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Abstract 

Background: Development of ultra-short chemotherapy for tuberculosis (TB) is thwarted by 

drug-tolerant bacillary persistence and a lack of surrogate endpoints to predict outcome 

from early clinical studies. Characterising bacillary elimination amongst TB patients may 

provide important new information. Bacilli harbouring intra-cytoplasmic lipid bodies (LBs) 

may represent a drug-tolerant phenotype, responsible for delayed bacterial clearance. 

Methods: Malawian adults with pulmonary TB were treated with standard 6 month 

therapy. Two quantitative sputum culture methods were used to model bacillary 

elimination during the first 2 months; serial sputum colony counting (SSCC) and time to 

positivity (TTP) in BACTEC MGIT broth. Fluorescence microscopy was used to assess the 

proportion of LB positive bacilli on sputum smears. Plasma concentrations of anti-TB drugs 

were assayed at day 14 or 21. Patients were followed until one year post-treatment. 

Outcomes were defined as favourable (stable cure) or unfavourable (failure/relapse). The 

effect of microbiological and pharmacological factors on outcome was assessed.       

Results:  169 patients (59% with HIV co-infection) were recruited. Of 133 final outcomes, 

15 (11%) were unfavourable. Partial likelihood non-linear mixed effects (NLME) modelling 

of SSCC data from 86 (64%) patients showed biphasic bacillary elimination; slow late-phase 

eradication of persisters was associated with unfavourable outcome (p=0.001). Linear 

mixed effects (LME) modelling of TTP data from 124 (93%) patients showed that a slower 

MGIT Bacillary Elimination Rate (MBER) was associated with unfavourable outcome 

(p=0.007). 28% (range 0-79%) of acid-fast bacilli in baseline sputum samples were LB 

positive. During the first month there was a trend towards higher LB counts in patients who 

went on to have unfavourable vs. favourable outcomes (p=0.085). Low plasma rifampicin 

and isoniazid concentrations were reported in 87% and 50% patients respectively. A lower 

isoniazid AUC0-6hr exposure was associated with unfavourable outcome (p=0.035).    

Conclusions: The two main findings were: 

1. Modelling of bacillary elimination during the first 2 months of TB therapy predicted long-

term outcome. The MBER, in particular, could be calculated for 93% of patients and should 

be considered as a surrogate marker for early clinical trials.   

2. The observation of a higher proportion of LB positive bacilli in later sputum samples from 

patients with unfavourable outcomes suggests that these may be drug-tolerant persister 

cells, with negative implications for treatment efficacy.   
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1. General Introduction 

1.1 Tuberculosis (TB) 

Tuberculosis (TB) is a disease which has plagued humankind for many millennia. Global 

dissemination of the causative pathogen, Mycobacterium tuberculosis probably began 

15,000 years ago1 but the organism was not identified until the work of Robert Koch in 

18822. At that time TB accounted for up to 25% of deaths in Europe3. 

Mortality from TB in industrialised countries declined dramatically in the first half of the 

20th Century, largely due to improvements in living standards (housing, nutrition and 

income)4. A series of groundbreaking advances in anti-mycobacterial chemotherapy 

between the 1940s and the 1980s resulted in the development of drug regimens with 

proven efficacy in curing the disease and for a brief period it appeared that the major 

obstacles to global TB control had been overcome. However, two important events 

dispelled this optimism; the collapse of Public Health infrastructure in former Soviet states 

resulted in an epidemic of multidrug resistant (MDR) TB amongst marginalised populations 

in Eastern Europe5 and the unrestrained Human Immunodeficiency Virus (HIV) pandemic 

fuelled a dramatic upsurge in morbidity and mortality from all forms of TB worldwide, 

particularly in southern Africa6. Up to one third of the world’s population are latently 

infected with M tuberculosis7 and in 1994 the World Health Organisation (WHO) declared 

that TB control was a “global emergency” 8. In 2011, there were an estimated 8.7 million 

new TB cases and 1.4 million people died of the disease9. 

In 2000, the United Nations set a series of Millennium Development Goals (MDGs). Target 6c 

was to halt and begin to reverse the rising incidence of tuberculosis by 201510. It currently 

appears that this target will be met. Additional goals set by the STOP-TB Partnership were 

that TB prevalence and mortality should be halved by 2015 compared with levels in 1990 and 

TB should be eliminated as a public health problem by 205011. A 50% reduction in global 

mortality may be achieved by 2015 amongst HIV non-infected patients. Yet this progress 

conceals regional variations and ongoing difficulties: Africa is not on track to reach the 

mortality goal, incidence and death rates in HIV co-infected individuals remain unacceptably 

high and critical funding gaps may jeopardise recent advances9.    

Improving the global response to TB requires development of shorter and better treatments. 

This will be facilitated by improved understanding of factors which influence the clinical 
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response to therapy and optimisation of the methodology for clinical trials of new drugs. 

These topics are the focus of this thesis. As the research to be described was conducted in 

southern Africa, the remainder of this chapter will outline the specific epidemiology of the 

related TB and HIV epidemics in that region. It will then provide background information on 

the main research questions. 

1.2 Recent epidemiology of TB: a focus on Africa 

The disproportionate impact of the global TB disease burden on Africa is well known. 22 

low- and middle-income countries account for more than 80% of active TB cases in the 

world and 9 of these are in Africa (DR Congo, Ethiopia, Kenya, Mozambique, Nigeria, South 

Africa, Uganda, Tanzania and Zimbabwe). Africa accounts for 79% of HIV-associated TB and 

8 countries in the south and east of the continent report ≥50% HIV sero-prevalence 

amongst new TB patients (Lesotho, Malawi, Mozambique, Namibia, South Africa, 

Swaziland, Uganda and Zimbabwe)9. Figure 1.1 compares TB incidence trends in these 8 

countries with other global territories to demonstrate the regional problem.  

 

Figure 1.1 Trends in estimated TB incidence in global sub-regions from 1990-2011 

Data extracted from WHO Global Tuberculosis Report 2012
9
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Even amongst the 8 African countries with the highest rates of HIV-TB co-infection 

epidemiological trends are diverse. South Africa and Swaziland have suffered a persistent 

rise in TB incidence during the last decade, whilst rates in other countries such as Malawi 

(where the work in this thesis was conducted) have begun to fall. MDR and extensively 

drug resistant (XDR) TB are well-described in South Africa12-14 and Swaziland15 but much 

less frequently reported in Malawi (Figure 1.2). The majority of data on the response to TB 

treatment in African patients currently come from South Africa. It is important that clinical, 

microbiological and pharmacological data are generated from other centres, both to 

validate findings which can be generalised and to highlight differences. 

 

 

 

Drug resistance amongst 
incident TB cases in 2011 (%) 

New 
cases 
which are 
MDR  

Cases in 
previously 
treated patients 
which are MDR 

South 
Africa 

1.8 6.7 

Swaziland 7.7 34 

Malawi 0.4 4.8 
 

Figure 1.2 TB incidence and MDR-TB rates in South Africa, Swaziland and Malawi 

Data extracted from WHO Global Tuberculosis Report 2012
9
 

1.3 HIV: contribution to TB morbidity and mortality 

Given their co-endemicity in Southern Africa, the close association between TB and HIV 

requires consideration. It is well known that the impairment in cellular immunity caused by 

HIV results in a 20-fold increase in the likelihood that latent TB infection will progress to 

active disease16. Whilst the lifetime risk of reactivating latent TB in HIV un-infected 

individuals is ≈10% the risk is nearer 10% per year in HIV-infected people17. The level of 

HIV-associated immunosuppression is also important; patients with CD4 counts <100 

cells/µl have a 10 times higher risk of acquiring TB than patients with CD4 counts >500 

cells/µl18. In patients with active TB, therapeutic principles and cure rates are not altered by 

HIV status19. However, HIV is associated with higher rates of relapse and re-infection after 

treatment particularly if an intermittent (non-daily) drug regimen is used or patients do not 
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initiate antiretroviral therapy (ART)20-23. These factors are important when analysing 

treatment response and outcome data. 

HIV affects the nature of TB presentation. Active TB in HIV un-infected individuals typically 

presents with sputum smear positive pulmonary disease but in HIV-infected patients, 

particularly at lower CD4 counts, disease commonly presents beyond the lungs in other 

body sites including the pleural, pericardium, lymphatic system and central nervous 

system3. Whilst the work in this thesis will focus on sputum smear positive pulmonary TB 

(PTB) it is important to acknowledge that some individuals may also have disseminated or 

extra-pulmonary (EP) disease which cannot easily be measured. 

1.4 Sputum smear microscopy for TB diagnosis and follow-up 

The primary tool for diagnosis of PTB and monitoring of treatment response in low-income 

countries is sputum smear microscopy. Although limited by poor sensitivity, particularly 

amongst HIV-infected individuals24, this technique is widely used because it is less 

expensive than newer methods (e.g. liquid culture25 and the molecular Xpert MTB/RIF 

assay26,27). Baseline smears help determine which patients require anti-TB treatment whilst 

samples 2 and 5 months into therapy are used to identify individuals at high risk of 

treatment failure28-31. In this thesis, the role of a modified sputum smear microscopy 

technique to identify a bacillary phenotype which responds poorly to therapy is evaluated 

and the basis of smear microscopy should be outlined.  

M tuberculosis organisms are acid-fast bacilli (AFB) meaning that they resist decolourisation 

by acid-alcohol during microbiological staining. As their thick cell wall is rich in mycolic acids 

(Figure 1.3) it absorbs standard microscopy stains very poorly. However, specific dyes bind 

directly to mycolic acid32 or pass through the cell envelope to bind intracellular DNA/RNA33. 

When stained specimens are treated with acid alcohol, TB bacilli retain these dyes whilst 

other cells and inorganic debris are decolourised and adopt subsequently applied counter-

stains. In the traditional Ziehl-Neelsen (ZN) AFB staining protocol (Appendix 10.4.1) red 

bacilli are seen against a blue background. This has been replaced in many centres by a 

more sensitive  Auramine-O Phenol (AP) technique (Appendix 10.4.2) which shows bright 

fluorescent yellow-gold bacilli against a black background and allows faster reading of 

slides at lower magnification34.  
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The thick cell wall and mycolic acid content confer the staining properties of acid-fastness. Inhibition 

of synthesis of some cell wall components is exploited by some anti-TB drugs. Lipoarabinomannan 

(LAM) is excreted in the urine forming the basis of potential new diagnostic tests.   

1.5 TB treatment: history and current therapy 

An understanding of contemporary research goals in TB therapeutics requires appreciation 

of how existing treatments were developed, why they are now inadequate and the 

obstacles delaying their replacement. 

1.5.1 Historical perspective 

Prior to the 1940s, TB chemotherapy was unavailable. Robert Koch initially proposed a role 

for immunotherapy based on the “Koch phenomenon” of delayed skin hypersensitivity 

following subcutaneous injection of tuberculin35, but this proved potentially harmful and no 

form of immunotherapy has since demonstrated efficacy in treatment of TB disease36-39. In 

the late 19th and early 20th Century environmental, nutritional and surgical measures were 

of limited benefit40,41. Surgery (including artificial pneumothorax, thoracoplasty and 

apicolysis) were also dangerous42. The case-fatality rate from pulmonary TB exceeded 50%.  

Development of sulfanilamide43 and penicillin44 to treat other bacterial infections 

generated hope that TB may be cured by antibiotics but the early drugs were not useful 

against mycobacteria45. However, in 1944, para-aminosalicylic acid (PAS) was synthesised 

and showed efficacy against M tuberculosis46. In the same year, streptomycin (S), was 

isolated from the soil actinomycete Streptomyces griseus 47 and in 1952, following 

observations that nicotinamide had anti-mycobacterial activity in animal models 48,49 the 

nicotinamide analogue isoniazid (H) was discovered43,50,51. Within ten years, three new anti-

TB agents had been found52. 

 

Polysaccharides 

Outer 
lipids 

Mycolic 
acid 

Peptidoglycans 

Plasma 
membrane 

Liporabinomannan 
(LAM) 

Phosphatidylinositol 
mannoside 

Figure 1.3 Structure of mycobacterial cell wall 
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These drugs were rigorously evaluated in the first randomized controlled trials to be 

performed in clinical medicine53-57 and it was quickly established that the initial response to 

chemotherapy especially in severe disease (e.g. meningitis) was life-saving. However, single 

drug therapy was compromised by the emergence of drug-resistant mutant organisms58,59. 

The natural frequency of mutants with resistance to each individual agent was much lower 

than the total bacillary load in a clinical infection60, facilitating the adoption of combination 

therapy61 as a means of ensuring durable cure62,63.  In the 1960s, PAS was replaced by 

thioacetezone (T) to reduce the cost of treatment and Canetti proposed a biological model 

of two phase therapy which has endured to the present day64. The principle was that, in 

early treatment an “intensive phase” of three or four drugs is necessary to rapidly reduce 

the bacillary burden without generating resistance, whilst in later treatment a prolonged 

“continuation phase” of one or two drugs may be used to eradicate residual organisms. A 

regimen with a 2 month intensive phase of STH followed by a 16 month continuation phase 

of TH was introduced in several countries65-67. However, in Kenya this regimen performed 

less well under routine conditions than it had in clinical trials68, providing an early indication 

of the difficulties associated with prolonged treatment. 

1.5.2 Development of ‘short course’ anti-TB chemotherapy 

Current “short course” chemotherapy has evolved from those early studies on the basis of 

a series of international multi-centre trials performed on sputum culture positive PTB 

patients from 1970 onwards by the Tuberculosis Research Unit at the British Medical 

Research Council (BMRC)69 the US Public Health Service and others. 

These trials depended on the re-introduction of an old drug, pyrazinamide (Z) and the 

discovery of a new one, rifampicin (R). Pyrazinamide, synthesized in 195270 and its 

derivative  morphozinamide71 are analogues of nicotinamide. Pyrazinamide has anti-

mycobacterial activity at acid pH in vitro72 and showed promise in animal models73 but the 

initial doses used for humans were hepatotoxic74,75 so, until the 1970s, it was excluded 

from trials of first-line treatment. Rifampicin is a semi-synthetic derivative76 of the natural 

product Rifamycin S, a major secreted antibiotic of Streptomyces mediterranei77. 

Synthesized in 1966, in vitro data suggested that it was highly active against mycobacteria78 

and early human studies were promising79,80. 

The First BMRC Collaborative Study in East Africa, commenced in 1970, indicated that a 6 

month combination of SHR was associated with effective cure and a post-treatment relapse 
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rate of only 3% at 2 years (equivalent to that of 2SHT/16HT). 6 months of SHZ was slightly 

less effective, but still resulted in only 8% relapses at 2 years. This historic result showed 

that rifampicin and pyrazinamide could facilitate dramatic treatment shortening81-83. The 

next two East African studies demonstrated that a 2 month, four drug intensive phase 

(SHRZ) achieved negative sputum cultures in more than 80% patients, and a subsequent 

continuation phase of daily TH or thrice weekly SHZ for 4 months resulted in a 2 year 

relapse rate of only 4-7%84-87. Later work revised the combination of continuation phase 

drugs and showed that rifampicin is beneficial when continued throughout therapy, whilst 

the effect of pyrazinamide is confined to the first 2 months (a result confirmed by a 

separate trial in Hong Kong88). In the Fifth and Sixth Collaborative Trials89-91 it was 

determined that an HR continuation phase was superior to any other option, reducing the 

relapse rate by more than 50% compared to isoniazid alone. These findings were supported 

by the results of United States Public Health Service Studies 18 to 2192-95 and a trial in the 

United Kingdom organized by the British Thoracic Association96.  

BMRC studies in Hong Kong and Algeria revealed that oral ethambutol (E) may replace 

parenteral streptomycin without compromising outcomes97-101. Although ethambutol is 

bacteriostatic rather than bactericidal, it is less toxic than streptomycin and its oral 

administration is more compatible with out-patient therapy. In 2004, the International 

Union Against Tuberculosis and Lung Disease (IUALTD) Study A validated an intensive phase 

of 2 months RHZE followed by a continuation phase of 4 months HR as the most efficacious 

and practical combination of currently available agents102. This regimen is currently the 

WHO approved first-line regimen for all forms of non-drug resistant TB30. Important 

characteristics of the constituents are summarised in Table 1.1. 

In retrospect, one of the most important results of the BMRC research effort was the 

Fourth East African Collaborative Study which evaluated five four month regimens and 

showed that, despite favourable early data, no combination of streptomycin, isoniazid, 

rifampicin and pyrazinamide at this duration achieved a 2 year relapse rate of less than 

10%. Furthermore, if rifampicin was omitted from the continuation phase relapses 

occurred in over 30% of patients (Figure 1.4)103,104.  Several smaller and less 

methodologically rigorous studies have since suggested that shorter regimens comprising 

current first line drugs might achieve lower relapse rates105 but, particularly in the era of 

HIV co-infection, the prevailing view until recently has been that treatment duration may 

not be shortened below six months106. 
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Drug Chemical class and main 
mechanism of action 

Key clinical studies supporting role in 
short course chemotherapy 

Isoniazid (H) 

  

Nicotinamide analogue 

Early bactericidal activity 

Pro-drug activated by KatG gene  

Generates nitric oxide and 
inhibits mycolic acid synthesis in 
the mycobacterial cell wall

107
 

 

Early studies (1950s & 60s): 

Culminated in 2SHT/16HT  regimen 
with 3% relapses at 2 years

83
  

BMRC studies in 1970s & 1980s: 

Used in all trial regimens
69

 

Rifampicin (R) 

 

Rifamycin  
Early bactericidal and sterilising 
activity 

Inhibits bacterial DNA-
dependent RNA polymerase to 

prevent protein synthesis
108

 

BMRC East Africa studies:  

6SHR:3% relapses at 2 years
83

  

2SHRZ: >80% SCC at 2 months
84,85

 

2SHRZ/4HR: >80% SCC at 2 months 
and 3% relapses at 2 years

89,91
 

IUALTD Study A: 

2RHZE/4RH: 5% 18 month relapses 
compared to 10%  with 2RHZE/6HE

102
 

 

Pyrazinamide (Z) 

 

 

Nicotinamide analogue 

Sterilising activity 

Pro-drug of pyrazinoic acid 

Requires acid pH
109

 

Inhibits Fatty Acid Synthase I
110

 

Inhibits trans-translation in 
dormant bacilli

111
 

BMRC East Africa Studies: 

6SHZ: 8% relapses at 2 years
83

 

2SHRZ: >80% SCC at 2 months
81,82

 

2SHRZ/4HR: >80% SCC and 3% 
relapses at 2 years

85,87
 

BMRC Hong Kong studies: 

Extending use of Z  for >2 months did 
not improve relapse rates, particularly 
in regimens containing R

88
 

 

Ethambutol (E) 

 

Parent  to ethylenediamines 

Bacteriostatic activity 

Inhibits arabinosyl transferase to 
disrupt arabinogalactan synthesis 
in mycobacterial cell wall

112
 

BMRC Hong Kong studies: 

6RHZE: 94% SCC at 2 months and 4% 
relapses at 5 years, no injections

98-100
 

BMRC Algeria studies: 

2RHZE/4RH: 3% relapses at 2 years, 
no injections

97,101
 

 

Table 1.1 Drugs used in current first-line anti-TB therapy 

BMRC=British Medical Research Council, IUALTD=International Union Against Tuberculosis and Lung 
Disease, Numbers before drug regimens specify duration in months. SCC= Sputum culture 
conversion. 

 

 

 

http://en.wikipedia.org/wiki/RNA_polymerase
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A

 

B 

  
Figure 1.4 Bacteriological outcomes from BMRC East Africa Second and Fourth Studies 

A: BMRC East Africa Second Study, Four 6 month regimens showing that 20-36% patients remained 
sputum culture positive at 2 months (green bars), 10-20% were culture positive at 6 months (gold 
bars), but <10% of cured patients relapsed by 2 years post-treatment (red bars)

84,85
. 

B: BMRC East Africa Fourth Study, Five 4 month regimens showing that whilst the proportion of 
positive sputum cultures was <20% at 2 and 4 months (green and gold bars), the 2 year relapse rate 
was unacceptably high (red bars). In particular, 30-40% patients who did not receive rifampicin (R) in 
the continuation phase suffered relapse

100,101
. 

 

1.6 The need for “ultra short” treatment  

Progress from no effective drugs to highly efficacious fully oral treatment within 40 years 

was impressive. However, no new first line anti-TB drugs have been identified since 

rifampicin in 1967 and failure to achieve further treatment shortening is problematic. As 

the strain of the global TB-HIV pandemic on healthcare resources in low-income countries 

has increased the need for “ultra-short” regimens has become urgent113 and predictions 

from mathematical models now suggest that therapy of less than 2 months duration could 

prevent 20% of new TB cases and 25% of TB deaths in some settings114. The major 

problems driving the need for “ultra-short therapy” will now be described.  

1.6.1 Adherence and resistance 

Until the 1960s, TB patients were managed in sanatoria. Thereafter, studies from south 

India proved that domiciliary therapy was equally effective to sanatoria based care and did 

not put household contacts at increased risk of infection115,116. The standard approach 

became out-patient treatment and it is now inconceivable that all TB patients should be 

hospitalised for the duration of therapy. 
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 However, case-holding and supervision of out-patient treatment for 6 months requires a 

robust infrastructure and as the number of incident TB cases increased in the 1990s, 

National TB Control Programmes (NTPs) in many low-income countries struggled to cope. 

The immediate response of the WHO was to support NTPs by implementing a strategy 

adapted from successful grass-roots programmes in resource-poor settings117-119. This so-

called DOTS (Directly Observed Therapy Short-Course) strategy achieved significant 

coverage in many parts of the world120 but a continuing rise in disease incidence121 and the 

growing emergence of M(X)DR-TB121 strongly argue that operational improvements alone 

will not achieve adequate TB control in high-burden countries until therapy is shortened. 

1.6.2 Drug-drug interactions with ART 

A second incentive to shorten treatment is the requirement, amongst HIV-infected 

individuals to combine TB drugs with ART. Mortality in HIV-infected patients with 

pulmonary TB is lower when antiretroviral therapy (ART) is initiated during the first few 

weeks of TB treatment122-124. However, the heavy pill burden associated with co-

administration of several concurrent medications can be confusing and poly-pharmacy 

increases the risk of drug-drug interactions. Rifampicin potently induces the activity of 

multiple hepatic cytochrome P450 isoforms including CYP3A4125 which accelerates the 

metabolism of some anti-retrovirals (particularly protease inhibitors and non-nucleoside 

reverse transcriptase inhibitors). This may result in sub-therapeutic plasma concentrations 

of ART. TB regimens which can be completed more quickly to avoid interference with ART 

are desirable. 

1.6.3 Drug toxicity 

Although generally well-tolerated, all of the first line anti-TB drugs have side effects; 

rifampicin, isoniazid and pyrazinamide are potentially hepatotoxic126, isoniazid may cause 

peripheral neuropathy127, pyrazinamide is associated with raised uric acid levels and joint 

pain128 and ethambutol can cause optic neuritis129. Some side-effects are mediated by 

discordant immune reactions making them more common in HIV-infected individuals130. 

Others overlap with ART toxicities or exacerbate co-existent pathologies (e.g. peripheral 

neuropathy can be caused by isoniazid, the anti-retroviral agent stavudine and a direct 

neuropathic effect of the HIV virus131). Amelioration of harmful effects would be easier if TB 

treatment was less protracted.  
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1.7 Bacterial persistence and the need for sterilisation 

The need to reduce the duration of therapy prompts consideration of why this has not yet 

been achieved. M tuberculosis organisms recovered from relapsed patients almost always 

have the same antimicrobial susceptibilities as the original infection132 indicating that 

mycobacterial survival does not depend on the acquisition of genetic resistance mutations. 

Drug-susceptible organisms may develop phenotypic tolerance allowing them to remain 

viable in the company of antimicrobial agents. This phenomenon, known as 

persistence133,134, is only overcome by prolonged administration of anti-TB drugs135.  

Persistence is not new, nor is it unique to TB. In 1942, Hobby, Meyer and.Chaffee found 

that penicillin treatment of streptococci left 1% of susceptible organisms intact136, and in 

1944 Bigger described the problem more carefully137, suggesting that antibiotic efficacy 

may be diminished by sub-populations of bacteria which enter a dormant state and are not 

killed. For many years, further study of persistence was deemed unnecessary because most 

pathogens which evade antibiotics are eliminated by host immunity. However, there are 

specific instances when this does not occur; in immunosuppressed patients, in pathogens 

which adapt to the immune response and in immunologically inaccessible anatomical 

niches138. It is clear from the natural history of latency and reactivation that all of these 

scenarios are applicable to TB, particularly in the era of HIV139. 

In the last decade, renewed study of several bacteria140-143 including M tuberculosis144 has 

shown that a range of molecular processes may promote persister formation via 

stochastic145 and deterministic146 mechanisms. Some key advances in this field will now be 

reviewed, focussing on those of specific relevance to the research questions posed by this 

thesis. 

1.7.1 Mycobacterial persistence and metabolic quiescence in the laboratory 

In the 1950s and 60s, McDermot developed the “Cornell mouse model” to provide the 

earliest description of persistence in M tuberculosis. Three months of treatment with RHZ 

resulted in apparent sterilisation of organ cultures from diseased mice but infection could 

be revived in survivors by immunosuppression with corticosteroids147,148. In 2000, this 

model was updated using molecular techniques to show ongoing M tuberculosis 

transcriptional activity by detection of mRNA in the lungs and spleens of culture negative 

mice 14 weeks into therapy149. These data, corroborated by similar findings in guinea pigs, 

support Bigger’s hypothesis that persistence is achieved by down-regulation of metabolic 
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activity in not replicating bacteria. Following this lead, numerous in vitro models have been 

developed in which Non Replicating Persister (NRP) bacilli are induced by exposure to 

environmental stressors including low oxygen concentration150-153, high pH154, and 

starvation155. Extensive study using the hypoxic Wayne model151-153 has shown that 

rifampicin is 50% less effective against NRPs and isoniazid has no activity at all156. 

Additionally, drug exposure may promote metabolic quiescence and arrest of cellular 

replication. In vitro and in vivo models of mRNA transcription show that uptake of radio-

labelled 3H-uridine falls to 15% of that observed in log phase cultures when rifampicin is 

added and returns to normal levels when it is removed149. The experimental evidence for 

drug-tolerant persistence by metabolic shut-down seems strong. 

However, extrapolation of these experimental findings to treatment responses in clinical TB 

infection is not straightforward. Pathological lesions157 and drug metabolism158,159 during 

animal and human TB are different and the power of in vitro models to predict bacterial 

behaviour or drug activity beyond the laboratory is unproven. Clinical perspectives are 

needed to relate this work to the problem of shortening anti-TB therapy. 

1.7.2 Bacillary sub-populations and metabolic activity 

An influential description of bacillary persistence in the context of clinical TB chemotherapy 

is the metabolic sub-populations hypothesis proposed by Mitchison in 1979160,161 and 

schematically illustrated in Figure 1.5. Mitchison argued that metabolically distinct 

populations of bacilli occur naturally and are targeted differently by individual drugs, 

resulting in a biphasic model of bacillary elimination. An “Early Bactericidal Phase” occurs in 

the first 5-7 days of treatment when rapidly replicating, metabolically active organisms 

(Population A) are killed by isoniazid162,163 at a fast elimination rate (α). After this, most 

surviving bacilli are in varying states of non-replicating persistence (depicted as Population 

B). As isoniazid is ineffective against NRPs they are eradicated slowly during a prolonged 

“Sterilisation Phase”. For up to two months, acute tissue inflammation creates a sufficiently 

acidic environment to support the potency of pyrazinamide against NRPs with intermittent 

spurts of metabolism (Population B1)
162. Thereafter rifampicin is the main sterilising drug 

against quiescent organisms (Population B2). The overall “Sterilisation Phase” bacillary 

elimination rate (β) is slow, suggesting that improved activity against NRPs will be 

necessary for shorter therapy to be achieved.  
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Figure 1.5 Mitchison's bacillary sub-populations hypothesis 

Metabolically distinct sub-populations of TB bacilli are proposed to be responsible for bacillary 

persistence and biphasic bacillary elimination
160

. The Intensive and Continuation Phases of standard 

first line chemotherapy are shown by white and grey background shading. In this thesis, Populations 

B1 and B2 will be discussed collectively as ‘persisters’.  However, it is possible that further 

heterogeneity in the elimination of these cells adds further complexity to TB treatment response. 

 

Although this is a compelling proposition, the factors driving bacillary heterogeneity remain 

incompletely understood. Knowledge of mycobacterial cell biology and TB pathogenesis 

may be used to generate a partial explanation (Figure1.6). 

Pathogenic mycobacteria often use fatty acids rather than carbohydrate as carbon 

substrates during infection163,164. The classical histological lesion of human TB is the 

granuloma, where bacilli are surrounded by host macrophages. On contact with the M 
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tuberculosis cell wall, some host cells differentiate into ‘foamy’ macrophages containing 

large lipid droplets165,166. Electron Microscopy (EM), radio-isotope labelling and 

fluorescence studies have shown that bacilli internalised by macrophages migrate inside 

these lipid droplets to consume and degrade them as a fatty acid source167,168. 

Mycobacteria can then break down fatty acids by β-oxidation to Acetyl CoA which is 

combined with oxaloacetate by citrate synthase (Cit A) to form citrate, a metabolite of the 

tricarboxylic acid (TCA) cycle. This drives oxidative respiration and amino acid synthesis.  

However, exposure of M tuberculosis to a variety of in vitro stresses (hypoxia, iron 

limitation, low pH and nitric oxide) have identified a 48 gene transcription factor called 

DosR which co-ordinates cell entry to a NRP state169,170. The specific role of this regulatory 

system in antibiotic tolerance is controversial150,171 but it increases expression of the tgs1 

gene encoding an enzyme called TAG synthase, known to stimulate production and storage 

of intra cytoplasmic triacylglycerol (TAG)154,172,173. When DosR/tgs1 mediated TAG synthesis 

is up-regulated there is competition for Acetyl CoA limiting its availability and creating a 

process akin to hibernation; TAG is retained as an intracellular energy store and cell growth 

is arrested173. During prolonged starvation an additional gene lipY is expressed174, encoding 

an enzyme which hydrolyses intra-bacillary TAG stores back to Acetyl CoA for generation of 

energy. Overall, DosR, tgs1, and lipY may constitute a sophisticated mechanism of 

substrate storage and re-mobilisation compatible with persistence during periods of stress. 

This model is supported by data showing that mutant bacilli with tgs1 deletion or citA over-

expression are less able to survive hypoxia and antibiotic exposure than wild-type 

organisms, perhaps because they are unable to arrest growth in adverse circumstances and 

die as a consequence of unsustainable metabolic activity. [14C] radio labelling has shown 

that TCA and TAG pathways compete for the same carbon pool173. 

The possibility that TAG accumulation is a behavioural characteristic of persisters with 

reduced antibiotic susceptibility raises the possibility of intra-cellular TAG labelling as a 

phenotypic marker of Mitchison’s metabolically quiescent sub-populations (B1 and B2 from 

Figure 1.5). Empirical evidence is lacking but three studies have used fluorescence 

microscopy to study the relationship between TAG lipid bodies, bacillary persistence and 

antibiotic tolerance154,168,175. This will be discussed further in Chapters 5 and 6. 
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M tuberculosis uses fatty acids from host macrophages to generate Acetyl-CoA. Under stress, Tgs1 
drives formation of bacillary TAG stores from Acetyl-CoA, reducing its availability for the tricarboxylic 
acid cycle (shown in green) and glycoxylate shunt (shown in blue). This may result in metabolic 
quiescence and persistence. LIPY catabolises TAG during starvation, regenerating Acetyl-CoA as an 
energy source.  

Figure 1.6 Model of lipid metabolism, TAG stores and persistence in M tuberculosis 
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Other metabolic processes have also been implicated in persistence. Figure 1.6 shows an 

intracellular pathway known as the glyoxylate shunt used by bacteria to replenish some 

TCA cycle intermediates176. Entry to this shunt is gated by two isocitrate lyase enzymes and 

deletion of the icl 1 and icl2 genes encoding these prevents long-term bacillary 

survival164,177.  Single gene associations in other energy generation systems (sucB178, 

menA179, cydC180) and the stringent response to starvation (RelA181) may also be important. 

Over 30 Toxin-antitoxin (TA) modules have been recognised in the M tuberculosis 

genome182,183. These encode mRNases that rapidly degrade mRNA, stopping translation of 

new proteins and slowing metabolism. TA-mediated persistence has been extensively 

researched in E coli184. 

Some recent data support metabolic mechanisms of persistence which are not related to 

arrest of replication. Experiments using time-lapse microscopy to record single cell 

replication of M smegmatis in a micro-fluidic device185 have shown that cell death may be 

associated with pulsed stochastic expression of key proteins (e.g. cells which randomly 

produce the isoniazid activating enzyme catalase peroxidise [KatG] are killed whilst those 

which do not express this gene survive)185. It seems likely that persisters acquire drug 

tolerance in multiple ways and clinical treatment shortening may require improved 

understanding of all of them. 

1.7.3 Bacterial impermeability: the cell wall, porins and efflux pumps 

Aside from altered intracellular metabolism, the physical and biological properties of the M 

tuberculosis cell wall may contribute to persistence by manipulating permeability to anti-

microbial agents. Lipid-rich cell wall components186(Figure 1.3), are notoriously 

impenetrable to small hydrophilic molecules, including three of the current first line anti-TB 

drugs (isoniazid, pyrazinamide and ethambutol) which must negotiate cell entry via 

transmembrane porins (e.g. MspA) 187 188. Conversely, cell wall efflux transporters of the 

MFS, SMR, RND and ABC superfamilies229,230 actively export drug metabolites from the 

cell189. Although constitutive expression of efflux pumps has been implicated in genotypic 

TB drug resistance190-193 the role of variable porin and efflux pump expression as 

persistence mechanisms in DS-TB is unknown. These factors will not be explored further in 

this thesis but should be borne in mind. 
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1.7.4 Clinical environments for bacillary growth 

The last persistence mechanism for current discussion is that poor tissue sterilisation may 

occur if organisms are sequestered in sanctuary sites where growth conditions favour 

persistence or penetration of drugs and immune responses are reduced. 

M tuberculosis is known to be adaptable to an intracellular lifestyle. Although the specific 

location of bacilli during the course of clinical disease remains controversial167,194,195, it is 

known that mycobacteria within macrophages have access to rich nutritional stores166 and 

an extended armoury of intracellular immune and drug avoidance machinery including 

reduced acidification of the phagosome196,197 and additional drug efflux pumps in host cell 

membranes198. Intra-cellular bacilli, therefore, may be well placed to become persisters. 

Amongst pathological TB lesions, the tissue oxygen tension of open pulmonary cavities (60-

100mmHg) is higher than that of closed granulomas (3mmHg)199,200. As bacilli in closed 

lesions grow more slowly188, these were historically proposed as a niche for persister 

survival. This hypothesis is now deemed an oversimplification because patients with open 

cavities on chest X-ray (CXR) and HIV-infected individuals without closed granulomas may 

be at high risk of relapse135,201,202, but a possible association between hypoxia and 

persistence is maintained by the recent observation that a 20% reduction in oxygen 

saturation significantly increases mycobacterial antibiotic tolerance203. This may occur 

because many antibiotics cause cell death though generation of Reactive Oxygen Species 

(ROS)140,204-207 and ROS generation diminishes in proportion to oxygen availability208. It is 

possible that metabolic and environmental persistence mechanisms are synergistic; TAG 

synthesis may deplete the TCA cycle of metabolites required for ROS production173 in a 

process exacerbated by hypoxia at the site of infection203. 

Finally, lymphatic or haematogenous dissemination of bacilli may allow infection to settle 

in organs where bacterial eradication is difficult. M tuberculosis DNA has been found in 

adipose tissue of patients with latent TB infection or active disease209 and viable bacilli have 

been grown from liquid culture of CD271+ bone marrow stem cells in patients who had 

apparently been cured of clinical TB by six month chemotherapy210. 

1.7.5 Bacillary persistence and drug development 

Improved understanding of bacillary persistence is important to the development of new 

TB treatments. Effective ultra-short chemotherapy will require compounds which either kill 

persister organisms or prevent persister formation173,203 and pre-clinical assessment of new 
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anti-TB compounds now routinely incorporates in vitro NRP models151,211-213. Animal studies 

are undertaken to test whether new drug regimens accelerate culture sterilisation and 

prevent relapse214-216 because these end-points are deemed to reflect persister eradication. 

However, no established laboratory assays directly label phenotypic persisters or 

specifically measure sterilising drug activity in clinical samples. This means that when early 

clinical studies of 8 weeks duration are performed in humans to predict the likely long-term 

efficacy of new regimens, the appropriate choice of study end-points remains unclear.  

1.8 New drugs and treatment strategies 

For the first time in 50 years, many new compounds are emerging from the drug 

development pipeline (Figure 1.7) for assessment in clinical trials against drug susceptible 

(DS) and M(X)DR TB. Ongoing or planned Phase IIb and III studies against DS-TB are 

summarised in Table 1.2. The apparent variation in the choice of efficacy end-points in the 

Phase IIb protocols directly reflects the lack of consensus on which measurement best 

reflect sterilisation. A closer analysis of recent data and ongoing trials illustrates this point. 

Discovery and pre-clinical 
development 

 

Clinical Development 
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Mycobacterial 
Gyrase  Inhibitors 
Riminophenazines 
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Figure 1.7 The global TB drug development pipeline 

Schematic from the Working Group on New Drugs, Stop TB Partnership adapted from Leinhardt et 

al
217

. Chemical drug classes are shown in different colours: rifamycin (dark blue), fluoroquinolone 

(red), diarylquinoline (orange), nitroimidazopyrans (green), diethylamine (grey), oxazolidine (purple). 
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Drug 
classes 

Study Sites Recruitment groups Regimens Primary end-point(s) 

Phase III studies 

Q 
OFLOTUB 
NCT00216385 

Benin, Guinea, Kenya, Senegal, S Africa 
DS-TB 
HIV-/+ 

2RHZG→2RHG 
2RHZE→4RH 

Evaluate at 30 months: 
Clinical failure/relapse 

Q 
REMoxTB 
NCT00864383 

China, India, Kenya, Malaysia, Mexico, S 
Africa, Tanzania, Thailand, Zambia 

DS-TB 
HIV-/+ 

2RHZM→2RHM 
2RMZE→2 RM 
2RHZE→4RH 

Evaluate at 18 months: 
Clinical failure/relapse 

Phase IIb studies with 8-12 week microbiological end-points 

R
y 

Q Uni of Munich 
NCT01785186 

S Africa, Tanzanzia DS-TB 
3R35mg/kgHZE, 3RHZQ 
3R20mg/kgHZQ, 3R20mg/kgHZM 
or  RHZE 

Proportion of patients with SCC 
Time to SCC 

Ed 

Ry 
High RIF 
NCT00760149 

Tanzania DS-TB 2R600/900/1200HZE 
Proportion  of patients with SCC 
Time to SCC 
Bacillary elimination rate  

Ry 
HIRIF 
NCT01408914 

Peru ,Brazil 
DS-TB 
HIV- /+ (CD4>350/µl) 

2R600/900/1200HZE  
Proportion  of patients with SCC 
Time to SCC 
Bacillary elimination rate 

Ry 
JHU Study 
NCT00814671 

S Africa 
DS-TB 
HIV-/+(CD4>200/µl) 

2RHZE 
2Rp450/600HZE 

Proportion of patients with SCC 

R
y 

Q 
JHU Study 
NCT00728507 

Brazil 
DS-TB 
HIV-/+(CD4>200/µl) 

2Rp300/450HZM 

2RHZE  
Proportion of patients with SCC 

Q N 
Global Alliance 
NCT01498419 

Brazil, S Africa, Tanzania 
DS and MDR-TB 
HIV-/+(CD4>200/µl) 

DS-TB: 2MPa100/200Z 
DS-TB: 2RHZE 
MDR-TB: 2MPa200Z 

 Bacillary elimination rate  

Table 1.2 Current Phase IIb/III clinical efficacy trials against DS-TB 

Drug classes colour coded as in Table 1, Ry=rifamycins, Q=fluoroquinolones, D=Diarlyquinoline, N=nitroimidazopyran, Ed=diethylamine. Numbers before drug regimens 
specify duration in months. Drugs: R=Rifampicin, Rp=Rifapentine, M=moxifloxacin, G=Gatifolxacin, O=Ofloxacin, Z=Pyrazinamide, E=Ethambutol, J=Bedaquiline, 
D=Delamanid, Pa=PA-824. SCC=Sputum culture conversion. Varying dosages are indicated by subscript.



Chapter 1  General Introduction   
 

20 
 

1.8.1 Re-evaluating the rifamycins 

Rifampicin is a key sterilising component of first-line therapy. It is lipophilic so penetrates 

the mycobacterial cell wall and retains efficacy throughout treatment but the current dose 

(10mg/kg) is low and was originally selected to minimise costs218. When the price dropped 

after the 1960s, higher dosing was not attempted due to concerns about toxicity. Recent 

experience of using up to 1200mg/day in non-mycobacterial infections now suggests that 

dose escalation is possible219. Animal and early clinical studies also indicate that rifampicin 

activity against M tuberculosis is concentration dependent and a 10mg/kg human dose may 

be at the very bottom end of a steep dose-response curve220.  

Two Phase IIb studies of “high dose” rifampicin TB treatment (High RIF 

[www.clinicaltrials.gov identifier NCT00760149] and HIRIF [NCT01408914]) are underway. 

Both compare regimens containing rifampicin 600-1200mg on sputum culture results 

during the first 8 weeks. An additional 12 week trial (PanACAEA MAMS Study, 

NCT01785186) of 4 experimental regimens including extended rifampicin dosing (10-

35mg/kg) will start soon. 

Table 1.2 shows that three efficacy end-points are being used in these studies; the 

proportion of patients who convert to negative sputum cultures by the end of the study, 

the time from initiating therapy to culture conversion and estimates of the bacillary 

elimination rate derived from statistical modelling. Multiple end-points are used because 

the best marker of sterilising activity is unknown, but if results are inconsistent (e.g. faster 

culture conversion at higher rifampicin doses but no difference in the overall proportion of 

culture negative patients at 8 weeks) interpretation of the differences between treatment 

regimens will be difficult. 

Rifapentine is an alternative rifamycin with greater in vitro potency than rifampicin and 

mouse models suggest that daily rifapentine-based regimens may allow shorter treatment 

without increasing relapses221. One multi-centre Phase IIb clinical trial (Tuberculosis 

Treatment Trial Consortium [TBTC] study 29) has described equivalent 8 week sputum 

culture conversion rates between 2 months of rifapentine (10mg/kg)-isoniazid,-

pyrazinamide-ethambutol and standard RHZE222 and two further studies are ongoing 

(NCT00814671 and NCT00727507). A Phase III study (the RIFAQUIN trial) of novel four and 

six month regimens including rifapentine has recently reported results which will be 

discussed in Section 1.8.2.  

http://www.clinicaltrials.gov/
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1.8.2 Defining the role of 8-methoxyquinolones 

The fluoroquinolones target DNA gyrase223 with excellent activity against M tuberculosis. 

Levofloxacin and the 8-methoxyfluoroquinolones (8-MQ: moxifloxacin and gatifloxacin) are 

used in MDR-TB218. In vitro and murine studies have shown that 8-MQs are bactericidal 

against rifampicin-tolerant persisters211 and might allow treatment shortening in drug 

susceptible TB214,224 . Four important Phase IIb studies have been completed to assess the 

efficacy of 8-MQs in humans (Table 1.3).  

Two multi-centre TBTC studies compared RHZE with regimens in which moxifloxacin 

replaced ethambutol (Study 27)225 or isoniazid (Study 28)226. Both were based sputum 

culture conversion at 8 weeks and neither reported better outcomes with moxifloxacin. 

Conversely, investigators from John Hopkins University (JHU) assessed moxifloxacin-

ethambutol substitution and reported better outcomes on the moxifloxacin arm. The TBTC-

27 and the JHU study used different culture media (liquid broth and Lowenstein Jensen [LJ] 

slopes respectively) and this may have contributed to the conflicting outcomes227.  Finally, 

the OFLOTUB consortium evaluated the effect of ethambutol replacement by moxifloxacin, 

gatifloxacin or ofloxacin by modelling bacillary elimination to show that regimens with 

moxifloxacin and gatifloxacin had greater sterilising activity than those with ethambutol or 

ofloxacin228.  The statistical techniques used by OFLOTUB will be discussed in Section 1.10.2 

but these results implied that 8-MQs accelerate bacillary clearance.  

The overall trend towards faster sputum sterilisation with 8-MQ-based combinations 

prompted progression to several multi-centre Phase III trials. The first of these to report 

was the RIFAQUIN trial which compared standard six month 2RHZE/4RH with two new 

regimens; a 6 month course in which isoniazid was replaced by moxifloxacin during the 

intensive phase and once weekly rifapentine-moxifloxacin was given during the 

continuation phase, and a 4 month regimen comprising 2 months of daily rifampicin-

moxifloxacin-pyrazinamide-ethambutol followed by 2 months of twice weekly rifapentine –

moxifloxacin. The new 6 month regimen was equivalent to standard therapy, but the 4 

month regimen was inferior (26% treatment failures/relapses vs. 5% on RHZE) suggesting 

that this approach to treatment shortening was unsuccessful229. Data from the OFLOTUB 

(NCT00216385) and REMoXTB (NCT00864383) studies are awaited to establish whether the 

8-MQs might still facilitate ultra-short first-line therapy but the RIFQUIN results are a 

reminder that encouraging data from pre-clinical and Phase II studies may not translate 

into success when final clinical end-points are measured. 
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Study Site Regimens Duration Endpoint(s) Results 
TBTC-27

225 North America 
Brazil 
South Africa 
Spain, Uganda 

RHZM  
RHZE 

8 weeks Sputum culture 
conversion in liquid broth 

SCC in 99/139 (71.0%) RHZM patients vs. 98/139 (71.0%) RHZE patients 
(p=0.97) 
 
Secondary analysis at 4 weeks showed SCC in 62/167 (37%) RHZM 
patients vs. 43/165 (26%) RHZE patients (p=0.05)   

TBTC-28
226 North America 

Brazil 
South Africa 
Spain, Uganda 

RMZE 
RHZE 

8 weeks  Sputum culture 
conversion in liquid broth  

SCC in 90/164 (54.9%) RHZE patients vs. 99/164 (60.4%) RMZE patients 
(p=0.37); small but non-significant increase in culture conversion on 
RMZE 

JHU
227 Brazil RHZM  

RHZE 
8 weeks Sputum culture 

conversion  on LJ slopes 
SCC in 59/74 (80%) RHZM patients vs. 45/72 (63%) RHZE patients (p=0.03) 
 
Secondary analysis showed shorter time to culture conversion in RHZM 
patients (p=0.005) 

OFLOTUB
228 South Africa RHZM, 

RHZG, 
RHZO  
RHZE 

8 weeks Regression co-efficient of 
sterilisation phase 
bacillary elimination rate  

Significantly greater regression co-efficients for RHZM and RHZG than 
RHZE (p=0.002 in both cases) 
 
No difference in regression co-efficients between RHZO and RHZE 
(p=0.14) 

Table 1.3 Phase IIb treatment trials involving the 8-methoxyfluoroquinolones 

R=Rifampicin, H=Isoniazid, Z=Pyrazinamide, E=Ethambutol, M=Moxifloxacin, G=Gatifloxacin, O=Ofloxacin, LJ=Lowenstein Jensen media, SCC=Sputum culture conversion
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1.8.3 The emergence of bedaquiline (TMC-207) 

Unlike the rifamycins and fluoroquinolones, the diarylquinoline, bedaquiline is an entirely 

new compound with a novel mechanism of action. It has attracted recent attention 

because the US Food and Drug Administration has granted it accelerated approval for use 

in MDR-TB regimens230. A provisional licence was issued in 2012 on the basis of emerging 

data from two Phase IIb studies in patients with drug-resistant disease231-233 and a Phase III 

study is planned. It may also have sterilising and treatment-shortening activity in DS-TB.  

In vitro and animal studies suggest that bedaquiline has desirable properties for a sterilising 

drug. It works by selective inhibition of mycobacterial ATP synthase, an enzyme required to 

maintain cell membrane potentials, even in metabolically quiescent organisms156,234,235. It is 

bactericidal in culture-based models of bacillary persistence and has been included in new 

drug combinations which achieve stable cure without relapse in mouse models236,237.   

In humans, a dose ranging study assessed the Early Bactericidal Activity (EBA) of 

bedaquiline by measuring the fall in sputum bacillary load in PTB patients over seven days 

of monotherapy. Interestingly, there was no EBA for the first four days but a daily dose of 

400-800mg had equivalent efficacy to isoniazid and rifampicin from Day 5 onwards238. This 

delayed onset of action may reflect the time required for depletion of intra-bacillary ATP 

stores or accumulation of therapeutic drug levels. These results demonstrate that activity 

during the first few days may be a poor marker of a new drug’s sterilising activity.  

1.8.4 The nitroimidazopyrans and other drug classes 

In addition to the agents that have been described in detail, two nitroimidazopyrans 

deserve mention. PA-824 239 and delamanid (OPC-67683)240 have bactericidal potency 

against replicating and non-replicating organisms. Murine studies have indicated 

treatment-shortening sterilizing activity and accelerated time to culture conversion when 

either drug is combined with rifampicin-pyrazinamide240,241 or PA-824 is combined with 

moxifloxacin-pyrazinamide226. One clinical study has shown the efficacy of PA-824 

monotherapy to be only slightly lower than that of RHZE during the first 14 days of 

treatment for DS-TB242 but longer trials of the nitroimidazopyrans are currently focussed on 

MDR-TB rather than first line therapy. 

Other drugs including new oxazolidinones (sutezolid [PNU-100480] and posizolid 

[AZD5847]) 243and the ethylenediamine SQ109 244,245 are at earlier stages of development. 

As they reach clinical evaluation the range of agents for new regimens will increase. 
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1.9 From sterilising drugs to new regimens: the challenge for 

clinical trials 

Whilst the recent upsurge in research activity on novel TB treatments is encouraging, only 

rifapentine and the 8-MQs have been assessed in the type of rigorous Phase III clinical trial 

required before a new regimen can enter clinical practice for DS-TB.  

Mobilising the global research capacity to undertake Phase III trials is a major 

undertaking246 because the obligatory comparator regimen of current short course 

chemotherapy is highly efficacious69 and the necessary clinical end-point of post-treatment 

relapse247 requires prolonged follow-up. Introduction of methods for accurate strain 

differentiation using the IS6110 insertion sequence248 and spoligotyping249 reveal that an 

end-point of relapse may also be contaminated by a proportion of re-infections unrelated 

to treatment failure250. This problem may be amplified in HIV-infected cohorts. 

Considering these factors, superiority designs for new Phase III trials are not feasible and 

trials based on non-inferiority require approximately 500 patients per arm on study for 18-

30 months251. As a case in point, RIFAQUIN started in 2008 and recruited 872 participants 

before finally reporting a negative result for shortened therapy in 2013. It is clear that pre-

trial screening of future candidate regimens should be meticulous in order to maximise the 

likelihood of success. 

This reinforces the argument made in Sections 1.7 and 1.8 that there is need to optimise 

and standardise efficacy end-points for future Phase IIb treatment studies. These end-

points should be selected to achieve two distinct but closely related goals: 

1. From a microbiological perspective, they should measure the bactericidal effect of new 

regimens on “Sterilisation Phase” persister bacilli 

2. From a clinical perspective, they should function as reliable surrogate biomarkers to 

predict the likelihood of post-treatment relapse from early studies of putative new 

regimens216,252,253.  

The second of these goals will now be discussed in more detail. 
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1.10 Surrogate end-points for TB treatment trials 

1.10.1 Desirable properties for a surrogate end-point 

Selecting the best biomarker for clinical TB studies requires an understanding of the 

principles of surrogacy254. A perfect marker would be measured early in treatment but 

capture all of the information available in a distant clinical reference endpoint. If the 

surrogacy were strong enough the reference end-point may even be completely replaced 

(Figure 1.8)255 but this almost never occurs.  

 

As virtually all biomarkers are imperfect, consideration of the varying extent of surrogacy is 

important256. In particular, it is clear that biomarker evaluation is a cumulative process 

proceeding at two levels; the individual patient’s response and the aggregated response in 

the arms of a trial257. Very firm validation is necessary for surrogate markers intended as 

decision making tools for the patient management, whilst a lower level of precision may be 

acceptable for end-points in clinical studies designed to optimise new drugs and learn 

about dose-response 258 This is especially true if data from several Phase IIb studies will be 

meta-analysed259 prior to regimen selection for a definitive Phase III trial based on the 

original reference end-point256,257. 

In general, a practically useful surrogate end-point should have a biologically plausible, 

preferably mechanism based, causal relationship with the reference endpoint. It should 

Disease 
Surrogate 

endpoint 

Reference 

(clinical) 

endpoint 

Treatment 
1 

2 

Time 

Figure 1.8 Surrogate endpoints in clinical trials 

A perfect surrogate marker would be measured before the reference (clinical) endpoint, but contain 

all of the information contained within it. No treatment effect would bypass the surrogate (1) and no 

other causal disease pathway would influence the reference endpoint without similarly influencing 

the surrogate (2). 
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also have useful statistical properties (i.e. be quantifiable and assessable) and successfully 

complete a process of validation against the reference endpoint260 

1.10.2 Biologically plausible surrogate markers for TB 

Elements of the TB treatment response with a biologically plausible relationship to 

outcome may be divided into three categories: 

 Pharmacodynamic (bacterial) response – the relationship between anti-TB 

chemotherapy and bacillary elimination 

 Clinical/immunological response – the relationship between host (patient) 

physiology and M tuberculosis organisms during TB disease 

 Pharmacokinetic response – the relationship between host (patient) physiology 

and anti-TB drugs.  

Interactions between these elements are illustrated in Figure 1.9, preceding a discussion of 

the potential role of each element in the development of new surrogate markers for Phase 

IIb trials of new treatment regimens.  

 

Red boxes represent bacterial, pharmacological and clinical factors, white boxes represent elements 

of treatment response and gold boxes indicate methods of assessing these factors which may 

generate biomarkers of outcome.  

Figure 1.9 Biologically important elements of TB treatment response 

Treatment 
response/ 
outcome 

M tuberculosis bacilli 

 Total bacillary load 

 Genotypic resistance 

 Phenotypic persistence 
 

Clinical presentation 

 Symptoms & signs (e.g. cough/weight loss/fever) 

 Extent of disease/cavities on CXR 

 Co-morbidities (e.g. HIV infection) 

 Physiological capability (e.g. hepatic & renal function for drug metabolism) 

Anti-TB chemotherapy 

 Regimen selection 

 Dosage 
 
 

Pharmacodynamic 
response 

Clinical/ 
immunological 
response 

Pharmacokinetic 
response 

TB culture & molecular assays to 
describe bacillary clearance 

 

Clinical & 
radiological 
assessment 
HIV parameters 
Cytokine assays 

Drug assays 
in plasma & 
other 
biological 
fluids 
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1.10.3 Pharmacodynamic (bacterial) response 

End-points based on sputum culture conversion 

The trials underpinning current chemotherapy were designed with primary or secondary 

end-points based on sputum culture conversion. Sputum is easily accessible in PTB patients 

and there is evidence that pre-treatment bacillary burden in sputum is related to duration 

of therapy required for stable cure135 Furthermore, there is a statistically significant 

relationship between sputum culture conversion and clinical TB end-points. A recent meta-

analysis of 37 direct treatment comparisons across 49 study arms in 12 historical BMRC 

trials showed that regimens associated with higher likelihood of positive culture at the end 

of months 1-4 also carried a higher risk of post-treatment relapse (Figure 1.10, p<0.005 in 

all cases)261.  

However, validation of sputum culture conversion as a surrogate for relapse remains 

problematic. Individual patient data in the above meta-analysis showed that a positive 

culture at the end of the first month predicted relapse with 79% sensitivity but only 45% 

specificity. By the end of the second month, specificity was higher (82%) but sensitivity 

dropped to 48% (Table 1.4), meaning that over half of relapses would be missed. Even 

allowing that biomarkers for Phase II studies require less firm validation than individual 

surrogates this seems inadequate. At the level of treatment comparisons, Figure 1.10 

shows that some trial regimens with lower likelihood of positive culture in months 1-4 were 

still more likely to result in relapse261.  

An additional difficulty is that sputum culture conversion is a binary measurement and its 

power as a clinical trials biomarker is dependent on the proportion of culture negative 

patients in the comparator arm. As standard 2 month RHZE therapy achieves negative 

cultures in over 80% patients102, a large sample or effect size would be needed to show 

superior sterilising activity of a new regimen based on this end-point. Simulation studies 

confirm the expected theoretical result that prioritisation of binary end points incurs a 

significant penalty in terms of sample size262 

Secondly, measurement of outcome at a fixed time point does not efficiently capture 

information about the effect of treatment over the entire period of culture positivity. For 

example, from Table 1.3, TBTC Study 27 reported no improvement in outcome when 

moxifloxacin replaced ethambutol, based on the proportion of negative cultures at 2 

months (71% vs. 71%, p=0.97). However, at 4 weeks greater culture conversion was seen in 
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the moxifloxacin arm (37% vs. 26%, p=0.05). Analysis at an alternative time-point may have 

altered the conclusion about the sterilising potential of the new regimen225. 

 

  

  

Figure 1.10 Treatment comparisons from 12 BMRC trials in Africa and East Asia 

Each point corresponds to a single comparison of regimens within one trial. The radius of the circle 
represents the precision of the estimate for that comparison. At all months (1 to 4) there is a strong 
relationship between the treatment effect on a positive culture and the treatment effect on a poor 
outcome (p<0.005). In all plots some points are in the left upper quadrant, indicating that the 
treatment effect on a positive culture was opposite to that on a poor outcome. Poor outcome is 
defined as TB relapse 12-24 months after successfully completing therapy

261
.   

 

Month  Sputum culture result as a predictor of clinical outcome 

 Sensitivity Specificity 

1 79% 45% 

2 48% 82% 

3 or 4 <30% >95% 

Table 1.4 Individual level data from 12 BMRC trials in Africa and East Asia 

A positive culture at Month 1 was 79% sensitive for poor outcome but only 45% specific. From 
Month 2 less than 50% of poor outcomes were predicted by the surrogate marker. 
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An alternative approach to sputum bacteriology is analysis of time to culture conversion 

using survival techniques226. This approach is not predicated on binary measurements at 

arbitrary time-points260 but the sensitivity of survival analysis may be strongly influenced by 

the sampling schedule as the accuracy of any “time to conversion” measurement depends 

on the frequency of sample collection. Additionally, regimens with different bacillary 

elimination profiles could generate similar survival functions, obscuring important 

differences in drug action on persisters (Figure 1.11). To overcome these difficulties and 

show changes in treatment response throughout therapy, surrogate end-points based on 

continuous quantification of bacterial clearance are required143. 

 

 

Figure 1.11 Methods of statistical analysis for sputum bacteriology data 

2 hypothetical regimens are each given to 3 patients. At 2 months there is no difference in the 
proportion of patients who have culture converted (2/3 in each case) yet the mean times to 
conversion differ (A: 45.6 days, B: 51 days). The major difference between regimens is that A has 
greater sterilising activity after day 7. Only modelling of bacillary elimination throughout the study 
demonstrates this. 
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Serial Sputum Colony Counting (SSCC) 

In the 1970s, a quantitative bacteriology method was developed for EBA studies263,264. 

Serial dilutions of homogenised overnight sputum collections are plated onto selective agar 

and single colony forming units (CFUs) were counted after incubation for 3-4 weeks and a 

back-titration from the number of CFUs visible at a countable dilution was used to quantify 

the bacillary load of the original sample, expressed as CFU/ml.  

