whenever every ai,d is a power of two. Therefore, p = 0 over a
space that is a product of infinite sets. It follows from the Schwartz–Zippel lemma or
from [1, Theorem 1.2] that the only polynomial with this property is the zero polynomial,
so p is the zero polynomial and H∪ {F1, . . . , Fr} is balanced for any set {F1, . . . , Fr} of
unary weights.

Theorem 6.45. There is an algorithm that, given a finite, weighted constraint language
H taking values in Q≥0, correctly makes one of the following deductions, where F =

H ∪ UD:

1. #CSP(G) is in FP for every finite G ⊂ F ;

2. #CSP(G) is LSM-easy for every finite G ⊂ F and #BIS-hard for some such G;

3. #CSP(G) is #BIS-easy for every finite G ⊂ F and #BIS-equivalent for some
such G;

4. #CSP(G) is #SAT-easy for every finite G ⊂ F and #SAT-equivalent for some
such G.

If every function in H has arity at most 2, the output is not deduction 2.

Proof. We reduce the problem to determining whether H ∪ U ′D is balanced, whether
`(H) has an STP/MJN multimorphism and whether H contains only functions of arity
at most 2. Balance of finite languages is decidable [24]. An STP/MJN multimorphism
consists of two operations D2 → D and three operations D3 → D, which must have
certain easily checked properties with respect to each of the functions in `(H). Thus,
we can determine the existence of an STP/MJN multimorphism by brute force, checking
each possible collection of five operations, or by using the methods of Kolmogorov and
Živný [77]. It is clearly decidable whether H contains a function of arity greater than 2.

By Lemma 6.44, if H∪U ′D is balanced, then so is any finite G ⊂ H∪UD. Therefore,
by Lemma 6.11, #CSP(G) can be solved exactly in FP so we output deduction 1. From
this point, we assume that H ∪ U ′D is not balanced.

Since H∪U ′D is not balanced, nor is H∪UD (Lemma 6.44). Therefore, H∪UD is not
weakly log-modular (Lemma 6.10) so there is a finite G ⊂ H∪UD such that #CSP(G) is
#BIS-hard (Theorem 6.7).
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`(Λ(H∪UD)) has an STP-MJN multimorphism if, and only if, `(Λ(H)) does (Observa-
tion 1), and `(Λ(H)) is a finite language so we can determine whether it has an STP-MJN
multimorphism by exhaustive search. If `(Λ(H∪UD)) has an STP-MJN multimorphism,
then, for all finite G ⊂ Λ(H ∪ UD), #CSP(G) is LSM-easy (Lemma 6.41). Since any
function in Λ(H ∪ UD) is a scalar multiple of some function in H ∪ UD, #CSP(G) is also
LSM-easy for all finite G ⊂ H ∪ UD. We output deduction 2, unless every function in
H has arity at most 2, in which case #CSP(G) is #BIS-easy for all finite G ⊂ H ∪ UD
(Lemma 6.42) and we output deduction 3.

On the other hand, if `(Λ(H∪UD)) has no STP-MJN multimorphism, then Λ(H∪UD)

is not weakly log-supermodular (Theorem 6.30). Because Λ is just a rescaling, H ∪ UD
is also not weakly log-supermodular. Therefore, there is a finite G ⊂ H ∪ UD such that
#CSP(G) is #SAT-equivalent (Theorem 6.7 again). We output deduction 4.



Chapter 7

LSM is not generated by binary
functions

(This chapter is based on part of [22].)
Recall that a function F : {0, 1}n → R≥0 is log-supermodular if

F (x ∨ y)F (x ∧ y) ≥ F (x)F (y) for all x,y ∈ {0, 1}n.

In Section 6.1.3 we defined 〈F〉# as the set of functions that are “pps-definable” by
F . The important property is that #CSP(F) ≤AP #CSP(G) if F ⊂ 〈G〉#, so we can rule
out a natural class of AP-reductions #CSP(F) ≤AP #CSP(G) by showing F 6⊂ 〈G〉#.

We denote the set of log-supermodular functions by LSM, and we denote the set
of log-supermodular functions of arity at most k by LSMk. In [22] it was shown that
〈LSM〉# = LSM and 〈LSM2〉# = 〈LSM3〉# and 〈LSM3〉# $ 〈LSM4〉#. This situation
mirrors known results about valued CSPs [106]. In this chapter we present the proof
that 〈LSM3〉# $ 〈LSM4〉#.