The first EBA studies showed that the fall in viable counts over days 0-2 varied between 

drug doses and regimens and helped to rationalise treatment combinations. However, the 

need for longer studies has subsequently emerged. A 5 day study was required to show 

that the potency of isoniazid waned more quickly than that of rifampicin264, a 7 day study 

was needed to show activity of bedaquiline after day 4238 and even extended EBA analysis 

to day 14 failed to demonstrate the sterilising capability of pyrazinamide265. No convincing 

statistical evaluation of the relationship between changes in bacillary counts over the first 2 

weeks and final clinical trial endpoints has ever been undertaken and it seems unlikely that 

such a short period of study will be sufficient to provide a surrogate marker of long-term 

sterilisation. Serial Sputum Colony Counting (SSCC) has been proposed as a solution which 

extends the quantitative EBA approach throughout the first 8 weeks of therapy228,260,266-268. 

Three prior DS-TB studies have used an SSCC approach (summarised in Figure 1.12)228,269,270 

and lessons from them are important. Other studies have also used quantitative 

bacteriology during extended sputum sampling271,272 but employed different laboratory 

methods (sputum was decontaminated with sodium hydroxide [NaOH] prior to culture, see 

Section 5.2.3). These will not be described in detail. However, it is notable that one such 

study compared a novel rifampicin-isoniazid-ciprofloxacin (RHC) regimen to standard RHZE 

and reported a smaller fall in log10CFU/ml counts on RHC during weeks 3-8 in addition to a 

higher rate of post-treatment relapse272,273. This correlation between early quantitative 

bacteriology and the reference clinical end-point is encouraging. 

From 1989-90 the first SSCC study employing quantitative bacteriology methods on non-

decontaminated sputum was performed in Nairobi. HIV-infected and un-infected patients 

received SHRZ or SHT during the first month of therapy and colony counts at 0, 2, 7, 14 and 

28 days showed that HIV did not influence treatment response274. In 2001 the dataset was 

re-visited to assess differences between the regimens269. Analysis of variance showed that 

the decline in log10CFU/ml counts was faster from day 0-2 than day 2-28, making it 
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inappropriate to fit a single regression line through all of the time-points. This supports 

Mitchison’s model of biphasic bacillary elimination due to differences in the antibiotic 

tolerance of bacillary sub-populations during treatment. When regression lines were fitted 

to counts from day 2-28, the slope for SHRZ patients was significantly steeper than for 

those on SHT (regression co-efficients: 0.163 vs. -0.095, p=0.004). This is consistent with 

prior knowledge of the enhanced sterilising activity of rifampicin and pyrazinamide. 

The emergence of non-linear mixed effects (NLME) modelling275 led to further review of the 

Nairobi data. In 2006 a bi-exponential model was fit with the following formula266: 

Log10CFU=log10 [(e
θ1 

x e
-day x eθ2) + (e

θ3 
x e

-day x eθ4
)]  

This model applies a biphasic curve to the aggregate effect of treatment on Mitchison’s 

putative sub-populations based on the following parameters expressed on a logarithmic 

scale; θ1 and θ3 represent baseline bacillary loads of metabolically active and quiescent 

organisms (corresponding to AInt and BInt from Figure 1.5) whilst θ2 and θ4 represent the two 

elimination rates (corresponding to α and β). When θ4 from the NLME model was 

compared to the linear regression co-efficient from day 2-28 as a measure of sterilising 

activity the linear statistic was found to overestimate Sterilisation Phase bacillary 

elimination by 16-139%, probably because metabolically active organisms were not 

completely eradicated by day 2. θ4 is more flexible and more likely to accurately reflect 

sterilising activity. 

SSCC-NLME modelling has further advantages. The mixed effects model can explicitly 

account for parameter variability and accommodate missing observations. Mathematical 

simulations based on the Nairobi data suggested that a sampling schedule of 5-11 sputum 

collections based around a skeleton of day 0, 2, 7, 14 and 56 would optimise estimation of 

SSCC-NLME parameters for future studies267 and sample size estimates for a Phase IIb SSCC 

superiority study using the θ4 co-efficient as a surrogate for sterilising activity were less 

than a quarter of those required for definitive phase III non-inferiority trials using an end-

point of relapse267. The OFLOTUB trial, conducted in Durban from 2004-5, tested some of 

these principles in the practical context of 8-MQ therapy and was described in Section 

1.8.2228. 

The third clinical study to be analysed using an SSCC-NLME approach was conducted in 

Bangkok from 2006-7 to examine the pharmacokinetic-pharmacodynamic (PK-PD) 
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relationships of first-line agents during combination chemotherapy270. Parameter estimates 

were broadly similar to those from Nairobi and Durban (Figure 1.12) and dose-response 

relationships previously described in for isoniazid in EBA studies276 were reproduced over a 

narrow dose range in the presence of companion drugs. This suggested that SSCC-NLME 

might be useful to assess the effect of dose-ranging on sterilisation. However, it was not 

possible to demonstrate dose-response relationships for rifampicin or pyrazinamide and 

the power of the study was reduced by a high rate of early culture conversion. 

Ultimately, a combination of quantitative bacteriology and modern statistical modelling 

may enable study of bacillary persistence and generate surrogate markers of sterilisation 

for Phase IIb clinical studies. Similar model based approaches have been deployed 

successfully in other areas of drug development277 However, the model parameters 

(especially θ3 and θ4 which are believed to relate to persister sub-populations) require 

appraisal against clinical end-points of TB treatment failure and relapse. 

 

Figure 1.12 SSCC data analysed by NLME methods from three patient cohorts 

NLME analysis of SSCC data demonstrated biphasic bacillary elimination, consistent with the model 
of persistence proposed by Mitchison. Adapted from Davies

260
 and Sloan

278
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Time to Positivity (TTP) in liquid culture 

Despite their potential benefits, SSCC methods on agar plates are labour intensive279 and 

include a three week delay between inoculation of cultures and reading of results280,281. 

Liquid culture methods improve the speed and sensitivity of PTB detection282 and since 

2008 the WHO has advocated their introduction to laboratories in low- income countries25. 

When solid and liquid cultures are inoculated in parallel on serial sputum samples from 

patients on therapy, only 15% of SSCC plates may remain positive at 8 weeks267 compared 

to 29-42% of samples in broth225,226. This is important as culture systems with enduring 

positivity may be more efficient at detecting persisters265,283,284 and measuring 

sterilisation216. 

Liquid culture methods have evolved over time and may be used to quantify bacillary load. 

The initial BACTEC method was a radiometric assay which used 14C-labelled fatty acid as a 

substrate and recorded mycobacterial growth when respiring organisms generated 

increased levels of radio-labelled CO2
285. This has been superseded by the BACTEC MGIT 

(Mycobacterial Growth Indicator Tube) system which uses an oxygen-quenched fluorescent 

indicator (Tris 4,7-diphenyl-1, 10-phenanthroline ruthenium chloride pentahydrate) 

embedded in silicone at the bottom of tubes containing selective broth. Bacillary growth 

results in oxygen consumption and the emergence of fluorescence286,287. With either 

method, larger inocula of respiring bacilli are likely to pass the threshold of detection more 

quickly and data from several sources demonstrate an inverse linear correlation between 

Time to Positivity (TTP) in liquid culture and log10CFU/ml counts281,288-290. 

Table 1.5 summarises studies which directly relate baseline TTP values from PTB patients to 

treatment outcome. These studies all focussed on HIV un-infected individuals and mainly 

used the older radiometric method of TTP measurement. Only two used a reference 

endpoint of relapse. Nevertheless, the association between shorter baseline TTP and poor 

outcome is striking. Clinical trials including HIV-infected patients corroborate these data, by 

reporting that shorter baseline MGIT-TTP is associated with an increased odds or hazard 

ratio for positive 2 month sputum cultures226,291. 

To use TTP in the comparison of treatment regimens, it will be important to relate dynamic 

changes during therapy to final outcome. Whilst no clinical trial has modelled serial TTPs as 

the primary biomarker of therapeutic response, several exploratory studies have argued 
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that TTP measurements after baseline are useful outcome predictors271,281,292-294. Others 

have described changes in TTP over time281,288,289,295-301. 

Investigators in New York in the 1990s were the first to use radiometric liquid cultures to 

report that TTP gradually rises in patients who are responding to therapy295 but remains 

static in those who are doing badly296. Epstein studied a cohort of 26 patients (30% of 

whom had MDR-TB) and showed that those with little or no increase in TTP during the first 

2 months were more likely to fail treatment297. Ten years later in South Africa, Pheiffer 

used a combination of radiometric and MGIT methods to show that the rate of increase in 

TTP during the first 14 days of first-line TB therapy was related to drug resistance(fastest in 

the sputum of patients with DS-TB, slower in those with isoniazid mono-resistance and 

slowest in those who had MDR-TB)288. These data demonstrated that TTP monitoring of 

bacillary elimination was associated with therapeutic repsonse, but it remained unclear 

whether drug tolerant persistence could be identified as readily as resistance 

Two serial TTP studies were restricted to DS-TB patients. Carroll showed that changes in 

radiometric TTP over the first 14 days had moderate sensitivity and specificity to predict 

the likelihood of 2 or 3 month smear or culture conversion298. More importantly, Weiner 

applied a mixed model analysis of co-variance to extended follow-up data from 163 

participants of the TBTC-27 trial and described an association between high MGIT-TTP 

readings during weeks 2, 4 6 and 8 and six patients with poor final outcome (five failures 

and one relapse) 300,301. 

A meta-analysis of data from 5 studies involving bedaquiline, delamanid and PA-824 at a 

single South African centre was recently undertaken to compare estimation of EBA based 

on the rate of rise in TTP versus the traditional measurement of fall in log10CFU/ml counts. 

The results showed very high correlation for studies conducted over 7 or14 days281. 

Furthermore, the TTP method was a better discriminator of differential effects between 

drugs and dosages, perhaps because TTP is better able to assess the treatment effect on 

persister organisms281,289. 

. 
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Lead author and 
year 

Source of data Patients Type of TB BACTEC 
Method 

Outcome measure Mean Liquid Culture TTP at baseline (days) 

Good outcome Poor outcome p-value 

Carroll, 2008
298

 

Prospective:  
South Africa

302
 

177, all HIV- All DS-TB  Radiometric 
2 month smear 
conversion 

4.3 2.5 <0.001
a
 

Pheiffer, 2008
288

 125, all HIV - 
105 DS-TB 
14 INH-R 
6-MDR-TB 

Radiometric 
& MGIT 

2 month smear 
conversion 

4.2 2.9 0.052
b
 

Hesseling, 2010
299

 
Prospective:  
South Africa 

263, all HIV- All DS-TB Radiometric 

2 month culture 
conversion  

4.0 2.0 <0.001
a
 

Post-treatment 
relapse 

3.0 1.0 <0.001
a
 

Bark, 2011
290

 
Retrospective: 
Uganda

303
  

107, all HIV- DS-TB Radiometric 
2 month culture 
conversion 

3.0 2.0 0.042
b
 

Bark, 2012
304

 
Retrospective: Brazil, 
Phillipines, Uganda

305
 

392, all HIV- All DS-TB Radiometric 
Post-treatment 
relapse 

9.6 5.0 0.01
b
 

Table 1.5 Baseline TTP in liquid culture of sputum and response to therapy 

All patients were HIV un-infected, and the majority of studies used the older radiometric (
14

CO2 based) method of TTP evaluation. Good outcome was defined as negative 
sputum smear or culture by two months or absence of post-treatment relapse. INH-R=isoniazid mono-resistance. 
a
Data analysed by two-sample t-test 

b
Data analaysed by Wilcoxon test 
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An important distinction between quantitative data from solid and liquid cultures is that 

TTP reflects not only the number of bacilli in a clinical specimen but their metabolic state at 

the time of sampling. Quiescent persisters may have a longer TTP than actively replicating 

organisms at a similar bacillary load. From this perspective, it is interesting that the inverse 

linear relationship between TTP and log10CFU/ml counts appears weaker for samples during 

the second month of therapy290. This might reflect changing metabolic characteristics of 

viable bacterial populations at later time-points. A recent study of TTP on treatment 

attempted to incorporate the behaviour of different bacillary sub-populations into an 

overall pharmacodynamic model280 but the model parameters were not assessed against 

treatment outcome. 

 Cumulative experience of using TTP has generated optimism that it may augment or even 

replace SSCC for evaluation of new anti-TB regimens in Phase IIb clinical trials. This would 

be a considerable advance but, before it can occur, consensus is required on the optimal 

choice of statistical modelling techniques to analyse TTP data and systematic validation of 

those analytical methods should be undertaken against established clinical end-points. 

Molecular biomarkers of bacillary load 

Even liquid culture detection of M tuberculosis takes several days. Quantitative Polymerase 

Chain Reaction (rt-PCR) assays can identify mycobacterial DNA in sputum more quickly but, 

until now these have been unsuitable treatment biomarkers because they cannot 

distinguish between nucleic acid from viable or killed organisms140,306-308. In the last few 

years, the Xpert MTB/RIF assay has been developed26,27. This semi-automated technique 

incorporates a wash step to remove DNA from non-intact organisms before rt-PCR26, and 

the cycle threshold (CT)shows moderate correlation with culture-based estimates of viable 

bacillary load from in vitro279 and clinical samples309. Pre-treating sputum with propidium 

monazide (PMA) inhibits amplification of DNA from dead bacteria310 and a combined PMA 

Xpert MTB/RIF method has been used to follow bacillary elimination over the first 20 days 

of therapy in 10 patients311. However, the available data are very preliminary, rt-PCR based 

methods are not approved by the WHO for treatment monitoring in individual patients312 

and it is unclear whether they have a future role as trial level surrogates in evaluation of 

new anti-TB regimens. 

Messenger RNA (mRNA) species have a shorter half-life than DNA, so detection of mRNA 

molecules may be a better discriminator of bacillary viability313,314. This approach has also 
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been investigated. Amongst 19 Brazilian patients on RHZE, rapid loss of sputum mRNA 

coding for M tuberculosis 85B alpha antigen during the first month of therapy correlated 

with faster culture conversion on solid media and the patient with the highest 

concentration of mRNA molecules on day 14 was the only one to relapse post-treatment315. 

In a separate cohort, EBA from seven days of therapy with isoniazid or several 

fluoroquinolones was the same when reported using measurement of log10CFU/ml counts 

or sputum concentrations of mRNA coding for isocitrate lyase316. Correlation has also been 

described between levels of isocitrate lyase mRNA and liquid culture estimation of bacillary 

load after 2 months of RHZE316. 

A molecular bacillary load (MBL) assay has recently been developed based on 

quantification of 16S rRNA, which has a short half-life, is expressed abundantly on 

mycobacterial ribosomes, and may respond rapidly to bacterial cell death317-319.  This assay 

has been tested on serial sputum samples from 112 South African patients, showing the 

same biphasic profile of bacillary clearance as previously described for SSCC-NLME cohorts 

and a strong relationship between higher baseline MBL and increased risk of relapse320. 

In addition to detecting intracellular nucleic acids a small number of studies have sought to 

predict the outcome of TB treatment by identifying mycobacterial antigens. For example, 

production of M tuberculosis Antigen 85 (Ag85) is induced on exposure to isoniazid294,321 

and detection of Ag85 on day 14 may be implicated in prolonged culture positivity and 

relapse322. 

Overall, several molecular treatment biomarkers have been evaluated. Some, particularly 

the 16S rRNA MBL assay, show promise. These assays may have the advantage of 

measuring low-level metabolic activity in cells which are not replicating, allowing them to 

report on non-culturable cells which are still viable. However, they are all more expensive 

than existing technologies and some are technically complex. Adequate optimisation and 

validation for their use as surrogate markers in clinical trials will take time. These methods 

will not be assessed further in this thesis. 
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Urinary lipoarabinomannan (LAM) and extra-pulmonary disease 

The biomarkers discussed so far are all measured in sputum. However, as described in 

Section 1.3, HIV-associated TB often disseminates beyond the lungs. Treatment response 

markers for studies in HIV-endemic settings may need to measure clearance of extra-

pulmonary organisms.   

Lipoarabinomannan (LAM) is a structurally important 19.5kD heat-stable glycolipid 

selectively found in the cell wall of mycobacteria and related actinomyces323-325. It accounts 

for up to 15% of total bacterial weight323,326 and is released from metabolically active or 

degrading cells327. It is excreted in the urine where it can be detected by an enzyme-linked 

immunoabsorbant assay (ELISA)325.  A commercial urinary LAM-ELISA has been developed 

(ClearviewTM TB-ELISA, Alere Inc., Waltham, MA, USA) as a non-sputum based diagnostic 

test328,329 and it has been proposed that urinary LAM excretion may be a semi-quantitative 

marker of whole body bacillary load330. Serial LAM-ELISA results during therapy could 

augment sputum data by providing information on extra-pulmonary bacillary elimination.  

Evaluation of the LAM-ELISA for diagnosis of TB suspects at baseline has reported low 

sensitivity amongst HIV-uninfected individuals (6-21%)331-334. However, the test has 

progressively higher sensitivity in HIV-infected patients with diminishing CD4 counts (67-

85% at CD4 <50 cells/µl)335-337. The ELISA is based on Optical Density (OD) readings from a 

plate reader and higher baseline ODs have been reported in patients with more advanced 

immunosuppression, more disseminated disease (e.g. mycobacteraemia) and higher AFB 

smear grading on sputum microscopy338. As these patients are likely to have a higher 

bacillary burden the data are consistent with the concept of urinary LAM as a quantitative 

marker. 

Two studies confirm that the LAM ELISA remains positive after initiation of TB therapy336,339 

and one described that median OD readings remained unchanged during the first 2 weeks 

before declining sharply by week 8 in a cohort with 75% favourable outcomes339. Three 

further studies report a trend toward higher mortality in patients with a positive LAM ELISA 

at baseline335,336,340. However, a careful assessment of serial urinary LAM ELISAs to follow 

TB treatment response, assess sterilisation or predict clinical outcome has never been 

undertaken. If the test were to prove useful for this, it may become a valuable additional 

tool for patient monitoring and assessment of new therapies. 
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Selective detection of bacillary subpopulations 

All of the methods for clinical treatment monitoring described so far make inferences 

about persistence based on the elimination kinetics of total bacillary load. No biomarker 

measures sterilising activity by selective examination of persister bacilli. This may be 

achieved by methods which phenotypically categorise individual cells, or by inoculation of 

clinical samples into media which is modified to preferentially revive non-replicating 

organisms. 

Phenotypic characterisation of individual cells is often done on by fluorescence labelling341. 

This approach was described in Section 1.7.2 during discussion of stochastic Kat G pulsing 

of M smegmatis cells exposed to isoniazid in vitro185. Live imaging of single cells in micro-

fluidic chambers has also shown that drug tolerant mycobacteria may be elongated and 

morphologically distinct from antibiotic susceptible cells185,342. Some studies have described 

heterogeneity in the acid-fast staining properties of persisters343 and TAG storage by 

individual cells has been proposed as a metabolic persistence marker in the cytoplasm of M 

tuberculosis bacilli which can be seen on microscopy of clinical samples175,344. The possibility 

of using fluorescence microscopy or flow cytometry to develop single cell biomarkers of 

sterilisation will be discussed in Chapters 5 and 6. 

Resuscitation promoting factors (Rpfs) are mycobacterial proteins which are known to 

reactivate chronic TB infections270. Supplementation of standard TB media with Rpfs 

increases the yield of organisms detected in clinical sputum samples by 80-99%, suggesting 

that a large population of Rpf-dependent bacilli in sputum may be invisible to conventional 

culture345,346. Preliminary data suggest that Rpf-dependent organisms are relatively 

preserved during TB treatment and may be rifampicin tolerant but larger studies are 

needed to establish whether Rpf-supplemented media revives a persister sub-population 

which could help with assessment of sterilising activity in clinical trials. At present, the 

process of purifying and storing Rpfs is too technically difficult347,348 to conduct these 

studies in resource limited settings. 

1.10.4 Clinical/immunological response  

Whilst innovative new bacteriological and molecular techniques are important, evaluation 

of treatment efficacy in TB patients also requires consideration of host factors which 

influence or reflect the response to therapy. Clinical, radiological and immunological 

measurements at baseline provide information on extent of disease and underlying patient 
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health. These may have prognostic significance and are important covariates when 

interpreting data from clinical trials. Indices which show dynamic trends during therapy 

may also be investigated as biomarkers of outcome. 

Clinical and radiological biomarkers 

Low weight or Body Mass Index (BMI) have been associated with a higher risk of early TB 

mortality 349 and scoring systems based on vital signs or functional status have been 

advocated to assess baseline disease severity349-351. Characteristic CXR appearances have 

been associated with higher baseline bacillary burden352,353, lower likelihood of two month 

sputum smear140,354-356 or culture291,357,358 conversion and greater risk of relapse201,322,359,360. 

Therefore, clinical variables and CXR appearances should be considered when designing 

treatment trials and analysing outcomes. 

However, changes in clinical parameters (e.g. slow defervescence361 or poor weight 

gain362,363) are inadequately sensitive or specific to be used as biomarkers of sterilisation. 

CXR appearances are also unsuitable because they change slowly and may fail to 

distinguish active TB disease from healed lesions or other causes of lung pathology182. 

More advanced imaging modalities such as computed tomography (CT)201,364-366 and 

Positron Emission Tomography (PET)367-370  have characteristic findings that may be more 

suitable for treatment monitoring but these methods are still imprecise, require expensive 

technology and are not feasible for studies recruiting large numbers of patients in low-

income countries.  

Immunological biomarkers 

Potential immunological markers fall into two categories; those which measure non-

specific inflammation or innate immunity and those which measure adaptive cell-mediated 

immune responses.  

Many inflammatory markers in blood are elevated at TB diagnosis. Levels of some (e.g. 

soluble intracellular adhesion molecule [sICAM]-1371-373 and the macrophage activation 

marker neopterin374-376) reflect disease severity whilst others (e.g. total white cell count 

[WCC], absolute monocyte and neutrophil count and soluble TNF-α receptor[sTNFαR-1]) 

predict the likelihood of 2 month smear conversion302. Inflammation declines during 

successful therapy377-380 and there is a relationship between the fall in sICAM-1 

concentration over the first week and 2 month culture conversion372. Persistent elevation 
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of serum C-reactive protein (CRP)381 and soluble urokinase plasminogen activator receptor 

(suPAR)382,383 are associated with increased mortality. High neopterin levels at the end of 

treatment predict relapse297. 

These markers appear attractive for biomarker development because they can be easily 

and inexpensively assayed but their reliability is reduced in HIV-infected individuals376, they 

are not TB-specific and they provide no information about the effect of drugs on bacillary 

persistence. None have been systematically evaluated against reference clinical end-points 

and none are likely to become surrogate markers for clinical trials in the near future. 

Recent study of the adaptive immune response to TB has centred on measurement of 

interferon(IFN)-γ  production after T-lymphocytes stimulation by specific M tuberculosis 

antigens including Early Secretory Antigen Target (ESAT)-6 and Culture Filtrate Protein 

(CFP)-10384. Two commercial IFN-γ Release Assays (IGRAs) have been developed in an 

attempt to improve the diagnosis of latent TB infection385 but have also been studied as 

treatment monitoring tools for active disease. 

The rate of IGRA conversion from positive to negative during therapy is variable (5-71%) 

and does not correspond with clinical outcome386. Quantitative measurement of baseline 

IFN- γ responses correlate with sputum smear grading387 but not with culture derived 

estimates of bacillary load388. Several studies have shown a gradual decline in the IFN-γ 

response over the course of treatment389-391 but data inconsistency and variability388,392,393 

indicate that current IGRA methods are likely to be poor surrogates for cure or relapse. 

The commercial IGRAs use overnight stimulation of T-lymphocytes to measure IFN-γ 

responses in early effector cells. 5 day stimulation assays demonstrate that longer term 

immunological memory cells behave differently, secreting higher levels of IFN-γ as 

treatment proceeds394,395.  One study employing a memory cell assay found that stronger 

IFN-γ responses 2 months into therapy were associated with higher serum rifampicin 

concentrations at the same time-point and fewer relapses by 2 years395. This suggests that 

dynamic changes in the immune response to TB therapy are complex and further study 

may identify more useful markers of outcome. Multivariate models combining 

bacteriological and immunological biomarkers may generate better predictive models than 

individual parameters analysed in isolation396. 
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1.10.5 Pharmacokinetic response 

As indicated in Figure 1.9, a full assessment of TB treatment response requires data on drug 

exposure. PK-PD modelling is used for pre-clinical and early clinical development of new TB 

drugs216 and Figure 1.13 describes commonly reported pharmacokinetic parameters 

including the maximum achieved plasma concentration (Cmax) and the area under the 

concentration time curve (AUC). The minimum inhibitory concentration (MIC) is the lowest 

concentration of an antimicrobial drug that inhibits bacterial growth in vitro, and the 

AUC/MIC ratio is related to the bactericidal efficacy of both rifampicin397 and isoniazid398,399.  

Despite growing appreciation of the importance of PK-PD analysis, few clinical studies have 

analysed the relationship between pharmacokinetic indices and long-term outcomes400. 

The data which are available suggest that sub-optimal drug exposure have adverse 

consequences. In 2004-5, two trials of intermittent therapy in the U.S.A. evaluated 

combinations of isoniazid with rifapentine or rifabutin and described an association 

between low serum drug concentrations and treatment failure, relapse or acquisition of 

rifamycin resistance401,402. More recently, investigators in Botswana indicated that patients 

with low pyrazinamide Cmax levels during standard chemotherapy were more likely to suffer 

failure or death403. Several less rigorous studies observed that patients with a poor clinical 

response at 1-2 months had low rifampicin Cmax levels404,405 and improved after dose 

escalation405. Finally, modelling from hollow fibre studies and computer aided trial 

simulations indicates that inter-individual pharmacokinetic variability plays a bigger role in 

the emergence of MDR-TB than poor treatment adherence406 and a meta-analysis of 13 

historical trials has speculated that rapid isoniazid metabolism may be associated with 

treatment failure, even amongst patients on daily multi-drug regimens407,408. 

Given that variable drug exposure may have a bearing on outcome, it is interesting that 

population studies, particularly from Africa have shown up to 10-fold inter-individual 

variability in the measurement of pharmacokinetic indices408-412. Pyrazinamide levels are 

the most stable413-415 whilst rifampicin levels fluctuate most dramatically416. Differences in 

serum and plasma drug concentrations are seen between populations417, with higher levels 

in healthy volunteers than patients with active disease, and higher levels in American than 

African cohorts414. Studies which compare drug levels (particularly Cmax) against a pre-

defined reference range invariably show that concentrations are low140,400,403-405,414,418,419. 

This is particularly concerning when it is remembered that that the currently recommended 

dose of rifampicin is at the bottom of a sharp dose response curve397,420
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Figure 1.13 Basic pharmacokinetic parameters of drug exposure 

Cmax, Tmax and the area under a plasma concentration-time 
curve (AUC) are common parameters of drug exposure. Half-
life (T1/2) is the time until the drug concentration reaches half 
of its original value. Not shown are volume of distribution (V), 
the apparent volume in which a drug is distributed and 
clearance, the volume of plasma cleared of the drug in unit 
time. 

 Rifampicin Isoniazid Pyrazinamide Ethambutol 

Recommended dose 10mg/kg/day 5mg/kg/day 25mg/kg/day 15mg/kg/day 

 Cmax (µg/ml) 8-24 3-6 35-50 2-6 

Tmax (h) 1.5-2 1-2 1-2 2-3 

AUC0-Infinity (µg/ml.h) 5-150 4-30 300-550 20-40 

T1/2 (h) 2-5 0.5-2 9 2-4 

Bioavailability  
(and effect of food) 

68% 
Cmax ↓36% 
AUC ↓6% 

91% 
Cmax ↓51% 
AUC ↓12% 

>90% 
Cmax ↓15% 
AUC ↑2% 

80% 
Cmax ↓17% 
AUC ↓4% 

V (L/kg) 0.5 0.85-1.2 0.7 0.3-0.7 

Protein binding (%) 85 20 50 40 

Clearance (l/h) 4-40 9-80 3-5 50-150 

Clinical factors 
associated with low 
Cmax or AUC0-infinity  

Male sex 
HIV infection 
FDC formulation 
Low dose/kg 
Low serum bilirubin 
Malnutrition 
Alcohol 
consumption 

Male sex 
Younger age 
FDC formulation 
Low dose/kg 
 

HIV infection 
Low dose/kg 
High serum 
bilirubin 

Female sex 
Younger age 
HIV infection 
Low dose/kg 
Higher serum 
albumin 

Genetic factors 
associated with low 
Cmax or AUC0-infinity   

SLCO1B1 genotype/ 
Anion-transporting 
polypeptide 1B1 

NAT2 genotype/ 
rapid acetylor 
status 
 

  

 

Table 1.6 Pharmacokinetic properties of first-line anti-TB drugs 

Data describing clinical factors associated with low plasma exposure are aggregated from a variety of 
references

400,408,411,412,414,421-424
. 

 FDC formulations=Administration of fixed dose combination tablets containing all four drugs rather 
than individual preparations of each drug 
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Some of the observed variation in pharmacokinetic measurements may be attributable to 

technical and analytical inconsistencies between laboratories. However, a range of clinically 

relevant factors may also be implicated including patient age, gender425, alcohol 

consumption423, malnutrition424 and the choice of drug formulation400,423,426,427. The role of 

HIV is controversial with some accounts of lower anti-TB drug concentrations in HIV-

infected individuals102,408,414,415,428-432 but other studies reporting no association419,433,434. 

Proposed reasons for a possible HIV effect are multi-factorial and include 

malabsorption428,430 (due to HIV enteropathy or intercurrent episodes of infective 

gastroenteritis), hypoalbuminaemia (reducing rifampicin protein binding and increasing its 

hepatic clearance) and drug-drug interactions, Table 1.6 provides a summary of commonly 

reported pharmacokinetic parameters and factors which influence host exposure to the 

first-line anti-TB drugs.  

Rifampicin has greatest pharmacokinetic variability because its absorption and elimination 

are influenced by several metabolic processes. It is subject to extensive first pass 

metabolism and auto-induces the enzymes responsible for its inactivation422,435,436, causing 

a reduction in plasma levels at steady state437. Induction of cytochrome P450 isoforms 

(especially CYP3A4438 but also CYP3A5, CYP2B6 and CYP2C9439,440) may result in clinically 

significant interactions with other drugs. Rifampicin is taken up by hepatocytes prior to 

biliary excretion. This process is mediated by organic anion-transporting polypeptide 1B1 

coded for by the gene SLCO1B1441,442. Patients who are heterozygous and homozygous for a 

single nucleotide polymorphism (SNP) of this gene have 18% and 28% reductions in 

rifampicin AUC443. As this SNP is significantly more frequent in black African patients it may 

go some way to explaining the pharmacokinetic variability of rifampicin between 

populations444. 

The pharmacokinetic properties of isoniazid are highly dependent on its rate of elimination. 

This is controlled by the polymorphic N-acetyltransferase system of the liver and small 

intestine276 which is regulated by the arylamine N-acetyl transferase (NAT2) gene445. 

Individuals can be partitioned according to NAT2 genotype. Slow acetylators generally 

achieve the greatest EBA with isoniazid due to higher drug exposure446 and an independent 

NAT2 effect on bacillary clearance447. They are also at increased risk of peripheral 

neuropathy69. The NAT2 genotype-phenotype relationship may break down in advanced 

HIV infection because the overall acetylation rate begins to decline448. The distribution of 

alleles associated with acetylator phenotype varies with ethnicity449 
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Isoniazid and the rifamycins demonstrate marked post-antibiotic effects450. This has been 

used to make the scientific case for intermittent regimens based on these drugs. However, 

the shorter half-life of isoniazid causes pharmacokinetic mismatch, with the potential for 

effective rifamycin monotherapy and drug resistance. Fast acetylators may be at increased 

risk of this401. 

The pharmacokinetics of pyrazinamide are reliable and high plasma concentrations are 

usually achieved408,413. Incomplete understanding of pyrazindamide’s intracellular 

mechanism of action makes it difficult to capture PK-PD relationships from plasma levels, 

although studies in the 1950s suggested a dose-response relationship for both efficacy and 

hepatotoxicity451,452. The drug exhibits no activity at all at neutral pH making it difficult to 

apply the MIC concept in vivo. It is the only one of the four first line drugs with no 

demonstrable EBA265. 

Ethambutol is primarily used during the first two months of TB chemotherapy to prevent 

the development of resistance to other drugs and some reports suggest that it may be 

discontinued when susceptibility to other components of the regimen is confirmed421. 

Linkages between the basic pharmacokinetic parameters of ethambutol and 

pharmacodynamic effect remain undefined but doses of <12mg/kg per day are no more 

effective than placebo so a minimum serum concentration seems to be important453-455. 
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1.11 Study aims & hypotheses 

The review of TB therapeutics research in this chapter has established bacillary persistence 

as a major obstacle to ultra-short TB chemotherapy, and explained why the lack of 

validated biomarkers of sterilising activity impedes end-point selection for Phase IIb clinical 

studies of new regimens.  

The remainder of this thesis will report on a clinical study performed to assist in resolution 

of these issues. A cohort of Malawian adults were recruited at first presentation of sputum 

smear positive PTB and followed until one year after completion of treatment. Detailed 

clinical, bacteriological and pharmacokinetic data were collected during the intensive phase 

of therapy and related to final outcome. New candidate bacteriological biomarkers were 

assessed and novel laboratory methods to study persistence from clinical samples were 

evaluated. Specific study hypotheses are stated below. 

1.11.1 Primary study hypothesis 

The primary hypothesis of the study was that pharmacodynamic modelling of bacillary 

elimination using quantitative SSCC and MGIT culture data during the first 2 months of 

therapy will provide reliable surrogate markers of final clinical outcome suitable for use in 

Phase IIb trials of new chemotherapy regimens.  

1.11.2 Secondary study hypotheses 

Additional study hypothesis were that: 

a) non sputum based assays (e.g. serial measurement of the urinary LAM-ELISA) will 

provide useful additional assessment on clearance of PTB 

b) Single cell examination of bacilli in sputum (e.g. by fluorescence microscopy) will 

facilitate phenotypic characterisation and monitoring of drug tolerant persister 

organisms  

c) Individual variation in the pharmacokinetic parameters of anti-TB drugs is an 

important additional determinant of treatment efficacy 
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2. Clinical Study Design 

2.1 Overall Study Design 

Patient recruitment, clinical management, sample collection, sputum bacteriology and 

long-term follow-up were all undertaken by a study team located at Queen Elizabeth 

Central Hospital (QECH), the Malawi Liverpool Wellcome Trust Clinical Research 

Programme (MLW) and the College of Medicine (CoM) in Blantyre, Malawi. 

The overall design was of a prospective, observational clinical cohort study conducted 

under field conditions in a low resource setting in Southern Africa with a high TB burden in 

both HIV-infected and non-infected individuals. 

 Careful clinical profiling of all recruited patients was done at baseline and at four study 

visits during the first 8 weeks. Serial sputum, blood and urine samples were collected 

during these visits to perform the necessary bacteriology, immunology and 

pharmacokinetic assays for biomarker estimation. At the end of therapy, all patients were 

assessed for clinical or microbiological treatment failure. Thereafter, three-monthly follow-

up was performed to detect TB relapse until one year post-treatment.  

A schematic diagram of overall study design is provided in Figure 2.1 indicating how 

methodologies and data described throughout this thesis relate to the study hypotheses.  

The remainder of this chapter outlines the clinical study protocol including background on 

the study site and participating laboratories and a detailed description of study visits and 

sampling strategy.
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 Figure.2.1 Schematic diagram of overall study design 

Recruitment & baseline 

assessment 

Assess clinical condition 

HIV status & treatment history 

Demographic & socio-economic profile 

Radiological extent of disease (CXR) 

Intensive Phase 

 2 months RHZE 

Continuation Phase 

4 months RH 

End of treatment & follow-up 

assessment 

Treatment outcome recorded at 6 months 

3 monthly post-treatment follow-up for 

one year to detect relapse 

Pharmacodynamic modelling of response to therapy: 

Serial quantitative sputum bacteriology (SSCC & MGIT) to measure bacillary clearance – 

Chapter 4 (methodology) & Chapter 6 (data analysis) 

Serial measurement of putative non-sputum based measure of bacillary response (urinary LAM ELISA)  
Chapter 6 (methodology & data analysis) 

Phenotypic characterisation of M tuberculosis bacilli in sputum using single cell techniques  
(Chapter 5 (methodology) & Chapter 6 (data analysis) 
Chapter 5 (methodology) & Chapter 6 (data analysis) 
 

Pharmacokinetic estimation of anti-TB drug exposure 

Chapter 7 (methodology & data analysis) 

 
Clinical description of study cohort at recruitment and throughout follow-up in Chapter 3 
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2.2 Clinical Study Site 

2.2.1 Demographic & health indicators in Malawi 

Malawi is a small land-locked country in south-east Africa. The 2008 Population and 

Housing Census recorded the population as 13,077,160 and the population density as 139 

persons per square kilometre, making Malawi one of the most densely populated countries 

in sub-Saharan Africa. 15% of households are in an urban setting whilst 85% are rural. 50% 

of men and 58% of women are employed in agriculture, many as mlimi (small scale 

subsistence farmers)456. Malawi is one of the world’s least developed nations, ranking 171 

out of 182 countries with comparable data for assessment in the 2011 Human 

Development Report. Gross National Income per capita is $753 and health indicators are 

poor; expenditure on health is 5.9% of Gross Domestic Product, the under-five mortality 

rate is 110 per 1000 live births and life expectancy at birth is 54.2 years457. 

Blantyre is a large city in the Southern Region of Malawi and accommodates 661,444 

people. It accounts for 34.5% of the total urban population of the country. Approximately 

62% of the economically active population is employed but 65% of households live below 

the poverty line and 70% of the city’s residents live in unplanned settlements characterised 

by overcrowding and poor living conditions458.   

 

 

 

 

Figure 2.2 Maps indicating the position of Malawi and Blantyre 

In the map on the left Malawi is shown in red on a map of southern Africa. In the map on the right, Blantyte is 

shown as red in a map of Malawi. 
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2.2.2 TB & HIV control in Malawi 

In 2010, the estimated incidence of TB in Malawi was 219 cases per 100,000 persons. 90% 

are new cases in individuals who have never previously received TB treatment and 10% are 

re-treatments. 36% of new cases were sputum smear positive and 63% of TB patients 

tested for HIV were co-infected. 2.2% of new TB cases were estimated to be attributable to 

MDR-TB459.  The low rate of primary resistance to first line anti-TB drugs indicates the 

strength of the NTP and made Malawi a suitable site for this study of response to TB 

therapy because factors influencing clinical end-points and the rate of bacillary elimination 

are unlikely to be confounded by unidentified MDR-TB cases.  

The NTP recommends that all PTB suspects, particularly those who have been coughing for 

three weeks or more, submit three sputum specimens for direct smear microscopy. If at 

least two smears are positive for AFB, the patient is diagnosed with smear positive PTB and 

registered for treatment. If smears are negative, a chest CXR is performed and the patient 

is referred to a clinician to assess the possibility of smear negative PTB or EPTB460.  

For new TB cases, 6 month treatment is entirely administered on an out-patient basis via 

the Primary Health Care Centre nearest to the patient’s home, unless clinical circumstances 

dictate a requirement for admission to hospital. Since 1984 a DOTS programme has been in 

place to co-ordinate administration and monitoring of therapy. A treatment supervisor is 

allocated to every patient to ensure that each dose of medication is appropriately 

swallowed and documented on a handheld TB treatment card460.  The treatment success 

rate in Malawi is high: 88% for new smear-positive cases and 83% for new smear-negative 

or EPTB cases459. 

11% of Malawian adults aged 15-49 are HIV-infected. HIV prevalence is highest (15%) in 

Southern region (including Blantyre). Prevalence is also higher in urban (17%) than rural 

(9%) settings456.  Since 2004, Malawian has successfully pioneered the public health 

approach to HIV treatment based on decentralisation of ART delivery and task-shifting from 

clinicians to nurses and counsellors in Primary Health Care clinics461,462. As a result, by mid-

2011 382,953 Malawians had initiated ART through the National Programme and 276,987 

(72%) of those were still alive on treatment463. Until recently, the standard first-line adult 

ART regimen for HIV-TB co-infected individuals consisted of stavudine, lamivudine and 

nevirapine464. However, concern about drug toxicity and interactions between ART and TB 

treatment has resulted in a recent change to national guidelines. Since September 2011, 

adults who are already taking ART when they commence TB treatment remain on their 
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exisiting regimen but ART naive TB patients are initiated on a combination of tenofovir, 

lamivudine and efavirenz465. Current guidelines also advocate ART initiation as soon as TB 

therapy is safely established. These changes explain some of the variation in ART regimes 

amongst study patients described in Chapter 3. 

2.2.3 Clinical centres participating in the study 

The main TB registration facility in Blantyre district is QECH, the country’s largest 

government-owned health care facility. All hospital in-patients diagnosed with TB are 

notified there alongside smear positive cases and TB suspects from surrounding Primary 

Healthcare Clinics. A study office was set up in QECH adjacent to the TB registration office 

in order that all new smear positive patients could be screened and informed about the 

study. Two research nurses were specifically employed to run this office. They were trained 

in the study protocol, HIV Testing and Counselling and Good Clinical Practice guidelines 

prior to commencement of recruitment. 

 In 2011, decentralised TB registration was made possible at four Primary Healthcare Clinics 

with facilities to perform sputum smear microscopy. These included Ndirande, Bangwe, 

Zingwangwa and Chileka Health Centres. Nurses responsible for TB notifications at these 

clinics were educated on the study protocol and advised to refer eligible patients to the 

central study office at QECH in order that they could still be recruited.  

2.2.4 Participating Research Laboratories 

TB laboratory, College of Medicine, University of Malawi 

International guidelines recommend that all TB specimen processing be conducted in a 

Class 1 or Class 2 Biological Safety Cabinet (BSC) in a dedicated mycobacteriology room466 

and that manipulation of TB cultures is confined to Biosafety Level 3 (BSL-3) laboratory467.  

In Malawi, all smear preparation, media inoculation, sub-culturing and isolate identification 

was performed under these conditions in the TB laboratory at the Department of 

Microbiology, CoM, University of Malawi. 

This laboratory participates in suitable quality control programmes via the UK National 

External Quality Assessment Service, the National Health Lab Services in South Africa 

(International), and College of American Pathologists. It is located on the main CoM campus 

and is a 10-15 minute walk from QECH. Sputum samples were carried from the study office 

to this laboratory daily by a designated research assistant to ensure that they were 

processed within 24 hours of collection. Duplicate sample transportation logbooks were 
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kept in the study office and the laboratory and all specimens were transported in an 

appropriately labelled and secured biohazard container to minimise any transmission risks 

associated with TB-infected clinical material in transit. 

Malawi-Liverpool-Wellcome Trust Clinical Research Programme 

MLW was established in 1995 forming a partnership between the College of Medicine of 

the University of Malawi, the University of Liverpool, Liverpool School of Tropical Medicine 

(LSTM) and the Wellcome Trust. The MLW laboratory is situated within the grounds of 

QECH allowing rapid specimen transportation from clinical areas. All routine blood tests, 

plasma separation and storage and urinary LAM-ELISAs were done here. The fluorescence 

microscope used for lipid body fluorescence microscopy was also housed here. 

Liverpool School of Tropical Medicine 

LSTM contains BSL-3 facilities with two Class 2 BSCs. These were used for the lipid body 

fluorescence microscopy optimisation and flow cytometry experiments described in 

Chapter 5. 

The Clinical Pharmacology laboratory at LSTM contains High Performance Liquid 

Chromatography (HPLC) and Mass Spectrometry equipment which is unavailable in Malawi. 

Plasma samples for the pharmacokinetic assays described in Chapter 7 were shipped to this 

laboratory for bio-analysis. 

2.3 Clinical Study Structure and Staff 

Whilst the Principal Investigator (PI) was responsible for the design, conduct and execution 

of the study, the multi-site nature of the project involved co-ordinated activity from a large 

number of individuals. The main flow of work and samples is indicated in Figure 2.3 

2.4 Clinical Study Timeline 

Laboratory preparation for the clinical study, particularly optimisation of the lipid body 

fluorescence microscopy technique was done at LSTM from August 2009-February 2010. 

On-site study preparation (e.g. recruitment and training of staff, refurbishment of the study 

office and piloting of study protocols) was done at MLW and QECH from March-June 2010. 
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Patient recruitment occurred from 26thJune 2010 until 31st December 2011. 

 

 

2.5 Patient Screening and Recruitment 

TB registration officers at QECH and participating Primary Healthcare Clinics referred new 

smear positive TB patients to the study team prior to administration of the first dose of 

anti-TB chemotherapy. Study nurses immediately assessed each patient using a screening 

questionnaire based on the Inclusion and Exclusion Criteria detailed below. Those who 

fulfilled the eligibility criteria were provided with a Patient Information Document and had 

details of the study protocol outlined to them in detail. Patients who were willing to 

participate were asked to sign two consent forms: a general consent form covering data 

collection and sampling, and a DNA sampling consent form providing permission to ship 

whole blood samples overseas for extraction of human DNA in pharmacogenetic assays, 

which will be performed later in an extension of the work described in Chapter 7. 

All Patient Information Documents and Consent Forms were provided in both English and 

Chichewa, the major language spoken in Southern and Central Malawi. To ensure accuracy 

back-translation was also done before the forms were authorised for use. 19% of Malawian 

men and 33% of Malawian women are illiterate456. In such cases, recommended principles 

regarding genuine informed consent 468were adhered to and patient agreement was 

documented using a thumbprint. 

Principal Investigator 

Derek Sloan 

Core MLW laboratory staff 

Performed routine blood tests, LAM-
ELISA & storage of plasma, serum & 
whole blood samples 

CoM TB laboratory 

Performed all sputum smears & 
cultures 
Doris Shani (2010-2012) 
Mercy Kamadolozi (2010-2012) 

QECH Study Office 

Responsible for patient recruitment & follow-
up 

Bright Chisale (2010-2012) 
Gertrude Banda (2010-2011) 
Chrissie Guwende (2011-2012) 
Mphatso Likwinge (2010-2011) 

Pharmacology laboratories at 

University of Liverpool & LSTM 

Performed pharmacokinetic 
assays 

Figure 2.3 Flow of study work and samples 

Solid arrows indicate flow of study samples. Dashed arrows indicate co-ordinating responsibilities of the PI 
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Renewed consent for ongoing study participation was taken at each visit and recorded in 

the Case Record File (CRF). 

2.5.1 Inclusion Criteria 

To ensure enrolment of patients with confirmed smear positive tuberculosis at a 

sufficiently high bacterial load for bacillary elimination to be studied over time on therapy, 

only new smear positive patients with diagnostic clinical specimens graded “++” or “+++” 

for AFB in the QECH hospital laboratory were considered eligible for recruitment. This 

provided a patient cohort with a similar TB burden to that normally used for clinical trials of 

new TB treatment regimens. 

 IUALTD guidelines for assessment of ZN stained slides were used to assess sputum 

smears469. The grading scheme is summarised in Table 2.1. 

AFB Counts Grading 

No AFB in at least 100 microscopy fieldsa 0 or ‘negative’ 

1-9 AFB in 100 fieldsb ‘Scanty’; record actual number of AFB 
counted 

10-99 AFB in 100 fields ‘+’ 

1-10 AFB per field in at least 50 fieldsc ‘++’ 

>10 AFB per field in at least 20 fieldsc ‘+++’ 

Table 2.1 IUALTD-recommended grading of ZN sputum smear microscopy results 

a
At least 5 minutes should be taken to read 100 fields before reporting the slide as negative  

b
A finding of 1-3 bacilli in 100 fields does not correlate well with culture positivity. It is 

recommended that a new smear be prepared from the same sputum specimen and be re-examined. 
c 
In practice most microscopists read a few fields and confirm the findings by a quick visual scan of 

the remaining fields 

 

Additional inclusion criteria were 

 Patients should be aged 16-65 

 Patients must consent to or already had a written result of serology for HIV 

 Patients must provide genuine informed consent (via signature or thumbprint) to 

study participation   
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2.5.2 Exclusion Criteria 

Patients meeting the following criteria at baseline were excluded from the study 

 Significant anaemia (Hb <6g/dL) 

 Significant renal dysfunction ( Serum Creatinine >177µ mol/L [2 mg/dL ] ) 

 Significant hepatic dysfunction ( Total Bilirubin >51 µmol (3 mg/dL), alanine 

transaminase (ALT) > 200 i.u./l) 

 Very poor clinical performance status suggestive of imminent mortality (WHO 

Performance Score 4) 

 Previous TB treatment in the last five years 

 Administration of a TB treatment regime other than standard first line therapy (e.g. 

using intramuscular streptomycin) or adjunctive steroids 

 Pregnancy 

 Anticipated obvious difficulties with follow-up 

2.5.3 Withdrawal Criteria 

After recruitment, patients meeting the following criteria at any time were withdrawn  

 Patients request 

 Patient loss to follow-up and untraceable by study staff  

 Patient transferred out of Blantyre 

 All cultures negative for M. tuberculosis 

 Baseline  drug resistance identified to rifampicin and isoniazid 

 Adverse drug reactions requiring interruption of treatment 

 Poor adherence to therapy 

 Complications arising from tuberculosis ( e.g. requiring adjunctive steroids or 

surgery) 

 Death unlikely to be attributable to active TB 
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2.6 Study Visits and Sampling Schedule 

The laboratory work involved in the microbiology techniques for this study was labour 

intensive as there were serial specimens to be processed for each patient. To allow sample 

collection at a maximum number of time points whilst avoiding an unmanageable volume 

of laboratory work, the study cohort was divided into two staggered but balanced blocks. 

Patients were allocated to Block 1 or Block 2 sequentially. Each block had 5 study visits for 

sampling. Block 1 was sampled at Baseline (BL) and S1-4 visits on days 4, 14, 28 and 56 of 

therapy. Block 2 was sampled at BL and S1-4 visits on day 2, 7, 21 and 49. Computer 

simulated SSCC-NLME studies have suggested that a “balanced block” sampling strategy of 

this nature may be used to optimise datasets for Phase IIb clinical trials using end-points 

based on serial quantitative bacteriology267. 

An overview of all study visits and sampling is shown in Figure 2.4. 

2.6.1 Baseline Visit 

 Demographic and biometric details were recorded for every patient on study entry. A 

clinical history was taken including details of presenting TB symptoms, HIV status and 

treatment history, co-morbidities and other current medications. To give an impression of 

overall condition, patients were asked to grade their own health as “excellent”, “good”, 

“fair” or “poor”. To assess functional ability, WHO Performance status was assessed by the 

study nurses (Table 2.2)470. Prior BCG vaccination was assessed by inspection for a visible 

scar. Vital signs (pulse, blood pressure, temperature, respiratory rate (RR) and O2 

saturations) were documented to provide an objective picture of illness severity. A CXR was 

done to assess radiological extent of disease.  

Grade WHO Performance Status 

0 Fully active, able to carry out all pre-disease performance without restriction 

1 Restricted in physically strenuous activity but ambulatory and able to carry out 
work of a light or sedentary nature 

2 Ambulatory and capable of all self-care but unable to carry out any work  
activities. Up an about ≥ 50% of waking hours 

3 Capable of limited self-care, confined to bed/chair ≥ 50% of waking hours 

4 Completely disabled. Cannot self-care. Totally confined to bed or chaira 

5 Deada 

Table 2.2 WHO Performance Status gradings 

a
Patients with WHO status >3 were excluded from the study 
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Recruitment
Eligible patients allocated to Block 1 or 2 sequentially

Sampling Visits

Block 1
(S1; day 4, S2; day 14, S3; day 28 S4; day 56)

Block 2
(S1; day 2, S2; day 7, S3; day 21, S4; day 49)

BL Blood for immediate tests (UE, FBC, LFT, HIV test ± CD4 count)
Blood to store (serum [Vitamin D], whole blood [DNA extraction/pharmacogenomics])
Urine test for isoniazid & pregnancy (females only) 
Urine for LAM-ELISA
CXR
Overnight sputum sample collection for quantitative bacteriology (Serial Sputum 
Colony, Counting [SSCC)] & Liquid culture [MGIT])*

S1 Overnight sputum for SSCC& MGIT* Overnight sputum for SSCC & MGIT*

S2 Overnight sputum for SSCC & MGIT*
Blood for pharmacokinetic analysis

Overnight sputum for SSCC & MGIT*

S3 Overnight sputum for SSCC &  MGIT* Overnight sputum for SSCC & MGIT*
Blood for pharmacokinetic analysis

S4 Overnight sputum for SSCC & MGIT*
Urine for LAM-ELISA

Overnight sputum for SSCC & MGIT*
Urine for LAM-ELISA

Completion of 6 month therapy
Early morning sputum for MGIT & Lowenstein Jensen culture
Treatment outcome recorded
CD4+ count in HIV positive patients

Follow-up
All patients reviewed for TB relapse/reinfection at 3,6,9,12 months.
Sputum culture if recurrent productive cough

 

Figure 2.4 Clinical study sampling schedule 

*1ml sputum is required for SSCC & MGIT respectively. Remainder of sputum stored at -20
o
C for lipid body 

fluorescence microscopy (described in chapters 5 & 6) 
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Blood was sampled for serum creatinine, bilirubin and ALT and blood haemoglobin, WCC 

and platelet count. A urine sample was collected and tested for isoniazid to ensure no 

recent anti-TB drug exposure. A β-HCG pregnancy test was performed on urine from all 

female patients. 

HIV testing was undertaken on all patients who did not know their HIV status, had 

previously tested negative or were not on ART. A CD4 count was performed on all HIV-

infected individuals. 

 Serum for estimation of Vitamin D metabolites and whole blood for DNA extraction and 

pharmacogenomic assays were collected and stored at -70oC.  2ml urine was collected, 

appropriately processed and stored at -20oC for use in the LAM-ELISA described in Chapter 

6.  

 An overnight sputum sample collection was performed. All patients were issued with a 

100ml wide mouthed polypropylene collection pot and allowed home. After eating at 6pm 

they were instructed to rinse their mouth with water, collect all expectorated sputum until 

6am the following morning and not eat again until the collection was complete. The sample 

pot was then returned to the study office. FRIO medication wallets (friouk.com) were used 

to keep sputum pots <15oC during specimen collection and transportation. After delivery, 

the sputum samples were transferred to the TB laboratory. 2ml was processed immediately 

for quantitative cultures (1ml for SSCC plates and 1ml for liquid (MGIT) broth; specific 

methods described in Chapter 4).  The remainder was stored at -20oC for lipid body 

fluorescence microscopy. 

Once sputum was submitted patients were commenced on TB therapy according to 

standard NTP guidelines460. A WHO approved weight-adjusted treatment regimen with 

daily Fixed Dose Combination (FDC) tablets containing rifampicin for all 6 months was used 

as shown in Table 2.3. HIV-infected individuals were also advised to commence co-

trimoxazole 480mg PO twice daily and referred to QECH ART clinic for advice on ART 

initiation. 
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Body 
weight (kg) 

Initial Phase (2 month) 

Number of RHZE  tablets: 
 (rifampicin 150mg, isoniazid 75mg, 
pyrazinamide 400mg, ethambutol 275mg) 

Continuation phase ( 4 months) 

Number of RH tablets: 
(rifampicin 150m, isoniazid 75mg) 

30-37 2 2 

37-54 3 3 

54-74 4 4 

74 and over 5 5 

Table 2.3 TB drug doses in relation to body weight using FDC tablets 

Adapted from Ministry of Health, Malawi, NTP Manual, 6
th

 Edition 

2.6.2 Intensive Phase (S1-S4) sampling visits 

At all Intensive Phase sampling visits a brief clinical assessment was performed. Severity of 

clinical illness, BMI and treatment adherence were all re-evaluated and an overnight 

sputum sample was collected for quantitative microbiology.  

At S2, S3 and S4 visits 2ml urine samples were also collected stored and processed for LAM-

ELISA. 

Blood sampling for pharmacokinetic assays 

To assess steady state plasma concentrations of anti-TB drugs, pharmacokinetic blood 

sampling was done at the S2 visit (day 14) in Block 1 patients and the S3 visit (day 21) in 

Block 2 patients. 

On these days patients omitted their morning medications and attended the study clinic 

fasted at 7.30am. Time ‘0’ venous blood samples were collected in 4ml lithium heparin 

monovettes, placed inside a polypropylene rubber-seal box, protected from light and 

transported immediately on ice to the MLW laboratory where plasma was separated by 

centrifugation (1000 x g for 10 minutes)  and stored at -70oC. Morning medications were 

then administered with a glass of water, but patients remained otherwise fasted until ‘2 

hour’ sampling was done in the same manner. Patients were given lunch in the study office 

prior to final ‘6 hour’ sampling. As ambient temperature and light exposure may degrade 

rifampicin and adversely affect bio-analysis rapid transfer of blood samples from the clinic 

to the laboratory was essential. 

2.6.3 End of Treatment (EOT) sampling visit 

A further clinical assessment was performed on completion of 6 months TB therapy. An 

early morning sputum sample was collected for TB culture in MGIT broth and on 
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Lowenstein Jensen (LJ) slopes. If both cultures were positive the patient was deemed to 

have failed therapy and referred to the NTP for re-treatment with standard Regimen 2460.  

If only one culture was positive a second sputum sample was requested for confirmatory 

testing. 

HIV-infected individuals also had a repeat CD4 count. Those who had not yet initiated ART 

were linked into HIV care by referral to their local ART clinic. 

2.6.4 Post-treatment follow-up visits 

Patients were asked to attend follow-up appointments with the QECH study team at 3, 6, 9 

and 12 months after completion of therapy. Those who lived far away or who found 

hospital attendance difficult were permitted to conduct these visits by telephone so long as 

they were clinically well.  Patients with recurrent cough were asked to submit sputum 

samples to test for TB relapse or re-infection. These samples were processed in the same 

way as EOT specimens. If recurrent TB was diagnosed, patients were referred to the NTP 

for treatment. 

2.6.5 Unplanned visits 

Throughout their participation in the study, patients were encouraged to contact the study 

team directly and visit the study office if they encountered any treatment complication, 

drug side-effects or inter-current illnesses. The PI was required to assess any patient 

attending for an unplanned visit as the problems precipitating them were often outside the 

scope of the study protocol and required the input of a clinician. A specific CRF was 

designed to record the number and nature of unplanned visits and document any clinical 

action taken.   

2.6.6 Tracing of lost patients 

In a cohort study, it is essential to retain as many patients as possible until a clear study-

end-point is reached. Inevitably some patients forget to attend appointments, cannot come 

to hospital due to illness or miss study visits for other reasons. 

To minimise loss to follow-up, detailed directions to each patient’s house were recorded 

during the baseline assessment and kept in a ‘map book’ in a locked drawer in the study 

office. Mobile phone numbers for study patients and (where permitted) next of kin 

guardians were also recorded and checked at each study visit. Any patient who was more 

than 24 hours late for a study visit was traced by telephone and encouraged to attend as 

soon as possible. If a patient was late and could not be contacted for more than one week 



Chapter 2  Clinical Study Design 
 

61 
 

after a scheduled appointment a study nurse visited them at home to identify the reason 

for non-attendance and facilitate the study visit. These home visits were undertaken in 

plain clothes to maintain patient confidentiality and cultural sensitivity. Traced patients 

who no longer wished to participate in the study were formally withdrawn.  

2.7 Establishing Study Outcomes 

WHO tuberculosis treatment guidelines outline six standard outcomes of therapy for TB 

control programmes; cure, treatment completion, treatment failure, death, default and 

transfer out30. However, these do not consider the possibility of post-treatment relapse, 

nor do they discriminate between TB-related deaths and death due to other causes. 

Additionally, the WHO definition of ‘failure’ relies only on persistent smear or culture 

positivity. Modern clinical trials protocols have structured their endpoints to acknowledge 

that, even in the absence of unambiguously positive bacteriology, some patients may be 

classified as failures/relapses on clinical ground whilst low numbers of colonies on a single 

EOT culture do not mandate re-treatment471.  

For this study outcomes were defined as shown in Table 2.4. In cases where treatment 

failure, relapse or cause of death had to be determined on clinical grounds because 

supportive bacteriological data was absent or inconsistent, a decision on outcome was 

made by two clinicians; the study PI in consultation with a QECH physician independent of 

the study team. Additionally, all patients with recurrent TB after completion of therapy 

were regarded, for the purpose of this thesis, as relapses on the basis that recurrence 

occurred within one year of treatment completion. Spoligotyping of M tuberculosis isolates 

recovered at the time of recurrence was not available and it is possible that some patients 

suffered re-infection rather than recurrence. Stored isolates may be used for verification of 

this at a later date. 