In fact, in [22] it was shown that limits can also give AP-reductions, subject to some
requirements about computational efficiency. Let 〈F〉#,ω denote the set of functions
F : {0, 1}n → R≥0 such that there is a finite set S ⊆ F such that there are F1, F2, · · · ∈
〈S〉# satisfying

max
x∈{0,1}n

|F (x)− Fn(x)| → 0 as n→∞.

A ppsω-definable functional clone is a set of the form 〈F〉#,ω. Equivalently (by [22,
Lemma 2]), it is a set F such that 〈F〉#,ω = F .

We show the technically stronger statement 〈LSM3〉#,ω $ 〈LSM4〉#,ω, which rules out
a class of reductions based on pps-definability and taking limits.

7.1 Notation

We again use the Func notation, denoting the set of functions {0, 1}k → R≥0 by
Funck({0, 1},R≥0) and denoting

⋃
k≥0 Funck({0, 1},R≥0) by Func({0, 1},R≥0). Recall
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the definitions of ⊕ and F ? from Section 1.7.2.

7.2 Non-negativity of Fourier coefficients

First we consider the class1 P of functions F ∈ Func({0, 1},R≥0) for which the Fourier
transform2 F̂ has nonnegative coefficients, where

F̂ (y) =
1

2n

∑
w∈{0,1}n

(−1)y1w1+···+ynwnF (w) (y ∈ {0, 1}n). (7.1)

Thus F ∈ P if and only if F̂ ∈ Func({0, 1},R≥0). See [43] for further information. We
will use (7.1) and the convolution theorem: for all F,G ∈ Funcn({0, 1},R≥0) we have

F̂G(x) =
∑

y∈{0,1}n
F̂ (y)Ĝ(x⊕ y) (x,y ∈ {0, 1}n). (7.2)

See for example [43, Section 2.3] for a proof of the dual statement.
To show that P is closed under pps-formula evaluation, it is useful to restrict to

atomic formulas where variables are not repeated within a scope.

Lemma 7.1. Let F ⊆ Func({0, 1},R≥0). For all pps-formulas ψ over F there is another
pps-formula ψ′ over F∪{EQ2} such that Fψ = Fψ′ and no atomic formula of ψ′ contains
a repeated variable.

Proof. Given ψ obtain ψ′ as follows. For each variable vi that is used di ≥ 2 times in
total in ψ, replace the uses of vi by new distinct variables v1

i , · · · , v
di
i , multiply by atomic

formulas EQ2(vi, v
j
i ) for 1 ≤ j ≤ di, then sum over these new variables vji .

Lemma 7.2. P is closed under addition, summation, products and limits. Moreover, P
is a ppsω-definable functional clone.

Proof. If F,G ∈ P, then F̂ +G = F̂ + Ĝ is clearly non-negative, and F̂G is nonnegative
by the convolution theorem (7.2). For summation, by induction we only need to consider
summing over the last variable. So, let H(x) =

∑
t F (x, t). Then it follows easily from

(7.1) that Ĥ(y) = 2F̂ (y, 0) ≥ 0 for all y. For limits note that if Fn → F then F̂n → F̂ ,
and a limit of non-negative functions is non-negative.

Let ψ be a pps-formula over P ∪ {EQ2}. We will argue that that Fψ ∈ P. By
Lemma 7.1 there is a pps-formula ψ′ over P ∪ {EQ2} such that Fψ = Fψ′ and such
that no atomic formula of ψ contains a repeated variable. The functions Fϕ defined by
atomic formulas ϕ = G(vi1 , · · · , vik) of ψ′ are therefore “expansions”: permutations of
the function G′ ∈ Funcn({0, 1},R≥0), n ≥ k, defined by

G′(x,x′) = G(x) (x ∈ {0, 1}k and x′ ∈ {0, 1}n−k). (7.3)

1Not to be confused with the class P used in Section 4.3.
2This is the same as the Hadamard transform mentioned in Section 3.1.1, but we use a different

normalisation here.