Overall, cure or treatment completion was regarded as a “favourable outcome” and failure 

or relapse was regarded as an “unfavourable outcome”. Patients who defaulted therapy, 

died of causes unrelated to TB or were transferred out of Blantyre with unknown outcomes 

were withdrawn from the study according to the criteria described in section 2.5.3. 
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Cure A patient whose sputum culture was positive at baseline but who was 

culture negative at EOT and showed no clinical or bacteriological 

evidence of relapse during post-treatment follow-up 

Treatment 

completion  

A patient who completed treatment and showed no clinical or 

bacteriological evidence of relapse during post-treatment follow-up but 

who did not have a documented negative culture result at EOTa 

Failure A patient who had any of the following: (1) two positive TB sputum 

cultures at EOT; (2) one positive TB sputum culture at EOT and clinical 

features indicating  a need for re-treatmentb; (3) clinical features at EOT 

indicating a need for re-treatment in the absence of supporting 

bacteriologyb; (4) death during treatment which was definitely or 

probably attributable to active TBb    

Relapse A patient who had a favourable outcome at EOT but one of the following 

during post-treatment follow-up: (1) two positive TB sputum cultures;  

(2) one positive TB sputum culture and clinical features indicating a need 

for re-treatmentb; (3)  clinical features indicating a need for re-treatment 

in the absence of supporting bacteriologyb; (4) death which was definitely 

or probably attributable to active TBb 

Table 2.4 Study outcome definitions 

a
Absence of an EOT culture result may be because a sample was not collected or cultures were contaminated 

b
Decisions on clinical indications for re-treatment or attributable cause of death were made by the PI in 

consultation with a QECH physician independent of the study team. 

 

2.8 Sample Size Calculation 

It is generally anticipated that an unfavourable outcome (i.e. treatment failure or relapse) 

will occur in approximately 5% of patients with drug susceptible TB69. To determine sample 

size for the study, this primary endpoint was related to one of the putative surrogate end-

points in the primary hypothesis (rate of decline in CFU/ml counts on SSCC plates during 

the sterilisation phase of bacillary elimination in the first 8 weeks of therapy). An odds-ratio 

(OR) was used as the measure of effect in a linear regression model. Assuming that 

unfavourable outcomes occur at a rate of 4-8% and using conventional error values of two 

sided α=0.05 and β=0.20 the range of sample sizes required to detect an effect size in the 

range 2-3 are shown in Figure 2.5. These effects represent the increase in the odds of an 

unfavourable outcome at a value of the bacillary elimination rate one standard deviation 
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above the mean. At a primary outcome rate of 6% an OR of 2.5 can be detected with 80% 

power at a sample size of 165 patients. For this scenario, 12 poor outcomes are expected 

on average and allowance is made for up to 17% loss to follow-up. However, it was unclear 

exactly what the primary outcome rate would be in this study population, so the study 

team aimed to recruit a slightly larger sample of 200 patients. 

 
N vs OR by P0 with Alpha=0.05 Power=0.80 R2=0.00

LogReg Normal X

0.04

0.05

0.06

0.07

0.08

N P
0

OR

0

50

100

150

200

250

300

350

400

450

500

2.0 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 3.0

 

Figure 2.5 Power curves of relationship between sample size and detectable effect 

Power curves are expressed as the odds ratio (OR) of primary outcome (combined treatment failure/relapse) 

using conventional error values of of two sided α=0.05 and β=0.20 for a range of underlying primary outcome 

(PO) end-points (4-8%) at the mean value of the SSCC slope 
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2.9 Ethical approval 

Ethical approval for the study was granted by the College of Medicine Research Ethics 

Committee, University of Malawi (P.01/10/855) and the ethics committee of the LSTM 

(09.67).  Copies of ethics approval letters are attached as Appendices 10.1 and 10.2. 

2.10 Data Management 

Paper copies of clinical and laboratory CRFs were designed in Microsoft Word. Although all 

forms were prepared in English, key clinical questions were translated into Chichewa and 

transcribed onto the CRFs to provide appropriate and consistent interview prompts during 

patient visits. Research nurses and laboratory staff were trained on data collection and 

entry by the Principal Investigator prior to the start of the study to ensure standardised 

documentation of study participants’ medical history, clinical examination findings, and 

results of investigations.  All paper CRFs are stored in the MLW archive and will be retained 

for 5 years after study completion.  

All clinical and laboratory CRF data were entered into a master Microsoft Access database 

via an EpiInfo Version 3.5.3 user interface. Related information in different data tables 

were linked by unique patient and sample identifiers. All data was double entered and 

verified prior to analysis. The study database was stored on a password protected 

designated study computer and backed up on two password protected hard drives kept in 

separate locations.  

Details of statistical techniques used to analyse the study data are provided in the relevant 

sections of chapters 3-7. Unless stated otherwise, all statistical analyses were done using 

‘R’ version 2.15.2472. Throughout this thesis, statistical significance is reported at the level 

of p<0.05.
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3. Clinical Study Description 

3.1 Introduction 

This chapter profiles baseline characteristics of the study cohort and events during TB 

treatment in order to identify clinical factors which independently predict treatment 

response or are important covariates for pharmacodynamic modelling. Final outcomes for 

study patients are reviewed and range of factors which may influence the effectiveness of 

TB therapy are assessed. 

Firstly, socio-economic status is discussed. Globally, there is a well established link between 

TB prevalence and urban poverty473-475 but it is plausible that socio-economic factors are 

also implicated in treatment outcomes. This is explored using information collected from 

patients at baseline interview.  

Secondly, HIV parameters are outlined to provide information on patients’ HIV status and 

describe access to ART during the study. Although HIV does not influence cure from 

PTB476,477 more relapses are reported in HIV-infected individuals478,479. The specific effect of 

ART on TB outcome is unknown but emerging evidence suggests that it reduces total 

mortality122,123 and Malawian national policy has recently changed from stating that naive 

patients should  initiate ART during the continuation phase of TB therapy464, to 

recommending initiation “within 14 days of TB diagnosis”465. As noted in Section 2.2.2, in 

September 2011 standard first-line ART regimen for TB patients was changed from 

stavudine, lamivudine and nevirapine to tenofovir, lamivudine and efavirenz. Assessing the 

effect of these changes when modelling bacillary persistence and elimination is not 

straightforward but a detailed description of HIV treatment amongst TB patients is 

provided to contextualise the analysis. 

Thirdly, clinical factors are reviewed, several of which have previously been associated with 

treatment response including low baseline BMI, poor weight gain during treatment363, ever 

smoking cigarettes291 and BCG vaccination480. The strength of the evidence for these 

associations is mixed and prior studies are difficult to compare because they are of differing 

size, and use varying end-points of two month smear or culture conversion rather than final 

clinical cure or failure/relapse. Analysis of the current dataset is done to clarify the relative 

importance of these factors as covariates for the study cohort. 
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Fourthly, serum Vitamin D concentrations of study patients are assessed. Previous work has 

shown variable baseline Vitamin D deficiency in Malawian adult TB patients481. This may be 

relevant for two reasons. 1,25 (OH) D, the active metabolite, is an immunologically active 

hormone which induces anti-mycobacterial activity in vitro482 and modulates the host 

response to mycobacterial infection by induction of reactive nitrogen and oxygen 

intermediates483,484 and the antimicrobial peptide cathelicidin485-487. It has been proposed 

that these effects of Vitamin D may usefully augment TB treatment and whilst a recent 

clinical trial of did not show improved outcomes with Vitamin D supplementation, it 

demonstrated a trend towards faster bacillary clearance from sputum particularly in 

patients with a  tt Vitamin D receptor genotype488,489. From a related perspective, it is 

necessary to evaluate whether varying Vitamin D levels in a generally deficient population 

have consequences for treatment response. 

Additionally, some components of TB therapy and ART can pharmacologically lower serum 

concentrations of useful Vitamin D metabolites (Figure 3.1). Vitamin D is normally absorbed 

from the skin and diet and converted by sequential hydroxylation into 25 (OH) D (the 

routinely measured compound in serum) then 1,25 (OH) D (the active compound). Isoniazid 

inhibits both hydroxylation steps490 and rifampicin induces activity of enzymes which 

degrade 25 (OH) D into an inactive waste product491. Combined rifampicin and isoniazid 

therapy may reduce serum levels of useful Vitamin D metabolites by 23-34%491. The anti-

retroviral drug, efavirenz has also been associated with Vitamin D deficiency492. Although 

only recently introduced to first-line ART in Malawi, this drug is in the same class as 

nevirapine which is ubiquitously used, and may have similar metabolic effects. It is 

important to know whether Vitamin D levels are progressively compromised by drug 

therapy in a population at high risk of baseline deficiency. 

Finally, radiological extent of TB disease is described. CXR abnormalities (especially 

cavitation) are associated with delayed therapeutic response354,356,358 and clinical trials 

often use CXR appearance as a covariate in end-point analysis225,228,232. However, many 

CXRs assessment schemes493,494 are complex, vulnerable to inter-reader variability495 and 

poorly validated to predict outcome. In 2010, investigators in Papua, Indonesia reported 

that a simple scoring system based on percentage of lung affected and presence of 

cavitation predicted 2 month sputum smear conversion in a predominantly HIV-negative 

population355. This approach is used here to evaluate the significance of CXR abnormalities 

in a setting of higher HIV endemicity. 
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*25 (OH) Vitamin D is the routinely measured metabolite, commonly used as a surrogate measure of 

the active compound 1,25 (OH) Vitamin D.   

After profiling each aspect of the study cohort, the relevance of each clinical and 

radiological covariate to treatment outcome is analysed in relation to binary measures of 

response. Two month sputum culture status is used as an early marker and final clinical 

outcome is used as a definitive end-point. The covariates described here will be re-visited 

in Chapter 6 and 7 to assess their relationship with variability in the parameters of 

pharmacodynamic and pharmacokinetic models. 

 

 

Figure 3.1 Vitamin D metabolism and the effect of TB and HIV drugs 

RIFAMPICIN and EFAVIRENZ 

induced hepatic enzymes 

(CYP24 and CYP3A4) have 

24,25 hydroxylase activity 

1 α-hydroxylase 

in the KIDNEY 

25-hydroxylase 

in the LIVER 

24,25- hydroxylase 
In the LIVER 

 

7-dehydrocholesterol 
in SKIN 

Ultraviolent sunlight 

Vitamin D2 
from diet 

25-OH Vitamin D* 
 

1,25-OH Vitamin D 
(Active metabolite) 

Binds Vitamin D receptor in target tissues 

 

Regulates calcium and bone 
biochemistry 

 

Exerts immunological effects 
including anti-mycobacterial activity 

 

24,25-OH Vitamin D 
(inactive metabolite) 

 
 

ISONIAZID and 

EFAVIRENZ inhibit 

cytochrome P-450 

system reducing 

25-hydroxylase 

activity  



Chapter 3  Clinical Study Description 
 

68 
 

3.2 Methods 

The overall design of the clinical study was outlined in Chapter 2. Specific techniques for 

drug susceptibility testing of TB isolates, HIV testing of participants, CXR interpretation and 

measurement of 25 (OH) D levels are provided here. Statistical methods used in this 

chapter are also described. 

3.2.1 Procedure for drug susceptibility testing 

Drug susceptibility testing was performed on M tuberculosis isolates grown from baseline 

sputum samples of all patients to demonstrate that variability in treatment response was 

not attributable to undiagnosed drug resistance, including MDR TB. 

Traditional phenotypic susceptibility testing involves growth of M tuberculosis in the 

presence of anti-TB drugs. Modern molecular techniques allow genetic mutations 

responsible for rifampicin and isoniazid resistance to be detected from bacterial DNA, 

giving faster results with minimal handling of viable bacilli. 96% of rifampicin resistant M 

tuberculosis strains possess alterations within a rifampicin resistance-determining region 

(RRDR) of the rpoB gene496, and the majority of isoniazid resistant strains possess mutations 

on katG (70%) or inhA promoter (15-35%) genes497. The Genotype MTBDRplus 2.0 line 

probe assay (Hain Life Sciences, Nehren, Germany) detects mutations at these three 

sites498. This assay was introduced to the CoM TB laboratory in Blantyre and used for 

susceptibility testing of baseline isolates. The procedure was performed according to 

manufacturer’s instructions499 and WHO guidelines500 as outlined below. Three separate 

rooms were used to prevent cross-contamination of DNA molecules. 

In the CL-3 laboratory, the liquid culture (MGIT) method described in Section 4.3 was used 

to isolate M tuberculosis from sputum and DNA was extracted using a Genolyse manual 

extraction kit. Culture fluid was centrifuge concentrated at 3000 x g for 20 minutes then 

cell pellets were re-suspended in 100µl of Genolyse solution and incubated for 5 minutes at 

95oC. Neutralisation buffer was added, samples were spun again at 3000 x g for 5 minutes 

and the supernatants were used as DNA samples for the polymerase chain reaction (PCR) 

step. 

In the second room, two commercially prepared ‘amplification mix’ solutions containing 

biotinylated primers and Taq polymerase were mixed together in preparation for PCR 

amplification of nucleic acid.  
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In the third room, the combined amplification mix was added to the DNA samples and PCR 

was performed according to a series of standard incubation cycles: 15 minutes at 95oC; 10 

cycles of 30 seconds at 95oC and 2 minutes at 65oC; 20 cycles of 25 seconds at 95oC, 40 

seconds at 50oC and 40 seconds at 70oC and a final 8 minutes at 70oC. Samples were mixed 

with hybridisation buffer in custom-designed wells of a Twincubator. A test-strip was added 

to each well and incubated for 15 minutes at 45oC to allow hybridisation of DNA from the 

sample to specific oligonucleotide probes on the strip. All solutions were completely 

aspirated, test-strips were washed twice with distilled water and colourimetic detection of 

hybridised amplicons was obtained by addition of a streptavidin alkaline phosphatase 

conjugate.  

 Interpretation of test-strip results was based on assessment of 27 oligonucleotide reaction 

zones (bands) including six controls, twelve rpoB loci (8 wild-type [WT] and 4 mutant [MUT] 

probes), three katG loci (1 WT and 2 MUT probes) and five InhA loci (1 WT and 4 mutant 

probes).  Test-strips containing only WT bands were reported as sensitive, whilst resistance 

was defined as the presence of MUT bands with or without the simultaneous absence of 

the complementary WT. Only bands with at least equivalent intensity to the amplification 

control were considered positive. 

3.2.2 HIV testing procedures 

The HIV status of all study participants was confirmed at baseline. Patients who had written 

evidence of a positive HIV test from a recognised clinic and were already taking ART were 

regarded as infected. All other patients were asked to undergo an HIV test.  

According to national guidelines a serial rapid testing algorithm was followed using point-

of-care rapid HIV test kits on whole blood. After pre-test counselling, a finger prick blood 

sample was tested on a Determine HIV 1/2 kit (Abbot Diagnostic Divison, Hoofddorp, The 

Netherlands). If negative, the patient was given the result. If positive, the Determine result 

was confirmed using a Unigold HIV 1/2 kit (Trinity Biotech Inc, Wicklow, Ireland). 

Discordant Determine and Unigold results were resolved via a third finger prick test using a 

Bioline HIV 1/2 kit (Standard Diagnostics Inc., Kyonggi-do, South Korea).  All test kits have 

previously published sensitivity and specificity of 99-100%501-503. 

Post-test counselling was provided to all patients. Those found to be HIV-infected were 

referred to ART clinic at QECH or their nearest health centre. 
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3.2.3 Vitamin D laboratory method 

Serum samples from baseline, S4 and EOT visits were stored at -70oC, shipped to the UK 

and analysed in the Clinical Biochemistry laboratory at the Royal Liverpool University 

Hospital according to their standard operating procedure. Briefly, 25 (OH) D2 and D3 were 

extracted from the samples using a zinc sulphate and acetonitrile containing 25 (OH) D3 

internal standard as a precipitant. The samples were mixed vigorously by vortexing and 

centrifuged to obtain supernatant. Analysis was done by reverse phase liquid 

chromatography coupled to a tandem mass spectrometer in electrospray ionization 

positive mode. Identification and quantification of 25 (OH) D2 and D3 metabolites was 

based on multiple reaction monitoring of the specific mass transition for each target 

analyte. The mass transitions were; 25 OH-D3: 401m/z to 383m/z, 25 OH-D2: 413 m/z to 

383 m/z, internal standard: 407 m/z to 371 m/z. Total serum (OH) D levels were taken as 

the sum of (OH) D2 and (OH) D3 at each time-point of analysis.  

Holick’s definitions of Vitamin D status were  used504 (hypovitaminosis D if 25 (OH) D 

≤75nmol/l, hypovitaminosis D; vitamin D deficiency if  ≤50 nmol/l, and severe Vitamin D 

deficiency if ≤25 nmol/l). 

3.2.4 Chest radiography 

A standard full size postero-anterior CXR was performed at baseline in the radiology 

department of QECH. To grade the amount of affected lung, visual estimation of the extent 

of opacification, cavitation or other pathology was expressed as a percentage of visible 

lung. This assessment was based on the proportion of observed lung-field which looked 

abnormal and the density of opacification in abnormal areas. The presence of absence of 

specific features was also noted; namely cavities <4cm diameter, cavities ≥4cm diameter, 

consolidation, effusions, nodules, fibrosis, miliary shadowing and hilar lymphadenopathy. 

All CXRs were blinded before analysis and interpreted independently by a clinician (the 

study PI) and an external radiologist. Concordance between each element of assessment 

was reviewed, discrepancies were resolved by consensus and only elements where there 

was substantial agreement were used for analysis of factors influencing treatment 

response. 

3.2.5 Statistical analysis 

Description of baseline characteristics was done for all eligible study participants. 

Methodology and detailed results of quantitative culture techniques will be described in 

Chapter 4 and Chapter 6 but all patients were sputum culture positive at baseline. 
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Persistently positive cultures for M tuberculosis using either technique at 2 months was 

used as an early marker of poor treatment response, and was assessed for all patients who 

finished intensive phase therapy. Treatment outcome definitions described Section 2.7 

were used to classify final clinical outcomes for all patients who finished follow-up or 

reached a recognised end-point prior to this time. 

Summary statistics were used to describe characteristics of study patients. Where 

proportions of patients were compared according to continuous variables, Wilcoxon’s test 

was used and where assessment was done according to categorical variables a chi-squared 

test was performed, unless the number of patients in any category was <5, in which case 

Fisher’s exact test was used. Differences between categorical variables with more than two 

categories were assessed by the Kruskal Wallis test. 

For serially sampled continuous measurements, differences in values between time-points 

were analysed by 2-sample paired Wilcoxon tests. When analysing 25 (OH) D levels, total 

exposure to 25 (OH) D during TB treatment was taken to be the area under the serum 

concentration-time plot for each patient. This was calculated using the “auc” function from 

the Epicalc package in ‘R’ version 2.15.2.  

Assessment of inter-reader agreement in CXR analysis was done using Lin’s concordance 

co-efficient (ρc) and Bland and Altman 95% limits of agreement for the continuous variable 

(total amount (%) of lung affected). Agreement for dichotomous variables was assessed 

using the kappa statistic. Prevalence-adjusted, bias adjusted kappa values were calculated 

according to the method described by Byrt505 and kappa values were interpreted according 

to the guidelines of Landis and Koch506 (kappa ≤0.00, poor; 0.00-0.20, slight; 0.20-0.40, fair; 

0.40-0.60, moderate; 0.60-0.80, substantial; 0.81-1.00, almost perfect). 

Multiple linear regression was used to assess factors associated with 25 (OH) D levels and 

percentage of lung affected on CXR. Multiple logistic regression was used to assess factors 

associated with CXR cavitation, and to assess relationships between the variables described 

in this chapter and 2 month sputum culture status or final treatment outcome. For 

multivariate linear and logistic regression, all variables with p<0.10 on univariate analysis 

were included in the multivariate model. Results of logistic regression were expressed as 

OR with 95% Confidence Intervals (CI). 

 



Chapter 3  Clinical Study Description 
 

72 
 

3.3 Results: patient recruitment, follow-up and outcomes 

Patient participation in the study is summarised in Figure 3.2. 

3.3.1 Enrolment and retention 

Between June 2010 and December 2011, 287 patients were screened. 247 were eligible 

and 182 were recruited. 8 recruited patients were subsequently found to be ineligible and 

5 withdrew consent prior to baseline sampling, leaving 169 participants.  

85/247 (35%) eligible patients were female and women were more likely to decline 

enrolment. Of 32/85 (38%) women who declined participation, 10 felt unable to consent 

without consulting their spouse. By comparison, 38/154 (25%) men declined and none 

cited the need for family consultation. The relative risk of declining to participate in women 

was 1.53 (95% CI: 1.03-2.25). This resulted in recruitment of a gender imbalanced cohort of 

116 (69%) men and 53 (31%) women.  

Of the 169 participants, one failed therapy (died of TBa) and 22 were withdrawn during the 

first 8 weeks, leaving 146 active patients at the end of intensive phase TB therapy. Four 

withdrew during the continuation phase and 10 withdrew during post-treatment follow-up. 

Although total withdrawals accounted for 36/169 (21%) of participants after treatment 

initiation, only 15/169 (9%) were “lost to follow-up and untraceable”, suggesting that 

better patient retention would be difficult to achieve. Economic difficulties in Malawi 

throughout the study including severe, protracted fuel shortages presented persistent 

obstacles to clinic attendance and patient tracing. 

3.3.2 Baseline drug susceptibility testing 

No rifampicin resistance was identified using the line probe assay on M tuberculosis isolates 

from study participants. No patient was withdrawn from the study because of MDR TB at 

baseline. Three samples demonstrated evidence of isoniazid resistance via S315T1 

substitution mutations on the katG gene (representative test-strip in Figure 3.3A). No 

isoniazid mono-resistant patient failed therapy; one was transferred out of area during the 

intensive phase and the other two obtained favourable outcomes (one cure and one 

treatment completion) with no disease relapse during follow-up. 

                                                           
a
 According to outcome definitions from Section 2.4, deaths which were definitely or probably 

attributable to TB were regarded as failures, whilst deaths due to other causes were regarded as 
withdrawals. Judgement on causes of death was made by two doctors (the study PI and an 
independent physican. 
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Figure 3.2 Patient screening, recruitment and follow-up 

a
 Non-TB deaths discussed in Section 3.4.3: one from jaundice due to drug toxicity (Figure 3.3B) 

b
IRIS=Immune Reconstitution Inflammatory Syndrome affected 2 patients. One was treated with 

corticosteroid therapy and was withdrawn from the study (Figure 3.3.C)

146 patients completed intensive phase therapy 

142 patients completed TB therapy 

287 patients screened 

182 patients recruited 

40 patients met exclusion criteria 
3 were <16 or >65 years 
19 were no smear ‘++’ or ‘+++’  
4 patients were pregnant 
12 had received prior TB treatment 
2 were on corticosteroids 

65 eligible patients declined enrolment 
3 refused HIV testing 
19 felt frequency/volume of blood sampling 
was “too much” 
43 unwilling/ unable to attend follow-up 

5 patients withdrew consent for HIV testing 
after enrolment but before sample 
collection 

8 excluded post-recruitment 
5 failed to submit sputum 
3 were sputum culture negative 

22 withdrawn during intensive phase 
2 non-TB deaths

a
 

1 interrupted treatment 
6 lost to follow-up and untraceable 
5 transferred out of area 
8 requested study withdrawal 

169 patients participated in the study 

1 failed therapy 
(Died from TB) 

4 withdrawn during continuation phase  
2 interrupted treatment 
1 received steroids for IRIS

b
 

1 lost to follow-up and untraceable 

118 favourable outcomes 
98 cured 
20 completed treatment 

10 withdrawn during follow-up 
2 non-TB deaths

a
 

6 lost to follow-up and untraceable 
1 requested study withdrawal 
1 transferred out of area 

15 unfavourable outcomes 
10 failures

 

5 relapses 

9 failed therapy 
(Positive EOT culture or poor 
clinical response) 

5 relapsed during follow-up 
(All positive post-treatment 
culture, one died) 
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Figure 3.3 Baseline genotypic resistance testing and 
clinical events on TB treatment 

A: Resistance patterns on Genotype MDRTBplus 
2.0 test-strips. Samples were prepared and 
colourimetric bands on test-strips developed 
according to standard protocols from Hain Life 
Sciences, Germany.Lanes A&G show negative 
controls for the PCR Amplification mix and 
Genolyse respectively. Lane 9 shows M 
tuberculosis susceptible to both isoniazid and 
rifampicin. Lane 10 shows isoniazid mono-
resistance due to a katG (S315T1) mutation. 
 
B: Jaundice as a consequence of drug toxicity, 
necessitating study withdrawal. 
 
C: Cervical lymphadenopathy and “cold” abscess 
in the neck due to Immune Reconstitution 
Inflammatory Syndrome; treated by repeated 
aspiration of pus from the neck and prescription 
of oral corticosteroids, necessitating study 
withdrawal. 
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3.3.3 Treatment Outcomes 

All patients were sputum culture positive on either MGIT or SSCC at baseline. By two 

months 44/146 (30%) were culture negative whilst 86/146 (59%) remained culture positive 

by at least one technique. Two month cultures were unavailable for 16/146 (11%) patients 

because of contaminated S4 samples.  

118/133 (89%) patients had favourable treatment outcomes (98 cured and 20 successfully 

completed follow-up but did not submit sputum for EOT or post-treatment culture). 15/113 

(11%) had unfavourable outcomes (10 failures and 5 relapses, see Table 3.1). 

For 13/15 (87%) unfavourable outcomes, the diagnosis of treatment failure or relapse was 

microbiologically confirmed by culture positive EOT or post-treatment sputum samples. Of 

the two unfavourable outcomes without confirmatory microbiology, one patient (ID: 182) 

died due to respiratory deterioration in the first week of therapy. No alternative diagnosis 

was made and he was deemed to have died of tuberculosis. The other (ID: 93) was 

adherent to TB treatment for 6 months. Although her purulent cough resolved she had 

persistent cachexia and lymphadenopathy. A lymph node biopsy did not reveal an 

alternative diagnosis and she was classified as a treatment failure by the study PI and an 

independent physician. She made a good initial response to a re-treatment TB regimen but 

her long-term outcome is unknown as she was withdrawn from the study. 

All patients with unfavourable outcomes were originally infected with fully drug susceptible 

M tuberculosis according to the baseline line probe assay. Repeat genotypic susceptibility 

testing was done on the 13 positive EOT or post-treatment isolates. Fully drug susceptible 

M tuberculosis was still identified in 11 (85%), suggesting that unfavourable outcomes were 

attributable to persistence of drug-susceptible TB. One patient had developed isoniazid 

monoresistance and one had developed MDR TB. Although spoligotyping was unavailable, 

all bacteriologically confirmed TB recurrences occurred within 6 months of completing 

therapy suggesting that relapse was more likely that re-infection. 

All failures and relapses were referred back to the NTP for further management. In most 

cases this comprised standard therapy with WHO approved regimen 2, an 8 month 

treatment regimen including injectable streptomycin for the first 8 weeks460. One relapsed 

patient (ID: 50) died before re-treatment could be initiated.
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ID Sex 
Age  
(yrs) 

HIV status 
BL Line Probe Assay 2 month 

culture  
Clinical indication of unfavourable outcome 

EOT/PT 
culture 

EOT/PT 
 Line Probe Assay  

Species RIF INH Species RIF INH 

10 patients failed therapy 

5 F 34 Infected Mtb S S Negative Still producing purulent sputum at EOT EOT positive Mtb S S 

15 M 47 Infected Mtb S S Negative Still producing purulent sputum at EOT EOT positive  Mtb S S 

54 M 28 Infected Mtb S S Positive Still producing purulent sputum at EOT EOT positive Mtb S S 

84 M 28 Non-infected Mtb S S Positive Still producing purulent sputum at EOT EOT positive Mtb S S 

93 F 42 Infected Mtb S S N/A 
Clinical deterioration and lymphadenopathy 
No EOT bacteriology, improved on TB regimen 2

a
   

NA NA NA NA 

121 F 27 Infected Mtb S S Positive Still producing purulent sputum at EOT EOT positive Mtb S S 

145 F 27 Infected Mtb S S Negative Still producing purulent sputum at EOT EOT positive Mtb S S 

151 M 30 Infected Mtb S S Negative Still producing purulent sputum at EOT EOT positive Mtb R
b
 R

c
 

155 M 30 Non-infected Mtb S S Negative Still producing purulent sputum at EOT EOT positive Mtb S S 

182 M 39 Infected Mtb S S N/A Died during first week of therapy attributed to TB NA NA NA NA 

5 patients relapsed after successful cure/treatment completion 

46 F 26 Infected Mtb S S Negative Cured (EOT culture negative) but relapse of cough  PT positive Mtb S S 

50 F 61 Infected Mtb S S Negative 
Cured (EOT culture negative) but recurrent fever, 
purulent cough, cachexia, death attributed to TB 

PT positive Mtb S S 

58 F 30 Infected Mtb S S Positive 
Cured (EOT culture negative) but recurrent cough 
and haemoptysis, improved on TB regimen 2

a
 

PT positive Mtb S R
c
 

73 M 21 Non-infected Mtb S S Positive Cured (EOT culture negative) but persistent cough  PT positive  Mtb S S 

75 M 36 Infected Mtb S S Positive Cured (EOT culture negative) but persistent cough PT positive Mtb S S 

Table 3.1 ‘S.P.U.Tu.M.’ study patients with unfavourable outcomes 

Abbreviations; BL= baseline, EOT=End of treatment, PT=Post-treatment, Mtb=Mycobacterium tuberculosis, RIF=Rifampicin, INH=Isoniazid, S=Sensitive, R=Resistant. 
a
TB regimen 2 is the WHO approved protocol for re-treatment cases used in Malawi (8 months of therapy, including injectable streptomycin during the first 2 months

460
  

b
Mutation detected on rpoB conferring resistance to rifampicin 

c
Substitution mutation detected on katG (S315T1) conferring resistance to isoniazid
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3.4 Results: Description of the study cohort 

3.4.1 Socioeconomic profile  

To contextualise socioeconomic features of the cohort, patient characteristics were 

compared with the general urban Malawian population using data from the 2010 

Demographic Health Survey (DHS)456. Some characteristics were compared at the level of 

patient household, whilst others were compared at the individual level (Tables 3.2 and 3.3). 

To avoid confounding by gender, individual features were analysed separately for men and 

women.  

There were no significant differences at household level between study patients and the 

general urban population except that study patients were less likely to use biomass fuel for 

cooking (70% vs. 90%, p<0.001). This is slightly surprising in view of previously described 

associations between biomass fuels and tuberculosis507,508. Of the 117 patients who used 

biomass at home 98 (84%) cooked inside the house and 19 (11%) cooked outside. 

At the individual level, study participants were less likely to be able to read from a 

newspaper than the general population (Men: 72 vs. 91%, p<0.001, Women: 68 vs. 89%, 

p<0.001). Male study participants were also less likely to have ever attended school or 

received a secondary/tertiary education (p<0.001).  

Obtaining enough food in the past month was a problem for 20% of men and 19% of 

women in the study but comparative data was unavailable from the DHS. 

There were differences in employment patterns between study participants and the 

general population; study patients most commonly described their usual occupation as 

“unskilled manual labour/domestic service” (men) or “no employment for at least 12 

months” (women). By contrast, “clerical/service/sales” work was most common in the 

general population for both genders (p<0.001).   

Finally, study patients were more likely to have ever smoked tobacco than the general 

population (Men: 34 vs 10%, p<0.001, Women: 4% vs 0%, p=0.03) although absolute 

numbers are small. 

Viewed collectively, these data suggest that smear positive TB patients enrolled to the 

study were less educated, more likely to have low/no salary and more likely to have ever 

smoked than urban Malawian adults in general. 
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 Study 
 cohort 
 
N=169 

Urban 
Malawian 
households 
N=4116

a
 

p-

value
b
 

Number of people in household (median, range) 4 (1-10) 4 (1-9) 0.823 

Female head of household (n, %) 32 (19) 852 (21) 0.647 

Motorised vehicle owned by anyone in household (n, %) 16 (10) 354 (9) 0.800 

In the past 2 weeks an adult at home missed a meal to 
ensure adequate food for children (n, %) 

13 (8) N/A - 

Electricity available at home (n, %) 65 (39) 1428 (35) 0.355 

Cooks using biomass fuel (charcoal/wood) (n, %) 117 (70)) 3683 (90) <0.001* 

Table 3.2 Household profile of study participants 

 Study  
cohort 

Urban Malawian 
adults

a
 

p-
value

b
 

Male patients N=116 N=1440 - 

Able to read from a newspaper (n, %) 83 (72) 1326 (92) <0.001* 

Highest level of education (n, %) 
Never attended school 
Primary school education only 
Secondary/tertiary education 

 
8 (7) 
45 (39) 
63 (54) 

 
24 (2) 
556 (39) 
859 (60) 

<0.001* 

Difficulty obtaining enough food in past month (n, %) 23 (20) NA - 

Usual occupation (n, %)
c
 

Agriculture 
Clerical/services/sales 
Professional/technical 
Skilled manual 
Unskilled manual/domestic service 
No employment for at least 12 months 

 
11 (10) 
8 (8) 
12 (11) 
17 (16) 
41 (38) 
18 (17) 

 
124 (9) 
381 (27) 
 114 (8) 
365 (25) 
189 (13) 
267 (19) 

<0.001* 

Ever smoked tobacco (n, %) 39 (34) 144 (10) <0.001* 

Ever drinks alcohol (n, %) 63 (54) NA - 

Female patients N=53 N=4302 - 

Able to read from a newspaper (n, %) 36 (68) 3566 (83) 0.007* 

Highest level of education (n, %) 
Never attended school 
Primary school only 
Secondary/tertiary education 

 
3 (6) 
22 (42) 
28 (53) 

 
301 (7) 
2037 (47) 
1964 (46) 

0.577 
 

Difficulty obtaining enough food in past month (n, %) 10 (19) NA - 

Usual occupation (n, %) 
Agriculture 
Clerical/services/sales 
Professional/technical 
Skilled manual 
Unskilled manual/domestic service 
No employment for at least 12 months 

 
7 (13) 
5 (9) 
3 (6) 
1 (2) 
9 (18) 
25 (50) 

 
428 (10) 
1514 (57) 
162 (6) 
199 (8) 
353 (13) 
1645 (38) 

<0.001* 

Ever smoked tobacco (n, %) 2 (4) 21 (0.0) 0.031* 

Ever drinks alcohol (n, %) 3 (6) NA - 

Table 3.3 Individual socio-economic profile of study participants 

a
 Reference data on urban Malawian households/adults from Demographic Health Survey 2010 

b
 Number of people in household compared by Wilcoxon’s test, all other variables compared by chi-

squared test unless <5 patients any category, in which case Fisher’s Exact test was used 
c
 For usual occupation, N=107 for males and N=50 for females 
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3.4.2 HIV profile 

Baseline HIV parameters of study participants 

Data on the HIV status of study participants are shown in Table 3.4. 

Prior to enrolment, 112 (66%) participants had previously tested for HIV and 67 (40%) were 

known to be infected. During baseline assessment, 31 further individuals (26 with no 

previous test and 5 who had previously tested negative) were diagnosed with HIV infection 

for the first time. In total 98/169 (58 %) study participants were HIV infected and 71/169 

(42%) were HIV negative.  

Baseline CD4 count results were available for 84 HIV infected patients, the median result 

was 166 (range: 6-783) cells/µl. 8 (10%) patients had a CD4 count <50 cells/µl, 38 (45%) had 

50-200 cells/µl, 20 (24%) had 200-350 cells/µl and 18 (21%) had >350 cells/µl. 

Current Malawian guidelines recommend ART initiation for non-TB patients at CD4 counts 

<350 cells/µl465. Only 27 study participants were on ART prior to TB diagnosis; representing 

28% of those who were HIV-infected and 31% of those with an eligible CD4 count before TB 

diagnosis. Sub-optimal levels of pre-study ART reflect the high frequency of severe 

immunosuppression in the cohort and the challenges to provision of HIV care confronting 

the national ART programme. 

There were no differences in HIV parameters between male and female study participants. 

 Male 
N=116 

Female 
N=53 

Total 
N=169 

Pre-enrolment awareness of HIV status and baseline testing  

Ever HIV tested prior to study enrolment (n, %) 72 (62) 40 (76) 112 (66) 

Known to be HIV infected prior to enrolment (n, %) 
First positive HIV test at baseline assessment (n, %) 

45 (39) 
20 (17) 

22 (42) 
11 (21) 

67 (40) 
31(18)

 a
 

Confirmed HIV infection 65 (56) 33 (62) 98 (59) 

Baseline CD4 count of HIV-infected individuals 

Baseline CD4 count, cells/µl (median, range)
b
 

CD4 count <50 cells/µl (n, %)
b
 

CD4 count 50-200 cells/µl (n, %)
b
 

CD4 count 200-350 cells/µl (n, %)
b
 

CD4 count >350 cells/µl (n, %)
b
 

163 (6-688) 
4 (7) 
27 (47) 
15 (26) 
11 (19) 

168 (31-783) 
4 (15) 
11 (41) 
5 (16) 
7 (26) 

166 (6-783) 
8 (10) 
38 (45) 
20 (24) 
18 (21) 

Pre-enrolment HIV treatment 

On ART at enrolment (n, %)
c
 16 (25) 11 (33) 27 (28) 

Table 3.4 Baseline HIV parameters of ‘S.P.U.Tu.M.’ study participants 

a
 26 had never previously been tested, 5 had previously tested HIV negative 

b
Percentages use 84 (57 male, 27 female) patients with baseline CD4 results as the denominator 

c
Percentages use 99 (65 male, 33 female) HIV infected individuals as the denominator 
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ART initiation in HIV-infected patients 

Table 3.5 shows timing of ART initiation and choice of regimen amongst all HIV-infected 

study recruits and the subset who reached a final study outcome.  

71/98 (72%) HIV-infected recruits and 64/76 (84%) who reached an outcome were on ART 

by study exit, representing increases of 45% and 51% respectively from baseline.  

 The commonest timing of ART initiation for patients not on therapy at baseline was during 

continuation phase TB treatment. 90% of patients used stavudine, lamivudine and 

nevirapine as their sole regimen, reflecting that most patients were managed under the 

2008 guidelines. One was recruited on zidovudine, lamivudine and nevirapine and 

continued this until end of follow-up. Three (all recruited after September 2011) were 

initiated on tenofovir, lamivudine and efavirenz. Three patients originally on stavudine, 

lamivudine and nevirapine were switched to tenofovir, lamivudine and efavirenz during the 

study because of severe peripheral neuropathy. 

 All study recruits
a
 

 
N=169 

Patients reaching final 
study end-point

b
 

N=133 

HIV-infected (n, %)
 

 98 (58) 76 (57) 

Timing of 
ART 
intiation 

Never (n, %) 27 (28) 12 (16) 

On ART at baseline (n, %) 27 (28) 25 (33) 

During intensive phase (n, %) 16 (16) 12 (16) 

During continuation phase (n, %) 19 (19) 18 (24) 

During follow-up (n, %) 8 (9) 9 (12) 

ART 
regimen 

d4T, 3TC, NVP (n, %) 64 (90) 57 (89) 

AZT, 3TC, NVP (n, %) 1 (1) 1 (2) 

TDF, 3TC, EFV (n, %) 3 (4) 3 (5) 

Started d4T, 3TC, NVP then switched 
to TDF, 3TC, EFV (n, %) 

3 (4) 3 (5) 

Table 3.5 ART initiation and regimens of study patients  

d4T: stavudine, 3TC: lamivudine, NVP: nevirapine, EFV: efavirenz, TDF: tenofovir 
a
ART initiation data collected until the date of withdrawal or a study end-point was reached 

b
ART initiation data collected until a study end-point was reached 

 

48 HIV-infected study patients had CD4 counts measured at baseline and EOT. CD4 counts 

amongst this group increased by a median of 71 (range:-232 to 456) cells/µl. Those who 

initiated during intensive phase TB therapy experienced a median CD4 count rise of 146 

(40-508) cells/µl, whilst those who received no ART at all (or delayed until TB treatment 

was finished) experienced a median change of -12 (range: -232 to 432) cells/µl   
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3.4.3 Clinical patient assessment 

Baseline assessment   

Baseline clinical and laboratory characteristics of study patients are shown in Table 3.6. 

Results are sub-divided by HIV status to establish whether illness severity and baseline was 

influenced by immunosuppression. 

HIV-infected individuals were older than those without HIV-infection (p<0.001) and more 

frequently had lymphadenopathy (p=0.007). However, the majority of study participants 

reported “fair” or “good” general health and assessment of functional status baseline BMI 

and vital signs suggested no difference in illness severity due to HIV infection. There were 

also no differences in duration of illness or healthcare seeking behaviour. Patients had 

been unwell for a median of 8 weeks (range 1-28) and 147/169 (87%) had received routine 

antibiotics. The number of prior antibiotic courses ranged from 1-8, suggesting that some 

earlier diagnoses may have been possible but exploration of this was beyond the scope of 

the study. Only 8 (5%) had consulted a traditional healer prior to presentation to allopathic 

health services.  

8/169 (5%) study participants reported co-existing illnesses other than HIV and 2/99 (2.0%) 

HIV-infected patients had concurrent opportunistic infections (one case each of 

oesophageal candidiasis and cryptococcal meningitis). Non-communicable diseases were 

rare with only one case of diabetes mellitus and (11%) patients recording a blood pressure 

in the hypertensive range (>140/80mmHg). 

Haemoglobin levels were low overall. 126/169 (75%) patients fulfilled the WHO definition 

of anaemia. HIV infection was associated with lower haemoglobin levels (p<0.001) and a 

higher incidence of anaemia (p=0.057).  Serum ALT was also higher amongst HIV-infected 

individuals (median: 21 [range: 7-160] vs 17 [range: 5-190], p=0.037). 

Attendance at study visits and treatment adherence 

581 study visits (S1-S4) were arranged for the 146 participants who completed intensive 

phase TB treatment. 384 (66%) visits were conducted on the day specified by the study 

protocol, 189 (32%) were conducted on a different day (median deviation from intended 

date: 1 day late (range: 4 days early to 43 days late) and 10 (2%) were missed.  

Patients were asked about adherence to TB treatment at each clinic visit. Amongst the 143 

patients who finished therapy, 123 (87%) reported no missed doses, 12 (9%) reported 1-2 

missed doses and 7/143 (5%) reported ≥3 missed doses.  
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 Total  
N=169 

HIV-infected 
N=98 

HIV-uninfected 

N=71 
p-value

a
 

Baseline visit clinical & demographic parameters 

Male sex (n, %) 116 (69) 65 (66) 51 (72) 0.553 

Age (median, range) 30 (17-61) 33 (20-61) 27 (17-55) <0.001* 

Self-reported health (n, %) 
Excellent 
Good 
Fair  
Poor 

 
12 (7) 
65 (39) 
89 (53) 
1 (1) 

 
5 (5) 
35 (35) 
57 (58) 
1 (1) 

 
7 (10) 
30 (44) 
32 (47) 
0 (0) 

0.255 
 
 

WHO performance status (n, %) 
0 – Fully active 
1 – Able to perform light work 
2 – Ambulatory but unable to work 

 
157 (94) 
9 (5) 
2 (1) 

 
89 (91) 
7 (7) 
2 (2) 

 
68 (97) 
2 (3) 
0 (0) 

0.356 
 

Neck swellings/lymphadenopathy 19 (11) 17 (17) 2 (3) 0.007* 

Symptom duration (median, range) 8 (1-28) 8 (1-28) 6 (1-24) 0.105 

BCG vaccinated (n, %) 135 (80) 77 (79) 58 (83) 0.622 

Recent antibiotic used (n, %) 147 (87) 86 (88) 61 (86) 0.905 

Consulted traditional healer (n, %) 8 (5) 6 (6) 2 (3) 0.479 

Baseline co-morbidities (other than HIV) 

Any co-existing illness (n, %)
 b

 8 (5) 5 (5) 3 (4) 1.000 

Diabetes mellitus (n, %)
c
 

Fasting glucose (median, range) 
1 
4.8 (3.6-6.7) 

0 
4.8 (4.0-6.7) 

1 
4.9 (3.6-6.4) 

NA 
0.285 

Body mass index (BMI) & vital signs  

BMI, kg/m
2
 (median, range) 18.4 (13.2-29.3) 18.4 (13.2-29.3) 18.4 (14.5-25.0) 0.633 

Pulse, beats/min (median, range) 105 (39-148) 105 (39-148) 105 (58-147) 0.801 

Systolic BP, mmHg (median, range) 
Patients with hypertension

d
 

113 (77-160) 
19 (11) 

111 (90-146) 
9 (13) 

117 (77-160) 
10 (10) 

0.015* 
0.794 

RR, breaths/min (median, range) 30 (12-81) 30 (12-81) 30 (12-44) 0.394 

Temperature, 
o
C (median, range) 36.5 (32.9-39.6) 36.5 (32.9-39.6) 36.6 (33.5 -39.5) 0.736 

Baseline lab results 

Haemoglobin, g/dl (median, range)  
Patients with anaemia (n, %)

e
 

10.9 (5.9-18.7) 
126 (75) 

10.1 (6.0-18.7) 
77 (89) 

11.5 (5.9-15.7) 
49 (73) 

<0.001* 
0.025* 

WCC, x10
9
 cells/l (median, range) 6.5 (1.4-21.4) 5.9 (1.4-21.4) 6.9 (3.2-14.0) 0.032 

Platelets x10
9
 cells/l (median, range) 340 (44-922) 330 (62-909) 365 (44-922) 0.224 

Serum bilirubin, IU/l (median, range) 
Patients with high bilirubin (n, %)

f
 

8 (1-50) 
7 (4) 

7.8 (1-50) 
3 (3) 

8 (3-39) 
4 (6) 

0.185 
0.448 

Serum ALT, IU/l (median, range) 
Patients with high ALT (n, %)

g
 

20 (5-190) 
30 (18) 

21 (7-160) 
22 (22) 

17 (5-190) 
8 (11) 

0.037* 
0.106 

Serum creatinine, IU/l (median, range) 
Patients with high creatine (n, %)

h
 

59 (29-117) 
59 (35) 

61 (29-117) 
6 (6) 

57 (31-100) 
1 (1) 

0.126 
0.242 

Table 3.6 Baseline clinical assessment of 'S.P.U.Tu.M' study patients 

a
Wilcoxon’s test for continuous variables, chi-squared or Fisher’s Exact test for categorical variables 

b
Co-existing illnesses were: genital warts (1), diabetes mellitus (1), migraine (1), oesophageal 

candidiasis (1), asthma (1), cryptococcal meningitis (1), pneumonia (1) and urinary tract infection (1)  
c
WHO definition of diabetes mellitus includes fasting blood glucose >7.0µmol/l. No patients fulfilled 

this criterion; the sole diabetic was already on oral hypoglycaemic therapy.  
d
WHO definition of hypertension is systolic BP>140mmHg or diastolic BP>90mmHg.  

e
WHO definition of anaemia in adults is haemoglobin <13 g/dl (men) and <12 g/dl (women) 

f
High bilirubin is >25IU/l, 

g
High ALT is >35 IU/l, 

h
High creatinine is >98 µmol/l 

*Denotes significance at p<0.05 
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Assessment during treatment 

The general trend was towards clinical improvement at serial visits. Although only 12/169 

(7%) patients reported “excellent” general health at baseline by S4 visit this figure had risen 

to 97/146 (66%) and by EOT it was 114/143 (80%). The BMI of study participants rose by a 

median of 0.7 (range: -3.5 to 4.9) kg/m2 between baseline and S4 visits and by 1.6 (range: -

3.7 to 6.0) kg/m2 over the entire duration of therapy (Figure 3.4A). The median rise in BMI 

was greater amongst HIV-infected than non-infected individuals (1.8 vs. 1.3 kg/m2, 

Wilcoxon test p-value=0.018), perhaps due to the additional effect of ART (Figure 3.4B). 

 

Figure 3.4 Change in BMI during TB therapy 

A: BMI at baseline, S4 visit and EOT. Differences between time-points analysed by paired Wilcoxon 
test. B: Differences in change in BMI during TB therapy divided by HIV-status, analysed by two 
sample Wilcoxon test.  

Inter-current illnesses  

23/169 (14%) recruited patients had an inter-current illness during TB treatment (Table 

3.7). 18 had super-added infections whilst 6 had non-infectious conditions. Infections were 

more common in HIV-infected individuals (15 [10%] vs. 3 [4%] p=0.040). 9 HIV-infected 

patients developed new WHO Stage III or IV conditions (4 severe bacterial infections 

[pneumonia or meningitis], 3 varicella zoster eruptions and one case respectively of 

Pneumocystis jeroveci pneumonitis [PCP] and cerebral toxoplasmosis). 
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 Total  
N=169 

HIV-infected 
N=98 

HIV-uninfected 

N=71 
p-
value

a
 

Any inter-current illness (n, %) 23 (14) 17 (17) 6 (9) 0.151 

Infections 18 (11)  15 (15) 3 (4) 0.040 
  Diarrhoea/Gastroenteritis

b
 5 (3) 3 (0) 2 (3) - 

  Malaria 3 (2) 2 (2) 1 (1) - 
  Pneumonia  3 (2) 3 (4) 0 (0) - 
  Varicella Zoster Virus (shingles) eruption 3 (2) 3 (3) 0 (0) - 
  Bacterial meningitis 1 (1) 1 (1) 0 (0) - 
  Herpes Simplex Virus-2 genital ulcers  1 (1) 1 (1) 0 (0) - 
  Pneumocystis jeroveci  pneumonitis

c
 1 (1) 1 (1) 0 (0) - 

  Cerebral toxoplasmosis
d
 1 (1) 1 (1) 0 (0) - 

Non-infectious illnesses 5 (3) 2 (2) 3 (4) 0.651 
  Haemorrhoids 1 (1) 1 (1) 0 (0) - 
  Peptic Ulcer Disease 1 (1) 0 (0) 1 (1) - 
  New hypertension 1 (1) 0 (0) 1 (1) - 
  DVT 1 (1) 1 (1) 0 (0) - 
  Pelvic Inflammatory Disease 1 (1) 0 (0) 1 (1) - 

Table 3.7 Inter-current illnesses during TB treatment 

a
Analysed by chi-squared test or Fisher’s Exact test 

b
≥3 loose stools within a 24 hour period 

c
Typical CXR appearance and response to high dose co-trimoxazole therapy 

d
Hemiparesis, CD4 count: 6 cells/µl, typical Magnetic Resonance brain images and response to co-

trimoxazole therapy  

Drug toxicity and treatment complications 

 67 (40%) patients experienced at least one drug-associated adverse event (Table 3.8). 18 

(11%) described multiple problems. Drug toxicity was more common in HIV-infected 

patients but the difference was not statistically significant. Joint pain and swelling was the 

most common, possibly associated with pyrazinamide. Second was peripheral neuropathy 

which is associated with isoniazid in the context of Vitamin B6 (pyridoxine) deficiency509, a 

recognised feature of HIV-infection, and a side-effect of stavudine based ART131.  

All three patients who developed jaundice had negative blood tests for Hepatitis B surface 

Antigen and Hepatitis C antibody and a normal hepato-biliary ultrasound scan. One 

jaundiced patient died (discussed below and see Figure 3.3B). No other patient had 

treatment discontinued due to drug toxicity. 

Two HIV-infected patients developed new cervical lymphadenopathy due to Immune 

Reconstitution Inflammatory Syndrome (IRIS) after ART initiation during the Continuation 

Phase of TB therapy. One of these was treated with corticosteroids and withdrawn from 

the study (see Figure 3.3C).  
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 Total  
N=169 

HIV-infected 
N=98 

HIV-uninfected 

N=71 
p-
value

a
 

Any drug toxicity or complications 65 (39) 44 (45) 23 (32) 0.139 

Skin rash 20 (12) 13 (13) 7 (10) 0.646 

Nausea & vomiting 3 (2) 3 (3) 0 (0) 0.264 

Jaundice 3 (2) 3 (3) 0 (0) 0.264 

Joint pain and swelling 34 (20) 21 (22) 13 (18) 0.735 

Peripheral neuropathy 28 (17) 19 (19) 9 (13) 0.343 

New lymphadenopathy (IRIS) 2 (1) 2 (2) 0 (0) 0.510 

Table 3.8 Drug toxicity in study patients during TB therapy 

a 
Analysis by chi-squared test or Fisher’s Exact test 

Use of additional medications 

52 (31%) patients took non-TB/non-HIV medications during TB treatment. 22 took more 

than one additional drug. In total, 14 patients took anti-microbials (antibiotics, anti-

malarials, fluconazole or aciclovir), 33 took drugs for pain or neuropathy (Non Steroidal 

Anti-Inflammatory Drugs, amitryptilline or pyridoxine) and 17 took other medicines 

(chlopheniramine, promethazine, omeprazole, hydrochlorothiazide or sub-cutaneous 

heparin). One patient took an unidentified traditional remedy.  

The only additional medication used with known anti-TB activity was ciprofloxacin, taken 

during intensive phase of TB therapy by one patient for 5 days. No interactions between 

additional medications and anti-TB drugs were identified. 

Deaths not directly attributed to tuberculosis 

6/169 (4%) recruits are known to have died. All were HIV-infected. Two deaths were 

directly attributed directly to TB and were discussed in Section 3.3.3.  

The four non-TB deaths were withdrawn from the study and removed from analysis of final 

outcomes. Two occurred during Intensive Phase therapy despite sputum smear conversion 

by 14 days and a good initial response to TB treatment. The first had a baseline CD4 count 

of 325 cells/µl, did not commence ART and died unexpectedly at home between S3 and S4 

visits. The cause of death is unknown. The second had a baseline CD4 count of 106 cells/µl 

and serum bilirubin of 5 µmol/l. After commencing ART (stavudine, lamivudine and 

nevirapine) at his S3 visit (28 days) he returned to hospital 3 weeks later with deep jaundice 

and serum bilirubin of 300 µmol/l. All drugs were stopped but he developed hepatic 

encephalopathy and died of liver failure, presumed secondary to drug toxicity. 

The other two patients died during post-treatment follow-up. Both had low baseline CD4 

counts (8 and 53 cells/µl respectively). Despite commencing ART during and achieving TB 

cure by EOT they died in the community thereafter. As neither patient returned to hospital 
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during the terminal illness, specific causes of death were unknown. However, both were 

smear and culture negative at last review and relatives did not describe recurrence of TB 

symptoms prior to death. It is possible that some unrecorded deaths occurred in patients 

who were withdrawn from the study, particularly amongst the 13 individuals who 

defaulted clinic visits and could not subsequently be traced. 

3.4.4 Vitamin D levels 

Baseline Vitamin D parameters 

Baseline 25 (OH) D levels were low with a median of 57.3 (range: 11.8-113.3) nmol/l. 29 

(18%) patients had 25 (OH) D levels in the normal range, 72 (43%) had hypovitaminosis D, 

47 (28%) had Vitamin D deficiency and 18 (11%) had severe Vitamin D deficiency. 

Factors associated with baseline Vitamin D levels  

As sunlight is necessary for cutaneous accumulation of Vitamin D3 it was proposed that 

seasonal variation in sunlight exposure may have influenced 25 (OH) D levels at baseline. 

Although Malawi consistently receives 12 hours of sunlight throughout the year, there is an 

annual “cold season” from May to July. During these months, people often remain indoors 

and wear additional layers of thicker clothing, reducing sunlight exposure. Figure 3.5 shows 

that baseline Vitamin D levels varied according to recruitment month and were lowest 

during and just after the cold season.    

A linear regression model was also used identify factors associated with baseline 25 (OH) D 

levels. On multi-variate analysis recruitment in July/August (p=0.001) or 

September/October (p=0.001), male sex (p=0.040), difficulty obtaining enough food in the 

last month (p=0.035), cooking with biomass fuel inside the house (0.044) and low BMI 

(p=0.047) were also associated with lower levels (Table 3.9).  

Viewed collectively, these data suggest that climatic changes and social factors were 

primarily responsible for variation baseline 25 (OH) D levels. 
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Figure 3.5 Seasonal variation and Vitamin D levels 

Difference in baseline 25(OH) level by recruitment month analysed by Kruskal Wallis test (p=0.007) 

Variable Uni-variate analysis Multi-variate analysis 

Parameter 
estimate 

Standard 
error 

P-value Parameter 
estimate 

Standard 
error 

P-value 

Age -0.192 0.199 0.336 - - - 

Male sex -6.778 3.729 0.071 -7.284 3.353 0.040* 

Food insecurity -8.415 4.380 0.056 -8.645 4.061 0.035* 

Cooks with biomass fuel 
Inside the house 
Outside 

 
-14.022 
-1.131 

 
3.974 
3.859 

 
0.020* 
0.770 

 
-11.677 
-1.178 

 
5.560 
3.768 

 
0.044* 
0.755 

HIV-infected 4.296 3.560 0.229 - - - 

CD4 count 0.029 0.016 0.081 - - - 

On ART at baseline 6.852 5.920 0.250 - - - 

Body mass index 1.349 0.715 0.061 1.381 0.690 0.047* 

Month of recruitment
a
 

March/April 
May/June 
July/August 
September/October 
November/December 

 
-5.831 
-12.610 
-24.085 
-19.678 
-6.803 

 
6.910 
6.710 
6.910 
6.555 
6.290 

 
0.399 
0.062 
<0.001* 
0.003* 
0.281 

 
-6.289 
-11.533 
-21.588 
-19.437 
-5.664 

 
6.607 
6.376 
6.607 
6.446 
6.070 

 
0.343 
0.072 
0.001* 
0.003* 
0.035 

Table 3.9 Factors influencing baseline 25 (OH) Vit D level 
a
Reference value for parameter estimates of recruitment month is January/February 
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Changes in Vitamin D level with time on therapy 

As rifampicin, isoniazid and some ART constituents induce hepatic metabolism of Vitamin D 

metabolites, it has been proposed that low baseline levels of 25 (OH) D may drop further 

during TB therapy in southern African patients. However, Table 3.10 and Figure 3.6A 

demonstrate a trend towards rising 25 (OH) D serum concentrations during intensive phase 

therapy (p=0.058) and a statistical increase during the continuation phase (p=0.002). 

Additionally, the area under the serum 25 (OH) D-time plot for each patient was used as a 

measure of total Vitamin D exposure and Figure 3.6B shows no change in this value in 

relation to the timing of ART initiation (p=0.251). Collectively, these data suggest that 

prolonged exposure to TB and HIV drugs do not adversely affect 25 (OH) D levels during 

clinical treatment. 

 Baseline S4 visit EOT visit 

25 (OH) D nmol/l (median, range) 57.3 (11.8-113.3) 62.2 (22.4-133.7) 63.9 (14.9-121.1)) 

Normal 25 (OH) D (n, %) 29 (18) 31 (22) 40 (31) 

Hypovitaminosis D (n, %) 72 (43) 67 (47) 65 (50) 

Vitamin D deficiency (n, %) 47 (28) 40 (28) 24 (18) 

Severe Vitamin D deficiency (n, %) 18 (11) 5 (4) 2 (2) 

Table 3.10 Changes in 25 (OH) Vit D levels during TB therapy 

 

Figure 3.6 Changes in 25 (OH) Vit D levels during TB therapy 

A: Changes in 25 (OH) D levels at different time-points analysed by paired Wilcoxon tests. B: Changes 
in 25 (OH) D levels during TB treatment divided by time of ART initiation, analysed by Kruskal Wallis 
test; No=No ART during TB therapy, BL=on ART pre-recruitment, IP=Initiated ART during Intensive 
Phase TB treatment, CP=Initiated ART during continuation phase TB treatment. 



Chapter 3  Clinical Study Description 
 

89 
 

3.4.5 Baseline CXR assessment 

Inter-reader agreement on CXR appearances 

Baseline CXRs were available for 147/169 (87%) patients and interpreted by two 

independent readers according to the pre-determined scheme. A concordance co-efficient 

(ρc) of 0.71 suggested reasonable consensus in assessment of the percentage of lung 

affected at presentation. There was “almost perfect” agreement on the presence or 

absence of consolidation, pleural effusion and miliary shadowing and “substantial” 

agreement on the presence or absence of cavities ≥4cm in diameter. Agreement about 

smaller cavities, fibrosis, nodules or hilar lymphadenopathy was less satisfactory (Table 

3.11). Only variables in which there was at least “substantial” inter-reader agreement were 

analysed further.  

Inter-reader concordance in the 
continuous variable 

ρc 95% Limits of Agreement (Bland and Altman) 

Total percentage of lung affected 0.71 -24.79 to 21.97% 

Inter-reader agreement among 
dichotomous variables 

Kappa 
Prevalence-adjusted, 
bias-adjusted kappa 

Interpretation of 
prevalence-adjusted 
bias-adjusted kappa

a
 

Presence of cavitation 
Small cavities, <4cm diameter 
Large cavities, ≥4cm  

 
0.62 
0.73 

 
0.57 
0.70 

 
Moderate 
Substantial 

Any consolidation 0.76 0.82 Almost perfect 

Any pleural effusion 0.82 0.97 Almost perfect 

Nodules 0.43 0.31 Fair 

Fibrosis 0.65 0.65 Moderate 

Miliary shadowing 0.85 0.91 Almost perfect 

Hilar lymphadenopathy 0.59 0.46 Moderate 

Table 3.11 Agreement on CXR findings between 2 readers 
a
Landis and Koch guidelines were used to interpret kappa values for dichotomous variables; 

Poor=kappa ≤0.00, Slight=0.00-0.20, Fair=0.20-0.40, Moderate=0.40-0.60, Substantial=0.60-0.80, 
Almost perfect=0.81-1.00 

Description of CXR appearances 

A representative selection of CXRs is shown in Figure 3.7. Consensus assessment of all 

images indicated that a median of 25 (range: 0-100) % of lung was affected by TB. 136 

(93%) patients had consolidation, 52(35%) had cavities ≥4cm in diameter and 15 (10%) had 

pleural effusions. One (1%) patient had miliary shadowing throughout both lung-fields 

(Figure 3.7D). However, this patient withdrew during the intensive phase of therapy and no 

outcome data was available. 

 

 



Chapter 3  Clinical Study Description 
 

90 
 

 

Figure 3.7 CXR appearances and interpretation 

Representive CXRs show that the pattern and extent of radiological disease was diverse and 
complex. However, reasonable consensus could be reached on the major findings. 

A: Lower left zone consolidation. Consensus: 30% total lung volume involved, no cavity and no 
effusion. B: Entire left lung consolidation. Consensus: 50% total lung volume involved, no cavity, and 
small effusion. C: Large thick walled cavity in right upper zone. Consensus: 45% total lung volume 
involved, >4cm cavity and no effusion. D: Miliary disease. Consensus: 100% lung volume involved, no 
cavity and no effusion. 
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Factors influencing percentage of lung affected 

As the amount of lung affected varied from 0-100%, a linear regression model was used to 

assess clinical factors contributing to this measure of radiological disease (Table 3.12). On 

multivariate analysis male sex (p=0.009) and cooking with biomass fuel inside the house 

(0.035) were associated with more extensive radiological disease and there was a trend 

towards a greater amount of lung affected with higher WCC (p=0.064). Lower baseline BMI 

(p=0.020) and lower baseline 25 (OH) D level (p=0.008) were associated with more 

extensive radiological disease on univariate analysis only. 

 Univariate analysis Multivariate analysis 

Variable Estimate St Error p-value Estimate St Error p-value 

Age, years 0.156 0.162 0.337 - - - 

Male sex 10.780 2.980 <0.001* 8.804 3.339 0.009* 

Cooks using biomass fuel 
Inside the house 
Outside the house 

 
10.588 
2.618 

 
4.973 
3.130 

 
0.035* 
0.404 

 
11.007 
2.979 

 
5.229 
3.241 

 
0.037* 
0.340 

Ever smoked tobacco 2.488 3.298 0.452 - - - 

Ever drinks alcohol 2.727 2.926 0.353 - - - 

HIV infected -3.577 2.872 0.215 - - - 

CD4 count, cells/µl 0.010 0.012 0.425 - - - 

On ART at baseline -25.983 4.303 0.109 - - - 

BCG vaccinated 4.406 3.615 0.225 - - - 

Baseline BMI, kg/m
2
 -1.356 0.587 0.020* -0.669 0.623 0.289 

Baseline WCC, x10
9 

cells/l 1.379 0.532 0.010* 0.992 0.533 0.064 

Baseline 25(OH)D, nmol/l  -0.166 0.062 0.008* -0.078 0.070 0.265 

Table 3.12 Factors influencing percentage of lung affected by TB 

Factors influencing the presence/absence of cavities ≥4cm diameter 

A logistic regression model was used to assess factors contributing to development of 

cavities. On multivariate analysis HIV infection was associated with fewer cavities (OR: 0.03, 

95% CI: 0.13-0.68, p=0.004) and higher WCC was associated with more cavities (OR: 1.17, 

95% CI: 1.01-1.36, p=0.036). There was a strong trend towards cavitation in patients with 

previous BCG vaccination (OR: 3.32, 95% CI: 0.97-11.42, p=0.057). Male sex was associated 

with cavitation on univariate analysis only (OR: 3.72, 95% CI: 1.57-8.77, p=0.003).  

There was a univariate association between cavity formation and ART prior to recruitment 

(3.08, 95% CI: 1.06-9.01, p=0.040) and a trend towards cavitation at higher CD4 counts (OR: 

1.003, 95% CI: 0.999-1.007, p=0.057). These variables were excluded from multivariate 

analysis as they were not applicable to HIV non-infected individuals (Table 3.13). 
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 Univariate analysis Multivariate analysis 

Variable OR 95% CI p-value OR 95% CI p-value 

Age, years 0.97 0.94-1.01 0.203 - - - 

Male sex 3.72 1.57-8.77 0.003* 2.00 0.68-5.87 0.208 

Cooks using biomass fuel 
At all 
Inside the house 

 
1.12 
1.10 

 
0.35-3.66 
0.52-2.32 

 
0.845 
0.810 

 
- 
- 

 
- 
- 

 
- 
- 

Ever smoked tobacco 1.58 0.73-3.40 0.244 - - - 

Ever drinks alcohol 1.93 0.97-3.84 0.063 1.77 0.71-4.40 0.221 

HIV infected 0.30 0.15-0.61 <0.001* 0.30 0.13-0.68 0.004* 

CD4 count 1.003 0.999-1.017 0.057 - - - 

On ART at baseline 3.08 1.06-9.01 0.040* - - - 

BCG vaccinated 3.09 1.10-8.70 0.033* 3.32 0.97-11.42 0.057 

Baseline BMI, kg/m
2
 0.86 0.74-1.00 0.052 0.91  0.76-1.10 0.345 

Baseline WCC, x10
9 

cells/l 1.22 1.06-1.41 0.005* 1.17 1.01-1.36 0.036* 

Baseline 25(OH)D, nmol/l  1.00 0.98-1.01 0.567 - - - 

Table 3.13 Factors influencing the presence/absence of large cavities on CXR 

 

3.5 Results: Factors associated with treatment response 

Associations between the variables described in this chapter and end-points of 2 month 

sputum culture status or final clinical outcome were assessed by logistic regression.  

Univariate analysis was done for all variables. Tables 3.14 and 3.15 show results of those 

for which an association was suggested by significance on univariate analysis at the p<0.10 

level for at least one of the selected end-points, or for which prior publications suggest a 

likely relationship.  Multivariate modelling was undertaken for variables with p <0.10 on 

univariate testing. 

3.5.1 Variables associated with 2 month culture status 

On multivariate analysis (Table 3.14), a positive 2 month sputum culture was associated 

with previous BCG vaccination (OR: 10.89, 95% CI: 2.01-58.82, p=0.006) and cavities ≥4cm 

on CXR (OR: 2.52, 95% CI: 1.00-6.31, p=0.049). There were trends towards positive cultures 

in patients who had consulted a traditional healer prior to attending hospital (OR: 8.85, 

95% CI: 0.98-79.69, p=0.052), and who had a higher baseline respiratory rate (OR: 1.06, 

95% CI: 1.00-1.13, p=0.059).  

On univariate testing, difficulty obtaining enough food in the last month (OR: 3.19, 95%: 

1.28-8.03, p=0.014) was associated with positive two month cultures and there were trends 

between positive cultures and male sex (OR: 2.19, 95% CI: 0.93-5.15, p=0.072), ever 

smoking tobacco (OR: 2.16, 95% CI: 0.97-4.85, p=0.061) and ever drinking alcohol (OR: 1.89, 

95% CI: 0.90-3.98, p=0.093). All of these relationships were lost on multivariate modelling. 

There was a univariate association between positive cultures and percentage of lung 
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affected on CXR (OR: 1.03, 95% CI: 1.00-1.05, p=0.027) but this variable was not included in 

multivariate modelling because it displayed co-linearity with cavities ≥4cm.  

There was no relationship between HIV status and 2 month culture status. However, 

amongst HIV-infected patients, ART prior to recruitment was associated with positive 

cultures (OR: 4.25, 95% CI: 1.53-11.85, p=0.005) and there was a trend towards positive 

cultures at higher CD4 counts (OR: 1.003, 95% CI: 1.000-1.006, p=0.054).  

3.5.2 Variables associated with final treatment outcome 

On multivariate analysis (Table 3.15) none of the variable associated with positive 2 month 

sputum cultures were associated with final clinical outcome. However, patients who could 

read from a newspaper had fewer unfavourable outcomes (OR: 0.25, 95% CI: 0.09-0.93, 

p=0.037) and there was a strong trend towards unfavourable outcomes in patients who 

had a high serum ALT (>35 IU/l) at baseline (OR: 3.30, 95%CI: 0.93-12.11, p=0.064). 

There was a univariate trend towards unfavourable outcomes in HIV-infected individuals 

(OR: 3.49, 95% CI: 0.94-13.02, p=0.063) and, amongst HIV-infected patients, ART prior to 

recruitment displayed a univariate association with unfavourable outcome (OR: 3.79, 95% 

CI: 1.06-13.56, p=0.041).  

Prior studies have described a relationship between rising BMI and a better response to TB 

therapy. This was not evident during the current study using early (2 month sputum 

culture) or late (final clinical outcome) end-points. Similarly there was no association at 

either end-point between any measure of 25 (OH) D and treatment response. 



 
 
 
Chapter 3      Clinical Study Description 

94 
 

Table 3.14 Variables associated with 2 month culture status 
a
Baseline CD4 and ART at enrolment assessed on HIV-infected individuals only  

b
CXR available on 116 patients only (2 month culture positive, N= 39, 2 month culture negative, N=77)  

 

 
Positive 
N=44 

Negative 
N=86 

Univariate analysis Multivariate analysis 

Odds 
Ratio 

95% CI p-value 
Odds 
Ratio 

95% CI p-value 

Socioeconomic factors         
Difficulty obtaining enough food in the last month (n, %) 13 (30) 10 (12) 3.19 1.26-8.03 0.014* 2.01 0.62-6.57 0.246 
Able to read a newspaper (n, %) 29 (66) 64 (74) 0.66 0.30-1.46 0.310 - - - 
Ever smoked tobacco (n, %) 16 (36) 18 (21) 2.16 0.97-4.83 0.061 1.20 0.35-4.13 0.768 
Ever drinks alcohol (n, %) 21 (48) 28 (33) 1.89 0.90-3.98 0.093 1.60 0.52-4.93 0.411 

HIV parameters         
Confirmed HIV infected (n, %) 29 (66) 50 (58) 1.39 0.65-2.97 0.391 - - - 
Baseline CD4 count, cells/µl (median, range)

a
 270 (6-688) 138 (8-783) 1.003 1.000-1.006 0.054 - - - 

On ART at enrolment (n, %)
a
 13 (52) 9 (21) 4.25 1.53-11.85 0.005* - - - 

Demographic, Clinical and laboratory parameters         
Male sex (n, %) 35 (80) 55 (64) 2.19 0.93-5.15 0.072 1.76 0.55-5.65 - 
Attended traditional healer (n, %) 5 (11) 2 (2) 5.38 1.29-28.98 0.050 8.85 0.98-79.69 0.052 
BCG vaccinated (n, %) 41 (93) 63 (73) 4.99 1.41-17.69 0.013* 10.89 2.01-58.82 0.006* 
Baseline BMI, kg/m

2
 (median, range) 17.9 (14.2-24.9) 19.0 (13.2-29.3) 0.89 0.76-1.05 0.166 - - - 

Increase in BMI by S4 visit, kg/m
2
 (median, range) 0.63 (-1.37-3.43) 0.76 (-1.56-5.78) 0.80 0.58-1.10 0.170 - - - 

Baseline respiratory rate, breaths/min (median, range) 31 (12-81) 30 (16-42) 1.05 1.00-1.10 0.061 1.06 1.00-1.13 0.059 
Patients with high baseline ALT (n, %) 8 (19) 13 (16) 1.23 0.47-3.25 0.676 - - - 

Baseline CXR assessment         
Percentage of lung affected on CXR (median, range)

b
 33 (10-44) 25 (0-75) 1.03 1.00-1.05 0.027* - - - 

Presence of large cavity, ≥4cm diameter (n %)
b
 20 (51) 22 (29) 2.63 1.18-5.85 0.018* 2.52 1.00-6.31 0.049* 

25 (OH) Vitamin D measurement         
Baseline 25(OH)D, nmol/l (median, range) 55.0 (16.9-111.5) 57.8 (11.8-117.5) 0.99 0.97-1.01 0.320 - - - 
Increase in 25(OH)D by S4 visit, nmol/l (median, range) 3.1 (-30.9-40.9) 2.4 (-34.0-55.8) 0.99 0.97-1.02 0.484 - - - 
Area under 25 (OH)D conc-time curve, nmol.wk/l  
(median, range) 

429 (164.0-887) 490.2 (142-1000) 1.00 0.99-1.00 0.187 - - - 



 
 
 
Chapter 3      Clinical Study Description 

95 
 

 
Unfavourable 
N=15 

Favourable 
N=118 

Univariate analysis Multivariate analysis 

Odds 
Ratio 

95% CI p-value 
Odds 
Ratio 

95% CI p-value 

Socioeconomic factors         
Difficulty obtaining enough food in the last month (n, %) 3 (20) 24 (20) 1.22 0.32-4.74 0.769 - - - 
Able to read a newspaper (n, %) 7 (47) 89 (75) 0.29 0.10-0.85 0.025* 0.29 0.09-0.93 0.037* 
Ever smoked cigarettes (n, %) 5 (33) 25 (21) 1.86 0.58-5.94 0.295 - - - 
Ever drinks alcohol (n, %) 7 (47) 38 (32) 1.84 0.62-5.45 0.270 - - - 

HIV parameters         
Confirmed HIV infected (n, %) 12 (80) 63 (53) 3.49 0.94-13.02 0.063 2.84 0.73-11.01 0.130 
Baseline CD4 count, cells/µl (median, range)

a
 168 (6-539) 164 (10-783) 1.00 1.00-1.00 1.00 - - - 

On ART at enrolment (n, %)
a
 7 (59) 17 (27) 3.79 1.06-13.56 0.041* - - - 

Demographic, Clinical and laboratory parameters         
Male sex (n, %) 10 (67) 79 (67) 0.99 0.32-3.09 0.983 - - - 
Attended traditional healer (n, %) 0 (0) 5 (5) 0.00 0-Inf 0993 - - - 
BCG vaccinated (n, %) 13 (87) 95 (81) 1.51 0.32-7.16 0.607 - - - 
Baseline BMI, kg/m

2
 (median, range) 19.5 (15.4-29.3) 18.3 (13.2-24.9) 1.18 0.96-1.45 0.108 - - - 

BL to S4 change in BMI, kg/m
2
 (median, range) 0.7 (-0.7-2.9) 0.7 (-4.6-5.7) 1.03 0.67-1.58 0.902 - - - 

BL to EOT change in BMI, kg/m
2
 (median, range) 1.6 (-1.4-4.3) 1.6 (-3.7-6.0) 0.85 0.56-1.29 0.447 - - - 

Baseline respiratory rate, breaths/min (median, range) 30 (12-81) 30 (16-44) 1.00 0.94-1.07 0.895 - - - 
Patients with high baseline ALT (n, %) 5 (33) 15 (13) 3.30 0.99-10.99 0.052 3.30 0.93-12.11 0.064 

Baseline CXR assessment         
Percentage of lung affected on CXR (median, range)

b
 26 (0-48) 25 (0-75) 0.99 0.957-1.03 0.605 - - - 

Presence of large cavity, ≥4cm diameter (n %)
b
 4 (31) 41 (38) 0.72 0.21-2.47 0.597 - - - 

25 (OH) Vitamin D measurement         
Baseline 25(OH)D, nmol/l (median, range) 61.5 (18.6-106.4) 58.1 (16.9-111.5) 1.02 1.00-1.05 0.100 - - - 
Increase in 25(OH)D by EOT, nmol/l (median, range) 4.1 (-31.1-55.2) 10.9 (-48.1-55.9) 0.99 0.97-1.02 0.490 - - - 
Area under 25(OH)D conc-time curve, nmol.wk/l  
(median, range) 

1574 (942-2626) 1510 (621-2560) 1.00 1.00-1.00 0.213 - - - 

Table 3.15 Variables associated with final clinical outcome
 

a
Baseline CD4 and ART at enrolment assessed on HIV-infected individuals only  

b
CXR available on 120 patients only (Unfavourable outcome, N= 13, Favourable outcome, N=107
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3.6 Discussion 

Recruitment was slower than anticipated, partially because of the decentralisation of TB 

services in 2011 described in Section 3.2.3. Once it became possible to register for TB 

therapy at Ndirande, Bangwe, Zingwangwa and Chileka Health Centres it was more difficult 

to persuade patients to enrol in a research project at QECH. Nevertheless, recruitment was 

within the range of the original power calculation.  The gender imbalance of the cohort is 

unlikely to distort analysis of factors contributing to bacillary persistence or treatment 

response but may reflect differing social and domestic pressures on men and women 

during healthcare related decision-making in Malawi. 

The absence of baseline rifampicin resistance is consistent with the general perception that 

Malawi has an effective NTP, low MDR-TB prevalence and minimal transmission of 

resistance to treatment-naive individuals. This is reassuring for ongoing TB control and 

contrasts with some other parts of southern Africa12.  Although three patients had KatG 

mutations on the line probe assay, previous studies have reported good outcomes with 

standard TB therapy in isoniazid mono-resistant patients510 and no mono-resistant patients 

in this study failed treatment or relapsed. Nevertheless, inadequately managed isoniazid 

resistance can progress to MDR-TB511, highlighting the need for constant vigilance.  

15/133 (11%) patients had unfavourable outcomes, which is higher than the 3-5% reported 

by other recent TB treatment studies477. This is explained by the study design; a stringent 

definition of unfavourable outcomes was used and inclusion criteria were constructed to 

selectively enrol individuals with high bacillary loads (i.e. pre-study diagnostic sputum 

smears ‘++’ or ‘+++’ for AFB).  

 13(87%) unfavourable outcomes were microbiologically confirmed, and 11 (85%) of those 

had fully drug sensitive disease at end of treatment or during subsequent follow-up. 

Therefore, the majority of failures and relapses were not due to emergence of drug 

resistance and it may be assumed that bacilli identified at later treatment time-points were 

predominantly drug-tolerant persisters.  

Data on the HIV status of study participants are interesting for two reasons. Firstly, 31/169 

(18%) smear positive TB patients were first diagnosed with HIV infection at enrolment, 

illustrating the ongoing role of TB facilities as an entry-point to HIV care in Malawi. 

Secondly, the high prevalence and careful characterisation of immunosuppression 

increases the value of the pharmacodynamic modelling data described in Chapter 6. 
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Previous SSCC studies have either been performed in settings of much lower HIV sero-

prevalence266,278 or selectively recruited individuals with high CD4 counts228 and studies of 

treatment response based on time to positivity of liquid cultures have generally included 

HIV negative patients only288,290,298. The data in this thesis is the first pharmacodynamic 

analysis of bacteriological treatment response amongst TB patients irrespective of the 

degree of immunosuppression at recruitment. 

Clinical characteristics at baseline indicate that patients were sub-acutely unwell and 

ambulatory. This is the type of patient normally recruited to studies of new anti-TB 

therapy, so bacillary persistence and treatment data from this cohort are relevant to the 

future design of clinical trials. The clinical data does not support a relationship described 

elsewhere between TB and Diabetes Mellitus512,513 or lend weight to proposals that TB 

clinics may be a gateway to management of non-communicable diseases such as diabetes 

and hypertension514. Only one patient was diabetic and 19 (11%) were hypertensive at 

enrolment. Previous multi-centre clinical trials have also reported that southern African 

study sites recruit younger patients with lower rates of non-communicable disease226,357. 

Perhaps, as many southern African TB patients are young HIV-infected adults, the incidence 

of co-existent non-communicable diseases is small and the yield from screening 

programmes will be low. The situation is different in other populations; high rates of 

Diabetes Mellitus have been reported amongst TB patients in Asia and Central 

America512,513,515. Some studies have also observed more severe clinical disease, delayed 

sputum conversion and a higher probability of treatment failure/relapse amongst TB 

patients who were also diabetic515,516.  

Overall study protocol compliance was good and patients demonstrated gradual 

improvements in general health and BMI. ART uptake and CD4 cell reconstitution amongst 

HIV-infected study participants were also reassuring. Intercurrent illnesses and drug side-

effects were common, highlighting the need for shorter TB therapy, and some patients 

took additional medications during TB treatment. However, very few individuals 

interrupted TB therapy and no additional medications had important interactions with TB 

drugs. It is unlikely that variable adherence to medication or drug interactions affected 

pharmacodynamic assessment of bacillary elimination (Chapter 6) or pharmacodynamic 

measurement of drug exposure (Chapter 7). 

Baseline serum 25 (OH) D levels were similar to those described previously for adult 

Malawian TB patients481 and demonstrated high rates of hypovitaminosis D and Vitamin D 
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deficiency. Factors contributing to low 25 (OH) D levels were month of recruitment (lower 

levels during and just after the cold season) and poor dietary intake. The seasonal variation 

in baseline serum 25 (OH) D concentrations has not previously been reported and is 

interesting. Yet it is reassuring that 25 (OH) D levels slowly increased during treatment and 

that TB drugs or ART did not increase hepatic breakdown of Vitamin D metabolites. 

Perhaps, as patients recover, improvements in factors associated with higher 25 (OH) Vit D 

levels (increased dietary intake, rising BMI and more sunlight exposure) counterbalance the 

negative pharmacological effects of administered medications. 

The CXR scoring scheme was simple and provided good inter-reader concordance in 

assessment of precentage of lung affected and presence of cavities ≥4cm. A robust immune 

system and anti-inflammatory response was associated with cavitation; HIV infection 

reduced cavity formation, whilst pre-study ART, high WCC/CD4 count and BCG vaccination 

all made cavities more likely. These findings are consistent with established knowledge that 

the pathogenesis of cavity formation in pulmonary TB relies on an immunological delayed 

type hypersensitivity reaction517,518.  

On multivariate analysis of factors associated with positive 2 month sputum cultures, two 

variables were statistically significant; cavities ≥4cm on CXR and prior BCG vaccination. The 

first of these is consistent with recent literature291,353,355 and it is probable that slower 

culture conversion in patients with CXR cavitation reflects higher baseline sputum bacillary 

load353, and variable penetration of cavities by drug therapy519 . 

The association between positive 2 month sputum cultures and prior BCG vaccination was 

unexpected as prior work from Tanzania suggests that presence of a BCG scar increases the 

likelihood of rapid conversion to negative cultures480. However, that study recruited smear 

positive TB patients of any grade rather than selecting those with ‘++’ or ‘+++’ disease and 

did not assess for cavitation on CXR. It is possible that amongst the selectively higher 

bacillary loads recruited to the current study vaccination does not prompt earlier culture 

conversion but helps to contain infection in pulmonary cavities and prevent dissemination. 

Historical reports of the protective efficacy of BCG are variable520-522, particularly against 

pulmonary disease in adults, and further studies would be required to support this 

conclusion. These may be superseded by the search for a better TB vaccine.   

Neither of the factors associated with positive 2 month cultures were also associated with 

final outcome suggesting that some elements of eventual response are not captured by 
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early clinical or radiological measurements. This does not diminish the need to understand 

the issues affecting 2 month culture status as time to culture conversion remains an 

endpoint in several clinical trials and may be relevant to infectiousness and transmissibility 

of TB523. However, it does suggest that studies claiming to identify prognostic indicators or 

surrogate biomarkers based only on 2 month data should be interpreted with caution. 

From multivariate analysis, the only factor associated with unfavourable final outcome was 

inability to read from a newspaper. Section 3.4.1 reported that illiteracy was more common 

in sputum smear positive TB patients than the general urban Malawian population. Inability 

to read may be a surrogate for low overall educational attainment and socio-economic 

status, and may have a multi-factorial relationship with poor health outcomes. Whilst the 

current study was designed to assess bacteriological and pharmacological aspects of TB 

treatment, the effect of underlying social factors should not be ignored.  

It is also notable that there was a trend towards unfavourable outcomes in patients with a 

baseline ALT above the normal reference range (>35 IU/l). This is difficult to explain but an 

abnormal ALT may suggest more disseminated TB with increased risk of treatment failure 

or relapse. Should future data replicate this finding it will be worthy of further study.  

Despite prior publications advocating that Vitamin D may supplement anti-TB 

chemotherapy by augmenting host immunity489, 25 (OH) D concentrations did not affect 

early or late treatment end-points. Therefore, whilst Vitamin D deficiency may be linked to 

reactivation of latent disease524,525 no evidence was found that variability in serum levels 

influences the outcome of therapy. 

Finally, there is established evidence that ART reduces mortality in HIV-infected individuals 

with TB122,123 and reduces the risk of TB treatment failure526. However, in this cohort all 

deaths occurred in HIV-infected individuals and 5/6 (83%) patients were on ART when they 

died. On univariate analysis pre-study ART was also associated with positive 2 month 

sputum cultures and unfavourable final outcomes. While the sample size was too small to 

draw clear conclusions on the role of HIV therapy during TB treatment, this indicates that, 

despite the proven benefits of ART, TB patients on HIV therapy remain at high risk. 

There are several caveats to the findings described in this chapter. The socio-economic 

analysis compared the study cohort to the overall urban Malawian population from the 

DHS, rather than the more specific comparator of the high-density urban population in 

Blantyre. Outcome definitions may be imprecise as it was not possible to distinguish 
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between post-treatment re-infections and relapses at a molecular level. Multiple 

comparisons were done to evaluate factors contributing to unfavourable outcomes. This 

carries the risk of identifying incidental associations which may not be of clinical 

significance or reproduced in subsequent cohorts. 

Nevertheless, the data show that unfavourable treatment outcomes in first presentations 

of smear positive TB in Malawi are often due to persistent fully drug susceptible infection 

with M tuberculosis. Patient variables including HIV status, baseline CXR appearance, serial 

Vitamin D levels and BMI measurements do not adequately explain inter-individual 

variations in final treatment outcome. Bacterial and pharmacological factors may be 

implicated. Assessment of these factors will be described in Chapters 4-6 
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4. Optimising Quantitative Sputum Culture 

4.1 Introduction 

To advance the analysis of bacillary persistence in TB treatment response, it is necessary to 

discuss methodological issues in the quantitative culture techniques used to measure the 

bacillary load in serial sputum samples.  

In Chapter 1 the role of sputum culture in developing surrogate markers of clinical outcome 

was discussed. The biological plausibility of using the rate of decline in viable organisms as 

a pharmacodynamic measure of treatment activity is convincing and there is moderate 

correlation from historical studies between sputum culture conversion and clinical 

outcome261. This relationship may be strengthened by analysing quantitative culture data 

with NLME modelling techniques266. Although M tuberculosis culture is cumbersome and 

slow and other biomarkers are under development (including measurement of M 

tuberculosis mRNA316 and estimation of a molecular bacillary load in sputum320) it will be 

some years before new methods are adequately evaluated for use in clinical trials. 

Therefore, optimising existing microbiology methods is of critical importance in 

accelerating progress towards new, shorter TB therapy now. 

When on-site work for this study was commenced in Blantyre in March 2010, the TB 

laboratory at the College of Medicine routinely performed sputum smear microscopy and 

TB culture using egg-based LJ slopes. Whilst LJ media is cheap and effective for growth of M 

tuberculosis in resource poor settings it was deemed inappropriate for the current study for 

several reasons; growth of colonies on LJ slopes is slow527, the surface area of the media 

was too small for colony counting and modern clinical trials prefer to monitor 

microbiological response to therapy with a combination of Middlebrook plates and liquid 

culture227,228,232,488. It was deemed necessary to introduce laboratory methods consistent 

with modern trials. 

From March-June 2010, training on SSCC on Middlebrook plates and liquid culture in a 

MGIT system were provided for two dedicated TB laboratory technicians. Training was 

complete prior to commencement of patient recruitment. However, due to time 

constraints associated with the schedule for the clinical study, some improvements of SSCC 

media were investigated using patient samples after the study was underway.  

Key steps in optimisation of the SSCC and MGIT culture techniques will now be described. 
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4.2 Serial Sputum Colony Counting 

The principle of SSCC was outlined in Section 1.10.2. Serial dilutions of homogenised 

overnight sputum collections are incubated at 37oC for 3 weeks on selective agar and a 

back-titration calculation is used to quantify CFU/ml counts in the original sample263,264. 

Mean counts are taken from duplicate plates. Careful attention must be paid to the quality 

of sputum collection and transportation procedures.  

4.2.1 Original SSCC media preparation (7H10-Amb10) 

Initially, Middlebrook 7H10 media was used for SSCC plates. According to manufacturer’s 

instructions, 19g 7H10 agar powder (Becton Dickinson) was added to 895ml of distilled 

water and 5ml of glycerol and autoclaved at 121oC for 15 minutes. After cooling to 45oC the 

media was supplemented with 100ml Oleic Acid-Albumin-Catalase (OADC, Becton 

Dickinson). Anti-microbial drugs were added in the form of two selectatabs (MAST24) to 

give final anti-microbial concentrations of polymyxin B (200u/ml), ticarcillin (100mg/l), 

trimethoprim (10mg/l) and amphotericin B (10mg/ml). As it was cooling, 8ml of media was 

transferred by sterile pipette into each compartment of 100mm diameter triple segment 

petri dishes. Plates were inverted, dried overnight at 37oC, stored at 4oC and used within 3 

weeks. 

This preparation was the standard SSCC media used at the start of the study and will be 

referred to as 7H10-AmB10.  

4.2.2 Plate set-up and reading of results 

On arrival in the laboratory, overnight sputum samples were homogenised by vortex 

agitation with glass beads to break down clumps and ensure equal dispersal of M 

tuberculosis bacilli. The specimen was split as described in Section 2.6.1 with 1ml allocated 

for each of SSCC and MGIT. The remainder was stored at -20oC. The SSCC aliquot was 

incubated with an equal volume of dithiothreitol 1g/l (Oxoid) for 1 hour in order to liquefy 

the sample by dissociation of sulfide bonds in mucoid sputum528. 5 serial ten-fold dilutions 

of homogenised and liquefied sputum were then prepared in sterile phosphate buffered 

saline (PBS). 50µl of neat sputum and all five dilutions from each sample were inoculated 

onto duplicate 7H10-AmB10 plate sets. Culture plates were placed in zip-lock polythene 

bags and incubated in the dark at 37oC. Sample preparation and plate set-up is shown in 

Figure 4.1. 
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Plates were read at 3 weeks. If characteristic M tuberculosis colonies (Figure 4.2, A-D) were 

visible ZN smears were done to confirm AFB growth and the sample was reported as 

positive. If no growth was seen on either plate set it was reported as negative. 

For positive plate sets, a dilution yielding 10-100 TB colonies was selected for colony 

counting. CFU/ml of sputum was calculated by;  

CFU/ml = 
No of colonies 
counted in 
plate segment 

X 2(dithiothreitol 
dilution) 

X 
20 (50µl were 
inoculated per 
segment  

X Dilution 
factor 

 

Counts from both plate sets were used to calculate mean CFU/ml and log10 CFU/ml counts 

for all positive samples.  

Weekly contamination checks were done during incubation. Contaminating organisms were 

classified as fungal or bacterial based on macroscopic appearance and gram stain. Plates 

were regarded as contaminated if there were sufficient contaminating organisms to 

prevent TB colony counting. 

12 hour 

overnight 

sputum 

collection 

Homogenise 1ml sputum with 

1ml dithiothreitol and make 

serial 10-fold dilutions in PBS 

 

Inoculate sputum dilutions onto 

2 identical plate sets for each 

sample 

 

Figure 4.1 Sputum processing and SSCC plate set-up 
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Figure 4.2 SSCC plates and colonies 

A and B: A typical plate set after 3 weeks incubation. The 10
-2

 dilution (bottom segment of top left 

image) contains a suitable number of colonies for counting (94 colonies were counted which gives 

an estimate of 376,000 [log10 5.57] CFU/ml sputum in the original sample). C: Characteristic M 

tuberculosis colonies; white, slightly raised and rugose (further identification was done by ZN 

microscopy) D: Characteristic M tuberculosis colonies magnified x100. E: Neat plate segment from a 

clinical sample showing fungal contamination. F: Gram stain of contaminated plate segment showing 

hyphae and blastospores typical of fungal growth. 
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On each day of sample set-up, ‘negative control’ plates of diluted SSCC reagents without 

sputum were also prepared to ensure that any observed contamination originated from the 

sputum specimens rather than a laboratory problem. 

4.2.3 Contamination of early study specimens 

Sample contamination presents difficulties in clinical mycobacteriology because sputum 

samples often contain a variety of micro-organisms from the oral cavity and upper 

respiratory tract which quickly overgrow M tuberculosis cultures529
. Therefore, 

contamination rates on standard SSCC plates were monitored throughout the study. 

Results from June 2010 until the last patient was recruited in December 2011 are shown in 

Figure 4.3 and Table 4.1. 

 

 

Figure 4.3 Contamination of standard SSCC plates from June 2010-December 2011 

Standard SSCC plates were on 7H10-AmB10 media from June-December 2010 and 7H11-AmB30 

media thereafter.  Data from experimental media (7H10-AmB30 and 7H11-AmBC) during the plate 

comparisons described in sections 5.2.4 and 5.2.5 is not represented here.  

Standard media: 
7H10-AmB10 

Standard media: 
7H11-AmB30 
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 Standard media: 
7H10-AmB10 

Standard media: 
7H11-AmB30 

Jun-Sep 
2010 

Oct-Dec 
2010 

Jan-Mar 
2011 

Apr-Jun 
2011 

Jul-Sep 
2011 

Oct-Dec 
2011 

Total number of samples 93  135 117 138 96 95 

Contaminated samples 
Total (n,%) 
Fungal (n, %) 
Bacterial (n ,%) 

 
22 (24) 
18 (19) 
4 (4) 

 
21 (15) 
16 (11) 
6 (4) 

 
22 (19) 
16 (14) 
6 (5) 

 
24 (17) 
21 (15) 
3 (2) 

 
11 (11) 
7 (7) 
 4 (4) 

 
6 (6) 
2 (2) 
4 (4) 

Samples collected after 
≥14 days of treatment 

34 60 48 62 46 41 

 ≥14 day sample 
contamination (n, %) 

11 (32) 12 (20)  10 (21) 22 (36) 8 (17) 3 (7) 

Table 4.1  Contamination of standard SSCC plates from June 2010-December 2011 

From June-September 2010, 24% of SSCC plates were contaminated and 82% of 

contamination was attributed to fungi (see Figure 4.2, images E-F). Amongst samples 

collected from patients after day 14 of TB therapy, the contamination rate was 32%. This 

was an unacceptable loss of data, particularly at later sampling time-points when valid data 

are needed to track persister organisms, evaluate time to culture conversion and calculate 

the Sterilisation Phase bacillary elimination rate267. There was no contamination of negative 

control plates indicating that non-mycobacterial organism from sputum were adversely 

affecting the results. 

The explanation for this was clear. In many TB culture techniques (including the MGIT 

method described later in this chapter) non-mycobacterial organisms in sputum are 

selectively destroyed by sample decontamination with NaOH prior to inoculation of media. 

However, this process is inappropriate for SSCC because, even when done carefully, it 

adversely affects recovery of M tuberculosis530 and lowers the bacillary load531,532. Colony 

counting studies following sputum decontamination have previously reported a 

monophasic rather than biphasic pattern of bacillary elimination272,273 suggesting an 

undesirable distortion of treatment response. Therefore, this SSCC study was performed on 

non-decontaminated sputum and the risk of plate contamination was higher.  

Older studies with non-decontaminated sputum reported contamination rates of only 2.7-

3.5%533,534 but these were not conducted in resource-poor tropical settings. Only 30% of 

our patients had electricity to refrigerate samples at home, consistent with data from the 

Malawian DHS (2004-5)458, and patients travelled for 2 hours or more to deliver specimens 

to hospital.  Prolonged exposure of unrefrigerated samples to high ambient temperatures 

(>30oC) during transportation may encourage contaminant overgrowth. 
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A recent study using non-decontaminated sputum in Peru reported a culture 

contamination rate of 18%530, similar to the current data. Over 80% of their contaminants 

were bacterial whilst >80% in Malawi were fungal, perhaps reflecting underlying 

differences in oral or respiratory flora and the effect of HIV infection (HIV prevalence in 

Peruvian TB patients is 3% compared to 67% in our study cohort). Nevertheless, there was 

an obvious need for improved selective media when dealing with non-decontaminated 

sputum in resource-poor settings. 

4.2.4 Improving SSCC media: the “AmB10 v AmB30” comparison 

To reduce plate contamination, the anti-microbial composition of SSCC media was 

reviewed. As the predominant contaminants in our study were fungal, media preparations 

containing different anti-fungal drug formulations were tested to establish whether 

contamination could be reduced without compromising CFU/ml counts of M tuberculosis.  

The original SSCC formulation described in Section 4.2.1 included AmB (10mg/l). However, 

AmB is light and temperature sensitive, loses activity 3-15 days after reconstitution535 and 

may have diminishing efficacy during media storage or prolonged incubation. Personal 

correspondence with the laboratory team who generated SSCC data for the OFLOTUB 

study228 suggested that increasing the AmB concentration to 30mg/ml may be beneficial.  

From August-December 2010, sputum samples from study patients were incubated in 

parallel on standard study media (7H10-AmB10) and an experimental media (7H10-AmB30) 

containing AmB (30mg/ml). Plate sets were not blinded. The effect of different media 

preparations on viable bacillary load, observed patterns of bacillary elimination and culture 

contamination rates were assessed.  

Preparation of “7H10-AmB30” media 

The experimental media, 7H10-AmB30, was prepared in the same way as 7H10-AmB10 but 

an additional 20mg/ml solution of AmB (Sigma Aldrich), was prepared in dimethyl sulfoxide 

(DMSO) and 1ml was added along with the selectatabs to give a final AmB concentration of 

30mg/l. 

Statistical analysis  

Differences between bacillary counts on different media were analysed by paired two 

sample t-tests. Modelling of bacillary elimination was done by NLME methods outlined in 

Chapters 1 and 6266. Differences in the frequency of ‘clean’ or ‘contaminated’ sample 

results were compared by relative risk ratios and 95% CI.  
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Results of “AmB10 vAmB30” comparison 

Due to the serial sampling protocol, some patients provided multiple samples on different 

days of treatment. 127 sputum samples from a total of 52 patients were used in this 

comparison. The mean number of samples per patient was 2.5. 

Table 4.2 shows mean log10CFU/ml counts of samples collected at different time-points and 

inoculated on both media types. 

7H10-AmB10 sample counts were 0.19 log10 CFU/ml higher (95% CI: 0.10-0.27) than 7H10-

AmB30 counts. Although statistically significant, this difference was small. Biphasic bacillary 

elimination curves were observed (Figure 4.4) suggesting that the change in bacillary 

counts did not distort treatment response. 

34/127 (27%) 7H10-AmB10 plates were contaminated: 28 by fungi and 6 by bacteria. 

15/127 (12%) 7H10-AmB30 plates were contaminated: 11 by fungi and 4 by bacteria (Table 

4.3). The relative risk of sample contamination with AmB10 was 2.10 (95% CI: 1.25-

3.55).Individual plate segment contamination on 7H10-AmB10 was 18%. This was reduced 

to 8% on 7H10-AmB30. The main reduction was in fungal growth (from 15% to 6% of 

segments). Taken together, these data suggest that increasing the AmB dose to 30mg/ml 

resulted in better selective media for growth of M tuberculosis. 

As with the early study specimens, samples collected later in therapy were at higher risk of 

contamination. 24(71%) of the contaminated samples on 7H10-Amb10 were collected after 

day 14. However, 11(46%) of these were not contaminated on 7H10-AmB30, suggesting 

that better media minimised data loss at later, more vulnerable study time-points. 

Negative control plates persistently showed no growth. In addition, Table 4.3 shows that 

plate segment contamination was highest in neat sputum and sequentially reduced in serial 

dilutions. This is consistent with organisms from sputum being gradually diluted below the 

growth threshold on selective plates and reinforces the view that SSCC contamination 

originated from the samples rather than the laboratory.     



 
 
 
 
Chapter 4   Optimising Quantitative Sputum Culture 

109 
 

Sampling time Number of samples Mean log10 CFU/ml 
Mean of differences in log10 CFU/ml counts 
between mediaa  (95% Confidence Interval) 

p-value 

“AmB10 v 30”  7H10-Amb10 7H10-Amb30   
Baseline 32 6.815 6.527 0.267 (0.061-0.473) 0.014* 
Day 1-14 44 5.318 5.072 0.163 (0.071-0.255) 0.001* 
Day15-28 26 3.914 3.744 0.217 (0.002-0.432) 0.048* 
Day 28-56 25 4.078 4.373 -0.143 (-1.025-0.737) 0.557 

Total 127 5.616 5.370 0.189 (0.103-0.275) <0.001* 
“AmB30  v AC”  7H11-AmB30 7H11-AC   

Baseline 22 6.552 6.340 0.108 (0.010-0.207) 0.031* 
Day 1-14 46 5.606 5.355 0.113 (-0.027-0.253) 0.110 

Day 15-28 18 3.917 4.076 0.263 (-0.546-1.072) 0.293 
Day 28-56 16 3.150 3.400 -0.250 (-0.631-0.131) 0.076 

Total 102 5.757 5.506 0.106 (0.020-0.193) 0.017* 
Table 4.2 Colony counts on Middlebrook media containing different antifungal drugs 

a
For samples in the AmB10 v 30 comparison, the difference in log10 CFU/ml counts between media was calculated by subtracting the log10CFU/ml on 7H10-AmB30  from 

the  log10CFU/ml on 7H10-AmB10. The mean of the differences for all positive samples at each time interval is shown in the table.   

For samples in the AmB30 v AC comparison the difference in log10 CFU/ml counts between media was calculated by subtracting the log10CFU/ml on  7H11-AC from the 

log10CFU/ml on 7H11-AmB30. The mean of the differences for all positive samples at each time interval is shown in the table. 
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Figure 4.4 SSCC modelling of bacillary elimination using different media preparations 

Changes in bacillary load (in log10CFU/ml sputum) over time on therapy are plotted for both media 

comparisons in the study. NMLE methods were used to demonstrate that a biphasic bacillary 

elimination model fits the data for both comparisons, suggesting that the effect of different anti-

fungal drug concentrations in selective plate media does not adversely affect analysis of bacillary 

elimination in SSCC studies. 
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 Overall plate 
result 

Contamination of plate segments inoculated with 10-fold sputum dilutions  

Neat 10-1 10-2 10-3 10-4 10-5 Totals 

“AmB 10 v 30” :  7H10 (AmB 10mg/ml) 

No contamination (n, %) 93 (73) 163 (64) 190 (75) 199 (79) 228 (90) 232 (91) 232 (91) 1244 (81) 

Contamination (n, %) 34 (27) 91 (36) 64 (25) 55 (21) 26 (10) 22 (9) 22 (9) 280 (18) 

   Fungal contaminants (n, %) 28 (22) 71 (28) 46 (18) 41 (16) 24 (9) 22 (9) 22 (9) 226 (15) 

   Bacterial contamination (n, %) 6 (5) 20 (8) 18 (7) 14 (6) 2 (1) 0 0  54 (4) 

“AmB 10 v 30”: 7H10 (AmB 30mg/ml) 

No contamination (n, %) 112 (88) 203 (84) 213 (88) 218 (90) 232 (96) 232 (96) 234 (97) 1331 (92) 

Contamination (n, %) 15 (12) 38 (16) 27 (12) 23 (10) 9 (4) 9 (4) 7 (3) 113 (8) 

   Fungal contamination (n, %) 11 (8) 27 (11) 19 (8) 16 (7) 9 (4) 9 (4) 7 (3) 87 (6) 

   Bacterial contamination (n, %) 4 (4) 11 (5) 9 (4) 7(3) 0 0 0 27 (2) 

“AmB30 v AC”: 7H11 (AmB 30mg/ml) 

No contamination (n, %) 76 (75) 128 (62) 137 (66) 151 (73) 172 (83)  174 (84) 177 (86) 939 (76) 

Contamination (n, %) 26 (25) 79 (38) 70 (34) 56 (27) 35 (16) 33 (15) 30 (14) 303 (24) 

   Fungal contamination (n, %) 21 (20) 54 (26) 46 (22) 45 (22)  32 (15) 30 (14) 29 (14) 236 (19) 

   Bacterial contamination (n, %) 5 (5) 25 (12) 24 (12) 11 (5) 3 (1) 3 (1) 1 (0) 67 (5) 

“AmB30 v AC”: 7H11 (AmB 10mg/ml + Carbendazim 50mg/ml) 

No contamination (n, %) 87 (85) 157 (77) 168 (82) 181 (89) 195 (96) 196 (96) 197 (97) 1094 (89) 

Contamination (n, %) 15 (10) 47 (23) 36 (18) 23 (11) 9 (4) 8 (3) 7 (3) 130 (11) 

   Fungal contamination (n, %) 11 (11) 21 (10) 12 (6) 9 (4) 6 (3) 5 (2) 6(3) 59 (5) 

   Bacterial contamination (n, %) 4 (4) 26 (13) 24 (12) 14 (7) 3 (1) 3 (1) 1 (0) 71 (6) 

Table 4.3 Contamination of Middlebrook media containing different anti-fungal drug
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Conclusions of “AmB10 vAmB30” comparison 

Increasing the AmB concentration to 30mg/l demonstrated a 17% reduction in 

contaminated samples. Better anti-fungal activity was accompanied by a small drop in 

bacillary load but this had no effect on modelling of bacillary elimination and the 

magnitude of the drop in log10CFU/ml was felt to be clinically unimportant.  

Additionally, it was reassuring that in samples collected from patients after day 14 of TB 

treatment, AmB (30 mg/ml) allowed recovery of data from 46% of specimens which were 

contaminated on the weaker media. As loss through contamination of later samples 

impairs data analysis, the case for switching to a more potent anti-fungal media was strong. 

After this comparison, the benefit of higher dose AmB was deemed to be such that the 

standard study media was switched to an AmB (30mg/ml) preparation from January 2011. 

Figure 4.1 demonstrates a sustained reduction in overall SSCC contamination from this 

point onwards.  

4.2.5 Improving SSCC media: the “AmB30 v AmBC” comparison 

 To establish whether further SSCC media improvements could be achieved, from April-July 

2011 a second comparison was undertaken in which sputum samples were incubated in 

parallel onto AmB (30mg/ml) media and a preparation containing AmB (10mg/ml) 

supplemented with carbendazim, a benzimidazole anti-fungal treatment used in crops 

which inhibits fungal (eukaryotic) mitotic microtubulin formation to prevent sporulation 

and germination of spores536. Carbendazim was chosen for this comparison as it has several 

potential advantages over AmB; alongside a wide range of anti-fungal activity, it is more 

stable, cheaper and can be stored and shipped at ambient temperature. 

Preparation of “7H11-AmB30” and “7H11-AmBC” media 

Prior to the “AmB30 v AmBC” comparison, due to a change in available supplies, the agar 

base for SSCC media was changed from Middlebrook 7H10 to 7H11. The main differences 

between these two media is that 7H11 contains an enzymatic digestion of casein which is 

thought to enhance growth of fastidious M tuberculosis strains but comparisons  in our 

laboratory (data not shown) indicated that changing the media base alone had no 

difference on bacillary counts or contamination.  

7H11-AmB30 media was made in an identical manner to 7H10-AmB30 except that 21g of 

7H11 powder was substituted for 19g of 7H10. For 7H11-AmBC media, a 2% (w/v) 

suspension of carbendazim (Sigma Aldrich) in 70% ethanol was prepared and added to the 
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media before autoclaving. It is insoluble in water but at an acid pH in the presence of 

phosphate and heat it converts to a soluble compound with no loss of anti-fungal activity 

(personal communication with David Coleman, St George’s Medical School, London). OADC 

and selectatabs were added as usual. Final anti-fungal concentrations in 7H11-AmBC were 

AmB 10mg/l and carbendazim 50mg/l.    

Results of “AmB30 vAmBC” comparison 

102 sputum samples were used in this comparison, collected from 44 patients. The mean 

number of samples per patient was 2.3.  

7H11-AC bacillary counts were 0.11 log10 CFU/ml lower (95% CI: 0.02-0.19) than 7H11-

AmB30 counts (Table 4.2). As with the “AmB 10 v 30” comparison the difference was 

statistically significant but small and did not affect the biphasic bacillary elimination curve 

after NLME modelling of the data (Figure 4.4). 

26/102 (25%) 7H11-AmB30 plates were contaminated: 21 by fungi and 5 by bacteria. 

15/102 (15%) 7H11-AC plates were contaminated: 11 by fungi and 4 by bacteria (Table 4.3). 

The relative risk of sample contamination with 7H11-AmB30 was 1.79 (95% CI: 1.01-3.17). 

Individual plate segment contamination fell from 24% on 7H11-AmB30 to 11% on 7H11-AC. 

Again, the major reduction was in fungal growth (from 19% to 5%). Overall, 7H11-AmBC 

was better selective medium for M tuberculosis.  

20 (77%) samples which were contaminated on 7H11-AmB30 were collected after day 14. 

As 9 (45%) of these were not contaminated on 7H11-AC, it again appeared that improved 

selective media reduced data loss at later sampling time-points.  

Conclusions of “AmB10 vAmB30” comparison 

 When compared with AmB30 media, plates containing AmB (10mg/ml) and carbendazim 

(50mg/ml) displayed a 10% reduction in contamination. Media containing both AmB and 

carbendazim was best overall. This data did not emerge until late in the study and it was 

deemed undesirable to change the standard media again, so 7H11-AmBC media was not 

used after completion of the work described above. However, this preparation is 

recommended for future SSCC projects in settings in with high rates of fungal 

contamination. 
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4.2.6 Patient factors and sample contamination 

In addition to the anti-fungal content of SSCC media, patient-related factors may contribute 

to sample contamination. To assess this, demographic and clinic data from the patients 

who contributed specimens to the “AmB10 vs Amb30” and “Amb30 vs AmBC” comparisons 

were combined with microbiology results from those comparisons. For this analysis, 

samples were regarded as contaminated if there was contamination on either media 

preparation.  

Data from 229 sputum specimens from 96 patients was included. The demographic and 

clinical profiles of this patient subset were similar to the overall study cohort description 

provided in Chapter 3. Assessment of patient factors contributing to sample contamination 

was done by logistic regression, with incorporation of hierarchical random effect modelling 

in the multivariate analysis to account for repeated sampling from some patients. Results 

of the logistic regression analysis are shown in Table 4.4. 

There was a trend towards less contamination in HIV positive individuals. Malawian HIV 

treatment guidelines recommend daily co-trimoxazole prophylaxis for all infected persons 

and fluconazole therapy for patients with oral or oesophageal candidiasis465 so some HIV-

infected individuals may have received prior therapy which reduced oral and respiratory 

commensual flora. There were also trends toward higher contamination with increasing 

age and use of wood/charcoal for cooking at home. The latter factor may be related to a 

general increase in respiratory infections and pulmonary disease associated with indoor air 

pollution from biomass fuels537,538.  

 However, the only significant factor on both univariate and multivariate analysis was that 

samples collected on later days of therapy were more likely to be contaminated (OR: 1.06, 

95% CI: 1.03-1.08, p<0.001). This corroborates earlier observations that contamination was 

disproportionately high in samples collected after day 14. Later samples may be more 

prone to contamination as elimination of M tuberculosis during therapy facilitates easier 

growth of other organisms. Generally, it appears that specimens collected on different days 

in serial sampling studies behave differently in culture. In a longitudinal study, the 

laboratory methods used must be able to cope with this.   
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Patient factor associated with the sample 
Contaminated 
on any mediaa 

N=62 

Clean on  
all mediab 

N=167 

Univariate analysis Multivariate analysis 

Odds 
Ratio 

95% CI p-value Odds 
Ratio 

95% CI p-value 

Age (years), median (IQRc) 34 (27-40) 31 (26-37) 1.04 0.99-1.08 0.060 1.04 0.99-1.04 0.086 
Male sex, n (%) 37 (60%) 119 (71%) 0.61 0.30-1.26 0.185 0.72 0.32-1.63 0.430 
HIV positive, n (%) 41 (66%) 129 (80%) 0.52 0.24-1.10 0.088 0.43 0.18-0.44 0.071 
Baseline CD4 count(cells/µl), median (IQRc) 163 (72-339) 159 (101-407) 0.99 0.99-1.00 0.442 - - - 
Patient on ART, n (% of HIV positive) 15 (37%) 40 (31%) 1.50 0.62-3.66 0.368 - - - 
Smoker, n (%) 14 (22%) 47 (28%) 0.78 0.35-1.72 0.532 - - - 
Use of biomass fuel (wood/charcoal) for cooking and 
heating at home (n, %) 

55 (88%) 134 (80%) 2.25 0.54-9.32 0.259 1.90 0.64-5.61 0.247 

Recent antibiotic used, n (%) 57 (92%) 151 (90%) 1.05 0.27-4.00 0.946 - - - 
Time since initiation of TB treatment, days (IQRc) 22 (14-49) 4 (0-14) 1.05 1.03-1.06 <0.001* 1.05 1.03-1.07 0.002* 

Table 4.4 Patient factors influencing sputum sample contamination
 

a
Contaminated on any media = the sample was contaminated in at least one arm of the comparison in which it was studied 

b
Clean on all media = the sample gave a positive’ or negative result in both arms of the comparison in which it was studied (i.e. this sample never got contaminated) 

c
IQR=Inter-quartile range 

d
Not including co-trimoxazole prophylactic therapy given routinely to HIV positive individuals  
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4.2.7 SSCC discussions and conclusions 

It was clear during the first three months of the study that SSCC plate contamination was a 

problem. Sputum from patients after day 14 of TB therapy appeared to be at particular risk, 

and this was confirmed later by multivariate analysis of patient factors associated with 

culture contamination. It was feared that loss of study data would compromise modelling 

of bacillary elimination and jeopardise assessment of microbiological biomarkers of 

treatment response. 

However, two comparisons of SSCC media preparations with different anti-fungal content, 

demonstrated that contamination could be significantly reduced without compromising 

measurement of bacillary load and cultures from later time-points of treatment could be 

salvaged for analysis. These data are the first to show that selective media can be 

optimised for use in resource-poor settings with high rates of fungal contamination. This is 

important for the future design of Phase IIb studies using SSCC to evaluate new anti-TB 

treatment regimes. If better recovery of valid results, particularly in the second month of 

treatment, is a replicable finding the power of SSCC studies will improve, enhancing 

capacity to perform treatment studies in African countries where the burden of TB is 

highest. 

There were several limitations to the SSCC optimisation experiments. The media 

comparisons were not blinded or performed simultaneously. Baseline contamination rates 

were high and the benefit of altering media may have been smaller in settings with less 

fungal contamination. Due to resource limitations, precise speciation and drug 

susceptibility testing of contaminants were not performed. As AmB is generally unavailable 

in Malawi it is unlikely that antimicrobial resistance contributed to plate contamination.   

Overall, increasing the AmB dose in SSCC media to 30mg/ml assisted in the conduct of this 

study and high concentrations of anti-fungal drugs can be recommended for future work 

either in the form of AmB 30mg/ml or the carbendazim method. 
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4.3 MGIT liquid culture 

The second microbiological method used to monitor bacillary elimination was the MGIT 

liquid culture system described in Section 1.10.2. Sputum was inoculated into commercially 

prepared microMGIT tubes containing 4ml Middlebrook 7H9 broth and an oxygen-

quenched fluorescent indicator. A manual microMGIT reader was used to repeatedly 

measure fluorescence intensity in the culture tubes. When fluorescence reached a pre-

determined threshold the tube was read as “positive”. TTP was used as an inverse marker 

of bacillary load. 

4.3.1 Sputum sample decontamination  

Although liquid culture supports bacillary growth more effectively than solid media282 

growth of non-tuberculous mycobacteria (NTMs) and other bacteria/fungi is also enhanced 

and high contamination rates (3.7-8% in high-income settings539,540 and 29.3% in Zambia541) 

are often a limitation of MGIT culture systems. Therefore, it was necessary to routinely 

decontaminate all sputum samples for this part of the study. 

As described in section 2.6.1, after sputum homogenisation, 1ml aliquots of each sample 

were used for MGIT culture. These were placed in 50ml Falcon tubes.  10µl was transferred 

with a sterile loop onto microscope slides to make initial smears for ZN and AP staining 

(methods in Appendices 10.4.1 and 10.4.2). 

The NAC-PAC EA3 system (AlphaTec Systems, Vancouver) was used for sample 

decontamination. 300mg N-Acetyl-L-Cysteine (NALC) was added to 60ml of NAC-PAC Red 

TB BaseTM solution containing 3% NaOH. 1ml of NALC/NAC-PAC Red was added to each 

sputum sample, turning the contents of the Falcon tubes pink/red. Samples were allowed 

to stand for a decontamination time of 15 minutes, with vortexing 2-3 times during this 

period.  

NPC-67TM AFB neutralising buffer was then slowly added to each tube until effective 

neutralisation of NaOH was indicated by a colour change from pink/red to colourless. 

Samples were spun at 3000 x g for 15 minutes. After discarding of supernatant the 

remaining pellets were re-suspended in 1ml of NACPAC Pellet Resuspension Buffer. 10µl of 

the re-suspended pellets were used to make concentrated smears for ZN and AP staining. 

Ensuring optimal sample decontamination time was important; excessive NaOH exposure 

kills M tuberculosis bacilli resulting in false negative results and under-estimation of 
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bacillary load whilst inadequate exposure results in insufficient destruction of non-

mycobacterial organisms and a high contamination rate. Prior to the clinical study, 10 

smear ‘+++’ sputum samples were divided into 7x1ml aliquots and prepared for liquid 

culture with decontamination times ranging from 12-20 minutes (Figure 4.5). A 

decontamination time of 15 minutes was selected as this resulted in the highest yield of 

positive results, and only one sample was lost to contamination. 

Median TTP varied with decontamination time. After commencement of patient 

recruitment, the decontamination time remained fixed to prevent variation in NaOH 

exposure from affecting the consistency of TTP readings. 

 
 TTP in days, 
median (range) 

NA 
4 

(3-7) 
4.5  

(3-8) 
4  

(3-5) 
6 

(4.5-8) 

4 
(6-10) 

10 
(10-10) 

Figure 4.5 Selecting a decontamination time for MGIT cultures 

 Methods to confirm that organisms grown in MGIT culture are M tuberculosis rather than 

contaminants are outlined in Section 5.3.3. 
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4.3.2 Inoculation and incubation of MGIT bottles 

For each specimen, 0.5ml MGIT-OADC enrichment supplement was added to a 4ml 

microMGIT bottle. Freeze-dried MGIT-PANTA antibiotic supplement was reconstituted in 

sterile water (each vial containing polymyxin B 6000 units, trimethoprim 600µg, 

amphotericin B 600µg, azlocillin 600µg, nalidixic acid 2400µg) and 0.1ml was also added. 