197

It therefore suffices to check that P is closed under expansions. Let G′ be the expansion
defined by (7.3). Then, for all y ∈ {0, 1}k and y′ ∈ {0, 1}n−k, we have Ĝ′(y,y′) = Ĝ(y)

if y′ = 0k, and Ĝ′(y,y′) = 0 otherwise, and hence G′ ∈ P. Note that ÊQ2 = 1
2EQ2, so

EQ2 ∈ P. Thus P is a functional clone, but it is also closed under limits.

7.3 A class containing binary log-supermodular functions

Let C be the class of functions F ∈ Func({0, 1},R≥0) such that G? ∈ P for every pinning
G = F (c, ·). Note, in particular, that if U ∈ Func1({0, 1},R≥0), U?(z) = U(0)U(1), a
nonnegative constant. Therefore we have Func1({0, 1},R≥0) ⊆ C and, to establish that
F ∈ C, we need only check pinnings of F of arity at least 2.

Lemma 7.3. C is a ppsω-definable functional clone.

Proof. As in Lemma 7.2 we will check that C is closed under “expansions”, products,
summations, and limits. But a pinning of an expansion (or product, summation, or
limit) of functions in C is an expansion (or product, summation, or limit) of pinnings
of functions in C, which are necessarily in C because C is closed under pinnings. So it
suffices to check the C condition for trivial pinnings, for example to check closure under
products it suffices to show that F,G ∈ C implies (FG)? ∈ P.

Let G ∈ C have arity k, let n ≥ k, let G′ be the function defined by (7.3). Note
that G′G′ is an expansion of GG, so G′G′ ∈ P and G′ ∈ C. We have EQ2 ∈ C,
since EQ2 EQ2 = EQ2 ∈ P. Closure under product follows from Lemma 7.2 and the
observation that (FG)? = F ?G?. For summation, by induction we may consider only
summing over the last variable. Then, if H(x) =

∑
t F (x, t), where F has arity k + 1,

then
H?(x) =

∑
t F (x, t)

∑
t F (x, t) = (F0)?(x) + (F1)?(x) +

∑
t F

?(x, t).

where F0 and F1 are the pinnings defined by Fi(x1, . . . , xk) = F (x1, . . . , xk, i). We have
(F0)?, (F1)? ∈ P by the pinning assumption, and the arity k function

∑
t F

?(x1, . . . , xk, t)

is in P by Lemma 7.2. Thus H? is the sum of three functions in P, and so, using
Lemma 7.2 again, H? ∈ P. Finally note that C is closed under limits: if Fn → F as
n→∞ then F ?n → F ?, but P is closed under limits.

Lemma 7.4. 〈LSM2〉#,ω ⊆ C.

Proof. Let F ∈ LSM2. Note that F̂ ?(0, 0) = (F (0, 0)F (1, 1) + F (0, 1)F (1, 0))/2, and
F̂ ?(0, 1) = F̂ ?(1, 0) = 0, and F̂ ?(1, 1) = (F (0, 0)F (1, 1) − F (0, 1)F (1, 0))/2 ≥ 0. So
F ? ∈ P, and hence F ∈ C. Thus LSM2 ⊆ C and, since C is a ppsω-definable functional
clone, 〈LSM2〉#,ω ⊆ C.

Lemma 7.5. 〈LSM2〉#,ω $ 〈LSM4〉#,ω.
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Proof. Since LSM2 ⊆ C by Lemma 7.4, we need only exhibit a function F ∈ LSM4 which
is not in C. Define F : {0, 1}4 → R>0 by

F (x1, x2, x3, x4) =


4, if x1 + x2 + x3 + x4 = 4;

2, if x1 + x2 + x3 + x4 = 3;

1, otherwise.

To show F ∈ LSM4, by the symmetry of F and Lemma 5.36, it suffices to show
that the three arity 2 pinnings F (0, 0, x3, x4), F (0, 1, x3, x4) and F (1, 1, x3, x4) are log-
supermodular. This is equivalent to the inequalities 1 × 1 ≥ 1 × 1, 2 × 1 ≥ 1 × 1, and
4× 1 ≥ 2× 2 respectively, which clearly hold.

To show that F /∈ C, we need only use (7.1) to calculate

F̂ ?(1, 1, 1, 1) =
4× 1− 4× 2 + 6× 1− 4× 2 + 4× 1

24
= −1

8
< 0.

Indeed F ∈ 〈LSM4〉#,ω but F /∈ C. By Lemma 7.4, 〈LSM2〉#,ω ⊆ 〈LSM4〉#,ω ∩ C $
〈LSM4〉#,ω.



Chapter 8

Conclusions

We studied the complexity of approximately evaluating various classes of partition func-
tions, by finding FPRASes and AP-reductions, and by studying notions of expressibility.
Apart from the results themselves, we have demonstrated various new techniques and
ideas:

• Contour arguments can be used to analyse a gadget in an NP-hardness proof.
Baker’s approximation techniques for planar graph problems can be applied to
partition functions. (Chapter 2)

• Jerrum and Sinclair’s cycle-unwinding argument can be interpreted as an argument
about Holant problems; perfect matchings constraints generalise to windable func-
tions. The same class of functions puts a limit on which functions can be expressed
in the context of counting perfect matchings. (Chapter 3)

• While #BIS has appeared in previous #CSP classifications, #PM has an important
role in degree-two #CSP classifications. (Chapters 4 and 5).

• Feder’s arguments about degree-two CSPs using non-delta-matroids can be adapted
to degree-two #CSPs using non-terraced functions. (Chapter 5).

• Arguments coming from the study of VCSPs, as well as arguments coming from the
study of the exact evaluation of #CSPs, can sometimes be adapted to the context
of approximate evaluation of #CSPs. (Chapter 6)

• The expressibility of #CSPs can be studied using the Fourier transform. (Chap-
ter 7)

8.1 Questions for future research

In Chapter 2 we ruled out FPRASes for evaluating the partition function of the hard-core
model on planar graphs when the fugacity is at least 312. This number seems likely to
be far from optimal. The difficulty here is obtaining the inequality p= > p6= (Lemma
2.14). It seems plausible that we only really need the existence of a phase transition,
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which is known to occur for square lattices for λ > 5.3646, and conjectured to occur for
λ greater than about 3.79 [6]. A converse result would also be interesting — is there an
FPRAS for the partition function of the hard-core model on (unbounded degree) planar
graphs, at sufficiently low fugacities?

In Chapter 3 we gave FPRASes for Holant problems using windable strictly terraced
functions. Is there an FPRAS for Holant problems using a larger class of functions? We
also initiated the study of expressibility for #PM, and characterised which arity three
functions have matchings circuits. Is there a characterisation of which arity four functions
have matchings circuits? Does every windable function have a matchings circuit?

In Chapter 4 we started to classify unweighted degree-two #CSPs with a single arity
three Boolean relation. Are there more AP-reductions between these problems? We also
looked at the restriction of #Downsets to dags of maximum degree three. What about
other restrictions? Is there an FPRAS for #Downsets restricted to dags that have depth
2 and maximum degree 6, in other words degree-six #BIS (see Remark 4.18)? What
about depth 3 and maximum degree 3?

In Chapter 5 we classified degree-two Boolean #CSPs with variable weights, for
unweighted constraint languages. As discussed after the statement of Theorem 5.3, this
classification could be refined. For example, is #CSP≥0

≤2(R) is NP-hard to approximate,
if R = {(x, y, z) ∈ {0, 1} | x + y + z ∈ {0, 2, 3}}? We explored various extensions of
this classification: allowing weighted constraint languages, and restricting the weights.
There are many unclassified problems here, even with higher degree bounds.

In Chapter 6 we studied conservative #CSPs, which of course leaves open the study
of non-conservative #CSPs. In Chapter 7 we showed LSM4 6⊂ 〈LSM2〉#. Is there a
characterisation of which arity four functions are in 〈LSM2〉#? There is an analogous
characterisation for the setting of VCSPs [106]. Other questions concerning the structure
of LSM are asked in [22].



Appendix A

Index of definitions

These lists do not include anything that solely appears within a proof, or within a short
discussion.