0.5ml of the decontaminated and re-suspended sputum pellet was transferred to the tube, 

which was tightly capped, placed in a rack and incubated at 37oC. 

4.3.3 Confirming MGIT culture positivity 

MicroMGIT tubes were read for fluorescence twice per day for 49 days. The MicroMGIT 

reader was calibrated prior to each use. Sample tubes were read as positive or negative. 

Bottles which were positive on two consecutive occasions were removed from the 

incubator and TTP was recorded in intervals of 0.5 days. Bottles which were not positive by 

49 days were removed and reported as negative.  

Macroscopic colony appearance cannot be used to confirm that organisms grown in liquid 

broth are M tuberculosis24. Therefore, an algorithm was developed to identify the contents 

of positive bottles (Figure 4.6). 

The contents of each positive bottle were concentrated by centrifugation and a ZN smear 

was prepared from the re-suspended cell pellet. If AFB were identified, two rapid 

mycobacterial speciation tests were performed. 

Firstly, slides was assessed for microscopic cording (a property of M tuberculosis in which 

bacilli form serpentine cords with the orientation of the long axis of each cell running 

parallel to the long axis of the cord [Figure 4.7, Image A]). As cording is a virulence-related 

characteristic absent from most NTMs, cord formation on ZN microscopy is regarded as a 

discriminating feature of M tuberculosis542. 

Secondly, MPT64 Antigen testing was performed on 100µl of each re-suspended cell pellet 

using an MGIT TBc Identification Test kit543.  MPT64 is a mycobacterial protein specific to M 

tuberculosis complex cells which is secreted during culture. The test kit is a 

chromatographic lateral flow immunoassay which uses monoclonal antibodies to detect 

this protein (Figure 4.7, Images B and D). Cultures which contained AFB in cords and were 

positive on the MPT64Ag test were confirmed as M tuberculosis. 



 
 
 
Chapter 4   Optimising Quantitative Sputum Culture 

120 
 

Figure 4.6 Confirmatory tests for positive MGIT cultures 
a
To clarify mycobacterial species, isolates were inoculated onto a set of 4 LJ slopes (37

o
C, 25

o
C, 45

o
C and supplemented with Paranitrobenzoic acid). Growth of AFBs at 37

o
C only 

indicated M tuberculosis. Growth on any other slope indicated non-tuberculous mycobacteria (NTM). 
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Figure 4.7 Microscopic cording and MPT64 Ag identification tests 

A: An AFB positive ZN smear from a positive MGIT bottle which demonstrates cording. B: A positive 
MPT64Ag test (there is clear pink/red line in both Control (C) and (T) test windows). C: An AFB 
positive ZN smear in which cells have different morphology and there is no cording. D: A negative 
MPT64Ag test (there is a clear line in the Control (C) but not in the test (T) window). Together, A&B 
indicate growth of M tuberculosis. C&D indicate non-tuberculous mycobacterial. 
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AFB positive MGIT isolates which were negative for either cording or MPT64 underwent 

further assessment using LJ slopes as a reference test (Figure 4.8, LJ culture method details 

in Appendix 10.5). Although M tuberculosis grows well on LJ slopes at 35-37oC it does not 

grow at room temperature (25oC), at 45oC, or when media is supplemented with 

paranitrophenol benzoic acid (PNB). NTM species show variable growth under all of these 

conditions544. Therefore, samples were sub-cultured onto four LJ slopes as shown in Figure 

4.8. Growth occurring only at 37oC was confirmed as M tuberculosis. Growth under any 

other conditions indicated an NTM. More detailed speciation of NTMs was not undertaken. 

 

 

 

 

 

 

 

 

 

Finally, 50µl of each pellet was inoculated onto a blood agar plate for 48 hours to identify 

contamination by non-mycobacterial organisms (bacteria/fungi).  

783 samples from baseline and S1-4 patient visits were set up for MGIT culture during the 

clinical study (Table 4.5). 584 demonstrated mycobacterial growth. In 566 (73%) cases this 

was due to M tuberculosis and in 18 (2%) cases it was due to an NTM. 138 (18%) samples 

were negative and 37 (5%) were contaminated by bacteria/fungia. 19 (2%) samples 

signalled positive on the microMGIT reader but were regarded as invalid because all 

identification tests were negative. All NTMs, contaminated and invalid samples were 

excluded from pharmacodynamic data analysis. 

                                                           
a
 24 of these samples also grew M tuberculosis but were regarded as contaminated because growth 

was polymicrobial  

 

Positive MGIT 

 No cording or 

MPT64Ag negative 

LJ at 37oC 

LJ at 25oC 

LJ at 45oC 

LJ +PNB at 37oC 

Growth ONLY on this slope: 

M tuberculosis 

Growth on any of these slopes: 

Non-tuberculous mycobacteria 

Figure 4.8 Use of LJ slopes to discriminate between M tuberculosis and NTMs 
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Culture result/ organism id Day of sample collection Total 
N=783 Baseline 

N=170 
Day 1-14 
N=303 

Day15-28 
N=155 

Day29-56 
N=150 

Mycobacterial growth 
M tuberculosis (n,%) 
NTMs (n, %) 

 
146 (86) 
3 (2) 

 
261 (86) 
7 (2) 

 
117 (76) 
3 (2) 

 
42 (28) 
5 (3) 

 
566 (73) 
18 (2) 

Contaminated (n, %) 15 (9) 11 (4) 8 (5) 3 (2) 37 (5) 

Negative (n, %) 6 (4) 22 (7) 24 (16) 86 (57) 138 (18) 

Invalid (n, %) 0 (0) 2 (1) 3 (2) 14 (9) 19 (2) 

Table 4.5 Results of MGIT culture for clinical study 

The overall rate of contamination was similar or lower to other recent reports from 

Africa527, indicating successful introduction of MGIT culture to the laboratory. Recovery of 

NTMs was lower than other African studies (21.1%527 in South Africa and 33.3% in 

Sudan545). This reassuringly suggests that most strongly sputum smear positive patients 

presenting to QECH for TB treatment have M tuberculosis rather than a misdiagnosed NTM. 

It also suggests that modelling of bacillary elimination using TTP data from this cohort is 

unlikely to be confounded by accidental inclusion of NTMs. 

In contrast to SSCC, there was a slightly lower risk of contamination in MGIT cultures from 

sputum collected on later treatment days (OR: 0.98, 95% CI: 0.97-0.99, p<0.0001)a. This 

may be an advantage for serial sampling studies seeking to grow ‘persister’ organisms.  

Table 4.6 shows identification tests results for pure positive M tuberculosis cultures. 

Identification tests 
 

Day of sample collection Total 
N=566 Baseline 

N=146 
Day 1-14 
N=261 

Day14-28 
N=117 

Day 28-56 
N=42 

Cording & MPT64Ag positive  
LJ not done (n, %) 

144 (99) 242 (93) 98 (85) 34 (83) 516 (91) 

Cording positive, MPT64Ag negative 
M tuberculosis on LJ (n, %) 

0 (0) 7 (3) 6 (5) 4 (10) 17 (3) 

MPT64Ag positive, cording negative 
M tuberculosis on LJ (n, %) 

2 (1) 12 (5) 11 (9) 3 (7) 28 (5) 

Cording and MPT64Ag negative 
M tuberculosis on LJ (n, %) 

1 (1) 0 (0) 2 (1) 2 (5) 5 (1) 

Table 4.6 Rapid mycobacterial identification tests from positive MGIT cultures 

                                                           
a
 As in Section 4.2.6 the odds ratio for contamination risk per successive day of sample collection 

was done by logistic regression with incorporation of hierarchical random effect modelling in the 
multivariate analysis to account for repeated sampling from each patients. 
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91% of pure positive cultures had concordant positive results for both microscopic cording 

and MPT64Ag. Isolates which were positive on only one of the rapid mycobacterial 

identification tests were set up on LJ slopes. All of these demonstrated typical M 

tuberculosis growth characteristics, suggesting that both tests were highly specific. 

The cost of preparing ZN slides for microscopy is approximately $0.1 per slide, whilst the 

cost of a single MPT64Ag test kit is $2.90. Given the high concordance between the results, 

the additional cost of MPT64Ag testing may be considered unnecessary in a resource poor 

setting. However, 45 M tuberculosis isolates would have been misclassified as NTMs if both 

tests had not been performed (28 cording negative, MPT64Ag positive cultures and 17 

cording positive, MPT64Ag negative cultures all of which had M tuberculosis growth 

subsequently confirmed on LJ slopes). Additionally, in 5 AFB positive cultures both rapid 

tests were negative making the sample invalid until LJs slopes grew M tuberculosis. Overall, 

the use of an algorithm incorporating multiple mycobacterial identification methods 

prevented loss of 50 (9%) positive samples. 

It is observed from Table 4.6 that the risk of a false negative result from at least one of the 

rapid mycobacterial tests was progressively higher in samples collected on later treatment 

days (OR : 1.05, 95% CI: 1.04-1.07, p<0.0001)a. Although the reason for this is unclear, it is 

possible that viable M tuberculosis bacilli lose some of their ability to form cords or secrete 

MPT64Ag when exposed to chemotherapy. Whatever the explanation, it appears once 

again that specimens collected on different days behave differently and multiple 

identification techniques are particularly indicated to study growth of late persister 

organisms. 

4.3.4 Manual v automated MGIT readings 

As MicroMGIT bottles were only read manually twice per day, there was concern that TTP 

readings expressed in intervals of 0.5 days may be inaccurate. During the course of the 

study an automated BACTEC MGIT 960 machine became available in the laboratory. This is 

a self-contained incubation unit in which MGIT culture bottles are continuously tested for 

fluorescence to give a TTP reading for positive in intervals of 0.1 days. Sample 

decontamination and inoculation steps are identical to the manual system.  

                                                           
a
 As in Section 4.2.6 the odds ratio for contamination risk per successive day of sample collection 

was done by logistic regression with incorporation of hierarchical random effect modelling in the 
multivariate analysis to account for repeated sampling from each patients. 
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 After installation of the BACTEC MGIT system, a sequential set of 74 samples were 

incubated in parallel for manual MicroMGIT and for automated fluorescence reading in the 

machine. 51 (69%) were positive, 15 (18%) were negative and 8 (11%) were contaminated 

on manual reading, whilst 50 (68%) were positive, 13 (18%) were negative and 11 (15%) 

were contaminated on the automated system. Correlation between TTP readings for 

samples which were positive via both methods was high (Figure 4.9) 

 

Figure 4.9 TTP of positive samples on manual and automated MGIT cultures 

50 samples were positive on both culture systems, with good correlation in TTP readings. Panel A 

includes all samples including one outlier (Manual TTP: 46.5 days, Automated TTP: 8 days). In Panel 

B, this data-point is removed and the adjusted R
2 

correlation co-efficient rises to 0.57. 

Although automated culture has considerable advantages of convenience over twice daily 

manual tube reading, a decision was made to complete the clinical study using manual 

reading to ensure methodological consistency. The strong correlation between manual and 

automated results provided confidence in the reliability of TTP readings achieved by both 

methods. 
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4.4 In vitro relationship between log10 CFU/ml and MGIT TTP 

The use of MGIT TTP readings on serial patient samples to monitor bacillary elimination 

relies on the principle that TTP is inversely related to bacillary load. Prior data supports this 

assumption and the relationship between SSCC log10 CFU/ml counts and MGIT TTP from 

study samples will be analysed in detail in Chapter 6. An in vitro test of concordance 

between the two quantitative bacteriology methods was also performed to confirm the 

relationship between the techniques. 

TB reference strain H37Rv (NCTC number 3616), obtained from the National Culture Type 

Collection, was grown in a MGIT bottle until three days after a positive signal was obtained 

on the microMGIT reader. Five 10-fold dilutions were prepared in sterile PBS and 

inoculated in parallel in two microMGIT tubes and on two sets of 7H10-AmB10 plates. 

Reading of fluorescence and plate counting were performed as described above. Figure 

4.10 demonstrates a strong relationship between the mean TTP from liquid culture bottles 

and mean log10CFU/ml counts from agar plates (adjusted R2=0.92, p=0.006). 

 

Figure 4.10 In vitro bacillary load by SSCC and MGIT using H37Rv 
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4.5 MGIT culture discussion and conclusions 

As with SSCC, the MGIT liquid culture system was successfully introduced to the CoM TB 

laboratory. Sample decontamination was optimised and standardised prior to 

commencement of patient recruitment. A series of tests were performed to identify 

organisms growing in MGIT cultures. As there was increased risk of false negative results 

from individual rapid tests for M tuberculosis at later time points, an algorithm 

incorporating multiple tests was necessary to ensure that no positive cultures were missed. 

A manual microMGIT reader was used to measure fluorescence. TTP readings from this 

method correlated well with results from the automated BACTEC MGIT 960 system when a 

sub-set of samples were run in parallel. Whilst the automated system is considerably more 

time-efficient and convenient and the cost of reagents for the two systems is comparable, 

the initial financial outlay to install an automated MGIT system is $39,950 compared to 

$850 for a manual MGIT reader. Although provision of a 37oC incubator and additional staff 

costs for weekend readings of tube fluorescence have to be included for the manual system 

it worked in this study and is a useful option in resource-poor settings.  

An in vitro comparison of bacillary load measurement with using log10CFU/ml counts from 

SSCC plates and TTP from MGIT bottles showed close correlation. Analysis of the 

relationship between the results of the two culture systems using clinical samples will be 

described in Chapter 6.  

Overall, introduction of both quantitative culture techniques to the TB laboratory was a 

considerable capacity building investment. Careful attention to training, technical 

optimisation and quality control procedures was vital to generate reliable microbiological 

data from the clinical cohort and laid the groundwork for future TB therapeutics studies in 

Malawi, including trials of new candidate anti-TB regimens. 
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5. Optimising Single Cell Techniques 

5.1 Introduction 

Although quantitative sputum culture is important in pharmacodynamic monitoring of TB 

therapy there are two major limitations to this approach. Quantitative cultures only 

measure the treatment effect of total bacillary load, so identifying and directly monitoring 

the effect of persister sub-populations of drug-tolerant organisms is impossible. 

Additionally, persisters may acquire phenotypic drug tolerance by entering a non-

replicating, metabolically quiescent state. Non-replicating organisms are difficult to revive 

in standard culture546, making their analysis more challenging. 

Two non-culture based techniques which assess cells on an individual basis may allow 

selective study of non-replicating bacillary sub-populations; fluorescence lipid body 

microscopy and flow cytometry. A possible role for these techniques was evaluated in 

Liverpool prior to the clinical study. Both techniques required use of equipment housed 

outside CL3 containment facilities. Biosafety experiments were done to ensure that 

samples for these methods were safe for manipulation outside the BSC.  

5.2 Handling samples outside the Bio-safety Level 3 laboratory 

5.2.1 TB infection control and the laboratory 

The risk of TB to Health Care Workers (HCWs) is high. Studies from low and middle income 

countries report an annual incidence of 69-5780 clinical cases of TB disease per 100,000 

HCWs547,548.  In Malawi, the risk of TB disease amongst HCWs is 1446-5361 cases per 

100,000 person-years549-552. Peruvian data reports that the incidence risk ratio for TB 

disease between laboratory workers and the general population is 78.6553 suggesting that 

laboratory workers are particularly vulnerable. 

Throughout this project, in accordance with international guidelines, all smear preparation, 

media inoculation and isolate identification was performed in a BSL-3 laboratory. However, 

in Liverpool and Malawi the fluorescence microscope and flow cytometer were in BSL-2 

facilities. Bacilli on microscopy smears remain viable even after heat-fixation at 75oC for 2 

hours554 and several steps in flow cytometry procedures including sample aspiration and 

ejection allow dissemination of aerosolised droplet nuclei containing M tuberculosis555. 
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Prior reports state that staining of sputum smears or treatment of flow cytometry  samples 

with 0.5-1% formaldehyde renders them non-infectious but this data is sparse and there 

have been few publications on the bio-safety of sample processing for 15-20 years555,556. It 

was, therefore, necessary to show that there were no viable bacilli in laboratory TB isolates 

or clinical specimens before removal from the BSL-3 laboratory for analysis. 

5.2.2 Method to assess bio-safety of smears and cell suspensions  

Three samples were used for bio-safety experiments; an in vitro isolate of H37Rva, a “spiked 

sputum” sample (1ml of the H37Rv isolate added to 1ml of smear negative sputum) and a 

clinical smear ‘+++’ sputum sample. Sputum was homogenised with dithiothreitol before 

the procedures described below. 20µl aliquots of each sample were smeared onto 12 

microscopy slides. Slides 1-2 were air-dried in the BSC for 30 minutes. Slides 3-12 were 

fixed on a hotplate at 85oC until smears were dry and the slides were hot to touch. Slides 5-

6 were then immersed in 1% formaldehyde for 30 minutes and rinsed in sterile PBS. Slides 

7-8, 9-10 and 11-12 were stained according to AP, ZN and Gram protocols. Using sterile 

forceps all slides were then placed inside 50ml Falcon tubes containing selective 

Middlebrook 7H9 broth and incubated at 37oC for 7 days. The broth was then centrifuge-

concentrated and 0.5ml of each concentrate was set up for in MGIT tubes. Organisms in 

positive MGIT bottles were identified using the methods in Section 4.3.3. Negative bottles 

at 42 days were deemed not to contain viable bacilli. 

Flow cytometry is done on cell suspensions, not microscopy smears. Therefore, after slide 

preparation, the three test samples were suspended in sterile PBS and divided equally 

between five 15 ml Falcon tubes for further experiments.  

For each sample, Tube 1 was left untreated. 2ml 0.5% formaldehyde were added to tubes 2 

and 3 and 2ml 1% formaldehyde were added to tubes 4 and 5. Tubes 2 and 4 were left at 

room temperature for 30 minutes. Tubes 3 and 5 were left for one hour. Thereafter, cells in 

all tubes were washed with 10ml sterile PBS, centrifuged and re-suspended. 125µl of 

concentrate from each tube were inoculated onto two 7H10-AmB10 plate sets. 250µl were 

inoculated into two liquid culture bottles.  Cultures were incubated and read as usual. 

                                                           
a H37Rv was grown in liquid culture, centrifuged at 3000xg for 10 minutes and re-suspended in 

sterile PBS. ZN smears and colony counting of the re-suspended cell pellet showed M tuberculosis at 

a concentration of 4.6 x10
9 

CFU/ml, similar to the bacillary load in strongly smear positive sputum.  
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5.2.3 Results of bio-safety experiments 

M tuberculosis was grown from all air-dried or heat-fixed smears and untreated cell 

suspensions. After AP, ZN or Gram’s staining or formaldehyde treatment, culture of all 

smears (Table 5.1) and cell suspensions (Table 5.2) were negative.  

Slides Sample processing 

Results of TB liquid culture after processing 

H37Rv in vitro isolate H37Rv spiked sputum Smear ‘+++’ sputum 

Positive bottles  
Mean TTP 

Positive bottles 
Mean TTP 

Positive bottles 
Mean TTP 

1 + 2 Air dried 
2/2 (100%) 
5.5 days 

2/2 (100%) 
3.5 days 

2/2 (100%) 
 6.5 days 

3 + 4 Heat-fixed (85
o
C)  

2/2 (100%) 
7 days 

2/2 (100%) 
7.5 days 

2/2 (100%) 
11.0 days 

5+ 6 1% formaldehyde 0/2 (0%) 0/2 (0%) 0/2 (0%) 

7 + 8 AP stained 0/2 (0%) 0/2 (0%) 0/2 (0%) 

9 +10 ZN stained 0/2 (0%) 0/2 (0%) 0/2 (0%) 

11 +12 Gram’s stain 0/2 (0%) 0/2(0%) 0/2 (0%) 

Table 5.1Biosafety of smears on slides prepared for TB microscopy 

Formaldehyde 
treatment 

H37Rv in vitro isolate H37Rv spiked sputum Smear ‘+++’ sputum 
7H10 
plates 
Mean 
CFU/ml 

Liquid 
culture 
Mean TTP 

7H10 
plates 
Mean 
CFU/ml 

Liquid 
culture 
Mean TTP 

7H10 
plates 
Mean 
CFU/ml 

Liquid 
culture 
Mean TTP 

Untreated 
Positive 
3.1 x108  

Positive 
7.0 days 

Positive 
7.5 x107 

Positive 
5.5 days 

Positive 
5 x 104 

Positive 
12 days 

0.5% 
30 mins Negative Negative Negative Negative Negative Negative 

60 mins Negative Negative Negative Negative Negative Negative 

1% 
30 mins Negative Negative Negative Negative Negative Negative 

60 mins Negative Negative Negative Negative Negative Negative 

Table 5.2 Growth of M tuberculosis after formaldehyde treatment 

5.2.4 Conclusions from bio-safety experiments 

AP, ZN or Gram’s staining of microscopy smears kills all bacteria. For this project, only 

stained smears were examined outside the CL3 laboratory.  

These data are relevant for clinics and hospitals in Malawi where smear microscopy is 

performed daily without CL3 facilities. When possible, smears should be stained 

immediately. Unstained slides for storage or transportation can be rendered non-infectious 

by 1% formaldehyde immersion for 30 minutes. 

Bacilli in cell suspensions are also inactivated by 1% formaldehyde treatment for 1 hour. 

Flow cytometry samples were treated in this way before removal from the BSC.  
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5.3  Fluorescence lipid body microscopy 

5.3.1 Mycobacterial lipids and bacillary persistence 

M tuberculosis contains a diverse and complex collection of lipids. These are broadly 

divisible into amphiphilic phospho- and glyco- lipids in the external cell envelope and 

hydrophobic TAG in the cytoplasm557. Historically, study of mycobacterial lipid biochemistry 

has focussed on the external “waxy coat”. However, since the 1950s it has been proposed 

that intracellular lipids are important to long-term bacillary survival163. The growing body of 

contemporary evidence was discussed in Section 1.7.2. In Figure 1.6 it was proposed that, 

except during prolonged starvation, persister bacilli may be phenotypically identifiable by 

the presence of microscopically visible TAG inclusion bodies  

5.3.2 Intra-cytoplasmic lipid bodies: identification and importance 

Intra-cytoplasmic lipid bodies were first reported in 1946558,559 but have attracted renewed 

interest in the last decade. In 2002, Garton and colleagues used the fluorescence probe 

Nile red (9-diethylamino-5H-benzo[α]phoenoxazine-5-one) to demonstrate TAG lipid 

bodies (LBs) in M smegmatis grown to stationary phase or cultured in media supplemented 

with fatty acids. A combined Auramine O/Nile red (ANR) assay was also developed to 

demonstrate LBs in M tuberculosis 344. Using this technique, LB counts (the proportion of TB 

bacilli containing LBs) could be calculated in microscopy smears. 

Three studies have subsequently employed ANR microscopy and LB counts to study lipid 

metabolism in experimental models of bacillary persistence154,168,175. In each, transcriptomic 

analysis was performed to identify changes in gene regulation associated with different 

conditions of growth and lipid metabolism. Key findings are summarised in Table 5.3. 

In all three studies LB counts increased during stress and transcriptomic patterns were 

similar; lipid metabolism genes including tgs1, lipY and icl-1 were up-regulated, and TCA 

cycle genes coding for aerobic respiration were down-regulated. In Garton’s study, higher 

LB counts amongst 15 smear ‘+++’ clinical samples were correlated with longer TTP in liquid 

culture. Viewed collectively, this supports an association between LB positivity, metabolic 

quiescence and slow bacterial growth.  
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Lead 
author(s) 

Year Source of  
M tuberculosis  

Model of persistence Description of observed bacillary phenotype 
 

Transcriptomics
a
 

Garton NJ &  
Waddell SJ

175
 

2008 H37Rv & 
clinical isolate 

‘Wayne & Hayes’ 
hypoxic NRP model 

1. High LB counts (29-65%) in NRP cultures Up-regulated: DosR genes (tgs1, hspX, narK2) 
and glyoxylate shunt genes (icl-1) 
Down-regulated: aerobic respiration chain 
genes (nuoB, qcrC,ctaD) 

Baseline smear 
positive sputum 
samples 

- 1. Mean LB count: 45% (range 3-86%) 
2. Strong correlation between LB counts in 
smear ‘+++’  sputum and TTP of liquid culture 

Deb C
154

 2009 H37Rv Multiple stress model  
(5% O2, 10% CO2, 
nutrient starvation, 
acidic [pH5]) 

1. Increased LB counts (70% by day 18)
b,c

 
2. Cessation of bacillary replication 
2. Loss of acid-fastness 
3. Phenotypic tolerance to antibiotics (isoniazid 
and rifampicin)

c
 

Up-regulated: DosR genes (tgs1,hspX) and 
glyoxylate shunt genes (icl1, citA) 
Down-regulated: Aerobic respiration chain 
genes (mdh) 

Daniel J
168

 2011 H37Rv Hypoxic (1% O2)  
intra- macrophage 
cultures 

1. Increased LB counts (81% by day 5)
b 

2. Loss of acid-fastness 
3. Phenotypic tolerance to antibiotics (isoniazid 
and rifampicin)   

Up-regulated: DosR genes (tgs1, hspX), 
glyoxylate shunt genes (icl1) and TAG 
hydrolysis genes (LipY) 

Table 5.3 Studies of M tuberculosis persistence incorporating LB counts 

a
Changes in transcript levels vs. standard aerobic cultures only reported for selected genes in each study. 

b
Increased in LB counts over time were mirrored by increased TAG detection via Thin Layer Chromatography 

c
tgs1deletion mutant organism demonstrated impaired ability to accumulate TAG and less antibiotic tolerance. tgs1re-complementation reversed these effects 
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In two of the studies (Deb and Daniel), LB positive, tgs-1 expressing bacilli demonstrated 

phenotypic antibiotic tolerance. Tolerance of isoniazid greatly exceeded that of rifampicin, 

a finding compatible with rifampicin’s established role as a better sterilising drug. 

Combined with a separate report of LB induction by isoniazid560 this suggests that LB 

positive bacilli possess appropriate phenotypic features for persistence during treatment. 

Garton’s study reported wide variation of LB counts amongst 83 baseline sputum samples 

(3-86%) but the relationship between LB positivity and persistence during clinical infection 

has never been studied. It is important to address this. Therefore, during the clinical study 

two specific questions were posed by fluorescence LB microscopy; 

1. Does the LB count in the baseline sputum samples of smear positive TB patients 

affect treatment response?  

2. Does the LB count in serially collected sputum samples during therapy change as a 

result of drug exposure? 

Analysis of LB counts from study samples in relation to these questions will be described in 

Section 6.5. The next section of this chapter will describe how the microscopy method was 

optimised to ensure robust and standardised data collection. 

5.3.3 Samples used to optimise LB microscopy  

Experiments to improve and standardise LB microscopy methods were done in LSTM from 

August 2009-February 2010. LBs are more easily visualised within non-pathogenic species 

of mycobacteria than M tuberculosis (NJ Garton, personal communication) so initial 

experiments were done using Nile red staining of in vitro cultures of fast-growing M 

smegmatis (MC2-155). Thereafter, baseline sputum samples from two patients with smear 

positive pulmonary TB diagnosed at Royal Liverpool University Hospital were used. Both 

patients provided large volumes (>30ml) sputum which grew M tuberculosis without 

contamination on SSCC plates and in MGIT culture. These samples were separated into 1ml 

aliquots and frozen at -20oC to allow repeated use without exposure to multiple freeze-

thaw cycles. Ethical approval for use of clinical samples in was obtained from Bolton NHS 

Research Ethics Committee (09/H1009/27, approval letter attached as Appendix 10.3). On 

arrival in Malawi, the final microscopy protocol was re-validated on a set of local sputum 

samples prior to assessment of specimens from the clinical study. 
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5.3.4 Initial fluorescence stains, filters and image analysis methods 

M smegmatis was incubated on 7H10-AmB10 plates at 37oC. On days 2, 4, 6 and 8 a few 

colonies were harvested using a disposable loop, re-suspended in sterile PBS and passed 

through a 70µm filter to break up clumps. 10µl of each sample were heat-fixed onto a pre-

demarcated 25mm x 15mm elliptical area of a microscopy slide.  

Smears were labelled with Nile red solution (10µg/ml in ethanol) for 10 minutes, washed 

with mycobacteria-free distilled water and counterstained with KMNO4 (0.5% w/v) for 1 

minute.   After a further wash with distilled water, slides were mounted in PBS, transported 

in a closed box to the microscopy dark room and read within 24 hours using a Leica DMLB 

microscope equipped with an EL6000 alignment-free metal halide bulb for epifluorescence 

illumination at high power (x1000) magnificationa.  

Maximum excitation of Nile red fluorescence occurs at a wavelength of 549nm, and 

maximum emission occurs at 628nm so a long-pass Wide Green (WG) filter was used for LB 

assessment163,166. A Lecia DFC300FX R2 digital camera attached to the microscope was 

linked to a desktop computer. Each smear was assessed by three systematic sweeps (Figure 

5.1), and 100 organisms were photographed. Images were viewed later using Corel 

Paintshop Photo Pro x3 and the proportion of cells containing LBs was recorded. 

 

 
Cellbond slides contain a standard elliptical surface area to ensure a uniform size and thickness of 

microscopy smears (maximum diameter 25mm x15mm). During microscopy three horizontal sweeps 

(direction shown by arrows) were made of each smear.  

Sputum has a more complex background matrix that in vitro cultures of so, as with Garton’s 

method344, M tuberculosis bacilli from clinical samples were identified using Auramine O 

prior to co-staining with Nile red. 1ml of each sample was dithiothreitol treated and 

centrifuge-concentrated. 10µl smears were heat-fixed onto slides and labelled with 

Auramine O/phenol for 15 minutes. The stain was differentiated in 0.5% acid-alcohol for 2 

                                                           
a
 Oil immersion lens: x100 and eyepiece lens x10= total x100 magnification 

Figure 5.1 Standard approach to smear reading on microscopy slide 

25mm 

15mm 
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minutes and slides were washed briefly with mycobacteria-free distilled water. Nile red 

labelling and KMNO4 counter-staining was done as described above. 

Auramine O excites at a maximum wavelength of 475nm, and emits maximum fluorescence 

at 540nm, making it compatible with a Wide Blue (WB) filter (Figure 5.2). Sputum smears 

were assessed by three sweeps on this filter and 100 auramine positive bacilli were imaged. 

Corresponding images of the each relevant field were then taken under WG. To calculate 

LB counts, images were read in pairs and the proportion of organisms containing LBs was 

expressed as a percentage. 

At least two ANR smears were prepared from every sputum sample and mean LB counts 

were recorded. Slides prepared under different conditions were blinded prior to analysis; 

sample identifiers were covered with thick non-transparent tape immediately after staining 

and slides were re-labelled with a “blinding code” which remained unbroken until analysis 

of all images from the relevant experiment was complete.   

 

Excitation (dotted line) and emission (solid line) spectra are shown in green and red for auramine O 

and Nile red respectively. The WB filter transmits fluorescence at appropriate wavelengths to excite 

auramine O bound to the smear. Emitted fluorescence is then captured by the same filter. The WG 

filter has similar properties for Nile red.  

 

Figure 5.2 Initial probes and filters for fluorescence microscopy 

WG filter: 
captures emitted 
fluorescence 
>590nm  

WB filter: captures emitted 
fluorescence >528nm  
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Wide Blue (WB) filter: 

transmits fluorescence 

at 450-490nm 

Wide Green (WG) filter: 

transmits fluorescence at 

510-550nm 
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5.3.5 In vitro Nile red staining of intracellular lipid in M smegmatis 

Intracellular LBs were easily visualised within M smegmatis (Figure 5.4A). LB counts 

increased from a mean of 18% on day 2 to 63% on day 4 and remained constant thereafter 

(Figure 5.3). This is consistent with observations from previous studies344,561. As LB counts 

of M smegmatis cultures were consistently >50% from cultures on day 4-8, these were 

used as positive controls to confirm effective LB staining during the clinical study. 

 

Figure 5.3 Changes in LB positivity during in vitro growth of M smegmatis 

 

5.3.6 Auramine/Nile red staining of M tuberculosis in sputum 

Merged WB and WG images for LB positive organisms in clinical samples are shown in 

Figure 5.4B. Preparation of sputum for microscopy was problematic as the background 

matrix contains a mixture of glycoproteins and cellular debris including nucleic acid and 

lipids released from lysed and expectorated foamy macrophages167,562. This material 

fluoresces brightly with Nile red, obscuring identification of LBs (Figure 5.4 C and D).  
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Figure 5.4 Early LB microscopy images 

A: Main panel - M smegmatis stained with Nile red. Inset – close up of LB positive organisms within 

the sample. B: Main panel – Merged images of bacilli using wide blue and wide green filters after 

ANR staining. Two LB positive M tuberculosis bacilli are clearly seen. The left (horizontal) organism 

stained well with auramine (green) and Nile red (red dots). The right (vertical) organism has stained 

poorly with auramine but still contains LBs. Inset – A LB positive bacillus from a different patient. C: 

An ANR stained sputum sample with the WB filter. Auramine stained bacilli are visible through the 

thick background matrix. D:  The same microscopy field with the WG filter. Nile red staining of the 

background prevents assessment of intracellular LBs.  
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Substituting dithiothreitol for an alternative sputum digestant (N-Acetyl-L-Cysteine) during 

sample processing did not improve the background. Therefore, a lipase treatment 

procedure was developed to remove extra-cellular lipid from the sputum matrix.  

The aim of lipase treatment was to remove lipids from the background matrix without 

degrading intra-cellular LBs. To confirm that LBs were not digested by lipase, a few colonies 

from a six day old M smegmatis culture plate were suspended in PBS, and divided into four 

1ml aliquots. Dithiothreitol-treated sputum samples from both clinical samples were split in 

the same way. A lyophilised powder preparation of lipase from Candida Rugosa (Sigma-

Aldrich) was dissolved in PBS to produce concentrations of 1mg/ml, 5mg/ml and 10mg/ml. 

An aliquot of each of the mycobacterial samples (M smegmatis, Patient 1 sputum and 

Patient 2 sputum) was incubated at 37oC with an equal volume of sterile water (negative 

control) and each of the lipase solutions for one hour then washed in sterile PBS.  

Smears were made in triplicate from all samples at all lipase concentrations and stained 

with Nile red (M smegmatis) or ANR (sputum). Slides were blinded and read. Changes in 

the percentage of LB positive bacilli in each sample at different lipase concentrations were 

assessed by Analysis of Variance (ANOVA). The difference in LB positivity between Patient 1 

and 2 sputum samples was assessed by a two-sample t-test.  

Figure 5.5 shows that LB counts in all three samples were unaffected by lipase treatment 

(M smegmatis, p=0.22; Patient 1, p=0.78; Patient 2, p=0.28). There was a difference in % LB 

positive counts between the two patients (Patient 1 mean LB count: 27.6% [95%CI: 15.7-

39.6], Patient 2 mean LB count: 47.3% [95%CI: 43.9-50.7], p=0.003), consistent with 

Garton’s observation that baseline LB positivity varies between patients with clinical 

disease175. 
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Figure 5.5 Effect of lipase treatment on LB counts  

There was no change in LB counts in any sample after treatment with different lipase concentrations 

*p values shown are for statistical analysis by ANOVA  

 

To test whether lipase treatment reduced Nile red staining of the sputum matrix, 1ml 

aliquots of sputum from Patient 2 were treated with dithiothreitol alone, dithiothreitol and 

lipase (1mg/ml) or dithiothreitol and lipase (10mg/ml). Ten smears from each preparation 

were blinded, stained, imaged and counted. Background Nile red staining of each slide was 

graded as mild (assessment of bacilli unaffected by background matrix), moderate (LB 

assessment difficult in <50% of bacilli) or severe (LB assessment difficult in >50% of bacilli). 

Results are shown in Figure 5.6A-E and Table 5.4. The effect of different lipase 

concentrations on LB counts was assessed by ANOVA whilst the effect on the background 

matrix was assessed by Fisher’s exact test. 

 No lipase Lipase 
(1mg/ml) 

Lipase 
(10mg/ml) 

p-value 

LB count (%), mean (SD) 67.1 (8.44) 66.1 (9.42) 60.9 (11.5) 0.33a 

Background matrix 
 Mild 
Moderate 
Severe 

 
0 
8 
2 

 
8  
2 
0 

 
5 
2 
3  

<0.001b 

Table 5.4 Effect of lipase on LB counts and background sputum matrix 
a
Statistical analysis by ANOVA 

 
b
Statistical analysis by Fishers exact test 
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Once again, lipase concentration was not associated with a change in LB counts (p=0.33) 

but there was an association between lipase use and background severity (p<0.002).  

Despite the small sample set, the background matrix was significantly reduced by lipase 

(1mg/ml). There was no additional benefit from lipase (10mg/ml).   

For all subsequent lipid body microscopy, lipase 1mg/ml was added to sputum processing. 

A similar method was previously used by Daniel to effectively remove radiolabelled TAG 

from the extracellular surface M tuberculosis bacilli during the work on bacillary 

persistence described in Table 5.3168. 

A single step dithiothreitol-lipase digestion method was developed to streamline the 

procedurea. Changes to dithiothreitol-lipase (1mg/ml) incubation temperature (4oC or room 

temperature) and duration (one hour or overnight) did not alter image quality or LB counts.  

5.3.7 Improving image quality:  alternative stains and filters 

Additional problems with ANR microscopy were attributable to the spectrofluorometric 

properties of the dyes. 

Established texts state Auramine O labels mycolic acids in the mycobacterial cell wall32 but 

direct evidence for this is lacking. Fluorescence is enhanced on binding to DNA and RNA 

and some acid-fast staining may be due to nucleic acid labelling33. The total emission 

spectrum of auramine O is wide (500-700nm) and overlaps with Nile red. Labelling of 

nucleic acids may create the impression of ‘beads’ within the organism which are difficult 

to discriminate from LBs emitting fluorescence at similar wavelengths.  

Furthermore, Nile red is solvatochromatic and binds different lipid structures with shifting 

excitation and emission spectra according to the position, shape and intensity of the 

solvent. When hydrophilic membrane phospholipids are stained, entire cells emit a diffuse 

red fluorescence (λ>610nm) and intracellular LBs may be obscured. Alternatively, staining 

of hydrophobic intra-cytoplasmic TAG results in emission of yellow-gold fluorescence 

(λ≈528nm)563 with increased spectral overlap with Auramine O (Figure 5.7). Nile red is also 

prone to photo-bleaching (fade of fluorescence on exposure to light) which can cause loss 

of labelling during microscopy and imaging564. 

                                                           
a
 For 50ml of dithiothreitol-lipase (1mg/ml), 3.75ml dithiothreitol concentrate (Oxoid) was added to 

50mg lipase from Candida rugosa (Sigma) and 46.25ml mycobacterial free distilled water. 1ml of this 
preparation could be incubated with an equal volume of sputum for 1 hour.  
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Figure 5.6 Improvements to staining protocol for LB microscopy 

A-C: M smegmatis stained with NR after lipase treatment at different concentrations. LBs are visible 

in all samples. D and E: A sputum sample from a smear positive TB patient. Without lipase 

treatment, the background matrix on the WG filter is severe and no bacilli can be seen. After lipase 

(1mg/ml) treatment, the background is mild and LB positive bacilli are seen through it. F: Merged 

ALTR (1:200) image of two LB positive bacilli viewed with FITC and TRITC filters. G and H: Black and 

white images of an ALTR (1:200) LB positive bacillus viewed with FITC and TRITC. Different staining 

patterns indicate labelling of different cellular components by auramine (G) and LTR (H).  
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Excitation (dotted line) and emission (solid line) spectra for Nile red are at shorter wavelengths for 

hydrophobic (gold) than hydrophilic (red) environments. Auramine O spectra are shown below the x- 

axis.  

The LipidTOXTM neutral stains (Invitrogen) are a new set of fluorescence probes with more 

specific binding to neutral lipids and greater photostability than Nile Red. LipidTOXTM Red 

neutral has good spectral characteristics (λexcitation>577m, λemission>609nm) for combination 

with auramine O (Figure 5.8), so an AuramineO/LipidTOX Red neutral (ALTR) technique was 

optimised and compared with ANR.  

1:50, 1:200 and 1:1000 dilutions of LTR were prepared in PBS. A sputum sample from 

patient 2 was processed with dithiothreitol-lipase (1mg/ml) and four batches of three heat-

fixed 10µl smears were prepared. The first batch was ANR stained in the usual manner. 

Batches 2, 3 and 4 were stained with Auramine O and differentiated with 0.5% acid-alcohol, 

then labelled respectively with one of the three LTR dilutions for 20 minutes before 

washing and counterstaining with KMNO4. Stained slides were blinded and taken from the 

BSL-3 laboratory to the darkroom for reading within 24 hours. LB counts and the severity of 

background Nile red/LTR staining were recorded. Results are shown in Table 5.5. 

Differences in LB counts between ANR staining and each of the ALTR preparations were 

analysed by two-sample tests and differences in background staining were assessed by 

Fisher’s exact test.  

Figure 5.7 Difficulties associated with spectrochromatic properties of Nile red 

Nile 
red + 
TAG 

Nile red + 
Phospholipids 
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of membrane phospholipids 

obscures LBs 

 At shorter λ: Nile red stained LBs are difficult 

to discriminate from ‘beaded’ auramine O 

stained nucleic acids 



Chapter 5  Optimising Single Cell Techniques 

143 
 

 

Stain 
LB  count (%), 
mean(SD) 

Change in 
mean LB 
count from 
ANRa,            
% (p-valuea) 

Background 
Change in 
background 
from ANR,  
p-valueb 

Mild 
(n, %) 

Moderate 
(n, %) 

Severe 
(n, %) 

ANR 62.4 (9.3) - 5 6 1 - 

ALTR (1:50) 92.4 (7.9) 30.0 (<0.001) 5 6 1 1  

ALTR (1:200) 81.3 (10.8) 18.9 (<0.001) 6 3 3 0.32 

ALTR (1:1000) 40.8 (16.5) -21.6 (<0.001) 9 3 0 0.21 

Table 5.5 LB background sputum matrix staining with ANR or ALTR microscopy 
a
Statistical analysis by two-sample t-test 

b
Statistical analysis by Fisher’s exact test 

Images from ALTR slides prepared using 1:50 and 1:200 dilutions of LTR were similar to ANR 

images (Figure 5.6F, G and H) but had higher LB counts (p<0.001 in both cases). This reflects 

less photo-bleaching with LTR. LB counts were lower on slides prepared using the 1:1000 

dilution of LTR, suggesting that this preparation was too weak. No significant difference in 

staining of the background matrix was detected between ANR and ALTR.  

On the basis of these experiments, the ALTR method using a 1:200 dilution of LTR replaced 

ANR microscopy for the clinical study. 

After altering the fluorescence stains for LB microscopy, the choice of microscope filters 

was reviewed. Whilst the ‘long-pass’ filters employed until this point produced reasonable 

images, narrower ‘band-pass’ filters are more selective in the wavelengths of light they 

allow to pass, improving image detail, reducing the risk of bleed-through between dyes and 

minimising fluorescence of the background matrix33. A fluorescein isothiocyanate (FITC) 

and tetramethylrhodamine (TRITC) filter-set (Figure 5.8) was found to be optimal for ALTR 

staining and was used in the clinical study. 
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Excitation (dotted line) and emission (solid line) spectra are shown in green and red for auramine O 

and LTR respectively. A good fit is demonstrated between these dyes and the FITC-TRITC filter set, 

and the use of bandpass filters reduces the effect of spectral overlap previously seen with ANR and 

long-pass filters.    

5.3.8 Improving image quality: magnetic beads 

An additional means of ‘cleaning’ sputum samples after lipase digestion would have been 

physical removal of M tuberculosis bacilli from the background matrix. Paramagnetic beads 

have been developed which are coated with a polymeric ligand with high selective binding 

affinity for LAM and mycolic acids on the surface of mycobacteria565. The intended purpose 

of these ‘TB Beads’ (Microsens, UK) is to concentrate bacilli from sputum samples in 

laboratories without a centrifuge but the same method was assessed as a tool to improve 

ALTR images by separating bacilli from other lipophilic sputum content. 

3-4ml sputum samples from 25 new TB patients with different smear grades of AFB 

positivity were digested for 1 hour in dithiothreitol-lipase (1mg/ml) and split into two equal 

aliquots. The first was concentrated by centrifugation at 3000 x g for 15 minutes and the 

second was treated with ‘TB Beads’ according to the manufacturer’s instructions. Briefly, 

an equal volume of a pre-prepared solution of TB Beads was added to dithiothreitol-

digested sputum in a Falcon tube for two minutes to bind bacilli. The tube was then placed 

in a magnetic rack for one minute until all the beads had collected at the side near the 

magnet. Keeping the tube in the rack, liquid was removed with a Pasteur pipette, without 

Figure 5.8 ALTR labelling and FITC-TRITC filters for the clinical study 
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disturbing the beads. 4ml of a 0.04% NaOH wash solution was added to the tube, the beads 

were re-suspended by vortexing, re-captured magnetically and the wash solution was 

pipetted off. Finally 500µl of elution buffer was added to detach the bacilli from the beads 

and the beads were magnetically re-captured, leaving the bacilli suspended in a small 

volume of supernatant. 

Smears from centrifuge concentrated and bead-treated preparations of all samples were 

blinded, ALTR stained and read for AFB smear status, LB counts and severity of LTR 

background.  

Smears prepared by either methods showed no differences in LB counts (mean LB count 

post-centrifugation: 47% [SD: 26.0] vs. post-beads: 44% [SD: 18.9], paired two-sample t-test 

p=0.58). There were also no differences in severity of background staining; 18/25 (72%) 

samples had ‘mild’ background irrespective of the processing method used.  

Table 5.6 shows that in 14 (56%) samples there was concordance in AFB smear status post-

centrifugation or post-beads. In 9 (36%) discordant samples, the smear status was higher 

after centrifugation whilst in only 2 (8%) samples the smear status was higher after beads. 

This suggests that centrifugation was more effective at concentrating bacilli than ‘TB 

Beads’, a finding corroborated by other studies566. Furthermore, centrifugation was a single 

step procedure, whilst bead treatment required a labour intensive three step protocol. 

 Smear status after concentration by centrifugation 
(n, %) 

 

Negative Scanty/1+ 2+ 3+  

A
FB

 s
ta

tu
s 

af
te

r 

‘T
B

 b
ea

d
s’

 (
n

, %
)  

Negative 5 (20.0) 0 0 0 

Scanty/1+ 0 2 (8.3) 4 (16.7) 3 (12.5) 

2+ 0 1 (4.2) 2 (8.3) 2 (8.33) 

3+ 0 0 1 (4.2) 5 (20.83) 

            Concordant smear status            Beads> Centrifugation               Centrifugation> Beads          

Table 5.6 AFB smear status in sputum concentrated by centrifugation or TB beads 

Overall, with less effective sample concentration and no change in the severity of LTR 

background, TB bead treatment was not added to the sputum processing method. The final 

microscopy protocol was as indicated in Appendix 10.4.3. 
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5.3.9 Validation of LB observation by Electron Microscopy 

Fluorescence microscopy to study LBs in M tuberculosis is new. EM was used to validate the 

technique as it can also identify intracellular lipids. 

After successful transfer of the optimised ALTR technique to Malawi, baseline sputum 

samples from five Malawian patients with smear ‘+++’ TB were treated with dithiothreitol-

lipase (1mg/ml) and split in half. One half was processed for ALTR microscopy. The other 

was stored at 4oC in EM fixate (2.5% gluteraldehyde in 0.1M sodium cacodylate, 5mM 

calcium chloride, 5mM magnesium chloride and 0.1M sucrose [pH 7.2]) and shipped at 

room temperature to Professor David Russell (Cornell University) who performed EM. A 

representative image is displayed in Figure 5.9E.  

Although quantitative LB counts on EM were not possible, LB observation inside M 

tuberculosis using this technique corroborated their identification by fluorescence 

microscopy. Except in Garton’s publications175,344 this is the first description of bacillary LBs 

from clinical samples. The data in Chapter 6 represents the only patient cohort ever to have 

LB counts related to treatment response.  

5.3.10 Assessment of non-acid fast, LB positive bacilli 

Some early LB microscopy images apparently demonstrated LBs inside TB organisms with 

little or no auramine staining, raising the possibility of non-acid fast LB positive bacilli 

(Figure 5.9C and D). The potential consequences of this for image analysis required 

consideration. 

As current diagnostic stains for TB in clinical samples rely on acid fastness, it is tempting to 

argue that non-acid fast LB aggregations were not intra-bacillary: they may have been 

within contaminant organisms, or simply composed of co-incidental stain deposits. 

However, only a few other organisms (mainly actinomycetes567 and rhodococcus568 species) 

store TAG and the clinical samples used to optimise LB microscopy were not contaminated 

on SSCC or MGIT culture. The LTR staining patterns were morphologically convincing for M 

tuberculosis and persisted after lipase digestion of the samples making them unlikely to be 

extracellular artefacts.  
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Figure 5.9 ALTR and EM 
images of sputum samples 

A and B: FITC and TRITC 

filter images of ALTR 

stained sputum, most 

organisms are auramine 

and LB positive.  

C and D: Images from a 

different sample. 3 LB 

positive bacilli (visible in 

plate D) appear to be 

auramine negative 

(invisible in Plate C). 

 E: EM photograph of an 

M tuberculosis bacillus 

from a Malawian patient. 

LBs are visible in the 

lower pole of the 

organism.    
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Furthermore, there has been a small but evolving literature on non-acid fast M tuberculosis 

organisms since the 1930s569. In the 1960s viable chromophobic bacilli were associated 

with reactivation of  pulmonary TB disease570-572 and in 2007 non-acid fast cells were 

generated by mutation of the kasB gene, involved in mycolic acid synthesis573,574. The 

phenotypic importance of non-acid fast organisms is unknown but they have been linked to 

latency575 and survival during chemotherapy576. The studies by Deb154 and Daniel168 

reported in Table 5.3 described declining acid-fastness as bacilli acquire LBs and antibiotic 

tolerance, providing contemporary evidence for a possible role in persistence.  

Overall, the observation of auramine-negative LB-positive bacilli seems genuine, but 

accurately count such bacteria without a second definitive mycobacterial label was 

subjective and problematic. Therefore, in the clinical study, imaging remained targeted 

towards acid-fast auramine-labelled organisms and the main analysis was done on these. 

However, a supplementary analysis was done including putative counts of non-acid fast, LB 

positive cells to estimate their phenotypic prevalence and offer insights into their 

behaviour under drug pressure. 

5.3.11 Standardised methods for ALTR microscopy in the clinical study 

Based on the experimental experience detailed above, a standard approach to ALTR 

microscopy and image analysis was developed and used for LB counting in the clinical 

study. Key points are outlined below. 

Sample preparation and blinding of slides 

ALTR microscopy was too labour intensive to be done in real time alongside SSCC and MGIT 

cultures. During the clinical study, sputum was stored from every sample at -20oC. At a later 

date, batches of 6-8 samples were sequentially thawed, treated with dithiothreitol-lipase 

(1mg/ml) and stained for ALTR microscopy.  

 Two 10µl smears were stained for each sample and dried in the dark. Slides from each 

batch were shuffled and blinded by a laboratory worker un-related to the study. 

Information linking the “blinding code” to clinical sample identifiers was inaccessible during 

LB counting. All ALTR slides were read within 24 hours of staining. 

Microscopy, photography and image analysis 

To prevent biasing of LB counts by selective photography every slide in the clinical study 

was viewed as described in section 5.3.4. All microscopy fields containing individually 
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assessable, auramine-stained bacilli were photographed using both FITC and TRITC filters 

and analysed. The number of photographed auramine-stained bacilli was counted using a 

hand-held tally-counter. Each slide was viewed until ≥100 auramine positive organisms 

were imaged or the slide was viewed for 15 minutes. Clumps of organisms from which 

individual bacilli could not be discriminated were disregarded. Scouring slides on the TRITC 

filter for LB positive organisms was forbidden.  

Altering camera exposure times changed the images. Longer exposure made faint 

fluorescence labelling brighter and increased the risk of bleed-through of dyes, creating the 

impression of more LB positive organisms. To reduce the effect of variable exposure times, 

two control slides with known LB counts >50% were stained alongside each batch of clinical 

samples; a day 4-8 in vitro culture of M smegmatis and 1ml of sputum from the Liverpool 

Patient 2 sample used in optimisation experiments. These specimens were used to check 

the efficacy of ALTR staining and set photography exposure times before each microscopy 

session. Although fine focus alteration was subsequently permitted between clinical 

samples, exposure times were fixed for the entire session. 

All digital images were stored as high resolution ‘tif’ files with a back-up copy in a separate 

location. Images were indexed according to the study blinding code. The Microsoft Excel 

file necessary to break the “blinding code” was retained on a separate computer until 

completion of image analysis. 

Finally, a pre-agreed written protocol was used for image analysis (Figure 5.10) using 

standard definitions of different bacillary sub-types (Figure 5.11). LB counts for each slide 

were calculated by: 

Auramine LB     
(af-LB) count (%) 

= 100 X 
Total  LB positive AFB on all images 

Total AFB  on all images 

Total LB (TLB) 
count (%) 

= 100 X 
Total  LB positive AFB on all images 

Total acid fast and non acid fast bacilli  on all images 

The mean af-LB and LTB counts from both slides of each sample were taken as the results 

for that sample.  
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6 

1. Select the image pair for the desired 

microscopy field. Open the FITC image 

and apply a counting grid. 

 

2. Count auramine labelled bacilli 

(straight/curved rods, 2-8µm diameter). 

There are 4 organisms in this example. 

Dismiss clumps/auramine-stained debris. 

3. Open the TRITC image. Decide which 

auramine labelled bacilli contain LBs (2 

organisms in this example). 

 

4. Assess the TRITC image for LTR staining 

suggestive of auramine negative (non-

acid fast) LB positive bacilli (1 organism in 

this example). Dismiss LTR-stained debris. 

Figure 5.10 ALTR image reading protocol 

Figure 5.11 Definitions of bacillary sub-types for LB counting 

Auramine labelled bacillus on FITC filter. LBs identified 

with different LTR staining pattern on TRITC filter 

Acid fast, 

 LB positive 

Auramine labelled bacillus on FITC filter. No LBs 

identified (the organism is invisible) on TRITC filter 

Acid fast,  

LB negative 

 

Acid fast,  

LB negative 

Auramine labelled bacillus on FITC filter. LTR staining on 

TRITC filter at margins of bacilli only; may represent 

binding to polar membrane phospholipid NOT LBs. 

Auramine labelled bacillus on FITC filter. Identical 

staining pattern on TRITC filter may represent “spectral 

overlap” of dyes between filters; LBs unassessable. 

Acid fast,  

LB unknown 

No auramine labelled bacillus on FITC filter. LTR staining 

pattern on TRITC filter strongly suggestive of LBs in a 

non-acid fast organism  

Non-acid 

fast, LB 

positive 
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5.3.12 Fluorescent lipid body microscopy conclusions 

The ALTR microscopy technique provided the second ever successful demonstration of LBs 

within bacilli from clinical sputum samples containing M tuberculosis. Considerable 

progress was made in improving image quality, particularly in digesting the extracellular 

sputum matrix and selecting the appropriate fluorescent dyes and filters. Although some 

problems remained with consistency of image quality, reliability of slide photography and 

subjectivity of image analysis, this technique was suitable for analysis of clinical study 

samples. 

5.4 Flow Cytometry 

5.4.1 Flow cytometry and microbiology 

Flow cytometry is an alternative means of assessing single cell characteristics. A laser beam 

is directed onto a hydrodynamically focussed stream of cells (Figure 5.12). After striking 

each cell, scattered light in the same direction as the incident beam (Forward Scatter [FSC]) 

provides information on cell size, whilst scattered light at an angle of 90o (Side Scatter 

[SSC]) provides information on granularity. Fluorophore labelling of cellular components 

results in emission of fluorescence which is filtered onto a range of detectors. Information 

on light scatter and fluorescence is stored on a computer. Overall sample results represent 

cumulative data on the individual cells within it. The advantages of flow cytometry over 

fluorescence microscopy are that thousands of cells are assessed in a few seconds and 

analysis is automated according to pre-set criteria, eliminating the potential for bias or 

subjectivity during data collection.   

 

 

Laser beam 
Flow cell 

Forward scatter (FSC) 

Side scatter (SSC) and 

fluorescence detectors 

Bandpass filters 

Dichroic filters 

90o 

Figure 5.12 Analysis of single cells by flow cytometry 
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Fluorophores are classifiable according to their mechanism of action; some bind cell 

surface proteins, some bind nucleic acid (providing information on cell replication) and 

some have fluorescence dependent on physiological parameters such as membrane 

potential or enzymatic activity (providing information on viability)577,578. Studies on E coli579 

and some mycobacteria (M avium580 and M smegmatis581) have exploited these 

fluorophores to describe metabolically heterogeneous groups of organisms. Therefore, 

there is a potential role for the technique in studying viable persister M tuberculosis bacilli 

during chemotherapy, even if the cells are non-culturable.  

5.4.2 Flow cytometry and tuberculosis 

Although flow cytometry has been used to investigate immunological host cell responses 

during TB infection, it has rarely been directly used to study the pathogen.  However, 

several groups have used formaldehyde or heat inactivated organisms to assess TB drug 

susceptibility by flow cytometry without the need for prolonged culture582,583.  This work 

shows that the intracellular viability dye fluorescein diacetate (FDA) discriminates between 

live and dead TB M tuberculosis organisms by only emitting green fluorescence when 

hydrolysed by enzymes within living cells555,584 and some nucleic acid labels (e.g. the SYTO 

probes from Invitrogen) successfully stain intra-bacillary DNA585. Authors including Shapiro 

have argued for increased use of flow and imaging cytometry in TB research and diagnostic 

practice for several years586. 

In Liverpool, experiments were performed to establish whether a fluorescence label for TB 

would permit single cell analysis of M tuberculosis by flow cytometry of sputum samples. 

5.4.3 Finding a fluorescence label for M tuberculosis 

Prior flow cytometry studies of TB drug susceptibility used organisms isolated from pure 

culture. Clinical samples are more complex because they contain other organisms, host 

cells and non-organic matter, all of which register as analysable events when they pass 

through the flow cytometer. A clinically useful assay would require a selective label to 

discriminate M tuberculosis from background events. Three potential labels were 

considered in vitro prior to experiments on sputum; two monoclonal antibodies and 

Auramine O. 
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Monoclonal antibody labels 

The 38kDa antigen is a ubiquitously expressed, phosphate-transport protein expressed by 

M tuberculosis particularly in multi-bacillary disease. Although widely secreted in culture 

fluids, it is also bound to the surface of mycobacterial cells587.  Antigen 85 is a complex of 

three genetically related proteins (Ag85A, B and C) which act as mycolyltransferases in 

mycobacterial cell wall assembly588. Ag 85 may be up-regulated in response to isoniazid 

exposure321 and increased Ag 85 expression after 14 days of therapy may denote persister 

organisms in patients who are more likely to fail therapy294,322. 

Primary antibodies to the 38kDa Ag (0100-0520, Serotec) and Ag85 (ab36731, Abcam) were 

assessed as labels for M tuberculosis. Neither antibody was bound to a fluorescence probe 

so they were studied via a two-step staining protocol with the secondary FITC-conjugated 

antibodies shown in Table 5.7. Isotype controls were used to confirm that labelled events in 

fluorescence experiments were due to interactions between Fab epitopes of the primary 

antibody and target cell proteins rather than non-specific binding to cellular Fc receptors or 

inorganic debris. 

Primary antibody Isotype control Secondary (FITC-conjugated) 
fluorescence antibody 

α-38kDa antibody (Serotec) 
0100-0520 (0.3125-0.1mg/ml) 
(Mouse anti-mycobacterium 
tuberculosis 38kDa antibody) 

 
MCA928 (0.3125-0.1mg/ml) 
(Mouse IgG1 negative 
control) 

 
STAR117F (0.05 & 0.5mg/ml) 
(Goat anti-Mouse IgG (H/L): FITC, 
multi species absorbed)  

α-Ag85 antibody  (Abcam) 
ab36731 (0.3125-0.1mg/ml) 
(Mouse anti-mycobacterium 
tuberculosis Ag85 antibody 
[HYT 27]) 

 
Ab18448(0.3125-0.1mg/ml) 
(Mouse IgG1, kappa 
monoclonal [MG1-45] ) 

 
ab6785 (0.02 & 0.2mg/ml) 
 (Goat polyclonal to Mouse IgG 
(H/L): FITC) 

Table 5.7 Antibodies used for flow cytometry 

Preparation of M tuberculosis cultures for flow cytometry experiments 

 Middlebrook 7H9 media was prepared, with the addition of Tween-80 to counter clumping 

of M tuberculosis cells and increase the number of organisms passing through the flow 

cytometer in single cell suspension. H37Rv was incubated until there was obvious turbidity 

in the media and growth was confirmed by ZN microscopy. The positive culture was diluted 

in sterile PBS to provide a suspension at equivalent turbidity to a MacFarland 1.0 standard 

on an OD reader. CFU/ml counts confirmed a bacillary load of 2.5x107 CFU/ml in this 

suspension. 
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 To ensure consistency in bacillary load, H37Rv cells grown in 7H9 media were diluted to 

MacFarland 1.0 standard turbidity and treated with 2ml of 1% formaldehyde prior to 

fluorophore labelling for all flow cytometry experiments.  

Preparation of non-mycobacterial organisms as negative controls  

Streptococcus pneumoniae, Haemophilus influenzae, Klebsiella pneumonia, Moraxella 

catarrhalis and yeasts are commonly found in sputum. Non-typhoidal salmonellae (e.g. 

Salmonella enteritidis or typhimurium) are a major cause of severe bacterial infection in 

HIV-positive Malawian adults589. Isolates of these organisms were used to confirm that 

labelled events during flow cytometry were H37Rv-specific, and not attributable to other 

pathogens. 

Non-mycobacterial organisms were grown for 48 hours in Muller-Hinton broth, diluted to 

MacFarland 1.0 standard turbidity and formaldehyde inactivated. When unstained cells 

were run on the flow cytometer, large yeast particles were identifiable by FSC and SSC 

alone (Figure 5.13). However, all bacteria were of similar size and granularity (Figure 5.13) 

so M tuberculosis required selection by fluorescence probes. 

Monoclonal antibody titrations 

For both monoclonal antibodies, 100µl aliquots of H37Rv cells were incubated in plain flow 

cytometry tubes with the primary antibody or matched isotype control at serial two-fold 

dilutions from 0.1mg/ml to 0.3125mg/ml. The cells were washed twice, incubated with the 

secondary FITC-antibody at the concentrations shown in Table 5.7 and washed again. All 

incubations were at 4oC for 1 hour. Dilutions and washes were done in sterile PBS. 

Antibody-labelled cells were suspended in 1ml of 1% formaldehyde and run on an LSR-2 

(Becton Dickinson) flow cytometer using a laser emitting light at 488nm.  

Data was analysed using FloJo (Treestar, Ashland, USA) software. Unstained H37Rv cells 

were used to gate cells with typical properties for M tuberculosis on a scatter plot of FSC 

and SSC with logarithmically scaled axes. 10,000 events were recorded for each sample. 

Mean Fluorescence Intensity (MFI) at different antibody concentrations were compared 

(Figure 5.14).  
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Figure 5.13 FSC and SSC of H37Rv and other respiratory micro-organisms 

  

 

Figure 5.14 Titration of α-Ag85/α-38kDa and FITC-conjugated secondary antibodies 
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For the α-Ag85 antibody, there was poor MFI separation between cells labelled with the 

primary antibody or isotype control. This antibody was not studied further. For the α-38kDa 

antibody, a primary antibody concentration of 0.0125mg/ml and a secondary antibody 

concentration of 0.5mg/ml showed better selective labelling. 

The selected α-38kDa antibody combination was incubated with the negative control 

organisms. Despite some auto-fluorescence from yeasts, the greatest MFI signal was from 

labelled H37Rv cells (figure 5.15), confirming specific bacterial staining of M tuberculosis.   

 

Figure 5.15 α-38kDa antibody labelling of H37Rv or other respiratory organisms 

Assessment of Auramine O/phenol 

As previously discussed, the binding properties of Auramine O to M tuberculosis are 

incompletely understood and its excitation/emission spectra are wide. Nevertheless, 

Auramine O/phenol was assessed as a flow cytometry label because it is cheap, widely 

available and the most widely used fluorescence TB stain in clinical practice.  

 Microscopy strength Auramine O/phenol solution was prepared as described in Appendix 

10.4.2 and passed through a 0.22µm filter. A series of two-fold dilutions (neat solution to 

1/32) were prepared. 100µl of each dilution were added to 100µl of H37Rv cells and each 

of the negative control organisms for 10 minutes at 4oC or 20oC and washed twice in PBS. 

100µl 1% acid-alcohol was added to each tube for a further 10 minutes, prior to a final 

wash and re-suspension in 1% formaldehyde. When run on the flow cytometer good 

selective labelling of M tuberculosis cells was shown down to a dilution of 1/4. This dilution 

of Auramine O/phenol was used for further experiments (Figure 5.16). 
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Figure 5.16 Titration of Auramine O against H37Rv 

5.4.4 Identifying M tuberculosis in mixed cultures 

Mixed suspensions of H37Rv and the negative control organisms were used to establish 

whether specific labelling of TB cells could be reproduced in polymicrobial samples. A 

bacterial counting kit (Invitrogen) was used to calculate the proportion of each cell type 

added to each suspension. Briefly, 1µl of kit Component A (SYTO BC nucleic acid stain) was 

added to individual 1ml samples of each microorganism at a MacFarland 1.0 turbidity 

standard and incubated at room temperature for 5 minutes. 10µl of kit Component B 

(microsphere beads) were then added, samples were mixed thoroughly and run on the flow 

cytometer. On a FSC vs. green (FITC) fluorescence scatter plot, events due to microsphere 

beads had higher FSC and events due to SYTO BC stained organisms had greater 

fluorescence. As 10µl of kit Component B contained 106 microsphere beads, each bead 

represented 10-6ml of a 1ml sample. The concentration of organisms in each sample was 

calculated by; 

Bacteria/ml 
of sample 

= 106 X 
No of SYTO BC stained events due to microorganisms 

No of events due to microsphere beads 

When the bacterial concentration of each cell type was known, two polymicrobial 

suspensions were prepared; Suspension A was a cocktail of non-mycobacterial organisms in 

equal proportions and Suspension B was a 50:50 mixture of M tuberculosis and the non-

mycobacterial cocktail. These samples were labelled with Auramine O/Phenol or α-38kDa 
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antibody and run on the flow cytometer (Table 5.8). Amongst cells gated for FSC/SSC 

properties of M tuberculosis, Auramine O/phenol picked out a distinct population of high-

fluorescence events in Suspension B which accounted for 46% of total events in the sample 

and was absent in Suspension A. This was believed to represent successful identification of 

M tuberculosis. There was also a change in the fluorescence histogram between Suspension 

A and Suspension B after labelling with α-38kDa antibody but it was difficult to discriminate 

a clear population of M tuberculosis cells. 

A further set of mixed bacterial suspensions were prepared containing H37Rv and the non-

mycobacterial cocktail in the following ratios; 0:100, 25:75, 50:50, 75:25 and 100:0. These 

suspensions were stained in quadruplicate with Auramine O/phenol and run on the flow 

cytometer to test whether this label could identify changes in the mycobacterial burden of 

polymicrobial samples. Figure 5.17 shows some inter-sample variability in the proportion of 

events reported as H37Rv for each suspension. However, the overall correlation between 

the proportion of events counted as H37Rv on flow cytometry and the proportion expected 

from the known composition of cell suspensions was strong (Adjusted R2: 0.84, p<0.005). 

Although imperfect, on the basis of these experiments, a 1:4 dilution of Auramine 

O/phenol was the best of the fluorescence labels tested in vitro for staining of M 

tuberculosis. It was assessed further in flow cytometry of sputum samples. 
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 FFS/SSC scatter plot 
Fluorescence histogram for H37Rv-gated events labelled with 

Auramine O/phenol α-38kDa antibody 

Suspension A 

Non-mycobacterial 

cocktail 

   

Suspension B 

M tuberculosis 
+ 
 non-mycobacterial 
organisms 
 

   

Table 5.8 Flow cytometry labelling of mixed suspensions of micro-organisms 

Cells with FSC/SSC properties typical of H37Rv were gated. After Auramine O/phenol labelling, the fluorescence histogram showed a population of cells with high FITC-

signal in Suspension B but not Suspension A. This accounted for 46% of total events in the sample and was believed to represent successful identification of M 

tuberculosis. After α-38kDa antibody labelling, the fluorescence histogram showed a shift towards higher fluorescence in Suspension B but a clear population of labelled 

M tuberculosis cells was difficult to discriminate.    
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Figure 5.17 Auramine O labelling of H37Rv in mixed suspensions of organisms 

 

5.4.5 Flow cytometry of TB-spiked sputum 

Experiments were performed to test whether AuramineO/phenol staining could pick out M 

tuberculosis events from the background sputum matrix. A 2ml smear negative sputum 

specimen was divided in two; one half was retained as an “un-spiked” control and the 

other was “spiked” with 1ml of an H37Rv cell suspension diluted to MacFarland 1.0 

turbidity standard. Both samples were digested in dithiothreitol for one hour and labelled 

according to the Auramine O/phenol staining protocol. The samples were then passed 

through a sterile 70µm filter to remove large clumps and run on the flow cytometer. 

Both spiked and un-spiked samples contained a large amount of particulate debris resulting 

in a very high event rate dominated by background noise. This made it almost impossible to 

discriminate between them. Previous flow cytometry studies have been able to find host 

lymphocytes cells in the sputum of asthmatic patients590, but eukaryotic cells are much 

larger (≈12µm diameter) than non-cellular debris. Small TB cells (length≈5µm), are difficult 

to distinguish on the basis of FSC/SSC scatter and some particulate matter auto-fluoresces, 

blurring the degree of separation from other sputum constituents. One prior study of TB-

spiked sputum to assess sample decontamination methods overcame this problem by 

performing flow cytometry on diluted supernatant after sample centrifugation591 but this 
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approach reduces the sensitivity of the assay and it seems unlikely that it would work on 

clinical specimens of low bacillary burden. 

Attempts to clean the sputum by passing it through a range of smaller filters (10µm, 20µm 

and 45µm) did not bring improvement, because some micro-particles were not removed. 

NALC-NaOH decontamination did not solve the problem as non-mycobacterial cells were 

lysed without removal of debris. Attempting to break down the sample by sonication in a 

water-bath was also unsuccessful and carried the additional risk of damaging M 

tuberculosis cells.  

Careful analysis of a FSC vs. FITC scatter plot did show a population of probable H37Rv cells 

in spiked sputum which was absent from the un-spiked specimen (Figure 5.18). However, 

this population represented <5% of total events in the sample and could only be identified 

when more than 107 H37Rv cells/ml were added. Data from Chapter 4 and Chapter 6 show 

that, except at baseline, the sputum bacillary load is normally lower than this during clinical 

infection. Therefore, the flow cytometry assay developed so far would be unlikely to find 

persister organisms from later samples collected during chemotherapy. 

 

Figure 5.18 FITC fluorescence vs FSC scatter plot for Auramine O stained sputum 

After spiking smear negative sputum with a ≥10
7 

cells/ml suspension of H37Rv, a small population of 

cells (<5% of total events) is identified by flow cytometry.   
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5.4.6 Flow cytometry: conclusions 

A satisfactory flow cytometry assay to facilitate study of persister sub-populations of M 

tuberculosis was not available in time for the clinical study. Because optimisation of ALTR 

microscopy was more successful, a decision was made to use that technique in Malawi. 

However, the data described above is encouraging. Microbiological flow cytometry is a 

relatively new discipline and the potential of the technique to improve understanding of 

the response of M tuberculosis to treatment has not been explored. The experiments here 

confirm that flow cytometry of TB is safe and that TB cells can be discriminated in vitro 

from other respiratory microorganisms. In principle, selective identification of TB bacilli in 

sputum is possible. This lays a useful foundation for future work. Further refinement of the 

sputum processing method (e.g. labelling TB cells with antibody-bound magnetic nano-

particles and removing them from the sputum matrix via a Magnetic Activated Cell Sorting 

column) may facilitate more satisfactory study of clinical samples, and DNA labelling or cell 

viability dyes may yield new information on cell cycle and survival of non-culturable 

bacteria during drug exposure, either via in vitro models of persistence or study of samples 

collected during clinical infection. Plans for additional work in this area are in progress.  

In summary, the study of non-culture based single cell techniques for assessment of M 

tuberculosis prior to commencement of the clinical study was useful. A novel fluorescence 

microscopy technique was optimised and exported to Malawi, and preliminary work on 

flow cytometry generated data to guide ongoing research.      
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6. Pharmacodynamics 

6.1 Introduction 

The clinical cohort description in Chapter 3 reported that 15/133 (11%) patients had 

unfavourable outcomes (treatment failure or relapse), predominantly caused by DS-TB. 

However, analysis of clinical and radiological factors did not explain inter-individual 

differences in treatment response. Pharmacodynamic analyses will now be undertaken to 

establish whether bacteriological data provide additional information. 

The simplest early measures of pharmacodynamic response are sputum smear and culture 

conversion. The Malawian NTP uses smear conversion at 2 months to assess individual 

patients and culture conversion is often used as a surrogate end-point in Phase IIb clinical 

trials. The relationship between these measurements and clinical outcome will be assessed 

for study participants. 

Serial log10CFU/ml counts and TTP data obtained using the culture techniques from Chapter 

4 will used to model bacillary elimination. Associations between model parameters and 

final outcome will be examined to establish whether this approach generates novel 

biomarkers to replace traditional assessment of smear/culture conversion at a single time-

point. 

As described in Chapter 2, urine samples were stored from each patient at baseline and S2-

S4 visits for the urinary LAM-ELISA. The potential role of repeated urinary LAM 

measurement as a measure of “whole body bacillary load” to augment information on 

bacillary clearance from sputum will be considered. 

The novel ALTR microscopy technique from Chapter 5 was used to evaluate associations 

between LB counts, TB therapy and clinical outcomes. The first clinical exploration of this 

method as a tool to identify putative drug tolerant sub-populations of persister bacilli will 

be described.  

As these pharmacodynamic analyses aimed to improve understanding of the clinical 

significance of persistence and validate surrogate markers for use in Phase IIb clinical trials, 

the datasets for this Chapter were restricted to samples from the 133 patients who 

reached a pre-defined study end-point. 
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6.2 Methods 

Procedures used to collect clinical and laboratory data were outlined in Chapters 2-5. 

Further operational aspects are provided here, alongside the LAM-ELISA method and the 

statistical approach to pharmacodynamic data analysis.  

6.2.1 Additional aspects of the quantitative bacteriology methods  

As described in Figure 4.3, contamination of SSCC plates in the clinical study necessitated a 

change in media formulation. Standard media from June-December 2010 was 7H10-

Amb10, whilst standard media thereafter was 7H11-AmB30. However, plate comparison 

experiments showed that media alterations did not significantly alter colony counts. For 

pharmacodynamic analysis, SSCC data from different media preparations were analysed 

together.  

As described in Section 4.3.3, organisms from positive MGIT bottles were speciated. Only 

TTP values from samples containing pure growth of M tuberculosis were analysed. 

6.2.2 LAM-ELISA method 

10ml urine was collected from patients in a sterile universal container at the specified 

visits. In the MLW laboratory 2ml aliquots were transferred into tightly sealed micro-

centrifuge tubes and heated to 95oC for 30 minutes. After cooling to room temperature the 

samples were centrifuged at 10,000rpm for 15 minutes. Supernatant was stored at -20oC. 

 At a later date, sample batches were defrosted and analysed using ClearviewTM TB-ELISA 

kits according to the manufacturer’s instructions. 100µl of Positive control, Negative 

control and patient samples were pipetted into duplicate wells of anti-LAM antibody 

coated microtitre plates which were sealed with adhesive film and incubated at room 

temperature for 25 minutes. Contents were aspirated and plates were inverted and firmly 

tapped over a paper towel to remove residual fluid. Plates were washed with a pre-

prepared solution (PBS with 0.05% Tween-20) four times. Following the last wash, 100µl of 

HRP-conjugate solution (a ready to use preparation of rabbit anti-LAM antibodies 

conjugated to horseradish peroxidase) were added to each well. Plates were re-sealed and 

incubated at room temperature for a further 60 minutes prior to removal of contents and 

repeat washing as described above. 100µl of chromogenic substrate solution 

(tetramethylbenzidine) were added to each well and incubated at room temperature for 15 

minutes before the final addition of 100µl of Stop Solution (1M sulfuric acid). Plates were 

gently shaken and read immediately in a plate reader at a wavelength of 450nm. 
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The mean OD from duplicate readings was taken as the result for all samples. Results of 

each plate were valid if the mean OD of the negative Control was 0.1-0.3 and the mean OD 

of the positive control OD was 0.3-0.5 units above the negative control. The 

positive/negative cut-off value for the assay was the mean negative control value +0.1. The 

LAM OD of each sample was calculated by:   

LAM OD  = 
Mean of ODs measured 
from duplicate wells  - 

Mean OD of negative 
control 

If this gave a negative value, the sample LAM OD reading was regarded as zero.  

6.2.3 Additional aspects of ALTR microscopy method 

Selected samples were thawed for analysis. Baseline samples were used to assess factors 

contributing to variability in LB counts at PTB diagnosis. To ensure that smears contained 

sufficient organisms to calculate af-LB counts, only patients whose sputum had been 

graded ‘+++’ on initial AP staining were used. 

 Analysis of serial samples was undertaken to study changes in LB counts during therapy. 

This was done for patients whose sputum had been graded ‘+++’ at baseline and at least 

‘++’ on one or more subsequent occasion. All patients who reached an unfavourable final 

end-point and had submitted adequate samples were included. Each was matched to three 

patients who reached a favourable end-point and had submitted an eligible sample set.  

No more than 8 samples were read on duplicate slides in a single batch. Microscopy 

sessions lasted 3-4 hours. Samples were thawed and smears heat-fixed the afternoon 

before microscopy, staining was done in the early morning and most slides were read the 

same day. Any slides left over were stored at 4oC in the dark and read the next morning. 

During image analysis, the severity of background matrix staining for each slide was graded 

using criteria from Section 5.3.6. The quality of bacillary labelling with auramine and LB 

labelling with LTR was graded as clear or blurred/faint. Mean af-LB and TLB counts were 

calculated as described in Section 5.3.11. 
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6.2.4 Data analysis and statistical methods 

General methods 

Non-parametric summary statistics were used. Inter-group comparisons of continuous 

measurements were done using Wilcoxon or Kruskal-Wallis tests and inter-group 

comparisons of categorical measurements were done using the chi-squared test. 

Assessment of relationships between continuous variables was done by linear regression. 

Inter-reader variability in af-LB counts was evaluated using Lin’s concordance co-efficient 

(ρc). Linear and logistic regression were used to assess factors contributing to variability in 

baseline colony counts, MGIT-TTP, LAM-ELISA results and proportions of LB positive cells. 

For multivariate modelling, all variables with p<0.10 on univariate analysis were included. 

Logistic regression was used to assess relationships between early pharmacodynamic 

measurements and treatment outcome. 

Analysis of sputum culture conversion 

Time to sputum smear and culture conversion were evaluated by survival analysis. Smear 

and culture conversion dates were taken as the midpoint between the last positive and first 

negative result for each patient. “Time to conversion” was described by Kaplan Meier plots. 

Differences between different smear (ZN vs. AP) and culture (SSCC vs. MGIT) methods were 

reported by Cox proportional hazards ratios.  

NLME modelling of SSCC data 

The SSCC-NLME model fitting procedure required the ‘nlme’ package in ‘R’ and was 

adapted from previous similar studies228,266,270. To provide information on bacillary 

elimination, individual patients were required to contribute a minimum of two bacillary 

load measurements at different sampling time-points. Patients with only one positive 

sample were excluded. Individual and non-parametric summary plots were used to assess 

trends in bacillary clearance and identify outliers. Mono- and bi-exponential functions were 

evaluated as non-linear models for the pooled SSCC data (Figure 6.1).  

Mono-exponential – one phase bacillary elimination 
 log10CFU=log10 (e

θ1 x e-day x eθ2) 

Bi-exponential – two  phase bacillary elimination 
log10CFU=log10 [(e

θ1 x e-day x eθ2) + ( eθ3 x e-day x eθ4) 

Figure 6.1 Non-linear exponential functions fit to SSCC dataset 
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In the mono-exponential function, all M tuberculosis organisms in sputum are viewed as a 

single population, with intercept θ1 representing the baseline bacillary load and rate 

constant θ2 describing the elimination rate. The bi-exponential function is analogous to the 

biphasic model of two distinct bacterial populations (A and B) described in Figure 1.5. θ1 

and θ3 intercepts represent baseline bacillary loads AInt and BInt whilst rate constants θ2 and 

θ4 represent elimination rates α and β. 

The equation for each exponential function expresses θ parameters on the natural log 

scale. These may be transformed to the log10 scale normally used for colony counting as 

follows:  

Intercept on log10 scale = θ1,3 or 5/2.303 

Rate constant on log10 scale = e θ2,4 or 6/2.303 

 

The exponential functions were fit to the pooled data by non-linear least squares. The bi-

exponential function was then fit using a NLME maximum likelihood method in which each 

parameter was assigned a distribution (random effect) to account for non-independence of 

serial observations and inter-individual variability. For each function, starting values were 

obtained by graphical methods and varied to check the stability of solutions. 

Models were compared using the Akaike Information Criterion (AIC), likelihood ratio and 

model-based F-tests. Goodness of fit was examined by graphical analysis of residuals. The 

effect of clinical and radiological covariates on NLME bi-exponential model parameters θ1-4 

was explored.  

Best unbiased estimates of each parameter were extracted from the NLME bi-exponential 

model for every patient and transformed to the log10 scale in order that relationships 

between treatment outcome and baseline bacillary load or elimination rate for bacterial 

populations A and B could be studied by logistic regression. 

 A limitation of SSCC-NLME modelling is that culture results below the limit of detection 

(1.27 log10 CFU/ml) are censored. Detailed consideration of methods to account for this 

missing data is beyond the scope of this thesis but a preliminary analysis was undertaken to 

explore the effect of integrating likely data below the limit of detection into the model. For 

this, a partial likelihood approach was implemented using the M3 Method in NOMMEM 

VVII v2 with Pirana and R. Model checking and diagnostics were similar to those described 

for other mixed effects models. 
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Linear mixed effects modelling of MGIT data 

MGIT-TTP analysis was restricted to patients with at least 2 TTP measurements. After 

review of individual and non-parametric summary plots a linear mixed effects (LME) model 

of the form 

TTP= a + b x [time on therapy] 

was fit to the data. The most important fixed effects parameter of this model is the rate 

constant (b) which may be viewed as the MGIT bacillary elimination rate (MBER). Quadratic 

and SPLINE functions were used to test for curvature and compared to the LME approach. 

The effect of clinical and radiological covariates on the MBER was explored. Unbiased 

parameter estimates for each patient were extracted from the model to assess the 

relationship between MBER and final treatment outcome. 

Negative cultures without a TTP value were censored. This is more problematic for MGIT 

than SSCC, as illustrated in Figure 6.2. Two approaches to negative data were considered; a 

simple rule-based TTP imputation of 50 days (one day after the limit of detection) was 

allocated to the first negative result for each patient, and NONMEM software was used to 

explore the effect of integrating the likelihood of data beyond the limit of detection.  

 

Figure 6.2 Data-points beyond the limit of detection in SSCC AND MGIT modelling 

A: Data-points below the limit of detection in SSCC-NLME modelling range from 0-1.27 log10CFU/ml. 

B: Data-points beyond the limit of detection in MGIT-TTP modelling are more variable, ranging from 

49.5 days to infinity.  
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6.3 Results 

6.3.1 Sputum smear and culture conversion 

Table 6.1 shows the proportion of study patients who remained smear (ZN or AP) or culture 

(SSCC or MGIT) positive at S1-S4 visits and Figure 6.3 shows Kaplan-Meier plots of Cox 

proportional hazards models for time to smear/culture conversion. Table 6.2 shows 

relationships between smear and culture status at 2 months and final clinical outcome.  

17-21 (13-16%) patients remained sputum smear positive at the S4 visit and there was no 

significant difference in time to smear conversion between ZN and AP methods (Hazard 

ratio for AP smear conversion for each day of treatment: 0.90, 95% CI: 0.69-1.20, p=0.482). 

However, it was impossible to verify whether bacilli visualised on microscopy of samples 

collected during therapy were alive or dead and there was no association between smear 

conversion and final clinical outcome.    

Culture conversion on SSCC plates was much quicker than in MGIT bottles. Only 7 (6%) 

patients remained positive on Middlebrook agar plates by the S4 visit, compared to 33 

(25%) patients in liquid broth. The difference in time to culture conversion between 

methods was significant (Hazard Ratio for MGIT culture conversion for each day of 

treatment: 0.27 (95% CI: 0.19-0.37, p<0.001), perhaps because the more nutritious growth 

environment provided by liquid broth more efficiently revives fastidious organisms and 

increases the likelihood of identifying persisters at later time-points.  

2 month culture status on SSCC plates was strongly predictive of final clinical outcome 

(p=0.005) whilst the result in MGIT bottles was not (p=0.128). This suggests that, for 

prediction of outcome with a binary end-point the less sensitive technique was a more 

useful surrogate marker. A proposed explanation for this is that patients with heavily 

positive cultures (detectable by SSCC) at the end of the Intensive Phase are most likely to 

suffer treatment failure or relapse, lending prognostic value to the S4 result. Some patients 

with scantily positive cultures (detectable only by MGIT) will achieve stable cure during the 

Continuation Phase; their inclusion as S4 positives dilutes the association with 

unfavourable outcome. 
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 Number of patients (n, %) 

Valid BL
a
 S1 

(Day 2 or 4) 
S2 
(Day 7 or 14) 

S3 
(Day 21 or 28) 

S4 
(Day 49 or 56) 

2 month smear positive      
ZN smear 133  119 (93) 109 (85) 70 (54) 17 (13) 
AP smear 126  120 (96) 110 (87) 73 (58) 20 (16) 
Any smear (ZN or AP) 133 121 (95) 112 (88) 77 (60) 21 (16) 

2 month culture positive      
Middlebrook SSCC plates 121  89 (74) 67 (55) 25 (21) 6 (6) 
MGIT liquid culture 130  124 (95) 119 (92) 102 (79) 31 (23) 
Any culture (SSCC or MGIT) 133 126 (95) 121 (91) 103 (77) 34 (25) 

Table 6.1 Smear and culture conversion during treatment 
a
Baseline AP smears were not done in the CoM research laboratory on 7 patients. Baseline SSCC 

plates were contaminated or negative in 12 patients and baseline MGIT bottles were contaminated 

in 3 patients. Patients without a positive result at baseline were removed from this analysis 

 

Figure 6.3 Kaplan Meier plots of time to smear and culture conversion 
a
Survival analysis by Cox proportional hazards models. Hazard ratio for AP vs. ZN smear conversion 

per day: 0.90 (95% CI: 0.69-1.20, p=0.482) and for MGIT vs. SSCC culture conversion per day: 0.27 
(95% CI: 0.19-0.37, p<0.001). 

 Unfavourable  
N=15 

Favourable 
N=133  

Odds 
Ratio 

95% CI p-
value 

2 month smear positive      
ZN smear, n (%) 1 (8) 17 (16) 0.44 0.05-3.58 0.440 
AP smear, n (%) 1 (8) 21 (20) 0.34 0.04-2.77 0.314 
Any smear (ZN or AP), n (%) 1 (8) 21 (20) 0.35 0.04-2.84 0.325 

2 month culture positive      
Middlebrook SSCC plates, n (%)

a
 4 (31) 2 (2) 19.33 3.10-120.63 0.005* 

MGIT liquid culture, n (%)
b
 6 (47) 25 (25) 2.50 0.77-8.16 0.128 

Any culture (SSCC or MGIT), n (%) 7 (50) 27 (26) 2.85 0.92-8.88 0.071 

Table 6.2 Associations between smear and culture conversion and clinical outcome 
a
Smear positivity at baseline is required to assess conversion. N=126 for AP smear. 

b
Culture positivity at baseline is required to assess conversion. N=121 for SSCC, N=130 for MGIT 
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6.3.2 Quantitative sputum culture: baseline bacillary load 

As the baseline bacillary load may influence subsequent bacterial elimination and clinical 

outcome, factors influencing baseline SSCC and MGIT results were assessed prior to 

pharmacodynamic modelling.  

SSCC does not include a decontamination step, so distortion of data during sample 

processing was unlikely but some specimens were lost due to bacterial or fungal 

overgrowth and  a valid baseline colony count was available for 101/133 (76%) patients. 

The median baseline bacillary load was 6.19 (range 2.20-9.30) log10 CFU/ml. Conversely, the 

MGIT TTP results may be vulnerable to an unpredictable NaOH effect, but contamination 

was less. A valid baseline TTP was available for 113/133 (85%) patients. Median TTP at 

baseline was 4.0 (range 0.5-27.0) days.   

Linear regression was used to investigate factors influencing results from both methods 

(Table 6.3). On multivariate analysis, greater percentage of lung affected on CXR (p=0.035) 

was the only variable associated with both higher colony count and shorter TTP (p=0.035 

and p=0.002 respectively). A univariate association was also described between cavities 

≥4cm (p=0.011) and shorter TTP. Overall, the relationship between CXR appearance and 

quantitative bacteriology was strong. 

Although higher baseline 25 (OH) D level was associated with shorter TTP (p<0.001), the 

effect size was very small and the corresponding colony counting analysis was non-

significant (p=0.737). Further assessment is required in other clinical cohorts. 

Univariate analysis suggested that male sex was associated with higher colony count 

(p=0.021) and shorter TTP (p=0.027). There were also univariate relationships between 

higher colony count and inability to read (p=0.009), lack of electricity at home (p=0.018) 

and higher baseline temperature (p=0.007). Poorly educated or socially disadvantaged men 

may present with more severe disease at higher bacillary loads but the study was not 

designed to explore healthcare seeking behaviour and over-interpretation of the data 

would be inappropriate. 

ART prior to recruitment was associated with shorter TTP (p=0.031). This unexpected result 

requires assessment in other cohorts.  



 

 

Chapter 6      Pharmacodynamics 

172 
 

 Baseline log10CFU/ml colony count Baseline MGIT TTP 

 Univariate analysis Multivariate analysis Univariate analysis Multivariate analysis 

Variable Estimate Std. Error p-value Estimate Std. Error p-value Estimate Std. Error p-value Estimate Std. Error p-value 

Age, years 0.017 0.020 0.422 - - - -0.012 0.049 0.806 - - - 

Male sex 0.899 0.384 0.021* 0.532 0.340 0.187 -2.087 0.929 0.027* -1.820 1.075 0.092 

Able to read a newspaper -0.659 0.389 0.009* 0.190 0.439 0.666 0.523 0.991 0.599 - - - 

Electricity at home -0.839 0.360 0.018* -0.567 0.376 0.136 0.771 0.895 0.391 - - - 

Ever drinks alcohol 0.4884 0.3970 0.222 - - - -1.585 0.913 0.086 -0.803 1.008 0.428 

HIV infected 0.043 0.355 0.904 - - - -0.389 0.895 0.664 - - - 

CD4 count, cells/µl
a
 0.002 0.002 0.429 - - - -0.004 0.004 0.290 - - - 

On ART at baseline
a
 0.273 0.508 0.592 - - - -2.571 1.166 0.031* - - - 

Recent antibiotic used 0.932 0.559 0.010 0.896 0.557 0.111 0.248 1.387 0.859 - - - 

Consulted traditional healer 2.180 1.249 0.084 1.958 1.149 1.092 -0.556 2.396 0.817 - - - 

Baseline temperature, 
o
C 0.434 0.157 0.007* 0.233 0.175 0.187 -0.351 0.413 0.398 - - - 

Baseline WCC, x10
9 

cells/l 0.006 0.009 0.458 - - - -0.287 0.161 0.077 -0.233 0.153 0.131 

Baseline 25(OH)D, nmol/l -0.003 0.009 0.737 - - - -0.035 0.021 0.092 -0.075 0.022 <0.001* 

CXR Appearance
b
 

Percentage of lung affected 
Cavities ≥4cm 

 
0.032 
0.608 

 
0.010 
0.372 

 
0.002* 
0.106 

 
0.024 
- 

 
0.011 
- 

 
0.035* 
- 

 
-0.083 
-2.409 

 
0.026 
0.934 

 
0.002* 
0.011* 

 
-0.089 
- 

 
0.279 
- 

 
0.002* 
- 

Table 6.3 Factors influencing baseline colony count and TTP results 

a 
Baseline CD4 and ART at enrolment assessed on HIV-infected individuals only  

b
CXR available for 93 patients with valid baseline log10 CFU/ml and 103 patients with valid baseline TTP 



Chapter 6  Pharmacodynamics 

173 
 

Figure 6.4 summarises the effect of baseline colony count and TTP on bacteriological 

response at 2 months and clinical end-points. Although there was an association with 

positive 2 month cultures in patients with higher baseline colony counts (p=0.004) and a 

similar trend with shorter TTP (p=0.090) there was no relationship between either measure 

of baseline bacillary load and unfavourable final outcome. 

 

Method Response measure OR 95% CI p-value 

Baseline colony count 
Positive 2 month culture 1.55 1.15-2.08 0.004* 

Unfavourable outcome 1.06 0.75-1.52 0.748 

MGIT TTP 
Positive 2 month culture 0.87 0.81-1.02 0.090 

Unfavourable outcome 0.94 0.80-1.09 0.405 

 

Figure 6.4 Baseline bacillary load and treatment response 

Relationships are shown between baseline log10 CFU/ml or TTP and treatment response. 
A and C: Patients were positive if S4 visit samples were positive by either SSCC plates or MGIT. 
B and D: Clinical outcomes were as described in Chapter 2. Analysis was by logistic regression. 
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6.3.3 NLME modelling of SSCC data 

43/133 (33%) patients had only one available log10CFU/ml count and were excluded from 

SSCC-NLME modelling. Figure 6.5 displays individual profiles of the change in log10 CFU/ml 

counts over time for the remaining 90 patients. Plots are ordered from bottom left to top 

right according to the baseline colony count. Patients with a higher pre-treatment bacillary 

burden contributed more positive serial samples and the decline in bacillary load followed 

a curvilinear pattern over time. Serial data from patients with lower baseline colony counts 

was limited by early culture conversion.   

 

Figure 6.5 Individual patient profiles for log10CFU/ml counts over time on therapy 

8 patients (171, 21, 11, 169, 90, 172, 146 and 144) had individual profiles which were 

qualitatively different from the remainder of the cohort because the baseline colony count 

was ≥1 log10CFU/ml lower than at the S1 visit. These increases in bacillary load during 

therapy are implausible as none of these patients had drug resistance. Laboratory 

worksheets were inspected for baseline samples from the atypical patients and revealed 

unusual features; smear positivity of baseline study specimens was “scanty” despite “++” or 

“+++” screening samples from the same day, or baseline study specimens were “salivary” 

or “heavily blood-stained”. Incorporation of atypical baseline data into modelling functions 
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resulted in non-convergence or statistically unstable outcomes so these counts were 

removed from the dataset. For 4 individuals this left only one valid log10CFU/ml result and 

the patient was excluded.  

Consequentially, the final SSCC-NLME dataset was restricted to 244 data-points from 

86/133 (64%) patients. Figure 6.6A is a spaghetti plot of these data. Figure 6.6B provides 

non-parametric summary measures (median and inter-quartile range) of colony counts 

from positive samples on the main sputum collection days. These plots support the 

impression of curvilinear bacillary elimination. 

Choice of structural model 

Details of the SSCC-NLME model building process are shown in Table 6.4 and Figure 6.6C. 

From non-linear least squares analysis of the pooled data, the bi-exponential function 

provided a significantly better stable fit than the mono-exponential function. It was not 

possible to fit a more complex tri-exponential function, perhaps due to the paucity of 

positive data after 28 days. 

As the bi-exponential function had the lowest stable AIC an NLME model was fitted using 

this equation. The addition of mixed effects further improved the fit so this model was 

examined in relation to covariates and outcomes.    

Mixed effects model 

Parameters of model 
equations

a
 AIC 

Likelihood 
ratio Test 

p-
value 

AInt Α BInt Β 

Mono-exponential pooled data(1) 5.978 0.075 - - 865.204 - - 

Bi-exponential pooled data (2) 6.638 0.323 4.416 0.020 814.225 (2) vs.(1) <0.001 

Bi-exponential NLME effects (3) 6.779
  

0.618 4.910 0.039 777.103 (2) vs.(3) <0.001 

Table 6.4 Fit of exponential models to the SSCC data 
a
 θ1- θ4 values were transformed as described in Section 6.2.4 to provide Aint, α, Bint and β on the 

log10 scale. Units for baseline bacillary loads AInt and BInt are log10CFU/ml, units for elimination rates α 
and β are change in log10CFU/ml per day. 

Table 6.5 provides full bi-exponential SSCC-NLME model parameters. The standard 

deviations of random effects demonstrate considerably more inter-individual variation in 

the θ1 (AInt) and θ3 (BInt) intercepts than θ2 (α) and θ4 (β) elimination rates. Underlying 

assumptions of a valid NLME model are that variation in residual values does not change at 

different fitted value results, and residuals are normally distributed. Figures 6.7A and B 

confirm that, with two outlying values from patients 58 and 112, this is so.
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Figure 6.6 Plots for construction of SSCC-NLME model 

A: Spaghetti plot of positive counts over time for each individual patient. B: Pooled non-parametric summary measures of log10CFU/ml counts on each of the main sampling 
days.  C: Fixed effects of SSCC-NLME modelling. Blue and green lines show mono- and bi-exponential models functions fit to the pooled data. The red line shows the mixed 
effects bi-exponential function which displayed the best fit (lowest AIC with convergent stable solution). 
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Non-linear mixed effects model 
fit by maximum likelihood 
AIC : 3203.985 logLik: 777.103  
 
Fixed effects: logCFU~Days on treatment 

 Value 
Standard 
Error 

p-value 
Value converted  
to log10 scale 

Metabolically active bacillary population 

θ1 15.611 0.392 <0.001 AInt = 6.779 

θ2 0.350 0.098 <0.001 α = 0.616 

Persister population 

θ3 11.308 0.354 <0.001 BInt = 4.910 

θ4 -2.420 0.187 <0.001 β = 0.039 

Random effects (by patient) 
 Std. Deviation 
θ1 2.905 
θ2 4.62x10

-5
 

θ3 2.048 
θ4 9.03x10

-5
 

Residual 0.769 
 
Table 6.5 Full parameters of SSCC-NLME model 

A 

 

Figure 6.7 Testing SSCC-NLME model assumptions 

B 

 

 A: Distribution of standardised residuals against fitted log10CFU/ml values. B: The near linearity and 
symmetry around zero of points on the QQ-plot illustrates that residual values are normally distributed. 
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Covariates influencing the SSCC-NLME model parameters 

The effect of clinical and radiological covariates from Chapter 3 on SSCC-NLME model 

parameters was assessed by graphical display of each covariate against best unbiased 

estimates of θ1-4 (representative plots in Figure 6.8). Sequential univariate model fitting was 

also done for each covariate. No factor altered any parameter in a manner which was 

clinically and statistically significant, suggesting that inter-individual variability attributable 

to these factors was accounted for by the model. 

Associations between SSCC-NLME parameters and clinical outcome 

Figure 6.9 and Table 6.6 show results of univariate logistic regression analysis performed to 

examine relationships between best unbiased estimates of model parameters for each 

patient and clinical outcomes. Day 0 intercepts and rate constants for putative 

metabolically active (AInt and α) and persister (BInt and β) sub-populations were expressed 

on the log10 scale. There was a slight trend towards unfavourable outcome in patients with 

a greater baseline bacillary load of persisters (OR for each log10CFU/ml increase in BInt: 2.32, 

95% CI: 0.84-6.40, p=0.104). The degree of inter-individual variation in the rate constants 

was too small for a meaningful interpretation of their effect on outcome. 

Using partial likelihood to handling SSCC data below the limit of detection 

Figure 6.10 compares the maximal likelihood model described above with a partial 

likelihood model incorporating possible values of bacillary counts below the limit of SSCC 

detection. The overall form of the partial likelihood model was unchanged, but both early 

and late phase bacillary elimination slopes steepened to reflect the probability of very low 

colony counts at late time-points. 

To optimise the fit of the partial likelihood model, random effects on the θ2 (α) parameter 

were removed. Analysis of the effect of variability in the other three parameters on clinical 

outcome is shown in Figure 6.11 and Table 6.7. Unfavourable outcomes were associated 

with a greater baseline concentration of persisters (OR for each log10CFU/ml increase in 

BInt: 80.45, 95% CI: 4.97-1302.02, p=0.002) and slower sterilisation phase bacillary 

elimination (OR for each 0.01 increase in the β rate constant: 0.39, 95% CI: 0.22-0.70, 

p=0.001).    
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Figure 6.8 Effect of clinical covariates on SSCC-NLME model parameters 

The effect of clinical and radiological covariates on SSCC-NLME model parameters was small; especially with regard to rate constants θ2 and θ4. CD4 and prior ART were 

only assessed for HIV positive patients. Incorporating covariates did not significantly alter the overall fit of the model. 
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Figure 6.9 SSCC-NLME parameters and clinical outcomes 

Best unbiased estimates of A, B, α and β were extracted from the maximal likelihood model for all 
patients. Outcome definitions were as previously described. Analysis was by logistic regression 
(details in Table 6.5).    

 OR of unfavourable 
outcome

a
 

95% CI p-value 

Metabolically active population 

AInt: Baseline load (log10CFU/ml)  1.07 0.56-2.04 0.848 

α: Elimination rate constant  
(reduction in log10CFU/ml per day) 

0.8 0.47-1.35 0.407 

Persister population 

BInt: Baseline load (log10CFU/ml)  2.32 0.84-6.04 0.104 

β: Elimination rate constant 
(reduction in log10CFU/ml per day) 

0.79 0.03-23.95 0.891 

Table 6.6 Associations between SSCC-NLME parameters and outcome 

a
For baseline bacillary loads ORs are reported as the effect size per log10 CFU/ml  increase in sputum 

bacterial concentration. For elimination rate constants the degree of inter-patient variability was 
very small so ORs were reported as effect size per 10

-9 
log10CFU/ml reduction in sputum bacterial 

concentration per day.    
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Partial likelihood model 
 fixed effects 

Metabolically active population 

θ1 = 15.40  (AInt = 6.48) 

θ2 = -0.46 (α = 0.68) 

Persister population 

θ3= 9.50 (BInt = 4.12) 

θ4= -1.49 (β = 0.095) 

Figure 6.10 Partial and maximal likelihood methods in SSCC-NLME modelling 

 

Figure 6.11 Partial likelihood SSCC-NLME parameters and outcome 

Best unbiased estimates of A, B and β were extracted from the partial likelihood model for all 
patients. Outcome definitions were as previously described. Analysis was by logistic regression 
(details in Table 6.7).    

 OR of unfavourable 
outcome

a
 

95% CI p-value 

Metabolically active population 

AInt: Baseline load (log10CFU/ml)  1.26 0.51-3.13 0.848 

α: Elimination rate constant  
(reduction in log10CFU/ml per day) 

NA NA NA 

Persister population 

BInt: Baseline load (log10CFU/ml)  80.45 4.97-1302.02 0.002* 

β: Elimination rate constant 
(reduction in log10CFU/ml per day) 

0.39 0.22-0.70 0.001* 

Table 6.7 Partial likelihood SSCC-NLME parameters and outcome 
a
ORs

 
for baseline bacillary loads are reported as the effect size per log10 CFU/ml  increase in sputum 

bacterial concentration. ORs for elimination rate constant were reported as effect size per 0.01
 

log10CFU/ml reduction in sputum bacterial concentration per day.    
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6.3.4 LME modelling of MGIT TTP data 

124/133 (93%) patients who reached a final study end-point had least two positive TTP 

results. 467 TTP measurements from these patients were included in the analysis. Fewer 

contamination problems and later culture conversion with liquid culture resulted in more 

complete data profiles for bacillary elimination modelling. Figure 6.12 presents individual 

patient profiles of change in TTP over time on treatment. Plots are ordered from bottom 

left to top right according to baseline TTP and only positive samples are included. Despite 

considerable variability in plots, the general trend shows increased TTP with longer time on 

therapy. 

 

Figure 6.12 Individual patients profiles for TTP over time on therapy 
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Figure 6.13A is a spaghetti plot of positive TTP values for the study population and Figure 

6.13B shows non-parametric summary measures of positive samples from the main sputum 

collection days. Although the rate of increase in TTP appears to declines during the second 

month of therapy this may be attributable to censoring of negative data when the true TTP 

exceeds the limit of detection at 49 days. As the potential effect of censoring negative data 

is greater for MGIT than SSCC cultures (Figure 6.2) an alternative MGIT dataset was 

constructed in which an imputed TTP value of 50 days was allocated to the first negative 

culture for each patient. Non-parametric summary measures of TTP for the alternative 

dataset are shown in Figure 6.13C. 

Choice of structural model 

Considering that much of the late curvature in the non-parametric summary plots was due 

to censoring of negative data, a maximum likelihood method was used to fit LME models to 

the original (positive values only) and alternative (positive and imputed values) MGIT-TTP 

datasets. Figure 6.14 illustrates fixed effects of these models and Table 6.8 provides full 

details of model parameters. Quadratic and SPLINE functions were also fitted to the TTP 

data to assess for curvature but there was no improvement of fit (data not shown) and the 

biological relevance of parameters from these model functions was difficult to interpret. 

The LME models were most suitable for further analysis. 

The slope (b) of the fitted lines will be used as to represent the MBER. The LME model from 

the original dataset indicates that TTP increased by 2.643 (Std. Error: 0.242) days per week 

of TB treatment, whilst the model from the alternative dataset indicates that TTP increased 

by 4.73 (Std. Error: 0.228) days per week of TB treatment. The steeper MBER from the 

alterative dataset reflects the effect of additional information on culture conversion which 

is only available after inclusion of imputed “first negative” data-points. 

As with the SSCC-NLME model, the validity of a TTP-LME model is predicated on 

assumptions that variation in residual values does not change at different fitted value 

results, and that residual values and random effects from the model are normally 

distributed. Figure 6.15 confirms that, with a few outliers, these assumptions are met for 

the original TTP dataset.  
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Figure 6.13 Plots for construction of TTP-LME model 

A: Spaghetti plot of TTP over time for each individual patient B: Pooled non-parametric summary measures of TTP for the original dataset (positive values only) on the main 
sampling days. C: Pooled non-parametric summary measures of TTP for the alternative dataset (positive and imputed values only) on the main sampling days. 
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Figure 6.14 Fixed effects of TTP-LME models 

Table 6.8 Parameters for TTP-LME models 

LME models fit by maximum likelihood 

Original model fit Alternative model fit (inc. imputed data) 

AIC : 3201.583 logLik: -1594.792  AIC: 4043.874  logLik: -2015.937 

  
Fixed effects: DTP~Weeks on treatment Fixed effects: DTP~Weeks on treatment 

 Value Std. Error p-value  Value Std. Error p-value 
Intercept (a) 7.973 0.431 <0.001 Intercept (a) 6.693 0.532 <0.001 
Slope (b)  2.643 0.242 <0.001 Slope (b)  4.673 0.228 <0.001 

  
Random effects: ~Week|Patient Random effects: ~Week|Patient 
 Std. Dev.  Std. Dev. 
Intercept (a) 1.933 Intercept (a) 3.070 
Slope (b) 1.743 Slope (b) 1.971 
Residual 6.191 Residual 7.334 

  

In Figure 6.15 and Table 6.7, the original model includes positive TTP values only. The alternative model imputes a TTP value of 50 days for the first negative result from 
each patient. 
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A 

 

B 

 
C 

 

Figure 6.15 Testing TTP-LME model assumptions (original model) 

A: Distribution of standardised residuals against fitted MGIT TTP values. The largest residuals were 

observed for individual data-points from patients 24, 32, 36, 70, 112, 160 and 178 but there was no 

systematic trend associated with individual patients or the size of fitted values. B: A Q-Q plot of 

residuals against quantiles of a normal distribution. Data-points with large residuals are seen at the 

top-right corner, but otherwise the plot is near-linear and symmetrical around zero. C: Q-Q plots of 

random effects against quantiles of a standard normal distribution. Excepting a small number of 

outliers, both plots are near linear and symmetrical around zero. 
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  Covariates influencing the TTP-LME slope (MBER)   

The effect of clinical and radiological covariates on the MBER was assessed by multivariate 

linear regression for both original and alternative models (Table 6.9). 

In the original model no covariate significantly altered the MBER but there was a trend 

towards a shallower slope (slower bacillary elimination) in males (p=0.065). In the 

alternative model, a steeper slope (faster bacillary elimination) was associated with ability 

to read from a newspaper (p=0.049) whilst shallower slopes were associated with difficulty 

obtaining food (p=0.026), ever drinking alcohol (p=0.023) and male sex (p<0.001). The 

alternative model also showed trends towards shallower slopes with percentage of lung 

affected on CXR (p=0.088) and cavities ≥4cm (p=0.068).  

That no factor had a significant effect on the original model whilst several had an effect on 

the alternative model suggests that imputing a measure of culture conversion increased 

the capacity of the model to detect the influence of clinical covariates on the MBER.  

The majority of HIV-associated, clinical and radiological factors were not associated with 

variation in the MBER, as measured by the slope of either model. This suggests that 

variability due to these factors is largely accounted by the model and that clinical trials 

using TTP-LME modelling to assess treatment response are unlikely to be confounded by 

clinical or radiological covariates.  

Associations between TTP-LME slope and clinical outcome 

Figure 6.16 shows that, for both TTP-LME models, there was a strong relationship between 

best unbiased estimates of the MBER for each patient and clinical outcome (OR of 

unfavourable outcome for each 1 day increase in TTP per week of therapy in original 

model: 0.5, 95% CI: 0.30-0.83, p=0.007; OR in alternative model: 0.63, 95%CI: 0.44-0.91, 

p=0.014). This suggests that using slope of the TTP-model (with or without imputed data) 

as a measure of the MBER is a strong pharmacodynamic predictor of final outcome in a 

heterogeneous cohort of HIV-infected and uninfected individuals.  
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 Slope (b) of original LME model Slope (b) of alternative LME model 

 Covariate effect 
on slope 

Standard error of 
covariate effect 

p-value Covariate effect 
on slope 

Standard error of 
covariate effect 

p-value 

Socio-economic factors       
Difficulty obtaining enough food in the last month -0.806 0.600 0.180 -1.336 0.597 0.026* 
Able to read a newspaper  0.176 0.523 0.737 0.990 0.502 0.049* 
Ever smoked tobacco -0.004 0.544 0.994 -0.754 0.525 0.152 
Ever drinks alcohol -0.397 0.492 0.420 -1.061 0.465 0.023* 

HIV parameters       
Confirmed HIV infected 0.084 0.492 0.864 -01.46 0.463 0.752 
Baseline CD4 count, cells/µl -0.002 0.002 0.327 -0.001 0.002 0.521 
On ART at enrolment 0.505 0.592 0.395 -1.801 0.604 0.003* 

Demographic and clinical parameters       
Male sex -1.011 0.546 0.065 -1.916 0.466 <0.001* 
BCG vaccinated -0.273 0.656 0.677 -0.586 0.578 0.311 
Baseline BMI, kg/m

2
 0.086 0.118 0.461 0.033 0.103 0.743 

Baseline CXR assessment       
Percentage of lung affected on CXR 0.009 0.017 0.599 -0.025 0.015 0.088 
Presence of large cavity, ≥4cm diameter -0.381 0.520 0.464 -0.878 0.479 0.068 

25 (OH) Vitamin D measurement       
Baseline 25(OH)D, nmol/l -0.003 0.011 0.822 0.008 0.011 0.493 

Table 6.9 Factors influencing the MGIT bacillary elimination rate 

Original and alternative lme models of changes in MGIT TTP over time on therapy were run using the clinical and radiological covariates. A positive effect indicates that 

a covariate was associated with a steeper slope (faster bacillary elimination). A negative effect indicates that a covariate was associated with a shallower slope (slower 

bacillary elimination). The effect size shows the extent to which each covariate influences the slope of the model. All clinical and radiological factors were analysed, the 

table shows those with p<0.100 or for which a prior publications suggest a likely effect on treatment response.    
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Figure 6.16 Associations between MBER and clinical outcome 

A: Relationship between MBER and clinical outcome for original model B: Relationship between 

MBER and clinical outcome for alternative model. Analyses were performed by univariate logistic 

regression. 

Using partial likelihood to handle TTP data beyond the limit of detection 

Although the significant relationship between the MBER and clinical outcome for both LME 

models is interesting, data handling methods for negative data remain problematic; the 

original model ignored culture conversion completely whilst the TTPs value allocated to 

first negative cultures in the alternative model were probably inaccurate.  

Figure 6.17 demonstrates that use of a partial likelihood method to incorporate possible 

data beyond the limit of detection generates a steeper slope than either earlier model (TTP 

increases by 5.894 days per week on therapy). This is unsurprising as the imputed value of 

50 days attributed to first negative samples in the alternative model represented the 

lowest possible true reading. Partial likelihood method estimates of TTPs for some samples 

will have been higher, resulting in a steeper MBER.  
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Fixed effects of partial likelihood model 

Intercept (a) 6.28  days 

Slope[MBER] (b) 5.894 days per week of TB treatment 
 

Figure 6.17 Partial and maximal likelihood methods in TTP-LME modelling 

 

As with the other MGIT-TTP models, there was a strong relationship between best 

unbiased estimates of MBER from the partial likelihood model and clinical outcomes (OR of 

unfavourable outcome for each 1 day increase in TTP per week of therapy: 0.71, 95% CI: 

0.55-0.94, p=0.015). 

The robustness of pharmacodynamic estimation of MBER across three different TTP-LME 

models using a variety of approaches to handle negative data post culture conversion 

suggests that MBER measurement may be a useful marker of persistence and warrants 

further evaluation as a surrogate endpoint for Phase IIb clinical trials of new TB therapies. 
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6.3.5 Relating colony counts to TTP in clinical samples 

In section 5.4 a strong inverse relationship was described between colony counts and MGIT 

TTP from in vitro H37Rv cultures. Having modelled the clinical SSCC and MGIT datasets 

separately, a combined analysis allowed relationships between the results of quantitative 

culture methods to be examined in the context of a treatment study.   

Figure 6.18 illustrates the association between colony counts and TTP for all clinical 

samples with a positive result for both techniques. Although the previously described 

inverse relationship remained (p<0.001), the strength of the association at the level of 

individual data-points was weaker for clinical than in vitro samples (Figure 6.18A, adjusted 

R2=0.19 vs Figure 4.10, adjusted R2=0.86).  There are several possible explanations for this, 

including that dispersal of organisms is less likely to be homogenous in sputum (even after 

processing) than liquid broth, so inoculation of SSCC plates and MGIT tubes with aliquots of 

the same sputum sample are more likely to contain different bacillary concentrations than 

inoculation with aliquots of in vitro grown H37Rv.   

An alternative explanation is based on differences in bacillary load quantification between 

SSCC and MGIT. Each SSCC colony grows from a single bacterium, making CFU counting 

analogous to directly counting bacilli in the sample. Rapidly replicating bacilli form large 

colonies whilst slow replicators form small ones but this does not affect the log10 CFU/ml 

count provided that colonies of all sizes are counted equally. By contrast, in the MGIT assay 

TTP simultaneously reflects the concentration of bacteria in the sample and the rate of 

oxygen consumption by those organisms; rapid replicators have a shorter TTP than those 

which are metabolically quiescent at identical initial bacillary load (Figure 6.19). As clinical 

specimens are likely to contain organisms at a wider range of metabolic states than in vitro 

samples grown under uniform conditions, it is possible that metabolic interference with 

TTP results confounds the relationship with colony counts in patient samples. 
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Figure 6.18 Relationship between log10CFU/ml and MGIT TTP for clinical samples 

A: Plot of log10 CFU/ml against MGIT TTP for all samples with a positive qudantitative result by both 
techniques. B: Plot of mean MGIT TTP for each logarithmic subdivision of bacillary load from 2-10 
log10 CFU/ml. 
 

Sample A Sample B  

 
4  rapidly replicating bacilli 

 
4 slowly replicating bacilli 

 

↓ ↓  

 
SSCC: 4 CFU 

 
SSCC: 4 CFU 

SSCC: Sample A & B bacillary 
loads are equal; different 
colony sizes reflect different 
baseline metabolic 
conditions. 

+ +  

 
MGIT TTP: 4 days 

 
MGIT TTP: 8 days 

MGIT: Sample TTP are 
different; rapidly replicating 
organisms from A consume 
oxygen more quickly than 
quiescent organisms from B 

Figure 6.19 Bacillary load quantification by MGIT and SSCC 
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It has been proposed that baseline sputum samples from TB patients contain rapidly 

replicating organisms, whilst later specimens predominantly contain metabolically 

quiescent persisters which may have a longer TTP at a given bacillary load. Table 6.10 

shows that the relationship between colony counts and TTP for clinical samples is strongest 

for baseline samples (R2=0.27, p<0.001) and completely lost amongst samples collected 

after Day 14 (R2=-0.027, p<0.583). Perhaps, at baseline, the bacillary load of replicating 

organisms is the main driver of TTP but at later time-points reduced metabolic activity of 

persisters slows TTP and it reflects bacillary load less precisely. 

Sample collection Number of samples Adjusted R
2
 p-value 

Total 265 0.19 <0.001 

Baseline 93 0.27 <0.001 

Day 1-14 145 0.04 0.014 

>Day 14 27 -0.027 0.583 

Table 6.10 Changing relationship between log10CFU/ml and TTP with day of sampling 

 

Further evidence of the changing relationship between log10 CFU/ml counts and MGIT TTP 

over time on treatment is provided by Figure 6.20. Positive SSCC data were divided into low 

(2-4 log10 CFU/ml), medium (4-6 log10 CFU/ml) and high (>6 log10 CFU/ml) counts. TTP in 

each of these categories was assessed according to time of sample collection (Baseline, Day 

1-14 or Day>14) by the Kruskal Wallis test. 

There was a trend towards longer TTP at later sampling times for low log10 CFU/ml 

(p=0.092) and a clear association between longer TTP and later sampling at medium 

(p<0.001) and high (p<0.001) counts. Longer TTP at later time-points after stratification for 

bacillary load is consistent with a higher proportion of metabolically quiescent persisters in 

later samples, which take longer to grow. 

Overall, therefore, whilst quantitative culture techniques cannot directly identify different 

sub-populations of bacilli within sputum samples during TB treatment, analysis of the 

relationship between colony counts and TTP supports the proposed phenomenon of 

reduced metabolic activity on exposure to anti-TB drugs, and the predominance of 

persisters at later sampling times. 
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Figure 6.20 MGIT TTP with time on therapy, stratified by log10 CFU/ml 

Differences in TTP on different sampling days analysed by Kruskal Wallis test for samples of low (2-4 
log10 CFU/ml), medium (4-6 log10 CFU/ml) and high (>6 log10 CFU/ml) colony counts.  

6.4 LAM-ELISA 

6.4.1 LAM-ELISA and HIV status 

The LAM-ELISA was explored as a technique to measure non-sputum bacillary load. 

Difficulties with kit availability meant that this assessment was restricted to 148 samples 

from a sub-set of 51 patients who reached a final study end-point. Samples from other 

patients remain stored at -20oC. 23 (45%) LAM-ELISA sub-study patients had detectable 

urinary LAM from at least one sample submitted on BL, S2, S3 or S4. 