A.1 Notation

{0, 1}k+J Section 3.2
R (boldface) Section 3.2
[[ϕ]] (circuits) Section 3.2.1

[[ϕ]] (K-formulas) Section 5.2.1
[[G]] Section 3.7
〈F〉# Section 6.1.3
〈Φ〉V Section 6.4

F (p, ·) Section 1.7.2
FG Section 1.7.2
TF Section 4.3

TF1, TF2 Section 5.4
F ×G Section 1.7.1
F ⊗G Section 5.1.6
F⊗J Section 1.7.2

x, FF , F ? Section 1.7.2
e∗ Section 2.3.5
⊕ Section 1.7.2
F⊕ Section 3.4

4 (for sets) symmetric difference of sets
4 (for configurations) Definition 5.1

∧ Section 1.5.5
∨ Section 1.5.5

{i 7→ c} Section 5.1.6
x[σt] Section 6.4
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I[ϕ/F ] Definition 5.19
[0, 1]Q Section 6.4

≤AP, =AP Section 1.2
#BIS Section 1.2.1

#CSP(F) Section 1.3, Section 6.1.3 (with pps-formulas)
#CSP≤d(Γ) Section 1.7.2
#CSP=2(Γ) Section 4.1
#CSP≥0

≤2(Γ) Section 1.6

#CSPWK (F), #CSP≥0
=2(F), etc

Section 5.1.3 (generalises #CSP=2, #CSP≤d, and
#CSP≥0

≤2)
#Downsets Section 4.5 (poset variant in Example 1.1)

#FugacityWeightedPM Section 3.7.2
#P Section 1.2

#ParityNAE Section 1.6
#PM Section 1.2.1

#SAT Section 1.2.1
Λ(F) before the statement of Theorem 6.43

π Section 3.3.5
ρ(Γ) Section 3.3.5
σν Section 2.3.1

θ(F ) Section 3.5.2
µk,d, µ0

k,d, µ
1
k,d Section 2.3.4

Ω, Ωk Section 3.3.5
A Section 4.3

AtMostOne3 statement of Theorem 5.17
Bx(σ) Section 2.3.7
b(σ) Section 2.1
Bx,m Section 2.3.1
BPP see [69, Chapter 7]

C Section 1.7.2
C Section 7.3

c(σ) Section 2.1
Cν Section 2.3
Ck,d Section 2.3.4
C∗ν Section 2.3.5

degC(v) Section 1.7.2
d(x,y) Section 3.2

DegreeFourPlanarHardCore Section 2.2
DegreeFourPlanarTwoSpin(β, γ, λ) Section 2.2

dom Definition 5.9
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ei Section 3.2
Edgew Section 3.7

EQk Section 1.7.2
EQ Section 6.1.3
eq Section 6.4

EvenJ Section 3.2
EvenNAEJ Section 3.2

ExtK Section 2.3.7
Fψ Section 6.1.3
fψ Section 6.4

Feas(f) Definition 6.16
Feas(Φ) after Definition 6.16

FP Section 1.2
FugacityλJ Section 3.7

Func(D,R) Section 6.1.3
Holant(F) (as a #CSP) Section 1.3

Holant(F) (using graphs) Section 3.2.1
IMconj Section 1.7.2

IMP Section 1.7.2
IntK Section 2.3.7
`(σ) Section 2.1

`(F ), `(F) Section 6.4
L(g) Section 2.3.5

LE(G) Section 3.3.5
LSM Section 1.7.2
M′x Definition 3.2
Mx Section 3.3.2
mF before the statement of Theorem 6.43
MF Section 6.3
N Section 1.7.2

NAEJ Section 3.2
NAND Section 1.7.2

NEQ Section 1.7.2
NEQconj Definition 5.2

NP see [69, Chapter 2]
OddJ Section 3.2

OR Section 1.7.2
P Section 4.3
P Section 7.2
P Section 3.3.5
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p=,p 6= Section 2.3.3
PIN0, PIN1 Section 1.7.2

PlanarCubicIS Section 2.4
PlanarLogTwoSpin(β, γ, λ) Section 2.2

PM3 Section 1.7.2
Q, Q≥0 Section 1.7.2
R, R≥0 Section 1.7.2

R≥0 Section 6.4
R(g) Section 2.3.5

RP see [69, Chapter 7]
supp(F ) before Theorem 5.10

Tk,d,T 1
k,d,T

0
k,d Section 2.3.4
UD Definition 6.1
Ux,h Section 2.3.7

WNEQ Section 5.7
wtV,C(x) Section 1.3

wtV,C,w(x) Section 5.1.3
wtϕ(x) Section 3.2.1
wtG(x) Section 3.7

Z Section 1.7.2
ZV,C Section 1.3

ZV,C,w Section 5.1.3
Zβ,γ,λ Section 2.1
Zk(ϕ) Section 3.2.1

A.2 Terminology

#P-complete Section 1.2
∗-adjacent, ∗-distance, ∗-path Section 2.3.7

∗-diameter Section 2.3.7
distance Section 3.2

2-decomposition Section 3.3
adjacent (to a contour) Section 2.3.5

affine relation Section 1.7.2
affine signature Section 4.3
AP-reduction Section 1.2