Table 6.11 shows that the incidence of LAM-positivity in baseline urine samples was 

significantly higher amongst HIV-infected (20/36 [56%]) than non-infected (3/15 [20%]) 

individuals (p=0.04). LAM OD readings were used as a quantitative measure of LAM 

detection. The results were markedly skewed to the left, so data were logarithmically 

transformed prior to further analysis. Results of LAM OD (p=0.003) and LAM log10OD 

(p=0.011) were significantly higher amongst HIV-infected individuals (p=0.003 and p=0.011 

respectively). 
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 HIV status p-value 

Infected 
n=36 

Non-infected 
N=15 

LAM detected (n, %) 20 (55.6) 3 (20.0) 0.044
a
* 

LAM OD (median, IQR) 0.138 (0.071-0.388) 0.020 (0.003-0.096) 0.003
b
* 

LAM log10OD (mean, SD) -0.780 (-1.125 to -0.345) -0.118 (-1.707 to -0.876) 0.010
c
* 

Table 6.11 LAM-ELISA results and HIV status 
a
Analysed by Chi-squared test; 

b
Analysed by Wilcoxon test; 

c
Analysed by two sample t-test 

Extremely low LAM-ELISA sensitivity amongst HIV non-infected patients was consistent 

with prior reports that the assay is only useful in the context of HIV infection. Subsequent 

analysis was limited to samples from the 36 HIV-infected sub-study patients.  

6.4.2 Factors affecting baseline LAM-ELISA results 

Univariate logistic and regression analyses were performed to investigate associations 

between clinical or radiological factors and LAM positivity or higher LAM logOD readings. 

Multivariate analysis was not performed because of the small sample size. 

Table 6.12 shows that a positive LAM-ELISA was associated with male sex (p=0.014) and 

lower baseline BMI (p=0.043). Table 6.13 demonstrates trends towards higher LAM log10OD 

readings with lower baseline BMI (p=0.088) and haemoglobin (p=0.076) levels. 

As lower BMI and haemoglobin results may occur in patients with more disseminated TB 

the observed associations and trends between these variables and higher LAM positivity 

support the possibility that LAM is a whole body disease marker. The relationship between 

male gender and positive LAM-ELISA is consistent with previous univariate associations 

between gender and baseline bacillary load in sputum; men also had higher colony counts 

and lower TTP (Table 6.3). 

 Previous studies have reported a higher proportion of LAM positive samples at lower CD4 

counts333,335,337 and higher LAM OD measurements as CD4 counts drop338 but the current 

data shows no relationship between LAM and CD4 results. A potential explanation is that 

only 3/31 (10%) patients with baseline LAM-ELISA results in this study had CD4 counts <50 

cells/µl. Prior descriptions of a CD4-LAM association were from South African cohorts in 

which up to 36% patients had CD4 counts in this range338. Extreme immunosuppression 

may be required for this relationship to become apparent. 
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 LAM result 

OR 95% CI 
p-
value 

Positive 
(n=20) 

Negative 
(n=16) 

HIV parameters      
CD4 count, cells/µl (median, range)

a
 163 (6-539) 161 (31-497) 1.00 1.00-1.01 0.348 

Demographic & clinical parameters      
Male sex (n, %) 18 (90) 8 (50) 9.00 1.55-52.27 0.014* 

BMI, kg/m
2 

(median, range) 
18.3 

(14.5 20.0) 
19.8 
(14.8-24.9) 

0.68 0.46-0.99 0.043* 

Haemoglobin, g/dl (median, range)
b
 

9.7  
(60-12.8) 

10.4 
 (7.2-13.4) 

0.89 0.61-1.29 0.533 

Table 6.12 Factors associated with baseline LAM positivity 

 Parameter 
estimate 

Std. Error p-value 

HIV parameters    
CD4 count, cells/µl

a
  -0.001 0.002 0.757 

Demographic and clinical parameters    
Male sex  0.235 0.253 0.361 
BMI, kg/m

2 
 -0.022 0.126 0.088 

Haemoglobin, g/dl (median, range)
b
 -0.240 0.130 0.076 

Table 6.13 Factors associated with baseline LAM logOD readings 
a
CD4 results available for 31 patients: <50 cells/µl in 3 (10%) patients, 50-200 cells/µl in 15 (48%), 

200-350 cells/l in 6 (19%) and <350 cells/µl in 7 (23%). 
b
Haemoglobin results available for 30 patients. 

 

30 patients included in analysis of baseline LAM-ELISA results had favourable final 

outcomes and 6 had unfavourable outcomes. However, no relationship was evident 

between baseline LAM-ELISA result and treatment response. There were no associations 

with 2 month sputum culture status or MBER. 

6.4.3 LAM-ELISA during TB treatment 

All of the HIV-infected patients with baseline LAM-ELISA results had at least one additional 

result from a later time-point, permitting examination of changes in urinary LAM 

measurements with time on therapy.  

Of the 20 patients who were LAM-positive at baseline, 11 (55%) had converted to negative 

by the S2 visit, 14 (70%) by S3 and 16 (80%) by S4. Figure 6.21A shows time to LAM-ELISA 

conversion. LAM log10OD readings fell during therapy, particularly during the first month. 

Figure 7.21B shows non-parametric summary measures of pooled log10OD readings at each 

study visit, Figure 6.21C contains individual patient profiles of log10OD readings over time 

and Figure 6.21D is a spaghetti plot of the same information. There were no associations 

between time to LAM-ELISA conversion or the rate of change in log10OD readings and 

clinical outcomes but the dataset was small. 



Chapter 6  Pharmacodynamics 

197 
 

A 

 

B 

 
C 

 

D 

 
Figure 6.21 Changes in LAM-ELISA results during therapy 

A: Kaplan Meier plot of LAM-ELISA conversion during treatment. B: Pooled LAM log10OD at BL and 
S2-4 study visits assessed by analysis of variance. C: Individual patient profiles of change in LAM 
log10OD during therapy. D: Spaghetti plot of change of LAM log10OD during therapy for all patients. 
Note the persistently high readings for 3 individuals (patients 89, 93 and 105). 
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Relating LAM-ELISA results to sputum bacillary load 

Contemporaneous MGIT TTP and urinary LAM-ELISA data were available for 80 patient 

visits from BL-S4. Contemporaneous colony counts and LAM-ELISA data were available for 

50 visits. Pooled analysis was undertaken to relate the LAM-ELISA results to sputum 

bacillary load. Table 6.14 shows that when the sputum TTP and log10CFU/ml were analysed 

as continuous variables there was no association with LAM-ELISA result. However, patients 

with TTP <7 days or colony counts > 6 log10 CFU/ml were more likely to be positive by LAM-

ELISA (Table 6.14, p=0.020 and 0.008 respectively). These tentative associations imply that 

higher LAM excretion has some quantitative significance but is an imprecise measurement 

in smear positive pulmonary disease.   

 LAM-ELISA result 

OR 95% CI p-value Positive 
(n=30) 

Negative 
(n=50) 

MGIT TTP      
MGIT TTP, days (median, range) 5.25  

(1.50-37.50) 
11 
(1.00-45.00) 

0.98 0.93-1.02 0.327 

Samples with TTP> 7 days (n, %) 13 (43.3) 35 (70) 0.33 0.13-0.84 0.020* 

SSCC log10 CFU/ml      
Log10 CFU/ml (median, range) 6.49  

(2.50-9.30) 
4.84 
(2.09-9.02) 

1.27 0.95-1.71 0.107 

Samples with > 6 log10 CFU/ml (n, %) 14 (56.0) 5 (16.1) 6.62 (1.91-22.89) 0.003* 

Table 6.14 Relationship between the LAM-ELISA and quantitative sputum cultures 

Persistently high LAM logOD readings at the S4 visit 

From Figure 7.21.C and D, three HIV-infected individuals (patients 89, 93 and 105) had 

much higher LAM log10OD readings at the S4 visit than the rest of the cohort.  Review of the 

clinical data for these patients indicates that they all had fever >38.5oC and marked 

lymphadenopathy at baseline. These non-specific features would be compatible with 

greater bacillary dissemination. Patient 93 went on to have an unfavourable outcome 

(treatment failure). The other two were successfully cured. 

Overall, the dataset was too small for full evaluation of the LAM-ELISA as a marker of non-

sputum bacillary load and there was no evidence that it could be used as a surrogate 

marker of treatment outcome. However, the data are a novel description of serial 

monitoring of LAM excretion in TB patients on therapy and several features support the 

notion that the test has quantitative dimension in disseminated disease and converts to 

negative with gradually reducing OD over time.       
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6.5 ALTR fluorescence microscopy 

6.5.1 Image quality and standardisation 

A total of 152 samples were stained and photographed for LB counting during 20 

microscopy sessions. Camera exposure times were fixed for each session using control 

slides from pre-specified samples. Median exposure times were 1.10s (range: 0.76—1.40s) 

on the FITC filter and 1.00s (range 0.60-1.40) on the TRITC filter.  

As each sample was assessed on duplicate smears, a total of 304 slides were prepared. LB 

counting was performed on up to 20 images from each slide. The images obtained from 

both smears of 8 (5%) samples were un-interpretable due to excessive LTR staining of the 

background sputum matrix. These samples were excluded from analysis. LB counts were 

obtained from 144 samples. The image quality from valid samples is shown in Table 6.15.  

 Number of samples (%)
 

N=144 

Auramine labelling of AFB
a 

 
Clear 128 (89) 
Blurred/faint 16 (11) 

LTR labelling of intracellular LBs
a
  

Clear 58 (40) 
Blurred/faint 86 (60) 

LTR staining of background sputum matrix
a
  

Mild  (assessment of bacilli unaffected by background matrix) 79 (55) 
Moderate (LB assessment difficult in <50% of bacilli) 51 (35) 
Severe (LB assessment difficult in >50% of bacilli) 14 (10) 

Table 6.15 Image quality indicators during ALTR microscopy 
a
Each slide was graded according to the collective appearance of acquired images. Samples were 

graded by the worst score on either slide (i.e. if one slide had “mild” background and the other had 
“severe”, the sample was deemed to be “severe”).  

Additional factors which hindered but did not prevent image analysis were thick smears, 

clumping of organisms, spectral overlap between dyes and filters and difficulty 

discriminating M tuberculosis organisms from inorganic artefact. These problems were 

described in at least one slide from 6 (4%), 2 (1%), 4 (3%) and 2 (1%) samples respectively.  

The study PI read all images and reported af-LB and TLB counts for each sample. These data 

will be used for the remainder of this chapter. 29 samples were independently reported by 

a second reader to assess observer agreement. For af-LB counts the concordance co-

efficient (ρc) was 0.84 (95% Limits of Agreement: -29.45 to 21.83%). For TLB, ρc was 0.85 

(95% Limits of Agreement: -29.45 to 21.83%). These values demonstrate slightly higher 

agreement for LB counting than reading of CXRs (Section 3.4.5).  
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6.5.2 Baseline ALTR counts 

Quantification of LB counts in baseline samples 

Baseline samples were assessed from 69 patients. In the analysis of auramine-labelled cells 

the median af-LB count was 28% (range 0-79%). Figure 6.22A shows the distribution of 

baseline af-LB counts. Figure 6.22C shows the proportions of AFB which were LB+ and LB- 

in the sputum of each patient. 13 patients had baseline af-LB counts ≥50%. Four patients 

(35, 46, 88 and 122) submitted baseline samples with an af-LB count of 0%. 

In the analysis of all bacilli (including non-acid fast LB+ organisms) the median TLB count 

was 35% (range: 2-98%). Figure 6.22B shows the distribution of TLB counts. Figure 6.22D 

shows the proportions of acid fast LB+, acid fast LB- and non-acid fast LB+ cells in the 

sputum of each patient.  18 patients had baseline TLB counts ≥50%. No patients had a TLB 

count of 0%. 

The TLB dataset provides information on the contribution of non-acid fast bacilli to the 

total bacillary load. The median proportion of non-acid fast LB+ cells in baseline samples 

was 3% (range: 0-68%). All four samples with an af-LB count of 0% contained some non-

acid fast LB+ cells and two patients (113 and 124) submitted samples in which the non-acid 

fast LB+ phenotype accounted for >50% of all bacilli. Although it is possible that some non-

acid fast LB+ cells were non-mycobacterial contaminants, these cells were morphologically 

identical to their auramine-labelled counterparts and the circumstantial evidence that they 

were M tuberculosis is strong. The SSCC plates all grew M tuberculosis without 

contamination. MGIT cultures were all positive. TTP and liquid culture speciation test were 

all consistent with pure TB growth.  

Patient factors influencing LB counts in baseline samples 

Linear regression models were used to investigate patient factors contributing to baseline 

heterogeneity in LB counts (Table 6.16). For baseline af-LB counts, univariate analysis 

showed a strong trend towards a higher proportion of LB+ cells in patients who were 

tachypnoeic (p=0.055). No association was seen with any other factor so multivariate 

analysis was not performed. For baseline TLB counts, univariate analysis showed that 

counts were higher in patients who could not read a newspaper (p=0.011) or had never 

received BCG vaccination (p=0.046). Inability to read remained significant on multivariate 

analysis (p=0.026). 
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Tables 6.17 shows logistic regression analyses of factors associated with “high” LB counts 

(≥50%). In univariate models, high af-LB and TLB counts were more likely in patients who 

cooked indoors with biomass fuel (p=0.041 and p=0.017 respectively). There were also 

relationships between TLB counts ≥50% and female sex (p=0.020), inability to read a 

newspaper (p=0.009) and absence of prior BCG vaccination (p=0.047). On multivariate 

modelling, female sex (p=0.012) and inability to read (p=0.007) remained strongly 

associated with high TLB counts. 

No other clinical parameters (including HIV-infection) were related to baseline af-LB or TLB 

counts. Interpreting the relationships between patient factors and LB counts in sputum is 

not easy but some explanations may be considered. Associations with tachypnoea and 

biomass cooking suggest induction or natural selection of LB+ bacilli in an environment of 

indoor air pollution and chronic lung disease. Women perform a greater share of domestic 

chores (including cooking), and may present with more LB+ organisms as a result of 

biomass exposure. However, LB counts were not linked to tobacco smoking or CXR 

abnormalities, arguing against an association with underlying lung disease. Higher counts in 

non-BCG-vaccinated patients suggest that investigating the effect of host immunity on LB 

formation may be worthwhile. The relationship between illiteracy and higher LB counts is 

similar to the earlier association of illiteracy with poor TB outcomes.  

Bacteriological factors influencing LB counts in baseline samples 

Table 6.18 summarises linear regression analyses of the relationships between bacillary 

load measurement and the proportion of LB+ cells in sputum, showing that af-LB and TLB 

counts are higher in samples with lower log10CFU/ml counts and longer TTP. When a 

TTP/log10CFU ratio is calculated to provide an estimate of bacillary metabolism corrected by 

bacillary load for each sample, a moderately strong relationship is seen between higher 

proportions of LB+ cells and lower metabolic activity (Figure 6.23). Whilst TTP/log10CFU is a 

relatively crude measure of bacterial metabolism, these data are consistent with the 

hypothesis that LB+ bacilli display the qualities of non-replicating persistence believed to be 

beneficial for drug tolerance. 
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Figure 6.22 af-LB and TLB counts in AFB ‘+++’ baseline sputum samples 

A and B: Histograms demonstrating the distribution of af-LB and TLB counts amongst study patients 

at baseline. C: Bar-chart showing the proportion of auramine labelled (acid fast) cells which were 

LB+ or LB- for each patient. Four patients (35, 46, 88 and 122) submitted baseline sputum samples 

with af-LB counts of 0%. D: Bar-chart showing the proportion of total TB bacilli, including putative 

non-acid fast organisms, which were LB+ and LB- for each patient. Two patients (113 and 124) 

submitted baseline samples in which ≥50% of bacilli had a non-acid fast LB+ phenotype.
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 af-LB counts TLB counts 

 Univariate analysis Multivariate analysis Univariate analysis Multivariate analysis 

Variable Estimate St Error p-value Estimate St Error p-value Estimate St Error p-value Estimate St Error p-value 

Male sex -3.223 5.064 0.527 - - - -7.093 5.664 0.215 - - - 

Able to read a newspaper -4.504 5.139 0.384 - - - -14.565 5.551 0.011* -12.615 5.552 0.026* 

Cooks using biomass fuel 
At all 
Inside the house 

 
10.969 
4.934 

 
7.931 
5.656 

 
0.171 
0.386 

 
- 
- 

 
- 
- 

 
- 
- 

 
12.832 
8.264 

 
8.908 
6.353 

 
0154 
0.198 

 
- 
- 

 
- 
- 

 
- 
- 

BCG vaccinated -7.457 5.898 0.210 - - - -13.256 6.533 0.046* -11.638 6.323 0.070 

Tachypnoea
a
 14.705 7.527 0.055 - - - 15.885 8.515 0.067 11.365 8.252 0.173 

Table 6.16 Factors influencing af-LB  and TLB counts 

 af-LB counts ≥50% TLB counts ≥50% 

 Univariate analysis Multivariate analysis Univariate analysis Multivariate analysis 

Variable OR 95% CI p-value OR 95% CI p-value OR 95% CI p-value OR 95% CI p-value 

Male sex 0.36 0.10-1.28 0.113 - - - 0.27 0.09-0.81 0.020* 0.13 0.03-0.64 0.012* 

Able to read a newspaper 0.46 0.13-1.63 0.230 - - - 0.22 0.07-0.68 0.009* 0.15 0.03-0.70 0.007* 

Cooks using biomass fuel 
Inside the house 
Outside the house 

 
12 
3.82 

 
1.11-129.41 
0.43-33.52 

 
0.041* 
0.227 

 
10.19 
3.24 

 
0.91-113.55 
3.24-29.24 

 
0.059 
0.294 

 
18 
7.71 

 
1.69-191.51 
0.92-64.53 

 
0.017* 
0.059 

 
4.63 
4.38 

 
0.34-63.51 
0.48-40.23 

 
0.252 
0.192 

BCG vaccinated 0.30 0.08-1.13 0.075 0.35 0.09-1.42 0.142 0.29 0.09-0.98 0.047* 0.24 0.05-1.20 0.082 

Tachypnoea
a
 1.57 0.18-14.11 0.687 - - - 1.09 0.20-5.97 0.920 - - - 

Table 6.17 Factors influencing “high” vs “low” af-LB count 

 af-LB counts TLB counts 

Variable Estimate St Error Adjusted R
2
 p-value Estimate St Error Adjusted R

2
 p-value 

log10CFU/ml count -3.744 1.708 0.060 0.032* -4.209 1.949 0.058 0.035* 

TTP (Days) 2.484 1.105 0.063 0.028* 4.421 1.165 0.183 <0.001* 

TTP/log10CFU ratio 15.402 4.895 0.143 0.003* 18.698 5.513 0.165 0.001* 

Table 6.18 Baseline bacillary load and af-LB/TLB counts

                                                           
a
 Tachypnoea=Respiratory rate>30 breaths per minute during baseline assessment 
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Figure 6.23 Relationship between DTP/log10CFU ratio and LB counts 

TTP/log10CFU ratios for each sample may give an indication of M tuberculosis metabolic activity 

corrected by bacillary load. Higher ratios indicate reduced oxygen consumption by bacteria in the 

sample. The relationship between af-LB or TLB counts and TTP/log10CFU ratios suggests that LB 

positivity correlates with metabolic quiescence. 

Association between baseline LB counts and treatment response 

10 patients whose baseline sputum samples were used for LB counting went on have 

unfavourable clinical outcomes. 59 had favourable outcomes. Logistic regression showed 

no relationship between final outcome or two month culture status and baseline af-LB or 

TLB counts (Table 6.19). Similarly, there was no association between baseline LB counts and 

any of the bacillary elimination rate parameters derived from mixed effects modelling of 

MGIT or SSCC data (analysis not shown). 

 Treatment Response OR 95% CI p-value 

Final clinical outcome 
Unfavourable 
N=10 

Favourable 
N=59 

   

Af-LB count (median,range) 22 (0-67) 30 (0-79) 1.00 0.97-1.03 0.928 

TLB, % (median, range) 40 (3-71) 34 (2-98) 1.00 0.97-1.03 0.828 

2 month culture status
a
 

Positive 
N=23 

Negative 
N=39 

   

Af-LB count (median,range) 36 (0-78) 24 (0-75) 1.01 0.99-1.04 0.306 

TLB, % (median, range) 39 (3-83) 30 (2-98) 1.01 0.98-1.03 0.515 

Table 6.19 Relationship between treatment outcome and baseline LB counts 
a
7 patients whose samples were used in the ALTR sub-study had contaminated sputum cultures at 2 

months, so only 62 2 month culture outcomes were available (23 positive and.39 negative). 
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6.5.3 Serial ALTR counts 

As baseline LB counts did not correlate with treatment response, it was important to study 

changes in the proportion of LB+ organisms in serial samples collected during therapy. 109 

samples from 38 patients (mean number of samples per patient: 2.86) were assessed. 

Clinical and demographic features of patients in this sub-study were similar to those of the 

overall cohort. The choice of samples for serial analysis is shown in Figure 6.24. 

 

a
AFB smear ‘++’ and’+++’ samples collected after baseline were eligible for inclusion 

Because smear positivity declines quickly after the first two weeks (Figure 6.3A), all eligible 

samples after baseline were collected between S1 and S3 visits (day 2, 4, 14, 21 and 28, 

depending on sampling block). 

Figure 6.25A and Table 6.20 summarise af-LB counts at each visit. The median baseline af-

LB count amongst patients included in serial sample analysis was 27% (range: 0-75%) and 

the median af-LB count at S3 was 25% (range: 4-64%) implying a small drop in the 

proportion of LB+ AFB in expectorated sputum after drug exposure. However, when the 

data are evaluated according to treatment response patients who went on to have 

unfavourable outcomes developed progressively higher af-LB counts compared to patients 

who went on to have favourable outcomes. On logistic regression, the odds ratio for an 

unfavourable outcome on the basis of S3 af-LB count is not statistically significant for this 

small cohort but the trend is striking (OR: 1.21, 95%: 0.97-1.50, p=0.088). The TLB count 

data follow a similar pattern (6.25B and Table 6.21). 

Figure 6.24 Selection of samples for serial ALTR microscopy analysis 

10 patients with 
unfavourable outcomes 
submitted eligible  
samplesa 

1 patient excluded 
(unreadable sample 
images) 

9 patients with 
unfavourable outcomes 
included in serial analysis 

30 patients with 
favourable outcomes 
and eligible samplesa 
were randomly selected  

1 patient excluded 
(unreadable sample 
images) 

29 patients with 
favourable outcomes 
included in serial analysis 
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Figure 6.25 Changes in af-LB and TLB counts during therapy 

 af-LB counts, % (median, range) 

OR 95% CI 
p-
value 

All 
patients 
N=29 

Patients with 
unfavourable outcomes 

N=9 

Patients with 
favourable outcomes 
N=29 

BL visit 27 (0-75) 16 (0-67) 31 (4-75) 0.99 0.95-1.03 0.562 

S1 36 (0-91) 35 (16-91) 37 (0-61) 1.02 0.98-1.06 0.397 

S2 28 (0-78) 38 (10-78) 28 (0-62) 1.03 0.99-1.08 0.130 

S3 25 (4-64) 52 (35-64) 20 (4-44) 1.21 0.97-1.50 0.088 

Table 6.20 af-LB counts at BL-S3 visits 

 Median T-LB count (%) 

OR 95% CI 
p-
value 

All 
patients 
N=29 

Patients with 
unfavourable outcomes 

N=9 

Patients with 
favourable outcomes 
N=29 

BL visit 37 (3-79) 39 (3-71) 36 (6-79) 0.99 0.96-1.04 0.946 

S1 42 (2-91) 43 (18-91) 41 (2-63) 1.01 0.97-1.06 0.614 

S2 33 (0-82) 51 (12-82) 30 (0-75) 1.03 0.99-1.08 0.137 

S3 33 (4-68) 59 (40-68) 25 (4-52) 1.18 0.98-1.42 0.079 

Table 6.21 TLB counts at BL-S3 visits 
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A mixed effects model may be fit to the serial af-LB and TLB data to evaluate dynamic 

changes in LB counts for each patient. Figure 6.26 is a spaghetti plot of serial af-LB counts 

from day 0-28 and Table 6.22 summarises LME model parameters for these data. BLUEs of 

the slope can be extracted for each patient and used to represent the change in proportion 

of LB+ AFB in expectorated sputum during early therapy. Figure 6.27 indicates that af-LB 

counts increased by a median of 0.21% (range: -3.17% to 4.81%) per week in patients who 

had unfavourable final outcomes and decreased by a median of -0.52% (range: -3.72% to 

3.60% per week) in patients who achieved stable cure. The OR for an unfavourable 

outcome for each percentage increase in af-LB count per week was 1.44 (95% CI: 0.95-2.18, 

p=0.085). The same modelling strategy with TLB counts yielded a similar result (data not 

shown). 

 

Figure 6.26 Spaghetti plot of change in af-LB (%) count 

LME model fit by maximum likelihood 
Model fit 
AIC : 963.5112 
 

Fixed effects: af-LB~Weeks on treatment 
 Value Std. Error p-value 
Intercept 32.196 2.973 <0.001 
Slope  0.13 1.726 0.9417 
 

Random effects: ~Week|Patient 
Intercept 13   
Slope 4.351   
Residual 15.584   
    

 
Table 6.22 af-LB LME model parameters 

 
Figure 6.27 Association between change in af-LB count and treatment outcome 
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As with the earlier analysis, these trends towards poor long-term treatment response in 

patients with increasing LB counts are interesting, even if they did not reach statistical 

significance in this small sub-study. The findings are consistent with LBs as a phenotypic 

marker of bacillary persistence during anti-TB chemotherapy and warrant further 

investigation in larger cohorts.  

6.6 Discussion 

For management of individual patients, sputum smear conversion is the simplest and 

cheapest laboratory method of treatment monitoring but standard microscopy methods 

cannot distinguish between viable and killed organisms592. In this study, 16-20% of patients 

with positive 2 month ZN or AP smears had favourable final outcomes, showing that 

persistent smear positivity over-estimates the risk of treatment failure or relapse. Prior 

studies have reported similar results29,358,593. Alternative microscopy stains (e.g. FDA594) may 

more selectively discriminate between live and dead AFB but have not entered routine 

practice. The possibility that new molecular technologies (e.g. the Xpert MTB/RIF assay) 

have a role in assessment of sputum samples during treatment requires detailed 

assessment. 

Sputum culture status at 2 months is the commonest surrogate marker for Phase IIb clinical 

trials but reports of its validity and efficacy are mixed, and may depend on the choice of 

bacteriological method. In this study, 2 month positivity on SSCC plates was a better 

predictor of outcome than positivity in MGIT liquid culture, perhaps because later culture 

conversion with the MGIT method generates more positive S4 results and reduces 

specificity to detect failure or relapse. Previous data have shown that less sensitive media 

(LJ slopes227 or SSCC plates228) are more likely than liquid culture225,226 to differentiate 

between treatment regimens in 8 week trials based on binary end-points. This suggests 

that a high bacillary load cut-off is preferable when binary end-points are used, but such an 

approach still precludes pharmacodynamic assessment of treatment response over the 

entire study period. 

Description of baseline bacillary load by SSCC and MGIT was undertaken prior to modelling 

of bacterial elimination over time. A median of 6.19 log10 CFU/ml of sputum and a median 

TTP of 4 days indicated a high pre-treatment burden of M tuberculosis organisms in the 

study cohort. This is consistent with other descriptions that the bacterial load at diagnosis 
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is higher in African patients than those from other regions357. Higher bacillary loads were 

associated with more extensive radiological disease.  

There was no relationship between baseline colony count or TTP and final clinical outcome, 

contrasting published reports that high pre-treatment bacillary load is a risk factor for 

unfavourable outcomes. However, enrolment to the study required smear ‘++’ or ‘+++’ 

sputum samples, limiting bacteriological heterogeneity at baseline. If smear ‘+’ or ‘scanty’ 

patients had been included, associations between baseline colony count/TTP and outcome 

might have emerged. 

SSCC-NLME modelling was complicated by a high proportion of missing data due to plate 

contamination and early culture conversion. However, a bi-exponential model was 

successfully fitted to the dataset, supporting Mitchison’s long-standing hypothesis that 

metabolically active (Population A) and persister (Population B) organisms are cleared at 

different rates during combination chemotherapy. Extraction of best unbiased estimates of 

model parameters for each patient failed to show relationships with study end-points when 

only positive data-points were used, but incorporation of a partial likelihood method to 

estimate colony counts for samples below the limit of laboratory detection showed that 

patients with larger baseline persister populations (higher BInt) and faster persister 

elimination (β) were more likely to have unfavourable outcomes. This demonstrates the 

benefit of including information of bacteriological clearance after the threshold of culture 

conversion, but further work is needed to ascertain the most satisfactory means of 

representing the missing data. 

TTP-LME modelling was more straightforward; the laboratory method was easier with 

fewer contaminated specimens, culture conversion occurred later creating a larger dataset 

and a linear function could be fit to the data which was simple to interpret. The most 

striking feature of the LME analysis was that the slope (b) of all three tested models 

generated a MBER that strongly predicted clinical outcome. If this convincing result is 

replicated in other cohorts then the MBER from TTP-LME modelling may become a 

validated early surrogate of TB treatment response with the potential to improve the 

power of Phase IIb clinical trials of new anti-TB regimens.   

Two additional observations are important regarding the TTP-LME method. Firstly, neither 

HIV parameters nor radiological extent of disease influenced the MBER, suggesting that any 

variability in the pharmacodynamic response attributable to these factors is incorporated 
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by the mixed effects structure of the analysis. On this basis, these covariates are unlikely to 

confound the results of clinical trials analysed by LME methods, permitting unselected 

recruitment of HIV-infected and un-infected individuals with or without CXR cavities.     

Secondly, this study describes a much stronger predictive effect of serial TTP measurement 

than previously published reports. Review of the prior studies (summarised in Section 

1.10.3) reveals that one was limited to drug resistant TB297, one used TTP measurements 

from the first 2 weeks only298, and the only one to include follow-up beyond 2 months was 

a retrospective evaluation with incomplete long-term data. TTP was also assessed at 

individual time-points rather than as a continuously modelled variable300,301.  Careful 

combined selection of extended sampling schedule, post-treatment follow-up and 

appropriate statistical methods may be required for effective use of MGIT-TTP as a 

surrogate marker of final outcome.  

The current study facilitated direct comparison of SSCC and MGIT data from many samples 

collected at an extended range of visits. Earlier culture conversion on solid media than in 

liquid broth is well documented228,232, particularly in African cohorts357. However it is 

unclear whether extended viability of bacilli in liquid cultures occurs because broth revives 

a distinct population of persister bacilli which is unsupported on plate agar. Several authors 

have argued that media formulations vary in their ability to revive non-replicating 

organisms283,343,346 and further information on persisters may be obtained by studies which 

inoculate the same specimens in different media.  

It has recently been shown that there is a strong inverse correlation in clinical samples 

between log10CFU/ml counts and TTP281,289,290 but that the relationship weakens in the 

second month of therapy290. The data in this chapter agree with these findings, and 

propose that diminishing correlation over time occurs because later samples contain a 

higher proportion of persisters whose oxygen consumption depends more on the 

metabolic activity of each cell than the total number of organisms. This hypothesis supports 

the concept of metabolically quiescent persisters and illustrates that combined use of 

different quantitative culture methods allows novel insights into bacillary behaviour under 

drug pressure. 

The work on the LAM-ELISA demonstrated limitations of this technique; its utility is limited 

to a sub-set of HIV-infected patients (56% of those with a positive HIV test in this cohort). 

Log10OD readings fell with time on therapy and some data could be interpreted to suggest 
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that LAM excretion is quantitatively linked to bacillary burden but the association with 

sputum bacterial load was inconsistent and it was ultimately unsurprising that there was no 

relationship between LAM-ELISA result and treatment outcome for smear positive PTB. 

Although pulmonary containment of organisms reduces the value of urinary LAM 

measurement in patients without severe immunosuppression, the importance of 

disseminated disease in those with advanced HIV infection (e.g. CD4 count ≤50 cells/µl) 

should not be disregarded as there is evidence that the LAM-ELISA is useful for detection of 

EPTB (including mycobacteriuria339) in these individuals335-338,595,596, who are commonly 

sputum smear negative.  As post-treatment relapse may be higher in HIV-infected 

individuals20-23 and extra-pulmonary sanctuary sites may contribute to long-term bacillary 

persistence209,210, development and optimisation of assays to monitor the treatment 

response of extra-pulmonary organisms is still required. 

The most novel, technique described in this chapter is ALTR microscopy which was also 

evaluated as a sub-study. Variable LB positivity and the probable detection of non-acid fast 

bacilli in baseline sputum samples confirmed that phenotypically distinct populations of M 

tuberculosis organisms exist during clinical infection. Higher TTP/log10CFU ratios in samples 

with higher af-LB and TLB counts indicated that the LB positive phenotype is metabolically 

quiescent, and trends towards unfavourable outcomes in patients with increasing 

proportions of af-LB and TLB cells during therapy supported the hypothesis that LB positive 

organisms are implicated in the phenomenon of drug tolerant persistence which currently 

thwarts development of ultra-short anti-TB chemotherapy. 

There were a number of limitations of ALTR microscopy. The number of patients assessed 

was small and results from serial samples were not quite statistically significant. The assay 

was performed on stored, frozen sputum and it is not known whether intracellular lipid 

metabolism is affected by the freeze-thaw cycle. Slide reading was subjective and 

predominantly done by the study PI. All images were blinded prior to analysis but 

assessment of larger patient cohorts with independent image interpretation is required to 

validate conclusions on the importance of LB positivity. Even under optimal conditions, 

ALTR microscopy requires smear positive slides and as sputum smears generally turn 

negative at bacillary loads <103 organisms/ml597,598 the capacity of this method to identify 

small populations of persisters after the first 4 weeks of therapy may always be 

compromised.  
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Overall, the data presented in this chapter are important. A role has been proposed for 

TTP-LME modelling in the generation of new surrogate markers for Phase IIb studies and 

validation of the MBER as a predictor of treatment outcome would be a major advance in 

clinical trials methodology. Additionally, the ALTR microscopy work has provided 

preliminary evidence that single techniques may identify phenotypically distinct bacillary 

sub-populations with suitable characteristics for drug-tolerant persistence.  
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7.  Pharmacokinetics 

7.1 Introduction 

Complete assessment of responses to TB therapy requires pharmacokinetic data. Inter-

patient variability in drug exposure has previously been described for anti-TB drugs and 

may have implications for bacillary clearance and treatment outcome.  

In line with WHO recommendations, the Malawian NTP provides anti-TB therapy for adults 

as FDC tablets599, with dosing according to weight bands (Table 2.3). However, individual 

patients still receive different mg/kg of doses of each drug. Furthermore, there are 

inconsistencies in the bioequivalence of anti-microbial compounds (especially rifampicin) 

between FDC tablets600. Excipients in some formulations may non-specifically adsorb the 

active compounds and some FDC tablets may be of sub-optimal quality400,426. Measurement 

of drug concentration was required to confirm that study patients (particularly those with 

unfavourable outcomes) were dosed appropriately and had detectable plasma drug levels.  

Despite several decades of clinical experience with the current first-line drugs, target 

therapeutic concentrations for treatment of clinical TB disease are undefined, as large 

studies providing pharmacokinetic data combined with treatment outcome are lacking. 

Nevertheless, low concentrations of some drugs have been described in African 

populations400,411,412 and associations have been between observed between inadequate 

exposure to the sterilising effects of rifamycins or pyrazinamide and unsuccessful 

treatment401-403.  

This chapter provides a non-compartmental analysis of key pharmacokinetic parameters 

(Cmax and AUC) for all four first line anti-TB drugs in Malawian adults. Clinical factors 

contributing to variability in drug exposure are evaluated, and the effect of this variability 

on pharmacodynamic measures of bacillary elimination and final clinical outcome is 

assessed. 
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7.2 Methods 

Intensive pharmacokinetic studies require blood sampling on several days at multiple time-

points from 0-24 hours after drug administration. This was impractical for the purposes of 

the current study so patients were sampled at 0, 2 and 6 hours during a single (S2 or S3) 

visit as described in Section 2.6.2. Sparse sampling strategies have previously been 

advocated for population pharmacokinetic studies421 and therapeutic drug monitoring601,602 

of TB patients. 

7.2.1 Drug assays 

Plasma samples were stored at -70oC in the MLW laboratory, shipped to the Clinical 

Pharmacology laboratory at LSTM and heat-inactivated before bio-analysis. Sample 

preparations were conducted in a darkened room. Rifampicin concentrations were 

measured by a liquid chromatographic/tandem mass spectrometry (LC/MS/MS) method603.  

Pyrazinamide concentrations were measured by HPLC using an Ultraviolet visible (UV-Vis) 

absorption detector. Isoniazid and ethambutol concentrations were measured using a two 

drug LC/MS/MS technique604.  

For all methods, drug dilutions in blank plasma were used to generate standard curves for 

peak area ratios (PARs) of drug/internal standard on the chromatogram over an 

appropriate concentration range. Concentrations of anti-microbial agents in clinical 

samples were calculated from their PARs against the calibration line. Drug levels below the 

limit of detection were omitted. Sample runs included quality control specimens with high, 

medium and low drug concentrations to ensure consistency of operating conditions.  

The assays used to quantify plasma concentrations of each anti-TB drug, including 

calibration curve ranges and analyte concentrations for quality control specimens are 

summarised in Table 7.1 and full details are provided below. 

Analyte Method Internal standard 

Calibration 
curve  
range 
(µg/ml) 

Analyte concentrations for 
quality control specimens 

(µg/ml) 

Low Medium High 

Rifampicin  LC/MS/MS 
250ng/ml rifapentine in 
acetonitrile/methanol 
[50:50, v/v]) 

0.025-6.40 0.075 0.6 4.8 

Pyrazinamide  HPLC-UV-Vis 
acetazolamide 10µg/ml 
in acetyl nitrate 

2.5-80 8  38 64 

Isoniazid  

LC/MS/MS 

methanol containing 
200ng/ml metformin 

0.001-5 0.04 2 4 

Ethambutol 0.001-5 0.06 2 4 

Table 7.1 Standard curve and quality control specimens for TB drug assays 
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LC/MS/MS method to determine rifampicin concentration 

For drug extraction, 100µl of standard curve, quality control and clinical samples were 

added to 300µl of the internal standard and vortex-mixed for 20 seconds. Samples were 

spun at 16,200 x g for 25 minutes and supernatants were transferred to glass autosampler 

vials. 50µl aliquots were injected onto the HPLC column and eluted with a mobile phase of 

acetonitrile containing formic acid. Quantification was achieved by MS-MS detection in 

positive ionisation mode for both rifampicin and the internal standard. MS operating 

conditions were optimized as follows: the spray voltage was 4500V with a tube lens voltage 

of 124V and skimmer offset of 0V. The capillary temperature was set to 275oC. Nitrogen 

was the sheath gas (40psi) and auxiliary gas (25psi). Argon was the collision gas at a 

pressure of 1.5 mTorr (1 Torr = 133.3Pa). The optimized collision energies for rifampicin 

and the internal standard were 10 and 30eV, respectively. Detection of the ions was 

performed in the multiple reaction monitoring mode using transitions of m/z 823.4 to 

791.4 for RIF and m/z 877.4 to 150.8 for the internal control. Data acquisition was 

performed using Xcalibur 1.3 software (Thermo Electron Corporation, Hemel Hepstead, 

UK). Peak integration and calibrations were performed using LC QuanTM software (Version 

2.5.6, Thermo Electron Corporation, Hemel Hempstead, UK). 

HPLC method to determine pyrazinamide concentration 

For drug extraction, 100µl of each sample were added to 200 µl of the internal standard, 

vortexed for 10 seconds and spun for 10 minutes at 17,000 x g.  250µl of supernatant were 

pipetted into a clear dry tube and evaporated to dryness under a stream of nitrogen at 

30oC. 200µl of 95/5 water (0.06% TFA)/acetonitrile was then added to each dried sample 

and vortex mixed for 10 seconds to dissolve the extract. For quantification, 60µl of 

reconstituted specimens were injected onto a Shimadzu LC 2010 HT HPLC system with 

wavelength detection at 268nm. The compounds were separated on a HyPURITY C18 250 x 

4.6mm, 5µm column (Thermohypersil) protected by a LiChrospher 100 RP-18 (5µm) column 

with a mobile phase of 95/5 water (0.06% TFA)/acetonitrile. Data on peak chromatogram 

areas for pyrazinamide and the internal standard were acquired using Chromeleon (Dionex) 

software. 

LC/MS/MS method to determine isoniazid and ethambutol concentrations 

For drug extraction, 400µl of internal standard-precipitation solvent were added to 100µl 

of each sample, vortexed for 2 minutes and spun at 2000 x g for 5 minutes to remove the 

protein precipitate.  The supernatant was transferred into a glass tube containing 200µl of 
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water, vortex-mixed with 2ml of dichloromethane for 1 minute and centrifuged at 2000 x g 

for 5 minutes. A 100µl aliquot of this supernatant was transferred to another tube and 

evaporated to dryness under nitrogen at 45oC. The extract was dissolved in 200µl of the 

mobile phase (methanol/water/formic acid [10:90:0.3, v/v/v]). For quantification, a 10µl 

aliquot of the final solution was injected for LC/MS/MS. Operating conditions were 

optimized as following: the spray voltage was 4500 V with a tube lens voltage of 65V 

skimmer offset of 0V. The capillary temperature was set to 250oC. Nitrogen was the sheath 

gas (15psi) and auxiliary gas (20psi). Argon was the collision gas at a pressure of 1.5mTorr. 

Ion Detection was performed in single reaction monitoring mode with optimized collision 

energies and transitions as shown in Table 7.2. Data acquisition was performed with the 

software described for the rifampicin LC/MS/MS assay. 

Analyte m/z Parent Ion m/z Product Ion Collision Energy (eV) 

Metformin (IS) 130.190 60.410 13 

Metformin (IS) 130.190 71.340 22 

Isoniazid 138.160 79.293 32 

Isoniazid 138.160 121.049 13 

Ethambutol 205.190 116.100 14 

Table 7.2 SRM conditions of isoniazid and ethambutol measurement by LC/MS/MS 

7.2.2 Statistical analysis 

Weight-adjusted doses were calculated for each patient by dividing the milligrams of drug 

administered in FDC tablets by weight in kg. These were compared with WHO 

recommended dose ranges (rifampicin: 8-12mg/kg, isoniazid: 4-6mg/kg, pyrazinamide: 20-

30mg/kg and ethambutol: 15-20mg/kg) 30 to assess whether patients were dosed correctly.  

Plasma drug concentrations at two (C2hr) and six (C6hr) hours post-dose were determined 

directly from concentration-time data. From Table 1.6, the expected Tmax is 1-2 hours for 

rifampicin, isoniazid and pyrazinamide and 2-3 hours for ethambutol so normal absorption 

of all drugs is reflected by C2hr > C6hr. The number of patients with this pharmacokinetic 

profile was reported for each drug. The C2hr of these profiles was the best available 

estimate of Cmax and the AUC0-6hr was calculated using the linear trapezoid rule. Profiles 

indicating delayed drug absorption (C6hr > C2hr) were not analysed because an approximate 

measure of Cmax could not be obtained, and interpretation of the AUC0-6hr was impossible.  

 Given the absence of data on target therapeutic concentrations for anti-TB therapy it was 

difficult to select reference standards for interpretation of C2hr and AUC0-6hr results. 

However, published definitions of low and very low Cmax have been derived from the 
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distribution of measurements amongst healthy Western volunteers414,603 and are shown in 

Table 7.3. These values were used to study C2hr results as categorical variables. For AUC0-6hr 

there are no published low or normal values. Based on the distribution of the current 

dataset, categorical analysis of relationships between AUC0-6hr results and treatment 

response was tested at several arbitrary thresholds for each drug. The following thresholds 

were selected for data presentation; rifampicin <25 µg/ml.hr, isoniazid <15 µg/ml.hr, 

pyrazinamide <200 µg/ml.hr and ethambutol <15 µg/ml.hr.   

Drug Low Cmax (µg/ml) Very low Cmax (µg/ml) 

Rifampicin <8 <4 

Isoniazid <3 <2 

Pyrazinamide <35 <20 

Ethambutol <2 <1 

Table 7.3 Published low and very low Cmax values for anti-TB drugs 

Additionally, C2hr and C6hr concentrations from Malawian patients were compared directly 

with values previously obtained from population pharmacokinetic studies by McIlleron in 

South Africa400 and Tappero in Botswana400,414. This approach was imperfect as patient 

recruitment, dosing regimens and bio-analytical techniques were not standardised across 

the cohorts but it allowed the pharmacokinetic parameters of the current project to be 

contextualised against TB patients in similar clinical environments.     

The effect of clinical and radiological covariates on C2hr and AUC0-6hr values for each drug 

was assessed by multivariate linear regression according to methods previously described.  

PK-PD relationships between the pharmacokinetic parameters of each drug and several 

measures of treatment response were examined. Logistic regression was used to relate 

drug exposure to categorical treatment end-points (final clinical outcome and or the 

traditional surrogate marker of 2 month culture status). Linear regression was used for 

analyses using the newly proposed surrogate efficacy markers of rate co-efficients from 

SSCC-NLME and TTP-LME modelling. 

Best estimates of the rate of change in af-LB counts over time on therapy were extracted 

for each patient included in the LME model constructed during the serial ALTR microscopy 

sub-study (Section 6.5.3, Table 6.22). Wilcoxon and Kruskal-Wallis tests were used to 

establish whether low or very low levels of one or more anti-TB drugs affected temporal 

trends in af-LB counts. 

Analyses were done in R Version 2.15.2 using “PK”, “epicalc” and “nlme” packages. 
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7.3 Results 

7.3.1 Drug dosing and pharmacokinetic sample collection 

126/133 (95%) patients who reached a final study end-point provided plasma for 

pharmacokinetic analysis. Weight-adjusted doses met or exceeded the WHO 

recommended range for 122 (97%) patients with rifampicin and isoniazid, 125 (99%) 

patients with pyrazinamide and 119 (92%) patients, with ethambutol.  

 

Figure 7.1 Weight adjusted doses of anti-TB drugs achieved with FDC tablets 

 

As absorption, particularly of rifampicin, is reduced by food consumption, patients were 

instructed to fast from the evening before the pharmacokinetic study visit until blood 

sampling at 2 hours post-doses. The median duration of fast prior to drug administration 

was 13.17 (range 11.25-16.12) hours.  
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7.3.2 Pharmacokinetic parameters of anti-TB drugs 

Rifampicin 

113/126 (89%) patients had normal rifampicin absorption profiles and were used for 

pharmacokinetic analysis. Individual patient profiles are shown in Figure 7.2A. The median 

C2hr was 5.50 (range: 0.73-12.48) µg/ml. The distribution of results is shown in Figure 7.2B. 

64 (56%) patients had low C2hr rifampicin concentrations and 34 (30%) had very low 

concentrations, compared to reference Cmax levels from healthy volunteers. The median 

AUC0-6hr was 19.80 (range: 2.43-41.75) µg/ml.hr and 82 (73%) patients had an AUC0-6hr <25 

µg/ml.hr. The distribution of results is shown in Figure 7.2C.  

Figure 7.2D compares median C2hr and C6hr plasma rifampicin concentrations from the 

current study on Malawian adults with the comparator populations from Botswana and 

South Africa. Rifampicin concentrations measured in Malawi were similar to those from 

other African cohorts. The median C2hrs from all cohorts was lower than the published 

reference Cmax level suggesting that individuals with active TB absorb or metabolise 

rifampicin differently from healthy controls. 

Isoniazid 

118/126 (94%) patients with normal isoniazid absorption profiles were used for 

pharmacokinetic analysis. Individual profiles are shown in Figure 7.3A. The median C2hr for 

isoniazid was 2.94 (range: 0.85-5.99) µg/ml. The distribution of results is shown in Figure 

7.3B. 35(30%) patients had low C2hr isoniazid concentrations and 24 (20%) had very low 

concentrations, compared to reference Cmax levels. The median AUC0-6hr was 11.50 (range: 

2.69-25.02) µg/ml.hr and 82 (71%) patients had an AUC0-6hr <15 µg/ml.hr. The distribution 

of results is shown in Figure 7.3C. 

Figure 7.3D compares median C2hr and C6hr plasma isoniazid concentrations from the 

current study on Malawian adults with the prior population pharmacokinetic data. Isoniazid 

concentrations measured in Malawi were similar to those measured in Botswana, but 

lower than those in South African. Although the median C2hr from three of the four 

populations was lower than the published reference Cmax level, the frequency and extent of 

low concentrations was less for isoniazid than rifampicin. 
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Figure 7.2 Pharmacokinetic parameters for rifampicin 

A: Profiles of patients with normal rifampicin absorption. B: Distribution of C2hr concentrations, indicating patients with very low (white bars), low (grey) and normal (dark 
grey) levels according to published Cmax reference values. C: Distribution of AUC0-6hr concentrations. D: Median C2hr and C6hr concentrations from the current study, 
compared to studies in similar settings. E: Number (%) of patients with low/very low Cmax in African studies. For the current cohort C2hr is the best available estimate of Cmax. 
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Figure 7.3 Pharmacokinetic parameters for isoniazid 

A: Profiles of patients with normal isoniazid absorption. B: Distribution of C2hr concentrations, indicating patients with very low (white bars), low (grey) and normal (dark 
grey) levels according to published Cmax reference values. C: Distribution of AUC0-6hr concentrations. D: Median C2hr and C6hr concentrations from the current study, 
compared to studies in similar settings. E: Number (%) of patients with low/very low Cmax in African studies. For the current cohort C2hr is the best available estimate of Cmax.
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Pyrazinamide 

118/126 (94%) patients with normal pyrazinamide absorption profiles were used for 

pharmacokinetic analysis. Individual profiles are shown in Figure 7.4A. The median C2hr for 

pyrazinamide was 37.37 (range: 20.24-62.79) µg/ml. The distribution of results is shown in 

Figure 7.4B. 46 (40%) patients had low C2hr pyrazinamide concentrations compared to the 

reference Cmax but none had very low concentrations. The median AUC0-6hr was 167.70 

(range: 82.94-301.80) µg/ml.hr and 88 (78%) patients had an AUC0-6hr <200 µg/ml.hr. The 

distribution of results is shown in Figure 7.4C. 

Figure 7.4D compares median C2hr and C6hr plasma pyrazinamide concentrations from the 

current study on Malawian adults with the comparator African data. Pyrazinamide 

concentrations measured in Malawi were lower than those measured in both other 

cohorts, but in all of the studies the frequency and extent of low concentrations was less 

for pyrazinamide than either rifampicin or isoniazid. 

Ethambutol 

104/126 (83%) patients with normal ethambutol absorption profiles were used for 

pharmacokinetic analysis. Individual profiles are shown in Figure 7.5A. The median C2hr for 

ethambutol was 2.54 (range: 1.07-9.75) µg/ml. The distribution of results is shown in Figure 

7.5B. 24 (23%) patients had low ethambutol C2hr results compared to the reference Cmax 

but none had very low concentrations. The median AUC0-6hr was 10.68 (range: 4.76-35.68) 

µg/ml.hr and 87 (84%) patients had an AUC0-6hr <15 µg/ml.hr. The distribution of results is 

shown in Figure 7.5C. 

Figure 7.5D compares median C2hr and C6hr plasma ethambutol concentrations from the 

current study on Malawian adults with the comparator African data. Ethambutol 

concentrations measured in Malawi were similar to those measured in other cohorts. A low 

median C2hr concentration was reported from Botswana, but overall, like pyrazinamide, the 

frequency and extent of low concentrations was less for ethambutol than either rifampicin 

or isoniazid. 
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Figure 7.4 Pharmacokinetic parameters for pyrazinamide 

A: Profiles of patients with normal pyrazinamide absorption. B: Distribution of C2hr concentrations, indicating patients with very low (white bars), low (grey) and normal 
(dark grey) levels according to published Cmax reference values. C: Distribution of AUC0-6hr concentrations. D: Median C2hr and C6hr concentrations from the current study, 
compared to studies in similar settings. E: Number (%) of patients with low/very low Cmax in African studies. For the current cohort C2hr is the best available estimate of Cmax.
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Figure 7.5 Pharmacokinetic parameters for ethambutol 

A: Profiles of patients with normal ethambutol absorption. B: Distribution of C2hr concentrations, indicating patients with very low (white bars), low (grey) and normal (dark 
grey) levels according to published Cmax reference values. C: Distribution of AUC0-6hr concentrations. D: Median C2hr and C6hr concentrations from the current study, 
compared to studies in similar settings. E: Number (%) of patients with low/very low Cmax in African studies. For the current cohort C2hr is the best available estimate of Cmax.
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Concurrent low and very low drug concentrations 

As the C2hr of each first-line anti-TB drug was below the published reference range in some 

individuals, the incidence of concurrently low concentrations of multiple agents was 

assessed. 92/126 (73%) patients had normal absorption profiles for all four drugs and were 

used for this analysis. Table 7.4 shows the number of patients with low or very low C2hr of 

multiple drugs and Figure 7.6 shows frequencies of drug combinations which were 

concurrently low. 

59 (64%) patients had low C2hr concentrations of >1 drug and 8 (9%) patients had low C2hr 

concentrations of all drugs. Concurrent very low C2hr concentrations of more than one drug 

were observed in 6 (7%) patients and in each of these cases rifampicin and isoniazid were 

the implicated agents.  

Number of drugs Low C2hr concentration 
n=92 

Very low C2hr concentration 
n=92 

None, n (%) 8 (9) 51 (55) 

One, n (%) 25 (27) 35 (38) 

Two, n (%) 30 (32) 6 (7) 

Three, n (%) 21 (23) 0 

Four, n (%) 8 (9) 0 

Table 7.4 Patients with concurrent low and very low drug concentrations 

 

 

Figure 7.6 Combinations of concurrent low and very low drug concentrations 
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7.3.3 Factors influencing pharmacokinetic parameters of anti-TB drugs 

The effects of clinical and radiological covariates on the C2hr and AUC0-6hr of each anti-TB 

drug are shown in Tables 7.5 and 7.6. All factors which exerted a significant effect on the 

C2hr or AUC0-6hr of any agent during univariate or multivariate analysis are displayed.  

On multivariate analysis, male patients had a lower C2hr (p=0.026) and AUC0-6hr (p=0.030) of 

rifampicin. There was a trend towards lower rifampicin C2hr (p=0.086) in HIV-infected 

patients but HIV was not linked to altered pharmacokinetic parameters for isoniazid, 

pyrazinamide or ethambutol. Baseline CD4 counts or co-administration of ART did not 

significantly influence exposure to anti-TB drugs.  

Patients with higher baseline temperature had a lower rifampicin C2hr (p=0.045). 

Lymphadenopathy was associated with lower rifampicin AUC0-6hr (p=0.044) and a strong 

trend towards lower C2hr (p=0.050). Tachypnoea at baseline was associated with lower 

ethambutol C2hr (p=0.023) and AUC0-6hr (p=0.020). There were strong trends towards lower 

ethambutol C2hr (p=0.052) and AUC0-6hr (p=0.058) in patients with greater percentage of 

lung affected on CXR. Collectively, these findings point towards reduced drug exposure in 

patients with more severe clinical disease, although the danger of over-interpreting the 

results of multiple comparisons should be borne in mind. 

No data are tabulated for isoniazid because no covariate had an identifiable effect on 

exposure to this drug. The only factor associated with reduced pyrazinamide exposure was 

lower weight-adjusted dose achieved by FDC tablets.  

 No relationships were observed between the pharmacokinetic parameters of any drug and 

inter-individual variability in quantitative baseline bacillary load (by log10CFU/ml, DTP and 

LAM-ELISA) or LB counts (data not shown).
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Parameter 

Regression co-efficients describing covariate effects on C2hr of rifampicin, pyrazinamide and ethambutol 

Rifampicin Pyrazinamide Ethambutol 

Median C2hr: 5.5 (range: 0.7 to 12.5) µg/ml 
n=113 

Median C2hr: 37.4 (range: 20.2 to 62.8) µg/ml 
 n=118 

Median C2hr: 2.5 (1.1 to 9.8) µg/ml 
 n=104 

Univariate Multivariate Univariate Multivariate Univariate Multivariate 

 Estimate  
(95% CI) 

p-
value 

Estimate 
(95% CI) 

p-
value 

Estimate 
(95% CI) 

p-
value 

Estimate 
(95% CI) 

p-
value 

Estimate 
(95% CI) 

p-
value 

Estimate 
(95% CI) 

p-
value 

Male sex -1.06 (-1.91, -0.21) 0.02* -0.98 (-1.84,-0.12)  0.03* -2.75 (-5.86, 0.37) 0.08 -2.17 (-5.26, 0.93) 0.17 -0.08 (-0.68, 0.51) 0.78 - - 

Uses biomass fuel 
Inside the house 
Outside 

 
-1.31 (-2.69, 0.06) 
-0.36 (-1.24, 0.53) 

 
0.06 
0.43 

 
-1.01(-2.38, 0.36) 

-0.13 (-1.00, 0.74) 

 
0.15 
0.77 

 
1.74 (-3.23, 6.72) 

1.29 (-2.03, 4.61) 

 
0.49 
0.44 

 
- 
- 

 
- 
- 

 
- 
- 

 
- 
- 

 
- 
- 

 
- 
- 

Ever smoked 
cigarettes 

0.61 (-0.36, 1.58) 0.22 - - -2.66 (-6.25, 0.92) 0.14 - - -0.70 (-1.34, -0.05) 0.03* -0.39 (-0.97, 0.20) 0.19 

HIV infection -0.74 (-1.55, 0.06) 0.07 -0.69 (-1.49, -0.10) 0.09 0.81 (-2.19, 3.80) 0.60 - - 0.05 (-0.50, 0.60) 0.87 - - 

CD4 count (cells/µl)
a 0.00 (0.00-0.00) 0.513 - - -0.01 (-0.03, 0.01) 0.21 - - 0.00 (-0.01, 0.00) 0.09 - - 

On ART at PK visit   

All patients 
HIV-infectedb 

 
0.4 (-0.7, 1.4) 
1.00 (-0.10, 2.10) 

 
0.50 
0.08 

 
- 
- 

 
- 
- 

 
-1.19 (-4.92, 2.54) 

-1.99 (-6.26, 2.32) 

 
0.53 
0.36 

 
- 
- 

 
- 
- 

 
0.34 (-0.33, 1.01) 

0.41 (-0.41, 1.23) 

 
0.31 
0.32 

 
- 
- 

 
- 
- 

Weight adjusted 
dose (mg/kg) 

-0.01 (-0.44, 0.41) 0.96 - - 0.69 (0.14, 1.24) 0.01* 0.65 (0.11, 1.2) 0.02* 0.11 (-0.04, 0.27) 0.16 - - 

Lymphadenopathy -1.92 (-3.57, -0.28) 0.02* -1.58 (-3.15-0.00) 0.05 1.71 (-3.75,7.16) 0.54 - - -0.66 (-1.82, 0.50) 0.26 - - 

Baseline temp (oC) -0.53 (-0.89,  -0.16) 0.01* -0.38 (-0.76, -0.01) 0.05* 1.02 (-0.36, 2.39) 0.15 - - 0.10 (-0.16, 0.35) 0.45 - - 

Tachypnoeac -1.09 (-2.21, 0.03) 0.06 -0.61 (-1.71, 0.48) 0.23 1.63 (-2.38, 5.64) 0.42 - - -0.69 (-1.46, 0.08) 0.08 -0.77 (-1.44, -0.11) 0.02* 

% lung affected on 
CXRd 

0.00 (-0.02, 0.03) 0.81 - - 0.00 (-0.09, 0.09) 0.97 - - -0.02 (-0.03, 0.00) 0.05 -0.02 (-0.03, 0.00) 0.05 

Table 7.5 Factors associated with variability in C2hr of anti-TB drugs 

a
 Number of patients with CD4 count in C2hr analysis; for rifampicin n=54, for pyrazinamide and ethambutol n=55 

b
 Number of HIV infected patients in C2hr analysis; for rifampicin n=62, for pyrazinamide n=64, for ethambutol n=55

 

c
 Tachypnoea=Respiratory rate>30 breaths per minute during baseline assessment 

d
 Number of patients with CXR in C2hr analysis; for rifampicin n=102, for pyrazinamide n=103, for ethambutol n=95 
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Parameter 

Regression co-efficients describing covariate effects on AUC0-6hr concentrations of rifampicin, pyrazinamide and ethambutol 

Rifampicin Pyrazinamide Ethambutol 

Median AUC0-6hr: 19.8 (range: 2.4 to 41.7) µg/ml.hr 
n=113 

Median AUC0-6hr: 37.4 (range: 20.2 to 62.8) µg/ml.hr 
n=118 

Median AUC0-6hr: 10.6 (4.8 to 35.7) µg/ml.hr  
n=104 

Univariate Multivariate Univariate Multivariate Univariate Multivariate 

 Estimate  
(95% CI) 

p-
value 

Estimate 
(95% CI) 

p-
value 

Estimate 
(95% CI) 

p-value Estimate 
(95% CI) 

p-
value 

Estimate 
(95% CI) 

p-
value 

Estimate 
(95% CI) 

p-
value 

Male sex -3.56 (-6.74, -0.39) 0.03* -3.58 (-6.80, -0.36) 0.03* -9.09 (-25.24, 7.05) 0.27 - - -0.24 (-2.23, 1.74) 0.81 - - 

Uses biomass fuel 
Inside the house 
Outside 

 
-5.98 (-11.0, -0.91) 

-2.17 (-5.43, 1.1) 

 
0.02* 
0.19 

 
-5.13 (-10.26, -0.00) 

-1.66 (-4.69, 1.79) 

 
0.05 
0.38 

 
1.10 (-24.56, 26.76) 

2.70 (-14.41, 19.80) 

 
0.93 
0.76 

 
- 
- 

 
- 
- 

 
0.51 (-2.49, 3.51) 

-1.09 (-3.09, 0.91) 

 
0.74 
0.28 

 
- 
- 

 
- 
- 

Ever smoked 
cigarettes 

1.93 (-1.69, 5.55) 0.29 - - -10.89 (-29.39, 7.60) 0.25 - - -2.38 (-4.53, -0.22) 0.03* -1.40 (-3.33, 0.53) 0.15 

HIV infection -2.56 (-5.57, 0.45) 0.09 -2.20 (-5.17, 0.78) 0.15 1.40 (-14.03, 16.83) 0.86 - - 0.30 (-1.54, 2.14) 0.75 - - 

CD4 count (cells/µl)
a 0.00 (-0.02, 0.01) 0.677 - - -0.07 (-0.15, 0.01) 0.10 - - -0.01 (-0.02, 0.00) 0.08 - - 

On ART at PK visit   

All patients 
HIV-infecteda 

 
0.82 (-2.93, 4.57) 

2.86 (-1.32, 7.04) 

 
0.66 
0.18 

 
- 
- 

 
- 
- 

 
-12.18 (-31.26, 6.65) 

-15.82 (-38.30, 6.65) 

 
0.21 
0.17 

 
- 
- 

 
- 
- 

 
1.17 (-1.05, 3.40) 

1.31 (-1.51,4.13) 

 
0.30 
0.36 

 
- 
- 

 
- 
- 

Weight adjusted 
dose (mg/kg) 

0.34 (-1.24, 1.92) 0.67 - - 3.27 (0.43, 6.10) 0.02* - - 0.44 (-0.09. 0.97) 0.11 - - 

Lymphadenopathy -7.44 (-13.54,-1.33) 0.02* -6.06 (-11.96, -0.16) 0.04* 5.81 (-22.26, -33.87) 0.68 - - -2.50 (-6.39, 1.39) -0.21 - - 

Baseline temp (oC) -1.68 (-3.05, -0.30) 0.02* -1.10 (-2.50, 0.30) 0.12 4.90 (-2.22, 12.02) 0.18 - - 0.31 (-0.53, 1.16) 0.46 - - 

Tachypnoeab -4.04 (-8.2, 0.11) 0.06 -2.20 (-6.10, 2.10) 0.34 5.97 (-14.78, 26.72) 0.57 - - -2.36 (-4.93, 0.22) 0.07 -2.63 (-4.82, -0.43) 0.02* 

% lung affected on 
CXRc 0.01 (-0.09, 0.11) 0.80 - - -0.03 (-0.48, 0.43) 0.90 - - -0.05 (-0.10, 0.00) 0.05* -0.05 (-0.10, 0.00) 0.06 

Table 7.6 Factors associated with variability in AUC0-6hr of anti-TB drugs 
a
 Number of patients with CD4 count in AUC0-6hr analysis; for rifampicin n=54, for pyrazinamide and ethambutol n=55 

b
 Number of HIV infected patients in AUC0-6hr  analysis; for rifampicin n=62, for pyrazinamide n=64, for ethambutol n=55

 

c
 Tachypnoea=Respiratory rate>30 breaths per minute during baseline assessment 

d
 Number of patients with CXR in AUC0-6hr  analysis; for rifampicin n=102, for pyrazinamide n=103, for ethambutol n=95
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7.3.4 Effect of pharmacokinetic variability on treatment response 

Table 7.7 and 7.8 describe relationships between the C2hr and AUC0-6hr of each drug and 

treatment end-points of 2 month sputum culture status and final clinical outcome. In 

logistic regression analyses, with pharmacokinetic parameters assessed as continuous 

variables, rifampicin exposure did not predict either end-point. Unfavourable final 

outcomes were less likely in patients with a higher isoniazid C2hr or AUC0-6 (p=0.041 and 

p=0.035 respectively). Positive 2 month sputum cultures were less likely in patients with 

higher AUC0-6hr of isoniazid (p=0.045), pyrazinamide (p=0.048) or ethambutol (p=0.046).  

When the pharmacokinetic parameters were analysed as categorical variables, low or very 

low C2hr and low AUC0-6hr were not related to 2 month culture status or final outcome for 

any drug. Additionally, the number of drugs for which concurrently low or very low C2hr 

were measured was not significant (data not shown).  

Linear regression was used to evaluate the influence of plasma drug concentrations on 

bacillary elimination rates extracted from the maximal and partial likelihood SSCC-NLME 

models constructed in Chapter 6.  No relationships with bacterial clearance were identified 

for any drug when C2hr and AUC0-6hr values were assessed as continuous or categorical 

variables, except in the analysis of isoniazid AUC0-6hr. In this case, the effect of a low AUC0-

6hrs (<15µg/ml.hr) on sterilisation phase (β) rate constants is shown in Figure 7.7A and B. 

Whilst inter-individual variability in β estimates from the maximal likelihood model was too 

small to identify any drug effect, analysis of the partial likelihood model suggests that lower 

isoniazid exposure was associated with slower elimination of persister organisms (Figure 

7.7B, p=0.038).   

Table 7.9 and 7.10 show the effect of C2hr and AUC0-6 measurements on MBER estimates 

from all three TTP-MGIT models. The pharmacokinetic parameters were assessed as 

continuous or categorical variables respectively. Once again, the AUC0-6hr of isoniazid was 

the only important parameter. On the continuous scale, a higher AUC0-6hr value was linked 

with a trend towards a faster MBER in the alternative model (p=0.076). In the categorical 

analysis (illustrated in detail in Figure 7.7C-E), an isoniazid AUC0-6hrs <15µg/ml.hr was 

associated with a slower MBER in the alternative model (p=0.040) and there was a trend 

towards the same finding in the partial likelihood model (p=0.068).  
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Drug 
 

Positive 2 month culture 
median (range) 

Negative 2 month culture 
median (range) 

OR of positive 
2 month culture 

95% CI p-value 

Rifampicin 
n positive=31, n negative=72 

C2hr, µg/ml 5.45 (2.32-11.06) 5.49 (1.64-12.48) 0.99 0.82-1.21 0.978 

AUC0-6hr µg/ml.hr  19.63 (8.94-40.98) 19.84 (7.00-41.75) 0.99 0.94-1.04 0.818 

Isoniazid 
n positive=29, n negative=73 

C2hr µg/ml 2.64 (0.88-5.43) 3.29 (0.84-5.99) 0.76  0.54-1.07 0.120 

AUC0-6hr µg/ml.hr 10.67 (3.23-17.81) 12.09 (2.69-25.02) 0.91 0.83-1.00 0.045* 

Pyrazinamide 
n positive =30, n negative=70 

C2hr µg/ml 35.41 (20.24-53.27) 37.26 (22.66-61.38) 0.94 0.88-1.00 0.062 

AUC0-6hr µg/ml.hr 160.51 (82.94-268.86) 177 (109.89-301.80) 0.99 0.97-1.00 0.048* 

Ethambutol 
n positive = 29, n negative= 64 

C2hr µg/ml 2.28 (1.07-5.11) 2.71 (1.16-9.75) 0.69 0.45-1.05 0.080 

AUC0-6hrµg/ml.hr 8.92 (4.93-17.39) 11.12 (5.19-35.78) 0.87 0.77-1.00 0.046* 

Table 7.7 Pharmacokinetic parameters and 2 month culture status 

Only patients with normal absorption profiles and a valid 2 month sputum culture result could be assessed for each drug. The number of patients and the breakdown of 
positive or negative sputum culture results for each PK-PD analysis are shown in italics beneath the drug name. P-values were generated by logistic regression.   

Drug 
 

Unfavourable outcome 
median (range) 

Favourable outcome 
median (range) 

OR of 
unfavourable 
outcome 

95% CI p-value 

Rifampicin 
n unfavourable=14, n favourable =98 

C2hr, µg/ml 5.77 (2.46-11.06)  5.45 (0.73-12.48) 1.12 0.87-1.44 0.366 

AUC0-6hr µg/ml.hr  20.36 (9.34-40.98) 19.80 (2.43-41.75) 1.03 0.96-1.10 0.397 

Isoniazid 
n unfavourable=14, n favourable=101 

C2hr µg/ml 2.55 (0.88-3.84) 3.18 (0.85-5.99) 0.58 0.35-0.98 0.041* 

AUC0-6hr µg/ml.hr 8.78 (3.22-16.19) 12.03 (2.69-25.02) 0.87 0.76-0.99 0.035* 

Pyrazinamide 
n unfavourable=14, n favourable=98 

C2hr µg/ml 36.79 (28.07-51.13) 36.00 (20.24-62.79) 1.02 0.95-1.09 0.675 

AUC0-6hr µg/ml.hr 168.02 (125.53-248.30) 168.28 (82.84-301.80) 1.00 0.99-1.01 0.962 

Ethambutol 
n unfavourable=12, n favourable=91 

C2hr µg/ml 3.06 (1.24-5.11) 2.53 (1.07-9.75) 0.98 0.63-1.53 0.933 

AUC0-6hr µg/ml.hr 11.30 (4.93-18.56) 10.69 (4.76-35.68) 0.99 0.87-1.13 0.902 

Table 7.8 Pharmacokinetic parameters and clinical outcome 

Only patients with normal absorption profiles and a documented final outcome could be assessed for each drug. The number of patients and the breakdown of clinical end-
points for each PK-PD analysis are shown in italics beneath the drug name. P-values were generated by logistic regression.   
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Collectively, these data imply that variability in isoniazid exposure may impact on the 

sterilising activity of TB treatment and final outcome. This is somewhat surprising as 

isoniazid is not generally regarded as a sterilising drug.  As some PK-PD relationships were 

dependent on specific approaches to the handling of missing data, examination of other 

cohorts is required to explore this issue further. 

 

Figure 7.7 Effect of low isonazid AUC0-6hr on bacillary elimination rates 

Boxplots summarise the effect of a low isoniazid AUC0-6hr (<15µg/ml.hr) on pharmacodynamic 
measures of treatment response derived from quantitative bacteriology. P-values were generated 
by linear regression. A: Effect on the sterilisation phase bacillary elimination rate (β) from the 
maximal likelihood (ML) SSCC-NLME model. As previously shown in Figure 6.9, there was little inter-
individual variability in the β rate constant from this model, making the effect of covariates difficult 
to detect. B: Effect on β from the partial likelihood (PL) SSCC-NLME model. Patients with a low 
isoniazid AUC0-6hr had a slower sterilisation phase elimination rate (p=0.038). C-E: Effect on the MBER 
from original, alternative and partial likelihood TTP-LME models. In each case, patients with a low 
isoniazid AUC0-6hr had a slower MBER. The difference was statistically significant for the alternative 
model (p=0.040) and a strong trend was observed in the partial likelihood model (p=0.068). 

The effect of a low AUC0-6hr on bacillary elimination is not displayed for rifampicin, pyrazinamide or 
ethambutol; no important trends or significant relationships were observed for these drugs.  
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Drug Regression co-efficient describing effect of pharmacokinetic parameters on MBER 

Original model (Max Likelihood[R])  Alternative model (Max Likelihood [R]) Partial likelihood model (NONMEM) 

Estimate (95% CI) p-value Estimate (95% CI) p-value Estimate (95% CI) p-value 

Rifampicin 
C2hr, µg/ml -0.04 (0.17, 0.10) 0.591 -0.05 (-0.21, 0.12) 0.556 -0.14 (-0.39, 0.11) 0.269 

AUC0-6 µg/ml.hr  -0.01 (-0.05, 0.03) 0.588 -0.01 (-0.06, 0.03) 0.523 -0.04 (-0.10, 0.03) 0.286 

Isoniazid 
C2hr µg/ml 0.11 (-0.10, 0.32) 0.318 0.21 (-0.05, 0.46) 0.112 0.20 (-0.18, 0.57) 0.304 

AUC0-6 µg/ml.hr 0.03 (-0.03, 0.08) 0.361 0.06 (-0.01, 0.13) 0.076 0.06 (-0.04, 0.16) 0.225 

Pyrazinamide 
C2hr µg/ml 0.00 (-0.04, 0.03) 0.929 0.01 (-0.03, 0.06) 0.547 0.00 (-0.06, 0.07) 0.910 

AUC0-6 µg/ml.hr 0.00 (-0.01, 0.01) 0.903 0.00 (-0.01, 0.01) 0.475 0.00 (-0.01, 0.01) 0.784 

Ethambutol 
C2hr µg/ml 0.03 (-0.20, 0.26) 0.782 0.12 (-0.16, 0.40) 0.389 0.21 (-0.20, 0.62) 0.306 

AUC0-6 µg/ml.hr 0.01 (-0.05, 0.08) 0.670 0.05 (-0.03, 0.13) 0.229 0.08 (-0.04, 0.20) 0.178 

Table 7.9 Continuous pharmacokinetic parameters and MBER from MGIT-TTP models 

Detail on the construction of all three MGIT-TTP models are provided in Section 6.3.4. C2hr and AUC0-6hr measurements for all drugs were assessed as continuous variables. 
P-values were generated by linear regression. 

Drug Regression co-efficient describing effect of pharmacokinetic parameters on MBER 

Original model (Max Likelihood[R])  Alternative model (Max Likelihood [R]) Partial likelihood model (NONMEM) 

Estimate (95% CI) p-value Estimate (95% CI) p-value Estimate (95% CI) p-value 

Rifampicin 
C2hr <8µg/ml 0.31 (-0.53, 1.15) 0.468 0.1 (-0.97, 1.17) 0.849 0.25 (-1.33, 1.84) 0.752 

AUC0-6 <25µg/ml.hr  -0.03 (-0.65, 0.59) 0.919 -0.17 (-0.96, 0.62) 0.674 0.16 (-1.01, 1.32) 0.789 

Isoniazid 
C2hr <3µg/ml -0.06 (-0.64,0.52) 0.837 -0.54 (-1.24, 0.17) 0.137 -0.84 (-1.86, 0.18) 0.107 

AUC0-6 <15µg/ml.hr -0.46 (-1.07, 0.14) 0.132 -0.77 (-1.50,-0.03) 0.040* -0.99 (-2.06, 0.08) 0.068 

Pyrazinamide 
C2hr <35µg/ml 0.12 (-0.40, 0.64) 0.649 -0.08 (0.76, 0.60) 0.818 0.11 (-0.88, 1.11) 0.820 

AUC0-6 <200µg/ml.hr -0.06 (-0.72, 0.60) 0.850 0.03 (-0.79, 0.85) 0.947 0.26 (-0.98, 1.49) 0.682 

Ethambutol 
C2hr <2µg/ml -0.25 (-0.92, 0.41) 0.454 -0.31 (-1.12, 0.50) 0.451 -0.66 (-1.82, 0.51) 0.268 

AUC0-6 <15µg/ml.hr 0.04 (-0.80, 0.89) 0.918 -0.25 (-1.27, 0.78) 0.636 -0.45 (-1.94, 1.03) 0.548 

Table 7.10 Categorical pharmacokinetic parameters and MBER from MGIT-TTP models 

C2hr and AUC0-6hr measures assessed as categorical variables according to “low” values described on Section 7.2.2. P-values were generated by logistic regression. 
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7.3.5 Effect of pharmacokinetic variability on af-LB counts 

In Section 6.5.3 a LME model was constructed to describe changes in af-LB counts of serial 

sputum samples during TB therapy and it was postulated that alterations to intra-cellular 

lipid metabolism under drug pressure contribute to antibiotic tolerance. If this is true, 

slower emergence of LB positive organisms may occur in patients with lower C2hr drug 

concentrations because the pharmacological pressure favouring persister phenotypes is 

less. 

By integrating pharmacokinetic and serial ALTR microscopy data, Figure 7.8A demonstrates 

a drop during therapy in the af-LB count of patients with very low isoniazid C2hr compared 

to those with low or normal measurements (p=0.026). Figure 7.8B shows that the af-LB 

count appeared to drop more in patients with very low C2hr for multiple drugs than in 

patients with less extensive deficiencies in drug exposure (p=0.091). The number of 

patients involved in these exploratory analyses was small, so further exploration of the 

relationship between drug pressure and af-LB counts is needed.   

 

Figure 7.8 Drug exposure and change in af-LB count 

A: Change in af-LB counts during the first 4 weeks from LME model for patients with very low or 
low/normal isoniazid C2hr. Data analysed by Wilcoxon test. B: Change in af-LB counts from LME 
model for patients with very low C2hr of no, one (rifampicin or isoniazid) or two (rifampicin and 
isoniazid) drugs. Data analysed by Kruskal-Wallis test. 
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7.4 Discussion 

The data in this chapter are important because there is currently limited information on 

pharmacokinetic parameters in African populations, and few existing studies relate 

measurement of drug exposure to therapeutic response and treatment outcome. 

A striking feature is that, despite compliance with approved dosing protocols, rifampicin 

C2hr results were low in 87% of patients according to a published Cmax reference range. C2hr 

results were also low in 50% of patients for isoniazid, 40% for pyrazinamide and 19% for 

ethambutol. 59 (64%) patients had low C2hr of ≥1 drug and 8 (7%) patients had low C2hr of all 

drugs. Bloods sampling was co-ordinated around supervised dose administration so poor 

adherence does not explain these findings. From Table 3.7, only 5 study recruits had 

diarrhoea or gastroenteritis at any time reducing the likelihood that malabsorption was the 

cause. No patients were concurrently taking medicines which are known to interact with 

anti-TB drugs (Section 3.4.3) eliminating drug-drug interactions as a possible explanation. 

The observed rifampicin concentrations were consistent with other recent 

studies403,412,419,427 including McIlleron in South Africa400 and Tappero in Botswana414. The 

relationship between male sex and low plasma rifampicin exposure has previously been 

attributed to gender-based differences in volume of drug distribution419,605. The trend 

towards low rifampicin C2hr and AUC0-6hr in HIV-infected patients was compatible with prior 

reports from South Africa400 but the overall effect of HIV on the pharmacokinetics of anti-

TB chemotherapy remains controversial and in the current study there was no HIV effect 

on any parameters of isoniazid, pyrazinamide or ethambutol. 

 SLCO1B1 gene polymorphisms are common in black South Africans and may contribute to 

low rifampicin concentrations441-444. However, the incidence of these polymorphisms in 

Malawi is unknown and requires exploration. Whole blood samples containing DNA of all 

study samples are stored and pharmacogenomic analysis is planned. 

Low or very low isoniazid concentrations were more commonly found in the current study 

than in recent comparable African cohorts but no clinical or radiological covariates were 

linked with low C2hr or AUC0-6hr. Pharmacogenomic analysis of stored DNA is also necessary 

here as NAT2 genotype and acetylator status may determine up to 88% of isoniazid 

variability606 and the epidemiology of these factors in Malawi is unknown. 
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Pyrazinamide pharmacokinetics are the most stable of the first-line drugs, and in the 

current study the only covariate associated with inter-individual variability was the weight-

adjusted dose. Lower pyrazinamide concentrations in Malawi than in comparator African 

studies may be explained by differences in dosing between centres. In Botswana, the daily 

pyrazinamide schedule403,414 results in higher mg/kg dose than the Malawian protocol. 

Although South African and Malawian NTPs use the same weight bands and FDC approach, 

the median weight-adjusted pyrazinamide dose reported by McIlleron was 35.7 (range: 

25.2-47.3) mg/kg400 compared to 25.5 (range: 16.6-31.6) mg/kg in Malawi.  

Some data suggested that severe or disseminated clinical disease may be associated with 

lower rifampicin or ethambutol exposure. Inferior concentrations of these drugs have 

previously been noted in TB patients than healthy controls414 and it is possible that this 

discrepancy is exaggerated in the sickest patients whose altered physiology affects drug 

metabolism and excretion. 

As a major aim of this thesis is to examine factors associated with bacillary persistence and 

treatment outcome, the most important part of the pharmacokinetic analysis is the PK-PD 

study of relationships between patient measurements and therapeutic response. 

Rifampicin is the principal sterilising drug used throughout TB therapy and historical studies 

suggest that intermittent rifamycin dosing or low concentrations are associated with worse 

outcomes94,395,401,402. It was initially surprising that rifampicin variability was not related to 

any outcome measure. However, prior studies have described similar results427 and it is 

possible that low rifampicin concentrations during treatment of clinical infection are 

insufficient to detect the effect of variable drug exposure on bacillary elimination. MICs for 

rifampicin amongst M tuberculosis isolates from Malawi are unknown but if a value of 

1mg/l (from published in vitro data397) is assumed and rifampicin concentration-time plots 

are extrapolated, the estimated AUC0-Infinity/MIC ratio of the study population was 29.7 (95% 

CI: 27.3-32.1) µg/ml.hr.  This is several-fold lower than the steepest portion of AUC/MIC vs. 

bactericidal effect curves from macrophage and animal models397 supporting the case for 

trials of higher rifampicin doses to accelerate bacillary elimination and possibly shorten 

treatment duration. 

In contrast, isoniazid variability was associated with several measures of treatment 

response; a lower C2hr and AUC0-6hr increased the likelihood of positive 2 month sputum 

cultures, a higher AUC0-6hr  was associated with faster bacillary elimination in some models 
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and a lower C2hr was related to unfavourable final outcome. Isoniazid is potently 

bactericidal against replicating bacilli, and some authors have linked rapid drug elimination 

by fast acetylators to bacteriological failure407 so greater efficacy at higher exposure is 

plausible. As with rifampicin, if an MIC of 0.05mg/l (from in vitro data399) is assumed and 

isoniazid concentration-time plots are extrapolated the estimated AUC0-infinity/MIC of the 

study population was 301.4 (95% CI: 276.8-326.0) µg/ml.hr. This value is within the 

steepest portion of AUC/MIC vs. bactericidal effect curves from macrophage and animal 

models399, potentially explaining why isoniazid pharmacokinetics were more strongly 

associated with therapeutic response than those of rifampicin. Nevertheless, isoniazid is 

generally considered a poor steriliser of metabolically quiescent persister and the 

relationship with long-term outcome was unexpected. 

Variability in the AUC 0-6hr of pyrazinamide or ethambutol was associated with 2 month 

culture status but not final outcome. As these drugs are only used during the intensive 

phase of therapy, it is consistent that the effect of their pharmacokinetic variability is 

reflected in early bacteriological markers. In Botswana, lower pyrazinamide Cmax was 

previously associated with higher risk of treatment failure at 6 months403 but this was not 

observed in Malawi. The higher pyrazinamide dosing regimen in Botswana may have a role 

in explaining the discordant results.  

When C2hr values were analysed as categorical variables, only isoniazid displayed a 

relationships between drug concentration and 2 month culture status or clinical outcome. 

This challenges the suitability of defining low and very low drug levels solely on the basis of 

results from healthy volunteers.  For pharmacokinetic parameters to be useful, reference 

ranges should be relate to relevant bacteriological and clinical end-points rather than 

normal values from ethnically and physiologically dissimilar populations.  

The final analysis in this chapter explored relationships between pharmacokinetic 

parameters and serial trends in af-LB counts. The ALTR microscopy sub-study was too small 

to draw strong conclusions but it is interesting that af-LB counts dropped more quickly in 

the sputum of patients with very low C2hr of isoniazid and/or rifampicin than in those with 

greater drug exposure. This suggests that there may be more than one explanation for 

bacillary persistence. Some patients do not achieve sputum sterilisation as their plasma 

drug concentrations are inadequate. In this scenario, drug-tolerant persister bacilli have no 
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selective advantage. However, in patients with high drug concentrations, bacterial survival 

may be driven by organisms with a lipid-laden persister phenotype.     

The work in this chapter had several limitations. The sparse sampling schedule 

compromised measurement of pharmacokinetic parameters; drug profiles were removed if 

C6hr > C2hr and the approximation of C2hr for Cmax is likely to have been imprecise, particularly 

in the case of ethambutol where Tmax may be nearer 3 hours. Additionally, AUC estimates 

based on 3 data-points and not extrapolated to infinity may under-estimate drug exposure. 

Plasma concentrations were only measured on a single day and it is possible that treatment 

adherence and exposure to therapy were not constant at other times. Drugs were assayed 

in plasma but during clinical infection M tuberculosis bacilli are predominantly found in 

extra-vascular sites where anti-microbial penetration is variable and poorly understood409. 

Some assayed compounds (isoniazid and pyrazinamide) are pro-drugs which require 

conversion to an active compound. Inability to measure the active compound may 

confound PK-PD assessment of treatment response. 

Yet these limitations did not obscure some important findings. Rifampicin concentrations 

were low and dose escalation may be required to improve TB control in Malawi. Variability 

in isoniazid exposure was associated with early and late end-points of treatment response. 

Anti-microbial drug exposure appeared to influence the metabolic characteristics of 

persister organisms and future studies of bacillary phenotype (including af-LB counts) 

should explore this further. 
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8. General Discussion 

8.1 Introduction 

This thesis began by describing the urgent need for ultra short first-line chemotherapy in 

HIV-endemic African countries with a high burden of TB. Advances in drug development 

over the last decade have generated optimism that a combination of anti-microbial agents 

may be found to achieve durable TB cure in less than 6 months. 

However, two long-standing obstacles continue to thwart rapid clinical assessment of new 

regimens; the mechanisms underpinning bacillary persistence are incompletely 

understood, and no surrogate markers of sterilising activity and long-term outcome are 

validated to predict the long-term efficacy of new treatments from Phase IIb clinical trials.  

The project described in Chapters 2-7 was designed to confront these obstacles by 

modelling bacterial elimination over the first two months of therapy, evaluating methods 

for the study of persister organisms and assessing surrogate markers of clinical outcome. 

The study hypotheses are re-stated in Figure 8.1 in advance of a final discussion of how 

effectively they have been addressed. 

 

Primary Hypothesis: 

Pharmacodynamic modelling of bacillary elimination using quantitative SSCC and MGIT 

culture data will provide reliable surrogate markers of clinical outcome suitable for use 

in Phase IIb trials of new chemotherapy regimens.  

Secondary hypotheses: 

a) Non-sputum based assays (e.g. serial measurement of the urinary LAM-ELISA) 

will provide additional information on clearance of EPTB 

b) Single cell examination of bacilli in sputum (e.g. by fluorescence microscopy) 

will facilitate phenotypic characterisation and monitoring of drug tolerant 

persister organisms  

c) Individual variation in the pharmacokinetic parameters of anti-TB drugs is an 

important additional determinant of treatment efficacy 

Figure 8.1 Review of study hypotheses 
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8.2 Treatment outcomes and clinical covariates 

Testing of all study hypotheses was dependent on prospective observation of a patient 

cohort from smear positive PTB diagnosis until one year after completion of therapy. A 

detailed cohort description was provided in Chapter 3. Several aspects of that chapter 

merit specific emphasis. 

Long-term patient follow-up in low-income clinical environments is difficult and there is a 

lack of longitudinal studies with intensive early sampling and clinical end-points of post-

treatment relapse. Studies evaluating quantitative bacteriology techniques as treatment 

monitoring tools have generally excluded patients with advanced HIV 

infection228,266,278,288,290,298, and several have focused on drug resistant disease297,299. Thus, 

the careful assembly of a long-term cohort containing HIV-infected individuals with low 

baseline CD4 counts, genotypically confirmed DS-TB and detailed early bacteriological data 

was an important step in the study of bacillary persistence.   

The stable cure rate amongst study patients who reached a final end-point was 118/133 

(89%), compared to other reports of stable cure in 95% of patients treated with modern 

drug combinations102,477. The large number of unfavourable outcomes was attributed to 

selective recruitment of individuals with high bacillary loads. However, it was necessary to 

consider whether treatment failure was influenced by acquisition of resistance mutations 

during therapy or the end-point of relapse was contaminated by re-infection. Only one 

patient had MDR TB at EOT, and all relapses occurred within 6 months of initial therapy. 

Whilst spoligotyping of stored isolates is awaited, it is reasonable to assume that 

unfavourable outcomes were predominantly due to drug-tolerant bacillary persistence 

rather than genotypic resistance. 

The finding that cavities on baseline CXR were associated with two month sputum culture 

status is consistent with existing literature291,357,358, and the association between inability to 

read and unfavourable outcomes is a reminder that socio-economic issues impact on the 

results of clinical research. Otherwise, clinical and radiological factors were not predictive 

of long-term outcome on multivariate analysis. The principal determinants of bacillary 

persistence are likely to be microbiological and bacteriological measurements were used to 

measure sterilising drug activity and generate biomarkers of treatment response. 
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8.3 Pharmacodynamic modelling of SSCC and MGIT data 

The primary study hypothesis was framed around quantitative sputum cultures because 

bacteriological methods currently possess the strongest evidence base of any existing 

candidate biomarkers260. Optimisation of the techniques was outlined in Chapter 4 and the 

results of pharmacodynamic modelling were described in Chapter 6.   

The laboratory method for SSCC was challenging and has only been successfully described 

on three previous occasions. Difficulties included loss of data when bacillary loads fall 

below the limit of detection during the first treatment month and excessive contamination 

of later specimens.  

Modification of selective SSCC media reduced late sample contamination but the problem 

of early culture conversion was hard to overcome. In prior studies only 6% of subjects had 

detectable colony counts at 60 days271 and computer simulations indicate that mean colony 

counts should fall below zero at around 56 days266. Intuitively, a technique which is poor at 

reviving persisters after the first few weeks may seem inadequate to study bacillary 

persistence and sterilisation phase drug activity.    

Nevertheless, when serial positive counts were assessed with NLME statistical techniques a 

biphasic model of bacillary clearance was successfully fit to the data. The SSCC-NLME 

model was then refined using a partial likelihood method to estimate colony counts for 

samples below the limit of detection. Extraction of best unbiased parameter estimates for 

individual patients from this model revealed that a larger baseline population of persister 

organisms and a slower sterilisation phase elimination rate were associated with 

unfavourable outcome. These results are encouraging because they provide empirical data 

to support Mitchison’s theory that distinct bacterial populations are cleared at different 

rates160,161 and implicate sterilisation phase bacillary elimination as a predictor of long-term 

outcome. However, it remains uncertain whether the partial likelihood method is the best 

statistical technique for handling data below the limit of detection.      

A feature of SSCC plate counting not exploited in the current study is that each colony 

grows from a single M tuberculosis organism. This could allow identification of individual 

CFUs as rapid replicators or slow persisters based on their time of appearance and rate of 

growth. Investigators working on bacterial persistence in E coli have developed ScanLag 

technology to take multiple photographs of the same culture plates over time and grade 
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bacterial persistence based on the pattern of colony growth607. A similar approach may 

yield new insights into drug-tolerant persister populations during TB treatment. 

Overall, the fragility of the laboratory technique and complexity of methods required for 

data analysis means that SSCC-NLME methods require further evaluation. Two ongoing 

Phase IIb studies (NCT 00760149 and NCT01498419) have incorporated SSCC-NLME 

parameters as their primary end-points and meta-analysis of results from these alongside 

existing studies will be important to clarify the role of SSCC in future clinical trials.     

Serial measurement of MGIT-TTP was the second quantitative bacteriology technique to be 

assessed. Although there is minimal prior data on validation of this method against long-

term end-points, the MGIT-TTP results are the most important findings presented in this 

thesis. Despite some laboratory issues with serial MGIT sampling (e.g. loss of cording and 

acid fastness during confirmatory isolate identification) this method achieved better revival 

of persisters, fewer contaminated samples and a more complete dataset than SSCC. LME 

modelling of MGIT-TTP results generated the MBER as a parameter with considerable 

ability to predict long-term outcome. 

The MBER possessed useful properties as a surrogate marker of sterilisation. Using positive 

TTP data only, the odds ratio of an unfavourable outcome for each unit increase in MBER 

was 0.5 (95% CI: 0.30-0.83, p=0.007) representing a large effect size and strong statistical 

significance. MBER estimation was not confounded by common clinical or radiological 

covariates, which will be an advantage for Phase IIb studies with heterogeneous patient 

cohorts. As with SSCC-NLME modelling, there were issues regarding how best to handle 

data beyond the limit of detection but three distinct LME approaches (positive data only, 

imputation of TTP=50 days for the first negative results, and the partial likelihood method) 

yielded similar results. Use of a linear model meant that the MBER was a simple parameter 

to interpret.   

In keeping with other recent reports281,288-290 a strong inverse correlation was seen between 

MGIT-TTP measurements and colony counts from SSCC plates. However, the strength of 

this relationship weakened over time, because samples with broadly similar log10CFU/ml 

counts had longer TTP at later study visits. This was taken to imply that the metabolic 

oxygen consumption of viable bacilli decreases during treatment, supporting the existence 

of a relationship between metabolic quiescence and drug-tolerant persistence.      
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With additional resources, the liquid culture protocol used for this study might be 

improved. Only one MGIT bottle was inoculated per sputum specimen, increasing 

vulnerability to several sources of error (e.g. inadequate sample homogenisation, unequal 

NaOH decontamination or variable calibration of the fluorescence reader). Inoculating 

multiple bottles and taking an average for each sample would have protected against these 

potential confounders. A manual microMGIT reader was used to assess fluorescence from 

incubating bottles twice per day. Although parallel incubation of 74 samples showed 

equivalent TTP results between this method and continuous fluorescence reading in an 

automated BACTEC MGIT 960 machine, routine use of the automated system may still have 

improved accuracy. It is unlikely that these protocol modifications would have 

substantively altered the study conclusions. 

Full validation of the MBER as a surrogate outcome marker will require the findings 

described here to be replicated in high-burden TB countries outside Africa. It cannot be 

assumed that the results will be the same. Comparison of data from different locations in 

multi-centre clinical trials reveals that African sites often report greater disparity in time to 

solid and liquid culture conversion357, higher 2 month sputum culture positivity357 and 

higher post-treatment relapse rates305 than sites in Asia or South America. It is known that 

infecting M tuberculosis strains differ between populations and strain variation may cause 

heterogeneity in persistence mechanisms and treatment response. In particular, the Beijing 

strain has been associated with constitutive up-regulation of the DosR regulon608, slower 

culture conversion291 and early relapse609. The epidemiology of infecting TB strains in 

Malawi is not yet known and, although genetic strain differentiation is planned, studies in 

diverse settings are needed for the MBER to be globally assessed.    

Notwithstanding these reservations, there is good evidence that the primary study 

hypothesis is true. Whilst aspects of SSCC modelling require refinement, the MBER is a 

robust parameter which measures bacillary elimination throughout intensive phase TB 

therapy, predicts long-term outcome and should be considered as a surrogate end-point 

for Phase IIb studies of new treatment regimens.    
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8.4 The LAM-ELISA and the problem of EPTB 

A proportion of the total bacillary burden in TB infection, particularly in HIV-infected 

patients, is likely to be extra-pulmonary3 and not reflected in bacteriological assays on 

sputum. A sub-study was performed to assess the urinary LAM-ELISA as a means of non-

invasively monitoring clearance of EPTB and results were presented in Chapter 6. 

This part of the project was limited by sample size; delays in kit availability meant that the 

LAM-ELISA was only performed on urine from 51 patients. Poor sensitivity of the test in HIV 

un-infected individuals restricted the analysis to 36 patients with HIV-infection. 20 (55%) of 

those had a positive baseline LAM-ELISA and were used for serial study.  

The LAM-ELISA generally converted from positive to negative between baseline and S4 

visits and there was a gradual fall in serial log10OD readings on the plate reader. Insufficient 

samples were examined to determine whether changes in LAM-ELISA results over time 

predicted outcome. Stored specimens from the remaining HIV-infected patients are 

currently being tested but it seems unlikely that, in its current form, this assay will have 

adequate sensitivity to serve as biomarker of outcome in patients with PTB. 

A mitigating factor for the LAM-ELISA may be its ability to detect bacillary populations 

which are otherwise inaccessible. Diagnostic studies of HIV-infected TB suspects with CD4 

<100 cells/µl have shown that the urinary LAM-ELISA is often positive in patients who are 

sputum smear negative337,610. Therefore, whilst the work presented in this thesis has 

assessed the assay as a tool to find disseminated disease in patients with a predominantly 

pulmonary illness, it primary function may be to identify patients whose TB is mainly or 

entirely located outside the lungs. It is currently very difficult to perform treatment trials in 

patients who cannot expectorate (including children), or who suffer exclusively from EPTB 

so a more targeted appraisal of the LAM-ELISA in carefully selected patient groups may 

yield useful results. It should be recalled from Chapter 1 that a proposed mechanisms for 

bacillary persistence, aside from metabolic heterogeneity, was sequestration of bacilli in 

sanctuary sites with poor drug penetration209,210. From this perspective, ongoing efforts to 

develop and improve techniques which report on hidden foci of EPTB are extremely 

important.  

At present the secondary study hypothesis that non-sputum based assays can provide 

additional information on clearance of EPTB remains unproven. 
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8.5 A potential role for single cell techniques 

The most ambitious component of this project was the attempt to develop single cell 

fluorescence techniques to specifically label persister M tuberculosis organisms in sputum. 

This work was presented in Chapters 5 and 6. 

Although Mitchison’s proposal of drug tolerant persisters as a phenotypically distinct 

bacterial population is supported by the fit of the biphasic SSCC-NLME model, no 

established assay directly identifies persisters or tracks their behaviour during therapy. The 

benefits of a method for this are clear; important insights into mechanisms of 

mycobacterial persistence would be revealed and the sterilising effects of new drug 

regimens could be directly assessed. Fluorescence microscopy and flow cytometry are 

regularly used to discriminate between properties of individual cells but are difficult to 

deploy on sputum due to the complexity of extracting bacilli from the biological matrix.  

Most success was achieved with ALTR fluorescence microscopy. Metabolic pathways were 

outlined which may relate accumulation of TAG LBs to bacterial persistence154,172,173. 

Published microscopy and image analysis protocols175,344 were then modified to quantify 

the proportion of LB+ organisms in sputum samples from study patients.  ALTR microscopy 

revealed acid-fast and non-acid LB+ cells, highlighting that some TB bacteria in sputum may 

not be detected by conventional ZN or AP staining techniques. Prior in vitro data supports 

the notion than LB+ bacilli may be drug tolerant154,168.    

Amongst baseline sputum samples, there was an association between higher af-LB and TLB 

counts and higher TTP/log10CFU ratios from quantitative cultures. This was interpreted as 

demonstrating that the LB+ phenotype may be metabolically quiescent. Amongst a sub-

study of serial sputum samples collected during the first month of TB therapy, there was an 

slight downward trend in af-LB and TLB counts in patients who went on to have favourable 

outcomes but an upward trend in patients who went on to have failure or relapse. Patient 

numbers were too small for this result to achieve statistical significance, but these results 

collectively support the argument that LB+ organisms are implicated in drug-tolerant 

persistence.            

Further work is required to refine the ALTR techniques and evaluate them in larger patient 

cohorts. A rate-limiting step for the current study was that LB counts from all images of 

every microscopy slide were done manually. Collaboration is ongoing with the Department 

of Physics at the University of Liverpool to customise computer software for automated 
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image analysis. It is hoped that this will improve the time-efficiency and objective 

standardisation of data collection611. Existing protocols for LB counting dichotomise 

bacteria into LB+ and LB-, but in reality the number and size of LBs within each cell may 

vary. With an automated algorithm it may be possible to perform more detailed sub-

divisions of phenotype. Extensive exploration of the importance of non-acid fast bacilli will 

require an alternative means of definitively labelling these organisms as M tuberculosis.   

Despite the potential benefits of fluorescence microscopy to examine LB+ bacilli during 

therapy this method is unlikely to ever permit study of putative persisters during the 

second month of TB therapy because microscopy rarely identifies bacilli in sputum at an 

organism density less than 103 cells/ml597,598. It remains to be seen whether a non-culture 

based method can be found to efficiently label viable bacteria at lower sample 

concentrations. In the current study, preliminary experiments were done with flow 

cytometry, which can assess a large volume of fluorescence-labelled specimens very 

quickly. M tuberculosis was successfully differentiated in vitro from cocktails of other 

respiratory micro-organisms but a suitable assay for clinical samples has not yet been 

developed.     

Overall, there is preliminary evidence to support the secondary study hypothesis that single 

cell examination of bacilli in sputum using ALTR microscopy facilitates phenotypic 

characterisation and monitoring of drug tolerant persister organisms. However, the ALTR 

method requires further optimisation and independent evaluation.    

8.6 Pharmacokinetic parameters and treatment response 

Relationships between clinical covariates, treatment response and pharmacokinetic 

parameters are examined in Chapter 7 and three points should be highlighted. 

Firstly, plasma rifampicin concentrations amongst study patients were low. This was 

consistent with a growing body of prior pharmacokinetic data140,400,403,412,414,427 and 

strengthens the argument that rifamycin dosing should be revised. A fourteen day clinical 

study from Cape Town in which 98% of patients were HIV-uninfected has recently 

described safe administration of rifampicin doses up to 35mg/kg with an incremental dose 

effect on bactericidal activity612. To be relevant for TB control in Malawi, it is important that 

future dose-ranging studies of longer duration also report on HIV-infected individuals. 
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Secondly, variability in the pharmacokinetics of isoniazid was related to treatment 

response. Unfavourable final outcomes and positive 2 month sputum cultures were less 

likely in patients with higher AUC0-6hr. Unfavourable outcomes were also less likely in 

patients with a higher C2hr and there were relationships between the AUC0-6hr and bacillary 

elimination rates from some SSCC and MGIT models. As isoniazid is widely regarded as an 

ineffective sterilising drug these findings were slightly surprising. However, prior data do 

describe less successful treatment in patients with lower isoniazid exposure407 and it is 

clear that new information can be learned about established drugs from clinical PK-PD 

studies.           

Thirdly, patients with a higher C2hr of isoniazid and/or rifampicin appeared to retain higher 

proportions of LB+ organisms more slowly on therapy than patients with very low drug 

concentrations. Although this analysis was exploratory, the fact that af-LB organisms had a 

greater survival advantage under more strenuous anti-microbial pressure is compatible 

with the view that LBs are a phenotypic marker of drug tolerance. 

Further interrogation of the pharmacokinetic dataset is planned. Isolates of all M 

tuberculosis isolate from the study are stored in Malawi and the MICs of these will be 

determined to allow incorporation of AUC/MIC ratios into the analysis of each drug. Stored 

DNA from study patients will be tested for relevant mutations in NAT2 and SLCO1B1 genes 

to establish whether genetic factors explain some of the variability in pharmacokinetic 

parameters or treatment response. 

In anticipation of this additional work, the data presented here provisionally support the 

secondary hypothesis that individual variation in the pharmacokinetic parameters of anti-

TB drugs (particularly isoniazid) is an additional determinant of treatment efficacy. 

8.7 Final conclusions 

The body of work collected in this thesis has established that mixed effects modelling of 

quantitative bacteriology data will benefit the clinical development of new chemotherapy 

regimens against TB In particular, the MBER from LME analysis of MGIT-TTP data was 

statistical measure of sputum sterilisation mean which could be calculated on the majority 

of study patients and was strongly predictive of long-term outcome. Further prospective 

evaluation of this parameter should be undertaken as it may be a useful surrogate end-

point for future Phase IIb clinical trials. 
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Additionally, ALTR microscopy provided novel information on LB accumulation in M 

tuberculosis cells during clinical infection. Phenotypically distinct populations of LB+ and LB- 

bacilli were demonstrated and exploratory data were presented to support the theory that 

LB+ bacilli are implicated in drug-tolerant persistence. Whilst the mechanisms driving 

persistence during TB treatment are likely to be multi-factorial and the ALTR technique 

requires further optimisation the emergence of a new tool to study metabolic 

heterogeneity in clinical samples is encouraging. 

The last decade has been associated with the greatest advances in TB therapeutics since 

the 1960s, but ultra-short chemotherapy has not yet been achieved and scientific 

breakthroughs have not yet impacted on the stubbornly high global burden of disease. The 

work presented here advances our existing knowledge by identifying candidate 

bacteriological biomarkers which could genuinely impact on the conduct of future clinical 

trials, and describing a novel approach to the direct study of bacillary persistence in TB 

patients.
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10. Appendices 

10.1 COMREC ethical approval letter (P.01/10.855) 
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10.2 LSTM ethical approval letter (09.67)  
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10.3 NHS Bolton Research Ethics Committee approval letter 

 

 

 

 

Bolton Research Ethics Committee 
Room 181, Gateway House 
Piccadilly South 
Manchester 
M60 7LP 
Telephone: 0161 237 2585  
Facsimile: 0161 237 2 

Private & Confidential      1 June 2009        
 

Dr S Khoo,  
Reader 
University of Liverpool/ Royal Liverpool University Hospital 
70 Pembroke Place 
Liverpool 
L69 3GF 
 

Dear Dr Khoo 
 

Study Title: Understanding mycobacterial persistence in sputum during treatment for tuberculosis 
REC reference number: 09/H1009/27 

Protocol number: 3 
 

Thank you for the information and revised documentation provided by Dr Sloan in response to the Committee’s request.  
This has been considered on behalf of the Committee by the Chair and Dr Ong. 
 

 Confirmation of ethical opinion 
 

On behalf of the Committee, I am pleased to confirm a favourable ethical opinion for the above research on the basis  
described in the application form, protocol and supporting documentation as revised. 
 

Ethical review of research sites 
 

The favourable opinion applies to all NHS sites taking part in the study, subject to management permission being 
 obtained from the NHS/HSC R&D office prior to the start of the study (see “Conditions of the favourable opinion” below). 
 

The favourable opinion applies to the following research site(s):   

Research Site  Principal Investigator / Local Collaborator  

Royal Liverpool and Broadgreen University Hospitals Trust  Dr Derek Sloan  
 

Condition of the favourable opinion 
 

The favourable opinion is subject to the following condition being met prior to the start of the study. 
 

Management permission or approval must be obtained from each host organisation prior to the start of the study at the site concerned. 
 

For NHS research sites only, management permission for research (“R&D approval”) should be obtained from the relevant care 
organisation(s) in accordance with NHS research governance arrangements.  Guidance on applying for NHS permission for 
research is available in the Integrated Research Application System or at http://www.rdforum.nhs.uk 
 

It is the responsibility of the sponsor to ensure that all the conditions are complied with before the start of the study or its 
initiation at a particular site (as applicable). 
 

Approved documents 
 

The final list of documents reviewed and approved by the Committee is as follows:  

Document    Version    Date    

Response to Request for Further Information  1  07 May 2009  

Participant Consent Form  2  05 May 2009  

Participant Information Sheet: Non -TB patients  2  05 May 2009  

Participant Information Sheet: TB patients  2  05 May 2009  

Participant Consent Form  1  11 March 2009  

Letter from Sponsor  1  12 March 2009  

Investigator CV    19 March 2009  

Application  2.0  19 March 2009  

Response to Request for Further Information  2     

Protocol  3  19 May 2009  

 

Statement of compliance 
 

The Committee is constituted in accordance with the Governance Arrangements for Research Ethics Committees (July 2001) and 
complies fully with the Standard Operating Procedures for Research Ethics Committees in the UK. 
 

Dr Frank Bowman 
Chair 

http://www.rdforum.nhs.uk/
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10.4 TB microscopy staining techniques 

10.4.1 Routine Ziehl Neelsen (ZN) staining method 

Preparing staining reagents 

Carbol fuschin: Make solution 1 by dissolving 3g basic fuschin in 100ml 95% ethanol. Make 

solution 2 by dissolving 50g phenol crystals in 900ml distilled water (gentle heat may be 

required). Combine 100ml solution 1 with 900ml solution 2. Filter into an amber bottle and 

store for a maximum of 12 months. 

Decolourising agent (3% acid alcohol): Carefully add 3ml concentrated hydrochloric acid to 

97ml 70% alcohol (always add acid to alcohol, not vice versa). The mixture will heat up. 

Transfer to an amber bottle and store for a maximum of 6 months. 

Counter-stain (methylene blue): Dissolve 3g methylene blue in 1000ml distilled water. 

Transfer to an amber bottle and store for a maximum of 12 months. 

Staining procedure 

1. Prepare smears on microscopy slides with 10µl sputum 

2. Fix smears by passing slides, with the smear uppermost, through a flame 3-4 times. 

3. Place slides on the staining rack in batches. Do not let slides touch one another. 

4. Include a known positive smear slide on every batch or whenever a freshly 

prepared stain is used. 

5. Filter the carbol fuschin solution and flood slides with the stain for 15 minutes. 

6. During carbol fuschin staining, heat the slides slowly until they are steaming at 5 

minute intervals but do not let the slides boil dry. 

7. Rinse each slide individually in a gentle stream of running water until all free stain 

is washed away. 

8. Flood the slides with 3% acid alcohol decolouriser for a maximum of 3 minutes. If 

carbol fuchsin is retained in the smear, it is considered under-decolourised. Repeat 

the decolourisation, if necessary for a further 1 minute. 

9. Rinse slides thoroughly with distilled water. 

10. Flood slides with methylene blue for 30 seconds. 

11. Rinse slides thoroughly with distilled water. 

12. Allow to air-dry. Do not blot.  
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Interpretation of ZN microscopy result 

1. All slides should be assessed by two independent readers, using a 100x oil 

immersion lens. 

2. Make a series of systematic sweeps across the smear. Move the slide longitudinally 

after examining a field so that the field to the right can be examined. 

3. Examine a minimum of 100 fields before reporting a slide as negative. 

4. Wipe the oil immersion objective with lens tissue after examining a positive slide. 

5. Store the slides in indexed slide boxes for future reference. 

On each slide look for fine red rods, slightly curved, approximately 1-10µm long, more or 

less granular, isolated, in pairs or groups, standing out clearly against the blue background.  

Interpret the results as follows: 

Number of acid-fast bacilli Fields Report 

0 Per 100 oil immersion fields No bacilli observed 

1-9 Per 100 oil immersion fields Scanty (record exact number) 

10-99 Per 100 oil immersion fields 1+ 

1-10 Per field 2+ 

>10 Per field 3+ 
Table 10.1 Interpretation of ZN microscopy smears 

 

10.4.2 Routine Auramine Phenol (AP) staining method 

Preparing staining reagents 

Auramine phenol solution: Make solution 1 by dissolving 1g auramine in 100ml 96% 

ethanol. Make solution 2 by dissolving 30g phenol crystals in 900ml distilled water. Filter 

solution 1 into solution 2 and store in a tightly stopped amber bottle away from light and 

heat for a maximum for 3 months. 

Decolourising solution (0.5% acid alcohol): Add 5ml hydrochloric acid to 1000ml ethanol. 

Transfer to an amber bottle and store for a maximum of 3 months. 

Counter-stain (Potassium permanganate [KMNO4]): Dissolve 5g KMNO4 in 1000ml distilled 

water. Transfer to an amber bottle and store for a maximum of 3 months. 

Staining procedure 

1. Fix and arrange smears as for ZN microscopy 

2. Flood slides with auramine phenol for 15 minutes. 
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3. Rinse with distilled water (tap water contains chlorine which may interfere with 

fluorescence. 

4. Decolourise with 0.5% acid alcohol for 3 minutes. 

5. Rinse with distilled water. 

6. Flood with KMnO4 and allow counter-staining for 1 minute. Timing is critical; 

prolonged counter-staining may quench the fluorescence of acid-fast bacilli. 

7. Rinse with distilled water. 

8. Allow to air-dry. Do not blot. Read as soon as possible (under x40 objective lens) 

after staining or store in the dark at 4oC. 

Interpretation of AP microscopy results 

Examine as for ZN slides with the following exceptions: 

a. Examine AP stained smears with a 40x objective lens through a filter for 

yellow-green fluorescence 

b. Examine a minimum of 70 fields before reporting as negative 

On the slides; look for rod-shaped or slightly curved bright yellow fluorescence emitting 

bacilli against a dark background. Interpret the results as follows: 

Number of acid-fast bacilli Fields Report 

0 70 Negative 

1-2 70 Doubtful 

1-19 70 Scanty (record exact number) 

2-18 50 1+ 

4-36 10 2+ 

10-90 1 3+ 
Table 10.2 Intepretation of AP microscopy smears 

 

10.4.3 Optimised Auramine LipidTOX Red (ALTR) staining method 

Preparing staining reagents 

1mg/ml lipase-dithiothreitol mix: measure 50mg of lipase from Candid rugosa (Sigma 

L1754) into a 50ml Falcon tube, add 3.75ml neat DTT to it and then adding 46.25ml distilled 

water to make up to 50ml. 

Auramine phenol and decolourising (0.5% acid alcohol) solutions: Prepare according to 

routine AP staining protocol. 

LipidTOX Red neutral – defrost a vial from -20oC storage. Make a 1:200 solution in PBS 
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Staining procedure 

1. Fix and arrange smears as for ZN microscopy, using Cellbond slides to standardise 

the smear area. 

2. Flood slides with auramine phenol solution for 15 minutes. Wash slides gently with 

mycobacteria-free distilled water. 

3. Decolourise with 0.5% acid alcohol for 2 minutes and wash gently with 

mycobacteria-free distilled water 

4. Cover smear with 1:200 dilution of LipidTOX red neutral stain (usually need 0.4ml 

working strength solution per slide) for 20 minutes. Wash gently with 

mycobacteria-free distilled water 

5. Flood slide with KMNO4 and allow counterstaining for 1 minuteiming is critical.  

6. Store slides in the dark and read within 24 hours. 

Interpretation of ALTR microscopy results 

This is outlined in detail in Section 5.3.11. In brief, 

1. Examine slides with a x100 oil immersion lens on a fluorescence microscope with a 

digital camera attachment 

2. Before each microscopy session, set camera focus and photography exposure times 

using pre-specified control samples 

3. Blind slides prior to reading 

4. Scan slides systematically through a yellow-green (FITC) filter. Photograph each 

discretely visible auramine labelled bacillus twice – once through the FITC filter and 

once through a read (TRITC) filter. 

5. Continue scanning slides until 100 auramine-labelled bacilli have been 

photographed or the slide has been read for 15 minutes. 

6. Assess bacilli on stored images the presence of lipid bodies (red dots within 

auramine-labelled bacilli. The af-LB count for each slide is calculated as: 

af-LB count (%) = 100 X 
Total acid-fast LB positive bacilli on all images 

Total acid-fast bacilli on all images 
 

Identification of auramine negative LB+ bacilli is discussed in Chapter 5. 
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10.5 Preparation and use of Lowenstein Jensen (LJ) media 

LJ media preparation 

1. Weigh the following ingredients in order in a sterile reagent bottle containing the 

distilled water; Potassium dihydrogen phosphate anhydrous (KH2PO4) - 1.2g, 

Magnesium sulphate (MgSO4.7H2O) -0.12g, Magnesium citrate – 0.3g, Asparagine – 

1.8g, Glycerol – 6ml, Malachite green – 0.3g, Distilled water – 300ml 

2. Autoclave at 121oC at 15lbs pressure for 15 minutes 

3. Cool to room temperature. This mixture can be kept overnight in the fridge but is 

best used on the day of preparation. 

4. Clean 10 fresh hens’ eggs (<7 days old) by scrubbing thoroughly with a hand brush 

in warm water and a plain alkaline soap 

5. Rinse eggs thoroughly in running water and soak them in 70% ethanol or 

methylated spirits for 15 minutes. 

6. Before handling the clean eggs, scrub the hands with methylated spirit,, wash with 

tap water and rinse with methylated spirit. 

7. Crack the eggs with a sterile knife into a sterile beaker and beat them with a sterile 

glass rod for 5 minutes until they are watery. 

8. Place the salt solution into the egg solution to homogenise. 

9. Wait for 30 minutes with the mixture covered with sterile foil paper to prevent 

contamnation. This time allows the malachite green to absorb to the albumin. 

10. Check pH (6.8-7.2) by taking a small sample for the mixture into a separate 

universal bottle and measure the pH using a pH meter. If too acid add sodium 

hydroxide. If too alkaline add hydrochloric acid. 

11. Dispense the complete medium in 8ml volumes into 28ml universal containers. 

12. Inspissate the medium within 15 mins of distribution to prevent sedimentation of 

the heavier ingredients. 

13. Place the bottles in a slanted position on the inspissator and coagulate the medium 

for 60 minutes at 85oC.   

14. . After 60 minutes, switch off the inspissator and leave bottles to cool before taking 

them off the inspissator. 

15. Label the LJ bottles with the day of preparation. 

16. Store at 2-8oC. For optimal isolation from specimens, LJ medium should not be 

more than 4 weeks old. 
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To make specialist LJ media containing Paranitrophenol Benzoic Acid (PNB) for 

identification of MGIT isolates (as described in Section 4.3.3) make LJ as above but add 

500mg PNB dissolved in Dimethylsulphoxide (DMSO) to the salt solution. 

LJ media quality control 

Media quality deteriorates if coagulation is done at excessive temperature or for too long. 

Assess as follows: 

1. Once media cools to room temperature, check media quality. Discolouration of 

coagulated media or the appearance of tiny bubbles on the surface of the media 

indicates a faulty coagulation procedure. Discard poor quality media. 

2.  Prepare 10-fold dilutions from a 0.5 McFarland standard suspension of H37Rv 

(neat, 1:10, 1:100, 1:1000 using phosphate buffer pH 6.8). Inoculate 4 drops from 

each dilution onto a fresh slope from the prepared batch of LJ media and incubate 

for 2-3 weeks. Confirm growth by weekly checks. 

3. After inspissations, incubate a representative sample of culture media at 35-37oC 

for 24 hours to check sterility. Discard any media growing bacterial colonies. 

Inoculation and incubation 

1. Discard condensed moisture at the bottom of LJ slopes. 

2. With sterile pipette, inoculate using sterile pipettes, 4 drops of sample/isolate onto 

each slope. 

3. Incubate at 37oC in a slanted position with loosened caps for at least 24 hours to 

ensure even distribution of inoculums and ventilation. Place bottles thereafter in 

an upright position with caps tightened to avoid contamination. 

4. Incubate for 8 weeks, checking for growth every week. 

Examination of LJ slopes  

1. Examine 24 hours after inoculation to check that liquid has completely evaporated 

and detect contaminants. Tighten caps to prevent drying out of media. 

2. Examine cultures weekly thereafter. 

3. Look for rough, crumby, waxy, non-pigmented (cream-coloured) or yellow 

pigmented colonies appearing 3-8 weeks after inoculation. 

4. Confirm growth macroscopically and by microscopic examination of colonies with 

ZN stain 

5. Include a known positive sample on every new culture batch. 
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10.6 Storing M tuberculosis isolates in 30% glycerol 

Preparing storage media 

1. Add 30ml glycerol to 70ml distilled water 

2. Autoclave at 121oC for 15 minutes 

3. Store at 2-8oC for maximum 6 months 

NB. Isolates can also use tryptone soya broth: add. 3g tryptone soya broth (Oxoid, 

Basingstoke, UK) to 20ml glycerol and 80ml distilled water 

 Quality control checks for storage media: 

1. Distribute 1ml of each type of storage media into 2ml cryotubes. 

2. Suspend a colony of M tuberculosis from a re-subbed slope less than 3 weeks old. 

3. Refrigerate cryotubes at -20oC for 3 weeks. 

4. Re-inoculate the preserved cultures onto LJ slopes and incubate for up to 3 week. 

5. Check for growth every week – growth of TB colonies shows media of good quality. 

Discard any media showing sterility. 

 