assignment Section 3.2.1
(k-)assignment Section 3.2.1

balanced Section 6.3
basically binary Definition 5.2
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block-rank-1 Section 6.3
(h-)boundary Definition 2.15

canonicity of Bx(σ) Section 2.3.7
circuit Section 3.2
closed Section 3.2.1

coindependent Section 3.5.3
(σ∗-)component Section 2.3.7

congestion Section 3.3.5
conservative (weighted constraint

language)
Definition 6.1

conservative (valued constraint
language)

Definition 6.14

conservative (crisp constraint
language)

Definition 6.17

conservative (operation) Definition 6.20
constraint, constraint language Section 1.3

constraint (for circuits) Section 3.2.1
consistent Section 2.3.7

contour Section 2.3.5
contour of σ Definition 2.6

copy Section 1.7.2
cost function Definition 6.13

crisp Definition 6.15
crisp constraint language after Definition 6.16

cross contour Section 2.3.5
cross subgraph Section 2.3.7
decomposable Section 5.1.6

degenerate (symmetric case) Section 4.3
degenerate (relation) Section 5.1.5

delta-matroid Definition 5.1
downset Section 4.5 (poset variant in Example 1.1)

easy Section 6.1.3
efficiently approximable Section 2.2

even Section 3.2
even-windable Section 3.3

expressibility reduction (as used in
Chapter 4)

Section 4.2

flip Section 3.2
flow Section 3.3.5

(K-)formula Section 5.2.1
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FPRAS Section 1.2
FPTAS deterministic FPRAS; mentioned in Section 2.1.1

functional clone Section 6.1.3
generalised Fibonacci signature Section 4.3
generalised STP multimorphism Definition 6.31

graph fragment Section 3.2.1
hard Section 6.1.3

indecomposable Section 5.1.6
(K) intersects (Ux,h) Section 2.3.7

join Section 1.5.5
length (of a contour) Section 2.3.5

level Section 2.5
local Section 2.3.7

log-anti-Monge before the statement of Theorem 6.42
log-supermodular Section 1.5.5

majority polymorphism before statement of Theorem 6.28
matchings circuit Section 3.7
(h-)maximisation Definition 5.22

meet Section 1.5.5
MJN Definition 6.24

Monge before the statement of Theorem 6.42
multimorphism Definition 6.21, Definition 6.22

operation Definition 6.19
outerplanar see [7]
orthogonal Section 4.3

parallel Definition 5.9
parity relations Section 3.2

parity-0 and parity-1 ones Section 2.3.2
parity-0 and parity-1 terminals Section 2.3.4

partial configuration Definition 5.9
partition function Section 1.1

phase Definition 2.16
pinning Section 1.7.2

pinning-minimal Section 5.1.6
POTM Section 1.2

pps-formula Section 6.1.3
functional clone Section 6.1.3

ppsω-definable functional clone introduction to Chapter 7
PRAS Section 2.2

psm-formula Section 6.4
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product type Section 4.3
randomised approximation scheme Section 1.2

rank-1 Section 6.3
reaches the lower/upper boundary Section 2.3.7

relational clone after Section 6.17
side edge, side vertex Section 2.3.5

signature Section 4.3
simple contour Section 2.3.5

STP Definition 6.23
STP/MJN Definition 6.25

strictly terraced Definition 3.3
substitution (of K-formulas) Definition 5.19

terminals Section 2.3.4
terraced Definition 5.9

trail Section 2.3.5
treewidth see [7]

unweighted constraint language Section 1.3
valued clone Section 6.4

valued constraint language Definition 6.13
weakly log-modular Definition 6.2

weakly log-supermodular Definition 6.3
weakly submodular Definition 6.26

weight (for a circuit) Section 3.2.1
weight-function Section 1.3

weight-function pair Section 5.1.6
weighted constraint language Section 1.3

windable Section 3.3.2
wraps around Section 2.3.7
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